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Introduction

The theory of functional differential equations has emerged as an important branch of
nonlinear analysis. Differential delay equations, and functional differential equations,
have been used in modeling the evolution of some physical, biological and economic
systems, in which the response of the system depends purely on the current state of the
system. However, in many applications the response of the system can be delayed, or
depend on the past history of the system in more complicated way. Often, it has been
assumed that the delay is either a fixed constant or is given as an integral in which
case it is called a distributed delay; see for instance the books by Hale and Verduyn
Lunel [58], Kolmanovskii and Myshkis [75], and Wu [100], and the references therein.
An extensive theory is developed for evolution equations [6, 50].

In 1806 Poisson [90] published one of the first papers on functional differential equa-
tions and studied a geometric problem leading to an example with a state-dependent
delay (see also [97]). However, complicated situations in which the delay depends
on the unknown functions have been proposed in modeling in recent years. These
equations are frequently called equations with state-dependent delay, see, for instance
[48, 68, 71, 98]. Existence results and among other things were derived recently for
functional differential equations when the solution is depending on the delay on a
bounded interval [0, b] for impulsive problems. We refer the reader to the papers by
Abada et al. [1], Ait Dads and Ezzinbi [9], Anguraj et al. [10], Hernandez et al. [69]
and Li et al. [78]. Uniqueness and existence results have been established recently
for different evolution problems in the papers by Baghli and Benchohra for finite and
infinite delay in [13, 14, 15]. In [86, 87, 88, 30, 31, 29, 35], the authors considered the
existence of mild solutions for evolution equations on unbounded intervals.

Differential equations on infinite intervals frequently occur in mathematical mod-
elling of various applied problems. For example, in the study of unsteady flow of a
gas through a semi-infinite porous medium [4, 73], analysis of the mass transfer on a
rotating disk in a non-Newtonian fluid [5], heat transfer in the radial flow between par-
allel circular disks [82], investigation of the temperature distribution in the problem of
phase change of solids with temperature dependent thermal conductivity [82], as well
as numerous problems arising in the study of circular membranes [3, 44, 45], plasma
physics [5], nonlinear mechanics, and non-Newtonian fluid flows [3]. Over the past
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several years it has become apparent that equations with state-dependent delay arise
also in several areas such as in classical electrodynamics [49], in population models
[8, 25, 37, 38], in models of commodity price fluctuations [23, 79], in models of blood
cell productions [24, 39, 41, 80], and in drilling [83]. the differential inclusions is a
generalization of the notion of an ordinary differential equation. Therefor all problems
considered for differential equations, that is, existence of solutions, continuations of so-
lutions, dependence on initial and parameters, are present in the theory of differential
inclusions.

Partial neutral differential equation with finite delay arise, for instance, from the
transmission line theory [99]. Wu and Xia have shown in [100] that a ring array
of identical resistibly coupled lossless transmission lines leads to a system of neutral
functional differential equations with discrete diffusive coupling which exhibits various
types of discrete waves. For more results on partial neutral functional-differential
equations and related issues we refer to Adimy and Ezzinbi [2], Hale [56], Wu and
Xia [99, 100] for finite delay equations, and Hernández and Henriquez [66, 67] for
unbounded delays. Functional-differential equations with state-dependent delay appear
frequently in applications as model of equations and for this reason the study of this
type of equations has received a significant amount of attention in the last years, see
for instance [1, 2, 8, 11, 25, 37, 77] and the references therein. We also cite [9, 78, 38,
48, 69, 83, 101, 32, 33] for the case neutral differential equations with state-dependent
delay.

The cosine function theory is related to abstract linear second order differential
equations in the same manner that the semigroup theory of bounded linear operators
is related to first order partial differential equations and it’s equally appealing devoted
their generality and simplicity. For basic concepts and applications of this theory, we
refer to the reader to Fattorini [51] , Travis and Weeb [96]. Our purpose in this work
is consider a simultaneous generalization of the classical second order abstract Cauchy
problem studied by Travis and Weeb in [95, 96] . Additionally, we observe that the
ideas and techniques in this paper permit the reformulation of the problems studied in
[17, 26, 76, 84, 85] to the context of " partial " second order differential equations, see
[95] and the referred papers for details, we also cite [34]

In this thesis, we shall be concerned by global existence some classes of first and sec-
ond order of partial functional and neutral functional differential evolutions equations
and inclusions with finite, infinite and state-dependent delay on a positive real semiin-
finite interval. Our results are based upon fixed point theorems and using semigroups
theory. This thesis is arranged as follows:

In Chapter 1, we introduce notations and definitions, lemmas and notions of
semigroup, fixed point theorem which are used throughout this thesis.

In Chapter 2, we give the global existence of mild solution on a semiinfinite positive
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real interval for partial functional differential evolution equations with delay.

In the section 2.2.1 the delay is finite i.e. on a bounded historical interval H =
[−d, 0] for d > 0. we consider the following problem

y′(t) = Ay(t) + f(t, yt), a.e. t ∈ J := [0,+∞) (1)

y(t) = φ(t), t ∈ [−d, 0], (2)

where f : J ×C([−d, 0], E) → E is given function, φ : [−d, 0] → E is given continuous
function, A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continuous
semigroup T (t), t ∈ J, and (E, |.|) is a real Banach space.

In the section 2.3.2 the delay is infinite we introduce the notion of phase space B
who plays an important role in the study of both qualitative and quantitative theory.
we consider the following problem

y′(t) = Ay(t) + f(t, yρ(t,yt)), a.e. t ∈ J := [0,+∞) (3)

y(t) = φ(t), t ∈ (−∞, 0], (4)

where f : J ×B → E, φ ∈ B, ρ : J ×B → (−∞,+∞) are given functions, A : D(A) ⊂
E → E is the infinitesimal generator of a strongly continuous semigroup T (t), t ∈ J, B
is the phase space to be specified later, (E, |.|) is a real Banach space.

In Chapter 3 is devoted to the existence of solutions for semiinfinite positive real
interval for neutral functional differential evolution equations with state-dependent
delay

d

dt
[y(t)−g(t, yρ(t,yt))] = A[y(t)−g(t, yρ(t,yt))]+f(t, yρ(t,yt)), a.e. t ∈ J := [0,+∞) (5)

y(t) = φ(t), t ∈ (−∞, 0], (6)

where f, g : J × B → E, φ ∈ B, ρ : J × B → (−∞,+∞) are given functions,
A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continuous semigroup
T (t), t ∈ J, B is the phase space to be specified later, (E, |.|) is a real Banach space.

In Chapter 4 we give the global existence of mild solution on a semiinfinite positive
real interval J = [0,+∞) for partial functional differential evolution inclusions with
delay.

In the section 4.2.1 the delay is finite, we consider the following problem

y′(t)− Ay(t) ∈ F (t, yt), a.e. t ∈ J := [0,+∞) (7)

y(t) = φ(t), t ∈ [−d, 0], (8)

7



where F : J×C([−d, 0],→ P(E) is a multivalued map with nonempty compact values,
φ : [−d, 0] → E is given continuous function, P(E) is the family of all nonempty
subsets of E, A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continuous
semigroup T (t), t ∈ J, and (E, |.|) is a real Banach space.

In the section 4.3.1 we will consider the following problem :

y′(t)− Ay(t) ∈ F (t, yρ(t,yt)), a.e. t ∈ J := [0,+∞) (9)

y(t) = φ(t), t ∈ (−∞, 0], (10)

where F : J × B → P(E) is a multivalued map with nonempty compact values, P(E)
is the family of all nonempty subsets of E, A : D(A) ⊂ E → E is the infinitesimal
generator of a strongly continuous semigroup T (t), t ∈ J, and (E, |.|) is a real Banach
space. B is the phase space to be specified later, φ ∈ B, ρ : J × B → (−∞,+∞) .

In Chapter 5, is devoted to the existence of mild solution on J = [0,+∞) for
neutral functional differential evolution inclusions with state-dependent delay, More
precisely we will consider the following problem :

d

dt
[y(t)−g(t, yρ(t,yt))]−A[y(t)−g(t, yρ(t,yt))] ∈ F (t, yρ(t,yt)), a.e. t ∈ J := [0,+∞) (11)

y(t) = φ(t), t ∈ (−∞, 0], (12)

where F : J × B → P(E) is a multivalued map with nonempty compact values,
P(E) is the family of all nonempty subsets of E, g : J × B → E is given function,
A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continuous semigroup
T (t), t ∈ J, B is the phase space to be specified later, φ ∈ B, ρ : J × B → (−∞,+∞)
and (E, |.|) is a real Banach space.

In Chapter 6, we give the global existence of mild solution on J = [0,+∞) for
partial functional differential evolution inclusions of second order with delay.

In the section 6.2.1 we consider the following problem

y′′(t) = Ay(t) + f(t, yt), a.e. t ∈ J := [0,+∞) (13)

y(t) = φ(t), t ∈ [−d, 0], y′(0) = ϕ ∈ E, (14)

where f : J ×C([−d, 0], E) → E is given function, φ : [−d, 0] → E is given continuous
function, A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continuous
cosine function of bounded linear operators (C(t))

t∈IR, on E, and (E, |.|) is a real
Banach space.

In the section 6.3.1 we will consider the following problem More precisely, we will
consider the following problem

y′′(t) = Ay(t) + f(t, yρ(t,yt)), a.e. t ∈ J := [0,+∞) (15)
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y(t) = φ(t) ∈ B, y′(0) = ϕ ∈ E, (16)

where f : J × B → E φ ∈ B, ρ : J × B → (−∞,+∞), are given functions, A :
D(A) ⊂ E → E is the infinitesimal generator of a strongly continuous cosine function
of bounded linear operators (C(t))

t∈IR, on E, and (E, |.|) is a real Banach space.
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Chapter 1

Preliminaries

In this chapter, we introduce notations, definitions, lemmas and fixed point theorems
which are used throughout this thesis.

1.1 Notations and definitions
Let J = [0,+∞) be a real interval, H = [−d, 0] interval be the historical for d > 0 and
(E, ‖ · ‖) be a real Banach space.

Let C([−d, 0];E) be the Banach space of continuous functions with the norm

‖y‖ = sup{|y(t)| : t ∈ [−d, 0]}.

Let B(E) be the space of all bounded linear operators from E into E, with the norm

‖N‖B(E) = sup{|N(y) : |y| = 1}.

A measurable function y : J → E is Bochner integrable if and only if |y| is Lebesgue
integrable. (For properties of the Bochner integral, see for instance, Yosida[102]).
Let L1(J ;E) be the space of measurable functions y : J → E which are Bochner
integrable normed by

‖y‖l1 =

∫ +∞

0

|y(t)|dt.

Definition 1.1.1 A map f : J × E → E is said to be Carathéodory if

(i) t→ f(t, y) is measurable for all y ∈ E.

(ii) y → f(t, y) is continuous for almost each t ∈ J.

10



1.2 Some properties of set-valued maps
Let (E, d) be a metric space and Y be a subset of E. We denote:

Pcl(E) = {Y ∈ P(E) : Y closed}, Pcv(E) = {Y ∈ P(E) : Y convex},

Pb(E) = {Y ∈ P(E) : Y bounded}.

A multivalued map (multimap) F of a set E into a set Y is a correspondence which
associates to very x ∈ E a non- empty subset F (x) ⊂ Y, called the value of x.

We will write this correspondence as

F : E → P(Y ).

Consider Hd : P(E)× P(E) −→ R+ ∪ {∞}, given by

Hd(A,B) = max

{
sup
a∈A

d(a,B) , sup
b∈B

d(A, b)
}
,

where d(A, b) = inf
a∈A

d(a, b), d(a,B) = inf
b∈B

d(a, b).

Definition 1.2.1 A multivalued map F : E → P(E) has convex (closed) values if
F (x) is convex (closed) for all x ∈ E. We say that F is bounded on bounded sets if
F (B) =

⋃
x∈B F (x) is bounded in E for each bounded set B of E, i.e.,

sup
x∈B

{sup{ ‖y‖ : y ∈ F (x)}} <∞.

The set ΓF ⊂ E × Y , defined by

ΓF = {(x, y) : x ∈ E, y ∈ F (x)}

is said to be graph of F.
F is called closed graph if ΓF is closed E × Y

Definition 1.2.2 Let X, Y be Hausdorff topological spaces and F : X → P(Y ) is called
upper semi-continuous (u.s.c.) on X if for each x0 ∈ X, the set F (x) is a nonempty
closed subset of X and if for each open set N of X containing F (x), there exists an
open neighborhood N0 of x0 such that F (N0) ⊆ N .

F is said to be completely continuous if F (B) is relatively compact for every B ∈
Pb(E). If the multivalued map F is completely continuous with non empty values, then
F is u.s.c. if an only if F has a closed graph (i.e.xn → x∗, yn → y∗, yn ∈ F (xn) implies
y∗ ∈ F (x∗)). F has a fixed point if there is x ∈ E such that x ∈ F (x). The fixed point
set of the multivalued operator F will be denote by FixF.
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Definition 1.2.3 A multivalued map F : J → P(E) is said to be measurable if for
every y ∈ E, the function t → d(y, F (t)) = inf{|y − z| : z ∈ F (t)} is Lebesgue
measurable.

Definition 1.2.4 A function F : J × E −→ P(E) is said to be an L1− Carathéodory
multivalued map if it satisfies :

(i) y 7→ F (t, y) is upper semicontinuous for almost all t ∈ J ;

(ii) t 7→ F (t, y) is measurable for each y ∈ E;

(iii) for every positive constant l there exists hl ∈ L1(J, IR+)

‖F (t, y)‖ = sup{|v| : v ∈ F (t, y)} ≤ hl

for all |y| ≤ l for almost all t ∈ J.

Definition 1.2.5 A function F : J × E −→ P(E) is said to be an Carathéodory
multivalued map if it satisfies (i) and (ii).

Lemma 1.2.6 ( [[12], Theorem 1.4.13]).
If G : X → P(X) is u.s.c, then for any x0 ∈ X,

lim
x→x0

supG(x) = G(x0).

Lemma 1.2.7 ( [[12], Lemma 1.1.9]).
Let (Kn)

n∈IN ⊂ K ⊂ X be a sequence of subsets where K is compact in the separable
Banach space X. Then

c̄o( lim
x→∞

supKn) =
⋂
N>0

c̄o(
⋃

n≥N

Kn),

where c̄oA refers to the closure of the convex hull of A.

Lemma 1.2.8 (Mazur’s Lemma [[81], Theorem 21.4]).
Let E be a normed space and {xk}k∈IN ⊂ E be a sequence weakly converging to a limit
x ∈ E. Then there exists a sequence of convex combinations

ym =
m∑

k=1

αmkxk

with αkm > 0 for k = 1, 2, ...,m and
∑m

k=1 αmk = 1, which converges strongly to x.
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Lemma 1.2.9 Let E be a Banach space. Let F : J × E → Pcl,cv(E) be a L1−
Carathéodory multivalued map ; and let Γ be a linear continuous from L1(J ;E) into
C(J ;E), then the operator

Γ ◦ SF : C(J,E) −→ Pcp,cv(C(J,X)),

y 7−→ (Γ ◦ SF )(y) := Γ(SF,y)

is a closed graph operator in C(J ;X)× C(J ;X).

We say that A has a fixed point if there exists x ∈ E such that x ∈ A(x).

For each y : (−∞,+∞) → E let the set SF,y known as the set of selectors from F
defined by

SF,y = {v ∈ L1(J ;E) : v(t) ∈ F (t, yt) , a.e. t ∈ J}.
For more details on multivalued maps we refer to the books of Deimling [42],

Denkowski et al. [43], Djebali et al. [46], Górniewicz [54] and Hu and Papageorgiou
[72].

1.3 Semigroups
Let E be a Banach space and B(E) be the Banach space of linear bounded operators.

Definition 1.3.1 A semigroup of class C0 is a one parameter family {T (t)/ t ≥ 0} ⊂
B(E) satisfying the conditions:

(i) T (t) ◦ T (s) = T (t+ s), for t, s ≥ 0,

(ii) T (0) = I,

(iii) the map t→ T (t)x is strongly continuous, for each x ∈ E, i.e;

T (t)x = x, ∀x ∈ E.

A semigroup of bounded linear operators T (t, is uniformly continuous if

lim
t→0

‖T (t)− I‖ = 0.

Where I denotes the identity operator in E.

We note that if a semigroup T (t) is of class (C0) then the following growth conditions
is satisfied ‖T (t)‖B(E) ≤ M. exp(βt), for 0 ≤ t < ∞, with some constants M > 0 and
β.
In particular, if M = 1 and β = 0, i.e; ‖T (t)‖B(E) ≤ 1, for t ≥ 0, then the semigroup
T (t) is called a contraction C0−semigroup.
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Definition 1.3.2 Let T (t) be a semigroup of class (C0) defined on E. The infinitesimal
generator A of T (t) is the linear operator defined by

A(x) = lim
h→0

T (h)x− x

h
, for x ∈ D(A),

where
D(A) = {x ∈ E| lim

h→0

T (h)x− x

h
exists in E}.

Let us recall the following property:

Proposition 1.3.3 The infinitesimal generator A is a closed linear and densely defined
operator in E. If x ∈ D(A), then T (t)(x) is a C1−map and

d

dt
T (t)x = A(T (t)(x)) = T (t)(A(x)), on [0,∞).

Theorem 1.3.4 Hille and Yosida[89].
Let A be a densely defined linear operator with domain and range in a Banach space E.
Then A is the infinitesimal generator of uniquely determined semigroup T (t) of class
(C0) satisfying

‖T (t)‖B(E) ≤M exp(ωt), t ≥ 0,

where M > 0 and ω ∈ IR if and only if

(λI−A)−1 ∈ B(E)and ‖(λI−A)−n‖ ≤M/(λ−ω)n, for λ > ωn = 1, 2, ..., for all λ ∈ IR.

For more details on strongly continuous operator, we refer the reader to the books
of Goldstien[53], Fattorini[51], and the paper of Travis and Webb [95, 96], and for
properties on semigroup theory we refer the intersected reader to the books of Ahmed
[7],Goldstien[53] ,Pazy[89].

1.4 Cosine and sine families
In this section, we recall briefly some notations, definitions and lemmas needed to
establish our main results. For second order differential equations A is the infinites-
imal generator of a strongly continuous cosine function of bounded linear operators
(C(t))

t∈IR on Banach space (E, ‖ · ‖).

Definition 1.4.1 A one parameter family (C(t))
t∈IR of bounded linear operators map-

ping the Banach space E into itself is called a strongly continuous cosine family if and
only if

(i) C(t+ s) + C(s− t) = 2C(s)C(t), for all s, t ∈ IR,
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(ii) C(0) = I;

(iii) C(t)x is continuous in t on IR for each fixed X ∈ E.

