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d’accomplir ce travail.
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Abstract

In this thesis, we discuss the existence and uniqueness of integrable and continuous solu-

tions for a class of initial and of boundary value problem for nonlinear implicit fractional

differential equations and inclusions (NIFDE for short) with Riemann-Liouville fractional

derivative, Hadamard fractional derivative, Caputo’s derivative and Katugampola frac-

tional derivative .All results in this study are established by means of fixed points theorems
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Résumé

Dans cette thèse, nous discutons l’existence et l’unicité des solutions intégrables et con-

tinues pour une classe de problèmes à valeurs initiales et aux limites pour des équations et

des inclusions factionnaires implicites non linéaires (NIFDE pour le short) avec la dérivée

fractionnaires au sens de Riemann-Liouville, la dérivée factionnaires de Hadamard, Ca-

puto et de Katugampola. Tous les résultats de cette étude sont établis par l’approche de

points fixes .

Mots clés:Problème à valeur initiale,problème aux limites ,la dérivée fractionnaires de

Hadamard, de Caputo et la dérivée factionnaires de Katugampola,les équations et les

inclusions factionnaires implicites non linéaires, point fixe,solution intégrable , inclusion,

conditions non locales.
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Introduction

Fractional calculus is a generalization of differentiation and integration to arbitrary order

(non-integer) fundamental operator Dα
a+ where a, α ∈ R. Several approaches to fractional

derivatives exist: Riemann-Liouville (RL), Hadamard, Grunwald-Letnikov (GL), Weyl

and Caputo etc. The Caputo fractional derivative is well suitable to the physical inter-

pretation of initial conditions and boundary conditions. We refer readers, for example, to

the books [3, 22, 26, 54, 83, 90, 104, 101, 105, 81] and the references therein. In this the-

sis, we use the Riemann-Liouville fractional derivative, Hadamard fractional derivative,

Caputo’s derivative and Katugampola fractional derivative.

Differential equations of fractional order have recently proved to be valuable tools

in the modeling of many phenomena in various fields of science and engineering. In-

deed, we can find numerous applications of differential equations of fractional order

in viscoelasticity, electrochemistry, control, porous media, electromagnetic, etc. (see

[26, 70, 94, 101, 105, 115]). There has been a significant development in ordinary and

partial fractional differential equations in recent years; see the monographs of Abbas et

al. [3], Kilbas et al. [83], Lakshmikantham et al. [90], and the papers by Agarwal et al

[10, 11], Belarbi et al. [28], Benchohra et al. [32], and the references therein.

Fractional differential equations with nonlocal conditions have been discussed in ([8,

14, 58, 68, 49, 67, 99]) and references therein. Nonlocal conditions were initiated by

Byszewski [45] when he proved the existence and uniqueness of mild and classical solu-

tions of nonlocal Cauchy problems (C.P. for short). As remarked by Byszewski ([46, 47]),

the nonlocal condition can be more useful than the standard initial condition to describe

some physical phenomena.
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Introduction 2

The theory of functional differential equations has emerged as an important branch

of nonlinear analysis. It is worthwhile mentioning that several important problems of

the theory of ordinary and delay differential equations lead to investigations of functional

differential equations of various types (see the books by Hale and Verduyn Lunel [69], Wu

[127], and the references therein).

Differential delay equations, or functional differential equations, have been used in

modelling scientific phenomena for many years. Often, it has been assumed that the de-

lay is either a fixed constant or is given as an integral in which case is called distributed

delay; see for instance the books ([69, 87, 127]), and the papers ([50]).

In the literature devoted to equations with finite delay, the state space is usually the

space of all continuous function on [−r, 0], r > 0 and α = 1 endowed with the uniform

norm topology, see the book of Hale and Lunel [69]. For detailed discussion and applica-

tions on this topic, we refer the reader to the book by Hale and Verduyn Lunel [69], Hino

et al. [71] and Wu [127].

Differential inclusions are generalization of differential equations, therefore all prob-

lems considered for differential equations, that is, existence of solutions,continuation of

solutions, dependence on initial conditions and parameters, are present in the theory of

differential inclusions. Since a differential inclusion usually has many solutions starting

at a given point, new issues appear, such as investigation of topological properties of

the set of solutions, and selection of solutions with given properties. As a consequence,

differential inclusions have been the subject of an intensive study of many researchers in

the recent decades; see, for example, the monographs [23, 44, 63, 73, 76, 111, 118] and

the papers of Bressan and Colombo [41, 42].

Implicit differential equations involving the regularized fractional derivative were an-

alyzed by many authors, in the last year; see for instance [121, 6, 7, 2] and the references
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therein.

The problem of the existence of solutions of Cauchy-type problems for ordinary differ-

ential equations of fractional order and without delay in spaces of integrable functions was

studied in some works [82, 109]. The similar problem in spaces of continuous functions

was studied in [123].

To our knowledge, the literature on integral solutions for fractional differential equa-

tions is very limited. El-Sayed and Hashem [59] studies the existence of integral and

continuous solutions for quadratic integral equations. El-Sayed and Abd El Salam con-

sidered Lp-solutions for a weighted Cauchy problem for differential equations involving

the Riemann-Liouville fractional derivative.

Motivated by the above works, this thesis is devoted to the existence and uniqueness

of integrable solutions for the nonlocal problem, for fractional order implicit differential

equation,L1−Solutions of the initial value problems for implicit differential equations with

Hadamard fractional derivative, and Investigation of the neutral fractional differential in-

clusions of Katugampola-type involving both retarded and advanced arguments .

In the following we give an outline of our thesis organization, consisting of 5 chapters.

The first chapter gives some notations, definitions, lemmas and fixed point theorems

which are used throughout this thesis.

In Chapter 2, we study of the existence and uniqueness of integrable solutions for the

nonlocal problem, for fractional order implicit differential equation

cDαy(t) = f(t, y(t),cDαy(t)), t ∈ J := [0, T ], 0 < α ≤ 1,

y(0) = y0 − g(y),

where f : J ×R×R→ R is a given function, g : L1(J,R)→ R is a continuous function ,

y0 ∈ R, and cDα is the Caputo fractional derivative.
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In Chapter 3, we deal with the L1-Solutions of the Boundary Value Problem for

Implicit Fractional Order Differential Equations

cDαy(t) = f(t, y,cDαy(t)), t ∈ J := [0, T ], 1 < α ≤ 2,

y(0) = g(y), y(T ) = yT

where cDα is the Caputo fractional derivative,yT ∈ R, f : J × R × R → R is a given

function, and g : L1(J,R)→ R is a continuous function.

In Chapter 4, we shall be concerned with L1−Solutions of the initial value problems

for implicit differential equations with Hadamard fractional derivative

HDα
1+y(t) = f(t, y(t),H Dα

1+y(t)), t ∈ J := [1, T ], 0 < α ≤ 1,

HI1−α
1+ y(1) = b,

where f : J × R × R → R is a given function, b, T ∈ R with T > 1, and HDα
1+ is the

Hadamard fractional derivative.

In Chapter 5, we study the Investigation of the neutral fractional differential inclusions

of Katugampola-type involving both retarded and advanced arguments

%Dξ
n+(w(t)− q(t, wt)) ∈ K(t, wt), t ∈ J := [n,m], 1 < ξ ≤ 2,

w(t) = χ(t), t ∈ [n− s, n], s > 0,

w(t) = ψ(t), t ∈ [m,m+ γ], γ > 0,

where a given function K : J ×C([−s, γ],R])→ P(R) exists so that χ, ψ ∈ C([n− s,m+

γ],R]) via χ(n) = 0 and ψ(m) = 0, and a given mapping q : J ×C([−s, γ],R])→ R exists

such that q(n, χn) = 0 and q(m,ψm) = 0. The element of C([−s, γ],R]), denoted by wt, is

defined as follows:

wt(τ) := w(t+ τ), τ ∈ [−s, γ].



Chapter 1

Preliminaires

We introduce in this chapter notations, definitions, fixed point theorems and prelimi-

nary facts from multi-valued analysis . Also we give some fixed point theorems on the

multivalued version which are used throughout this thesis.

