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Introduction

In recent years, boundary control of systems represented by PDEs has become an important
area of research because it improve the performance of the systems. A control system is defined
as a system of devices that manages, commands, directs, or regulates the behavior of other
devices or systems to achieve a desired result. Its application ranges widely from earthquake
engineering and seismology to fluid transfer, cooling water and noise reduction in cavities,
Acoustics, aeronautics, hydraulics, are also some of the diverse disciplines where control theory
is applied. This thesis is devoted to the study of the stabilisation of some hyperbolic evolution
system with a fractional dissipation. We are concerned with the nondegenerate wave equation
with a fractional boundary control.

wtt(x, t)− (a(x)wx(x, t))x = 0 in (0, 1)× (0,+∞), (1)

where the coefficient a is a positive function on [0, 1].
Up to now, there are many works concerning the stabilization and controllability of nondegenerate
wave equation with different types of dampings (see e.g. [52], [21], [24], [26] and the references
therein). In [26], for a(x) = a1(x) + a0: the authors have established asymptotics stabilization
under boundary conditions of the form{

(awx) (0, t) = 0,
(awx) (1, t) = −kw(1, t)− wt(1, t), k > 0.

It has been shown in [52], for a ∈ H 1(0, 1), a(x) > a0 > 0, that the feedback law{
(awx) (0, t) = −cw(0, t)− Fwt(0, t), c > 0,
Mwtt(1, t) + (awx) (1, t) = 0.

exponentially stabilizes equation (1) under appropriate assumptions on the function F. In [21]
the authors considered the following modelization of a flexible torque arm controlled by two
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feedbacks depending only on the boundary velocities:
wtt(x, t)− (a(x)wx)x + αwt(x, t) + βw(x, t) = 0, 0 < x < 1, t > 0,
(a(x)wx) (0) = k1ωt(0, t), t > 0,
(a(x)wx) (1) = −k2wt(1, t), t > 0,

where {
α > 0, β > 0, k1, k2 > 0, k1 + k2 6= 0,
a ∈ W 1,∞(0, 1), a(x) > a0 > 0 for all x ∈ [0, 1].

They proved the exponential decay of the solutions. In [44] Mbodje studies the energy decay of
the wave equation (a ≡ 1). with a boundary fractional derivative control. He considered the
following system

wtt(x, t)− wxx(x, t) = 0 in (0, 1)× (0,+∞),

w(0, t) = 0 on (0,+∞)

wx(1, t) = −γ∂α,ηt w(1, t) on (0,+∞),

w(x, 0) = w0(x), wt(x, 0) = w1(x) on (0, 1),

and used a diffusive representation and the semi-group theory to establish the strong asymptotic
stability of solutions when η = 0 and a polynomial type decay rate E(t) 6 C

t
if η 6= 0. Our

purpose in this thesis is to give a global solvability in Sobolev spaces and energy decay estimates
of the solutions to the problem (1) for linear damping and to show that system (1) is not
exponentially stable for a general nondegenerate function a. Furthermore, we prove that the
solution decays to zero polynomially when t goes to infinity for general initial data taken in
the domain of A and for a general nondegenerate function a for both cases η > 0 and η = 0.
The boundary feedback under the consideration in this thesis are of fractional type and are
described by the fractional derivatives

∂α,ηt w(t) =
1

Γ(1− α)

∫ t

0

(t− s)−αe−η(t−s)dw

ds
(s)ds, η ≥ 0.

The order of our derivatives is between 0 and 1. Very little is known in the literature. In
addition to being nonlocal, fractional derivatives involve singular and non-integrable kernels
(tα, 0 < t < 1). This makes the problem more delicate. It has been shown (see [43]) that, as ∂t
the fractional derivative ∂αt forces the system to become dissipative and the solution to approach
the equilibrium state. Therefore, when applied on the boundary, we can consider them as
controllers which help to reduce the vibrations. This thesis is divided into three Chapters :
CHAPTER 1: Preliminaries
Firstly, in this Chapter, we present some well known results on Sobolev spaces and some basic
definitions and theorems. Secondly, we recall some results on a C0-semigroup, including some
theorems on strong, exponential and polynomial stability of a C0-semigroup. Next, we display
a brief historical introduction to fractional derivatives and we define the fractional derivative
operator and we present some physical interpretations. After that, we present the Bessel
functions and their basic definitions. Finally, we present an appendix that contains almost all
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the secondary calculations used in this Thesis.
CHAPTER 2: Energy decay for a nondegenerate wave equation with a fractional
boundary control.
In this chapter, we are concerned with the system

wtt(x, t)− (a(x)wx(x, t))x = 0 in (0, 1)× (0,+∞),

w(0, t) = 0 on (0,+∞),

(awx) (1, t) = −%∂α,ηt w(1, t) on (0,+∞),

w(x, 0) = w0(x), wt(x, 0) = w1(x) on (0, 1),

(P)

where % > 0. The notation ∂α,η, stands for the generalized Caputo’s fractional derivative (see
[11] and [23] ) defined by the following formula:

∂α,ηt w(t) =
1

Γ(1− α)

∫ t

0

(t− s)−αe−η(t−s)dw

ds
(s)ds, η ≥ 0,

where Γ is the usual Euler gamma function and (0 < α < 1). We show that the problem
is not uniformly stable by a spectrum method and we study the polynomial stability using
the semigroup theory of linear operators. using a frequency domain approach, we estabish an
optimal polynomial energy decay depending with the parameter for smooth solution.
CHAPTER 3: Global existence and stabilization of nondegenerate wave equation
with a dynamic boundary dissipation.
In this chapter we investigate the existence and decay properties of solutions for the following
initial boundary value problem :

wtt(x, t)− (a(x)wx(x, t))x = 0 in (0, L)× (0,+∞),

w(0, t) = 0 on (0,+∞),

mwtt(L, t) + (awx) (L, t) = −%∂α,ηt w(L, t) on (0,+∞),

w(x, 0) = w0(x), wt(x, 0) = w1(x) on (0, L).

(Q)

we study the existence, uniqueness and stability of solutions for the nondegenerate wave
equation with a dynamic boundary dissipation of fractional derivative type, and we proved
optimal polynomial decay estimates in appropriate spaces. The results are obtained through an
estimate on the resolvent of the generator associated with the semigroup.
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Chapter 1

PRELIMINARIES

In this chaptres, we recall some basic definitions and theorems which will be used in the following
chapters. We refer to [1, 4, 13, 12, 14, 24, 30, 51].

1.1 Sobolev spaces

In many problems of mathematical physics it is not sufficient to deal with the classical solutions
of partial differential equations(PDE). It is necessary to introduce the notion of weak derivatives
and to work in the so called Sobolev spaces. We denote by Ω an open domain in Rn, n > 1. We
will also use the following multi-index notation for partial differential derivatives of a function

∂ki u =
∂ku

∂xki
for all k ∈ N and i = 1, ..., n, ...

Dαu = ∂α1
1 ∂α2

2 ...∂αnn u =
∂α1+...+αnu

∂xα1
1 ...∂x

αn
n

α = (α1, α2, ...αn) ∈ Nn, |α| = α1 + ...+ αn.

Definition 1.1.1. For 1 ≥ p ≥ ∞, we call Lp(Ω) the space of measurable functions f on Ω
such that

||f ||Lp(Ω) =

(∫
Ω

|f(x)|pdx
)
< +∞ for p < +∞

||f ||L∞(Ω) = sup
Ω
|f(x)| < +∞ for p = +∞

The space Lp(Ω) equipped with the norm f → ||f ||Lp is a Banach space: it is reflexive and

separable for 1 < p <∞ ( its dual is L
p
p−1 (Ω)), separable but nor reflexive for p = 1 ( its dual

is L∞(Ω)), and not separable, not reflexive for p = ∞ ( its dual contains stricty L1(Ω)). In
particular the space L2(Ω) is a Hilber space equipped wiht the scalar product defined by

(f, g)L2(Ω) =

∫
Ω

f(x)g(x)dx

11



1.2. M-Dissipative operators

Definition 1.1.2. The Sobolev space Wm,p(Ω) is defined to be the subset of Lp such that
function f and its weak derivatives up to some order m have a finite Lp norm, For given p ≥ 1.

Wm,p(Ω) = {f ∈ Lp(Ω), Dαf ∈ Lp(Ω). for all α, |α| ≥ m}

With this definition, the Sobolev spaces admit a natural norm. and

f → ||f ||wm,p(Ω) =
( ∑
|α|≤m

||Dαf ||PLP (Ω)

)1/p

, for p < +∞

and
f → ||f ||wm,p(Ω) =

∑
|α|≤m

||Dαf ||L∞(Ω), for p = +∞

The space Wm,p(Ω) equipped with the norm ||.||wm,p is a Banach space. Moreover is a reflexive
space for 1 < p <∞ and a separable space for 1 ≤ p <∞.

Remark 1.1.1. Sobolev spaces Wm,p(Ω) with p = 2 are especially important because of their
connection with Fourier series and because they form a Hilbert space. A special notation has
arisen to cover this case:

Wm,2(Ω) = Hm(Ω)

the Hm inner product is defined in terms of the L2 inner product:

(f, g)Hm(Ω) =
∑
|α|≤m

(Dαf,Dαg)L2(Ω)

1.2 M-Dissipative operators

In this section we introduce unbounded operators and put together some properties which will
be frequently used.

1.2.1 Unboubded Linear Operators on Banach space

Let X and Y be two Banach spaces.

Definition 1.2.1. An unbounded linear operator from X into Y is linear map A : D(A) ⊂
X → Y defined on a subspace D(A) ⊂ X with values in Y . The set D(A) is called the domain
of the operateur A. If X = Y , we shall simply say that A is an unbounded linear operator on
X.

Definition 1.2.2. One says that A is bounded if D(A) = X and if there is a constant C ≥ 0

||Ax||Y ≤ C||x||X ∀x ∈ X

The set of all bounded linear operators from X into Y is denoted by L(X ,Y), Moreover, the set
of all bounded linear operators from X into X is denoted by L(X ) . The norm of a bounded

12



1.2. M-Dissipative operators

linear operator is define by

||A||L(X,Y ) = sup
x 6=0

||Ax||Y
||x||X

Definition 1.2.3. Let A : D(A) ⊂ X → Y be an unbounded linear operator. We define
Graph of A : G(A) = {(x,Ax) : x ∈ D(A)} ⊂ X × Y,
Range of A : R(A) = {Ax : x ∈ D(A)} ⊂ Y,
Kernal of A : N(A) = {x ∈ D(A) : Ax = 0} ⊂ X.

Definition 1.2.4. An unbounded linear operator A is a closed operateur if its graph G(A) is
closed in X × Y

Definition 1.2.5. Let A : D(A) ⊂ X → Y be an unbounded linear operator . We say that A
is a densely defined operateur in X, or A is an operateur with dense domaine in A, if D(A) is
dense in X, i.e.,D(A) = X.

Definition 1.2.6. Let A : D(A) ⊂ X → Y be a densely defined operator in X. The adjoint
operator of A is the operator A∗ : D(A∗) ⊂ Y ′ → X ′ defined by

D(A∗) = {y ∈ Y ′ : ∃C ≥ 0 such that 〈Ax, y〉Y×Y ′ ≤ C||x||X for all x ∈ D(A)}

and
〈x,A∗y〉X×X′ = 〈Ax, y〉Y×Y ′ for all x ∈ D(A), for all y ∈ D(A∗)

Definition 1.2.7. A bounded linear operator A : X → Y is said to be compact if T (BX) has
compact closure in Y . The set of all compact operators from X into Y is denoted by K(X, Y ).
Moreover, the set K(X,X) is denoted by K(X).

Theorem 1.2.1. (Fredholm alternative) . Let A ∈ K(X). Then:
1. N(I −A) is finite-dimensionel.
2. N(I −A) is closed and R(I −A) = N(I −A∗)⊥,
3. N(I −A) = 0⇔ R(I −A) = X,
4. dim N(I −A) = dim N(I −A∗).

Remark 1.2.1. The Fredholm alternative deals with solvability of the equation u−Au = f.

1.2.2 The Resolvent set and the Spectrum of Linear Operators

Let X be a Banach space, and A be a closed unbounded operator on X.

Definition 1.2.8. The resolvent set of A is given by

ρ(A) = {λ ∈ C;λI −A : D(A)→ X is bijective }

and its spectrum by
σ(A) = Cr ρ(A)

if λ ∈ ρ(A), then R(λ,A) = (λI −A)−1 is called the resolvent of A.

13



1.2. M-Dissipative operators

Remark 1.2.2. The numbers in ρ(A) are called regular values of A.

Theorem 1.2.2. The sets ρ(A) and σ(A) are open and closed, respectively.

Definition 1.2.9. The point spectrum or ponctuel spectrum of A is defined by

σp(A) = {λ ∈ C : there exists some v ∈ D(A) \ {0} with Av = λv}

= {λ ∈ C : N(λI −A) 6= {0}} ⊂ σ(A).

Remark 1.2.3. If λ ∈ σp(A), then there exists a vecteur v 6= 0 such that (λI − A)v = 0, i.e.,
Av = λv. Such a vector is called un eigenvector of A and the corresponding number λ an
eigenvalue of A.

Definition 1.2.10. The continuous spectrum σc(A) is the set of all numbers λ ∈ C such that
N(λI −A) = 0, R(λI −A) 6= X, but R(λI −A) = X.

Definition 1.2.11. The residual spectrum σr(A) is the set of all numbers λ ∈ C such that
N(λI −A) = 0, andR(λI −A) 6= X.

Remark 1.2.4. It is apparent that the sets σp(A), σc(A), σr(A) are disjoint, and that

σ(A) = σp(A) ∪ σc(A) ∪ σr(A)

Proposition 1.2.1. (Spectrum of the adjoint operator). Let H be a Hilbert space, and
A ∈ L(H). Then:
(i) λ ∈ ρ(A)⇔ λ̄ ∈ ρ(A∗).
(ii) λ ∈ σp(A)⇒ λ̄ ∈ σp(A∗) ∪ σr(A∗).
(iii) λ ∈ σr(A)⇒ λ̄ ∈ σp(A∗).
(iv) λ ∈ σc(A)⇒ λ̄ ∈ σc(A∗).

1.2.3 M-Dissipative Operators on Hilbert spaces

Let H Hilbert space equiped with the inner product 〈., .〉H.

Definition 1.2.12. An unbounded linear operator A : D(A) ⊂ H → H is said to be dissipative
if

∀x ∈ D(A), 〈Ax, x〉H ≤ 0.

Remark 1.2.5. For a complex Hilbert space the previous condition is replaced by

∀x ∈ D(A), <e〈Ax, x〉H ≤ 0.

Definition 1.2.13. An unbounded linear operator A : D(A) ⊂ H → H is m- dissipative (or
maximal dissipative) if 1. A is dissipative. 2. λI − A is surjective fo every λ > 0, i.e.,∀y ∈
H,∀λ > 0, ∃x ∈ D(A). such that

λx−Ax = y.
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1.3. Semigroups of Linear Operators in Banach space

Theorem 1.2.3. Let A : D(A) ⊂ H → H be an unbounded linear dissipative operator.
The operator A is m-dissipative if and onlysuch that if ∃λ0 > 0 such that λ0I −A, i.e.,R(λ0I −
A) = H.

Theorem 1.2.4. IfA : D(A) ⊂ H → H is an m-dissipative operator, then
1. A is closed operator,
2. D(A) is dense in H, i., e., D(A) = H,
3. ]0,+∞[ ⊆ ρ(A).

1.3 Semigroups of Linear Operators in Banach space

In this section we introduce semigroups and their generators. newline Let X be a Banach space,
and H be a Hilbert space equiped with the inner product (., .)H and the iduced norm || . ||H.

1.3.1 Strongly Continuous Semigroups Generated by Dissipative Op-
erator

We consider the linear Cauchy problem

(C)

{
u′(t) = Au(t)

u(0) = u0

where A is an unbounded operator on X. By using operator semigroup theory, we establish
some results about the existence and uniqueness of solution of (C).