We denote by (S(t))
t∈IR the sine function associated with (C(t))

t∈IR which is de-

fined by S(t)x =

∫ t

0

C(s)xds, x ∈ E, t ∈ IR and we always assume that M and M ′

are positive constants such that ‖C(t)‖ ≤ M and ‖S(t)‖ ≤ M ′, for every t ∈ J. The
infinitesimal generator of a strongly continuous cosine family (C(t))

t∈IR is the operator
A : E → E defined by

Ax =
d2

dt2
C(t)x|t=0, x ∈ D(A)

where D(A) = {x ∈ E : C(t)x is twice differentiable in t}. Define X = {x ∈ E : C(t)x
is once continuously differentiable in t}.

The following properties are well known[95].

(i) If x ∈ E then S(t)x ∈ X for every t ∈ IR.

(ii) If x ∈ X then S(t)x ∈ D(A), ( d
dt

)C(t)x = AS(t)x and ( d2

dt2
)S(t)x = S(t)x for

every t ∈ IR.

(iii) If x ∈ D(A) then C(t)x ∈ D(A), and ( d2

dt2
)C(t)x = AC(t)x = C(t)Ax for every

t ∈ IR.

(iv) If x ∈ D(A) then S(t)x ∈ D(A), and ( d2

dt2
)S(t)x = AS(t)x = S(t)Ax for every

t ∈ IR.

The notation [D(A)] stands for the domain of the operator A endowed with the graph
norm ‖y‖A = ‖y‖ + ‖Ay‖, y ∈ D(A). Moreover, in this work, X is the space formed
by the vector y ∈ E for which C(·)y is of class C1 on IR. it was proved by Kisinsky[74]
that X endowed with the norm

‖y‖X = ‖y‖+ sup
0≤t≤1

‖AS(t)y‖, y ∈ X,

is a Banach space. The operator valued function

G(t) =

(
C(t) S(t)
AS(t) C(t)

)
is a strongly continuous group of bounded linear operators on the spaceX×E generated
by the operator

A =

(
0 I
A 0

)
15



defined on D(A)×X. It follows this that AS(t) : X → E is a bounded linear operator
and that AS(T )y → 0, t −→ 0, for each y ∈ X. Furthermore, if y : [0,+∞) → E

is a locally integrable function, then z(t) =

∫ t

0

S(t − s)y(s)ds defined an X−valued

continuous function. This is a consequence of the fact that:

∫ t

0

G(t− s)

(
0
y(s)

)
ds =


∫ t

0

S(t− s)y(s)ds∫ t

0

C(t− s)y(s)ds


defines an X × E− valued continuous function. The existence of solutions for the
second order abstract Cauchy problem.{

y′′(t) = Ay(t) + h(t), t ∈ J := [0,+∞) ;
y(0) = y0, y′(0) = y1 . (1.1)

where h : J → E is an intergrable function has been discussed in [95]. Similarly,
the existence of solutions of the semilinear second order abstract Cauchy problem it
has been treated in [96].

Definition 1.4.2 The function y(·) given by:

y(t) = C(t)y0 + S(t)y1 +

∫ t

0

S(t− s)h(s)ds, t ∈ J,

is called mild solution of (1.1).

Remark 1.4.3 When y0 ∈ X, y(·) is continuously differentiable we have:

y′(t) = AS(t)y0 + C(t)y1 +

∫ t

0

C(t− s)h(s)ds.

For additional details about cosine function theory, we refer to the reader to [95, 96].

1.5 Some fixed point theorems
In this section we give some fixed point theorems that will be used in the sequel.
At first we give this lemma concerning the notion of subset relatively compact.

Lemma 1.5.1 (Corduneanu [40])
Let D ⊂ BC([0,+∞), E). Then D is relatively compact if the following conditions hold:

(a) D is bounded in BC;
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(b) The functions belonging to D are almost equicontinuous on [0,+∞), i.e., equicon-
tinuous on every compact of [0,+∞);

(c) The set D(t) := {y(t) : y ∈ D} is relatively compact on every compact of [0,+∞).

(d) The functions from D are equiconvergent, that is, given ε > 0, there exists T (ε) >
0 such that |u(t)− lim

t→+∞
u(t)| < ε, for any t ≥ T (ε) and u ∈ D.

The following is due to Schauder.

Theorem 1.5.2 (Schauder’s fixed point [55])
Let B be a closed, convex and nonempty subset of a Banach space E. Let N : B → B
be a continuous mapping such that N(B) is a relatively compact subset of E. Then N
has at least one fixed point in B. That is, there exists y ∈ B such that Ny = y.

We also need the following form of fixed point theorem of Bohnenblust-Karlin.

Theorem 1.5.3 (Bohnenblust-Karlin fixed point [36])
Let B ∈ Pcl,cv(E). And N : B → Pcl,cv(B) be a upper semicontinuous operator and
N(B) is a relatively compact subset of E. Then N has at least one fixed point in B.

1.6 Some examples of phase spaces

In this paper, we will employ an axiomatic definition of the phase space B introduced
by Hale and Kato in [57] and follow the terminology used in [71]. Thus, (B, ‖ · ‖B) will
be a seminormed linear space of functions mapping (−∞, 0] into E, and satisfying the
following axioms :

(A1) If y : (−∞, b) → E, b > 0, is continuous on J and y0 ∈ B, then for every t ∈ J
the following conditions hold :
(i) yt ∈ B ;
(ii) There exists a positive constant H such that |y(t)| ≤ H‖yt‖B ;
(iii) There exist two functions L(·),M(·) : R+ → R+ independent of y with L
continuous and bounded, and M locally bounded such that :

‖yt‖B ≤ L(t) sup{ |y(s)| : 0 ≤ s ≤ t}+M(t)‖y0‖B.

(A2) For the function y in (A1), yt is a B−valued continuous function on J .

(A3) The space B is complete.

Assume that:
l = sup{L(t) : t ∈ J}, m = sup{M(t) : t ∈ J}.
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Remark 1.6.1 1. (ii) is equivalent to |φ(0)| ≤ H‖φ‖B for every φ ∈ B.

2. Since ‖·‖B is a seminorm, two elements φ, ψ ∈ B can verify ‖φ−ψ‖B = 0 without
necessarily φ(θ) = ψ(θ) for all θ ≤ 0.

3. From the equivalence of in the first remark, we can see that for all φ, ψ ∈ B such
that ‖φ− ψ‖B = 0 : We necessarily have that φ(0) = ψ(0).

Example 1.6.2 The spaces BC;BUC;C∞ and C0 .
Let :

BC the space of bounde continuous functions defined from (−∞, 0] to E

BUC the space of bounde uniformly continuous functions defined from (−∞, 0] to E

C∞ := {φ ∈ BC : lim
θ→−∞

(θ) exist in E}

C0 := {φ ∈ BC : lim
θ→−∞

(θ) = 0}, endowed with the uniform norm

‖φ‖ = sup{|φ(θ)| : θ ≤ 0}.

Then we have that the spaces BUC,C∞, and C0 satisfy conditions (A1) − (A3). BC
satisfy conditions (A3) and (A2) but (A1) is not satisfied.

Example 1.6.3 The spaces Cg, UCg, C
∞
g and C0. Let g be a positive continuous func-

tion on (−∞, 0]. We define:

Cg := {φ ∈ C((−∞, 0];E) :
φ(θ)

g(θ)
is bounded on(−∞, 0]};

C0
g := {φ ∈ Cg : lim

θ→−∞

φ(θ)

g(θ)
= 0}, endowed with the uniform norm

‖φ‖ = sup{|φ(θ)|
g(θ)

: θ ≤ 0}.

We consider the following condition on the function g.

(g1) For all a > 0, sup0≤t≤a sup{ g(t+θ)
g(θ):−∞≤θ≤−t

} <∞.

Then we have that the spaces Cg and C0
g satisfy condition (A3). They satisfy

conditions (A1) and (A2) if (g1) holds.
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Example 1.6.4 (The phase space (Cr × Lp(g,E)).)
Let g : (−∞,−r) → IR be a positive Lebesgue integrable function and assume that

there exists a non-negative and locally bounded function γ on (−∞, 0] such that

g(ξ + θ) ≤ γ(ξ)g(θ), for all ξ ≤ 0and θ ∈ (−∞,−r) \Nξ,

where Nξ ⊆ (−∞,−r) is a set with Lebesgue measure zero.

The space Cr × Lp(g, E) consists of all classes of functions ϕ(−∞, 0] → IR such
that φ is continuous on [−r, 0], Lebesgue-measurable and g‖φ‖p is Lebesgue integrable
on (−∞,−r).

The seminorm in Cr × Lp(g, E) is defined by

‖φ‖B := sup{‖φ(θ)‖ : −r ≤ θ ≤ 0}+ (

∫ −r

−∞
g(θ)‖φ(θ)‖pdθ)

1
p

Assume that g(·) verifies the condition (g− 5), (g− 6) and (g− 7) in the nomenclature
[71]. In this case, B = Cr × Lp(g, E) verifies assumptions (A1), (A2), (A3) see ([71]
Theorem 1.3.8) for details.

Moreover, when r = 0 and p = 2 we have that H = 1,M(t) = γ(−t) 1
2 and

L(t) = 1 + (

∫ 0

−t

g(θ)dθ)
1
2 for t ≥ 0.

Set R(ρ−) = {ρ(s, φ) : (s, φ) ∈ J × B, ρ(s, φ) ≤ 0}, we always assume that
ρ : J × B → R is continuous. Additionally, we introduce following hypothesis:

(Hφ) The function t→ φt is continuous from R(ρ−) into B and there exists a contin-
uous and bounded function Lφ : R(ρ−) → (0,∞) such that

‖φt‖ ≤ Lφ(t)‖φ‖ for every t ∈ R(ρ−).

Remark 1.6.5 The condition (Hφ), is frequently verified by functions continuous and
bounded. For more details, see for instance [71].

Lemma 1.6.6 ([69], Lemma 2.4) If y : (−∞,+∞) → E is a function such that
y0 = φ, then

‖ys‖B ≤ (M + Lφ)‖φ‖B + l sup{|y(θ)|; θ ∈ [0,max{0, s}]}, s ∈ R(ρ−) ∪ J,

where Lφ = sup
t∈R(ρ−)

Lφ(t).
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Chapter 2

Functional Differential Equations
With Delay

2.1 Introduction
In this Chapter, we study some first order classes of partial functional, evolution equa-
tion on J = [0,+∞) with finite and state-dependent delay.

In the literature devoted to equations with finite delay, the phase space is much of
time the space of all continuous functions on H for d > 0, endowed with the uniform
norm topology. we mention, for instance, the books by Hale and Verduyn Lunel [58],
Kolmanovskii and Myshkis [75], and Wu [100], the reference therein. An extensive
theory is developed for evolution equations [6, 7, 20, 50, 58, 75, 89].

When the delay is infinite, we introduce the notion of phase space B who plays an
important role in the study of both qualitative and quantitative theory. However the
complicated situations in which the delay depends on the unknown functions have been
considered in recent years. An extensive theory is developed for evolution equations
[6, 50]. These equations are frequently called equations with state-dependent delay,
see, for instance [48, 68, 71, 98]. We also refer the reader to the papers by Abada et al.
[1], Ait Dads and Ezzinbi [9], Anguraj et al. [10], Hartung et al. [60, 63], Hernandez
et al. [69] and Li et al. [78].

2.2 Functional differential equations with finite delay
In this section, we study some first order class of semilinear functional evolution equa-
tions with finite delay. Our investigations will be situated in the Banach space of real
continuous and bounded functions on the real half axis . We will use Schauder’s fixed
point theorem combined with the semigroup theory to have the existence of solutions
of the following functional differential equation with delay:
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y′(t) = Ay(t) + f(t, yt), a.e. t ∈ J := [0,+∞) (2.1)

y(t) = φ(t), t ∈ [−d, 0], (2.2)

where f : J ×C([−d, 0], E) → E is given function, φ : [−d, 0] → E is given continuous
function, A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continuous
semigroup T (t), t ∈ J, and (E, |.|) is a real Banach space. For any function y defined
on [−d,+∞) and any t ∈ J , we denote by yt the element of C([−d, 0], E) defined by

yt(θ) = y(t+ θ), θ ∈ [−d, 0].

Here yt(.) represents the history of the state from time t−d, up to the present time
t.

In order to define a mild solution of problem (2.1)-(2.2), we shall consider the
space BC := BC([−d,+∞)) which is the Banach space of all bounded and continuous
functions from [−d,+∞) into IR equipped with the standard norm

‖y‖BC = sup
t∈[−d,+∞)

|y(t)|.

2.2.1 Existence of mild solutions

In this section, we give our main existence results for problem (2.1)-(2.2). Before
starting and proving this result, we give the definition of its mild solution.

Definition 2.2.1 We say that a continuous function y : [−d,+∞) → E is a mild
solution of problem (2.1)-(2.2) if y(t) = φ(t), t ∈ [−d, 0] and

y(t) = T (t)φ(0) +

∫ t

0

T (t− s)f(s, ys)ds, t ∈ J.

Let us introduce the following hypotheses:

(H1) A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continuous
semigroup T (t), t ∈ J which is compact for t > 0 in the Banach space E. Let
M = sup{‖T‖B(E) : t ≥ 0}.

(H2) The function f : J × C([−d, 0], E) → E is Carathéodory.

(H3) There exists a continuous function k : J → [0,+∞) such that:

|f(t, u)− f(t, v)| ≤ k(t)‖u− v‖, t ∈ J, u, v ∈ C([−d, 0], E)

and

k∗ := sup
t∈J

∫ t

0

k(s)ds <∞.
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(H4) The function t→ f(t, 0) = f0 ∈ L1(J, [0,+∞)) with F ∗ = ‖f0‖L1 .

Theorem 2.2.2 Assume that (H1)− (H4) hold. If k∗M < 1, then the problem (2.1)-
(2.2) has at least one mild solution on BC.

Proof. We transform the problem (2.1)-(2.2) into a fixed point problem. Consider the
operator: N : BC → BC define by:

N(y)(t) =


φ(t), if t ∈ [−d, 0],

T (t) φ(0) +

∫ t

0

T (t− s) f(s, ys) ds, if t ∈ J.

The operator N maps BC into BC; indeed the map N(y) is continuous on [−d,+∞)
for any y ∈ BC, and for each t ∈ J , we have

|N(y)(t)| ≤ M‖φ‖+M

∫ t

0

|f(s, ys)− f(s, 0) + f(s, 0)|ds

≤ M‖φ‖+M

∫ t

0

|f(s, 0)|ds+M

∫ t

0

k(s)‖ys‖ds

≤ M‖φ‖+MF ∗ +M

∫ t

0

k(s)‖ys‖ds

≤ M‖φ‖+MF ∗ +M‖y‖BCk
∗ := c.

Hence, N(y) ∈ BC.

Moreover, let r > 0 be such that r ≥ M‖φ‖+MF ∗

1−Mk∗
, and Br be the closed ball in BC

centered at the origin and of radius r. Let y ∈ Br and t ∈ [0,+∞). Then,

|N(y)(t)| ≤ M‖φ‖+MF ∗ +Mk∗r.

Thus,
‖N(y)‖BC ≤ r,

which means that the operator N transforms the ball Br into itself.

Now we prove that N : Br → Br satisfies the assumptions of Schauder’s fixed
theorem. The proof will be given in several steps.

Step 1: N is continuous in Br.
Let {yn} be a sequence such that yn → y in Br. We have

|N(yn)(t)−N(y)(t)| ≤M

∫ t

0

|f(s, (ys)n)− f(s, ys)|ds.

Then by (H2) we have f(s, (ys)n) → f(s, ys), as n → ∞, for a.e. s ∈ J , and by the
Lebesgue dominated convergence theorem we have

‖N(yn)−N(y)‖BC → 0, as n→∞.
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Thus, N is continuous.

Step 2 : N(Br) ⊂ Br this is clear.

Step 3: N(Br) is equicontinuous on every compact interval [0, b] of [0,+∞) for
b > 0. Let τ1, τ2 ∈ [0, b] with τ2 > τ1, we have

|N(y)(τ2)−N(y)(τ1)| ≤ ‖T (τ2 − s)− T (τ1 − s)‖B(E)‖φ‖

+

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)|f(s, ys)|ds

+

∫ τ2

τ1

‖T (τ2 − s)‖B(E)|f(s, ys)|ds

≤ ‖T (τ2 − s)− T (τ1 − s)‖B(E)‖φ‖

+

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)|f(s, ys)− f(s, 0) + f(s, 0)|ds

+

∫ τ2

τ1

‖T (τ2 − s)‖B(E)|f(s, ys)− f(s, 0) + f(s, 0)|ds

≤ ‖T (τ2 − s)− T (τ1 − s)‖B(E)‖φ‖

+ r

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)k(s)ds

+

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)|f(s, 0)|ds

+ r

∫ τ2

τ1

‖T (τ2 − s)‖B(E)k(s)ds

+

∫ τ2

τ1

‖T (τ2 − s)‖B(E)|f(s, 0)|ds.

When τ2 → τ2 , the right-hand side of the above inequality tends to zero, since T (t) is
a strongly continuous operator and the compactness of T (t) for t > 0, implies he con-
tinuity in the uniform operator topology (see [20, 89]). This proves the equicontinuity.

Step 4: N(Br) is relatively compact on every compact interval of [0,+∞).

Let t ∈ [0, b] for b > 0 and let ε be a real number satisfying 0 < ε < t. For y ∈ Br,
let h ∈ N(y) we define

Nε(t) = T (t)φ(0) + T (ε)

∫ t−ε

0

T (t− s− ε)f(s)ds.

the set,
{Nε(y)(t), y ∈ Br}

is precompact in E for every ε, 0 < ε < t. Moreover, for every y ∈ Br we have
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|N(y)(t)−Nε(y)(t)| → 0 as ε→ 0.

Therefore, the set {N(y)(t) : y ∈ Br} is precompact, i.e., relatively compact. Hence
the set Y (t) = {h(t) : h ∈ N(Br)} is relatively compact.

Step 5:N(Br) is equiconvergent.
Let t ∈ [0,+∞) and y ∈ Br; we have

|N(y)(t)| ≤ M‖φ‖+M

∫ t

0

|f(s, ys)|ds

≤ M‖φ‖+MF ∗ +Mr

∫ t

0

k(s)ds.

Then,
|N(y)(t)| → l ≤, as t→ +∞,

where l ≤M‖φ‖+MF ∗ +Mrk∗ since lim
t→+∞

∫ t

0

k(s)ds = k∗. Hence,

|N(y)(t)−N(y)(+∞)| → 0, as t→ +∞.