1.1 Notations and definitions.

Let C(J,R) be the Banach space of all continuous functions from J := [0, T ] into R with

the usual norm

‖y‖ = sup{|y(t)| : 0 ≤ t ≤ T}.

L1(J,R) denote the Banach space of functions y : J → R that are measurable and

Lebesgue integrable with the norm

‖y‖L1 =

∫ T

0

|y(t)|dt.

Definition 1. [52]. A map f : J × R× R −→ R is said to be L1-Carathéodory if

(i) the map t 7−→ f(t, x, y) is measurable for each (x, y) ∈ R× R,

(ii) the map (x, y) 7−→ f(t, x, y) is continuous for almost all t ∈ J,

(iii) For each q > 0, there exists ϕq ∈ L1(J,R+) such that

|f(t, x, y)| ≤ ϕq(t)

for all |x| ≤ q, |y| ≤ q and for a.e. t ∈ J .

5



1.2 Fractional Calculus. 6

The map f is said of Carathéodory if it satisfies (i) and (ii).

Definition 2. An operator T : E −→ E is called compact if the image of each bounded

set B ⊂ E is relatively compact i.e (T (B) is compact). T is called completely continuous

operator if it is continuous and compact.

Theorem 1. (Diestel-Ruess-Schachermayer [55]). Let p ∈ [1,∞[ . Let M ⊂ Lp(J,E) be

countable and suppose there exists some ν ∈ Lp(J,R+) with ‖u(t)‖E ≤ ν(t) a.e on J for

all u ∈ M. If M(t) is relatively compact in E for a.e t ∈ J , then M is weakly relatively

compact in Lp(J,E) .

Theorem 2. (Kolmogorov compactness criterion [53]). Let Ω ⊆ Lp(J,R), 1 ≤ p < ∞.

If

(i) Ω is bounded in Lp(J,R), and

(ii) uh −→ u as h −→ 0 uniformly with respect to u ∈ Ω,i.e.,

lim
h→0

sup
u∈Ω
‖uh − u‖p = 0.

then Ω is relatively compact in Lp(J,R),

where

uh(t) =
1

h

∫ t+h

t

u(s)ds.

1.2 Fractional Calculus.

1.2.1 Fractional integral and derivative of Riemann-Liouville

As we know, the integration of order n (n is integer) of the function h is given by∫ x

a

dt1

∫ t1

a

dt2...

∫ tn−1

a

h(tn)dtn =
1

(n− 1)!

∫ x

a

(x− t)n−1h(t)dt (1.1)

by using the function Γ(.), we can give to this formula a sens when n is non integer.
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Definition 3. ([83, 105]) The fractional (arbitrary) order integral of the function h ∈

L1([a, b],R) of order α > 0 is defined by

Iαa h(t) =
1

Γ(α)

∫ t

a

(t− s)α−1h(s)ds.

When a = 0,we write

Iαh(t) = h(t) ∗ ϕα(t),

where

ϕα(t) :=


tα−1

Γ(α)
for t > 0,

0 for t ≤ 0,

and

ϕα → δ(t) as α→ 0,

where δ is the delta function.

Definition 4. ([83, 105]) The Riemann-Liouville fractional derivative of order α > 0 of

function h ∈ L1([a, b],R), is given by

(Dα
a+h)(t) =

1

Γ(n− α)

( d
dt

)n ∫ t

a

(t− s)n−α−1h(s)ds,

Here n = [α] + 1 and [α] denotes the integer part of α.

If α ∈ (0, 1], then

(Dα
a+h)(t) =

d

dt
I1−α
a+ h(t) =

1

Γ(1− α)

d

dt

∫ t

a

(t− s)−αh(s)ds.

Definition 5. ([83]) The Caputo fractional derivative of order α > 0 of function h ∈

L1([a, b],R) is given by

(cDα
a+h)(t) = In−αa+ h(n)(t) =

∫ t

a

(t− s)n−α−1

Γ(n− α)
h(n)(s)ds,

Here n = [α] + 1 and [α] denotes the integer part of α.

If α ∈ (0, 1], then

(cDα
a+h)(t) =

∫ t

a

(t− s)−α

Γ(1− α)

d

ds
h(s)ds

.
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Remark 1. ([83])The fractional derivative of Riemann-Liouville and the fractional deriva-

tive of Caputo are connected with each other by the following relation:

(cDα
a+h)(t) = Dα

a+

[
h(t)−

n−1∑
k=0

h(k)(a)

k!
(t− a)k

]
.

The following properties are some of the main ones of the fractional derivatives and

integrals.

Lemma 1. ([83]) Let α > 0, h ∈ L1([0, b],R) ,cDαh ∈ L1([0, b],R).

Then the differential equation

cDαh(t) = 0

has solution

h(t) = c0 + c1t+ c2t
2 + ...+ cn−1t

n−1, ci ∈ R, i = 0, 1, 2, ..., n− 1, n = [α] + 1.

Lemma 2. ([83]) Let α > 0,h ∈ L1([0, b],R) ,cDαh ∈ L1([0, b],R).

Then

IαcDαh(t) = h(t) + c0 + c1t+ c2t
2 + ...+ cn−1t

n−1,

for some ci ∈ R, i = 0, 1, 2, ..., n− 1, n = [α] + 1.

Proposition 1. [83] Let α, β > 0. Then we have

(1) Iα : L1(J,R)→ L1(J,R), and if f ∈ L1(J,R), then

IαIβf(t) = IβIαf(t) = Iα+βf(t).

(2) If f ∈ Lp(J,R), 1 ≤ p < +∞, then ‖Iαf‖Lp ≤ Tα

Γ(α+1)
‖f‖Lp .

(3) The fractional integration operator Iα is linear.

(4) The fractional order integral operator Iα maps L1(J,R) into itself.

(5) When α = n ∈ N, Iα0 is the n-fold integration.

(6) The Caputo derivative of a constant is equal to zero.
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1.2.2 Fractional integral and derivative of Hadamard

We define space

ACn
δ ([a, b],R) := {h : [a, b]→ R, δn−1(h) ∈ AC([a, b],R)},

where n ∈ N and AC([a, b],R) is the set of absolutely continuous functions on [a, b] and

δ := t d
dt
. As we know, the integration of order n (n is integer) of the function h is given

by ∫ x

a

dt1
t1

∫ t1

a

dt2
t2
...

∫ tn−1

a

h(tn)
dtn
tn

=
1

(n− 1)!

∫ x

a

(ln
x

t
)n−1h(t)

dt

t
(1.2)

by using the function Γ(.), we can give to this formula a sens when n is non integer.

Definition 6. ([83, 105]).The Hadamard fractional integral of order α > 0 of function

h ∈ L1([1, T ],R), is given by

HIα1+h(t) :=
1

Γ(α)

∫ t

1

(ln
t

s
)α−1h(s)

ds

s
,

where Γ(.) is the Euler gamma function defined by

Γ(α) :=

∫ ∞
0

tα−1e−tdt, α > 0.

Definition 7. ([83, 105]). The Hadamard fractional derivative of order α > 0 of function

h ∈ L1([1, T ],R), is given by

HDα
1+h(t) :=

1

Γ(n− α)

(
t
d

dt

)n ∫ t

1

(ln
t

s
)n−α−1h(s)

ds

s
,

here n = [α] + 1 and [α] denotes the integer part of α.

If α ∈ (0, 1], then

HDα
1+h(t) :=

1

Γ(1− α)

(
t
d

dt

)∫ t

1

(ln
t

s
)−αh(s)

ds

s
.

Remark 2. The function f ∈ L1([1, T ],R), possesses the Hadamard derivative HDα
1+f of

order α, if HI1−α
1+ f ∈ AC1([1, T ],R).

The following properties are some of the main ones of the fractional derivatives and

integrals.

Lemma 3. [83] If α, β > 0 and 1 < t ≤ T <∞, then
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• [HIα1+(ln(.))β−1](t) = Γ(β)
Γ(β+α)

(ln(t))β+α−1.

