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Faculté des Sciences Exactes
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m’ont fait l’honneur d’accepter à joindre le jury, je leur dit un grand merci !

Mes plus sincères remerciements vont aussi à monsieur Lazreg Jamal pour les dis-
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Introduction

The concept of fractional differential calculus has a long history. One may wonder
what meaning may be ascribed to the derivative of a fractional order, that is dny

dxn
, where

n is a fraction. In fact L’Hopital himself considered this very possibility in a corres-
pondence with Leibniz, In 1695, L’Hopital wrote to Leibniz to ask, ”What if n be 1

2
?”

From this question, the study of fractional calculus was born. Leibniz responded to the
question, ”d

1
2x will be equal to x

√
dx : x. This is an apparent paradox from which, one

day, useful consequences will be drawn.”

Many known mathematicians contributed to this theory over the years. Thus, 30
September 1695 is the exact date of birth of the ”fractional calculus” ! Therefore,
the fractional calculus it its origin in the works by Leibnitz, L’Hopital (1695), Bernoulli
(1697), Euler (1730), and Lagrange (1772). Some years later, Laplace (1812), Fourier
(1822), Abel (1823), Liouville (1832), Riemann (1847), Grünwald (1867), Letnikov
(1868), Nekrasov (1888), Hadamard (1892), Heaviside (1892), Hardy (1915), Weyl
(1917), Riesz (1922), P. Levy(1923), Davis (1924), Kober (1940), Zygmund (1945),
Kuttner (1953), J. L. Lions (1959), and Liverman (1964)... have developed the basic
concept of fractional calculus.

In June 1974, Ross has organized the ”First Conference on Fractional Calculus and
its Applications” at the University of New Haven, and edited its proceedings [128] ;
Thereafter, Spanier published the first monograph devoted to ”Fractional Calculus” in
1974 [119]. The integrals and derivatives of non-integer order, and the fractional inte-
grodifferential equations have found many applications in recent studies in theoretical
physics, mechanics and applied mathematics. There exists the remarkably comprehen-
sive encyclopedic-type monograph by Samko, Kilbas and Marichev which was published
in Russian in 1987 and in English in 1993 [132]. (for more details see [111]) The works
devoted substantially to fractional differential equations are : the book of Miller and
Ross (1993) [114], of Podlubny (1999) [123], by Kilbas et al. (2006) [100], by Diethelm
(2010) [72], by Ortigueira (2011) [120], by Abbas et al. (2012) [3], and by Baleanu et
al. (2012) [32].

In recent years, there has been a significant development in the theory of fractional
differential equations. It is caused by its applications in the modeling of many pheno-
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mena in various fields of science and engineering such as acoustic, control theory, chaos
and fractals, signal processing, porous media, electrochemistry, viscoelasticity, rheology,
polymer physics, optics, economics, astrophysics, chaotic dynamics, statistical physics,
thermodynamics, proteins, biosciences, bioengineering, etc. Fractional derivatives pro-
vide an excellent instrument for the description of memory and hereditary properties
of various materials and processes. See for example [33, 34, 86, 88, 111, 122, 131, 134].

Fractional calculus is a generalization of differentiation and integration to arbitrary
order (non-integer) fundamental operator Dα

a+ where α, a,∈ R. Several approaches to
fractional derivatives exist : Riemann-Liouville (RL), Hadamard, Grunwald-Letnikov
(GL), Weyl and Caputo etc. The Caputo fractional derivative is well suitable to the
physical interpretation of initial conditions and boundary conditions. We refer readers,
for example, to the books such as [3, 22, 32, 72, 100, 104, 114, 119, 120, 123, 132]
and the articles [4, 6, 7, 19, 26, 27, 38, 43, 45, 48, 50, 52, 56, 57, 58, 59, 99, 130], and
references therein. In this thesis, we use always the Caputo’s derivative .

Fractional differential equations with nonlocal conditions have been discussed in
[8, 10, 73, 82, 110, 117, 118] and references therein. Nonlocal conditions were initiated
by Byszewski [65] when he proved the existence and uniqueness of mild and classical
solutions of nonlocal Cauchy problems. As remarked by Byszewski [63, 64], the nonlo-
cal condition can be more useful than the standard initial condition to describe some
physical phenomena.

There are two measures which are the most important ones. The Kuratowski mea-
sure of noncompactness α(B) of a bounded set B in a metric space is defined as
infimum of numbers r > 0 such that B can be covered with a finite number of sets of
diameter smaller than r. The Hausdorf measure of noncompactness χ(B) defined as
infimum of numbers r > 0 such that B can be covered with a finite number of balls
of radii smaller than r. Several authors have studied the measures of noncompactness
in Banach spaces. See, for example, the books such as [18, 35, 135] and the articles
[20, 36, 37, 49, 58, 60, 89, 115], and references therein.
Recently, considerable attention has been given to the existence of solutions of boun-
dary value problem and boundary conditions for implicit fractional differential equa-
tions and integral equations with Caputo fractional derivative. See for example [7, 11,
16, 17, 28, 50, 51, 52, 58, 91, 97, 105, 106, 107, 108, 130, 148], and references therein.

During the last ten years, impulsive differential equations and impulsive differential
inclusions with different conditions have intensely were studied by many mathemati-
cians. The concept of differential equations with impulses are introduced by V. Milman
and A. Myshkis in 1960 (see [113]). This subject was, thereafter, extensively investi-
gated. Impulsive differential equations have become more important in recent years
in some mathematical models of real phenomena, especially in biological or medical
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domains, in control theory, see for example the mongraphs of Graef et al. ([79]), Laksh-
mikantham et al ([103]), Perestyuk et al. ([121]), Samoilenko and Perestyuk [133], and
several monographs have been published by many authors like the papers of Agarwal
et al. ([5]), Ahmad and Sivasundaram ([16]), Benchohra et al. ([39, 40, 55]), Bainov
and Simeonov ([30]), and ([42, 53, 60, 61, 84, 138, 139, 141, 144]).

On the other hand, anti-periodic problems constitute an important class of boun-
dary value problems and have recently received considerable attention. See for example
the papers of Ahmad and Nieto ([12, 13, 14]), Ahmad et al. ([15]), Wang and Liu ([142]).
Anti-periodic boundary conditions appear in physics in a variety of situations (see for
example, in ([1, 67]) and the references therein). For some recent work on anti-periodic
boundary value problems of fractional differential equations with impulse, see ([41, 47])
and the references therein.

In the theory of ordinary differential equations, of partial differential equations,
and in the theory of ordinary differential equations in a Banach space there are several
types of data dependence . On the other hand, in the theory of functional equations
there are some special kind of data dependence : Ulam-Hyers, Ulam-Hyers-Rassias,
Ulam-Hyers- Bourgin, Aoki-Rassias [129].
The stability problem of functional equations originated from a question of Ulam
[136, 137] concerning the stability of group homomorphisms : ”Under what condi-
tions does there exist an additive mapping near an approximately additive mapping ?”
Hyers [90] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Hyers Theorem was generalized by Aoki [24] for additive mappings and by
Th.M. Rassias [124] for linear mappings by considering an unbounded Cauchy diffe-
rence. A generalization of the Th.M. Rassias theorem was obtained by Gavruta [76].
After, many interesting results of the generalized Hyers-Ulam stability to a number
of functional equations have been investigated by a number of mathematicians ; see
[2, 21, 44, 46, 92, 93, 94, 95, 96, 98, 139, 143, 144] and the books [69, 125, 126] and
references therein.

We have organized this thesis as follows :

Chapter 1.
This chapter consists of three Sections. In Section one, we present ”A brief visit to the
history of the Fractional Calculus”, and in Section two, we present some ”Applications
of Fractional calculus”.
Finally, in the last Section, we recall some preliminary : some basic concepts, and
useful famous theorems and results (notations, definitions, lemmas and fixed point
theorems) which are used throughout this thesis.

In Chapter 2, we discuss and establish the existence, the uniqueness and the Ulam-
Hyers stability of solution for a class of boundary value problem for NIFDE and for
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non-local boundary value problem with Caputo fractional derivative.
In Section 2.2, we will give existence and uniqueness results for the followings problems
of implicit fractional differential equations :

cDαy(t) = f(t, y(t),cDαy(t)), for every t ∈ J := [0, T ], T > 0, 0 < α ≤ 1

ay(0) + by(T ) = c

where cDα is the fractional derivative of Caputo, f : J × R× R −→ R is a continuous
function, and a, b, c are real constants with a+ b 6= 0,
and

cDαy(t) = f(t, y(t),cDαy(t)), for every t ∈ J := [0, T ], T > 0, 0 < α ≤ 1

y(0) + g(y) = y0

where g : C([0, T ],R) −→ R is a continuous function and y0 a real constant.
In Section 2.3, we establish the stability results for the two previous problems.
Finally, in Section 2.4, two examples will be included to illustrate our main results.

Chapter 3 , here, two results for a class of boundary value problems for nonlinear
implicit fractional differential equations and for non local boundary value problem
in Banach space with Caputo fractional derivative are discussed.The arguments are
based on Darbo’s fixed point theorem combined with the technique of measures of
noncompactness and on Mönch’s fixed point theorems.
In Section 3.2, we establish existence and uniqueness results of the following boundary
value problem for implicit fractional differential equation :

cDνy(t) = f(t, y(t),cDνy(t)), for each, t ∈ J := [0, T ], T > 0, 0 < ν ≤ 1,

ay(0) + by(T ) = c,

where cDν is the Caputo fractional derivative, (E, ‖ · ‖) is a real Banach space, f :
J × E × E → E is a given function and a, b are real with a+ b 6= 0 and c ∈ E.
Then, we will illustrate our result by an example.
In Section 3.3, we establish existence and uniqueness result to the following non local
boundary value problem :

cDνy(t) = f(t, y(t),cDνy(t)), for every t ∈ J := [0, T ], T > 0, 0 < ν ≤ 1

y(0) + g(y) = y0

where g : C([0, T ], E) −→ E is a continuous function and y0 ∈ E.
Finally, an example is given to illustrate the applicability of our main results.

In Chapter 4, we establish the existence, the uniqueness and the Ulam-Hyers
stability results to a class of boundary value problems for nonlinear implicit fractional
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differential equations with impulses.Here two results are discussed, the first is based
on the Banach contraction principle, and Schaefer’s fixed point theorem, the second
is based on the method associated with the technique of measures of noncompactness
and the fixed point theorems of Darbo and Mönch.
In Section 4.2, we establish existence, uniqueness and stability results to the following
boundary value problem with impulses :

cDα
tk
y(t) = f(t, y,cDα

tk
y(t)), for each , t ∈ (tk, tk+1], k = 0, . . . ,m, 0 < α ≤ 1,

∆y|t=tk = Ik(y(t−k )), k = 1, . . . ,m,

ay(0) + by(T ) = c,

where cDα
tk

is the Caputo fractional derivative, f : J×R×R→ R is a given function, Ik :
R→ R, and a, b, c are real constants with a+b 6= 0, 0 = t0 < t1 < · · · < tm < tm+1 = T ,
∆y|t=tk = y(t+k ) − y(t−k ), y(t+k ) = limh→0+ y(tk + h) and y(t−k ) = limh→0− y(tk + h) re-
present the right and left limits of y(t) at t = tk.
At last, we present two examples to illustrate our results.
In Section 4.3, We discuss, existence and uniqueness of solutions to the following boun-
dary value problem for nonlinear implicit fractional differential equations with impulses
in Banach Space :

cDν
tk
y(t) = f(t, y,cDν

tk
y(t)), for each , t ∈ (tk, tk+1], k = 0, . . . ,m, 0 < ν ≤ 1,

∆y|t=tk = Ik(y(t−k )), k = 1, . . . ,m,

ay(0) + by(T ) = c,

where cDν
tk

is the Caputo fractional derivative, (E, ‖ · ‖) is a real Banach Space, f :
J ×E ×E → E is a given function, Ik : E → E, a, b are real constants with a+ b 6= 0
and c ∈ E, 0 = t0 < t1 < · · · < tm < tm+1 = T , ∆y|t=tk = y(t+k ) − y(t−k ), y(t+k ) =
limh→0+ y(tk + h) and y(t−k ) = limh→0− y(tk + h) represent the right and left limits of
y(t) at t = tk.
Finally, we give two examples to illustrate our main results.

In Chapter 5, We establish the existence, the uniqueness and the Ulam-Hyers sta-
bility results to the implicit fractional-order differential equation with finite delay and
impulse. Here two results are discussed, the first is based on the Banach contraction
principle, and Schaefer’s fixed point theorem, the second is based on the method asso-
ciated with the technique of measures of noncompactness and the fixed point theorems
of Darbo and Mönch.
In Section 5.2, we establish, existence, uniqueness and stability results to the following
problem of implicit fractional differential equation with finite delay and impulses :

cDα
tk
y(t) = f(t, yt,

cDα
tk
y(t)), for each , t ∈ (tk, tk+1], k = 0, . . . ,m, 0 < α ≤ 1,
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∆y|t=tk = Ik(yt−k
), k = 1, . . . ,m,

y(t) = ϕ(t), t ∈ [−r, 0], r > 0,

where cDα
tk

is the Caputo fractional derivative, f : J × PC([−r, 0],R) × R → R is a
given function, Ik : PC([−r, 0],R) → R, and ϕ ∈ PC([−r, 0],R), 0 = t0 < t1 < · · · <
tm < tm+1 = T .
For each function yt defined on [−r, T ] and for any t ∈ J , we denote by yt the element
of PC([−r, 0],R) defined by :

yt(θ) = y(t+ θ), θ ∈ [−r, 0],

yt(·) represent the history of the state from time t− r up to time t.
Here ∆y|t=tk = y(t+k )−y(t−k ), where y(t+k ) = limh→0+ y(tk + h) and y(t−k ) = limh→0− y(tk + h)
represent the right and left limits of yt at t = tk, respectively.
Finally, we give two examples to illustrate our results.
In Section 5.3,we establish, existence and uniqueness results to the following problem
of implicit fractional differential equation with finite delay and impulses :

cDν
tk
y(t) = f(t, yt,

cDν
tk
y(t)), for each , t ∈ (tk, tk+1], k = 0, . . . ,m, 0 < ν ≤ 1,

∆y|t=tk = Ik(yt−k
), k = 1, . . . ,m,

y(t) = ϕ(t), t ∈ [−r, 0], r > 0,

where cDν
tk

is the Caputo fractional derivative, (E, ‖ · ‖) is a real Banach space, f :
J × PC([−r, 0], E) × E → E is a given function, Ik : PC([−r, 0], E) → E, and ϕ ∈
PC([−r, 0], E), 0 = t0 < t1 < · · · < tm < tm+1 = T .
For each function yt defined on [−r, T ] and for any t ∈ J , we denote by yt the element
of PC([−r, 0], E) defined by :

yt(θ) = y(t+ θ), θ ∈ [−r, 0],

At last and as application, two examples are included.

In the last Chapter, we establish sufficient conditions for the existence of solutions
for a class of Problem for implicit neutral functional differential equations of fractional
order for first, with finite delay, then, with finite delay and impulses using Caputo
fractional derivative, also, the stability of this class of problem. The arguments are
based upon the Banach’s fixed point theorem and Schaefer’s fixed point theorem.
Section 6.2 is devoted to the existence, uniqueness and stability results of solutions for
the following problem for neutral NIFDE with finite delay :

cDα[y(t)− g(t, yt)] = f(t, yt,
cDαy(t)), t ∈ J = [0, T ], T > 0 , 0 < α ≤ 1

y(t) = ϕ(t), t ∈ [−r, 0], r > 0,
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where f : J × C([−r, 0],R) × R → R and g : J × C([−r, 0],R) → R are two given
functions such that g(0, ϕ) = 0 and ϕ ∈ C([−r, 0],R) .
For each function yt defined on [−r, T ] and for any t ∈ J , we denote by yt the element
of C([−r, 0],R) defined by :

yt(θ) = y(t+ θ), θ ∈ [−r, 0],

yt(·) represent the evolution history of system state from time t− r to time t.
At last, two examples are included to show the applicability of our results.
In Section 6.3, we establish existence, uniqueness and stability results for the following
neutral NIFDE with finite delay and impulses :

cDα
tk

[y(t)−φ(t, yt)] = f(t, yt,
cDα

tk
y(t)), for each t ∈ (tk, tk+1], k = 0, . . . ,m, 0 < α ≤ 1,

∆y|t=tk = Ik(yt−k
), k = 1, . . . ,m,

y(t) = ϕ(t), t ∈ [−r, 0], r > 0,

where cDα
tk

is the Caputo fractional derivative, f : J × PC([−r, 0],R)× R→ R,
φ : J × PC([−r, 0],R)→ R are given functions with φ(0, ϕ) = 0, Ik : PC([−r, 0],R)
→ R and ϕ ∈ PC([−r, 0],R), 0 = t0 < t1 < · · · < tm < tm+1 = T, and PC([−r, 0],R)
is a space to be specified later.
For each function y defined on [−r, T ] and for any t ∈ J , we denote by yt the element
of PC([−r, 0],R) defined by :

yt(θ) = y(t+ θ), θ ∈ [−r, 0],

that is, yt(·) represents the history of the state from time t− r up to time t.
And ∆y|t=tk = y(t+k )−y(t−k ), where y(t+k ) = limh→0+ y(tk + h) and y(t−k ) = limh→0− y(tk + h)
represent the right and left limits of yt at t = tk, respectively.
And finally, we give an illustrative example.



Chapitre 1

Basic Ingredients

1.1 A brief visit to the history of the Fractional

Calculus

In 1695, in a letter to the French mathematician L‘Hospital, Leibniz raised the
following question : ”Can the meaning of derivatives with integer order be generalized
to derivatives with non-integer orders ?” L‘Hospital was somewhat curious about that
question and replied by another question to Leibniz : ”What if the order will be 1

2
?”

Leibnitz in a letter dated September 30, replied : ”It will lead to a paradox, from which
one day useful consequences will be drawn.”
Many known mathematicians contributed to this theory over the years. Thus, Septem-
ber 30, 1695 is the exact date of birth of the ”fractional calculus” ! Therefore, the frac-
tional calculus it its origin in the works by Leibnitz, L’Hopital (1695), Bernoulli (1697),
Euler (1730), and Lagrange (1772). Some years later, Laplace (1812), Fourier (1822),
Abel (1823), Liouville (1832), Riemann (1847), Grünwald (1867), Letnikov (1868), Ne-
krasov (1888), Hadamard (1892), Heaviside (1892), Hardy (1915), Weyl (1917), Riesz
(1922), P. Levy (1923), Davis (1924), Kober (1940), Zygmund (1945), Kuttner (1953),
J. L. Lions (1959), and Liverman (1964)... have developed the basic concept of frac-
tional calculus.

In 1783, Leonhard Euler made his first comments on fractional order derivative.
He worked on progressions of numbers and introduced first time the generalization of
factorials to Gamma function. A little more than fifty year after the death of Leibniz,
Lagrange, in 1772, indirectly contributed to the development of exponents law for dif-
ferential operators of integer order, which can be transferred to arbitrary order under
certain conditions. In 1812, Laplace has provided the first detailed definition for frac-
tional derivative. Laplace states that fractional derivative can be defined for functions
with representation by an integral, in modern notation it can be written as

∫
y(t)t−xdt.

Few years after, Lacroix worked on generalizing the integer order derivative of function

13
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y(t) = tm to fractional order, where m is some natural number. In modern notations,
integer order nth derivative derived by Lacroix can be given as

dny

dtn
=

m!

(m− n)!
tm−n =

Γ(m+ 1)

Γ(m− n+ 1)
tm−n, m > n

where, Γ is the Euler’s Gamma function.
Thus, replacing n with 1

2
and letting m = 1, one obtains the derivative of order 1

2

of the function t
d

1
2y

dt
1
2

=
Γ(2)

Γ(3
2
)
t
1
2 =

2√
π

√
t

Euler’s Gamma function (or Euler’s integral of the second kind) has the same
importance in the fractional-order calculus and it is basically given by integral

Γ(z) =

∫ ∞
0

tz−1e−tdt.

The exponential provides the convergence of this integral in∞, the convergence at zero
obviously occurs for all complex z from the right half of the complex plane (Re(z) > 0).

This function is generalization of a factorial in the following form :

Γ(n) = (n− 1)!.

Other generalizations for values in the left half of the complex plane can be obtained
in following way. If we substitute e−t by the well-known limit

e−t = lim
n→∞

(
1− t

n

)n
and then use n-times integration by parts, we obtain the following limit definition of
the Gamma function

Γ(z) = lim
n→∞

n!nz

z(z + 1) . . . (z + n)
.

Therefore, historically the first discussion of a derivative of fractional order appeared
in a calculus written by Lacroix in 1819.
It was Liouville who engaged in the first major study of fractional calculus. Liouville’s
first definition of a derivative of arbitrary order ν involved an infinite series. Here, the
series must be convergent for some ν. Liouville’s second definition succeeded in giving
a fractional derivative of x−a whenever both x and are positive. Based on the definite
integral related to Euler’s gamma integral, the integral formula can be calculated for
x−a. Note that in the integral ∫ ∞

0

ua−1e−xudu,
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if we change the variables t = xu, then∫ ∞
0

ua−1e−xudu =

∫ (
t

x

)a−1

e−t
1

x
dt =

1

xa

∫ ∞
0

ta−1e−tdt.

Thus, ∫ ∞
0

ua−1e−xudu =
1

xa

∫ ∞
0

ta−1e−tdt.

Through the Gamma function, we obtain the integral formula

x−a =
1

Γ(a)

∫ ∞
0

ua−1e−xudu.

Consequently, by assuming that dν

dxν
eax = aνeax, for any ν > 0, then

dν

dxν
x−a =

Γ(a+ ν)

Γ(a)
x−a−ν = (−1)ν

Γ(a+ ν)

Γ(a)
x−a−ν

In 1884 Laurent published what is now recognized as the definitive paper on the foun-
dations of fractional calculus. Using Cauchy’s integral formula for complex valued ana-
lytical functions and a simple change of notation to employ a positive ν rather than a
negative ν will now yield Laurent’s definition of integration of arbitrary order

x0D
α
xh(x) =

1

Γ(ν)

∫ x

x0

(x− t)ν−1h(t)dts.

The Riemann-Liouville differential operator of fractional calculus of order α de-
fined as

(Dα
a+f)(t) :=


1

Γ(n− α)

(
d

dt

)n ∫ t

a

(t− s)n−α−1f(s)ds if n− 1 < α < n,(
d

dt

)n
f(t), if α = n,

where α, a, t ∈ R, t > a, n = [α] + 1; [α] denotes the integer part of the real number α,
and Γ is the Gamma function.

The Grünwald-Letnikov differential operator of fractional calculus of order α
defined as

(Dα
a+f)(t) := lim

h→0
h−α

[ t−a
h

]∑
j=0

(−1)j(αj )f(t− jh).

Binomial coefficients with alternating signs for positive value of n are defined as

(nj ) =
n(n− 1)(n− 2) · · · (n− j + 1)

j!
=

n!

j!(n− j)!
.
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For binomial coefficients calculation we can use the relation between Euler’s Gamma
function and factorial, defined as

(αj ) =
α!

j!(α− j)!
=

Γ(α)

Γ(j + 1)Γ(α− j + 1)
.

The Grünwald-Letnikov definition of differ-integral starts from classical definitions
of derivatives and integrals based on infinitesimal division and limit. The disadvantages
of this approach are its technical difficulty of the computations and the proofs and large
restrictions on functions. (see [149])

The Caputo (1967) differential operator of fractional calculus of order α defined
as

(cDα
a+f)(t) :=


1

Γ(n− α)

∫ t

a

(t− s)n−α−1f (n)(s)ds if n− 1 < α < n,(
d

dt

)n
f(t), if α = n,

where α, a, t ∈ R, t > a, n = [α] + 1. This operator is introduced in 1967 by the Italian
Caputo.

This consideration is based on the fact that for a wide class of functions, the three
best known definitions ((GL), (RL), and Caputo) are equivalent under some conditions.
(see ([87])

Unfortunately, fractional calculus still lacks a geometric interpretation of integration
or differentiation of arbitrary order. We refer readers, for example, to the books such
as [3, 32, 88, 100, 104, 114, 119, 123, 132] and the articles [4, 6, 7, 26, 27, 38, 48, 50,
52, 56, 57, 58, 99, 130], and references therein.

1.2 Applications of Fractional calculus

The concept of fractional calculus has great potential to change the way we see,
model and analyze the systems. It provides good opportunity to scientists and engineers
for revisiting the origins. The theoretical and practical interests of using fractional
order operators are increasing. The application domain of fractional calculus is ranging
from accurate modeling of the microbiological processes to the analysis of astronomical
images.
Next, we will present a brief survey of applications of fractional calculus in science and
engineering.

The Tautochrone Problem (Historical Example) :
This example was studied, for the first time, by Abel in the early 19th century. It was
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one of the basic problems where the framework of the fractional calculus was used
although it is not essentially necessary.

Signal and Image Processing :
In the last decade, the use of fractional calculus in signal processing has tremendously
increased. In signal processing, the fractional operators are used in the design of diffe-
rentiator and integrator of fractional order, fractional order differentiator FIR (finite
impulse response), IIR type digital fractional order differentiator (infinite impulse res-
ponse), a new IIR (infinite impulse response)-type digital fractional order differentiator
(DFOD) and for modeling the speech signal. The fractional calculus allows the edge
detection, enhances the quality of images, with interesting possibilities in various image
enhancement applications such as image restoration image denoising and the texture
enhancement. He is used, in particularly, in satellite image classification, and astrono-
mical image processing.

Electromagnetic Theory :
The use of fractional calculus in electromagnetic theory has emerged in the last two
decades. In 1998, Engheta [74] introduced the concept of fractional curl operators and
this concept is extended by Naqvi and Abbas [116]. Engheta’s work gave birth to the
newfield of research in Electromagnetics, namely, ”Fractional Paradigms in Electro-
magnetic Theory”. Nowadays fractional calculus is widely used in Electromagnetics to
explore new results ; for example, Faryad and Naqvi [75] have used fractional calculus
for the analysis of a Rectangular Waveguide.

Control Engineering :
In industrial environments, robots have to execute their tasks quickly and precisely,
minimizing production time, and the robustness of control systems is becoming im-
perative these days. This requires flexible robots working in large workspaces, which
means that they are influenced by nonlinear and fractional order dynamic effects.

Biological Population Model
The problems of the diffusion of biological populations occur nonlinearly and the frac-
tional order differential equations appear more and more frequently in different research
areas.

Reaction-Diffusion Equations
Fractional equations can be used to describe some physical phenomenon more ac-
curately than the classical integer order differential equation. The reaction-diffusion
equations play an important role in dynamical systems of mathematics, physics, che-
mistry, bioinformatics, finance, and other research areas. There has been a wide variety
of analytical and numerical methods proposed for fractional equations ([109, 147]), for
example, finite difference method ([68]), finite element method, Adomian decompo-
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sition method ([127]), and spectral technique ([112]). Interest in fractional reaction-
diffusion equations has increased.

1.3 Some notations and definitions of Fractional

Calculus Theory

In this chapter definitions and some auxiliary results are given regarding the main
objects of the monograph : some notations and definitions of Fractional Calculus
Theory, some definitions and proprieties of noncompactness measure, some fixed point
theorems.

Definition 1.3.1 ([100, 123]). The fractional (arbitrary) order integral of the function
f ∈ L1([0, T ],R+) of order α ∈ R+ is defined by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

where Γ is the gamma function.

Theorem 1.3.2 [100]. For any f ∈ C([a, b],R) the Riemann-Liouville fractional in-
tegral satisfies

IαIβf(t) = IβIαf(t) = Iα+βf(t),

for α, β > 0.

Definition 1.3.3 ([99]). For a function f ∈ ACn(J), the Caputo fractional-order de-
rivative of order α of h, is defined by

(cDαf)(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds,

where n = [α] + 1 and [α] denotes the integer part of the real number α.

Lemma 1.3.4 ([114]) Let α ≥ 0 and n = [α] + 1. Then

Iα(cDαf(t)) = f(t)−
n−1∑
k=0

fk(0)

k!
tk.

Remark 1.3.5 ([114])The Caputo derivative of a constant is equal to zero.

We need the following auxiliary lemmas.
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Lemma 1.3.6 ([148]) Let α > 0. Then the differential equation

cDαf(t) = 0

has solutions f(t) = c0 + c1t + c2t
2 + · · · + cn−1t

n−1, ci ∈ R, i = 0, 1, 2, . . . , n − 1,
n = [α] + 1.

Lemma 1.3.7 ([148]) Let α > 0. Then

IαcDαf(t) = f(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1, n = [α] + 1.

We state the following generalization of Gronwall ’s lemma for singular kernels.

Lemma 1.3.8 ([145]) Let v : [0, T ]→ [0,+∞) be a real function and w(·) is a nonne-
gative, locally integrable function on [0, T ]. Assume that there are constants a > 0 and
0 < α < 1 such that

v(t) ≤ w(t) + a

∫ t

0

(t− s)−αv(s)ds,

Then, there exists a constant K = K(α) such that

v(t) ≤ w(t) +Ka

∫ t

0

(t− s)−αw(s)ds, for every t ∈ [0, T ].

Bainov and Hristova [29] introduced the following integral inequality of Gronwall type
for piecewise continuous functions which can be used in the sequel.

Lemma 1.3.9 Let for t ≥ t0 ≥ 0 the following inequality hold

x(t) ≤ a(t) +

∫ t

t0

g(t, s)x(s)ds+
∑

t0<tk<t

βk(t)x(tk),

where βk(t)(k ∈ N) are nondecreasing functions for t ≥ t0, a ∈ PC([t0,∞),R+), a
is nondecreasing and g(t, s) is a continuous nonnegative function for t, s ≥ t0 and
nondecreasing with respect to t for any fixed s ≥ t0. Then, for t ≥ t0, the following
inequality is valid :

x(t) ≤ a(t)
∏

t0<tk<t

(1 + βk(t))exp

(∫ t

t0

g(t, s)ds

)
.

Theorem 1.3.10 [83](theorem of Ascoli-Arzela). Let A ⊂ C(J,R), A is relatively
compact (i.e A is compact) if :

1. A is uniformly bounded i.e, there exists M > 0 such that

|f(x)| < M for every f ∈ A and x ∈ J.
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2. A is equicontinuous i.e, for every ε > 0, there exists δ > 0 such that for each
x, x ∈ J, |x− x| ≤ δ implies |f(x)− f(x)| ≤ ε, for every f ∈ A.

Theorem 1.3.11 [80](theorem of Ascoli-Arzela). Let A ⊂ PC(J,E), A is relatively
compact (i.e A is compact) if :

1. A is uniformly bounded i.e, there exists M > 0 such that

‖f(x)‖ < M for every f ∈ A and x ∈ (tk, tk+1], k = 1, ...,m.

2. A is equicontinuous on (tk, tk+1] i.e, for every ε > 0, there exists δ > 0 such that
for each x, x ∈ (tk, tk+1], |x− x| ≤ δ implies ‖f(x)− f(x)‖ ≤ ε, for every f ∈ A.

3. The set {f(t) : f ∈ A; t ∈ (tk, tk+1], k = 1, ...,m} is relatively compact in E.

1.4 Some definitions and proprieties of noncompact-

ness measure

Next, we define in this Section the Kuratowski (1896-1980) and Hausdorf measures
of noncompactness (MNC for short) and give their basic properties.

Definition 1.4.1 ([101]) Let (X, d) be a complete metric space and B the family of
bounded subsets of X. For every B ∈ B we define the Kuratowski measure of noncom-
pactness α(B) of the set B as the infimum of the numbers d such that B admits a finite
covering by sets of diameter smaller than d.

Remark 1.4.2 The diameter of a set B is the number sup{d(x, y) : x ∈ B, y ∈ B}
denoted by diam(B), with diam(∅) = 0.
It is clear that 0 ≤ α(B) ≤ diam(B) < +∞ for each nonempty bounded subset B of X
and that diam(B) = 0 if and only if B is an empty set or consists of exactly one point.

Definition 1.4.3 ([35]) Let E be a Banach space and ΩE the bounded subsets of E.
The Kuratowski measure of noncompactness is the map α : ΩE → [0,∞] defined by

α(B) = inf{ε > 0 : B ⊆ ∪ni=1Bi and diam(Bi) ≤ ε}; here B ∈ ΩE,

where
diam(Bi) = sup{||x− y|| : x, y ∈ Bi}.

The Kuratowski measure of noncompactness satisfies the following properties :

Lemma 1.4.4 ([18, 35, 36, 101]) Let A and B bounded sets.
(a) α(B) = 0 ⇔ B is compact (B is relatively compact), where B denotes the

closure of B.
(b) nonsingularity : α is equal to zero on every one element-set.
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(c) If B is a finite set, then α(B) = 0.
(d) α(B) = α(B) = α(convB), where convB is the convex hull of B.
(e) monotonicity : A ⊂ B ⇒ α(A) ≤ α(B).
(f) algebraic semi-additivity : α(A+B) ≤ α(A) + α(B), where

A+B = {x+ y : x ∈ A, y ∈ B}.

(g) semi-homogencity : α(λB) = |λ|α(B); λ ∈ R, where λ(B) = {λx : x ∈ B}.
(h) semi-additivity : α(A

⋃
B) = max{α(A), α(B)}.

(i) α(A
⋂
B) = min{α(A), α(B)}.