As a consequence of Steps 1−4, with Lemma 1.5.1, we can conclude that N : Br → Br

is continuous and compact. From Schauder’s theorem, we deduce that N has a fixed
point y that is a mild solution of the problem (2.1)-(2.2).

2.2.2 An example

Consider the functional partial differential equation

∂

∂t
z(t, x)− ∂2

∂x2
z(t, x) = f(t, z(t− d, x)), x ∈ [0, π], t ∈ J := [0,+∞), (2.3)

z(t, 0) = z(t, π) = 0, t ∈ [0,+∞), (2.4)

z(t, x) = φ(t), t ∈ [−d, 0], x ∈ [0, π], (2.5)

where
f(t, z(t− d, x)) = exp(−t) |z(t− d, x)|

1 + |z(t− d, x)|
.

Take E = L2[0, π] and define A : E → E by Aω = ω′′ with domain

D(A) = {ω ∈ E;ω, ω′are absolutely continuous, ω′′ ∈ E, ω(0) = ω(π) = 0}.

Then,

Aω =
∞∑

n=1

n2(ω, ωn)ωn, ω ∈ D(A)
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where ωn(s) =
√

2
π

sinns, n = 1, 2, . . ., is the orthogonal set of eigenvectors in A. It
is well know (see [89]) that A is the infinitesimal generator of an analytic semigroup
T (t), t ≥ 0 in E and is given by

T (t)ω =
∞∑

n=1

exp(−n2t)(ω, ωn)ωn, ω ∈ E.

Since the analytic semigroup T (t) is compact, there exists a positive constant M such
that

‖T (t)‖B(E) ≤M.

The function f(t, z(t− d, x)) = e−t |z(t−d,x)|
1+|z(t−d,x)| is Carathéodory, and

|f(t, z1(t− d, x))− f(t, z2(t− d, x))| ≤ e−t|z1(t− d, x)− z2(t− d, x)|;

thus k(t) = e−t. Moreover, we have

K∗ = sup

{∫ t

0

e−sds, t ∈ [0,+∞)

}
= 1, f0 = 0.

Then the problem (2.1)-(2.2) in an abstract formulation of the problem (2.3)-(2.5), and
conditions (H1)−(H4) are satisfied. Theorem 2.2.2 implies that the problem (2.3)-(2.5)
has at least one mild solution on BC.

2.3 Functional differential equations with state-dependent
delay

2.3.1 Introduction

In this section we prove the existence of solutions of a class of functional differential
equations. Our investigations will be situated in the Banach space of real functions
which are defined, continuous and bounded on IR. We will use Schauder’s fixed point
theorem combined with the semigroup theory to have the existence of solutions of the
following functional differential equation with state-dependent delay:

y′(t) = Ay(t) + f(t, yρ(t,yt)), a.e. t ∈ J := [0,+∞) (2.6)

y(t) = φ(t), t ∈ (−∞, 0], (2.7)

where f : J × B → E , φ ∈ B, ρ : J × B → (−∞,+∞) are given functions and
A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continuous semigroup
T (t), t ∈ J, B is the phase space to be specified later, (E, |.|) is a real Banach space.
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For any function y defined on (−∞,+∞) and any t ∈ J we denote by yt the element
of B defined by

yt(θ) = y(t+ θ), θ ∈ (−∞, 0].

We assume that the histories yt to some abstract phases B.

In order to define a mild solution of problem (2.6)-(2.7), we shall consider the space
BC := BC(−∞,+∞) is the Banach space of all bounded and continuous functions
from (−∞,+∞) into E equipped with the standard norm

‖y‖BC = sup
t∈(−∞,+∞)

|y(t)|.

And BC ′ := BC ′([0,+∞)) is the Banach space of all bounded and continuous functions
from [0,+∞) into E equipped with the standard norm

‖y‖BC′ = sup
t∈[0,+∞)

|y(t)|.

2.3.2 Existence of mild solutions

In this section we give our main existence result for problem (2.6)-(2.7). Before starting
and proving this result, we give the definition of the mild solution.

Definition 2.3.1 We say that a continuous function y : (−∞,+∞) → E is a mild
solution of problem (2.6)-(2.7) if y(t) = φ(t), t ∈ (−∞, 0] and the restriction of y(.)
to the interval [0,+∞) is continuous and satisfies the following integral equation:

y(t) = T (t)φ(0) +

∫ t

0

T (t− s)f(s, yρ(s,ys))ds, t ∈ J. (2.8)

Let us introduce the following hypotheses:

(H1) A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continuous
semigroup T (t), t ∈ J which is compact for t > 0 in the Banach space E. Let
M ′ = sup{‖T‖B(E) : t ≥ 0}.

(H2) The function f : J × B → E is Carathéodory.

(H3) There exists a continuous function k : J → [0,+∞) such that:

|f(t, u)− f(t, v)| ≤ k(t)‖u− v‖B, t ∈ J, u, v ∈ B,

and

k∗ := sup
t∈J

∫ t

0

k(s)ds <∞.
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(H4) The function t→ f(t, 0) = f0 ∈ L1(J, [0,+∞)) with F ∗ = ‖f0‖L1 .

Theorem 2.3.2 Assume that (H1)− (H4), (Hφ) hold. If k∗M ′l < 1, then the problem
(2.6)-(2.7) has at least one mild solution on BC.

Proof. Transform the problem (2.6)-(2.7) into a fixed point problem. Consider the
operator N : BC → BC defined by:

N(y)(t) =


φ(t), if t ∈ (−∞, 0],

T (t) φ(0) +

∫ t

0

T (t− s) f(s, yρ(s,ys)) ds, if t ∈ J.

Let x(.) : (−∞,+∞) → E be the function defined by:

x(t) =

{
φ(t), if t ∈ (−∞, 0];

T (t) φ(0), if t ∈ J,

Then x0 = φ. For each z ∈ BC with z(0) = 0, we denote by z the function

z(t) =

{
0, if t ∈ (−∞, 0];

z(t), if t ∈ J.

If y satisfies (2.8), we can decompose it as y(t) = z(t) + x(t), t ∈ J , which implies
yt = zt + xt for every t ∈ J and the function z(.) satisfies

z(t) =

∫ t

0

T (t− s)f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds, t ∈ J.

Set
BC ′

0 = {z ∈ BC ′ : z(0) = 0}

and let
‖z‖BC′

0
= sup{|z(t)| : t ∈ J}, z ∈ BC ′

0.

BC ′
0 is a Banach space with the norm ‖.‖BC′

0
. We define the operator A : BC ′

0 → BC ′
0

by:

A(z)(t) =

∫ t

0

T (t− s)f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds, t ∈ J.

We shall show that the operator A satisfies all conditions of Schauder’s fixed point
theorem. The operator A maps BC ′

0 into BC ′
0, indeed the map A(z) is continuous on
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[0,+∞) for any z ∈ BC ′
0, and for each t ∈ J we have

|A(z)(t)| ≤ M ′
∫ t

0

|f(s, zρ(s,zs+xs) + xρ(s,zs+xs))− f(s, 0) + f(s, 0)|ds

≤ M ′
∫ t

0

|f(s, 0)|ds+M ′
∫ t

0

k(s)‖zρ(s,zs+xs) + xρ(s,zs+xs)‖Bds

≤ M ′F ∗ +M ′
∫ t

0

k(s)(l|z(s)|+ (m+ Lφ + lM ′H)‖φ‖B)ds.

Set
C := (m+ Lφ + lM ′H)‖φ‖B.

Then, we have

|A(z)(t)| ≤ M ′F ∗ +M ′C

∫ t

0

k(s)ds+M ′
∫ t

0

l|z(s)|k(s)ds

≤ M ′F ∗ +M ′Ck∗ +M ′l‖z‖BC′
0
k∗.

Hence, A(z) ∈ BC ′
0.

Moreover, let r > 0 be such that

r ≥ M ′F ∗ +M ′Ck∗

1−M ′k∗l
,

and Br be the closed ball in BC ′
0 centered at the origin and of radius r. Let z ∈ Br

and t ∈ [0,+∞). Then

|A(z)(t)| ≤ M ′F ∗ +M ′Ck∗ +M ′k∗lr.

Thus
‖A(z)‖BC′

0
≤ r,

which means that the operator A transforms the ball Br into itself.

Now we prove that A : Br → Br satisfies the assumptions of Schauder’s fixed
theorem. The proof will be given in several steps.

Step 1: A is continuous in Br.
Let {zn} be a sequence such that zn → z in Br. At the first, we study the convergence
of the sequences (zn

ρ(s,zn
s ))n∈IN, s ∈ J.

If s ∈ J is such that ρ(s, zs) > 0, then we have,

‖zn
ρ(s,zn

s ) − zρ(s,zs)‖B ≤ ‖zn
ρ(s,zn

s ) − zρ(s,zn
s )‖B + ‖zρ(s,zn

s ) − zρ(s,zs)‖B
≤ L‖zn − z‖Br + ‖zρ(s,zn

s ) − zρ(s,zs)‖B,
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which proves that zn
ρ(s,zn

s ) → zρ(s,zs) in B as n→∞ for every s ∈ J such that ρ(s, zs) > 0.
Similarly, is ρ(s, zs) < 0 , we get

‖zn
ρ(s,zn

s ) − zρ(s,zs)‖B = ‖φn
ρ(s,zn

s ) − φρ(s,zs)‖B = 0

which also shows that zn
ρ(s,zn

s ) → zρ(s,zs) in B as n → ∞ for every s ∈ J such that
ρ(s, zs) < 0. Combining the pervious arguments, we can prove that zn

ρ(s,zs)
→ φ for

every s ∈ J such that ρ(s, zs) = 0. Finally,

|A(zn)(t)−A(z)(t)| ≤ M ′
∫ t

0

|f(s, zn
ρ(s,zn

s +xs) + xρ(s,zn
s +xs))− f(s, zρ(s,zs+xs) + xρ(s,zs+xs))|ds

≤ M ′
∫ t

0

|f(s, zρ(s,zn
s +xs) + xρ(s,zn

s +xs))− f(s, zρ(s,zs+xs) + xρ(s,zs+xs))|ds.

Then by (H2) we have

f(s, zn
ρ(s,zn

s +xs) + xρ(s,zn
s +xs)) → f(s, zρ(s,zs+xs) + xρ(s,zs+xs)), as n→∞,

and by the Lebesgue dominated convergence theorem we get,

‖A(zn)−A(z)‖BC′
0
→ 0, as n→∞.

Thus A is continuous.

Step 2 : A(Br) ⊂ Br this is clear.
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Step 3: A(Br) is equicontinuous on every compact interval [0, b] of [0,+∞) for
b > 0. Let τ1, τ2 ∈ [0, b] with τ2 > τ1, we have:

|A(z)(τ2)−A(z)(τ1)| ≤
∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)|f(s, zρ(s,zs+xs) + xρ(s,zs+xs))|ds

+

∫ τ2

τ1

‖T (τ2 − s)‖B(E)|f(s, zρ(s,zs+xs) + xρ(s,zs+xs))|ds

≤
∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)|f(s, zρ(s,zs+xs) + xρ(s,zs+xs))− f(s, 0)|ds

+

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)|f(s, 0)|ds

+

∫ τ2

τ1

‖T (τ2 − s)‖B(E)|f(s, zρ(s,zs+xs) + xρ(s,zs+xs))− f(s, 0)|ds

+

∫ τ2

τ1

‖T (τ2 − s)‖B(E)|f(s, 0)|ds

≤ C

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)k(s)ds

+ rL

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)k(s)ds

+

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)|f(s, 0)|ds

+ C

∫ τ2

τ1

‖T (τ2 − s)‖B(E)k(s)ds

+ rL

∫ τ2

τ1

‖T (τ2 − s)‖B(E)k(s)ds

+

∫ τ2

τ1

‖T (τ2 − s)‖B(E)|f(s, 0)|ds.

When τ2 → τ1, the right-hand side of the above inequality tends to zero, since T (t)
is a strongly continuous operator and the compactness of T (t) for t > 0, implies the
continuity in the uniform operator topology (see [89]), this proves the equicontinuity.

Step 4: A(Br)(t) is relatively compact on every compact interval of t ∈ [0,∞).
Let t ∈ [0, b] for b > 0 and let ε be a real number satisfying 0 < ε < t. For z ∈ Br we
define

Aε(z)(t) = T (ε)

∫ t−ε

0

T (t− s− ε)f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds.

Note that the set{∫ t−ε

0

T (t− s− ε)f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds : z ∈ Br

}
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is bounded.

|
∫ t−ε

0

T (t− s− ε)f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds| ≤ r

Since T (t) is a compact operator for t > 0, the set,

{Aε(z)(t) : z ∈ Br}

is precompact in E for every ε, 0 < ε < t. Moreover, for every z ∈ Br we have

|A(z)(t)−Aε(z)(t)| ≤
∫ t

t−ε

T (t− s)f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds

≤ M ′F ∗ε+M ′C

∫ t

t−ε

k(s)ds+ rM ′
∫ t

t−ε

lk(s)ds,

→ 0 as ε→ 0.

Therefore, the set {A(z)(t) : z ∈ Br} is precompact, i.e., relatively compact.

Step 5: A(Br) is equiconvergent.
Let t ∈ [0,+∞) and z ∈ Br, we have,

|A(z)(t)| ≤ M ′
∫ t

0

|f(s, zρ(s,zs+xs) + xρ(s,zs+xs))|ds

≤ M ′F ∗ +M ′C

∫ t

0

k(s)ds+M ′r

∫ t

0

Lk(s)ds

≤ M ′F ∗ +M ′C

∫ t

0

k(s)ds+M ′rl

∫ t

0

k(s)ds.

We have
|A(z)(t)| → l, as t→ +∞.

Where l ≤M ′F ∗ +M ′Ck∗ +M ′rlk∗ Hence,

|A(z)(t)−A(z)(+∞)| → 0, as t→ +∞.

As a consequence of Steps 1-4, with Lemma 1.5.1, we can conclude that A : Br → Br

is continuous and compact. From Schauder’s theorem, we deduce that A has a fixed
point z∗. Then y∗ = z∗ + x is a fixed point of the operator N, which is a mild solution
of the problem (2.6)-(2.7).

2.3.3 An example

Consider the following functional partial differential equation

∂

∂t
z(t, x)− ∂2

∂x2
z(t, x) = e−t

∫ 0

−∞
z

(
s− σ1(t)σ2

(∫ π

0

a(θ)|z(t, θ)|2dθ
)
, x

)
ds, (2.9)
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x ∈ [0, π], t ∈ [0,+∞)

z(t, 0) = z(t, π) = 0, t ∈ [0,+∞), (2.10)

z(θ, x) = z0(θ, x), t ∈ (−∞, 0], x ∈ [0, π], (2.11)

where z0 6= 0. Set

f(t, ψ)(x) =

∫ 0

−∞
e−tψ(s, x)ds,

and
ρ(t, ψ) = t− σ1(t)σ2

(∫ π

0

a2(θ)|ψ(t, θ)|2dθ
)
,

σi : IR+ → IR+, i = 1, 2 and a : IR → IR are continuous functions.
Take E = L2[0, π] and define A : E → E by Aω = ω′′ with domain

D(A) = {ω ∈ E, ω, ω′are absolutely continuous, ω′′ ∈ E, ω(0) = ω(π) = 0}.

Then

Aω =
∞∑

n=1

n2(ω, ωn)ωn, ω ∈ D(A)

where ωn(s) =
√

2
π

sinns, n = 1, 2, . . . is the orthogonal set of eigenvectors in A. It
is well know (see [89]) that A is the infinitesimal generator of an analytic semigroup
T (t), t ≥ 0 in E and is given by

T (t)ω =
∞∑

n=1

exp(−n2t)(ω, ωn)ωn, ω ∈ E.

Since the analytic semigroup T (t) is compact, there exists a positive constant M such
that

‖T (t)‖B(E) ≤M.

Let B = BCU(IR−;E) and φ ∈ B, then (Hφ).
The function f(t, ψ)(x) is Carathéodory, and

|f(t, ψ1)(x)− f(t, ψ2)(x)| ≤ e−t|ψ1(t, x)− ψ2(t, x)|,

thus k(t) = e−t, moreover we have

k∗ = sup

{∫ t

0

e−sds, t ∈ [0,+∞)

}
= 1, f0 ≡ 0.

Then the problem (2.6)-(2.7) in an abstract formulation of the problem (2.9)-(2.11),
and conditions (H1)− (H4), (Hφ) are satisfied. Theorem 2.3.2 implies that the problem
(2.9)-(2.11) has at least one mild solutions on BC.
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Chapter 3

Neutral Differential Equations with
State-Dependent Delay

3.1 Introduction
In this Chapter, we study some first order classes of partial neutral functional evolution
equation with infinite state-dependent delay, Our investigations will be situated in the
Banach space of real functions which are defined, continuous and bounded on IR.

The literature relative to ordinary neutral functional differential equations is very
extensive and refer to [14, 15, 26, 28, 84, 85]. For more results on partial neutral
functional-differential equations and related issues we refer to Adimy and Ezzinbi [2],
Hale [56], Wu and Xia [99, 100] for finite delay equations, and Hern’andez and Hen-
riquez [66, 67] for unbounded delays.

Functional-differential equations with state-dependent delay appear frequently in
applications as model of equations and for this reason the study of this type of equations
has received a significant amount of attention in the last years, see for instance [1, 2,
8, 11, 25, 37, 77] and the references therein. We also cite [9, 78, 38, 48, 58, 83, 101]
for the case neutral differential equations with State-dependent delay. In this chaptre
we are going to study an extension of case finite delay and state-dependent delay for
functional differential equations see for instance [30, 31].

We will use Schauder’s fixed point theorem combined with the semigroup theory
to have the existence of solutions of the following functional differential equation with
state-dependent delay:

d

dt
[y(t)−g(t, yρ(t,yt))] = A[y(t)−g(t, yρ(t,yt))]+f(t, yρ(t,yt)), a.e. t ∈ J := [0,+∞) (3.1)

y(t) = φ(t), t ∈ (−∞, 0], (3.2)
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where f, g : J × B → E, φ ∈ B, ρ : J × B → (−∞,+∞) are given functions,
A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continuous semigroup
T (t), t ∈ J, B is the phase space to be specified later, (E, |.|) is a real Banach space.
For any function y defined on (−∞,+∞) and any t ∈ J we denote by yt the element
of B defined by

yt(θ) = y(t+ θ), θ ∈ (−∞, 0].

We assume that the histories yt belongs to some abstract phases B, to be specified
later.

