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Option : Systèmes dynamiques et applications

Problème de Darboux pour des équations
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Introduction

The idea of fractional calculus and fractional order differential equations has been
a subject of interest not only among mathematicians, but also among physicists and
engineers. During the last decade, it was found to play a fundamental role in the modeling
of a considerable number of phenomena, in particular, the modeling of memory dependent
phenomena and complex media such as porous media. Fractional calculus emerged as an
important and efficient tool for the study of dynamical systems where classical methods
reveal strong limitations.

Fractional order models are found to be more adequate than integer order models
in some real world problems. In fact, fractional derivatives provide an excellent tool for
the description of memory and hereditary properties of various materials and processes;
see the books by Baleanu et al. [13], Hilfer [40], Tarasov [53], and the references therein.
Recent developments on fractional differential equations from theoretical point of view
are given in the books by Abbas et al. [7], and Lakshmikantham et al. [45].

The theory of impulsive integer order differential equations and inclusions has be-
come important in some mathematical models of real processes and phenomena stud-
ied in physics, chemical technology, population dynamics, biotechnology, and economics.
At present the foundations of the general theory are already laid, and many of them
are investigated in detail the papers of Abbas and Benchohra [3, 4], Agarwal et al.
[5],Lakshmikantham et al[44], Samoilenko and Peresyuk [51], and the references therein.
There was an intensive development of the impulse theory, especially in the area of im-
pulsive differential equations and inclusions with fixed moments.

This thesis is devoted to the existence and uniqueness of solutions for various classes
of Darboux problem for hyperbolic differential equations involving the Caputo fractional
derivative, the best fractional derivative of the time. Some equations present delay which
may be finite, infinite, or state-dependent. The tools used include classical fixed point
theorems in Banach and Fréchet spaces. Each chapter concludes with a section devoted
to notes and all abstract results are illustrated by examples.

In the following we give an outline of our thesis organization, Consists of six chapters
defining the work contributed. The first chapter gives some notations, definitions, lemmas
and fixed point theorems which are used throughout this thesis. In Sect. 1.1, we give
some notations from the theory of Banach spaces. Section 1.2 is concerned to recall some
basic definitions and facts on partial fractional calculus theory. In Sect. 1.3, we give
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4 INTRODUCTION

definition and examples of phase space. In Sect. 1.4, we give some properties in Fréchet
space. Section. 1.5, is devoted to fixed-points theory, here we give the main theorems
that will be used in the following chapters.

In Chapter 2, we study a system of impulsive partial hyperbolic differential equation.
Our results are based on fixed point theorem due to Burton and Kirk for the sum of
contraction and completely continuous operators. The first result is for impulsive partial
hyperbolic differential equation of the form

(cDr
zk
u)(t, x) = f(t, x, u(t, x)), if (t, x) ∈ Jk, k = 0, . . . ,m, (1)

u(t+k , x) = u(t−k , x) + Ik(u(t−k , x)), if x ∈ [0, b]; k = 1, . . . ,m, (2)

u(t, 0) = ϕ(t), u(0, x) = ψ(x), t ∈ [0, a], x ∈ [0, b], (3)

where J0 = [0, t1] × [0, b], Jk := (tk, tk+1] × [0, b], k = 1, . . . ,m, zk = (tk, 0), k =
0, . . . ,m, J = [0, a] × [0, b], a, b > 0, cDr

0 is the Caputo fractional derivative of order
r = (r1, r2) ∈ (0, 1] × (0, 1], 0 = t0 < t1 < · · · < tm < tm+1 = a, f : J × Rn → Rn,
Ik : Rn → Rn, k = 0, 1, . . . ,m are given functions, ϕ : [0, a]→ Rn and ψ : [0, b]→ Rn are
given absolutely continuous functions with ϕ(0) = ψ(0).

In Sect. 2.3, we give similar result to the following nonlocal initial value problem

(cDr
zk
u)(t, x) = f(t, x, u(t, x)), if (t, x) ∈ Jk, k = 0, . . . ,m, (4)

u(t+k , x) = u(t−k , x) + Ik(u(t−k , x)), if x ∈ [0, b]; k = 1, . . . ,m, (5)

u(t, 0) +Q(u) = ϕ(t), u(0, x) +K(u) = ψ(x), t ∈ [0, a], x ∈ [0, b], (6)

where f, ϕ, ψ, Ik; k = 1, . . . ,m, are as in problem (2.1)-(2.3) and Q,K : PC(J,Rn)→ Rn

are continuous functions. PC(J,Rn) is a Banach space to be specified in section 2.2 of
Chapter 2.
An example will be presented in the last illustrating the abstract theory.

In Chapter 3, we shall be concerned by functional differential equations.
In Sect. 3.2, we investigate the existence of solutions for impulsive partial hyperbolic
functional differential equations of fractional order with finite delay of the form

(cDr
zk
u)(t, x) = f(t, x, u(t,x)); if (t, x) ∈ Jk, k = 0, . . . ,m, (7)

u(t+k , x) = u(t−k , x) + Ik(u(t−k , x)), if x ∈ [0, b], k = 1, . . . ,m, (8)

u(t, x) = φ(t, x); if (t, x) ∈ J̃ , (9)

u(t, 0) = ϕ(t), t ∈ [0, a], u(0, x) = ψ(x); x ∈ [0, b], (10)

where J0 = [0, t1] × [0, b], Jk := (tk, tk+1] × [0, b], k = 1, . . . ,m, zk = (tk, 0), k =
0, . . . ,m, a, b, α, β > 0, J = [0, a] × [0, b], J̃ = [−α, a] × [−β, b]\(0, a] × (0, b], cDr

0 is
the Caputo fractional derivative of order r = (r1, r2) ∈ (0, 1] × (0, 1], ϕ : [0, a] → Rn,
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ψ : [0, b]→ Rn are given continuous functions with ϕ(t) = φ(t, 0), ψ(x) = φ(0, x) for each
(t, x) ∈ J, 0 = t0 < t1 < · · · < tm < tm+1 = a, f : J × C → Rn, Ik : Rn → Rn, k =
1, . . . ,m, φ : J̃ → Rn, are given functions and C := C([−α, 0]× [−β, 0],Rn) is the space
of continuous functions on [−α, 0]× [−β, 0].
If u : [−α, 0]× [−β, 0] −→ Rn, then for any (t, x) ∈ J define u(t,x) by

u(t,x)(s, τ) = u(t+ s, x+ τ)

An example is presented in the last part of this section
In Sect. 3.3, we prove a existence of solutions for the following impulsive functional partial
hyperbolic differential equations with infinite delay

(cDr
zk
u)(x, y) = f(x, y, u(x,y)); if (x, y) ∈ Jk, k = 0, . . . ,m, (11)

u(x+
k , y) = u(x−k , y) + Ik(u(x−k , y)), if y ∈ [0, b], k = 1, . . . ,m, (12)

u(x, y) = φ(x, y); if (x, y) ∈ J̃ , (13)

u(x, 0) = ϕ(x), x ∈ [0, a], u(0, y) = ψ(y); y ∈ [0, b], (14)

where J0 = [0, x1] × [0, b], Jk := (xk, xk+1] × [0, b]; k = 1, . . . ,m, zk = (xk, 0), k =
0, . . . ,m, a, b > 0, J = [0, a] × [0, b], J̃ = (−∞, a] × (−∞, b]\(0, a] × (0, b], cDr

0 is
the Caputo fractional derivative of order r = (r1, r2) ∈ (0, 1] × (0, 1], ϕ : [0, a] → Rn,
ψ : [0, b] → Rn are given continuous functions with ϕ(x) = φ(x, 0), ψ(y) = φ(0, y) for
each (x, y) ∈ J, 0 = x0 < x1 < · · · < xm < xm+1 = a, f : J × B → Rn, Ik : Rn →
Rn, k = 1, . . . ,m, φ : J̃ → Rn, are given functions. B is called a phase space that will
be specified in the next Section. If u : (−∞, a] × (−∞, b] → Rn, then for any (x, y) ∈ J
define u(x,y) by

u(x,y)(s, t) = u(x+ s, y + t), for (s, t) ∈ [−α, 0]× [−β, 0].

An example is presented in the last part of this section

In Chapter 4, we study the existence of solutions for fractional impulsive hyperbolic
differential equations with state-dependent delay. Section 4.2 deals with the existence of
solutions to fractional impulsive hyperbolic differential equations with finite delay

(cDr
zk
u)(t, x) = f(t, x, u(ρ1(t,x,u(t,x)),ρ2(t,x,u(t,x)))); if (t, x) ∈ Jk, k = 0, . . . ,m, (15)

u(t+k , x) = u(t−k , x) + Ik(u(t−k , x)), if x ∈ [0, b], k = 1, . . . ,m, (16)

u(t, x) = φ(t, x); if (t, x) ∈ J̃ := [−α, a]× [−β, b] \ (0, a]× (0, b], (17)

u(t, 0) = ϕ(t), t ∈ [0, a], u(0, x) = ψ(x); x ∈ [0, b], (18)

where J0 = [0, t1] × [0, b], Jk := (tk, tk+1] × [0, b], k = 1, . . . ,m, zk = (tk, 0), k =
0, . . . ,m, J = [0, a] × [0, b], a, b, α, β > 0, 0 = t0 < t1 < · · · < tm < tm+1 = a, cDr

0

is the Caputo fractional derivative of order r = (r1, r2) ∈ (0, 1] × (0, 1], ϕ : [0, a] → Rn,
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ψ : [0, b]→ Rn are given continuous functions with ϕ(t) = φ(t, 0), ψ(x) = φ(0, x) for each
(t, x) ∈ J, f : J ×C → Rn, ρ1, ρ2 : J ×C → R, Ik : Rn → Rn, k = 1, . . . ,m, φ : J̃ → Rn,
are given functions and C is the Banach space defined in section 4.2.
An example is presented in the last part of this section.

In Section 4.3, we give our second main result concerning system of impulsive partial
hyperbolic differential equation of fractional order with infinite delay

(cDr
zk
u)(t, x) = f(t, x, u(ρ1(t,x,u(t,x)),ρ2(t,x,u(t,x)))); if (t, x) ∈ Jk, k = 0, . . . ,m, (19)

u(t+k , x) = u(t−k , x) + Ik(u(t−k , x)), if x ∈ [0, b], k = 1, . . . ,m, (20)

u(t, x) = φ(t, x); if (t, x) ∈ J̃ ′ := (−∞, a]× (−∞, b] \ (0, a]× (0, b], (21)

u(t, 0) = ϕ(t), t ∈ [0, a], u(0, x) = ψ(x); x ∈ [0, b], (22)

where ϕ, ψ, Ik are as in problem (5.1)–(5.4), f : J ×B → Rn, ρ1, ρ2 : J ×B → R, φ : J̃ ′ →
Rn and B is a phase space.
Also, we present an example illustrating the applicability of the imposed conditions.

In Chapter 5 we shall be concerned by impulsive initial value problem for differential
equations of fractional order with fixed time impulses.

Section 5.2 deals with the existence of solutions of impulsive differential equations of
fractional order with finite delay given by

(cDr
zk
u)(t, x) = f(t, x, u(t,x)), if (t, x) ∈ Jk, k = 0, . . . ,m, (23)

u(t+k , x) = u(t−k , x) + Ik(u(t−k , x)), if x ∈ [0, b]; k = 1, . . . ,m, (24)

u(t, x) = φ(t, x); if (t, x) ∈ J̃ , (25)

u(t, 0) = ϕ(t), u(0, x) = ψ(x), t ∈ [0, a], x ∈ [0, b], (26)

where J0 = [0, t1] × [0, b], Jk := (tk, tk+1] × [0, b], k = 1, . . . ,m, zk = (tk, 0), k =
0, . . . ,m, ϕ(0) = ψ(0), J := [0,∞)×[0,∞), J̃ := [−α,∞)×[−β,∞)\[0,∞)×[0,∞), α, β >
0, cDr

0 is the standard Caputo’s fractional derivative of order r = (r1, r2) ∈ (0, 1]×(0, 1], f :
J × C([−α, 0] × [−β, 0],Rn) → Rn, Ik : Rn → Rn, k = 0, 1, . . . ,m are given functions,
for each (t, x) ∈ J, ϕ, ψ : [0,∞) → Rn, are given absolutely continuous functions and
C([−α, 0] × [−β, 0],Rn) is the space of continuous functions on [−α, 0] × [−β, 0]. We
denote by u(t,x) the element of C([−α,∞)× [−β,∞),Rn) defined by

u(t,x)(s, τ) = u(t+ s, x+ τ); (s, τ) ∈ [−α, 0]× [−β, 0],

here u(t,x)(., .) represents the history of the state from time t − α up to the present time
t and from time x− β up to the present time x.

In Section 5.3, we investigate the existence of solutions for impulsive hyperbolic dif-
ferential equations with infinite delay

(cDr
zk
u)(t, x) = f(t, x, u(t, x)), if (t, x) ∈ Jk, k = 0, . . . ,m, (27)
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u(t+k , x) = u(t−k , x) + Ik(u(t−k , x)), if x ∈ [0, b]; k = 1, . . . ,m, (28)

u(t, x) = φ(t, x); if (t, x) ∈ J̃ ′, (29)

u(t, 0) = ϕ(t), u(0, x) = ψ(x), t ∈ [0, a], x ∈ [0, b], (30)

where ϕ, ψ are as in problem (5.1)-(5.3), J̃ ′ =: (−∞,+∞)×(−∞,+∞)\[0,∞)×[0,∞), f :
J × B → R, φ :J̃ ′ → Rn and B is called a phase space that will be specified in
Finally, we present an illustrative example.
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Chapter 1

Preliminaries

We introduce in this Chapter notations, definitions, fixed point theorems and pre-
liminary facts that will be used in the remainder of this thesis.

1.1 Some Notations and definitions

Let J := [0, a] × [0, b], a, b > 0. Denote L1 the space of Lebegue integrable functions
u : J → Rn with the norm

||u||L1 =

∫ a

0

∫ b

0

||u(t, x)||dxdt,

Let L∞(J,Rn) be the Banach space of mesurable functions u : J → Rn wich are bounded,
equiped with the norm

||u||L∞ = inf{c > 0 : ||u(t, x)|| ≤ c, a.e. (t, x) ∈ J}

As usual, by AC(J,Rn) we denote the space of absolutely continuous functions from J
into Rn, and C(J,Rn) is the Banach space of all continuous functions from J into Rn with
the norm

||u||∞ = sup
(t,x)∈J

||u(t, x)||.

Also C(J,R) is endowed with norm ||.||∞ defined by

||u||∞ = sup
(t,x)∈J

|u(t, x)|

If u ∈ C([−α, a]× [−β, b],Rn); a, b, α, β > 0 then for any (t, x) ∈ J define u(t,x) by

u(t,x)(s, θ) = u(t+ s, x+ θ)

for (s, θ) ∈ C([−α, 0] × [−β, 0],Rn). Here u(t,x)(., .) represents the history of the state
from time t− α up to the present time t and from time x− β uo to the present time x.

9



10 CHAPTER 1. PRELIMINARIES

1.2 Some properties of Partial Fractional Calculs

In this section, we introduce notations, definitions and preliminary Lemmas concerning
to partial fractional calculs theory

Definition 1.1 [55] Let r = (r1, r2) ∈ (0,∞)× (0,∞) and u ∈ L1(Jk,Rn). The left-sided
mixed Riemann-Liouville integral of order r of u is defined by

(Irzku)(t, x) =
1

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− τ)r2−1u(s, τ)dτds.

In particular,

(Iσzku)(t, x) =

∫ t

0

∫ x

0

u(s, τ)dτds; for almost all (t, x) ∈ Jk,

where σ = (1, 1).
For instance, Irzku exists for all r1, r2 ∈ (0,∞) × (0,∞), when u ∈ L1(Jk,Rn). Note also
that when u ∈ C(Jk,Rn), then (Irzku) ∈ C(Jk,Rn), moreover

(Irzku)(t, 0) = (Irzku)(0, x) = 0; (t, x) ∈ Jk.

By 1 − r we mean (1 − r1, 1 − r2) ∈ (0, 1] × (0, 1]. Denote by D2
tx := ∂2

∂t∂x
, the mixed

second order partial derivative.

Definition 1.2 [55] Let r ∈ (0, 1] × (0, 1] and u ∈ L1(Jk,Rn). The mixed fractional
Riemann-Liouville derivative of order r of u is defined by the expression

Dr
zk
u(t, x) = (D2

txI
1−r
zk

u)(t, x)

and the Caputo fractional-order derivative of order r of u is defined by the expression

(cDr
zk
u)(t, x) = (I1−r

zk

∂2

∂t∂x
u)(t, x).

and the mixed fractional Riemann-Liouville derivative of order R of u defined by the
expression (RLDr

zk
u)(t, x) = D2

txI
1−r
zk

u)(t, x)

The case σ = (1, 1) is included and we have

(Dσ
zk
u)(t, x) = (cDσ

zk
u)(t, x) = (D2

txu)(t, x), for almost all (t, x) ∈ Jk.

Remark 1.3 (Relation between RLDzk and cDzk) Let u ∈ L1(J, ) and ϕ : [0, a] →
Rn, ψ : [0, b]→ Rn be given absolutely continuous functions such that u(t, 0) = ϕ(t); t ∈
[0, a], u(0, x) = ψ(x); x ∈ [0, b] and ϕ(0) = ψ(0). Then we have for (t, x) ∈ J

(RLDzku)(t, x) = λ(t, x) + (cDzku)(t, x),
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where

λ(t, x) =
t−r1

Γ(r2)Γ(1− r1)

∫ x

0

(x− s)−r2ψ(s)ds

+
x−r2

Γ(r1)Γ(1− r2)

∫ t

0

(t− s)−r1ϕ(s)ds+
t−r1x−r2ϕ(0)

Γ(1− r1)Γ(1− r2)

and the dot denotes differentiation

In the sequel we will make use of the following generalization of Gronwall’s lemma for two
independent variables and singular kernel.

Lemma 1.4 ([37]) Let υ : J → [0,∞) be a real function and ω(., .) be a nonnegative,
locally integrable function on J. If there are constants c > 0 and 0 < r1, r2 < 1 such that

υ(t, x) ≤ ω(t, x) + c

∫ t

0

∫ x

0

υ(s, τ)

(t− s)r1(x− τ)r2
dτds,

then there exists a constant δ = δ(r1, r2) such that

υ(t, x) ≤ ω(t, x) + δc

∫ t

0

∫ x

0

ω(s, τ)

(t− s)r1(x− τ)r2
dτds,

for every (t, x) ∈ J.

1.3 Phase spaces

The notion of the phase space B plays an important role in the study of both qual-
itative and quantitative theory for functional differential equations. A usual choice is a
semi-normed space satisfying suitable axioms, which was introduced by Hale and Kato
[32] (see [33, 41, 46]).

