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Introduction

In 1695, a dialogue took place in the form of correspondence (see [87]) between G.W.
Leibniz and J. de L’Hospital about the possibility to generalized the derivatives with
integer order to derivatives with non-integer (fractional) orders, where the derivative of
1/2-order was discussed, this famous correspondence was the reason for the creation of
a new aspect in pure mathematics called Fractional Calculus (FC). The latter attracted
the interest of many well-known mathematicians as they developed it. For example,
according to the glimpse history mentioned in the book [88], we mention the studies of L.
Euler (1730), J.L. Lagrange (1772), P.S. Laplace (1812), J.B.J. Fourier (1822), N.H. Abel
(1823), J. Liouville (1832), B. Riemann (1847), H.L. Greer (1859), H. Holmgren (1865),
A.K. Grunwald (1867), A.V. Letnikov (1868), N.Ya. Sonin (1869), H. Laurent (1884), P.A.
Nekrassov (1888), A. Krug (1890), J. Hadamard (1892), O. Heaviside (1892), S. Pincherle
(1902), G.H. Hardy and J.E. Littlewood (1917), H. Weyl (1919), P. L´evy (1923), A.
Marchaud (1927), H.T. Davis (1924), A. Zygmund (1935), E.R. Love (1938), A. Erd´elyi
(1939), H. Kober (1940), D.V. Widder (1941), M. Riesz (1949)and W. Feller (1952). In
addition, the book published by M. Caputo in 1969 see [63], systematically using his
innovative definition of fractional differentiation for solving viscoelasticity problems, and
don’t forget his lectures on seismology see [64]. This historical reading led us to say in an
extension sense that the FC is the differentiation and the integration of any real order.

In recent years, the subject of differential and integral equations via different types
of fractional derivatives has received much attention because its applications in various
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areas of sciences. For more information on applications we refer the reader to [2, 20, 40,
51, 74, 88] and references therein.

The theory of stochastic differential equations has become an active area of inves-
tigation due to their applications in the fields such as chemistry, mechanics, electrical
engineering, medical biology, economical systems, finance and several fields in engineer-
ing, etc. One can find detailed information in [39, 38, 55, 28, 68, 31, 57, 67] and references
therein.

In natural ecosystems, the dynamic interaction between the predator and the prey has
long been and will continue to be one of the most attractive field in mathematics due to
its existence and importance in mathematical ecology. The preservation of the balance
in an ecosystem is necessary for the ecologists. It depends on different relationships
between organisms in nature, which can be divided into several forms such as competition,
symbiosis, predator-prey interactions and so on. One of the first models describing the
interaction between species was developed in the 1920s, independently by the American
Alfred Lotka [59] (1880 − 1949) and the Italian Vito Volterra [81] (1860 − 1940), and is
known as Lotka-Volterra or predator-prey model. Throughout the last century, several
researchers are interested in the mathematical ecology area [1, 14, 70, 71, 76, 79]. They
have proposed and studied several ecological phenomena between species through models
of ordinary or partial differential equations which describe the interactions between these
species in nature. The results of these studies can determine and predict the behavior of
the living beings in nature which provides enough time to ecologists to give an appropriate
control strategy that yields to avoid extinction of the living beings.

The thesis is divided into four chapters. In Chapter 1 and Chapter 2 introduces
preliminary facts from fractional calculus and stochastic calculus which are used in our
main results.

In Chapter 3, we establish the existence and uniqueness of solutions for a fractional
stochastic differential equation driven by countably many Brownian motions on bounded
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and unbounded intervals. Also, we study the continuous dependence of solutions on initial
data. Finally, we establish the transportation quadratic cost inequality for some classes
of fractional stochastic equations and continuous dependence of solutions with respect
Wasserstein distance.

In Chapter 4, a new approach of a stochastic predator-prey interaction with pro-
tection zone for the prey is developed and studied. The considered mathematical model
consists of a system of two stochastic differential equations, SDEs, describing the interac-
tion between the prey and predator populations where the prey exhibits a social behavior
called also by “herd behavior.” First, according to the theory of the SDEs, some properties
of the solution are obtained, including: the existence and uniqueness of the global positive
solution and the stochastic boundedness of the solutions. Then, the sufficient conditions
for the persistence in the mean and the extinction of the species are established, where the
extinction criteria are discussed in two different cases, namely, the firstcase is the survival
of the prey population, while the predator population goes extinct; the second case is the
extinction of all prey and predator populations. Next, by constructing a suitable stochas-
tic Lyapunov function and under certain parametric restrictions, it has been proved that
the system has a unique stationary distribution which is ergodic. Finally, some numerical
simulations based on the Milstein’s higher-order scheme are performed to illustrate the
theoretical predictions.
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Chapter 1

Fractional calculus

1.1 Integrable Functions

1.1.1 Variation, Quadratic variation of a Function

Let a, b be two real numbers such that −∞ < a < b < ∞ and let f be a real function
defined on [a,b]. The total variation of f on [a,b] is defined by

V (f ; [a,b]) = sup
P∈P


n∑
k=1

|f(tk)−f(tk−1)|
 ,

where P is the set of all partitions of [a,b]. The quantity on the right-hand side of the
above formula increases by adding points to partitions. Therefore

V (f ; [a,b]) = lim
|Pn|−→0

n∑
k=1

|f(tk)−f(tk−1)| ,

where |Pn| = max1≤k≤n(tk − tk−1) is the largest mesh size of a sequence Pn of nested
subdivisions of [a,b]. If Vt(f ; [a,b]) < ∞ then f is said to be a function of bounded
variations. In particular, if f is defined on [0,∞), we define the non-decreasing function
Vf on [0,∞) by

Vf (t) = V (f ; [0, t]).
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Vf is called the variation function of f on [0,∞).
Similarly, let t ∈ [0,∞). If

lim
|Pn|−→0

n∑
k=1

|f(tk)−f(tk−1)|2 ,

exists and finite over all partitions of [0, t]. Then the quadratic variation of f on [0, t]
denoted by [f ]t, is given by

[f ]t = lim
|Pn|−→0

n∑
k=1

(f(tk)−f(tk−1))2 .

We now give an interesting result in this context that any real continuous function on
[0,t] with bounded variation, its quadratic variation is zero. Indeed,

[f ]t = lim
|Pn|−→0

n∑
k=1

(f(tk)−f(tk−1))2

≤ lim
|Pn|−→0

max
1≤k≤n

|f(tk)−f(tk−1|
n∑
k=1

|f(tk)−f(tk−1)| .

Moreover,
lim

|Pn|−→0

n∑
k=1

|f(tk)−f(tk−1)| = Vf (t)<∞,

and the continuity of f on [0, t] implies that it is uniformly continuous on [0, t], hence

lim
|Pn|−→0

max
1≤k≤n

|f(tk)−f(tk−1| = 0,

the result is proved. ■

1.1.2 Riemann-Stieltjes Integral

Let f a bounded real functions defined on [a,b] and let g be a real function of bounded
variations over [a,b]. The Riemann-Stieltjes Integral of f over [a,b] with respect to g is
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defined as the limit of Riemann-Stieltjes sums
∫ b

a
fdg =

∫ b

a
f(t)dg(t) = lim

δ−→0

n∑
i=1

f(ξni )(g(tni )−g(tni−1)), (1.1.1)

where ξni ∈ [tni−1, t
n
i ] and δ= max1≤i≤n(tni −tni−1) is the biggest mesh size of the subdivisions

a= tn0 < tn1 < · · ·< tnn = b.

In particular, if g(t) = t then the Riemann-Stieltjes Integral is called the Riemann Integral
and is defined by ∫ b

a
f(t)dt= lim

δ−→0

n∑
i=1

f(ξni )(tni − tni−1). (1.1.2)

One can check easily that if f is differentiable on [a,b] and f
′ is Riemann integrable on

[a,b] then

f(b)−f(a) =
∫ b

a
f

′
(s)ds.

This result is called the fundamental theorem of calculus.
we will denote by L([a,b];R) the space of all real-valued functions f defined on [a,b]

such that ∫ b

a
|f(t)|dt <∞.

If f ∈ L([a,b];R), then f is said to be Riemann-integrable (or simply integrable) function.

1.2 Special Functions

1.2.1 Gamma Function

The Gamma Function Γ is defined by the integral form

Γ(z) =
∫ ∞

0
tz−1e−tdt, z ∈ CRe>0, (1.2.1)

where CRe>0 = {z ∈ C :Re(z)> 0}.
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Now, we give the basic properties of the Gamma Function and some brief steps for its
proof. Firstly, the recursion formula property, which is as follows

Γ(z+1) = zΓ(z), z ∈ CRe>0.

to prove this property, we used the formula of integration by parts. In particular, for all
n ∈ N, we have

Γ(n+1) = n!, (1.2.2)

and
Γ(n+ 1

2) =
√
π(2n)!
22nn! ,

these two particular cases can easily be demonstrated by the nth iteration of the previous
property and take Γ(1) = 1,Γ(1

2) =
√
π.

The second property called the Limit representation of the gamma function,

Γ(z) = lim
n−→∞

n!nz
z(z+1)...(z+n) , z ∈ C\Z,

initially, we show that its holds for any z ∈ CRe>0. Indeed, we consider the auxiliary
function

Γn(z) =
∫ n

0
(1− t

n
)ntz−1dt,

changing the variable α = t
n and repeating the integration by parts, we get

Γn(z) = nz
∫ 1

0
(1−α)nαz−1dα

= n!nz
z(z+1) . . .(z+n−1)

∫ 1

0
αz+n−1dα

= n!nz
z(z+1) . . .(z+n) ,

since the interchange of the limit and the integral i.e.,

lim
n−→∞Γn(z) =

∫ ∞

0
lim

n−→∞(1− t

n
)ntz−1dt,
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are justified in [52], then by the well-known limit

lim
n−→∞(1− t

n
)n = e−t,

the Limit representation property holds for any z ∈ CRe>0. the proof is complete. ■

The third property of Gamma Function as a relationship to another function is as
follow

β(u,v) = Γ(u)Γ(v)
Γ(u+v) ,

where the Function β is called the Beta function defined for any u,v ∈ CRe>0 by the
integral form

β(u,v) =
∫ 1

0
tu−1(1− t)v−1dt.

With the help of the Beta function we can establish the following two important relation-
ships for the gamma function. The first one is called reflection formula

Γ(z)Γ(1− z) = π

sin(πz) , z ∈ C\Z.

In particular, Γ(1
2) =

√
π. The second is called Legendre duplication formula

Γ(z)Γ(z+ 1
2) =

√
πΓ(2z)
22z−1 , 2z ̸= 0,−1,−2,−3, ......

In particular, we can make sure again that Γ(n+ 1
2) =

√
π(2n)!
22nn! holds for all n ∈ N

1.2.2 Mittag-Leffler Function

The two parameter Mittag-Leffler Function Eα,β is defined for any complex number z by
the following series

Eα,β(z) =
∞∑
k=0

zk

Γ(αk+β) , (1.2.3)
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where α,β ∈ C and Re(α) > 0. Taking α = 1 and β = n+ 1 in (1.2.3) we get a set of
particular functions of Mittag-Leffler type

E1,n+1(z) =


1
zn

(
ez −∑n−1

k=0
zk

k!

)
, n ∈ N∗,

ez, n=0.

Indeed, if n= 0 (i.e., taking α = β = 1 in (1.2.3)), by (1.2.2), we deduce

E1,1(z) =
∞∑
k=0

zk

Γ(k+1) =
∞∑
k=0

zk

k! = ez,

and if n ∈ N∗, by (1.2.2), we have

E1,n+1(z) =
∞∑
k=0

zk

Γ(k+n+1) =
∞∑
k=0

zk

(k+n)! ,

put m= k+n, then

E1,n+1(z) = =
∞∑
m=n

zm−n

m!

= 1
zn

∞∑
m=n

zm

m!

= 1
zn

 ∞∑
m=0

zm

m! −
n−1∑
m=0

zm

m!


= 1

zn

ez −
n−1∑
k=0

zk

k!

 .

■
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1.3 Fractional Derivatives and Integrals

1.3.1 Riemann-Liouville Fractional Derivatives

Let a, b be two real numbers such that −∞ < a < b < ∞ and let α ∈ (0,∞). Con-
sider that f ∈ L([a,b];R). Then the left and right Riemann-Liouville fractional integrals
Iαa+f(x), Iαb−f(x) of order α, are defined by

Iαa+f(x) = 1
Γ(α)

∫ x

a
(x− t)α−1f(t)dt, x > a, (1.3.1)

and
Iαb−f(x) = 1

Γ(α)

∫ b

x
(t−x)α−1f(t)dt, x < b, (1.3.2)

respectively. When α = n ∈ N, the definitions (1.3.1) and (1.3.2) coincide with the n-th
integrals of the form

Ina+f(x) = 1
(n−1)!

∫ x

a
(x− t)n−1f(t)dt, (1.3.3)

and
Inb−f(x) = 1

(n−1)!

∫ b

x
(t−x)n−1f(t)dt. (1.3.4)

In particular, if f(x) = (x−a)β−1 with β > 0, we get

Iαa+(x−a)β−1 = Γ(β)
Γ(β+α)(x−a)β+α−1,

and, if f(x) = (b−x)β−1 with β > 0, we get

Iαb−(b−x)β−1 = Γ(β)
Γ(β+α)(b−x)β+α−1.

The Riemann-Liouville fractional integrals has the following properties

Iαa+(Iβa+f(x)) = Iα+β
a+ f(x);

Iαb−(Iβb−f(x)) = Iα+β
b− f(x).
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We now give the definition of the The left and right Riemann-Liouville fractional
Derivatives Dα

a+f(x) and Dα
b−f(x) of order α as follows

Dα
a+f(x) =

(
d

dx

)n (
In−α
a+ f(x)

)
= 1

Γ(n−α)

(
d

dx

)n ∫ x

a

f(t)dt
(x− t)α−n+1 , x > a. (1.3.5)

And

Dα
b−f(x) =

(
− d

dx

)n (
In−α
b− f(x)

)
= 1

Γ(n−α)

(
d

dx

)n ∫ b

x

f(t)dt
(t−x)α−n+1 , x < b, (1.3.6)

respectively, where n= [α]+1, [α] means the integer part of α. In particular,

1. if 0< α < 1 (i.e., n= 1), then

Dα
a+f(x) = 1

Γ(1−α)
d

dx

∫ x

a

f(t)dt
(x− t)α , x > a,

Dα
b−f(x) = 1

Γ(1−α)
d

dx

∫ b

x

f(t)dt
(t−x)α , x < b.

2. If α =m ∈ N (i.e., n=m+1) then

Dm
a+f(x) =


f (m)(x), m ̸= 0

f(x), m= 0,

and

Dm
b−f(x) =


(−1)mf (m)(x), m ̸= 0

f(x), m= 0.

Where f (m) is the usual derivative of f of order m.
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3. If f(x) = (x−a)β−1 with β > 0, then

Dα
a+(x−a)β−1 = Γ(β)

Γ(β−α)(x−a)β−α−1,

and, if f(x) = (b−x)β−1 with β > 0, we get

Dα
b−(b−x)β−1 = Γ(β)

Γ(β−α)(b−x)β−α−1.

In particular, if β = 1, we get that the Riemann-Liouville fractional Derivatives of
a constant function x 7−→ C

Dα
a+C = C(x−a)−α

Γ(1−α) ,

Dα
b−C = C(b−x)−α

Γ(1−α) .

1.3.2 Caputo Fractional Derivatives

As needed in our result, we will only define the left Caputo fractional derivatives cDαf(x)
of order α for f ∈ ACn([a,b];R) via the above Riemann-Liouville fractional integrals, as
follows

cDαf(x) := In−α
a+ f (n)(x) = 1

Γ(n−α)

∫ x

a
(x− t)n−α−1f (n)(t)dt, (1.3.7)

where n= [α] + 1. In particular, the Caputo fractional derivatives of a constant function
x 7−→ C is null since dnC

dxn = 0 for all n = [α] + 1 ≥ 1. And also, if f(x) = (x−a)β−1 with
β > 0, then

cDα(b−x)β−1 = Γ(β)
Γ(β−n)(x−a)β−α−1.

The relationship between the Caputo fractional derivatives and the Riemann-Liouville
fractional Derivatives is given by the formula

cDαf(x) =Dα
a+f(x)−

n−1∑
k=0

f (k)(a)
Γ(k−α+1)(x−a)k−α.

In particular, if 0< α < 1 (i.e., n= 1), then

cDαf(x) =Dα
a+(f(x)−f(a)).
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1.4 Fractional Cauchy Problem

Let α be a non-integer numbers with α > 0. Consider the fractional Cauchy problem of
the form 

cDαy(x) = f(x,y(x)), x ∈ [a,b],

y(k)(a) = bk ∈ R,k = 0,1, . . . ,n−1,n.

(1.4.1)

Where cDα is Caputo fractional derivatives, n = [α] + 1 and f(·,y) : [a,b] ×R → R is a
continuous function with respect to x ∈ [a;b] for each y ∈ R.

Let Cn−1[a,b] be Banach space such that

Cn−1[a,b] =
g : [a,b] → R : ∥g∥Cn−1[a,b] =

n−1∑
k=1

∥g(k)∥C[a;b]

 .
Where C0[a,b] = C[a,b]. We say that y ∈ Cn−1[a,b] is a solution of the fractional Cauchy
problem (1.4.1) if y is a solution of the following Volterra integral equation

y(x) =
n−1∑
k=1

bk
k! (x−a)k + 1

Γ(α)

∫ x

a

f(t,y(t))
(x− t)1−αdt. (1.4.2)

We now give the existence and uniqueness result of the fractional Cauchy problem (1.4.1),
it is as follows

Theorem 1. Let G be an open set of R. Suppose that f(·,y) : [a,b]×R → R satisfies the
following conditions

i. For any fixed y ∈G, f(·,y) ∈ C[a,b].

ii. (Lipschitz condition) for all y1,y2 ∈G and x ∈ [a,b], there exist L > 0 such that

|f(x,y1)−f(x,y2)| ≤ L|y1 −y2.

If
L
n−1∑
k=1

(b−a)α−k

Γ(α−k+1) < 1.

Then, the fractional Cauchy problem (1.4.1) has a unique solution
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Lemma 1. For all α ∈ (0,1] and γ > 0, the following inequality holds:

γ

Γ(α)

∫ t

0
(t− s)α−1Eα(γsα)ds≤ Eα(γtα).

Proof. Let 0< γ ≤ 1. We consider first the linear problem

cDαy(t) = γy(t), t ∈ R+. (1.4.3)

From [20, Theorem 7.2 and Remark 7.1], the function y(t) =E(τtα) is solution of (1.4.3),
and for any t ∈ R+, we have

E(γtα) = 1+ τ

Γ(α)

∫ t

0
(t− s)α−1Eα(γsα)ds.

This concludes the proof of lemma.

We recall Gronwall’s lemma for singular kernels, whose proof can be found in [86,
Lemma 7.1.1].

Lemma 2. Let v : [0, b) → [0,∞) be a real function and w(·) be a nonnegative, locally
integrable function on [0, b),(some b ≤ +∞)) and a(t) be a nonnegative, nondecreasing
continuous function defined on 0 ≤ t < b, with a(t) ≤ M (constant), and suppose v(t) is
nonnegative and locally integrable on 0 ≤ t < b. Assume γ > 0 such that

v(t) ≤ w(t)+a(t)
∫ t

0

v(s)
(t− s)1−γ ds.

Then
v(t) ≤ w(t)+

∫ t

0

∞∑
n=1

(a(t)Γ(γ))n
Γ(nγ) (t− s)nγ−1w(s)ds,

for every t ∈ [0, b).
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Chapter 2

Stochastic calculus

2.1 Stochastic basis-Random variables

2.1.1 Stochastic basis

Mathematically, the set of all possible outcomes of trials whose outcomes depend on
chance is denoted by Ω. With a sample point ω of Ω, some of them can be grouped
together under a common feature as a subset of Ω is called an event. Any family F , from
subsets of Ω which satisfies the following conditions

(i) ∅ and Ω ∈ F ,

(ii) Any union (optional) of elements of F belongs to F ,

(iii) The intersection of any two elements of F belongs to F ,

is called a topology over a set Ω. The topology over a set Ω is henceforth denoted by TΩ,
the pair (Ω,TΩ) is called topological space and its elements are called open sets. And if
F has the following properties

(i) Ω ∈ F ,
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(ii) A ∈ F =⇒ Ac ∈ F , Ac is the complement of A in Ω,

(iii) {An}n≥1 ⊂ F =⇒ ⋃∞
n=1An ∈ F ,

we say about F that it is σ-algebra (or σ-field), the pair (Ω,F) is called measurable space
and its elements are called measurable sets. From the definition of σ-algebra and topology
it is clear that every σ-algebra is a topology and the opposite is not necessarily true.
Therefore, we will present two famous examples about σ-algebra (respectively, topology)
over a set Ω, first ones {∅,Ω} is the smallest possible σ-algebra (respectively, topology)
and the second is the largest possible σ-algebra (respectively, topology) denoted by P(Ω)
(the family of all possible subsets of Ω). Moreover, if C ⊂ P(Ω), then the intersection of
all σ-algebra which contain C is the smallest σ-algebra σΩ(C) on Ω which contains C. This
σΩ(C) is called the σ-algebra generated by C. If C = TΩ, then B(Ω) = σΩ(TΩ) is called the
Borel σ-algebra which containing all open sets of Ω and its elements are called the Borel
sets.