(j) invariance under translations : α(B + x0) = α(B) for any x0 ∈ E.

Remark 1.4.5 The α-measure of noncompactness was introduced by Kuratowski in
order to generalize the Cantor intersection theorem

Theorem 1.4.6 ([101]) Let (X, d) be a complete metric space and {Bn} be a decrea-
sing sequence of nonempty, closed and bounded subsets of X and limn→∞ α(Bn) = 0.
Then the intersection B∞ of all Bn is nonempty and compact.

In [89], Horvath has proved the following generalization of the Kuratowski theorem :

Theorem 1.4.7 ([101]) Let (X, d) be a complete metric space and {Bi}i∈I be a family
of nonempty of closed and bounded subsets of X having the finite intersection property.
If infi∈I α(Bi) = 0 then the intersection B∞ of all Bi is nonempty and compact.

Lemma 1.4.8 ([81]) If V ⊂ C(J,E) is a bounded and equicontinuous set, then
(i) the function t→ α(V (t)) is continuous on J , and

αc(V ) = sup
0≤t≤T

α(V (t)).

(ii) α

(∫ T

0

x(s)ds : x ∈ V
)
≤
∫ T

0

α(V (s))ds,

where
V (s) = {x(s) : x ∈ V }, s ∈ J.

In the definition of the Kuratowski measure we can consider balls instead of arbitrary
sets. In this way we get the definition of the Hausdorff measure :

Definition 1.4.9 ([101]) The Hausdorff measure of noncompactness χ(B) of the set
B is the infimum of the numbers r such that B admits a finite covering by balls of
radius smaller than r.

Theorem 1.4.10 ([101]) Let B(0, 1) be the unit ball in a Banach space X. Then

α(B(0, 1)) = χ(B(0, 1)) = 0

if X is finite dimensional, and α(B(0, 1)) = 2, χ(B(0, 1)) = 1 otherwise.
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Theorem 1.4.11 ([101]) Let S(0, 1) be the unit sphere in a Banach space X. Then
α(S(0, 1)) = χ(S(0, 1)) = 0 if X is finite dimensional, and α(S(0, 1)) = 2, χ(S(0, 1)) =
1 otherwise.

Theorem 1.4.12 ([101]) The Kuratowski and Hausdorff MNCs are related by the in-
equalities

χ(B) ≤ α(B) ≤ 2χ(B).

In the class of all infinite dimensional Banach spaces these inequalities are the best
possible.

Example 1.4.13 Let l∞ be the space of all real bounded sequences with the supremum
norm, and let A be a bounded set in l∞. Then α(A) = 2χ(A).

For further facts concerning measures of noncompactness and their properties we
refer to [18, 35, 36, 101, 135] and the references therein.

1.5 Some fixed point theorems

Theorem 1.5.1 (Banach’s fixed point theorem (1922) [80]) Let C be a non-empty
closed subset of a Banach space X, then any contraction mapping T of C into itself
has a unique fixed point.

Theorem 1.5.2 (Schaefer’s fixed point theorem [80]) Let X be a Banach space,
and N : X −→ X completely continuous operator.
If the set E = {y ∈ X : y = λNy, forsome λ ∈ (0, 1)} is bounded, then N has fixed
points.

Theorem 1.5.3 (Darbo’s Fixed Point Theorem [77, 80]) Let X be a Banach space
and C be a bounded, closed, convex and nonempty subset of X. Suppose a continuous
mapping T : C → C is such that for all closed subsets D of C,

α(T (D)) ≤ kα(D), (1.1)

where 0 ≤ k < 1, and α is the Kuratowski measure of noncompactness. Then T has a
fixed point in C.

Remark 1.5.4 Mappings satisfying the Darbo-condition (1.1) have subsequently been
called k-set contractions.
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Theorem 1.5.5 (Mönch’s Fixed Point Theorem [9, 115]) Let D be a bounded,
closed and convex subset of a Banach space such that 0 ∈ D, and let N be a continuous
mapping of D into itself. If the implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ α(V ) = 0

holds for every subset V of D, then N has a fixed point.
Here α is the Kuratowski measure of noncompactness.

For more details see [9, 23, 78, 80, 101, 146]



Chapitre 2

Existence and Stability Results for
Nonlinear BVP for Implicit
Differential Equations of Fractional
Order 1

2.1 Introduction and Motivations

The purpose of this chapter, is to establish existence, uniqueness and stability
results to the followings implicit fractional-order differential equations :

cDαy(t) = f(t, y(t),cDαy(t)), for each t ∈ J = [0, T ], T > 0, 0 < α ≤ 1, (2.1)

ay(0) + by(T ) = c (2.2)

where cDα is the fractional derivative of Caputo, f : J × R× R −→ R is a continuous
function, and a, b, c are real constants with a+ b 6= 0.
and

cDαy(t) = f(t, y(t),cDαy(t)), for each t ∈ J = [0, T ], T > 0, 0 < α ≤ 1, (2.3)

y(0) + g(y) = y0, (2.4)

where cDα is the Caputo fractional derivative, f : J × R × R → R is a continuous
function, g : C(J,R)→ R is a continuous function and y0 ∈ R.
In [52], Benchohra et al. studied the existence of solutions for boundary value problems,
for following implicit fractional-order differential equation :

cDαy(t) = f(t, y(t)), for each t ∈ J = [0, T ], T > 0, 0 < α ≤ 1,

1. M.Benchohra and S.Bouriah, Existence and Stability Results for Nonlinear Boundary Value
Problem for Implicit Differential Equation of Fractional Order, Moroccan Journal Pure. Appl.Anal. 1
(1) 2015, 22-36.

24
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ay(0) + by(T ) = c,

where cDα is the Caputo fractional derivative, f : J × R→ R is a given function and
a, b, c are real constants with a+ b 6= 0.

In [51], Benchohra and Hamani studied the existence of solutions for boundary
value problems, for fractional order differential inclusions :

cDαy(t) ∈ F (t, y(t)) = 0, for each t ∈ J = [0, T ], 0 < α ≤ 1,

ay(0) + by(T ) = c,

where cDα is the Caputo fractional derivative, F : J×R→ P(R) is a given multivalued
function and a, b, c are real constants with a+ b 6= 0.

In [54], by means of Krasnoselskii fixed-point theorem in cones, Benchohra and
Hedia studied the existence of nonlinear fractional boundary value problem involving
Caputo’s derivative :

cDαy(t) + ϕ(t)f(t, y(t)) = 0, for each t ∈ J = [0, 1], 0 < α ≤ 1,

ay(0) + by(1) = c,

where cDα is the Caputo fractional derivative, f : J×R→ [0,∞) is a given function
and a, b, c are real constants with a+ b 6= 0, and ϕ : [0, 1]→ R is a given function.

In [97], Karthikeyan and Trujillo studied the existence of nonlinear fractional boun-
dary value problem :

cDαy(t) = ϕ(t)f(t, y(t), (Sy)(t)), for each t ∈ J = [0, T ], 0 < α < 1,

ay(0) + by(T ) = c,

where cDα is the Caputo fractional derivative of order α, f : J × X × X → X is a
given function, X is a Banach space and a, b, c are real constants with a+ b 6= 0, and
S is a nonlinear integral operator given by

(Sy)(t) =

∫ t

0

k(t, s)y(s)ds.

where k ∈ C(J × J,R+).
Fractional differential equations with nonlocal conditions have been discussed in [8,
10, 73, 82, 110, 117, 118] and references therein. Nonlocal conditions were initiated
by Byszewski [65] when he proved the existence and uniqueness of mild and classical
solutions of nonlocal Cauchy problems. As remarked by Byszewski [63, 64], the nonlocal
condition can be more useful than the standard initial condition to describe some
physical phenomena. For example, in [71], the author used

g(y) =

p∑
i=1

ciy(τi) (2.5)
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where ci, i = 1, . . . , p, are given constants and 0 < τ1 < ... < τp ≤ T , to describe
the diffusion phenomenon of a small amount of gas in a transparent tube. In this case,
(2.5) allows the additional measurements at τi, i = 1, . . . , p.

2.2 Existence of solutions

By C(J,R) we denote the Banach space of continuous functions from J into R with
the norm

‖y‖∞ = sup{|y(t)| : t ∈ J}.
Let us defining what we mean by a solution of problem (2.1)− (2.2) and (2.3)− (2.4).

Definition 2.2.1 A function u ∈ C1(J,R) is said to be a solution of the problem
(2.1) − (2.2) if u satisfied equation (2.1) and conditions (2.2) on J , and a function
y ∈ C1(J,R) is called a solution of the problem (2.3)− (2.4) if y satisfied equation (2.3)
and conditions (2.4) on J.

For the existence of solutions for the problems (2.1)− (2.2) and (2.3)− (2.4), we need
the following auxiliary lemmas :

Lemma 2.2.2 Let 0 < α ≤ 1 and h : [0, T ] −→ R be a continuous function. Then the
linear problem

cDαy(t) = h(t), t ∈ J (2.6)

ay(0) + by(T ) = c, (2.7)

has a unique solution which is given by :

y(t) =
1

Γ (α)

∫ t

0

(t− s)α−1 h(s)ds

− 1

a+ b

[
b

Γ (α)

∫ T

0

(T − s)α−1 h(s)ds− c
]
.

(2.8)

Proof. By integration of formula (2.6) we obtain :

y(t) = y0 +
1

Γ (α)

∫ t

0

(t− s)α−1 h(s)ds. (2.9)

We use condition (2.7) to compute the constant y0, so we have :

ay (0) = ay0 and by (T ) = by0 +
b

Γ (α)

∫ T

0

(T − s)α−1 h(s)ds,

then, ay (0) + by (T ) = c, since

y0 =
−1

(a+ b)

[
b

Γ (α)

∫ T

0

(T − s)α−1 h(s)ds− c
]
.

Substituting in equation (2.9)leads formula (2.8).
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�

Lemma 2.2.3 Let f(t, u, v) : J × R × R −→ R be a continuous function, then the
problem (2.1)-(2.2) is equivalent to the problem :

y(t) = Ã+ Iαg(t) (2.10)

where g ∈ C (J,R) satisfies the functional equation

g(t) = f(t, Ã+ Iαg(t), g(t))

and

Ã =
1

a+ b

[
c− b

Γ (α)

∫ T

0

(T − s)α−1 g(s)ds

]
.

Proof. Let y be solution of (2.10). We shall show that y is solution of (2.1)−(2.2). We
have

y(t) = Ã+ Iαg(t).

So, y(0) = Ã and y(T ) = Ã+
1

Γ (α)

∫ T

0

(T − s)α−1 g(s)ds.

ay(0) + by(T ) =
−ab

(a+ b)Γ(α)

∫ T

0

(T − s)α−1g(s)ds

+
ac

a+ b
− b2

(a+ b)Γ(α)

∫ T

0

(T − s)α−1g(s)ds

+
bc

a+ b
+

b

Γ(α)

∫ T

0

(T − s)α−1g(s)ds.

= c.

Then
ay(0) + by(T ) = c.

On the other hand, we have

cDαy(t) = cDα(Ã+ Iαg(t)) = g(t)

= f(t, y(t),cDαy(t)).

Thus, y is solution of problem (2.1)-(2.2). �

Lemma 2.2.4 Let 0 < α ≤ 1 and let h : [0, T ] −→ R a continuous function. The
linear problem

cDαy(t) = h(t), t ∈ J
y(0) + g(y) = y0

has a unique solution which is given by :

y(t) = y0 − g(y) +
1

Γ (α)

∫ t

0

(t− s)α−1 h(s)ds
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Lemma 2.2.5 Let f : J × R × R −→ R be a continuous function, then the problem
(2.3)-(2.4) is equivalent to the following equation

y(t) = y0 − g(y) + IαKy(t)

where Ky ∈ C(J,R)
Ky(t) = f(t, y(t), Ky(t)).

Theorem 2.2.6 Assume assumption

(H1) there exist two constants K > 0 et 0 < L < 1 such that

|f(t, u, v)− f(t, u, v)| ≤ K |u− u|+ L |v − v| for each t ∈ J and u, u, v, v ∈ R.

If
KTα

(1− L) Γ(α + 1)

(
1 +

|b|
|a+ b|

)
< 1, (2.11)

the problem (2.1)-(2.2) has a unique solution.

Proof. Let the operator

N : C(J,R) −→ C(J,R)

Ny(t) = Ãy +
1

Γ(α)

∫ t

0

(t− s)α−1gy(s)ds,

where
gy(t) = f(t, Ãy + Iαgy(t), gy(t)),

and

Ãy =
1

a+ b

[
c− b

Γ(α)

∫ T

0

(T − s)α−1gy(s)ds

]
.

By Lemmas 2.2.2 and 2.2.3, it is clear that the fixed points of N are solutions of (2.1)-
(2.2).
Let y1, y2 ∈ C(J,R), and t ∈ J , then we have

|Ny1(t)−Ny2(t)| ≤ 1

Γ(α)

∫ t

0

(t− s)α−1 |gy1 (s)− gy2 (s)| ds

+
|b|

|a+ b|Γ (α)

∫ T

0

(T − s)α−1 |gy1 (s)− gy2 (s)| ds,
(2.12)

and

|gy1(t)− gy2(t)| = |f(t, y1(t), gy1(t))− f(t, y2(t), gy2(t))|
≤ K |y1(t)− y2(t)|+ L |gy1 (t)− gy2 (t)| .
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Thus

|gy1 (t)− gy2 (t)| ≤ K

1− L
|y1(t)− y2(t)| . (2.13)

By replacing (2.13) in the inequality (2.12), we obtain

|Ny1(t)−Ny2(t)| ≤ K

(1− L) Γ (α)

∫ t

0

(t− s)α−1 |y1 (s)− y2 (s)| ds

+
|b|K

(1− L) |a+ b|Γ (α)

∫ T

0

(T − s)α−1 |y1 (s)− y2 (s)| ds

≤ KTα

(1− L) Γ (α + 1)
‖y1 − y2‖∞

+
|b|KTα

(1− L) |a+ b|Γ (α + 1)
‖y1 − y2‖∞ .

Then

‖Ny1 −Ny2‖∞ ≤
[

KTα

(1− L) Γ (α + 1)

(
1 +

|b|
|a+ b|

)]
‖y1 − y2‖∞ .

From (2.11), it follows that N has a unique fixed point which is solution of problem
(2.1)-(2.2).

�

Theorem 2.2.7 Assume

(P1) there exist K > 0, 0 < K < 1 and 0 < L < 1 such that :

|f(t, u, v)− f(t, u, v)| ≤ K |u− u|+K |v − v| for any u, u, v, v ∈ R

and
‖g(y)− g(y)‖ ≤ L‖y − y‖ for any y, y ∈ C(J,R).

If

L+
KTα

(1−K)Γ (α + 1)
< 1 (2.14)

then, the boundary value problem (2.3) -(2.4) has a unique solution on J.

Proof. Let the operator

N : C(J,R)→ C(J,R)

Ny(t) = y0 − g(y) +
1

Γ(α)

∫ t

0

(t− s)α−1Ky(s)ds

where
Ky(t) = f(t, y0 − g(y) + IαKy(t), Ky(t)).
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By Lemmas 2.2.4 and 2.2.5, it is easy to see that the fixed points of N are the solutions
of the problem (2.3)-(2.4). Let y1, y2 ∈ C (J,R), we have for any t ∈ J

|Ny1 (t)−Ny2 (t)| ≤ |g (y1)− g (y2)|+ 1

Γ (α)

∫ t

0

(t− s)α−1 |Ky1 (s)−Ky2 (s)| ds

then

|Ny1 (t)−Ny2 (t)| ≤ L |y1 (t)− y2 (t)|

+
1

Γ (α)

∫ t

0

(t− s)α−1 |Ky1 (s)−Ky2 (s)| ds. (2.15)

On the other hand, we have for every t ∈ J

|Ky1 (t)−Ky2 (t)| = |f(t, y1(t), Ky1 (t))− f(t, y2(t), Ky2 (t))|
≤ K |y1 (t)− y2 (t)|+K |Ky1 (t)−Ky2 (t)| .

Thus

|Ky1 (t)−Ky2 (t)| ≤ K

1−K
|y1 (t)− y2 (t)| . (2.16)

By replacing (2.16) in the inequality (2.15), we obtain

|Ny1 (t)−Ny2 (t)| ≤ L |y1 (t)− y2 (t)|

+
K(

1−K
)

Γ (α)

∫ t

0

(t− s)α−1 |y1 (s)− y2 (s)|

≤

[
L+

KTα(
1−K

)
Γ (α + 1)

]
‖y1 − y2‖∞ .

Thus

‖Ny1 −Ny2‖∞ ≤

[
L+

KTα(
1−K

)
Γ (α + 1)

]
‖y1 − y2‖∞

from which it follows that N is a contraction which implies that N admits a unique
fixed point which is solution of the problem (2.3) -(2.4).

�

2.3 Ulam-Hyers Rassias stability

For the implicit fractional-order differential equation (2.1), we adopt the definition
in Rus [129] for : Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-
Rassias stability and generalized Ulam-Hyers-Rassias stability.
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Definition 2.3.1 The equation (2.1) is Ulam-Hyers stable if there exists a real number
cf > 0 such that for each ε > 0 and for each solution z ∈ C1 (J,R) of the inequality

|cDαz(t)− f(t, z(t),cDαz(t))| ≤ ε, t ∈ J,

there exists a solution y ∈ C1 (J,R) of equation (2.1) with

|z(t)− y(t)| ≤ cfε, t ∈ J.

Definition 2.3.2 The equation (2.1) is generalized Ulam-Hyers stable if there exists
ψf ∈ C (R+,R+) , ψf (0) = 0, such that for each solution z ∈ C1 (J,R) of the inequality

|cDαz(t)− f(t, z(t),cDαz(t))| ≤ ε, t ∈ J,

there exists a solution y ∈ C1 (J,R) of the equation (2.1) with

|z(t)− y(t)| ≤ ψf (ε) , t ∈ J.

Definition 2.3.3 The equation (2.1) is Ulam-Hyers-Rassias stable with respect to ϕ ∈
C (J,R+) if there exists a real number cf > 0 such that for each ε > 0 and for each
solution z ∈ C1 (J,R) of the inequality

|cDαz(t)− f(t, z(t),cDαz(t))| ≤ εϕ (t) , t ∈ J,

there exists a solution y ∈ C1 (J,R) of equation (2.1) with

|z(t)− y(t)| ≤ cfεϕ (t) , t ∈ J.

Definition 2.3.4 The equation (2.1) is generalized Ulam-Hyers-Rassias stable with
respect to ϕ ∈ C (J,R+) if there exists a real number cf,ϕ > 0 such that for each
solution z ∈ C1 (J,R) of the inequality

|cDαz(t)− f(t, z(t),cDαz(t))| ≤ ϕ (t) , t ∈ J,

there exists a solution y ∈ C1 (J,R) of equation (2.1) with

|z(t)− y(t)| ≤ cf,ϕϕ (t) , t ∈ J.

Remark 2.3.5 A function z ∈ C1(J,R) is a solution of the inequality

|cDαz(t)− f(t, z(t),cDαz(t))| ≤ ε, t ∈ J,

if and only if there exists a function g ∈ C(J,R) (which depends on solution y) such
that

i) |g(t)| ≤ ε, ∀t ∈ J.
ii) cDαz(t) = f(t, z(t),cDαz(t)) + g(t), t ∈ J.
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Remark 2.3.6 Clearly,

i) Definition 2.3.1⇒ Definition 2.3.2.

ii) Definition 2.3.3⇒ Definition 2.3.4.

Remark 2.3.7 A solution of the implicit differential inequality

|cDαz(t)− f(t, z(t),cDαz(t))| ≤ ε, t ∈ J,

with fractional order is called an fractional ε−solution of the implicit fractional diffe-
rential equation (2.1).

Theorem 2.3.8 Assume that (H1) and (2.11) are satisfied, then the problem (2.1)-
(2.2) is Ulam-Hyers stable.

Proof. Let ε > 0 and let z ∈ C1(J,R) be a function which satisfies the inequality :

|cDαz(t)− f(t, z(t),cDαz(t))| ≤ ε for any t ∈ J (2.17)

and let y ∈ C(J,R) be the unique solution of the following Cauchy problem{
cDαy(t) = f(t, y(t),cDαy(t)) ; t ∈ J ; 0 < α ≤ 1
y(0) = z(0), y(T ) = z(T ).

Using Lemmas 2.2.2 and 2.2.3, we obtain

y(t) = Ãy +
1

Γ (α)

∫ t

0

(t− s)α−1 gy(s)ds.

On the other hand, if y(T ) = z(T ) and y(0) = z(0), then Ãy = Ãz. Indeed∣∣∣Ãy − Ãz∣∣∣ ≤ |b|
|a+ b|Γ (α)

∫ T

0

(T − s)α−1 |gy(s)− gz(s)| ds,

and by the inequality (2.13), we find∣∣∣Ãy − Ãz∣∣∣ ≤ |b|K
(1− L) |a+ b|Γ (α)

∫ T

0

(T − s)α−1 |y(s)− z(s)| ds

=
|b|K

(1− L) |a+ b|
Iα |y(T )− z(T )| = 0.

Thus
Ãy = Ãz.

Thus, we have

y(t) = Ãz +
1

Γ (α)

∫ t

0

(t− s)α−1 gy (s) ds.
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By integration of the inequality (2.17), we obtain∣∣∣∣z(t)− Ãz −
1

Γ (α)

∫ t

0

(t− s)α−1 gz (s) ds

∣∣∣∣ ≤ εtα

Γ (α + 1)
≤ εTα

Γ (α + 1)
,

with
gz (t) = f(t, Ãz + Iαgz(t), gz(t)).

We have for any t ∈ J

|z(t)− y(t)| =

∣∣∣∣z(t)− Ãz −
1

Γ (α)

∫ t

0

(t− s)α−1 gz (s) ds

+
1

Γ (α)

∫ t

0

(t− s)α−1 (gz (s)− gy (s)) ds

∣∣∣∣
≤

∣∣∣∣z(t)− Ãz −
1

Γ (α)

∫ t

0

(t− s)α−1 gz (s) ds

∣∣∣∣
+

1

Γ (α)

∫ t

0

(t− s)α−1 |gz (s)− gy (s)| ds.

Using (2.13), we obtain

|z(t)− y(t)| ≤ εTα

Γ (α + 1)
+

K

(1− L) Γ (α)

∫ t

0

(t− s)α−1 |z (s)− y (s)| ds,

and by the Gronwall’s Lemma, we get

|z(t)− y(t)| ≤ εTα

Γ (α + 1)

[
1 +

γKTα

(1− L) Γ (α + 1)

]
:= cε

where γ = γ (α) a constant, which completes the proof of the theorem. Moreover, if
we set ψ (ε) = cε ; ψ(0) = 0, then the problem (2.1)-(2.2) is generalized Ulam-Hyers
stable.

�

Theorem 2.3.9 Assume that (H1), (2.11) and

(H2) there exists an increasing function ϕ ∈ C (J,R+) and there exists λϕ > 0 such that
for any t ∈ J

Iαϕ(t) ≤ λϕϕ(t)

are satisfied, then, the problem (2.1)-(2.2) is Ulam-Hyers-Rassias stable.

Proof. Let z ∈ C1(J,R) be solution of the following inequality

|cDαz(t)− f(t, z(t),cDαz(t))| ≤ εϕ(t) , t ∈ J , ε > 0 (2.18)
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and let y ∈ C(J,R) be the unique solution of Cauchy problem :{
cDαy(t) = f(t, y(t),cDαy(t)) ; t ∈ J ; 0 < α ≤ 1
y(0) = z(0), y(T ) = z(T ).

By Lemmas 2.2.2 and 2.2.3, we have

y(t) = Ãz +
1

Γ (α)

∫ t

0

(t− s)α−1 gy (s) ds,

where gy ∈ C(J,R) satisfies the equation :

gy(t) = f(t, Ãz + Iαgy(t), gy(t)),

and

Ãz =
1

a+ b

[
c− b

Γ(α)

∫ T

0

(T − s)α−1gz(s)ds

]
.

By integration of (2.18), we obtain∣∣∣∣z(t)− Ãz −
1

Γ (α)

∫ t

0

(t− s)α−1 gz (s) ds

∣∣∣∣ ≤ ε

Γ (α)

∫ t

0

(t− s)α−1 ϕ (s) ds

≤ ελϕϕ(t).

On the other hand, we have

|z(t)− y(t)| =

∣∣∣∣z(t)− Ãz −
1

Γ (α)

∫ t

0

(t− s)α−1 gz (s) ds

+
1

Γ (α)

∫ t

0

(t− s)α−1 (gz(s)− gy(s)) ds
∣∣∣∣

≤
∣∣∣∣z(t)− Ãz −

1

Γ (α)

∫ t

0

(t− s)α−1 gz (s) ds

∣∣∣∣
+

1

Γ (α)

∫ t

0

(t− s)α−1 |gz(s)− gy(s)| ds.

Using (2.13), we have

|z(t)− y(t)| ≤ ελϕϕ(t) +
K

(1− L) Γ (α)

∫ t

0

(t− s)α−1 |z(s)− y(s)| ds.

By applying Gronwall’s Lemma, we get that for any t ∈ J :

|z(t)− y(t)| ≤ ελϕϕ(t) +
γ1εKλϕ

(1− L) Γ (α)

∫ t

0

(t− s)α−1 ϕ (s) ds
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where γ1 = γ1 (α) is constant, and by (H2), we have :

|z(t)− y(t)| ≤ ελϕϕ(t) +
γ1εKλ

2
ϕϕ (t)

(1− L)
=

(
1 +

γ1Kλϕ
(1− L)

)
ελϕϕ (t) .

Then for any t ∈ J :

|z(t)− y(t)| ≤
[(

1 +
γ1Kλϕ
1− L

)
λϕ

]
εϕ (t) = cεϕ(t)

Which completes the proof of Theorem 2.3.9.
�

Theorem 2.3.10 Assume that (P1) and the inequality (2.14) are satisfied, then the
problem (2.3)-(2.4) is Ulam-Hyers stable.

Proof. Let ε > 0 and let z ∈ C1(J,R) satisfying the inequality :

|cDαz(t)− f (t, z (t) ,cDαz(t))| ≤ ε for every t ∈ J, (2.19)

and let y ∈ C(J,R) the unique solution of the Cauchy problem :{
cDαy(t) = f (t, y (t) ,cDαy(t)) , t ∈ J, 0 < α ≤ 1
z(0) + g(y) = y0

so

y(t) = y0 − g(y) +
1

Γ (α)

∫ t

0

(t− s)α−1Ky (s) ds,

where
Ky (t) = f (t, y (t) , Ky(t)) .

By integration of the inequality (2.19), we find∣∣∣∣z(t)− y0 + g(z)− 1

Γ (α)

∫ t

0

(t− s)α−1Kz (s) ds

∣∣∣∣ ≤ εTα

Γ (α + 1)

where Kz (t) = f (t, z (t) , Kz(t)) . For every t ∈ J , we have :

|z(t)− y(t)| ≤
∣∣∣∣z(t)− y0 + g(z)− 1

Γ (α)

∫ t

0

(t− s)α−1Kz (s) ds

∣∣∣∣
+

∣∣∣∣g(y)− g(z) +
1

Γ (α)

∫ t

0

(t− s)α−1 (Kz (s)−Ky (s)) ds

∣∣∣∣
≤ εTα

Γ (α + 1)
+ |g(z)− g(y)|+ 1

Γ (α)

∫ t

0

(t− s)α−1 |Kz (s)−Ky (s)| ds.
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Using (2.16), we obtain

|z(t)− y(t)| ≤ εTα

Γ (α + 1)
+L |z(t)− y(t)|+ K(

1−K
)

Γ (α)

∫ t

0

(t− s)α−1 |z(s)− y(s)| ds

thus

|z(t)− y(t)| ≤ εTα

(1− L) Γ (α + 1)
+

K

(1− L)
(
1−K

)
Γ (α)

∫ t

0

(t− s)α−1 |z(s)− y(s)| ds.

Using Gronwall’s Lemma, we obtain for every t ∈ J :

|z(t)− y(t)| ≤ εTα

(1− L) Γ (α + 1)

[
1 +

γKTα

(1− L)
(
1−K

)
Γ (α + 1)

]
:= cε

where γ = γ (α) a constant, so the problem (2.3)-(2.4) is Ulam-Hyers stable. If we set
ψ (ε) = cε; ψ (0) = 0, then the problem (2.3)−(2.4) is generalized Ulam-Hyers stable .

�

Theorem 2.3.11 Assume that (P1), the inequality (2.14) and

(P2) there exists an increasing function ϕ ∈ C (J,R+) and λϕ > 0 such that

Iαϕ(t) ≤ λϕϕ(t) for each t ∈ J

are satisfied, then the problem (2.3)-(2.4) is Ulam-Hyers-Rassias stable.

2.4 Examples

Example 1. Consider the following boundary value problem

cD
1
2y(t) =

1

10et+2(1 + |y(t)|+ |cD 1
2y(t)|)

, for each t ∈ [0, 1] (2.20)

y(0) + y(1) = 0. (2.21)

Set

f(t, u, v) =
1

10et+2(1 + |u|+ |v|)
, t ∈ [0, 1], u, v ∈ R.

Clearly, the function f is continuous.
For any u, v, ū, v̄ ∈ R and t ∈ [0, 1]

|f(t, u, v)− f(t, ū, v̄)| ≤ 1

10e2
(|u− ū|+ |v − v̄|).
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Hence condition (H1) is satisfied with K = L = 1
10e2

.
Thus condition

KTα

(1− L)Γ(α + 1)

(
1 +

|b|
|a+ b|

)
=

3

2(10e2 − 1)Γ(3
2
)

=
3

(10e2 − 1)
√
π
< 1,

is satisfied with a = b = T = 1, c = 0, and α = 1
2
. It follows from Theorem 2.2.6 that

the problem (2.20)-(2.21) has a unique solution on J , Theorem 2.3.8 implies that the
problem (2.20)-(2.21) is Ulam-Hyers stable.

Example 2. Consider the boundary value problem :

cD
1
2y(t) =

e−t

(9 + et)

 |y(t)|
1 + |y(t)|

−

∣∣∣cD 1
2y(t)

∣∣∣
1 +

∣∣∣cD 1
2y(t)

∣∣∣
 , t ∈ J = [0, 1] (2.22)

y(0) +
n∑
i=1

ciy(ti) = 1, (2.23)

where 0 < t1 < t2 < ... < tn < 1 and ci = 1, ..., n are positive constants with

n∑
i=1

ci <
1

3
.

Set

f(t, u, v) =
e−t

(9 + et)

[
u

1 + u
− v

1 + v

]
, t ∈ [0, 1], u, v ∈ [0,+∞).

Clearly, the function f is continuous. For each u, ū, v, v̄ ∈ R and t ∈ [0, 1] :

|f(t, u, v)− f(t, ū, v̄)| ≤ e−t

(9 + et)
(|u− ū|+ |v − v̄|)

≤ 1

10
|u− ū|+ 1

10
|v − v̄| .

On the other hand, we have

|g(u)− g(ū)| =

∣∣∣∣∣
n∑
i=1

ciu−
n∑
i=1

ciū

∣∣∣∣∣
≤

n∑
i=1

ci |u− ū|

<
1

3
|u− ū| .
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Hence condition (P1) is satisfied with K = K =
1

10
and L =

1

3
. We have

L+
KTα(

1−K
)

Γ (α + 1)
=

1

3
+

1

9Γ

(
3

2

) =
9
√
π + 6

27
√
π

< 1.

It follows from Theorem 2.2.7 that the problem (2.22)- (2.23) has a unique solution on
J and by Theorem 2.3.10, the problem (2.22)-(2.23) is Ulam-Hyers stable.

Remark 2.4.1 The main results of Example 2 stay available when

g(t) =
1

4

(
|y(t)|

1 + |y(t)|

)

and

L+
KTα(

1−K
)

Γ (α + 1)
=

1

4
+

1

9Γ

(
3

2

) =
9
√
π + 8

36
√
π

< 1.



Chapitre 3

Existence Results for Nonlinear
BVP for Implicit Fractional
Differential Equations in Banach
Space 1

3.1 Introduction and Motivations

The purpose of this chapter, is to establish existence and uniqueness results to the
followings problems of implicit fractional differential equations in Banach Space :

cDνy(t) = f(t, y(t),cDνy(t)), for each, t ∈ J := [0, T ], T > 0, 0 < ν ≤ 1,

ay(0) + by(T ) = c,

where cDν is the Caputo fractional derivative, (E, || · ||) is a real Banach space, f :
J × E × E → E is a given function and a, b are real with a+ b 6= 0 and c ∈ E.
and

cDνy(t) = f(t, y(t),cDνy(t)), for every t ∈ J := [0, T ], T > 0, 0 < ν ≤ 1

y(0) + g(y) = y0

where cDν is the Caputo fractional derivative, (E, || · ||) is a real Banach space, f :
J × E × E → E is a given function, g : C(J,E) → E is a continuous function and
y0 ∈ E.
Recently, fractional differential equations have been studied by Abbes et al [3, 6],
Baleanu et al [32, 34], Diethelm [72], Kilbas and Marzan [99], Srivastava et al [100],

1. M. Benchohra, S.Bouriah and M.Darwish, Existence Results for Nonlinear BVP for Implicit
Differential Equations of Fractional Order in Banach Space, Fixed Point Theory.