For any (x, y) ∈ J denote E(x,y) := [0, x] × {0} ∪ {0} × [0, y], furthermore in case
x = a, y = b we write simply E. Consider the space (B, ‖(., .)‖B) is a seminormed
linear space of functions mapping (−∞, 0]× (−∞, 0] into Rn, and satisfying the following
fundamental axioms which were adapted from those introduced by Hale and Kato for
ordinary differential functional equations:

(A1) If z : (−∞, a] × (−∞, b] → Rn and z(x,y) ∈ B, for all (x, y) ∈ E, then there are
constants H,K,M > 0 such that for any (x, y) ∈ J the following conditions hold:

(i) z(x,y) is in B;

(ii) ‖z(x, y)‖ ≤ H‖z(x,y)‖B,

(iii) ‖z(x,y)‖B ≤ K sup
(s,t)∈[0,x]×[0,y]

‖z(s, t)‖+M sup
(s,t)∈E(x,y)

‖z(s,t)‖B,
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(A2) The space B is complete.

Now, we present some examples of phase spaces ([26, 27]).

Example 1.5 Let B be the set of all functions φ : (−∞, 0] × (−∞, 0] → Rn which are
piece-wise continuous on [−α, 0]× [−β, 0], α, β ≥ 0, with the seminorm

‖φ‖B = sup
(s,t)∈[−α,0]×[−β,0]

‖φ(s, t)‖.

Then we have H = K = M = 1. The quotient space B̂ = B/‖.‖B is isometric to the space
C([−α, 0]× [−β, 0],Rn) of all continuous functions from [−α, 0]× [−β, 0] into Rn with the
supremum norm, this means that partial differential functional equations with finite delay
are included in our axiomatic model.

Example 1.6 Let γ ∈ R, and Cγ be the set of all piece-wise continuous functions φ :
(−∞, 0]× (−∞, 0]→ Rn for which a limit lim

‖(s,t)‖→∞
eγ(s+t)φ(s, t) exists, with the norm

‖φ‖Cγ = sup
(s,t)∈(−∞,0]×(−∞,0]

eγ(s+t)‖φ(s, t)‖.

Then we have H = 1 and K = M = max{e−γ(a+b), 1}.

Example 1.7 Let α, β, γ ≥ 0 and let

‖φ‖CLγ = sup
(s,t)∈[−α,0]×[−β,0]

‖φ(s, t)‖+

∫ 0

−∞

∫ 0

−∞
eγ(s+t)‖φ(s, t)‖dtds.

be the seminorm for the space CLγ of all functions φ : (−∞, 0]× (−∞, 0]→ Rn which are
piece-wise continuous on [−α, 0]× [−β, 0] measurable on (−∞,−α]× (−∞, 0]∪ (−∞, 0]×
(−∞,−β], and such that ‖φ‖CLγ <∞. Then

H = 1, K =

∫ 0

−α

∫ 0

−β
eγ(s+t)dtds, M = 2.

1.4 Some properties in Fréchet spaces

Let X be a Fréchet space with a family of semi-norms {‖ · ‖n}n∈N. We assume that the
family of semi-norms {‖ · ‖n} verifies :

‖u‖1 ≤ ‖u‖2 ≤ ‖u‖3 ≤ ... for every u ∈ X.

Let Y ⊂ X, we say that Y is bounded if for every n ∈ N, there exists Mn > 0 such that

‖y‖n ≤Mn for all v ∈ Y.
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To X we associate a sequence of Banach spaces {(Xn, ‖·‖n)} as follows : For every n ∈ N,
we consider the equivalence relation ∼n defined by : u ∼n v if and only if ‖u−v‖n = 0 for
u, v ∈ X. We denote Xn = (X|∼n , ‖ · ‖n) the quotient space, the completion of Xn with
respect to ‖ · ‖n. To every Y ⊂ X, we associate a sequence {Y n} of subsets Y n ⊂ Xn as
follows : For every u ∈ X, we denote [u]n the equivalence class of u of subset Xn and we
defined Y n = {[u]n : u ∈ Y }. We denote Y n, intn(Y n) and ∂nY

n, respectively, the closure,
the interior and the boundary of Y n with respect to ‖ · ‖n in Xn. For more information
about this subject see [29].

Definition 1.8 Let X be a Fréchet space. A function N : X −→ X is said to be a
contraction if for each n ∈ IN there exists kn ∈ (0, 1) such that

‖N(u)−N(v)‖n ≤ kn‖u− v‖n for all u, v ∈ X.

1.5 Some fixed point theorems

Theorem 1.9 (Nonlinear Alternative of Frigon and Granas, [29]).
Let X be a Fréchet space and Y ⊂ X a closed subset in Y and let N : Y → X be a
contraction such that N(Y ) is bounded.
Then one of the following statements holds :

(S1) N has a unique fixed point ;

(S2) There exists λ ∈ [0, 1), n ∈ N and x ∈ ∂nY n such that ‖x− λ N (x)‖n = 0.

Theorem 1.10 (Burton-Kirk)([25]) Let X be a Banach space, and A,B : X → X two
operators satisfying:

(i) A is completely continuous, and

(ii) B is a contraction.

Then either

(a) the operator equation u = A(u) +B(u) has a solution, or

(b) the set E = {u ∈ X : u = λA(u) + λB(u
λ
), forλ ∈ (0, 1)} is unbounded .
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Chapter 2

Impulsive Partial Hyperbolic
Differential Equations of Fractional
Order

2.1 Introduction

This chapter deals with the existence of solutions for impulsive initial value problem for
differential equations of fractional order given by

(cDr
zk
u)(t, x) = f(t, x, u(t, x)), if (t, x) ∈ Jk, k = 0, . . . ,m, (2.1)

u(t+k , x) = u(t−k , x) + Ik(u(t−k , x)), if x ∈ [0, b]; k = 1, . . . ,m, (2.2)

u(t, 0) = ϕ(t), u(0, x) = ψ(x), t ∈ [0, a], x ∈ [0, b], (2.3)

where J0 = [0, t1] × [0, b], Jk := (tk, tk+1] × [0, b], k = 1, . . . ,m, zk = (tk, 0), k =
0, . . . ,m, J = [0, a] × [0, b], a, b > 0, cDr

0 is the Caputo fractional derivative of order
r = (r1, r2) ∈ (0, 1] × (0, 1], 0 = t0 < t1 < · · · < tm < tm+1 = a, f : J × Rn → Rn,
Ik : Rn → Rn, k = 0, 1, . . . ,m are given functions, ϕ : [0, a]→ Rn and ψ : [0, b]→ Rn are
given absolutely continuous functions with ϕ(0) = ψ(0).

Next we consider the following nonlocal initial value problem

(cDr
zk
u)(t, x) = f(t, x, u(t, x)), if (t, x) ∈ Jk, k = 0, . . . ,m, (2.4)

u(t+k , x) = u(t−k , x) + Ik(u(t−k , x)), if x ∈ [0, b]; k = 1, . . . ,m, (2.5)

u(t, 0) +Q(u) = ϕ(t), u(0, x) +K(u) = ψ(x), t ∈ [0, a], x ∈ [0, b], (2.6)

where f, ϕ, ψ, Ik; k = 1, . . . ,m, are as in problem (2.1)-(2.3) and Q,K : PC(J,Rn)→ Rn

are continuous functions. PC(J,Rn) is a Banach space to be specified later.

15
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2.2 Existence of Solutions

First of all, we define what we mean by a solution of the initial value problem (2.1)–(2.3).

PC(J,Rn) =
{
u : J → Rn : u ∈ C((tk, tk+1]× [0, b],Rn); k = 1, . . . ,m, and there

exist u(t−k , x) and u(t+k , x); k = 1, . . . ,m, with u(t−k , x) = u(tk, x)
}
.

This set is a Banach space with the norm

‖u‖PC = sup
(t,x)∈J

|u(t, x)|.

Definition 2.1 A function u ∈ PC(J,Rn) is said to be a solution of (2.1)–(2.3) if u
satisfies the equation (cDru)(t, x) = f(t, x, u(t, x)) on J ′, and conditions (2.2), (2.3) are
satisfied.

Let h(t, x) ∈ C((tk, tk+1]× [0, b],Rn), zk = (tk, 0), and

µk(t, x) = u(t, 0) + u(t+k , x)− u(t+k , 0), k = 0, . . . ,m.

For the existence of solutions for the problem (2.1)–(2.2), we need the following lemma:

Lemma 2.2 A function u ∈ C((tk, tk+1] × [0, b],Rn), k = 0, . . . ,m is a solution of the
differential equation

(cDr
zk
u)(t, x) = h(t, x); (t, x) ∈ (tk, tk+1]× [0, b], (2.7)

if and only if u(t, x) satisfies

u(t, x) = µk(t, x) + (Irzkh)(t, x); (t, x) ∈ (tk, tk+1]× [0, b]. (2.8)

Proof. Let u(t, x) be a solution of (2.7). Then, from the definition of (cDr
z+k
u)(x, x),

we have
I1−r
z+k

(D2
txu)(t, x) = h(t, x).

Which yield
Ir
z+k

(I1−r
zk

D2
txu)(t, x) = (Ir

z+k
h)(t, x),

then
I1
z+k
D2
txu(t, x) = (Ir

z+k
h)(t, x).

Since
I1
z+k

(D2
txu)(t, x) = u(t, x)− u(t, 0)− u(t+k , x) + u(t+k , 0),

we have
u(t, x) = µk(t, x) + (Ir

z+k
h)(t, x).

Now let u(t, x) satisfies (2.8). It is clear that u(t, x) satisfies

(cDr
zk
u)(t, x) = h(t, x), on (tk, tk+1]× [0, b].

In all what follows set
µ(t, x) = µ0(t, x), (t, x) ∈ J.
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Lemma 2.3 Let 0 < r1, r2 ≤ 1 and let h : J → Rn be continuous. A function u is a
solution of the fractional integral equation

u(t, x) =



µ(t, x) + 1
Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1h(s, y)dsdy if (t, x) ∈ [0, t1]× [0, b],

µ(t, x) +

k∑
i=1

(
Ii(u(t

−
i , x))− Ii(u(t

−
i , 0))

)
if (t, x) ∈ (tk, tk+1]× [0, b],

+ 1
Γ(r1)Γ(r2)

k∑
i=1

∫ ti

ti−1

∫ x

0

(ti − s)r1−1(x− y)r2−1h(s, y)dsdy k = 1, . . . ,m,

+ 1
Γ(r1)Γ(r2)

∫ t

tk

∫ x

0
(t− s)r1−1(x− y)r2−1h(s, y)dsdy

(2.9)

if and only if u is a solution of the fractional initial value problem

cDru(t, x) = h(t, x), (t, x) ∈ J ′, (2.10)

u(t+k , x) = u(t−k , x) + Ik(u(t−k , x)), k = 1, . . . ,m. (2.11)

Proof. Assume u satisfies (2.10)-(2.11). If (t, x) ∈ [0, t1]× [0, b] then

cDru(t, x) = h(t, x).

Lemma 2.2 implies

u(t, x) = µ(t, x) +
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− y)r2−1h(s, y)dsdy.

If (t, x) ∈ (t1, t2]× [0, b] then Lemma 2.2 implies

u(t, x) = µ1(t, x) +
1

Γ(r1)Γ(r2)

∫ t

t1

∫ x

0

(t− s)r1−1(x− y)r2−1h(s, y)dsdy

= ϕ(t) + u(t+1 , x)− u(t+1 , 0)

+
1

Γ(r1)Γ(r2)

∫ t

t1

∫ x

0

(t− s)r1−1(x− y)r2−1h(s, y)dsdy

= ϕ(t) + u(t−1 , x)− u(t−1 , 0) + I1(u(t−1 , x))− I1(u(t−1 , 0))

+
1

Γ(r1)Γ(r2)

∫ t

t1

∫ x

0

(t− s)r1−1(x− y)r2−1h(s, y)dsdy

= ϕ(t) + u(t1, x)− u(t1, 0) + I1(u(t−1 , x))− I1(u(t−1 , 0))

+
1

Γ(r1)Γ(r2)

∫ t

t1

∫ x

0

(t− s)r1−1(x− y)r2−1h(s, y)dsdy

= µ(t, x) + I1(u(t−1 , x))− I1(u(t−1 , 0))

+
1

Γ(r1)Γ(r2)

∫ t1

0

∫ x

0

(t1 − s)r1−1(x− y)r2−1h(s, y)dsdy

+
1

Γ(r1)Γ(r2)

∫ t

t1

∫ x

0

(t− s)r1−1(x− y)r2−1h(s, y)dsdy.
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If (t, x) ∈ (t2, t3]× [0, b] then again from Lemma 2.2 we get

u(t, x) = µ2(t, x) +
1

Γ(r1)Γ(r2)

∫ t

t2

∫ x

0

(t− s)r1−1(x− y)r2−1h(s, y)dsdy

= ϕ(t) + u(t+2 , x)− u(t+2 , 0)

+
1

Γ(r1)Γ(r2)

∫ t

t2

∫ x

0

(t− s)r1−1(x− y)r2−1h(s, y)dsdy

= ϕ(t) + u(t−2 , x)− u(t−2 , 0) + I2(u(t−2 , x))− I2(u(t−2 , 0))

+
1

Γ(r1)Γ(r2)

∫ t

t2

∫ x

0

(t− s)r1−1(x− y)r2−1h(s, y)dsdy

= ϕ(t) + u(t2, x)− u(t2, 0) + I2(u(t−2 , x))− I2(u(t−2 , 0))

+
1

Γ(r1)Γ(r2)

∫ t

t2

∫ x

0

(t− s)r1−1(x− y)r2−1h(s, y)dsdy

= µ(t, x) + I2(u(t−2 , x))− I2(u(t−2 , 0)) + I1(u(t−1 , x))− I1(u(t−1 , 0))

+
1

Γ(r1)Γ(r2)

∫ t1

0

∫ x

0

(t1 − s)r1−1(x− y)r2−1h(s, y)dsdy

+
1

Γ(r1)Γ(r2)

∫ t2

t1

∫ x

0

(t2 − s)r1−1(x− y)r2−1h(s, y)dsdy

+
1

Γ(r1)Γ(r2)

∫ t

t2

∫ x

0

(t− s)r1−1(x− y)r2−1h(s, y)dsdy.

If (t, x) ∈ (tk, tk+1]× [0, b] then from Lemma 2.2 we get (2.9).
Conversely, assume that u satisfies the impulsive fractional integral equation (2.9). If

(t, y) ∈ [0, t1]× [0, b] and using the fact that cDr is the left inverse of Ir we get

cDru(t, x) = h(t, x), for each (t, x) ∈ [0, t1]× [0, b].

If (t, x) ∈ [tk, tk+1)× [0, b], k = 1, . . . ,m and using the fact that cDrC = 0, where C is a
constant, we get

cDru(t, x) = h(t, x), for each (t, x) ∈ [tk, tk+1)× [0, b].

Also, we can easily show that

u(t+k , x) = u(t−k , x) + Ik(u(t−k , x)), x ∈ [0, b], k = 1, . . . ,m.

In this section, we give our main existence result for problem (2.1)-(2.3).

Definition 2.4 A function u ∈ PC(J,Rn) with its mixed derivative D2
xy exists and is

integrable is said to be a solution of (2.1)–(2.3) if u satisfies the equation (cDru)(t, x) =
f(t, x, u(t, x)), and conditions (2.2), (2.3) are satisfied.



2.2. EXISTENCE OF SOLUTIONS 19

Our result is based upon the fixed point theorem due to Burton and Kirk.

Let us introduce the following hypotheses which are assumed after:

(H1) The functions Ik : Rn → Rn are continuous.

(H2) There exist p, q ∈ C(J,R+) such that

‖f(t, x, u)‖ ≤ p(t, x) + q(t, x)‖u‖, for (t, x) ∈ J and each u ∈ Rn.

(H3) There exists l > 0 such that

‖Ik(u)− Ik(v)‖ ≤ l‖u− v‖ for each u, v ∈ Rn

Theorem 2.5 Assume that hypotheses (H1)-(H3) hold. If

2ml +
2ar1br2p∗

Γ(r1 + 1)Γ(r2 + 1)
< 1, (2.12)

then the IV P (2.1)-(2.3) has at least one solution on J

Proof: We shall reduce the existence of solutions of (2.1)-(2.3) to a fixed point problem.
Consider the operator N : PC(J,Rn) −→ PC(J,Rn) defined by

N(u)(t, x) = µ(t, x) +
∑

0<tk<t

(Ik(u(t−k , x))− Ik(u(t−k , 0)))

+
1

Γ(r1)Γ(r2)

∑
0<tk<t

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1f(s, y, u(s, y))dyds

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1f(s, y, u(s, y))dyds,

and the operators F,G : PC(J,Rn) −→ PC(J,Rn)

F (u)(t, x) = µ(t, x) +
∑

0<tk<t

(Ik(u(t−k , x))− Ik(u(t−k , 0)))

G(u)(t, x) =
1

Γ(r1)Γ(r2)

∑
0<tk<t

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1f(s, y, u(s, y))dyds

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1f(s, y, u(s, y))dyds.

Then the problem of finding the solution of the IV P (2.1)–(2.3) is reduced to finding
the solutions of the operator equation F (u)+G(u) = u. We shall show that the operators
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F and G satisfy the conditions of Theorem (2.5). The proof will be given by several steps.

Step 1: G is continuous.

Let {un} be a sequence such that un → u in PC(J,Rn), then for each (t, x) ∈ J

‖G(un)(t, x)−G(u)(t, x)‖

≤ 1

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1‖f(s, y, un(s, y))− f(s, y, u(s, y))‖dyds

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1‖f(s, y, un(s, y))− f(s, y, u(s, y))‖dyds.

≤
‖f(., ., un(.,.))− f(., ., u(.,.))‖

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1dyds

+
‖f(., ., un(.,.))− f(., , u(.,.))‖

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1dyds.

Since f is continuous function, we have

‖G(un)−G(u)‖PC ≤
2ar1br2‖f(., ., un(.,.))− f(., ., u(.,.))‖∞

Γ(r1 + 1)Γ(r2 + 1)
→ 0 as n→∞

Thus G is continuous.

Step 2: G maps bounded sets into bounded sets in PC(J,Rn). Indeed, it is enough
to show that for any positive real number η∗, there exists a positive constant l such that,
for each u ∈ Bη∗ = {u ∈ PC(J,Rn) : ‖u‖PC ≤ η∗} we have ‖G(u)‖PC ≤ l
By (H2) we have for each (t, x) ∈ J ,

‖G(u)(t, x)‖ ≤ 1

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1‖f(s, y, u(s, y))‖dsdy

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1‖f(s, y, u(s, y))‖dsdy

≤ ‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1dsdy

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1dsdy

Thus

‖G(u)‖PC ≤
2ar1br2(‖p‖∞ + ‖q‖∞η∗)

Γ(r1 + 1)Γ(r2 + 1)
:= l∗
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Hence ‖G(u)‖PC ≤ l∗.