Definition 1.3.1. A family of bounded linear operators (S(t))t≥0 on X is a semigroup of
bounded linear operators on X if
1. S(0) = I,
2. S(t+ s) = S(t)S(s) for every s, t ≥ 0

Remark 1.3.1. It follows immediately from the definition that

S(t)S(s) = S(s)S(t), for all t, s ≥ 0

Definition 1.3.2. A semigroup ((S(t))t≥0 is uniformly continuous if

lim
t→0+

||S(t)− I||L(χ) = 0

Definition 1.3.3. A semigroup ((S(t))t≥0 is a C0 -semigroup ( or a strongly continuous
semigroup ) if

lim
t→0+

||S(t)x− x||χ = 0

Theorem 1.3.1. Let (S(t))t≥0 be a C0-semigroup. Then there exist two constants M ≥ 1 and
ω ∈ R such that

||S(t)||L(χ) 6Meωt,∀t ≥ 0
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1.3. Semigroups of Linear Operators in Banach space

Remark 1.3.2. If ω = 0, i.e.,
||S(t)||L(H) 6M,∀t ≥ 0

then (S(t))t≥0 is called a uniformly bounded C0-semigroup.
If ω = 0, and M = 1, i.e.,

||S(t)||L(H) 6 1,∀t ≥ 0

then (S(t))t≥0 is called a strongly continuous semigroup ( or C0-semigroup ) of contractions.
We now define the generator of semigroup.

Definition 1.3.4. Let (S(t))t≥0 be a C0-semigroup. The infinitesimal generator of the semigroup
(S(t))t≥0 is the linear operator A defined by

D(A) = {x ∈ X : lim
t→0+

S(t)− x
t

exists in X }

and

Ax = lim
t→0+

S(t)− x
t

, ∀x ∈ D(A)

Remark 1.3.3. Sometimes we also denote S(t) by eAt

Theorem 1.3.2. Let (S(t))t≥0 be a C0-semigroup and let A be its infinitesimal generator.
Then

S(t)x ∈ D(A)

and
d

dt
S(t)x = AS(t)x = S(t)Ax

for x ∈ D(A) and t ≥ 0

Remark 1.3.4. From the above theorem, the solution to the initial value problem (C) admits
the following representation

u(t) = S(t)u0 = eAtu0 ∀t ≥ 0

The following theorems (Theorem 1.3.3 and Theorem 1.3.4)gives a necessary and sufficient
condition for an operator to be the generator of a C0-semigroup (see Pazy [49]).

Theorem 1.3.3. (Hill-Yosida Theorem in Banach spaces) An unbounded linear oper-
ator A : D(A) ⊂ X → X is the infinitesimal generator of a semigroup of contractions if and
only if
1. D(A) is dense in X, i, e.,D(A) = X,
2. A is a closed operator,
3. The resolvent set ρ(A) of A contains R+ and for every λ > 0,

||R(λ,A)||L(χ) ≤
1

λ

Theorem 1.3.4. (Lumer-Phillips Theorem in Hilbert spaces) An unbounded linear
operator A : D(A) ⊂ H → H is the infinitesimal generator of a semigroup of contractions if
and only if A is m-dissipative operator.
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1.3. Semigroups of Linear Operators in Banach space

The existence and uniqueness of the solution of the initial value problem (C) is justified by
the following theorem.

Theorem 1.3.5. (Hill-Yosida Theorem) Let A : D(A) ⊂ H → H be an unbounded linear
operator. If A) is the infinitesimall generator of (S(t))t≥0 a C0-semigroup of contraction, (or
A is m-dissipative operator), then 1. if U0 ∈ D(A), then the initial value problem (C) has a
unique strong solution

U ∈ C0(R+, D(A)) ∩ C1(R+,H).

2. if U0 ∈ A, then the initial value problem (C) has a unique weak solution

U ∈ C0(R+,H)

1.3.2 Stability of Semigroups

The stability theory of semigroups provides powerful tools for the investigation of the convergence
to 0 of weak and strong solutions of linear Cauchy problem

(C)

{
u′(t) = Au(t)

u(0) = u0

where A generates the C0-semigroup of contraction (S(t))t≥0 on a Hilbert space H. In this
section, we introduce the notions of stability that will be used throughout this thesis. Let
(S(t))t≥0 be a C0-semigroup of contractions on a H and let A be its infinitesimal generator.

Definition 1.3.5. (Strong stability) We say that the semigoup (S(t))t≥0 is strongly (or
asymptotically) stable if for all x ∈ H

lim
t→+∞

||eAtx||H = 0

Definition 1.3.6. (Exponential stability) We say that the semigoup (S(t))t≥0 is exponen-
tially (or uniformly) stable if there exist α,M > 0 such that

||S(t)x||H ≤Me−αt, ∀t ≥ 0,∀x ∈ H

Definition 1.3.7. (Polynomial stability) We say that the semigoup (S(t))t≥0 is is polyno-
mially stable if there exist β, C > 0 such that

||S(t)x||H ≤
C

tβ
||x||H, ∀t ≥ 0,∀x ∈ H

The following theorem (a general criteria of Arendt-Batty) gives a necessary conditions for a
strong stability of the C0-semigroup (see [4]).

Theorem 1.3.6. (Arendt-Batty) Let A be the generator of a uniformly bounded C0-semigroup
(S(t))t≥0 on a Hilbert space H. If: (i) A does not have eigenvalues on iR.
(ii) The intersection of the spectrum σ(A) with iR is at most a countable set.
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Then the semigroup (S(t))t≥0 is strongly (or asymptotically) stable, i.e, ||S(t)z||H → 0 as t→∞
for any z ∈ H.
When the C0-semigroup is asymptotically, we look the type of stability (exponential or polynomial)
of the semigroup (see [51], [9] and [12] ).

Theorem 1.3.7. (Huang-Pruss) Let S(t) = eAt be a C0-semigroup of contractions on Hilbert
space H. Then (S(t))t≥0 is exponentially stable if and only if

ρ(A) ⊇ {iβ : β ∈ R} = iR

and
lim
|β|→∞

||(iβI −A)−1||L(H) <∞

This theorem is equivalent to the following theorem:

Theorem 1.3.8. Let S(t) = eAt be a C0-semigroup of contractions on Hilbert space H. Then
(S(t))t≥0 is exponentially stable if and only if

sup{<e λ, λ ∈ σ(A)} < 0

and
sup
<eλ>0

||(λI −A)−1||L(H) <∞

Theorem 1.3.9. (Borichev-Tomilov) Let S(t) = eAt be a C0-semigroup on a Hilbert space
H. If

iR ⊂ ρ(A) and sup
|β|>1

1

βl′
||(iβI −A)−1||L(H) 6M.

for some l′, then there exist c such that

||eAtu0||2 ≤
c

t
2
l′
||u0||2D(A), ∀t > 0,∀u0 ∈ D(A).

1.4 Lax-Milgrame Theorem

Let A be a Hilbert space equiped with the inner product (., .)H and the iduced norm ||.||H.

Definition 1.4.1. A bilinear form
a : H×H → R

is said to be
(i) continuous if there is a constant C such that

|a(u, v)| ≤ C||u||||v||,∀u, v ∈ H
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1.5. Fractional Derivatives:

(ii) coercive if there is a constant α > 0 such that

a(u, v) ≥ α||u||2,∀u ∈ H

Theorem 1.4.1. (Lax-Milgrame Theorem) Assume that a(., .) is a continuous coercive
bilinear form on H. Then, given any L ∈ L(H,C), there exists a unique element u ∈ H such
that

a(u, v) = L(v),∀v ∈ H.

1.5 Fractional Derivatives:

Basic definitions
Fractional derivative, or more precisely derivative of non-integer order, is a generalization of
ordinary derivation. The fractional derivatives have been used in various fields of science and
engineering, for example in electronics, wave propagation, mechanics, biology, biophysics and
viscoelasticity (see [6], [7], [8], [30], [39],[50] and [56]). In this part, we recall some basic notations
and definitions for the fractional derivative (see [10], [40]).

1.5.1 A brief historical introduction to fractional derivatives

In a letter to the French mathematician L’Hospital (1659), Leibniz raised the following question:
”Can the meaning of derivatives with integer order be generalized to derivatives with non-integer
orders?” L’Hospital was some what curious about that question and replied by another question
to Leibniz: ”What if the order will be 1/2?” Leibnitz in a letter dated September 30, replied:
”It will lead to a paradox, from which one day useful consequences will be drawn. Many known
mathematicians contributed to this theory over the years. Thus, September 30, 1695 is the
exact date of birth of the fractional calculus. Therefore, the fractional calculus it its origin in
the works by Leibnitz, L’Hopital (1695), Bernoulli (1697), Euler (1730), and Lagrange (1772).
Some years later, Laplace (1812), Fourier (1822), Abel (1823), Liouville (1832), Riemann (1847),
Grunwald(1867),Letnikov (1868), Nekrasov (1888), Hadamard (1892), Heaviside (1892), Hardy
(1915), Weyl (1917), Riesz (1922), P.Levy (1923), Davis (1924), Kober (1940), Zygmund (1945),
Kuttner (1953), J. L. Lions (1959), and Liverman (1964)...have developed the basic concept
of fractional derivatives. In 1783, Leonhard Euler made his first comments on fractional order
derivative. He worked on progressions of numbers and introduced first time the generalization of
factorials to Gamma function. A little more than fifty year after the death of Leibniz, Lagrange,
in 1772, indirectly contributed to the development of exponents law for differential operators of
integer order, which can be transferred to arbitrary order under certain conditions. In 1812,
Laplace has provided the first detailed definition for fractional derivative. Laplace states that
fractional derivative can be defined for functions with representation by an integral, in modern
notation it can be written as

∫
f(t)t−xdt . Few years after, Lacroix worked on generalizing

the integer order derivative of function f(t) = tm to fractional order, where m is some natural
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1.5. Fractional Derivatives:

number. In modern notations, integer order nth derivative derived by Lacroix can be given as

dnf

dtn
=

m!

(m− n)!
tm−n =

Γ(m+ 1)

Γ(m− n+ 1)
tm−n,m > n

where , Γ is the Gamma function. Thus, for n = 1
2

and m = 1 , one obtains the derivative of
order 1

2
of the function f(t) = t

d
1
2f(t)

dt
1
2

=
Γ(2)

Γ(3
2
)
t
1
2 =

2√
π

√
t

In the period 1900-1970 a modest amount of published work appeared on the subject of the
fractional derivative. The year 1974 saw the first international conference on fractional calculus
held at the University of New Haven.
In the period 1975 to the present, many papers have been published relating to the application
of the fractional derivative to ordinary and partial diferential equations.

1.5.2 Some notations and denitions of Fractional derivatives

In this section, we give the definition of the generalized Caputo’s fractional derivative and the
generalized fractional integral.

Definition 1.5.1. The Gamma function, denoted by Γ, is given by

Γ(z) =

∫ ∞
0

tz−1e−tdt

The exponential provides the convergence of this integral in∞, the convergence at zero obviously
occurs for all complex z from the right half of the complex plane (<e(z) > 0).
The Gamma function is generalization of a factorial in the following form

Γ(n) = (n− 1)!

Remark 1.5.1. (Some usefull identities) We have

Γ(z + 1) = zΓ(z)

Γ(1− z)Γ(z) =
π

sin πz

Definition 1.5.2. The fractional derivative of order α, 0 < α < 1, in sens of Caputo, is defined
by

Dαf(t) =
1

Γ(1− α)

∫ t

0

(t− s)−α df
ds

(s)ds

Definition 1.5.3. The fractional integral of order α, 0 < α < 1, in sens Riemann-Liouville, is
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1.5. Fractional Derivatives:

defined by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds

Remark 1.5.2. From the above denitions, clearly

Dαf = I1−αDf, 0 < α < 1

Lemma 1.5.1.
IαDαf(t) = f(t)− f(0), 0 < α < 1

Lemma 1.5.2. If
Dβf(0) = 0

then
DαDβf = Dα+βf, 0 < α < 1, 0 < β < 1.

Now, we give the definitions of the generalized Caputo’s fractional derivative and the
generalized fractional integral. These exponentially modified fractional integro-differential
operators were first proposed in [20].

Definition 1.5.4. The generalized Caputo’s fractional derivative is given by

Dα,ηf(t) =
1

Γ(1− α)

∫ t

0

(t− s)−αe−η(t−s) df

ds
(s)ds, 0 < α < 1, η ≥ 0

Remark 1.5.3. The operators Dα and Dα,η differ just by their kernels.

Definition 1.5.5. The generalized fractional integral is given by

Iα,ηf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1e−η(t−s)f(s)ds, 0 < α < 1, η ≥ 0

Remark 1.5.4. We have
Dα,ηf = I1−α,ηDf, 0 < α < 1, η ≥ 0
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Chapter 2

Energy decay of solutions to a
nondegenerate wave equation with a
fractional boundary control

2.1 Introduction

In this chapter, we are concerned with the boundary stabilization of convolution type for
nondegenerate wave equation of the form

wtt(x, t)− (a(x)wx(x, t))x = 0 in (0, 1)× (0,∞), (2.1)

where the coefficient a is a positive function on [0, 1].
Up to now,there are many works concerning the stabilization and controllability of nondegenerate
wave equation with different types of dampings (see e.g. [52], [21], [24], [26] and the references
therein). In[26], for a(x) = a1(x) + a0: the authors have established asymptotics stabilization
under boundary conditions of the form{

(awx) (0, t) = 0,
(awx) (1, t) = −kw(1, t)− wt(1, t), k > 0.

It has been shown in[52], for a ∈ H 1(0, 1), a(x) > a0 > 0, that the feedback law{
(awx) (0, t) = −cw(0, t)− Fwt(0, t), c > 0,
Mwtt(1, t) + (awx) (1, t) = 0.

exponentially stabilizes equation (2.1) under appropriate assumptions on the function F. Another
stabilization result for equation (2.1) has also been established in [24] via the action of the
following feedback: {

(awx) (0, t) = −cw(0, t)− Fwt(0, t),
(awx) (1, t) = −cw(1, t)− Fwt(1, t), c > 0.
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2.1. Introduction

In [21] the authors considered the following modelization of a flexible torque arm controlled by
two feedbacks depending only on the boundary velocities:

wtt(x, t)− (a(x)wx)x + αwt(x, t) + βw(x, t) = 0, 0 < x < 1, t > 0,
(a(x)wx) (0) = k1wt(0, t), t > 0,
(a(x)wx) (1) = −k2wt(1, t), t > 0,

where {
α > 0, β > 0, k1, k2 > 0, k1 + k2 6= 0,
a ∈W 1,∞(0, 1), a(x) > a0 > 0 for all x ∈ [0, 1].

They proved the exponential decay of the solutions. Motivated by the work of [18] a feedback
control depending only on the velocity has been proposed in [25] for the system (2.1) and an
asymptotic convergence result has been established ( see also [2], [3] and [22]). In this chapter,
we are concerned with the system

wtt(x, t)− (a(x)wx(x, t))x = 0 in (0, 1)× (0,+∞),

w(0, t) = 0 on (0,+∞),

(awx) (1, t) = −%∂α,ηt w(1, t) on (0,+∞),

w(x, 0) = w0(x), wt(x, 0) = w1(x) on (0, 1),

(P)

where % > 0. The notation ∂α,η stands for the generalized Caputo’s fractional derivative (see
[11] and [23] ) defined by the following formula:

∂α,ηt w(t) =
1

Γ(1− α)

∫ t

0

(t− s)−αe−η(t−s)dw

ds
(s)ds, η ≥ 0,

where Γ is the usual Euler gamma function and (0 < α < 1). Although there is quite a bit of
work on damping mechanisms for beam models of this kind, there does not seem to be much
about damping involving fractional derivatives. In [44] Mbodje studies the energy decay of
the wave equation (a ≡ 1). with a boundary fractional derivative control. He used a diffusive
representation and the semigroup theory to establish the strong asymptotic stability under the
condition η = 0 and a polynomial type decay rate E(t) 6 C

t
if η 6= 0.