39
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Lakshmikantham et al [104], Samko et al [132]. More recently, some mathematicians
have considered boundary value problems and boundary conditions for implicit frac-
tional differential equations.
In [91], Hu and Wang investigated the existence of solution of the nonlinear fractional
differential equation with integral boundary condition :

Dαu(t) = f(t, u(t), Dβu(t)), t ∈ (0, 1), 1 < α ≤ 2, 0 < β < 1,

u(0) = u0, u(1) =

∫ 1

0

g(s)u(s)ds,

where Dα is the Riemann-Liouville fractional derivative, f : [0, 1] × R × R → R, is a
continuous function and g be an integrable function.
In [130], by means of Schauder fixed-point theorem, Su and Liu studied the existence
of nonlinear fractional boundary value problem involving Caputo’s derivative :

cDαu(t) = f(t, u(t),cDβu(t)), for each t ∈ (0, 1), 1 < α ≤ 2, 0 < β ≤ 1,

u(0) = u
′
(1) = 0, or u

′
(1) = u(1) = 0, or u(0) = u(1) = 0,

where f : [0, 1]× R× R→ R is a continuous function.

Many techniques have been developed for studying the existence and uniqueness
of solutions of initial and boundary value problem for fractional differential equations.
Several authors tried to develop a technique that depends on the Darbo or the Mönch
fixed point theorems with the Hausdorff or Kuratowski measure of noncompactness.
The notion of the measure of noncompactness was defined in many ways. In 1930, Ku-
ratowski [102] defined the measure of non-compactness, α(A), of a bounded subset A
of a metric space (X, d), and in 1955, Darbo [70] introduced a new type of fixed point
theorem for set contractions.

In this Chapter, the results are based on Darbo’s fixed point theorem combined with
the technique of measures of noncompactness and on Mönch’s fixed point theorem.

3.2 Existence Results for the BVP in Banach Space

3.2.1 Introduction

The purpose of this Section, is to establish sufficient conditions for the existence
of solutions for the following problem of implicit fractional differential equations with
Caputo fractional derivative :

cDνy(t) = f(t, y(t),cDνy(t)), for each, t ∈ J := [0, T ], T > 0, 0 < ν ≤ 1, (3.1)

ay(0) + by(T ) = c, (3.2)
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where cDν is the Caputo fractional derivative, (E, || · ||) is a real Banach space, f :
J × E × E → E is a given function and a, b are real with a+ b 6= 0 and c ∈ E.
At last,As application, an example is included to show the applicability of our results.

3.2.2 Existence of Solutions

Let (E; ‖ · ‖) be a valued-Banach space, and t ∈ J . We denote by C(J,E) the space
of E valued continuous functions on J with the usual supremum norm

‖y‖∞ = sup{||y(t)|| : t ∈ J}

for any y ∈ C(J,E).
Moreover, for a given set V of functions v : J → E let us denote by

V (t) = {v(t), v ∈ V }, t ∈ J

and
V (J) = {v(t) : v ∈ V, t ∈ J}.

Let us defining what we mean by a solution of problem (3.1)-(3.2).

Definition 3.2.1 A function y ∈ C1(J,E) is said to be a solution of the problem
(3.1)–(3.2) if y satisfied equation (3.1) on J and conditions (3.2).

For the existence of solutions for the problem (3.1)–(3.2), we need the following auxi-
liary lemma :

Lemma 3.2.2 ([33]) Let 0 < ν ≤ 1 and h : [0, T ] −→ E be a continuous function.
The linear problem

cDνy(t) = h(t), t ∈ J
ay(0) + by(T ) = c,

has a unique solution which is given by :

y(t) =
1

Γ(ν)

∫ t

0

(t− s)ν−1h(s)ds

− 1

a+ b

[
b

Γ(ν)

∫ T

0

(T − s)ν−1h(s)ds− c
]
.

Lemma 3.2.3 Let f : J × E × E −→ E be a continuous function, then the problem
(3.1)-(3.2) is equivalent to the problem :

y(t) = Ã+ Iνg(t) (3.3)

where g ∈ C (J,E) satisfies the functional equation

g(t) = f(t, Ã+ Iνg(t), g(t))
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and

Ã =
1

a+ b

[
c− b

Γ(ν)

∫ T

0

(T − s)ν−1g(s)ds

]
.

Proof. Let y be solution of (3.3). We shall show that y is solution of (3.1)−(3.2).
We have

y(t) = Ã+ Iνg(t).

So, y(0) = Ã and y(T ) = Ã+
1

Γ (ν)

∫ T

0

(T − s)ν−1 g(s)ds.

ay(0) + by(T ) =
−ab

(a+ b)Γ(ν)

∫ T

0

(T − s)α−1g(s)ds

+
ac

a+ b
− b2

(a+ b)Γ(ν)

∫ T

0

(T − s)ν−1g(s)ds

+
bc

a+ b
+

b

Γ(ν)

∫ T

0

(T − s)ν−1g(s)ds.

= c.

Then
ay(0) + by(T ) = c.

On the other hand, we have

cDνy(t) = cDν(Ã+ Iνg(t)) = g(t)

= f(t, y(t),cDνy(t)).

Thus, y is solution of problem (3.1)-(3.2).

�

First we list the following hypotheses :
(H1) The function f : J × E × E → E is continuous.
(H2) There exist constants K > 0 and 0 < L < 1 such that

||f(t, u, v)− f(t, ū, v̄)|| ≤ K||u− ū||+ L||v − v̄||

for any u, v, ū, v̄ ∈ E and t ∈ J.

Remark 3.2.4 [25] Condition (H2) is equivalent to the inequality

α
(
f(t, B1, B2)

)
≤ Kα(B1) + Lα(B2),

for any bounded sets B1, B2 ⊆ E and for each t ∈ J.
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Theorem 3.2.5 Assume (H1),(H2) hold. If

(|b|+ |a+ b|)T νK
|a+ b|Γ(ν + 1)(1− L)

< 1 (3.4)

then the IVP (3.1)-(3.2) has at least one solution on J .

This theorem will be proved in two ways : the first is based on Darbo’s fixed point
theorem combined with the technique of measures of noncompactness and the second
on Mönch’s fixed point theorem.
Proof 1.

Transform the problem (3.1)-(3.2) into a fixed point problem. Define the operator
N : C(J,E)→ C(J,E) by :

N(y)(t) = Ã+ Iνg(t) (3.5)

where g ∈ C(J,E) satisfies the functional equation

g(t) = f(t, y(t), g(t))

and

Ã =
1

a+ b

[
c− b

Γ(ν)

∫ T

0

(T − s)ν−1g(s)ds

]
.

Clearly, the fixed points of operator N are solutions of problem (3.1)-(3.2). We shall
show that N satisfies the assumption of Darbo’s fixed point Theorem. The proof will
be given in several claims.

Claim 1 : N is continuous.
Let {un} be a sequence such that un → u in C(J,E). Then for each t ∈ J

||N(un)(t)−N(u)(t)|| ≤ |b|
|a+ b|Γ(ν)

∫ T

0

(T − s)ν−1‖gn(s)− g(s)‖ds

+
1

Γ(ν)

∫ t

0

(t− s)ν−1||gn(s)− g(s)||ds, (3.6)

where gn, g ∈ C(J,E) such that

gn(t) = f(t, un(t), gn(t)),

and
g(t) = f(t, u(t), g(t)).

By (H2) we have, for each t ∈ J,

||gn(t)− g(t)|| = ||f(t, un(t), gn(t))− f(t, u(t), g(t))||
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≤ K||un(t)− u(t)||+ L||gn(t)− g(t)||.

Then

||gn(t)− g(t)|| ≤ K

1− L
||un(t)− u(t)||.

Since un → u, then we get gn(t)→ g(t) as n→∞ for each t ∈ J.
Let η > 0 be such that, for each t ∈ J , we have ||gn(t)|| ≤ η and ||g(t)|| ≤ η.
Then we have,

(t− s)ν−1||gn(s)− g(s)|| ≤ (t− s)ν−1[||gn(s)||+ ||g(s)||]
≤ 2η(t− s)ν−1.

For each t ∈ J , the function s→ 2η(t− s)ν−1 is integrable on [0, t], then by means of
the Lebesgue Dominated Convergence Theorem and (3.6) has that

||N(un)(t)−N(u)(t)|| → 0 as n→∞.

Then
||N(un)−N(u)||∞ → 0 as n→∞.

Consequently, N is continuous.
Let the constant R such that

R ≥ ‖c‖Γ(ν + 1)(1− L) + (|b|+ |a+ b|)T νf ∗

|a+ b|Γ(ν + 1)(1− L)− (|b|+ |a+ b|)T νK
, (3.7)

where f ∗ = sup
t∈J
‖f(t, 0, 0)‖.

Define
DR = {u ∈ C(J,E) : ‖u‖∞ ≤ R}.

It is clear that DR is a bounded, closed and convex subset of C(J,E).

Claim 2 : N(DR) ⊂ DR.

Let u ∈ DR we show that Nu ∈ DR. We have, for each t ∈ J

||Nu(t)|| ≤ ‖c‖
|a+ b|

+
|b|

|a+ b|Γ(ν)

∫ T

0

(T − s)ν−1||g(s)||ds

+
1

Γ(ν)

∫ t

0

(t− s)ν−1||g(s)||ds. (3.8)

By (H2) we have for each t ∈ J,

||g(t)|| = ||f(t, u(t), g(t))− f(t, 0, 0) + f(t, 0, 0)||
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≤ ‖f(t, u(t), g(t))− f(t, 0, 0)‖+ ‖f(t, 0, 0)‖
≤ K‖u(t)‖+ L‖g(t)‖+ f ∗

≤ KR + L||g(t)||+ f ∗.

Then

||g(t)|| ≤ f ∗ +KR

1− L
:= M

Thus, (3.7) and (3.8) implies that

||Nu(t)|| ≤ ||c||
|a+ b|

+

[
|b|
|a+ b|

+ 1

]
T ν

Γ(ν + 1)

(
f ∗ +KR

1− L

)
≤ ||c||
|a+ b|

+
(|b|+ |a+ b|)T νf ∗

|a+ b|Γ(ν + 1)(1− L)

+
(|b|+ |a+ b|)T νKR
|a+ b|Γ(ν + 1)(1− L)

≤ R.

Consequently,
N(DR) ⊂ DR.

Claim 3 : N(DR) is bounded and equicontinuous.

By Claim 2 we have N(DR) = {N(u) : u ∈ DR} ⊂ DR. Thus, for each u ∈ DR we
have ‖N(u)‖∞ ≤ R which means that N(DR) is bounded. Let t1, t2 ∈ J, t1 < t2, and
let u ∈ DR. Then

‖N(u)(t2)−N(u)(t1)‖ =
∥∥∥ 1

Γ(ν)

∫ t1

0

[(t2 − s)ν−1 − (t1 − s)ν−1]g(s)ds

+
1

Γ(ν)

∫ t2

t1

(t2 − s)ν−1g(s)ds
∥∥∥

≤ M

Γ(ν + 1)
(tν2 − tν1 + 2(t2 − t1)ν).

As t1 → t2, the right-hand side of the above inequality tends to zero.

Claim 4 : The operator N : DR → DR is a strict set contraction.

Let V ⊂ DR and t ∈ J , then we have,

α(N(V )(t)) = α((Ny)(t), y ∈ V )

≤ 1

Γ(ν)

{∫ t

0

(t− s)ν−1α(g(s))ds, y ∈ V
}
.
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Then Remark 3.2.4 implies that, for each s ∈ J ,

α({g(s), y ∈ V }) = α({f(s, y(s), g(s)), y ∈ V })
≤ Kα({y(s), y ∈ V }) + Lα({g(s), y ∈ V }).

Thus

α ({g(s), y ∈ V }) ≤ K

1− L
α{y(s), y ∈ V }.

Then

α(N(V )(t)) ≤ K

(1− L)Γ(ν)

{∫ t

0

(t− s)ν−1{α(y(s))}ds, y ∈ V
}

≤ Kαc(V )

(1− L)Γ(ν)

∫ t

0

(t− s)ν−1ds

≤ KT ν

(1− L)Γ(ν + 1)
αc(V ).

Therefore

αc(NV ) ≤ KT ν

(1− L)Γ(ν + 1)
αc(V ).

So, by (3.4), the operator N is a set contraction. As a consequence of Theorem 1.5.3,
we deduce that N has a fixed point which is solution to the problem (3.1)-(3.2). This
completes the proof.

�

Proof 2. Consider the operator N defined in (3.5). We shall show that N satisfies
the assumption of Mönch’s fixed point theorem. We know that N : DR → DR is
bounded and continuous, we need to prove that the implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ α(V ) = 0

holds for every subset V ofDR. Now let V be a subset ofDR such that V ⊂ conv(N(V )∪
{0}). V is bounded and equicontinuous and therefore the function t→ v(t) = α(V (t))
is continuous on J . By Remark 3.2.4, Lemma 1.4.8 and the properties of the measure
α we have for each t ∈ J

v(t) ≤ α(N(V )(t) ∪ {0})
≤ α(N(V )(t))

≤ α{(Ny)(t), y ∈ V }

≤ K

(1− L)Γ(ν)

∫ t

0

(t− s)ν−1{α(y(s))ds, y ∈ V }
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≤ K

(1− L)Γ(ν)

∫ t

0

(t− s)ν−1v(s)ds.

Lemma 1.3.8 implies that v(t) = 0 for each t ∈ J , and then V (t) is relatively compact
in E. In view of the Ascoli-Arzelà theorem, V is relatively compact in DR. Applying
now Theorem 1.5.5 we conclude that N has a fixed point y ∈ DR. Hence N has a fixed
point which is solution to the problem (3.1)-(3.2). This completes the proof.

�

3.2.3 An Example.

Consider the following infinite system

cD
1
2yn(t) =

(3 + ||yn(t)||+ ||cD 1
2yn(t)||)

3et+2(1 + ||yn(t)||+ ||cD 1
2yn(t)||)

, for each, t ∈ [0, 1], (3.9)

yn(0) + yn(1) = 0. (3.10)

Set

E = l1 = {y = (y1, y2, ..., yn, ...),
∞∑
n=1

|yn| <∞},

and

f(t, u, v) =
(3 + ||u||+ ||v||)

3et+2(1 + ||u||+ ||v||)
, t ∈ [0, 1], u, v ∈ E.

E is a Banach space with the norm ||y|| =
∞∑
n=1

|yn|.

Clearly, the function f is jointly continuous.
For any u, v, ū, v̄ ∈ E and t ∈ [0, 1] :

||f(t, u, v)− f(t, ū, v̄)|| ≤ 1

3e2
(||u− ū||+ ||v − v̄||).

Hence condition (H2) is satisfied with K = L =
1

3e2
.

And the conditions

(|b|+ |a+ b|)T νK
|a+ b|Γ(ν + 1)(1− L)

=
1√

π(e2 − 1
3
)
< 1

KT ν

(1− L)Γ(ν + 1)
=

2

(3e2 − 1)
√
π
< 1

are satisfied with a = b = T = 1, c = 0 and ν =
1

2
.

It follows from Theorem 3.2.5 that the problem (3.9)-(3.10) has at least one solution
on J .
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3.3 Existence Results for the non-local BVP in Ba-

nach Space

3.3.1 Introduction

The purpose of this Section, is to establish sufficient conditions for the existence of
solutions for the following boundary value problem for implicit fractional differential
equations with Caputo fractional derivative :

cDνy(t) = f(t, y(t),cDνy(t)), for every t ∈ J := [0, T ], T > 0, 0 < ν ≤ 1 (3.11)

y(0) + g(y) = y0 (3.12)

where cDν is the Caputo fractional derivative, (E, || · ||) is a real Banach space, f :
J × E × E → E is a given function, g : C(J,E) → E is a continuous function and
y0 ∈ E. Finally, an example is given to demonstrate the application of our main results.

3.3.2 Existence of Solutions

Let (E; ‖ · ‖) be a valued-Banach space, and t ∈ J . We denote by C(J,E) the space
of E valued continuous functions on J with the usual supremum norm

‖y‖∞ = sup{||y(t)|| : t ∈ J}

for any y ∈ C(J,E).

Definition 3.3.1 A function y ∈ C1 (J,E) is called solution of problem (3.11)-(3.12)
if it satisfies the equation (3.11) on J and the condition (3.12).

Lemma 3.3.2 Let 0 < ν ≤ 1 and let h : [0, T ] −→ E be a continuous function. The
linear problem

cDνy(t) = h(t), t ∈ J
y(0) + g(y) = y0

has a unique solution which is given by :

y(t) = y0 − g(y) +
1

Γ (ν)

∫ t

0

(t− s)ν−1 h(s)ds

Lemma 3.3.3 Let f : J × E × E −→ E be a continuous function, then the problem
(3.11)-(3.12) is equivalent to the following problem

y(t) = y0 − g(y) + IνH(t)

where H ∈ C(J,R)
H(t) = f(t, y(t), H(t)).
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Set the following hypothesis :
(H3) there exist 0 < K such that

‖g(u)− g(u)‖ ≤ K‖u− u‖ for any u, u ∈ C(J,E).

Remark 3.3.4 [25] Condition (H3) is equivalent to the inequality

α
(
g(B)

)
≤ Kα(B),

for any bounded sets B ⊆ E.

Theorem 3.3.5 Assume (H1)-(H3) hold.
If

K +
KT ν

(1− L)Γ(ν + 1)
< 1, (3.13)

then the IVP (3.11)-(3.12) has at least one solution on J .

3.3.3 An Example.

Consider the boundary value problem :

cD
1
2yn(t) =

e−t

(9 + et)

[
1 +

‖yn(t)‖
1 + ‖yn(t)‖

− ‖cD 1
2yn(t)‖

1 + ‖cD 1
2yn(t)‖

]
, t ∈ J = [0, 1] (3.14)

yn(0) +
m∑
i=1

ciyn(ti) = 1, (3.15)

where 0 < t1 < t2 < ... < tm < 1 and ci = 1, ...,m are positif constants with

m∑
i=1

ci <
1

3
.

Set

E = l1 = {y = (y1, y2, ..., yn, ...),
∞∑
n=1

|yn| <∞},

and

f(t, u, v) =
e−t

(9 + et)

[
1 +

‖u‖
1 + ‖u‖

− ‖v‖
1 + ‖v‖

]
, t ∈ [0, 1], u, v ∈ E.

E is a Banach space with the norm ||y|| =
∞∑
n=1

|yn|.

Clearly, the function f is continuous.
For each u, ū, v, v̄ ∈ E and t ∈ [0, 1] :

‖f(t, u, v)− f(t, ū, v̄)‖ ≤ e−t

9 + et
(‖u− ū‖+ ‖v − v̄‖)
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≤ 1

10
‖u− ū‖+

1

10
‖v − v̄‖.

Hence condition (H2) is satisfied with K = L =
1

10
.

On the other hand, we have for any u, ū ∈ E

‖g(u)− g(ū)‖ ≤ 1

3
‖u− ū‖.

Hence conditions (H3) is satisfied with K =
1

3
. And the condition

K +
KT ν

(1− L)Γ(ν + 1)
=

9
√
π + 6

27
√
π

< 1,

is satisfied with T = 1 and ν =
1

2
.

It follows from Theorem 3.3.5 that the problem (3.14)-(3.15) has at least one solution
on J .



Chapitre 4

Boundary Value Problem for
Nonlinear Implicit Fractional
Differential Equations with
Impulses

4.1 Introduction and Motivations

In this chapter, we establish, existence, uniqueness and stability results to the fol-
lowing boundary value problems for nonlinear implicit fractional differential equations
with impulses

cDα
tk
y(t) = f(t, y,cDα

tk
y(t)), for each , t ∈ (tk, tk+1], k = 0, . . . ,m, 0 < α ≤ 1,

∆y|t=tk = Ik(y(t−k )), k = 1, . . . ,m,

ay(0) + by(T ) = c,

where cDα
tk

is the Caputo fractional derivative, f : J×R×R→ R is a given function, Ik :
R→ R, and a, b, c are real constants with a+b 6= 0, 0 = t0 < t1 < · · · < tm < tm+1 = T ,
∆y|t=tk = y(t+k ) − y(t−k ), y(t+k ) = limh→0+ y(tk + h) and y(t−k ) = limh→0− y(tk + h)
represent the right and left limits of y(t) at t = tk.
An extension of this problem is given in Section 4.3. More precisely, we shall present
a result of existence and uniqueness for the following boundary value problems for
nonlinear implicit fractional differential equations with impulses in Banach space.

cDν
tk
y(t) = f(t, y,cDν

tk
y(t)), for each , t ∈ (tk, tk+1], k = 0, . . . ,m, 0 < ν ≤ 1,

∆y|t=tk = Ik(y(t−k )), k = 1, . . . ,m,

ay(0) + by(T ) = c,

51
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where cDν
tk

is the Caputo fractional derivative, (E, || · ||) is a real Banach space,
f : J × E × E → E is a given function, Ik : E → E, a, b are real constants with
a+ b 6= 0 and c ∈ E.
The theory of impulsive differential equations of integer order has found its exten-
sive applications in realistic mathematical modelling of a wide variety of practical
situations and has emerged as an important area of investigation in recent years. See
[30, 31, 55, 79, 103, 121, 133], and [66, 84, 85, 138], the references therein.
Very recently, anti-periodic boundary value problems of fractional differential equations
have received considerable attention because they occur in the mathematical modeling
of a variety of physical processes ; See for example [1, 13, 41, 47, 67, 140, 150].

In [142], F. Wang and Z. Liu, by using Schauder’s fixed point theorem and the
contraction mapping principle, considered the existence of solutions for the following
nonlinear fractional differential equations with fractional anti-periodic boundary condi-
tions :

cDαy(t) = f(t, y(t),cDβy(t)), t ∈ [0, T ],

y(0) = −y(T ), cDγy(0) = −cDγ(T ), 0 < β < 1.

Where denotes the Caputo fractional derivative of order 1 < α ≤ 2, 0 < γ, β < 1,
α− β ≥ 1 and f is a given continuous function.
In [12], B. Ahmad and J.J. Nieto, studied the existence and uniqueness of solutions
for impulsive differential equations of fractional order 1 < α ≤ 2, with anti-periodic
boundary conditions in a Banach space :

cDαy(t) = f(t, y(t)), t ∈ J = [0, T ], t 6= tk, k = 1, . . . ,m, 1 < α ≤ 2,

∆y|t=tk = Ik(y(t−k )), tk ∈ (0, T ), k = 1, . . . ,m,

∆y′|t=tk = Ik(y(t−k )), tk ∈ (0, T ), k = 1, . . . ,m,

y(0) = −y(T ), y′(0) = −y′(T ),

where k = 1, . . . ,m, cDα is the Caputo fractional derivative, f : J × R → R is a
given function, Ik, Ik : R → R and 0 = t0 < t1 < · · · < tm < tm+1 = T , ∆y|t=tk =
y(t+k ) − y(t−k ), ∆y′|t=tk = y′(t+k ) − y′(t−k ). Their study is based on the contraction
mapping principle and Krasnoselskii’s fixed point theorem.

4.2 Existence Results for the BVP with Impulses

1

1. M. Benchohra and S. Bouriah, Existence and Stability Results for Nonlinear Implicit Fractional
Differential Equations with Impulses, Mem. Differential Equations Math. Phys.
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4.2.1 Introduction

In this Section, we establish, existence, uniqueness and stability results of solutions
for the following boundary value problem for nonlinear implicit fractional differential
equations with impulse and Caputo fractional derivative :

cDα
tk
y(t) = f(t, y,cDα

tk
y(t)), for each , t ∈ (tk, tk+1], k = 0, . . . ,m, 0 < α ≤ 1, (4.1)

∆y|t=tk = Ik(y(t−k )), k = 1, . . . ,m, (4.2)

ay(0) + by(T ) = c, (4.3)

where cDα
tk

is the Caputo fractional derivative, f : J×R×R→ R is a given function, Ik :
R→ R, and a, b, c are real constants with a+b 6= 0, 0 = t0 < t1 < · · · < tm < tm+1 = T ,
∆y|t=tk = y(t+k ) − y(t−k ), y(t+k ) = limh→0+ y(tk + h) and y(t−k ) = limh→0− y(tk + h)
represent the right and left limits of y(t) at t = tk.
The arguments are based upon the Banach contraction principle, and Schaefer’s fixed
point theorem. At last, we present two examples to show the applicability of our results.

4.2.2 Existence of Solutions

Denote by C(J,R) the Banach space of continuous functions from J into R, with
the usual supremum norm

‖y‖∞ = sup{|y(t)|, t ∈ J}.

Consider the set of functions

PC(J,R) = {y : J → R : y ∈ C((tk, tk+1],R), k = 0, . . . ,m and there exist y(t−k ) and

y(t+k ), k = 1, . . . ,m with y(t−k ) = y(tk)}.

PC(J,R) is a Banach space with the norm

‖y‖PC = sup
t∈J
|y(t)|.

Let J0 = [t0, t1] and Jk = (tk, tk+1] where k = 1, . . . ,m.

Definition 4.2.1 A function y ∈ PC(J,R) whose α-derivative exists on Jk is said to
be a solution of (4.1)–(4.3) if y satisfies the equation cDα

tk
y(t) = f(t, y(t),cDα

tk
y(t)) on

Jk, and satisfy the conditions

∆y|t=tk = Ik(y(t−k )), k = 1, . . . ,m,

ay(0) + by(T ) = c.

To prove the existence of solutions to (4.1)–(4.3), we need the following auxiliary
Lemma.
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Lemma 4.2.2 Let 0 < α ≤ 1 and let σ : J → R be continuous. A function y is a
solution of the fractional integral equation

y(t) =



−1

a+ b

[
b

m∑
i=1

Ii(y(t−i )) +
b

Γ(α)

m∑
i=1

∫ ti

ti−1

(ti − s)α−1σ(s)ds

+
b

Γ(α)

∫ T

tm

(T − s)α−1σ(s)ds− c
]

+
1

Γ(α)

∫ t

0

(t− s)α−1σ(s)ds if t ∈ [0, t1]

−1

a+ b

[
b

m∑
i=1

Ii(y(t−i )) +
b

Γ(α)

m∑
i=1

∫ ti

ti−1

(ti − s)α−1σ(s)ds

+
b

Γ(α)

∫ T

tm

(T − s)α−1σ(s)ds− c
]

+
k∑
i=1

Ii(y(t−i )) +
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1σ(s)ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1σ(s)ds, if t ∈ (tk, tk+1],

(4.4)
where k = 1, . . . ,m, if and only if y is a solution of the fractional BVP

cDαy(t) = σ(t), t ∈ Jk, (4.5)

∆y|t=tk = Ik(y(t−k )), k = 1, . . . ,m, (4.6)

ay(0) + by(T ) = c. (4.7)

Proof. Assume y satisfies (4.5)-(4.7). If t ∈ [0, t1] then

cDαy(t) = σ(t).

Lemma 1.3.7 implies

y(t) = c0 + Iασ(t) = c0 +
1

Γ(α)

∫ t

0

(t− s)α−1σ(s)ds

for c0 ∈ R. If t ∈ (t1, t2] then Lemma 1.3.7 implies

y(t) = y(t+1 ) +
1

Γ(α)

∫ t

t1

(t− s)α−1σ(s)ds

= ∆y|t=t1 + y(t−1 ) +
1

Γ(α)

∫ t

t1

(t− s)α−1σ(s)ds

= I1(y(t−1 )) +

[
c0 +

1

Γ(α)

∫ t1

0

(t1 − s)α−1σ(s)ds

]
+

1

Γ(α)

∫ t

t1

(t− s)α−1σ(s)ds.
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= c0 + I1(y(t−1 )) +
1

Γ(α)

∫ t1

0

(t1 − s)α−1σ(s)ds

+
1

Γ(α)

∫ t

t1

(t− s)α−1σ(s)ds.

If t ∈ (t2, t3], then from Lemma 1.3.7, we get

y(t) = y(t+2 ) +
1

Γ(α)

∫ t

t2

(t− s)α−1σ(s)ds

= ∆y|t=t2 + y(t−2 ) +
1

Γ(α)

∫ t

t2

(t− s)α−1σ(s)ds

= I2(y(t−2 )) +

[
c0 + I1(y(t−1 )) +

1

Γ(α)

∫ t1

0

(t1 − s)α−1σ(s)ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1σ(s)ds

]
+

1

Γ(α)

∫ t

t2

(t− s)α−1σ(s)ds.

= c0 +
[
I1(y(t−1 )) + I2(y(t−2 ))

]
+

[
1

Γ(α)

∫ t1

0

(t1 − s)α−1σ(s)ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1σ(s)ds

]
+

1

Γ(α)

∫ t

t2

(t− s)α−1σ(s)ds.

Repeating the process in this way, the solution y(t) for t ∈ (tk, tk+1] where k = 1, . . . ,m,
can be written as

y(t) = c0 +
k∑
i=1

Ii(y(t−i )) +
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1σ(s)ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1σ(s)ds.

Applying the boundary conditions ay(0) + by(T ) = c, we get

c = c0(a+ b) + b

m∑
i=1

Ii(y(t−i )) +
b

Γ(α)

m∑
i=1

∫ ti

ti−1

(ti − s)α−1σ(s)ds

+
b

Γ(α)

∫ T

tm

(T − s)α−1σ(s)ds.

Then

c0 =
−1

a+ b

[
b

m∑
i=1

Ii(y(t−i )) +
b

Γ(α)

m∑
i=1

∫ ti

ti−1

(ti − s)α−1σ(s)ds

+
b

Γ(α)

∫ T

tm

(T − s)α−1σ(s)ds− c
]
.
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Thus, if t ∈ (tk, tk+1] where k = 1, . . . ,m, then

y(t) =
−1

a+ b

[
b

m∑
i=1

Ii(y(t−i )) +
b

Γ(α)

m∑
i=1

∫ ti

ti−1

(ti − s)α−1σ(s)ds

+
b

Γ(α)

∫ T

tm

(T − s)α−1σ(s)ds− c
]

+
k∑
i=1

Ii(y(t−i ))

+
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1σ(s)ds+
1

Γ(α)

∫ t

tk

(t− s)α−1σ(s)ds.

Conversely, assume that y satisfies the impulsive fractional integral equation (4.4). If
t ∈ [0, t1] then ay(0) + by(T ) = c and using the fact that cDα is the left inverse of Iα

we get
cDαy(t) = σ(t), for each t ∈ [0, t1].

If t ∈ (tk, tk+1], k = 1, . . . ,m and using the fact that cDαC = 0, where C is a constant,
we get

cDαy(t) = σ(t), for each t ∈ (tk, tk+1].

Also, we can easily show that

∆y|t=tk = Ik(y(t−k )), k = 1, . . . ,m.
�

We are now in a position to state and prove our existence result for the problem
(4.1)−(4.3) based on Banach’s fixed point.

Theorem 4.2.3 Assume
(H1) The function f : J × R× R→ R is a continuous.
(H2) There exist constants K > 0 and 0 < L < 1 such that

|f(t, u, v)− f(t, ū, v̄)| ≤ K|u− ū|+ L|v − v̄|

for any u, v, ū, v̄ ∈ R and t ∈ J .
(H3) There exists a constant l̃ > 0 such that

|Ik(u)− Ik(u)| ≤ l̃|u− u|,

for each u, u ∈ R and k = 1, . . . ,m.
If (

|b|
|a+ b|

+ 1

)[
ml̃ +

(m+ 1)KTα

(1− L)Γ(α + 1)

]
< 1, (4.8)

then there exists a unique solution for BVP (4.1)-(4.3) on J .
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Proof. Transform the problem (4.1)-(4.3) into a fixed point problem. Consider the
operator N : PC(J,R)→ PC(J,R) defined by

N(y)(t) =
−1

a+ b

[
b

m∑
i=1

Ii(y(t−i )) +
b

Γ(α)

m∑
i=1

∫ ti

ti−1

(ti − s)α−1g(s)ds

+
b

Γ(α)

∫ T

tm

(T − s)α−1g(s)ds− c
]

+
1

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1g(s)ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1g(s)ds+
∑

0<tk<t

Ik(y(t−k )),

(4.9)
where g ∈ C(J,R) be such that

g(t) = f(t, y(t), g(t)).

Clearly, the fixed points of operator N are solutions of problem (4.1)–(4.3).
Let u,w ∈ PC(J,R). Then for t ∈ J , we have

|N(u)(t)−N(w)(t)| ≤ |b|
|a+ b|

[
m∑
i=1

|Ii(u(t−i ))− Ii(w(t−i ))|

+
1

Γ(α)

m∑
i=1

∫ ti

ti−1

(ti − s)α−1|g(s)− h(s)|ds

+
1

Γ(α)

∫ T

tm

(T − s)α−1|g(s)− h(s)|ds
]

+
1

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1|g(s)− h(s)|ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1|g(s)− h(s)|ds

+
∑

0<tk<t

|Ik(u(t−k ))− Ik(w(t−k ))|,

where g, h ∈ C(J,R) be such that

g(t) = f(t, u(t), g(t)),

and
h(t) = f(t, w(t), h(t)).

By (H2) we have

|g(t)− h(t)| = |f(t, u(t), g(t))− f(t, w(t), h(t))|
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≤ K|u(t)− w(t)|+ L|g(t)− h(t)|.

Then

|g(t)− h(t)| ≤ K

1− L
|u(t)− w(t)|.