Step 3: G maps bounded sets into equicontinuous sets in PC.
Let (t1, x1), (t2, x2) ∈ (0, a]× (0, b], t1 < t2, x1 < x2, Bη be a bounded set as in step 2,
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let u ∈ Bη∗ be a bounded set of PC(J,Rn) as in Step 2. Then

‖G(u)(t2, x2)−G(u)(t1, x1)‖

≤ 1

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x1

0

(tk − s)r1−1[(x2 − τ)r2−1 − (x1 − τ)r2−1]× |f(s, τ, u(s, τ))|dτds

+
1

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x2

x1

(tk − s)r1−1(x2 − τ)r2−1|f(s, τ, u(s, τ))|dτds

+
1

Γ(r1)Γ(r2)

∫ t1

0

∫ x1

0

[(t2 − s)r1−1(x2 − τ)r2−1 − (t1 − s)r1−1(x1 − τ)r2−1]× |f(s, τ, u(s, τ))|dτdx

+
1

Γ(r1)Γ(r2)

∫ t2

t1

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1|f(s, τ, u(s, τ))|dτds

+
1

Γ(r1)Γ(r2)

∫ t1

0

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1|f(s, τ, u(s, τ))|dτds

+
1

Γ(r1)Γ(r2)

∫ t2

t1

∫ x1

0

(t2 − s)r1−1(x2 − τ)r2−1|f(s, τ, u(s, τ))|dτds

≤ ‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x1

0

(tk − s)r1−1[(x2 − τ)r2−1 − (x1 − τ)r2−1]dτds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x2

x1

(tk − s)r1−1(x2 − τ)r2−1dτds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ t1

0

∫ x1

0

[(t2 − s)r1−1(x2 − τ)r2−1 − (t1 − s)r1−1(x1 − τ)r2−1]dτdx

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ t2

t1

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1dτds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ t1

0

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1dτds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ t2

t1

∫ x1

0

(t2 − s)r1−1(x2 − τ)r2−1dτds

≤ ‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x1

0

(tk − s)r1−1[(x2 − τ)r2−1 − (x1 − τ)r2−1]dτds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x2

x1

(tk − s)r1−1(x2 − τ)r2−1dτds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)
[2xr22 (t2 − t1)r1 + 2tr12 (x2 − x1)r2

+ tr11 x
r2
1 − tr12 x

r2
2 − 2(t2 − t1)r1(x2 − x1)r2 ].

As t1 → t2, x1 → x2 the right-hand side of the above inequality tends to zero.
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As a consequence of Steps 1 to 3, together with the Arzela-Ascoli theorem, we can
conclude that G : PC(J,Rn)→ PC(J,Rn) is continuous and completely continuous.

Step 4: F is a contraction.
Let u, v ∈ PC(J,Rn), then we have for each (t, x) ∈ J

|F (u)(t, x)− F (v)(t, x)|

≤
m∑
k=1

(|Ik(u(t−k , x))− Ik(v(t−k , x))|+ |Ik(u(t−k , 0))− Ik(v(t−k , 0))|)

≤
m∑
k=1

l(‖u− v‖PC + ‖u− v‖PC)

≤ 2ml‖u− v‖PC .

Thus

‖F (u)− F (v)‖PC ≤ 2ml‖u− v‖PC .

Hence by (2.12), F is a contraction.

Step 5: (A priori bounds)

Now it remains to show that the set

E = {u ∈ PC(J,Rn) : u = λF (
u

λ
) + λG(u), for some λ ∈ (0, 1)}

is bounded. Let u ∈ E , then u = λF (u
λ
) + λG(u). Thus, for each (t, x) ∈ J we have

u(t, x) = λµ(t, x) +
m∑
k=1

λ(|Ik
u(t−k , y)

λ
|+ |Ik

u(t−k , 0)

λ
|)

+
1

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ, u(s, τ))dτds

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ, u(s, t))dτds.
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This implies by (H2) and (H3) that, for each (t, x) ∈ J, we have

|u(t, x)| ≤ λ|µ(t, x)|+
m∑
k=1

λ(|Ik
u(t−k , x)

λ
| − |Ik(0)|+ |Ik

u(t−k , 0)

λ
| − |Ik(0)|)

+ 2λ
m∑
k=1

|Ik(0)|+ ‖p‖∞
Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1|u(s, τ)|PCdτds

+
‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1dτds

+
‖p‖∞

Γ(r1 + 1)Γ(r2 + 1)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1|u(s, τ)|PCdτds

+
‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1dτds

≤ ‖µ(t, x)‖+ l

m∑
k=1

(|u(t−k , x)|+ |u(t−k , 0)|) + 2I∗

+
‖p‖∞

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1|u(s, τ)|PCdτds

+
‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1dτds

+
‖p‖∞

Γ(r1 + 1)Γ(r2 + 1)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1|u(s, τ)|PCdτds

+
‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1dτds,

where

I∗ =
m∑
k=1

|Ik(0)|.

We have for (t, x) ∈ J

‖u(t, x)‖ ≤ ‖µ‖+ 2ml‖u‖PC + 2I∗

+
2ar1br2‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)
+

2ar1br2‖p‖∞
Γ(r1 + 1)Γ(r2 + 1)

‖u‖PC .

Then

‖u‖PC
(

1− 2ml − 2ar1br2‖p‖∞
Γ(r1 + 1)Γ(r2 + 1)

)
≤ |µ‖∞ + 2I∗ +

2ar1br2‖q‖∞
Γ(r1 + 1)Γ(r2 + 1)

:= M.

Thus

‖u‖PC ≤ M

1− 2ml − 2ar1br2p∗

Γ(r1+1)Γ(r2+1)

:= M∗.
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This shows that the set E is bounded. As a consequence of Theorem 2.5 we deduce that
F +G has a fixed point which is a solution of problem (2.1)-(2.3).

2.3 Nonlocal impulsive partial differential equations

Now we present (without proof) an existence result for the nonlocal initial value problem
(2.4)–(2.6).

Definition 2.6 A function u ∈ PC(J,Rn) is said to be a solution of integrable is said to
be a solution of (4.10)–(4.12) if u satisfies the equations (2.4)–(2.6) on J , and conditions
(2.5), (2.6) are satisfied.

Theorem 2.7 Assume (H1)-(H3) hold, and moreover we assume that

(H ′1) There exists k̃ > 0 such that

‖Q(u)−Q(v)‖ ≤ k̃‖u− v‖PC , for any u, v ∈ PC(J,Rn)

(H ′2) There exists k∗ > 0 such that

‖K(u)−K(v)‖ ≤ k∗‖u− v‖PC , for any u, v ∈ PC(J,Rn)

hold. If

k̃ + k∗ + 2ml +
2ar1br2p∗

Γ(r1 + 1)Γ(r2 + 1)
< 1,

then there exists at least one solution for IV P (2.4)–(2.6) on J .

2.4 An Example

In this section we give an example to illustrate the usefulness of our main results. Let us
consider the following impulsive partial hyperbolic differential equations of the form

(cDr
0u)(t, x) =

1

8et+x+3

|u(t, x)|
(1 + |u(t, x)|)

, if (t, x) ∈ J0 ∪ J1, (2.13)

u(
1

3

+

, x) = u(
1

3

−
, x) +

1

6et+x+4

|u(1
3

−
, x)|

(15 + |u(1
3

−
, x)|)

, if x ∈ [0, 1], (2.14)

u(t, 0) = t, u(0, x) = x2, t ∈ [0, 1], x ∈ [0, 1], (2.15)
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where J0 = [0, 1
3
]× [0, 1], J1 = (1

3
, 1]× [0, 1]. Set

f(t, x, u) =
1

8et+x+3

|u(t, x)|
(1 + |u(t, x)|)

, (t, x) ∈ [0, 1]× [0, 1].

Hence (H2) is satisfied with

p(t, x) =
1

8et+x+3
and q(t, x) =

2

8et+x+3

and

Ik(u(t−k , x)) =
1

6et+x+4

|u(tk
−, x)|

(15 + |u(tk
−, x)|)

, x ∈ [0, 1].

For each u, v and (t, x) ∈ [0, 1]× [0, 1] we have

|Ik(u)− Ik(v)| ≤ 1

6e4
|u− v|.

Hence (H3) is satisfied. We shall show that condition (4.15) holds with a = b = 1 and
m = 1. Indeed,

2ml +
2ar1br2p∗

Γ(r1 + 1)Γ(r2 + 1)
=

1

3e4
+

1

4Γ(r1 + 1)Γ(r2 + 1)
< 1,

which is satisfied for each (r1, r2) ∈ (0, 1]× (0, 1]. Consequently Theorem 2.5 implies that
problem (5.10)-(5.12) has a solution defined on [0, 1]× [0, 1].



Chapter 3

Impulsive Partial Hyperbolic
Functional Differential Equations of
Fractional Order with Delay

3.1 Introduction

In this Chapter, we prove sufficient conditions for the existence solutions for fractional
impulsive partial differential equations with delay,

3.2 Impulsive Partial Differential Equations with Fi-

nite Delay

3.2.1 Introduction

In this section, we study the existence of solutions for the following impulsive partial
hyperbolic differential equations:

(cDr
zk
u)(t, x) = f(t, x, u(t,x)); if (t, x) ∈ Jk, k = 0, . . . ,m, (3.1)

u(t+k , x) = u(t−k , x) + Ik(u(t−k , x)), if x ∈ [0, b], k = 1, . . . ,m, (3.2)

u(t, x) = φ(t, x); if (t, x) ∈ J̃ , (3.3)

u(t, 0) = ϕ(t), t ∈ [0, a], u(0, x) = ψ(x); x ∈ [0, b], (3.4)

where J0 = [0, t1] × [0, b], Jk := (tk, tk+1] × [0, b], k = 1, . . . ,m, zk = (tk, 0), k =
0, . . . ,m, a, b, α, β > 0, J = [0, a] × [0, b], J̃ = [−α, a] × [−β, b]\(0, a] × (0, b], cDr

zk
is

the Caputo fractional derivative of order r = (r1, r2) ∈ (0, 1] × (0, 1], ϕ : [0, a] → Rn,
ψ : [0, b]→ Rn are given continuous functions with ϕ(t) = φ(t, 0), ψ(x) = φ(0, x) for each
(t, x) ∈ J, 0 = t0 < t1 < · · · < tm < tm+1 = a, f : J × C → Rn, Ik : Rn → Rn, k =

27
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1, . . . ,m, φ : J̃ → Rn, are given functions and C := C([−α, 0]× [−β, 0],Rn) is the space
of continuous functions on [−α, 0]× [−β, 0].
If u : [−α, 0]× [−β, 0] −→ Rn, then for any (t, x) ∈ J define u(t,x) by

u(t,x)(s, τ) = u(t+ s, x+ τ)

3.2.2 Existence Results

In this section, we give our main existence result for problem (5.1)-(5.4).
Set Jk = (tk, tk+1]× (0, b]. Consider the Banach space

PC := PC(J,Rn)

=
{
u : J → Rn : u ∈ C(Jk,Rn), k = 1, . . . ,m, and there exist u(t−k , x) and

u(t+k , x), k = 1, . . . ,m, with u(t−k , x) = u(tk, x)
}
.

with the norm
‖u‖PC = sup

(t,x)∈J
|u(t, x)|.

Set
Ω = {u : [−α, a]× [−β, b] −→ Rn), u|J̃ ∈ C and u|[0,a]×[0,b] ∈ PC}.

Definition 3.1 A function u ∈ Ω such that its mixed derivative D2
tx exists on J ′ is said

to be a solution of (5.1)-(5.4) if u satisfies the condition (5.3) on J̃ , the equation (5.1) on
J ′ and conditions (5.2), (5.4) are satisfied on J .

Lemma 3.2 [7] Let 0 < r1, r2 ≤ 1 and let h : J → Rn be continuous. A function u is a
solution of the fractional integral equation

u(t, x) =



φ(t, x) if (t, x) ∈ J̃ ,

µ(t, x) +
∑

0<tk<t

(
Ik(u(t

−
k , x))− Ik(u(t

−
k , 0))

)
if (t, x) ∈ J,

+ 1
Γ(r1)Γ(r2)

∑
0<tk<t

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1h(s, y)dyds k = 1, . . . ,m,

+ 1
Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1h(s, y)dyds,

(3.5)

if and only if u is a solution of the fractional initial value problem

cDru(t, x) = h(t, x), (t, x) ∈ Jk, k = 0, . . . ,m, (3.6)

u(t+k , x) = u(t−k , x) + Ik(u(t−k , x)), k = 1, . . . ,m. (3.7)

Our result is based upon the fixed point theorem due to Burton and Kirk. Let us introduce
the following hypotheses which are assumed to hold in the sequel.

(H1) The functions Ik : Rn → Rn are continuous.
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(H2) There exist p, q ∈ C(J,R+) such that

‖f(t, x, u)‖ ≤ p(t, x) + q(t, x)‖u‖C , for (t, x) ∈ J and each u ∈ C.

(H3) There exists l > 0 such that

‖Ik(u)− Ik(v)‖ ≤ l‖u− v‖ for each u, v ∈ Rn, k = 1, . . . ,m.

Theorem 3.3 Assume that hypotheses (H1)-(H3) hold. If

2ml < 1, (3.8)

then the IV P (5.1)-(5.4) has at least one solution on J .

Proof. We shall reduce the existence of solutions of (5.1)-(5.4) to a fixed point problem.
Consider the operator N : Ω −→ Ω defined by

N(u)(t, x) =



φ(t, x) if (t, x) ∈ J̃ ,

µ(t, x) +
∑

0<tk<t

(
Ik(u(t−k , x))− Ik(u(t−k , 0))

)
if (t, x) ∈ J, k = 1, . . . ,m,

+ 1
Γ(r1)Γ(r2)

∑
0<tk<t

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1

×f(s, y, u(s,y))dyds

+ 1
Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1

×f(s, y, u(s,y))dyds

Consider the operators F,G : Ω→ Ω defined by,

G(u)(t, x) =



φ(t, x), (t, x) ∈ J̃ ,

+ 1
Γ(r1)Γ(r2)

∑
0<tk<t

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1 k = 1, . . . ,m

×f(s, y, u(s,y))dyds

+ 1
Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1

×f(s, y, u(s,y))dyds, (t, x) ∈ J.

and

F (u)(t, x) =

 0, (t, x) ∈ J̃ ,
µ(t, x) +

∑
0<tk<t

(Ik(u(t−k , x))− Ik(u(t−k , 0))), (t, x) ∈ J.

Then the problem of finding the solution of the IV P (5.1)–(5.3) is reduced to finding the
solutions of the operator equation F (u) +G(u) = u. We shall show that the operators F
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and G satisfy the conditions of Theorem 3.3. The proof will be given by several steps.

Step 1: G is continuous.

Let {un} be a sequence such that un → u in C, then for each (t, x) ∈ J

‖G(un)(t, x)−G(u)(t, x)‖

≤ 1

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1‖f(s, y, un(s,y))− f(s, y, u(s,y))‖dyds

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1‖f(s, y, un(s,y))− f(s, y, u(s,y))‖dyds.

≤
‖f(., ., un(.,.))− f(., ., u(.,.))‖

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1dyds

+
‖f(., ., un(.,.))− f(., , u(.,.))‖

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1dyds.

Since f is a continuous function, we have

‖G(un)−G(u)‖∞ ≤
2ar1br2‖f(., ., un(.,.))− f(., ., u(.,.))‖∞

Γ(r1 + 1)Γ(r2 + 1)
→ 0 as n→∞

Thus G is continuous.

Step 2: G maps bounded sets into bounded sets in C.
Indeed, it is enough show that for any η∗, there exists a positive constant l such that,

for each u ∈ Bη∗ = {u ∈ C : ‖u‖∞ ≤ η∗} we have ‖G(u)‖C ≤ l.
By (H2) we have for each (t, x) ∈ J ,

‖G(u)(t, x)‖ ≤ 1

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1‖f(s, y, u(s,y))‖dyds

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1‖f(s, y, u(s,y))‖dyds

≤ ‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1dyds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1dyds.

Thus

‖G(u)‖C ≤
2ar1br2(‖p‖∞ + ‖q‖∞η∗)

Γ(r1 + 1)Γ(r2 + 1)
:= l∗.

Hence ‖G(u)‖P̃C ≤ l∗.



3.2. IMPULSIVE PARTIAL DIFFERENTIAL EQUATIONS WITH FINITE DELAY31

Step 3: G maps bounded sets into equicontinuous sets in C.
Let (t1, x1), (t2, x2) ∈ (0, a]× (0, b], t1 < t2, x1 < x2, Bη be a bounded set as in Step 2,
let u ∈ Bη∗ be a bounded set of C as in Step 2. Then

‖G(u)(t2, x2)−G(u)(t1, x1)‖

≤ 1

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x1

0

(tk − s)r1−1[(x2 − τ)r2−1 − (x1 − τ)r2−1]× ‖f(s, τ, u(s,τ))‖dτds

+
1

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x2

x1

(tk − s)r1−1(x2 − τ)r2−1‖f(s, τ, u(s,τ))‖dτds

+
1

Γ(r1)Γ(r2)

∫ t1

0

∫ x1

0

[(t2 − s)r1−1(x2 − τ)r2−1 − (t1 − s)r1−1(x1 − τ)r2−1]× ‖f(s, τ, u(s,τ))‖dτds

+
1

Γ(r1)Γ(r2)

∫ t2

t1

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1|f(s, τ, u(s,τ))|dτds

+
1

Γ(r1)Γ(r2)

∫ t1

0

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1‖f(s, τ, u(s,τ))‖dτds

+
1

Γ(r1)Γ(r2)

∫ t2

t1

∫ x1

0

(t2 − s)r1−1(x2 − τ)r2−1‖f(s, τ, u(s,τ))‖dτds

≤ ‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x1

0

(tk − s)r1−1[(x2 − τ)r2−1 − (x1 − τ)r2−1]dτds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2) + 1

m∑
k=1

∫ tk

tk−1

∫ x2

x1

(tk − s)r1−1(x2 − τ)r2−1dτds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ t1

0

∫ x1

0

[(t2 − s)r1−1(x2 − τ)r2−1 − (t1 − s)r1−1(x1 − τ)r2−1]dτds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ t2

t1

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1dτds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ t1

0

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1dτds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ t2

t1

∫ x1

0

(t2 − s)r1−1(x2 − τ)r2−1dτds

≤ ‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x1

0

(tk − s)r1−1[(x2 − τ)r2−1 − (x1 − τ)r2−1]dτds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x2

x1

(tk − s)r1−1(x2 − τ)r2−1dτds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)
[2xr22 (t2 − t1)r1 + 2tr12 (x2 − x1)r2

+ tr11 x
r2
1 − tr12 x

r2
2 − 2(t2 − t1)r1(x2 − x1)r2 ].
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As t1 → t2, x1 → x2 the right-hand side of the above inequality tends to zero.

As a consequence of Steps 1 to 3, together with the Arzela-Ascoli theorem, we can
conclude that G : P̃C → P̃C is continuous and completely continuous.

Step 4: F is a contraction.
Let u, v ∈ C, then we have for each (t, x) ∈ J

‖F (u)(t, x)− F (v)(t, x)‖

≤
m∑
k=1

(‖Ik(u(t−k , x))− Ik(v(t−k , x))‖+ ‖Ik(u(t−k , 0))− Ik(v(t−k , 0))‖)

≤
m∑
k=1

l(‖u− v‖C + ‖u− v‖C)

≤ 2ml‖u− v‖C .