In order to define a mild solution of problem (3.1)-(3.2), we shall consider the space
BC := BC(−∞,+∞) we denote the Banach space of all bounded and continuous
functions from (−∞,+∞) into E equipped with the standard norm

‖y‖BC = sup
t∈(−∞,+∞)

|y(t)|.

By BUC we denote the space of bounded uniformly continuous functions defined from
(−∞, 0] to E.
Finally, by BC ′ := BC ′([0,+∞)) we denote the Banach space of all bounded and
continuous functions from [0,+∞) into E equipped with the standard norm

‖y‖BC′ = sup
t∈[0,+∞)

|y(t)|.

3.2 Existence of mild solutions
Now we give our main existence result for problem (3.1)-(3.2). Before starting and
proving this result, we give the definition of the mild solution.

Definition 3.2.1 We say that a continuous function y : (−∞,+∞) → E is a mild
solution of problem (3.1)-(3.2) if y(t) = φ(t), t ∈ (−∞, 0] and the restriction of y(.)
to the interval [0,+∞) is continuous and satisfies the following integral equation:

y(t) = T (t)[φ(0)− g(0, φ(0))] + g(t, yρ(t,yt)) +

∫ t

0

T (t− s)f(s, yρ(s,ys))ds, t ∈ J. (3.3)

Let us introduce the following hypotheses:

(H1) A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continuous
semigroup T (t), t ∈ J which is compact for t > 0 in the Banach space E. Let
M ′ = sup{‖T‖B(E) : t ≥ 0}.

(H2) The function f : J × B → E is Carathéodory.

34



(H3) There exists a continuous function k : J → [0,+∞) such that:

|f(t, u)− f(t, v)| ≤ k(t)‖u− v‖B, t ∈ J, u, v ∈ B

and

k∗ := sup
t∈J

∫ t

0

k(s)ds <∞.

(H4) The function t→ f(t, 0) = f0 ∈ L1(J, [0,+∞)) with F ∗ = ‖f0‖L1 .

(H5) The function g(t, ·) is continuous on J and there exists a constant kg > 0 such
that

|g(t, u)− g(t, v)| ≤ kg‖u− v‖B, for each, u, v ∈ B
and

g∗ := sup
t∈J

|g(t, 0)| <∞.

(H6) For each t ∈ J and any bounded set B ⊂ B, the set {g(t, u) : u ∈ B} is relatively
compact in E

(H7) For any bounded set B ⊂ B, the function {t→ g(t, yt) : y ∈ B} is equicontinuous
on each compact interval of [0,+∞).

Remark 3.2.2 By the condition (H3), (H4) we deduce that

|f(t, y)| ≤ k(t)‖u‖B + F ∗, t ∈ J, u ∈ B,

and by (H5) we deduce that :

|g(t, u)| ≤ kg‖u‖B + g∗ t ∈ J, u ∈ B.

Theorem 3.2.3 Assume that (H1) − (H7) and (Hφ) hold. If l(M ′k∗ + kg) < 1, then
the problem (3.1)-(3.2) has at least one mild solution on BC.

Proof. Transform the problem (3.1)-(3.2) into a fixed point problem. Consider the
operator N : BC → BC defined by:

(Ny)(t) =


φ(t); if t ∈ (−∞, 0],

T (t) [φ(0)− g(0, φ(0))]

+g(t, yρ(t,yt)) +

∫ t

0

T (t− s) f(s, yρ(s,ys)) ds; if t ∈ J.

Let x(.) : (−∞,+∞) → E be the function defined by:

x(t) =

{
φ(t); if t ∈ (−∞, 0];

T (t) φ(0); if t ∈ J,
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then x0 = φ. For each z ∈ BC with z(0) = 0, we denote by z the function

z(t) =

{
0; if t ∈ (−∞, 0];

z(t); if t ∈ J.

If y satisfies (3.3), we can decompose it as y(t) = z(t) + x(t), t ∈ J , which implies
yt = zt + xt for every t ∈ J and the function z(.) satisfies

z(t) = g(t, zρ(t,zt+xt) + xρ(t,zt+xt))− T (t)g(0, φ(0))

+

∫ t

0

T (t− s)f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds, t ∈ J.

Set
BC ′

0 = {z ∈ BC ′ : z(0) = 0}

and let
‖z‖BC′

0
= sup{|z(t)| : t ∈ J}, z ∈ BC ′

0.

BC ′
0 is a Banach space with the norm ‖.‖BC′

0
. We define the operator A : BC ′

0 → BC ′
0

by:
A(z)(t) = g(t, zρ(t,zt+xt) + xρ(t,zt+xt))− T (t)g(0, φ(0))

+

∫ t

0

T (t− s)f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds, t ∈ J.

We shall show that the operator A satisfies all conditions of Schauder’s fixed point
theorem. The operator A maps BC ′

0 into BC ′
0, indeed the map A(z) is continuous on

[0,+∞) for any z ∈ BC ′
0, and for each t ∈ J we have

|A(z)(t)| ≤ |g(t, zρ(t,zt+xt) + xρ(t,zt+xt))|+M ′|g(0, φ(0))|

+M ′
∫ t

0

|f(s, zρ(s,zs+xs) + xρ(s,zs+xs))− f(s, 0) + f(s, 0)|ds

≤ M ′(kg‖φ‖B + g∗) + kg‖zρ(t,zt+xt) + xρ(t,zt+xt)‖B + g∗

+M ′
∫ t

0

|f(s, 0)|ds+M ′
∫ t

0

k(s)‖zρ(s,zs+xs) + xρ(s,zs+xs)‖Bds

≤ M ′(kg‖φ‖B + g∗) + kg(l|z(t)|+ (m+ Lφ + lM ′H)‖φ‖B) + g∗

+M ′F ∗ +M ′
∫ t

0

k(s)(l|z(s)|+ (m+ Lφ + lM ′H)‖φ‖B)ds.

Set
C1 := (m+ Lφ + lM ′H)‖φ‖B.

C2 := M ′(kg‖φ‖B + g∗) + kg(m+ Lφ + lM ′H)‖φ‖B + g∗ +M ′F ∗.
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Then, we have

|A(z)(t)| ≤ C2 + kgl|z(t)|+M ′C1

∫ t

0

k(s)ds+M ′
∫ t

0

l|z(s)|k(s)ds

≤ C2 + kgl‖z‖BC′
0
+M ′C1k

∗ +M ′l‖z‖BC′
0
k∗.

Hence, A(z) ∈ BC ′
0.

Moreover, let r > 0 be such that

r ≥ C2 +M ′Ck∗

1− l(M ′k∗ + kg)
,

and Br be the closed ball in BC ′
0 centered at the origin and of radius r. Let z ∈ Br

and t ∈ [0,+∞). Then

|A(z)(t)| ≤ C2 + kglr +M ′Ck∗ +M ′k∗lr.

Thus
‖A(z)‖BC′

0
≤ r,

which means that the operator A transforms the ball Br into itself.

Now we prove that A : Br → Br satisfies the assumptions of Schauder’s fixed
theorem. The proof will be given in several steps.

Step 1: A is continuous in Br.
Let {zn} be a sequence such that zn → z in Br. At the first, we study the convergence
of the sequences (zn

ρ(s,zn
s ))n∈IN, s ∈ J.

If s ∈ J is such that ρ(s, zs) > 0, then we have,

‖zn
ρ(s,zn

s ) − zρ(s,zs)‖B ≤ ‖zn
ρ(s,zn

s ) − zρ(s,zn
s )‖B + ‖zρ(s,zn

s ) − zρ(s,zs)‖B
≤ l‖zn − z‖Br + ‖zρ(s,zn

s ) − zρ(s,zs)‖B,

which proves that zn
ρ(s,zn

s ) → zρ(s,zs) in B as n→∞ for every s ∈ J such that ρ(s, zs) > 0.
Similarly, is ρ(s, zs) < 0 , we get

‖zn
ρ(s,zn

s ) − zρ(s,zs)‖B = ‖φn
ρ(s,zn

s ) − φρ(s,zs)‖B = 0

which also shows that zn
ρ(s,zn

s ) → zρ(s,zs) in B as n → ∞ for every s ∈ J such that
ρ(s, zs) < 0. Combining the pervious arguments, we can prove that zn

ρ(s,zs)
→ φ for

every s ∈ J such that ρ(s, zs) = 0. Finally,

|A(zn)(t)−A(z)(t)| ≤ |g(t, zn
ρ(t,zn

t +xt) + xρ(t,zn
t +xt))− g(t, zρ(t,zt+xt) + xρ(t,zt+xt))|

+ M ′
∫ t

0

|f(s, zn
ρ(s,zn

s +xs) + xρ(s,zn
s +xs))− f(s, zρ(s,zs+xs) + xρ(s,zs+xs))|ds

≤ |g(t, zn
ρ(s,zn

s +xs) + xρ(s,zn
s +xs))− g(t, zρ(s,zs+xs) + xρ(s,zs+xs))|

+ M ′
∫ t

0

|f(s, zρ(s,zn
s +xs) + xρ(s,zn

s +xs))− f(s, zρ(s,zs+xs) + xρ(s,zs+xs))|ds.
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Then by (H2), (H5) we have

f(s, zn
ρ(s,zn

s +xs) + xρ(s,zn
s +xs)) → f(s, zρ(s,zs+xs) + xρ(s,zs+xs)), as n→∞,

g(t, zn
ρ(t,zn

t +xt) + xρ(t,zn
t +xt)) → g(t, zρ(t,zt+xt) + xρ(t,zt+xt)), as n→∞,

and by the Lebesgue dominated convergence theorem we get,

‖A(zn)−A(z)‖BC′
0
→ 0, as n→∞.

Thus A is continuous.

Step 2 : A(Br) ⊂ Br. This is clear.
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Step 3: A(Br) is equicontinuous on every compact interval [0, b] of [0,+∞) for
b > 0. Let τ1, τ2 ∈ [0, b] with τ2 > τ1, we have:

|A(z)(τ2)−A(z)(τ1)| ≤ |g(τ2, zρ(τ2,zτ2+xτ2 ) + xρ(τ2,zτ2+xτ2 ))− g(τ1, zρ(τ1,zτ1+xτ1 ) + xρ(τ1,zτ1+xτ1 ))|
+ ‖T (τ2)− T (τ1)‖B(E)|g(0, φ(0))|

+

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)|f(s, zρ(s,zs+xs) + xρ(s,zs+xs))|ds

+

∫ τ2

τ1

‖T (τ2 − s)‖B(E)|f(s, zρ(s,zs+xs) + xρ(s,zs+xs))|ds

≤ |g(τ2, zρ(τ2,zτ2+xτ2 ) + xρ(τ2,zτ2+xτ2 ))− g(τ1, zρ(τ1,zτ1+xτ1 ) + xρ(τ1,zτ1+xτ1 ))|
+ ‖T (τ2)− T (τ1)‖B(E)(kg‖φ‖B + g∗)

+

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)|f(s, zρ(s,zs+xs) + xρ(s,zs+xs))− f(s, 0)|ds

+

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)|f(s, 0)|ds

+

∫ τ2

τ1

‖T (τ2 − s)‖B(E)|f(s, zρ(s,zs+xs) + xρ(s,zs+xs))− f(s, 0)|ds

+

∫ τ2

τ1

‖T (τ2 − s)‖B(E)|f(s, 0)|ds

≤ kg|g(τ2, zρ(τ2,zτ2+xτ2 ) + xρ(τ2,zτ2+xτ2 ))− g(τ1, zρ(τ1,zτ1+xτ1 ) + xρ(τ1,zτ1+xτ1 ))|
+ ‖T (τ2)− T (τ1)‖B(E)(kg‖φ‖B + g∗)

+ C1

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)k(s)ds

+ rL

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)k(s)ds

+

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)|f(s, 0)|ds

+ C1

∫ τ2

τ1

‖T (τ2 − s)‖B(E)k(s)ds

+ rL

∫ τ2

τ1

‖T (τ2 − s)‖B(E)k(s)ds

+

∫ τ2

τ1

‖T (τ2 − s)‖B(E)|f(s, 0)|ds.

When τ2 → τ1, the right-hand side of the above inequality tends to zero, since (H7) and
T (t) is a strongly continuous operator and the compactness of T (t) for t > 0, implies the
continuity in the uniform operator topology (see [89]), this proves the equicontinuity.

Step 4: The set A(Br)(t) is relatively compact on every compact interval of [0,∞).
Let t ∈ [0, b] for b > 0 and let ε be a real number satisfying 0 < ε < t. For z ∈ Br we
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define
Aε(z)(t) = g(t, zρ(t,zt+xt) + xρ(t,zt+xt)))− T (ε)(T (t− ε)g(0, φ(0)))

+T (ε)

∫ t−ε

0

T (t− s− ε)f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds.

Note that the set

{g(t, zρ(t,zt+xt) + xρ(t,zt+xt))− T (t− ε)g(0, φ(0))

+

∫ t−ε

0

T (t− s− ε)f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds : z ∈ Br}

is bounded.
|g(t, zρ(t,zt+xt) + xρ(t,zt+xt))− T (t− ε)g(0, φ(0))

+

∫ t−ε

0

T (t− s− ε)f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds| ≤ r

Since T (t) is a compact operator for t > 0, and (H6) we have that the set,

{Aε(z)(t) : z ∈ Br}

is precompact in E for every ε, 0 < ε < t. Moreover, for every z ∈ Br we have

|A(z)(t)−Aε(z)(t)| ≤
∫ t

t−ε

T (t− s)f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds

≤ M ′F ∗ε+M ′C

∫ t

t−ε

k(s)ds+ rM ′
∫ t

t−ε

lk(s)ds,

→ 0 as ε→ 0.

Therefore, the set {A(z)(t) : z ∈ Br} is precompact, i.e., relatively compact.

Step 5: A(Br) is equiconvergent.
Let t ∈ [0,+∞) and z ∈ Br, we have,

|A(z)(t)| ≤ |g(t, zρ(t,zt+xt) + xρ(t,zt+xt))|+M ′|g(0, φ(0))|

+M ′
∫ t

0

|f(s, zρ(s,zs+xs) + xρ(s,zs+xs))|ds

≤ C2 + kglr +M ′C

∫ t

0

k(s)ds+M ′rl

∫ t

0

k(s)ds.

Set
C3 = C2 + kglr +M ′Ck∗ +M ′lrK∗.
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Then we have
|A(z)(t)| → l, as t→ +∞,

where l ≤ C3 Hence,

|A(z)(t)−A(z)(+∞)| → 0, as t→ +∞.

As a consequence of Steps 1-5, with Lemma 1.5.1, we can conclude that A : Br → Br

is continuous and compact. From Schauder’s theorem, we deduce that A has a fixed
point z∗. Then y∗ = z∗ +x is a fixed point of the operators N, which is a mild solution
of the problem (3.1)-(3.2).

3.3 An example
Consider the following neutral functional partial differential equation:

∂

∂t
[z(t, x)− g(t, z(t− σ(t, z(t, 0)), x))] =

∂2

∂x2
[z(t, x)− g(t, z(t− σ(t, z(t, 0)), x))]

+ f(t, z(t− σ(t, z(t, 0)), x)), x ∈ [0, π], t ∈ [0,+∞) (3.4)

z(t, 0) = z(t, π) = 0, t ∈ [0,+∞), (3.5)

z(θ, x) = z0(θ, x), t ∈ (−∞, 0], x ∈ [0, π], (3.6)

where f, g is a given functions , and σ : IR → IR+. Take E = L2[0, π] and define
A : E → E by Aω = ω′′ with domain

D(A) = {ω ∈ E, ω, ω′are absolutely continuous, ω′′ ∈ E, ω(0) = ω(π) = 0}.

Then

Aω =
∞∑

n=1

n2(ω, ωn)ωn, ω ∈ D(A),

where ωn(s) =
√

2
π

sinns, n = 1, 2, . . . is the orthogonal set of eigenvectors in A. It
is well know (see [89]) that A is the infinitesimal generator of an analytic semigroup
T (t), t ≥ 0 in E and is given by

T (t)ω =
∞∑

n=1

exp(−n2t)(ω, ωn)ωn, ω ∈ E.

Since the analytic semigroup T (t) is compact for t > 0, there exists a positive constant
M such that

‖T (t)‖B(E) ≤M.
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Let B = BCU(IR−;E) and φ ∈ B, then (Hφ), where ρ(t, ϕ) = t− σ(ϕ).
Hence, the problem (3.1)-(3.2) in an abstract formulation of the problem (3.4)-(3.6),
and if the conditions (H1)− (H6), (Hφ) are satisfied. Theorem 3.2.3 implies that the
problem (3.4)-(3.6) has at least one mild solutions on BC.
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Chapter 4

Functional Differential Inclusions
With Delay

4.1 Introduction
In this Chapter, we study some first order classes of partial functional, evolution in-
clusion on J = [0,+∞) with finite and infinite state-dependent delay.

For modeling scientific phenomena where the delay is either a fixed constant or is
given as an integral in which case is called distributed delay, we use differential delay
equations or functional differential equations ; see for instance the books [58, 75, 100].
An extensive theory is developed for evolution equations [6, 7, 52]. Uniqueness and
existence results have been established recently for various classes of evolution problems
in the papers by Baghli and Benchohra for finite and infinite delay in the Fréchet space
setting in [13, 14, 15, 16].

However, complicated situations in which the delay depends on the unknown func-
tions have been proposed in modeling in recent years. These equations are frequently
called equations with state-dependent delay. Existence results and among other things
were derived recently for functional differential equations when the solution is depend-
ing on the delay on a bounded interval [0, b] for impulsive problems. We refer the
reader to the papers by Abada et al. [1], Ait Dads and Ezzinbi [9], Anguraj et al. [10],
Hernandez et al. [69] and Li et al. [78].

4.2 Functional differential inclusions with delay
In this section we are going to prove the existence of solutions of a class of semilinear
functional evolution inclusion with delay. Our investigations will be situated in the
Banach space of real continuous and bounded functions on [0,+∞). We will use
Bohnenblust-Karlin’s fixed theorem, combined with the Corduneanu’s compactness
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criteria. More precisely, we will consider the following problem

y′(t)− Ay(t) ∈ F (t, yt), a.e. t ∈ J := [0,+∞) (4.1)

y(t) = φ(t), t ∈ [−d, 0], (4.2)

where F : J × C([−d, 0], E) → P(E) is a multivalued map with nonempty compact
values, P(E) is the family of all nonempty subsets of E, A : D(A) ⊂ E → E is the
infinitesimal generator of a strongly continuous semigroup T (t), t ∈ J, φ : [−d, 0] → E
is given continuous function, and (E, |.|) is a real Banach space. For any function y
defined on [−d,+∞) and any t ∈ J , we denote by yt the element of C([−d, 0], E)
defined by

yt(θ) = y(t+ θ), θ ∈ [−d, 0].