Let (Ω,F) be a measurable space. We define on (Ω,F) a probability measure P, i.e.
P : F −→ [0,1] such that

(i) P(Ω) = 1,

(ii) P is σ-additivity, i.e., for any disjoint sequence {An}n≥1 ⊂ F ,

P
( ∞⋃
n=1

An

)
=

∞∑
n=1

P(An).

The triple (Ω,F ,P) is called a probability space. If (Ω,F ,P) is a probability space, we set

F = {A⊂ Ω : ∃B,C ∈ F such that B ⊂ A⊂ C, P(B) = P(C)}.

F is a σ-algebra, called the completion of F . If F = F , then the probability space (Ω,F ,P)
is said to be complete.

Let (Ω,F ,P) be a probability space equipped with an increasing family (Ft)t≥0 of sub-
σ-algebra of F (increasing means: Fs ⊂ Ft for all 0 ≤ s < t). The family (Ft)t≥0 is called
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a filtration of Ω. The quadruple (Ω,F ,(Ft)t≥0,P) is called a stochastic basis (or a filtered
probability space). The ”physical” meaning of Ft is the collection of events occurring up
to time t (or the collection of the ”past information up to t”). We can replace F when is
not specified, with the σ-algebra generated by ⋃s≥0 Fs, is denoted by F∞, i.e.

F∞ = σ

⋃
s≥0

Fs

 .
Given a stochastic basis (Ω,F ,(Ft)t≥0,P). With the filtration (Ft)t≥0 are associated the
following families (Ft+)t≥0 and (Ft−)t≥0 of σ-algebras

Ft+ =
⋂
s>t

Fs,

Ft− = σ

⋃
s<t

Fs

 , for t= 0, F0− = F0.

The filtration (Ft)t≥0 is said to be

• a right-continuous if, Ft = Ft+ for all t≥ 0;

• a left-continuous if, Ft = Ft− for all t≥ 0.

The filtration (Ft)t≥0 is said to fulfill the ”usual hypotheses” (or satisfies the usual con-
ditions) if

(i) the filtration (Ft)t≥0 is right-continuous;

(ii) F0 containing all P-null sets of F , i.e., F0 contains all A ∈ F such that P(A) = 0.

2.1.2 Random variables

Let (Ω,F) and (E,G) be two measurable spaces. A function X from (Ω,F) into the state
space (E,G) is said to be (F ,G)-measurable (or simply, F -measurable) if

X−1(B) = {ω ∈ Ω :X(ω) ∈B} ∈ F for all B ∈ G.

The function X is then called an E-valued random variable. In particular,
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• We can define the smallest σ-algebra which makes X measurable (E-valued random
variable), is denoted by σ(X) and given by

σ(X) = σ({X−1(B) :B ∈ G}) = σ ({ω ∈ Ω :X(ω) ∈B},B ∈ G) .

σ(X) is called the σ-algebra generated by X.

• The indicator function IA of a set A⊂ Ω is defined by

IA(ω) =


1 for ω ∈ A,

0 for ω /∈ A.

IA is E-valued random variable (or F -measurable) if and only ifA is an F -measurable
set, i.e. A ∈ F .

• If X be an E-valued random variable and takes only a finite number of values of E,
then X is called a simple random variable and has the following form

X =
n∑
i=1

xiIAi
,

n⋃
i=1

Ai = Ω, xi ∈ E, n ∈ N∗.

Let X be a random variable on (Ω,F ,P) and takes its values in (E,G). Then by PX we
will denote the measure image of P by X

PX(B) := P{ω ∈ Ω :X(ω) ∈B},B ∈ G.

The measure image PX is called the probability law (or the probability distribution) of
X. If the random variables have the same distribution, we say that they are identically
distributed.

We will now present four important properties on which the expectation of a random
variable is based, for more details see [68]. Let E be a separable Banach space (we shall
denote its norm by ∥ · ∥ and its topological dual by E∗) and let X and Y be E-valued
random variables defined on (Ω,F). Then
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1. B(E) is the smallest σ-algebra of subsets of E containing all sets of the form

{x ∈ E : φ(x) ≤ α}, φ ∈ E∗, α ∈ R,

2. αX+βY is an E-valued random variable for any α,β ∈ R,

3. ∥X(·)∥ is a real valued random variable,

4. there exists a sequence (Xn) of simple E-valued random variables such that, the
sequence (∥X(ω)−Xn(ω)∥) is monotonically decreasing to 0 for all ω ∈ Ω.

The expectation E: Let (Ω,F ,P) and (E,B(E)) be, respectively, a probability space
and measurable space such that E is a separable Banach space. In the same way as the
Lebesgue integral, we set∫

F
XdP =

∫
F
X(ω)P(dω) :=

n∑
i=1

xiP(Ai∩F ), for all F ∈ F ,

for a simple E-valued random variable X on (Ω,F ,P). The properties of the measure
P ensure that the simple E-valued random variable is integrable and the finite value of
the integral calculated by the above definition is independent of the representation of X.
Moreover the usual properties of additivity and linearity of the integral hold true and∥∥∥∥∫

B
X(ω)P(dω)

∥∥∥∥≤
∫
B

∥X(ω)∥P(dω) =
∫
B

∥X∥dP.

In general, let X be an E-valued random variable on (Ω,F ,P) such that the real valued
random variable ∥X∥ is a Lebesgue integrable, i.e.∫

Ω
∥X∥dP<∞.

Then, by the existence of a sequence (Xn) of simple E-valued random variables on
(Ω,F ,P) such that the sequence (∥X(ω) −Xn(ω)∥) decreases to 0 for all ω ∈ Ω. We
define the Bochner integral of an E-valued random variable X on (Ω,F ,P) by∫

Ω
XdP =

∫
Ω
X(ω)P(dω) := lim

n−→∞

∫
Ω
Xn(ω)P(dω).
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Furthermore, the limit is independent of the approximating sequence (Xn) of simple
random variables satisfying∫

Ω
∥Xn−X∥dP −→ 0, as n−→ 0.

The integral
∫
ΩXdP is called the expectation valued (or mean valued) of X and is denoted

by E(X) or EX, i.e.
EX =

∫
Ω
XdP.

The Bochner integral has many properties of the Lebesgue integral, the most important
being that if ψ is a measurable mapping from (E,B(E)) into (G,B(G)) integrable with
respect to PX then, by a standard limit argument, we have

E(ψ(X)) =
∫
G
ψ(x)PX(dx).

Assume that E = Rd, for any p ∈ [1,∞), Lp(Ω;Rd) stands for the Banach space of
Rd-valued random variable X from (Ω,F ,P) into (Rd,B(Rd)) such that

∥X∥Lp(Ω;Rd) := (E∥X∥p)
1
p <∞.

Let X ∈ Lp(Ω;R), then the number E∥X∥p is called the pth moment of the real-valued
random variable X. If Y ∈ Lp(Ω;R) be another real-valued random variable, then the
covariance of X and Y is defined as

Cov(X,Y ) = E[(X−EX)(Y −EY )] = E(XY )−EXEY,

in particular, X and Y are called uncorrelated if Cov(X,Y ) = 0. The number

V(X) := Cov(X,X) = E(X−EX)2 = E(X2)− (EX)2,

is called the variance of X. For an Rd-valued random variable X = (X1, ...,Xd)T , define
EX = (EX1, ...,EXd)T . If X and Y in Lp(Ω;Rd), the covariance matrix of X and Y is
given by

Cov(X,Y ) = E[(X−EX)(Y −EY )T ] = E(XY T )−EX(EY )T .
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We will mention some results as theorems and inequalities, Through which it is possible
to distinguish and observe the elements of the space Lp(Ω;Rd). For any X ∈ Lp(Ω;Rd),
we have

1. ∥EX∥ ≤ E∥X∥ = ∥X∥L1(Ω;Rd), for p= 1.

2. Holder’s inequality: if p > 1, then

∥E(XTY ∥ ≤ ∥X∥Lp(Ω;Rd) ×∥Y ∥Lq(Ω;Rd),

for all Y ∈ Lq(Ω;Rd), such that 1
p + 1

q = 1. in particular,

∥X∥Lr(Ω;Rd) ≤ ∥X∥Lp(Ω;Rd),

if 1< r < p.

3. Minkovski’s inequality: if p > 1, then

∥X+Y ∥Lp(Ω;Rd) ≤ ∥X∥Lp(Ω;Rd) +∥Y ∥Lp(Ω;Rd),

for all Y ∈ Lp(Ω;Rd).

4. Chebyshev’s inequality:

P{ω ∈ Ω : ∥X(ω)∥ ≥ λ} ≤ E∥X∥p

λp
, λ > 0.

5. Monotonic convergence theorem: if (Xn) is an increasing sequence of nonnegative
random variables, then

lim
n−→∞EXn = E

(
lim

n−→∞Xn

)
.

6. Dominated convergence theorem: Let (Xn) be sequence of random variable such
that (Xn) ⊂ Lp(Ω;Rd) and (Xn) converges to X in probability. If there exist a

28



nonnegative real-valued random variable Y satisfies Y ∈ Lp(Ω;R) and ∥Xn∥ ≤ Y

a.s., then X ∈ Lp(Ω;Rd) and (Xn) converges to X in Lp(Ω;Rd), i.e.

lim
n−→∞∥Xn−X∥Lp(Ω;Rd) = 0,

and
lim

n−→∞EXn = EX.

In measure theory, let µ and ν two measures on the same measurable space (E,B(E)).
A measure ν is called absolutely continuous with respect µ, if we have

∀B ∈ B(E), µ(B) = 0 =⇒ ν(B) = 0.

We denoted by ν ≪ µ. The Radon-Nikodym theorem ensure that if µ and ν are two finite
positive measures on (E,B(E)) such that ν ≪ µ, then there exists a unique nonnegative
B(E)-measurable function f : E −→ R such that for any B ∈ B(E), we have

ν(B) =
∫
B
fdµ.

The function f is called the Radon-Nikodym derivative of ν, with respect µ, is denoted by
f = dν

dµ . The Radon-Nikodym theorem is very important because it tells us how to move
from one measure to another that has more applied properties that may contribute to
expanding the ideas of applied mathematics in various applied scientific fields. Therefore,
if X is Rd-valued continuous random variable on (Ω,F ,P) and PX its distribution (or law),
in which is absolutely continuous with respect to the Lebesgue measure on (Rd,B(Rd)).
Then the unique Radon-Nikodym derivative function f is called the joint (or multivariate)
probability density function of X, whereupon PX of X is called the joint probability
distribution (or joint probability law) and is given by

PX(B) = P(X ∈B) =
∫
B
f(x)dx, B ∈ B(Rd).

Moreover, for every measurable function ψ : Rd −→ R such that ψ(X) is integrable, then

E(ψ(X)) =
∫
Rd
ψ(x)f(x)dx,
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note that
∫
B is the multiple integral (d times), and its marginal probability distribution

denoted by PXi
for i= 1, ..,d

PXi
(B) = P(Xi ∈B) =

∫
B
fXi

(xi)dxi, B ∈ B(R),

where

fXi
(xi) =

∫ +∞

−∞
...
∫ +∞

−∞
f(x1, ...,xd)

∏
1≤k ̸=i≤n

dxk

fXi
is called the marginal probability density function of each coordinate Xi and the joint

cumulative distribution function of X is the function FX : Rd −→ [0,1] defined for all
x= (x1, ...,xd)T such that xT ∈ Rd by

FX(x) := P(X ≤ x) =
∫ x1

−∞
...
∫ xd

−∞
f(t1, ..., td)dt1...dtd,

where X ≤ x in Rd means that Xi ≤ xi for all i = 1, ..,d. If X is a real-valued random
variable, avoid saying ”joint” in previous terminologies and we have an only integral for
calculate instead of a multiple integral.

Below we give a typical measure that played an important role in applied probability
and statistics, especially in modeling and simulating the distributions of the outcomes for
some random phenomena.
The Gaussian (or The Normal) measure: Let σ > 0, m ∈ R. Any measure ν has a
density function

N(m,σ)(x) = 1√
2πσ2

exp
(

− 1
2σ2 (x−m)2

)
, x ∈ R,

with respect to the Lebesgue measure on (R,B(R)) is called The Gaussian measure and
are denoted by N (m,σ). In particular, if σ = 1, m = 0 is called the Standard Gaussian
measure. A real-valued random variable X is said to be Gaussian random variable if its
distribution PX is a Gaussian measure, i.e.

PX = N (m,σ), we write X ∼ N (m,σ).
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And X be Standard Gaussian random variable if X ∼ N (0,1). In general, the density
function of Multivariate Gaussian measure on (Rd,B(Rd)) is denoted by N (m,Σ) and has
the following form

N(m,Σ)(x) = 1
(2π)d

2 (detΣ) 1
2
exp

(
−1

2(x−m)TΣ−1(x−m)
)
, x ∈ Rd,

where m∈ Rd and Σ is a symmetric positive definite d×d matrix. A multivariate random
vector X = (X1, . . . ,Xd)T is said to be Gaussian random vector if its distribution PX is a
Multivariate Gaussian measure, i.e.

PX = N (m,Σ), we write X ∼ N (m,Σ).

One can check easily that
EX =m, Cov(X) = Σ,

and the random variables X1, . . . ,Xd are independent if and only if the matrix Σ is diag-
onal. If the covariance matrix Σ is not invertible (or degeneracy), we need to define the
Gaussian distribution via characteristic functions (see Section 1.9).
Conditional Expectation: Let X = (X1, . . . ,Xd)T ∈ L1(Ω;Rd) and let A be a sub-σ-
algebra of F . There exists a unique integrable Rd-valued random variable denoted by
E(X|A) = (E(X1|A), . . . ,E(Xd|A))T , which almost surely satisfies the following condi-
tions:

(i) E(X|A) is A-measurable,

(ii)
∫
AE(X|A)dP =

∫
AXdP, ∀A ∈ A.

Moreover, if Y is any A-measurable random variable satisfying∫
A
Y dP =

∫
A
XdP, ∀A ∈ A,

then Y = E(X|A) a.s., in (Ω,F ,P). For any Rd-valued random variable Z on (Ω,F ,P),
the insert E(X|Z) its means E(X|σ(Z)) (the conditional expectation of X given σ(Z)).

For any X,Y ∈ L1(Ω;Rd). The basic properties mentioned in the following of E(X|A)
hold almost surely
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1. E(X|A) =X if X is A-measurable. In particular, E(E(X|A)) = EX,

2. E(X|A) = EX if A,σ(X) are independent or A = {ϕ,Ω}. In particular,

E(X|Y ) = EX if X,Y are independent,

3. E(E(X|A)|K) = E(E(X|K)|A) = E(X|K) if K is a sub-σ-algebra of A,

4. E((aX+ bY )|A) = aE(X|A)+ bE(Y |A) if a,b are constants,

5. E(X|A) ≤ E(Y |A) if X ≤ Y ,

6. E(XY |A) =XE(Y |A) if X is A-measurable and XY is integrable.

2.2 Stochastic processes

2.2.1 General concepts

A family X = (Xt)t∈I of random variables defined on a sample space (Ω,F ,P) taking
values in a state space (Rd,B(Rd)) is called a stochastic process with index set I (where
I = [0,T ], T > 0 or I = [0,∞)). Or a stochastic process X = (Xt)t∈I on (Ω,F ,P) with
index set I and state space (Rd,B(Rd)) is a bivariate function X(., .) defined as follows

X : I×Ω −→ Rd, (t,ω) 7−→X(t,ω) :=Xt(ω),

such that for any fixed t ∈ I the function

Xt :=Xt(·) : Ω −→ Rd, ω 7−→Xt(ω),

is an Rd-valued random variable and for any fixed ω ∈ Ω the function

X.(ω) : I −→ Rd, t 7−→Xt(ω),

is not necessary measurable with respect to any σ-algebra on I. The functionsX.(ω), ω ∈
Ω are called the sample paths (realizations, trajectories). In particular,
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• If X as a bivariate function is (B(I) × F ,B(Rd))-measurable then X is said to be
measurable stochastic process.

• If X is defined on a stochastic basis (Ω,F ,(Ft)t∈I ,P). Then X is said to be

- adapted (or Ft-adapted) if, for any t ∈ I, Xt is Ft-measurable,

- progressively measurable if, for any t∈ I, X as a bivariate function is (B([0, t])×
Ft,B(Rd))-measurable.

Let Y = (Yt)t∈I be another stochastic process on (Ω,F ,P). By the probability measure
P, we can weaken the sameness property between two processes X and Y , we list in the
following three related concepts

1. Y is a version or modification of X if

P{ω ∈ Ω :Xt(ω) = Yt(ω)} = 1, ∀t ∈ I.

2. X and Y have the same finite-dimensional distributions if, for any integer n ≥ 1,
t1, ..., tn ∈ I, B ∈ B(Rdn),

P{(Xt1 , ...,Xtn) ∈B} = P{(Yt1 , ...,Ytn) ∈B}.

3. X and Y are called indistinguishable if

P{ω ∈ Ω :Xt(ω) = Yt(ω), ∀t ∈ I} = 1.

We now pick several definitions of regularity properties for a Rd-valued stochastic process
X when Rd be a normed or metric space, it is as follows

• X is mean square continuous at t0 ∈ I if

lim
t−→t0

E∥Xt−Xt0∥2 = 0.

If X is mean square continuous for any t ∈ I then X is said to be mean square
continuous on I.
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• X is continuous in probability (or stochastically continuous) at t0 ∈ I if for all ϵ > 0
and all η > 0 there exists ρ > 0 such that

P(∥Xt−Xt0∥ ≥ ϵ) ≤ η, ∀t ∈ [t0 −ρ,t0 +ρ]∩ I.

If X is continuous in probability for any t ∈ I then X is said to be continuous in
probability on I. In particular, if

P(∥Xt−Xt0∥ ≥ ϵ) ≤ η, ∀t, t0 ∈ I, such that |t− t0|< ρ,

then X is said to be uniformly continuous in probability on I.

• A stochastically continuous process on [0,T ] is uniformly stochastically continuous
on [0,T ].

• X is continuous (resp. right continuous, left continuous) if P-a.s, its trajectories are
continuous (resp. right continuous, left continuous) on I.

• X is said to be regular process if X is adapted and its trajectories have right and
left limits for any t ∈ I, i.e.,

lim
s↓t

Xs and lim
s↑t

Xs, for any t ∈ I

exists and is finite P-a.s.

• X is said to be cadlag process if X is right continuous and its trajectories have left
limits.

2.2.2 Variation, quadratic variation of a process

Let X be a real cadlag stochastic process defined on (Ω,F ,P) with an index set I and let
t ∈ I. Now we show the process X as a bivariate function X(., .) defined on I×Ω. When
we fix the second variable ω ∈ Ω of X(., .) we get a trajectory of X as a real function
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X.(ω) defined on I, therefore we can define the total variance and quadratic variance of
a trajectory of X as we defined them with a real function. It is as follow

The total variation of its trajectories on [0, t] is given by

VX.(ω)(t) = V (X.(ω); [0, t]) = lim
|Pn|−→0

n∑
k=1

∣∣∣Xtk(ω)−Xtk−1(ω)
∣∣∣ .

A process X is a process of bounded variation on I if all its trajectories have bounded
variation on I.

Similarly, For a fixed ω ∈ Ω. If

lim
|Pn|−→0

n∑
k=1

∣∣∣Xtk(ω)−Xtk−1(ω)
∣∣∣2 ,

exists and finite. Then the quadratic variation of a trajectory of the process X on [0, t] is
given by

[X.(ω)]t = lim
|Pn|−→0

n∑
k=1

∣∣∣Xtk(ω)−Xtk−1(ω)
∣∣∣2 .

Moreover, if there exists a finite process [X] such that

n∑
k=1

∣∣∣Xtk(ω)−Xtk−1(ω)
∣∣∣2 in probability as |Pn| −→ 0, ∀ t ∈ I,

then [X] is called the quadratic variation process of X. One can check easily that [X] is
increasing process on I, as well as if X be a continuous process with a bounded variation
on I then its quadratic variation is zero on I.