Thus

‖F (u)− F (v)‖C ≤ 2ml‖u− v‖C .

Hence by (3.8), F is a contraction.

Step 5: (A priori bounds)

Now it remains to show that the set

E = {u ∈ C : u = λF (
u

λ
) + λG(u) for some λ ∈ (0, 1)}

is bounded. Let u ∈ E , then u = λF (u
λ
) + λG(u). Thus, for each (t, x) ∈ J we have

u(t, x) = λµ(t, x) +
m∑
k=1

λ

(
Ik

(
u(t−k , x)

λ

)
+ Ik

(
u(t−k , 0)

λ

))
+

λ

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ, u(s,τ))dτds

+
λ

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ, u(s,τ))dτds.
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This implies by (H2) and (H3) that, for each (t, x) ∈ J, we have

‖u(t, x)‖ ≤ ‖µ(t, x)‖+
m∑
k=1

(‖Iku(t−k , x)‖ − ‖Ik(0)‖+ ‖Iku(t−k , 0)‖ − ‖Ik(0)‖)

+ 2
m∑
k=1

‖Ik(0)‖+
‖p‖∞

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1‖u(s,τ)‖Cdτds

+
‖q‖∞

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1dτds

+
‖p‖∞

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1‖u(s,τ)‖Cdτds

+
‖q‖∞

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1dτds

≤ ‖µ(t, x)‖+ l
m∑
k=1

(‖u(t−k , x)‖+ ‖u(t−k , 0)‖) + 2I∗

+
‖p‖∞

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1‖u(s,τ)‖Cdτds

+
‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1dτds

+
‖p‖∞

Γ(r1 + 1)Γ(r2 + 1)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1‖u(s,τ)‖Cdτds

+
‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1dτds,

where

I∗ =
m∑
k=1

‖Ik(0)‖.

We consider the function γ defined by

γ(t, x) = sup{|u(s, τ)| : −α ≤ s ≤ t,−β ≤ τ ≤ x, 0 ≤ t ≤ a, 0 ≤ x ≤ b}.

Let (t∗, x∗) ∈ [−α, t] × [−β, x] be such that γ(t, x) = |u(t∗, x∗)|. If (t∗, x∗) ∈ J , then by
the previous inequality, we have for (t, x) ∈ J

γ(t, x) ≤ ‖µ(t, x)‖+ l

m∑
k=1

(‖u(t−k , x)‖+ ‖u(t−k , 0)‖) + 2I∗

+
‖p‖∞

Γ(r1 + 1)Γ(r2 + 1)

( m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1γ(s, τ)dτds

+

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1γ(s, τ)dτds
)

+
2ar1br2‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)
.
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If (t∗, x∗) ∈ J̃ , then γ(t, x) = ‖φ‖C and the previous inequality holds. If (t, x) ∈ J, by
Lemma 1.4 implies that there exists k̃ = k̃(r2, r2) such that

γ(t, x) ≤

(
‖µ(t, x)‖+ l

m∑
k=1

(‖u(t−k , x)‖+ ‖u(t−k , 0)‖) + 2I∗ +
2ar1br2‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

)

×
(

1 + k̃
‖p‖∞

Γ(r2 + 1)Γ(r2 + 1)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1dτds

)
≤

(
‖µ(t, x)‖+ l

m∑
k=1

(‖u(t−k , x)‖+ ‖u(t−k , 0)‖) + 2I∗ +
2ar1br2‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

)

×
(

1 + k̃
‖p‖∞ar1br2

Γ(r2 + 1)Γ(r2 + 1)

)
:= R̃.

Since for every (t, x) ∈ J , ‖u(t, x)‖C ≤ γ(t, x). This shows that the set E is bounded.
As a consequence of Theorem 4.2 we deduce that F + G has a fixed point u which is a
solution of problem (5.1)-(5.4).

3.2.3 An Example

As an application of our results we consider the following impulsive partial hyperbolic
differential equations of the form

(cDr
0u)(t, x) =

1

(10et+x+2)(1 + |u(t− 1, x− 2)|)
; if (t, x) ∈ (tk, tk+1]×[0, 1], k = 1, . . . ,m,

(3.9)

u(t+k , x) = u(t−k , x) +
1

(6et+x+4)(1 + |u(t−k , x)|)
; x ∈ [0, 1], k = 1, . . . ,m, (3.10)

u(t, x) = t+ x2, (t, x) ∈ [−1, 1]× [−2, 1]\(0, 1]× (0, 1], (3.11)

u(t, 0) = t, t ∈ [0, 1], u(0, x) = x2, x ∈ [0, 1]. (3.12)

Set

f(t, x, u) =
1

(10et+x+2)(1 + |u|)
; if (t, x) ∈ [0, 1]× [0, 1]

Ik(u(t−k , x)) =
1

(6et+x+4)(1 + |u(t−k , x)|)
; x ∈ [0, 1].

For each u, ū ∈ Rn and (t, x) ∈ [0, 1]× [0, 1] we have

‖Ik(u)− Ik(v)‖ ≤ 1

6e4
‖u− v‖P̃C .
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Hence (H3) is satisfied with l = 1
6e4

. We shall show that condition (4.5) holds with
a = b = 1 and m = 1. Indeed,

2ml =
1

3e4
< 1,

which is satisfied for each (r1, r2) ∈ (0, 1]× (0, 1]. Consequently Theorem 3.3 implies that
problem (3.9)-(3.12) has a solution defined on [−1, 1]× [−2, 1].

3.3 Impulsive Partial Differential Equations with In-

finite Delay

3.3.1 Introduction

In this section, we shall be concerned with the existence of solutions for the following
impulsive partial hyperbolic differential equations:

(cDr
zk
u)(x, y) = f(x, y, u(x,y)); if (x, y) ∈ Jk, k = 0, . . . ,m, (3.13)

u(x+
k , y) = u(x−k , y) + Ik(u(x−k , y)), if y ∈ [0, b], k = 1, . . . ,m, (3.14)

u(x, y) = φ(x, y); if (x, y) ∈ J̃ , (3.15)

u(x, 0) = ϕ(x), x ∈ [0, a], u(0, y) = ψ(y); y ∈ [0, b], (3.16)

where J0 = [0, x1] × [0, b], Jk := (xk, xk+1] × [0, b]; k = 1, . . . ,m, zk = (xk, 0), k =
0, . . . ,m, a, b > 0, J = [0, a] × [0, b], J̃ = (−∞, a] × (−∞, b]\(0, a] × (0, b], cDr

zk
is

the Caputo fractional derivative of order r = (r1, r2) ∈ (0, 1] × (0, 1], ϕ : [0, a] → Rn,
ψ : [0, b] → Rn are given continuous functions with ϕ(x) = φ(x, 0), ψ(y) = φ(0, y) for
each (x, y) ∈ J, 0 = x0 < x1 < · · · < xm < xm+1 = a, f : J × B → Rn, Ik : Rn →
Rn, k = 1, . . . ,m, φ : J̃ → Rn, are given functions. B is called a phase space that will
be specified in the next Section. If u : (−∞, a] × (−∞, b] → Rn, then for any (x, y) ∈ J
define u(x,y) by

u(x,y)(s, t) = u(x+ s, y + t), for (s, t) ∈ [−α, 0]× [−β, 0].

3.3.2 Existence Results

Our main result in this section is based upon the fixed point theorem due to Burton and
Kirk. To define the solutions of problems (3.13)-(3.16), we shall consider the space

Ω =
{
u : (−∞, a]× (−∞, b]→ Rn : u(x,y) ∈ B for (x, y) ∈ E and there exist

u(x−k , .), u(x+
k , .) exist with u(x−k , .) = u(xk, .); k = 1, . . . ,m, and

u ∈ C(Jk,Rn); k = 0, . . . ,m
}
,

where Jk = (xk, xk+1]× (0, b]
Let us define what we mean by a solution of problem (3.13)-(3.16).
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Definition 3.4 A function u ∈ Ω is said to be a solution of (3.13)-(3.16) if u satisfies
(cDr

zk
u)(x, y) = f(x, y, u(x, y)) on J ′ and conditions (3.14), (3.15) and (3.16) are satisfied.

Let h ∈ C([xk, xk+1]× [0, b],Rn), zk = (xk, 0), and

µk(x, y) = u(x, 0) + u(x+
k , y)− u(x+

k , 0), k = 0, . . . ,m.

For the existence of solutions for the problem (3.13)−(3.16), we need the following lemma:

Lemma 3.5 A function u ∈ C([xk, xk+1] × [0, b],Rn); k = 0, . . . ,m is a solution of the
differential equation

(cDr
zk
u)(x, y) = h(x, y); (x, y) ∈ [xk, xk+1]× [0, b],

if and only if u(x, y) satisfies

u(x, y) = µk(x, y) + (Irzkh)(x, y); (x, y) ∈ [xk, xk+1]× [0, b]. (3.17)

Lemma 3.6 [7] Let 0 < r1, r2 ≤ 1 and let h : J → Rn be continuous. A function u is a
solution of the fractional integral equation

u(x, y) =



φ(x, y) if (x, y) ∈ J̃ ,

µ(x, y) +
∑

0<xk<x

(
Ik(u(x

−
k , y))− Ik(u(x

−
k , 0))

)
if (x, y) ∈ J,

+ 1
Γ(r1)Γ(r2)

∑
0<xk<x

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1h(s, t)dtds k = 1, . . . ,m,

+ 1
Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1h(s, t)dtds

(3.18)

if and only if u is a solution of the fractional initial value problem

cDru(x, y) = h(x, y), (x, y) ∈ Jk, k = 0, . . . ,m, (3.19)

u(x+
k , y) = u(x−k , y) + Ik(u(x−k , y)), k = 1, . . . ,m. (3.20)

Let us introduce the following hypotheses which are assumed hereafter.

(H1) The functions Ik : Rn → Rn are continuous.

(H2) There exist p, q ∈ C(J,R+) such that

‖f(t, x, u)‖ ≤ p(t, x) + q(t, x)‖u‖B, for (t, x) ∈ J and each u ∈ B.

(H3) There exists l > 0 such that

‖Ik(u)− Ik(v)‖ ≤ l‖u− v‖ for each u, v ∈ Rn.
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Theorem 3.7 Assume that hypotheses (H1)-(H3) hold. If

2ml < 1, (3.21)

then the IV P (3.13)-(3.16) has at least one solution on J .

Proof. We shall reduce the existence of solutions of (3.13)-(3.16) to a fixed point problem.
Consider the operator N : Ω −→ Ω defined by

N(u)(x, y) =



φ(x, y) if (x, y) ∈ J̃ ,

µ(x, y) +
∑

0<xk<x

(
Ik(u(x−k , y))− Ik(u(x−k , 0))

)
if (x, y) ∈ J,

+ 1
Γ(r1)Γ(r2)

∑
0<xk<x

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1h(s, t)dtds k = 1, . . . ,m,

+ 1
Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1h(s, t)dtds.

Consider the operators A,B : Ω→ Ω defined by,

A(u)(x, y) =



φ(x, y), (x, y) ∈ J̃ ,

+ 1
Γ(r1)Γ(r2)

∑
0<xk<x

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1 k = 1, . . . ,m

×f(s, t, u(s, t))dtds

+ 1
Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1

×f(s, t, u(s, t))dtds, (x, y) ∈ J.

and

B(u)(x, y) =

 0, (x, y) ∈ J̃ ,
µ(x, y) +

∑
0<xk<x

(Ik(u(x−k , y))− Ik(u(x−k , 0))), (x, y) ∈ J.

Let v(., .) : (−∞, a]× (−∞, b]→ Rn be a function defined by,

v(x, y) =

{
φ(x, y), (x, y) ∈ J̃ .
µ(x, y), (x, y) ∈ J.

Then v(x,y) = φ for all (x, y) ∈ E.
For each w ∈ (J,Rn) with w(x, y) = 0 for each (x, y) ∈ E, we denote by w the function
defined by

w(t, x) =

{
0, (x, y) ∈ J̃ ,
w(x, y) (x, y) ∈ J.
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If u(., .) satisfies the integral equation,

u(x, y) = µ(x, y) +
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t, u(s,t))dtds

we can decompose u(., .) as u(x, y) = w(x, y) + v(x, y); (x, y) ∈ (xk, xk+1] × [0, b], which
implies u(x,y) = w(x,y) + v(x,y), for every (x, y) ∈ J and the function w(., .) satisfies

w(x, y) =
∑

0<xk<x

(Ik(u(x−k , y))− Ik(u(−k , 0)))

+
1

Γ(r1)Γ(r2)

∑
0<xk<x

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1f(s, t, w(s,t) + v(s,t))dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(t− t)r2−1f(s, t, w(s,t) + v(s,t))dtds.

Set

C0 = {w ∈ Ω : w(x, y) = 0 for (x, y) ∈ E},

and let ‖.‖C0 be the norm in C0 defined by

‖w‖C0 = sup
(x,y)∈E

‖w(x,y)‖B + sup
(x,y)∈J

‖w(x, y)‖ = sup
(x,y)∈J

‖w(x, y)‖, w ∈ C0.

C0 is a Banach space with norm ‖.‖C0 . Let the operators A,B : C0 → C0 defined by

(Aw)(x, y) =



1
Γ(r1)Γ(r2)

∑
0<xk<x

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1, k = 1, . . . ,m

×f(s, t, w(s,t) + v(s,t))dtds

+ 1
Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1

×f(s, t, w(s,t) + v(s,t))dtds, (x, y) ∈ J.

and

(Bw)(x, y) = µ(x, y) +
∑

0<xk<x

(Ik(u(x−k , y))− Ik(u(x−k , 0))), (x, y) ∈ J.

Then the problem of finding the solution of the IV P (3.13)–(3.16) is reduced to finding
the solutions of the operator equation A(w) + B(w) = w. We shall show that the opera-
tors A and B satisfy the conditions of Theorem 3.7. The proof will be given by a couple
of steps.

Step 1: A is continuous.

Let {wn} be a sequence such that wn → w in C0, then for each (x, y) ∈ J
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‖A(wn)(x, y)− A(w)(x, y)‖

≤ 1

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1

× ‖f(s, t, wn(s,t) + vn(s,t))− f(s, t, w(s,t) + v(s,t))‖dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1

× ‖f(s, t, wn(s,t) + vn(s,t))− f(s, t, w(s,t) + v(s,t))‖dtds.

≤
‖f(., ., wn(.,.) + vn(.,.))− f(., ., w(.,.) + v(.,.))‖

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1dtds

+
‖f(., ., wn(.,.) + vn(.,.))− f(., , w(.,.) + v(.,.))‖

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1dtds.

Since f is continuous function, we have

‖A(wn)− A(w)‖C0 ≤
2ar1br2‖f(., ., wn(.,.))− f(., ., w(.,.))‖∞

Γ(r1 + 1)Γ(r2 + 1)
→ 0 as n→∞

Thus A is continuous.

Step 2: A maps bounded sets into bounded sets in C0.
Indeed, it is enough show that for any η∗, there exists a positive constant l such that, for
each w ∈ Bη∗ = {w ∈ C0 : ‖w‖(a,b) ≤ η∗} we have ‖A(w)‖∞ ≤ l
By (H2) we have for each (x, y) ∈ (xk, xk+1]× [0, b],

‖A(w)(x, y)‖ ≤ 1

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1‖f(s, t, w(s,t) + v(s,t))‖dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1‖f(s, t, w(s,t) + v(s,t))‖dtds

≤ ‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1dtds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

Thus

‖A(w)‖B ≤
2ar1br2(‖p‖∞ + ‖q‖∞η∗)

Γ(r1 + 1)Γ(r2 + 1)
:= l

where

‖w(s,t) + v(s,t)‖B ≤ ‖w(s,t)‖B + ‖v(s,t)‖B
≤ Kη∗ +K‖φ(0, 0)‖+M‖φ‖B := η.
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Hence ‖A(w)‖C0 ≤ l.

Step 3: A maps bounded sets into equicontinuous sets in C0.
Let (x1, y1), (x2, y2) ∈ (0, a]× (0, b], x1 < x2, y1 < y2, Bη∗ be a bounded set as in Step 2.
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Let w ∈ Bη∗ , then

‖A(w)(x2, y2)− A(w)(x1, y1)‖

≤ 1

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y1

0

(xk − s)r1−1[(y2 − t)r2−1 − (y1 − t)r2−1]

× f(s, t, w(s,t) + v(s,t))dtds

+
1

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y2

y1

(xk − s)r1−1(y2 − t)r2−1‖f(s, t, w(s,t) + v(s,t))‖dtds

+
1

Γ(r1)Γ(r2)

∫ x1

0

∫ y1

0

[(x2 − s)r1−1(y2 − t)r2−1 − (x1 − s)r1−1(y1 − t)r2−1]

× f(s, t, w(s,t) + v(s,t))dtdx

+
1

Γ(r1)Γ(r2)

∫ x2

x1

∫ y2

y1

(x2 − s)r1−1(y2 − t)r2−1‖f(s, t, w(s,t) + v(s,t))‖dtds

+
1

Γ(r1)Γ(r2)

∫ x1

0

∫ y2

y1

(x2 − s)r1−1(y2 − t)r2−1‖f(s, t, w(s,t) + v(s,t))‖dtds

+
1

Γ(r1)Γ(r2)

∫ x2

x1

∫ y1

0

(x2 − s)r1−1(y2 − t)r2−1‖f(s, t, w(s,t) + v(s,t))‖dtds

≤ ‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ xk

xk−1

∫ y1

0

(xk − s)r1−1[(y2 − t)r2−1 − (y1 − t)r2−1]dtds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ xk

xk−1

∫ y2

y1

(xk − s)r1−1(y2 − t)r2−1dtds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ x1

0

∫ y1

0

[(x2 − s)r1−1(y2 − t)r2−1 − (x1 − s)r1−1(y1 − t)r2−1]dtds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ x2

x1

∫ y2

y1

(x2 − s)r1−1(y2 − t)r2−1dtds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ x1

0

∫ y2

y1

(x2 − s)r1−1(y2 − t)r2−1dtds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ x2

x1

∫ y1

0

(x2 − s)r1−1(y2 − t)r2−1dtds

≤ ‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ xk

xk−1

∫ y1

0

(xk − s)r1−1[(y2 − t)r2−1 − (y1 − t)r2−1]dtds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ xk

xk−1

∫ y2

y1

(xk − s)r1−1(y2 − t)r2−1dtds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)
[2yr22 (x2 − x1)r1 + 2xr12 (y2 − y1)r2

+ xr11 y
r2
1 − xr12 y

r2
2 − 2(x2 − x1)r1(y2 − y1)r2 ].
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As x1 → x2, y1 → y2 the right-hand side of the above inequality tends to zero.

As a consequence of Steps 1 to 3, together with the Arzela-Ascoli theorem, we can
conclude that A : C0 → C0 is continuous and completely continuous.

