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Abstract

In this thesis, we are interested in the non-parametric estimation of the distribution
function of an incomplete scalar response variable, but with surrogate data, from a func-
tional random variable. We started to construct an estimator of the regression operator
by replacing the missing responses with surrogate data. We then established asymptotic
properties of the constructed estimator, in terms of convergence in probability, almost
complete and root mean square. Then, we applied the results obtained on simulated data.

After with the same method we study the asymptotic properties of the functional para-
meters in nonparametric statistics for incomplete data of the expectile regression function.
More precisely, we are interested in the expectile regression for which we construct an es-
timator and we study the asymptotic behavior in the functional data model.

We first study the asymptotic properties of a nonparametric estimator of the expec-
tile regression given a functional explanatory variable, when the response is scalar, in the
i.i.d. case. We establish the almost complete uniform convergence and the asymptotic nor-
mality of these estimators. A simulation study and a real data application are performed
to illustrate how this leads to better predictive performance than estimates obtained with
quantile regression or classical regression.

Finally, a comparative study on simulated data and real data was carried out in order
to highlight the quality of the estimation offered by the expectile regression in compa-
rison with the classical regression models, i.e. the natural regression and the conditional
quantile regression. Thus, an R program was developed to confirm the theoretical result
obtained.

Key words : Functional Data Analysis (FDA) ; Conditional distribution function ;



Nonparametrickernel estimation ; Surrogate dat ;Expectile regression ; ; Functional data
analysis ; almost complete convergence ; asymptotic normality
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Résumé

Dans cette thèse nous intéressant à l’estimation non paramétrique de la fonction de
répartition conditionnel d’une variable de réponse scalaire incomplète, mais ayant des va-
leurs de substitution (surrogate data), à partir d’une variable aléatoire fonctionnelle. Nous
avons commencé à construire un estimateur de l’opérateur de régression en remplaçant
les réponses manquantes par les données de substitution. Nous avons établi ensuite des
propriétés asymptotiques de l’estimateur construit, en termes de convergence en probabi-
lité,presque complète et en moyenne quadratique. Puis, nous avons appliquées résultats
obtenus sur des données simulées
Aprés avec la même méthode nous avons étudier les propriétés asymptotiques des para-
mètre fonctionnels en statististique non paramétrique pour des données incomplètes dela
fonction de régression par expectile. Plus précisement, nous nous intéressons à la regres-
sion expectile pour laquelle nous construisons un estimateur et nous étudions le compor-
tement asymptotique dans le modèle de données fonctionnelles.

Nous avons d’abord étudié les propriétés asymptotiques d’un estimateur non para-
métrique de la régression expectile étant donné une variable explicative fonctionnelle,
lorsque la réponse est scalaire, dans le cas i.i.d. Nous établissons la convergence uniforme
presque complet et la normalité asymptotique de ces estimateurs. Une étude de simulation
et une application de données réelles sont réalisées pour illustrer comment cela permet
d’obtenir des performances prédictives supérieures à celles obtenues avec des estimations
par la régression quantile ou la régression classique.

Enfin, une étude comparative sur des données simulées et des données réelles ont été
traiter afin de mettre en évidence la qualité de l’estimation qu’offre la régression par ex-
pectile en comparaison avec les mdoèles classiques de la régression à svoir la régression
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naturelle et la régression par quantile conditionnel. Ainsi, un programme R a été élaborer
afin de de confirmer le résultat théorique obtenu.

Mots- clés : RFunctional Data Analysis (FDA) ; Conditional distribution function ;
Nonparametrickernel estimation ; Surrogate dat ;Expectile regression ; ; Functional data
analysis ; almost complete convergence ; asymptotic normality.
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CHAPITRE 1

INTRODUCTION

1.1 L’estimation non paramétriques

Since the beginning of human civilization, the statistic has been used to obtain in-
formation about population numbers, warfare, agricultural production ...(etc), and that’s
back to the nature of the human being who is always trie to understand and explain the
phenomena and anticipate their results, this is why many researchers are interested in sta-
tistics, of which the main purpose is to provide an analysis, or a description, of a past
phenomenon, and to predict a future phenomenon of a similar nature. historically the first
result appeared at the beginning of the 17th century (GALILEE and Jérôme CARDAN),
after that, many results were published and several models are found to express the rela-
tionship between the variables. nowadays, technological advances high-dimensional tech-
niques are more powerful, and the amount of information collected is increasing, that’s
why the functional statistics became a field of topical research, at once diversified by its
fundamental aspects and by the various fields it covers.

Historically, the statistical analysis of functional data goes back to the 1960s when
several studies, in different scientific disciplines, were interested in data in the form of
curves. The first works can be attributed to meteorologists and chemists we citeObu-
khov(1960), Holmström(1963) in climatology, Deville(1974) in Econometrics, and Kirk-
patrick and Heckman (1989) in genetics). Furthermore, the amount of work on parametric
regression models is very large. In fact, in functional statistics, the first innovative results
of the statistical analysis of functional data are due to the contribution of Ramsay and
Silverman (1997). This monograph allowed statisticians to have a global vision of the
treatment of functional data in terms of regression techniques, statistical discrimination,
and factor analysis.More generally, in 2002, the same authors delivered a second book
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CHAPITRE 1. INTRODUCTION

focusing on the applied aspects of this branch of statistics. We can also mention the works
of Bosq (2000) concerning dependent linear functional models such as autoregression
models, then in 2005, he focused on prediction in high dimensional models. Thanks to
the contribution of Ferraty and Vieu which can be considered decisive in the nonpara-
metric functional framework. These authors have studied the asymptotic properties of se-
veral non-parametric models such as the regression operator, the regression function, the
conditional distribution function, the conditional density and its derivative, the conditional
mode and the conditional quantiles) when the explanatory variable takes these values in
an infinie dimension space and when the response variable is scalar. These authors establi-
shed the almost sure convergence of these models with the kernel method. Then, Ferraty
et al. (2007) have studies quadratic mean convergence, also asymptotic normality of the
regression operator. Also, Laksaci (2007) gave the quadratic error of the conditional den-
sity. Ezzahrioui and Ould-Said (2008a, 2008b) showed normality asymptotic mode and
conditional quantile in i.i.d and dependent cases, Dabo-Niang and Laksaci (2007) inclu-
ded normality convergence results for conditional mode kernel estimators and conditional
quantiles (if i.i.d.). Ferraty et al. (2008) study the almost complet convergence of condi-
tional hasard functions.
The main idea of statistic is to study of the relation between two random variables is a very
important problem. One of the most frequently encountered models in non-parametric
statistics is the conditional distribution function. The importance of this function comes
from the fact that most of the statistical quantities used in practice to understand the link
between an explanatory variable X and a response variable Y .On the other hand, both
the regression function and the conditional mode have the disadvantage of giving only a
predictive value without informing us about the probability that the realization is close
to it (without de the distribution of the conditional variable).The conditional distribution
function, on the other hand, gives us the probability that the variable of interest belongs
to a given interval, while the conditional quantiles allow the construction of prediction
intervals, and consequently, they both provide very useful additional information on the
behavior of the variable of interest.From a historical point of view The nonparametric
estimation of the conditional distribution function when the explanatory variable has va-
lues in a space of finite dimension was introduced by Ferraty et al(2006). These authors
have constructed a double kernel estimator for the conditional distribution function and
have specified the speed of convergence of this estimator when the observations are inde-
pendent and identically distributed.
On the other hand, several authors have studied the estimation of the conditional distribu-
tion function as a preliminary study of the estimation of conditional quantiles. Laksaci et
al. (2008) proposed a method for estimating conditional quantiles and were he establish
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CHAPITRE 1. INTRODUCTION

almost-complete convergence and asymptotic normality of their estimator when observa-
tions are functional i.i.d.. In the statistical analysis of functional data, the estimation of
the conditional density and its derivatives was introduced by Ferraty et vieu (2006). These
authors obtained almost complete convergence in the case where the observations are in-
dependent and identically distributed(i.i.d). This work can be considered as the starting
point of abundant literature that has developed on the estimation of the conditional den-
sity and its derivatives, notably in order to use it to estimate the conditional mode. Indeed,
by considering -mixing observations, Ferraty et al(2005).established the almost complete
convergence of a kernel estimator of the conditional mode defined by the random variable
maximizing the conditional density, in 2010, Laksaci et al. answered the question of the
choice of the smoothing parameter in the estimation of the conditional density when the
explanatory variable is functional.

1.2 Nonparametric estimation of expectile regression

Recently, the risk measures such as the Expectile and the quantile have become the
subject of renewed attention in actuarial and financial risk management. The Value-at-
Risk (VaR) and the Expected Shortfall are the most commonly used tools in financial
risk analysis (ES). These statistical models, on the other hand, have some flaws, such
as non-subadditivity and insensitivity to the severity of extreme losses, see, for instance,
Bellini, Negri, and Pyatkova (2019) for the definitions of these properties. We can de-
fine the expectile and quantile as solutions to minimization. Unlike quantiles, expectiles
are determined by extreme expectations rather than by extreme probabilities and define
a consistent risk measure. Thanks to Newey and Powell (1987) who is introduce of the
expectile, that has received less attention than the quantile. The expectile is a generali-
zation of the mean, whereas the quantile is a generalization of the median. Furthermore,
the quantile is based on the absolute loss function, whereas the expectile is based on
the quadratic loss function. The expectile model becomes increasingly popular in the fi-
nancial literature, we refer, among many others, to Pratesi, Ranalli, and Salvati (2009),
Waltrup,Sobotka, Kneib, and Kauermann (2015), Bellini and Bernardino (2017), Farooq
and Stein wart (2019), since it is the unique elicitable coherent risk measures, we may
refer to Bellini et al. (2019) and the references therein. For the use of the expectile re-
gression in the heteroscedasticity analysis, one can refer to Gu and Zou (2016) and Zhao,
Chen, and Zhang (2018). For more motivation on the use of the expectile model, we refer
to the recent paper by Daouia, Girard, and Stupfler (2018, 2020). For an overview of the
use of expectile curves in regression analysis, we refer to Kneib (2013) and the extensive
discussions to that paper, in particular by Eilers (2013) for an appraisal of expectiles and
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CHAPITRE 1. INTRODUCTION

by Koenker (2013) for a critical viewpoint. Quantiles and expectiles, which contain in-
formation about the full distribution for a random variable, are extensions of median and
mean,respectively. Expectiles are excellent alternatives to quantiles in different aspects
for relevant applications. Motivating advantages are that expectiles are more alert than
quantiles to the magnitude of infrequent catastrophic losses, and they depend on both the
tail realizations of the predictor and their probability, whereas quantiles depend only on
the frequency of tail realizations, see Kuan, Yeh, and Hsu (2009). This high sensitivity of
expectiles to tail behaviour allows for more prudent and reactive risk management. No-
tice that the quantiles are not always satisfactory and can be criticised for being somewhat
difficult to compute as the corresponding loss function is not continuously differentiable.
The key advantage of the expectile over the quantile is its efficiency and computing ex-
perience, although it has not a direct interpretation as the quantile in terms of the relative
frequency, see Daouia, Gijbels, and Stupfler (2019). Although they present differences in
their construction, both quantiles and expectiles share similar properties. The main reason
for this, as shown in Jones (1994), is the fact that expectiles are precisely quantiles but for
a transformation of the original distribution. Abdous and Rémillard (1995) established an
important feature that the quantiles and expectiles of the same distribution coincide under
the hypothesis of weighted symmetry and pointed out that inference on expectiles is much
easier than inference on quantiles.
Zhang (1994) introduced the nonparametric estimation of the expectile regression and
proved the consistency and the asymptotic normality in the finite-dimensional framework.
An increasing interest has been given to regression models in which the response variable
is real-valued and the explanatory variable takes the form of smooth functions that vary
randomly between repeated observations or measurements. Despite this importance, the
expectile regression is, in comparison to both competitive regressions (conditional mean
and quantile), relatively unexplored and still in full development and our aim is to fill
this gap. The first results in this direction are obtained by Mohammedi, Bouzebda, and
Laksaci (2021). They investigated the nonparametric expectile regression in the case of a
functional predictor and a scalar response and obtained the asymptotic properties of the
kernel expectile regression estimator in the i.i.d. setting. The main purpose of the present
work is to extend the previous works to serially dependent observations to cope with the
case when the return or the loss are linked to the functional time series valued exogenous
covariates which could prevent from the problem of the ‘curse of infinite dimensiona-
lity’.Indeed, as discussed in Geenens (2011), the nonparametric functional time series
analysis repose on the use of semi-metric as proximity measures in infinite-dimensional
functional space, which is often presented as a technical tool for dimension reduction
purposes. This is one of the principal motivations behind the development of the nonpara-
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CHAPITRE 1. INTRODUCTION