In general, the joint quadratic variation (or the cross quadratic variation) of X and Y
is defined by

[X,Y ]t = lim
|Pn|−→0

n∑
k=1

(
Xtk −Xtk−1)(Ytk −Ytk−1

)
,

and the cross-variance has the following property

[X,Y ]t = 1
2([X+Y ]t− [X]t− [Y ]t).
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2.2.3 Gaussian, Martingale processes

A stochastic process X = (Xt)t∈I on (Ω,F ,P) with state space (Rd,B(Rd)) and index set
I, is said to be

• Gaussian if for any integer n≥ 1, t1, . . . , tn ∈ I, the d×n-dimensional random vector
(Xt1 , . . . ,Xtn)T is a Gaussian vector.

• Martingale if for all s, t ∈ I such that s≤ t, we have, P-a.s:

(i) X is Ft-adapted,

(ii) X is integrable, i.e., E∥Xt∥<∞, ∀t ∈ I,

(iii) E(Xt|Fs) =Ms,

where (Ft)t∈I is any given filtration on (Ω,F ,P).

If X is real valued integrable and Ft-adapted process. Then X is said to be supermartin-
gale (resp. submartingale) if for all s, t ∈ I such that s≤ t, we have

E(Mt|Fs) ≤Ms (resp. E(Mt|Fs) ≥Ms), P−a.s.

Now we give some fundamental result for a Rd-valued continuous martingale M =
(Mt)t∈I , it is as follow

1. If ψ : Rd −→ R is a convex function such that

E(ψ(∥Mt∥))<∞, ∀ t ∈ I,

then ψ(M) = (ψ(Mt))t∈I is a submartingale.

2. Doob’s martingale inequalities:

(i) If M is integrable, then for all t ∈ I and λ > 0, we have

λP
(

sup
0≤s≤t

∥Ms∥ ≥ λ

)
≤ E∥Mt∥.
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(ii) If M is p-integrable for p > 1, then for all t ∈ I, we have

E
(

sup
0≤s≤t

∥Ms∥p
)

≤
(

p

p−1

)p
E∥Mt∥p.

3. Doob-Meyer decomposition: Let M and N be two a real-valued square-integrable
continuous martingales, then there exists a unique continuous integrable adapted
increasing process denoted by [M,N ] such that MN − [M,N ] is a continuous mar-
tingale vanishing at t = 0. Where the process [M,N ] = ([M,N ]t)t∈I is the joint
quadratic variation of M and N . In particular, M2 − [M ] is a continuous martin-
gale vanishing at t= 0. Where the process [M ] = ([M ]t)t∈I is the quadratic variation
of M .

4. Burkholder-Davis-Gundy (BDG) Inequality: If M is a real-valued continuous mar-
tingale and M0 = 0. Then, for all p > 0, there exist two cp and Cp constants such
that for all t ∈ I, we have

cpE[M ]
p
2
t ≤ E

(
sup

0≤s≤t
∥Ms∥p

)
≤ CpE[M ]

p
2
t .

2.2.4 Wiener processes

We now discuss the most important example of stochastic processes with continuous
paths, the Wiener process, commonly referred to as the Brownian motion in the physics
literature.

Definition 1. A Wiener process is a real-valued adapted process W = (Wt)t≥0 defined on
some stochastic basis (Ω,F ,(Ft)t≥0,P) with the following properties

(i) W has continuous trajectories;

(ii) for 0 ≤ s< t, the increment Wt−Ws is independent of Fs and Wt−Ws ∼ N (0,σ2(t−
s)), where σ2 is a nonnegative constant.

In particular, if W0 = 0 a.s. and σ2 = 1 then W is called standard Wiener process.
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Some times we used the natural filtration FW
t = σ(Bs,0 ≤ s < t), t ≥ 0 of W when

a filtration (Ft)t≥0 does not specified. A standard d-dimensional Wiener process is a
vector-valued stochastic process

W = (W1, . . . ,Wd)T ,

whose components are independent and standard Wiener processes. A standard Wiener
process has an other equivalently definition is given by the following proposition

Proposition 1. A stochastic process W = (Wt)t≥0 is a standard Wiener process if and
only if it is a continuous centered Gaussian process whose covariance is given by

Cov(Ws,Wt) = E(WsWt) = s∧ t, s, t≥ 0.

Proof. Let W be standard Wiener process, from the definition of a standard Wiener
process W is continuous centered Gaussian process. Moreover, for s≤ t, we have

E(WsWt) = E(Ws(Wt−Ws))+EW 2
s = s,

since Ws and Wt−Ws are independent.
Reciprocally, W has continuous trajectories and W0 = 0 a.s., sine W is a Gaussian process
then to show that Wt−Ws is independent of FW

s , it is sufficiently to show that Cov(Wt−
Ws,Wr) = 0 for r ≤ s≤ t, indeed

Cov(Wt−Ws,Wr) = Cov(Wt,Wr)−Cov(Ws,Wr)

= E(WtWr)−E(WsWr)

= t∧ r− s∧ r

= 0,

finally, for 0 ≤ s ≤ t, Wt −Ws is a centered Gaussian random variable and its variance
E((Wt−Ws)2) = t+ s−2s= t− s i.e.,

Wt−Ws ∼ N (0,(t− s)).

And the result follows.
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In the following we give some important properties of a Wiener process

Lemma 3. (Scaling invariance): Let W = (Wt)t≥0 be a standard Wiener process and
a > 0. Then, the process B = (Bt)t≥0 such that

Bt = 1
a
Wa2t, t≥ 0,

is a standard Wiener process.

Theorem 2. (Time-inversion) Let W = (Wt)t≥0 be a standard Wiener process. Then,
the process B = (Bt)t≥0 such that

Bt =


0 if t= 0,

tW 1
t

if t > 0,

is a standard Wiener process.

Corollary 1. (Law of large numbers) Let W = (Wt)t≥0 be a standard Wiener process.
Then, we have

lim
t−→∞

Wt

t
= 0, a.s.

Theorem 3. (Quadratic variation of a Wiener process) If W = (Wt)t≥0 is a standard
Wiener process. Then, for all t≥ 0, we get

[W ]t = t, a.s.

2.3 The stochastic integral

2.3.1 The Itô Integral

Before constructing the Itô stochastic integral, we will denote by M2
u,v(R) the appropriate

family of integrands which makes the integral in (1,1) exists and well defined. The elements
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of M2
u,v(R) are all real-valued measurable Ft-adapted processes X = (Xt)t∈[u,v] defined

on (Ω,F ,(Ft)t≥0,P) such that

∥X∥u,v =
(
E
∫ v

u
∥Xt∥2dt

) 1
2
<∞.

We say that two elements X = (Xt)t∈[u,v] and Y = (Yt)t∈[u,v] of M2
u,v(R) are equivalent if

∥X−Y ∥u,v = 0.

If u= 0 and v = T where T is a positive real number we will abbreviate and write M2
T (R)

(resp. ∥ · ∥T ) instead of M2
0,T (R) (resp. ∥ · ∥0,T ). Clearly, the space M2

u,v(R) equipped
with the norm ∥ · ∥u,v is a Banach space. Moreover, it is also a complete metric space
under the metric associated to the norm ∥ · ∥u,v.

As promised, we can now show in two steps how to construct the Itô integral for a
process.
Step 1. Let W = (Wt)t≥0 be a Wiener process defined on a complete stochastic basis
(Ω,F ,(Ft)t≥0,P), with (Ft)t≥0 satisfying the usual conditions. A real-valued stochastic
process S = (St)t∈[u,v] is said to be simple (elementary or step) process if there exists
a partition u = t0 < t1 < ... < tk = v of [u,v], and bounded random variables si, i =
0,1, . . . ,k−1, such that si is Fti-measurable and

St =
k−1∑
i=0

siI[ti,ti+1)(t),

where I[ti,ti+1) is the indicator function of [ti, ti+1). For a simple process S we define the
stochastic Itô integral of S with respect to the Wiener process W by the formula

∫ v

u
StdWt =

k−1∑
i=0

si(Wti+1 −Wti).

Moreover,
∫ v
u StdWt is a real-valued random variable, also it is Fv-measurable and has the

properties given by the following lemma.

Lemma 4. If S be simple process, then we have
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1. E(
∫ v
u StdWt) = 0,

2. (Itô isometry) E(
∫ v
u StdWt)2 = E

(∫ v
u S

2
t dt

)
.

Proof. The first property is clearly due to the independence between Wti+1 −Wti and Fti ,
and the measurability of si with respect to Fti . For the second property, we have

E
(∫ v

u
StdWt

)2
= E

 ∑
0≤i,j≤k−1

sisj(Wti+1 −Wti)(Wtj+1 −Wtj )


= E

∑
i

s2
i (Wti+1 −Wti)2 +2

∑
i<j

sisj(Wti+1 −Wti)(Wtj+1 −Wtj )


=
∑
i

Es2
iE(Wti+1 −Wti)2 +2

∑
i<j

E(sisj(Wti+1 −Wti))E(Wtj+1 −Wtj )

=
∑
i

Es2
i (ti+1 − ti)

= E
(∫ v

u
S2
t dt

)
,

where we have used the independence between Wtj+1 −Wtj and sisj(Wti+1 −Wti) for i < j,
and Wti+1 −Wti ∼ N (0, ti+1 − ti).

Step 2. We can now extend the definition of the Itô integral established over simple pro-
cesses to also include the processes in M2

u,v(R). This is due to the following approximation
theorem, for more details about its proof see [60].

Theorem 4. For any X ∈ M2
u,v(R), there exists a sequence (Sn)n≥1 of simple processes

such that

lim
n−→∞E

(∫ v

u
∥Xt−Sn(t)∥2dt

)
= 0.

Furthermore, the limit

lim
n−→∞

∫ v

u
Sn(t)dWt,

is well-defined. Moreover, by the Itô isometry for a simple process we have
∫ v
u Sn(t)dWt
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is in L2(Ω,R) for any simple process Sn(t). And

lim
n,m−→∞E

∥∥∥∥∫ v

u
Sn(t)dWt−

∫ v

u
Sm(t)dWt

∥∥∥∥2
= lim

n,m−→∞E
∥∥∥∥∫ v

u
(Sn(t)−Sm(t))dWt

∥∥∥∥2

= lim
n,m−→∞E

∫ v

u
∥Sn(t)−Sm(t)∥2dt

= 0.

Thus, (
∫ v
u Sn(t)dWt)n≥1 is a Cauchy sequence in L2(Ω,R) so that its limit exists in

L2(Ω,R). Finally, we will define this limit as the Itô stochastic integral of X with re-
spect to the Wiener process W , i.e.∫ v

u
XtdWt = lim

n−→∞

∫ v

u
Sn(t)dWt in L2(Ω,R).

Moreover, The above limit is independent of the choice of the approximating sequence
(Sn)n≥1. The Itô stochastic integral

∫ v
u XtdWt is Fv-measurable and for any A ⊂ [u,v],

we have ∫
A
XtdWt =

∫ v

u
XtIA(t)dWt.

In particular, if X is deterministic function, then the random variable
∫ v
u XtdWt is Gaus-

sian, i.e. ∫ v

u
XtdWt ∼ N

(
0,
∫ v

u
X2
t dt

)
.

In the following, we summarize without proof some perfect properties of an Itô stochas-
tic integral. For any X,Y ∈ M2

u,v(R) and a,b ∈ R, we have

1. E(
∫ v
u XtdWt) = 0.

2. (Itô isometry) E(
∫ v
u XtdWt)2 = E

(∫ v
u X

2
t dt

)
. Furthermore,

E
(∫ v

u
XtdWt

∫ v

u
YtdWt

)
= E

(∫ v

u
XtYtdt

)
.

3. (Linearity)
∫ v
u (aXt+ bYt)dWt = a

∫ v
u XtdWt+ b

∫ v
u YtdWt.

4. (Additivity)
∫ v
u XtdWt =

∫ c
uXtdWt+

∫ v
c XtdWt, for all c ∈ (u,v).
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5. If Z is a real-valued bounded Fu-measurable random variable, then ZX ∈ M2
u,v(R)

and ∫ v

u
ZXtdWt = Z

∫ v

u
XtdWt.

Let X ∈ M2
T (R). We define the indefinite Itô stochastic integral as follows

It =
∫ t

0
XsdWs, for t ∈ [0,T ],

where I0 =
∫ 0
0 XsdWs = 0. We call the stochastic process I = (It)t∈[0,T ] the Itô process it

is the special case of Itô processes, which will be presented in the following subsection.
And some of its important properties is given by the following theorem

Theorem 5. If X ∈ M2
T (R), then the special Itô process I = (It)t∈[0,T ] is a square-

integrable continuous martingale and its quadratic variation is given by

[I]t =
∫ t

0
X2
sds, t ∈ [0,T ].

In particular,

E
(

sup
0≤t≤T

∥It∥2
)

= E

 sup
0≤t≤T

∥∥∥∥∥
∫ t

0
XsdWs

∥∥∥∥∥
2≤ 4E

∫ T

0
∥Xs∥2ds.

Now we will see an applied example of Itô’s integral

Example 1. Let W = (Wt)t≥0 be a Wiener process such that W0 = 0, then for all t ≥ 0
we get ∫ t

0
WsdWs = 1

2W
2
t − 1

2t, a.s.

Indeed, let P be partition of [0, t] with mesh size |P |. For almost surely all ω ∈ Ω we have

Wti(Wti+1 −Wti) = 1
2(W 2

ti+1 −W 2
ti)− 1

2(Wti+1 −Wti)2,

moreover, ∑
i

Wti(Wti+1 −Wti) = 1
2
∑
i

(W 2
ti+1 −W 2

ti)− 1
2
∑
i

(Wti+1 −Wti)2

= W 2
t

2 − 1
2
∑
i

(Wti+1 −Wti)2,
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since, ∑i(Wti+1 −Wti)2 −→ [W ]t = t in L2(Ω,R) as |P | −→ 0 and by the definition of Itô
integral which is ∫ t

0
WsdWs = lim

|P |−→0

∑
i

Wti

(
Wti+1 −Wti

)
,

we get ∫ t

0
WsdWs = 1

2W
2
t − 1

2t, a.s,

As required. ■

We shall now show the multi-dimensional indefinite Itô stochastic integral (or multi-
dimensional special Itô process) as

∫ t

0
σsdWs, for t ∈ [0,T ],

whereW = (W 1, . . . ,Wm)T is anm-dimensional Wiener process defined on (Ω,F ,(Ft)t≥0,P)
and σ = {(σij(t))d×m}t∈[0,T ] is n×m-matrix-valued measurable Ft-adapted process such
that

E
∫ T

0
|σt|2dt <∞,

where |A| denoted the trace norm for matrix A ∈ Rn×m (Rn×m denotes the space of real
n×m-matrices), i.e.

|A| :=
√∑

i,j

a2
ij , for A= (aij)ij .

The n-column-vector-valued process whose i’th component is the following sum of 1-
dimensional Itô integrals

m∑
j=1

∫ t

0
σij(s)dW j

s , for t ∈ [0,T ].

Clearly, the Itô integral is an Rd-valued continuous martingale with respect to (Ft)t≥0.
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2.3.2 The Itô’s Formula

Let W = (W1, ...,Wm)T be an m-dimensional Wiener process defined on (Ω,F ,(Ft)t≥0,P).
Let I1(R+,Rn) and I2(R+,Rn×m) denotes, respectively, the family of all Rn-valued mea-
surable Ft-adapted processes b= (bt)t≥0 defined on (Ω,F ,(Ft)t≥0 and the family of all n×
m-matrix-valued measurable Ft-adapted processes σ= (σt)t≥0 defined on (Ω,F ,(Ft)t≥0,P)
such that ∫ T

0
∥bt∥dt <∞, a.s. for every T > 0,

and ∫ T

0
|σt|2dt <∞, a.s. for every T > 0.

If b ∈ I1(R+,Rn) and σ ∈ I2(R+,Rn×m). Then a Rn-valued continuous adapted process
X = (Xt)t≥0 of the form

Xt =X0 +
∫ s

0
bsds+

∫ t

0
σsdWs,

is called a n-dimensional Itô process associated to the stochastic differential form

dXt = btdt+σtdWt, for t≥ 0. (2.3.1)

In particular, if n=m= 1 then X = (Xt)t≥0 is called one-dimensional Itô process.
We now give without proof the multi-dimensional Itô formula (see [60]). Let C2,1(Rn×

R+;R) Denote the family of all real-valued functions V (x,t) defined on Rn×R+ such that
they are continuously twice differentiable in x (where x = (x1, . . . ,xn)T ) and one in t. If
V ∈ C2,1(Rn×R+;R), we set

Vt(x,t) = ∂V (x,t)
∂t

, Vx(x,t) =
(
∂V (x,t)
∂x1

, . . . ,
∂V (x,t)
∂xd

)
, Vxx(x,t) =

(
∂2V (x,t)
∂xi∂xj

)
n×n

.

Lemma 5. (Itô’s formula [60]) Let V ∈C2,1(Rn×R+;R) and consider the n-dimensional
Itô process X = (Xt)t≥0 which takes the stochastic differential form in (2.3.1). Then
V (Xt, t) is again an Itô’s process with the stochastic differential given as

dV (Xt, t) = LV (Xt, t)dt+Vx(Xt, t)σtdWt, for t≥ 0, (2.3.2)
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where L is the differential operator of Eq. (2.3.1) defined in [60] as

L= ∂

∂t
+

n∑
i=1

bi(t)
∂

∂xi
+ 1

2

n∑
i,j=1

[
(σt)Tσt

]
i,j

∂2

∂xi∂xj
. (2.3.3)

Then, we have

LV (Xt, t) = Vt(Xt, t)+Vx(Xt, t)bt+
1
2trace

[
(σt)TVxx(Xt, t)σt

]
. (2.3.4)

2.4 Stochastic Differential Equations

Let W = (W1, ...,Wm)T be an m-dimensional Wiener process defined on a complete
stochastic basis (Ω,F ,(Ft)t≥0,P), with (Ft)t≥0 satisfying the usual conditions. Let b
and σ be two measurable functions defined on Rn ×R+ and they take their values, re-
spectively in Rn and Rn×m. Consider the n-dimensional stochastic differential equation
(SDE) of the form 

dXt = b(Xt, t)dt+σ(Xt, t)dWt, t ∈ [0,T ],

X0 = x,

(2.4.1)

where x is a Rn-valued random variable such that

x is independent of FW
∞ = σ

⋃
t≥0

FW
t

 and E∥x∥2 <∞.

Let us first give the definition of the solution of a stochastic cauchy problem (2.4.1)

Definition 2. An Rn-valued Ft-adapted process X = (Xt)t∈[0,T ] is called a solution of
problem (2.4.1) if it has the following properties

(i) {b(Xt, t)} ∈ I1([0,T ];Rn) and {σ(Xt, t)} ∈ I2([0,T ];Rn×m);

(ii) for all t ∈ [0,T ] the following integral stochastic equation holds,

Xt = x+
∫ t

0
b(Xs, s)ds+

∫ t

0
σ(Xs, s)dWs.
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In the following we give without proof the existence and uniqueness theorem of the
stochastic cauchy problem (2.4.1)

Theorem 6. Suppose that there exist a positive constant K such that the coefficients b
and σ satisfies the following conditions

(i) (Lipschitz condition) for all x,y ∈ Rn and t ∈ [0,T ]

∥b(x,t)− b(y, t)∥+ |σ(x,t)−σ(y, t)| ≤K∥x−y∥;

(ii) (Linear growth condition) for all (x,t) ∈ Rn× [0,T ]

∥b(x,t)∥2 + |σ(x,t)|2 ≤K2(1+∥x∥2).

Then the problem (2.4.1) has a unique solution X = (Xt)t∈[0,T ] that satisfies X ∈ M2
T (R)

Let the following n-dimensional stochastic differential equation

dXt = b(Xt, t)dt+σ(Xt, t)dWt, t ∈ [0,∞), (2.4.2)

with initial value X0 = x. If the assumptions of the existence and uniqueness theorem
hold on every finite subinterval [0,T ] of [0,∞), then equation (2.4.2) has a unique global
solution Xt on the entire interval [0,∞). Moreover, the global solution Xt of (2.4.2) is a
Markov process that is, the following Markov property holds for all 0 ≤ s ≤ t < ∞ and
N ∈ B(Rn),

P(Xt ∈N |Fs) = P(Xt ∈N |Xs).

The previous Markov property is equivalent to the following formulation, for any bounded
Borel measurable function ψ : Rn −→ R and 0 ≤ s≤ t <∞,

E(ψ(Xt)|Fs) = E(ψ(Xt)|Xs).

And its transition probability is the function P(s,y, t,N), defined on 0 ≤ s≤ t <∞, y ∈Rn

and N ∈ B(Rn), with the following properties:
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(i) For every 0 ≤ s≤ t <∞ and N ∈ B(Rn),

P(s,Xs, t,N) = P(Xt ∈N |Fs) = P(Xt ∈N |Xs).