• [(HDα
1+ ln(.))α−1](t) = 0.

Proposition 2. [83] Let 0 < α ≤ 1, 0 < β ≤ 1. Then we have

(i) HIα1+ : L1(J,R)→ L1(J,R), and if f ∈ L1(J,R), then

HIα1+
HIβ1+f = HIβ1+

HIα1+f(t) = HIα+β
1+ f.

(ii) If f ∈ L1(J,R), then

HDα
1+

HIα1+f = f.

(iii) If f ∈ L1([a, b],R), then ‖ HIα1+f‖L1 ≤
K(α)
Γ(α)
‖f‖L1 ,

where

K(α) =

∫ ln b
a

0

tα−1etdt.

(iv) The fractional integration operator HIα1+ is linear.

(v) The fractional order integral operator HIα1+ maps L1 into itself continuously.

Theorem 3. [80](Thm.3.1) The space ACn
δ [a, b] consists of those and only those functions

g(t), which are represented in the form

g(t) =
1

(n− 1)!

∫ t

1

(ln
t

s
)n−1ϕ(s)ds+

n−1∑
k=0

ck(ln
t

a
)k,

where ϕ ∈ L1([1, T ] and ck (k=0,1,...,n-1) are arbitrary constants.

Lemma 4. [83](Thm.3.2) If y ∈ L1([1, T ],R) and HI1−α
1+ y ∈ AC1([1, T ],R) then

HIα1+
HDα

1+y(t) = y(t)−
HI1−α

1+ y(1)

Γ(α)
(ln t)α−1.

1.2.3 Fractional integral and derivative of Katugampola

Let us define a space X l
c(n,m) (c ∈ R, 1 ≤ l ≤ ∞) of real-valued Lebesgue measurable

functions, k on [n,m] for which ‖k‖Xl
c(n,m) <∞ where

‖k‖Xl
c

:= (

∫ m

n

|vck(v)|ldv
v

)
1
l , (1 ≤ l <∞),
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‖k‖X∞c := ess sup
n≤v≤m

(|vck(v)|).

Specifically, if c = 1
l
, then the space X l

c(n,m) coincides with the Ll[n,m] space. Let us

define the following space:

ACp[n,m] := {q : [n,m]→ R, δp−1(q) ∈ AC[n,m]},

where AC[n,m] is a set including functions with the absolute continuity property from

[n,m] into R with δ := t d
dt

.

Let C[n,m] be the Banach space of all continuous functions from [n,m] into R with the

usual norm

‖u‖[n,m] := sup{|u(t)| : t ∈ [n,m]}.

C(I) := C([n− s,m+ γ],R) (1.3)

with a norm:

‖u‖∞ := sup{|u(t)| : t ∈ [n− s,m+ γ]}.

Here we want to present the fractional integration, which generalizes both the Riemann-

Liouville and Hadamard fractional integrals into a single form. New generalization is

based on the observation that, for p ∈ N,∫ x

a

t%−1
1 dt1

∫ t1

a

t%−1
2 dt2...

∫ tp−1

a

t%−1
p h(tp)dtp =

1

(p− 1)!

∫ x

a

(
x% − t%

%
)p−1t%−1h(t)dt (1.4)

by using the function Γ(.), we can give to this formula a sens when p is non integer.

Definition 8. [77] Let ξ > 0, % > 0. The Katugampola generalized integral of fractional

integral order ξ for a function z ∈ X l
c(n,m) is displayed by

%Iξn+z(t) :=
1

Γ(ξ)

∫ t

n

(
t% − v%

%
)ξ−1z(v)v%−1dv,

where the Euler gamma function is represented by Γ(.) which is expressed as follows:

Γ(ξ) :=

∫ ∞
0

tξ−1e−tdt, ξ > 0.

Definition 9. [78]Let ξ > 0, % > 0.The Katugampola generalized derivative of order ξ for

a given function z ∈ X l
c(n,m) is expressed as:

%Dξ
n+z(t) = δk%

%Ik−ξn+ z(t)

=
1

Γ(k − ξ)
(t1−%

d

dt
)k
∫ t

n

(
t% − v%

%
)k−ξ−1z(v)v%−1dv,

in which k = [ξ] + 1 and [ξ] represents the integer part of ξ and δk% := (t1−% d
dt

)k.
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Theorem 4. [78]Let ξ > 0, % > 0,k = [ξ] + 1. Then for t > n

1. lim%→1
%Iξn+z(t) = Iξnz(t),

2. lim%→0
%Iξn+z(t) =H I

ξ

n+z(t),

3. lim%→1
%Dξ

n+z(t) = (Dξ
n+z)(t)

4. lim%→0
%Dξ

n+z(t) = (HDξ
n+z)(t)

Let us discuss some essential properties of the fractional derivatives and integrals as

follows:

Lemma 5. [102] Assume ξ > 0, % > 0; then we have

( %Iξn+
%Dξ

n+z)(t) = z(t) + c1(
t% − n%

%
)ξ−1 + c2(

t% − n%

%
)ξ−2 + ...+ ck(

t% − n%

%
)ξ−k, (1.5)

where cj ∈ R, j = 1, 2, ..., k, and k = [ξ] + 1.

Lemma 6. [102] If x > n, we have

• [%Iξn+(
t% − n%

%
)γ−1](x) =

Γ(γ)

Γ(γ + ξ)
(x

%−n%
%

)γ+ξ−1,

• [%Dξ
n+(

t% − n%

%
)ξ−1](x) = 0.

1.3 Multi-valued analysis

If X is a Hausdorff topological space and K be a subset of X. We denote by:

P(X) = {K ⊂ X : K 6= ∅},

Pcl(X) = {K ⊂ P(X) : K is closed},

Pcp(X) = {K ⊂ P(X) : K is compact},

If (X, ‖.‖) is a normed space. We denote by:

Pb(X) = {K ⊂ P(X) : K is bounded},

Pcv(X) = {K ⊂ P(X) : K is convex},
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Pb,cl(X) = Pb(X) ∩ Pcl(X),

Pcv,cp(X) = Pcv(X) ∩ Pcp(X).

Let A,B ∈ P(X). Consider Hd : P(X) × P(X) → R+ ∪ {∞} the Hausdorff distance

between A and B given by:

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},

where d(A, b) = inf
a∈A

d(a, b) and d(a,B) = inf
b∈B

d(a, b). As usual, d(x, ∅) = +∞.

1.3.1 Definitions

Definition 10. A set valued map (also called multivalued map) F : X → P(Y ) is an

application which associate with any x ∈ X a subset F (x) which belongs to P(Y ), where

X and Y are two sets.

Definition 11. [24]

1. A multi-valued map F : X → P(Y ) is convex (closed)valued if F (x) is convex

(closed) for all x ∈ X.

2. F is bounded on bounded sets if F (B) = ∪x∈BF (x) is bounded in X for all B ∈

Pb(X), i.e. supx∈B{sup{|y| : y ∈ F (x)}} <∞.

3. F is said to be completely continuous if F (B) is relatively compact for every B ∈

Pb(X).

4. A multi-valued map G : X → P(X) has a fixed point if there exists x ∈ X such that

x ∈ G(x). The set of fixed points of the multi-valued operator G will be denoted by

FixG.

Definition 12. [24] Let X and Y be metric spaces. A set-valued map F from X to Y is

characterized by its graph Gr(F ), the subset of the product space X × Y defined by

Gr(F ) := {(x, y) ∈ X × Y : y ∈ F (x)}.

F is called closed graph if Gr(F ) is closed in X ×Y (i.e., xn → x∗, yn → y∗, yn ∈ F (xn)

imply y∗ ∈ F (x∗)).
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1.3.2 Continuity of set-valued maps

Let X ,Y be Hausdorff topological spaces and let F : X → P(Y ) be a multivalued map.

Definition 13. F is called upper semi-continuous (u.s.c. for short) on x0 ∈ X if the set

F (x0) is a nonempty subset of Y and for each open set U of Y containing F (x0), there

exists an open neighborhood V of x0 such that F (V ) ⊂ U .