The main result of this chapter is to show that system (P ) is not exponentially stable for a general
nondegenerate function a. Furthermore,we prove that the solution decays to zero polynomially
when t goes to infinity for general initial data taken in the domain of A and for a general
nondegenerate function a for both cases η > 0 and η = 0. Fractional Boundary dissipations can
be encountered in many physical, chemical, biological, and economical phenomena (see [38],
[56] and [57] ). In recent years, the control of PDEs with boundary control of convolution type
has become an active area of research because it improves the performance of the systems.This
work is divided into five sections. In section 2, we give preliminary results and we reformulate
the system (P) into an augmented system by coupling the nondegenerate wave equation with a
suitable diffusion equation. In section 3, we convert the system into an evolution equation in
an appropriate Hilbert space,and then prove the well-posedness of our problem by semigroup

23



2.2. Preliminary results

theory. In section 4, we prove lack of exponential stability by spectral analysis. In section 5, we
study asymptotic stability of above model and we establish an optimal polynomial energy decay
depending with the parameter α for smooth solution.

2.2 Preliminary results

Let a ∈ C([0, 1]) ∩ C1(]0, 1]) be a function satisfying the following assumptions:

a ∈ W 1,∞(0, 1), a(x) ≥ a0 > 0 for all x ∈ [0, 1]. (2.2)

2.2.1 Augmented model

Theorem 2.2.1. (see[41]).Let κ be the function:

κ(ξ) = |ξ|
(2α−1)

2 , −∞ < ξ < +∞, 0 < α < 1. (2.3)

Then the relationship between the ‘input’ U and the ‘output’ O of the system

∂tθ(ξ, t) +
(
ξ2 + η

)
θ(ξ, t)− U(t)κ(ξ) = 0, −∞ < ξ < +∞, η ≥ 0, t > 0 (2.4)

θ(ξ, 0) = 0 (2.5)

O(t) = (π)−1 sin(απ)

∫ +∞

−∞
κ(ξ)θ(ξ, t)dξ (2.6)

is given by
O(t) = I1−α,ηU(t) (2.7)

where

[Iα,ηf ] (t) =
1

Γ(α)

∫ t

0

(t− τ)α−1e−η(t−τ)f(τ)dτ

Lemma 2.2.2. (see[10]).If γ ∈ Dη = Cr]−∞, η] then∫ +∞

−∞

κ2(ξ)

ξ2 + η + γ
dξ =

π

sinαπ
(γ + η)α−1.

We are now in a position to reformulate system (P ). Indeed, by using Theorem 2.2.1, system
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(P ) may be recast into the augmented model:

wtt(x, t)− (a(x)wx(x, t))x = 0 in (0, 1)× (0,+∞),

θt(ξ, t) + (ξ2 + η) θ(ξ, t)− wt(1, t)κ(ξ) = 0 in (−∞,+∞)× (0,+∞),

w(0, t) = 0 on (0,+∞),

(awx) (1, t) = −ζ
∫ +∞
−∞ κ(ξ)θ(ξ, t)dξ in (−∞,+∞)× (0,+∞),

w(x, 0) = w0(x), wt(x, 0) = w1(x) on (0, 1),

θ(ξ, 0) = 0 on (−∞,+∞).

(P’)

where ζ = %(π)−1 sin(απ) We define the energy associated to the solution of the problem (P ′)
by the following formula:

E(t) =
1

2

∫ 1

0

(
|wt|2 + a(x) |wx|2

)
dx+

ζ

2

∫ +∞

−∞
|θ(ξ, t)|2dξ. (2.8)

Differentiating E in a formal way, using (P ′) and integrating by parts, we obtain after a
straightforward computation the following Lemma.

Lemma 2.2.3. Let (w , θ) be a regular solution of the problem (P ′). Then,the energy functional
defined by (2.8) satisfies

E ′(t) = −ζ
∫ +∞

−∞

(
ξ2 + η

)
(θ(ξ, t))2dξ ≤ 0. (2.9)

Remark 2.2.1. For an initial datum in D(A) (see Theorem 2.3.1 below), we know that (w , θ) is
of class in time,thus we can defferentiate the energy E(t).

2.3 Well-Posedness

The energy space associated to system (P ′) isH = H1
L(0, 1)×L2(0, 1)×L2(−∞,+∞), H1

L(0, 1) =
{w ∈ H1(0, 1),w(0) = 0}
with the inner product induced norm

‖(w , υ, θ)‖2
H =

∫ 1

0

[
a(x) |wx|2 + |υ|2

]
dx+ ζ

∫ +∞

−∞
|θ|2dξ.

The system (P ′) can be written as{
∂tU = AU,U = (w,wt, θ)
U(0) = U0 = (w0, w1, 0)

(2.10)

where the associated system operator

A(w, υ, θ) =
(
υ, (a(x)wx)x ,−

(
ξ2 + η

)
θ + υ(1)κ(ξ)

)
(2.11)
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2.3. Well-Posedness

D(A) =


(w, υ, θ) ∈ H, w ∈ H2(0, 1) ∩H1

L(0, 1), υ ∈ H1
L(0, 1)

− (ξ2 + η) θ + υ(1)κ(ξ) ∈ L2(−∞,+∞)

(awx) (1) + ζ
∫ +∞
−∞ κ(ξ)θ(ξ)dξ = 0

|ξ|θ ∈ L2(−∞,+∞)

 (2.12)

We have the following existence and uniqueness result.

Theorem 2.3.1. ( Existence and uniqueness ). (1) If U0 ∈ D(A), then system (3.1) has a
unique strong solution

U ∈ C0(R+, D(A) ∩ C1(R+,H),

(2) If U0 ∈ H,then system (3.1) has a unique weak solution

U ∈ C0(R+,H).

Proof. We use the semigroup approach. First, we prove that A is dissipative. Indeed, for
U ∈ D(A) and using (2.10), (2.9) and the fact that

E(t) =
1

2
‖U‖2

H. (2.13)

we have

<e〈AU,U〉 = −ζ
∫ +∞

−∞

(
ξ2 + η

)
|θ(ξ)|2dξ. (2.14)

Hence, A is dissipative. Next,we show that γI − A is surjective for γ > 0. That is, for
G = (g1, g2, g3)T ∈ H, we have to find U = (w, υ, θ)T ∈ D(A), such that

(γI −A)U = G (2.15)


γw − υ = g1

γυ − (a(x)wx)x = g2

γθ + (ξ2 + η) θ − υ(1)κ(ξ) = g3

(2.16)

Suppose w is found with the appropriate regularity. Then (2.16)1 and (2.16)3 yield

υ = γw − g1 ∈ H1
L(0, 1), (2.17)

and

θ =
g3(ξ) + κ(ξ)v(1)

ξ2 + η + γ
. (2.18)

Also, substituting the equation (2.17) into the equation (2.16)2 we get

γ2w − (a(x)wx)x = g2 + γg1. (2.19)
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2.3. Well-Posedness

Solving equation (2.10) is equivalent to finding w ∈ H2(0, 1) ∩H1
L(0, 1) such that∫ 1

0

(
γ2wz̄ − (a(x)wx)x z̄

)
dx =

∫ 1

0

(g2 + γg1) z̄dx (2.20)

for all z ∈ H 1
L(0, 1). By using (2.20), the boundary condition (2.12)3 and (2.18) the function w

satisfies the following equation∫ 1

0

(
γ2wz̄ + (a(x)wx) z̄x

)
dx+ ζ̃v(1)z̄(1)

=

∫ 1

0

(g2 + γg1) z̄dx− ζ
∫ +∞

−∞

κ(ξ)

ξ2 + η + γ
g3(ξ)dξz̄(1)

(2.21)

where

ζ̃ = ζ

∫ +∞

−∞

κ2(ξ)

ξ2 + η + γ
dξ.

Using again (2.17), we deduce that

υ(1) = γw(1)− g1(1) (2.22)

{ ∫ 1

0
(γ2wz̄ + a(x)wxz̄x) dx+ γξ̃w(1)z̄(1)

=
∫ 1

0
(g2 + γg1) z̄dx− ζ

∫ +∞
−∞

κ(ξ)
ξ2+η+γ

g3(ξ)dξ̄z̄(1) + ζ̃g1(1)z̄(1).
(2.23)

Inserting (2.22) into (2.21), we get Problem (2.23) is of the form

B(w, z) = L(z), (2.24)

where B : [H1
L(0, 1)×H1

L(0, 1)]→ C is the sesquilinear form defined by

B(w, z) =

∫ 1

0

(
γ2wz̄ + a(x)wxz̄x

)
dx+ (γζ̃)w(1)z̄(1)

and L : H1
L(0, 1)→ C is the antilinear functional given by

L(z) =

∫ 1

0

(g2 + γg1) z̄dx− ζz̄(1)

∫ +∞

−∞

κ(ξ)

ξ2 + η + γ
g3(ξ)dξ + ζ̃g1(1)z̄(1).

It is easy to verify that B is continuous and coercive, and L is continuous. Therefore, Lax-
Milgram says that ∃!w ∈ H1

L(0, 1) satisfying (2.24). Now, by the regularity theory for the
linear elliptic equations, it follows that w ∈ H2(0, 1). Thus, γ −A is surjective for any γ > 0.
Consequently, using Hille-Yosida theorem, the result of Theorem 3.1 follows. �
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2.4. Lack of exponential stability

2.4 Lack of exponential stability

In this section we prove the lack of exponential decay of the solutions of system (3.1). Inorder
to state and prove our stability results, we need the following Theorem.

Theorem 2.4.1. ([16]). Let S(t) be a C0-semigroup of contractions on Hilbert space with
generator A. Then S(t) is exponentially stable if and only if

ρ(A) ⊇ {iβ : β ∈ R} ≡ iR

and
lim
|β|→∞

||(iβI −A)−1||L(H) <∞.

Our main result is stated as follows:

Theorem 2.4.2. The semigroup generated by the operator A is not exponentially stable

Proof. We will examine two cases.
• Case η = 0 : We shall show that iγ = 0 is not in the resolvent set of the operator A. Indeed,
noting that (sinx, 0, 0)T ∈ H, and denoting by (w, υ, θ)T the image of (sinx, 0, 0)T ∈ H by A−1

we see that θ (ξ) =|ξ| 2α−5
2 sin 1. But, then θ /∈ L2(−∞,+∞), since α ∈]0, 1]. So (w, υ, θ)T /∈ D(A).

• Case η 6= 0 :
We aim to show that an infinite number of eigenvalues of A approach the imaginary axis
which prevents the system (P) from being exponentially stable. Indeed we first compute the
characteristic equation that gives the eigenvalues of A. Let γ be an eigenvalue of A with
associated eigenvector (w, υ, θ)T . Then AU = γU is equivalent to

γw − υ = 0,
γυ − (a(x)wx)x = 0,

γθ + (ξ2 + η) θ − υ(1)κ(ξ) = 0
(2.25)

From (2.25)1, (2.25)2 for such, γ we find

γ2w − (a(x)wx)x = 0. (2.26)

Using the boundary conditions and (2.25)3, we deduce that
γ2w − (a(x)wx)x = 0

w(0) = 0

(awx)(1) + ζυ(1)
∫ +∞
−∞

κ2(ξ)
ξ2+η+γ

dξ = (awx)(1) + %γ(γ + η)α−1w(1) = 0.
(2.27)

Our purpose is to prove, thanks to Rouche’s Theorem, that there is a subsequence of eigenvalues
for which their real part tends to 0.
In the sequel, since A is dissipative, we study the asymptotic behavior of the large eigenvalues
γ of A in the strip −α0 ≤ <e(γ) ≤ 0, for some α0 > 0, large enough. �
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2.4. Lack of exponential stability

Lemma 2.4.3. There exists N ∈ N such that

{γk}k∈Z∗,|k|≥N ⊂ σ(A), (2.28)

where

γk = i
(k + 1/2)π∫ 1

0
1√
a(x)

dx
+

α̃

k1−α +
β

k1−α + o

(
1

k1−α

)
, k ≥ N, α̃ ∈ iR, β < 0.

γk = γ − k if k ≤ −N.

Moreover for all |k| ≥ N, the eigenvalues γk are simple.

Proof. The proof is decomposed in three steps: Writing (2.27) in the standard form of a linear
differential operator with homogeneous boundary conditions, we obtain wxx + ax(x)

a(x)
wx − γ2

a(x)
w = 0

w(0) = 0
(awx) (1) + %γ(γ + η)α−1w(1) = 0.

(2.29)

In order to simplify the computations, we introduce a spatial-scale transformation in x

φ(y) = w(x), y =
1

h

∫ x

0

1√
a(s)

ds, y ∈ (0, 1), (2.30)

h =

∫ 1

0

1√
a(s)

ds.

Then Eq. (2.29) has the form
φ′′(y) + h

2
ax(x)√
a(x)

φ′(y)− h2γ2φ(y) = 0

φ(0) = 0
1
h
φ′(1) + %γ(γ + η)α−1φ(1) = 0

(2.31)

Equation (2.31) can be further simplified by applying another invertible transformation (see
[45]):

ϕ(y) = e
1
2

∫ y
0 ã(s)dsφ(y), y ∈ (0, 1). (2.32)

where

ã(y) =
h

2

ax(x)√
a(x)

.

(2.32) allows one to cancel the term h
2
ax(x)√
a(x)

φ′(y) in (2.31). Hence we arrive at an equivalent
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2.4. Lack of exponential stability

eigenvalue problem 
ϕ′′(y)−

(
1
2
ã′(y) + 1

4
ã2(y) + h2γ2

)
ϕ(y) = 0

ϕ(0) = 0
ϕ′(1) +

(
−1

2
+ ρhγ(γ + η)α−1

)
ϕ(1) = 0

(2.33)

To asymptotically estimate the solutions to the eigenvalue problem (2.33), we proceed as in [48].
The equation

ϕ′′(y)−
(

1

2
ã′(y) +

1

4
ã2(y) + h2γ2

)
ϕ(y) = 0,

has two linearly independent asymptotic fundamental solutions:

ϕ1(y) = ehγy
(

1 +
ϕ10(y)

ihγ
+ 0

(
1

γ2

))
ϕ2(y) = e−hγy

(
1 +

ϕ20(y)

ihγ
+ 0

(
1

γ2

))
and hence their derivatives are given by

d

dy
ϕ1(y) = hγehγy

(
1 +

ϕ10(y)

ihγ
+ 0

(
1

γ2

))
d

dy
ϕ2(y) = −hγe−hγy

(
1 +

ϕ20(y)

ihγ
+ 0

(
1

γ2

))
where

ϕ10(y) = − i
2

∫ y

0

(
1

2
ã′(s) +

1

4
ã2(s)

)
ds,

ϕ20(y) =
i

2

∫ y

0

(
1

2
ã′(s) +

1

4
ã2(s)

)
ds.

For simplicity, we introduce the following notation [a]i := a+O (γ−i) for i = 1, 2. From Lemma
4.2, one can write the asymptotic solution of (2.33) as follows:

ϕ(y) =
2∑
i=1

ciϕi. (2.34)

where ci is chosen so that ϕ satisfies the boundary conditions, i.e.,

M̃(γ)C(γ) =

(
[1]2 [1]2[

(γ + ργα) eγh
]

0

[
(−γ + ργα) e−γh

]
0

)(
c1

c2

)
=

(
0
0

)
. (2.35)

Hence a non-trivial solution w exists if and only if the determinant of M̃(γ) vanishes. Set
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2.4. Lack of exponential stability

f(γ) = detM̃(γ), thus the characteristic equation is f(γ) = 0

f(γ) = (−γ + ργα) e−γh − (γ + ργα) eγh +O(1)

= −γe−γh
(
e2γh + 1 +

ρ

γ1−α

(
e2γh − 1

)
+O

(
γ−1
)). (2.36)

We set

f̃(γ) = e2γh + 1 +
ρ

γ1−α

(
e2γh − 1

)
+O

(
γ−1
)

= f0(γ) +
f1(γ)

γ1−α + o

(
1

γ1−α

)
(2.37)

where
f0(γ) = e2γh + 1, (2.38)

f1(γ) = ρ
(
e2γh − 1

)
. (2.39)

Note that f0 and f1 remain bounded in the strip −α0 ≤ <e(γ) ≤ 0.
• Step2. We look at the roots of f0. From (2.38), f0 has one familie of roots that we denote γ0

k.

f0(γ) = 0⇐⇒ exp(2γh) = −1.