We can also use the notation

P(s,y, t,N) = P(Xt ∈N |Xs = y),

which is the probability that the process will be in the set N at time t given the
condition that the process was in the state y at time s≤ t.

(ii) P(s,y, t, .) is a probability measure on B(Rn) for every 0 ≤ s≤ t <∞, y ∈ Rn. And
P(s, ., t,N) is Borel measurable for every 0 ≤ s≤ t <∞, N ∈ B(Rn).

(iii) The Chapman-Kohnogorov equation

P(s,y, t,N) =
∫
Rn

P(r,z, t,N)P(s,y,r,dz),

holds for any 0 ≤ s≤ r ≤ t <∞, y ∈ Rn and N ∈ B(Rn).

In particular, if the transition probability function P(s,y, t,N) is stationary, we give the
following definition

Definition 3. [33] The transition probability function P(s,y, t,N) of a given Markov
process is said to be time-homogeneous (and the corresponding Marcov process is called
time-homogeneous) if the function P(s,y, t+s,N) is independent of the variable s, where
0 ≤ s ≤ t < ∞, y ∈ Rn and N ∈ B(Rn). i.e, the transition probability P(s,y, t,N) is
stationary, namely

P(s+ r,y, t+ r,N) = P(s,y, t,N),

for all 0 ≤ s≤ t <∞, r ≥ 0, y ∈ Rn and N ∈ B(Rn).

Putting

dZ(t) = f(Z(t), t)dt+
k∑
ς=1

gς(Z(t), t)dWς(t)dW (t), (2.4.3)
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where Z(t) is a regular time-homogeneous Markov process in Rn. The diffusion matrix
associated with the process Z(t) is given as

A(z) = (bi,j(z)), bi,j(z) =
k∑
ς=1

giςg
j
ς . (2.4.4)

In the theory of ordinary differential equations (ODE), the Lyapunov function is one of
the powerful tools in the stability theory of dynamical systems and their control theory,
it is used for dealing with the stability of a point of equilibrium of an ODE from a
global and not only a local point of view. The existence of Lyapunov functions is a
necessary and sufficient condition for stability in some classes of ODE. However there
is no generic approach for creating Lyapunov functions for ODE, the construction of
Lyapunov functions is known in many specific cases. For instance, for systems with only
one state, quadratic functions suffice; for linear systems, the solution of a certain linear
matrix inequality yields Lyapunov functions; and for physical systems, conservation rules
are frequently employed to generate Lyapunov functions. Mathematically speaking, a
Lyapunov function is a scalar function defined on a region D that is continuous, positive
definite, and has continuous first-rder partial derivatives at every point of D. A similar
concept of this kind of function is appears in the theory of the stochastic differential
equations where it is used to prove the global existence and uniqueness for stochastic
boundedness of positive solution and discuss the existence and uniqueness of an ergodic
stationary distribution of the positive solutions for a system of stochastic differential
equations. Then we have the following lemma

Lemma 6. [33] We said that the Markov process Z(t) has a unique ergodic stationary
distribution χ(.) if there is a bounded domain E ⊂ Rn with regular boundary Γ and the
following properties hold:

(P1) : There exists a positive number c̃ such that

n∑
i,j=1

bi,j(z)ξiξj ≥ c̃|ξ|2, z ∈ E, ξ ∈ Rn.
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(P2) : There is a nonnegative C2−function denoted by V such that LV is negative for
any Rn+ \E.

Define the following n-dimensional Euclidean space

Rn+ = {U = (u1, . . . ,un) ∈ Rn : uj > 0, 1 ≤ j ≤ n},

and
Rn+ = {U = (u1, . . . ,un) ∈ Rn : uj ≥ 0, 1 ≤ j ≤ n}.

And consider the n-dimensional Markov prosess take the following stochastic differential
equation

dU(t) = f(U(t))dt+g(U(t))dW (t), for t > t0, (2.4.5)

where, U(0) = U0 ∈ Rn is the initial value and W (t) represents the n-dimensional stan-
dard Browrian motion defined on the complete probability space (Ω,F ,{Ft}t>0,P). f ∈
L2(R+;Rn),g ∈ L2(R+;Rn×m) are measurable functions. Denote by C2,1(Rn ×R+;R+)
the family of all non-negative functions V (U,t) defined on Rn ×R+ such that they are
continuously twice differentiable in U and one in t. The following lemma is due to the
Itô’s formula given in (5)

Lemma 7. (Itô’s formula [60]) If V ∈ C2,1(Rn ×R+;R+), then V (U(t), t) is again an
Itô’s process with the stochastic differential equation given as

dV (U(t), t) = LV (U(t), t)dt+VU (U(t), t)g(U(t))dW (t), for t > t0, (2.4.6)

where L is the differential operator of Eq. (2.4.5) defined in [60] as

L= ∂

∂t
+

n∑
i=1

fi(U) ∂

∂Ui
+ 1

2

n∑
i,j=1

[
gT (U)g(U)

]
i,j

∂2

∂Ui∂Uj
. (2.4.7)

Then, we have

LV (U(t), t) = Vt(U(t), t)+VU (U(t), t)f(U)+ 1
2trace

[
gT (U)VUU (U(t), t)g(U)

]
, (2.4.8)

where

Vt(U,t) = ∂V (U,t)
∂t

, VU (U,t) =
(
∂V (U,t)
∂U1

, . . . ,
∂V (U,t)
∂Un

)
, VUU (U,t) =

(
∂2V (U,t)
∂Ui∂Uj

)
n×n

.
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Chapter 3

Fractional stochastic differential

equations

In this chapter, because the modeling of a great many problems in real situations is
described by stochastic differential equations, rather than deterministic equations, it is
of great importance to study fractional differential equations with stochastic effects. The
remainder of this chapter is organized as follows: The presentation of the model to be
studied and giving some auxiliary results from stochastic analysis and fractional calculus
are gathered together in Section 3.1. In Section 3.2, we present results on the exis-
tence and continuous dependence of solutions on initial data. We end the paper with a
transportation inequality of some classes of fractional stochastic differential equations.

3.1 Cauchy problem

Consider the following stochastic fractional differential equations:
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cDαXt = g(t,Xt)dt+
∞∑
l=1

fl(t,Xt)dW l
t , t ∈ [0,∞),

X0 = x ∈ R,

(3.1.1)

where α ∈ (1
2 ,1), (fl)l∈N,g : R+ ×R → R are given functions and (W i

t )i∈N is an infinite
sequence of independent standard Brownian motions defined on a complete filtered prob-
ability space (Ω,F ,(Ft)t≥0,P), with (Ft)t≥0 satisfying the usual conditions (i.e. right
continuous and F0 containing all P-null sets). An R−valued random variable is an
Ft−measurable function Xt : Ω → R and the collection of random variables,

S = {X(t,ω) : Ω → R| t ∈ [0,∞)},

is called a stochastic process. Generally, we just write Xt instead of X(t,ω).
Set 

f(·,x) = (f1(·,x),f2(·,x), . . .),

∥f(·,x)∥ =
( ∞∑
l=1

f2
i (·,x)

) 1
2 (3.1.2)

where f(·,x) ∈ ℓ2 for all x ∈ R and

ℓ2 = {ϕ= (ϕl)l≥1 : R+ → R : ∥ϕ(t)∥2 =
∞∑
l=1

|ϕl(t)|2 <∞}.

Some existence results of solutions for differential equations and inclusions with infi-
nite Brownian or fractional Brownian motion were obtained in [6, 7, 16, 29, 56].

For each t ∈ R+, L2(Ω,F ,(Ft)t≥0,P) denote the space of all Ft−measurable, mean
square integrable functions X : Ω → R, i.e.

E∥X∥2 <∞, for all X ∈ L2(Ω,F ,(Ft)t≥0,P).

We shall write L2(Ft) instead of L2(Ω,F ,(Ft)t≥0,P).
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Definition 4. A (Ft)t≥0−adapted process X : R+ ×Ω −→ R is called solution of equation
(3.1.1) with initial condition X0 = x ∈ R if, for all t≥ 0, the following integral stochastic
equation holds,

Xt = x+ 1
Γ(α)

∞∑
l=1

∫ t

0
(t− s)α−1fl(s,Xs)dW l

s + 1
Γ(α)

∫ t

0
(t− s)α−1g(s,Xs)ds,

where Γ(α) :=
∫∞
0 sα−1e−sds is the Gamma function.

Let T > 0. H2 stands for the Banach space of adapted processes X, equiped with the
norm ∥ · ∥H2 such that

∥X∥H2 = sup
t∈[0,T ]

(E∥Xt∥2)1/2 <∞.

We define for all γ > 0 the weighted norm ∥ · ∥γ by

∥X∥γ := sup
t∈[0,T ]

√√√√ E∥Xt∥2

E2α−1(γt2α−1) for all X ∈ H2,

where E2α−1(.) is the Mittag-Leffler function such that

E2α−1(t) :=
∞∑
k=1

tk

Γ((2α−1)k+1) for all t ∈ R.

For more details about the Mittag-Leffler functions, see [20]. Obviously, (H2,∥ · ∥γ) is a
Banach space, since the norms ∥ · ∥H2 and ∥ · ∥γ are equivalent.

In the following we state standing hypotheses holding for the coefficients f and g in
our model of this paper.

(H1) There exists K > 0 such that for all x,y ∈ R and t ∈ [0,∞)

|f(t,x)−f(t,y)|+∥g(t,x)−g(t,y)∥ ≤K∥x−y∥, x,y ∈ R

(H2)
|f(·,0)|∞ := ess sup

s∈[0,∞)
|f(s,0)|<∞ and

∫ ∞

0
∥g(s,0)∥2ds <∞.
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3.2 Existence,uniqueness and dependence on initial

conditions

The following result is one of the elementary properties of square-integrable stochastic
processes [55].

Lemma 8. (Itô Isometry for Elementary Processes) Let (Ft)t≥0 satisfy the usual condi-
tions and be generated by (W i

t )i∈N⋆. Given two sequences of measurable (Ft)t≥0−adapted
processes Xi and Yi, set 

Mt =
∞∑
i=1

∫ t

0
(t− s)α−1Xi(s)dW i

s ,

Nt =
∞∑
i=1

∫ t

0
(t− s)α−1Yi(s)dW i

s .

If
∞∑
i=1

∥Xi∥2
H2 <∞, then M is a continuous L2(Ft)−martingale. The quadratic variation

of M denoted by [M ]t is

[M ]t =
∫ t

0
(t− s)2α−2|X(s)|2ds, for all t≥ 0,

where |X(s)|2 =
∞∑
i=1

X2
i (s). And the cross variation of M and N , denoted by [M,N ]t, is

[M,N ]t =
∞∑
i=1

∫ t

0
(t− s)2α−2Xi(s)Yi(s)ds, for all t≥ 0.

Proof. Let n≥ 1, we put

Mn
t =

n∑
i=1

∫ t

0
(t− s)α−1Xi(s)dW i

s .

For all t≥ 0 we have
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E
n∑
i=1

∫ t

0
(t− s)2α−2∥Xi(s)∥2ds =

∫ t
0(t− s)2α−2∑n

i=1E∥Xi(s)∥2ds

=
∫ t
0 J(s)

n∑
i=1


√√√√ E∥Xi(s)∥2

E2α−1(γs2α−1)

2

ds,

where

J(s) = (t− s)2α−2E2α−1(γs2α−1)

Then, by the definition of ∥ · ∥γ , we have

E
n∑
i=1

∫ t

0
(t− s)2α−2∥Xi(s)∥2ds≤

n∑
i=1

∥Xi∥2
γ

∫ t

0
(t− s)2α−2E2α−1(γs2α−1)ds.

Then Lemma 2.1 implies that

E
n∑
i=1

∫ t

0
(t− s)2α−2∥Xi(s)∥2ds≤ Γ(2α−1)E2α−1(γT 2α−1)

γ

n∑
i=1

∥Xi∥2
γ .

Choose and fix a positive constant γ such that

γ = Γ(2α−1)E2α−1(γT 2α−1).

Then

E
n∑
i=1

∫ t

0
(t− s)2α−2∥Xi(s)∥2ds≤

n∑
i=1

∥Xi∥2
γ .

Since ∑n
i=1 ∥Xi∥2

γ <∞ for all n≥ 1, then

E
n∑
i=1

∫ t

0
(t− s)2α−2∥Xi(s)∥2ds <∞.

Consequently, Mn is a continuous L2(Ft)−martingale for all n ≥ 1, and its quadratic
variation is [Mn]t such that

[Mn]t =
∫ t

0

n∑
i=1

(t− s)2α−2X2
i (s)ds.
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By Burkholder-Davis-Gundy inequality [11, 12], we have, for some positive real constant
C,

E sup
s∈[0,t]

(Mn
s −Mm

s )2 ≤ C
∫ t

0
(t− s)2α−2

n∨m∑
i=n∧m+1

E∥Xi(s)∥2ds.

By the definition of ∥ · ∥γ and Lemma 8, we obtain that

E sup
s∈[0,t]

(Mn
s −Mm

s )2 ≤ CΓ(2α−1)E2α−1(γT 2α−1)
γ

n∨m∑
i=n∧m+1

∥Xi∥2
γ .

Choose and fix a positive constant γ such that

γ = CΓ(2α−1)E2α−1(γT 2α−1).

Then

E sup
s∈[0,t]

(Mn
s −Mm

s )2 ≤
n∨m∑

i=n∧m+1
∥Xi∥2

γ .

Since ∑∞
i=1 ∥Xi∥2

γ <∞, then we have

E sup
s∈[0,t]

(Mn
s −Mm

s )2 ≤
n∨m∑

i=n∧m+1
∥Xi∥2

γ −→ 0.

as n,m−→ ∞, where n∧m= min(n,m) and n∨m= max(n,m), and so Mn is a Cauchy
sequence with respect to the norm (Esupt∈[0,T ](·)2) 1

2 for any bounded time interval [0,T ].
Denote its limit by M . Consequently, by the continuity of Mn, we obtain

lim
n−→∞E(E(Mn

t /Fs)−E(Mt/Fs))2 = 0, for all s < t,

and

lim
n−→∞E(Mn

s −Ms)2 = 0.

Since E(Mn
t /Fs) =Mn

s for all s < t and n≥ 1, by the two previous limits, we have

E(Mt/Fs) =Ms, for all s < t.
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Hence, M is a continuous L2(Ft)−martingale. Moreover [Mn]t converges to [M ]t as
n−→ ∞ in probability, for all t≥ 0, i.e.

[M ]t =
∫ t

0
(t− s)2α−2|X(s)|2ds, where |X(s)|2 =

∞∑
i=1

X2
i (s).

Similarly, the cross variation of M and N for all t≥ 0 is

[M,N ]t =
∞∑
i=1

∫ t

0
(t− s)2α−2Xi(s)Yi(s)ds.

Now, we define the operator L on H2 by

(LX)(t) = x+ 1
Γ(α)

∞∑
l=1

∫ t

0
(t− s)α−1fl(s,Xs)dW l

s + 1
Γ(α)

∫ t

0
(t− s)α−1g(s,Xs)ds.

Lemma 9. The operator L is well-defined on H2([0,T ]) .

Proof. Let X ∈ H2, then for all t ∈ [0,T ], we get

E∥(LX)(t)∥2 ≤ 3E∥x∥2 + 3
Γ2(α)E

∥∥∥∑∞
l=1

∫ t
0(t− s)α−1fl(s,Xs)dW l

s

∥∥∥2

+ 3
Γ2(α)E

∥∥∥∫ t0(t− s)α−1g(s,Xs)ds
∥∥∥2
.

By Lemma 8 and Hölder’s inequality, we obtain

E∥(LX)(t)∥2 ≤ 3E∥x∥2 + 3
Γ2(α)E

∫ t
0(t− s)2α−2|f(s,Xs)|2ds

+ 3
Γ2(α)E

∥∥∥∫ t0(t− s)α−1g(s,Xs)ds
∥∥∥2

≤ 3E∥x∥2 + 3
Γ2(α)E

∫ t
0(t− s)2α−2|f(s,Xs)|2ds

+ 3t2α−1

(2α−1)Γ2(α)E
∫ t
0 ∥g(s,Xs)∥2ds.

From (H1) and (H2), we derive

E∥(LX)(t)∥2 ≤ 3E∥x∥2 + 3
Γ2(α)E

∫ t
0(t− s)2α−22(|f(s,Xs)−f(s,0)|2 + |f(s,0)|2)ds

+ 3t2α−1

(2α−1)Γ2(α)E
∫ t
0 2(∥g(s,Xs)−g(s,0)∥2 +∥g(s,0)∥2)ds

≤ 3E∥x∥2 + 3
Γ2(α)E

∫ t
0(t− s)2α−22(K2∥Xs∥2 + |f(.,0)|2∞)ds

+ 3t2α−1

(2α−1)Γ2(α)E
∫ t
0 2(K2∥Xs∥2 +∥g(s,0)∥2)ds

≤ 3E∥x∥2 + 6t2α−1|f(.,0)|2∞
(2α−1)Γ2(α) + 6t2α−1

(2α−1)Γ2(α)
∫ t
0 ∥g(s,0)∥2ds

+ 6K2t2α

(2α−1)Γ2(α)∥X∥2
H2

+ 6K2t2α−1

(2α−1)Γ2(α)∥X∥2
H2
.
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Moreover,

sup
t∈[0,T ]

E∥(LX)(t)∥2 ≤ 3E∥x∥2 + 6T 2α−1|f(.,0)|2∞
(2α−1)Γ2(α) + 6T 2α−1

(2α−1)Γ2(α)

∫ T

0
∥g(s,0)∥2ds

+
(

6K2T 2α

(2α−1)Γ2(α) + 6K2T 2α−1

(2α−1)Γ2(α)

)
∥X∥2

H2 .

Therefore, ∥LX∥H2 <∞. Hence, the operator L is well-defined.

Theorem 7. Assume that (H1) and (H2) hold. Then the problem (1.1) has a unique
global solution on [0,∞).

Proof. We show that, for every T > 0, the operator L is a contractive map with respect to
some Bielecki-type norm on H2 which will be defined later. Let X,Y ∈ H2 and t ∈ [0,T ].
Then

E∥(LX)(t)− (LY )(t)∥2 = E

∥∥∥∥∥∥ 1
Γ(α)

∞∑
l=1

∫ t

0
(t− s)α−1(fl(s,Xs)−fl(s,Ys))dW l

s

+ 1
Γ(α)

∫ t

0
(t− s)α−1(g(s,Xs)−g(s,Ys))ds

∥∥∥∥∥
2

≤ 2
Γ2(α)E

∥∥∥∥∥∥
∞∑
l=1

∫ t

0
(t− s)α−1(fl(s,Xs)−fl(s,Ys))dW l

s

∥∥∥∥∥∥
2

+ 2
Γ2(α)E

∥∥∥∥∥
∫ t

0
(t− s)α−1(g(s,Xs)−g(s,Ys))ds

∥∥∥∥∥
2
.

By Lemma 8 and Hölder’s inequality, we obtain

E∥(LX)(t)− (LY )(t)∥2 ≤ 2
Γ2(α)

∫ t
0(t− s)2α−2E∑∞

l=1(fl(s,Xs)−fl(s,Ys))2ds

+ 2t
Γ2(α)

∫ t
0(t− s)2α−2E∥g(s,Xs)−g(s,Ys)∥2ds

≤ 2
Γ2(α)

∫ t
0(t− s)2α−2E|f(s,Xs)−f(s,Ys)|2ds

+ 2t
Γ2(α)

∫ t
0(t− s)2α−2E∥g(s,Xs)−g(s,Ys)∥2ds.
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From (H1), we derive

E∥(LX)(t)− (LY )(t)∥2 ≤ 2K2

Γ2(α)
∫ t
0(t− s)2α−2E∥Xs−Ys∥2ds

+ 2tK2

Γ2(α)
∫ t
0(t− s)2α−2E∥Xs−Ys∥2ds

= 2K2

Γ2(α)(t+1)
∫ t
0(t− s)2α−2E∥Xs−Ys∥2ds.

Moreover

E∥(LX)(t)−(LY )(t)∥2

E2α−1(γt2α−1) ≤ 2(t+1)K2

E2α−1(γt2α−1)Γ2(α)
∫ t
0(t− s)2α−2E2α−1(γs2α−1)× sup

s∈[0,T ]

√√√√ E∥Xs−Ys∥2

E2α−1(γs2α−1)

2

ds.

If we choose ∥ · ∥ = ∥ · ∥γ for the Bielecki-type norm on H2, then definition of ∥ · ∥γ and
the Lemma 8 imply that

E∥(LX)(t)−(LY )(t)∥2

E2α−1(γt2α−1) ≤ 2(t+1)K2

Γ2(α) ∥X−Y ∥2
γ

(∫ t

0 (t−s)2α−2E2α−1(γs2α−1)ds
E2α−1(γt2α−1)

)
≤ 2(t+1)K2Γ(2α−1)

γΓ2(α) ∥X−Y ∥2
γ .