Therefore, for each t ∈ J

|N(u)(t)−N(w)(t)| ≤ |b|
|a+ b|

[
m∑
k=1

l̃|u(t−k )− w(t−k )|

+
K

(1− L)Γ(α)

m∑
k=1

∫ tk

tk−1

(tk − s)α−1|u(s)− w(s)|ds

+
K

(1− L)Γ(α)

∫ T

tm

(T − s)α−1|u(s)− w(s)|ds
]

+
K

(1− L)Γ(α)

m∑
k=1

∫ tk

tk−1

(tk − s)α−1|u(s)− w(s)|ds

+
K

(1− L)Γ(α)

∫ t

tk

(t− s)α−1|u(s)− w(s)|ds

+
m∑
k=1

l̃|u(t−k )− w(t−k )|.

≤
(
|b|
|a+ b|

+ 1

)[
ml̃ +

mKTα

(1− L)Γ(α + 1)

+
KTα

(1− L)Γ(α + 1)

]
‖u− w‖PC .

Thus

‖N(u)−N(w)‖PC ≤
(
|b|
|a+ b|

+ 1

)[
ml̃ +

(m+ 1)KTα

(1− L)Γ(α + 1)

]
‖u− w‖PC .

By (4.8), the operator N is a contraction. Hence, by Banach’s contraction principle, N
has a unique fixed point which is a unique solution of the problem (4.1)–(4.3).

�

Our second result is based on Schaefer’s fixed point theorem.

Theorem 4.2.4 Assume (H1), (H2) and
(H4) There exist p, q, r ∈ C(J,R+) with r∗ = sup

t∈J
r(t) < 1 such that

|f(t, u, w)| ≤ p(t) + q(t)|u|+ r(t)|w| for t ∈ J and u,w ∈ R.
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(H5) The functions Ik : R→ R are continuous and there exist constants M∗,
N∗ > 0 such that

|Ik(u)| ≤M∗|u|+N∗ for each u ∈ R, k = 1, . . . ,m.

If (
|b|
|a+ b|

+ 1

)(
mM∗ +

(m+ 1)q∗Tα

(1− r∗)Γ(α + 1)

)
< 1, (4.10)

then the BVP (4.1)-(4.3) has at least one solution on J .

Proof. Let the operator N defined in (4.9). We shall use Schaefer’s fixed point theorem
to prove that N has a fixed point. The proof will be given in several steps.

Step 1 : N is continuous. Let {un} be a sequence such that un → u in PC(J,R).
Then for each t ∈ J,

|N(un)(t)−N(u)(t)| ≤ |b|
|a+ b|

[
m∑
i=1

|Ik(un(t−k ))− Ik(u(t−k ))|

+
1

Γ(α)

m∑
i=1

∫ ti

ti−1

(ti − s)α−1|gn(s)− g(s)|ds

+
1

Γ(α)

∫ T

tm

(T − s)α−1|gn(s)− g(s)|ds
]

+
1

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1|gn(s)− g(s)|ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1|gn(s)− g(s)|ds

+
∑

0<tk<t

|Ik(un(t−k ))− Ik(u(t−k ))|,

(4.11)

where gn, g ∈ C(J,R) such that

gn(t) = f(t, un(t), gn(t)),

and
g(t) = f(t, u(t), g(t)).

By (H2), we have

|gn(t)− g(t)| = |f(t, un(t), gn(t))− f(t, u(t), g(t))|
≤ K|un(t)− u(t)|+ L|gn(t)− g(t)|.

Then

|gn(t)− g(t)| ≤ K

1− L
|un(t)− u(t)|.
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Since un → u, then we get gn(t) → g(t) as n → ∞ for each t ∈ J. And let η > 0 be
such that, for each t ∈ J , we have |gn(t)| ≤ η and |g(t)| ≤ η. Then, we have

(t− s)α−1|gn(s)− g(s)| ≤ (t− s)α−1[|gn(s)|+ |g(s)|]
≤ 2η(t− s)α−1,

and

(tk − s)α−1|gn(s)− g(s)| ≤ (tk − s)α−1[|gn(s)|+ |g(s)|]
≤ 2η(tk − s)α−1.

For each t ∈ J , the functions s → 2η(t − s)α−1 and s → 2η(tk − s)α−1 are integrable
on [0, t], then the Lebesgue Dominated Convergence Theorem and (4.11) imply that

|N(un)(t)−N(u)(t)| → 0 as n→∞,

and hence
‖N(un)−N(u)‖PC → 0 as n→∞.

Consequently, N is continuous.

Step 2 : N maps bounded sets into bounded sets in PC(J,R). Indeed, it is enough
to show that for any η∗ > 0, there exists a positive constant ` such that for each
u ∈ Bη∗ = {u ∈ PC(J,R) : ||u||PC ≤ η∗}, we have ‖N(u)‖PC ≤ `. We have for each
t ∈ J ,

N(u)(t) =
−1

a+ b

[
b

m∑
i=1

Ii(u(t−i )) +
b

Γ(α)

m∑
i=1

∫ ti

ti−1

(ti − s)α−1g(s)ds

+
b

Γ(α)

∫ T

tm

(T − s)α−1g(s)ds− c
]

+
1

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1g(s)ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1g(s)ds+
∑

0<tk<t

Ik(u(t−k )),

(4.12)
where g ∈ C(J,R) be such that

g(t) = f(t, u(t), g(t)).

By (H4), we have for each t ∈ J,

|g(t)| = |f(t, u(t), g(t))|
≤ p(t) + q(t)|u(t)|+ r(t)|g(t)|
≤ p(t) + q(t)η∗ + r(t)|g(t)|
≤ p∗ + q∗η∗ + r∗|g(t)|,
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where p∗ = sup
t∈J

p(t), and q∗ = sup
t∈J

q(t).

Then

|g(t)| ≤ p∗ + q∗η∗

1− r∗
:= M.

Thus (4.12) implies

|N(u)(t)| ≤ |b|
|a+ b|

[
m(M∗|u|+N∗) +

mMTα

Γ(α + 1)
+

MTα

Γ(α + 1)

]
+

|c|
|a+ b|

+
mMTα

Γ(α + 1)
+

MTα

Γ(α + 1)
+m(M∗|u|+N∗)

≤
(
|b|
|a+ b|

+ 1

)[
m(M∗|u|+N∗) +

(m+ 1)MTα

Γ(α + 1)

]
+
|c|
|a+ b|

.

Then

‖N(u)‖PC ≤
(
|b|
|a+ b|

+ 1

)[
m(M∗η∗ +N∗) +

(m+ 1)MTα

Γ(α + 1)

]
+
|c|
|a+ b|

:= `.

Step 3 : N maps bounded sets into equicontinuous sets of PC(J,R).
Let τ1, τ2 ∈ J , τ1 < τ2, Bη∗ be a bounded set of PC(J,R) as in Step 2, and let

u ∈ Bη∗ . Then

|N(u)(τ2)−N(u)(τ1)|

≤ 1

Γ(α)

∫ τ1

0

|(τ2 − s)α−1 − (τ1 − s)α−1||g(s)|ds

+
1

Γ(α)

∫ τ2

τ1

|(τ2 − s)α−1||g(s)|ds+
∑

0<tk<τ2−τ1

|Ik(u(t−k ))|

≤ M

Γ(α + 1)
[2(τ2 − τ1)α + (τα2 − τα1 )] + (τ2 − τ1)(M∗|u|+N∗)

≤ M

Γ(α + 1)
[2(τ2 − τ1)α + (τα2 − τα1 )] + (τ2 − τ1)(M∗η∗ +N∗).

As τ1 → τ2, the right-hand side of the above inequality tends to zero. As a conse-
quence of Steps 1 to 3 together with the Ascoli-Arzela theorem, we can conclude that
N : PC(J,R)→ PC(J,R) is completely continuous.

Step 4 : A priori bounds. Now it remains to show that the set

E = {u ∈ PC(J,R) : u = λN(u) for some 0 < λ < 1}
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is bounded. Let u ∈ E, then u = λN(u) for some 0 < λ < 1. Thus, for each t ∈ J we
have

u(t) =
−1

a+ b

[
bλ

m∑
i=1

Ii(u(t−i )) +
bλ

Γ(α)

m∑
i=1

∫ ti

ti−1

(ti − s)α−1g(s)ds

+
bλ

Γ(α)

∫ T

tm

(T − s)α−1g(s)ds− cλ
]

+
λ

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1g(s)ds

+
λ

Γ(α)

∫ t

tk

(t− s)α−1g(s)ds+ λ
∑

0<tk<t

Ik(u(t−k )).

(4.13)
And, by (H4), we have for each t ∈ J,

|g(t)| = |f(t, u(t), g(t))|
≤ p(t) + q(t)|u(t)|+ r(t)|g(t)|
≤ p∗ + q∗|u(t)|+ r∗|g(t)|.

Thus

|g(t)| ≤ 1

1− r∗
(p∗ + q∗|u(t)|)

≤ 1

1− r∗
(p∗ + q∗‖u‖PC).

This implies, by (4.13) and (H5), that for each t ∈ J we have

|u(t)| ≤ |b|
|a+ b|

[
m(M∗‖u‖PC +N∗) +

mTα(p∗ + q∗‖u‖PC)

(1− r∗)Γ(α + 1)
+
Tα(p∗ + q∗‖u‖PC)

(1− r∗)Γ(α + 1)

]
+

|c|
|a+ b|

+
mTα(p∗ + q∗‖u‖PC)

(1− r∗)Γ(α + 1)
+
Tα(p∗ + q∗‖u‖PC)

(1− r∗)Γ(α + 1)
+m(M∗‖u(t)‖PC +N∗).

Then

‖u‖PC ≤
(
|b|
|a+ b|

+ 1

)[
m(M∗‖u(t)‖PC +N∗) +

(m+ 1) (p∗ + q∗‖u‖PC)Tα

(1− r∗)Γ(α + 1)

]
+

|c|
|a+ b|

≤
(
|b|
|a+ b|

+ 1

)(
mN∗ +

(m+ 1)p∗Tα

(1− r∗)Γ(α + 1)

)
+
|c|
|a+ b|

+

(
|b|
|a+ b|

+ 1

)(
mM∗ +

(m+ 1)q∗Tα

(1− r∗)Γ(α + 1)

)
‖u‖PC .

Thus[
1−

(
|b|
|a+ b|

+ 1

)(
mM∗ +

(m+ 1)q∗Tα

(1− r∗)Γ(α + 1)

)]
‖u‖PC ≤

(
|b|
|a+ b|

+ 1

)[
|c|
|a+ b|
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+mN∗ +
(m+ 1)p∗Tα

(1− r∗)Γ(α + 1)

]
.

Finally , by (4.10) we have

‖u‖PC ≤

(
|b|
|a+b| + 1

) [
mN∗ + (m+1)p∗Tα

(1−r∗)Γ(α+1)
+ |c|
|a+b|

]
[
1−

(
|b|
|a+b| + 1

)(
mM∗ + (m+1)q∗Tα

(1−r∗)Γ(α+1)

)] := R.

This shows that the set E is bounded. As a consequence of Schaefer’s fixed point theo-
rem, we deduce that N has a fixed point which is a solution of the problem (4.1)−(4.3).

�

4.2.3 Ulam-Hyers Rassias stability

Here, we adopt the concepts in Wang et it [139] and introduce Ulam’s type stability
concepts for the problem (4.1)-(4.2).
Let z ∈ PC1(J,R), ε > 0, ψ > 0 and ϕ ∈ PC(J,R+) is nondecreasing. We consider the
set of inequalities{

|cDαz(t)− f(t, z(t),cDαz(t))| ≤ ε, t ∈ (tk, tk+1], k = 1, ...,m

|∆z(tk)− Ik(z(t−k ))| ≤ ε, k = 1, ...,m;
(4.14)

the set of inequalities{
|cDαz(t)− f(t, z(t),cDαz(t))| ≤ ϕ(t), t ∈ (tk, tk+1], k = 1, ...,m

|∆z(tk)− Ik(z(t−k ))| ≤ ψ, k = 1, ...,m;
(4.15)

and the set of inequalities{
|cDαz(t)− f(t, z(t),cDαz(t))| ≤ εϕ(t), t ∈ (tk, tk+1], k = 1, ...,m

|∆z(tk)− Ik(z(t−k ))| ≤ εψ, k = 1, ...,m.
(4.16)

Definition 4.2.5 The problem (4.1)-(4.2) is Ulam-Hyers stable if there exists a real
number cf,m > 0 such that for each ε > 0 and for each solution z ∈ PC1(J,R) of the
inequality (4.14) there exists a solution y ∈ PC1(J,R) of the problem (4.1)-(4.2) with

|z(t)− y(t)| ≤ cf,mε, t ∈ J.

Definition 4.2.6 The problem (4.1)-(4.2) is generalized Ulam-Hyers stable if there
exists θf,m ∈ C(R+,R+), θf,m(0) = 0 such that for each solution z ∈ PC1(J,R) of the
inequality (4.14) there exists a solution y ∈ PC1(J,R) of the problem (4.1)-(4.2) with

|z(t)− y(t)| ≤ θf,m(ε), t ∈ J.
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Definition 4.2.7 The problem (4.1)-(4.2) is Ulam-Hyers-Rassias stable with respect
to (ϕ, ψ) if there exists cf,m,ϕ > 0 such that for each ε > 0 and for each solution
z ∈ PC1(J,R) of the inequality (4.16) there exists a solution y ∈ PC1(J,R) of the
problem (4.1)-(4.2) with

|z(t)− y(t)| ≤ cf,m,ϕε(ϕ(t) + ψ), t ∈ J.

Definition 4.2.8 The problem (4.1)-(4.2) is generalized Ulam-Hyers-Rassias stable
with respect to (ϕ, ψ) if there exists cf,m,ϕ > 0 such that for each solution z ∈ PC1(J,R)
of the inequality (4.15) there exists a solution y ∈ PC1(J,R) of the problem (4.1)-(4.2)
with

|z(t)− y(t)| ≤ cf,m,ϕ(ϕ(t) + ψ), t ∈ J.

Remark 4.2.9 It is clear that : (i) Definition 4.2.5 implies Definition 4.2.6 ; (ii) De-
finition 4.2.7 implies Definition 4.2.8 ; (iii) Definition 4.2.7 for ϕ(t) = ψ = 1 implies
Definition 4.2.5.

Remark 4.2.10 A function z ∈ PC1(J,R) is a solution of the inequality (4.16) if and
only if there is σ ∈ PC(J,R) and a sequence σk, k = 1, ...,m (which depend on z) such
that

i) |σ(t)| ≤ εϕ(t), t ∈ (tk, tk+1], k = 1, ...,m and |σk| ≤ εψ, k = 1, ...,m;

ii) cDαz(t) = f(t, z(t),cDαz(t)) + σ(t), t ∈ (tk, tk+1], k = 1, ...,m ;

iii) ∆z(tk) = Ik(z(t−k )) + σk, k = 1, ...,m.

One can have similar remarks for inequalities 4.15 and 4.14. Now, we state the following
Ulam-Hyers-Rassias stable result.

Theorem 4.2.11 Assume (H1)-(H3), (4.8) and

(H6) there exists a nondecreasing function ϕ ∈ PC (J,R+) and there exists λϕ > 0 such
that for any t ∈ J :

Iαϕ (t) ≤ λϕϕ (t)

are satisfied, then, the problem (4.1)-(4.2) is Ulam-Hyers-Rassias stable with respect to
(ϕ, ψ).

proof. Let z ∈ PC1(J,R) be a solution of the inequality (4.16). Denote by y the unique
solution of the BVP :

cDα
tk
y(t) = f(t, y(t),cDα

tk
y(t)), t ∈ (tk, tk+1], k = 1, ...,m ;

∆y(tk) = Ik(y(t−k )), k = 1, ...,m ;

ay(0) + by(T ) = c ;

y(0) = z(0).
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Using Lemma 4.2.2, we obtain for each t ∈ (tk, tk+1]

y(t) = y(0) +
k∑
i=1

Ii(y(t−i )) +
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1g(s)ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1g(s)ds, t ∈ (tk, tk+1],

where g ∈ C(J,R) be such that

g(t) = f(t, y(t), g(t)).

Since z solution of the inequality (4.16) and by Remark 4.2.10, we have{
cDα

tk
z(t) = f(t, z(t),cDα

tk
z(t)) + σ(t), t ∈ (tk, tk+1], k = 1, ...,m ;

∆z(tk) = Ik(z(t−k )) + σk, k = 1, ...,m .
(4.17)

Clearly, the solution of (4.17) is given by

z(t) = z(0) +
k∑
i=1

Ii(z(t−i )) +
k∑
i=1

σi +
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1h(s)ds

+
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1σ(s)ds+
1

Γ(α)

∫ t

tk

(t− s)α−1h(s)ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1σ(s)ds, t ∈ (tk, tk+1],

where h ∈ C(J,R) be such that

h(t) = f(t, z(t), h(t)).

Hence for each t ∈ (tk, tk+1], it follows that

|z(t)− y(t)| ≤
k∑
i=1

|σi|+
k∑
i=1

|Ii(z(t−i ))− Ii(y(t−i ))|

+
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1|h(s)− g(s)|ds

+
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1|σ(s)|ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1|h(s)− g(s)|ds
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+
1

Γ(α)

∫ t

tk

(t− s)α−1|σ(s)|.

Thus

|z(t)− y(t)| ≤ mεψ + (m+ 1)ελϕϕ(t) +
k∑
i=1

l̃|z(t−i )− y(t−i )|

+
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1|h(s)− g(s)|ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1|h(s)− g(s)|ds.

By (H2), we have

|h(t)− g(t)| = |f(t, z(t), h(t))− f(t, y(t), g(t))|
≤ K|z(t)− y(t)|+ L|g(t)− h(t)|.

Then

|h(t)− g(t)| ≤ K

1− L
|z(t)− y(t)|.

Therefore, for each t ∈ J

|z(t)− y(t)| ≤ mεψ + (m+ 1)ελϕϕ(t) +
k∑
i=1

l̃|z(t−i )− y(t−i )|

+
K

(1− L)Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1|z(s)− y(s)|ds

+
K

(1− L)Γ(α)

∫ t

tk

(t− s)α−1|z(s)− y(s)|ds.

Thus

|z(t)− y(t)| ≤
k∑
i=1

l̃|z(t−i )− y(t−i )|+ ε(ψ + ϕ(t))(m+ (m+ 1)λϕ)

+
K(m+ 1)

(1− L)Γ(α)

∫ t

0

(t− s)α−1|z(s)− y(s)|ds.

Applying Lemma 1.3.9, we get

|z(t)− y(t)| ≤ ε(ψ + ϕ(t))(m+ (m+ 1)λϕ)

×

[ ∏
0<tk<t

(1 + l̃) exp

(∫ t

0

K(m+ 1)

(1− L)Γ(α)
(t− s)α−1ds

)]
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≤ cϕε(ψ + ϕ(t)),

where

cϕ = (m+ (m+ 1)λϕ)

[
m∏
k=1

(1 + l̃) exp

(
K(m+ 1)Tα

(1− L)Γ(α + 1)

)]

= (m+ (m+ 1)λϕ)

[
(1 + l̃) exp

(
K(m+ 1)Tα

(1− L)Γ(α + 1)

)]m
.

Thus, the problem (4.1)-(4.2) is Ulam-Hyers-Rassias stable with respect to (ϕ, ψ). The
proof is complete.

�

Next, we present the following Ulam-Hyers stable result.

Theorem 4.2.12 Assume that (H1)-(H3) and (4.8) are satisfied, then, the problem
(4.1)-(4.2) is Ulam-Hyers stable

proof. Let z ∈ PC1(J,R) be a solution of the inequality (4.14). Denote by y the unique
solution of the BVP :

cDα
tk
y(t) = f(t, y(t),cDα

tk
y(t)), t ∈ (tk, tk+1], k = 1, ...,m ;

∆y(tk) = Ik(y(t−k )), k = 1, ...,m ;

ay(0) + by(T ) = c ;

y(0) = z(0).

From the proof of Theorem 4.2.11, we get the inequality

|z(t)− y(t)| ≤
k∑
i=1

l̃|(z(t−i ))− (y(t−i ))|+mε+
Tαε(m+ 1)

Γ(α + 1)

+
K(m+ 1)

(1− L)Γ(α)

∫ t

0

(t− s)α−1|z(s)− y(s)|ds.

Applying Lemma 1.3.9, we get

|z(t)− y(t)| ≤ ε

(
mΓ(α + 1) + Tα(m+ 1)

Γ(α + 1)

)
×

[ ∏
0<tk<t

(1 + l̃) exp

(∫ t

0

K(m+ 1)

(1− L)Γ(α)
(t− s)α−1ds

)]
≤ cϕε,

where

cϕ =

(
mΓ(α + 1) + Tα(m+ 1)

Γ(α + 1)

)[ m∏
k=1

(1 + l̃) exp

(
K(m+ 1)Tα

(1− L)Γ(α + 1)

)]
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=

(
mΓ(α + 1) + Tα(m+ 1)

Γ(α + 1)

)[
(1 + l̃) exp

(
K(m+ 1)Tα

(1− L)Γ(α + 1)

)]m
.

Which completes the proof of the Theorem.
�

Moreover, if we set θ(ε) = cε; θ(0) = 0, then, the problem (4.1)-(4.2) is generalized
Ulam-Hyers stable.

4.2.4 Examples

Example 1. Consider the following impulsive boundary value problem

cD
1
2
tk
y(t) =

1

5et+2(1 + |y(t)|+ |cD
1
2
tk
y(t)|)

, for each, t ∈ J0 ∪ J1. (4.18)

∆y|t= 1
2

=
|y(1

2

−
)|

10 + |y(1
2

−
)|
. (4.19)

2y(0)− y(1) = 3, (4.20)

where J0 =
[
0, 1

2

]
, J1 =

(
1
2
, 1
]
, t0 = 0, and t1 = 1

2
.

Set

f(t, u, v) =
1

5et+2(1 + |u|+ |v|)
, t ∈ [0, 1], u, v ∈ R

Clearly, the function f is jointly continuous.
For each u, v, ū, v̄ ∈ R and t ∈ [0, 1] :

|f(t, u, v)− f(t, ū, v̄)| ≤ 1

5e2
(|u− ū|+ |v − v̄|).

Hence condition (H2) is satisfied with K = L = 1
5e2
.

And let
I1(u) =

u

10 + u
, u ∈ [0,∞).

Let u, v ∈ [0,∞). Then we have

|I1(u)− I1(v)| =
∣∣ u

10 + u
− v

10 + v

∣∣ =
10|u− v|

(10 + u)(10 + v)
≤ 1

10
|u− v|.

Thus condition(
|b|
|a+ b|

+ 1

)[
ml̃ +

(m+ 1)KTα

(1− L)Γ(α + 1)

]
= 2

[
1

10
+

2
5e2

(1− 1
5e2

)Γ(3
2
)

]
= 2

[
4

(5e2 − 1)
√
π

+
1

10

]
< 1,
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is satisfied with T = 1, a = 2, b = −1, c = 3, m = 1 and l̃ = 1
10

. It follows from
Theorem 4.2.3 that the problem (4.18)–(4.20) has a unique solution on J .
Set for any t ∈ [0, 1], ϕ(t) = t, ψ = 1.
Since

I
1
2ϕ(t) =

1

Γ
(

1
2

) ∫ t

0

(t− s)
1
2
−1sds ≤ 2t√

π
,

then, condition (H6) is satisfied with λϕ = 2√
π
. From which it follows that the problem

(4.18)-(4.19) is Ulam-Hyers-Rassias stable with respect to (ϕ, ψ).

Example 2. Consider the following impulsive anti-periodic problem

cD
1
2
tk
y(t) =

2 + |y(t)|+ |cD
1
2
tk
y(t)|

108et+3(1 + |y(t)|+ |cD
1
2
tk
y(t)|)

, for each, t ∈ J0 ∪ J1. (4.21)

∆y|t= 1
3

=
|y(1

3

−
)|

6 + |y(1
3

−
)|
, (4.22)

y(0) = −y(1), (4.23)

where J0 =
[
0, 1

3

]
, J1 =

(
1
3
, 1
]
, t0 = 0, and t1 = 1

3
.

Set

f(t, u, v) =
2 + |u|+ |v|

108et+3(1 + |u|+ |v|)
, t ∈ [0, 1], u, v ∈ R.

Clearly, the function f is jointly continuous.
For any u, v, ū, v̄ ∈ R and t ∈ [0, 1] :

|f(t, u, v)− f(t, ū, v̄)| ≤ 1

108e3
(|u− ū|+ |v − v̄|).

Hence condition (H2) is satisfied with K = L = 1
108e3

.
We have, for each t ∈ [0, 1],

|f(t, u, v)| ≤ 1

108et+3
(2 + |u|+ |v|).

Thus condition (H4) is satisfied with p(t) = 1
54et+3 and q(t) = r(t) = 1

108et+3 .
And let

I1(u) =
u

6 + u
, u ∈ [0,∞).

We have, for each u ∈ [0,∞),

|I1(u)| ≤ 1

6
u+ 1

Thus condition (H5) is satisfied with M∗ = 1
6

and N∗ = 1. Thus condition(
|b|
|a+ b|

+ 1

)(
mM∗ +

(m+ 1)q∗Tα

(1− r∗)Γ(α + 1)

)
=

3

2

(
1

6
+

4

(108e3 − 1)
√
π

)
< 1,



CHAPITRE 4. BVP FOR NONLINEAR IFDE WITH IMPULSES 70

is satisfied with T = 1, a = 1, b = 1, c = 0, m = 1 and q∗(t) = r∗(t) = 1
108e3

. It follows
from Theorem 4.2.4 that the problem (4.21)–(4.23) has at least one solution on J .

4.3 Existence Results for the BVP with Impulses

in Banach Space

2

4.3.1 Introduction

The purpose of this Section, is to establish existence and uniqueness results to
the following boundary value problems for nonlinear implicit fractional differential
equations with impulses in Banach space :

cDν
tk
y(t) = f(t, y,cDν

tk
y(t)), for each , t ∈ (tk, tk+1], k = 0, . . . ,m, 0 < ν ≤ 1, (4.24)

∆y|t=tk = Ik(y(t−k )), k = 1, . . . ,m, (4.25)

ay(0) + by(T ) = c, (4.26)

where cDν
tk

is the Caputo fractional derivative, (E, || · ||) is a real Banach space, f :
J ×E ×E → E is a given function, Ik : E → E, a, b are real constants with a+ b 6= 0
and c ∈ E, 0 = t0 < t1 < · · · < tm < tm+1 = T , ∆y|t=tk = y(t+k ) − y(t−k ), y(t+k ) =
limh→0+ y(tk + h) and y(t−k ) = limh→0− y(tk + h) represent the right and left limits of
y(t) at t = tk.
In this Section, two results are discussed ; the first is based on Darbo’s fixed point
theorem combined with the technique of measures of noncompactness, the second on
Mönch’s fixed point theorem. At last, two examples are given to demonstrate the
application of our main results.

4.3.2 Existence of Solutions

Let us defining what we mean by a solution of problem (4.24)-(4.26).

Definition 4.3.1 A function y ∈ PC(J,E) whose ν-derivative exists on Jk is said to
be a solution of (4.24)–(4.26) if y satisfies the equation cDν

tk
y(t) = f(t, y(t),cDν

tk
y(t))

on Jk, and satisfy the conditions

∆y|t=tk = Ik(y(t−k )), k = 1, . . . ,m,

ay(0) + by(T ) = c.

2. M. Benchohra and S. Bouriah , Boundary Value Problem for Nonlinear Implicit Fractional
Differential Equations with Impulses in Banach Space.
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To prove the existence of solutions to (4.24)–(4.26), we need the following auxiliary
Lemma.

Lemma 4.3.2 Let 0 < ν ≤ 1 and let σ : J → E be a continuous function. A function
y is a solution of the fractional integral equation

y(t) =



−1

a+ b

[
b

m∑
i=1

Ii(y(t−i )) +
b

Γ(ν)

m∑
i=1

∫ ti

ti−1

(ti − s)ν−1σ(s)ds

+
b

Γ(ν)

∫ T

tm

(T − s)ν−1σ(s)ds− c
]

+
1

Γ(ν)

∫ t

0

(t− s)ν−1σ(s)ds if t ∈ [0, t1]

−1

a+ b

[
b

m∑
i=1

Ii(y(t−i )) +
b

Γ(ν)

m∑
i=1

∫ ti

ti−1

(ti − s)ν−1σ(s)ds

+
b

Γ(ν)

∫ T

tm

(T − s)ν−1σ(s)ds− c
]

+
k∑
i=1

Ii(y(t−i )) +
1

Γ(ν)

k∑
i=1

∫ ti

ti−1

(ti − s)ν−1σ(s)ds

+
1

Γ(ν)

∫ t

tk

(t− s)ν−1σ(s)ds, if t ∈ (tk, tk+1],

(4.27)
where k = 1, . . . ,m, if and only if y is a solution of the fractional BVP

cDνy(t) = σ(t), t ∈ Jk,
∆y|t=tk = Ik(y(t−k )), k = 1, . . . ,m,

ay(0) + by(T ) = c.

This lemma was already proved in the previous section.

First we list the following hypotheses :
(P1) The function f : J × E × E → E is continuous.
(P2) There exist constants K > 0 and 0 < L < 1 such that

||f(t, u, v)− f(t, ū, v̄)|| ≤ K||u− ū||+ L||v − v̄||

for any u, ū, v, v̄ ∈ E and t ∈ J.
(P3) There exists a constant l̃ > 0 such that

‖Ik(u)− Ik(u)‖ ≤ l̃‖u− u‖,

for each u, u ∈ E and k = 1, . . . ,m.
We are now in a position to state and prove our existence result for the problem
(4.24)-(4.26) based on concept of measures of noncompactness and Darbo’s fixed point
theorem.
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Remark 4.3.3 [25] Conditions (P2) and (P3) are respectively equivalent to the in-
equalities

α
(
f(t, B1, B2)

)
≤ Kα(B1) + Lα(B2)

α
(
Ik(B1)

)
≤ l̃α(B1),

for any bounded sets B1, B2 ⊆ E, for each t ∈ J and k = 1, . . . ,m.

Theorem 4.3.4 Assume (P1)−(P3) hold.
If (

|b|
|a+ b|

+ 1

)(
ml̃ +

(m+ 1)KT ν

(1− L)Γ(ν + 1)

)
< 1, (4.28)

then the BVP (4.24)-(4.26) has at least one solution on J .

Proof.

Transform the problem (4.24)-(4.26) into a fixed point problem. Consider the ope-
rator N : PC(J,E)→ PC(J,E) defined by

N(y)(t) =
−1

a+ b

[
b

m∑
i=1

Ii(y(t−i )) +
b

Γ(ν)

m∑
i=1

∫ ti

ti−1

(ti − s)ν−1g(s)ds

+
b

Γ(ν)

∫ T

tm

(T − s)ν−1g(s)ds− c
]

+
1

Γ(ν)

∑
0<tk<t

∫ tk

tk−1

(tk − s)ν−1g(s)ds

+
1

Γ(ν)

∫ t

tk

(t− s)ν−1g(s)ds+
∑

0<tk<t

Ik(y(t−k )),

(4.29)
where g ∈ C(J,E) be such that

g(t) = f(t, y(t), g(t)).

Clearly, the fixed points of operator N are solutions of problem (4.24)–(4.26).
We shall show that N satisfies the assumption of Darbo’s fixed point Theorem. The
proof will be given in several claims.
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Claim 1 : N is continuous.
Let {un} be a sequence such that un → u in PC(J,E). Then for each t ∈ J,

‖N(un)(t)−N(u)(t)‖ ≤ |b|
|a+ b|

[
m∑
i=1

‖Ik(un(t−k ))− Ik(u(t−k ))‖

+
1

Γ(ν)

m∑
i=1

∫ ti

ti−1

(ti − s)ν−1‖gn(s)− g(s)‖ds

+
1

Γ(ν)

∫ T

tm

(T − s)ν−1‖gn(s)− g(s)‖ds
]

+
1

Γ(ν)

∑
0<tk<t

∫ tk

tk−1

(tk − s)ν−1‖gn(s)− g(s)‖ds

+
1

Γ(ν)

∫ t

tk

(t− s)ν−1‖gn(s)− g(s)‖ds

+
∑

0<tk<t

‖Ik(un(t−k ))− Ik(u(t−k ))‖,

(4.30)

where gn, g ∈ C(J,E) such that

gn(t) = f(t, un(t), gn(t)),

and
g(t) = f(t, u(t), g(t)).

By (P2), we have

‖gn(t)− g(t)‖ = ‖f(t, un(t), gn(t))− f(t, u(t), g(t))‖
≤ K‖un(t)− u(t)‖+ L‖gn(t)− g(t)‖.

Then

‖gn(t)− g(t)‖ ≤ K

1− L
‖un(t)− u(t)‖.

Since un → u, then we get gn(t) → g(t) as n → ∞ for each t ∈ J. And let η > 0 be
such that, for each t ∈ J , we have ‖gn(t)‖ ≤ η and ‖g(t)‖ ≤ η. Then, we have

(t− s)ν−1‖gn(s)− g(s)‖ ≤ (t− s)ν−1[‖gn(s)‖+ ‖g(s)‖]
≤ 2η(t− s)ν−1,

and

(tk − s)ν−1‖gn(s)− g(s)‖ ≤ (tk − s)ν−1[‖gn(s)‖+ ‖g(s)‖]
≤ 2η(tk − s)ν−1.