metric approach in functional statistics.More motivations on the importance of this topic
of nonparametric functional statistics can be found in the precursor monograph (Ferraty
and Vieu 2006) or in the comprehensive survey paper (Ling and Vieu 2018). Generally,
it is well known that the statistical study of functional dependent data originates from the
monograph (Bosq 2000) and the literature has flourished since this cited work. In parti-
cular, the first study on Nonparametric Functional Time Series Analysis (NFTSA) was
investigated by Ferraty, Goia, and Vieu (2002) where the almost complete consistency
of the kernel estimator of the regression operator is established. Masry (2005) conside-
red the regression estimation using a kernel-type estimator in a functional setting with
mixing samples and established the asymptotic normality. Laib and Louani (2010) stated
the asymptotic normality of the regression operator when the functional time series data
has an ergodic structure. Based on the ergodicity assumption, Ling and Liu (2017) studied
the large-sample properties of the kernel estimator for a nonparametric regression ope-
rator when the response variable is randomly censored. Recently, Ling, Wang, and Vieu
(2020) have investigated the properties of kernel estimators in a functional regression mo-
del when both response and covariate are functional. The authors proved pointwise and
uniform almost complete convergence of the examined estimator. Ling, Meng, and Vieu
(2019) investigated the k-nearest neighbours(kNN) estimator of a nonparametric regres-
sion model for functional time series data and established the uniform almost complete
convergence rate of the kNN estimator. Chowd-hury and Chaudhuri (2020) considered a
nonparametric regression setup with a particular focus on a parameter of interest associa-
ted with the conditional distribution. The authors derived the optimum convergence rate
for the kernel estimate of the parameter in this setup. Other NFTSA investigations using
alternative nonparametric models can be found in Ezzahrioui and Ould Saïd (2010) and
Bouzebda, Chaouch, and Laïb (2016) (for the conditional mode), Quintela-del Río (2008)
(for the hazard function), Chen, Ling, Ling, and Liu (2019) (for the M-regression), and
Ling, Cheng, Vieu, and Ding (2021) (for the single index model). The functional time
series analyses by quantile regression are active and relevant fields of investigation which
are very close to the expectile regression model. For example, Ezzahrioui and Ould-Saïd
(2008) have established the asymptotic normality for a kernel estimator of the conditional
quantile obtained by inverting the double kernel estimator of the cumulative distribution
function. Using the L 1 approach, Laksaci, Lemdani, and Ould Saïd (2011) have construc-
ted an alternative estimator of the quantile regression andestablished its asymptotic pro-
perties under the strong mixing assumption. We cite Bellini and Bernardino (2017) for
the nonparametric estimation of the conditional quantile for the ergodic functional data.
Other forms of quantile regressions have been proposed in functional statistics literature.
We cite, for instance, Ding, Lu, Zhang, and Zhang (2018) (for semi-functional partial li-
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CHAPITRE 1. INTRODUCTION

near model), Sang and Cao (2020) (for single index model), and Zhang, Lian, Guodong,
and Zhu (2021) (for additive model). For recent advances and trends in FDA, we refer
to some survey papers and journal special issues, such as Cuevas (2014), Goia and Vieu
(2016), Ling and Vieu (2018), and Aneiros, Cao, Fraiman, Genest, and Vieu (2019).

In this paper, we investigate an alternative way based on the least asymmetrically
weighted squares estimation, borrowed from the econometrics literature, that is one of
the basic tools in statistical applications. This method often involves Newey and Powell
(1987) concept of expectiles, the least-squares analogue of the traditional quantiles. They
were so named because they resemble the quantiles of a random variable, but unlike them,
they are based on a quadratic loss function, as the case of the expectation.
The advantages of expectile regression are the same as those of least square regression
and conditional quantile regression :

1. Expectile regression is a very useful and strong method for exploring the relation-
ship between random variables.

2. Expectation regression estimator depends on the form of the whole distribution,
Therefore, the expectations regression estimator contains additional information
on the magnitude of the tail distribution.

3. The expectile has a risk measure sensitive to the extreme values which is beneficial
is some situations such as survival analysis, insurance, economics or finance.

4. The expectile regression is the only consistent and elicitable risk model, that’s
why is used as an alternative estimators for both known risk measures such as
Conditional Value at Risk (CVaR) or the Conditional Expected Shortfall (CES).

1.3 Incomplete data

Missing data is one of the common traps in statistical issues, the feature of these
models is the existence of incomplete observations, for which the variable of interest is not
completely observed for all sample data,this data effect on the rigor and strong biases in
the analysis models which impact on the performance of estimators. Historically, after the
paper of Yates (1933) who formulates the idea of substituting least-square estimates for
the missing values, the analysis of the missing data was expanded. Along with this idea of
imputing missing values by least-square predictions, Cochran (1968) uses it to reduce bias
in observational studies, and Afifi and Elashoff (1969) provide a large sample theoretical
analysis. After that many studies interset on the regression models with missing data.
In what follows we present the three categories of the incomplete data :

6
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1. MCAR (missing completely at random) : Missing data completely at random
means that the missing value is not linked by observed and unobserved obser-
vations but it can be associated with observed covariates(so if the probability of
absence is a constant for all observations), in other words, the absence does not
relate to the variables observed in the analytical model.

2. MAR (Missing at random) :Missing observations in the data are independent of
the missing variables themselves, but possibly dependent on other observed va-
riables. The The data is missing at random if the probability of an observation
being incomplete depends only on the other observed values.

3. MNAR (Missing not at random) :the missing value can depend on both the obser-
ved values and the missing values of the variable itself, as well as other variables
in the analytical model. The data is missing not at random (MNAR), if the proba-
bility of absence depends on the variable in question.

there are several methods to treat the incomplete data

1.3.1 Surrogate data

There are several methods to treat the incomplete data, for example remove rows
with missing values, mean-based imputations, regression-based imputations, k-nearest-
neighbor (kNN) method, hot-deck and cold-deck imputation, and maximization methods
likelihood...
In this thesis, we will investigate the surrogate data. In various fields, we can’t observe all
the the response variable, we can use substitution data to replaces this missing data.Surrogate
or analogous data can refer to data used to supplement the available data from which a
mathematical model is constructed. According to this definition, it can be generated (i.e.,
built from synthetic data) or transformed from another source. Surrogate data can be used
for statistical forecasting. Data from similar series can be aggregated to improve forecast
accuracy.The use of surrogate data can allow a model to account for trends that are not
apparent in historical data.

1.3.2 Definitions and estimators

1.3.3 The conditional cumulative distribution function

Let (Xi, Yi)i=1,...,N be a random variables independent and identically distributed as
(X,Y ), where X ∈ F , Y take values in R and (F , d) is a semi metric space with a metric
d(., .). The conditional cumulative distribution function of Y given X = x, denoted by

7



CHAPITRE 1. INTRODUCTION

F x(.) is defined
F x(.) = P(Y ≤ y∣X = x), ∀y ∈ R,

and by the regression model, we have

E [H (y − Yi
hH

) ∣Xi = x]
hH→0ÐÐÐ→ F x(y),

where H(.) is a cumulative distribution function and hH is a sequence of positive real
numbers tending to 0 when n go to infinity.

The estimator of conditional distribution function by the kernel method defined by

F̂ x
C(y) =

∑N
i=1H (y−Yi

hH
)K (d(x,Xi)hK

)

∑N
i=1K (d(x,Xi)hK

)
, ∀y ∈ R, ∀x ∈ F ,

where K(.) is a kernel function and hK is a bandwidth sequence tend toward 0.

The estimator of conditional distribution function with surrogate data defined by

F̂ x(y) =
∑i∈V H (y−Yi

hH
)K (d(x,Xi)hK

) +∑j∈V̄ u(Xj, Ỹj)K (d(x,Xj)hK
)

∑N
i=1K (d(x,Xi)hK

)
,

where
u(Xj, Ỹj) = E [H (y − Yj

hH
) ∣Xj, Ỹj]

and the function u(., .) is unknown.
So, we estimate this function by validation data set :

û(Xj, Ỹj) =
∑i∈V H (y−Yi

hH
)W (d(Xj ,Xi)an

,
Ỹj−Ỹi
an

)

∑i∈V W (d(Xj ,Xi)an
,
Ỹj−Ỹi
an

)

and W (., .) is the two-dimensional kernel function in F ×R and an is a sequence of real
number which tend to zero when n tend to infinity.

1.3.4 The conditional expectile

the conditional expectile of order p has been introduced by Newey and Powell (1987)
as the minimizer of an asymmetric quadratic loss

ξp(x) = argmin
t∈R

δp(x, t),

8
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where

δp(x, t) = E[p(Y − t)21(Y −t)>0RX = x] +E[(1 − p)(Y − t)21(Y −t)⩽0RX = x],

where 1Z is the indicator function of set Z, we can show that ξp is the solution of

p

1 − p = A1(x, t)
A2(x, t)

where
⎧⎪⎪⎨⎪⎪⎩

A1(x, t) = −E[(Y − t)1(Y −t)⩽0RX = x],
A2(x, t) = E(Y − t)1(Y −t)>0RX = x].

(1.1)

We use the fact that the function A(x, t) ∶= A1(x,t)
A2(x,t) is an increasing function so we can

express the conditional expectileξp of order p as follows :

ξp = inf{t ∈ R ∶ A(x, t) ⩾ p

1 − p}.

To build an estimator of the conditional expectile of order pwhen there are missing data in
the response variable, letN and n (n < N ) the respetive sizes of the sample set and the va-
lidation set, we assume that the observations are independent and identically distributed,
V is the index set of individuals in the sampled validation set and V̄ = {1,2, . . . ,N} − V .
Since

⎧⎪⎪⎨⎪⎪⎩

E[E{(Yj − t)1(Yj−t)⩽0RXj, Ỹj}] = E[(Yj − t)1(Yj−t)⩽0RXj = x] = A1(x, t)
E[E{(Yj − t)1(Yj−t)>0RXj, Ỹj}] = E[(Yj − t)1(Yj−t)>0RXj = x] = A2(x, t)

where Ỹ is a surrogate variable of Y .
we can estimate ξp by

ξ̂p(x) = inf{t ∈ R ∶ Â(x, t) ⩾ p

1 − p}

we define

Â(x, t) ∶= Â1(x, t)
Â2(x, t)

with
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Â1(x, t) =
∑i∈V K(h−1

K d(x,Xi))(Yi−t)1(Yi−t)⩽0+∑j∈V̄ u1(Xj ,Yj)K(h−1
K d(x,Xi))

∑Ni=1K(h−1
K d(x,Xi))

Â2(x, t) =
∑i∈V K(h−1

K d(x,Xi))(Yi−t)1(Yi−t)>0+∑j∈V̄ u2(Xj ,Yj)K(h−1
K d(x,Xi))

∑Ni=1K(h−1
K d(x,Xi))

9
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where ⎧⎪⎪⎨⎪⎪⎩

u1(Xj, Ỹj) = E{(Yj − t)1(Yj−t)⩽0RXj, Ỹj}
u2(Xj, Ỹj) = E{(Yj − t)1(Yj−t)>0RXj, Ỹj}

for j ∈ V̄
Recall that the functions u1(., .) and u2(., .) are unknown,so we estimate those func-

tions by validation data set :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

û1(Xj, Ỹj) =
∑i∈V (Yi−t)1(Yi−t)⩽0W (

d(Xj,Xi)
an

,
Ỹj−Ỹi
an

)

∑i∈V W (
d(Xj,Xi)

an
,
Ỹj−Ỹi
an

)

û2(Xj, Ỹj) =
∑i∈V (Yi−t)1(Yi−t)>0W (

d(Xj,Xi)
an

,
Ỹj−Ỹi
an

)

∑i∈V W (
d(Xj,Xi)

an
,
Ỹj−Ỹi
an

)
, for j ∈ V̄

W (., .) is a kernel function which is define on R2 and an is a sequence of real number
which tend to zero when n tend to infinity.

1.3.5 Results

Uniform almost complete consistency

Theorem 1.1. Under assumptions, we obtain

sup
x∈SF

sup
y∈SR

∣F̂ x(y)−F x(y)∣ = O(hA1

K +hA2

H +aA1
n )+Oa.co.

⎛
⎝

√
log dn
nφ(an)

⎞
⎠
+Oa.co.

⎛
⎝

√
logN

Nφ(hK)
⎞
⎠
.

The quadratic error of the conditional distribution function for surro-
gate data

Theorem 1.2. Under assumptions (A1) − (A4), we obtain

E (F̂ x(y) − F x(y))2 = o( α

Nφ (hK)3/2
φ (an)3/2)+o(

1 − α
Nφ (hk)φ (hH))+o (h

β
Hh

β
K)+o (hKhH)

The asymptotic normality of the conditional distribution function for
surrogate data

Theorem 1.3. Under assumptions, we obtain

√
NhN (F̂ x(y) − F x(y))2 LÐ→ N (0, σ2(x))

10
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where

σ2
p(x) =

α2(x)λp(θ(p;x);x)
α2

1(x)
Γ 2
p (θ(p;x);x) (with αj(x) =Kj(1) − ∫

1

0
(Kj)′(s)βx(s)ds for j = 1,2))

and

λp(θ(p;x);x) = ( p

1 − p)
2

Rx
+(θ(p;x)) +Rx

−(θ(p;x))

where
R+(θ(p;x);x) = E [(Y1 − θ(p;x))21(Y1>θ(p;x)∣X = x]
R−(θ(p;x);x) = E [(Y1 − θ(p;x))21(Y1≤θ(p;x)∣X = x]

and

Λp(θ(p;x);x) = A′
1(θ(p;x);x) − ( p

1 − p)A
′
2(θ(p;x);x).

The asymptotic properteis of the conditional expectile regression esti-
mator for surrogate data

Theorem 1.4. Under the assumptions, and if in addition

∂A(x, ξp(x))
∂t

> 0

then

sup
x∈F

∣ξ̂p(x) − ξp(x)∣ = O(hklK) +O(aminkln)

+Oa.co. (
√

logn
nφ(an)) +Oa.co. (

√
logN

Nφ(hK)) .