In particular,

∥L(X)−L(Y )∥γ ≤ λ∥X−Y ∥γ , where λ=

√√√√2(T +1)K2Γ(2α−1)
γΓ2(α) .

Choose and fix a positive constant γ such that

γ >
3(T +1)K2Γ(2α−1)

Γ2(α) .

Then λ < 1, and therefore L is a contraction mapping. According to the Banach fixed
point theorem, the unique fixed point of this map is the unique solution on H2 of the
problem (3.1.1).

We are now in the position to prove the continuous dependence of solutions on the
initial data on bounded intervals for the problem (3.1.1).
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Theorem 8. Assume that (H1) holds. Then for any bounded time interval [0,T ] the
solution of problem (3.1.1) depends continuously on x, i.e.

lim
x−→η

∥Xx−Xη∥H2 = 0.

Proof. Fix T > 0 and x,η ∈ R. Let Xx
t and Xη

t be two solutions of problem (3.1.1), i.e.

Xx
t = x+ 1

Γ(α)

∞∑
l=1

∫ t

0
(t− s)α−1fl(s,Xx

s )dW l
s + 1

Γ(α)

∫ t

0
(t− s)α−1g(s,Xx

s )ds,

Xη
t = η+ 1

Γ(α)

∞∑
l=1

∫ t

0
(t− s)α−1fl(s,Xη

s )dW l
s + 1

Γ(α)

∫ t

0
(t− s)α−1g(s,Xη

s )ds.

It follows that

E∥Xx
t −Xη

t ∥2 = E
∥∥∥x−η+ 1

Γ(α)
∑∞
l=1

∫ t
0(t− s)α−1(fl(s,Xx

s )−fl(s,Xη
s ))dW l

s

+ 1
Γ(α)

∫ t
0(t− s)α−1(g(s,Xx

s )−g(s,Xη
s ))ds

∥∥∥2
.

Then

E∥Xx
t −Xη

t ∥2 ≤ 3E∥x−η∥2

+ 3
Γ2(α)E

∥∥∥∑∞
l=1

∫ t
0(t− s)α−1(fl(s,Xx

s )−fl(s,Xη
s ))dW l

s

∥∥∥2

+ 3
Γ2(α)E

∥∥∥∫ t0(t− s)α−1(g(s,Xx
s )−g(s,Xη

s ))ds
∥∥∥2
.

By Lemma 8 and Hölder’s inequality, from (H1), we get

E∥Xx
t −Xη

t ∥2 ≤ 3E∥x−η∥2 + 3K2

Γ2(α)(t+1)
∫ t

0
(t− s)2α−2E∥Xx

s −Xη
s ∥2ds.

By the definition of ∥ · ∥γ , we have

E∥Xx
t −Xη

t ∥2

E2α−1(γt2α−1) ≤ 3E∥x−η∥2 + 3(t+1)K2

Γ2(α) ∥Xx−Xη∥2
γ

(∫ t
0(t− s)2α−2E2α−1(γs2α−1)ds

E2α−1(γt2α−1)

)
.

Therefore, using Lemma 8, we obtain

∥Xx−Xη∥2
γ ≤ 3E∥x−η∥2 + 3(T +1)K2Γ(2α−1)

γΓ2(α) ∥Xx−Xη∥2
γ .
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Since γ > 3(T+1)K2Γ(2α−1)
Γ2(α) , then we have

(
1− 3(T +1)K2Γ(2α−1)

γΓ2(α)

)
∥Xx−Xη∥2

γ ≤ 3E∥x−η∥2.

We conclude

lim
x−→η

∥Xx−Xη∥H2 = 0.

The proof is complete.

3.2.1 Transportation inequality

Let (X,A), (Y,Y) be a two measurable spaces, where A and Y is any given Borel σ-
algebras, respectively on X and Y . We denote by P(X), P(Y ) and P(X×Y ) the spaces
of probability measures, respectively on X, Y and X×Y . Before starting this study, we
have to make clear what a way of transportation, or a transport plan (in the probability
literature it is also called the coupling between probability measures). It is the work
required to move mass from a location A onX (A∈ A) to a location B on Y (B ∈ Y) taking
into account the transportation cost as a Borel function c : X×Y −→ [0,∞] which tells
us the cost of such transport. Hence Kantorovich’s formulation of the optimal transport
problem asks to find

inf
π∈Θ(µ,ν)

(∫
X×Y

c(x,y)dπ(x,y)
)
,

where Θ(µ,ν) is the set of all probability measures on the product space X × Y with
marginals µ on X and ν on Y . More explicitly, given µ ∈ Pp(X) and ν ∈ Pp(Y ) then

Θ(µ,ν) = {π ∈ P(X×Y ) : π(A×Y ) = µ(A), π(X×B) = ν(B) ∀(A,B) ∈ A×Y}.

If Θ(µ,ν) is nonempty, convex set then, π ∈ Θ(µ,ν) if and only if it is a nonnegative
measure on X ×Y such that, for all measurable functions (φ,ψ) ∈ L1(dµ) ×L1(dν) ( or
in L∞(dµ)×L∞(dν)),∫

X×Y
(φ(x)+ψ(y))dπ(x,y) =

∫
X

(φdµ+
∫
Y
ψdν.

61



And Kantorovich’s optimal transportation problem has a dual formulation is given by the
following theorem

Theorem 9. (Kantorovich duality [80]) Let X and Y be Polish spaces, let µ ∈ P(X) and
ν ∈ P(Y ), and let c :X×Y −→ [0,∞] be a lower semi-continuous cost function. Whenever
π ∈ Θ(µ,ν) and (φ,ψ) ∈ L1(dµ)×L1(dν), define

I[π] =
∫
X×Y

c(x,y)dπ(x,y), J(φ,ψ) =
∫
X
φdµ+

∫
Y
ψdν.

Define Φc to be the set of all measurable functions (φ,ψ) ∈ L1(dµ)×L1(dν) satisfying

φ(x)+ψ(y) ≤ c(x,y),

for µ-almost all x ∈X, ν-almost all y ∈ Y .
Then

inf
π∈Θ(µ,ν)

I[π] = sup
Φc

J(φ,ψ).

Note that, a topological space (X,τ) is said to be Polish if there exists a distance d on X

inducing τ such that (X,d) is complete and separable.

Let (X,d) be a Polish metric space. We denote by Pp(X) the space of probability
measures with finite moments of order p, i.e.

Pp(X) = {µ∈ P(X) :
∫
X
d(x0,x)pdµ(dx)<∞ for some (and thus for all) x0 ∈X}.

For every p ∈ [1,∞) we define the Wasserstein distance Wp : Pp(X)×Pp(X) → R+ by

Wp(µ,ν) = inf
π∈
∏

(µ,ν)

(∫
X×X

d(x,y)pdπ(x,y)
) 1

p

,

where ∏(µ,ν) is the set of all probability measures on the product space X ×X with
marginals µ and ν. If (X,d) be a complete separable metric space, then (Pp(X),Wp)
is also a complete separable metric space. For investigation of the Monge-Kantorovich
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optimal transportation problem, this distance plays an important role in the minimal
cost to transport distribution µ into ν at the cost rate (cost function) d. Proprieties and
some applications of the Wasserstein distance can be find in the important contribution
by Ambrosio et al. [4] and Villani [80].

The Wasserstein distance exponent 1, is given by

W1(µ,ν) = inf
π∈
∏

(µ,ν)

(∫
X×X

d(x,y)dπ(x,y)
)
,

will be called the Kantorovich-Rubinstein distance. Its can also be defined in an alterna-
tive way by the following Kantorovich-Rubinstein duality formula,

W1(µ,ν) = sup
∥ψ∥Lip≤1

{∫
X
ψdµ−

∫
X
ψdν

}
,

where ∥ψ∥Lip is the best admissible Lipschitz constant of a Lipschitz function ψ on X.

For p= 2, the relative entropy of the probability measure ν with respect to µ is defined
by

H(µ|ν) =


∫
X ln dν

dµdν, ν ≪ µ,

∞, otherwise.

Definition 5. Given probability measure µ, if there exists C > 0 such that for every
probability measure ν,

W2(µ,ν) ≤
√
CH(µ|ν),

then we say µ satisfies the transportation and entropy inequality.

Finally, we give some property of the space (P2(X),W2), it is as

1. If X is a Polish space endowed with a distance d, then (Pp(X),Wp) is separable.

2. The space (Pp(X),Wp) is compact, if (X,d) is compact.
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3. Let µ be a probability measure on a Hilbert space X and let a be an element of X.
Then

W2(µ,δa)2 =
∫
X

∥x−a∥2dµ(x),

where δa is the dirac measure on Pp(X). In particular, the mean of µ, which is
defined as m=

∫
X xdµ(x), is the unique solution of the minimization problem

inf
a∈X

W2(µ,δa),

and the corresponding cost is just the variance of µ.

In 1996 Talagrand [77] estimated the transportation distance (or Wasserstein dis-
tance) with a quadratic cast of the standard Guassian measure by the entropy functional.
Transportation-cost inequalities have been recently deeply studied, because of their con-
nection between the concentrations of measure phenomenon, or for deviation inequalities
for Markov processes [30, 49]. The Talagrand inequality was generalized by Otto and
Villani [58].

By means of Girsanov’s formula, Djellout et al. [22] obtained a direct proof of Tala-
grand’s transportation inequality for the law of a diffusion process. This idea was used
for stochastic differential equations [5, 8, 9, 10, 50].

Now, we will establish the transport inequality for the solution of the following prob-
lem: 

cDαXt = f(t,Xt)dWt+g(t,Xt)dt, t ∈ [0,T ],

X0 = x ∈ R,

(3.2.1)

where α ∈ (1
2 ,1), f,g : R+ ×R → R are continuous functions.

Theorem 10. Assume that the conditions (H1) and that there exists M > 0 such that

|f(t,x)| ≤M, for all (t,x) ∈ [0,T ]×R,

hold, and let Px be a law of the proesses Xt(x, ·) solution of the problem (3.2.1). Then

W2(Px,Q) ≤
√

2CH(P|Q).
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Proof. Let Q ∈ P(C([0,T ],R)) such that Q ≪ Px. Consider

Q̂ = dQ
dPx

(X·(x, ·))P.

Then

H(Q̂|P) =
∫

Ω
ln
(
dQ̂
dP

)
dQ̂

=
∫

Ω
ln
(
dQ
dPx

(X·(x, ·))
)
dQ
dPx

(X·(x, ·))dP

=
∫
C([0,T ],R)

ln
(
dQ
dPx

)
dQ
dPx

dPx

=
∫
C([0,T ],R)

ln
(
dQ
dPx

)
dQ

= H(Q|Px).

As in [22], there exists f̂ ∈ L2([0,T ],R) with
∫ T
0 |f̂(s)|2ds <∞, P-almost surely, such that

H(Q̂|P) =H(Q|Px) = 1
2EQ̂

(∫ T

0
|f̂(s)|2ds

)
.

By the Girsanov theorem, the following process Ŵt defined by

Ŵt =Wt−
∫ t

0
f̂(s)ds

is a Brownian motion with respect the filtration (Ft)t≥0 on the probability space (Ω,F ,Q̂).
We consider the following problem for the fractional stochastic differential equation

cDαYt = f(t,Yt)dŴt+g(t,Yt)dt, t ∈ [0,T ],

Y0 = x ∈ R.

(3.2.2)

From Theorem 7 there exists a unique solution Y ∈ H2([0,T ]) such that

Yt = x+ 1
Γ(α)

∫ t

0
(t− s)α−1f(s,Ys)dŴs+ 1

Γ(α)

∫ t

0
(t− s)α−1g(s,Ys)ds.
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Under Q̂, the law of (Yt)t∈[0,T ] is exactly Px. Hence (X,Y ), under Q̂, is a coupling of
(Q,Px). This implies that

W2(Q,Px)2 ≤ EQ̂∥X−Y ∥2
∞.

Let t ∈ [0,T ]. Then

EQ̂|Xt−Yt|2 = EQ̂

∣∣∣∣∣ 1
Γ(α)

∫ t

0
(t− s)α−1(f(s,Xs)−f(s,Ys))dWs

+ 1
Γ(α)

∫ t

0
(t− s)α−1f(s,Ys)f̂(s)ds

+
∫ t

0
(t− s)α−1(g(s,Xs)−g(s,Ys))ds

∣∣∣∣∣
2

≤ 3
Γ2(α)EQ̂

∣∣∣∣∣
∫ t

0
(t− s)α−1(f(s,Xs)−f(s,Ys))dWs

∣∣∣∣∣
2

+ 3
Γ2(α)EQ̂

∣∣∣∣∣
∫ t

0
(t− s)α−1f(s,Ys)f̂(s)ds

∣∣∣∣∣
2

+ 3
Γ2(α)EQ̂

∣∣∣∣∣
∫ t

0
(t− s)α−1(g(s,Xs)−g(s,Ys))ds

∣∣∣∣∣
2
.

Thus

EQ̂|Xt−Yt|2 ≤ 3K2

Γ2(α)

∫ t

0
(t− s)2α−2EQ̂|Xs−Ys|2ds

+ 3
Γ2(α)EQ̂

∣∣∣∣∣
∫ t

0
(t− s)α−1f(s,Ys)f̂(s)ds

∣∣∣∣∣
2

+ 3
Γ2(α)EQ̂

∣∣∣∣∣
∫ t

0
(t− s)α−1(g(s,Xs)−g(s,Ys))ds

∣∣∣∣∣
2
.
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It follows from Hölder’s inequality,

EQ̂|Xt−Yt|2 ≤ 3K2

Γ2(α)

∫ t

0
(t− s)2α−2EQ̂|Xs−Ys|2ds

+ 3
Γ2(α)EQ̂

∣∣∣∣∣
∫ t

0
(t− s)α−1f(s,Ys)f̂(s)ds

∣∣∣∣∣
2

+ 3K2

Γ2(α)

∫ t

0
(t− s)2α−2ds

∫ t

0
EQ̂|Xs−Ys|2ds

≤ 3K2

Γ2(α)

∫ t

0
(t− s)2α−2EQ̂|Xs−Ys|2ds

+3K2M2

Γ2(α)

∫ t

0
(t− s)2α−2dsEQ̂∥f̂∥2

L2

+ 3K2

Γ2(α)

∫ t

0
(t− s)2α−2ds

∫ t

0
EQ̂|Xs−Ys|2ds.

Then

EQ̂|Xt−Yt|2 ≤ 3K2

Γ2(α)

∫ t

0
(t− s)2α−2EQ̂|Xs−Ys|2ds

+ 3K2M2

(2α−1)Γ2(α)t
2α−1EQ̂∥f̂∥2

L2

+ 3K2

Γ2(α)

∫ t

0
(t− s)2α−2ds

∫ t

0
EQ̂|Xs−Ys|2ds.

Further, we have

EQ̂|Xt−Yt|2 ≤ 3K2M2T 2α−1

(2α−1)Γ2(α)EQ̂∥f̂∥2
L2 + 3K2T 2α−1

(2α−1)Γ2(α)

∫ t

0
EQ̂|Xs−Ys|2ds

+ 3K2

Γ2(α)

∫ t

0
(t− s)2α−2EQ̂|Xs−Ys|2ds.

Let
V(t) = C1 +C2

∫ t

0
EQ̂|Xs−Ys|2ds, t ∈ [0, b].

Then
V ′(t) = C2EQ̂|Xt−Yt|2, V(0) = C1

and
EQ̂|Xt−Yt|2 ≤ V(t)+C3

∫ t

0
(t− s)β−1EQ̂|Xs−Ys|2ds,
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where

C1 = 3K2M2T 2α−1

(2α−1)Γ2(α)EQ̂∥f̂∥2
L2 , C2 = 3K2T 2α−1

(2α−1)Γ2(α) , C3 = 3K2

Γ2(α) , β = 2α−1.

Furthermore, by Lemma 2

EQ̂|Xt−Yt|2 ≤ V(t)+
∫ t

0

∞∑
n=1

(C3Γ(β))n
Γ(nβ) (t− s)nβ−1V(s)ds

≤ V(t)+
∫ t

0

∞∑
n=1

(C3Γ(β))n
Γ(nβ) (t− s)nβ−1V(t)ds.

Therefore

EQ̂|Xt−Yt|2 ≤
[
1+

∞∑
n=1

(C3Γ(α)T β)n
Γ(nβ+1)

]
V(t).

Then

EQ̂|Xt−Yt|2 ≤ C1E(C3Γ(β)Tα)+C2E(C3Γ(β)Tα)
∫ t

0
EQ̂|Xs−Ys|2ds.

By Gronwall’s lemma

EQ̂|Xt−Yt|2 ≤ C1E(C3Γ(β)Tα)etC2E(C3Γ(β)Tα) t ∈ [0,T ].

This means that

EQ̂|Xt−Yt|2 ≤ C

2 EQ̂∥f̂∥2
L2 t ∈ [0,T ],

where

C = 6K2M2T 2α−1eTC2E(C3Γ(β)Tα)

(2α−1)Γ2(α) E(C3Γ(β)Tα).

Thus it follows,

W 2
2 (Px,Q) ≤ CH(Px|Q).

The proof of this lemma is complete.

Now, we give the continuity dependance result via the Wasserstein distance.
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Theorem 11. Assume that the condition (H1) holds. Then, for every pair of solutions
Xt,Yt to (3.2.1), with respective laws µt,νt ∈ P2(H2([0,T ])), such that the initial data
X0,Y0 ∈ L2(Ω,P), we have

W2(µt,νt) ≤ C(t)W2(µ0,ν0),

where µ0,ν0 are laws of X0,Y0, respectively, and C ∈ C([0,T ],R).

Proof. From [80], it is clear that we can rewrite W2 in the following form,

W2(µt,νt) = inf{
[
E∥X· −Y·∥2

∞
]2

: law(Xt) = µt, law(Yt) = νt}.

Since Xt,Yt are solutions of (3.2.1), then

Xt =X0 + 1
Γ(α)

∫ t

0
(t− s)α−1f(s,Xs)dWs+ 1

Γ(α)

∫ t

0
(t− s)α−1g(s,Xs)ds

and

Yt = Y0 + 1
Γ(α)

∫ t

0
(t− s)α−1f(s,Ys)dWs+ 1

Γ(α)

∫ t

0
(t− s)α−1g(s,Ys)ds.

Thus

E|Xt−Yt|2 = E
∣∣∣∣∣X0 −Y0 + 1

Γ(α)

∫ t

0
(t− s)α−1(f(s,Xs)−f(s,Ys))dWs

+
∫ t

0
(t− s)α−1(g(s,Xs)−g(s,Ys))ds

∣∣∣∣∣
2

≤ 3E|X0 −Y0|2

+ 3
Γ2(α)E

∣∣∣∣∣
∫ t

0
(t− s)α−1(f(s,Xs)−f(s,Ys))dWs

∣∣∣∣∣
2

+ 3
Γ2(α)E

∣∣∣∣∣
∫ t

0
(t− s)α−1(g(s,Xs)−g(s,Ys))ds

∣∣∣∣∣
2

≤ 3E|X0 −Y0|2 + 3K2

Γ2(α)

∫ t

0
(t− s)2α−2E|Xs−Ys|2ds

+ 3K2t2α−1

(2α−1)Γ2(α)

∫ t

0
E|Xs−Ys|2ds.
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By the same argument of Theorem 8, we can prove that there exist M1,M2 ≥ 0 such
that

E|Xt−Yt|2 ≤M1e
M2tE|X0 −Y0|2, t ∈ [0,T ].

Since law(Xt) = µt and law(Xt) = µt, then

W 2
2 (µt,νt) ≤ E|Xt−Yt|2.