Hence
2hγ = i(2k + 1)π, k ∈ Z,

i.e.

γ0
k =

i(2k + 1)π

2h
, k ∈ Z.

Now with the help of Rouche’s Theorem, we will show that the roots of f̃ are close to those of
f0. Let us start with the first family. Changing in (2.37) the unknown γ by u = 2hγ then (2.37)
becomes

f̃(u) = (eu + 1) +O

(
1

u(1−α)

)
= f0(u) +O

(
1

u(1−α)

)
.

The roots of f0. are uk = i(k+1/2)
h

π, k ∈ Z, and setting u = uk + reit, t ∈ [0, 2π], we can easily
check that there exists a constant C > 0 independent of k such that |eu + 1| > Cr for r small
enough.This allows to apply Rouche’s Theorem. Consequently, there exists a subsequence of
roots of f̃ which tends to the roots uk of f0. Equivalently, it means that there exist N ∈ N and
a subsequence {γk}|k|>N of roots of f(γ), such that γk = γ0

k + o(1) which tends to the roots
i(k+1/2)

h
π of f0. Finally for |k| > N , γk is simple since γ0

k is.
• Step 3. From Step 2, we can write

γk = i
1

h
(k + 1/2)π + εk. (2.40)

Using (2.40), we get
e2hγkL = −1− 2hεk +O(εk). (2.41)
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2.5. Asymptotic behavior

Substituting (2.41) into (2.37), using that f̃ = 0, we get:

f̃ = −2hεk −
2ρ

(γ0
k)

1−α +O(εk) = 0. (2.42)

and hence

εk = − ρ

hα(kiπ)1−α + o(
1

k1−α ) =

{
− ρ
hα(kπ)1−α

(
cos(1− α)π

2
− i sin(1− α)π

2

)
+ o

(
1

k1−α

)
for k � 0,

− ρ
hα(−kπ)1−α

(
cos(1− α)π

2
+ i sin(1− α)π

2

)
+ o

(
1

k1−α

)
for k � 0

(2.43)

From (2.43) we have in that case
|k|1−αRγk ∼ β,

with
β = − ρ

hαπ1−α cos(1− α)
π

2
.

�

The operator A has a non exponential decaying branche of eigenvalues. Thus the proof is
complete.

2.5 Asymptotic behavior

2.5.1 Strong stability of the system

To prove that the semigroup (etA)t≥0 is strongly asymptotically stable, we shall apply a version
of the Arendt-Batty and Lyubich-Vu for Hilbert spaces [4],[37].

Theorem 2.5.1. ( [4],[37] ). Let A be the generator of a uniformly bounded C0 -semigroupe
S(t)t>0 on a Hilbert space H. If:
(i) A does not have eigenvalues on iR.
(ii) The intersection of the spectrum σ(A) with iR. is at most a countable set, then the semigroup
is asymptotically stable, i.e, ‖S(t)z‖H → 0 as t→ +∞, for any z ∈ H.

Our next main result in this part is the following theorem.

Theorem 2.5.2. The C0 -semigroupe (etA)t≥0 is strongly stable in H, i.e, for all U0 ∈ H, the
solution of (2.10 ) satisfies

lim
t→+∞

∥∥etAU0

∥∥
H = 0

For the proof of Theorem (2.5.2) we need the following two lemmas.

Lemma 2.5.3. A does not have eigenvalues on iR.
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2.5. Asymptotic behavior

Proof. We will argue by contraction. Suppose that there is γ ∈ R. such that iγ is an eigenvalue
for A and hence one can find a corresponding eigenfunction U = (w, υ, θ) ∈ D(A). Consequently,
we have

AU = iγU (2.44)

Our immediate aim is to prove that this equation has only U = 0 as a solution, which,contradicts
the definition of an eigenfunction. Firstly, the equation (2.44) is equivalent to consider the
following system

iγw − υ = 0
iγυ − (a(x)wx)x = 0
iγθ + (ξ2 + η) θ − υ(1)κ(ξ) = (awx)(1) + %γ(γ + η)α−1w(1) = 0.

(2.45)

Secondly, we will consider two cases:
• case γ 6= 0: Taking the L2(0, 1)-inner product with U of both sides of (2.44) and using (2.14),
we immediately obtain

0 = <e〈AU,U〉H = −ζ
∫ +∞

−∞

(
ξ2 + η

)
|θ(ξ)|2dξ. (2.46)

Hence
θ = 0 (2.47)

Then (2.45)3 gives
υ(1) = 0, (2.48)

then using the first equation of (2.45) and the boundary condition (2.45)4, we deduce

w(1) = 0 and wx(1) = 0. (2.49)

We deduce that w satisfies the boundary value problem:
γ2w + (a(x)wx)x = 0
w(1) = wx(1) = 0
w(0) = 0

(2.50)

Next, let

ψ(x) =

∫ x

0

exp

(∫ x

s

∣∣∣ax
a

∣∣∣ dv) . ds ∀x ∈ [0, 1]

It is easy to see that {
ψ(0) = 0, ψ(x) > 0, ∀x ∈ (0, 1]

ψx ≥ 1, a
(
ψ
a

)
x
≥ 1.

Multiplying equation (2.50)1 by ψw̄x, we get

γ2

∫ 1

0

ψ(x)ww̄xdx+

∫ 1

0

ψ(x)w̄x (a(x)wx)x dx = 0. (2.51)

33



2.5. Asymptotic behavior

U ∈ D(A) then the regularity is sufficiently for applying an integration on the second integral
in the left hand side in equation (2.51). Then we obtain

γ2

2

∫ 1

0

ψ(x)
d

dx
|w|2dx−

∫ 1

0

ψx(x)a(x) |wx|2 dx−
1

2

∫ 1

0

ψ(x)a(x)
d

dx
|wx|2 dx = 0. (2.52)

Using Green formula and the boundary conditions, we get

γ2

∫ 1

0

ψx(x)|w|2dx+

∫ 1

0

(ψx(x)a(x)− ψ(x)ax(x)) |wx|2 dx = 0, (2.53)

We deduce that
w = 0 (2.54)

Using equation (2.45)1, we obtain
υ = 0 (2.55)

Consequently, using equations (2.54), (2.55) and (2.47), we deduce that the only solution of
(2.44) is the null one.
• case γ = 0 : In this case, by (2.45)1, we have υ = 0 which gives that θ = 0 by (2.45)3.
Multiplying equation (2.45)2 by w̄, using Green formula and the boundary conditions, we get∫ 1

0

a(x) |wx|2 dx = 0. (2.56)

Then
wx(x) = 0 ∀x ∈ (0, 1). (2.57)

Hence w is constant in (0,1). As w(1) = 0, then

w ≡ 0.

Hence U must be the trivial solution of (2.44), which is the desired result. The proof has been
completed. �

Lemma 2.5.4. We have
iR ⊂ ρ(A) if η 6= 0,

iR∗ ⊂ ρ(A) if η = 0
.

where
R∗ = Rr {0} .

Proof. • case γ 6= 0 : We will prove that the operator iγI −A is surjective for γ 6= 0. For this
purpose, let G = (g1, g2, g3)T ∈ H, we seek U = (w, υ, θ)T ∈ D(A), solution of the following
equation

(iγI −A)X = G. (2.58)
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2.5. Asymptotic behavior

Equivalently, we have 
iγw − υ = g1

iγυ − (a(x)wx)x = g2

iγθ + (ξ2 + η) θ − υ(1)κ(ξ) = g3.
(2.59)

From (2.59)1 and (2.59)2, we have

−γ2w − (a(x)wx)x = (g2 + iγg1) . (2.60)

Let z ∈ H1
L(0, 1). Multiplying the equation (2.60) by z̄ and integrating in (0,1), we obtain∫ 1

0

(
−γ2wz̄ − (a(x)wx)x z̄

)
dx =

∫ 1

0

(g2 + iγg1) z̄dx. (2.61)

From the boundary conditions and the fact that w(0) = 0, we get
∫ 1

0
(−γ2wz̄ + a(x)wxz̄x) dx+ iγζ̃w(1)z̄(1)

=
∫

Ω
(g2 + iγg1) z̄dx− ζ

∫ +∞
−∞

κ(ξ)

ζ̃2+η+iγ
g3(ξ̃)z̄dξ̃ + ζ̃g1(1)z̄(1)

(2.62)

We can rewrite (2.62) as
− (Lγw, z)H1

L
+ (w, z)H1

L
= L(z), (2.63)

with the inner product defined by

(w, z)H1
L

=

∫ 1

0

a(x)wxz̄xdx,

and

(Lγw, z)H1
L

=

∫ 1

0

γ2wz̄dx− iγζ̃w(1)z̄(1).

Using the compactness embedding from L2 (0, 1) into H−1 (0, 1) and from H1 (0, 1) into L2 (0, 1)
we deduce that the operator Lγ is compact from L2 (0, 1) into L2 (0, 1) . Consequently, by
Fredholm alternative, proving the existence of w solution of (2.63) reduces to proving that 1 is
not an eigenvalue of Lγ Indeed if 1 is an eigenvalue, then there exists w 6= 0 such that

(Lγw, z)H1
L

= (w, z)H1
L
∀z ∈ H1

L. (2.64)

In particular for z = w , it follows that

γ2‖w(x)‖2
L2(0,1) − iγζ̃|w(1)|2 =

∥∥∥√a(x)wx(x)
∥∥∥2

L2(0,1)
.

Hence, we have
w(1) = 0. (2.65)
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2.5. Asymptotic behavior

From (2.65), we obtain
(awx)(1) = 0 (2.66)

Then 
γ2w + (a(x)wx)x = 0
w(1) = wx(1) = 0
w(0) = 0

We deduce that U =0.
• Case γ = 0 and η 6= 0. Using Lax-milgram theorem, we obtain the result. �

2.5.2 Polynomial Stability (For η 6= 0 )

In order to establish the polynomial energy decay rate, we need the following theorem.

Theorem 2.5.5. ( [12] ). Let S(t) be a bounded C0-semigroup on a Hilbert space H with
generator A. If

iR ⊂ ρ(A) and lim
|s|→∞

1

sl
∥∥(isI −A)−1

∥∥
L(H)

<∞,

for some l > 0 , then there exist a positive constant C such that∥∥eAtU0

∥∥2 ≤ C
t
2
l

‖U0‖2
D(A) .

Our main result is the following.

Theorem 2.5.6. The semigroup SA(t) is polynomially stable and

E(t) = ‖SA(t)U0‖2
H ≤

1

t
2

1−a)
‖U0‖2

D(A) .

Moreover, the rate of energy decay t2/1−α is optimal for general initial data in D(A).

Proof. Given G = (g1, g2, g3)T ∈ H, letU = (w , υ, θ)T ∈ D(A). be the solution of the resolvent
equation (iγI −A)U = G, for γ ∈ R, i.e.,

iγw − υ = g1

iγυ − (a(x)wx)x = g2

iγθ + (ξ2 + η) θ − υ(1)κ(ξ) = g3

(2.67)

• Step 1 Taking the real part of the inner product of (iγI − A)U = G, with U in H and
using (2.14), we get

|<e〈AU,U〉H| ≤ ‖U‖H‖G‖H, (2.68)

This implies that

ζ

∫ +∞

−∞

(
ξ2 + η

)
|θ(ξ, t)|2dξ ≤ ‖U‖H‖G‖H (2.69)
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2.5. Asymptotic behavior

and, applying (2.67)1, we obtain ∣∣∣ |γ| |w(1)| − |g1|
∣∣∣2 6 |υ(1)|2.

We conclude that
|γ|2|w(1)|2 6 c|g1|2 + c|υ(1)|2. (2.70)

From the boundary condition

(awx)(1) = −ζ
∫ +∞

−∞
κ(ξ)θ(ξ)dξ.

we deduce that

|(awx)(1)|2 6 2ζ2

∣∣∣∣∣
∫ +∞

−∞
κ(ξ)θ(ξ)dξ

∣∣∣∣∣
2

6 2ζ2

(∫ +∞

−∞
(ξ2 + η)−1|κ(ξ)|2dξ

)(∫ +∞

−∞
(ξ2 + η)|θ(ξ)|2dξ

)
6 c‖U‖H‖G‖H. (2.71)

Now, from (2.67)3, we obtain

υ(1)κ(ξ) =
(
iγ + ξ2 + η

)
θ − g3(ξ). (2.72)

By multiplying (2.72) by (iγ + ξ2 + η)
−2 |ξ|, we get(

iγ + ξ2 + η
)−2

υ(1)κ(ξ)|ξ| =
(
iγ + ξ2 + η

)−1 |ξ|θ −
(
iγ + ξ2 + η

)−2 |ξ|g3(ξ). (2.73)

Hence, by taking absolute values of both sides of (2.73), integrating over the interval ]−∞,+∞[
with respect to the variable ξ and applying Cauchy-Schwartz inequality, we obtain

S|υ(1)| 6
√

2U

(∫ +∞

−∞
ξ2|θ|2dξ

) 1
2

+ 2ν

(∫ +∞

−∞
|g3(ξ)|2dξ

) 1
2

, (2.74)

where

S =

∣∣∣∣∣
∫ +∞

−∞

(
iγ + ξ2 + η

)−2 |ξ|κ(ξ)dξ

∣∣∣∣∣ =
|1− 2α|

4

π

| sin (2α+3)
4

π|
|iγ + η|

2α−5
4 ,

U =

(∫ +∞

−∞

(
|γ|+ ξ2 + η

)−2
dξ

) 1
2

= (
π

2
)
1
2

∣∣|γ|+ η
∣∣−3

4 ,

ν =

(∫ +∞

−∞

(
|γ|+ ξ2 + η

)−4 |ξ|2dξ

) 1
2

=
( π

16
||γ|+ η|

−5
2

) 1
2 .
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2.5. Asymptotic behavior

Thus, by using the inequality

2PQ 6 P 2 +Q2, P > 0, Q > 0,

again, we get

S2|υ(1)|2 6 2U2

(∫ +∞

−∞
(ξ2 + η)|θ|2dξ

)
+ 4ν2

(∫ +∞

−∞
|g3(ξ)|2dξ

)
. (2.75)

We deduce that
|v(1)|2 ≤ c|γ|1−α‖U‖H‖G‖H + c‖G‖2

H·. (2.76)

• Step 2 Let us introduce the following notation

Iu(x) =
∣∣∣√a(x)wx(x)

∣∣∣2 + |v(x)|2

Eu =

∫ 1

0

Iu(x)dx

Lemma 2.5.7. We have that

c1

∫ 1

0

ψx(x)|v(x)|2dx+ c0

∫ 1

0

(ψx(x)− 1) |υ(x)|2dx (c0 + c1)

∫ 1

0

(
ψ(x)

a(x)

)
x

|awx|2 dx

+c0

∫ 1

0

a(x) |wx|2 dx = (c0 + c1)
[
ψ(x)|υ|2

]1
0
+(c0 + c1)

[(
ψ(x)

a(x)

)
|awx|2

]1

0

+c0[a(x)wxw̄]10+R,

(2.77)

for every, c0, c1 > 0 and R satisfies

|R| 6 C‖U‖H‖G‖H.

for a positive constant C.