For each t ∈ J , the functions s→ 2η(t− s)ν−1 and s→ 2η(tk− s)ν−1 are integrable on
[0, t], then the Lebesgue Dominated Convergence Theorem and (4.30) imply that

‖N(un)(t)−N(u)(t)‖ → 0 as n→∞,
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and hence
‖N(un)−N(u)‖PC → 0 as n→∞.

Consequently, N is continuous.
Let the constant R such that :

R ≥ ‖c‖Γ(ν + 1)(1− L) + (|b|+ |a+ b|) [mc1Γ(ν + 1)(1− L) + (m+ 1)T νf ∗]

|a+ b|Γ(ν + 1)(1− L)− (|b|+ |a+ b|)
[
ml̃Γ(ν + 1)(1− L) + (m+ 1)T νK

] ,
(4.31)

where c1 = sup
v∈E
‖I(v)‖ and f ∗ = sup

t∈J
‖f(t, 0, 0)‖.

Define
DR = {u ∈ PC(J,E) : ‖u‖PC ≤ R}.

It is clear that DR is a bounded, closed and convex subset of PC(J,E).

Claim 2 : N(DR) ⊂ DR.

Let u ∈ DR we show that Nu ∈ DR.We have, for each t ∈ J

‖N(y)(t)‖ ≤ ‖c‖
|a+ b|

+
|b|
|a+ b|

[
m∑
i=1

‖Ii(y(t−i ))‖+
1

Γ(ν)

m∑
i=1

∫ ti

ti−1

(ti − s)ν−1‖g(s)‖ds

+
1

Γ(ν)

∫ T

tm

(T − s)ν−1‖g(s)‖ds
]

+
1

Γ(ν)

∑
0<tk<t

∫ tk

tk−1

(tk − s)ν−1‖g(s)‖ds

+
1

Γ(ν)

∫ t

tk

(t− s)ν−1‖g(s)‖ds+
∑

0<tk<t

‖Ik(y(t−k ))‖.

(4.32)
By (P2) we have for each t ∈ J,

||g(t)|| ≤ ‖f(t, u(t), g(t))− f(t, 0, 0)‖+ ‖f(t, 0, 0)‖
≤ K‖u(t)‖+ L‖g(t)‖+ f ∗

≤ K‖u(t)‖PC + L‖g(t)‖+ f ∗

≤ KR + L||g(t)||+ f ∗

Then

||g(t)|| ≤ f ∗ +KR

1− L
:= M.

Thus, (4.31), (4.32) and (P3) implies that

||Nu(t)|| ≤ ‖c‖
|a+ b|

+

(
|b|
|a+ b|

+ 1

)( m∑
i=1

‖Ii(y(t−i ))− Ii(0)‖+
m∑
i=1

‖Ii(0)‖

)

+

(
|b|
|a+ b|

+ 1

)
(m+ 1)T νM

Γ(ν + 1)
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≤ ‖c‖
|a+ b|

+

(
|b|
|a+ b|

+ 1

)[
m(l̃R + c1) +

(m+ 1)T νM

Γ(ν + 1)

]
≤ R,

from which it follows that for each t ∈ J, we have ‖Nu(t)‖ ≤ R.
Which implies that ‖Nu‖PC ≤ R.
Consequently,

N(DR) ⊂ DR.

Claim 3 : N(DR) is bounded and equicontinuous.

By Claim 2 we have N(DR) = {N(u) : u ∈ DR} ⊂ DR. Thus, for each u ∈ DR we
have ‖N(u)‖PC ≤ R which means that N(DR) is bounded. Let t1, t2 ∈ (0, T ], t1 < t2,
and let u ∈ DR. Then

‖N(u)(t2)−N(u)(t1)‖

≤ 1

Γ(ν)

∫ t1

0

|(t2 − s)ν−1 − (t1 − s)ν−1|‖g(s)‖ds+
1

Γ(ν)

∫ t2

t1

|(t2 − s)ν−1|‖g(s)‖ds

+
∑

0<tk<t2−t1

‖Ik(u(t−k ))− Ik(0)‖+
∑

0<tk<t2−t1

‖Ik(0)‖

≤ M

Γ(ν + 1)
[2(t2 − t1)ν + (tν2 − tν1)] + (t2 − t1)(l̃‖u(t−k )‖+ c1)

≤ M

Γ(ν + 1)
[2(t2 − t1)ν + (tν2 − tν1)] + (t2 − t1)(l̃‖u‖PC + c1)

≤ M

Γ(ν + 1)
[2(t2 − t1)ν + (tν2 − tν1)] + (t2 − t1)(l̃R + c1).

As t1 → t2, the right-hand side of the above inequality tends to zero.

Claim 4 : The operator N : DR → DR is a strict set contraction.

Let V ⊂ DR and t ∈ J , then we have,

α(N(V )(t)) = α((Ny)(t), y ∈ V )

≤ |b|
|a+ b|

[
m∑
i=1

{
α(Ii(y(t−i ))), y ∈ V

}
+

1

Γ(ν)

m∑
i=1

{∫ ti

ti−1

(ti − s)ν−1α(g(s))ds, y ∈ V
}

+
1

Γ(ν)

{∫ T

tm

(T − s)ν−1α(g(s))ds, y ∈ V
}]

+
1

Γ(ν)

∑
0<tk<t

{∫ tk

tk−1

(tk − s)ν−1α(g(s))ds, y ∈ V
}
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+
1

Γ(ν)

{∫ t

tk

(t− s)ν−1α(g(s))ds, y ∈ V
}

+
∑

0<tk<t

{
α(Ik(y(t−k ))), y ∈ V

}
.

Then Remark 4.3.3 and Lemma 1.4.4 imply that, for each s ∈ J,

α({g(s), y ∈ V }) = α({f(s, y(s), g(s)), y ∈ V })
≤ Kα({y(s), y ∈ V }) + Lα({g(s), y ∈ V }).

Thus

α ({g(s), y ∈ V }) ≤ K

1− L
α{y(s), y ∈ V }.

On the other hand, for each t ∈ J and k = 1, . . . ,m, we have∑
0<tk<t

α
({
Ik(y(t−k )), y ∈ V

})
≤ ml̃α({y(t), y ∈ V }).

Then

α(N(V )(t)) ≤ |b|
|a+ b|

[
ml̃α({y(t), y ∈ V })

+
mK

Γ(ν)(1− L)

{∫ t

0

(t− s)ν−1{α(y(s))}ds, y ∈ V
}

+
K

Γ(ν)(1− L)

{∫ T

0

(T − s)ν−1{α(y(s))}ds, y ∈ V
}]

+
mK

Γ(ν)(1− L)

{∫ t

0

(t− s)ν−1{α(y(s))}ds, y ∈ V
}

+
K

Γ(ν)(1− L)

{∫ t

0

(t− s)ν−1{α(y(s))}ds, y ∈ V
}

+ ml̃α({y(t), y ∈ V })

≤
(
|b|
|a+ b|

+ 1

)(
ml̃ +

(m+ 1)KT ν

(1− L)Γ(ν + 1)

)
αc(V ).

Therefore

αc(NV ) ≤
(
|b|
|a+ b|

+ 1

)(
ml̃ +

(m+ 1)KT ν

(1− L)Γ(ν + 1)

)
αc(V ).

So, by (4.28), the operator N is a set contraction. As a consequence of Theorem 1.5.3,
we deduce that N has a fixed point which is solution to the problem (4.24)-(4.26).
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�

Our next existence result for the problem (4.24)-(4.26) is based on concept of measures
of noncompactness and Mönch’s fixed point theorem.

Theorem 4.3.5 Assume (P1)-(P3) and (4.28) hold.
If

ml̃ < 1

Then the BVP (4.24)-(4.26) has at least one solution.

Proof. Consider the operator N defined in (4.29). We shall show that N satisfies the
assumption of Mönch’s fixed point theorem. We know that N : DR → DR is bounded
and continuous, we need to prove that the implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ α(V ) = 0

holds for every subset V ofDR. Now let V be a subset ofDR such that V ⊂ conv(N(V )∪
{0}). V is bounded and equicontinuous and therefore the function t→ v(t) = α(V (t))
is continuous on [0, T ].
Using Lemma 4.3.2, we can write for each t ∈ J and k = 0, . . . ,m,

N(y(t)) = y(0) +
k∑
i=1

Ii(y(t−i )) +
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1g(s)ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1g(s)ds,

where g ∈ C(J,R) be such that

g(t) = f(t, y(t), g(t)).

And by Remark 4.3.3, Lemma 1.4.8 and the properties of the measure α we have for
each t ∈ J

v(t) ≤ α(N(V )(t) ∪ {0})
≤ α(N(V )(t))

≤ α{(Ny)(t), y ∈ V }

≤ α(y(0)) +
mK

Γ(ν)(1− L)

{∫ t

0

(t− s)ν−1{α(y(s))}ds, y ∈ V
}

+
K

Γ(ν)(1− L)

{∫ t

0

(t− s)ν−1{α(y(s))}ds, y ∈ V
}

+ ml̃α({y(t), y ∈ V })

≤ ml̃α({y(t), y ∈ V }) +
(m+ 1)K

(1− L)Γ(ν)

{∫ t

0

(t− s)ν−1{α(y(s))}ds, y ∈ V
}
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= ml̃v(t) +
(m+ 1)K

(1− L)Γ(ν)

∫ t

0

(t− s)ν−1v(s)ds.

Then

v(t) ≤ (m+ 1)K

(1−ml̃)(1− L)Γ(ν)

∫ t

0

(t− s)ν−1v(s)ds.

Lemma 1.3.8 implies that v(t) = 0 for each t ∈ J .
Then V (t)is relatively compact in E. In view of the Ascoli-Arzelà theorem, V is rela-
tively compact in DR. Applying now Theorem 1.5.5 we conclude that N has a fixed
point y ∈ DR. Hence N has a fixed point which is solution to the problem (4.24)-(4.26).

�

Remark 4.3.6 Our results for the boundary value problem (4.24)-(4.26) are appro-
priate for the following problems :

– Initial value problem : a = 1, b = 0, c = 0.
– Terminal value Problem : a = 0, b = 1, c arbitrary.
– Anti-periodic problem : a = 1, b = 1, c = 0.

However, our results are not applicable for the periodic problem, i.e. for a = 1, b = −1,
c = 0.

4.3.3 Examples

Example 1. Consider the following infinite system

cD
1
2
tk
yn(t) =

e−t

(11 + et)

 yn(t)

1 + yn(t)
−

cD
1
2
tk
yn(t)

1 +c D
1
2
tk
yn(t)

 , for each, t ∈ J0 ∪ J1. (4.33)

∆yn|t= 1
2

=
yn(1

2

−
)

10 + yn(1
2

−
)
. (4.34)

2yn(0)− yn(1) = 3, (4.35)

where J0 =
[
0, 1

2

]
, J1 =

(
1
2
, 1
]
, t0 = 0, and t1 = 1

2
.

Set

E = l1 = {y = (y1, y2, ..., yn, ...),
∞∑
n=1

|yn| <∞}

f = (f1, f2, ..., fn, ...),

such that

f(t, u, v) =
e−t

(11 + et)

[
u

1 + u
− v

1 + v

]
, t ∈ [0, 1], u, v ∈ E.
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Clearly, the function f is jointly continuous.

E is a Banach space with the norm ||y|| =
∞∑
n=1

|yn|.

For any u, ū, v, v̄ ∈ E and t ∈ [0, 1] :

||f(t, u, v)− f(t, ū, v̄)|| ≤ 1

12
(||u− ū||+ ||v − v̄||).

Hence condition (P2) is satisfied with K = L =
1

12
.

And let
I1(u) =

u

10 + u
, u ∈ E.

Let u, v ∈ E. Then we have

‖I1(u)− I1(v)‖ =
∥∥ u

10 + u
− v

10 + v

∥∥ ≤ 1

10
‖u− v‖.

Hence the condition (P3) is satisfied with l̃ =
1

10
.

And the conditions(
|b|
|a+ b|

+ 1

)(
ml̃ +

(m+ 1)KT ν

(1− L)Γ(ν + 1)

)
=

1

10
+

2
12

(1− 1
12

)Γ(3
2
)

=
8

11
√
π

+
1

5
< 1,

are satisfied with T = m = 1, a = 2, b = −1 and ν =
1

2
.

It follows from Theorem 4.3.4 that the problem (4.33)–(4.35) has at least one solution
on J .

Example 2. Consider the following impulsive problem

cD
1
2
tk
yn(t) =

2 + ‖yn(t)‖+ ‖cD
1
2
tk
yn(t)‖

108et+3(1 + ‖yn(t)‖+ ‖cD
1
2
tk
yn(t)‖)

, for each, t ∈ J0 ∪ J1. (4.36)

∆yn|t= 1
3

=
‖yn(1

3

−
)‖

6 + ‖yn(1
3

−
)‖
, (4.37)

yn(0) = −yn(1), (4.38)

where J0 =
[
0, 1

3

]
, J1 =

(
1
3
, 1
]
, t0 = 0, and t1 = 1

3
.

Set

E = l1 = {y = (y1, y2, ..., yn, ...),
∞∑
n=1

|yn| <∞},
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f = (f1, f2, ..., fn, ...),

such that

f(t, u, v) =
2 + ‖u‖+ ‖v‖

108et+3(1 + ‖u‖+ ‖v‖)
, t ∈ [0, 1], u, v ∈ E.

Clearly, the function f is jointly continuous.

E is a Banach space with the norm ||y|| =
∞∑
n=1

|yn|.

For any u, ū, v, v̄ ∈ E and t ∈ [0, 1] :

||f(t, u, v)− f(t, ū, v̄)|| ≤ 1

108e3
(||u− ū||+ ||v − v̄||).

Hence condition (P2) is satisfied with K = L =
1

108e3
.

And let

I1(u) =
‖u‖

6 + ‖u‖
, u ∈ E.

Let u, v ∈ E. Then we have

‖I1(u)− I1(v)‖ =
∥∥ u

6 + u
− v

6 + v

∥∥ ≤ 1

6
‖u− v‖.

Hence the condition (P3) is satisfied with l̃ =
1

6
.

The condition(
|b|
|a+ b|

+ 1

)(
ml̃ +

(m+ 1)KT ν

(1− L)Γ(ν + 1)

)
=

3

2

(
1

6
+

2
12

(1− 1
12

)Γ(3
2
)

)
=

6

11
√
π

+
1

4
< 1,

is satisfied with T = m = 1, a = 1, b = 1 and ν =
1

2
.

Also, we have

ml̃ =
1

6
< 1.

It follows from Theorem 4.3.5 that the problem (4.36)− (4.38) has at least one solution
on



Chapitre 5

Existence and Stability Results for
Nonlinear Implicit Fractional
Differential Equations with Finite
Delay and Impulses

5.1 Introduction and Motivations

In this chapter, we establish, in Section 5.2, existence, uniqueness and stability
results to the following nonlinear implicit fractional differential equation with finite
delay and impulses

cDα
tk
y(t) = f(t, yt,

cDα
tk
y(t)), for each , t ∈ (tk, tk+1], k = 0, . . . ,m, 0 < α ≤ 1,

∆y|tk = Ik(yt−k
), k = 1, . . . ,m,

y(t) = ϕ(t), t ∈ [−r, 0], r > 0

where cDα
tk

is the Caputo fractional derivative, f : J × PC([−r, 0],R) × R → R is a
given function, Ik : PC([−r, 0],R) → R, and ϕ ∈ PC([−r, 0],R), 0 = t0 < t1 < · · · <
tm < tm+1 = T .
For each function yt defined on [−r, T ] and for any t ∈ J , we denote by yt the element
of PC ([−r, 0] ,R) defined by :

yt(θ) = y(t+ θ), θ ∈ [−r, 0],

yt(.) represent the history of the state from time t− r up to time t.
Here ∆y|tk = y(t+k )−y(t−k ), where y(t+k ) = limh→0+ y(tk + h) and y(t−k ) = limh→0− y(tk + h)
represent the right and left limits of yt at t = tk, respectively.

81
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An extension of this problem is given in Section 5.3. More precisely, we shall present
a result of existence and uniqueness for the implicit fractional differential equation with
finite delay and impulses in Banach space

cDν
tk
y(t) = f(t, yt,

cDν
tk
y(t)), for each , t ∈ (tk, tk+1], k = 0, . . . ,m, 0 < ν ≤ 1,

∆y|t=tk = Ik(yt−k
), k = 1, . . . ,m,

y(t) = ϕ(t), t ∈ [−r, 0], r > 0

where cDν
tk

is the Caputo fractional derivative, (E, || · ||) is a real Banach space,
f : J × PC([−r, 0], E) × E → E is a given function, Ik : PC([−r, 0], E) → E, and
ϕ ∈ PC([−r, 0], E), 0 = t0 < t1 < · · · < tm < tm+1 = T .

Impulsive fractional differential equations are a very important class of fractional
differential equations because many phenomena from physics, chemistry, engineering,
biology, etc... can be represented by the impulsive fractional differential equations.
On the other hand, the theory of impulsive differential equations describes the process
subject to abrupt change in their states at times. Impulsive differential equations have
received much attention, we refer the reader to books [30, 31, 55, 79, 103, 121, 133],
and the papers [66, 84, 85, 138], the references therein.

In [61], Benchohra and Slimani considered the existence and uniqueness of solutions
for the initial value problems with impulses,

cDαy(t) = f(t, y(t)), t ∈ J = [0, T ], t 6= tk, 0 < α ≤ 1,

∆y
∣∣
t=tk

= Ik(y(t−k )),

y(0) = y0,

where k = 1, . . . ,m, cDα is the Caputo fractional derivative, f : J × R → R is a
given function, Ik : R → R, and y0 ∈ R, 0 = t0 < t1 < · · · < tm < tm+1 = T ,
∆y|t=tk = y(t+k ) − y(t−k ), y(t+k ) = limh→0+ y(tk + h) and y(t−k ) = limh→0− y(tk + h)
represent the right and left limits of y(t) at t = tk.

In [60], Benchohra and Seba, using Mönch’s fixed point theorem combined with the
technique of measures of noncompactness, considered the existence and uniqueness of
solutions for the initial value problems with impulses,

cDαy(t) = f(t, y(t)), t ∈ J = [0, T ], t 6= tk, 0 < α ≤ 1,

∆y
∣∣
t=tk

= Ik(y(t−k )),

y(0) = y0,

where k = 1, . . . ,m, cDα is the Caputo fractional derivative, f : J ×E → E is a given
function, Ik : E → E, y0 ∈ E, E is a Banach space, and 0 = t0 < t1 < · · · < tm <
tm+1 = T , ∆y|t=tk = y(t+k )− y(t−k ).
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In [5], Agarwal et al. studied the existence and uniqueness of solutions for the initial
value problems, for fractional order differential equations with impulses

cDαy(t) = f(t, y(t)), t ∈ J = [0, T ], t 6= tk, k = 1, . . . ,m, 1 < α ≤ 2,

∆y|t=tk = Ik(y(t−k )), k = 1, . . . ,m,

∆y′|t=tk = Ik(y(t−k )), k = 1, . . . ,m,

y(0) = y0, y′(0) = y1,

where k = 1, . . . ,m, cDα is the Caputo fractional derivative, f : J × R→ R is a given
function, Ik : R → R, y0 ∈ R and y1 ∈ R, 0 = t0 < t1 < · · · < tm < tm+1 = T ,
∆y|t=tk = y(t+k )− y(t−k ), ∆y′|t=tk = y′(t+k )− y′(t−k ).

In [53], Benchohra et al. discussed the existence of solutions for the initial value
problems, for fractional order differential inclusions,

cDαy(t) ∈ F (t, y(t)), t ∈ J = [0, T ], t 6= tk, k = 1, . . . ,m, 1 < α ≤ 2,

∆y|t=tk = Ik(y(t−k )), k = 1, . . . ,m,

∆y′|t=tk = Ik(y(t−k )), k = 1, . . . ,m,

y(0) = y0, y′(0) = y1,

where cDα is the Caputo fractional derivative, F : J×R→ P(R) is a multivalued map,
(P(R) is the family of all nonempty subsets of R), Ik and Ik : R → R, k = 1, . . . ,m,
and y0, y1 ∈ R, 0 = t0 < t1 < · · · < tm < tm+1 = T , ∆y|t=tk = y(t+k ) − y(t−k ),
∆y′|t=tk = y′(t+k )− y′(t−k ).

5.2 Existence Results for the NIFDE with Finite

Delay and Impulses

1

5.2.1 Introduction

In this Section, we establish, existence, uniqueness and stability results of solutions
for the following problem for nonlinear implicit fractional differential equations with
finite delay and impulses :

cDα
tk
y(t) = f(t, yt,

cDα
tk
y(t)), for each , t ∈ (tk, tk+1], k = 0, . . . ,m, 0 < α ≤ 1, (5.1)

1. W. Albarakati, M. Benchohra and S. Bouriah, Existence and Stability Results for Nonlinear
Implicit Fractional Differential Equations with Delay and Impulses, Differential Equations and Appli-
cations Vol. 8 No. 2 (2016), 273-293.
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∆y|tk = Ik(yt−k
), k = 1, . . . ,m, (5.2)

y(t) = ϕ(t), t ∈ [−r, 0], r > 0 (5.3)

where cDα
tk

is the Caputo fractional derivative, f : J × PC([−r, 0],R) × R → R is a
given function, Ik : PC([−r, 0],R) → R, and ϕ ∈ PC([−r, 0],R), 0 = t0 < t1 < · · · <
tm < tm+1 = T .
For each function yt defined on [−r, T ] and for any t ∈ J , we denote by yt the element
of PC ([−r, 0] ,R) defined by :

yt(θ) = y(t+ θ), θ ∈ [−r, 0],

yt(.) represent the history of the state from time t− r up to time t.
Here ∆y|tk = y(t+k )−y(t−k ), where y(t+k ) = limh→0+ y(tk + h) and y(t−k ) = limh→0− y(tk + h)
represent the right and left limits of yt at t = tk, respectively.
The arguments are based upon the Banach contraction principle, and Schaefer’s fixed
point theorem. We present two examples to show the applicability of our results.

5.2.2 Existence of Solutions

Denote by C(J,R) the Banach space of continuous functions from J into R, with
the usual supremum norm

‖y‖∞ = sup{|y(t)|, t ∈ J}.

Let J0 = [t0, t1] and Jk = (tk, tk+1] where k = 1, . . . ,m.
Consider the set of functions

PC([−r, 0],R) = {y : [−r, 0]→ R : y ∈ C((τk, τk+1],R), k = 0, . . . ,m and there exist

y(τ−k ) and y(τ+
k ), k = 1, . . . ,m

′
with y(τ−k ) = y(τk) and τk = tk − t, for each t ∈ Jk}.

PC([−r, 0],R) is a Banach space with the norm

‖y‖PC = sup
t∈[−r,0]

|y(t)|.

PC([0, T ],R) = {y : [0, T ]→ R : y ∈ C((tk, tk+1],R), k = 1, ...,m, and there exist
y(t−k ) and y(t+k ), k = 1, ...,m with y(t−k ) = y(tk)}.

PC([0, T ],R) is a Banach space with the norm

‖y‖C = sup
t∈[0,T ]

|y(t)|.

Ω = {y : [−r, T ]→ R : y|[−r,0] ∈ PC([−r, 0],R) and y|[0,T ] ∈ PC([0, T ],R)}.
Ω is a Banach space with the norm

‖y‖Ω = sup
t∈[−r,T ]

|y(t)|.
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Definition 5.2.1 A function y ∈ Ω whose α-derivative exists on Jk is said to be a
solution of (5.1)–(5.3) if y satisfies the equation cDα

tk
y(t) = f(t, yt,

cDα
tk
y(t)) on Jk, and

satisfy the conditions

∆y|t=tk = Ik(yt−k
), k = 1, . . . ,m,

y(t) = ϕ(t), t ∈ [−r, 0].

To prove the existence of solutions to (5.1)–(5.3), we need the following auxiliary
Lemma.

Lemma 5.2.2 Let 0 < α ≤ 1 and let σ : J → R be continuous. A function y is a
solution of the fractional integral equation

y(t) =



ϕ(0) +
1

Γ(α)

∫ t

0

(t− s)α−1σ(s)ds if t ∈ [0, t1]

ϕ(0) +
k∑
i=1

Ii(yt−i ) +
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1σ(s)ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1σ(s)ds, if t ∈ (tk, tk+1],

ϕ(t), t ∈ [−r, 0],

(5.4)

where k = 1, . . . ,m, if and only if y is a solution of the following fractional problem

cDα
tk
y(t) = σ(t), t ∈ Jk, (5.5)

∆y|t=tk = Ik(yt−k
), k = 1, . . . ,m, (5.6)

y(t) = ϕ(t), t ∈ [−r, 0]. (5.7)

Proof. Assume y satisfies (5.5)-(5.7). If t ∈ [0, t1] then

cDαy(t) = σ(t).

Lemma 1.3.7 implies

y(t) = ϕ(0) + Iασ(t) = ϕ(0) +
1

Γ(α)

∫ t

0

(t− s)α−1σ(s)ds.

If t ∈ (t1, t2] then Lemma 1.3.7 implies

y(t) = y(t+1 ) +
1

Γ(α)

∫ t

t1

(t− s)α−1σ(s)ds
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= ∆y|t=t1 + y(t−1 ) +
1

Γ(α)

∫ t

t1

(t− s)α−1σ(s)ds

= I1(yt−1 ) +

[
ϕ(0) +

1

Γ(α)

∫ t1

0

(t1 − s)α−1σ(s)ds

]
+

1

Γ(α)

∫ t

t1

(t− s)α−1σ(s)ds.

= ϕ(0) + I1(yt−1 ) +
1

Γ(α)

∫ t1

0

(t1 − s)α−1σ(s)ds

+
1

Γ(α)

∫ t

t1

(t− s)α−1σ(s)ds.

If t ∈ (t2, t3], then from Lemma 1.3.7, we get

y(t) = y(t+2 ) +
1

Γ(α)

∫ t

t2

(t− s)α−1σ(s)ds

= ∆y|t=t2 + y(t−2 ) +
1

Γ(α)

∫ t

t2

(t− s)α−1σ(s)ds

= I2(yt−2 ) +

[
ϕ(0) + I1(yt−1 ) +

1

Γ(α)

∫ t1

0

(t1 − s)α−1σ(s)ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1σ(s)ds

]
+

1

Γ(α)

∫ t

t2

(t− s)α−1σ(s)ds.

= ϕ(0) +
[
I1(yt−1 ) + I2(yt−2 )

]
+

[
1

Γ(α)

∫ t1

0

(t1 − s)α−1σ(s)ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1σ(s)ds

]
+

1

Γ(α)

∫ t

t2

(t− s)α−1σ(s)ds.

Repeating the process in this ways, the solution y(t) for t ∈ (tk, tk+1] where k =
1, . . . ,m, can be written as

y(t) = ϕ(0) +
k∑
i=1

Ii(yt−i ) +
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1σ(s)ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1σ(s)ds.

Conversely, assume that y satisfies the impulsive fractional integral equation (5.4). If
t ∈ [0, t1] then y(0) = ϕ(0) and using the fact that cDα is the left inverse of Iα we get

cDαy(t) = σ(t), for each t ∈ [0, t1].

If t ∈ (tk, tk+1], k = 1, . . . ,m and using the fact that cDαC = 0, where C is a constant,
we get

cDαy(t) = σ(t), for each t ∈ (tk, tk+1].
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Also, we can easily show that

∆y|t=tk = Ik(yt−k
), k = 1, . . . ,m.

�

We are now in a position to state and prove our existence result for the problem
(5.1)−(5.3) based on Banach’s fixed point.

Theorem 5.2.3 Assume
(H1) The function f : J × PC([−r, 0],R)× R→ R is continuous.
(H2) There exist constants K > 0 and 0 < L < 1 such that

|f(t, u, v)− f(t, ū, v̄)| ≤ K‖u− ū‖PC + L|v − v̄|

for any u, ū ∈ PC([−r, 0],R), v, v̄ ∈ R and t ∈ J .

(H3) There exists a constant l̃ > 0 such that

|Ik(u)− Ik(u)| ≤ l̃‖u− u‖PC ,

for each u, u ∈ PC([−r, 0],R) and k = 1, . . . ,m.
If

ml̃ +
(m+ 1)KTα

(1− L)Γ(α + 1)
< 1, (5.8)

then there exists a unique solution for the problem (5.1)-(5.3) on J .

Proof. Transform the problem (5.1)-(5.3) into a fixed point problem. Consider the
operator N : Ω→ Ω defined by

Ny(t) =



ϕ(0) +
∑

0<tk<t

Ik(yt−i ) +
1

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1g(s)ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1g(s)ds, t ∈ [0, T ],

ϕ(t), t ∈ [−r, 0],

(5.9)

where g ∈ C(J,R) be such that

g(t) = f(t, yt, g(t)).

Clearly, the fixed points of operator N are solutions of problem (5.1)–(5.3).
Let u,w ∈ Ω. If t ∈ [−r, 0], then

|N(u)(t)−N(w)(t)| = 0.
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For t ∈ J, we have

|N(u)(t)−N(w)(t)| ≤ 1

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1|g(s)− h(s)|ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1|g(s)− h(s)|ds

+
∑

0<tk<t

|Ik(ut−k )− Ik(wt−k )|,

where g, h ∈ C(J,R) be such that

g(t) = f(t, ut, g(t)),

and
h(t) = f(t, wt, h(t)).

By (H2) we have

|g(t)− h(t)| = |f(t, ut, g(t))− f(t, wt, h(t))|
≤ K‖ut − wt‖PC + L|g(t)− h(t)|.

Then

|g(t)− h(t)| ≤ K

1− L
‖ut − wt‖PC .

Therefore, for each t ∈ J

|N(u)(t)−N(w)(t)| ≤ K

(1− L)Γ(α)

m∑
k=1

∫ tk

tk−1

(tk − s)α−1‖us − ws‖PCds

+
K

(1− L)Γ(α)

∫ t

tk

(t− s)α−1‖us − ws‖PCds

+
m∑
k=1

l̃‖ut−k − wt−k ‖PC .

≤
[
ml̃ +

mKTα

(1− L)Γ(α + 1)
+

KTα

(1− L)Γ(α + 1)

]
‖u− w‖Ω.

Thus

‖N(u)−N(w)‖Ω ≤
[
ml̃ +

(m+ 1)KTα

(1− L)Γ(α + 1)

]
‖u− w‖Ω.

By (5.8), the operator N is a contraction. Hence, by Banach’s contraction principle, N
has a unique fixed point which is a unique solution of the problem (5.1)–(5.3).

�
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Our second result is based on Schaefer’s fixed point theorem.

Theorem 5.2.4 Assume (H1), (H2) and
(H4) There exist p, q, r ∈ C(J,R+) with r∗ = sup

t∈J
r(t) < 1 such that

|f(t, u, w)| ≤ p(t) + q(t)‖u‖PC + r(t)|w| for t ∈ J, u ∈ PC([−r, 0],R)and w ∈ R.

(H5) The functions Ik : PC([−r, 0],R)→ R are continuous and there exist constants
M∗, N∗ > 0 with mM∗ < 1 such that

|Ik(u)| ≤M∗‖u‖PC +N∗ for each u ∈ PC([−r, 0],R), k = 1, . . . ,m.

Then, the problem (5.1)-(5.3) has at least one solution.

Proof. Let the operator N defined in (5.9). We shall use Schaefer’s fixed point theorem
to prove that N has a fixed point. The proof will be given in several steps.

Step 1 : N is continuous. Let {un} be a sequence such that un → u in Ω. If
t ∈ [−r, 0], then

|N(un)(t)−N(u)(t)| = 0.

For t ∈ J, we have

|N(un)(t)−N(u)(t)| ≤ 1

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1|gn(s)− g(s)|ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1|gn(s)− g(s)|ds

+
∑

0<tk<t

|Ik(unt−k )− Ik(ut−k )|,

(5.10)

where gn, g ∈ C(J,R) such that

gn(t) = f(t, unt, gn(t)),

and
g(t) = f(t, ut, g(t)).

By (H2), we have

|gn(t)− g(t)| = |f(t, unt, gn(t))− f(t, ut, g(t))|
≤ K‖unt − ut‖PC + L|gn(t)− g(t)|.

Then

|gn(t)− g(t)| ≤ K

1− L
‖unt − ut‖PC .
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Since un → u, then we get gn(t) → g(t) as n → ∞ for each t ∈ J. And let η > 0 be
such that, for each t ∈ J , we have |gn(t)| ≤ η and |g(t)| ≤ η. Then, we have

(t− s)α−1|gn(s)− g(s)| ≤ (t− s)α−1[|gn(s)|+ |g(s)|]
≤ 2η(t− s)α−1,

and

(tk − s)α−1|gn(s)− g(s)| ≤ (tk − s)α−1[|gn(s)|+ |g(s)|]
≤ 2η(tk − s)α−1.

For each t ∈ J , the functions s → 2η(t − s)α−1 and s → 2η(tk − s)α−1 are integrable
on [0, t], then the Lebesgue Dominated Convergence Theorem and (5.10) imply that

|N(un)(t)−N(u)(t)| → 0 as n→∞,

and hence
‖N(un)−N(u)‖Ω → 0 as n→∞.

Consequently, N is continuous.