By taking the infimum over X0 and Y0, we obtain

W 2
2 (µt,νt)2 ≤M1e

M2tW 2
2 (µ0,ν0), t ∈ [0,T ].
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Chapter 4

Rich dynamics in a stochastic

predator-prey model

In terms of mathematical modeling, the global dynamics of predator-prey systems can
be affected by many factors such as death rate, birth rate, time delay, and so on. One
crucial component to describe the relationship between the prey and predator populations
is the predator-prey interaction (also called functional response). This latter one can be
classified into many different types such as Holling I − IV types, Hassell-Varley type,
Crowley-Martin type, and Beddington-DeAnglis type, and so on. In savanna forests, most
domestic species live in huge groups permanently and establish stable social relationships,
such as elephants, zebras, buffaloes, bees, deers and others. This behavior gives them
various advantages, where the weakest preys will be inserted in the interior of the herd and
the strongest ones take the position in the exterior corridor of the herd. This strategy may
reduce the predation rate thanks to the protection zone formed by the prey. In addition,
its increases the vigilance for the prey against the predator, which causes confusion for
the predator and distracts the predator from his target. Furthermore, the social behavior
improves the method of locating food, also it contributes to the process of promoting
feeding to different herds through the exchange of information regarding the location of
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food or how to get it. The first mathematical approach of the social behavior has been
offered by Venturino et.al [1], where they have supposed that the interaction between the
prey population and the predator population is done only on the outermost of the herd
formed by the prey. It is equivalent to say that the number of the captured prey by a
successful predator attack will be proportional to the density which is on the boundary of
the herd. This latter leads to a new functional response in terms of square root of the prey
density. Later, Braza [14] takes in the account the average time for the predator to process
the hunted prey, where he investigate with a new interaction functional with a square root
by using an approximation of a classical Holling II functional response. The phenomenon
of the herds for the animals tempted many researchers, which enriched the environmental
and ecological field. We refer the readers to papers [13, 15, 70, 71, 76, 78, 79, 82]

Besides, the prey herd’s shape changes from one species to another depending on the
physiological and sociological characteristics that control the behaviors of living beings.
However, the way at which the animals interact with their environment, the number
of their individuals as well as their individual efficiency, all of these factors and more
will determine how the prey form their herd. The concept of herd shape for animals was
modeled and introduced for the first time by Venturino et al in [79], where they generalized
the interaction between the prey and the predator in both cases 2D and 3D of herd’s forms
with a new functional response in term of a new parameter which modeling the shape of
the herd. For better explanation, we consider the following deterministic model that been
introduced in [79] 

d

dt
u(t) = ρu(t)

(
1− u(t)

k

)
− δuα(t)v(t),

d

dt
v(t) = −ηv(t)+ eδuα(t)v(t),

(4.0.1)

where u(t) and v(t) stands for prey and predator density at time t, respectively. ρ is the
intrinsic growth rate. k is the environment carrying capacity for the prey. η represents
the natural mortality rate for the predators. δ stands for the predation rate of the prey
population. e is the conversion rate of the prey density to a predator density and 0<α< 1
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represents the rate of the prey herd’s shape. For the biological relevance of the parameter
α, we consider a simple example for the case of 2D herd shape. We assume that the
prey forms a group in R2 with some regular shape such as the circles or the squares,
we find that the number of the captured preys by the predator will be proportional to
the square root of the prey population density (i.e. α = 1/2). We consider of course the
interaction between the two species that affects mainly the prey individuals which are in
the boundary of the herd. Clearly, the regular forms do not only exist in the case of 2D.
However, in the case of 3D such as birds or sardines, where the prey forms a regular form
(cube, sphere and so on). Then, the consumed prey by a predaor will be proportional to
u2/3. Obviously, for α= 1, The model (4.0.1) turn into the classical predator-prey model
of Lotka and Volterra [59, 81]. In these last years, the model (4.0.1) is widely studied
by several researchers. In [82], the authors obtained the global dynamics of the model
(4.0.1). They discussed the singularity near the original equilibrium point. Further, the
dynamical behavior of the model (4.0.1) has been investigated in the presence of spatial
diffusion in [26]. More recently, the author in [25] has proposed a new approach of the
system (4.0.1) with Holling II functional response as follows

d

dt
u(t) = ρu(t)

(
1− u(t)

k

)
− δuα(t)v(t)

1+ δthuα(t) ,
d

dt
v(t) = −ηv(t)+ eδuα(t)v(t)

1+ δthuα(t) ,
(4.0.2)

we mention that the parameters of model (4.0.1) remain the same for model (4.0.2) and
the new parameter th represents the time spent by predator in handling with the prey
(please see [14, 25]). The main interest in [25] is to study the impact of the herd shape
rate α on the global dynamics of the model (4.0.2) with the presence of the time delay. In
addition, the author has proved that the time delay plays an important role on the stability
of the equilibria which gives a rich dynamics such as Hopf bifurcation and transcritical
bifurcation.

In the real life situations, All ecological processes are inevitably affected by envi-
ronmental noise which represent an important parameter in an ecosystem, however, the

73



0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 Prey Density

 C
a
p

t
u

r
e
d

 P
r
e
y
 B

y
 O

n
e
 P

r
e
d

a
t
o

r

 

 

 α=0.2

 α=0.5

 α=0.7

 α=0.9

Figure 4.1: Impact of the prey herd’s shape rate α on the quantity of the captured prey by

one predator for different values of α where δ = 0.5, th = 1.

mathematical modeling of ecological phenomena by a deterministic approach gives lim-
itations in term of results, which leads to difficulties in fitting of data and predicting
the future dynamics of the system precisely. Up to now, a large number of researchers
have introduced a stochastic environmental variation using the Brownian motion into
parameters in the deterministic model to construct a stochastic predator-prey models,
which has been considered as a stochastic fluctuations. For more details on the stochastic
predator-prey models, May [62] emphasizes out that due to continuous environmental
fluctuation, the parameters in a systems such as the birth rates, carrying capacity, death
rates and so on exhibited random fluctuations to a great or lesser extent. X. Zhang et.al
[89] considered a stochastic predator-prey model with hyperbolic mortality and Holling
type II functional response in which they founded sufficient conditions for the existence
and uniqueness of an ergodic stationary distribution and derived sufficient conditions for
extinction of the predator populations. LV. Jingliang and Ke. Wang [35] have deeply dis-
cussed the persistence, permanent and extinction of a stochastic model of a predator-prey
system with Holling-type II functional response. Sengupta et.al [72] examined a stochas-

74



tic non autonomous predator-prey system with Holling-type III functional response and
predator’s intra-specific competition where they obtained the stochastic permanence. M.
Liu and C. Bai [43] estabilished the Sufficient and necessary criteria for the existence
of optimal harvesting strategy for a stochastic predator-prey model. In the literature,
the kind of stochastic predator-prey interaction was widely used, we refer the readers to
[18, 27, 34, 36, 37, 44, 45, 46, 47, 48, 61, 83, 84, 89, 90, 91].

The present chapter is organized as follows. Sec.4.1 is devoted to the formulation of the
mathematical model and gives some results on the stochastic differential equations which
have been used in the rest of the sections. In Sec.4.2, the properties of the stochastic
predator-prey model (4.1.1) have been established including: the global existence and
uniqueness for stochastic boundedness of positive solution by using the Itô’s formula and
the comparison theorem of stochastic equations. The persistence and extinction criteria
of the species have been discussed in Sec.4.3, where the sufficient conditions for extinction
in two case as well as the persistence of the species have been obtained. In Sec.4.4, the
existence and uniqueness of an ergodic stationary distribution of the positive solutions
for the system (4.1.1) have been proved under certain parametric restrictions. Several
numerical simulations have been offered in Sec.4.5 to support the theoretical results.
Finally, conclusions and discussions ended this paper in Sec.4.6.

4.1 The mathematical model

Motivated by the above referred works and inspired by the work in [25], we introduce a
random fluctuations to system (4.0.2). Our principal topic is to prove that the random
fluctuations can completely change the dynamics generated by the model (4.0.2), where
in this case the extinction of both species occur. There are many methods to establish
the stochastic fluctuations into dynamical systems. One of the most used approach was
adopted in [35, 46, 47, 69]. We suppose that the intrinsic growth rate of prey and the
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death rate of predator are mainly affected by environmental noise such that

ρ−→ ρ+βdW1(t), −η −→ −η+γdW2(t),

where Wi(t)(i = 1,2) are the mutually independent standard Browrian motions with
Wi(0) = 0. β and γ are positive and represent the intensities of the white noise. The
stochastic predator-prey version corresponding to the model (4.0.2) takes the following
form 

du(t) =
[
ρu(t)

(
1− u(t)

k

)
− δuα(t)v(t)

1+ δthuα(t)

]
dt+βu(t)dW1(t),

dv(t) =
[
−ηv(t)+ eδuα(t)v(t)

1+ δthuα(t)

]
dt+γv(t)dW2(t),

(4.1.1)

where Wi(t) for i= 1,2 be a mutually independent standard Browrian motions defined on
a complete filtered probability space (Ω,F ,{Ft}t>0,P), with {Ft}t>0 satisfying the usual
conditions (i.e., it is increasing and right continuous while F0 contains all P−null sets).
For our best of knowledge, the dynamics of the stochastic predator-prey model (4.1.1)
have never been studied.

4.2 Properties of the solution

In this section, according to the best result in [34], we prove that the model (4.1.1) is
well-posed in the sense that for any pair of positive initial value (u(0),v(0)), the system
(4.1.1) has a unique global solution which remains positive and bounded. By using the
Lypunov analysis method [19, 48], we show that the solution is global. Next, we analysis
the Boundedness of the state variables u and v.

4.2.1 Existence and uniqueness of the global positive solution

Since u(t) and v(t) denote the population densities of the prey and the predator, respec-
tively then, we are only interested in the positive solutions. Thus, we have the following
theorem
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Theorem 12. For each initial values (u(0),v(0)) ∈ R2
+, there exists a unique positive

local solution (u(t),v(t)) of system (4.1.1) for all t ∈ [0;τe) almost surely (a.s.), and the
solution remains in R2

+ with probability 1 where τe is the explosion time.

Proof. Putting
X(t) = lnu(t), Y (t) = lnv(t),
then from the Itô’s formula in Lemma.7, the system (4.1.1) can be written as

dX(t) =
[
X(t)

(
ρ− β2

2 − eX(t)

k

)
− δeαX(t)

1+ δtheαX(t) e
Y (t)

]
dt+βdW1(t),

dY (t) =
[
−ηeY (t) − γ2

2 + eδeαX(t)

1+ δtheαX(t)

]
dt+γdW2(t),

(4.2.1)

with the initial values X(0) = lnu(0), Y (0) = lnv(0). It is easy to seen that the right
hand side of the above system satisfy the local Lipschitz condition, then for any given
initial values X(0)> 0,Y (0)> 0 there is a unique maximal local solution (X(t),Y (t)) for
all t ∈ [0;τe) where τe is the explosion time of the solution. Now, using the Itô’s formula
in Lemma.7, we obtain u(t) = eX(t) and v(t) = eY (t) as the positive local solution of the
system (4.1.1) with the initial value u(0)> 0, v(0)> 0. The proof is completed.

Now, we focus on proving the global existence of the solution for our proposed model
(4.1.1). For this task, we only need to prove that τe goes to the infinity (i.e. τe = ∞),
then we have the following theorem

Theorem 13. For each (u(0),v(0)) ∈ R2
+, there exists a unique positive global solution

(u(t),v(t)) of system (4.1.1) for all t > 0 almost surly (a.s.), and the solution remains in
R2

+ with probability 1.

Proof. Let m0, be a sufficiently large nonnegative integer number, such that u(0) and v(0)
lie inside in the interval [ 1

m0
,m0]. For any integer m >m0, we can define the following

stopping times as [60]

τm = inf
{
t ∈ [0;τe) : u(t) /∈

( 1
m
,m
)

or v(t) /∈
( 1
m
,m
)}

. (4.2.2)
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Obviously, τm increases when m−→ ∞. Set τ∞ = lim
m→+∞

τm, with τ∞ < τe a.s.. Next, we
only need to prove that τ∞ = ∞, then τe = ∞ for which we obtain (u(t),v(t)) ∈ R2

+ a.s.
for all t ≥ 0. If this statement is not verified, then there exist T > 0 and ϵ ∈ (0,1) such
that

P(τ∞ ≤ T )> ϵ. (4.2.3)

Consequently, there is an integer m1 >m0 such that

P(τm ≤ T )> ϵ, for all m≥m1. (4.2.4)

Now, let
V (u,v) = u−1− lnu+ 1

e
(v−1− lnv) (4.2.5)

be a C2 function. It is not difficult to prove that V (u,v) ≥ 0 for all (u,v) ∈ R2
+. This

statement comes from the following inequality

u−1− lnu≥ 0, ∀u > 0. (4.2.6)

Using the Itô’s formula in Lemma.7 yields

dV (u,v) = LV (u,v)dt+β(u−1)dW1(t)+γ
1
e

(v−1)dW2(t), (4.2.7)

from the definition of the operator L given above, a straight forward calculation gives

LV = ρu− ρ

k
u2 −ρ+ ρ

k
u+ δuαv

1+ δthuα
− δv

u1−α(1+ δthuα) − η

e
v+ η

e

− δuαv

1+ δthuα
+ δuα

1+ δthuα
+ 1

2β
2 + 1

2eγ
2

≤
ρ(k+1)

k
u− ρ

k
u2 + δuα

1+ δthuα
+ η

e
+ 1

2β
2 + 1

2eγ
2

≤ ρ(k+1)
k

u− ρ

k
u2 + 1

th
+ η

e
+ 1

2β
2 + 1

2eγ
2

≤ ρ(k+1)2

4k + 1
th

+ η

e
+ 1

2β
2 + 1

2eγ
2

≤ M,
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where
ρ(k+1)2

4k = sup
u∈R+

{
ρ(k+1)

k
u− ρ

k
u2
}
,

and M is a positive constant. Then we have

dV (u,v) ≤Mdt+β(u−1)dW1(t)+γ(v−1)dW2(t). (4.2.8)

Now, integrating both sides of the above inequality from 0 to τm∧T and take the expec-
tation on both sides leads to

EV (u(τm∧T ),V (τm∧T )) ≤ V (u(0),v(0))+ME(τm∧T ), (4.2.9)

which gives
EV (u(τm∧T ),V (τm∧T )) ≤ V (u(0),v(0))+MT, (4.2.10)

where, τm ∧T = min{τm,T}. Taking Ωm = {τm ≤ T} for m ≥ m1 and from (4.2.4) we
obtain P(Ωm) ≥ ϵ. Note that for any ω ∈ Ωm there exists u(τm,ω) or v(τm,ω) equals
either m or 1

m . Hence V (u(τm,ω),v(τm,ω)) is no less than

min
{
m−1− lnm ,

1
m

−1− ln 1
m

}
. (4.2.11)

Therefore
V (u(τm,ω),v(τm,ω)) ≥ (m−1− lnm)∧

( 1
m

−1− ln 1
m

)
. (4.2.12)

So, using inequality (4.2.2), we obtain

V (u(0),v(0))+MT ≥ E[IΩm(ω)V (u(τm,ω),v(τm,ω))] ≥ ϵ(m−1− lnm)∧
( 1
m

−1− ln 1
m

)
,

(4.2.13)
where IΩm represents the indicator function of Ωm. Taking m−→ ∞, we get

∞> V (u(0),v(0))+MT = ∞, (4.2.14)

which gives a contradiction. Hence, we must have τ∞ = ∞ and consequently the solution
of the system (4.1.1) exists for all t≥ 0. This completes the proof of Theorem.13.
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4.2.2 Stochastic boundedness

Biological validity of a mathematical model is decided by its boundedness. The nonex-
plosion property in a population dynamical system is often not sufficient. However, the
ultimate boundedness property is more desired. Now, we establish the theorem which
gives us almost sure eventual boundedness of the solutions. To this end, we first give the
definition of stochastic ultimate boundedness which is one of the most important topics
in population dynamics

Definition 6. (see [53]) The solution U(t) = (u(t),v(t)) of the system (4.1.1) is said to
be stochastically ultimately bounded, if for all a ∈ (0;1), there exists a positive constant
λ = λ(a), such that for each initial value U(0) ∈ R2

+, the solution U(t) satisfying the
following property

lim
t→∞

supP{|U(t)| > λ}< a. (4.2.15)

Theorem 14. For all initial value (u(0),v(0)) ∈ R2
+, the solutions of the system (4.1.1)

are stochastically ultimately bounded.

Proof. Let (u(t),v(t)) be any solution of the system (4.1.1). From Theorem.13, we know
that the solution (u(t),v(t)) will remains in R2

+ for all t ≥ 0,a.s.. Now define the two
Lyaponov functions

F (u,v) = etup, G(u,v) = etvp, with (u,v) ∈ R2
+ and p > 0. (4.2.16)

From the Itô’s formula in Lemma.7 and system (4.1.1), one can obtain

d(etup) = etupdt+petup−1du+ p(1−p)etup−1

2 (du)2,

= etupdt+petup−1
[
ρ− ρu

k
− δuα−1v

1+ δthuα

]
dt+ 1

2p(p−1)etupβ2dt+petupβdW1(t),

= etup
{

1+p

[
ρ− ρu

k
− δuα−1v

1+ δthuα

]
+ p(p−1)

2 β2
}
dt+petupβdW1(t),

with a simalary calculate, we get

d(etvp) = etvp
{

1+p

[
−η+ eδuαv

1+ δthuα

]
+ p(p−1)

2 γ2
}
dt+petvpγdW2(t).
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Then, we have

LF = etuq
{

1+p

[
ρ− ρu

k
− δuα−1v

1+ δthuα

]
+ p(p−1)

2 β2
}

≤M1e
t,

and

LG= etvq
{

1+p

[
−η+ eδuαv

1+ δthuα

]
+ p(p−1)

2 γ2
}

≤M2e
t,

where

M1 =
(
k

ρ

)p1+ρp+ t−αh + 1
2p(p−1)β2

p+1


p+1

, M2 =
( 1
m

)p


1+ρp+
(
e

th

)α
+ 1

2p(p−1)β2

p+1


p+1

.

Hence, we have

etE[up]−E[up(0)] ≤M1e
t and etE[vp]−E[vp(0)] ≤M2e

t.

This leads to

lim
t→∞

supE[up] ≤M1 <∞, lim
t→∞

supE[vp] ≤M2 <∞.

Now, for U(t) = (u(t),v(t)) ∈ R2
+, we have |U(t)|p ≤ 2p/2(up+vp) which gives

lim
t→∞

supE[|U(t)|p] ≤M3 <∞,

where, M3 = 2p/2(M1 +M2).
For any a > 0, taking λ(a) =

(
M3
a

)1/p
and applying the Chebyshev inequality yields

P{|U(t)| > λ} ≤ E[|U(t)|q]
λp(a) .

Thus

lim
t→∞

P{|U(t)| > λ} ≤ M3
λp(a) = a.

This lead to the required assertion (4.2.15). The proof of Theorem.14 is completed.
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4.3 Persistence and Extinction criteria

In this section, we shall discuss the case of the persistence and the extinction of the two
population (the prey and the predator) for our proposed model (4.1.1), where we shall try
to give the sufficient conditions which determines the extinction and the persistence of the
stochastic predator-prey model (4.1.1). Firstly, we study the extinction scenario in two
situations, the first case is the prey population survival where the predator population
goes to extinction, the second case is all the two species will die out. Before proceeding
with the analysis, we give the following definitions.

Definition 7. [89]

(i) If lim
t→∞

u(t) = 0,a.s., then the prey density u(t) is said to be extinctive almost surely.

(ii) If lim
t→∞

v(t) = 0,a.s., then the predator density v(t) is said to be extinctive almost
surely.

.

Now, we give the fundamental lemma which will be used in the following

Lemma 10. [34, 36] Define the following one-dimensional stochastic differential equation

dU(t) = ρU(t)
(

1− U(t)
k

)
dt+βU(t)dW1(t), (4.3.1)

where ρ,k and β are positive, and W1(t) is standard Brownian motion. Then we have the
following assertions

• if ρ < β2

2 , then we have lim
t→∞

U(t) = 0.

• if ρ > β2

2 , then we have

lim
t→∞

lnU(t)
t

= 0,a.s., lim
t→∞

1
t

∫ t

0
U(s)ds= k− kβ2

2ρ .
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Theorem 15. Assuming that

(H) : ρ > β2

2 ,

and let (u(t),v(t)) be a positive solution of the system (4.1.1) with the initial condition
(u(0),v(0)) ∈ R2

+.
Putting

A= −η− γ2

2 + eδ
∫ ∞

0

uα

1+ δthuα
χ(u)du.

If A< 0, then we have
lim
t→∞

v(t) = 0, a.s.,

which means that the predator density goes to extinction with probability one. In addition,
the distribution of u(t) converges weakly a.s. to the measure which has the density

χ(u) = Θ
β2u

−2+ 2ρ

β2 e
− 2ρ

kβ2 , u ∈ (0;∞),

where

Θ =

 1
β2

(
kβ2

2ρ

) 2ρ

β2 −1
Γ
(

2ρ
β2 −1

)
−1

,

is a constant satisfying
∫ ∞

0
χ(u)du= 1 and Γ is the gamma function.

Proof. Consider the following 1-dimensional stochastic differential equation dU(t) = ρU(t)
(
1− U(t)

k

)
dt+βU(t)dW1(t),

U(0) = u(0).
(4.3.2)

Putting
g(u) = ρu

(
1− u

k

)
, β(u) = βu, u ∈ (0;∞).

By a straight forward calculation we get:∫ g(s)
β(s)2 ds=

∫ ( ρ

sβ2 − ρ

kβ2

)
ds= ρ

β2 lns− ρ

kβ2 +Θ.