The asymptotic Normality of the conditional expectile regression esti-
mator for surrogate data

Theorem 1.5. Under the Hypotheses we have when n→∞

(nφx(hn)
σ2
p

(x))
1/2

(ξ̂p(x) − ξp(x))
DÐ→ N (0,1)

where

σ2
p(x) =

α2(x)λp(θ(p;x);x)
α2

1(x)
Γ 2
p (θ(p;x);x) (with αj(x) =Kj(1) − ∫

1

0
(Kj)′(s)βx(s)ds for j = 1,2))

and

λp(θ(p;x);x) = ( p

1 − p)
2

Rx
+(θ(p;x)) +Rx

−(θ(p;x))

11
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where
R+(θ(p;x);x) = E [(Y1 − θ(p;x))21(Y1>θ(p;x)∣X = x]
R−(θ(p;x);x) = E [(Y1 − θ(p;x))21(Y1≤θ(p;x)∣X = x]

and

Λp(θ(p;x);x) = A′
1(θ(p;x);x) − ( p

1 − p)A
′
2(θ(p;x);x).

12



CHAPITRE 2

ASYMPTOTIC STUDY OF THE CONDITIONAL

DISTRIBUTION FUNCTION FOR SURROGATE DATA

BY THE REGRESSION MODEL

2.1 Introduction

Conditional distribution function (CFD) estimation is an essential field in nonpara-
metric statistical analysis ; this technique helps us understand the relationship between a
response variable and covariates set.

One of the branches of modern statistics is Functional Data Analysis (FDA) ; this has
become possible thanks to the computing techniques’ progress, both in terms of memory
and storage capacities, which allows us to consider increasingly voluminous data, regar-
ded as an observation of curve or surface. The reader can consult the books of Ramsay
and Silverman (1997), Ramsay and Silverman (2002), Bosq (2000) and Ferraty and Vieu
(2006), which offer a good introduction both for the theoretical or applied aspect with
various applications, including economics, sociology, and biology. It should be noted that
extensions of probability theory to random variables taking values in normed spaces (e.g.,
Banach and Hilbert spaces), including extensions of some classical theorems, are handy
tools in the literature.

Note first that the study of the conditional distribution function of real data was obtai-
ned in the early 1960s by Roussas (1968) who studied the kernel estimator’s asymptotic
properties conditional distribution function where it showed convergence in probability.
In the case of functional data, many researchers have been interested in the study of this
function. For example, we cite, Ferraty et al. (2006) who estimate the conditional distribu-
tion characteristics in nonparametric functional models. In the same framework, Ferraty

13
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et al. (2005) use the conditional distribution function to obtain a nonparametric estimator
of the conditional quantile when the data is weakly dependent.

It should be noted that most of the results involved in the nonparametric literature
(and not only on the conditional distribution) only deal with completely observed samples.
While in many practical works, including, for example, sample survey, reliability, or phar-
maceutical tracing where data is often observed incompletely, and parts of the responses
are missing randomly (MAR).

The most popular method to involve missing data is the imputation method that fills or
retrieves the missing data in the response variable Y . In this context, we can cite various
works that used this technique : We can cite, Yates (1933) for the linear regression model.
The kernel estimation of the mean functions is considered in Cheng (1994), the nearest
neighbor imputation for the data survey is addressed in Chen and Shao (2000), the robust
regression model with missing data is considered in Pérez-González et al. (2009), the
asymptotic properties of the regression operator estimator when the regressor is functional
and completely observed, and that missing data at random in the scalar response variable
are investigated in Ferraty et al. (2013), in the case of dependent data, the reader may
refer to Ling et al. (2015). In this work, we investigate the unavailability of response data
because sometimes it is default or very expensive to measure some response observations ;
the main idea is to recover (or fill) this missing data by a surrogate validation data set. In
this context, we cite Duncan and Hill (1985), Wittes et al. (1989), Carroll and Wand (1991)
and Pepe (1992). The principle of this method is to incorporate both surrogate data and
the corresponding observations of the covariate X .

This paper aims to study the conditional models (conditional distribution function and
the conditional quantile) for missing response by the kernel method ; we explore in this
work, the aspect of missing data in the response variable. First, we consider the estimator
of the conditional distribution for complete data, then by using the validation data set (see,
Ibrahim et al. (2020) and Wang (2006), we build our new estimator with surrogate data
and we obtain some asymptotic results for the conditional distribution and the quantiles.
In the end, we realized a simulation study to improve the efficacity of our estimator.

The rest of the paper is organized as follows. We present our model in Section 2 ; the
required notations and assumptions are introduced in Section 3, the main results of strong
uniform consistency (with rate) and the quantile estimation as a direct consequence of
our asymptotic result obtained from CFD estimation are formulated in section 4. For
the numerical results, a simulation study that shows the performance of the proposed
estimator is presented in Section 5.

14
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2.2 Model and estimator of the conditional distribution
function

2.2.1 Estimation of the cond-cdf with complete data

Let (Xi, Yi)i=1,...,N be a random variables independent and identically distributed as
(X,Y ), where X ∈ F , Y take values in R and (F , d) is a semi metric space with a metric
d(., .). The conditional cumulative distribution function of Y given X = x, denoted by
F x(.) is defined

F x(.) = P(Y ≤ y∣X = x), ∀y ∈ R,

and by the regression model, we have

E [H (y − Yi
hH

) ∣Xi = x]
hH→0ÐÐÐ→ F x(y),

where H(.) is a cumulative distribution function and hH is a sequence of positive real
numbers tending to 0 when n go to infinity.

The estimator of conditional distribution function by the kernel method defined by

F̂ x
C(y) =

∑N
i=1H (y−Yi

hH
)K (d(x,Xi)hK

)

∑N
i=1K (d(x,Xi)hK

)
, ∀y ∈ R, ∀x ∈ F , (2.1)

where K(.) is a kernel function and hK is a bandwidth sequence tend toward 0.

2.2.2 Estimation of the cond-cdf with surrogate data

We have the sample set of the size N and the validation set of size n, where the obser-
vations are independent and identically distributed. Here, Y is not accessible(available),
so we replaced it by a surrogate variable Ỹ .

Let V the index set of the sampled validation set and V̄ = {1, ...,N} ∖ V . Note that,
for the surrogate data we have

E [H (y − Yj
hH

) ∣Xj, Ỹj]
hH→0ÐÐÐ→ F x(y)

and
E [E [H (y − Yj

hH
) ∣Xj, Ỹj] ∣Xj = x] = E [H (y − Yj

hH
) ∣Xj = x] , (2.2)

15
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then, the distribution function can be estimated by

F̂ x(y) =
∑i∈V H (y−Yi

hH
)K (d(x,Xi)hK

) +∑j∈V̄ u(Xj, Ỹj)K (d(x,Xj)hK
)

∑N
i=1K (d(x,Xi)hK

)
,

where
u(Xj, Ỹj) = E [H (y − Yj

hH
) ∣Xj, Ỹj]

and the function u(., .) is unknown.
So, we estimate this function by validation data set :

û(Xj, Ỹj) =
∑i∈V H (y−Yi

hH
)W (d(Xj ,Xi)an

,
Ỹj−Ỹi
an

)

∑i∈V W (d(Xj ,Xi)an
,
Ỹj−Ỹi
an

)

and W (., .) is the two-dimensional kernel function in F ×R and an is a sequence of real
number which tend to zero when n tend to infinity.

2.3 Assumptions

Let SF be some subset of F such that SF ⊂ ⋃dnk=1B (xk, rn), where xk ∈ F , and (dn)
is a sequence of integers which satisfies the assumption (A5).

Let us introduce B(x,hK) a ball of the center x and radius hK defined as B(x,hK) =
{x1 ∈ F ∶ d(x1, x) ≤ hK}. Furthermore, we have x a fixed point in F , and SR a fixed
compact subset of R.

Our assumptions are gathered below for easy references.

(A1) ∀hK > 0, P(X ∈ B(x,hK)) =∶ φ(hK) > 0.

(A2) The operatorsF x(.) and u(., .) are Lipschitzian, such that,∀(y1, y2) ∈ S2
R, ∀(x1, x2) ∈

S2
F and C,A1,A2 > 0

(a) ∣F x1(y1) − F x2(y2)∣ ≤ C (d(x1, x2)A1 + ∣y1 − y2∣A2) .

(b) ∣u(x1, y1) − u(x2, y2)∣ ≤ C (d(x1, x2)A1 + ∣y1 − y2∣A2) .

(A3) The distribution function H(.) satisfy

⎧⎪⎪⎨⎪⎪⎩

∀ (y1, y2) ∈ R2, ∣H (y1) −H (y2)∣ ≤ C ∣y1 − y2∣ ,
∫ ∣t∣A2 H ′ (t)dt <∞.
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(A4) The bandwidths hK and an satisfy

lim
N→∞

hK = lim
n→∞

an = 0 and lim
N→∞

Nφ(hK) = +∞

and
lim
N→∞

logN

Nφ(hK) = 0 and lim
n→∞

logn

nφ(an)
= 0.

(A5) For some β > 0,
lim
N→∞

hH = 0 with lim
N→∞

NβhH =∞,

and for rn = O ( logN

N
) the sequence dn satisfy

log2N

Nφ (an)
≤ dn ≤

Nφ (an)
logN

and
∞
∑
n=1

nβ exp{(1 − η) log dn} <∞where β > 0 and η > 1.

(2.3)

(A6) The kernel K(.) is a continuous function from R into R+ such that ∫ K = 1, and
there exist some positive constants C and C ′ such that

C1(0,1) ≤K ≤ C ′1(0,1) (2.4)

where 1A denotes the indicator function on the set A.
We assume the two-dimensional kernel W (x, y) = W1(x)W2(y) is a continuous
function with a compact support satisfies (4.2), however, there exist positive finite
real constants C3 and C4, such that

C3φ(an) ≤ E [W (d(Xj,Xi)
an

,
Ỹj − Ỹi
an

)] ≤ C4φ(an).

Remark 2.3.1. The concentration assumption (A1) depend to the distribution of X and

has an important role, which is linked with the semi-metric d(., .). Note that the correct

choice for d(., .) is through the corresponding function φ(.) a key to the curse of dimen-

sionality. The assumption (A2) is linked with the nonparametric structure of the model

and it’s used it for determine the bias term. The assumptions (A3)− (A6) are a technical

condition similar to the hypothesis in Ferraty et al. (2006) for obtain our results.
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2.4 Results

2.4.1 Uniform almost complete consistency

The uniform almost complete (Oa.co.) convergence of F̂ x(.) is given by the following
Theorem and Lemmas.

Theorem 2.1. Under assumptions (A1) − (A6), we obtain

sup
x∈SF

sup
y∈SR

∣F̂ x(y)−F x(y)∣ = O(hA1

K +hA2

H +aA1
n )+Oa.co.

⎛
⎝

√
log dn
nφ(an)

⎞
⎠
+Oa.co.

⎛
⎝

√
logN

Nφ(hK)
⎞
⎠
.

Démonstration. Let F̂ x
N(y) and F̂ x

D(y), defined by

F̂ x
N(y) = 1

N
∑
i∈V

H (y−Yi
hH

)K (d(x,Xi)hK
)

E [K (d(x,Xi)hK
)]

+ 1

N
∑
j∈V̄

û(Xj, Ỹj)K (d(x,Xj)hK
)

E [K (d(x,Xj)hK
)]

and

F̂ x
D = 1

N

N

∑
i=1

K (d(x,Xi)hK
)

E [K (d(x,Xi)hK
)]
.

The proof is based on the following decomposition and the Lemmas 2.4.2, 2.4.3 and 2.4.4
given below.

F̂ x(y) − F x(y) = 1

F̂ x
D

{(F̂ x
N(y) −E[F̂ x

N(y)]) − (F x(y) −E[F̂ x
N(y)])}

− F
x(y)
F̂ x
D

{F̂ x
D − 1} . (2.5)

Auxiliary results

We put the quantities, for x ∈ F , (y, ỹ) ∈ R2 and i, j = 1, ...,N :

Ki ∶=K (d(x,Xi)
hK

) , Hi(y) ∶=H (y − Yi
hH

) ,Wij ∶=W (d(Xj,Xi)
an

,
Ỹj − Ỹi
an

) .

We note for j ∈ V̄ :

û(Xj, Ỹj) =
∑i∈V Hi (y)Wij

∑i∈V Wij

∶= û
x
N(y)
ûxD

.

We need the following lemma to establish the uniform almost complete convergence.
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Lemma 2.4.1. Under assumptions (A1) − (A6), we get

● F1 = sup
x∈SF

∣ûxD − 1]∣ = Oa.co. (
√

log dn
nφ(an)) and

∞
∑
n=1

P (∣ûxD∣ ≤ 1/2) <∞.

● F2 = sup
x∈SF

sup
y∈SR

∣ûxN(y) −E[ûxN(y)]∣ = Oa.co. (
√

log dn
nφ(an)) .

● F3 = sup
x∈SF

sup
y∈SR

∣u(xj, ỹj) −E[ûxN(y)]∣ = O(aA1
n ) +O(hA2

H ).

Démonstration. 1. As F1 is a particular case of F2 (by takingH(.) ≡ 1), then it proof
will be omitted.
Now, we have

P (∣ûxD∣ ≤ 1/2) ≤ P (∣ûxD − 1∣ > 1/2) ,

thus, by applying the result above, we get
∞
∑
i=1

P (∣ûxD∣ ≤ 1/2) <∞.