Step 4: B is a contraction.
Let w,w∗ ∈ C0, then we have for each (x, y) ∈ J

‖B(w)(x, y)−B(w∗)(x, y)‖

≤
m∑
k=1

(‖Ik(w(x−k , y))− Ik(w∗(x−k , y))‖+ ‖Ik(w(x−k , 0))− Ik(w∗(x−k , 0))‖)

≤
m∑
k=1

l(‖w − w∗‖C0 + ‖w − w∗‖C0)

≤ 2ml‖w − w∗‖C0 .

Thus

‖B(w)−B(w∗)‖C0 ≤ 2ml‖w − w∗‖C0 .

Hence by (3.21), B is a contraction.

Step 5: (A priori bounds)

Now it remains to show that the set

E = {w ∈ C0 : w = λB
(w
λ

)
+ λA(w), for some λ ∈ (0, 1)}

is bounded. Let w ∈ E , then w = λB
(
w
λ

)
+ λA(w). Thus, for each (x, y) ∈ J we have

w(x, y) = λ
m∑
k=1

(‖Ik
(u(x−k , y))

λ
)‖+ ‖Ik

(u(x−k , 0))

λ
‖)

+
λ

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t, w(s,t) + v(s,t))dtds

+
λ

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t, w(s,t) + v(s,t))dtds.
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This implies by (H2) and (H3) that, for each (x, y) ∈ J, we have

‖w(x, y)‖ ≤
m∑
k=1

λ(‖Ik
u(x−k , y)

λ
‖ − ‖Ik(0)‖+ ‖Ik

u(x−k , 0)

λ
‖ − ‖Ik(0)‖)

+ 2λ
m∑
k=1

‖Ik(0)‖+
‖p‖∞

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y

0

(x− s)r1−1(y − t)r2−1

× ‖w(s,t) + v(s,t)‖Bdtds

+
‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ xk

xk−1

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

+
‖p‖∞

Γ(r1 + 1)Γ(r2 + 1)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1‖w(s,t) + v(s,t)‖Bdtds

+
‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

≤ l

m∑
k=1

(‖u(t−k , x)‖+ ‖u(t−k , 0)‖) + 2I∗

+
‖p‖∞

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ xk

xk−1

∫ y

0

(x− s)r1−1(y − t)r2−1‖w(s,t) + v(s,t)‖Bdtds

+
‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ xk

xk−1

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

+
‖p‖∞

Γ(r1 + 1)Γ(r2 + 1)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1‖w(s,t) + v(s,t)‖Bdtds

+
‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1dtds,

where

I∗ =
m∑
k=1

‖Ik(0)‖.

and

‖w(s,t) + v(s,t)‖B ≤ ‖w(s,t)‖B + ‖v(s,t)‖B
≤ K sup{w(s̃, t̃) : (s̃, t̃) ∈ [0, s]× [0, t]}

+M‖φ‖B +K‖φ(0, 0)‖. (3.22)

If we name γ(s, t) the right hand side of (3.22), then we have

‖w(s,t) + v(s,t)‖B ≤ γ(x, y),
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and therefore, for γ(x, y) ∈ J we obtain

‖w(x, y)‖ ≤ l
m∑
k=1

(‖u(x−k , y)‖+ ‖u(x−k , 0)‖) + 2I∗ +
2ar1br2‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

+
‖p‖∞

Γ(r1 + 1)Γ(r2 + 1)

( m∑
k=1

∫ xk

xk−1

∫ y

0

(x− s)r1−1(y − τ)r2−1γ(s, τ)dτds

+

∫ x

0

∫ y

0

(x− s)r1−1(x− τ)r2−1γ(s, τ)dτds
)
. (3.23)

Using the above inequality and the definition of γ for each (x, y) ∈ J we have

γ(x, y) ≤ M‖φ‖B +K‖φ(0, 0)‖+ l
m∑
k=1

(‖u(x−k , y)‖+ ‖u(x−k , 0)‖) + 2I∗

+
‖p‖∞

Γ(r1 + 1)Γ(r2 + 1)

( m∑
k=1

∫ xk

xk−1

∫ y

0

(x− s)r1−1(y − τ)r2−1γ(s, τ)dτds

+

∫ x

0

∫ y

0

(x− s)r1−1(y − τ)r2−1γ(s, τ)dτds
)

+
2ar1br2‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

≤ M‖φ‖B +K‖φ(0, 0)‖+ 2mlγ(x, y) + 2I∗

+
‖p‖∞

Γ(r1 + 1)Γ(r2 + 1)

( m∑
k=1

∫ xk

xk−1

∫ y

0

(x− s)r1−1(y − τ)r2−1γ(s, τ)dτds

+

∫ x

0

∫ y

0

(x− s)r1−1(y − τ)r2−1γ(s, τ)dτds
)

+
2ar1br2‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

Thus

γ(x, y)(1− 2ml) ≤ M‖φ‖B +K‖φ(0, 0)‖+ 2I∗ +
2ar1br2‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

+
‖p‖∞

Γ(r1 + 1)Γ(r2 + 1)

( m∑
k=1

∫ xk

xk−1

∫ y

0

(x− s)r1−1(y − τ)r2−1γ(s, τ)dτds

+

∫ x

0

∫ y

0

(x− s)r1−1(y − τ)r2−1γ(s, τ)dτds
)

Then

γ(x, y) ≤
( 1

1− 2ml

)
×
(
M‖φ‖B +K‖φ(0, 0)‖+ 2I∗ +

2ar1br2‖q‖∞
Γ(r1 + 1)Γ(r2 + 1)

+
‖p‖∞

Γ(r1 + 1)Γ(r2 + 1)

( m∑
k=1

∫ xk

xk−1

∫ y

0

(x− s)r1−1(y − τ)r2−1γ(s, τ)dτds

+

∫ x

0

∫ y

0

(x− s)r1−1(y − τ)r2−1γ(s, τ)dτds
))
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If (x∗, y∗) ∈ J̃ , then γ(x, y) = ‖φ‖C and the previous inequality holds. If (x, y) ∈ J, by
Lemma 1.4 implies that there exists k̃ = k̃(r2, r2) such that

γ(x, y) ≤
( 1

1− 2ml

)
×
(
M‖φ‖B +K‖φ(0, 0)‖+ 2I∗ +

2ar1br2‖q‖∞
Γ(r1 + 1)Γ(r2 + 1)

)
×

(
1 + k̃

‖p‖∞
Γ(r2)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − τ)r2−1dτds
)

Then

γ(x, y) ≤
( 1

1− 2ml

)
×
(
M‖φ‖B +K‖φ(0, 0)‖+ 2I∗ +

2ar1br2‖q‖∞
Γ(r1 + 1)Γ(r2 + 1)

)
×

(
1 + k̃

ar1br2‖p‖∞
Γ(r2 + 1)Γ(r2 + 1)

)
:= R̃.

Since for every (x, y) ∈ J , ‖w(x,y))‖∞ ≤ γ(x, y).
This shows that the set E is bounded. As a consequence of Theorem 3.7 we deduce that
A+B has a fixed point which is a solution of problem (3.13)-(3.16).

3.3.3 An Example

In this section we give an example as an application of our results. We consider the
following impulsive partial hyperbolic functional differential equations of the form

(cDr
zk
u)(x, y) =

e−x−y

9 + ex+y

|u(x, y)|
(1 + |u(x, y)|)

, (x, y) ∈ J = [0,
1

2
]× [0, 1]∪ (

1

2
, 1]× [0, 1], (3.24)

u(
1

2

+

, y) = u(
1

2

−
, y) +

|u((1
2
)−, y)|

1
4

+ |u((1
2
)−, y)|

, if y ∈ [0, 1], (3.25)

u(x, y) = x+ y2, if (x, y) ∈ [−1, 1]× [−2, 1] \ (0, 1]× (0, 1], (3.26)

u(x, 0) = x, u(0, y) = y2, x ∈ [0, 1], y ∈ [0, 1]. (3.27)

where z0 = (0, 0), z1 = (1
2
, 0). Let γ ∈ R, and Cγ be the set of all piece-wise continuous

functions φ : (−∞, 0] × (−∞, 0] → Rn for which a limit lim||(s,t)||→∞e
γ(s+t)φ(s, t) exists,

with the norm
||φ||Cγ = sup

(s,t)∈(−∞,0]×(−∞,0]

eγ(s+t)||φ(s, t)||

Set

f(x, y, ϕ) =
e−x−y|ϕ|

(9 + ex+y)(1 + |ϕ|)
, (x, y) ∈ [0, 1]× [0, 1], ϕ ∈ C,

and

I1(u) =
|u|

1
4

+ |u|
, u ∈ R+.
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It is clear that the functions f and I1 are continuous, and for (x, y) ∈ [0, 1] × [0, 1] and
ϕ ∈ C, we have

f(x, y, ϕ) =
e−x−y

9 + ex+y
(2 + |ϕ|)

Hence (H2)is satisfied with

p(x, y) =
2e−x−y

9 + ex+y
and q(x, y) =

e−x−y

9 + ex+y

Also, for u1, u2 ∈ R, we have

|I(u1)− I(u2)| =
∣∣∣ |u1|

1
4

+ |u1|
− |u2|

1
4

+ |u2|

∣∣∣ ≤ 1

4
|u1 − u2|

Thus (H3) is satisfied with l = 1
4
. Finally conditions of Theorem 3.7 are satisfied, which

implies that problem (3.13)-(3.16) has at least one solution defined on (−∞, 1]× (−∞, 1]



Chapter 4

Impulsive Partial Hyperbolic
Functional Differential Equations of
Fractional Order with State
Dependent Delay

4.1 Introduction

In this chapter, we shall be concerned to the existence of solutions for impulsive hyperbolic
differential equations of fractional order with state dependent delay.

4.2 Impulsive Partial Differential Equations with Fi-

nite Delay

4.2.1 Introduction

In this section, we shall be concerned with the existence of solutions for the following
impulsive partial hyperbolic differential equations:

(cDr
zk
u)(t, x) = f(t, x, u(ρ1(t,x,u(t,x)),ρ2(t,x,u(t,x)))); if (t, x) ∈ Jk, k = 0, . . . ,m, t 6= tk, (4.1)

u(t+k , x) = u(t−k , x) + Ik(u(t−k , x)), if x ∈ [0, b], k = 1, . . . ,m, (4.2)

u(t, x) = φ(t, x); if (t, x) ∈ J̃ := [−α, a]× [−β, b] \ (0, a]× (0, b], (4.3)

u(t, 0) = ϕ(t), t ∈ [0, a], u(0, x) = ψ(x); x ∈ [0, b], (4.4)

where J = [0, a] × [0, b], a, b, α, β > 0, 0 = t0 < t1 < · · · < tm < tm+1 = a, cDr
zk

is
the Caputo fractional derivative of order r = (r1, r2) ∈ (0, 1] × (0, 1], ϕ : [0, a] → Rn,
ψ : [0, b]→ Rn are given continuous functions with ϕ(t) = φ(t, 0), ψ(x) = φ(0, x) for each

47
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(t, x) ∈ J, f : J ×C → Rn, ρ1, ρ2 : J ×C → R, Ik : Rn → Rn, k = 1, . . . ,m, φ : J̃ → Rn,
are given functions and C is the Banach space defined by

C =C(α,β) =
{
u : [−α, 0]× [−β, 0]→ Rn : continuous and there exist τk ∈ (−α, 0) with

u(τ−k , x̃) and u(t+k , x̃), k = 1, . . . ,m, exist for any ỹ ∈ [−β, 0] with u(τ−k , x̃) = u(τk, x̃)
}
.

This set is a Banach space with the norm

‖u‖C = sup
(t,x)∈[−α,0]×[−β,0]

‖u(t, x)‖.

4.2.2 Existence Results

Set Jk = (tk, tk+1]× (0, b]. Consider the Banach space

PC := PC(J,Rn)

=
{
u : J → Rn : u ∈ C(Jk,Rn); k = 1, . . . ,m, and there exist u(t−k , x) and

u(t+k , x); k = 1, . . . ,m, with u(t−k , x) = u(tk, x)
}
.

with the norm
‖u‖PC = sup

(t,x)∈J
‖u(t, x)‖

Set

P̃C := PC([−α, 0]× [−β, 0],Rn), which is a Banach space with the norm

‖u‖P̃C = sup{‖u(t, x)‖ : (t, x) ∈ [−α, a]× [−β, b]}.

Definition 4.1 A function u ∈ P̃C such that its mixed derivative D2
tx exists on J ′ is said

to be a solution of (5.1)-(5.4) if u satisfies the condition (5.3) on J̃ , the equation (5.1) on
J ′ and conditions (5.2) and (5.4) are satisfied on J .

Set R := R(ρ−1 ,ρ
−
2 )

= {(ρ1(s, y, u), ρ2(s, y, u)) : (s, y, u) ∈ J × C, ρi(s, y, u) ≤ 0; i = 1, 2}

We always assume that ρi : J × C −→ R; i = 1, 2 are continuous and the function
(s, y) 7−→ u(s,y) is continuous from R into C.
Our first existence result for the IV P (5.1)-(5.4) is based upon the fixed point theorem
due to Burton and Kirk.
Let us introduce the following hypotheses which are assumed after.

(H1) The functions Ik : Rn → Rn are continuous.

(H2) There exist p, q ∈ C(J,R+) such that

‖f(t, x, u)‖ ≤ p(t, x) + q(t, x)‖u‖C , for (t, x) ∈ J and each u ∈ C.
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(H3) There exists l > 0 such that

‖Ik(u)− Ik(v)‖ ≤ l‖u− v‖ for each u, v ∈ Rn.

Theorem 4.2 Assume that hypotheses (H1)-(H3) hold. If

2ml < 1, (4.5)

then the IV P (5.1)-(5.4) has at least one solution on [−α, a]× [−β, b].

Proof. We shall reduce the existence of solutions of (5.1)-(5.4) to a fixed point problem.

Consider the operator N : P̃C −→ P̃C defined by

N(u)(t, x) =



φ(t, x) if (t, x) ∈ J̃ ,

µ(t, x) +
∑

0<tk<t

(
Ik(u(t−k , x))− Ik(u(t−k , 0))

)
if (t, x) ∈ J,

+ 1
Γ(r1)Γ(r2)

∑
0<tk<t

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1 k = 1, . . . ,m,

×f(s, y, u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y))))dyds

+ 1
Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1

×f(s, y, u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y))))dyds

Consider the operators F,G : P̃C → P̃C defined by,

G(u)(t, x) =



φ(t, x), (t, x) ∈ J̃ ,

+ 1
Γ(r1)Γ(r2)

∑
0<tk<tx

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1 k = 1, . . . ,m

×f(s, y, u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y))))dyds

+ 1
Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1

×f(s, y, u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y))))dyds, (t, x) ∈ J.

and

F (u)(t, x) =

 0, (t, x) ∈ J̃ ,
µ(t, x) +

∑
0<tk<t

(Ik(u(t−k , x))− Ik(u(t−k , 0))), (t, x) ∈ J.

Then the problem of finding the solution of the IV P (5.1)–(5.3) is reduced to finding the
solutions of the operator equation F (u) +G(u) = u. We shall show that the operators F
and G satisfy the conditions of Theorem 4.2. The proof will be given by several steps.
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Step 1: G is continuous. Let {un} be a sequence such that un → u in P̃C, then for
each (t, x) ∈ J

‖G(un)(t, x)−G(u)(t, x)‖

≤ 1

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1‖f(s, y, un(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y))))

− f(s, y, u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y))))‖dyds

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1‖f(s, y, un(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y))))

− f(s, y, u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y))))‖dyds.

≤
‖f(., ., un(.,.))− f(., ., u(.,.))‖

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1dyds

+
‖f(., ., un(.,.))− f(., , u(.,.))‖

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1dyds.

Since f is continuous function, we have

‖G(un)−G(u)‖∞ ≤
2ar1br2‖f(., ., un(.,.))− f(., ., u(.,.))‖∞

Γ(r1 + 1)Γ(r2 + 1)
→ 0 as n→∞

Thus G is continuous.

Step 2: G maps bounded sets into bounded sets in P̃C. Indeed, it is enough show
that for any η∗, there exists a positive constant l such that, for each u ∈ Bη∗ = {u ∈ P̃C :
‖u‖∞ ≤ η∗} we have ‖G(u)‖P̃C ≤ l
By (H2) we have for each (t, x) ∈ J ,

‖G(u)(t, x)‖

≤ 1

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1‖f(s, y, u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y))))‖dyds

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1‖f(s, y, u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y))))‖dyds

≤ ‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1dyds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1dyds

Thus

‖G(u)‖P̃C ≤
2ar1br2(‖p‖∞ + ‖q‖∞η∗)

Γ(r1 + 1)Γ(r2 + 1)
:= l∗
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Hence ‖G(u)‖P̃C ≤ l∗.

Step 3: G maps bounded sets into equicontinuous sets in P̃C.
Let (t1, x1), (t2, x2) ∈ (0, a]× (0, b], t1 < t2, x1 < x2, Bη be a bounded set as in step 2,
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let u ∈ Bη∗ be a bounded set of P̃C as in Step 2. Then

‖G(u)(t2, x2)−G(u)(t1, x1)‖

≤ 1

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x1

0

(tk − s)r1−1[(x2 − τ)r2−1 − (x1 − τ)r2−1]

× f(s, τ, u(ρ1(s,τ,u(s,τ)),ρ2(s,τ,u(s,τ))))dτds

+
1

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x2

x1

(tk − s)r1−1(x2 − τ)r2−1‖f(s, τ, u(ρ1(s,τ,u(s,τ)),ρ2(s,τ,u(s,τ))))‖dτds

+
1

Γ(r1)Γ(r2)

∫ t1

0

∫ x1

0

[(t2 − s)r1−1(x2 − τ)r2−1 − (t1 − s)r1−1(x1 − τ)r2−1]

× f(s, τ, u(ρ1(s,τ,u(s,τ)),ρ2(s,τ,u(s,τ))))dτds

+
1

Γ(r1)Γ(r2)

∫ t2

t1

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1‖f(s, τ, u(ρ1(s,τ,u(s,τ)),ρ2(s,τ,u(s,τ))))‖dτds

+
1

Γ(r1)Γ(r2)

∫ t1

0

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1‖f(s, τ, u(ρ1(s,τ,u(s,τ)),ρ2(s,τ,u(s,τ))))‖dτds

+
1

Γ(r1)Γ(r2)

∫ t2

t1

∫ x1

0

(t2 − s)r1−1(x2 − τ)r2−1‖f(s, τ, u(ρ1(s,τ,u(s,τ)),ρ2(s,τ,u(s,τ))))‖dτds

≤ ‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x1

0

(tk − s)r1−1[(x2 − τ)r2−1 − (x1 − τ)r2−1]dτds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x2

x1

(tk − s)r1−1(x2 − τ)r2−1dτds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ t1

0

∫ x1

0

[(t2 − s)r1−1(x2 − τ)r2−1 − (t1 − s)r1−1(x1 − τ)r2−1]dτds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ t2

t1

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1dτds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ t1

0

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1dτds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ t2

t1

∫ x1

0

(t2 − s)r1−1(x2 − τ)r2−1dτds

≤ ‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x1

0

(tk − s)r1−1[(x2 − τ)r2−1 − (x1 − τ)r2−1]dτds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x2

x1

(tk − s)r1−1(x2 − τ)r2−1dτds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)
[2xr22 (t2 − t1)r1 + 2tr12 (x2 − x1)r2

+ tr11 x
r2
1 − tr12 x

r2
2 − 2(t2 − t1)r1(x2 − x1)r2 ].
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As t1 → t2, x1 → x2 the right-hand side of the above inequality tends to zero.