Therefore,

e

∫
g(s)
β(s)2 ds

= e

(
Θs

ρ
β2

)
e

(
− ρ
kβ2 s

)
.
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Then, from the Theorem 1.16 in [42] it follows that the equation (4.3.2) has the ergodic
property and the invariant density given as

χ(u) = Θ
β2u

−2+ 2ρ
β2 e

(
− 2ρ
kβ2

)
, u ∈ (0;∞), (4.3.3)

where

Θ =

 1
β2

(
kβ2

2ρ

) 2ρ

β2 −1
Γ
(

2ρ
β2 −1

)
−1

,

satisfying ∫ ∞

0
χ(x)dx= 1,

with
1
t

∫ t

0
u(s)ds=

∫ ∞

0
uχ(u)du, a.s. (4.3.4)

Using the comparison theorem of 1-dimensional stochastic differential equation [66], we
obtain

u(t) ≤ U(t), ∀t > 0, a.s. (4.3.5)

Now, Applying the Itô’s formula in Lemma.7 to lnv(t) for the second equation of the
system (4.1.1) and using (4.3.5), then we obtain

d lnv(t) =
(

−η− γ2

2 + eδuα(t)
1+ δthuα(t)

)
dt+γdW2(t)

≤
(

−η− γ2

2 + eδUα(t)
1+ δthUα(t)

)
dt+γdW2(t).

For the both sides, integrating the above equation from 0 to t and dividing by t gives

lnv(t)− lnv(0)
t

≤ −η− γ2

2 + eδ
1
t

∫ t

0

Uα(s)
1+ δthUα(s) ds+ N2(t)

t
, (4.3.6)

where N2(t) =
∫ t

0
γdW2(s)ds is a real-valued continuous local martingales. According to

[54], we have lim
t→∞

N2(t)
t = 0,a.s.. Next, taking the superior limit on both sides of (4.3.6)

84



and using Lemma.10 together with (4.3.4), we obtain

lim
t→∞

sup lnv(t)
t

≤ −η− γ2

2 + lim
t→∞

supeδ1
t

∫ t

0

Uα(s)
1+ δthUα(s) ds,

≤ −η− γ2

2 + eδ
∫ ∞

0

uα

1+ δthuα
χ(u) du,

= A< 0, a.s.,

which leads to the extinction of the predator spacie i.e. lim
t→∞

v(t) = 0,a.s..
Now, for a sufficiently small ϵ1 > 0 there exists t̃ and a set Ωϵ1 ⊂ Ω such that P(Ωϵ1)>

1− ϵ and
δuαv

1+ δthuα
≤ δuαv ≤ δϵ1u

α, for t≥ t̃ and ω ∈ Ωϵ1 .

From
[
ρu
(

1− u

k

)
− δϵ1u

α
]
dt+βudW1(t) ≤ du≤ ρu

(
1− u

k

)
dt+βudW1(t),

we obtain that the distribution of the process u(t) converges weakly to the measure with
the density µ. The proof is complete.

Theorem 16. Assume that ρ < β2

2 and eδ < γ2

2 hold. Then for any initial condition
(u(0),v(0)) ∈ R2

+ the two species die out, where the solution (u(t),v(t)) of the system
(4.1.1) will be extinct exponentially with probability one.

Proof. Applying the Itô’s formula in Lemma.7 to the first equation of the system (4.1.1),
implies that

d lnu(t) =
[
−β2

2 +ρ

(
1− u(t)

k

)
− δuα−1(t)v(t)

1+ δthuα(t)

]
dt+βdW1(t). (4.3.7)

Integrating the above equation from 0 to t and dividing by t on both sides of (4.3.7), we
obtain

lnu(t)− lnu(0)
t

= ρ− β2

2 − ρ

k

1
t

∫ t

0
u(s)ds− δ

1
t

∫ t

0

uα−1(s)v(s)
1+ δthuα(s) ds+β

W1(t)
t

. (4.3.8)
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Using the strong law of large numbers for local martingales [54], we get

lim
t→∞

W1(t)
t

= 0,a.s..

Taking the superior limit on both sides of the equation (4.3.9) gives

lim
t→∞

sup lnu(t)
t

≤ ρ− β2

2 < 0,a.s.,

which leads to
lim
t→∞

u(t) = 0, a.s.

Application of Itô’s formula in Lemma.7 to lnv(t) yields

d lnv(t) =
[
−η− γ2

2 + eδuα(t)
1+ δthuα(t)

]
dt+γdW2(t). (4.3.9)

From lim
t→∞

u(t) = 0, a.s., there exists T0 > 0 such that u(t)< ϵ for t > T0. Hence, we get

d lnv(t) ≤
[
−γ2

2 + eδϵα

1+ δthϵα

]
dt+γdW2(t),

≤
(

−γ2

2 + eδ

)
dt+γdW2(t).

Integrating the above inequality from 0 to t and dividing by t on both sides, we obtain

lnv(t)− lnv(0)
t

= −γ2

2 + eδ+γ
W2(t)
t

. (4.3.10)

Applying the strong law of large numbers for local martingales [54], we obtain

lim
t→∞

W2(t)
t

= 0,a.s.

Taking the superior limit on both sides of (4.3.10), then we have

lim
t→∞

sup lnv(t)
t

≤ −γ2

2 + eδ < 0, a.s.,

which gives
lim
t→∞

v(t) = 0, a.s.

This completes the proof of Theorem.16.
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Remark 1.

(i) According to Theorem.15, one can easly show that A is the critical value between the
extinction and the persistence in the mean for the predator specie. Moreover, from
Lemme.10, if A< 0, we obtain

lim
t→∞

v(t) = 0,a.s., lim
t→∞

1
t

∫ t

0
u(s)ds= k− kβ2

2ρ ,a.s..

(ii) Theorem.16 show that if the white noise intensities take a big values, then all both
species are die out. On the other hand, the stochastic predator-prey model (4.1.1)
will be persistent if the white noise disturbances are small enough. This assertion
can easly be seen from Theorem.15 and Theorem.15.

4.4 Existence of ergodic stationary distribution

In this part, according to the theory of Has’minskii [33] and using the Lyapunov function
method we try to prove that under certains sufficient conditions, the stochastic predator-
prey model (4.1.1) has a unique stationary distribution which is ergodic.

Theorem 17. Suppose that

β2

2 + γ2

2 < ρ−η, and ρ > η,

then for any initial condition (u(0),v(0)) ∈R2
+, the system (4.1.1) has a unique stationary

distribution χ(.) which has the ergodic property.

Proof. In order to prove Theorem.17, we only need to verify the two assumption (P1) and
(P2) in Lemma.6. We first begin by proving the validation of the first condition, then
the diffusion matrix of the system (4.1.1) is

B =

 β2u2 0
0 γ2v2

 .
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It is not difficult to see that there exists a positive constants b̃, c̃ such that

2∑
i,j=1

b̃i,j(z)ξiξj = β2u2ξ2
1 +γ2v2ξ2

2 ≥ c̃|ξ|2, (u,v) ∈D, ξ = (ξ1, ξ2) ∈ R2
+,

that is to say that B is a positive definite matrix for any compact subset of R2
+. Thus

the assertion (P1) of Lemma.6 holds. Now, focusing on proving the second assertion in
Lemma.6. From the system (4.1.1), we get

L(− lnu) = −1
u

(
ρu
(

1− u

k

)
− δuαv

1+ δthuα

)
+ β2

2 = −
(
ρ− β2

2

)
+ρ

u

k
+ δuα−1v

1+ δthuα
(4.4.1)

and
L(− lnv) = η− eδuα

1+ δthuα
+ γ2

2 ≤ η+ γ2

2 . (4.4.2)

Define
V1(u,v) = − lnu− lnv,

then, from (4.4.1) and (4.4.2), we have

LV1 = −
(
ρ−η− β2

2 − γ2

2

)
+ρ

u

k
+ δuα−1v

1+ δthuα
. (4.4.3)

Now, we denote
V ∗(u,v) = ΠV1(u,v)+v−τ +u+ v

e
,

where 0< τ < 1 is a sufficiently small constant satisfying the following assertion

ρ−η >
τ +1

2 (β2 +γ2),

with

Π = 2(
ρ−η − β2

2 − γ2
2

) max
(u,v)∈R2

+

{
2,− ρ

2k
u2 − τv−τ

(
−η − 1+ τ

2 γ2
)

+ρu+ τv−τ−1 − η

e
v

}
.

We claim that V ∗(u,v) is not only continuous, but also tends to ∞ as (u,v) approaches the
boundary of R2

+ and as ||(u,v)|| → ∞, where ||.|| is the Euclidean norm of a point in R2
+.

Therefore, it must be lower bounded and achieve this lower bound at a point (u(0),v(0))
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in the interior of R2
+. Thus, we can define a nonnegative C2-function V : R2

+ → R+ ∪{0}
as

V (u,v) = ΠV1(u,v)+V2(v)+V3(u,v),

where
V2(v) = v−τ , V3(u,v) = u+ v

e
−V ∗(u(0),v(0)).

By applying the Itô’s formula in Lemma.7 to V2(v) and V3(u,v), we obtain

LV2 = −τv−τ−1
(
−ηv+ eδuαv

1+δthuα

)
+ τ(1+τ)

2 γ2v−τ

≤ −τv−τ
(
−η− 1+τ

2 γ2
)

+ τv−τ−1,
(4.4.4)

and
LV3 = ρu

(
1− u

k

)
− η

e
v = −ρ

k
u2 +ρu− η

e
v. (4.4.5)

Then, according to (4.4.4) and (4.4.5), we get

LV ≤ Π
{

−
(
ρ−η− β2

2 − γ2

2

)
+ρuk + δuα−1v

1+δthuα

}
− τv−τ

(
−η− 1+τ

2 γ2
)

+ τv−τ−1 − ρ
ku

2 +ρu− η
ev.

(4.4.6)

To complete the prove, we need to construct a bounded open domain Eϵ for which the
assumption p2 of Lemma.6 holds. Let’s define the following bounded open set

Eϵ =
{

(u,v) ∈ R2
+ : ϵ < u <

1
ϵ
, ϵ < v <

1
ϵ

}
,

where 0< ϵ < 1 is a sufficiently small number which satisfying the following conditions in
R2

+ \Eϵ

ϵ ≤

Π
(

ρ−η − β2

2 − γ2

2

)
4δ


1

1−α

, (4.4.7)

ϵ ≤ ρ

2kΠδ
, (4.4.8)

ϵ ≤ 1
4δ

(
ρ−η − β2

2 − γ2

2

)
, (4.4.9)

−Π
(

ρ−η − β2

2 − γ2

2

)
+ ρ

2kϵ2 +Π1 ≤ −1, (4.4.10)
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−Π
(

ρ−η − β2

2 − γ2

2

)
+Π2. (4.4.11)

Now, we divide the set R2
+ \Eϵ into four subsets defined as

E1
ϵ =

{
(u,v) ∈ R2

+ : u≤ ϵ
}
, E2

ϵ =
{
(u,v) ∈ R2

+ : v ≤ ϵ
}

E3
ϵ =

{
(u,v) ∈ R2

+ : u≥ 1
ϵ

}
, E4

ϵ =
{

(u,v) ∈ R2
+ : v ≥ 1

ϵ

}
.

clearly, Eϵ =E1
ϵ ∪E2

ϵ ∪E3
ϵ ∪E4

ϵ . Our objective in the next, is to prove that LV (u,v) ≤ −1
for any (u,v) ∈ Eiϵ, i ∈ {1,2,3,4}.

Case 1 : If (u,v) ∈ E1
ϵ and from u1−α ≤ ϵ1−α, we have

u1−αv ≤ ϵ1−α(1+v2).

Then, it follows that

LV (u,v) ≤ −Π
4

(
ρ−η − β2

2 − γ2

2

)
+
[
−Π

4

(
ρ−η − β2

2 − γ2

2

)
+ δΠϵ1−α

]
− ρ

2k
u2 − δΠϵ1−αv2

+
[
−Π

2

(
ρ−η − β2

2 − γ2

2

)
− ρ

2k
u2 − δϵ1−αv2 − τv−τ

(
−η − 1+ τ

2 γ2
)

+ρu+ τv−τ−1 − η

e
v

]
,

≤ −Π
4

(
ρ−η − β2

2 − γ2

2

)
+
[
−Π

4

(
ρ−η − β2

2 − γ2

2

)
+ ϵ1−αδ

]
− ρ

2k
u2 − δΠϵ1−αv2

+

−Π
2

(
ρ−η − β2

2 − γ2

2

)
+ sup

(u,v)∈R2
+

{
− ρ

2k
u2 − τv−τ

(
−η − 1+ τ

2 γ2
)

+ρu+ τv−τ−1 − η

e
v

} .

Since

Π = 2(
ρ−η − β2

2 − γ2
2

) max
(u,v)∈R2

+

{
2,− ρ

2k
u2 − τv−τ

(
−η − 1+ τ

2 γ2
)

+ρu+ τv−τ−1 − η

e
v

}
,

we obtain that
Π
(

ρ−η − β2

2 − γ2

2

)
≤ −Π

4

(
ρ−η − β2

2 − γ2

2

)
≤ −1. (4.4.12)

Hence

LV (u,v) ≤ −Π
4

(
ρ−η− β2

2 − γ2

2

)
− ρ

2ku
2 − δΠϵ1−αv2 ≤ −Π

4

(
ρ−η− β2

2 − γ2

2

)
≤ −1.

From (4.4.7), we have
LV (u,v) ≤ −1, ∀(u,v) ∈ E1

ε . (4.4.13)
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Case 2 : If (u,v) ∈ E2
ϵ , we have v ≤ ϵ. Since

u1−αv ≤ ϵ(1+u2),

we obtain

LV (u,v) ≤ −Π
4

(
ρ−η − β2

2 − γ2

2

)
+
[
−Π

4

(
ρ−η − β2

2 − γ2

2

)
+Πδϵ

]
+
(

Πδϵ− ρ

2k

)
u2

+
[
−Π

2

(
ρ−η − β2

2 − γ2

2

)
− ρ

2k
u2 − τv−τ

(
−η − 1+ τ

2 γ2
)

+ρu+ τv−τ−1 − η

e
v

]
,

≤ −Π
4

(
ρ−η − β2

2 − γ2

2

)
+
[
−Π

4

(
ρ−η − β2

2 − γ2

2

)
+Πδϵ

]
−
(

Πδϵ− ρ

2k

)
u2

+

−Π
2

(
ρ−η − β2

2 − γ2

2

)
+ sup

(u,v)∈R2
+

{
− ρ

2k
u2 − τv−τ

(
−η − 1+ τ

2 γ2
)

+ρu+ τv−τ−1 − η

e
v

} .

According to (4.4.8) and (4.4.9), it follows that

LV (u,v) ≤ −Π
4

(
ρ−η− β2

2 − γ2

2

)
≤ −1, for any (u,v) ∈ E2

ϵ . (4.4.14)

Case 3 : If (u,v) ∈ E3
ϵ , we get u≤ 1

ϵ . Then we have

LV (u,v) ≤ −Π
(

ρ−η − β2

2 − γ2

2

)
− ρ

2k
u2 +−τv−τ

(
−η − 1+ τ

2 γ2
)

+ τv−τ−1 − ρ

2k
u2 +ρu− η

e
v +Π

(
ρ

u

k
+ δuα−1v

1+ δthuα

)

≤ −Π
(

ρ−η − β2

2 − γ2

2

)
− ρ

2k
u2 +Π1

≤ −Π
(

ρ−η − β2

2 − γ2

2

)
− ρ

2kϵ2 +Π1.

Using (4.4.10) and (4.4.12), then we obtain

LV (u,v) ≤ −1, for any (u,v) ∈ E3
ϵ , (4.4.15)

where

Π1 = sup
(u,v)∈R2

+

{
−τv−τ

(
−η− 1+ τ

2 γ2
)

+ τv−τ−1 − ρ

2ku
2 +ρu− η

e
v+Π

(
ρ
u

k
+ δuα−1v

1+ δthuα

)}
.
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Figure 4.2: Numerical simulation of the deterministic system (4.0.2) with the parameter values

ρ = 0.5, k = 1, δ = 0.5, th = 2, e = 0.4, α = 0.8 and different value of the parameter η. In (A),

we take η = 0.9. In (B), we have η = 0.1 and for (C), we put η = 0.04.

Case 4 : If (u,v) ∈ E4
ϵ , we have v ≤ 1

ϵ . Which gives

LV (u,v) ≤ −Π
(

ρ−η − β2

2 − γ2

2

)
+−τv−τ

(
−η − 1+ τ

2 γ2
)

+ τv−τ−1 − ρ

k
u2 +ρu− η

e
v +Π

(
ρ

u

k
+ δuα−1v

1+ δthuα

)

≤ −Π
(

ρ−η − β2

2 − γ2

2

)
+Π2

≤ −Π
(

ρ−η − β2

2 − γ2

2

)
+Π2.

Therefore, from (4.4.11) and (4.4.12) we get

LV (u,v) ≤ −1, for any (u,v) ∈ E4
ϵ , (4.4.16)

with

Π2 = sup
(u,v)∈R2

+

{
−τv−τ

(
−η− 1+ τ

2 γ2
)

+ τv−τ−1 − ρ

k
u2 +ρu− η

e
v+Π

(
ρ
u

k
+ δuα−1v

1+ δthuα

)}
.

Thus, if we combine the results (4.4.13), (4.4.14), (4.4.15) and (4.4.16), we can deduce
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Figure 4.3: Numerical simulation of the deterministic system (4.0.2) with the parameter values

δ = 0.5, k = 1, th = 2, e = 0.4, α = 0.8, η = 0.1 and multi values of ρ. In (A), we take ρ = 0.09.

In (B), we have ρ = 0.4 and for (C), we put ρ = 0.9.
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Figure 4.4: Numerical simulation of the stochastic predator-prey system (4.1.1) for the pa-

rameter values ρ = 0.55, k = 1, δ = 0.26, th = 0.71, η = 0.09, e = 0.39, α = 1/3 and the noise

intensities β2/2 = 0.2, γ2/2 = 0.168. Here the initial data is u(0) = 0.1, v(0) = 0.25.
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Figure 4.5: Numerical simulation of the stochastic predator-prey system (4.1.1) for the pa-

rameter values ρ = 0.55, k = 1, δ = 0.26, th = 0.71, η = 0.09, e = 0.39, α = 1/3. In (A), we

choose β2/ = 0.14, γ2/2 = 0.223. In (B), we have β2/2 = 0.14, γ2/2 = 0.322 and for the last

case (C), we put β2/2 = 0.14, γ2/2 = 0.655. The initial data is u(0) = 0.2, v(0) = 0.25.

that for a sufficiently small ϵ we have

LV (u,v) ≤ −1, for any (u,v) ∈ R2
+ \Eϵ. (4.4.17)

Hence, the assertion (P2) of Lemma.6 holds. Consequently, the stochastic predator-prey
model (4.1.1) has a unique stationary distribution. The proof is completed.

Remark 2. Theorem.17 shows that when the noises are small enough, then the model
(4.1.1) has a unique stationary distribution which is ergodic. The presence of the frac-
tal term ”uα” in our proposed model (4.1.1) makes the difficulties when we prove the
Theorem.17. Here we construct a new Lyapunov function and a rectongular set which
do not depend on the equilibrium point (u∗,v∗) of the deterministic model (4.0.2). The
ergodic property in Theorem.17 means that the solution of the stochastic predator-prey
model (4.1.1) tends to a fixed positive point in the sens of time average with probability
one, which implies that the system (4.1.1) is permanent.
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Figure 4.6: Numerical simulation of the stochastic predator-prey system (4.1.1) for the pa-

rameter values ρ = 0.55, k = 1, δ = 0.26, th = 0.71, η = 0.09, e = 0.39, α = 1/3. In (A), we

choose β2/2 = 0.54, γ2/2 = 0.09. In (B), we take β2/2 = 0.551, γ2/2 = 0.11 and for the last case

(C), we put β2/2 = 0.81, γ2/2 = 0.52. Here the initial value u(0) = 0.2, v(0) = 0.25.

4.5 Numerical simulations

In order to substantiate the analytical findings, we give some numerical examples.
Using the semi-implicit Milstein’s higher method described in [32], then we obtain the
following discretization system as

ui+1 = ui+
[
ρui

(
1− ui

k

)
− δuα

i vi
1+δthuα

i

]
∆t+βuiai

√
∆t+ β2

2 ui(a
2
i −1)∆t,

vi+1 =
[
−ηvi+ eδuα

i vi
1+δthuα

i

]
∆t+γvibi

√
∆t+ γ2

2 vi(b
2
i −1)∆t.

(4.5.1)

where the time increment ∆t > 0, ai and bi are N(0,1) independent Gaussian random
variables.

In Fig.4.2, we show the numerical simulation of the deterministic system (4.0.2) with
the parameter values ρ= 0.5, k = 1, δ = 0.5, th = 2, e= 0.4, α = 0.8 and different value
of the parameter η. For (A), we choose η = 0.9, then we obtain the extinction of the

95



predator species. In (B), we put η = 0.1, which gives the coexistence of all both spaces.
Next, we fix η = 0.04 then, the system transits to an oscillatory regime where a limit cycle
appears.