Proof. To get (2.77), let us multiply the equation (2.67)2 by 2 (c0 + c1)ψw̄x + c0w̄. Integrating
on (0,1) we obtain

iγ

∫ 1

0

υ(2 (c0 + c1)ψw̄x + c0w̄)dx−
∫ 1

0

(a(x)wx)x(2 (c0 + c1)ψw̄x + c0w̄)dx

=

∫ 1

0

g2(2 (c0 + c1)ψw̄x + c0w̄)dx

or

−2(c0 + c1)

∫ 1

0

υψ(x)(iγw)dx− c0

∫ 1

0

υ(iγw)dx− 2(c0 + c1)

∫ 1

0

ψ(x)(a(x)wx)xw̄xdx
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2.5. Asymptotic behavior

−c0

∫ 1

0

(a(x)wx)xw̄dx =

∫ 1

0

g2(2 (c0 + c1)ψw̄x + c0w̄)dx

Since iγw = υ + g1 and iγwx = υx + g1x taking the real part in the above equality, it follows
that

−(c0 + c1)

∫ 1

0

ψ(x)
d

dx
|υ|2 − (c0 + c1)

∫ 1

0

ψ(x)

a(x)

d

dx
|awx|2 dx−−c0

∫ 1

0

(a(x)wx)xw̄dx

−c0

∫ 1

0

|υ|2dx = 2(c0+c1)<e
∫ 1

0

υψ(x)ḡ1xdx+<e
∫ 1

0

g2(2 (c0 + c1)ψw̄x+c0w̄)dx+c0<e
∫ 1

0

υḡ1dx

and integrating by parts, we get

c0

∫ 1

0

(ψx(x)− 1)|υ(x)|2dx+ c1

∫ 1

0

ψx(x)|υ(x)|2dx+ (c0 + c1)

∫ 1

0

(
ψ(x)

a(x)

)
x

|awx|2 dx

+ c0

∫ 1

0

a(x)|wx|2dx = (c0 + c1)
[
ψ(x)|υ|2

]1
0

+ (c0 + c1)

[(
ψ(x)

a(x)

)
|awx|2

]1

0

+ c0[a(x)wxw̄]10 +R, (2.78)

where

R = 2(c0 + c1)<e
∫ 1

0

υψ(x)ḡ1xdx+ <e
∫ 1

0

g2(2 (c0 + c1)ψw̄x + c0w̄)dx+ c0<e
∫ 1

0

υḡ1dx

Moreover 
∫ 1

0

ψ(x)g2w̄xdx

 6 C‖g2‖L2(0,1)‖wx‖L2(0,1) 6 C‖G‖H‖U‖H,
∫ 1

0

ψ(x)υf̄1xdx

 6 C‖υ‖L2(0,1)‖g1x‖L2(0,1) 6 C‖G‖H‖U‖H,
∫ 1

0

υḡ1dx

 6 C‖G‖H‖U‖H,

and 
∫ 1

0

g2w̄dx

 6 C‖G‖H‖U‖H,

Hence, we deduce that
|R| 6 C‖G‖H‖U‖H. (2.79)

�

• Step 3 We have

(a(x)wxw̄)x=0 = 0, (ψ(x)|υ(x)|2)x=0 = 0, (ψ(x)a(x)|wx|2)x=0 = 0.
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2.5. Asymptotic behavior

It holds that

c1

∫ 1

0

(
a(x) |wx|2 + |v|2

)
dx ≤ (c0 + c1)ψ(1)|v(1)|2 + (c0 + c1)

ψ(1)

a(1)
|(awx) (1)|2

+ c0a(1) |wx(1)‖w(1) | +C‖U ‖H‖G‖H
≤ c|v(1)|2 + c′(ε) |(awx) (1)|2 + ε|w(1)|2 + C‖U‖H‖G‖H. (2.80)

for any ε > 0. Moreover, using the Sobolev injection, we have

|w(1)| 6 ‖w‖H 1 (0 .1 ) 6 c‖wx‖L2 (0 .1 ) 6 c‖
√
awx‖L2 (0 .1 ).

Then
Ew ≤ c |(awx) (1)|2 + c′|v(1)|2 + c′′‖U‖H‖G‖H (2.81)

Since that ∫ +∞

−∞
|θ(ξ)|2dξ ≤ C

∫ +∞

−∞

(
ξ2 + η

)
|θ(ξ)|2dξ ≤ C‖U‖H‖G‖H.

Hence
‖U‖2

H ≤ c |(awx) (1)|2 + c′|v(1)|2 + c′′‖U‖H‖G‖H. (2.82)

Substitution of inequalities (2.71) and (2.76) into (2.82), we obtain that

‖U‖2
H ≤ c|γ|1−α‖U‖H‖G‖H + c′‖G‖2

H + c′′‖U‖H‖G‖H. (2.83)

Then
‖U‖H ≤ c|γ|1−α‖G‖H.

The conclusion then follows by applying the Theorem 2.5.5 �

2.5.3 Polynomial Stability ( For η = 0)

By theorem 2.4.2 (see case 1) 0 is a spectral point. Therefore it is convenient to have the
following generalization of theorem 5.2.2 at hand:

Theorem 2.5.8. ( [15]). Let S(t) be a bounded C0-semigroup on a Hilbert space H with
generator A. Assume that σ(A) ∩ iR = {0} and that there exist ϑ > 1 et υ > 0 such that

∥∥(isI −A)−1
∥∥
L(H)

=

{
O
(
|s|−ϑ

)
, s→ 0

O (|s|υ) , |s| → ∞

Then there exist constants C , t0 > 0 such that for all t > t0 and U0 ∈ D (A) ∩R (A)∥∥eAtU0

∥∥2 ≤ C
1

t
2
ς

‖U0‖D(A)∩R(A),

where ς = max(ϑ, υ).

Our main result is the following.
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2.5. Asymptotic behavior

Theorem 2.5.9. The semigroup SA(t) is polynomially stable and

E(t) = ‖SA(t)U0‖2
H ≤

1

t

2

max{ 2−α
2 , 34}

‖U0‖2
D(A)∩R(A) .

Proof. First for γ large enough, from the estimation in the proof of Theorem 2.5.6, we have

‖(iγI −A)−1‖L(H) 6 C|γ|1−α.

For γ near 0, we have from (2.76)

|υ(1)|2 6 c|γ|1−α‖U‖H‖G‖H + c|γ|−α‖G‖2. (2.84)

Now, from the boundary conditions, we have

|awx(1)|2 =

∣∣∣∣∣
∫ +∞

−∞
κ(ξ)θ(ξ)dξ


2

=

∣∣∣∣∣υ(1)

∫ +∞

−∞

κ2(ξ)

iγ + ξ2
dξ +

∫ +∞

−∞

κ(ξ)g3(ξ)

iγ + ξ2
dξ


2

6 2|υ(1)|2
∣∣∣∣∣
∫ +∞

−∞

κ2(ξ)

iγ + ξ2
dξ


2

+ 2

∫ +∞

−∞

κ2(ξ)

|iγ + ξ2|2
dξ‖g3‖L2(−∞,+∞)

6 2
π

sinαπ
|υ(1)|2|γ|2(α−1) + 4

∫ +∞

−∞

κ2(ξ)

|iγ + ξ2|2
dξ‖g3‖L2(−∞,+∞)

6 2
π

sinαπ
|υ(1)|2|γ|2(α−1) + 4(1− α)

π

sinαπ
|γ|α−2‖g3‖L2(−∞,+∞), (2.85)

‖θ‖2=

∣∣∣∣∣υ(1)

∫ +∞

−∞

κ2(ξ)

iγ + ξ2
dξ

∫ +∞

−∞

g3(ξ)

iγ + ξ2
dξ


2

6 2|υ(1)|2
∣∣∣∣∣
∫ +∞

−∞

κ(ξ)

iγ + ξ2
dξ


2

+ 2

∫ +∞

−∞

1

|iγ + ξ2|2
dξ‖g3‖L2(−∞,+∞)

≤ 2
π

sin 2α+1
4
π
|v(1)|2|γ|(2α−3)/2 + 2π|γ|−3/2 ‖g3‖2

L2(−∞,+∞) . (2.86)

Substitution of inequalities (2.84) into (2.85) and (2.86), we obtain that

|awx(1)|2 ≤ c|γ|α−1‖U ‖H‖G‖H + c|γ|α−2‖G‖2
H, (2.87)

|θ|2 ≤ c|γ|
−1
2 U ‖H‖G‖H + c|γ|

−3
2 ‖G‖2

H, (2.88)

Substitution of inequalities (2.84) and (2.87) into (2.82) and using (2.88), we obtain that

‖‖U 2
H 6 (c|γ|α−1 + c|γ|−1/2)U ‖H‖G‖H + (c′|γ|α−2 + c′′|γ|−3/2)‖G‖H. (2.89)
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2.5. Asymptotic behavior

Then

‖U ‖H 6 c′
1

|γ|max ( 2−α
2
, 3
4

)
. (2.90)

Applying theorem 2.5.8, we obtain that

E(t) ≤ C
‖U0‖2

D(A)∩R(A)

t

2

max{ 2−α
2 , 34}

.

�
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Chapter 3

Energy decay of solutions to a
nondegenerate wave equation with a
fractional dynamic feedback

3.1 Introduction

In this chapter we investigate the existence and decay properties of solutions for the initial
boundary value problem of the wave equation of the type

wtt(x, t)− (a(x)wx)x (x, t) = 0 in (0, L)× (0,+∞), (Q)

where (x, t) ∈ (0, L)× (0,+∞). This system is subject to the boundary conditions

w(0, t) = 0 in (0,+∞),

mwtt(L, t) + (a(x)wx) (L, t) = −%∂α,ηt w(L, t) in (0,+∞),

where m > 0 and % > 0. The notation ∂α,ηt stands for the generalized Caputo fractional derivative
of order α, 0 < α < 1, with respect to the time variable ( see [11] and [23]). It is defined as
follows

∂α,ηt w(t) =
1

Γ(1− α)

∫ t

0

(t− s)−αe−η(t−s)dw

ds
(s)ds, η ≥ 0.

The system is finally completed with initial conditions

w(x, 0) = w0(x), wt(x, 0) = w1(x)

where the initial data (w0, w1) belong to a suitable function space. The problem (Q) describes
the motion of a pinched vibration cable with tip mass m > 0. In [44] B. Mbodje studies the
decay rate of the energy of the wave equation with a boundary fractional derivative control
as in this chapter ( with m=0). Using energy methods, he proves strong asymptotic stability
under the condition η = 0 and a polynomial type decay rate E(t) 6 C

t
if η 6= 0. Recently in
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3.1. Introduction

[10], A.Benaissa and Benkheda considered the stabilisation for the following wave equation with
dynamic boundary control of fractional derivative type

wtt(x, t)− wxx(x, t) = 0 in (0, L)× (0,+∞),

w(0, t) = 0 on (0,+∞),

mwtt(L, t) + wx(L, t) = −%∂α,ηt w(L, t) on (0,+∞),

w(x, 0) = w0(x), wt(x, 0) = w1(x) on (0, L),

(PF)

where % > 0. They proved that the decay of the energy is not exponential but polynomial, that
is, E(t) 6 C1/t

(2−α). Very recently in [55], A.Benaissa, M.Tahri and H.Benkhedda considered
the stabilization of the following problem

wtt(x, t)− (a(x)wx(x, t))x = 0 in (0, 1)× (0,+∞),

w(0, t) = 0 on (0,+∞),

(awx) (1, t) = −%∂α,ηt w(1, t) on (0,+∞),

w(x, 0) = w0(x), wt(x, 0) = w1(x) on (0, 1),

(P)

where % > 0. They proved that system (P ) is not exponentially stable for a general nondegenerate
function a and they established an optimal polynomial energy decay depending with the
parameter α for smooth solution. The boundary feedback under the consideration here are of
fractional type and are described by the fractional derivatives

∂α,ηt w(t) =
1

Γ(1− α)

∫ t

0

(t− s)−αe−η(t−s)dw

ds
(s)ds, η ≥ 0.

The order of our derivatives is between 0 and 1. Very little is known in the literature. In
addition to being nonlocal, fractional derivatives involve singular and non integrable kernels
(t−α, 0 < α < 1). This makes the problem more delicate. It has been shown (see[45] ) that,
as ∂t the fractional derivative ∂αt forces the system to become dissipative and the solution to
approach the equilibrium state. Therefore, when applied on the boundary, we can consider them
as controllers which help to reduce the vibrations. In the recent years, fractional calculus has
been applied successfully in various areas to modify many existing models of physical processes
such as heat conduction, diffusion, viscoelasticity, wave propagation, electronics etc. Caputo
and Mainardi [18] have established the relation between fractional derivative and theory of
viscoelasticity. The generalization of the concept of derivative and integral to a non-integer order
has been subjected to several approaches and some various alternative definition of fractional
derivative appeared in [30, 32]. Our purpose in this chapter is to give a global solvability in
Sobolev spaces and energy decay estimates of the solutions to the problem (Q) with a dynamic
boundary control of fractional derivative type. The organization of this chapter is as follows.
In Section 2, we show that the above system can be replaced by an augmented one obtained
by coupling the nondegenarate wave equation with a suitable diffusion equation (as in [45]).
In Section3, we introduce our functional analytic setting with a view of tackling the problem
later on. In Section 4, existence and uniqueness of strong and weak solutions of the system are
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3.2. Augmented model

proved, using the Hille - Yosida theorem. In Section 5, we show the lack of exponential stability
by spectral analysis. In Section 6, we study asymptotic stability of the above model, and we
establish an optimal polynomial energy decay depending with the parameter α for smooth
solution. Finally, Section 7 is devoted to conclusions on the problems treated in this chapter
and future works, including some possible generalizations and interesting open questions.

3.2 Augmented model

This section is concerned with the reformulation of the model (Q) into an augmented system.
For that, we need the following claims.

Theorem 3.2.1. (see[41]). Let κ be the function:

κ(ξ) = |ξ|
(2α−1)

2 , −∞ < ξ < +∞, 0 < α < 1. (3.1)

Then the relationship between the ‘input’ U and the ‘output’ O of the system

∂tθ(ξ, t) +
(
ξ2 + η

)
θ(ξ, t)− U(t)κ(ξ) = 0, −∞ < ξ < +∞, η ≥ 0, t > 0 (3.2)

θ(ξ, 0) = 0 (3.3)

O(t) = (π)−1 sin(απ)

∫ +∞

−∞
κ(ξ)θ(ξ, t)dξ (3.4)

is given by
O(t) = I1−α,ηU(t), (3.5)

where

[Iα,ηf ] (t) =
1

Γ(α)

∫ t

0

(t− τ)α−1e−η(t−τ)f(τ)dτ.

Proof. From (3.2) and (3.3), we have

θ(ξ, t) =

∫ t

0

κ(ξ)e−(ξ2+η)(t−τ)U(τ)dτ. (3.6)

Hence, by using (3.4), we get

O(t) = (π)−1 sin(απ)e−ηt
∫ t

0

[2

∫ +∞

0

|ξ|2α−1e−ξ
2(t−s)dξ]eητU(τ)dτ. (3.7)

Thus,

O(t) = (π)−1 sin(απ)e−ηt
∫ t

0

[(t− s)−αΓ(α)]eητU(τ)dτ

= (π)−1 sin(απ)

∫ t

0

[(t− s)−αΓ(α)]e−η(t−τ)U(τ)dτ, (3.8)
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3.2. Augmented model

which completes the proof. Indeed, we know that

(π)−1 sin(απ) =
1

Γ(α)Γ(1− α)

�

Lemma 3.2.2. If γ ∈ Dη = Cr]−∞, η] then∫ +∞

−∞

κ2(ξ)

γ + η + ξ2
dξ =

π

sinαπ
(γ + η)α−1.

Proof. Let us set

fγ(ξ) =
κ2(ξ)

ξ2 + η + γ

We have  κ2(ξ)

γ + η + ξ2

 6


κ2(ξ)
<e(γ)+η+ξ2

or

κ2(ξ)
=m(γ)+η+ξ2

Then the function fγ is integrable. Moreover

 κ2(ξ)

γ + η + ξ2

 6


κ2(ξ)
η0+η+ξ2

for all <e(γ) ≥ η0 > −η

κ2(ξ)
η̃0+ξ2

for all |=m(γ)| ≥ η̃0 > 0

From [53, Theorem 1.16.1], the function fγ : Dη −→ C is holomorphic. For a real number
γ > −η we have ∫ +∞

−∞

κ2(ξ)

γ + η + ξ2
dξ =

∫ +∞

−∞

|ξ|2α−1

γ + η + ξ2
dξ

=

∫ +∞

−∞

xα−1

γ + η + x
dx

= (γ + η)α−1

∫ +∞

1

y−1(y − 1)α−1dy, with y =
x

γ + η
+ 1

= (γ + η)α−1

∫ 1

0

z−α(1− z)α−1dz, with z =
1

y

= (γ + η)α−1B(1− α, α)

= (γ + η)α−1Γ(1− α)Γ(α)

= (γ + η)α−1 π

sinαπ
.