2. We conceive the following decomposition, where for all x ∈ SF , we set k (x) =
argmin
k∈{1,...,dn}

∣x − xk∣ and we use the compactness of SR, where, we can write SR ⊂

⋃qnj=1 Sj, Sj = (lj − ln, lj + ln) and take yt = argmin
l∈{l1,...,lqn}

∣y − l∣, to obtain

sup
x∈SF

sup
y∈SR

∣ûxN(y) −E[ûxN (y)]∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F2

≤ sup
x∈SF

sup
y∈SR

∣ûxN (y) − ûxk(x)N (y) ∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

P1

+ sup
x∈SF

sup
y∈SR

∣ûxk(x)N (y) − ûxk(x)N (yt) ∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

P2

+ sup
x∈SF

sup
y∈SR

∣ûxk(x)N (yt) −E[ûxk(x)N (yt)]∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

P3

+ sup
x∈SF

sup
y∈SR

∣E[ûxk(x)N (yt)] −E[ûxk(x)N (y)]∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

P4

+ sup
x∈SF

sup
y∈SR

∣E[ûxk(x)N (y)] −E[ûxN (y)]∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

P5

.

● For P1 and P5, we have from (A3) and the boundness of W (., .) we can write

P1 ≤
C

φ(an)
sup
x∈SF

sup
y∈SR

1

n
∑
i∈V

∣W (x, ỹ) −W (xk(x), ỹ)∣

≤ Cdnqn
anφ(an)
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and analogously, for P2 we obtain

P2 ≤
Cdnqn
anφ(an)

1B(x,an)∪B(xk(x),an)

by applying Bernstein’s inequality, with

Zi =
ε

anφ(an)
1B(x,an)∪B(xk(x),an),

which gives, for n tending to infinity

P1 = O
⎛
⎝

√
log dn
nφ (an)

⎞
⎠

and P2 = O
⎛
⎝

√
log dn
nφ (an)

⎞
⎠
.

Moreover, using the fact that P5 ≤ P1 and P4 ≤ P2 to get, for n tending to
infinity

P5 = O
⎛
⎝

√
log dn
nφ (an)

⎞
⎠

and P4 = O
⎛
⎝

√
log dn
nφ (an)

⎞
⎠
.

● Now concerning P3. For all η > 0, we have

P
⎛
⎝
P3 > η

√
log dn
nφ(an)

⎞
⎠
≤ qndn max

xk∈{1,...,dn}
max

yt∈{1,...,tqn}

P
⎛
⎝
∣ûxk(x)N (yt) −E[ûxk(x)N (yt)]∣ > η

√
log dn
nφ(an)

⎞
⎠

we can use the Bernstein’s exponential inequality to Γi, where

Γi =
1

nφ(an)
{Wi,j(xk(x), yt)Hi(yt) −E [Wi,j(xk(x), yt)Hi(yt)]} , forj ∈ V̄ ,

and we have ∣Γi∣ ≤ C4/φ(an), E∣Γi∣2 ≤ C/φ(an).
However, take Cη2 = 2β and qn = O(l−1

n ), we get

qndnP
⎛
⎝

sup
x∈SF

sup
y∈SR

∣ûxk(x)N (yt) −E[ûxk(x)N (yt)]∣ > η
√

log dn
nφ(an)

⎞
⎠
≤ qndn2 exp{−Cη2 lndn}

then, by (A6) we get

P3 = Oa.co.
⎛
⎝

√
log dn
nφ(an)

⎞
⎠
. (2.6)
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3. We have for j ∈ V̄ :

F3 ∶= E[ûxN(y)] − u(x, ỹ)
= E [Wij (E (H1 (y) ∣X, Ỹ ) − u(x, ỹ))]

and we have E(H1(y)∣X, Ỹ ) = u(X, Ỹ ),
then, from (A2), we get

∣u(X, Ỹ ) − u(x, ỹ)∣ ≤ C(aA1
n + hA2

H ).

Finally, from (F1), (F2) and (F3), we finished the proof of Lemma 2.4.1.

Lemma 2.4.2. Under the assumptions (A1) − (A6), we obtain

sup
x∈SF

sup
y∈SR

∣F x(y) −E[F̂ x
N(y)]∣ = O(hA1

K ) +O(hA2

H ) +O(aA1
n ) +Oa.co.

⎛
⎝

√
log dn
nφ(an)

⎞
⎠
.

Démonstration. We have ∣V ∣ = n, ∣V̄ ∣ = N − n

F x(y) −E[F̂ x
N(y)] = F x(y) −E [nH1(y)K1

E [K1]
+ (N − n) û(Xj, Ỹj)K1

E [K1]
]

= F x(y) − nE [H1(y)K1

E [K1]
] − (N − n)E [ û(Xj, Ỹj)Kj

E [K1]
] ∶= T1 + T2.

● Concerning the term T1 :

F x(y) −E [H1(y)K1

E [K1]
] = F x(y) −E [E [H1(y)K1

E [K1]
∣X1]]

= F x(y) −E [H1(y)∣X1] .

We know that
E [H1(y)∣X1] = ∫

R
H ′(t)FX1(y − hHt)dt

and
∣E [H1(y)∣X1] − F x(y)∣ ≤ ∫

R
H ′(t)∣FX1(y − hHt) − F x(y)∣dt.

So, from (A2), we get

∣E [H1(y)∣X1] − F x(y)∣ ≤ C ∫
R
H ′(t) (hA1

K + ∣t∣A2 hA2

H )dt,

then, T1 = O(hA1

K ) +O(hA2

H ).
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● Concerning the term T2 :

F x(y) −E [ û(Xj, Ỹj)K1

E [K1]
] = E(u(Xj, Ỹj) − û(Xj, Ỹj)

K1

E [K1]
)

+E(F x(y) −H1(y)
K1

E [K1]
)

+E((H1(y) − u(Xj, Ỹj))
K1

E [K1]
) .

Thus,

(a) Firstly, we have

sup
x∈SF

sup
y∈SR

∣E(u(Xj, Ỹj) − û(Xj, Ỹj)
K1

E [K1]
) ∣ = O (sup

x∈SF
sup
y∈SR

∣u(x, y) − û(x, y)∣)

by the following decomposition for j ∈ V̄ :

û(Xj, Ỹj) − u(Xj, Ỹj) = −
u

ûxD
(ûxD − 1) + 1

ûxD
{ûxN(y) −E[ûxN(y)] − (u −E[ûxN(y)])}

∶= − u

ûxD
T2,1 +

1

ûxD
(T2,2 − T2,3)

then, from (lemma 2.4.1), we get

T2,1 = T2,2 = Oa.co.
⎛
⎝

√
log dn
nφ(an)

⎞
⎠

and T2,3 = O(aA1
n ) +O(hA2

H ).

(b) Secondly, we have

∣E(F x(y) −H1(y)
K1

E [K1]
) ∣ = ∣F x(y) −E[H1(y)∣X1]∣

and E[H1(y)∣X1] = ∫RH ′(t)FX(y − hHt)dt,
so, from the hypothesis (A2), we get

∣E(F x(y) −H1(y)
K1

E [K1]
) ∣ = O(hA1

K ) +O(hA2

H ). (2.7)

(c) Thirdly, its clear that after (b), we get

∣E((H1(y) − u(Xj, Ỹj))
K1

E [K1]
) ∣ = 0. (2.8)

Finally, from T1 and T2 the proof of lemma 2.4.2 is achieved.
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Lemma 2.4.3. Under the assumptions (A1) and (A3) − (A6), we obtain

sup
x∈SF

sup
y∈SR

∣F̂ x
N(y) −E[F̂ x

N(y)]∣ = Oa.co.
⎛
⎝

√
logN

Nφ(hK)
⎞
⎠
.

Démonstration. We keep the same notation used previously, in the definitions of k(x)
and yt. The proof is based on the following decomposition

sup
x∈SF

sup
y∈SR

∣F̂ x
N(y) −E[F̂ x

N(y)]∣ ≤ sup
x∈SF

sup
y∈SR

∣F̂ x
N(y) − F̂ xk(x)

N (y)∣ + sup
x∈SF

sup
y∈SR

∣F̂ xk(x)
N (y) − F̂ xk(x)

N (yt)∣

+ sup
x∈SF

sup
y∈SR

∣F̂ xk(x)
N (yt) −E[F̂ xk(x)

N (yt)]∣

+ sup
x∈SF

sup
y∈SR

∣E[F̂ xk(x)
N (yt)] −E[F̂ xk(x)

N (y)]∣

+ sup
x∈SF

sup
y∈SR

∣E[F̂ xk(x)
N (y)] − F̂ x

N(y)∣

=∶ E1 +E2 +E3 +E4 +E5. (2.9)

● Concerning E1 and E5, by following the same lines as for studying the terms P1

and P5, we obtain :

E1 = Oa.co.
⎛
⎝

√
logN

Nφ(hK)
⎞
⎠

and E5 =
⎛
⎝

√
logN

Nφ(hK)
⎞
⎠
.

● Concerning the term E2, by using the Lipschitz’s condition on the kernel H(.),
we can write

∣F̂ xk(x)
N (y) − F̂ xk(x)

N (yt)∣ ≤ Ch−1
H ∣y − yt∣

´¹¹¹¹¹¸¹¹¹¹¹¹¶
ln

( 1

NE [K1]
∑
i∈V
Ki

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F̂xD

+∑
j∈V̄

Kj

E [K1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F̂xD

)

under (A6), (A4), (A5) and from the almost comply consistency of F̂D (Lemma
2.4.4), and take ln = N−β , we get

E2 = Oa.co.
⎛
⎝

√
logN

Nφ(hK)
⎞
⎠

and E4 = O
⎛
⎝

√
logN

Nφ(hK)
⎞
⎠
. (2.10)
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● For E3, we have

E3 = sup
x∈SF

sup
y∈SR

∣F̂ x
N(zy) −E[F̂ x

N(zy)]∣

≤ sup
x∈SF

sup
y∈SR

∣ 1

N
(∑
i∈V

Hi(yt)Ki(xk(x))
E [K1]

−E(∑
i∈V

Hi(yt)Ki(xk(x))
E [K1]

)) ∣

+ sup
x∈SF

sup
y∈SR

∣∑
j∈V̄

Kj(xk(x))
E [K1]

−E
⎛
⎝∑j∈V̄

Kj(xk(x))
E [K1]

⎞
⎠
∣

=∶ E2,1 +E2,2 (2.11)

then, for E2,1 :

P
⎛
⎝
E2,1 > κ

√
logN

Nφ(hK)
⎞
⎠
≤ qndn max

x∈SF
max
yt∈SR

P
⎛
⎝
∣ 1

N
∑
i∈V

(Λi) ∣ > κ
√

logN

Nφ(hK)
⎞
⎠

with

Λi =
Hi(yt)Ki(xk)

E [K1]
−E(

Hi(yt)Ki(xk(x))
E [K1]

)

So, by the Bernstein’s exponential inequality for Λi, where, ∣Λi∣ ≤ C/φ(hK) and
E∣Λi∣2 ≤ C ′/φ(hK), as usually, we take qn = O(l−1

n ), Cκ2 = 2β + 1, such that

qn max
yt∈SR

P
⎛
⎝
∣ 1

N
∑
i∈V

Λi∣ > κ
√

logN

Nφ(hK)
⎞
⎠
≤ qn2 exp{−Cκ2 logN}

≤ CNβN−2β−1

so,

P
⎛
⎝
E2,1 > κ

√
logN

Nφ(hK)
⎞
⎠
≤ CN−β−1,

now, by take H(yt) = 1 for E2,1, we obtain E2,2 in very easy manner.
So,

E3 = Oa.co.
⎛
⎝

√
logN

Nφ(hK)
⎞
⎠
. (2.12)

Finally, the lemma 2.4.3 is achieved.

Lemma 2.4.4. Under the assumptions (A1) and (A3) − (A6), we obtain

sup
x∈SF

∣F̂ x
D − 1∣ = Oa.co.

⎛
⎝

√
logN

Nφ(hK)
⎞
⎠
.
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and

∑
i∈N

P(F̂ x
D < 1/2) <∞.

Démonstration. We have

F̂ x
D − 1 = 1

N

N

∑
i=1

Ki

EK1

− 1

N
E(

N

∑
i=1

Ki

EK1

) (2.13)

= 1

N

N

∑
i=1

Ki

EK1

− EKi

EK1

(2.14)

= 1

N

N

∑
i=1

∆i (2.15)

where ∆i =
Ki

EK1

−E Ki

EK1

Under (A6), for m = 1,2, we have

0 < C
′

φ(hK) < E(Km
1 ) < C

φ(hK)

then
∣∆i∣ <

C

φ(hK) = θ1

and
E∆2

i <
C

′

φ(hK) = θ2.

We apply the Bernstein-type exponential inequality, for all ε ∈]0, θ1θ2 [, we get

P
⎛
⎝
∣F̂ x
D − 1∣ > ε

√
logN

Nφ(hK)
⎞
⎠
≤ 2 exp( −ε

2 logN

4φ(hK)θ2

) (2.16)

= 2N−ε2/4φ(hK)θ2

= 2N−Cε2 .

It follows that for ε2 large enough

∞
∑
i=1

P
⎛
⎝
∣F̂ x
D − 1∣ > ε

√
logN

Nφ(hK)
⎞
⎠
< +∞.

For the second part, we have

P{∣F̂ x
D∣ ≤ 1/2} ≤ P{∣F̂ x

D − 1∣ > 1/2} (2.17)

≤ P{∣F̂ x
D −EF̂ x

D∣ > 1/2}
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we deduce that

∑
i∈N

P (F̂ x
D < 1/2) <∞.

2.4.2 The consistency of the conditional quantile estimator

In this section we study the asymptotic behaviour of the conditional quantile, ob-
viously we will estimate it by mean of the conditional distribution estimator, we introduce
q̂γ the estimator of qγ defined as

F̂ x (q̂γ) = γ

where γ ∈]0,1[.
To achieve our result, we need the following hypotheses.