Example 1. Let Ω 6= ∅ be a subset of a Banach space. Then the general u.s.c. F : Ω→

Pcv,cp(R) is given by F (ω) = [ϕ(ω), ψ(ω)] , where ϕ : Ω → R is l.s.c. , ψ : Ω → R is

u.s.c. and ϕ(ω) ≤ ψ(ω) on Ω.

Proposition 3. [73] Let X, Y be Hausdorff topological spaces and let F : X → Pcl(Y )

be a multivalued map.

If F is upper semicontinuous ,then Gr(F ) is closed in X × Y . Conversely, if Gr(F ) is

closed and F (X) is compact, then F is upper semicontinuous.

Proposition 4. [73] Let X be Hausdorff topological space ,Y ∈ T4 be normal space and

let F,G : X → Pcl(Y ) are two upper semicontinuous mappings .Then

a the map F ∪G : X → Pcl(Y ) is upper semicontinuous ;

b the map F ∩G : X → Pcl(Y ) is upper semicontinuous .

Proposition 5. [73] Let X, Y be Hausdorff topological spaces and F : X → Pcp(Y ) upper

semicontinuous . Then F (A) is compact for each compact A ⊂ X.

Definition 14. If X is a set, a function d

d : X ×X → [0,+∞]

is called a generalized metric space (gms) on X, provided that for x, y, z ∈ X,

• d(x, y) = 0 if and only if x = y

• d(x, y) = d(y, x)

• d(x, z) ≤ d(x, y) + d(y, z)
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Proposition 6. [86] Let (X, d) metric space and Hd the Hausdorff distance. Then we

have

(1) (Pcl(X), Hd) is a generalized metric space

(2) (Pb,cl(X), Hd) is a metric space

(3) If(X, d)is a complete metric space, then (Pcl(X), Hd)is a complete generalized metric

space .

(4) If(X, d)is a complete metric space, then (Pb,cl(X), Hd) is a complete metric space.

Definition 15. Let (X; d) be a separable metric space. A multivalued map F : J →

Pcl(X) is said to be measurable if, for each y ∈ X, the function

t 7−→ d(y, F (t)) = inf{d(y, z) : z ∈ F (t)}

is measurable.

Theorem 5. ([63]) Let X be a Banach separable space , (T ; Σ) a measurable space,

f : T → X is Σ− measurable and ρ : T → (0,+∞) is Σ− measurable.

Then the multi-valued map

F : T → Pcl(X)

is formulated by F (t) := B(f(t), ρ(t)) is Σ− measurable.

Definition 16. A multi-valued map F (t) : J ×E → P(E) is said to be L1-Carathéodory

if

(i) t→ F (t, x) is measurable for each x, y ∈ E;

(ii) x→ F (t, x) is upper semicontinuous for almost all t ∈ J ;

(iii) For each q > 0, there exists ϕq ∈ L1(J,R+) such that

‖F (t, x)‖P = sup{|f | : f ∈ F (t, x)} ≤ ϕq(t)

for all |x| ≤ q and for a.e. t ∈ J .
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Definition 17. Let X, Y be nonempty sets and F : X → P(Y ). The single-valued

operator f : X → Y is called a selection of F if and only if f(x) ∈ F (x), for each x ∈ X.

Definition 18. Let multi-valued map F : J × E → P(E).

For each x ∈ C([n,m], E) define the set a selection of F by

SF,x :=
{
z ∈ L1[n,m] : z(t) ∈ F (t, x(t)), (a.e.) t ∈ J

}
.

Theorem 6. (Kuratowski-Ryll Nardzewski ,[63]) Let (X; d) be a complete separable metric

space , (T ; Σ) a measurable space.Then every measurable multi-valued map F : T →

Pcl(X) has a measurable selection.

For more details on multivalued maps and the proof of the known results cited in this

section we refer interested reader to the books of Aubin and Cellina [23], Deimling [54],

Gorniewicz [63], Hu and Papageorgiou [73], Smirnov [111], Tolstonogov [118], Djebali and

al [56] and Graef and al [64] .

1.4 Some fixed point theorems

Definition 19. ([19]) Let (M,d) be a metric space. The map T : M −→M is said to be

Lipschitzian if there exists a constant k > 0 (called Lipschitz constant) such that

d(T (x), T (y)) ≤ kd(x, y), for all x, y ∈M

A Lipschitzian mapping with a Lipschitz constant k < 1 is called contraction.

Definition 20. A multivalued operator N : X → Pb,cl(X) is called:

(a) γ-Lipschitz if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for all x, y ∈ X;

(b) a contraction if it is γ-Lipschitz with γ < 1.

Theorem 7. (Banach’s fixed point theorem [65]). Let C be a nonempty closed subset of

a Banach space X, then any contraction mapping T of C into itself has a unique fixed

point.
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Theorem 8. (Schauder fixed point theorem ([53]) Let E a Banach space and Q be a

nonempty closed and convex subset of E and T : Q −→ Q is compact, and continuous

map. Then T has at least one fixed point in Q.

Next we state two multi-valued fixed point theorems

Lemma 7. [65](Nonlinear alternative for Kakutani maps ) Let E be a Banach space, G

a closed convex subset of E, U an open subset of G and 0 ∈ U . Suppose that

E : U −→ Pcp,cv(G) is a upper semi-continuous and compact map. Then either

(i) E has a fixed point in U , or

(ii) there is a ω ∈ ∂U and σ ∈ (0, 1) with w ∈ σE(w).

Lemma 8. [51]. (Nadler-Covitz)Let (X, d) be a complete metric space . If

E : X → Pcl(X) is a contraction , then Fix(E) 6= φ.



Chapter 2

Integrable Solutions for Implicit

Fractional Order Differential

Equations with Nonlocal Condition1

2.1 Introduction and Motivations

In the last years a lot contributions in the fixed point theory in Banach spaces. Especially,

that theory turns out to be a very useful tool in existence of solutions continuous and

integral for several types of differential equations for example see Benchohra et al. [35, 37],

Lakshmikantham et al. [89], El-Sayed et al. [57, 60], Souid [112], Witthayarat et al. [126]

and the references therein.

Benchohra et al. in [30] devoted to some existence of continuous solutions for the

following nonlocal problem

cDαy(t) = f(t, y(t)), t ∈ J := [0, T ], 0 < α < 1,

y(0) + g(y) = y0,

where cDα is the Caputo fractional derivative of order α, f : J × R→ R is a continuous

function and g : C(J,R)→ R is a continuous function.

Benchohra et al. in [37] investigated the existence of integrable solutions for the

1B. Telli and M. S. Souid, Integrable Solutions for Implicit Fractional Order Differential Equations

with Nonlocal Condition. Transylvanian Journal of Interdisplinary Mathematics 6 (2020), No. 2, 1-13.

18
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following nonlocal boundary value problem

cDαy(t) = f(t, y,cDαy(t)), t ∈ J := [0, T ], 1 < α ≤ 2,

y(0) = g(y), y(T ) = yT

where cDα is the Caputo fractional derivative of order α, f : J × R × R → R is a given

function and g : L1(J,R)→ R is a continuous function.

Motivated by [30, 36] we are interested in this chapter with the existence and unique-

ness of integrable solutions for the nonlocal problem, for fractional order implicit differ-

ential equation

cDαy(t) = f(t, y(t),cDαy(t)), t ∈ J := [0, T ], 0 < α ≤ 1, (2.1)

y(0) = y0 − g(y), (2.2)

where f : J ×R×R→ R is a given function, g : L1(J,R)→ R is a continuous function ,

y0 ∈ R, and cDα is the Caputo fractional derivative.

The nonlocal condition can be more useful than the standard initial condition to de-

scribe some physical phenomena, details are found in [45, 46, 47].

The rest of this chapter is organized as follows: In subsection 2, we give two results,

the first one is based on Theorem 8 and the second one on the contraction principle . An

example is given in subsection 3 to demonstrate the application of our main results.