As a consequence of Steps 1 to 3, together with the Arzela-Ascoli theorem, we can
conclude that G : P̃C → P̃C is continuous and completely continuous.

Step 4: F is a contraction.
Let u, v ∈ P̃C, then we have for each (t, x) ∈ J

‖F (u)(t, x)− F (v)(t, x)‖

≤
m∑
k=1

(‖Ik(u(t−k , x))− Ik(v(t−k , x))‖+ ‖Ik(u(t−k , 0))− Ik(v(t−k , 0))‖)

≤
m∑
k=1

l(‖u− v‖+ ‖u− v‖)

≤ 2ml‖u− v‖.

Thus

‖F (u)− F (v)‖ ≤ 2ml‖u− v‖.

Hence by (4.5), F is a contraction.

Step 5: (A priori bounds)

Now it remains to show that the set

E = {u ∈ P̃C : u = λF (
u

λ
) + λG(u) for some λ ∈ (0, 1)}

is bounded. Let u ∈ E , then u = λF (u
λ
) + λG(u). Thus, for each (t, x) ∈ J we have

u(t, x) = λµ(t, x) +
m∑
k=1

λ(‖Ik
(u(t−k , x))

λ
)‖+ ‖Ik

(u(t−k , 0))

λ
‖)

+
λ

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ, u(ρ1(s,τ,u(s,τ)),ρ2(s,τ,u(s,τ))))dτds

+
λ

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ, u(ρ1(s,τ,u(s,τ)),ρ2(s,τ,u(s,τ))))dτds.
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This implies by (H2) and (H3) that, for each (t, x) ∈ J, we have

‖u(t, x)‖

≤ ‖µ(t, x)‖+
m∑
k=1

(‖Iku(t−k , x)‖ − ‖Ik(0)‖+ ‖Iku(t−k , 0)‖ − ‖Ik(0)‖) + 2
m∑
k=1

‖Ik(0)‖

+
‖p‖∞

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1‖u(ρ1(s,τ,u(s,τ)),ρ2(s,τ,u(s,τ)))‖Cdτds

+
‖q‖∞

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1dτds

+
‖p‖∞

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1‖u(ρ1(s,τ,u(s,τ)),ρ2(s,τ,u(s,τ)))‖Cdτds

+
‖q‖∞

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1dτds

≤ ‖µ(t, x)‖+ l
m∑
k=1

(‖u(t−k , x)‖+ ‖u(t−k , 0)‖) + 2I∗

+
‖p‖∞

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1‖u(ρ1(s,τ,u(s,τ)),ρ2(s,τ,u(s,τ)))‖Cdτds

+
‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1dτds

+
‖p‖∞

Γ(r1 + 1)Γ(r2 + 1)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1‖u(ρ1(s,τ,u(s,τ)),ρ2(s,τ,u(s,τ)))‖Cdτds

+
‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1dτds,

where

I∗ =
m∑
k=1

‖Ik(0)‖.

We consider the function γ defined by

γ(t, x) = sup{|u(s, τ)| : −α ≤ s ≤ t,−β ≤ τ ≤ x, 0 ≤ t ≤ a, 0 ≤ x ≤ b}.
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Let (t∗, x∗) ∈ [−α, t] × [−β, x] be such that γ(t, x) = |u(t∗, x∗)|. If (t∗, x∗) ∈ J , then by
the previous inequality, we have for (t, x) ∈ J

γ(t, x) ≤ ‖µ(t, x)‖+ l
m∑
k=1

(‖u(t−k , x)‖+ ‖u(t−k , 0)‖) + 2I∗

+
‖p‖∞

Γ(r1 + 1)Γ(r2 + 1)

( m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1γ(s, τ)dτds

+

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1γ(s, τ)dτds
)

+
2ar1br2‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)
.

Since for every (t, x) ∈ J , ‖u(t,x))‖C ≤ γ(t, x) This shows that the set E is bounded.
As a consequence of Theorem 4.2 we deduce that F + G has a fixed point u which is a
solution of problem (5.1)-(5.3)

4.2.3 An Example

As an application of our results we consider the following impulsive fractional order partial
hyperbolic functional differential equations with finite delay of the form

(cDr
0u)(t, x) =

e−t−x

9 + et+x

× |u(t− σ1(u(t, x)), x− σ2(u(t, x)))|
1 + |u(t− σ1(u(t, x)), x− σ2(u(t, x)))|

, if (t, x) ∈ [0, 1]× [0, 1], t 6= 1

2
(4.6)

u((
1

2
)+, x) = u((

1

2
)−, x) +

|u((1
2
)−, x)|

3 + |u((1
2
)−, x)|

, x ∈ [0, 1], (4.7)

u(t, x) = t+ x2, (t, x) ∈ [−1, 1]× [−2, 1] \ (0, 1]× (0, 1], (4.8)

u(t, 0) = t, u(0, x) = x2, (t, x) ∈ [0, 1]× [0, 1], (4.9)

where σ1 ∈ C(R, [0, 1]), σ2 ∈ C(R, [0, 2]).

ρ1(t, x, ϕ) = t− σ1(ϕ(0, 0)), (t, x, ϕ) ∈ J × C,

ρ2(t, x, ϕ) = x− σ2(ϕ(0, 0)), (t, x, ϕ) ∈ J × C,
where C := C(1,2). Set

f(t, x, ϕ) =
e−t−x|ϕ|

(9 + et+x)(1 + |ϕ|)
, (t, x) ∈ [0, 1]× [0, 1], ϕ ∈ C,

and
Ik(u) =

u

3 + u
, u ∈ R

A simple computations show that conditions of Theorem 4.2 are satisfied which implies
that problem (5.10)-(5.13) has a unique solution defined on [−1, 1]× [−2, 1]
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4.3 Impulsive Partial Differential Equations with In-

finite Delay

4.3.1 Introduction

Next we consider the following system of partial hyperbolic differential equation of frac-
tionnal order with infinite delay

(cDr
zk
u)(t, x) = f(t, x, u(ρ1(t,x,u(t,x)),ρ2(t,x,u(t,x)))); if (t, x) ∈ Jk, k = 0, . . . ,m; (4.10)

u(t+k , x) = u(t−k , x) + Ik(u(t−k , x)), if x ∈ [0, b], k = 1, . . . ,m, (4.11)

u(t, x) = φ(t, x); if (t, x) ∈ J̃ ′ := (−∞, a]× (−∞, b] \ (0, a]× (0, b], (4.12)

u(t, 0) = ϕ(t), t ∈ [0, a], u(0, x) = ψ(x); x ∈ [0, b], (4.13)

where ϕ, ψ, Ik are as in problem (5.1)–(5.4), f : J ×B → Rn, ρ1, ρ2 : J ×B → R, φ : J̃ ′ →
Rn and B is a phase space.

4.3.2 Existence Results

Let the space

Ω :=
{
u : (−∞, a]× (−∞, b]→ Rn : u(t,x) ∈ B for (t, x) ∈ E and u|J ∈ PC

}
Definition 4.3 A function u ∈ Ω such that its mixed derivative D2

tx exists on J is said
to be a solution of (4.10)-(4.13) if u satisfies the condition (4.12) on J̃ , the equation (4.10)
on J and conditions (4.13) and (4.13) are satisfied on J .

Set R′ := R′
(ρ−1 ,ρ

−
2 )

= {(ρ1(s, y, u), ρ2(s, y, u)) : (s, y, u) ∈ J × B, ρi(s, y, u) ≤ 0; i = 1, 2}

We always assume that ρi : J × B −→ R; i = 1, 2 are continuous and the function
(s, y) 7−→ u(s,y) is continuous from R′ into B. We will need to introduce the following
hypothesis:

(Hφ) There exists a continuous bounded function L : R′(ρ−1 ,ρ−1 ) −→ (0,∞) such that

‖φ(s,y)‖B ≤ L(s, y)‖φ‖B, for any (s, y) ∈ R′

In the sequel we will make use of the following generalization of a consequence of the
phase space axioms.
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Lemma 4.4 If u ∈ Ω, then

‖u(s,y)‖B = (M + L′)‖φ‖B +K sup
(θ,η)∈[0,max{0,s}]×[0,max{0,y}]

‖u(θ, η)‖

where
L′ = sup

(s,y)∈R′
L(s, y).

Our main result for the IV P (4.10)-(4.13) is based upon the fixed point theorem due to
Burton and Kirk. Let us introduce the following hypotheses which are assumed hereafter.

(H1) The functions Ik : Rn → Rn are continuous.

(H2) There exist p, q ∈ C(J,R+) such that

‖f(t, x, u)‖ ≤ p(t, x) + q(t, x)‖u‖B, for (t, x) ∈ J and each u ∈ B.

(H3) There exists l > 0 such that

‖Ik(u)− Ik(v)‖ ≤ l‖u− v‖ for each u, v ∈ Rn.

Theorem 4.5 Assume that hypotheses (H1)-(H3) hold. If

2ml < 1, (4.14)

then the IV P (4.10)-(4.13) has at least one solution on (−∞, a]× (−∞, b].

Proof. We shall reduce the existence of solutions of (5.1)-(5.4) to a fixed point problem.
Consider the operator N : Ω −→ Ω defined by

N(u)(t, x) =



φ(t, x) if (t, x) ∈ J̃ ,

µ(t, x) +
∑

0<tk<t

(
Ik(u(t−k , x))− Ik(u(t−k , 0))

)
if (t, x) ∈ J,

+ 1
Γ(r1)Γ(r2)

∑
0<tk<t

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1 k = 1, . . . ,m,

×f(s, y, u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y))))dyds

+ 1
Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1

f(s, y, u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y))))dyds.

Consider the operators A,B : Ω→ Ω defined by,

A(u)(t, x) =



φ(t, x), (t, x) ∈ J̃ ,

+ 1
Γ(r1)Γ(r2)

∑
0<tk<t

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1 k = 1, . . . ,m

×f(s, y, u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y))))dyds

+ 1
Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1

×f(s, y, u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y))))dyds, (t, x) ∈ J.
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and

B(u)(t, x) =

 0, (t, x) ∈ J̃ ,
µ(t, x) +

∑
0<tk<t

(Ik(u(t−k , x))− Ik(u(t−k , 0))), (t, x) ∈ J.

Let v(., .) : (−∞, a]× (−∞, b]→ Rn be a function defined by,

v(t, x) =

{
φ(t, x), (t, x) ∈ J̃ .
µ(t, x), (t, x) ∈ J.

Then v(t,x) = φ for all (t, x) ∈ E.
For each w ∈ (J,Rn) with w(t, x) = 0 for each (t, x) ∈ E, we denote by w the function
defined by

w(t, x) =

{
0, (t, x) ∈ J̃ ,
w(t, x) (t, x) ∈ J.

If u(., .) satisfies the integral equation,

u(t, x) = µ(t, x) +
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− y)r2−1f(s, y, u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y))))dyds

we can decompose u(., .) as u(t, x) = w(t, x) + v(t, x); (t, x) ∈ (tk, tk+1] × [0, b], which
implies u(t,x) = w(t,x) + v(t,x), for every (t, x) ∈ J × [0, b] and the function w(., .) satisfies

w(t, x) =
∑

0<tk<t

(Ik(u(t−k , x))− Ik(u(t−k , 0)))

+
1

Γ(r1)Γ(r2)

∑
0<tk<t

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1

× f(s, y, w(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))
) + v(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))

))dyds

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1

× f(s, y, w(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))
) + v(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))

))dyds.

Set

C0 = {w ∈ Ω : w(t, x) = 0 for (t, x) ∈ E},

and let ‖.‖C0 be the norm in C0 defined by

‖w‖C0 = sup
(t,x)∈E

‖w(t,x)‖B + sup
(t,x)∈J

‖w(t, x)‖ = sup
(t,x)∈J

‖w(t, x)‖, w ∈ C0.
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C0 is a Banach space with norm ‖.‖C0 . Let the operators A,B : C0 → C0 defined by

(Aw)(t, x) =



1
Γ(r1)Γ(r2)

∑
0<tk<t

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1 k = 1, . . . ,m

×f(s, y, w(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))
) + v(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))

))dyds

+ 1
Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1 (t, x) ∈ J.

×f(s, y, w(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))
) + v(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))

))dyds

and
(Bw)(t, x) = µ(t, x) +

∑
0<tk<t

(Ik(u(t−k , x))− Ik(u(t−k , 0))), (t, x) ∈ J.

Then the problem of finding the solution of the IV P (4.10)–(4.13) is reduced to finding
the solutions of the operator equation A(w) + B(w) = w. We shall show that the opera-
tors A and B satisfy the conditions of Theorem 4.5. The proof will be given by a couple
of steps.

Step 1: A is continuous.

Let {wn} be a sequence such that wn → w in C0, then for each (t, x) ∈ J

‖A(wn)(t, x)− A(w)(t, x)‖

≤ 1

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1

× ‖f(s, y, wn(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))
) + vn(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))

))

− f(s, y, w(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))
) + v(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))

))‖dyds

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1

× ‖f(s, y, wn(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))
) + vn(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))

))

− f(s, y, w(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))
) + v(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))

))‖dyds.

≤
‖f(., ., wn(.,.) + vn(.,.))− f(., ., w(.,.) + v(.,.))‖

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1dyds

+
‖f(., ., wn(.,.) + vn(.,.))− f(., , w(.,.) + v(.,.))‖

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1dyds.

Since f is continuous function, we have

‖A(wn)− A(w)‖C0 ≤
2ar1br2‖f(., ., wn(.,.))− f(., ., w(.,.))‖∞

Γ(r1 + 1)Γ(r2 + 1)
→ 0 as n→∞
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Thus A is continuous.

Step 2: A maps bounded sets into bounded sets in C0.
Indeed, it is enough show that for any η∗, there exists a positive constant l such that, for
each w ∈ Bη∗ = {w ∈ C0 : ‖w‖(a,b) ≤ η∗} we have ‖A(w)‖∞ ≤ l
By (H2) we have for each (x, y) ∈ (xk, xk+1]× [0, b],

‖A(w)(t, x)‖ ≤ 1

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1

× ‖f(s, y, w(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))
) + v(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))

))‖dyds

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1

× ‖f(s, y, w(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))
) + v(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))

))‖dyds

≤ ‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1dyds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1dyds

Thus

‖A(w)‖B ≤
2ar1br2(‖p‖∞ + ‖q‖∞η∗)

Γ(r1 + 1)Γ(r2 + 1)
:= l

where

‖w(s,y) + v(s,y)‖B ≤ ‖w(s,y)‖B + ‖v(s,y)‖B
≤ Kη∗ +K‖φ(0, 0)‖+M‖φ‖B := η.

Hence ‖A(w)‖C0 ≤ l.

Step 3: A maps bounded sets into equicontinuous sets in C0.
Let (t1, x1), (t2, x2) ∈ (0, a] × (0, b], t1 < t2, x1 < x2, Bη∗ be a bounded set as in Step 2.
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Let w ∈ Bη∗ , then

‖A(w)(t2, x2)− A(w)(t1, x1)‖

≤ 1

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x1

0

(tk − s)r1−1[(x2 − y)r2−1 − (x1 − y)r2−1]

× f(s, y, w(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))
) + v(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))

))dyds

+
1

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x2

x1

(tk − s)r1−1(x2 − y)r2−1

× ‖f(s, y, w(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))
) + v(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))

))‖dyds

+
1

Γ(r1)Γ(r2)

∫ t1

0

∫ x1

0

[(t2 − s)r1−1(x2 − y)r2−1 − (t1 − s)r1−1(x1 − y)r2−1]

× f(s, y, w(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))
) + v(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))

))dydx

+
1

Γ(r1)Γ(r2)

∫ t2

t1

∫ x2

x1

(t2 − s)r1−1(x2 − y)r2−1

× ‖f(s, y, w(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))
) + v(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))

))‖dyds

+
1

Γ(r1)Γ(r2)

∫ t1

0

∫ x2

x1

(t2 − s)r1−1(x2 − y)r2−1

× ‖f(s, y, w(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))
) + v(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))

))‖dyds

+
1

Γ(r1)Γ(r2)

∫ t2

t1

∫ x1

0

(t2 − s)r1−1(x2 − y)r2−1

× ‖f(s, y, w(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))
) + v(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))

))‖dyds

≤ ‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x1

0

(tk − s)r1−1[(x2 − y)r2−1 − (x1 − y)r2−1]dyds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x2

x1

(tk − s)r1−1(x2 − y)r2−1dyds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ t1

0

∫ x1

0

[(t2 − s)r1−1(x2 − y)r2−1 − (t1 − s)r1−1(x1 − y)r2−1]dyds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ t2

t1

∫ x2

x1

(t2 − s)r1−1(x2 − y)r2−1dyds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ t1

0

∫ x2

x1

(t2 − s)r1−1(x2 − y)r2−1dyds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ t2

t1

∫ x1

0

(t2 − s)r1−1(x2 − y)r2−1dyds

≤ ‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x1

0

(tk − s)r1−1[(x2 − y)r2−1 − (x1 − y)r2−1]dyds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x2

x1

(tk − s)r1−1(x2 − y)r2−1dyds

+
‖p‖∞ + ‖q‖∞η∗

Γ(r1 + 1)Γ(r2 + 1)
[2xr22 (t2 − t1)r1 + 2tr12 (x2 − x1)r2

+ tr11 x
r2
1 − tr12 x

r2
2 − 2(t2 − t1)r1(x2 − x1)r2 ].



62CHAPTER 4. FRACTIONAL IMPULSIVE PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS

As t1 → t2, x1 → x2 the right-hand side of the above inequality tends to zero.

As a consequence of Steps 1 to 3, together with the Arzela-Ascoli theorem, we can
conclude that A : C0 → C0 is continuous and completely continuous.

Step 4: B is a contraction.
Let w,w∗ ∈ C0, then we have for each (t, x) ∈ J

‖B(w)(t, x)−B(w∗)(t, x)‖

≤
m∑
k=1

(‖Ik(w(t−k , x))− Ik(w∗(t−k , x))‖+ ‖Ik(w(t−k , 0))− Ik(w∗(t−k , 0))‖)

≤
m∑
k=1

l(‖w − w∗‖C0 + ‖w − w∗‖C0)

≤ 2ml‖w − w∗‖C0 .

Thus

‖B(w)−B(w∗)‖C0 ≤ 2ml‖w − w∗‖C0 .

Hence by (4.14), B is a contraction.