(A7) H(.) is strictly increasing cond-cdf

(A8) The distributionF x(.) is strictly increasing, continuous and differentiable in neigh-
borhood of qγ .

Note that (A8) control the flatness of the conditional c.d.f. around the quantile to be esti-
mated.

Corollary 2.4.1. Under assumptions of the Theorem 4.1 and (A8), we obtain

∣q̂γ − qγ ∣ = O(hA1

K + hA2

H + aA1
n ) +Oa.co.

⎛
⎝
( logN

Nφ(hK))
1/2⎞

⎠
+Oa.co.

⎛
⎝
( log dn
nφ(an)

)
1/2⎞

⎠
.

Démonstration. We present briefly the proof, where, Taylor expansion of F x(.) drive to
the existence of some q∗ between q̂γ and qγ and under the condition (A8) we get :

F̂ x (q̂γ) − F̂ x (qγ) = (q̂γ − qγ) F̂ x(1) (q∗γ)

∣q̂γ − qγ ∣ =
1

F̂ x(1) (q∗γ)
[∣F̂ x (q̂γ) − F̂ x (qγ)∣] .

If we could confirm that

∃δ > 0,
∞
∑
n=1

P (F̂ x(1) (q∗) < δ) <∞,
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we obtain

P (∣q̂γ − qγ ∣ > ε) ≤ P (∣F̂ x (q̂γ) − F̂ x (qγ)∣ > δ (ε))
= P (∣F x (qγ) − F̂ x (qγ)∣ > δ (ε))

≤ P(sup
x∈SF

sup
y∈SR

∣F̂ x (y) − F x (y)∣ > δ (ε)) .

Under assumption (A8), and by comparing the rates of convergence given in Theorem
4.1, we have

∑
n

P (∣q̂γ − qγ ∣ > ε) ≤∑
n

P(sup
x∈SF

sup
y∈SR

∣F̂ x (y) − F x (y)∣ > δ (ε)) <∞.

2.5 Simulation

In this section, we evaluate the behavior of the proposed estimator by conducting
a number of simulation studies. Let F̂ x

V (y) be the standard Nadaraya-Watson estimator
with the true observations in the validation data set. That is,

F̂ x
V (y) =

∑i∈V H (y−Yi
hH

)K (d(x,Xi)hK
)

∑i∈V K (d(x,Xi)hK
)

A simulation was conducted to compare the proposed estimators F̂ x
R(y) with F̂ x

V (y) and
F̂ x
C(y), where F̂ x

C(y) is defined above in equation (2.1). It should be pointed out that
F̂ x
C(y) can serve as a gold standard in the simulation study, even though it is practically

unachievable because of the measurement errors.
We generated the response variables Y , such that

Yi =m(Xi) + εi for i = 1, ...,250,

where the functional regressors Xi are defined (see Figure 2.1), for any t ∈ [0, π2 ], by :

Xi(t) = 3Wi sin(2πt) +Ait with Wi ∼ N (1,0.5) and Ai ∼ N (0,1),

the error ε has the standard normal distribution and it’s independent of X, and m(Xi) is
given by

m(Xi) =
5

1 + ∫
π
2

0 Xi(t)dt
.
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A sample of smooth curves Xi(t) are plotted in Figure 2.1.

●
0.0 0.5 1.0 1.5

−
6

−
4

−
2

0
2

4
6

8

t

X
(t

)

FIGURE 2.1 – Curves (N=250)

Now, let S0 = {1, . . . ,200} and S1 = {201, . . . ,250} be two subsets of indices. Then,
we choose L = {(Xi, Yi)}i∈S0

as the learning sample and T = {(Xi, Yi)}i∈S1
as the test

sample. We have from Yi, for all i ∈ S0, was generated from

Ỹi = ρZi + ei,

where Zi is the standard score of Yi and ei ∼ N (0,
√

1 − ρ2). In such a way that the
correlation coefficient between Yi and Ỹi is approximately equal to ρ which would not
be controllable in practice. In the sequel of this simulation study, we take ρ = 0.35 or
ρ = 0.75.

From the learning sample containing N = 200 functional data, we randomly choose
a set V of n validation data {(Xi, Yi)}i∈V which allows to build the functional kernel
estimator F̂ x

V (y) ofm(x). The estimator F̂ x
R(y) is then constructed by using the surrogate

data {(Xi, Ỹi)}i∈V̄ with the help of the validation data, where V̄ = {1, . . . ,N}/V . It should
be pointed out that for N = n (complete observations), we have

F̂ x
V (y) = F̂ x

R(y) = F̂ x
C(y).

The bandwidths hH and hK are selected by a cross-validation method. Because of the
smoothness of the curves, we have built the predictors through the semi-metric based on
the first derivatives (see, Benhenni et al. (2007)). For the bandwidths an, we used the same
principal steps in kernelsK(.) andW (., .) are chosen to be the quadratic and the integrate
quadratic kernels, these latter are Epanechnikov kernels.
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FIGURE 2.2 – CDF comparison

Figure 2.2 represents the curves of the CDF with F x(y) = ∫
y

0
1

2π exp −(z−m(x))2

2 dz,

where, it is clear that our F̂ x
R(y) is closer to the real curve which represents the complete

sample and consequently, F̂R(y) performs better than F̂ x
V (y).

Hereafter, we will apply our result on the median and obtained results are given in
figure 2.3.
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FIGURE 2.3 – Comparative prediction between the median for each :
F̂ x
R(y), F̂ x

C(y) and F̂ x
V (y)
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TABLE 2.1 – MSE result

n/N → 0.125 0.25
ρ
↓

F̂ x
V (y) 0.35 0.6543 0.7127

0.75 0.6729 0.7149

F̂ x
R(y) 0.35 0.5503 0.5922

0.75 0.5692 0.6018

F̂ x
C(y) – 0.5248 0.5248

It can be noticed from Figure 2.3 that the estimator F̂ x
R(y) is better than the estimator

F̂ x
V (y). Also, it appears clearly that in this case the performance of both estimates is

closely linked to the correlation coefficient and the ration n/N since the values of MSE-
error increase substantially with respect to those parameters (see, Table 2.1). In this table
we summarize the MSE-error for two values of n/N and ρ, this error increases with
respect to those parameters. It is noted that the results are sufficiently good for all sample
size, and further results are given for large sample sizes in Figure 2.4.
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FIGURE 2.4 – A boxplots of the MSE of F̂ x
R(y) and F̂ x

V (y)

Figure 2.4 displays the boxplot of MSE. It can be seen from this figure that our esti-
mator F̂ x

R(y) remains more stable than F̂ x
V (y), and we can conclude to good asymptotic

performance of F̂ x
R(y).
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Conclusion

This paper presents the conditional distribution function’s estimator using the kernel
method for a surrogated scalar response variable given a functional random one. This
estimator is built from the validation data. We obtained the uniform, almost complete
convergence of this model using kernel estimate and the conditional quantile estimator
under some classical assumptions. To improve the performance of our proposed estimator
and the theoretical results, we realized a simulation study. Other research issues are pos-
sible, such as extensions to local linear method estimation and the semiparametric linear
regression model which can also be studied using this kind of data. Finally, the k nearest
neighbor method can be adapted to treat the outliers in the data set as proposed in the
literature by Attouch et al.
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3.1 Introduction

Recently, increasing attention has been paid to cohort studies with a validation sample,
where true observations are measured only on a sample from the full study cohort. Stu-
dies of this type may arise when collecting complete observa- tions for the entire cohort
is difficult, time consuming or expensive. Although in such studies complete true obser-
vations can only be obtained on a subset of the cohort, surrogate observations, which are
more easily obtained using some relatively simple measuring methods, are available on
every study subject. For example, damage to the heart muscle caused by a myocardial
infarction can be assessed accurately using arterioscintography. However, this is an inva-
sive and expensive procedure. Instead, the peak cardiac enzyme level in the bloodstream
is a more easily obtained variable, and is frequently used as a surrogate measure of heart
muscle damage. Expensive and invasive arterioscintography can only be performed for
a small subset of the full study cohort, to yield an accurate measure of damage to the
heart muscle. The exact measurements obtained by expensive arterioscintography for a
small subset of subjects, together with their surrogate observations, are usually treated as
validation sample, and the remaining surrogate observations are called primary data. In
an example of Rosner et al, related to the nurse health study, long-term dietary satura-
ted fat,X , is an important variable. The primary data set consisted of a cohort of 89538
women, but instead of observing X , a x̃ was observed, namely, a self-administered quan-
titative food surrogate X and x̃. To understand the relationship between X and x̃ were
observed. nurses became part of a validation study, in which, X and x̃ .
We address the following question : how to incorporate the information contained in the
primary data set and the validation sample into the estimation of the probability density
of the true variable X? Throughout this paper, all the probability densities are assumed to
be with respect to Lebesgue measure. There is a vast literature on nonparametric density
estimation when all data are observed exactly. For discussions of nonparametric density
estimators among others. The problem of nonparametric estimation of a probability den-
sity function when the sample observations are measured with error is also studied by
many authors. They estimate the F of a random variable X by kernel density and decon-
volution based X̃ = X + ε, where on independent and identically distributed observations
from X is a measurement error with a known distribution.
Generally, however, the relationship between the surrogate variables and the true variables
can be rather complicated compared to the additive error model assumed above. That is,
the additive error model with error distribution known may not be true in practice. In these
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cases, the deconvolution kernel density estimators mentioned before may not be used di-
rectly here. One solution is to use the help of validation data to capture the underlying
relation between X̃ With the help of validation data, some statisticians developed and X.
statistical inference techniques for various statistical models without specifying any error
structure and the distribution assumption of the true variable given the surrogate variable.
Stefanski and Carroll applied conditional scores and optimal scores to generalized li-
near measure- ment error model. Carroll and Wand developed a semiparametric approach
using the kernel regression technique for logistic measurement error models.applied the
method to nonlinear errors-in-variables models. Wang extended it to partial linear errors-
in-covariables models and Wang and Rao developed empirical likelihood approach in
linear error- in-covariables models. Chen proposed an estimation procedure for the Cox
model with incomplete covariate data. Wang and Härdle developedempirical likelihood-
based dimension reduction inference for linear error-in-responses models. To the best of
our knowledge, the problem of nonparametric estimation of the probability density of X
to incorporate information contained in both the validation data and the primary data has
not been considered. Intuitively, the information contained in the surrogate variates would
be useful to recover part of the efficiency that is lost by incomplete observations. In this
paper, we first develop a regression calibration kernel approach to define the estimator
of the probability density f of X such that information contained in both the validation
sample and the primary data can be incorporated. This approach defines the probability
density estimator to be the standard probability density kernel estimator with the terms,
where Xj are not available, replaced by the kernel estimators of the regression functions
of X̃j , respectively. Then, we define two weighted estimators based the terms on X on two
regression calibration estimators and the standard probability density estimator by weigh-
ting, respectively, where the standard probability density estimator is defined with the
exact observations in the validation data set. All the estimators are proved to be asympto-
tically normal. The two weighted estimators are proved to have less asymptotic variances
but generally have bigger bias than the regression calibration kernel estimator. Also, we
establish the asymptotic representations of the mean square error and mean integrated
square error of F n(t).

3.2 Estimator of the c.d.f. with surrogate data

Let N and n be the respective sizes of the full sample and the validation set,V the
index set of the sampled validation set and V̄ = {1, ...,N}∖V . We assume that the obser-
vations are independent and identically distributed.
Our target, in this article, is to estimate is the conditional distribution function F x(y)
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when we have unavailable response variable Y for this kind of data we have :

E [H (y − Yj
hH

) ∣Ỹj,Xj]
hH→0ÐÐÐ→ F x(y)

as well
E [E [H (y − Yj

hH
) ∣Ỹj,Xj] ∣Xj = x] = E [H (y − Yj

hH
) ∣Xj = x] , (3.1)

so, by using the kernel method we can defined the distribution function estimator by :

F̂ x(y) =
∑i∈V H (y−Yi

hH
)K (d(x,Xi)hK

) +∑j∈V̄ u(Xj, Ỹj)K (d(x,Xj)hK
)

∑N
i=1K (d(x,Xi)hK

)

where, W (., .) is a kernel function in R2 and an is a sequence of real number which tend
to zero when n tend to infinty, and

u(Xj, Ỹj) = E [H (y − Yj
hH

) ∣Ỹj,Xj] .

Noting that the function u(., .) is unknown. So, by validation data set we have the
estimator of this function :

û(Xj, Ỹj) =
∑i∈V H (y−Yi

hH
)W (d(Xj ,Xi)an

,
Ỹj−Ỹi
an

)

∑i∈V W (d(Xj ,Xi)an
,
Ỹj−Ỹi
an

)

3.3 Assumptions

All along this paper, when no confusion will be possible, we will denote by C and C ′

some strictly positive generic constants whose values are allowed to change, to prove our
result we need the following assumptions :

(A1) For hK > 0,P(X ∈ B(x,hK)) =∶ φx(hK) > 0,

φx(h) = f(x)φ(h) + o(φ(h)), ∀h > 0.

(A2) The operators F x(.) and u(., .) satisfies the holder condition, such that ∀(y1, y2) ∈
S2
R, ∀(x1, x2) ∈ N 2

x and C,β1, β2 > 0

(a) ∣F x1(t1) − F x2(t2)∣ ≤ C (d(x1, x2)β1 + ∣t1 − t2∣β2)
(b) ∣u(x1, t1) − u(x2, t2)∣ ≤ C (d(x1, x2)β1 + ∣t1 − t2∣β2)

(A3) (a) The bandwidths hK and an satisfy

lim
N→∞

Nφ(hK) = +∞, lim
N→∞

logN

Nφ(hK) = lim
n→∞

logn

nφ(hK) = 0.

and ∃β > 0, lim
n→∞

nβhH = 0.
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(b) The size n and N of the sample satisfy

n

N
= α and

an
hK

= O(1).