Both holomorphic functions fγ and γ 7−→ (γ + η)α−1 π
sinαπ

coincide on the half line ]−η,+∞[ ,
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3.2. Augmented model

hence on Dη following the principe of isolated zeroes. �

We are now in a position to reformulate system (Q). Indeed, by using Theorem 3.2.1, system
(Q) is equivalent to the following:

wtt(x, t)− (a(x)wx(x, t))x = 0 in (0, L)× (0,+∞),

θt(ξ, t) + (ξ2 + η) θ(ξ, t)− wt(L, t)κ(ξ) = 0 in (−∞,+∞)× (0,+∞),

w(0, t) = 0 on (0,+∞),

mwtt(L, t) + (awx) (L, t) = −ζ
∫ +∞
−∞ κ(ξ)θ(ξ, t)dξ in (−∞,+∞)× (0,+∞),

w(x, 0) = w0(x), wt(x, 0) = w1(x) on (0, L),

θ(ξ, 0) = 0 on (−∞,+∞).

(Q’)

where ζ = %(π)−1 sin(απ). For the solution of problem (Q′), we define the energy functional

E(t) =
1

2
‖wt‖2

2 +
1

2

∥∥∥√a(x)wx

∥∥∥2

2
+
m

2
|wt(L, t)|2 +

ζ

2

∫ +∞

−∞
|θ(ξ, t)|2dξ. (3.9)

Lemma 3.2.3. Let (w, θ) be a solution of the problem (Q′). Then, the energy functional defined
by (3.9) satisfies

E ′(t) = −ζ
∫ +∞

−∞

(
ξ2 + η

)
|θ(ξ, t)|2dξ ≤ 0. (3.10)

Proof. Multiplying the first equation in (Q′), by w̄t, integrating over (0, L) and using integration
by parts, we get

1

2

d

dt
‖wt‖2

2 −<e
∫ L

0

(a(x)wx)xw̄tdx = 0.

Then

d

dt

(
1

2
‖wt‖2

2 +
1

2

∥∥∥√a(x)wx

∥∥∥2

2
+
m

2
|wt(L, t)|2

)
+ ζ<ew̄t(L, t)

∫ +∞

−∞
κ(ξ)θ(ξ, t)dξ = 0. (3.11)

Multiplying the second equation in (Q′), by ζθ̄t, and integrating over (−∞,+∞) to obtain:

ζ

2

d

dt
‖θ‖2

2 + ζ

∫ +∞

−∞
(ξ2 + η)|θ(ξ, t)|2dξ − ζ<ewt(L, t)

∫ +∞

−∞
κ(ξ)θ̄(ξ, t)dξ = 0. (3.12)

From (3.9), (3.11) and (3.12) we get

E ′(t) = −ζ
∫ +∞

−∞

(
ξ2 + η

)
|θ(ξ, t)|2dξ.

This completes the proof of the lemma. �
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3.3 Functional analytic setting

Let us introduce the semigroup representation of the system (Q′). We consider the following
condition of the right end contour of wave

υ(t) = wt(L, t), for t > 0, (3.13)

were υ solve the equation

mυt(t) + (a(x)wx)(L, t) + ζ

∫ +∞

−∞
κ(ξ)θ(ξ, t)dξ = 0. (3.14)

Let U = (w,wt, θ, υ)T and rewrite (Q′) as{
U ′ = AU

U(0) = (w0, w1, θ0, υ0)
(3.15)

where the operator A is defined by

A


w
u
θ
υ

 =


u

(a(x)wx)x
− (ξ2 + η) θ + u(L)κ(ξ)

− 1
m

(a(x)wx) (L)− ζ
m

∫ +∞
−∞ κ(ξ)θ(ξ)dξ

 (3.16)

We consider the following space

H1
L(0, L) =

{
w ∈ H1(0, L), w(0) = 0

}
,

and the Hilbert space

H = H1
L(0, L)× L2(0, L)× L2(−∞,+∞)× C,

equipped with the inner product

〈U, Ũ〉H =

∫ L

0

(
uũ+ a(x)wxw̃x

)
dx+ ζ

∫ +∞

−∞
θθ̃dξ +mυυ̃

The domain of A is given by

D (A) =

 (w, u, θ, υ)T ∈ H

w ∈ H2(0, L) ∩H1
L(0, L)

u ∈ H1
L(0, L), υ ∈ C

− (ξ2 + η) θ + u(L)κ(ξ) ∈ L2(−∞,+∞)
u(L) = υ, |ξ|θ ∈ L2(−∞,+∞)

 (3.17)
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3.4 Global existence

In this section we will give well-posedness results for problem (Q′) using semigroup theory.
We show that the operator A generates a C0-semigroup in H. We prove that A is a maximal
dissipative operator. For this purpose we need the following two lemmas.

Lemma 3.4.1. The operator A is dissipative and satisfies, for any U ∈ D (A) .

<e〈AU,U〉 = −ζ
∫ +∞

−∞

(
ξ2 + η

)
|θ(ξ)|2dξ, (3.18)

Proof. For any U = (w,wt, θ, υ)T ∈ D (A) , using (3.15), (3.10) and the fact that

E(t) =
1

2
‖U‖2

H,

estimate (3.18) easily follows. �

Lemma 3.4.2. The operator γI −A is surjective for all γ > 0.

Proof. We need to show that for all F = (f1, f2, f3, f4)T ∈ H, there exists U = (w,wt, θ, υ)T ∈
D (A) , such that

γU −AU = F. (3.19)

Then, in terms of components, the above equation reads
γw − u = f1

γu− (a(x)wx)x = f2

γθ + (ξ2 + η)θ − u(L)κ(ξ) = f3

γυ + 1
m

(a(x)wx)(L) + ζ
m

∫ +∞
−∞ κ(ξ)θ(ξ)dξ = f4

. (3.20)

Suppose w is found with the appropriate regularity. Then, (3.20)1 yields

u = γw − f1. (3.21)

It is clear that u ∈ H1
L(0, L) Furthermore, by (3.20)3 we can find θ as

θ =
f3(ξ) + κ(ξ)u(L)

ξ2 + η + γ
. (3.22)

By using (3.20)2 and (3.21) the function w satisfying the following system

γ2w − (a(x)wx)x = f2 + γf1. (3.23)

Solving equation (3.23) is equivalent to finding w ∈ H2 ∩H1
L(0, L) such that∫ L

0

(γ2w − (a(x)wx)x)z̄dx =

∫ L

0

(f2 + γf1)z̄dx, (3.24)
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for all z ∈ H1
L(0, L). Using integration by parts in (3.24) and taking into account (3.22), we

obtain 
∫ L

0
(γ2wz̄ + a(x)wxz̄x) dx+ (γm+ ζ̃)u(L)z̄(L)

=
∫ L

0
(f2 + γf1) z̄dx− ζ

∫ +∞
−∞

κ(ξ)
ξ2+η+γ

f3(ξ)dξ.z̄(L) +mf4z̄(L)

(3.25)

where ζ̃ = ζ
∫ +∞
−∞

κ(ξ)
ξ2+η+γ

. Using again (3.21), we deduce that

u(L) = γ.w(L)− f1(L). (3.26)

Inserting (3.26) into (3.25), we get

∫ L
0

(γ2wz̄ + a(x)wxz̄x) dx+ γ(γm+ ζ̃)w(L)z̄(L)

=
∫ L

0
(f2 + γf1) .z̄dx− ζ.z̄(L)

∫ +∞
−∞

κ(ξ)
ξ2+η+γ

f3(ξ)dξ

+(γm+ ζ̃)f1(L).z̄(L) +mf4z̄(L)

(3.27)

Consequently, problem (3.27) is equivalent to the problem

B(w, z) = L(z), (3.28)

where the bilinear form B : H1
L(0, L)×H1

L(0, L) −→ C
and the linear form L : H1

L(0, L) −→ C, are defined by

B(w, z) =

∫ L

0

(
γ2wz̄ + a(x)wxz̄x

)
dx+ γ(γm+ ζ̃)w(L)z̄(L)

and

L(w) =

∫ L

0

(f2 + γf1) .z̄dx− ζ.z̄(L)

∫ +∞

−∞

κ(ξ)

ξ2 + η + γ
f3(ξ)dξ + (γm+ ζ̃)f1(L).z̄(L) +mf4z̄(L).

It is easy to verify that B is continuous and coercive, and L is continuous. So applying the
Lax-Milgram theorem, we deduce that for all z ∈ H1

L(0, L) problem (3.28) admits a unique
solution w ∈ H1

L(0, L). Applying the classical elliptic regularity, it follows from (3.27) that
w ∈ H2(0, L). Therefore, the operator γI −A is surjective for any γ > 0. Consequently, using
Hille-Yosida Theorem, we have the following existence and uniqueness result. �

Theorem 3.4.3. Let U0 ∈ H, then there exists a unique solution U ∈ C0(R+,H), of problem
(3.15). Moreover if U0 ∈ D(A), then

U ∈ C0(R+, D(A) ∩ C1(R+,H).
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3.5 Lack of exponential stability

In order to state and prove our stability results, we need some Theorems.

Theorem 3.5.1. ([51],[31] ) Let S(t) = eAt be a C0-semigroup of contractions on Hilbert space
H. Then S(t) is exponentially stable if and only if

ρ(A) ⊇ {iβ : β ∈ R} = iR

and
lim
|β|→∞

||(iβI −A)−1||L(H) <∞

Theorem 3.5.2. ([12]) Let S(t) = eAt be a C0-semigroup on Hilbert space H. If

iR ⊂ ρ(A) and sup
|β|>1

1

βl′
||(iβI −A)−1||L(H) 6M.

for some l′, then there exist c such that

||eAtu0||2 ≤
c

t
2
l′
||u0||2D(A),∀t > 0,∀u0 ∈ D(A).

Theorem 3.5.3. ([4] -[37]) Let A be the generator of a uniformly bounded C0-semigroup
(S(t))t≥0 on a Hilbert space H. If:
(i) A does not have eigenvalues on iR.
(ii) The intersection of the spectrum σ(A) with iR is at most a countable set.
Then the semigroup (S(t))t≥0 is strongly (or asymptotically) stable,i.e, ||S(t)z||H → 0 as t→∞
for any z ∈ H.

Our main result is the following

Theorem 3.5.4. The semigroup generated by the operator A is not exponentially stable.

Proof. We will examine two cases.
• Case 1. η = 0 : We shall show that iγ = 0 is not in the resolvent set of the operator A.
Indeed, noting that (sinx, 0, 0, 0)T ∈ H, and denoting by (w, u, θ, υ)T the image of (sinx, 0, 0, 0)T

by A−1, we see that θ (ξ)=|ξ| 2α−5
2 sinL. But, then θ /∈ L2(−∞,+∞), since α ∈]0, 1]. And so

(w, u, θ, υ)T /∈ D(A).
• Case 2. η 6= 0 : We aim to show that an infinite number of eigenvalues of A approach the
imaginary axis which prevents the wave system (Q′) from being exponentially stable. Indeed we
first compute the characteristic equation that gives the eigenvalues of A. Let γ be an eigenvalue
of A with associated eigenvector (w, u, θ, υ)T . Then AU = γU is equivalent to

γw − u = 0

γu− (a(x)wx)x = 0

γθ + (ξ2 + η)θ − u(L)κ(ξ) = 0

γυ + 1
m

(a(x)wx)(L) + ζ
m

∫ +∞
−∞ κ(ξ)θ(ξ)dξ = 0

. (3.29)
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From (3.29)1, (3.29)2 for such γ, we find

γ2w − (a(x)wx)x = 0. (3.30)

Since υ = u(L). using (3.29)3 and (3.29)4, we get
w(0) = 0,(
γ +

ζ

m

∫ +∞

−∞

κ2(ξ)

ξ2 + γ + η
dξ

)
u(L) +

1

m
a(L)wx(L) =(

γ +
%

m
(γ + η)α−1

)
γw(L) +

1

m
a(L)wx(L) = 0.

(3.31)

Writing (3.30) and (3.31) in the standard form of a linear differential operator with homogeneous
boundary conditions, we obtain

wxx + ax(x)
a(x)

wx − γ2

a(x)
w = 0

w(0) = 0(
γ + %

m
(γ + η)α−1

)
γw(L) + 1

m
a(L)wx(L) = 0.

(3.32)

In order to simplify the computations, we introduce a spatial-scale transformation in x

φ(y) = w(x), y =
1

h

∫ x

0

1√
a(s)

ds, y ∈ (0, 1), (3.33)

where

h =

∫ L

0

1√
a(s)

ds

Then Eq. (3.32) has the form
φ′′(y) + h

2
ax(x)√
a(x)

φ′(y)− h2γ2φ(y) = 0,

φ(0) = 0,√
a(L)

mh
φ′(L) +

(
γ + %

m
(γ + η)α−1

)
γφ(L) = 0.

(3.34)

Equation (3.34) can be further simplified by applying another invertible transformation (see
[48]):

ϕ(y) = e
1
2

∫ y
0 ã(s)dsφ(y), y ∈ (0, 1), (3.35)

where

ã(y) =
h

2

ax(x)√
a(x)

.

(3.35) allows one to cancel the term h
2
ax(x)√
a(x)

φ′(y) in (3.34). Hence we arrive at an equivalent
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eigenvalue problem
ϕ′′(y)−

(
1
2
ã′(y) + 1

4
ã2(y) + h2γ2

)
ϕ(y) = 0

ϕ(0) = 0

ϕ′(L) +

(
−h

4
a′(L)√
a(L)

+ mh√
a(L)

γ + γh√
a(L)

γ(γ + η)α−1

)
ϕ(L) = 0

(3.36)

To asymptotically estimate the solutions to the eigenvalue problem (3.36), we proceed as in
[45]. �

Lemma 3.5.5. The equation

ϕ′′(y)−
(

1

2
ã′(y) +

1

4
ã2(y) + h2γ2

)
ϕ(y) = 0,

has two linearly independent asymptotic fundamental solutions:

ϕ1(y) = ehγy(1 +
ϕ10(y)

ihγ
) +O(

1

γ2
),

ϕ2(y) = e−hγy(1 +
ϕ20(y)

ihγ
) +O(

1

γ2
)

and hence their derivatives are given by

d

dy
ϕ1(y) = hγehγy(1 +

ϕ10(y)

ihγ
) +O(

1

γ2
),

d

dy
ϕ2(y) = −hγe−hγy(1 +

ϕ20(y)

ihγ
) +O(

1

γ2
),

where

ϕ10(y) = − i
2

∫ y

0

(
1

2
ã′(s) +

1

4
ã2(s)

)
ds,

ϕ20(y) =
i

2

∫ y

0

(
1

2
ã′(s) +

1

4
ã2(s)

)
ds.

For simplicity, we introduce the following notation: [a]i := a + O(γ−i) for i = 1, 2. From
Lemma 3.5.5, one can write the asymptotic solution of (3.36) as follows:

ϕ(y) =
2∑
i=1

ciϕi, (3.37)
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where ci is chosen so that ϕ satisfies the boundary conditions, i.e.,

M̃(γ)C(γ) =

 [1]2 [1]2[(
γ + m√

a(L)
γ2 + %√

a(L)
γα
)
eγh
]

0

[(
−γ + m√

a(L)
γ2 + %√

a(L)
γα
)
e−γh

]
0

( c1

c2

)

=

(
0
0

)
. (3.38)

Hence a non-trivial solution w exists if and only if the determinant of M̃(γ) vanishes. Set
f(γ) = detM̃(γ), thus the characteristic equation is f(γ) = 0. Our purpose in the sequel is to
prove, thanks to Rouche’s Theorem, that there is a subsequence of eigenvalues for which their
real part tends to 0. In the sequel, since A is dissipative, we study the asymptotic behavior of
the large eigenvalues γ of A in the strip −α0 6 <e(γ) 6 0, for some α0 > 0 large enough and
for such γ we remark that eti, i = 1, 2 remains bounded.