2.2 Existence of solutions

Let us start by defining what we mean by an integrable solution of the nonlocal problem

(2.1)− (2.2).

Definition 21. By a solution of the nonlocal problem (2.1) − (2.2) we mean a function

y ∈ L1(J,R) that satisfies the condition y(0) = y0 − g(y) and the equation

cDαy(t) = f(t, y(t),cDαy(t)) on J .
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For the existence of solutions for the problem (2.1) − (2.2), we need the following

auxiliary lemma.

Lemma 9. The solution of the nonlocal problem (2.1) − (2.2) can be expressed by the

integral equation

y(t) = y0 − g(y) +
1

Γ(α)

∫ t

0

(t− s)α−1xy(s)ds, (2.3)

where xy ∈ L1(J,R) is the solution of the functional integral equation

xy(t) = f

(
t, y0 − g(y) +

1

Γ(α)

∫ t

0

(t− s)α−1xy(s)ds, xy(t)

)
. (2.4)

Proof. Let cDαy(t) = xy(t) in equation (2.1), then

xy(t) = f(t, y(t), xy(t)) (2.5)

Hence, we get equation (2.4).

And Lemma (2) implies that

y(t) = y(0) + Iαxy(t)

= y0 − g(y) +
1

Γ(α)

∫ t

0

(t− s)α−1xy(s)ds. (2.6)

Hence, we get equation (2.3).

Inversely, we prove that equation (2.3)− (2.4) satisfies the nonlocal problem (2.1)− (2.2)

.

Differentiating (2.3), we get

cDαy(t) = xy(t).

By (2.4) we have

cDαy(t) = f(t, y(t),cDαy(t)).

A simple calculation give y(0) = y0 − g(y). This complete the proof of the equivalence

between the nonlocal problem (2.1)− (2.2) and the integral equation (2.3)− (2.4) .

Let us introduce the following assumptions:

(H1) f : J × R2 −→ R is measurable in t ∈ J , for any (u1, u2) ∈ R2 and continuous in

(u1, u2) ∈ R2, for almost all t ∈ J .
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(H2) There exist two constants k1 > 0 and 0 < k2 < 1 such that,,for every t ∈ J ,and for

every (u1, u2) ∈ R2,

|f(t, u1, v1)− f(t, u2, v2)| ≤ k1|u1 − u2|+ k2|v1 − v2|.

(H3) There exists a constant k > 0 such that, for every y, y′ ∈ L1(J,R)

|g(y)− g(y′)| ≤ k‖y − y′‖L1 .

Our first result is based on Schauder fixed point Theorem .

Theorem 9. Assume that the assumptions (H1)− (H3) are satisfied. If

b1T
α

(1− b2)Γ(α + 1)
< 1, (2.7)

then the nonlocal problem (2.1)− (2.2) has at least one solution y ∈ L1(J,R).

Proof. We first notice that we have:

from assumptions (H3),there exists a constant M > 0 such that, for every y ∈ L1(J,R)

|g(y)| ≤M,

and from assumptions (H2),there exist a ∈ L1(J,R) , two constants b1 > 0 and 0 < b2 < 1

such that,for every t ∈ J ,and for every (u1, u2) ∈ R2, we have

|f(t, u1, u2)| ≤ |a(t)|+ b1|u1|+ b2|u2|.

Transform the problem (2.1)− (2.2) into a fixed point problem. Consider the operator

H : L1(J,R)→ L1(J,R)

defined by:

(Hy)(t) = y0 − g(y) + Iαxy(t), (2.8)

where

xy(t) = f(t, y0 − g(y) + Iαxy(t), xy(t)).

The operator H is well defined, indeed, for each y ∈ L1(J,R),
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From assumptions (H1) ,(H2)and (H3), we obtain

‖Hy‖L1 =

∫ T

0

|Hy(t)|dt

=

∫ T

0

|y0 − g(y) + Iαxy(t)|dt

≤ T (|y0|+M) +

∫ T

0

(∫ t

0

(t− s)α−1

Γ(α)
|xy(s)|ds

)
dt (2.9)

and

|xy(t)| = |f(t, y(t), xy(t))|

≤ |a(t)|+ b1|y(t|+ b2|xy(t)|.

Thus

|xy(t)| ≤
|a(t)|+ b1|y(t|

1− b2

. (2.10)

By replacing (2.10) in the inequality (2.9), we obtain

‖Hy‖L1 ≤ T (|y0|+M) +

∫ T

0

(∫ t

0

(t− s)α−1

Γ(α)
(
|a(s)|+ b1|y(s|

1− b2

)ds
)
dt

≤ T (|y0|+M) +
Tα

(1− b2)Γ(α + 1)
‖a‖L1

+
b1

1− b2

∫ T

0

(∫ t

0

(t− s)α−1

Γ(α)
|y(s)|ds

)
dt

≤ T (|y0|+M) +
Tα

(1− b2)Γ(α + 1)
‖a‖L1 +

b1T
α

(1− b2)Γ(α + 1)
‖y‖L1 < +∞.

(2.11)

Clearly, the fixed point of the operator H are solutions of the problem (2.1)− (2.2).

Let

r =
T (|y0|+M) + Tα

(1−b2)Γ(α+1)
‖a‖L1

1− b1Tα

(1−b2)Γ(α+1)

and consider the set

Br = {y ∈ L1(J,R) : ‖y‖L1 ≤ r}.

Clearly Br is nonempty, bounded, convex and closed.

Now, we shall show that H satisfies the assumption of Theorem 8. The proof is given in

following several steps.
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Step 1. HBr ⊂ Br.

For each y ∈ Br, from (2.7), and (2.11) we get

‖Hy‖L1 ≤ T (|y0|+M) +
Tα

(1− b2)Γ(α + 1)
‖a‖L1 +

b1T
α

(1− b2)Γ(α + 1)
‖y‖L1

≤ r.

Then HBr ⊂ Br.

Step 2. H is continuous.

Assumption (H1), (H2) and the hypothesis that g is continuous imply that H is contin-

uous.

Step 3. H is compact.

We will show HBr is relatively compact. Clearly HBr is bounded in L1(J,R), then (i) of

Theorem (2) is satisfied.

It remains to show

lim
h→0

sup
y∈Br
‖(Hy)h − (Hy)‖1 = 0.

Let y ∈ Br, then we have

‖(Hy)h − (Hy)‖L1 =

∫ T

0

|(Hy)h(t)− (Hy)(t)|dt

=

∫ T

0

∣∣∣∣1h
∫ t+h

t

(Hy)(s)ds− (Hy)(t)

∣∣∣∣ dt
≤

∫ T

0

∣∣∣∣1h
∫ t+h

t

(Iαxy(s)− Iαxy(t))ds
∣∣∣∣ dt

Since y ∈ Br ⊂ L1(J,R) and assumption (H2) that implies xy = f(., y0 − g(y) +

Iαxy(.), xy(.)) ∈ L1(J,R) and by Proposition (1) (v), it follows that Iαxy ∈ L1(J,R),

then we have

1

h

∫ t+h

t

(Iαxy(s)− Iαxy(t))ds −→ 0 as h −→ 0, t ∈ J,∀y ∈ Br

i.e.,

lim
h→0

1

h

∫ t+h

t

Iαxy(s)ds = Iαxy(t), t ∈ J,∀y ∈ Br.

Let ε > 0,there exist δ > 0 such that∣∣∣∣1h
∫ t+h

t

(Iαxy(s)− Iαxy(t))ds
∣∣∣∣ < ε

T
, t ∈ J,∀y ∈ Br, |h| < δ.
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Hence,

‖(Hy)h − (Hy)‖L1 ≤
∫ T

0

∣∣∣∣1h
∫ t+h

t

(Iαxy(s)− Iαxy(t))ds
∣∣∣∣ dt, ∀y ∈ Br

≤ ε

T
T, ∀y ∈ Br, |h| < δ,

≤ ε, ∀y ∈ Br, |h| < δ.

Hence,

sup
y∈Br
‖(Hy)h − (Hy)‖1 < ε, |h| < δ,

i.e.,

lim
h→0

sup
y∈Br
‖(Hy)h − (Hy)‖1 = 0.