(A4) The kernel K(.) and W (., .) are a bounded continuous lipschitz function and

∫ K = 1, such that

0 < C1 ≤K ≤ C2 <∞, C1,C2 > 0.

and

C3φ(an) ≤ E [W (d(Xj,Xi)
an

,
Ỹj − Ỹi
an

)] ≤ C4φ(an), C3,C4 > 0.

(A5) The distribution function H(.) is a bounded continuous Lipschitz function, such
that

∫ H(t)dt = 1 and ∫ ∣t∣A2H ′(t)dt <∞.

3.4 Results

1. The quadratic error of the conditional distribution function for surrogate data

Theorem 3.1. Under assumptions (A1) − (A4), we obtain

E (F̂ x(y) − F x(y))2 = o( α

Nφ (hK)3/2
φ (an)3/2)+o(

1 − α
Nφ (hk)φ (hH))+o (h

β
Hh

β
K)+o (hKhH)

2. The asymptotic normality of the conditional distribution function for surrogate
data

Theorem 3.2. Under assumptions (A1) − (A4), we obtain

√
NhN (F̂ x(y) − F x(y))2 LÐ→ N (0, σ2(x))

where

σ2
p(x) =

α2(x)λp(θ(p;x);x)
α2

1(x)
Γ 2
p (θ(p;x);x) (with αj(x) =Kj(1) − ∫

1

0
(Kj)′(s)βx(s)ds for j = 1,2))

and

λp(θ(p;x);x) = ( p

1 − p)
2

Rx
+(θ(p;x)) +Rx

−(θ(p;x))
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where
R+(θ(p;x);x) = E [(Y1 − θ(p;x))21(Y1>θ(p;x)∣X = x]
R−(θ(p;x);x) = E [(Y1 − θ(p;x))21(Y1≤θ(p;x)∣X = x]

and

Λp(θ(p;x);x) = A′
1(θ(p;x);x) − ( p

1 − p)A
′
2(θ(p;x);x).

3.5 Appendix

Proof of Theorem 4.1.
To clarify, we put

Kn,1,i (x) =
K (d(x,Xi)hK

)

∑i=1
N K (d(x,Xi)hK

)
fori = 1, . . . ,N

Kn,2,j (x) =
W (d(x,Xj)an

,
ỹ−Yj
an

)

∑l∈V W (d(x,Xl)an
, ỹ−Ylan

)
forj ∈ V

and
Hi (y) =H (y − Yi

hH
) .

By a straightforward calculation we obtain

F̂ x (y) − F x (y) = ∑
j∈V̄

Kn,1,j (x)∑
i∈V
Kn,2,i (Xj, Ỹj) [Hi (y) − u (Xi, Ỹi)] (3.2)

+ ∑
j∈V̄

Kn,1,j (x)∑
i∈V
Kn,2,i (Xj, Ỹj) [u (Xi, Ỹi) − u (Xj, Ỹj)] (3.3)

+ ∑
i∈V
Kn,1,i (x) [F x (Yi) − F x (y)] +∑

i∈V
Kn,1,i (x) [Hi (y) − F x (Yi)] (3.4)

+ ∑
j∈V̄

Kn,1,j (X) [F x (Yj) − F x (y)] +∑
j∈V̄

Kn,1,j (X) [u (Xj, Ỹj) − F x (Yj)](3.5)

∶=
6

∑
k=1

Gk

We can easily apply the Cauchy-Schwarz’s inequality , there exist positive constant
C, such as

E [F̂ x (y) − F x (y)]2 ≤ C
6

∑
k=1

EG2
k

First for EG2
1 with the same techniques used in Ibrahim, and the fact that Hi (y) −
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u (Xi, Ỹi) is bounded ,so we can also use the Cauchy-Schwarz’s inequality, we get

EG2
1 ≤ C∑

i∈V
E
⎛
⎝∑j∈V̄

Kn,1,j (x)Kn,2,i (Xj, Ỹj)
⎞
⎠

2

(3.6)

≤ Cn∑
i∈V
∑
j∈V

E 1
2K4

n,1,j (x)E
1
2K4

n,1,j (Xj, Ỹj)

we have

Kn,1,j (x) =
1

NEK (d(x,Xj)hK
)

K (d(x,Xj)hK
)

ĝN (x)

whith

ĝN (x) = 1

Nφ (hK)
N

∑
j=1

K (d (x,Xj)
hK

)

then

E
⎛
⎜
⎝

K4 (d(x,Xj)hK
)

ĝ4
N (x)

⎞
⎟
⎠
≤ CEK4 (d (x,Xj)

hK
) + P (ĝ4

N (x) ≤ C)

We start by computing the first term, Under regularity assumptions and hypothese 3
we find

E 1
2K4

n,1,j (x) ≤
C

N2φ (hK) (3.7)

= O
⎛
⎝

1

Nφ (hK)
1
2

⎞
⎠

then for the second part we have

P (ĝ4
N (x) ≤ C) ≤ P (∣ĝN (x) − 1∣ ≥ 1

2
) (3.8)

≤ 4var (ĝN (x)) = O ( 1

Nφ (hK))

in other side ,and by same concept of E 1
2Kn,1,j (x) we obtain

E 1
2K4

n,2,j ≤
Cφ (an)

1
2

n2φ (an)2 = o
⎛
⎝

1

nφ (an)
1
2

⎞
⎠

we have

E 1
2K4

n,2,j (xj, ỹj) = E 1
2

⎛
⎜
⎝

1

n4φ(an)4W 4 (d(x,Xj)an
,
ỹ−Ỹj
an

)

gN ′ (x, ỹ)4

⎞
⎟
⎠
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with

gN ′ (x, ỹ) = 1

nφ (an)
∑
i∈V
W (d (x,Xi)

an
,
ỹ − Ỹi
an

)

finally by substituting E 1
2Kn,1,j (x) and E 1

2Kn,2,j (Xj, Ỹj) in EG2
1 we reach at

EG2
1 ≤ Cn∑

i∈V
∑
j∈V

1

N2φ (hK)
3
2

1

n2φ (an)
3
2

(3.9)

= C n

N2φ (hK)
3
2 φ (an)

3
2

under supposition(5) we get

EG2
1 = O

⎛
⎝

α

Nφ (hK)
3
2 φ (an)

3
2

⎞
⎠
.

Similarly to (Wang (2006) , Ibrahim(2019)) , and by the conditions imposed on W
and , we have

∣G2∣ ≤ ∑
j∈V̄

Kn,1,j (x)∑
i∈V

(νj) ∥νi − νj∥∞ ≤ an

with νk = (Xk, Ỹk)
move now to G3

∣∑
i∈V
Kn,1,i (x) (F x (Yi) − F x (y))∣ ≤ Chβ1

K h
β2

H ∑
i∈V ∪V̄

Kn,1,i (x) = Chβ1

K h
β2

H

that’s because of the kernel K is is supported into (0,1) and through assumption(lipzn)
we have

∣Kn,1,i (x)F x (Yi) − F x (y)∣ ≤Kn,1,i (x) sup
t∈B(x,h)

∣F x (t) − F x (y)∣ (3.10)

≤Kn,1,i (x) sup
t∈B(x,h)

d (x, t)β1 + ∣y1 − y2∣β2 ≤ CKn,1,i (x)hβ1

K h
β2

H

from that we achieve to
G3 = O (hβ1

K )O (hβ2

H )

also by the same way we get G5 = O (hK)O (hH)
it remains now to calculate G4 and G6
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ASYMPTOTIC PROPERTIES OF THE KERNEL TYPE

EXPECTILE REGRESSION ESTIMATOR FOR

SURROGATE DATA

4.1 Introduction

Although quantile regression (QR) and expectile regression (ER) have been introdu-
ced in quantile is better known expectile . On the other hand, the the literature at almost
the same time, the risk measure as and most developed in a rather rapid way than the risk
measure quantiles are not always satisfactory and can be criticized for their difficulty to
calculate because the corresponding loss function is not everywhere differentiable, the tra-
ditional estimation methods, for example the traditional estimation methods, for example
the Gauss-Newton algorithm, are no longer applicable for generating estimators of the
QR. To circumvent this problem, Koenker and Bassett reformulated the optimization pro-
blem in the framework of linear programming, (See Koenker and Bassett (1978)). The
main advantage of the expectation over the quantile is its efficiency, ease of computation
and estimation.
Note that it is easy to see that conditional expectations are characterized by tail conditional
expectations in the same way that conditional quantiles are characterized by the conditio-
nal distribution function, for more details,We refer the interested reader to the work of
Newey and Powell (1987) and Abdous (1999). In addition, the conditional expectation et
al. (2003). considers sensitivity to outliers to be an important advantage, because if we
important advantage because if we are measuring potential losses, we want our measure
to be sensitive to extreme and outlier values. Therefore, this advantage allows for more
conservative and responsive risk management. and reactive risk management.
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The most popular method to involve missing data is the imputation method that fills or
retrieves the missing data in the response variable Y . In this context, we can cite various
works that used this technique : We can cite, Yates (1933) for the linear regression model.
The kernel estimation of the mean functions is considered in Cheng (1994), the nearest
neighbor imputation for the data survey is addressed in Chen and Shao (2000), the robust
regression model with missing data is considered in Pérez-González et al. (2009), the
asymptotic properties of the regression operator estimator when the regressor is functional
and completely observed, and that missing data at random in the scalar response variable
are investigated in Ferraty et al. (2013), in the case of dependent data, the reader may
refer to Ling et al. (2015). In this work, we investigate the unavailability of response data
because sometimes it is default or very expensive to measure some response observations ;
the main idea is to recover (or fill) this missing data by a surrogate validation data set. In
this context, we cite Duncan and Hill (1985), Wittes et al. (1989), Carroll and Wand (1991)
and Pepe (1992). The principle of this method is to incorporate both surrogate data and
the corresponding observations of the covariate X .

This paper aims to study the conditional models (conditional distribution function and
the conditional quantile) for missing response by the kernel method ; we explore in this
work, the aspect of missing data in the response variable. First, we consider the estimator
of the conditional distribution for complete data, then by using the validation data set (see,
Ibrahim et al. (2020) and Wang (2006), we build our new estimator with surrogate data
and we obtain some asymptotic results for the conditional distribution and the quantiles.
In the end, we realized a simulation study to improve the efficacity of our estimator.

The rest of the paper is organized as follows. We present our model in Section 2 ; the
required notations and assumptions are introduced in Section 3, the main results of strong
uniform consistency (with rate) and the quantile estimation as a direct consequence of
our asymptotic result obtained from CFD estimation are formulated in section 4. For
the numerical results, a simulation study that shows the performance of the proposed
estimator is presented in Section 5.

4.2 Model and estimators

Let (X,Y ) be a pair of random variable valued in F ×R, where (F , d) is semi-metric
space equipped with a semi metric d(., .) defining a topology to me asure the proximity
between two elements of F and which is disconnected of the definition of X in order to
avoid measurability problems. In the following, we fix a point x in F and p ∈]0,1[.the
conditional expectile of order p has been introduced by Newey and Powell (1987) as the
minimizer of an asymmetric quadratic loss
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ξp(x) = argmin
t∈R

δp(x, t),

where

δp(x, t) = E[p(Y − t)21(Y −t)>0RX = x] +E[(1 − p)(Y − t)21(Y −t)⩽0RX = x],

where 1Z is the indicator function of set Z, we can show that ξp is the solution of

p

1 − p = A1(x, t)
A2(x, t)

where

⎧⎪⎪⎨⎪⎪⎩

A1(x, t) = −E[(Y − t)1(Y −t)⩽0RX = x],
A2(x, t) = E(Y − t)1(Y −t)>0RX = x].

(4.1)

we use the fact that the function A(x, t) ∶= A1(x,t)
A2(x,t) is an increasing function so we can

express the conditional expectileξp of order p as follows :

ξp = inf{t ∈ R ∶ A(x, t) ⩾ p

1 − p}.

To build an estimator of the conditional expectile of order pwhen there are missing data in
the response variable, letN and n (n < N ) the respetive sizes of the sample set and the va-
lidation set, we assume that the observations are independent and identically distributed,
V is the index set of individuals in the sampled validation set and V̄ = {1,2, . . . ,N} − V .
Since

⎧⎪⎪⎨⎪⎪⎩

E[E{(Yj − t)1(Yj−t)⩽0RXj, Ỹj}] = E[(Yj − t)1(Yj−t)⩽0RXj = x] = A1(x, t)
E[E{(Yj − t)1(Yj−t)>0RXj, Ỹj}] = E[(Yj − t)1(Yj−t)>0RXj = x] = A2(x, t)

where Ỹ is a surrogate variable of Y .
we can estimate ξp by

ξ̂p(x) = inf{t ∈ R ∶ Â(x, t) ⩾ p

1 − p}

we define

Â(x, t) ∶= Â1(x, t)
Â2(x, t)

with
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Â1(x, t) =
∑i∈V K(h−1

K d(x,Xi))(Yi−t)1(Yi−t)⩽0+∑j∈V̄ u1(Xj ,Yj)K(h−1
K d(x,Xi))

∑Ni=1K(h−1
K d(x,Xi))

Â2(x, t) =
∑i∈V K(h−1

K d(x,Xi))(Yi−t)1(Yi−t)>0+∑j∈V̄ u2(Xj ,Yj)K(h−1
K d(x,Xi))

∑Ni=1K(h−1
K d(x,Xi))

where ⎧⎪⎪⎨⎪⎪⎩

u1(Xj, Ỹj) = E{(Yj − t)1(Yj−t)⩽0RXj, Ỹj}
u2(Xj, Ỹj) = E{(Yj − t)1(Yj−t)>0RXj, Ỹj}

for j ∈ V̄
K is kernel function and hn is a bandwidth sequence tending to zero when N goes to

infinity. Recall that the functions u1(., .) and u2(., .) are unknown,so we estimate those
functions by validation data set :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

û1(Xj, Ỹj) =
∑i∈V (Yi−t)1(Yi−t)⩽0W (

d(Xj,Xi)
an

,
Ỹj−Ỹi
an

)

∑i∈V W (
d(Xj,Xi)

an
,
Ỹj−Ỹi
an

)

û2(Xj, Ỹj) =
∑i∈V (Yi−t)1(Yi−t)>0W (

d(Xj,Xi)
an

,
Ỹj−Ỹi
an

)

∑i∈V W (
d(Xj,Xi)

an
,
Ỹj−Ỹi
an

)
, for j ∈ V̄

W (., .) is a kernel function which is define on R2 and an is a sequence of real number
which tend to zero when n tend to infinity.