Step 5: (A priori bounds)

Now it remains to show that the set

E = {w ∈ C0 : w = λB
(w
λ

)
+ λA(w), for some λ ∈ (0, 1)}

is bounded. Let w ∈ E , then w = λB
(
w
λ

)
+ λA(w). Thus, for each (x, y) ∈ J we have

w(t, x) = λ
m∑
k=1

(‖Ik
(u(t−k , x))

λ
)‖+ ‖Ik

(u(t−k , 0))

λ
‖)

+
λ

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− y)r2−1

× f(s, y, w(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))
) + v(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))

))dyds

+
λ

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1

× f(s, y, w(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))
) + v(s,y,u(ρ1(s,y,u(s,y)),ρ2(s,y,u(s,y)))

))dyds.
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This implies by (H2) and (H3) that, for each (t, x) ∈ J, we have

‖w(t, x)‖ ≤
m∑
k=1

λ(‖Ik
u(t−k , x)

λ
‖ − ‖Ik(0)‖+ ‖Ik

u(t−k , 0)

λ
‖ − ‖Ik(0)‖)

+ 2λ
m∑
k=1

‖Ik(0)‖+
‖p‖∞

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− y)r2−1

× ‖w(s,y) + v(s,y)‖Bdyds

+
‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− y)r2−1dyds

+
‖p‖∞

Γ(r1 + 1)Γ(r2 + 1)

∫ t

0

∫ x

0

(t− s)r1−1(x− y)r2−1‖w(s,y) + v(s,y)‖Bdyds

+
‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

∫ t

0

∫ x

0

(t− s)r1−1(x− y)r2−1dyds

≤ l

m∑
k=1

(‖u(t−k , x)‖+ ‖u(t−k , 0)‖) + 2I∗

+
‖p‖∞

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− y)r2−1‖w(s,y) + v(s,y)‖Bdyds

+
‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− y)r2−1dyds

+
‖p‖∞

Γ(r1 + 1)Γ(r2 + 1)

∫ t

0

∫ x

0

(t− s)r1−1(x− y)r2−1‖w(s,y) + v(s,y)‖Bdyds

+
‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

∫ t

0

∫ x

0

(t− s)r1−1(x− y)r2−1dyds,

where

I∗ =
m∑
k=1

‖Ik(0)‖.

and

‖w(s,y) + v(s,y)‖B ≤ ‖w(s,y)‖B + ‖v(s,y)‖B
≤ K sup

{w(s̃,ỹ):(s̃,ỹ)∈[0,s]×[0,t]}

+M‖φ‖B +K‖φ(0, 0)‖. (4.15)

If we name γ(s, y) the right hand side of (4.15), then we have

‖w(s,y) + v(s,y)‖B ≤ γ(t, x),
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and therefore, for γ(t, x) ∈ J we obtain

‖w(t, x)‖ ≤ l

m∑
k=1

(‖u(t−k , x)‖+ ‖u(t−k , 0)‖) + 2I∗ +
2ar1br2‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

+
‖p‖∞

Γ(r1)Γ(r2)

( m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1γ(s, τ)dτds

+

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1γ(s, τ)dτds
)
. (4.16)

Using the above inequality and the definition of γ for each (t, x) ∈ J we have

γ(t, x) ≤ M‖φ‖B +K‖φ(0, 0)‖+ l

m∑
k=1

(‖u(t−k , x)‖+ ‖u(t−k , 0)‖) + 2I∗

+
‖p‖∞

Γ(r1 + 1)Γ(r2 + 1)

( m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1γ(s, τ)dτds

+

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1γ(s, τ)dτds
)

+
2ar1br2‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)
.

If (t, x) ∈ J, then Lemma 1.4 implies that there exists k̃ = k̃(r2, r2) such that

γ(t, x) ≤
(
M‖φ‖B +K‖φ(0, 0)‖+ l

m∑
k=1

(‖u(t−k , x)‖+ ‖u(t−k , 0)‖)

+ 2I∗ +
2ar1br2‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

)
×

(
1 + k̃

‖p‖∞
Γ(r2 + 1)Γ(r2 + 1)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1dτds
)

≤
(
M‖φ‖B +K‖φ(0, 0)‖+ l

m∑
k=1

(‖u(t−k , x)‖+ ‖u(t−k , 0)‖)

+ 2I∗ +
2ar1br2‖q‖∞

Γ(r1 + 1)Γ(r2 + 1)

)
×

(
1 + k̃

‖p‖∞ar1br2
Γ(r2 + 1)Γ(r2 + 1)

)
:= R̃.

Since for every (t, x) ∈ J , ‖w(t,x))‖∞ ≤ γ(t, x).
This shows that the set E is bounded. As a consequence of Theorem 4.5 we deduce that
A+B has a fixed point which is a solution of problem (4.10)-(4.13).
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4.3.3 An Example

We consider now the following impulsive fractional order partial hyperbolic functional
equations with infinite delay of the form

(cDr
0u)(t, x) =

cet+x−γ(t+x)|u(t− σ1(u(t, x)), x− σ2(u(t, x)))|
(et+x + e−t−x)(1 + |u(t− σ1(u(t, x)), x− σ2(u(t, x)))|)

,

if (t, x) ∈ [0, 1]× [0, 1], t 6= k

k + 1
; k = 1, . . . ,m. (4.17)

u((
k

k + 1
)+, x) = u((

k

k + 1
)−, x)+

|u(( k
k+1

)−, x)|
3mk + |u(( k

k+1
)−, x)|

, x ∈ [0, 1], k = 1, . . . ,m, (4.18)

u(t, x) = t+ x2, (t, x) ∈ (−∞, 1]× (−∞, 1] \ (0, 1]× (0, 1], (4.19)

u(t, 0) = t, u(0, x) = x2, (t, x) ∈ [0, 1]× [0, 1], (4.20)

where c = 10
Γ(rr+1)Γ(r2+1)

, γ a positive real constant and σ1, σ2 ∈ C(R, [0,∞)). Let Bγ be
tha phase space. Set

ρ1(t, x, ϕ) = t− σ1(ϕ(0, 0)), (t, x, ϕ) ∈ J × Bγ,

ρ2(t, x, ϕ) = x− σ2(ϕ(0, 0)), (t, x, ϕ) ∈ J × Bγ,

f(t, x, ϕ) =
cet+x−γ(t+x)|ϕ|

(et+x + e−t−x)(1 + |ϕ|)
, (t, x) ∈ [0, 1]× [0, 1], ϕ ∈ Bγ

and
Ik(u) =

u

3mk + u
; u ∈ R, k = 1, . . . ,m

We easily show that conditions of Theorem 4.5 are satisfied, and hence problem (4.17)-
(4.20) has a unique solution defined on (−∞, 1]× (−∞, 1]
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Chapter 5

Global Uniqueness Results for
Impulsive Partial Hyperbolic
Functional Differential Equations of
Fractional Order

5.1 Introduction

This chapter deals with the global existence and uniqueness of solutions for impulsive par-
tial functional differential equations with delay, involving the Caputo fractional derivative.
Our works will be conducted by using a nonlinear alternative of Leray-Schauder due to
Frigon-Granas type for contraction maps on Fréchet spaces.

5.2 Existence Results for the Finite Delay Case

5.2.1 Introduction

This section deals with the existence of solutions for impulsive initial value problem for
differential equations of fractional order with fixed time impulses given by

(cDr
zk
u)(t, x) = f(t, x, u(t,x)), if (t, x) ∈ Jk, k = 0, . . . ,m, (5.1)

u(t+k , x) = u(t−k , x) + Ik(u(t−k , x)), if x ∈ [0, b]; k = 1, . . . ,m, (5.2)

u(t, x) = φ(t, x); if (t, x) ∈ J̃ , (5.3)

u(t, 0) = ϕ(t), u(0, x) = ψ(x), t ∈ [0, a], x ∈ [0, b], (5.4)

where J0 = [0, t1] × [0, b], Jk := (tk, tk+1] × [0, b], k = 1, . . . ,m, zk = (tk, 0), k =
0, . . . ,m, ϕ(0) = ψ(0), J := [0,∞)×[0,∞), J̃ := [−α,∞)×[−β,∞)\[0,∞)×[0,∞), α, β >
0, cDr

zk
is the standard Caputo’s fractional derivative of order r = (r1, r2) ∈ (0, 1] ×

67



68CHAPTER 5. GLOBAL UNIQUENESS FOR IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS

(0, 1], f : J×C([−α, 0]× [−β, 0],Rn)→ Rn, Ik : Rn → Rn, k = 0, 1, . . . ,m are given func-
tions, for each (t, x) ∈ J, ϕ, ψ : [0,∞) → Rn, are given absolutely continuous functions
and C([−α, 0]× [−β, 0],Rn) is the space of continuous functions on [−α, 0]× [−β, 0]. We
denote by u(t,x) the element of C([−α,∞)× [−β,∞),Rn) defined by

u(t,x)(s, τ) = u(t+ s, x+ τ); (s, τ) ∈ [−α, 0]× [−β, 0],

here u(t,x)(., .) represents the history of the state from time t − α up to the present time
t and from time x− β up to the present time x.

5.2.2 Main Results

In this section we present a global existence and uniqueness result for the problem (5.1)-
(5.4).

We shall consider the space

PC =
{
u : J → Rn : u ∈ C(Jk,Rn); k = 1, . . . ,m, and there exist u(t−k , x) and

u(t+k , x); k = 1, . . . ,m, with u(t−k , x) = u(tk, x)
}
.

For each p, q ∈ N we consider following set,

C(p,q) = C([−α, p]× [−β, q],Rn)

and we define in C0 := C([−α,∞)× [−β,∞),Rn) the semi-norms by:

‖u‖(p,q) = {sup ‖u(t, x)‖ : −α ≤ t ≤ p,−β ≤ x ≤ q}.

Let
Ω = {u : J → Rn : u ∈ PC ∩ C0}

Then Ω is a Fréchet space with the family of semi-norms {‖u‖(p,q)}.

Let us start by defining what we mean by a solution of the problem (5.1)-(5.4)

Definition 5.1 A function u ∈ Ω is said to be a solution of (5.1)-(5.4) if u satisfies
equations (5.1)-(5.4) on J and the condition (5.3) on J̃ .

For the existence of solutions for the problem (5.1)-(5.4), we need the following lemma:

Lemma 5.2 [7] Let 0 < r1, r2 ≤ 1 and let h : J → Rn be continuous. A function u is a
solution of the fractional integral equation

u(t, x) =



φ(t, x) if (t, x) ∈ J̃ ,

µ(t, x) +
∑

0<tk<t

(
Ik(u(t

−
k , x))− Ik(u(t

−
k , 0))

)
if (t, x) ∈ J,

+ 1
Γ(r1)Γ(r2)

∑
0<tk<t

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1h(s, y)dyds k = 1, . . . ,m,

+ 1
Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1h(s, y)dyds

(5.5)
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if and only if u is a solution of the fractional initial value problem

cDru(t, x) = h(t, x), (t, x) ∈ Jk, k = 0, . . . ,m, (5.6)

u(t+k , x) = u(t−k , x) + Ik(u(t−k , x)), k = 1, . . . ,m. (5.7)

Further, we present conditions for the existence and uniqueness of a solution of problem
(5.1)-(5.3).

Theorem 5.3 Assume

(H1) The functions Ik : Rn → Rn are continuous.

(H2) For each p, q ∈ IN, there exists `(p,q) ∈ C(J0,Rn) such that for each (t, x) ∈ J̃0

‖f(t, x, u)− f(t, x, v)‖ ≤ `(p,q)(t, x)‖u− v‖C , for each u, v ∈ Rn.

(H3) For each p, q ∈ IN, there exists `(p,q) ∈ C(J0,Rn) such that for each (t, x) ∈ J̃0

‖Ik(u)− Ik(v)‖ ≤ `(p,q)‖u− v‖C , for each u, v ∈ Rn.

If

2m`(p,q) +
2`∗(p,q)p

r1qr2

Γ(r1 + 1)Γ(r2 + 1)
< 1, (5.8)

where

`∗(p,q) = sup
(t,x)∈J̃0

`(p,q)(t, x),

then there exists a unique solution for IVP (5.1)-(5.4) on [−α,∞)× [−β,∞).

Proof: Transform the problem (5.1)-(5.4) into a fixed point problem. Consider the
operator N : Ω→ Ω defined by,

(Nu)(t, x) =



φ(t, x) if (t, x) ∈ J̃ ,

µ(t, x) +
∑

0<tk<t

(
Ik(u(t−k , x))− Ik(u(t−k , 0))

)
if (t, x) ∈ J,

+ 1
Γ(r1)Γ(r2)

∑
0<tk<t

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1f(s, y, u(s,y))dyds k = 1, . . . ,m,

+ 1
Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1f(s, y, u(s,y))dyds
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Let u be a possible solution of the problem u = λN(u) for some 0 < λ < 1. Thus for each

(t, x) ∈ J̃0,

u(t, x) = λµ(t, x) + λ

m∑
k=1

(
Ik(u(t−k , x))− Ik(u(t−k , 0))

)
+

λ

Γ(r1)Γ(r2)

m∑
k=0

∫ tk

tk−1

∫ x

0

(tk − s)r1−1(x− y)r2−1f(s, y, u(s,y))dyds

+
λ

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− y)r2−1f(s, y, u(s,y))dyds

This implies by (H2) and (H3) that

||u(t, x)|| = λ||µ(t, x)||+ λ

m∑
k=1

(‖Ik(u(t−k , x))‖ − ‖Ik(0)‖+ Ik(u(t−k , 0))‖ − ‖Ik(0)‖)

+ 2λ
m∑
k=1

‖Ik(0)‖+
λ

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1

× ||f(s, τ, u(s,τ))− f(s, τ, 0)||dτds

+
λ

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1||f(s, τ, 0)||dτds

+
λ

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− τ)r2−1||f(s, τ, u(s,τ))− f(s, τ, 0)||dτds

+
λ

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− τ)r2−1||f(s, τ, 0)||dτds

≤ ||µ(t, x)||+ l
m∑
k=1

(‖u(t−k , x)‖+ ‖u(t−k , 0)‖) + 2I∗ +
2f ∗pr1qr2

Γ(r1 + 1)Γ(r2 + 1)

+
1

Γ(r1)Γ(r2)

( m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1`(p,q)(s, τ)‖u(s,τ)‖Cdτds

+

∫ t

tk

∫ x

0

(t− s)r1−1(x− τ)r2−1`(p,q)(s, τ)‖u(s,τ)‖Cdτds
)
,

where f ∗ = sup
(s,τ)∈J0

||f(s, τ, 0)||, I∗ =
m∑
k=1

‖Ik(0)‖

We consider the function y defined by

y(t, x) = sup{‖u(s, τ)‖ : −α ≤ s ≤ t, − β ≤ τ ≤ x}, 0 ≤ t ≤ p, 0 ≤ x ≤ q.

Let (t∗, x∗) ∈ [−α, t]× [−β, x] be such that y(t, x) = ‖u(t∗, x∗)‖. If (t∗, x∗) ∈ J̃0, then by
the previous inequality, we have for (t, x) ∈ J0,
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||u(t, x)|| ≤ ||µ(t, x)||+ l
m∑
k=1

(‖u(t−k , x)‖+ ‖u(t−k , 0)‖) + 2I∗ +
2f ∗pr1qr2

Γ(r1 + 1)Γ(r2 + 1)

+
1

Γ(r1)Γ(r2)

( m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1`(p,q)(s, τ)y(s, τ)dτds

+

∫ t

tk

∫ x

0

(t− s)r1−1(x− τ)r2−1`(p,q)(s, τ)y(s, τ)dτds
)
. (5.9)

If (t∗, x∗) ∈ J̃ , then y(t, x) = ‖φ‖C and the previous inequality holds. By (5.9) obtain
that

||y(t, x)|| = ||µ(t, x)||+ l
m∑
k=1

(‖u(t−k , x)‖+ ‖u(t−k , 0)‖) + 2I∗ +
2f ∗pr1qr2

Γ(r1 + 1)Γ(r2 + 1)

+
1

Γ(r1)Γ(r2)

( m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1`(p,q)(s, τ)y(s, τ)dτds

+

∫ t

tk

∫ x

0

(t− s)r1−1(x− τ)r2−1`(p,q)(s, τ)y(s, τ)dτds
)

≤ ||µ(t, x)||+ l
m∑
k=1

(‖u(t−k , x)‖+ ‖u(t−k , 0)‖) + 2I∗ +
2f ∗pr1qr2

Γ(r1 + 1)Γ(r2 + 1)

+
1

Γ(r1)Γ(r2)

( m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1y(s, τ)τds

+

∫ t

tk

∫ x

0

(t− s)r1−1(x− τ)r2−1y(s, τ)τds
)
,

and Lemma 1.4 implies that there exists a constant δ = δ(r1, r2) such that we have

y(t, x) ≤

[
||µ||(p,q) + l

m∑
k=1

(‖u(t−k , x)‖+ ‖u(t−k , 0)‖) + 2I∗ +
2f ∗pr1qr2

Γ(r1 + 1)Γ(r2 + 1)

]

×
[
1 +

δ`∗(p,q)
Γ(r1 + 1)Γ(r2 + 1)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1dτds

]
:= M(p,q).

Then from (5.9) we have

||u||(p,q) ≤ ||µ||(p,q) + l
m∑
k=1

(‖u(t−k , x)‖+ ‖u(t−k , 0)‖) + 2I∗

+
2f ∗pr1qr2

Γ(r1 + 1)Γ(r2 + 1)
+

M(p,q)`
∗
(p,q)

Γ(r1 + 1)Γ(r2 + 1)

:= M∗
(p,q).



72CHAPTER 5. GLOBAL UNIQUENESS FOR IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS

Since for every (t, x) ∈ J̃0, ‖u(t,x)‖C ≤ y(t, x), we have

‖u‖(p,q) ≤ max(‖φ‖C ,M∗
(p,q)) := R(p,q).

Set

U = {u ∈ Ω : ‖u‖(p,q) ≤ R(p,q) + 1 for all p, q ∈ IN}.

We shall show that N : U → C(p,q) is a contraction maps. Indeed, consider v, w ∈ U .

Then for each (t, x) ∈ J̃0, we have

‖(Nv)(t, x)− (Nw)(t, x)‖ ≤ 1

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

|(t− s)r1−1||(x− τ)r2−1|

×‖f(s, τ, v(s,τ))− f(s, τ, w(s,τ))‖dτds

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

|(t− s)r1−1||(x− τ)r2−1|

×‖f(s, τ, v(s,τ))− f(s, τ, w(s,τ))‖dτds

≤ 1

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1

×`(p,q)‖v(s,τ) − w(s,τ)‖Cdτds

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− τ)r2−1

×`(p,q)‖v(s,τ) − w(s,τ)‖Cdτds

≤
2`∗(p,q)p

r1qr2

Γ(r1 + 1)Γ(r2 + 1)
‖v − w‖(p,q).

Thus

‖(Nv)(t, x)− (Nw)(t, x)‖(p,q) ≤
2`∗(p,q)p

r1qr2

Γ(r1 + 1)Γ(r2 + 1)
‖v − w‖(p,q).