Thus

(Hy)h −→ (Hy) as h −→ 0 uniformly with respect to y ∈ Br.

Then by Theorem 2, HBr is relatively compact.

As a consequence of Steps 1 to 3 together with Theorem 2, we conclude that H is contin-

uous and compact. As a consequence of Theorem 8 the problem (2.1)− (2.2) has at least

one solution in Br.

The following result is based on contraction principle.

Theorem 10. Assume that conditions (H1),(H2) and (H3) hold. If

kT +
k1T

α

(1− k2)Γ(α + 1)
< 1, (2.12)

then the problem (2.1)− (2.2) has a unique solution y ∈ L1(J,R).

Proof. We shall use the Banach contraction principle to prove that H defined by (2.8)

has a fixed point. Let y, z ∈ L1(J,R), and t ∈ J . Then we have,

|(Hy)(t)− (Hz)(t)| ≤ |g(y)− g(z)|+
∫ t

0

(t− s)α−1

Γ(α)
|xy(s)− xz(s)|ds (2.13)

then

|(Hy)(t)− (Hz)(t)| ≤ k‖y − z‖L1 +

∫ t

0

(t− s)α−1

Γ(α)
|xy(s)− xz(s)|ds (2.14)
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On the other hand, we have for every t ∈ J

|xy(t)− xz(t)| = |f(t, y(t), xy(t))− f(t, z(t), xz(t))|

≤ k1|y(t)− z(t)|+ k2|xy(t)− xz(t)|.

Thus

|xy(t)− xz(t)| ≤
k1

1− k2

|y(t)− z(t)| (2.15)

By replacing (2.15) in the inequality 2.13, we obtain

‖(Hy)− (Hz)‖L1 ≤ T |g(y)− g(z)|+
∫ T

0

(∫ t

0

(t− s)α−1

Γ(α)
|xy(s)− xz(s)|ds

)
dt

≤ Tk‖y − z‖L1 +

∫ T

0

(∫ t

0

(t− s)α−1

Γ(α)
|xy(s)− xz(s)|ds

)
dt

≤ Tk‖y − z‖L1 +
k1

1− k2

∫ T

0

(∫ t

0

(t− s)α−1

Γ(α)
|y(s)− z(s)|ds

)
dt

≤ Tk‖y − z‖L1 +
Tαk1

(1− k2)Γ(α + 1)
‖y − z‖L1

≤ (kT +
k1T

α

(1− k2)Γ(α + 1)
)‖y − z‖L1 .

Consequently by (2.12) H is a contraction. As a consequence of contraction principle, we

deduce that H has a fixed point unique which is a solution of the problem (2.1)−(2.2).

2.3 Example

Let us consider the following fractional nonlocal problem,

cDαy(t) =
e−t

(et + 8)(1 + |y(t)|+ |cDαy(t)|)
, t ∈ J := [0, 1], α ∈ (0, 1], (2.16)

y(0) =
3

5

∫ T

0

y(t)dt. (2.17)

Set

f(t, y, z) =
e−t

(et + 8)(1 + y + z)
, (t, y, z) ∈ J × [0,+∞)× [0,+∞).



2.3 Example 26

Let y, z ∈ [0,+∞) and t ∈ J. Then we have

|f(t, y1, z1)− f(t, y2, z2)| =

∣∣∣∣ e−t

et + 8

(
1

1 + y1 + z1

− 1

1 + y2 + z2

)∣∣∣∣
≤ e−t(|y1 − y2|+ |z1 − z2|)

(et + 8)(1 + y1 + z1)(1 + y2 + z2)

≤ e−t

(et + 8)
(|y1 − y2|+ |z1 − z2|)

≤ 1

9
|y1 − y2|+

1

9
|z1 − z2|.

Hence the condition (H2) holds with k1 = k2 = 1
9
.

Also we have

|g(x)− g(y)| ≤ 3

5
‖x− y‖L1 .

Hence (H3) is satisfied with k = 3
5
.

We shall check that condition (2.12) is satisfied with T = 1. Indeed

kT +
k1T

α

(1− k2)Γ(α + 1)
=

3

5
+

1
9

(1− 1
9
)Γ(α + 1)

<
3

5
+

1
9

8
9
Γ(α + 1)

=
3

5
+

1

8Γ(α + 1)

<
3

5
+

1

5Γ(α + 1)

and
3

5
+

1

5Γ(α + 1)
< 1⇔ Γ(α + 1) >

1

2
. (2.18)

which is satisfied for each α ∈ (0, 1]. Then by Theorem 10, the problem (2.16) − (2.17)

has a unique integrable solution on L1([0, 1],R).



Chapter 3

L1-Solutions of the Boundary Value

Problem for Implicit Fractional

Order Differential Equations1

3.1 Introduction

In this chapter we deal with the existence integrable solutions and uniqueness results to

the following class of nonlocal problems

cDαy(t) = f(t, y,cDαy(t)), t ∈ J := [0, T ], 1 < α ≤ 2, (3.1)

y(0) = g(y), y(T ) = yT (3.2)

where cDα is the Caputo fractional derivative, yT ∈ R, f : J × R × R → R is a given

function, and g : L1(J,R)→ R is a continuous function.

This chapter is organized as follows. In Section 2, we will recall briefly some basic defini-

tions and preliminary facts which will be used throughout the following section. In Section

3, we give two results, the first one is based on Schauder’s fixed point Theorem and the

second one on contraction principle . An example is given in Section 4 to demonstrate

the application of our main results.

1B. Telli and M. S. Souid,L1-Solutions of the Boundary Value Problem for Implicit Fractional Order

Differential Equations . Transylvanian Journal of Applied Analysis, 27 (2021), No. 1, 121-128.

27



3.2 Existence of solutions 28

3.2 Existence of solutions

Let us start by defining what we mean by an integrable solution of the nonlocal problems

(3.1)− (3.2).

Definition 22. A function y ∈ L1(J,R) is said a solution of the nonlocal problems (3.1)−

(3.2) if y satisfies (3.1) and (3.2).

For the existence of solutions for the problem (3.1) − (3.2), we need the following

auxiliary lemma.

Lemma 10. Let 1 < α ≤ 2 and let x ∈ L1(J,R). The nonlocal problems (3.1)− (3.2) is

equivalent to the integral equation

y(t) =
1

Γ(α)

∫ T

0

G(t, s)x(s)ds+ g(y) +
(yT − g(y))t

T
(3.3)

where x is the solution of the functional integral equation

x(t) = f

(
t,

1

Γ(α)

∫ T

0

G(t, s)x(s)ds+ g(y) +
(yT − g(y))t

T
, x(t)

)
. (3.4)

and G(t, s) is the Green’s function defined by:

G(t, s) =

(t− s)α−1 − t(T−s)α−1

T
if 0 ≤ s ≤ t ≤ T

−t(T−s)α−1

T
, if 0 ≤ t ≤ s ≤ T .

(3.5)

Proof. Let cDαy(t) = x(t) in equation (3.1), then

x(t) = f(t, y(t), x(t)) (3.6)

and Lemma (2) implies that

y(t) = c0 + c1t+
1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds.

From (3.2), a simple calculation gives

c0 = g(y),

and

c1 = − 1

TΓ(α)

∫ T

0

(T − s)α−1x(s)ds+
(yT − g(y))

T
.
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Hence, we get equation (3.3).

Inversely, we prove that equation (3.3) satisfies the nonlocal problems (3.1)− (3.2).

Differentiating (3.3), we get

cDαy(t) = x(t) = f(t, y(t),cDαy(t)).

By (3.3) and (3.5) we have

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds− t

TΓ(α)

∫ T

0

(T − s)α−1x(s)ds

+g(y) +
(yT − g(y))t

T
. (3.7)

A simple calculation gives y(0) = g(y) and y(T ) = yT . This complete the proof of the

equivalence between the nonlocal problems (3.1)-(3.2) and the integral equation (3.3).