Lemma 3.5.6. There exists N ∈ N such that

{γk}k∈Z∗,|k|≥N ⊂ σ(A), (3.39)

where

γk = i

(
kπ

L
+

1

mkπ

)
+

α̃

k3−α +
β

k(3−α)
+ o

(
1

k3−α

)
, k ≥ N, α̃ ∈ iR, β ∈ R, β < 0,

γk = γ − k if k ≤ −N, Moreover for all |k| ≥ N, the eigenvalues γk are simple.

Proof.
• Step1 :

f(γ) = et2h(t2)− et1h(t1)

= −e−γLh(−γ)

e2γh −
−γ + m√

a(L)
γ2 + %√

a(L)
γ(γ + η)α−1

γ + mh√
a(L)

γ2 + %√
a(L)

γ(γ + η)α−1

 .

= −e−γLh(−γ)

e2γh − 1 +
2

1 + m√
a(L)

γ + %√
a(L)

(γ + η)α−1

 . (3.40)

We set

f̃(γ) = e2γh − 1 +
2

1 + m√
a(L)

γ + %√
a(L)

(γ + η)α−1

= f0(γ) +
f1(γ)

γ
+
f2(γ)

γ2
+ +

f3(γ)

γ3−α + o

(
1

γ3−α

)
, (3.41)
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where

f0(γ) = e2γh − 1, (3.42)

f1(γ) =
2
√
a(L)

m
, (3.43)

f2(γ) =
−2a(L)

m2
, (3.44)

f3(γ) =
2γ
√
a(L)

m2
. (3.45)

Note that f0, f1, f2 and f3 remain bounded in the strip −α0 6 <e(γ) 6 0.
• Step2 : We look at the roots of f0. From (3.42), f0 has one familie of roots that we denote
γ0
k.

f0(γ) = 0⇐⇒ e2γh = 1.

Hence

2γh = i2kπ, i.e., γ0
k =

ikπ

h
, k ∈ Z.

Now with the help of Rouche’s Theorem, we will show that the roots of f̃ are close to those of
f0. Changing in (3.41) the unknown γ by u = 2γh then (3.41) becomes

f̃(u) = (eu − 1) +O

(
1

u

)
= f0(u) +O

(
1

u

)
.

The roots of f0 are uk = ik
h
π, k ∈ Z, and setting u = uk + reit, t ∈ [0, 2π], we can easily check

that there exists a constant C > 0 independent of k such that |eu − 1| > C.r for r small enough.
This allows to apply Rouche’s Theorem. Consequently, there exists a subsequence of roots
of ˜f which tends to the roots uk of f0. Equivalently, it means that there exists N ∈ N and
a subsequence (γK)|k|>N of roots of f(γ), such that γk = γ0

k + o(1) which tends to the roots
ik
h
π of f0 Finally for |k| > N, γk is simple since γ0

k is.
• Step3 : From Step 2, we can write

γk =
ik

h
π + εk. (3.46)

Using (3.46), we get
e2γkh = 1 + 2hεk + 2h2ε2

k + o(ε2
k). (3.47)

Substituting (3.47) into (3.41), using that f̃(γk) = 0, we get:

f̃(γk) = 2hεk + 2h2ε2
k +

2
√
a(L)

m
ikπ
h

+ εk
−

2a(L)
m2

( ikπ
h

+ εk)2
+ o(ε2

k)

= 2hεk +
2L
m

kπi
+ o (εk) + o

(
1

k

)
= 0,
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and hence

εk =

√
a(L)

mkπ
i.

• Step4 : From Step 3, we can write

γk = i
1

h
kπ +

√
a(L)

mkπ
i+ εk. (3.48)

Using (3.48), we get

e2γkh = 1 +

(
2
√
a(L)h

mkπ
i+ 2hεk

)
+

1

2

(
2
√
a(L)h

mkπ
i+ 2hεk

)2

+ o
(
ε3
k

)
. (3.49)

Substituting (3.49) into (3.41), using that f̃(γk) = 0, we get:

f̃ (λk) =

(
2
√
a(L)h

mkπ
i+ 2hεk

)
+

1

2

(
2
√
a(L)h

mkπ
i+ 2hεk

)2

+

2
√
a(L)

m

kπi
h

+

√
a(L)

mkπ
i+ εk

−
2a(L)
m2(

kπi
h

+

√
a(L)

mkπ
i+ εk

)2 −
2
√
a(L)γ

m2(
kπi
h

+

√
a(L)

mkπ
i+ εk

)(3−α)
+O

(
ε3
k

)
+O

(
1

k3

)

= 2hεk −
2
√
a(L)γ

m2

(
h

kπi

)3−α

+ o
(
ε3
k

)
+ o

(
1

k3

)
= 0. (3.50)

εk =

√
a(L)γ

m2hα−2(kπi)3−α + o

(
1

k3−α

)

=

−
√
a(L)γ

m2hα−2(kπ)3−α

(
cos(1− α)π

2
− i sin(1− α)π

2

)
+ o

(
1

k3−α

)
for k � 0

−
√
a(L)γ

m2hα−2(−kπ)3−α

(
cos(1− α)π

2
− i sin(1− α)π

2

)
+ o

(
1

k3−α

)
for k � 0

From this equation we obtain |k|3−αRγk ∼ β in that case, with

β = −
√
a(L)γ

m2hα−2π3−α cos(1− α)
π

2
.

The operator A has a non exponential decaying branch of eigenvalues. Thus the proof is
complete. �

3.6 Asymptotic stability

Because of the unboundedness of the ξ-domain for the diffusive equation, the resolvent of A is
not compact, and a major difficulty arises in the use of LaSalle’s invariance principle to prove
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asymptotic stability. A refined analysis of the spectrum of generator of the semigroup can be
performed, which allows for the use of the stability results of [4, 37]. A direct application of this
result on the pseudo-differentially damped linearized pendulum, can be found in [42].

3.6.1 Strong stability of the system

In this part, we use a general criteria of Lemma 3.5.3 to show the strong stability of the
C0-semigroup etA associated to the wave system (Q′) in the absence of the compactness of the
resolvent of A. Our main result is the following theorem:

Theorem 3.6.1. The C0-semigroup etA is strongly stable in H, i.e., for all U0 ∈ H, the solution
of (3.15) satisfies

lim
t→+∞

‖etAU0‖.

For the proof of Theorem 3.6.1, we need the following two lemmas.

Lemma 3.6.2. A does not have eigenvalues on iR.
Proof. We make a distinction between iγ = 0, and iγ 6= 0.
Step1 : Solving for AU = 0 leads to U = 0, thanks to the boundary conditions in (3.17).
Hence, iγ = 0 is not is not an eigenvalue of A.
Step2: We will argue by contradiction. Let us suppose that there
γ ∈ R, γ 6= 0, such that

AU = iγU. (3.51)

Firstly, the equation (3.51) is equivalent to the following system
iγw − u = 0

iγu− (a(x)wx)x = 0

iγθ + (ξ2 + η)θ − u(L)κ(ξ) = 0

iγυ + 1
m

(a(x)wx)(L) + ζ
m

∫ +∞
−∞ κ(ξ)θ(ξ)dξ = 0

. (3.52)

Secondly, we will consider two cases:
• Case 1. γ 6= 0 : Taking the L2(0, L)-inner product with U of both sides of (3.51) and using
(3.18), we immediately obtain

0 = <e〈AU,U〉H = −ζ
∫ +∞

−∞

(
ξ2 + η

)
|θ(ξ)|2dξ. (3.53)

Hence
θ ≡ 0. (3.54)

From (3.52)3, we have
u(L) = 0. (3.55)

Hence, from (3.52)1 and (3.52)4 we obtain

w(L) = 0 and wx(L) = 0. (3.56)
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from (3.52)1 and (3.52)2

−γ2w − (a(x)wx)x = 0. (3.57)

We deduce that w satisfies the boundary value problem:
γ2w + (a(x)wx)x = 0
w(L) = wx(L) = 0
w(0) = 0

(3.58)

Next, let

ψ(x) =

∫ x

0

exp

(∫ x

s

∣∣∣ax
a

∣∣∣ dυ) ds for all x ∈ [0, 1]

It is easy to see that {
ψ(0) = 0, ψ(x) > 0, ∀x ∈ (0, 1]

ψx ≥ 1, a
(
ψ
a

)
x
≥ 1.

Multiplying equation (3.58)1 by ψw̄x, we get

γ2

∫ L

0

ψ(x)ww̄xdx+

∫ L

0

ψ(x)w̄x (a(x)wx)x dx = 0. (3.59)

U ∈ D(A), then the regularity is sufficiently for applying an integration on the second integral
in the left hand side in equation (3.59). Then we obtain

γ2

2

∫ L

0

ψ(x)
d

dx
|w|2dx−

∫ L

0

ψx(x)a(x) |wx|2 dx−
1

2

∫ L

0

ψ(x)a(x)
d

dx
|wx|2 dx = 0. (3.60)

Using Green formula and the boundary conditions, we get

γ2

∫ L

0

ψx(x)|w|2dx+

∫ L

0

(ψx(x)a(x)− ψ(x)ax(x)) |wx|2 dx = 0, (3.61)

We deduce that
w = 0. (3.62)

Using equation (3.52)1 we obtain
u = 0 and υ = 0. (3.63)

Consequently, using equations (3.63), (3.62) and (3.54), we deduce that the only solution of
(3.52) is the null one.
• Case 2. γ = 0 :
In this case, by (3.52)1 we have u = 0, which gives that θ = 0 by (3.52)3.
Multiplying equation (3.52)2 by w̄ using Green formula and the boundary conditions, we get∫ L

0

a(x) |wx|2 dx = 0. (3.64)
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Then
wx(x) = 0 ∀x ∈ (0, L), (3.65)

Hence w is constant in (0,L). As w(L) = 0, then

w = 0.

Hence U must be the trivial solution of (5.1), which is the desired result. The proof has been
completed. �

Lemma 3.6.3. We have
iR ⊂ ρ(A) if η 6= 0,

iR∗ ⊂ ρ(A) if η = 0,

. where
R∗ = Rr {0}

Proof. • Case 1. γ 6= 0 : We will prove that the operator iγI −A is surjective for γ 6= 0. For
this purpose, let G = (g1, g2, g3, g4)

T ∈ H, we seek X = (w, u, θ, υ)T ∈ D(A) solution of the
following equation

(iγI −A)X = G. (3.66)

Equivalently, we have
iγw − u = g1

iγu− (a(x)wx)x = g2

iγθ + (ξ2 + η)θ − u(L)κ(ξ) = g3

iγυ + 1
m

(a(x)wx)(L) + ζ
m

∫ +∞
−∞ κ(ξ)θ(ξ)dξ = g4

. (3.67)

From (3.67)1 and (3.67)2, we have

−γ2w − (a(x)wx)x = (g2 + iγg1.) . (3.68)

Let z ∈ H1
L(0, L). Multiplying the equation (3.68) by z̄ and integrating in (0,L), we obtain∫ L

0

(
−γ2wz̄ − (a(x)wx)x z̄

)
dx =

∫ L

0

(g2 + iγg1) z̄dx. (3.69)

From the boundary conditions and the fact that w(0) = 0, we get

∫ L
0

(−γ2wz̄ + a(x)wxz̄x) dx+ iγ(iγm+ ζ̃)w(L)z̄(L)

=
∫ L

0
(g2 + iγg1) .z̄dx− ζ.z̄(L)

∫ +∞
−∞

κ(ξ)
ξ2+η+iγ

g3(ξ)dξ

+(iγm+ ζ̃)g1(L).z̄(L) +mg4z̄(L)

(3.70)
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We can rewrite (3.70) as
− (Lγw, z)H1

L
+ (w, z)H1

L
= L(z), (3.71)

with the inner product defined by

(w, z)H1
L

=

∫ 1

0

a(x)wxz̄xdx

and

(Lγw, z)H1
L

=

∫ L

0

γ2wz̄dx− iγ(iγm+ ζ̃)w(L)z̄(L).

Using the compactness embedding from L2(0, L) into H1
L(0, L) and from H−1

L (0, L) into L2(0, L)
we deduce that the operator Lγ is compact from L2(0, L) into L2(0, L). Consequently, by
Fredholm alternative, proving the existence of w solution of (3.71) reduces to proving that 1 is
not an eigenvalue of Lγ. Indeed if 1 is an eigenvalue, then there exists w 6= 0 such that

(Lγw, z)H1
L

= (w, z)H1
L
∀z ∈ H1

L. (3.72)

In particular for z = w , it follows that

γ2‖w(x)‖2
L2(0,1) − iγ(iγm+ ζ̃)|w(L)|2 =

∥∥∥√a(x)wx(x)
∥∥∥2

L2(0,1)
.

Hence, we have
w(L) = 0, (3.73)

From (3.72), we obtain
(awx)(L) = 0. (3.74)

Then 
γ2w + (a(x)wx)x = 0
w(L) = wx(L) = 0
w(0) = 0.

(3.75)

We deduce that U = 0.
• Case γ = 0 and η 6= 0: Using Lax-milgram theorem, we obtain the result. �

3.6.2 Residual spectrum of A
Lemma 3.6.4. Let A be defined by (3.16) Then

A∗


w
u
θ
υ

 =


−u

− (a(x)wx)x
− (ξ2 + η) θ − u(L)κ(ξ)

1
m

(a(x)wx) (L) + ζ
m

∫ +∞
−∞ κ(ξ)θ(ξ)dξ

 , (3.76)
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with domain

D (A∗) =

 (w, u, θ, υ)T ∈ H

w ∈ H2(0, L) ∩H1
L(0, L)

u ∈ H1
L(0, L), υ ∈ C

− (ξ2 + η) θ − u(L)κ(ξ) ∈ L2(−∞,+∞)
u(L) = υ, |ξ|θ ∈ L2(−∞,+∞)

 . (3.77)

Proof. Let U = (w, u, θ, υ)T and V = (w̃, ũ, θ̃, υ̃)T . We have

< AU, V >H=< U,A∗V >H .

< AU, V >H=

∫ L

0

a(x)ux ¯̃wxdx+

∫ L

0

(a(x)wx)x ¯̃udx+ ζ

∫ +∞

−∞
[−
(
ξ2 + η

)
θ + u(L)κ(ξ)]¯̃θdξ

+m(
1

m
(a(x)wx) (L) +

ζ

m

∫ +∞

−∞
κ(ξ)θ(ξ)dξ)¯̃υ

= −
∫ L

0

u(a(x) ¯̃wx)xdx−
∫ L

0

a(x)wx ¯̃ux + a(L)wx(L)¯̃u(L) + a(L) ¯̃wx(L)u(L)

−ζ
∫ +∞

−∞
θ[(ξ2 + η)¯̃θ]dξ + ζu(L)

∫ +∞

−∞
κ(ξ)¯̃θdξ − a(L)wx(L)¯̃υ − ζ

∫ +∞

−∞
κ(ξ)θ(ξ)dξ.¯̃υ

As υ = u(L) and if we set υ̃ = ũ(L), we find

< AU, V >H= −
∫ L

0

u(a(x) ¯̃wx)xdx−
∫ L

0

a(x)wx ¯̃uxdx− ζ
∫ +∞

−∞
θ(ξ)[(ξ2 + η)¯̃θ + κ(ξ)¯̃u(L)]dξ

+υ(a(L) ¯̃wx(L) + ζ

∫ +∞

−∞
κ(ξ)¯̃θdξ).

�

Theorem 3.6.5. σr(A) = ∅ where σr(A) denotes the set of residual spectrum of A.

Proof. Since γ ∈ σr(A), γ̄ ∈ σp(A∗) the proof will be accomplished if we can show that
σp(A) = σp(A∗). This is because obviously the eigenvalues of A are symmetric on the real axis.
From (3.76), the eigenvalue problem A∗Z = γZ for γ ∈ C and 0 6= Z = (w, u, θ, υ) ∈ D(A∗) we
have 

γw + u = 0

γu+ (a(x)wx)x = 0

γθ + (ξ2 + η)θ + u(L)κ(ξ) = 0

γυ − 1
m

(a(x)wx)(L)− ζ
m

∫ +∞
−∞ κ(ξ)θ(ξ)dξ = 0

. (3.78)

From (3.78)1 and (3.78)2, we find

γ2w − (a(x)wx)x = 0. (3.79)
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As υ = u(L) = −γw(L), we deduce from (3.68)3 and (3.68)4 that(
γ +

%

m
(γ + η)α−1

)
γw(L) +

1

m
a(L)wx(L) = 0, (3.80)

with the following conditions
w(0) = 0 (3.81)

System (3.79)–(3.80) is the same as (3.30)-(3.31). Hence A∗ has the same eigenvalues with A.
The proof is complete. �

3.6.3 Polynomial stability for η 6= 0

In this part, we prove that the system (P’) is polynomially stable when η > 0. Note that in [41],
an early example of such refined decay estimate had been proved for Webster-Lokshin model
with constant coefficients in the case α = 1

2
and inferred for other values of α by using a modal

decomposition on a Riesz basis and the asymptotic of the eigenfunctions of the ∂αt operator.