In Fig.4.3, we display the graphical representation of the impact of the intrinsic growth
rate ρ on both prey and predator densities equilibrium for the same values of the fixed
parameters in Fig.4.2 and multi values of ρ. In (A), we choose ρ = 0.09 which gives
(u∗,v∗) = (0.343,0.221). In (B), we take ρ = 0.4 implies that (u∗,v∗) = (0.233,1.621).
Finally, in (C) we set ρ = 0.9, yielding (u∗,v∗) = (0.389,4.489). Here, we denote that
(u∗,v∗) represents the positive equilibrium associated with the deterministic system (4.0.2)
such that

u∗ =
[

η

δ(e− thη)

] 1
α

, v∗ = eρ

η

(
1− u∗

k

)
, e > thη and 0< u∗ < k.

Clearly, one can see the massive impact of the parameters η and ρ on the dynamical
behavior of the deterministic system (4.0.2), especially on the predator density equilib-
rium. The large value of the death rate of the predator population η may result the
extinction of the predator specie. On the other hand, as the parameter ρ increases as the
predator density increases with a considerable values. This means that ρ has a positive
and significant impact on the predator density. Biologically speaking, The increase in
the number of prey individuals within the herd may result a high rate of infection with
various diseases, as well as conflicts between males for mating; all of this leads to herd
destabilization, which reduces the defensive effectiveness of the pack and thus facilitates
the predator’s task during the hunting process.

In order to verify the result obtained in Theorem.17, we choose the parameter values
β2/2 = 0.2, γ2/2 = 0.168 and the other parameter values are pointed out in Tab.4.1.
Then we obtain β2/2+γ2/2 = 0.368< ρ−η = 0.46 and according to Theorem.17, we can
conclude that the stochastic predator-prey system (4.1.1) has a unique ergodic stationary
distribution χ(.) and ergodic property which means that both prey and predator are
persistent a.s. This result is depicted in Fig.4.4.
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In Fig.4.5 our aim is to examine the case of the extinction of the predator population.
To this end, we take β2/2 = 0.14 < ρ = 0.55 which means that the condition (H) of
Theorem.15 is satisfied. Recall that the second condition of Theorem.15 is that A < 0
where

A= −η− γ2

2 + eδ
∫ ∞

0

uα

1+ δthuα
χ(u)du.

Using the parameters given in Tab.4.1 and a simple integral, we obtain

eδ
∫ ∞

0

uα

1+ δthuα
χ(u)du≈ 0.312.

Now, from Fig.4.5 we have tree cases. In (A), we choose γ2/2 = 0.223, then we obtain
immediately A= −0.001< 0. Next, in (B) we put γ2/2 = 0.322 which gives A= −0.1< 0.
In the last case (C), we take γ2/2 = 0.655, it follows that A= −0.433< 0. By comparing
the three cases in Fig.4.5, one can easily observe that the predator population goes more
and more towards extinction while the prey population persist. which means that the
noise associated with the predator population can change the properties of the model
greatly. More precisely, comparing Fig.4.5(A) with Fig.4.5(C), we can easily see that
with the increase of γ2 the density of the predator population v(t) tends to the extinction
while the the prey population u(t) persist in mean.

In Fig.4.6, we examine numerically the result obtained in Theorem.16. For the first
case (A) in Fig.4.6, we choose β2/2 = 0.54 and γ2/2 = 0.09, then ρ= 0.55> β2/2 = 0.54
and eδ = 0.10 > γ2/2 = 0.09. Next, in (B) we choose β2/2 = 0.551 and γ2/2 = 0.11, we
obtain ρ = 0.55 < β2/2 = 0.551 and eδ = 0.10 < γ2/2 = 0.11. In the last case (C), we
take β2/2 = 0.81 and γ2/2 = 0.52, then we have ρ = 0.55 < β2/2 = 0.81 and eδ = 0.10 <
γ2/2 = 0.52. Other values of the system parameters can be seen from Tab.4.1. For the
two last cases, we can easily see that the conditions of Theorem.16 hold, which explains
the extinction of both populations u and v (please see fig.4.6(B) and Fig.4.6(C)). in other
words, if the noise intensities β2 and γ2 increase, the prey and the predator populations
die out exponentially with probability one.

Fig.4.7 represents the impact of the prey herd’s shape rate α on the ergodic stationary
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Parameters Description Values Source
ρ The intrinsic growth rate of the prey 0.55 [14, 25]
k The carrying capacity for the prey 1 [14, 25]
δ The search efficiency of the predator for the prey 0.26 [14, 25]
th The average handling time for the prey by the predator 0.71 [14, 25]
η The death rate of the predator in the absence of prey 0.09 [14, 25]
e The biomass conversion or consumption 0.39 [14, 25]
α The prey herd’s shape rate 1/3 [14, 25]

Table 4.1: Lists of parameters used in the simulations of Fig.4.4,4.5,4.6 and Fig.4.7
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Figure 4.7: Impact of the herd shape rate α on the numerical ergodic stationary distribution

associated with the system (4.1.1) for the parameter values ρ = 0.55, k = 1, δ = 0.26, th =

0.71, η = 0.09, e = 0.39, β2 = 0.3, γ2 = 0.2 and different values of the parameter α.

distribution associated with the stochastic predator-prey model (4.1.1). We choose β2/2 =
0.3 and γ2/2 = 0.2, then we obtain β2/2+γ2/2 = 0.4< ρ−η = 0.46. The other parameter
values are given in detail in Tab.4.1.
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4.6 Discussion

In order to understand the dynamics induced by environmental driving forces, we explain
the effect of the environmental noises on the predator-prey interaction in the presence of
social behavior for the prey and multiplicative noise. A new approach of a stochastic
predator-prey model is obtained. In the great savanna, many living beings gather to
together in huge herds. This provides a protection zone and a useful strategy for defend-
ing against predators. On the other hand, as it has been mentioned in the introduction
section, the prey population can forms several shape of herd, this kind of phenomena
has been modeled in [79] and widely studied in literature. Consequently, a new func-
tional responses have been introduced into the interface which are modeled by using a
new parameter α represents the prey’s herd shape rate. Further, the real life situations
are often subject to environmental noises. This gives the necessary and the importance
of studying the environmental fluctuations impact on the population systems in ecology.
In this work, we consider the predator-prey model (4.0.2) of [25] subject to environmen-
tal noises. Our aim is to studies how the intensities of environmental noises affect the
stochastic predator-prey model (4.1.1) by revealing the relationships between the coef-
ficients of the population model and the intensities of environmental noise. From the
stochastic model analysis, a rich properties have been deduced. First, the existence of
the global positive solution as well as the stochastic uniform boundedness of the solution
have been successfully confirmed by using conventional methods. Next, the sufficient con-
ditions for the extinction and persistence of the predator and the prey populations have
been established where, the extinction criteria is discussed in two cases, the first case is
the prey population survival where the predator population die out; the second case is
both the prey and predator populations extinction. Moreover, by constructing a suitable
stochastic Lyapunov function, it has been proved that the stochastic predator-prey model
(4.1.1) has a unique stationary distribution which is ergodic. Theorem.17 show that the
staionary distribution exists if the white noise is small. But the large amplitude enviro-
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mental fluctuations may destabilize the stochastic system and consequently no stationary
distribution can exist. Mathematically speaking, the ergodic stationary distribution can
be considered as a stability of system in weak sense, that appears as a solution fluctuating
near the positive equilibrium of the corresponding deterministic system (4.0.2). From an
biological point of view, this means that both prey and preator populations coexist in the
long run. which leads to said that the system is permanent.

By comparing the stochastic predator-prey system with the corresponding determinis-
tic system (4.0.2) which has been studied in [25], two interesting facts have been revealed,
the first one is the high environmental noise intensity could drive two species to extinct.
In our model, this can be seen in two different cases; the first case is the prey popu-
lation persist while the predator extinct. This situation was graphically represented in
Fig.4.5. The second case is both the two species die out (please see Fig.4.6). Here, it
has been remarked that A which defined in Theorem.15, is the crucial parameter for the
persistence in the mean and extinction of the model (4.1.1). The second fact, is that the
term of herd behavior cannot avoid the extinction of the prey population when the nature
presents significant environmental fluctuations although the prey herd’s shape has a sig-
nificant impact on the solution of the stochastic system (4.1.1) (please see Fig.4.7). In the
deterministic model (4.0.2), the situation of the extinction of both species is absolutely
impossible Fig.4.2). Consequently, we can conclude that the survival of living beings is
related to the environmental fluctuations more than the nature of their behaviors.
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Prospect and Future Directions

Finally, we would like to mention that some meaningful problems deserve further investi-
gation. For one side, one can propose some more realistic models, such as considering the
effects of the prey herd aggressiveness on the predator population, nonlocal prey competi-
tion or the harvesting on the populations and so.on. On the other side, it is interesting to
introduce the telegraph noise in our model, such as continuous-time Markov chain. The
motivation for investigating this is that the living beings suffer from unexpected envi-
ronmental changes such as global warming, temperature increase, humidity, precipitation
changes and so.on. It has been confirmed that animals have specific responses to climate
changes. All living beings respond to climate change either through migration or adapta-
tion. But they extinct if they do not reached one of the two options. So, it is interesting to
study the impact of all these factors on the predator-prey interaction in order to improve
the condition of living beings and avoid the extinction of species to keep the ecosystem
balanced. In the next works, we will try to consider more realistic situations in term of
mathematical modeling.

Finally, we hope that this thesis can help to further educate students about the interest
of this theme.
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[30] A. Guillin, C. Léonard, L-M. Wu and N. Yao. Transportation information inequalities
for Markov processes. Prob. Theory Related Fields 144 (2009), 669-696.

[31] X. Han and P. E. Kloeden, Random Ordinary Differential Equations and Their Nu-
merical Solution. Springer, 2017.

[32] D.J. Higham, An algorithmic introduction to numerical simulation of stochastic dif-
ferential equations. SIAM Rev. 43, (2001), 525-546.

[33] R.Z. Has’minskii, Stochastic Stability of Differential Equations. Sijthoff Noordhoff.
Alphen aan den Rijn. The Netherlands. (1980)

[34] C. Ji, D. Jiang and N. Shi, Analysis of a predator-prey model with modified Leslie-
Gower and Holling-type II schemes with stochastic perturbation. J. Math. Anal.
Appl. 359, (2009), 482-498.

[35] Lv. Jingliang and Ke. Wang, Asymptotic properties of a stochastic Predator-prey
system with Holling II functional response. Commun. Nonlinear. Sci. Numer. Simul.
16(10), (2011), 4037-4048.

[36] C. Ji and D. Jiang, Dynamics of a stochastic density dependent predator-prey system
with Beddington-DeAngelis functional response. J. Math. Anal. Appl. 381, (2011),
441-453.

[37] D. Jiang, W. Zuo, T. Hayat and A. Alsaedi, Stationary distribution and periodic
solutions for stochastic Holling-Leslie predator-prey systems. Physica A. 460, (2016),
16-18.

105



[38] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus. Springer-
Verlag, Berlin, 1991.

[39] N. El Karoui, S. Peng and M. C. Quenez, Backward Stochastic Differential in Finance,
Lab. Probab. Univ. Paris VI 260 1994.

[40] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Frac-
tional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Sci-
ence B. V. Amsterdam, 2006.

[41] I. Karatzas and S. Shreve,Brownian Motion and Stochastic Calculus. Graduate Texts
in Mathematics. Springer. berlin. 113 (1988)

[42] A.Y. Kutoyants, Statistical Inference for Ergodic Diffusion Processes. Springer, Lon-
don. (2004)

[43] M. Liu and C. Bai, Optimal harvesting policy for a stochastic Predator-prey model.
Appl. Math. Lett. 34, (2014), 22-26.

[44] M. Liu and Y. Zhu, Stationary distribution and ergodicity of a stochastic hybrid
competition model with Levy jumps. Nonlinear Anal. Hybrid Syst. 30, 225-239 (2018)

[45] Q. Liu, D. Jiang, T. Hayat and A. Alsaedi, Stationary distribution and extinction
of a stochastic predator-preymodel with herd behavior. J. Franklin Inst. 355(16),
(2018), 8177-8193.

[46] X.Q. Liu and S.M. Zhong, B.D. Tian and F.X. Zheng, Asymptotic properties of a
stochastic predator-prey model with Crowley-Martin functional response. J. Appl.
Math. Comput. 43, (2013), 479-490.

[47] Y. Liu, H. Xu and W. Li, Intermittent control to stationary distribution and expo-
nential stability for hybrid multi-stochastic-weight coupled networks based on aperi-
odicity. J. Franklin Inst, 356 (13), (2019), 7263-7289.

106



[48] Liu, Q., Jiang, D.: Stationary distribution and extinction of a stochastic predator-
prey model with distributed delay. Appl. Math. Lett. 78, 79-87 (2018)

[49] M. Ledoux. The Concentration of Measure Phenomenon. Mathematical Surveys and
Monographs 89. American Mathematical Society, Providence RI, 2001.

[50] Z. Li and J. Luo, Transportation inequalities for stochastic delay evolution equations
driven by fractional Brownian motion. Front. Math. China 10 (2015), 303-321.

[51] A. B. Malinowska and D. F. M. Torres, Introduction to the Fractional Calculus of
Variations. Imperial College Press, London, 2012.

[52] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, (1999).

[53] Li, X., Mao, X.: Population dynamical behavior of non-autonomous Lotka-Volterra
competitive system with random perturbation. Discrete. Contin. Dyn. Syst. Ser-A.
24, 523-45(2009)

[54] Lipster, R.: A strong law of large numbers for local martingales. Stochastics. 3,
217-228(1980)

[55] X. Mao, Stochastic Differential Equations and Applications, Ellis Horwood, Chich-
ester, UK, 1997.

[56] S. Mekki, T. Blouhi, J. Nieto and A. Ouahab, Some existence results for systems of
impulsive stochastic differential equations, Ann. Math. Sil. 35, No. 2, (2021), 260-281.

[57] B. Øksendal, Stochastic Differential Equations: An Introduction with Applications
(Fourth Edition) Springer-Verlag, Berlin, 1995.

[58] F. Otto and C. Villani. Generalization of an inequality by Talagrand and links with
the logarithmic Sobolev inequality. J. Funct. Anal. 173 (2000), 361-400.

[59] A.J. Lotka, Relation between birth rates and death rates. Adv Sci. 26: 21-2(1907).

107



[60] X. Mao, Stochastic differential equations and applications. Harwood publishing.
Chichester. (1997)

[61] X. Mao, Stationary distribution of stochastic population systems. Syst. Control. Lett.
60, 398-405 (2011)

[62] R.M. May, Stability and complexity in model ecosystems. Princeton universitypress.
NJ. (2001)

[63] M. Caputo, Elasticita e Dissipazione, Zanichellii, Bologna, 1969.

[64] M.Caputo, Lectures on Seismology and Rheological Tectonics, Univ.degli studi di
Roma ”La Sapienza”, 1992-1993.

[65] Oksendal, B.: Stochastic Differential Equations: An Introduction with Applications.
Springer. Berlin. (2003)

[66] S. Peng and X. Zhu, Necessary and sufficient condition for comparison theorem of
1-dimensional stochastic differential equations. Stoch. Process. Appl. 116, 370-380
(2006)

[67] E. Pardoux and A. Rascanu, Stochastic Differential Equations, Backward SDEs,
Partial Differential Equations, Stochastic Modelling and Applied Probability, 69.
Springer, Cham, 2014.

[68] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge
University Press, Cambridge, 1992.

[69] G.P. Samanta, A Stochastic Two Species Competition Model: Nonequilibrium Fluc-
tuation and Stability. Int. J. Stoch. Anal. 2011, 489386 (2011)

[70] F. Souna, A. Lakmeche and S. Djilali, The effect of the defensive strategy taken by
the prey on Predator-prey interaction. J. Appl. Math. Comput. 64, 665-690(2020)

108



[71] F. Souna, A. Lakmeche and S. Djilali, Spatiotemporal patterns in a diffusive predator-
prey model with protection zone and predator harvesting. Chaos, Solitons & Fractals.
140, 110180 (2020)

[72] S. Sampurna, D. Pritha and M. Debasis, Stochastic non-autonomous holling type-
III prey-predator model with predator’s intra-specific competition. Discrete. Contin.
Dyn. Syst. Ser-B. 23, 3275-3296(2018).

[73] R. Sakthivel, P. Revathi and Y. Ren, Existence of solutions for nonlinear fractional
stochastic differential equations. Nonlinear Anal. 81 (2013), 70–86.

[74] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives,
Theory and Applications, Gordon and Breach, Yverdon, 1993.

[75] B. Saussereau, Transportation inequalities for stochastic differential equations driven
by a fractional Brownian motion. Bernoulli 18 (2012), 1-23.

[76] Tang, X., Song, Y.: Turing-Hopf bifurcation analysis of a predator-prey model with
herd behavior and cross diffusion. Nonlinear Dyn. 86, 73-89 (2016)

[77] M. Talagrand, Transportation cost for Gaussian and other product measures, Geom.
Funct. Anal. 6 (1996), 587-600.

[78] X. Tang and Y. Song, Bifurcation analysis and turing instability in a diffusive preda-
tor prey model with herd behavior and hyperbolic mortality. Chaos Solitons & Frac-
tals. 81, (2015), 303-314.

[79] Venturino, E., Petrovskii, S.: Spatiotemporal behavior of a Predator-prey system
with a group defense for prey. Ecol. Complex. 14, 37-47 (2013)

[80] C. Villani. Optimal Transport: Old and New. Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences] 338. Springer, Berlin,
(2009).

109



[81] V. Volterra, Sui tentativi di applicazione della matematiche alle scienze biologiche e
sociali. G. Econ. 23, (1901), 436-58

[82] C. Xu, S. Yuan and T. Zhang, Global dynamics of a predator-prey model with defence
mechanism for prey. Appl. Math. Lett. 62, (2016), 42-48.

[83] H. Wang and M. Liu, Stationary distribution of a stochastic hybrid phytoplankton-
zooplankton model with toxin-producing phytoplankton. Appl. Math. Lett. 101,
106077 (2020)

[84] L. Wang and D. Jiang, Ergodicity and threshold behaviors of a predator-prey model
in stochastic chemostat driven by regime switching. Math. Methods Appl. Sci. 44(1),
(2021), 325-344.

[85] H. Yang, P. E. Kloeden and F. Wu, Weak solution of stochastic differential equations
with fractional diffusion coefficient. Stoch. Anal. Appl. 36 (2018), no. 4, 613–621.

[86] H-P. Ye, J-M. Gao and Y-S. Ding, A generalized Gronwall inequality and its applica-
tion to a fractional differential equation, J. Math. Anal. Appl. 328 (2007) 1075-1081.

[87] G. W. Leibniz, Mathematische Schriften, Georg Olms Verlagsbuchhandlung,
Hildesheim,1962.

[88] Y. Zhou, J. Wang and L. Zhang, Basic Theory of Fractional Differential Equations.
Second edition. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.

[89] X. Zhang, Y. Li and D. Jiang, Dynamics of a stochastic Holling type II Predator-prey
model with hyperbolic mortality. Nonlinear Dyn. 87, (2017), 2011-2020.

[90] S. Zhang, T. Zhang and S. Yuan, Dynamics of a stochastic predator-prey model with
habitat complexity and prey aggregation. Ecol. Complex. 45, 100889 (2021)

[91] X. Zhang and Y. Shao, Analysis of a stochastic predator-prey system with mixed
functional responses and Levy jumps. AIMS Mathematics. 6(5), (2021), 4404-4427.

110


	Introduction
	Fractional calculus
	Integrable Functions
	Variation, Quadratic variation of a Function
	Riemann-Stieltjes Integral

	Special Functions
	Gamma Function
	Mittag-Leffler Function

	Fractional Derivatives and Integrals
	Riemann-Liouville Fractional Derivatives
	Caputo Fractional Derivatives

	Fractional Cauchy Problem

	Stochastic calculus
	Stochastic basis-Random variables
	Stochastic basis
	Random variables

	Stochastic processes
	General concepts
	Variation, quadratic variation of a process
	Gaussian, Martingale processes
	Wiener processes

	The stochastic integral
	The Itô Integral
	The Itô's Formula

	Stochastic Differential Equations

	Fractional stochastic differential equations
	Cauchy problem
	Existence,uniqueness and dependence on initial conditions
	Transportation inequality


	Rich dynamics in a stochastic predator-prey model
	The mathematical model
	Properties of the solution
	Existence and uniqueness of the global positive solution
	Stochastic boundedness

	Persistence and Extinction criteria
	Existence of ergodic stationary distribution
	Numerical simulations
	Discussion

	Prospect and directions for future work
	Bibliography