Let

G0 := max{|G(t, s)|, (t, s) ∈ J × J},

and let us introduce the following assumptions:

(B1) f : J × R2 −→ R is measurable in t ∈ J , for any (u1, u2) ∈ R2 and continuous in

(u1, u2) ∈ R2, for almost all t ∈ J .

(B2) There exist constants k1, k2 > 0 such that,for every t ∈ J , and for every

(u1, u2), (v1, v2) ∈ R2,

|f(t, u1, v1)− f(t, u2, v2)| ≤ k1|u1 − u2|+ k2|v1 − v2|.

(B3) There exists a constant k > 0 such that, for every y, y′ ∈ L1(J,R)

|g(y)− g(y′)| ≤ k‖y − y′‖L1 .

Our first result is based on Schauder fixed point Theorem.

Theorem 11. Assume that the assumptions (B1), (B2), (B3) are satisfied. If

G0T

Γ(α)

b1

1− b2

< 1, (3.8)

then the nonlocal problems (3.1)− (3.2) has at least one solution y ∈ L1(J,R).
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Proof. We first notice that we have:

from assumptions (B3),there exists a constant M > 0 such that, for every y ∈ L1(J,R)

|g(y)| ≤M,

and from assumptions (B2),there exist a ∈ L1(J,R) , two constants b1 > 0 and 0 < b2 < 1

such that,for every t ∈ J ,and for every (u1, u2) ∈ R2, we have

|f(t, u1, u2)| ≤ |a(t)|+ b1|u1|+ b2|u2|.

Transform the problem (3.1)− (3.2) into a fixed point problem. Consider the operator

H : L1(J,R) −→ L1(J,R)

defined by:

(Hy)(t) =
1

Γ(α)

∫ T

0

G(t, s)xy(s)ds+ g(y) +
(yT − g(y))t

T
. (3.9)

where

xy(t) = f

(
t,

1

Γ(α)

∫ T

0

G(t, s)xy(s)ds+ g(y) +
(yT − g(y))t

T
, xy(t)

)
.

and G is given by (3.5).

Clearly, the fixed point of the operator H are solutions of the problem (3.1)− (3.2).

Let

r =

((
G0T
Γ(α)

)
1

1−b2

)
‖a‖L1 + T (M + |yT |)

1− b1
1−b2

(
G0T
Γ(α)

) .

Consider the set

Br = {y ∈ L1(J,R) : ‖y‖L1 ≤ r}.

Clearly, Br is nonempty, bounded, convex and closed.

Now, we shall show that H satisfies the assumption of Schauder fixed point Theorem.

The proof is given in following several steps.

Step 1. HBr ⊂ Br.
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For each y ∈ Br, from assumption (B2) and (3.8) we get

‖Hy‖L1 =

∫ T

0

|Hy(t)|dt

=

∫ T

0

∣∣∣∣ 1

Γ(α)

∫ T

0

G(t, s)xy(s)ds+ g(y) +
(yT − g(y))t

T

∣∣∣∣ dt
≤

∫ T

0

∣∣∣∣ 1

Γ(α)

∫ T

0

G(t, s)xy(s)ds− (
t

T
− 1)g(y) +

t

T
yT

∣∣∣∣ dt
≤ G0T

Γ(α)
‖xy‖L1 + T (M + |yT |)

≤ T (M + |yT |) +

(
G0T

Γ(α)

)
‖xy‖L1 (3.10)

and

|xy(t)| = |f(t, y(t), xy(t))|

≤ |a(t)|+ b1|y(t|+ b2|xy(t)|.

Thus

|xy(t)| ≤
|a(t)|+ b1|y(t|

1− b2

.

and

‖xy‖L1 ≤
1

1− b2

‖a‖L1 +
b1

1− b2

‖y‖L1 . (3.11)

By replacing (3.11) in the inequality (3.10), we obtain

‖Hy‖L1 ≤ T (M + |yT |) +

(
G0T

Γ(α)

)(
1

1− b2

‖a‖L1 +
b1

1− b2

‖y‖L1

)
≤

((
G0T

Γ(α)

)
1

1− b2

)
‖a‖L1 + T (M + |yT |) +

(
G0T

Γ(α)

)
b1

1− b2

‖y‖L1

≤ r (3.12)

Then HBr ⊂ Br.

Step 2. H is continuous.

Assumption (B1), (B2) and the hypothesis that g is continuous imply that H is contin-

uous.

Step 3. H is compact.

Now, we will show that H is compact, this is HBr is relatively compact. Clearly, HBr is

bounded in L1(J,R), i.e. condition (i) of Kolmogorov compactness criterion is satisfied.
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It remains to show that

(Hy)h −→ (Hy) as h −→ 0 uniformly with respect to y ∈ Br.

Let y ∈ Br, then we have

‖(Hy)h − (Hy)‖L1

=

∫ T

0

|(Hy)h(t)− (Hy)(t)|dt

=

∫ T

0

∣∣∣∣1h
∫ t+h

t

(Hy)(s)ds− (Hy)(t)

∣∣∣∣ dt
≤

∫ T

0

(
1

h

∫ t+h

t

|(Hy)(s)− (Hy)(t)|ds
)
dt

≤
∫ T

0

(
1

h

∫ t+h

t

∣∣∣∣( 1

Γ(α)

∫ T

0

G(s, τ)xy(τ)dτ + g(y)

+
(yT − g(y))s

T

)
−
(

1

Γ(α)

∫ T

0

G(t, τ)xy(τ)dτ + g(y)

+
(yT − g(y))t

T

)∣∣∣∣ ds) dt.
Since y ∈ Br ⊂ L1(J,R) and assumptions (B1)and (B2) that implies

xy = f(., y(.), xy(.)) ∈ L1(J,R),

hence
1

Γ(α)

∫ T

0

G(., τ)xy(τ)dτ + g(y) +
(yT − g(y)).

T
∈ L1(J,R),

then we have

1

h

∫ t+h

t

∣∣∣ ( 1

Γ(α)

∫ T

0

G(s, τ)xy(τ)dτ + g(y) +
(yT − g(y))s

T

)
−
(

1

Γ(α)

∫ T

0

G(t, τ)xy(τ)dτ + g(y) +
(yT − g(y))t

T

) ∣∣∣ds −→ 0,

as h −→ 0, t ∈ J.

Hence,

(Hy)h −→ (Hy) as h −→ 0 uniformly with respect to y ∈ Br.

Then by the Kolmogorov compactness criterion, HBr is relatively compact. As a conse-

quence of Schauder’s fixed point theorem the nonlocal problems (3.1)− (3.2) has at least

one solution in Br.
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The following result is based on the Banach contraction principle.

Theorem 12. Assume that the assumptions (B1),(B2),(B3) are satisfied. If

T

(
G0

Γ(α)

k1

1− k2

+ k

)
< 1, (3.13)

then the nonlocal problems (3.1)− (3.2) has a unique solution y ∈ L1(J,R).

Proof. We shall use the Banach contraction principle to prove that H defined by (3.9)

has a fixed point. Let y, z ∈ L1(J,R), and t ∈ J . Then we have,

|(Hy)(t)− (Hz)(t)| =
∣∣∣ 1

Γ(α)

∫ T

0

G(t, s)xy(s)ds− (
t

T
− 1)g(y) +

t

T
yT

− 1

Γ(α)

∫ T

0

G(t, s)xz(s)ds− (
t

T
− 1)g(z) +

t

T
yT

∣∣∣
≤ 1

Γ(α)

∫ T

0

∣∣∣G(t, s)(xy(s)− xz(s))
∣∣∣ds

+|g(y)− g(z)|

≤ 1

Γ(α)

∫ T

0

∣∣∣G(t, s)(xy(s)− xz(s))
∣∣∣ds+ k‖y − z‖L1

≤ G0

Γ(α)
‖xy − xz‖L1 + k‖y − z‖L1 . (3.14)

On the other hand, we have for every t ∈ J

|xy(t)− xz(t)| = |f(t, y(t), xy(t))− f(t, z(t), xz(t))|

≤ k1|y(t)− z(t)|+ k2|xy(t)− xz(t)|.