Hence by (5.9), N : U → C(p,q) is a contraction.
By the choice of U, there is no u ∈ ∂nU

n such that u = λN(u), for λ ∈ (0, 1). As a
consequence of Theorem 5.3, we deduce that N has a unique fixed point u in U which is
a solution to problem (5.1)-(5.4).

5.2.3 An Example

As an application of our results we consider the following fractional order partial hyper-
bolic functional differential equations with finite delay of the form

(cDr
zk
u)(t, x) =

c(p,q)

et+x+2(1 + |u(t, x)|)
, if (t, x) ∈ J := [0,∞)× [0,∞), (5.10)
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u(
1

2

+

, y) = u(
1

2

−
, y) +

|u((1
2
)−, y)|

3 + |u((1
2
)−, y)|

, if y ∈ [0, 1], (5.11)

u(t, x) = t+ x2, (t, x) ∈ J̃ := [−1,∞)× [−2,∞)\[0,∞)× [0,∞), (5.12)

u(t, 0) = t, u(0, x) = x2, (t, x) ∈ J, (5.13)

where z0 = (0, 0), z1 = (1
2
, 0) and

c(p,q) =
Γ(r1 + 1)Γ(r2 + 1)

pr1qr2
, p, q ∈ IN∗.

f(t, x, ϕ) =
c(p,q)

(et+x+2)(1 + |ϕ|)
, (t, x) ∈ J, ϕ ∈ C([−1, 0]× [−2, 0],R),

and

I1(u) =
|u|

1
4

+ |u|

It is clear that the functions f and I1 are continuous, and for each p, q ∈ IN∗ and ϕ, ϕ ∈
C([−1, 0]× [−2, 0],R) and (t, x) ∈ J0 := [0, p]× [0, q] we have

|f(t, x, ϕ)− f(t, x, ϕ)| ≤
c(p,q)

e2
‖ϕ− ϕ‖C .

Also, for u, v ∈ R, we have

|I1(u)− I1(v)| ≤ 1

4
|u− v|

Hence conditions (H2) and (H3) are satisfied with l = 1
4

and `∗(p,q) =
c(p,q)

e2
. We shall

show that condition (5.4) holds for all p, q ∈ IN∗. Indeed

2ml +
`∗(p,q)p

r1qr2

Γ(r1 + 1)Γ(r2 + 1)
= 2

1

4
+

1

e2Γ(r1 + 1)Γ(r2 + 1)
< 1,

which is satisfied for each (r1, r2) ∈ (0, 1]× (0, 1]. Consequently Theorem 5.3 implies that
problem (5.10)-(5.12) has a unique solution defined on [−1,∞)× [−2,∞).

5.3 Existence Results for the Infinite Delay Case

5.3.1 Introduction

Next result deals with the existence of solutions to fractional order partial differential
equations

(cDr
zk
u)(t, x) = f(t, x, u(t, x)), if (t, x) ∈ Jk, k = 0, . . . ,m, (5.14)

u(t+k , x) = u(t−k , x) + Ik(u(t−k , x)), if x ∈ [0, b]; k = 1, . . . ,m, (5.15)
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u(t, x) = φ(t, x); if (t, x) ∈ J̃ ′, (5.16)

u(t, 0) = ϕ(t), u(0, x) = ψ(x), t ∈ [0, a], x ∈ [0, b], (5.17)

where ϕ, ψ are as in problem (??)-(??), J̃ ′ =: (−∞,+∞)×(−∞,+∞)\[0,∞)×[0,∞), f :
J × B → R, φ :J̃ ′ → Rn and B is called a phase space that will be specified in .

5.3.2 Main Results

In this section we present a global existence and uniqueness result for the problem (5.14)-
(5.17).

Let the space

P̃C =
{
u : (−∞, a]× (−∞, b]→ Rn : u(t,x) ∈ B for (t, x) ∈ E and there exist

u(t−k , .), u(t+k , .) exist with u(t−k , .) = u(tk, .); k = 1, . . . ,m, and

u ∈ C(Jk,Rn); k = 0, . . . ,m
}
,

Definition 5.4 A function u ∈ P̃C is said to be a solution of (5.14)-(5.17) if u satisfies
equations (5.14) and (5.17) on J and the condition (5.15) on J̃ ′.

For each p, q ∈ N we consider following set,

C ′(p,q) = {u : IR2 → IRn : u(t,x) ∈ B
⋂
C(J̃0, IR

n), u(t,x) = 0 for (t, x) ∈ E},

and we define in

C ′0 = {u : IR2 → IRn : u(t,x) ∈ B
⋂
C(J, IRn), u(t,x) = 0 for (t, x) ∈ E}

the semi-norms by:

‖u‖(p,q) = sup
(t,x)∈E

‖u(t,x)‖+ sup
(t,x)∈J̃0

‖u(t, x)‖

= sup
(t,x)∈J̃0

‖u(t, x)‖, u ∈ C ′(p,q).

Then C ′0 is a Fréchet space with the family of semi-norms {‖u‖(p,q)}.

Further, we present conditions for the existence and uniqueness of a solution of problem
(4.10)-(4.13)

Theorem 5.5 Assume the following hypothesis holds:

(H ′1) The functions Ik : Rn → Rn are continuous.

(H ′2) For each p, q ∈ IN, there exists `(p,q) ∈ C(J̃0,Rn) such that for each (t, x) ∈ J̃0

‖f(t, x, u)− f(t, x, v)‖ ≤ `(p,q)(t, x)‖u− v‖B, for each u, v ∈ B.
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(H ′3) For each p, q ∈ IN, there exists ˜̀(p,q) ∈ C(J̃0,Rn) such that for each (t, x) ∈ J̃0

‖Ik(u)− Ik(v)‖ ≤ ˜̀(p,q)‖u− v‖, for each u, v ∈ Rn.

If

2ml +
k˜̀∗(p,q)pr1qr2

Γ(r1 + 1)Γ(r2 + 1)
< 1, (5.18)

where ˜̀∗
(p,q) = sup

(t,x)∈J̃0
`(p,q)(t, x),

then there exists a unique solution for IVP (5.14)-(5.17) on (−∞,∞)× (−∞,∞).

Proof: Transform the problem (5.14)-(5.17) into a fixed point problem. Consider the

operator N ′ : P̃C → P̃C defined by,

(N ′u)(t, x) =



φ(t, x), (t, x) ∈ J̃ ,
µ(t, x) +

∑
0<tk<t

(
Ik(u(t−k , x))− Ik(u(t−k , 0))

)
+

1

Γ(r1)Γ(r2)

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1

×f(s, τ, u(s,τ))dτds

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ, u(s,τ))dτds, (t, x) ∈ J.

Let v(., .) : (−∞, a]× (−∞, b]→ Rn be a function defined by,

v(t, x) =

{
µ(t, x), (t, x) ∈ J.
φ(t, x), (t, x) ∈ J̃ ,

Then v(t,x) = φ for all (t, x) ∈ E.
For each w ∈ C(J,Rn) with w(t, x) = 0 for each (t, x) ∈ E we denote by w the function
defined by

w(t, x) =

{
w(t, x) (t, x) ∈ J.
0, (t, x) ∈ J̃ ,

If u(., .) satisfies the integral equation,

u(t, x) = µ(t, x) +
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ, us,τ )dτds

we can decompose u(., .) as

u(t, x) = w(t, x) + v(t, x); (t, x) ∈ J,
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which implies

u(t,x) = w(t,x) + v(t,x), (t, x) ∈ J,

and the function w(., .) satisfies

w(t, x) =
∑

0<tk<t

(Ik(u(t−k , x))− Ik(u(t−k , 0)))

+
1

Γ(r1)Γ(r2)

∑
0<tk<t

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ, w(s,τ) + v(s,τ))dτds

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ, w(s,τ) + v(s,τ))dτds

Let the operator P : C ′0 → C ′0 be defined by

(Pw)(t, x) =
∑

0<tk<t

(Ik(u(t−k , x))− Ik(u(t−k , 0)))

+
1

Γ(r1)Γ(r2)

∑
0<tk<t

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ, w(s,τ) + v(s,τ))dτds

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ, w(s,τ) + v(s,τ))dτds (t, x) ∈ J. (5.19)

Obviously, the operator N ′ has a fixed point is equivalent to P has a fixed point, and
so we turn to prove that P has a fixed point. We shall use the nonlinear alternative of
Leray-Schauder due to Frigon-Granas type to prove that P has a fixed point. Let w be
a possible solution of the problem w = λP (w) for some 0 < λ < 1. This implies that for
each (t, x) ∈ J0, we have

w(t, x) = λ
∑

0<tk<t

(Ik(u(t−k , x))− Ik(u(t−k , 0)))

+
λ

Γ(r1)Γ(r2)

∑
0<tk<t

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ, w(s,τ) + v(s,τ))dτds

+
λ

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ, w(s,τ) + v(s,τ))dτds
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This implies by (H ′2) and (H ′3) that

||u(t, x)|| ≤ λ
m∑
k=1

(‖Ik(u(t−k , x))‖ − ‖Ik(0)‖+ ‖Ik(u(t−k , 0))‖ − ‖Ik(0)‖) + 2λ
m∑
k=1

‖Ik(0)‖

+
λ

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1

× ||f(s, τ, w(s,τ) + v(s,τ))− f(s, τ, 0)||dτds

+
λ

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1||f(s, τ, 0)||dτds

+
λ

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− τ)r2−1||f(s, τ, w(s,τ) + v(s,τ))− f(s, τ, 0)||dτds

+
λ

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− τ)r2−1||f(s, τ, 0)||dτds

≤ l
m∑
k=1

(‖u(t−k , x)‖+ ‖u(t−k , 0)‖) + 2I∗ +
2f ∗pr1qr2

Γ(r1 + 1)Γ(r2 + 1)

+
1

Γ(r1)Γ(r2)

( m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1`(p,q)(s, τ)‖w(s,τ) + v(s,τ)‖Bdτds,

∫ t

tk

∫ x

0

(t− s)r1−1(x− τ)r2−1`(p,q)(s, τ)‖u(s,τ)‖Bdτds
)

(5.20)

where f ∗ = sup
(s,τ)∈J0

||f(s, τ, 0)||, I∗ =
m∑
k=1

‖Ik(0)‖

and

‖w(s,τ) + v(s,τ)‖B ≤ ‖w(s,τ)‖B + ‖v(s,τ)‖B
≤ K sup{w(s̃, τ̃) : (s̃, τ̃) ∈ [0, s]× [0, τ ]}

+(M)‖φ‖B +K‖φ(0, 0)‖. (5.21)

If we name y(s, τ) the right hand side of (5.21), then we have

‖w(s,τ) + v(s,τ)‖B ≤ y(t, x). (5.22)

Therefore, from (5.20) and (5.22), then we get

||w(t, x)|| ≤ l
m∑
k=1

(‖u(t−k , x)‖+ ‖u(t−k , 0)‖) + 2I∗ +
2f ∗pr1qr2

Γ(r1 + 1)Γ(r2 + 1)

+
1

Γ(r1)Γ(r2)

( m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1`(p,q)(s, τ)y(s, τ)dτds

+

∫ t

tk

∫ x

0

(t− s)r1−1(x− τ)r2−1`(p,q)(s, τ)y(s, τ)dτds
)
,



78CHAPTER 5. GLOBAL UNIQUENESS FOR IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS

Using the above inequality and the defintion of y, we have that

y(t, x) ≤ (M)‖φ‖B +K‖φ(0, 0)‖+ l

m∑
k=1

(‖u(t−k , x)‖+ ‖u(t−k , 0)‖) + 2I∗

+
2Kf ∗(p,q)p

r1qr2

Γ(r1 + 1)Γ(r2 + 1)
+

K`∗(p,q)
Γ(r1)Γ(r2)

(∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1y(s, t)dτds

+

∫ t

tk

∫ x

0

(t− s)r1−1(x− τ)r2−1y(s, t)dτds
)
.

By Lemma 1.4, there exists a costant δ = δ(r1, r2) such that we have

‖y‖(p,q) ≤

[
(M)‖φ‖B +K‖φ(0, 0)‖+ l

m∑
k=1

(‖u(t−k , x)‖+ ‖u(t−k , 0)‖) + 2I∗ +
2Kf ∗(p,q)p

r1qr2

Γ(r1 + 1)Γ(r2 + 1)

]

×
[
1 + δ

2K`∗(p,q)
Γ(r1 + 1)Γ(r2 + 1)

]
:= M̃.

Then from (5.20) we have

||w||(p,q) ≤ l

m∑
k=1

(‖u(t−k , x)‖+ ‖u(t−k , 0)‖) + 2I∗ +
2f ∗(p,q)p

r1qr2

Γ(r1 + 1)Γ(r2 + 1)
+ M̃

2`∗(p,q)p
r1qr2

Γ(r1 + 1)Γ(r2 + 1)

:= M̃∗

Set

U ′ = {w ∈ C0 : ‖w‖(p,q) ≤ M̃∗ + 1 for all p, q ∈ IN}.

We shall show that P : U ′ → C(p,q) is a contraction maps. Indeed, consider v, w ∈ U ′.
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Then for each (t, x) ∈ J0, we have

‖(Pv)(t, x)− (Pw)(t, x)‖ ≤ 1

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

|(t− s)r1−1||(x− τ)r2−1|

×‖f(s, τ, v(s,τ))− f(s, τ, w(s,τ))‖dτds

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

|(t− s)r1−1||(x− τ)r2−1|

×‖f(s, τ, v(s,τ))− f(s, τ, w(s,τ))‖dτds

≤ 1

Γ(r1)Γ(r2)

m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1

×`(p,q)‖v(s,τ) − w(s,τ)‖Cdτds

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ x

0

(t− s)r1−1(x− τ)r2−1

×`(p,q)‖v(s,τ) − w(s,τ)‖Cdτds

≤
2`∗(p,q)p

r1qr2

Γ(r1 + 1)Γ(r2 + 1)
‖v − w‖(p,q).

Thus

‖(Pv)(t, x)− (Pw)(t, x)‖(p,q) ≤
2`∗(p,q)p

r1qr2

Γ(r1 + 1)Γ(r2 + 1)
‖v − w‖(p,q).

Hence by (5.18), P : U ′ → C(p,q) is a contraction.
By our choice of U ′, there is no w ∈ ∂nU

′n such that w = λP (w), for λ ∈ (0, 1). As a
consequence of Theorem 5.5, we deduce that P has a unique fixed point w in U ′ which is
a solution to problem (5.14)-(5.17).

5.3.3 An Example

As an application of our results we consider the following fractional order partial hyper-
bolic functional differential equations with infinite delay of the form

(cDr
zk
u)(t, x) =

|u(t, x)|
c(p,q)et+x(1 + |u(t, x)|)

, if (t, x) ∈ J := [0,∞)× [0,∞), (5.23)

u(t+k , x) = u(t−k , x) +
1

(6et+x+4)(1 + |u(t−k , x)|)
; x ∈ [0, 1], k = 1, . . . ,m, (5.24)

u(t, 0) = t, u(0, x) = x2, (t, x) ∈ J, (5.25)

u(t, x) = t+ x2, (t, x) ∈ J̃ := IR2\[0,∞)× [0,∞), (5.26)

c(p,q) =
3pr1qr2

Γ(r1 + 1)Γ(r2 + 1)
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Bγ= {u ∈ C((−∞, 0]× (−∞, 0], IR) : lim
‖(θ,η)‖→∞

eγ(θ+η)u(θ, η) exists ∈ IR}.

The norm of Bγ is given by

‖u‖γ = sup
(θ,η)∈(−∞,0]×(−∞,0]

eγ(θ+η)|u(θ, η)|.

Let
E := [0, 1]× {0} ∪ {0} × [0, 1],

and u : (−∞, 1]× (−∞, 1]→ IR such that u(t,x) ∈ Bγ for (t, x) ∈ E, then

lim
‖(θ,η)‖→∞

eγ(θ+η)u(t,x)(θ, η) = lim
‖(θ,η)‖→∞

eγ(θ−t+η−x)u(θ, η) = eγ(t+x) lim
‖(θ,η)‖→∞

u(θ, η) <∞.

Hence u(t,x) ∈ Bγ. Finally we prove that

‖u(t,x)‖γ = K sup{|u(s, τ)| : (s, τ) ∈ [0, t]× [0, x]}+M sup{‖u(s,τ)‖γ : (s, τ) ∈ E(t,x)},

where K = M = 1 and H = 1,
If t+ θ ≤ 0, x+ η ≤ 0 we get

‖u(t,x)‖γ = sup{|u(s, τ)| : (s, τ) ∈ (−∞, 0]× (−∞, 0]},

and if t+ θ ≥ 0, x+ η ≥ 0 then we have

‖u(t,x)‖γ = sup{|u(s, τ)| : (s, τ) ∈ [0, t]× [0, x]}.

Thus for all (t+ θ, x+ η) ∈ [0, 1]× [0, 1], we get

‖u(t,x)‖γ = sup{|u(s, τ)| : (s, τ) ∈ (−∞, 0]× (−∞, 0]}
+ sup{|u(s, τ)| : (s, τ) ∈ [0, t]× [0, x]}.

Then

‖u(t,x)‖γ = sup{‖u(s,τ)‖γ : (s, τ) ∈ E}+ sup{|u(s, τ) : (s, τ) ∈ [0, t]× [0, x]|}.

(Bγ, ‖.‖γ) is a Banach space. We conclude that Bγ is a phase space.

f(t, x, ϕ) =
|ϕ|

c(p,q)et+x(1 + |ϕ|)
, (t, x) ∈ J, ϕ ∈ Bγ,

and

I1(u) =
1

(6et+x+4)(1 + |u|)
; x ∈ [0, 1].

For each ϕ, ϕ ∈ Bγ we have

|f(t, x, ϕ)− f(t, x, ϕ)| ≤ 1

c(p,q)et+x
‖ϕ− ϕ‖Bγ
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For each u, v ∈ Rn and (t, x) ∈ [0, 1]× [0, 1] we have

‖I1(u)− I1(v)‖ ≤ 1

6e4
‖u− v‖.

Hence condition (H ′2) is satisfied with `(p,q)e
t+x =

1

c(p,q)et+x
. Since

`∗(p,q) = sup{ 1

c(p,q)et+x
, (t, x) ∈ J} ≤ 1

c

and K = 1, m = 1 we get

2ml̃ +
k`∗(p,q)p

r1qr2

Γ(r1 + 1)Γ(r2 + 1)
=

1

3e4
+

1

3
< 1.

Hence condition (5.18) holds for each (r1, r2) ∈ (0, 1] × (0, 1] and all p, q ∈ IN∗. Conse-
quently Theorem 5.5 implies that problem (5.23)-(5.25) has a unique solution defined on
IR2.
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Conclusion

In this thesis, we have considered the problem of existence and uniqueness results
of solutions for fractional order partial hyperbolic functional differential with fixed time
impulses. Sufficient conditions for existence and uniqueness od solutions for initial value
problems for partial differential equations involving the Caputo fractional derivative were
given.
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