Here yt(.) represents the history of the state from time t− d, up to the present time t.

In order to define a mild solution of problem (4.1)-(4.2), we shall consider the
space BC := BC([−d,+∞)) which is the Banach space of all bounded and continuous
functions from [−d,+∞) into IR equipped with the standard norm

‖y‖BC = sup
t∈[−d,+∞)

|y(t)|.

4.2.1 Existence of mild solutions

In this section we give our main existence result for problem (4.1)-(4.2). Before starting
and proving this result, we give the definition of a mild solution.

Definition 4.2.1 we say that a continuous y ∈ [−d,+∞) is a mild solution of (4.1)-
(4.2) if there exist function f ∈ L1(J,E) such that f(t) ∈ F (t, yt), a.e. J , y(t) =
φ(t), t ∈ [−d, 0], and

y(t) = T (t)φ(t)−
∫ t

0

T (t− s)f(s)ds, t ∈ J.

Let us introduce the following hypotheses:

(H1) A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continuous
semigroup T (t), t ∈ J which is compact for t > 0 in the Banach space E. Let
M = sup{‖T‖B(E) : t ≥ 0}.

(H2) The multifunction F : J×C([−d, 0];E) −→ P(E) is Carathéodory with compact
and convex values.
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(H3) There exists a continuous function k : J → [0,+∞) such that:

Hd(F (t, u), F (t, v)) ≤ k(t)‖u− v‖,

for each t ∈ J and for all u, v ∈ C([−d, 0];E) and

d(0, F (t, 0)) ≤ k(t),

with

k∗ := sup
t∈J

∫ t

0

k(s)ds <∞.

Theorem 4.2.2 Assume that (H1)− (H3) hold. If k∗M < 1, then the problem (4.1)-
(4.2) has at least one mild solution on BC.

Proof. Transform the problem (4.1)-(4.2) into a fixed point problem. Consider the
multivalued operator N : BC → P(BC) defined by :

N(y) :=

 h ∈ BC : h(t) =


φ(t), if t ∈ [−d, 0];

T (t) φ(0)

+

∫ t

0

T (t− s) f(s) ds, f ∈ SF,y if t ∈ J.


The operator N maps BC into BC; for any y ∈ BC,and h ∈ N(y) and for each

t ∈ J , we have

|h(t)| ≤ M‖φ‖+M

∫ t

0

|f(s)|ds

≤ M‖φ‖+M

∫ t

0

(k(s)‖ys‖+ ‖F (s, 0)‖)ds

≤ M‖φ‖+M

∫ t

0

k(s)(‖ys‖+ 1)ds

≤ M‖φ‖+M(‖y‖BC + 1)k∗ := c.

Hence, h(t) ∈ BC.

Moreover, let r > 0 be such that r ≥ M‖φ‖+Mk∗

1−Mk∗
, and Br be the closed ball in BC

centered at the origin and of radius r. Let y ∈ Br and t ∈ [0,+∞). Then,

|h(t)| ≤ M‖φ‖+Mk∗ +Mk∗r.

Thus,
‖h‖BC ≤ r,

which means that the operator N transforms the ball Br into itself.
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Now we prove that N : Br → Br satisfies the assumptions of Bohnenblust-Karlin’s
fixed theorem. The proof will be given in several steps.

Step 1: We shall show that the operator N is closed and convex. This will be
given in two claims.

Claim 1 : N(y) is closed for each y ∈ Br.

Let (hn)n≥0 ∈ N(y) such that hn → h̃ in Br. Then for hn ∈ Br there exists fn ∈ SF,y

such that:

hn(t) = T (t)φ(0) +

∫ t

0

T (t− s)fn(s)ds.

Using the fact that F has compact values and from hypotheses (H2), (H3). An appli-
cation of Mazur’s theorem [102] we may pass a subsequence if necessary to get that fn

converges to f ∈ L1(J,E) and hence f ∈ SF,y. Then for each t ∈ J,

hn(t) → h̃(t) = T (t)φ(0) +

∫ t

0

T (t− s)f(s)ds.

So, h̃ ∈ N(y).

Claim 2 :N(y) is convex for each y ∈ Br.
Let h1, h2 ∈ N(y), the there exists f1, f2 ∈ SF,y such that, for each t ∈ J we have :

hi(t) = T (t)φ(0) +

∫ t

0

T (t− s)fi(s)ds, i = 1, 2.

Let 0 ≤ δ ≤ 1. Then, we have for each t ∈ J :

(δh1 + (1− δ)h2)(t) = T (t)φ(0) +

∫ t

0

T (t− s)[δf1(s) + (1− δ)f2(s)]ds.

Since F (t, y) is convex, one has

δh1 + (1− δ)h2 ∈ N(y).

Step 2 : N(Br) ⊂ Br this is clear.

Step 3: N(Br) is equicontinuous on every compact interval [0, b] of [0,+∞) for
b > 0.
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Let τ1, τ2 ∈ [0, b] with τ2 > τ1, we have

|h(τ2)− h(τ1)| ≤ ‖T (τ2 − s)− T (τ1 − s)‖B(E)‖φ‖

+

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)|f(s)|ds

+

∫ τ2

τ1

‖T (τ2 − s)‖B(E)|f(s)|ds

≤ ‖T (τ2 − s)− T (τ1 − s)‖B(E)‖φ‖

+

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)(k(s)‖ys‖+ |F (s, 0)|)ds

+

∫ τ2

τ1

‖T (τ2 − s)‖B(E)(k(s)‖ys‖+ |F (s, 0)|)ds

≤ ‖T (τ2 − s)− T (τ1 − s)‖B(E)‖φ‖

+ (r + 1)

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)k(s)ds

+ (r + 1)

∫ τ2

τ1

‖T (τ2 − s)‖B(E)k(s)ds.

When τ2 → τ1 , the right-hand side of the above inequality tends to zero, since T (t)
is a strongly continuous operator and the compactness of T (t) for t > 0, implies he
continuity in the uniform operator topology (see [89]). This proves the equicontinuity.

Step 4: N(Br) is relatively compact on every compact interval of [0,+∞).

Let t ∈ [0, b] for b > 0 and let ε be a real number satisfying 0 < ε < t. For y ∈ Br,
let h ∈ N(y) and f ∈ SF,y we define

hε(t) = T (t)φ(0) + T (ε)

∫ t−ε

0

T (t− s− ε)f(s)ds.

Note that the set {
T (t)φ(0) +

∫ t−ε

0

T (t− s− ε)f(s)ds : y ∈ Br

}
is bounded.

|T (t)φ(0) +

∫ t−ε

0

T (t− s− ε)f(s)ds| ≤ r.

Since T (t) is a compact operator for t > 0, the set,

Hε(t) = {hε(t) : hε ∈ N(y), y ∈ Br}
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is precompact in E for every ε, 0 < ε < t. Moreover, for every y ∈ Br we have

|h(t)− hε(t)| ≤ M

∫ t

t−ε

|f(s)|ds

≤ M

∫ t

t−ε

(k(s)‖ys‖+ |F (s, 0|)ds

≤ M(1 + r)

∫ t

t−ε

k(s)ds

→ 0 as ε→ 0.

Therefore, the set H(t) = {h(t) : h ∈ N(y), y ∈ Br} is precompact, i.e., relatively
compact. Hence the set H(t) = {h(t) : h ∈ N(Br)} is relatively compact.

Step 5: N has closed graph.
Let {yn} be a sequence such that yn → y∗, hn ∈ N(yn) and hn → h∗. We shall show
that h∗ ∈ N(y∗). hn ∈ N(yn) means that there exists fn ∈ SF,yn such that

hn(t) = T (t) φ(0) +

∫ t

0

T (t− s) fn(s) ds, t ∈ J.

We must prove that there exists f∗

h∗(t) = T (t) φ(0) +

∫ t

0

T (t− s) f∗(s) ds, t ∈ J.

Consider the linear and continuous operator K : L1(J,E) → BC defined by

K(v)(t) =

∫ t

0

T (t− s)v(s)ds.

We have

|K(fn)(t)−K(f∗)(t)| =

|(hn(t)− T (t) φ(0))− (h∗(t)− T (t) φ(0))| = |hn(t)− h∗(t)|
≤ ‖hn − h∗‖∞ → 0, as n→∞.

From Lemma 1.2.9 it follows that K ◦ SF is a closed graph operator and from the
definition of K has

hn(t)− T (t)φ(0) ∈ K ◦ SF,yn .

As yn → y∗ and hn → h∗, there exist f∗ ∈ SF,y∗ such that:

h∗(t)− T (t)φ(0) =

∫ t

0

T (t− s) f∗(s).
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Hence the multivalued operator N has closed graph, which implies that it is upper
semi-continuous.

Step 6: N(Br) is equiconvergent.

Let h ∈ N(y), there exists f ∈ SF,y such that for each t ∈ [0,+∞) and y ∈ Br we
have

|h(t)| ≤ M‖φ‖+M

∫ t

0

|f(s)|ds

≤ M‖φ‖+Mk∗ +Mr

∫ t

0

k(s)ds

≤ M‖φ‖+Mk∗ +Mrk∗.

Then,
|h(t)| → l, as t→ +∞.

Where l ≤M‖φ‖+Mk∗(1 + r) Hence,

|h(t)− h(+∞)| → 0, as t→ +∞.

As a consequence of Steps 1 − 6, and Lemma 1.5.1, we conclude from Bohnenblust-
Karlin’s theorem that N has a fixed point y which is a mild solution of the problem
(4.1)-(4.2).

4.2.2 An example

Consider the functional partial differential equation

∂

∂t
z(t, x)− ∂2

∂x2
z(t, x) ∈ F (t, z(t− d, x)), x ∈ [0, π], t ∈ J := [0,+∞), (4.3)

z(t, 0) = z(t, π) = 0, t ∈ J, (4.4)

z(t, x) = φ(t), t ∈ [−d, 0], x ∈ [0, π], (4.5)

where F is a given multivalued map. Take E = L2[0, π] and define A : E → E by
Aω = ω′′ with domain

D(A) = {ω ∈ E;ω, ω′are absolutely continuous, ω′′ ∈ E, ω(0) = ω(π) = 0}.

Then,

Aω =
∞∑

n=1

n2(ω, ωn)ωn, ω ∈ D(A)
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where ωn(s) =
√

2
π

sinns, n = 1, 2, . . ., is the orthogonal set of eigenvectors in A. It
is well know (see [89]) that A is the infinitesimal generator of an analytic semigroup
T (t), t ≥ 0 in E and is given by

T (t)ω =
∞∑

n=1

exp(−n2t)(ω, ωn)ωn, ω ∈ E.

Since the analytic semigroup T (t) is compact, there exists a positive constant M such
that

‖T (t)‖B(E) ≤M.

Then the problem (4.1)-(4.2) is the abstract formulation of the problem (4.3)-(4.5). If
conditions (H1)−(H3) are satisfied, Theorem 4.2.2 implies that the problem (4.3)-(4.5)
has at least one global mild solution on BC.

4.3 Functional differential inclusions with state-dependent
delay

In this section, we are going to prove the existence of solutions of a functional differential
inclusion . Our investigations will be situated in the Banach space of real functions
which are defined, continuous and bounded on IR. We will use Bohnenblust-Karlin’s
fixed theorem, combined with the Corduneanu’s compactness criteria. More precisely
we will consider the following problem :

y′(t)− Ay(t) ∈ F (t, yρ(t,yt)), a.e. t ∈ J := [0,+∞) (4.6)

y(t) = φ(t), t ∈ (−∞, 0], (4.7)

where F : J × B → P(E) is a multivalued map with nonempty compact values, P(E)
is the family of all nonempty subsets of E, A : D(A) ⊂ E → E is the infinitesimal
generator of a strongly continuous semigroup T (t), t ∈ J, and (E, |.|) is a real Banach
space. B is the phase space to be specified later, φ ∈ B, ρ : J × B → (−∞,+∞) . For
any function y defined on (−∞,+∞) and any t ∈ J we denote by yt the element of B
defined by

yt(θ) = y(t+ θ), θ ∈ (−∞, 0].

We assume that the histories yt to some abstract phases B, to be specified later.

By BUC we denote the space of bounded uniformly continuous functions defined
from (−∞, 0] to E.
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By BC := BC(−∞,+∞) we denote the Banach space of all bounded and contin-
uous functions from (−∞,+∞) into E equipped with the standard norm

‖y‖BC = sup
t∈(−∞,+∞)

|y(t)|.

And we denote by BC ′ := BC ′([0,+∞)) the Banach space of all bounded and contin-
uous functions from [0,+∞) into E equipped with the standard norm

‖y‖BC′ = sup
t∈[0,+∞)

|y(t)|.

4.3.1 Existence of mild solutions

Now we give our main existence result for problem (4.6)-(4.7). Before starting and
proving this result, we give the definition of the mild solution.

Definition 4.3.1 We say that a continuous function y : (−∞,+∞) → E is a mild
solution of problem (4.6)-(4.7)if y(t) = φ(t) for all t ∈ (−∞, 0], and the restriction of
y(·) to the interval J is continuous and there exists f(·) ∈ L1(J ;E) : f(t) ∈ F (t, yρ(t,yt))
a.e. in J such that y satisfies the following integral equation

y(t) = T (t)φ(t)−
∫ t

0

T (t− s) f(s) ds for each t ∈ J. (4.8)

Let us introduce the following hypotheses:

(H1) A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continuous
semigroup T (t), t ∈ J which is compact for t > 0 in the Banach space E. Let
M ′ = sup{‖T‖B(E) : t ≥ 0}.

(H2) The multifunction F : J×B −→ P(E) is Carathéodory with compact and convex
values.

(H3) There exists a continuous function k : J → [0,+∞) such that:

Hd(F (t, u), F (t, v)) ≤ k(t) ‖u− v‖B

for each t ∈ J and for all u, v ∈ B and

d(0, F (t, 0)) ≤ k(t)

with

k∗ := sup
t∈J

∫ t

0

k(s)ds <∞.
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Theorem 4.3.2 Assume that (H1)− (H3), (Hφ) hold. If k∗M ′L < 1, then the problem
(4.6)-(4.7) has at least one mild solution on BC.

Proof. Transform the problem (4.6)-(4.7) into a fixed point problem. Consider the
multivalued operator N : BC → P(BC) defined by :

N(y) :=

 h ∈ BC : h(t) =


φ(t), if t ∈ (−∞, 0];

T (t) φ(0) +

∫ t

0

T (t− s) f(s) ds, if t ∈ J,


where f ∈ SF,yρ(s,ys)

.
Let x(·) : (−∞,+∞) → E be the function defined by:

x(t) =

{
φ(t), if t ∈ (−∞, 0];

T (t) φ(0), if t ∈ J.

Then x0 = φ. For each z ∈ BC with z(0) = 0, we denote by z the function

z(t) =

{
0, if t ∈ (−∞, 0];

z(t), if t ∈ J,

if y(·) satisfies (4.8), we can decompose it as y(t) = z(t) + x(t), t ∈ J , which implies
yt = zt + xt for every t ∈ J and the function z(·) satisfies

z(t) =

∫ t

0

T (t− s)f(s)ds, t ∈ J,

where f ∈ SF,zρ(s,zs+xs)+xρ(s,zs+xs)
.

Set
BC ′

0 = {z ∈ BC ′ : z(0) = 0}

and let
‖z‖BC′

0
= sup{|z(t)| : t ∈ J}, z ∈ BC ′

0.

BC ′
0 is a Banach space with the norm ‖ · ‖BC′

0
.

We define the operator A : BC ′
0 → P(BC ′

0) by:

A(z) :=

 h ∈ BC ′
0 : h(t) =


0, if t ≤ 0;∫ t

0

T (t− s) f(s) ds, if t ∈ J,


where f ∈ SF,zρ(s,zs+xs)+xρ(s,zs+xs)

.
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The operator A maps BC ′
0 into BC ′

0, indeed the map A(z) is continuous on [0,+∞)
for any z ∈ BC ′

0, h ∈ A(z) and for each t ∈ J we have

|h(t)| ≤ M ′
∫ t

0

|f(s)|ds

≤ M ′
∫ t

0

(k(s)‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B + |F (s, 0)|)ds

≤ M ′
∫ t

0

k(s)ds+M ′
∫ t

0

k(s)(L|z(s)|+ (M + Lφ + LM ′H)‖φ‖B)ds

≤ M ′k∗ +M ′
∫ t

0

k(s)(L|z(s)|+ (M + Lφ + LM ′H)‖φ‖B)ds.

Set
C := (M + Lφ + LM ′H)‖φ‖B.

Then, we have

|h(t)| ≤ M ′k∗ +M ′C

∫ t

0

k(s)ds+M ′
∫ t

0

L|z(s)|k(s)ds

≤ M ′k∗ +M ′Ck∗ +M ′L‖z‖BC′
0
k∗.

Hence, A(z) ∈ BC ′
0.

Moreover, let r > 0 be such that

r ≥ M ′k∗ +M ′Ck∗

1−M ′k∗L
,

and Br be the closed ball in BC ′
0 centered at the origin and of radius r. Let z ∈ Br

and t ∈ [0,+∞). Then

|h(t)| ≤ M ′k∗ +M ′Ck∗ +M ′k∗Lr.

Thus
‖h‖BC′

0
≤ r,

which means that the operator A transforms the ball Br into itself.

Now we prove that A : Br → P(Br) satisfies the assumptions of Bohnenblust-
Karlin’s fixed theorem. The proof will be given in several steps.

Step 1 We shall show that the operator A is closed and convex. This will be given
in several claims.

Claim 1 : A(z) is closed for each z ∈ Br.
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Let (hn)n≥0 ∈ A(z) such that hn → h̃ in Br. Then for hn ∈ Br there exists
fn ∈ SF,zρ(s,zs+xs)+xρ(s,zs+xs)

such that for each t ∈ J,

hn(t) =

∫ t

0

T (t− s)fn(s)ds.

Using the fact that F has compact values and from hypotheses (H2), (H3) we may
pass a subsequence if necessary to get that fn converges to f ∈ L1(J,E) and hence
f ∈ SF,zρ(s,zs+xs)+xρ(s,zs+xs)

. Then for each t ∈ J,

hn(t) → h̃(t) =

∫ t

0

T (t− s)f(s)ds.

So, h̃ ∈ A(z).

Claim 2 : A(z) is convex for each z ∈ Br.
Let h1, h2 ∈ A(z), the there exists f1, f2 ∈ SF,zρ(s,zs+xs)+xρ(s,zs+xs)

such that, for each
t ∈ J we have :

hi(t) =

∫ t

0

T (t− s)fi(s)ds, i = 1, 2.