Step 2 : N maps bounded sets into bounded sets in Ω. Indeed, it is enough to show
that for any η∗ > 0, there exists a positive constant ` such that for each u ∈ Bη∗ =
{u ∈ Ω : ||u||Ω ≤ η∗}, we have ‖N(u)‖Ω ≤ `. We have for each t ∈ J ,

N(u)(t) = ϕ(0) +
1

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1g(s)ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1g(s)ds+
∑

0<tk<t

Ik(ut−k
),

(5.11)

where g ∈ C(J,R) be such that

g(t) = f(t, ut, g(t)).

By (H4), we have for each t ∈ J,

|g(t)| = |f(t, ut, g(t))|
≤ p(t) + q(t)‖ut‖PC + r(t)|g(t)|
≤ p(t) + q(t)‖u‖Ω + r(t)|g(t)|
≤ p(t) + q(t)η∗ + r(t)|g(t)|
≤ p∗ + q∗η∗ + r∗|g(t)|,

where p∗ = sup
t∈J

p(t), and q∗ = sup
t∈J

q(t).

Then

|g(t)| ≤ p∗ + q∗η∗

1− r∗
:= M.
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Thus (5.11) implies

|N(u)(t)| ≤ |ϕ(0)|+ mMTα

Γ(α + 1)
+

MTα

Γ(α + 1)
+m(M∗‖ut−k ‖PC +N∗)

≤ |ϕ(0)|+ (m+ 1)MTα

Γ(α + 1)
+m(M∗‖u‖Ω +N∗)

≤ |ϕ(0)|+ (m+ 1)MTα

Γ(α + 1)
+m(M∗η∗ +N∗) := R.

And if t ∈ [−r, 0], then
|N(u)(t)| ≤ ‖ϕ‖PC ,

thus
‖N(u)‖Ω ≤ max {R, ‖ϕ‖PC} := `.

Step 3 : N maps bounded sets into equicontinuous sets of Ω.
Let t1, t2 ∈ (0, T ], t1 < t2, Bη∗ be a bounded set of Ω as in Step 2, and let u ∈ Bη∗ .

Then

|N(u)(t2)−N(u)(t1)|

≤ 1

Γ(α)

∫ t1

0

|(t2 − s)α−1 − (t1 − s)α−1||g(s)|ds

+
1

Γ(α)

∫ t2

t1

|(t2 − s)α−1||g(s)|ds+
∑

0<tk<t2−t1

|Ik(ut−k )|

≤ M

Γ(α + 1)
[2(t2 − t1)α + (tα2 − tα1 )] + (t2 − t1)(M∗‖ut−k ‖PC +N∗)

≤ M

Γ(α + 1)
[2(t2 − t1)α + (tα2 − tα1 )] + (t2 − t1)(M∗‖u‖Ω +N∗)

≤ M

Γ(α + 1)
[2(t2 − t1)α + (tα2 − tα1 )] + (t2 − t1)(M∗η∗ +N∗).

As t1 → t2, the right-hand side of the above inequality tends to zero. As a consequence
of Steps 1 to 3 together with the Ascoli-Arzela theorem, we can conclude that N : Ω→
Ω is completely continuous.

Step 4 : A priori bounds. Now it remains to show that the set

E = {u ∈ Ω : u = λN(u) for some 0 < λ < 1}

is bounded. Let u ∈ E, then u = λN(u) for some 0 < λ < 1. Thus, for each t ∈ J we
have

u(t) = λϕ(0) +
λ

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1g(s)ds

+
λ

Γ(α)

∫ t

tk

(t− s)α−1g(s)ds+ λ
∑

0<tk<t

Ik(ut−k
).

(5.12)
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And, by (H4), we have for each t ∈ J,

|g(t)| = |f(t, ut, g(t))|
≤ p(t) + q(t)‖ut‖PC + r(t)|g(t)|
≤ p∗ + q∗‖ut‖PC + r∗|g(t)|.

Thus

|g(t)| ≤ 1

1− r∗
(p∗ + q∗‖ut‖PC).

This implies, by (5.12) and (H5), that for each t ∈ J we have

|u(t)| ≤ |ϕ(0)|+ 1

(1− r∗)Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1(p∗ + q∗‖us‖PC)ds

+
1

(1− r∗)Γ(α)

∫ t

tk

(t− s)α−1(p∗ + q∗‖us‖PC)ds

+ m(M∗‖ut−k ‖PC +N∗).

Consider the function ζ defined by

ζ(t) = sup{|u(s)| : −r ≤ s ≤ t}, 0 ≤ t ≤ T,

then, there exists t∗ ∈ [−r, T ] such that ζ(t) = |u(t∗)|. If t∗ ∈ [0, T ],then by the previous
inequality, we have for t ∈ J

ζ(t) ≤ |ϕ(0)|+ 1

(1− r∗)Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1(p∗ + q∗ζ(s))ds

+
1

(1− r∗)Γ(α)

∫ t

tk

(t− s)α−1(p∗ + q∗ζ(s))ds

+ mM∗ζ(t) +mN∗.

Thus

ζ(t) ≤ |ϕ(0)|+mN∗

1−mM∗ +
1

(1−mM∗)(1− r∗)Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1(p∗ + q∗ζ(s))ds

+
1

(1−mM∗)(1− r∗)Γ(α)

∫ t

tk

(t− s)α−1(p∗ + q∗ζ(s))ds

≤ |ϕ(0)|+mN∗

1−mM∗ +
(m+ 1)p∗Tα

(1−mM∗)(1− r∗)Γ(α + 1)

+
(m+ 1)q∗

(1−mM∗)(1− r∗)Γ(α)

∫ t

0

(t− s)α−1ζ(s)ds.
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Applying Lemma 1.3.8, we get

ζ(t) ≤
[
|ϕ(0)|+mN∗

1−mM∗ +
(m+ 1)p∗Tα

(1−mM∗)(1− r∗)Γ(α + 1)

]
×

[
1 +

δ(m+ 1)q∗Tα

(1−mM∗)(1− r∗)Γ(α + 1)

]
:= A,

where δ = δ(α) a constant. If t∗ ∈ [−r, 0], then ζ(t) = ‖ϕ‖PC , thus for any t ∈ J, ‖u‖Ω ≤
ζ(t), we have

‖u‖Ω ≤ max{‖ϕ‖PC , A}
This shows that the set E is bounded. As a consequence of Schaefer’s fixed point theo-
rem, we deduce that N has a fixed point which is a solution of the problem (5.1)−(5.3).

�

5.2.3 Ulam-Hyers Rassias stability

Here, we adopt the concepts in Wang et it [139] and introduce Ulam’s type stability
concepts for the problem (5.1)-(5.2).
Let z ∈ Ω, ε > 0, ψ > 0 and ω ∈ PC(J,R+) is nondecreasing. We consider the set of
inequalities {

|cDαz(t)− f(t, zt,
cDαz(t))| ≤ ε, t ∈ (tk, tk+1], k = 1, ...,m

|∆z|tk − Ik(zt−k )| ≤ ε, k = 1, ...,m;
(5.13)

the set of inequalities{
|cDαz(t)− f(t, zt,

cDαz(t))| ≤ ω(t), t ∈ (tk, tk+1], k = 1, ...,m

|∆z|tk − Ik(zt−k )| ≤ ψ, k = 1, ...,m;
(5.14)

and the set of inequalities{
|cDαz(t)− f(t, zt,

cDαz(t))| ≤ εω(t), t ∈ (tk, tk+1], k = 1, ...,m

|∆z|tk − Ik(zt−k )| ≤ εψ, k = 1, ...,m.
(5.15)

Definition 5.2.5 The problem (5.1)-(5.2) is Ulam-Hyers stable if there exists a real
number cf,m > 0 such that for each ε > 0 and for each solution z ∈ Ω of the inequality
(5.13) there exists a solution y ∈ Ω of the problem (5.1)-(5.2) with

|z(t)− y(t)| ≤ cf,mε, t ∈ J.

Definition 5.2.6 The problem (5.1)-(5.2) is generalized Ulam-Hyers stable if there
exists θf,m ∈ C(R+,R+), θf,m(0) = 0 such that for each solution z ∈ Ω of the inequality
(5.13) there exists a solution y ∈ Ω of the problem (5.1)-(5.2) with

|z(t)− y(t)| ≤ θf,m(ε), t ∈ J.
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Definition 5.2.7 The problem (5.1)-(5.2) is Ulam-Hyers-Rassias stable with respect
to (ω, ψ) if there exists cf,m,ω > 0 such that for each ε > 0 and for each solution z ∈ Ω
of the inequality (5.15) there exists a solution y ∈ Ω of the problem (5.1)-(5.2) with

|z(t)− y(t)| ≤ cf,m,ωε(ω(t) + ψ), t ∈ J.

Definition 5.2.8 The problem (5.1)-(5.2) is generalized Ulam-Hyers-Rassias stable
with respect to (ω, ψ) if there exists cf,m,ω > 0 such that for each solution z ∈ Ω
of the inequality (5.14) there exists a solution y ∈ Ω of the problem (5.1)-(5.2) with

|z(t)− y(t)| ≤ cf,m,ω(ω(t) + ψ), t ∈ J.

Remark 5.2.9 It is clear that : (i) Definition 5.2.5 implies Definition 5.2.6 ; (ii) De-
finition 5.2.7 implies Definition 5.2.8 ; (iii) Definition 5.2.7 for ω(t) = ψ = 1 implies
Definition 5.2.5.

Remark 5.2.10 A function z ∈ Ω is a solution of the inequality (5.15) if and only if
there is σ ∈ PC(J,R) and a sequence σk, k = 1, ...,m (which depend on z) such that

i) |σ(t)| ≤ εω(t), t ∈ (tk, tk+1], k = 1, ...,m and |σk| ≤ εψ, k = 1, ...,m;

ii) cDαz(t) = f(t, zt,
cDαz(t)) + σ(t), t ∈ (tk, tk+1], k = 1, ...,m ;

iii) ∆z|tk = Ik(zt−k
) + σk, k = 1, ...,m.

One can have similar remarks for inequalities 5.14 and 5.13.

Now, we state the following Ulam-Hyers-Rassias stable result.

Theorem 5.2.11 Assume (H1)-(H3), (5.8) and

(H6) there exists a nondecreasing function ω ∈ PC (J,R+) and there exists λω > 0 such
that for any t ∈ J :

Iαω (t) ≤ λωω (t)

are satisfied, then, the problem (5.1)-(5.2) is Ulam-Hyers-Rassias stable with respect to
(ω, ψ).

proof. Let z ∈ Ω be a solution of the inequality (5.15). Denote by y the unique solution
of the following problem

cDα
tk
y(t) = f(t, yt,

cDα
tk
y(t)), t ∈ (tk, tk+1], k = 1, ...,m ;

∆y|t=tk = Ik(yt−k
), k = 1, ...,m ;

y(t) = z(t) = ϕ(t), t ∈ [−r, 0].

Using Lemma 5.2.2, we obtain for each t ∈ (tk, tk+1]

y(t) = ϕ(0) +
k∑
i=1

Ii(yt−i ) +
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1g(s)ds
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+
1

Γ(α)

∫ t

tk

(t− s)α−1g(s)ds,

where g ∈ C(J,R) be such that

g(t) = f(t, yt, g(t)).

Since z solution of the inequality (5.15) and by Remark 5.2.10, we have{
cDα

tk
z(t) = f(t, zt,

cDα
tk
z(t)) + σ(t), t ∈ (tk, tk+1], k = 1, ...,m ;

∆z|t=tk = Ik(zt−k
) + σk, k = 1, ...,m .

(5.16)

Clearly, the solution of (5.16) is given by

z(t) = ϕ(0) +
k∑
i=1

Ii(zt−i ) +
k∑
i=1

σi +
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1h(s)ds

+
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1σ(s)ds+
1

Γ(α)

∫ t

tk

(t− s)α−1h(s)ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1σ(s)ds, t ∈ (tk, tk+1],

where h ∈ C(J,R) be such that

h(t) = f(t, zt, h(t)).

Hence for each t ∈ (tk, tk+1], it follows that

|z(t)− y(t)| ≤
k∑
i=1

|σi|+
k∑
i=1

|Ii(zt−i )− Ii(yt−i )|

+
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1|h(s)− g(s)|ds

+
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1|σ(s)|ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1|h(s)− g(s)|ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1|σ(s)|.

Thus

|z(t)− y(t)| ≤ mεψ + (m+ 1)ελωω(t) +
k∑
i=1

l̃‖zt−i − yt−i ‖PC
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+
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1|h(s)− g(s)|ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1|h(s)− g(s)|ds.

By (H2), we have

|h(t)− g(t)| = |f(t, zt, h(t))− f(t, yt, g(t))|
≤ K‖zt − yt‖PC + L|g(t)− h(t)|.

Then

|h(t)− g(t)| ≤ K

1− L
‖zt − yt‖PC .

Therefore, for each t ∈ J

|z(t)− y(t)| ≤ mεψ + (m+ 1)ελωω(t) +
k∑
i=1

l̃‖zt−i − yt−i ‖PC

+
K

(1− L)Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1‖zs − ys‖PCds

+
K

(1− L)Γ(α)

∫ t

tk

(t− s)α−1‖zs − ys‖PCds.

Thus

|z(t)− y(t)| ≤
∑

0<ti<t

l̃‖zt−i − yt−i ‖PC + ε(ψ + ω(t))(m+ (m+ 1)λω)

+
K(m+ 1)

(1− L)Γ(α)

∫ t

0

(t− s)α−1‖zs − ys‖PCds.

We consider the function ζ1 defined by

ζ1(t) = sup {|z(s)− y(s)| : −r ≤ s ≤ t} , 0 ≤ t ≤ T,

then, there exists t∗ ∈ [−r, T ] such that ζ1(t) = |z(t∗)− y(t∗)| .
If t∗ ∈ [−r, 0], then ζ1(t) = 0.
If t∗ ∈ [0, T ], then by the previous inequality, we have

ζ1(t) ≤
∑

0<ti<t

l̃ζ1(t−i ) + ε(ψ + ω(t))(m+ (m+ 1)λω)

+
K(m+ 1)

(1− L)Γ(α)

∫ t

0

(t− s)α−1ζ1(s)ds.
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Applying Lemma 1.3.9, we get

ζ1(t) ≤ ε(ψ + ω(t))(m+ (m+ 1)λω)

×

[ ∏
0<ti<t

(1 + l̃) exp

(∫ t

0

K(m+ 1)

(1− L)Γ(α)
(t− s)α−1ds

)]
≤ cωε(ψ + ω(t)),

where

cω = (m+ (m+ 1)λω)

[
m∏
i=1

(1 + l̃) exp

(
K(m+ 1)Tα

(1− L)Γ(α + 1)

)]

= (m+ (m+ 1)λω)

[
(1 + l̃) exp

(
K(m+ 1)Tα

(1− L)Γ(α + 1)

)]m
.

Thus, the problem (5.1)-(5.2) is Ulam-Hyers-Rassias stable with respect to (ω, ψ).

�

Next, we present the following Ulam-Hyers stable result.

Theorem 5.2.12 Assume that (H1)-(H3) and (5.8) are satisfied, then, the problem
(5.1)-(5.2) is Ulam-Hyers stable

proof. Let z ∈ Ω be a solution of the inequality (5.13). Denote by y the unique solution
of the problem

cDα
tk
y(t) = f(t, yt,

cDα
tk
y(t)), t ∈ (tk, tk+1], k = 1, ...,m ;

∆y|t=tk = Ik(yt−k
), k = 1, ...,m ;

y(t) = z(t) = ϕ(t), t ∈ [−r, 0].

From the proof of Theorem 5.2.11, we get the inequality

ζ1(t) ≤
∑

0<ti<t

l̃ζ1(t−i ) +mε+
Tαε(m+ 1)

Γ(α + 1)

+
K(m+ 1)

(1− L)Γ(α)

∫ t

0

(t− s)α−1ζ1(s)ds.

Applying Lemma 1.3.9, we get

ζ1(t) ≤ ε

(
mΓ(α + 1) + Tα(m+ 1)

Γ(α + 1)

)
×

[ ∏
0<ti<t

(1 + l̃) exp

(∫ t

0

K(m+ 1)

(1− L)Γ(α)
(t− s)α−1ds

)]
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≤ cωε,

where

cω =

(
mΓ(α + 1) + Tα(m+ 1)

Γ(α + 1)

)[ m∏
i=1

(1 + l̃) exp

(
K(m+ 1)Tα

(1− L)Γ(α + 1)

)]

=

(
mΓ(α + 1) + Tα(m+ 1)

Γ(α + 1)

)[
(1 + l̃) exp

(
K(m+ 1)Tα

(1− L)Γ(α + 1)

)]m
.

�

Moreover, if we set θ(ε) = cωε; θ(0) = 0, then, the problem (5.1)-(5.2) is generalized
Ulam-Hyers stable.

5.2.4 Examples

Example 1. Consider the following impulsive problem

cD
1
2
tk
y(t) =

e−t

(11 + et)

 yt
1 + yt

−
cD

1
2
tk
y(t)

1 +c D
1
2
tk
y(t)

 , for each, t ∈ J0 ∪ J1. (5.17)

∆y|t= 1
2

=
y(1

2

−
)

10 + y(1
2

−
)
. (5.18)

y(t) = ϕ(t), t ∈ [−r, 0], r > 0, (5.19)

where ϕ ∈ PC ([−r, 0],R) , J0 =
[
0, 1

2

]
, J1 =

(
1
2
, 1
]
, t0 = 0, and t1 = 1

2
.

Set

f(t, u, v) =
e−t

(11 + et)

[
u

1 + u
− v

1 + v

]
, t ∈ [0, 1], u ∈ PC ([−r, 0],R) and v ∈ R.

Clearly, the function f is jointly continuous.
For each u, ū ∈ PC ([−r, 0],R) , v, v̄ ∈ R and t ∈ [0, 1] :

|f(t, u, v)− f(t, ū, v̄)| ≤ e−t

(11 + et)
(‖u− ū‖PC + |v − v̄|)

≤ 1

12
‖u− ū‖PC +

1

12
|v − v̄| .

Hence condition (H2) is satisfied with K = L =
1

12
.

And let
I1(u) =

u

10 + u
, u ∈ PC ([−r, 0],R) .
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Let u, v ∈ PC ([−r, 0],R). Then we have

|I1(u)− I1(v)| =
∣∣ u

10 + u
− v

10 + v

∣∣ ≤ 1

10
‖u− v‖PC .

Thus condition

ml̃ +
(m+ 1)KTα

(1− L)Γ(α + 1)
=

[
1

10
+

2
12

(1− 1
12

)Γ(3
2
)

]
=

4

11
√
π

+
1

10
< 1,

is satisfied with T = 1,m = 1 and l̃ = 1
10

. It follows from Theorem 5.2.3 that the
problem (5.17)–(5.19) has a unique solution on J .

Set for any t ∈ [0, 1], ω(t) = t, ψ = 1.
Since

I
1
2 ω(t) =

1

Γ
(

1
2

) ∫ t

0

(t− s)
1
2
−1sds ≤ 2t√

π
,

then, condition (H6) is satisfied with λω = 2√
π
. From which it follows that the problem

(5.17)-(5.18) is Ulam-Hyers-Rassias stable with respect to (ω, ψ).

Example 2. Consider the following impulsive problem

cD
1
2
tk
y(t) =

2 + |yt|+ |cD
1
2
tk
y(t)|

108et+3(1 + |yt|+ |cD
1
2
tk
y(t)|)

, for each, t ∈ J0 ∪ J1. (5.20)

∆y|t= 1
3

=
|y(1

3

−
)|

6 + |y(1
3

−
)|
, (5.21)

y(t) = ϕ(t), t ∈ [−r, 0], r > 0, (5.22)

where ϕ ∈ PC ([−r, 0],R) J0 =
[
0, 1

3

]
, J1 =

(
1
3
, 1
]
, t0 = 0, and t1 = 1

3
.

Set

f(t, u, v) =
2 + |u|+ |v|

108et+3(1 + |u|+ |v|)
, t ∈ [0, 1], u ∈ PC ([−r, 0],R) , v ∈ R.

Clearly, the function f is jointly continuous.
For any u, ū ∈ PC ([−r, 0],R) , v, v̄ ∈ R and t ∈ [0, 1] :

|f(t, u, v)− f(t, ū, v̄)| ≤ 1

108e3
(‖u− ū‖PC + |v − v̄|).
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Hence condition (H2) is satisfied with K = L =
1

108e3
.

We have, for each t ∈ [0, 1],

|f(t, u, v)| ≤ 1

108et+3
(2 + ‖u‖PC + |v|).

Thus condition (H4) is satisfied with p(t) =
1

54et+3
and q(t) = r(t) =

1

108et+3
. And let

I1(u) =
|u|

6 + |u|
, u ∈ PC ([−r, 0],R) .

We have, for each u ∈ PC ([−r, 0],R) ,

|I1(u)| ≤ 1

6
‖u‖PC + 1

Thus condition (H5) is satisfied with M∗ =
1

6
and N∗ = 1.

It follows from Theorem 5.2.4 that the problem (5.20)–(5.22) has at least one solution
on J .

5.3 Existence Results for the NIFDE with Finite

Delay and Impulses in Banach Space

5.3.1 Introduction

The purpose of this Section, is to establish existence and uniqueness results to the
following implicit fractional differential equations with finite delay and impulses :

cDν
tk
y(t) = f(t, yt,

cDν
tk
y(t)), for each , t ∈ (tk, tk+1], k = 0, . . . ,m, 0 < ν ≤ 1,

(5.23)
∆y|t=tk = Ik(yt−k

), k = 1, . . . ,m, (5.24)

y(t) = ϕ(t), t ∈ [−r, 0], r > 0 (5.25)

where cDν
tk

is the Caputo fractional derivative, (E, || · ||) is a real Banach space, f :
J × PC([−r, 0], E) × E → E is a given function, Ik : PC([−r, 0], E) → E, and ϕ ∈
PC([−r, 0], E), 0 = t0 < t1 < · · · < tm < tm+1 = T .
For each function yt defined on [−r, T ] and for any t ∈ J , we denote by yt the element
of PC([−r, 0], E) defined by :

yt(θ) = y(t+ θ), θ ∈ [−r, 0],

yt(·) represent the history of the state from time t− r up to time t.
Here ∆y|tk = y(t+k )−y(t−k ), where y(t+k ) = limh→0+ y(tk + h) and y(t−k ) = limh→0− y(tk + h)
represent the right and left limits of yt at t = tk, respectively.
At last, two examples are given to demonstrate the application of our main results.
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5.3.2 Existence of Solutions

Let (E; ‖ · ‖) be a valued-Banach space, and t ∈ J . We denote by C(J,E) the space
of E valued continuous functions on J with the usual supremum norm

‖y‖∞ = sup{||y(t)|| : t ∈ J}

for any y ∈ C(J,E).
Let J0 = [t0, t1] and Jk = (tk, tk+1] where k = 1, . . . ,m.
Consider the set of functions

PC([−r, 0], E) = {y : [−r, 0]→ E : y ∈ C((τk, τk+1], E), k = 0, . . . ,m and there exist

y(τ−k ) and y(τ+
k ), k = 1, . . . ,m

′
with y(τ−k ) = y(τk) and τk = tk − t, for each t ∈ Jk}.

PC([−r, 0], E) is a Banach space with the norm

‖y‖PC = sup
t∈[−r,0]

‖y(t)‖.

PC([0, T ], E) = {y : [0, T ]→ E : y ∈ C((tk, tk+1], E), k = 1, ...,m, and there exist
y(t−k ) and y(t+k ), k = 1, ...,m with y(t−k ) = y(tk)}.

PC([0, T ], E) is a Banach space with the norm

‖y‖C = sup
t∈[0,T ]

‖y(t)‖.

Ω = {y : [−r, T ]→ E : y|[−r,0] ∈ PC([−r, 0], E) and y|[0,T ] ∈ PC([0, T ], E)}.

Ω is a Banach space with the norm

‖y‖Ω = sup
t∈[−r,T ]

‖y(t)‖.

Let us defining what we mean by a solution of problem (5.23)-(5.25).

Definition 5.3.1 A function y ∈ Ω whose ν-derivative exists on Jk is said to be a
solution of (5.23)-(5.25) if y satisfies the equation cDν

tk
y(t) = f(t, yt,

cDν
tk
y(t)) on Jk,

and satisfy the conditions

∆y|t=tk = Ik(yt−k
), k = 1, . . . ,m,

y(t) = ϕ(t), t ∈ [−r, 0].

To prove the existence of solutions to (5.23)-(5.25), we need the following auxiliary
Lemma.
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Lemma 5.3.2 Let 0 < ν ≤ 1 and let σ : J → E be continuous. A function y is a
solution of the fractional integral equation

y(t) =



ϕ(0) +
1

Γ(ν)

∫ t

0

(t− s)ν−1σ(s)ds if t ∈ [0, t1]

ϕ(0) +
k∑
i=1

Ii(yt−i ) +
1

Γ(ν)

k∑
i=1

∫ ti

ti−1

(ti − s)ν−1σ(s)ds

+
1

Γ(ν)

∫ t

tk

(t− s)ν−1σ(s)ds, if t ∈ (tk, tk+1],

ϕ(t), t ∈ [−r, 0],

(5.26)

where k = 1, . . . ,m, if and only if y is a solution of the following fractional problem

cDνy(t) = σ(t), t ∈ Jk,
∆y|t=tk = Ik(yt−k

), k = 1, . . . ,m,

y(t) = ϕ(t), t ∈ [−r, 0].

This lemma was already proved in the previous section.

First we list the following hypotheses :
(P1) The function f : J × PC([−r, 0], E)× E → E is continuous.
(P2) There exist constants K > 0 and 0 < L < 1 such that

||f(t, u, v)− f(t, ū, v̄)|| ≤ K||u− ū||PC + L||v − v̄||

for any u, ū ∈ PC([−r, 0], E), v, v̄ ∈ E and t ∈ J.
(P3) There exists a constant l̃ > 0 such that

‖Ik(u)− Ik(u)‖ ≤ l̃‖u− u‖PC ,

for each u, u ∈ PC([−r, 0], E) and k = 1, . . . ,m.

Remark 5.3.3 [25] Conditions (P2) and (P3) are respectively equivalent to the in-
equalities

α
(
f(t, B1, B2)

)
≤ Kα(B1) + Lα(B2)

α
(
Ik(B1)

)
≤ l̃α(B1),

for any bounded sets B1 ⊆ PC([−r, 0], E), B2 ⊆ E, for each t ∈ J and k = 1, . . . ,m.
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Theorem 5.3.4 Assume (P1)−(P3) hold.
If

ml̃ +
(m+ 1)KT ν

(1− L)Γ(ν + 1)
< 1 (5.27)

then the IVP (5.23)-(5.25) has at least one solution on J .

This theorem will be proved in two ways : the first is based on Darbo’s fixed point
theorem combined with the technique of measures of noncompactness and the second
on Mönch’s fixed point theorem.
Proof 1.

Transform the problem (5.23)-(5.25) into a fixed point problem. Consider the ope-
rator N : Ω→ Ω defined by

Ny(t) =



ϕ(0) +
∑

0<tk<t

Ik(yt−k
) +

1

Γ(ν)

∑
0<tk<t

∫ tk

tk−1

(tk − s)ν−1g(s)ds

+
1

Γ(ν)

∫ t

tk

(t− s)ν−1g(s)ds, t ∈ [0, T ],

ϕ(t), t ∈ [−r, 0],

(5.28)

where g ∈ C(J,E) be such that

g(t) = f(t, yt, g(t)).

Clearly, the fixed points of operator N are solutions of problem (5.23)–(5.25).
We shall show that N satisfies the assumption of Darbo’s fixed point Theorem. The
proof will be given in several claims.

Claim 1 : N is continuous.
Let {un} be a sequence such that un → u in Ω. If t ∈ [−r, 0], then

‖N(un)(t)−N(u)(t)‖ = 0.

For t ∈ J, we have

‖N(un)(t)−N(u)(t)‖ ≤ 1

Γ(ν)

∑
0<tk<t

∫ tk

tk−1

(tk − s)ν−1‖gn(s)− g(s)‖ds

+
1

Γ(ν)

∫ t

tk

(t− s)ν−1‖gn(s)− g(s)‖ds

+
∑

0<tk<t

‖Ik(unt−k )− Ik(ut−k )‖,

(5.29)
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where gn, g ∈ C(J,E) such that

gn(t) = f(t, unt, gn(t)),

and
g(t) = f(t, ut, g(t)).

By (P2), we have

‖gn(t)− g(t)‖ = ‖f(t, unt, gn(t))− f(t, ut, g(t))‖
≤ K‖unt − ut‖PC + L‖gn(t)− g(t)‖.

Then

‖gn(t)− g(t)‖ ≤ K

1− L
‖unt − ut‖PC .

Since un → u, then we get gn(t) → g(t) as n → ∞ for each t ∈ J. And let η > 0 be
such that, for each t ∈ J , we have ‖gn(t)‖ ≤ η and ‖g(t)‖ ≤ η. Then, we have

(t− s)ν−1‖gn(s)− g(s)‖ ≤ (t− s)ν−1[‖gn(s)‖+ ‖g(s)‖]
≤ 2η(t− s)ν−1,

and

(tk − s)ν−1‖gn(s)− g(s)‖ ≤ (tk − s)ν−1[‖gn(s)‖+ ‖g(s)‖]
≤ 2η(tk − s)ν−1.

For each t ∈ J , the functions s→ 2η(t− s)ν−1 and s→ 2η(tk− s)ν−1 are integrable on
[0, t], then the Lebesgue Dominated Convergence Theorem and (5.29) imply that

‖N(un)(t)−N(u)(t)‖ → 0 as n→∞,

and hence
‖N(un)−N(u)‖Ω → 0 as n→∞.

Consequently, N is continuous.
Let the constant R such that :

R ≥ max

 (‖ϕ(0)‖+mc1) Γ(ν + 1)(1− L) + (m+ 1)T νf ∗

Γ(ν + 1)(1− L)−
[
(m+ 1)T νK +ml̃Γ(ν + 1)(1− L)

] , ‖ϕ‖PC
 (5.30)

where
c1 = max

1≤k≤m
{sup{‖Ik(v)‖, v ∈ PC([−r, 0], E)}},

and
f ∗ = sup

t∈J
‖f(t, 0, 0)‖.
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Define
DR = {u ∈ Ω : ‖u‖Ω ≤ R}.

It is clear that DR is a bounded, closed and convex subset of Ω.

Claim 2 : N(DR) ⊂ DR.

Let u ∈ DR we show that Nu ∈ DR.
If t ∈ [−r, 0] then,

‖N(u)(t)‖ ≤ ‖ϕ‖PC ≤ R.

And if t ∈ J, we have

‖N(u)(t)‖ ≤ ‖ϕ(0)‖+
1

Γ(ν)

∑
0<tk<t

∫ tk

tk−1

(tk − s)ν−1‖g(s)‖ds

+
1

Γ(ν)

∫ t

tk

(t− s)ν−1‖g(s)‖ds+
∑

0<tk<t

‖Ik(ut−k )‖.
(5.31)

By (P2) we have for each t ∈ J,

||g(t)|| ≤ ‖f(t, ut, g(t))− f(t, 0, 0)‖+ ‖f(t, 0, 0)‖
≤ K‖ut‖PC + L‖g(t)‖+ f ∗

≤ K‖u‖Ω + L||g(t)||+ f ∗

≤ KR + L||g(t)||+ f ∗.

Then

||g(t)|| ≤ f ∗ +KR

1− L
:= M.

Thus, (5.30), (5.31) and (P3) imply that

||Nu(t)|| ≤ ‖ϕ(0)‖+
mMT ν

Γ(ν + 1)
+

MT ν

Γ(ν + 1)
+

m∑
k=1

‖Ik(ut−k )− Ik(0)‖+
m∑
k=1

‖Ik(0)‖

≤ ‖ϕ(0)‖+
(m+ 1)MT ν

Γ(ν + 1)
+ml̃‖ut−k ‖PC +mc1

≤ ‖ϕ(0)‖+
(m+ 1)MT ν

Γ(ν + 1)
+ml̃‖u‖Ω +mc1

≤ ‖ϕ(0)‖+
(m+ 1)MT ν

Γ(ν + 1)
+ml̃R +mc1

≤ R,

from which it follows that for each t ∈ [−r, T ], we have ‖Nu(t)‖ ≤ R.
Which implies that ‖Nu‖Ω ≤ R
Consequently,

N(DR) ⊂ DR.
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Claim 3 : N(DR) is bounded and equicontinuous.

By Claim 2 we have N(DR) = {N(u) : u ∈ DR} ⊂ DR. Thus, for each u ∈ DR we
have ‖N(u)‖Ω ≤ R which means that N(DR) is bounded. Let t1, t2 ∈ (0, T ], t1 < t2,
and let u ∈ DR. Then

‖N(u)(t2)−N(u)(t1)‖

≤ 1

Γ(ν)

∫ t1

0

|(t2 − s)ν−1 − (t1 − s)ν−1|‖g(s)‖ds

+
1

Γ(ν)

∫ t2

t1

|(t2 − s)ν−1|‖g(s)‖ds+
∑

0<tk<t2−t1

‖Ik(ut−k )− Ik(0)‖+
∑

0<tk<t2−t1

‖Ik(0)‖

≤ M

Γ(ν + 1)
[2(t2 − t1)ν + (tν2 − tν1)] + (t2 − t1)(l̃‖ut−k ‖PC + c1)

≤ M

Γ(ν + 1)
[2(t2 − t1)ν + (tν2 − tν1)] + (t2 − t1)(l̃‖u‖Ω + c1)

≤ M

Γ(ν + 1)
[2(t2 − t1)ν + (tν2 − tν1)] + (t2 − t1)(l̃R + c1).