4.3 Asymptotic properties of the estimator

4.3.1 The uniform almost-complete convergence

To establish the uniform almost-complete convergence of the estimator ξ̂p(x), over a
fixed subset SF of F For this, we denote by ψSF (.) the Kolmogorov’s ε−entropy of SF ,
we introdus the closed ball centered at x with radius h by B(x,h) = {z ∈ F ∶ d(z, x) ⩽ h}
Our assumptions are gathered below for easy references.

(A1) ∀h > 0,P(X ∈ B(x,h)) = φ(h) > 0

(A2) For i = 1,2, the operators Ai and ui are differentiable in R and satisfies the follo-
wing Lipschitz’s condition : for all (t1, t2) ∈ R and for all x1, x2 ∈ F

∣Mi(x1, t1) −Mi(x2, t2)∣ ⩽ C (dki(x1, x2) + ∣t1 − t2∣ζi)

for some ζi, ki > 0.

(A3) For all m ⩾ 2, ϕm(Y −)E[∣Y −∣m∣X = x] ⩽ C <∞ a.s.,WithY − = (Y − t)1(Yi−t)⩽0
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(A4) The bandwidths hK and an satisfy

lim
N→∞

h = lim
n→inf

an = 0 and lim
N→∞

Nφ(h) = +∞

and
lim
N→∞

logN

Nφ(hK) = 0 and lim
n→∞

logn

nφ(an)
= 0.

(A5) the functions φx and ψSF are such that :

(A51) ∃C > 0,∃η0 > 0,∀η < η0, φ′x(η) < C, and if K(1) = 0, the function φx(.) has
to fulfill the additional condition :

∃C > 0,∃η0 > 0,∀0 < η < η0,∫
η

0
φx(u)du > Cηφx(η).

(A52) For N large enough,

(logN)2

Nφx(h)
< ψSF ( logN

N
) < Nφx(h)

logN
.

Kolmogorov’s ε−entropy of SF satisfies

∞
∑
n=1

nβ exp{(1 − η)ψSF ( logN

N
)} <∞ for some β > 0 and η > 1.

(A6) The kernel K(.) is a continuous function from R into R+, such that ∫ K = 1, and
there exist some positive constants C and C ′ such that

C1(0,1) ≤K ≤ C ′1(0,1) (4.2)

where 1A denotes the indicator function on the set A.
We assume the two-dimensional kernel W (x, y) = W1(x)W2(y) is a continuous
function with a compact support satisfies (4.2), however, there exist positive finite
real constants C3 and C4, such that

Cφ(an) ≤ E [W (d(Xj,Xi)
an

,
Ỹj − Ỹi
an

)] ≤ Cφ(an).

Remark 4.3.1.

Theorem 4.1. Under the assumptions (A1)-(A5), and if in addition

∂A(x, ξp(x))
∂t

> 0

then
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sup
x∈F

∣ξ̂p(x) − ξp(x)∣ = O(hklK) +O(aminkln)

+Oa.co. (
√

logn
nφ(an)) +Oa.co. (

√
logN

Nφ(hK)) .

Proof of Theorem :
for τ > 0 small enough, we use the fact that the function A(x, t) is an increasing function
and has a strictly positive in the nieghbourhood of ξ̂p(x), we have

∑
n
P (supx∈F ∣ξ̂p(x) − ξp(x)∣ > τ)

⩽ ∑n P (∣Â(x, ξp(x) − τ) −A(x, ξp(x) − τ)∣ ⩾ Cτ)

+ ⩽ ∑n P (∣Â(x, ξp(x) + τ) −A(x, ξp(x) + τ)∣ ⩾ Cτ)

so, the proof the theoreme 1 is based on the following proposition

Proposition 4.1. Under the assumptions (A1)–(A5), we have,for certain δ > 0

sup
x∈F

sup
t∈[ξp(x)−δ,ξp(x)+δ]

∣Â(x, t) −A(x, t)∣ = O(hklK) +O(akln )

+Oa.co. (
√

ψSF ( logN
N

)
nφ(an) ) +Oa.co. (

√
logN

Nφ(hK)) .

Proof of Proposition :
the proof of this proposition is based on the following decomposition

Â(x, t) −A(x, t) = 1

Â2(x, t)
[Â1(x, t) −A1(x, t)] +

A(x, t)
Â2(x, t)

[A2(x, t) − Â2(x, t)]

The proof of proposition becomes a straightforward consequence of the following
lemmas.

Lemma 4.3.1. under the assumptions (A1)-(A5) we have

sup
x∈F

sup
t∈[ξp(x)−δ,ξp(x)+δ]

∣Â1(x, t) −E[Â1(x, t)]∣ = Oa.co.
⎛
⎝

√
logN

Nφx(h)
⎞
⎠

Proof of Lemma1 :

We have for all x ∈ SF , we set k(x) = argmin
k∈1,...,dn

∣x−xk∣, and since [ξp(x)−δ, ξp(x)+δ] is

a compact subst of R it can covered by a finite number sn of intervals of length ln at some
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point tκ, κ = 1, . . . , Sn, i .e [ξp(x) − δ, ξp(x) + δ] ⊂
sn
⋃
κ=1

where Iκ = [tκ − ln, tκ + ln].
The subset is bounded, then there exists a constant M0 < ∞, such that snln ⩽ M0. Let
ts(t) = argmin

s∈l1,...,lqn
∣t − ts(t)∣.

Using the triangle inequality we get for ε > 0

P(sup
x∈F

sup
t∈[ξp(x)−δ,ξp(x)+δ]

∣Â1(x, t) −E[Â1(x, t)]∣ > ε)

⩽ P(sup
x∈F

sup
t∈[ξp(x)−δ,ξp(x)+δ]

∣Â1(x, t) − Â1(xk(x), t)∣ > ε)

+P(sup
x∈F

sup
t∈[ξp(x)−δ,ξp(x)+δ]

∣Â1(xk(x), t) − Â1(xk(x), ts(t))∣ > ε)

+P(sup
x∈F

sup
t∈[ξp(x)−δ,ξp(x)+δ]

∣Â1(xk(x), ts(x)) −E[Â1(xk(x), ts(t))]∣ > ε)

+P(sup
x∈F

sup
t∈[ξp(x)−δ,ξp(x)+δ]

∣E[Â1(xk(x), ts(x))] −E[Â1(xk(x), t)]∣ > ε)

+P(sup
x∈F

sup
t∈[ξp(x)−δ,ξp(x)+δ]

∣E[Â1(xk(x), t)] −E[Â1(x, t)]∣ > ε)

=∶ L1 +L2 +L3 +L4 +L5

if we suppose tha∆i(x) =
K( d(x,Xi)

h
)

EK( d(x,Xi)
h

)
, we define Â1 and Â2 by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Â1(x, t) = ∑i∈V Y
−
i ∆i(x) +∑j∈V̄ û1(Xj, Ỹj)∆j(x)

Â2(x, t) = ∑i∈V Y
+
i ∆i(x) +∑j∈V̄ û2(Xj, Ỹj)∆j(x)

where Y −
i = (Yi − t)1(Yi−t)⩽0 and Y +

i = (Yi − t)1(Yi−t)>0.

1. For L1 and L5, a direct consequence of the assumption (H5)

therefore,

L1 ⩽
1

n
sup
x

sup
t

⎛
⎝∑i∈V

∣∆i(x)Y −
i −∆i(xk)Y −

i ∣ +∑
j∈V̄

∣û1(Xj, Ỹj) − û1(Xkj, Ỹj)∣
⎞
⎠

⩽ L1,1 +L1,2.

For the first side we use the fact that :

Cφx(h) ⩽ E[K1(x)] ⩽ C ′φx(h)
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L1,1 ⩽
C

nφx(hn)
sup
x

sup
t

(∑
i∈V

∣Ki(x) −Ki(xk)∣Y −
i 1B(x,h)∪B(xk,h)(Xi))

⩽ C sup
x

sup
t

(l1 + l2 + l3),

with

l1 = 1
nφx(h) ∑i∈V ∣Ki(x) −Ki(xk)∣Y −

i 1B(x,h)∩B(xk,h)(Xi),

l2 = 1
nφx(h) ∑i∈V Ki(x)Y −

i 1B(x,h)∩B(xk,h)(Xi),

l3 = 1
nφx(h) ∑i∈V Ki(xk)Y −

i 1B(x,h)∩B(xk,h)(Xi),

we have that the kernel K is a Lipschitzian function on (0,1) then we can write

l1 ⩽ sup
x

sup
t

C

n

n

∑
i=1

Zi with Zi =
ε

hφx(h)
Y −
i 1B(x,h)∩B(xk,h)(Xi)

we apply the concentration inequality (see corolaire A.8 Ferraty and Vieu(2006))
with a2 = ε(hφx(h)−1 we have :

l1 = Oa.co

⎛
⎝

√
ε logN

Nhφx(h)
⎞
⎠

and the combination of conditions (A51) and (A52) allows to simplify the conver-
gence rate and to get

l1 = Oa.co

⎛
⎝

√
ε logN

Nφx(h)
⎞
⎠
.

by the same concept we get

l2 = l3 = Oa.co

⎛
⎝

√
ε logN

Nφx(h)
⎞
⎠

2. concerning the term L2, by using Lipschitz’s condition, we can write

Â1(xk(x), t) − Â1(xk(x), ts(t)) ⩽ C
1

nhφ(h)∑i∈V
Ki(xk)∣t − ts(x)∣

⩽ C
n
∑
i∈V
Zi

where Zi = InKi(xk)
h2φx(h) by the standard exponential inequality for a sum of bounded
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variables and for In = N−β we get

L2 = L4 = Oa.co.
⎛
⎝

√
logN

Nhφ(hn)
⎞
⎠

3. For the third term we have :

L3 = sup
x∈F

sup
t∈[ξp(x)−δ,ξp(x)+δ]

RRRRRRRRRRRR

1

N

⎛
⎝∑i∈V

Y −
i K (xk(x))
E[K1]

−E
⎡⎢⎢⎢⎢⎣
∑
i∈V̄

Y −
i K (xk(x))
E[K1]

⎤⎥⎥⎥⎥⎦

⎞
⎠

RRRRRRRRRRRR

+ sup
x∈F

sup
t∈[ξp(x)−δ,ξp(x)+δ]

RRRRRRRRRRRR

⎛
⎝∑i∈V̄

K (xk(x))
E[K1]

−E
⎡⎢⎢⎢⎢⎣
∑
i∈V

K (xk(x))
E[K1]

⎤⎥⎥⎥⎥⎦

⎞
⎠

RRRRRRRRRRRR
∶= L3,1 +L3,2 (4.3)

then, for L3,1

P
⎛
⎝
L3,1 > τ

√
logn

nφ(h)
⎞
⎠
⩽ qndn max

x∈F
max

t∈[ξp(x)−δ,ξp(x)+δ]
P(∣ 1

N
∑
i∈V

Λi∣ > η)

with
Λi =

1

E[K1]
(Ki (xk(x))Y −

i ) −E [Y −
i Ki (xk(x))])

We use of the Bernstein’s exponential inequality, but first we have to evaluate
asymptotically the m-th order moment of Λi :

E(∣ 1

E[K1(x)]
K1Y

−
1 ∣

m

) = 1

∣E[K1(1)]∣m
E [∣K1∣m ∣Y −

1 ∣m]

= 1

∣E[K1(1)]∣m
E [E [∣Y −

1 ∣m ∣X = x]Km
1 ]

= E [ϕm(Y −
1 )(K̂1)m] (4.4)

where we have used the notation

K̂1(.) =
Ki(.)