Let 0 ≤ δ ≤ 1. Then, we have for each t ∈ J :

(δh1 + (1− δ)h2)(t) =

∫ t

0

T (t− s)[δf1(s) + (1− δ)f2(s)]ds.

Since F has convex values, one has

δh1 + (1− δ)h2 ∈ A(z)

Step 2 : A(Br) ⊂ Br this is clear.

54



Step 3: A(Br) is equicontinuous on every compact interval [0, b] of [0,+∞) for
b > 0. Let τ1, τ2 ∈ [0, b], h ∈ A(z) with τ2 > τ1, we have:

|h(τ2)− h(τ1)| ≤
∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)|f(s)|ds

+

∫ τ2

τ1

‖T (τ2 − s)‖B(E)|f(s)|ds

≤
∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)(k(s)‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B + |F (s, 0)|)ds

+

∫ τ2

τ1

‖T (τ2 − s)‖B(E)(k(s)‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B + |F (s, 0)|)ds

≤ C

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)k(s)ds

+ rL

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)k(s)ds

+

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)k(s)ds

+ C

∫ τ2

τ1

‖T (τ2 − s)‖B(E)k(s)ds

+ rL

∫ τ2

τ1

‖T (τ2 − s)‖B(E)k(s)ds

+

∫ τ2

τ1

‖T (τ2 − s)‖B(E)k(s)ds.

When τ2 → τ2, the right-hand side of the above inequality tends to zero, since T (t)
is a strongly continuous operator and the compactness of T (t) for t > 0, implies he
continuity in the uniform operator topology (see [89]), this proves the equicontinuity.

Step 4: A(Br) is relatively compact on every compact interval of [0,∞).

Let t ∈ [0, b] for b > 0 and let ε be a real number satisfying 0 < ε < t. For z ∈ Br

we define

hε(t) = T (ε)

∫ t−ε

0

T (t− s− ε)f(s)ds.

Note that the set {∫ t−ε

0

T (t− s− ε)f(s)ds : z ∈ Br

}
is bounded.

|
∫ t−ε

0

T (t− s− ε)f(s)ds| ≤ r.

Since T (t) is a compact operator for t > 0, the set,

{hε(t) : z ∈ Br}
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is precompact in E for every ε, 0 < ε < t. Moreover, for every z ∈ Br we have

|h(t)− hε(t)|

≤ M ′
∫ t

t−ε

|f(s)|ds

≤ M ′
∫ t

t−ε

k(s)ds+M ′C

∫ t

t−ε

k(s)ds+ rM ′
∫ t

t−ε

Lk(s)ds,

→ 0 as ε→ 0.

Therefore, the set {h(t) : z ∈ Br} is precompact, i.e., relatively compact.

Step 5: A has closed graph.
Let {zn} be a sequence such that zn → z∗, hn ∈ A(zn) and hn → h∗. We shall show
that h∗ ∈ A(z∗).

hn ∈ A(zn) means that there exists fn ∈ SF,zn
ρ(s,zn

s +xs)
+xρ(s,zn

s +xs)
such that

hn(t) =

∫ t

0

T (t− s) fn(s) ds,

we must prove that there exists f∗

h∗(t) =

∫ t

0

T (t− s) f∗(s) ds.

Consider the linear and continuous operator K : L1(J,E) → Br defined by

K(v)(t) =

∫ t

0

T (t− s)v(s)ds.

we have

|K(fn)(t)−K(f∗)(t)| = |hn(t)− h∗(t)| ≤ ‖hn − h∗‖∞ → 0, as n→∞

From Lemma 1.2.9 it follows that K ◦ SF is a closed graph operator and from the
definition of K has

hn(t) ∈ K ◦ SF,zn
ρ(s,zn

s +xs)
+xρ(s,zn

s +xs)
.

As zn → z∗ and hn → h∗, there exist f∗ ∈ SF,z∗
ρ(s,z∗s+xs)

+xρ(s,z∗+xs)
such that:

h∗(t) =

∫ t

0

T (t− s) f∗(s)ds.

Hence the mutivalued operator A is upper semi-continuous.
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Step 5: A(Br) is equiconvergent.
Let z ∈ Br, we have, for h ∈ A(z):

|h(t)| ≤ M ′
∫ t

0

|f(s)|ds

≤ M ′k∗ +M ′C

∫ t

0

k(s)ds+M ′r

∫ t

0

Lk(s)ds

≤ M ′k∗ +M ′C

∫ t

0

k(s)ds+M ′rL

∫ t

0

k(s)ds.

Then by (4), we have
|h(t)| → l, as t→ +∞.

Where l ≤M ′k∗(1 + C + rL) Hence,

|h(t)− h(+∞)| → 0, as t→ +∞.

As a consequence of Steps 1-4, with Lemma 1.5.1, we can conclude that A : Br →
P(Br) is continuous and compact. From Schauder’s theorem, we deduce that A has a
fixed point z∗. Then y∗ = z∗ + x is a fixed point of the operators N, which is a mild
solution of the problem (4.6)-(4.7).

4.3.2 An example

Consider the following functional partial differential equation

∂

∂t
z(t, x)− ∂2

∂x2
z(t, x) ∈ F (t, z(t− σ(t, z(t, 0)), x)) (4.9)

x ∈ [0, π], t ∈ [0,+∞)

z(t, 0) = z(t, π) = 0, t ∈ [0,+∞), (4.10)

z(θ, x) = z0(θ, x), t ∈ (−∞, 0], x ∈ [0, π], (4.11)

where F is a given multivalued map, and σ : IR → IR+ is continuous.
Take E = L2[0, π] and define A : E → E by Aω = ω′′ with domain

D(A) = {ω ∈ E, ω, ω′are absolutely continuous, ω′′ ∈ E, ω(0) = ω(π) = 0}.

Then

Aω =
∞∑

n=1

n2(ω, ωn)ωn, ω ∈ D(A)

57



where ωn(s) =
√

2
π

sinns, n = 1, 2, . . . is the orthogonal set of eigenvectors in A. It
is well know (see [89]) that A is the infinitesimal generator of an analytic semigroup
T (t), t ≥ 0 in E and is given by

T (t)ω =
∞∑

n=1

exp(−n2t)(ω, ωn)ωn, ω ∈ E.

Since the analytic semigroup T (t) is compact, there exists a positive constant M such
that

‖T (t)‖B(E) ≤M.

Let B = BCU(IR−;E) and φ ∈ B, then (Hφ), where ρ(t, ϕ) = t− σ(ϕ).
Then the problem (4.6)-(4.7) in an abstract formulation of the problem (4.9)-(4.11),

and if the conditions (H1) − (H3), (Hφ) are satisfied. Theorem 4.3.2 implies that the
problem (4.9)-(4.11) has at least one mild solutions on BC .
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Chapter 5

Neutral Functional Differential
Inclusions with State-Dependent
Delay

5.1 Introduction
In this Chapter, we study some first order classes of partial neutral functional evolution
inclusion with infinite state-dependent delay, Our investigations will be situated in the
Banach space of real functions which are defined, continuous and bounded on IR.

Neutral functional differential equations arise in many areas of applied mathematics
and for this reason these equations have received much attention in the last decades.
The literature relative to ordinary neutral functional differential equations is very ex-
tensive and refer to [14, 15, 26, 28, 84, 85]. Partial neutral differential equation with
finite delay arise, for instance, from the transmission line theory [99]. Wu and Xia have
shown in [100] that a ring array of identical resistibly coupled lossless transmission lines
leads to a system of neutral functional differential equations with discrete diffusive cou-
pling which exhibits various types of discrete waves. For more results on partial neutral
functional-differential equations and related issues we refer to Adimy and Ezzinbi [2],
Hale [56], Wu and Xia [99, 100] for finite delay equations, and Hern’andez and Hen-
riquez [66, 67] for unbounded delays. We also cite [9, 78, 38, 48, 69, 83, 101] for the
case neutral differential equations with State-dependent delay.

We will use Bohnenblust-Karlin’s fixed theorem, combined with the Corduneanu’s
compactness criteria, for solution of the following problem :

d

dt
[y(t)− g(t, yρ(t,yt))]− A[y(t)− g(t, yρ(t,yt))] ∈ F (t, yρ(t,yt)), a.e. t ∈ J := [0,+∞)

(5.1)
y(t) = φ(t), t ∈ (−∞, 0], (5.2)
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where F : J × B → P(E) is a multivalued map with nonempty compact values,
P(E) is the family of all nonempty subsets of E, g : J × B → E is given function,
A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continuous semigroup
T (t), t ∈ J, B is the phase space to be specified later, φ ∈ B, ρ : J × B → (−∞,+∞)
and (E, |.|) is a real Banach space. For any function y defined on (−∞,+∞) and any
t ∈ J we denote by yt the element of B defined by

yt(θ) = y(t+ θ), θ ∈ (−∞, 0].

We assume that the histories yt belongs to some abstract phases B, to be specified
later.

By BUC we denote the space of bounded uniformly continuous functions defined
from (−∞, 0] to E.
By BC := BC(−∞,+∞) we denote the Banach space of all bounded and continuous
functions from (−∞,+∞) into E equipped with the standard norm

‖y‖BC = sup
t∈(−∞,+∞)

|y(t)|.

Finally, by BC ′ := BC ′([0,+∞)) we denote the Banach space of all bounded and
continuous functions from [0,+∞) into E equipped with the standard norm

‖y‖BC′ = sup
t∈[0,+∞)

|y(t)|.

5.2 Existence of mild solutions
Now we give our main existence result for problem (5.1)-(5.2). Before starting and
proving this result, we give the definition of the mild solution.

Definition 5.2.1 We say that a continuous function y : (−∞,+∞) → E is a mild
solution of problem (5.1)-(5.2)if y(t) = φ(t) for all t ∈ (−∞, 0], and the restriction of
y(·) to the interval J is continuous and there exists f(·) ∈ L1(J ;E) : f(t) ∈ F (t, yρ(t,yt))
a.e. in J such that y satisfies the following integral equation

y(t) = T (t)[φ(0)− g(0, φ(0))] + g(t, yρ(t,yt)) +

∫ t

0

T (t− s)f(s)ds, t ∈ J. (5.3)

Let us introduce the following hypotheses:

(H1) A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continuous
semigroup T (t), t ∈ J which is compact for t > 0 in the Banach space E. Let
M ′ = sup{‖T‖B(E) : t ≥ 0}.
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(H2) The multifunction F : J×B −→ P(E) is Carathéodory with compact and convex,
closed values.

(H3) There exists a continuous function k : J → [0,+∞) such that:

Hd(F (t, u), F (t, v)) ≤ k(t) ‖u− v‖B

for each t ∈ J and for all u, v ∈ B and

d(0, F (t, 0)) ≤ k(t)

with

k∗ := sup
t∈J

∫ t

0

k(s)ds <∞.

(H4) The function g(t, ·) is continuous on J ant there exists a constant kg > 0 such
that

|g(t, u)− g(t, v)| ≤ kg‖u− v‖B, for each, u, v ∈ B

and
g∗ := sup

t∈J
|g(t, 0)| <∞.

(H6) For each t ∈ J and any bounded set B ⊂ B, the set {g(t, u) : u ∈ B} is relatively
compact in E

(H7) For any bounded set B ⊂ B, the function {t→ g(t, yt) : y ∈ B} is equicontinuous
on each compact interval of [0,+∞).

Remark 5.2.2 By the condition (H4) we deduce that

|g(t, u)| ≤ kg‖u‖B + g∗, t ∈ J, u ∈ B.

Theorem 5.2.3 Assume that (H1) − (H7) and (Hφ) hold. If l(M ′k∗ + kg) < 1, then
the problem (5.1)-(5.2) has at least one mild solution on BC.

Proof. Transform the problem (5.1)-(5.2) into a fixed point problem. Consider the
operator N : BC → P(BC) defined by:

N(y) :=

 h ∈ BC : h(t) =


φ(t), if t ∈ (−∞, 0];

T (t) [φ(0)− g(0, φ(0))]

+g(t, yρ(t,yt)) +

∫ t

0

T (t− s) f(s) ds, if t ∈ J,


where f ∈ SF,yρ(t,yt)

.
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Let x(·) : (−∞,+∞) → E be the function defined by:

x(t) =

{
φ(t), if t ∈ (−∞, 0];

T (t) φ(0), if t ∈ J.
Then x0 = φ. For each z ∈ BC with z(0) = 0, we denote by z the function

z(t) =

{
0, if t ∈ (−∞, 0];

z(t), if t ∈ J,
if y(·) satisfies (5.3), we can decompose it as y(t) = z(t) + x(t), t ∈ J , which implies
yt = zt + xt for every t ∈ J and the function z(·) satisfies

z(t) = g(t, zρ(t,zt+xt) + xρ(t,zt+xt))− T (t)g(0, φ(0))

+

∫ t

0

T (t− s)f(s)ds, t ∈ J.

where f ∈ SF,zρ(t,zt+xt)
+xρ(t,zt+xt)

.

Set
BC ′

0 = {z ∈ BC ′ : z(0) = 0}
and let

‖z‖BC′
0

= sup{|z(t)| : t ∈ J}, z ∈ BC ′
0.

BC ′
0 is a Banach space with the norm ‖ · ‖BC′

0
.

We define the operator A : BC ′
0 → P(BC ′

0) by:

A(z) :=

 h ∈ BC ′
0 : h(t) =


0, if t ≤ 0;

g(t, zρ(t,zt+xt) + xρ(t,zt+xt))− T (t)g(0, φ(0))

+

∫ t

0

T (t− s) f(s) ds, if t ∈ J,


where f ∈ SF,zρ(t,zt+xt)

+xρ(t,zt+xt)
.

. The operator A maps BC ′
0 into BC ′

0, indeed the map A(z) is continuous on
[0,+∞) for any z ∈ BC ′

0, h ∈ A(z) and for each t ∈ J we have

|h(t)| ≤ |g(t, zρ(t,zt+xt) + xρ(t,zt+xt))|+M ′|g(0, φ(0))|

+M ′
∫ t

0

|f(s)|ds

≤ M ′(kg‖φ‖B + g∗) + kg‖zρ(t,zt+xt) + xρ(t,zt+xt)‖B + g∗

+M ′
∫ t

0

|F (s, 0)|ds+M ′
∫ t

0

k(s)‖zρ(s,zs+xs) + xρ(s,zs+xs)‖Bds

≤ M ′(kg‖φ‖B + g∗) + kg(l|z(t)|+ (m+ Lφ + lM ′H)‖φ‖B) + g∗

+M ′k∗ +M ′
∫ t

0

k(s)(l|z(s)|+ (m+ Lφ + lM ′H)‖φ‖B)ds.
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Set
C1 := (m+ Lφ + lM ′H)‖φ‖B.

C2 := M ′(kg‖φ‖B + g∗) + kgC1 + g∗ +M ′k∗.

Then, we have

|h(t)| ≤ C2 + kgl|z(t)|+M ′C1

∫ t

0

k(s)ds+M ′
∫ t

0

l|z(s)|k(s)ds

≤ C2 + kgl‖z‖BC′
0
+M ′C1k

∗ +M ′l‖z‖BC′
0
k∗.

Hence, A(z) ∈ BC ′
0.

Moreover, let r > 0 be such that

r ≥ C2 +M ′C1k
∗

1− l(M ′k∗ + kg)
,

and Br be the closed ball in BC ′
0 centered at the origin and of radius r. Let z ∈ Br

and t ∈ [0,+∞). Then

|h(t)| ≤ C2 + kglr +M ′C1k
∗ +M ′k∗lr.

Thus
‖h‖BC′

0
≤ r,

which means that the operator A transforms the ball Br into itself.

Now we prove that A : Br → P(Br) satisfies the assumptions of Bohnenblust-
Karlin’s fixed theorem. The proof will be given in several steps.

Step 1 We shall show that the operator A is closed and convex. This will be given
in several claims.

Claim 1 : A(z) is closed for each z ∈ Br.

Let (hn)n≥0 ∈ A(z) such that hn → h̃ in Br. Then for hn ∈ Br there exists
fn ∈ SF,zρ(t,zt+xt)

+xρ(t,zt+xt)
such that for each t ∈ J,

hn(t) = g(t, zρ(t,zt+xt) + xρ(t,zt+xt))− T (t)g(0, φ(0)) +

∫ t

0

T (t− s)fn(s)ds.

Using the fact that F has compact values and from hypotheses (H2), (H3). An appli-
cation of Mazur’s lemma 1.2.8 we may pass a subsequence if necessary to get that fn

converges to f ∈ L1(J,E) and hence f ∈ SF,y.
It remains to prove that f ∈ F (t, zρ(t,zt+xt) + xρ(t,zt+xt)), for each t ∈ J. Lemma 1.2.8
yields the existence of αn

i ≥ 0, i = n, ..., k−n) such that
∑k(n)

i=1 α
n
i = 1 and the sequence
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of convex combinations gn(·) =
∑k(n)

i=1 α
n
i fi(·) converges strongly to f ∈ L1. Since F

takes convex values, using Lemma 1.2.7, we obtain that

f(t) ∈
⋂
n≥1

¯{gn(t)}, a.e.t ∈ J ⊂
⋂
n≥1

c̄o{fk(t), k ≥ n} ⊂

⊂
⋂
n≥1

c̄o{
⋃
k≥n

F (t, zk
ρ(zk

t +xt)
+ xρ(t,zk

t +xt))} = (5.4)

= c̄o( lim
k→∞

supF (t, zk
ρ(zk

t +xt)
+ xρ(t,zk

t +xt)).

Since F is u.s.c with compact values, then by Lemma 1.2.6, we have

lim
n→∞

supF (t, zn
ρ(zn

t +xt) + xρ(t,zn
t +xt)) = F (t, zρ(t,zt+xt) + xρ(t,zt+xt)), for a.e. t ∈ J

This with (5.4) imply that f(t) ∈ c̄oF (t, zρ(t,zt+xt) +xρ(t,zt+xt)). Since F (·, ·) has closed,
convex values, we deduce that f(t) ∈ F (t, zρ(t,zt+xt) + xρ(t,zt+xt)) for a.e. t ∈ J.
Then for each t ∈ J, f ∈ SF,zρ(s,zs+xs)+xρ(s,zs+xs)

. Then for each t ∈ J,

hn(t) → h̃(t) = g(t, zρ(t,zt+xt) + xρ(t,zt+xt))− T (t)g(0, φ(0)) +

∫ t

0

T (t− s)f(s)ds.

So, h̃ ∈ A(z).

Claim 2 : A(z) is convex for each z ∈ Br.
Let h1, h2 ∈ A(z), the there exists f1, f2 ∈ SF,zρ(t,zt+xt)

+xρ(t,zt+xt)
such that, for each

t ∈ J we have :

hi(t) = g(t, zρ(t,zt+xt) + xρ(t,zt+xt))− T (t)g(0, φ(0)) +

∫ t

0

T (t− s)fi(s)ds, i = 1, 2.