As t1 → t2, the right-hand side of the above inequality tends to zero.

Claim 4 : The operator N : DR → DR is a strict set contraction.

Let V ⊂ DR.
If t ∈ [−r, 0],then

α(N(V )(t)) = α(N(y)(t), y ∈ V )

= α(ϕ(t), y ∈ V )

= 0.

And if t ∈ J , we have

α(N(V )(t)) = α((Ny)(t), y ∈ V )

≤
∑

0<tk<t

{
α(Ik(yt−k

)), y ∈ V
}

+
1

Γ(ν)

∑
0<tk<t

{∫ tk

tk−1

(tk − s)ν−1α(g(s))ds, y ∈ V
}

+
1

Γ(ν)

{∫ t

tk

(t− s)ν−1α(g(s))ds, y ∈ V
}
.

Then Remark 5.3.3 and Lemma 1.4.4 imply that, for each s ∈ J,

α({g(s), y ∈ V }) = α({f(s, y(s), g(s)), y ∈ V })
≤ Kα({y(s), y ∈ V }) + Lα({g(s), y ∈ V }).
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Thus

α ({g(s), y ∈ V }) ≤ K

1− L
α{y(s), y ∈ V }.

On the other hand, for each t ∈ J and k = 1, . . . ,m, we have∑
0<tk<t

α
({
Ik(yt−k

), y ∈ V
})

≤ ml̃α({y(t), y ∈ V }).

Then

α(N(V )(t)) ≤ ml̃α({y(t), y ∈ V }) +
mK

(1− L)Γ(ν)

{∫ t

0

(t− s)ν−1{α(y(s))}ds, y ∈ V
}

+
K

(1− L)Γ(ν)

{∫ t

0

(t− s)ν−1{α(y(s))}ds, y ∈ V
}

≤ ml̃αc(V ) +

[
mKT ν

(1− L)Γ(ν + 1)
+

KT ν

(1− L)Γ(ν + 1)

]
αc(V )

=

[
ml̃ +

(m+ 1)KT ν

(1− L)Γ(ν + 1)

]
αc(V ).

Therefore

αc(NV ) ≤
[
ml̃ +

(m+ 1)KT ν

(1− L)Γ(ν + 1)

]
αc(V ).

So, by (5.27), the operator N is a set contraction. As a consequence of Theorem 1.5.3,
we deduce that N has a fixed point which is solution to the problem (5.23)-(5.25).

�

Proof 2. Consider the operator N defined in (5.28). We shall show that N satisfies
the assumption of Mönch’s fixed point theorem. We know that N : DR → DR is
bounded and continuous, we need to prove that the implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ α(V ) = 0,

holds for every subset V ofDR. Now let V be a subset ofDR such that V ⊂ conv(N(V )∪
{0}). V is bounded and equicontinuous and therefore the function t→ v(t) = α(V (t))
is continuous on [−r, T ]. By Remark 5.3.3, Lemma 1.4.8 and the properties of the
measure α we have for each t ∈ J

v(t) ≤ α(N(V )(t) ∪ {0})
≤ α(N(V )(t))

≤ α{(Ny)(t), y ∈ V }

≤ ml̃α({y(t), y ∈ V }) +
(m+ 1)K

(1− L)Γ(ν)

{∫ t

0

(t− s)ν−1{α(y(s))}ds, y ∈ V
}
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= ml̃v(t) +
(m+ 1)K

(1− L)Γ(ν)

∫ t

0

(t− s)ν−1v(s)ds.

Then

v(t) ≤ (m+ 1)K

(1−ml̃)(1− L)Γ(ν)

∫ t

0

(t− s)ν−1v(s)ds.

Lemma 1.3.8 implies that v(t) = 0 for each t ∈ J .
For t ∈ [−r, 0] we have v(t) = α(ϕ(t)) = 0, then V (t) is relatively compact in E.
In view of the Ascoli-Arzelà theorem, V is relatively compact in DR. Applying now
Theorem 1.5.5 we conclude that N has a fixed point y ∈ DR. Hence N has a fixed
point which is solution to the problem (5.23)-(5.25).

�

5.3.3 Examples

Example 1. Consider the following infinite system

cD
1
2
tk
yn(t) =

e−t

(11 + et)

 ytn
1 + ytn

−
cD

1
2
tk
yn(t)

1 +c D
1
2
tk
yn(t)

 , for each, t ∈ J0 ∪ J1. (5.32)

∆yn|t= 1
2

=
yn(1

2

−
)

10 + yn(1
2

−
)
. (5.33)

yn(t) = ϕ(t), t ∈ [−r, 0], r > 0, (5.34)

where ϕ ∈ PC ([−r, 0], E) , J0 =
[
0, 1

2

]
, J1 =

(
1
2
, 1
]
, t0 = 0, and t1 = 1

2
.

Set

E = l1 = {y = (y1, y2, ..., yn, ...),
∞∑
n=1

|yn| <∞},

and

f(t, u, v) =
e−t

(11 + et)

[
u

1 + u
− v

1 + v

]
, t ∈ [0, 1], u ∈ PC ([−r, 0], E) and v ∈ E.

Clearly, the function f is jointly continuous.

E is a Banach space with the norm ||y|| =
∞∑
n=1

|yn|.

For any u, ū ∈ PC ([−r, 0], E) , v, v̄ ∈ E and t ∈ [0, 1] :

||f(t, u, v)− f(t, ū, v̄)|| ≤ 1

12
(||u− ū||PC + ||v − v̄||).
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Hence condition (P2) is satisfied with K = L =
1

12
.

And let
I1(u) =

u

10 + u
, u ∈ PC([−r, 0], E).

Let u, v ∈ PC([−r, 0], E). Then we have

‖I1(u)− I1(v)‖ =
∥∥ u

10 + u
− v

10 + v

∥∥ ≤ 1

10
‖u− v‖PC .

Hence the condition (P3) is satisfied with l̃ =
1

10
.

And the conditions

ml̃ +
(m+ 1)KT ν

(1− L)Γ(ν + 1)
=

[
1

10
+

2
12

(1− 1
12

)Γ(3
2
)

]
=

4

11
√
π

+
1

10
< 1,

are satisfied with T = m = 1 and ν =
1

2
. It follows from Theorem 5.3.4 that the

problem (5.32)–(5.34) has a at least one solution on J .

Example 2. Consider the following impulsive problem

cD
1
2
tk
yn(t) =

2 + ‖ynt‖+ ‖cD
1
2
tk
yn(t)‖

108et+3(1 + ‖ynt‖+ ‖cD
1
2
tk
yn(t)‖)

, for each, t ∈ J0 ∪ J1. (5.35)

∆yn|t= 1
3

=
‖yn(1

3

−
)‖

6 + ‖yn(1
3

−
)‖
, (5.36)

yn(t) = ϕ(t), t ∈ [−r, 0], r > 0, (5.37)

where ϕ ∈ PC([−r, 0], E), J0 =
[
0, 1

3

]
, J1 =

(
1
3
, 1
]
, t0 = 0, and t1 = 1

3
.

Set

E = l1 = {y = (y1, y2, ..., yn, ...),
∞∑
n=1

|yn| <∞},

and

f(t, u, v) =
2 + ‖u‖+ ‖v‖

108et+3(1 + ‖u‖+ ‖v‖)
, t ∈ [0, 1], u ∈ PC([−r, 0], E), v ∈ E.

Clearly, the function f is jointly continuous.

E is a Banach space with the norm ||y|| =
∞∑
n=1

|yn|.

For any u, ū ∈ PC ([−r, 0], E) , v, v̄ ∈ E and t ∈ [0, 1] :

||f(t, u, v)− f(t, ū, v̄)|| ≤ 1

108e3
(||u− ū||PC + ||v − v̄||).
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Hence condition (P2) is satisfied with K = L =
1

108e3
.

And let

I1(u) =
‖u‖

6 + ‖u‖
, u ∈ PC([−r, 0], E).

Let u, v ∈ PC([−r, 0], E). Then we have

‖I1(u)− I1(v)‖ =
∥∥ u

6 + u
− v

6 + v

∥∥ ≤ 1

6
‖u− v‖PC .

Hence the condition (P3) is satisfied with l̃ =
1

6
.

The condition

ml̃ +
(m+ 1)KT ν

(1− L)Γ(ν + 1)
=

[
1

6
+

2
12

(1− 1
12

)Γ(3
2
)

]
=

4

11
√
π

+
1

6
< 1,

is satisfied with T = m = 1 and ν =
1

2
.

Also, we have

ml̃ =
1

6
< 1.

It follows from Theorem 5.3.4 that the problem (5.35)-(5.37) has at least one solution
on J .



Chapitre 6

Existence and Stability Results for
Neutral Functional Differential
Equations of Fractional Order with
Finite Delay and Impulses

6.1 Introduction and Motivations

In this Chapter, we establish, in Section 6.2, existence, uniqueness and stability
results to the following nonlinear implicit neutral fractional-order differential equation
with finite delay

cDα[y(t)− g(t, yt)] = f(t, yt,
cDαy(t)), t ∈ J = [0, T ], T > 0 , 0 < α ≤ 1

y(t) = ϕ(t), t ∈ [−r, 0], r > 0

where f : J × C([−r, 0],R) × R → R and g : J × C([−r, 0],R) → R are two given
functions such that g(0, ϕ) = 0 and ϕ ∈ C([−r, 0],R) .

For each function yt defined on [−r, T ] and for any t ∈ J , we denote by yt the ele-
ment of C([−r, 0],R) defined by :

yt(θ) = y(t+ θ), θ ∈ [−r, 0],

yt(·) represent the evolution history of system state from time t− r to time t.

An extension of this problem is given in Section 6.3. More precisely, we shall present
a result of existence and uniqueness for the nonlinear implicit neutral fractional-order
differential equation with finite delay and impulses

cDα
tk

[y(t)−φ(t, yt)] = f(t, yt,
cDα

tk
y(t)), for each t ∈ (tk, tk+1], k = 0, . . . ,m, 0 < α ≤ 1,

111
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∆y|tk = Ik(yt−k
), k = 1, . . . ,m,

y(t) = ϕ(t), t ∈ [−r, 0], r > 0,

where cDα
tk

is the Caputo fractional derivative, f : J × PC([−r, 0],R)× R→ R,
φ : J × PC([−r, 0],R)→ R are given functions with φ(0, ϕ) = 0, Ik : PC([−r, 0],R)
→ R and ϕ ∈ PC([−r, 0],R), 0 = t0 < t1 < · · · < tm < tm+1 = T, and PC([−r, 0],R)
is a space to be specified later.
And ∆y|tk = y(t+k )−y(t−k ), where y(t+k ) = limh→0+ y(tk + h) and y(t−k ) = limh→0− y(tk + h)
represent the right and left limits of yt at t = tk, respectively.

6.2 Existence and Stability Results for Neutral NIFDE

with Finite Delay

1

6.2.1 Introduction

In this Section, we establish, existence, uniqueness and stability results to the fol-
lowing nonlinear implicit neutral fractional-order differential equation with finite delay

cDα[y(t)− g(t, yt)] = f(t, yt,
cDαy(t)), t ∈ J = [0, T ], T > 0 , 0 < α ≤ 1 (6.1)

y(t) = ϕ(t), t ∈ [−r, 0], r > 0 (6.2)

where f : J × C([−r, 0],R) × R → R and g : J × C([−r, 0],R) → R are two given
functions such that g(0, ϕ) = 0 and ϕ ∈ C([−r, 0],R) .
The arguments are based upon the Banach contraction principle. Two examples are
given to show the applicability of our results.

6.2.2 Existence of Solutions

By C([−r, 0],R), C([0, T ],R) we denote the Banach spaces of all continuous func-
tions from [−r, 0] into R (resp from [0, T ] into R) with the norms :
‖y‖C = {sup |y(t)| , t ∈ [−r, 0]} and ‖y‖∞ = {sup |y(t)| , t ∈ [0, T ]} (respectively).
Set

Ω = {y : [−r, T ]→ R : y|[−r,0] ∈ C([−r, 0],R) and y|[0,T ] ∈ C([0, T ],R)}.

Ω is a Banach space with the norm

‖y‖Ω = sup
t∈[−r,T ]

|y(t)|.

1. M. Benchohra and S. Bouriah, Existence and Stability Results for Neutral Functional Differential
Equations of Fractional Order with Finite Delay, Dynamics of Continuous, Discrete and Impulsive
Systems.
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Definition 6.2.1 A function y ∈ Ω is called solution of the problem (6.1)-(6.2) if it
satisfies the equation (6.1) on J and the condition (6.2) on [−r, 0].

Lemma 6.2.2 Let 0 < α ≤ 1 and h : [0, T ] → R a continuous function. Then, the
linear problem

cDα[y(t)− g(t, yt)] = h(t), t ∈ J
y(t) = ϕ(t), t ∈ [−r, 0]

has a unique solution which is given by

y(t) =

 ϕ(0) + g(t, yt) +
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds, t ∈ J

ϕ(t), t ∈ [−r, 0].

Lemma 6.2.3 Let f : J × C([−r, 0],R) × R → R a continuous function, then the
problem (6.1)-(6.2) is equivalent to the problem

y(t) =

{
ϕ(0) + IαKy(t), t ∈ J
ϕ(t), t ∈ [−r, 0]

(6.3)

where Ky ∈ C(J,R) satisfies the functional equation

Ky(t) = f(t, yt, Ky(t)) +c Dαg(t, yt).

Proof. Let y solution of the problem (6.3), show that y is solution of (6.1)-(6.2).
We have

y(t) =

{
ϕ(0) + IαKy(t), t ∈ J
ϕ(t), t ∈ [−r, 0]

for t ∈ [−r, 0], we have y(t) = ϕ(t), so the condition (6.2) is satisfied.
On the other hand, for t ∈ J , we have

cDαy(t) = Ky(t) = f(t, yt, Ky(t)) +c Dαg(t, yt).

So
cDα [y(t)− g(t, yt)] = f(t, yt,

cDαy(t)).

Then, y is well solution of the problem (6.1)-(6.2) .
�

Lemma 6.2.4 Under assumptions :

(H1) f : J × C ([−r, 0] ,R)× R→ R is a continuous function.

(H2) there exist K > 0 and 0 < K < 1 such that :

|f(t, u, v)− f(t, ū, v̄)| ≤ K ‖u− ū‖C +K|v − v̄|

for any u, ū ∈ C ([−r, 0] ,R) , v, v̄ ∈ R and t ∈ J.
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(H3) there exists L > 0 such that :

|g(t, u)− g(t, v)| ≤ L ‖u− v‖C

for any u, v ∈ C ([−r, 0] ,R) and t ∈ J .
And if

KTα(
1−K

)
Γ (α + 1)

+
L(

1−K
) < 1, (6.4)

then, the problem (6.1)-(6.2) has a unique solution.

Proof. Let the operator N : Ω→ Ω defined by

Ny(t) =

{
ϕ(0) + IαKy(t), t ∈ J
ϕ (t) , t ∈ [−r, 0] .

(6.5)

By Lemma 6.2.3, it is clear that the fixed points of N are the solutions of the problem
(6.1)-(6.2) .
Let y, ỹ ∈ Ω. If t ∈ [−r, 0] , then

|Ny(t)−Nỹ(t)| = 0.

For t ∈ J, we have

|Ny(t)−Nỹ(t)| = |IαKy(t)− IαKỹ(t)| ≤ Iα |Ky(t)−Kỹ(t)| . (6.6)

For any t ∈ J

|Ky(t)−Kỹ(t)| ≤ |f(t, yt, Ky(t))− f(t, ỹt, Kỹ(t))|
+cDα |g(t, yt)− g(t, ỹt)|

≤ K ‖yt − ỹt‖C +K |Ky(t)−Kỹ(t)|
+cDα |g(t, yt)− g(t, ỹt)| .

Thus

|Ky(t)−Kỹ(t)| ≤
K

1−K
‖yt − ỹt‖C +

(
1

1−K

)
cDα |g(t, yt)− g(t, ỹt)| . (6.7)

By replacing (6.7) in the inequality (6.6) , we find

|Ny(t)−Nỹ(t)| ≤ K(
1−K

)
Γ (α)

∫ t

0

(t− s)α−1 ‖ys − ỹs‖C ds

+
1

1−K
Iα cDα |g(t, yt)− g(t, ỹt)|

≤ KTα(
1−K

)
Γ (α + 1)

‖y − ỹ‖Ω
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+
1

1−K
(|g(t, yt)− g(t, ỹt)|+ |g (0, y0)− g (0, ỹ0)|)

≤ KTα(
1−K

)
Γ (α + 1)

‖y − ỹ‖Ω +
L

1−K
‖yt − ỹt‖C

≤

[
KTα(

1−K
)

Γ (α + 1)
+

L

1−K

]
‖y − ỹ‖Ω ,

then

‖Ny −Nỹ‖Ω ≤

[
KTα(

1−K
)

Γ (α + 1)
+

L(
1−K

)] ‖y − ỹ‖Ω .

From (6.4), it follows that N admits a unique fixed point which is solution of the
problem (6.1)-(6.2).

�

6.2.3 Ulam-Hyers Stability Results

for the implicit fractional-order differential equation (6.1), we adopt the definition
in Rus [125] for : Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-
Rassias stability and generalized Ulam-Hyers-Rassias stability.

Definition 6.2.5 The equation (6.1) is Ulam-Hyers stable if there exists a real number
cf > 0 such that for each ε > 0 and for each solution z ∈ C1 (J,R) of the inequality

|cDαz(t)− f(t, zt,
cDαz(t))−c Dαg(t, zt)| ≤ ε, t ∈ J,

there exists a solution y ∈ C1 (J,R) of equation (6.1) with

|z(t)− y(t)| ≤ cfε, t ∈ J.

Definition 6.2.6 The equation (6.1) is generalized Ulam-Hyers stable if there exists
ψf ∈ C (R+,R+) , ψf (0) = 0, such that for each solution z ∈ C1 (J,R) of the inequality

|cDαz(t)− f(t, zt,
cDαz(t))−c Dαg(t, zt)| ≤ ε, t ∈ J,

there exists a solution y ∈ C1 (J,R) of the equation (6.1) with

|z(t)− y(t)| ≤ ψf (ε) , t ∈ J.

Definition 6.2.7 The equation (6.1) is Ulam-Hyers-Rassias stable with respect to φ ∈
C (J,R+) if there exists a real number cf > 0 such that for each ε > 0 and for each
solution z ∈ C1 (J,R) of the inequality

|cDαz(t)− f(t, zt,
cDαz(t))−c Dαg(t, zt)| ≤ εφ (t) , t ∈ J,

there exists a solution y ∈ C1 (J,R) of equation (6.1) with

|z(t)− y(t)| ≤ cfεφ (t) , t ∈ J.
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Definition 6.2.8 The equation (6.1) is generalized Ulam-Hyers-Rassias stable with
respect to φ ∈ C (J,R+) if there exists a real number cf,φ > 0 such that for each
solution z ∈ C1 (J,R) of the inequality

|cDαz(t)− f(t, zt,
cDαz(t))−c Dαg(t, zt)| ≤ φ (t) , t ∈ J,

there exists a solution y ∈ C1 (J,R) of equation (6.1) with

|z(t)− y(t)| ≤ cf,φφ (t) , t ∈ J.

Remark 6.2.9 A function z ∈ C1 (J,R) is a solution of the inequality

|cDαz(t)− f(t, zt,
cDαz(t))−c Dαg(t, zt)| ≤ ε, t ∈ J,

if and only if there exists a function h ∈ C (J,R) (which depends on y) such that

i) |h(t)| ≤ ε, ∀t ∈ J.
ii) cDα [z(t)− g(t, zt)] = f(t, zt,

cDαz(t)) + h(t), t ∈ J.

Remark 6.2.10 Clearly,

i) Definition 6.2.5 ⇒ Definition 6.2.6

ii) Definition 6.2.7 ⇒ Definition 6.2.8.

Remark 6.2.11 A solution of the implicit differential equation

|cDαz(t)− f(t, zt,
cDαz(t))−c Dαg(t, zt)| ≤ ε, t ∈ J,

with fractional order is called an fractional ε−solution of the implicit fractional diffe-
rential equation (6.1).

Theorem 6.2.12 Assume that (H1)-(H3), (6.4) are satisfied. If

K + L < 1, (6.8)

then the problem (6.1)-(6.2) is Ulam-Hyers stable.

Proof. Let ε > 0 and z ∈ Ω a function which verifies the inequality

|cDαz(t)− f(t, zt,
cDαz(t))−c Dαg(t, zt)| ≤ ε for each t ∈ J

this inequality is equivalent to

|cDαz(t)−Kz(t)| ≤ ε (6.9)

and let y ∈ Ω be the unique solution of the problem{
cDα [y(t)− g(t, yt)] = f(t, yt,

cDαy(t)), t ∈ J
z(t) = y(t) = ϕ(t), t ∈ [−r, 0] .
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By integration of the inequality (6.9) , we obtain

|z(t)− IαKz(t)| ≤
εTα

Γ (α + 1)
.

We consider the function γ1 defined by

γ1(t) = sup {|z(s)− y(s)| : −r ≤ s ≤ t} , 0 ≤ t ≤ T,

then, there exists t∗ ∈ [−r, T ] such that γ1(t) = |z(t∗)− y(t∗)| .
If t∗ ∈ [−r, 0], then γ1(t) = 0.
If t∗ ∈ [0, T ], then

γ1(t) ≤ |z(t)− IαKz(t)|+ Iα |Kz(t)−Ky(t)|

≤ εTα

Γ (α + 1)
+ Iα |Kz(t)−Ky(t)| . (6.10)

On the other hand, we have

|Kz(t)−Ky(t)| ≤ |f(t, zt, Kz(t))− f(t, yt, Ky(t)|
+cDα |g(t, zt)− g(t, yt)|

≤ Kγ1(t) +K |Kz(t)−Ky(t)|
+cDα |g(t, zt)− g(t, yt)| ,

then

|Kz(t)−Ky(t)| ≤
K

1−K
γ1(t) +

1

1−K
cDα |g(t, zt)− g(t, yt)| (6.11)

by replacing (6.11) in the inequality (6.10), we get

γ1(t) ≤ εTα

Γ (α + 1)
+

K(
1−K

)
Γ (α)

∫ t

0

(t− s)α−1 γ1(s)ds

+
1

1−K
|g(t, zt)− g(t, yt)|

≤ εTα

Γ (α + 1)
+

K(
1−K

)
Γ (α)

∫ t

0

(t− s)α−1 γ1(s)ds

+
L

1−K
γ1(t),

then

γ1(t) ≤
εTα

(
1−K

)[
1−

(
K + L

)]
Γ (α + 1)

+
K[

1−
(
K + L

)]
Γ (α)

∫ t

0

(t− s)α−1 γ1(s)ds
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and by the Gronwall’s Lemma, we get

γ1(t) ≤
εTα

(
1−K

)[
1−

(
K + L

)]
Γ (α + 1)

[
1 +

KTασ1[
1−

(
K1 + L

)]
Γ (α + 1)

]
:= cε,

where σ1 = σ1(α) a constant, which completes the proof of the theorem. Moreover,
if we set ψ(ε) = cε;ψ(0) = 0, then the problem (6.1)-(6.2) is generalized Ulam-Hyers
stable.

�

Theorem 6.2.13 Assume that (H1)-(H3), (6.4), (6.8) and

(H4) there exists an increasing function φ ∈ C (J,R+) and there exists λφ > 0 such that
for any t ∈ J :

Iαφ (t) ≤ λφφ (t)

are satisfied. Then, the problem (6.1)-(6.2) is Ulam-Hyers-Rassias stable.

Proof. Let z ∈ Ω solution of the following inequality

|cDαz(t)− f(t, zt,
cDαz(t))−c Dαg(t, zt)| ≤ εφ (t) , t ∈ J, ε > 0

this inequality is equivalent to

|cDαz(t)−Kz(t)| ≤ εφ (t) (6.12)

and let y ∈ Ω the unique solution of Cauchy problem{
cDα [y(t)− g(t, yt)] = f(t, yt,

cDαy(t)), t ∈ J
z(t) = y(t) = ϕ(t), t ∈ [−r, 0] .

By integration of (6.12), we obtain for any t ∈ J

|z(t)− IαKz(t)| ≤ εIαφ (t) ≤ ελφφ (t) .

Using the function γ1 which is defined in the proof of the theorem 6.2.12, we get :
if t∗ ∈ [−r, 0] then γ1 (t) = 0.
If t∗ ∈ [0, T ] , then we have

γ1 (t) ≤ |z(t)− IαKz(t)|+ Iα |Kz(t)−Ky(t)|
≤ ελφφ (t) + Iα |Kz(t)−Ky(t)| (6.13)

from which it follows that

|Kz(t)−Ky(t)| ≤
K

1−K
γ1 (t) +

1

1−K
cDα |g(t, zt)− g(t, yt)| . (6.14)
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By replacing (6.14) in the inequality (6.13), we obtain

γ1 (t) ≤ ελφφ (t) +
K(

1−K
)

Γ (α)

∫ t

0

(t− s)α−1 γ1 (s) ds

+
1

1−K
|g(t, zt)− g(t, yt)|

≤ ελφφ (t) +
K(

1−K
)

Γ (α)

∫ t

0

(t− s)α−1 γ1 (s) ds+
L

1−K
γ1 (t) ,

then

γ1 (t) ≤
(
1−K

)
ελφφ (t)

1−
(
K + L

) +
K[

1−
(
K + L

)]
Γ (α)

∫ t

0

(t− s)α−1 γ1 (s) ds,

by the Gronwall’s Lemma, we get

γ1(t) ≤
(
1−K

)
ελφφ (t)

1−
(
K + L

) [
1 +

KTασ2[
1−

(
K + L

)]
Γ (α + 1)

]

≤

[ (
1−K

)
λφ

1−
(
K + L

) (1 +
KTασ2[

1−
(
K + L

)]
Γ (α + 1)

)]
εφ (t) = cεφ (t) ,

where σ2 = σ2 (α) a constant. Then the problem (6.1)-(6.2) is Ulam-Hyers-Rassias
stable.

�

6.2.4 Examples

Example 1. Consider the problem of neutral fractional differential equation :

cD
1
2

[
y(t)− te−t‖yt‖C

(9 + et) (1 + ‖yt‖C)

]
=

2 + ‖yt‖C + |cD 1
2y(t)|

12et+9(1 + ‖yt‖C + |cD 1
2y(t)|)

, t ∈ [0, 1] (6.15)

y(t) = ϕ(t); t ∈ [−r, 0] , r > 0 (6.16)

where ϕ ∈ C ([−r, 0] ,R) .
Set

g(t, w) =
te−tw

(9 + et) (1 + w)
, (t, w) ∈ [0, 1]× [0,+∞)

and

f(t, u, v) =
2 + u+ v

12et+9(1 + u+ v)
, (t, u, v) ∈ [0, 1]× [0,+∞)× [0,+∞) .

Observe that g(0, w) = 0, for any w ∈ [0,+∞).
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Clearly, the function f is continuous. Hence, (H1) is satisfied.
We have,

|f(t, u, v)− f(t, ū, v̄)| ≤ 1

12e9
(‖u− ū‖C + |v − v̄|)

|g(t, u)− g(t, ū)| ≤ 1

10
‖u− ū‖C

for any u, ū ∈ C([−r, 0] ,R), v, v̄ ∈ R and t ∈ [0, 1] .

Hence, conditions (H2) and (H3) are satisfied with K = K =
1

12e9
and L =

1

10
.

And condition

KTα

(1 +K)Γ(α + 1)
+

L

(1−K)
=

20 + 12e9
√
π

10
√
π(12e9 − 1)

< 1,

is satisfied with T = 1, α =
1

2
.

By Lemma 6.2.4, the problem (6.15)-(6.16) admits a unique solution.
Since

K + L =
10 + 12e9

120e9
< 1,

then, by Theorem 6.2.12, the problem (6.15)-(6.16) is Ulam-Hyers stable.

Example 2. Consider the problem of neutral fractional differential equation :

cD
1
2

[
y(t)− t

5et+2 (1 + ‖yt‖C)

]
=

e−t

7 + et

[
‖yt‖C

1 + ‖yt‖C
− |cD 1

2y(t)|
1 + |cD 1

2y(t)|

]
, t ∈ [0, 1]

(6.17)
y(t) = ϕ(t), t ∈ [−r, 0] , r > 0, (6.18)

where ϕ ∈ C ([−r, 0] ,R) .
Set

g(t, w) =
t

5et+2 (1 + w)
, (t, w) ∈ [0, 1]× [0,+∞) ,

and

f(t, u, v) =
e−t

(7 + et)

(
u

1 + u
− v

1 + v

)
, (t, u, v) ∈ [0, 1]× [0,+∞)× [0,+∞) .

Observe that g(0, w) = 0, for any w ∈ [0,+∞).
Clearly, the function f is continuous. Hence, (H1) is satisfied.

|f(t, u, v)− f(t, ū, v̄)| ≤ 1

8
‖u− ū‖C +

1

8
|v − v̄|

|g(t, u)− g(t, ū)| ≤ 1

5e2
‖u− ū‖C
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for any u, ū ∈ C([−r, 0] ,R), v, v̄ ∈ R and t ∈ [0, 1] .

Hence, conditions (H2) and (H3) are satisfied with K = K =
1

8
and L =

1

5e2
.

We have
KTα

(1 +K)Γ(α + 1)
+

L

(1−K)
=

10e2 + 8
√
π

35e2
√
π

< 1.

By Lemma 6.2.4, the problem (6.17)-(6.18) admits a unique solution.
Since

K + L =
5e2 + 8

40e2
< 1,

then, by Theorem 6.2.12, the problem (6.17)-(6.18) is Ulam-Hyers stable.

6.3 Existence Results for the Neutral IFDE with

Finite Delay and Impulses

2

6.3.1 Introduction

The purpose of this section, is to establish existence, uniqueness and stability results
to the following implicit neutral differential equations of fractional order with finite
delay and Impulses

cDα
tk

[y(t)−φ(t, yt)] = f(t, yt,
cDα

tk
y(t)), for each t ∈ (tk, tk+1], k = 0, . . . ,m, 0 < α ≤ 1,

(6.19)
∆y|tk = Ik(yt−k

), k = 1, . . . ,m, (6.20)

y(t) = ϕ(t), t ∈ [−r, 0], r > 0, (6.21)

where cDα
tk

is the Caputo fractional derivative, f : J × PC([−r, 0],R)× R→ R,
φ : J × PC([−r, 0],R)→ R are given functions with φ(0, ϕ) = 0, Ik : PC([−r, 0],R)
→ R and ϕ ∈ PC([−r, 0],R), 0 = t0 < t1 < · · · < tm < tm+1 = T, and PC([−r, 0],R) is
a space to be specified later. For each function y defined on [−r, T ] and for any t ∈ J ,
we denote by yt the element of PC ([−r, 0] ,R) defined by :

yt(θ) = y(t+ θ), θ ∈ [−r, 0],

that is, yt(·) represents the history of the state from time t− r up to time t.
And ∆y|tk = y(t+k )−y(t−k ), where y(t+k ) = limh→0+ y(tk + h) and y(t−k ) = limh→0− y(tk + h)
represent the right and left limits of yt at t = tk, respectively.
The arguments are based upon the Banach contraction principle, and Schaefer’s fixed
point theorem. At last, an example is included to show the applicability of our results.

2. M. Benchohra, S. Bouriah and J.Henderson, Existence and Stability Results for Nonlinear Impli-
cit Neutral Fractional Differential Equations with Finite Delay and Impulses, Comm. Appl. Nonlinear
Anal. 22 (1), (2015), 46-67.
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6.3.2 Existence of Solutions

By C(J,R) we denote the Banach space of all continuous functions from J into R
with the norm

‖y‖∞ = sup{|y(t)| : t ∈ J}.

Let J0 = [t0, t1], Jk = (tk, tk+1] where k = 1, . . . ,m and −r = τ0 < τ1 < · · · < τl <
τl+1 = 0, with l ≤ m .
Consider the sets of functions

PC([−r, 0],R) = {y : [−r, 0]→ R : y ∈ C((τk, τk+1],R), k = 1, ..., l, and there exist
y(τ−k ) and y(τ+

k ), k = 1, ..., l with y(τ−k ) = y(τk) and τk = tk − t, for each t ∈ Jk}.

PC([−r, 0],R) is a Banach space with the norm

‖y‖PC = sup
t∈[−r,0]

|y(t)|.

PC([0, T ],R) = {y : [0, T ]→ R : y ∈ C((tk, tk+1],R), k = 1, ...,m, and there exist
y(t−k ) and y(t+k ), k = 1, ...,m with y(t−k ) = y(tk)}.

PC([0, T ],R) is a Banach space with the norm

‖y‖C = sup
t∈[0,T ]

|y(t)|.

Ω = {y : [−r, T ]→ R : y|[−r,0] ∈ PC([−r, 0],R) and y|[0,T ] ∈ PC([0, T ],R)}.

Ω is a Banach space with the norm

‖y‖Ω = sup
t∈[−r,T ]

|y(t)|.