E[Ki(.)]
and recall that ϕm(Y −

1 ) = E[∣Y −
1 ∣m ∣X = x]

By using the assumpions (A1),(A3) and (A5), we find

E ∣(K̂1Y
−

1 )∣m ⩽ C3(φ(h))−m+1

which implies that
E ∣(K̂1Y

−
1 )∣m = O ((φ(h))−m+1)
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on the other hand by using the Newton’s binomial formula, we obtaine that

E ∣Y −
1 K1 (x) −E [Y −

1 K1 (x)]∣m = E ∣
m

∑
l=0

Cm
l (Y −

1 K1 )l (−E [Y −
1 K1 ])m−l ∣

⩽
m

∑
l=0

Cm
l E ∣Y −

1 K1 ∣l E ∣E [Y −
1 K1 ]∣m−l

⩽
m

∑
l=0

Cm
l E ∣Y −

1 K1 ∣l ∣E [E [Y −
1 K1 ] ∣X1 ]∣m−l

⩽ C
m

∑
l=0

Cm
l (φ(h))−l+1 ∣AX1

1 (t)∣m−l

⩽ C max
0⩽l⩽m

(φ(h))−l+1 = C(φ(h))−m+1.

then we get
E ∣Y −

1 K1 (x) −E [Y −
1 K1 (x)]∣m = O ((φ(h))−m+1) .

to achieve the proof we apply the Bernstien’s inequality for Λi, we take qn = O(l−1
n ),Cτ 2 =

2β + 1, such that

qn max
ts

P
⎛
⎝
∣ 1

N
∑
i∈V
Λi∣ > τ

√
logN

Nφ(h)
⎞
⎠
⩽ qn2 exp−Cτ 2 logN

⩽ CNβN−2β−1,

so

P
⎛
⎝
L3,1 > τ

√
logN

Nφ(h)
⎞
⎠
⩽ CN−β−1,

Concerning the second term, we follow the same steps as for L3,1 by taking (Yi −
ts)1(Yi−t)⩽0 = 1 we obtain L3,2.

So

L3 = Oa.co

⎛
⎝

√
logN

Nφ(h)
⎞
⎠

Lemma 4.3.2. under the assumptions (A1)-(A6) we have

sup
x∈F

sup
t∈[ξp(x)−δ,ξp(x)+δ]

∣E[Â1(x, t)] −A1(x, t)∣ = O(hklK) +O(akln ) +Oa.co.

⎛
⎜
⎝

¿
ÁÁÀψSF ( logN

N
)

nφ(an)
⎞
⎟
⎠

Proof of lemma 4.3.2 :
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Notice that we have

E[Â1(x, t)] −A1(x, t)] = nE [ Y
−
i K1

E[K1]
] − (N − n)E [ û1(Xj, Ỹj)K1

E[K1]
] − (−E[Y −

i ∣X = x])

= T1 + T2.

● Concerning the first term :

E[Y −
i ∣X = x] −E [ Y

−
i K1

E[K1]
] = 1

E[K1(x)]
{E [K1(x)E[Y −

i ∣X = x]] −E [Y −
i ∣X1]}

= 1

E[K1(x)]
{E [K1(x)(AX1

1 (t) −A1(x, t))]}.

We have

E [K1(x)(A1(X1, t) −A1(x, t))] = E(K (d(x,X1)
hn

) (A1(X1, t) −A1(x, t)))

= E[K1(x)(A1(X1, t) −A1(x, t))1B(x,hn)].

By using the Lipschitz’s condition, we obtain that

E[Y −
i ∣X = x] −E [ Y

−
i K1

E[K1]
] = 1

[K1(x)
∣E[K1(x)(A1(X1, t) −A1(x, t))1B(x,hn)]∣ ⩽ C1h

k1
n .

This, implies that
T1 = O(hk1

n )

● In the other hand we have :

A1(x, t) −E [û1(Xj, Ỹj)
K1

E(K1)
)] = E(u1(Xj, Ỹj) − û1(Xj, Ỹj)

K1

E[K1]
)

+E(A1(x, t) − Y −
i

K1

E[K1]
)

+E((Y −
i − u1(Xj, Ỹj)

K1

E[K1]
) .

first we have

sup
x∈s

∣E(u1(Xj, Ỹj) − û1(Xj, Ỹj)
K1

E[K1]
)∣ = O (sup

x∈s
∣u1(Xj, Ỹj) − û1(Xj, Ỹj)∣)

we consider the following decomposition for j ∈ V

û(Xj, Ỹj) − u(Xj, Ỹj) = −
u

ûxD
(ûxD − 1) + 1

ûxD
{ûxN(y) −E[ûxN(y)] − (u −E[ûxN(y)])}

∶= − u

ûxD
T2,1 +

1

ûxD
(T2,2 − T2,3)
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then,under assumptions (A1)-(A6)

T2,1 = T2,2 = Oa.co.

⎛
⎜
⎝

¿
ÁÁÀψSF ( logN

N
)

nφ(an)
⎞
⎟
⎠

and T2,3 = O(akln ) +O(hkln ).

it is clear that :

sup
x∈s

∣E(u1(Xj, Ỹj) − û1(Xj, Ỹj)
K1

E[K1]
)∣ = O (sup

x∈s
∣u1(Xj, Ỹj) − û1(Xj, Ỹj)∣)

and

sup
x∈s

∣E((Y −
i − u1(Xj, Ỹj)

K1

E[K1]
)∣ = 0

Lemma 4.3.3. under the assumptions (A1)-(A6) we have

∑
n

P( inf
x∈SF

inf
t∈[ξp(x)−δ,ξp(x)+δ]

∣Â2(x, t)]∣ ⩽ ε′) <∞ for certain ε′ > 0.

Proof of Lemma 3 :

By taking into account the fact that A2(x, t) is strictly positive function, then for all
t ∈ R, we can easily deduce that

P( inf
x∈SF

inf
t∈[ξp(x)−δ,ξp(x)+δ]

∣Â2(x, t)∣ ⩽
1

2
inf
x∈SF

inf
t∈[ξp(x)−δ,ξp(x)+δ]

A2(x, t))

⩽ P( inf
x∈SF

inf
t∈[ξp(x)−δ,ξp(x)+δ]

∣Â2(x, t) −A2(x, t)∣ >
1

2
inf
x∈SF

inf
t∈[ξp(x)−δ,ξp(x)+δ]

A2(x, t)) .

By applying Lemma’s 1 result for ε = 1
2 inf
x∈SF

inf
t∈[ξp(x)−δ,ξp(x)+δ]

A2(x, t) > 0, we obtain

∑
n⩾0

P( inf
x∈SF

inf
t∈[ξp(x)−δ,ξp(x)+δ]

∣Â2(x, t)∣ ⩽
1

2
inf
x∈SF

inf
t∈[ξp(x)−δ,ξp(x)+δ]

A2(x, t)) <∞

therefore the lemma’s proof is complete.

4.3.2 Asymptotic normality

this section is devoted to the establichment of the asymtotic normality of ξ̂p,

Theorem 4.2. Under the Hypotheses (A1)-() we have when n→∞
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(nφx(hn)
σ2
p

(x))
1/2

(ξ̂p(x) − ξp(x))
DÐ→ N (0,1)

where

σ2
p(x) =

α2(x)λp(θ(p;x);x)
α2

1(x)
Γ 2
p (θ(p;x);x) (with αj(x) =Kj(1) − ∫

1

0
(Kj)′(s)βx(s)ds for j = 1,2))

and

λp(θ(p;x);x) = ( p

1 − p)
2

Rx
+(θ(p;x)) +Rx

−(θ(p;x))

where
R+(θ(p;x);x) = E [(Y1 − θ(p;x))21(Y1>θ(p;x)∣X = x]
R−(θ(p;x);x) = E [(Y1 − θ(p;x))21(Y1≤θ(p;x)∣X = x]

and

Λp(θ(p;x);x) = A′
1(θ(p;x);x) − ( p

1 − p)A
′
2(θ(p;x);x).

Proof of theorem 2 :
To simplify the notation, we denote Zn = (

√
nφx(hn)σ−1

p (x))
1/2

(ξ̂p(x) − ξp(x))
For z ∈ R,we put up(z, x) = ξp(x)+z(nφx(h))−1/2σp(x)), and λ̂p(z;x) = ( p

1−p) Â2(up(z, x))−
Â1(up(z, x))
then

P [Zn ≤ z] =P [ξ̂p(x) ≤ up(z, x)]

=P [ p

1 − p ≤ Â(up(z, x);x)] + P [(ξ̂p(x) ≤ up(z, x)) ∩ (Â(up(z, x)) = 0)]

=P [λ̂p(z;x) −E [λ̂p(z;x)] ≤ E [−λ̂p(z;x)]]
+ P [(ξ̂p(x) ≤ up(z, x)) ∩ (Â(up(z, x)) = 0)]

we used the fact that the function Â(.;x) is an increasing function andξ̂p(x) is the unique
solution of the equation Â(ξ;x) = p

1−p .In order to achieve the proof of theorem 2 we
have to prove that the second term converges to zero , and establish the convergence in
distribution of the second term to a standard normal varible , as n tends to infinity.

Lemma 4.3.4. under the assumptions (A1)-(A6) we have as n→∞

E [−λ̂p(z;x)] = zσp(x)Λp(ξ(p;x);x)√
nφx(h)

+ o ((nφx(h))−1/2)

Proof of Lemma : by the definition of λ̂p(z;x) and using the fact that
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E [−λ̂p(z;x)] = E[Â1(up(z;x);x)] − p

1 − pE[Â2(up(z, x);x)]

= E[Â1(up(z, x);x)] −A1(up(z, x);x)

+ p

1 − p(A2(up(z, x);x)) −E[Â2(up(z, x);x)]

+A1(up(z, x);x) −A1(ξ(p, x);x)

− p

1 − pA2(u2(z, x);x) −A2(ξ(p, x);x)

+ (A1(ξ(p, x)) −
p

1 − pA2(ξ(p, x);x))

=∶ I1 + I2 + I3 + I4 + I5.

First, under Hypotheses have :

∣E[Â1(up(z, x))] −A1(up(z, x);x)∣ ≤ C1h
k1
n +C1a

k1
n

and
p

1 − p ∣E[Â2(up(z, x))] −A2(up(z, x);x)∣ ≤ C2h
k2
n +C2a

k2
n

on the other hand to assess I3 and I4 we use the Taylor expansion of the function A1(.;x)
and the first part of the Lipschitzian , we get

J3 = A1(up(z, x);x) −A1(ξ(z, x);x)
= zσp(x)(nφx(h))−

1
2A′

1(ξ(z, x);x)

+ o ((nφx(h))−
1
2)

and by using the same arguments we obtain

J4 = (− p

1 − p)A1(up(z, x);x) −A1(ξ(z, x);x)

= zσp(x)(nφx(h))−
1
2 ((− p

1 − p)A
′
2(ξ(z, x);x))

+ o ((nφx(h))−
1
2)

recall that

Λp(θ(p;x);x) = A′
1(θ(p;x);x) − ( p

1 − p)A
′
2(θ(p;x);x).

and under Hypotheses achieve the proof

Lemma 4.3.5. under the assumptions (A1)-(A6) we have as n→∞
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(nφx(h))Var (
n

∑
i=1

µi(x))→
α2λp(ξ(p, x);x)

α2
1(x)

and

Zn = (nφx(h)
σ2
p(x)

)
1
2

(Λp(ξ(p;x);x))−1 (λ̂p(p, x) −E [λ̂p(p, x)])
DÐ→ N (0,1)

where

µi(x) =
1

nE[K1(x)]
Ki(x)(Yi − up(z, x)) (

p

1 − p1Ei + 1Eci )

with

Ei = Yi > up(z, x) and Ec
i = Yi ≤ up(z, x)

we can

Lemma 4.3.6. under the assumptions (A1)-(A6) we have as n→∞

P [(ξ̂p(x) ≤ up(z, x)) ∩ (Â2(up(z, x)) = 0)] ≤ exp[−nφx(h)]

To obtain this results we companin the idea Wang (2006) and Mohammedi (2020) .
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Conclusion

The literature on missing data is still relevant, especially with regard to the estimation
of the functional parameters present in this model. Recall that one of the main motivations
for the craze of nonparametric functional statistics is the solution it offers for the problem
of the scourge of dimension, and the power of computers which have made it possible to
process data in very large dimensions.

In this thesis, we are interested in the robust estimation of the regression operator in
the presence of missing data. It is clear that the superiority of this approach over the clas-
sical method is the main motivation for this subject. In order to highlight this superiority
in NPFDA, we first studied, the asymptotic properties of a nonparametric estimator of the
relative error regression given a functional explanatory variable, when the scalar response
is right censored, in the i.i.d. case. We establish the strong almost complete convergence
rate and asymptotic normality of these estimators.

As a first idea of extension, is to establish similar results when one frees oneself from
the assumption of independence. It is well known that in practice several processes have
a certain dependence. The second part of this thesis is devoted to the problem of estima-
ting the relative regression operator when the observation are α−mixing. We establish the
almost complete convergence rate of these estimators. A simulation study and real data
application are performed to illustrate how this fact allows getting higher predictive per-
formances than those obtained with standard estimates.

Finally, it seems possible to us interested in studying the robust model given a func-

56



GENERAL CONCLUSION AND PROSPECTS

tional explanatory variable, in the case of a scalar missing at random (MAR) response, for
both cases, without and with unknown scale parameter. We establish, the almost complete
convergence rate of our estimators in the two proposed models.

Prospects

To conclude the work of this thesis, many questions remain unanswered. We believe
we will invest in the future on a few issues in order to improve and extend our results.

— We think it is possible to adapt our results to another type of dependency such as
the quasi-associated and the ergodic case.

— Other issues are possible, such that extensions our estimators to the local linear
ideas.

— Another possible prospect is to obtain the asymptotic normality of the robust equi-
variant regression for functional data with responses missing at random.

— Robust estimation with single functional index model can be approached in the
missing case.

— We will be able to elaborate the asymptotic properties of our estimators based
on the k nearest neighbor (k−NN) method or other methods on the bandwidth
selection, because it allows the improvement of the quality of the estimator.

— We can generalize the results obtained using other models such as the aditive mo-
del or the semi-functional partial linear model.

— An important issue about the comparison of the constructed estimators when there
are surrogate outputs.
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