Let 0 ≤ δ ≤ 1. Then, we have for each t ∈ J :

(δh1+(1−δ)h2)(t) = g(t, zρ(t,zt+xt)+xρ(t,zt+xt))−T (t)g(0, φ(0))+

∫ t

0

T (t−s)[δf1(s)+(1−δ)f2(s)]ds.

Since F has convex values, one has

δh1 + (1− δ)h2 ∈ A(z)

Step 2 : A(Br) ⊂ Br this is clear.
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Step 3: A(Br) is equicontinuous on every compact interval [0, b] of [0,+∞) for
b > 0. Let τ1, τ2 ∈ [0, b], h ∈ A(z) with τ2 > τ1, we have:

|h(τ2)− h(τ1)| ≤ |g(τ2, zρ(τ2,zτ2+xτ2 ) + xρ(τ2,zτ2+xτ2 ))− g(τ1, zρ(τ1,zτ1+xτ1 ) + xρ(τ1,zτ1+xτ1 ))|
+ ‖T (τ2)− T (τ1)‖B(E)|g(0, φ(0))|

+

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)|f(s)|ds

+

∫ τ2

τ1

‖T (τ2 − s)‖B(E)|f(s)|ds

≤ |g(τ2, zρ(τ2,zτ2+xτ2 ) + xρ(τ2,zτ2+xτ2 ))− g(τ1, zρ(τ1,zτ1+xτ1 ) + xρ(τ1,zτ1+xτ1 ))|
+ ‖T (τ2)− T (τ1)‖B(E)(kg‖φ‖B + g∗)

+

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)(k(s)‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B + |F (s, 0)|)ds

+

∫ τ2

τ1

‖T (τ2 − s)‖B(E)(k(s)‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B + |F (s, 0)|)ds

≤ |g(τ2, zρ(τ2,zτ2+xτ2 ) + xρ(τ2,zτ2+xτ2 ))− g(τ1, zρ(τ1,zτ1+xτ1 ) + xρ(τ1,zτ1+xτ1 ))|

+ C1

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)k(s)ds

+ rl

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)k(s)ds

+

∫ τ1

0

‖T (τ2 − s)− T (τ1 − s)‖B(E)k(s)ds

+ C1

∫ τ2

τ1

‖T (τ2 − s)‖B(E)k(s)ds

+ rl

∫ τ2

τ1

‖T (τ2 − s)‖B(E)k(s)ds

+

∫ τ2

τ1

‖T (τ2 − s)‖B(E)k(s)ds.

When τ2 → τ1, the right-hand side of the above inequality tends to zero, since (H7) and
T (t) is a strongly continuous operator and the compactness of T (t) for t > 0, implies the
continuity in the uniform operator topology (see [89]), this proves the equicontinuity.

Step 4: A(Br) is relatively compact on every compact interval of [0,∞).

Let t ∈ [0, b] for b > 0 and let ε be a real number satisfying 0 < ε < t. For z ∈ Br

we define

hε(t) = g(t, zρ(t,zt+xt) + xρ(t,zt+xt)))− T (ε)(T (t− ε)g(0, φ(0)))

+T (ε)

∫ t−ε

0

T (t− s− ε)f(s)ds.
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Note that the set

{g(t, zρ(t,zt+xt) + xρ(t,zt+xt))− T (t− ε)g(0, φ(0))

+

∫ t−ε

0

T (t− s− ε)f(s)ds : z ∈ Br}

is bounded.
|g(t, zρ(t,zt+xt) + xρ(t,zt+xt))− T (t− ε)g(0, φ(0))

+

∫ t−ε

0

T (t− s− ε)f(s)ds| ≤ r.

Since T (t) is a compact operator for t > 0,and (H6) we have that the set,

{hε(t) : z ∈ Br}

is precompact in E for every ε, 0 < ε < t. Moreover, for every z ∈ Br we have

|h(t)− hε(t)|

≤ M ′
∫ t

t−ε

|f(s)|ds

≤ M ′
∫ t

t−ε

k(s)ds+M ′C1

∫ t

t−ε

k(s)ds+ rM ′
∫ t

t−ε

lk(s)ds,

→ 0 as ε→ 0.

Therefore, the set {h(t) : z ∈ Br} is precompact, i.e., relatively compact.

Step 5: A has closed graph.
Let {zn} be a sequence such that zn → z∗, hn ∈ A(zn) and hn → h∗. We shall show
that h∗ ∈ A(z∗).

hn ∈ A(zn) means that there exists fn ∈ SF,zn
ρ(t,zn

t +xt)
+xρ(t,zn

t +xt)
such that

hn(t) = g(t, zn
ρ(t,zn

t +xt) + xρ(t,zn
t +xt))− T (t)g(0, φ(0))

+

∫ t

0

T (t− s) fn(s) ds,

we must prove that there exists f∗

h∗(t) = g(t, zρ(t,zt+xt) + xρ(t,zt+xt))− T (t)g(0, φ(0))

+

∫ t

0

T (t− s) f∗(s) ds.

Consider the linear and continuous operator K : L1(J,E) → Br defined by

K(v)(t) = g(t, zρ(t,zt+xt) + xρ(t,zt+xt))− T (t)g(0, φ(0))
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+

∫ t

0

T (t− s)v(s)ds.

we have

|K(fn)(t)−K(f∗)(t)| = |(hn(t)− g(t, zρ(t,zt+xt) + xρ(t,zt+xt)) + T (t)g(0, φ(0)))

−(h∗(t)− g(t, zρ(t,zt+xt) + xρ(t,zt+xt)) + T (t)g(0, φ(0)))|
≤ ‖hn − h∗‖∞ → 0, as n→∞

From Lemma 1.2.9 it follows that K ◦ SF is a closed graph operator and from the
definition of K has

hn(t) ∈ K ◦ SF,zn
ρ(t,zn

t +xt)
+xρ(t,zn

t +xt)
.

As zn → z∗ and hn → h∗, there exist f∗ ∈ SF,z∗
ρ(t,z∗t +xt)

+xρ(t,z∗+xt)
such that:

h∗(t) = g(t, zρ(t,zt+xt) + xρ(t,zt+xt))− T (t)g(0, φ(0))

+

∫ t

0

T (t− s) f∗(s)ds.

Hence the mutivalued operator A is upper semi-continuous.

Step 5: A(Br) is equiconvergent.
Let z ∈ Br, we have, for h ∈ A(z):

|h(t)| ≤ |g(t, zρ(t,zt+xt) + xρ(t,zt+xt))|+M ′|g(0, φ(0))|

+M ′
∫ t

0

|f(s)|ds

≤ M ′(kg‖φ‖B + g∗) + kg(l|z(t)|+ (m+ Lφ + lM ′H)‖φ‖B) + g∗

+M ′k∗ +M ′
∫ t

0

k(s)(l|z(s)|+ (m+ Lφ + lM ′H)‖φ‖B)ds

≤ C2 + kgl‖z‖BC′
0
+M ′C1k

∗ +M ′l‖z‖BC′
0
k∗.

Then we have
|h(t)| → l, as t→ +∞.

Where l ≤ C2 + kglr +M ′C1k
∗ +M ′lrk∗ Hence,

|h(t)− h(+∞)| → 0, as t→ +∞.

As a consequence of Steps 1-4, with Lemma 1.5.1, we can conclude that A : Br →
P(Br) is continuous and compact. From Schauder’s theorem, we deduce that A has a
fixed point z∗. Then y∗ = z∗ + x is a fixed point of the operators N, which is a mild
solution of the problem (5.1)-(5.2).
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5.3 An example
Consider the following neutral functional partial differential equation:

∂

∂t
[z(t, x)− g(t, z(t− σ(t, z(t, 0)), x))]− ∂2

∂x2
[z(t, x)− g(t, z(t− σ(t, z(t, 0)), x))]

+ ∈ F (t, z(t− σ(t, z(t, 0)), x)), x ∈ [0, π], t ∈ [0,+∞) (5.5)

z(t, 0) = z(t, π) = 0, t ∈ [0,+∞), (5.6)

z(θ, x) = z0(θ, x), t ∈ (−∞, 0], x ∈ [0, π], (5.7)

where F is a given multivalued map g is a given functions , and σ : IR → IR+. Take
E = L2[0, π] and define A : E → E by Aω = ω′′ with domain

D(A) = {ω ∈ E, ω, ω′are absolutely continuous, ω′′ ∈ E, ω(0) = ω(π) = 0}.

Then

Aω =
∞∑

n=1

n2(ω, ωn)ωn, ω ∈ D(A),

where ωn(s) =
√

2
π

sinns, n = 1, 2, . . . is the orthogonal set of eigenvectors in A. It
is well know (see [89]) that A is the infinitesimal generator of an analytic semigroup
T (t), t ≥ 0 in E and is given by

T (t)ω =
∞∑

n=1

exp(−n2t)(ω, ωn)ωn, ω ∈ E.

Since the analytic semigroup T (t) is compact for t > 0, there exists a positive constant
M such that

‖T (t)‖B(E) ≤M.

Let B = BCU(IR−;E) and φ ∈ B, then (Hφ), where ρ(t, ϕ) = t− σ(ϕ).
Hence, the problem (5.1)-(5.2) in an abstract formulation of the problem (5.5)-(5.7),
and if the conditions (H1)− (H7), (Hφ) are satisfied. Theorem 5.2.3 implies that the
problem (5.5)-(5.7) has at least one mild solutions on BC .
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Chapter 6

Second Order Functional Differential
Equations With Delay

6.1 Introduction
In this Chapter, we study some second order classes of partial functional evolution
equation on J = [0,+∞) with finite and state-dependent delay.

The cosine function theory is related to abstract linear second order differential
equations in the same manner that the semigroup theory of bounded linear operators
is related to first order partial differential equations and it’s equally appealing devoted
their generality and simplicity. For basic concepts and applications of this theory, we
refer to the reader to Fattorini [51] , Travis and Weeb [96].

Our purpose in this work is consider a simultaneous generalization of the classi-
cal second order abstract Cauchy problem studied by Travis and Weeb in [95, 96] .
Additionally, we observe that the ideas and techniques in this paper permit the refor-
mulation of the problems studied in [17, 26, 76, 84, 85] to the context of " partial "
second order differential equations, see [95] pp. 557 and the referred papers for details.

The problem of the existence of solutions for first and second order partial functional
differential with state-dependent delay have treated recently in [10, 68, 70, 66, 67, 64,
69, 78, 92, 93]. The literature relative second order impulsive differential system with
state-dependent delay is very restrict, and related this matter we only cite [94] for
ordinary differential system and [65] for abstract partial differential systems.

6.2 Second order functional differential equations with
finite delay

In this section we are going at the first time to prove the existence of solutions of
a class of semilinear functional evolution equations of second order with finite delay .
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Our investigations will be situated in the Banach space of real continuous and bounded
functions on the real half axis [0,+∞). More precisely, we will consider the following
problem

y′′(t) = Ay(t) + f(t, yt), a.e. t ∈ J := [0,+∞) (6.1)

y(t) = φ(t), t ∈ [−d, 0], y′(0) = ϕ ∈ E, (6.2)

where f : J ×C([−d, 0], E) → E is given function, φ : [−d, 0] → E is given continuous
function, A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continuous
cosine function of bounded linear operators (C(t))

t∈IR, on E, (E, |.|) is a real Banach
space. For any function y defined on [−d,+∞) and any t ∈ J , we denote by yt the
element of C([−d, 0], E) defined by

yt(θ) = y(t+ θ), θ ∈ [−d, 0].

Here yt(.) represents the history of the state from time t− d, up to the present time t.

In this section by BC := BC([−d,+∞)) we denote the Banach space of all bounded
and continuous functions from [−d,+∞) into IR equipped with the standard norm

‖y‖BC = sup
t∈[−d,+∞)

|y(t)|.

6.2.1 Existence of mild solutions

Now we give our main existence result for problem (6.1)-(6.2). Before starting and
proving this result, we give the definition of a mild solution.

Definition 6.2.1 We say that a continuous function y : [−d,+∞) → E is a mild
solution of problem (6.1)-(6.2) if y(t) = φ(t), t ∈ [−d, 0], y(.) and y′(0) = ϕ,and

y(t) = C(t)φ(0) + S(t)ϕ+

∫ t

0

S(t− s)f(s, ys)ds, t ∈ J.

Let us introduce the following hypotheses:

(H1) C(t) is compact for t > 0 in the Banach space E. Let M = sup{‖C‖B(E) : t ≥ 0},
and M ′ = sup{‖S‖B(E) : t ≥ 0}.

(H2) The function f : J × C([−d, 0], E) → E is Carathéodory.

(H3) There exists a continuous function k : J → [0,+∞) such that:

|f(t, u)− f(t, v)| ≤ k(t)‖u− v‖, t ∈ J, u, v ∈ C([−d, 0], E)

and

k∗ := sup
t∈J

∫ t

0

k(s)ds <∞.

70



(H4) The function t→ f(t, 0) = f0 ∈ L1(J, [0,+∞)) with F ∗ = ‖f0‖L1 .

(H5) For each bounded B ⊂ BC and t ∈ J the set :

{C(t)φ(0) + S(t)ϕ+

∫ t

0

S(t− s)f(s, yt)ds : y ∈ B}

is relatively compact in E.

Theorem 6.2.2 Assume that (H1)− (H5) hold. If k∗M ′ < 1, then the problem (6.1)-
(6.2) has at least one mild solution on BC.

Proof. We transform the problem (6.1)-(6.2) into a fixed point problem. Consider the
operator: N : BC → BC define by:

N(y)(t) =


φ(t), if t ∈ [−d, 0],

C(t) φ(0) + S(t)ϕ+

∫ t

0

S(t− s) f(s, ys) ds, if t ∈ J.

The operator N maps BC into BC; indeed the map N(y) is continuous on [−d,+∞)
for any y ∈ BC, and for each t ∈ J , we have

|N(y)(t)| ≤ M‖φ‖+M ′‖ϕ‖+M ′
∫ t

0

|f(s, ys)− f(s, 0) + f(s, 0)|ds

≤ M‖φ‖+M ′‖ϕ‖+M ′
∫ t

0

|f(s, 0)|ds+M ′
∫ t

0

k(s)‖ys‖ds

≤ M‖φ‖+M ′‖ϕ‖+M ′F ∗ +M ′
∫ t

0

k(s)‖ys‖ds

≤ M‖φ‖+M ′‖ϕ‖+M ′F ∗ +M ′‖y‖BCk
∗ := c.

Let
C = M‖φ‖+M ′‖ϕ‖.

Hence, N(y) ∈ BC.

Moreover, let r > 0 be such that r ≥ C+M ′F ∗

1−M ′k∗
, and Br be the closed ball in BC

centered at the origin and of radius r. Let y ∈ Br and t ∈ [0,+∞). Then,

|N(y)(t)| ≤ C +M ′F ∗ +M ′k∗r.

Thus,
‖N(y)‖BC ≤ r,

which means that the operator N transforms the ball Br into itself.
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Now we prove that N : Br → Br satisfies the assumptions of Schauder’s fixed
theorem. The proof will be given in several steps.

Step 1: N is continuous in Br.
Let {yn} be a sequence such that yn → y in Br. We have

|N(yn)(t)−N(y)(t)| ≤M ′
∫ t

0

|f(s, ysn)− f(s, ys)|ds.

Then by (H2) we have f(s, ysn) → f(s, ys), as n → ∞, for a.e. s ∈ J , and by the
Lebesgue dominated convergence theorem we have

‖N(yn)−N(y)‖BC → 0, as n→∞.

Thus, N is continuous.

Step 2 : N(Br) ⊂ Br this is clear.

Step 3: N(Br) is equicontinuous on every compact interval [0, b] of [0,+∞) for
b > 0. Let τ1, τ2 ∈ [0, b] with τ2 > τ1, we have

|N(y)(τ2)−N(y)(τ1)| ≤ ‖C(τ2 − s)− C(τ1 − s)‖B(E)‖φ‖+ ‖S(τ2 − s)− S(τ1 − s)‖B(E)‖ϕ‖

+

∫ τ1

0

‖S(τ2 − s)− S(τ1 − s)‖B(E)|f(s, ys)|ds

+

∫ τ2

τ1

‖S(τ2 − s)‖B(E)|f(s, ys)|ds

≤ ‖C(τ2 − s)− C(τ1 − s)‖B(E)‖φ‖+ ‖S(τ2 − s)− S(τ1 − s)‖B(E)‖ϕ‖

+

∫ τ1

0

‖S(τ2 − s)− S(τ1 − s)‖B(E)|f(s, ys)− f(s, 0) + f(s, 0)|ds

+

∫ τ2

τ1

‖S(τ2 − s)‖B(E)|f(s, ys)− f(s, 0) + f(s, 0)|ds

≤ ‖C(τ2 − s)− C(τ1 − s)‖B(E)‖φ‖+ ‖S(τ2 − s)− S(τ1 − s)‖B(E)‖ϕ‖

+ r

∫ τ1

0

‖S(τ2 − s)− S(τ1 − s)‖B(E)k(s)ds

+

∫ τ1

0

‖S(τ2 − s)− S(τ1 − s)‖B(E)|f(s, 0)|ds

+ r

∫ τ2

τ1

‖S(τ2 − s)‖B(E)k(s)ds

+

∫ τ2

τ1

‖S(τ2 − s)‖B(E)|f(s, 0)|ds.

When τ2 → τ2 , the right-hand side of the above inequality tends to zero, since C(t), S(t)
are a strongly continuous operator and the compactness of C(t), S(t) for t > 0, im-
plies he continuity in the uniform operator topology (see [95, 96]). This proves the
equicontinuity.
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Step 4:N(Br) is relatively compact on every compact interval of [0,∞) by (H5).

Step 5: N(Br) is equiconvergent.
Let y ∈ Br, we have:

|N(y)(t)| ≤ M‖φ‖+M ′‖ϕ‖+M ′
∫ t

0

|f(s, ys)|ds

≤ C +M ′F ∗ +M ′r

∫ t

0

k(s)ds

≤ C +M ′F ∗ +M ′r

∫ t

0

k(s)ds.

Then
|N(y)(t)| → l, as t→ +∞.

Where l ≤ C1 := C +M ′F ∗ +M ′k∗r Hence,

|N(y)(t)−N(y)(+∞)| → 0, as t→ +∞.

As a consequence of Steps 1-5, with Lemma 1.5.1, we can conclude that N : Br → Br

is continuous and compact. From Schauder’s theorem, we deduce that N has a fixed
point y∗ which is a mild solution of the problem (6.1)-(6.2).