Definition 6.3.1 A function y ∈ Ω whose α-derivative exists on Jk is said to be a so-
lution of (6.19)–(6.21) if y satisfies the equation cDα

tk
(y(t)−φ(t, yt)) = f(t, yt,

cDα
tk
y(t))

on Jk, and satisfy the conditions

∆y|t=tk = Ik(yt−k
), k = 1, . . . ,m,

y(t) = ϕ(t), t ∈ [−r, 0].

To prove the existence of solutions to (6.19)–(6.21), we need the following auxiliary
Lemma.
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Lemma 6.3.2 Let 0 < α ≤ 1 and let σ : J → R be continuous. A function y is a
solution of the fractional integral equation

y(t) =



ϕ(0) + φ(t, yt) +
1

Γ(α)

∫ t

0

(t− s)α−1σ(s)ds if t ∈ [0, t1]

ϕ(0) + φ(t, yt) +
k∑
i=1

Ii(yt−i ) +
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1σ(s)ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1σ(s)ds, if t ∈ (tk, tk+1],

ϕ(t), t ∈ [−r, 0],

(6.22)

where k = 1, . . . ,m, if and only if y is a solution of the following fractional problem

cDα(y(t)− φ(t, yt)) = σ(t), t ∈ Jk, (6.23)

∆y|t=tk = Ik(yt−k
), k = 1, . . . ,m, (6.24)

y(t) = ϕ(t), t ∈ [−r, 0]. (6.25)

Proof. Assume y satisfies (6.23)-(6.25). If t ∈ [0, t1] then

cDα(y(t)− φ(t, yt)) = σ(t).

Lemma 1.3.7 implies

y(t)− φ(t, yt) = ϕ(0) + Iασ(t) = ϕ(0) +
1

Γ(α)

∫ t

0

(t− s)α−1σ(s)ds.

If t ∈ (t1, t2] then Lemma 1.3.7 implies

y(t)− φ(t, yt) = y(t+1 )− φ(t1, yt1) +
1

Γ(α)

∫ t

t1

(t− s)α−1σ(s)ds

= ∆y|t=t1 + y(t−1 )− φ(t1, yt1) +
1

Γ(α)

∫ t

t1

(t− s)α−1σ(s)ds

= I1(yt−1 ) +

[
ϕ(0) +

1

Γ(α)

∫ t1

0

(t1 − s)α−1σ(s)ds

]
+

1

Γ(α)

∫ t

t1

(t− s)α−1σ(s)ds.

= ϕ(0) + I1(yt−1 ) +
1

Γ(α)

∫ t1

0

(t1 − s)α−1σ(s)ds

+
1

Γ(α)

∫ t

t1

(t− s)α−1σ(s)ds.
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If t ∈ (t2, t3], then from Lemma 1.3.7, we get

y(t)− φ(t, yt) = y(t+2 )− φ(t2, yt2) +
1

Γ(α)

∫ t

t2

(t− s)α−1σ(s)ds

= ∆y|t=t2 + y(t−2 )− φ(t2, yt2) +
1

Γ(α)

∫ t

t2

(t− s)α−1σ(s)ds

= I2(yt−2 ) +

[
ϕ(0) + I1(yt−1 ) +

1

Γ(α)

∫ t1

0

(t1 − s)α−1σ(s)ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1σ(s)ds

]
+

1

Γ(α)

∫ t

t2

(t− s)α−1σ(s)ds.

= ϕ(0) +
[
I1(yt−1 ) + I2(yt−2 )

]
+

[
1

Γ(α)

∫ t1

0

(t1 − s)α−1σ(s)ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1σ(s)ds

]
+

1

Γ(α)

∫ t

t2

(t− s)α−1σ(s)ds.

Repeating the process in this way, the solution y(t), for t ∈ (tk, tk+1] where k =
1, . . . ,m, can be written as

y(t) = ϕ(0) + φ(t, yt) +
k∑
i=1

Ii(yt−i ) +
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1σ(s)ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1σ(s)ds.

Conversely, assume that y satisfies the impulsive fractional integral equation (6.22). If
t ∈ [0, t1] then y(0) = ϕ(0) and using the fact that cDα is the left inverse of Iα we get

cDα(y(t)− φ(t, yt)) = σ(t), for each t ∈ [0, t1].

If t ∈ (tk, tk+1], k = 1, . . . ,m, and using the fact that cDαC = 0, where C is a constant,
we get

cDα(y(t)− φ(t, yt)) = σ(t), for each t ∈ (tk, tk+1].

Also, we can easily show that

∆y|t=tk = Ik(yt−k
), k = 1, . . . ,m.

�

We are now in a position to state and prove our existence result for the problem
(6.19)−(6.21) based on Banach’s fixed point.

Theorem 6.3.3 Assume
(P1) The function f : J × PC([−r, 0],R)× R→ R is continuous.
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(P2) There exist constants K > 0, L > 0 and 0 < L < 1 such that

|f(t, u, v)− f(t, ū, v̄)| ≤ K‖u− ū‖PC + L|v − v̄|

and
|φ(t, u)− φ(t, ū)| ≤ L‖u− ū‖PC

for any u, ū ∈ PC([−r, 0],R), v, v̄ ∈ R and t ∈ J .

(P3) There exists a constant l̃ > 0 such that

|Ik(u)− Ik(u)| ≤ l̃‖u− u‖PC ,

for each u, u ∈ PC([−r, 0],R) and k = 1, . . . ,m.
If

ml̃ + L+
(m+ 1)KTα

(1− L)Γ(α + 1)
< 1, (6.26)

then there exists a unique solution for the problem (6.19)-(6.21) on J .

Proof. Transform the problem (6.19)-(6.21) into a fixed point problem. Consider the
operator N : Ω→ Ω defined by

Ny(t) =



ϕ(0) + φ(t, yt) +
∑

0<tk<t

Ik(yt−k
) +

1

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1g(s)ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1g(s)ds, t ∈ [0, T ],

ϕ(t), t ∈ [−r, 0],

(6.27)
where g ∈ C(J,R) be such that

g(t) = f(t, yt, g(t)).

Clearly, the fixed points of operator N are solutions of problem (6.19)–(6.21).
Let u,w ∈ Ω. If t ∈ [−r, 0], then

|N(u)(t)−N(w)(t)| = 0.

For t ∈ J, we have

|N(u)(t)−N(w)(t)| ≤ 1

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1|g(s)− h(s)|ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1|g(s)− h(s)|ds+ |φ(t, ut)− φ(t, wt)|
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+
∑

0<tk<t

|Ik(ut−k )− Ik(wt−k )|,

where g, h ∈ C(J,R) be such that

g(t) = f(t, ut, g(t)),

and
h(t) = f(t, wt, h(t)).

By (P2) we have

|g(t)− h(t)| = |f(t, ut, g(t))− f(t, wt, h(t))|
≤ K‖ut − wt‖PC + L|g(t)− h(t)|.

Then

|g(t)− h(t)| ≤ K

1− L
‖ut − wt‖PC .

Therefore, for each t ∈ J

|N(u)(t)−N(w)(t)| ≤ K

(1− L)Γ(α)

m∑
k=1

∫ tk

tk−1

(tk − s)α−1‖us − ws‖PCds

+
K

(1− L)Γ(α)

∫ t

tk

(t− s)α−1‖us − ws‖PCds

+
m∑
k=1

l̃‖ut−k − wt−k ‖PC + L‖ut − wt‖PC .

≤
[
ml̃ + L+

mKTα

(1− L)Γ(α + 1)

+
KTα

(1− L)Γ(α + 1)

]
‖u− w‖Ω.

Thus

‖N(u)−N(w)‖Ω ≤
[
ml̃ + L+

(m+ 1)KTα

(1− L)Γ(α + 1)

]
‖u− w‖Ω.

By (6.26), the operator N is a contraction. Hence, by Banach’s contraction principle,
N has a unique fixed point which is a unique solution of the problem (6.19)–(6.21).

�

Our second result is based on Schaefer’s fixed point theorem.

Theorem 6.3.4 Assume (P1), (P2) and
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(P4) There exist p, q, r ∈ C(J,R+) with r∗ = sup
t∈J

r(t) < 1 such that

|f(t, u, w)| ≤ p(t) + q(t)‖u‖PC + r(t)|w| for t ∈ J, u ∈ PC([−r, 0],R)and w ∈ R.

(P5) The functions Ik : PC([−r, 0],R)→ R are continuous and there exist constants
M∗, N∗ > 0 such that

|Ik(u)| ≤M∗‖u‖PC +N∗ for each u ∈ PC([−r, 0],R), k = 1, . . . ,m.

(P6) The function φ is completely continuous, and for each bounded set Bη∗ in Ω,
the set {t→ φ(t, yt) : y ∈ Bη∗} is equicontinuous in PC(J,R) and there exist two
constants d1 > 0, d2 > 0 with mM∗ + d1 < 1 such that

|φ(t, u)| ≤ d1‖u‖PC + d2, t ∈ J, u ∈ PC([−r, 0],R).

Then, the problem (6.19)-(6.21) has at least one solution.

Proof. We consider the operator N1 : Ω→ Ω defined by

N1y(t) =



ϕ(0) +
∑

0<tk<t

Ik(yt−k
) +

1

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1g(s)ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1g(s)ds, t ∈ [0, T ],

ϕ(t), t ∈ [−r, 0],

The operator N defined in (6.27) can be written as

Ny(t) = φ(t, yt) +N1y(t), for each t ∈ J.

We shall use Schaefer’s fixed point theorem to prove that N has a fixed point. So we
have to show that N is completely continuous. since φ is completely continuous by
(P6), we shall show that N1 is completely continuous.
The proof will be given in several steps.

Step 1 : N1 is continuous. Let {un} be a sequence such that un → u in Ω. If
t ∈ [−r, 0], then

|N1(un)(t)−N1(u)(t)| = 0.
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For t ∈ J, we have

|N1(un)(t)−N1(u)(t)| ≤ 1

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1|gn(s)− g(s)|ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1|gn(s)− g(s)|ds

+
∑

0<tk<t

|Ik(unt−k )− Ik(ut−k )|

≤ 1

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1|gn(s)− g(s)|ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1|gn(s)− g(s)|ds

+
∑

0<tk<t

l̃‖unt−k − ut−k ‖PC

and then

|N1(un)(t)−N1(u)(t)| ≤ 1

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1|gn(s)− g(s)|ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1|gn(s)− g(s)|ds

+ ml̃‖un − u‖Ω,

(6.28)

where gn, g ∈ C(J,R) such that

gn(t) = f(t, unt, gn(t)),

and
g(t) = f(t, ut, g(t)).

By (P2), we have

|gn(t)− g(t)| = |f(t, unt, gn(t))− f(t, ut, g(t))|
≤ K‖unt − ut‖PC + L|gn(t)− g(t)|.

Then

|gn(t)− g(t)| ≤ K

1− L
‖unt − ut‖PC .

Since un → u, then we get gn(t) → g(t) as n → ∞ for each t ∈ J. And let η > 0 be
such that, for each t ∈ J , we have |gn(t)| ≤ η and |g(t)| ≤ η. Then, we have

(t− s)α−1|gn(s)− g(s)| ≤ (t− s)α−1[|gn(s)|+ |g(s)|]
≤ 2η(t− s)α−1,
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and

(tk − s)α−1|gn(s)− g(s)| ≤ (tk − s)α−1[|gn(s)|+ |g(s)|]
≤ 2η(tk − s)α−1.

For each t ∈ J , the functions s → 2η(t − s)α−1 and s → 2η(tk − s)α−1 are integrable
on [0, t], then the Lebesgue Dominated Convergence Theorem and (6.28) imply that

|N1(un)(t)−N1(u)(t)| → 0 as n→∞,

and hence
‖N1(un)−N1(u)‖Ω → 0 as n→∞.

Consequently, N1 is continuous.

Step 2 : N1 maps bounded sets into bounded sets in Ω. Indeed, it is enough to show
that for any η∗ > 0, there exists a positive constant ` such that for each u ∈ Bη∗ =
{u ∈ Ω : ||u||Ω ≤ η∗}, we have ‖N1(u)‖Ω ≤ `. We have for each t ∈ J ,

N1(u)(t) = ϕ(0) +
1

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1g(s)ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1g(s)ds,

+
∑

0<tk<t

Ik(ut−k
),

(6.29)

where g ∈ C(J,R) is such that

g(t) = f(t, ut, g(t)).

By (P4), we have for each t ∈ J,

|g(t)| = |f(t, ut, g(t))|
≤ p(t) + q(t)‖ut‖PC + r(t)|g(t)|
≤ p(t) + q(t)‖u‖Ω + r(t)|g(t)|
≤ p(t) + q(t)η∗ + r(t)|g(t)|
≤ p∗ + q∗η∗ + r∗|g(t)|,

where p∗ = sup
t∈J

p(t), and q∗ = sup
t∈J

q(t).

Then

|g(t)| ≤ p∗ + q∗η∗

1− r∗
:= M.
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Thus (6.29) implies

|N1(u)(t)| ≤ |ϕ(0)|+ mMTα

Γ(α + 1)
+

MTα

Γ(α + 1)
+

m∑
k=1

(
M∗‖ut−k ‖PC +N∗

)
≤ |ϕ(0)|+ (m+ 1)MTα

Γ(α + 1)
+m

(
M∗‖ut−k ‖Ω +N∗

)
≤ |ϕ(0)|+ (m+ 1)MTα

Γ(α + 1)
+m (M∗η∗ +N∗) := R.

And if t ∈ [−r, 0], then
|N1(u)(t)| ≤ ‖ϕ‖PC ,

thus
‖N1(u)‖Ω ≤ max {R, ‖ϕ‖PC} := `.

Step 3 : N1 maps bounded sets into equicontinuous sets of Ω.
Let τ1, τ2 ∈ (0, T ], τ1 < τ2, Bη∗ be a bounded set of Ω as in Step 2, and let u ∈ Bη∗ .

Then

|N1(u)(τ2)−N1(u)(τ1)|

≤ 1

Γ(α)

∫ τ1

0

|(τ2 − s)α−1 − (τ1 − s)α−1||g(s)|ds

+
1

Γ(α)

∫ τ2

τ1

|(τ2 − s)α−1||g(s)|ds+
∑

0<tk<τ2−τ1

|Ik(ut−k )|

≤ M

Γ(α + 1)
[2(τ2 − τ1)α + (τα2 − τα1 )] + (τ2 − τ1)

(
M∗‖ut−k ‖Ω +N∗

)
≤ M

Γ(α + 1)
[2(τ2 − τ1)α + (τα2 − τα1 )] + (τ2 − τ1) (M∗η∗ +N∗) .

As τ1 → τ2, the right-hand side of the above inequality tends to zero. As a conse-
quence of Steps 1 to 3 together with the Ascoli-Arzela theorem, we can conclude that
N1 : Ω→ Ω is completely continuous.

Step 4 : A priori bounds. Now it remains to show that the set

E = {u ∈ Ω : u = λN(u) for some 0 < λ < 1}

is bounded. Let u ∈ E. Then u = λN(u) for some 0 < λ < 1. Thus, for each t ∈ J we
have

u(t) = λϕ(0) + λφ(t, yt) +
λ

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1g(s)ds

+
λ

Γ(α)

∫ t

tk

(t− s)α−1g(s)ds+ λ
∑

0<tk<t

Ik(ut−k
).

(6.30)
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And, by (P4), we have for each t ∈ J,

|g(t)| = |f(t, ut, g(t))|
≤ p(t) + q(t)‖ut‖PC + r(t)|g(t)|
≤ p∗ + q∗‖ut‖PC + r∗|g(t)|.

Thus

|g(t)| ≤ 1

1− r∗
(p∗ + q∗‖ut‖PC).

This implies, by (6.30), (P5) and (P6), that for each t ∈ J we have

|u(t)| ≤ |ϕ(0)|+ d1‖ut‖PC + d2

+
1

(1− r∗)Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1(p∗ + q∗‖us‖PC)ds

+
1

(1− r∗)Γ(α)

∫ t

tk

(t− s)α−1(p∗ + q∗‖us‖PC)ds

+ m
(
M∗‖ut−k ‖PC +N∗

)
.

Consider the function ν defined by

ν(t) = sup{|u(s)| : −r ≤ s ≤ t}, 0 ≤ t ≤ T.

Then, there exists t∗ ∈ [−r, T ] such that ν(t) = |u(t∗)|. If t∗ ∈ [0, T ], then by the
previous inequality, we have for t ∈ J

ν(t) ≤ |ϕ(0)|+ 1

(1− r∗)Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1(p∗ + q∗ν(s))ds

+
1

(1− r∗)Γ(α)

∫ t

tk

(t− s)α−1(p∗ + q∗ν(s))ds

+ (mM∗ + d1)ν(t) + (mN∗ + d2) .

Thus

ν(t) ≤ 1

(1− (mM∗ + d1))(1− r∗)Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1(p∗ + q∗ν(s))ds

+
|ϕ(0)|+mN∗ + d2

1− (mM∗ + d1)

+
1

(1− (mM∗ + d1))(1− r∗)Γ(α)

∫ t

tk

(t− s)α−1(p∗ + q∗ν(s))ds
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≤ |ϕ(0)|+mN∗ + d2

1− (mM∗ + d1)
+

(m+ 1)p∗Tα

(1− (mM∗ + d1))(1− r∗)Γ(α + 1)

+
(m+ 1)q∗

(1− (mM∗ + d1))(1− r∗)Γ(α)

∫ t

0

(t− s)α−1ν(s)ds.

Applying Lemma 1.3.8, we get

ν(t) ≤
[
|ϕ(0)|+mN∗ + d2

1− (mM∗ + d1)
+

(m+ 1)p∗Tα

(1− (mM∗ + d1))(1− r∗)Γ(α + 1)

]
×

[
1 +

δ(m+ 1)q∗Tα

(1− (mM∗ + d1))(1− r∗)Γ(α + 1)

]
:= A,

where δ = δ(α) a constant. If t∗ ∈ [−r, 0], then ν(t) = ‖ϕ‖PC , thus for any t ∈
J, ‖u‖Ω ≤ ν(t), we have

‖u‖Ω ≤ max{‖ϕ‖PC , A}
This shows that the set E is bounded. As a consequence of Schaefer’s fixed point
theorem, we deduce that N has a fixed point which is a solution of the problem
(6.19)−(6.21).

�

6.3.3 Ulam-Hyers Stability Results

Here, we adopt the concepts in Wang et al. [139] and introduce Ulam’s type stability
concepts for the problem (6.19)-(6.20).
Let z ∈ PC(J,R), ε > 0, ψ > 0, and ω ∈ PC(J,R+) be nondecreasing. We consider the
set of inequalities{

|cDα(z(t)− φ(t, zt))− f(t, zt,
cDαz(t))| ≤ ε, t ∈ (tk, tk+1], k = 1, ...,m

|∆z|t=tk − Ik(zt−k )| ≤ ε, k = 1, ...,m;
(6.31)

the set of inequalities{
|cDα(z(t)− φ(t, zt))− f(t, zt,

cDαz(t))| ≤ ω(t), t ∈ (tk, tk+1], k = 1, ...,m

|∆z|t=tk − Ik(zt−k )| ≤ ψ, k = 1, ...,m;
(6.32)

and the set of inequalities{
|cDα(z(t)− φ(t, zt))− f(t, zt,

cDαz(t))| ≤ εω(t), t ∈ (tk, tk+1], k = 1, ...,m

|∆z|t=tk − Ik(zt−k )| ≤ εψ, k = 1, ...,m;
(6.33)

Definition 6.3.5 The problem (6.19)-(6.20) is Ulam-Hyers stable if there exists a real
number cf,m > 0 such that for each ε > 0 and for each solution z ∈ PC(J,R) of the
inequality (6.31) there exists a solution y ∈ PC([−r, 0],R) of the problem (6.19)-(6.20)
with

|z(t)− y(t)| ≤ cf,mε, t ∈ J.
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Definition 6.3.6 The problem (6.19)-(6.20) is generalized Ulam-Hyers stable if there
exists θf,m ∈ C(R+,R+), θf,m(0) = 0 such that for each solution z ∈ PC(J,R) of the
inequality (6.31) there exists a solution y ∈ PC([−r, 0],R) of the problem (6.19)-(6.20)
with

|z(t)− y(t)| ≤ θf,m(ε), t ∈ J.

Definition 6.3.7 The problem (6.19)-(6.20) is Ulam-Hyers-Rassias stable with respect
to (ω, ψ) if there exists cf,m,ω > 0 such that for each ε > 0 and for each solution
z ∈ PC(J,R) of the inequality (6.33) there exists a solution y ∈ PC([−r, 0],R) of the
problem (6.19)-(6.20) with

|z(t)− y(t)| ≤ cf,m,ωε(ω(t) + ψ), t ∈ J.

Definition 6.3.8 The problem (6.19)-(6.20) is generalized Ulam-Hyers-Rassias stable
with respect to (ω, ψ) if there exists cf,m,ω > 0 such that for each solution z ∈ PC(J,R)
of the inequality (6.32) there exists a solution y ∈ PC([−r, 0],R) of the problem (6.19)-
(6.20) with

|z(t)− y(t)| ≤ cf,m,ω(ω(t) + ψ), t ∈ J.

Remark 6.3.9 It is clear that : (i) Definition 6.3.5 implies Definition 6.3.6 ; (ii) De-
finition 6.3.7 implies Definition 6.3.8 ; (iii) Definition 6.3.7 for ω(t) = ψ = 1 implies
Definition 6.3.5.

Remark 6.3.10 A function z ∈ PC(J,R) is a solution of the inequality (6.33) if and
only if there is σ ∈ PC(J,R) and a sequence σk, k = 1, ...,m (which depend on z) such
that

i) |σ(t)| ≤ εω(t), t ∈ (tk, tk+1], k = 1, ...,m and |σk| ≤ εψ, k = 1, ...,m;

ii) cDα(z(t)− φ(t, zt)) = f(t, zt,
cDαz(t)) + σ(t), t ∈ (tk, tk+1], k = 1, ...,m ;

iii) ∆z|tk = Ik(zt−k
) + σk, k = 1, ...,m.

One can state remarks for inequalities 6.32 and 6.31.

Theorem 6.3.11 Assume (P1)-(P3), (6.26) and

(P7) there exists a nondecreasing function ω ∈ PC (J,R+) and there exists λω > 0 such
that for any t ∈ J :

Iαω (t) ≤ λωω (t)

are satisfied, and if L < 1, then the problem (6.19)-(6.20) is Ulam-Hyers-Rassias stable
with respect to (ω, ψ).
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proof. Let z ∈ Ω be a solution of the inequality (6.33). Denote by y the unique solution
of the following problem

cDα
tk

[y(t)− φ(t, yt)] = f(t, yt,
cDα

tk
y(t)), t ∈ (tk, tk+1], k = 1, ...,m ;

∆y|t=tk = Ik(yt−k
), k = 1, ...,m ;

y(t) = z(t) = ϕ(t), t ∈ [−r, 0].

Using Lemma 6.3.2, we obtain for each t ∈ (tk, tk+1]

y(t) = ϕ(0) + φ(t, yt) +
k∑
i=1

Ii(yt−i ) +
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1g(s)ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1g(s)ds, t ∈ (tk, tk+1],

where g ∈ C(J,R) be such that

g(t) = f(t, yt, g(t)).

Since z solution of the inequality (6.33) and by Remark 6.3.10, we have{
cDα

tk
[z(t)− φ(t, zt)] = f(t, zt,

cDα
tk
z(t)) + σ(t), t ∈ (tk, tk+1], k = 1, ...,m ;

∆z|t=tk = Ik(zt−k
) + σk, k = 1, ...,m .

(6.34)

Clearly, the solution of (6.34) is given by

z(t) = ϕ(0) + φ(t, zt) +
k∑
i=1

Ii(zt−i ) +
k∑
i=1

σi +
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1h(s)ds

+
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1σ(s)ds+
1

Γ(α)

∫ t

tk

(t− s)α−1h(s)ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1σ(s)ds, t ∈ (tk, tk+1],

where h ∈ C(J,R) be such that

h(t) = f(t, zt, h(t)).

Hence for each t ∈ (tk, tk+1], it follows that

|z(t)− y(t)| ≤
k∑
i=1

|σi|+ |φ(t, zt)− φ(t, yt)|+
k∑
i=1

|Ii(zt−i )− Ii(yt−i )|
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+
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1|σ(s)|ds

+
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1|h(s)− g(s)|ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1|h(s)− g(s)|ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1|σ(s)|.

Thus

|z(t)− y(t)| ≤ mεψ + (m+ 1)ελωω(t) + L‖zt − yt‖PC +
k∑
i=1

l̃‖zt−i − yt−i ‖PC

+
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1|h(s)− g(s)|ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1|h(s)− g(s)|ds.

By (P2), we have

|h(t)− g(t)| = |f(t, zt, h(t))− f(t, yt, g(t))|
≤ K‖zt − yt‖PC + L|g(t)− h(t)|.

Then

|h(t)− g(t)| ≤ K

1− L
‖zt − yt‖PC .

Therefore, for each t ∈ J

|z(t)− y(t)| ≤ mεψ + (m+ 1)ελωω(t) + L‖zt − yt‖PC +
k∑
i=1

l̃‖zt−i − yt−i ‖PC

+
K

(1− L)Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1‖zs − ys‖PCds

+
K

(1− L)Γ(α)

∫ t

tk

(t− s)α−1‖zs − ys‖PCds.

Thus

|z(t)− y(t)| ≤
∑

0<ti<t

l̃‖zt−i − yt−i ‖PC + ε(ψ + ω(t))(m+ (m+ 1)λω)
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+ L‖zt − yt‖PC +
K(m+ 1)

(1− L)Γ(α)

∫ t

0

(t− s)α−1‖zs − ys‖PCds.

We consider the function ν1 defined by

ν1(t) = sup {|z(s)− y(s)| : −r ≤ s ≤ t} , 0 ≤ t ≤ T,

then, there exists t∗ ∈ [−r, T ] such that ν1(t) = |z(t∗)− y(t∗)| .
If t∗ ∈ [−r, 0], then ν1(t) = 0.
If t∗ ∈ [0, T ], then by the previous inequality, we have

ν1(t) ≤
∑

0<ti<t

l̃

1− L
ν1(t−i ) +

ε(ψ + ω(t))(m+ (m+ 1)λω)

1− L

+
K(m+ 1)

(1− L)(1− L)Γ(α)

∫ t

0

(t− s)α−1ν1(s)ds.

Applying Lemma 1.3.9, we get

ν1(t) ≤ ε(ψ + ω(t))(m+ (m+ 1)λω)

1− L

×

[ ∏
0<ti<t

(
1 +

l̃

1− L

)
exp

(∫ t

0

K(m+ 1)

(1− L)(1− L)Γ(α)
(t− s)α−1ds

)]
≤ cωε(ψ + ω(t)),

where

cω =
(m+ (m+ 1)λω)

1− L

[
m∏
i=1

(
1 +

l̃

1− L

)
exp

(
K(m+ 1)Tα

(1− L)(1− L)Γ(α + 1)

)]

=
(m+ (m+ 1)λω)

1− L

[(
1 +

l̃

1− L

)
exp

(
K(m+ 1)Tα

(1− L)(1− L)Γ(α + 1)

)]m
.

Thus, the problem (6.19)-(6.20) is Ulam-Hyers-Rassias stable with respect to (ω, ψ).
�

Next, we present the following Ulam-Hyers stability result.

Theorem 6.3.12 Assume that (P1)-(P3) and (6.26) are satisfied and if L < 1, then
the problem (6.19)-(6.20) is Ulam-Hyers stable

proof. Let z ∈ Ω be a solution of the inequality (6.31). Denote by y the unique solution
of the problem

cDα
tk

[y(t)− φ(t, yt)] = f(t, yt,
cDα

tk
y(t)), t ∈ (tk, tk+1], k = 1, ...,m ;

∆y|t=tk = Ik(yt−k
), k = 1, ...,m ;

y(t) = z(t) = ϕ(t), t ∈ [−r, 0].
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From the proof of Theorem 6.3.11, we get the inequality

ν1(t) ≤
∑

0<ti<t

l̃

1− L
ν1(t−i ) +

mε

1− L
+

Tαε(m+ 1)

(1− L)Γ(α + 1)

+
K(m+ 1)

(1− L)(1− L)Γ(α)

∫ t

0

(t− s)α−1ν1(s)ds.

Applying Lemma 1.3.9, we get

ν1(t) ≤ ε

(
mΓ(α + 1) + Tα(m+ 1)

(1− L)Γ(α + 1)

)
×

[ ∏
0<ti<t

(
1 +

l̃

1− L

)
exp

(∫ t

0

K(m+ 1)

(1− L)(1− L)Γ(α)
(t− s)α−1ds

)]
≤ cε,

where

c =

(
mΓ(α + 1) + Tα(m+ 1)

(1− L)Γ(α + 1)

)[ m∏
i=1

(
1 +

l̃

1− L

)
exp

(
K(m+ 1)Tα

(1− L)(1− L)Γ(α + 1)

)]

=

(
mΓ(α + 1) + Tα(m+ 1)

(1− L)Γ(α + 1)

)[(
1 +

l̃

1− L

)
exp

(
K(m+ 1)Tα

(1− L)(1− L)Γ(α + 1)

)]m
.

�

Moreover, if we set θ(ε) = cε; θ(0) = 0, then, the problem (6.19)-(6.20) is generalized
Ulam-Hyers stable.

6.3.4 An Example.

Consider the following impulsive problem, for each t ∈ J0 ∪ J1,

cD
1
2
tk

[
y(t)− te−t|yt|

(9 + et) (1 + |yt|)

]
=

e−t

(11 + et)

 |yt|
1 + |yt|

−
|cD

1
2
tk
y(t)|

1 + |cD
1
2
tk
y(t)|

 , (6.35)

∆y|t= 1
2

=
|y(1

2

−
)|

10 + |y(1
2

−
)|
, (6.36)

y(t) = ϕ(t), t ∈ [−r, 0], r > 0, (6.37)

where ϕ ∈ PC ([−r, 0],R) , J0 =
[
0, 1

2

]
, J1 =

(
1
2
, 1
]
, t0 = 0, and t1 = 1

2
.

For t ∈ [0, 1], u ∈ PC ([−r, 0],R) , and v ∈ R, set

f(t, u, v) =
e−t

(11 + et)

[
|u|

1 + |u|
− |v|

1 + |v|

]
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and

φ(t, u) =
te−t|u|

(9 + et) (1 + |u|)
.

Notice that φ(0, ϕ) = 0, for any ϕ ∈ PC([−r, 0],R).
Clearly, the function f is jointly continuous.
For each u, ū ∈ PC ([−r, 0],R) , v, v̄ ∈ R and t ∈ [0, 1], we have

|f(t, u, v)− f(t, ū, v̄)| ≤ e−t

(11 + et)
(‖u− ū‖PC + |v − v̄|)

≤ 1

12
‖u− ū‖PC +

1

12
|v − v̄|

and

|φ(t, u)− φ(t, ū)| ≤ 1

10
‖u− ū‖PC .

Hence condition (P2) is satisfied with K = L =
1

12
, L =

1

10
.

Let

I1(u) =
|u|

10 + |u|
, u ∈ PC ([−r, 0],R) .

For each u, v ∈ PC ([−r, 0],R) , we have

|I1(u)− I1(v)| =
∣∣∣∣ |u|
10 + |u|

− |v|
10 + |v|

∣∣∣∣ ≤ 1

10
‖u− v‖PC .

Thus condition

ml̃ + L+
(m+ 1)KTα

(1− L)Γ(α + 1)
=

2

10
+

1
6

(1− 1
12

)Γ(3
2
)

=
4

11
√
π

+
2

10
< 1,

is satisfied with T = 1,m = 1 and l̃ =
1

10
. It follows from Theorem 6.3.3 that the

problem (6.35)–(6.37) has a unique solution on J .

Set for any t ∈ [0, 1], ω(t) = t and ψ = 1. Since

I
1
2 ω(t) =

1

Γ
(

1
2

) ∫ t

0

(t− s)
1
2
−1sds ≤ 2t√

π
,

then, condition (P7) is satisfied with λω =
2√
π
, and since L < 1, it follows that the

problem (6.35)-(6.36) is Ulam-Hyers-Rassias stable with respect to (ω, ψ).



Conclusion and Perspective

In this thesis, we have considered the following nonlinear implicit fractional diffe-
rential equation

cDαy(t) = f(t, y(t),cDαy(t)), for each t ∈ J, 0 < α ≤ 1, (6.38)

subjected to boundary conditions, non-local conditions, delay and impulse. Here cDα

is the Caputo fractional derivative.
The problem of stability was discussed. We discussed and established the existence, the
uniqueness and the stability of the solution for implicit neutral fractional differential
equation with finite delay and impulses.
We plan to study the same question such as existence, uniqueness and stability to the
equation (6.38) in the case where the derivative is of type Hadamard.
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[33] D. Baleanu, Z.B. Güvenç and J.A.T. Machado, New Trends in Nanotechnology
and Fractional Calculus Applications, Springer, New York, 2010.

[34] D. Baleanu, J.A.T. Machado and A.C.-J. Luo Fractional Dynamics and Control,
Springer, 2012.

[35] J. Banas̀ and K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel
Dekker, New York, 1980.

[36] J. Banas̀ and L. Olszowy, Measures of noncompactness related to monotonicity,
Comment. Math. (Prace Mat.) 41 (2001), 13-23.
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