Theorem 3.6.6. The semigroup (SA(t))t≥0 is polynomially stable and

‖(SA(t))U0‖ 6
1

t3−α
‖U0‖D(A).

Proof. An early example of such refined decay estimate had been proved for the case α = 1
2

and
inferred for other values of α in [41]. We will need to study the resolvent equation (iγ−A)U = F,
for γ ∈ R, namely 

iγw − u = f1

iγu− (a(x)wx)x = f2

iγθ + (ξ2 + η)θ − u(L)κ(ξ) = f3

iγυ + 1
m

(a(x)wx)(L) + ζ
m

∫ +∞
−∞ κ(ξ)θ(ξ)dξ = f4

. (3.82)

• Step 1 Taking the real part of the inner product of (iγI −A)U = F, with U in H and using
(3.18), we get

|<e〈AU,U〉H| ≤ ‖U‖H‖F‖H, (3.83)

This implies that

ζ

∫ +∞

−∞

(
ξ2 + η

)
|θ(ξ, t)|2dξ ≤ ‖U‖H‖F‖H. (3.84)

and, applying (3.81)1, we obtain∣∣∣ |γ| |w(L)| − |f1(L)|
∣∣∣2 6 |u(L)|2. (3.85)

We deduce that
|γ|2|w(L)|2 6 c|f1(L)|2 + c|u(L)|2. (3.86)
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From (3.81)4, we have

(awx)(L) = −iγm.u(L)− ζ
∫ +∞

−∞
κ(ξ)θ(ξ)dξ +mf4.

Then ∣∣∣a(L)wx(L)
∣∣∣2 6 2m2|γ|2|u(L)|2 + 2m2f 2

4 + 2ζ2

∣∣∣∣∣
∫ +∞

−∞
κ(ξ)θ(ξ)dξ

∣∣∣∣∣
2

6 2m2|γ|2|u(L)|2 + 2m2f 2
4 + 2ζ2

(∫ +∞

−∞
(ξ2 + η)−1κ(ξ)dξ

)(∫ +∞

−∞
(ξ2 + η)θ(ξ)dξ

)

6 2m2|γ|2|u(L)|2 + c‖U‖H‖F‖H + c′‖F‖2
H . (3.87)

From (3.86)3, we obtain
u(L)κ(ξ) = (iγ + ξ2 + η)θ − f3(ξ). (3.88)

By multiplying (3.86) by (iγ + ξ2 + η)−2|ξ|, we get

(iγ + ξ2 + η)−2u(L)κ(ξ)|ξ| = (iγ + ξ2 + η)−1|ξ|θ − (iγ + ξ2 + η)−2|ξ|g3(ξ). (3.89)

Hence, by taking absolute values of both sides of (3.87) integrating over ]−∞,+∞[ respect to
the variable ξ and applying Cauchy Schwartz inequality, we obtain

S|u(L)| 6
√

2U

(∫ +∞

−∞
ξ2|θ|2dξ

) 1
2

+ 2ν

(∫ +∞

−∞
|f3(ξ)|2dξ

) 1
2

, (3.90)

where

S =

∣∣∣∣∣
∫ +∞

−∞

(
iγ + ξ2 + η

)−2
u(L)|ξ|κ(ξ)dξ

∣∣∣∣∣ =
|1− 2α|

4

π

| sin (2α+3)
4

π|
|iγ + η|

2α−5
4 ,

U =

(∫ +∞

−∞

(
|γ|+ ξ2 + η

)−2
dξ

) 1
2

= (
π

2
)
1
2

∣∣|γ|+ η
∣∣−3

4 ,

ν =

(∫ +∞

−∞

(
|γ|+ ξ2 + η

)−4 |ξ|2dξ

) 1
2

=
( π

16
||γ|+ η|

−5
2

) 1
2 .

Thus, by using the inequality

2PQ 6 P 2 +Q2, P > 0, Q > 0,
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again, we get

S2|u(L)|2 6 2U2

(∫ +∞

−∞
(ξ2 + η)|θ|2dξ

)
+ 4ν2

(∫ +∞

−∞
|f3(ξ)|2dξ

)
. (3.91)

We deduce that
|u(L)|2 ≤ c|γ|1−α‖U‖H‖F‖H + c‖F‖2

H·. (3.92)

• Step 2 : Now, we use the classical multiplier method. Let us introduce the following notation

Iϕ(x) =
∣∣∣√a(x)wx(x)

∣∣∣2 + |u(x)|2

Eϕ =

∫ L

0

Iϕ(x)dx

Lemma 3.6.7. We have that

c1

∫ L

0

ψx(x)|u(x)|2dx+ c0

∫ L

0

(ψx(x)− 1) |u(x)|2dx (c0 + c1)

∫ L

0

(
ψ(x)

a(x)

)
x

|awx|2 dx

+c0

∫ L

0

a(x) |wx|2 dx = (c0 + c1)
[
ψ(x)|u|2

]1
0

+ (c0 + c1)

[(
ψ(x)

a(x)

)
|awx|2

]1

0

+c0[a(x)wxw̄]10 +R, (3.93)

for every, c0, c1 > 0, and R satisfies

|R| 6 C‖U‖H‖F‖H.

for a positive constant C.

Proof. To get (3.91), let us multiply the equation (3.81)2 by 2 (c0 + c1)ψw̄x + c0w̄. Integrating
on (0,L) we obtain

iγ

∫ L

0

u(2 (c0 + c1)ψw̄x + c0w̄)dx−
∫ L

0

(a(x)wx)x(2 (c0 + c1)ψw̄x + c0w̄)dx

=

∫ L

0

f2(2 (c0 + c1)ψw̄x + c0w̄)dx

or

−2(c0 + c1)

∫ L

0

uψ(x)(iγwx)dx− c0

∫ L

0

u(iγw)dx− 2(c0 + c1)

∫ L

0

ψ(x)(a(x)wx)xw̄xdx

−c0

∫ L

0

(a(x)wx)xw̄dx =

∫ L

0

f2(2 (c0 + c1)ψw̄x + c0w̄)dx
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Since iγw = u+ f1 and iγwx = ux + f1x taking the real part in the above equality, it follows
that

−(c0 + c1)

∫ L

0

ψ(x)
d

dx
|u|2 − (c0 + c1)

∫ L

0

ψ(x)

a(x)

d

dx
|awx|2 dx− c0

∫ L

0

(a(x)wx)xw̄dx

−c0

∫ L

0

|u|2dx = 2(c0+c1)<e
∫ L

0

uψ(x)f̄1xdx+<e
∫ L

0

f2(2 (c0 + c1)ψw̄x+c0w̄)dx+c0<e
∫ L

0

uf̄1dx

and integrating by part, we get

c0

∫ L

0

(ψx(x)− 1)|u(x)|2dx+ c1

∫ L

0

ψx(x)|u(x)|2dx+ (c0 + c1)

∫ L

0

(
ψ(x)

a(x)

)
x

|awx|2 dx

+ c0

∫ L

0

a(x)|wx|2dx = (c0 + c1)
[
ψ(x)|u|2

]L
0

+ (c0 + c1)

[(
ψ(x)

a(x)

)
|awx|2

]L
0

+ c0[a(x)wxw̄]L0 +R, (3.94)

where

R = 2(c0 + c1)<e
∫ L

0

uψ(x)f̄1xdx+ <e
∫ L

0

f2(2 (c0 + c1)ψw̄x + c0w̄)dx+ c0<e
∫ L

0

uf̄1dx

Moreover 
∫ L

0

ψ(x)f2w̄xdx

 6 C‖f2‖L2(0,L)‖wx‖L2(0,L) 6 C‖F‖H‖U‖H,
∫ L

0

ψ(x)uf̄1xdx

 6 C‖u‖L2(0,L)‖f1x‖L2(0,L) 6 C‖F‖H‖U‖H,
∫ L

0

uf̄1dx

 6 C‖F‖H‖U‖H,

and 
∫ L

0

f2w̄dx

 6 C‖F‖H‖U‖H,

Hence, we deduce that
|R| 6 C‖F‖H‖U‖H. (3.95)

�

• Step 3 We have

(a(x)wxw̄)x=0 = 0, (ψ(x)|u(x)|2)x=0 = 0, (ψ(x)a(x)|wx|2)x=0 = 0.
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It holds that

c1

∫ L

0

(
a(x) |wx|2 + |u|2

)
dx ≤ (c0 + c1)ψ(1)|u(L)|2 + (c0 + c1)

ψ(1)

a(L)
|(awx) (L)|2

+ c0a(L) |wx(L)‖w(L) | +C‖U ‖H‖F‖H
≤ c|u(L)|2 + c′(ε) |(awx) (L)|2 + ε|w(L)|2 + C‖U‖H‖F‖H. (3.96)

for any ε > 0. Moreover, using the Sobolev injection, we have

|w(L)| 6 ‖w‖H 1 (0 .L) 6 c‖wx‖L2 (0 .L) 6 c‖
√
awx‖L2 (0 .L).

Then
Ew ≤ c |(awx) (L)|2 + c′|u(L)|2 + c′′‖U‖H‖F‖H. (3.97)

Since that ∫ +∞

−∞
|θ(ξ)|2dξ ≤ C

∫ +∞

−∞

(
ξ2 + η

)
|θ(ξ)|2dξ ≤ C‖U‖H‖F‖H.

Hence
‖U‖2

H ≤ c |(awx) (L)|2 + c′|u(L)|2 + c′′‖U‖H‖F‖H. (3.98)

Substitution of inequalities (3.86) and (3.91) into (3.97), we obtain that

‖U‖2
H ≤ c|γ|2−2α‖U‖H‖F‖H + c′‖F‖2

H + c′′‖U‖H‖F‖H. (3.99)

Then
‖U‖H ≤ c|γ|2−2α‖F‖H.

Then, using Theorem 3.5.2 with δ = 4− 2α one has conclusion of Theorem. The proof is now
complete. �

3.7 Conclusions and future works

3.7.1 Conclusions

We have studied the dynamic boundary stabilization of the wave system with dissipation law
of fractional derivative type. Using a spectral analysis we have proved a non-uniform stability.
Using Arendt-Batty Theorem, we have proved the strong asymptotic stability. If η > 0, using
a frequency domain approach, we prove some polynomial energy decay rate depending on
parameter α.

3.7.2 Future works

In Theorems 3.4.3, 3.6.1, 3.6.5, 3.6.6, our approach can be generalized to multi-dimensional
spaces. But it is difficult to use spectral analysis to generalize Theorem 3.5.4. Instead we can
show the lack of exponential stability by proving that the second condition in Theorem 3.5.1
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does not hold. We can extend (paper in preparation) the results of this paper to more general

measure density instead of (3.1). Indeed we can consider
∫ +∞
−∞

κ(ξ)
ξ2+ηγ

dξ, as Stieltjes function. By

the help of Abelian/Tauberian theorem of Karamata, we obtain many interesting cases that is
resolvent growth slower or faster. We use a general Borichev–Tomilov theorem (see [6]). It seems
to be interesting to study a global decaying solutions of hyperbolic systems (strong and weakly)
under control of fractional derivative type. We think that the interaction of the hyperbolicity
(order of multiplicity) and the number of dissipative terms have an effect on the result. It seems
to be interesting to develop some energy methods to treat nonlinear evolution under control of
fractional derivative type. The problem of global existence and energy decay for the following
wave equation of Kirchhoff type is open

wtt(x, t)−M
(
‖wx‖2

L2(0,L)

)
wxx(x, t) = 0 in (0, L)× (0,+∞),

w(0, t) = 0 in (0,+∞)

M
(
‖wx‖2

L2(0,L)

)
wx(x, t) = −%∂α,ηt in (0,+∞)

w(x, 0) = w0(x), wt(x, 0) = w1(x) on (0, L).

.

67



Abstract

In recent years, the stability of PDEs has attracted the attention of many authors and become
an active area of research. the stabilization problem we are interested in amounts to determining
the asymptotic behavior of the energy, denoted by E(t), to study its limit in order to determine
if the latter is null or not, and if this limit is null give an estimate of the rate of its decay
towards zero. In this thesis, we consider the non-degenerate wave equation with the presence
of dissipative terms of fractional type. we have focused our study on the global existence and
asymptotic behavior of solutions. For the global existence, we used the argument combining the
semigroup theory with the energy estimation method and with the help of a spectral analysis
we proved a non-uniform stability. Using the Arendt-Batty theorem, we proved the strong
asymptotic stability. For the polynomial stability, we succeeded to establish a polynomial decay
rate of the energy which depends on a parameter by an estimation of the resolvent of the
generator associated with the semi-group and the Borichev-Tomilov theorem.

Key Words: Nondegenerate wave equation, fractional boundary control, Polynomial stability,
C0 -semigroup, frequency domain approach .

Résumé

Au cours des dernières années, la stabilité des EDPs a attiré l’attention de nombreux auteurs
et est devenue un domaine de recherche actif. le problème de stabilisation auquel nous nous
intéressons revient à déterminer le comportement asymptotique de l’énergie, notée par E(t),
étudier sa limite afin de déterminer si cette dernière est nulle ou pas, et si cette limite est
nulle, donner une estimation de la vitesse de sa décroissance vers zéro. Dans cette thèse, nous
considérons l’équation des ondes non dégénérée avec la présence des termes dissipatifs de type
fractionnaire. nous avons concentré notre étude sur l’existence globale et le comportement
asymptotique des solutions. Pour l’existence globale, nous avons utilisé l’argument combinant
la théorie des semi-groupe avec la méthode d’estimation de l’énergie et à l’aide d’une analyse
spectrale nous avons prouvé une stabilité non uniforme. En utilisant le théorème d’Arendt-Batty,
nous avons prouvé la stabilité asymptotique forte. Pour la stabilité polynomiale, nous avons
réussi à établir un taux de décroissance polynomiale de l’énergie qui dépends d’un paramètre

68



3.7. Conclusions and future works

par une estimation de la résolvante du générateur associé au semi-groupe et le théorème de
Borichev-Tomilov.

Mots Clés: Equation des ondes non dégénérée, contrôle de frontière fractionnaire, Stabilité
polynomiale, C0 -semi-groupe, approche domaine fréquentielle.
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: ملخص  

يرة وفي السنوات الأخ رية النظم الديناميكيةالأول في نظ مسألة استقرار المعادلات التفاضلية كانت ولا تزال السؤال

العديد من المتخصصين. هنا نتحدث عن استقرار الطاقة و هو موضوع اهتمامنا.  انتباهتجذب  الاستقرارأصبحت مسألة 

ركزنا في هذه الدراسة  .الكسرىللتبديد من الصنف بوجود حدود  غير المولدة معادلة الموجة درسنا الأطروحةهذه  في

طريقة تقدير الطاقة وباستخدام  على الوجود الشامل والسلوك المقارب للحلول حيث جمعنا بين نظرية شبه الزمر و

برهنا على الاستقرار المقارب   Arendt-Batty على نظريةبالاعتماد غير منتظم ثم  أثبتنا استقرارا التحليل الطيفي

  . Borichev-Tomilovطريقة مجال التردد ونظرية  كما اثبثنا نتيجة اضمحلال متعدد الحدود باستخدام .القوي

 

شبه الزمر، استقرار متعدد  ، نظريةالكسرىمن الصنف حدودي تحكم دلة الموجة غير المولدة، معا  :كلمات مفتاحية

 .  Borichev-Tomilovطريقة مجال التردد ونظرية  ود،الحد
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