6.2.2 An example

Consider the functional partial differential equation of second order:

∂2

∂t2
z(t, x) =

∂2

∂x2
z(t, x) + f(t, z(t− d, x)), x ∈ [0, π], t ∈ J := [0,+∞), (6.3)

z(t, 0) = z(t, π) = 0, t ∈ [0,+∞), (6.4)

z(t, x) = φ(t, x),
∂z(0, x)

∂t
= w(x), t ∈ [−d, 0], x ∈ [0, π], (6.5)

where f is a given map. Take E = L2[0, π] and define A : E → E by Aω = ω′′ with
domain

D(A) = {ω ∈ E;ω, ω′are absolutely continuous, ω′′ ∈ E, ω(0) = ω(π) = 0}.

It is well known that A is the infinitesimal generator of a strongly continuous cosine
function (C(t))

t∈IRon E, respectively. Moreover, A has discrete spectrum, the eigen-
values are −n2, n ∈ IN with corresponding normalized eigenvectors

zn(τ) := (
2

π
)

1
2 sinnτ,

and the following properties hold:
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(a) {zn : n ∈ IN} is an orthonormal basis of E.

(b) If y ∈ E, then Ay = −
∑∞

n=1 n
2 < y, zn > zn.

(c) For y ∈ E,C(t)y =
∑∞

n=1 cos(nt) < y, zn > zn, and the associated sine family is

S(t)y =
∞∑

n=1

sin(nt)

n
< y, zn > zn

which implies that the operator S(t) is compact, for all t > 0and that ‖C(t)‖ =
‖S(t)‖ ≤ 1, for all t ≥ 0.

(d) If Φ denotes the group of translation on E defined by Φ(t)y(ξ) = ỹ(ξ + t) where
ỹ is the extension of y with period 2π, then C(t) = 1

2
(Φ(t) + Φ(−t));A = B2,

where B is the infinitesimal generator of the group Φ on

X = {y ∈ H1(0, π) : y(0) = x(π) = 0}.

For more details, see [51].

Then the problem (6.1)-(6.2) in an abstract formulation of the problem (6.3)-(6.5).
If conditions (H1)− (H5) are satisfied. Theorem 6.2.2 implies that the problem (6.3)-
(6.5) has at least one mild solution on BC.

6.3 Second order functional differential equations with
state-dependent delay

At the second time in the case of state-dependent delay, our investigations will be
situated in the Banach space of real continuous and bounded functions on IR. More
precisely, we will consider the following problem

y′′(t) = Ay(t) + f(t, yρ(t,yt)), a.e. t ∈ J := [0,+∞) (6.6)

y(t) = φ(t) ∈ B, y′(0) = ϕ ∈ E, (6.7)

where f : J×B → E is given function, A : D(A) ⊂ E → E is the infinitesimal generator
of a strongly continuous cosine function of bounded linear operators (C(t))

t∈IR, on E,
φ ∈ B, ρ : J × B → (−∞,+∞), and (E, |.|) is a real Banach space. For any function
y defined on [−∞,+∞) and any t ∈ J , we denote by yt the element of B defined by

yt(θ) = y(t+ θ), θ ∈ (∞−, 0].

We assume that the histories yt belongs to some abstract phases B.
In the both cases We will use Schauder’s fixed theorem, combined with the Cor-
duneanu’s compactness criteria. In this section by BC := BC(−∞,+∞) we denote
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the Banach space of all bounded and continuous functions from (−∞,+∞) into E
equipped with the standard norm

‖y‖BC = sup
t∈(−∞,+∞)

|y(t)|.

Finally, by BC ′ := BC ′([0,+∞)) we denote the Banach space of all bounded and
continuous functions from [0,+∞) into E equipped with the standard norm

‖y‖BC′ = sup
t∈[0,+∞)

|y(t)|.

By BUC we denote the space of bounded uniformly continuous functions defined from
(−∞, 0] to E.

6.3.1 Existence of mild solutions

Now we give our main existence result for problem (6.6)-(6.7). Before starting and
proving this result, we give the definition of a mild solution.

Definition 6.3.1 We say that a continuous function y : (−∞,+∞) → E is a mild
solution of problem (6.6)-(6.7) if y(t) = φ(t), t ∈ (−∞, 0], y(.) is continuously differ-
entiable and y′(0) = ϕ, and

y(t) = C(t)φ(0) + S(t)ϕ+

∫ t

0

S(t− s)f(s, yρ(t,yt))ds, t ∈ J. (6.8)

Let us introduce the following hypotheses:

(H1) C(t), S(t) are compact for t > 0 in the Banach space E. Let M = sup{‖C‖B(E) :
t ≥ 0}, and M ′ = sup{‖S‖B(E) : t ≥ 0}.

(H2) The function f : J × B → E is Carathéodory.

(H3) There exists a continuous function k : J → [0,+∞) such that:

|f(t, u)− f(t, v)| ≤ k(t)‖u− v‖, t ∈ J, u, v ∈ B

and

k∗ := sup
t∈J

∫ t

0

k(s)ds <∞.

(H4) The function t→ f(t, 0) = f0 ∈ L1(J, [0,+∞)) with F ∗ = ‖f0‖L1 .

(H5) For each bounded B ⊂ BC ′ and t ∈ J the set :

{S(t)ϕ+

∫ t

0

S(t− s)f(s, yρ(t,yt))ds : y ∈ B}

is relatively compact in E.
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Theorem 6.3.2 Assume that (H1)− (H5), (Hφ) hold. If k∗Ml < 1, then the problem
(6.6)-(6.7) has at least one mild solution on BC.

Proof. We transform the problem (6.6)-(6.7) into a fixed point problem. Consider the
operator: N : BC → BC define by:

N(y)(t) =


φ(t), if t ∈ (−∞, 0],

C(t) φ(0) + S(t)ϕ+

∫ t

0

S(t− s) f(s, yρ(t,yt)) ds, if t ∈ J.

Let x(.) : (−∞,+∞) → E be the function defined by:

x(t) =

{
φ(t); if t ∈ (−∞, 0];

C(t) φ(0); if t ∈ J,

then x0 = φ. For each z ∈ BC with z(0) = 0,y′(0) = ϕ = z′(0) = ϕ1, we denote by z
the function

z(t) =

{
0; if t ∈ (−∞, 0];

z(t); if t ∈ J.
If y satisfies (6.8), we can decompose it as y(t) = z(t) + x(t), t ∈ J , which implies
yt = zt + xt for every t ∈ J and the function z(.) satisfies

z(t) = S(t)ϕ1 +

∫ t

0

S(t− s) f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds, t ∈ J.

Set
BC ′

0 = {z ∈ BC ′ : z(0) = 0}
and let

‖z‖BC′
0

= sup{|z(t)| : t ∈ J}, z ∈ BC ′
0.

BC ′
0 is a Banach space with the norm ‖.‖BC′

0
. We define the operator A : BC ′

0 → BC ′
0

by:

A(z)(t) = S(t)ϕ1 +

∫ t

0

S(t− s) f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds, t ∈ J.

We shall show that the operator A satisfies all conditions of Schauder’s fixed point
theorem. The operator A maps BC ′

0 into BC ′
0, indeed the map A(z) is continuous on

[0,+∞) for any z ∈ BC ′
0, and for each t ∈ J we have

|A(z)(t)| ≤ M ′‖ϕ1‖+M ′
∫ t

0

|f(s, zρ(s,zs+xs) + xρ(s,zs+xs))− f(s, 0) + f(s, 0)|ds

≤ M ′‖ϕ1‖+M ′
∫ t

0

|f(s, 0)|ds+M ′
∫ t

0

k(s)‖zρ(s,zs+xs) + xρ(s,zs+xs)‖Bds

≤ M ′‖ϕ1‖+M ′F ∗ +M ′
∫ t

0

k(s)(l|z(s)|+ (m+ Lφ + lMH)‖φ‖B)ds.

76



Let
C = (m+ Lφ + lMH)‖φ‖B.

Then, we have:

|A(z)(t)| ≤ M ′‖ϕ1‖+M ′F ∗ +M ′C

∫ t

0

k(s)ds+M ′l

∫ t

0

k(s)|z(s)|ds

≤ M ′‖ϕ1‖+M ′F ∗ +M ′Ck∗ +M ′l‖z‖BC′
0
k∗

Hence, A(z) ∈ BC ′
0.

Moreover, let r > 0 be such that r ≥ M ′‖ϕ1‖+M ′F ∗+M ′Ck∗

1−M ′lk∗
, and Br be the closed ball

in BC ′
0 centered at the origin and of radius r. Let y ∈ Br and t ∈ [0,+∞). Then,

|A(z)(t)| ≤ M ′‖ϕ1‖+M ′F ∗ +M ′Ck∗ +M ′lk∗r.

Thus,
‖A(z)‖BC′

0
≤ r,

which means that the operator N transforms the ball Br into itself.

Now we prove that A : Br → Br satisfies the assumptions of Schauder’s fixed
theorem. The proof will be given in several steps.

Step 1: A is continuous in Br.
Let {zn} be a sequence such that zn → z in Br. At the first, we study the convergence
of the sequences (zn

ρ(s,zn
s ))n∈IN, s ∈ J.

If s ∈ J is such that ρ(s, zs) > 0, then we have,

‖zn
ρ(s,zn

s ) − zρ(s,zs)‖B ≤ ‖zn
ρ(s,zn

s ) − zρ(s,zn
s )‖B + ‖zρ(s,zn

s ) − zρ(s,zs)‖B
≤ l‖zn − z‖Br + ‖zρ(s,zn

s ) − zρ(s,zs)‖B,

which proves that zn
ρ(s,zn

s ) → zρ(s,zs) in B as n→∞ for every s ∈ J such that ρ(s, zs) > 0.
Similarly, is ρ(s, zs) < 0 , we get

‖zn
ρ(s,zn

s ) − zρ(s,zs)‖B = ‖φn
ρ(s,zn

s ) − φρ(s,zs)‖B = 0

which also shows that zn
ρ(s,zn

s ) → zρ(s,zs) in B as n → ∞ for every s ∈ J such that
ρ(s, zs) < 0. Combining the pervious arguments, we can prove that zn

ρ(s,zs)
→ φ for

every s ∈ J such that ρ(s, zs) = 0. Finally,

|A(zn)(t)−A(z)(t)| ≤ M ′
∫ t

0

|f(s, zn
ρ(s,zn

s +xs) + xρ(s,zn
s +xs))− f(s, zρ(s,zs+xs) + xρ(s,zs+xs))|ds.

Then by (H2) we have

f(s, zn
ρ(s,zn

s +xs) + xρ(s,zn
s +xs)) → f(s, zρ(s,zs+xs) + xρ(s,zs+xs)), as n→∞,
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and by the Lebesgue dominated convergence theorem we get,

‖A(zn)−A(z)‖BC′
0
→ 0, as n→∞.

Thus A is continuous.

Step 2 : A(Br) ⊂ Br this is clear.

Step 3: A(Br) is equicontinuous on every compact interval [0, b] of [0,+∞) for
b > 0. Let τ1, τ2 ∈ [0, b] with τ2 > τ1, we have

|A(z)(τ2)−A(z)(τ1)| ≤ ‖S(τ2 − s)− S(τ1 − s)‖B(E)‖ϕ1‖

+

∫ τ1

0

‖S(τ2 − s)− S(τ1 − s)‖B(E)|f(s, zn
ρ(s,zn

s +xs) + xρ(s,zn
s +xs))|ds

+

∫ τ2

τ1

‖S(τ2 − s)‖B(E)|f(s, zn
ρ(s,zn

s +xs) + xρ(s,zn
s +xs))|ds

≤ ‖S(τ2 − s)− S(τ1 − s)‖B(E)‖ϕ1‖

+

∫ τ1

0

‖S(τ2 − s)− S(τ1 − s)‖B(E)|f(s, zn
ρ(s,zn

s +xs) + xρ(s,zn
s +xs))− f(s, 0)|ds

+

∫ τ1

0

‖S(τ2 − s)− S(τ1 − s)‖B(E)f(s, 0)|ds

+

∫ τ2

τ1

‖S(τ2 − s)‖B(E)|f(s, zn
ρ(s,zn

s +xs) + xρ(s,zn
s +xs))− f(s, 0)|ds

+

∫ τ2

τ1

‖S(τ2 − s)‖B(E)|f(s, 0)|ds

≤ ‖S(τ2 − s)− S(τ1 − s)‖B(E)‖ϕ1‖

+ C

∫ τ1

0

‖S(τ2 − s)− S(τ1 − s)‖B(E)k(s)ds

+ lr

∫ τ1

0

‖S(τ2 − s)− S(τ1 − s)‖B(E)k(s)ds

+

∫ τ1

0

‖S(τ2 − s)− S(τ1 − s)‖B(E)|f(s, 0)|ds

+ C

∫ τ2

τ1

‖S(τ2 − s)‖B(E)k(s)ds

+ lr

∫ τ2

τ1

‖S(τ2 − s)‖B(E)k(s)ds

+

∫ τ2

τ1

‖S(τ2 − s)‖B(E)|f(s, 0)|ds.

When τ2 → τ2 , the right-hand side of the above inequality tends to zero, since C(t)
are a strongly continuous operator and the compactness of C(t) for t > 0, implies he
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continuity in the uniform operator topology (see [95, 96]). This proves the equiconti-
nuity.

Step 4:N(Br) is relatively compact on every compact interval of [0,∞). This is
satisfied from (H5).

Step 5: N(Br) is equiconvergent.
Let y ∈ Br, we have:

|A(z)(t)| ≤ M ′‖ϕ1‖+M ′
∫ t

0

|f(s, zn
ρ(s,zn

s +xs) + xρ(s,zn
s +xs))|ds

≤ M ′‖ϕ1‖+M ′F ∗ +M ′Ck∗ +M ′rl

∫ t

0

k(s)ds.

Then
|A(z)(t)| → l, as t→ +∞.

Where l ≤ C1 := M ′‖ϕ1‖+M ′F ∗ +M ′k∗(C + lr) Hence,

|A(z)(t)−A(z)(+∞)| → 0, as t→ +∞.

As a consequence of Steps 1-5, with Lemma 1.5.1, we can conclude that A : Br → Br

is continuous and compact. we deduce that A has a fixed point z∗. Then y∗ = z∗ + x
is a fixed point of the operators N, which is a mild solution of the problem (6.6)-(6.7).

6.3.2 An example

Take E = L2[0, π];B = C0 × L2(g, E) and define A : E → E by Aω = ω′′ with domain

D(A) = {ω ∈ E;ω, ω′are absolutely continuous, ω′′ ∈ E, ω(0) = ω(π) = 0}.

It is well known that A is the infinitesimal generator of a strongly continuous cosine
function (C(t))

t∈IRon E, respectively. Moreover, A has discrete spectrum, the eigen-
values are −n2, n ∈ IN with corresponding normalized eigenvectors

zn(τ) := (
2

π
)

1
2 sinnτ,

and the following properties hold:

(a) {zn : n ∈ IN} is an orthonormal basis of E.

(b) If y ∈ E, then Ay = −
∑∞

n=1 n
2 < y, zn > zn.

(c) For y ∈ E,C(t)y =
∑∞

n=1 cos(nt) < y, zn > zn, and the associated sine family is

S(t)y =
∞∑

n=1

sin(nt)

n
< y, zn > zn
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which implies that the operator S(t) is compact, for all t ∈ Jand that

‖C(t)‖ = ‖S(t)‖ ≤ 1, for all t ∈ IR.

(d) If Φ denotes the group of translations on E defined by Φ(t)y(ξ) = ỹ(ξ+ t) where
ỹ is the extension of y with period 2π, then C(t) = 1

2
(Φ(t) + Φ(−t));A = B2,

where B is the infinitesimal generator of the group Φ on

X = {y ∈ H1(0, π) : y(0) = x(π) = 0}.

Consider the functional partial differential equation of second order:

∂2

∂t2
z(t, x) =

∂2

∂x2
z(t, x)+

∫ 0

−∞
a(s−t)z(s−ρ1(t)ρ2(‖z(t)‖), x)ds, x ∈ [0, π], t ∈ J := [0,+∞),

(6.9)
z(t, 0) = z(t, π) = 0, t ∈ [0,+∞), (6.10)

z(t, x) = φ(t, x),
∂z(0, x)

∂t
= ω(x), t ∈ [−r, 0], x ∈ [0, π], (6.11)

where φ ∈ B, ρi : [0,∞) → [0,∞), a; IR → IR be continuous, and Lf =

(∫ 0

−∞

a2(s)

g(s)
ds

) 1
2

<

∞. Under these conditions, we define the function f : J × B → E, ρ : J × B → IR by

f(t, ψ)(x) =

∫ 0

−∞
a(s)ψ(s, x)ds,

ρ(s, ψ) = s− ρ1(s)ρ2(‖ψ(0)‖,

we have ‖f(t, .)‖B(B,E) ≤ Lf .
Then the problem (6.6)-(6.7) in an abstract formulation of the problem (6.9)-(6.11).

If conditions (H1)− (H5) are satisfied. Theorem 6.3.2 implies that the problem (6.9)-
(6.11) has at least one mild solution on BC.

80



Conclusion and perspective

In this thesis we have considered the global existence of mild solutions for some
classes of first and second order functional and neutral functional differential evolu-
tions equations and inclusions with finite, infinite and state-dependent delay on a pos-
itive real line. Our tool is based on the evolution system and appropriate fixed point
theorems. In the future we shall look for the asymptotic behavior of the solutions.
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Résumé : Dans ce travail, l’objectif est d’apporter une contribution à l’étude de 
l’existence des solutions faibles globales pour diverses classes d’équations et 
d’inclusions d’évolution fonctionnelles et de type neutre à retard fini et infini, et 
dépendant de l’état définies sur des intervalles non bornés. Les résultats principaux 
sont basés sur l’approche du point fixe et la théorie des semi groupes.

 

Abstract: In this work, we give a contribution to the study of the existence of global 
mild solutions of various classes of first and second order of partial functional and 
neutral functional evolution equations and inclusions with finite, infinite and state-
dependent delay defined on unbounded intervals. The main results are based on the 
fixed point theorem approach and the semi group theory.

                            

                                                                                                                                    
  ملخص   :                                                                                                                       

الھدف في ھذه الرسالة ھو تقدیم مساھمة لدراسة مختلف فئات من معادلات  واحتواءات تفاضلیة

   و تطوریة و دالیة جزئیة من نوع حیادي ذي تأ خر  منتھ و غیر منتھ و متعلق بالحالة على   

               .Semi groups   .   النتائج تعتمد على مقاربة النقطة الثابتة ونظریة مجالات غیر محدودة