Thus

|xy(t))− xz(t)| ≤
k1

1− k2

|y(t)− z(t)| (3.15)

and

‖xy − xz‖L1 ≤
k1

1− k2

‖y − z‖L1 (3.16)

By replacing (3.16) in the inequality (3.14), we obtain

|(Hy)(t)− (Hz)(t)| ≤ G0

Γ(α)

k1

1− k2

‖y − z‖L1 + k‖y − z‖L1

≤
(
G0

Γ(α)

k1

1− k2

+ k

)
‖y − z‖L1
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Hence,

‖(Hy)− (Hz)‖L1 ≤ T

(
G0

Γ(α)

k1

1− k2

+ k

)
‖y − z‖L1 .

Consequently, by (3.13) H is a contraction. As a consequence of the Banach contraction

principle, we deduce that H has a fixed point which is a solution of the problem (3.1)−

(3.2).

3.3 Example

Let us consider the following boundary value problem,

cDαy(t) =
e−t

(et + 9)(1 + |y(t)|+ |cDαy(t)|)
, t ∈ J := [0, 1], 1 < α ≤ 2, (3.17)

y(0) =
3

5

∫ T

0

y(t)dt, y(1) = 2. (3.18)

Set

f(t, y, z) =
e−t

(et + 9)(1 + y + z)
, (t, y, z) ∈ J × [0,+∞)× [0,+∞),

Let y, z ∈ [0,+∞) and t ∈ J. Then we have

|f(t, y1, z1)− f(t, y2, z2)| =

∣∣∣∣ e−t

et + 9

(
1

1 + y1 + z1

− 1

1 + y2 + z2

)∣∣∣∣
≤ e−t(|y1 − y2|+ |z1 − z2|)

(et + 9)(1 + y1 + z1)(1 + y2 + z2)

≤ e−t

(et + 9)
(|y1 − y2|+ |z1 − z2|)

≤ 1

10
|y1 − y2|+

1

10
|z1 − z2|.

Hence, the condition (B2) holds with k1 = k2 = 1
10

. Also we have

|g(x)− g(y)| ≤ 3

5
‖x− y‖L1 .

Hence, (B3) is satisfied with k = 3
5
.

From (3.5), a simple calculation gives G0 = 1. We shall check that condition (3.13) is
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satisfied with T = 1. Indeed

T

(
G0

Γ(α)

k1

1− k2

+ k

)
=

1

Γ(α)
×

1
10

1− 1
10

+
3

5

=
1

Γ(α)
× 1

9
+

3

5

=
1

9Γ(α)
+

3

5

<
1

5Γ(α)
+

3

5
.

and
1

5Γ(α)
+

3

5
< 1⇔ Γ(α) >

1

2
. (3.19)

which is satisfied for each α ∈ (1, 2]. Then by Theorem 3.2, the problem (3.17) − (3.18)

has a unique integrable solution in L1([0, 1],R).



Chapter 4

L1−Solutions of the initial value

problems for implicit differential

equations with Hadamard fractional

derivative1

4.1 Introduction

In this chapter we investigate of existence integrable solutions and uniqueness of the initial

value problem, for fractional order implicit differential equation as follows:

HDα
1+y(t) = f(t, y(t),H Dα

1+y(t)), t ∈ J := (1, T ], 0 < α ≤ 1 (4.1)

HI1−α
1+ y(1) = b, (4.2)

where f : J × R × R → R is a given function, b, T ∈ R with T > 1, and HDα
1+ is the

Hadamard fractional derivative.

This chapter is organized as follows. In Section 2, we will recall briefly some basic

definitions and preliminary facts which will be used throughout the following section. In

Section 3, we give two results, the first one is based on Schauder’s fixed point theorem and

1B. Telli and M. S. Souid,L1−Solutions of the initial value problems for implicit differential equations

with Hadamard fractional derivative . Transylvanian Journal of Applied Analysis 6 (2021), No. 2, 1-14.
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the second one on contraction principle . An example is given in Section 4 to demonstrate

the application of our main results.

4.2 Existence of solutions

Let us start by defining what we mean by an integrable solution of the problem (4.1)−(4.2).

Definition 23. A function y ∈ L1(J,R) is said to be a solution of IVP (4.1)− (4.2) if y

satisfies (4.1) and (4.2).

Lemma 11. Let f : J×R×R→ R be a function such that f
(
., y(.),H Dα

1+y(.)
)
∈ L1(J,R)

for any y ∈ L1(J,R). A function y ∈ L1(J,R) is a solution of (4.1)− (4.2), if and only if

y satisfies the following integral equation:

y(t) =
b

Γ(α)
(ln t)α−1 +

1

Γ(α)

∫ t

1

(ln
t

s
)α−1xy(s)

ds

s
, (4.3)

where xy is the solution of the functional integral equation

xy(t) = f

(
t,

b

Γ(α)
(ln t)α−1 +

1

Γ(α)

∫ t

1

(ln
t

s
)α−1xy(s)

ds

s
, xy(t)

)
. (4.4)

Proof. First we prove the necessity. Let y ∈ L1(J,R), be a solution of the problem

(4.1)− (4.2) and HDα
1+y(t) = xy(t)) in equation (4.1), then

xy(t) = f(t, y(t), xy(t)) (4.5)

Hence, we get equation (4.4).

Then (4.1) means the

HDα
1+y ∈ L1(J,R). (4.6)

According to Definition (7)

HDα
1+y(t) =

(
t
d

dt

)
(HI1−α

1+ y)(t) (4.7)

and hence by the Theorem (3), we have

y ∈ L1(J,R) and HI1−α
1+ y ∈ AC1([1, T ],R).
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Now we apply Lemma (4) to obtain

HIα1+
HDα

1+y(t) = y(t)−
HI1−α

1+ y(1)

Γ(α)
(ln t)α−1

= y(t)− b

Γ(α)
(ln t)α−1. (4.8)

Applying HIα1+ to both sides of (4.1) yield

HIα1+
HDα

1+y = HIα1+f
(
., y(.),H Dα

1+y(.)
)
. (4.9)

From 4.8 and (4.9) we obtain

y(t) =
b

Γ(α)
(ln t)α−1 +

1

Γ(α)

∫ t

1

(ln
t

s
)α−1xy(s)

ds

s
,

which is the equation (4.3).

Now we prove the sufficiency. Let y ∈ L1(J,R), satisfies Eq.(4.3). Applying the operator

HDα
1+ to both sides of (4.3), it follows from Lemma 3, proposition 2, and Definition 7 that

HDα
1+y(t) = HDα

1+(
b

Γ(α)
(ln t)α−1 +

1

Γ(α)

∫ t

1

(ln
t

s
)α−1xy(s)

ds

s
),

= HDα
1+(

b

Γ(α)
(ln t)α−1) + HDα

1+(
1

Γ(α)

∫ t

1

(ln
t

s
)α−1xy(s)

ds

s
)

= xy(t)

= f
(
t, y(t), HDα

1+y(t)
)
. (4.10)

Now we show that the initial condition 4.2 also holds. Multiply both sides of (4.3), by

(ln t)1−α, then

(ln t)1−αy(t) =
b

Γ(α)
+ (ln t)1−α HIα1+f

(
., y(.), HDα

1+y(.)
)

(t). (4.11)

Since, f
(
., y(.), HDα

1+y(.)
)
∈ L1(J,R) for any y ∈ L1(J,R), implies that

‖f
(
., y(.), HDα

1+y(.)
)
‖L1 <∞,∀y ∈ L1(J,R).

Hence

lim
t→1

(ln t)1−α HIα1+f
(
., y(.), HDα

1+y(.)
)

(t) = 0,

then, taking in (4.11) the limit as t→ 1, we obtain

lim
t→1

(ln t)1−αy(t) = lim
t→1

(
b

Γ(α)
+ (ln t)1−α HIα1+f

(
., y(.), HDα

1+y(.)
)

(t))

=
b

Γ(α)
+ lim

t→1
(ln t)1−α HIα1+f

(
., y(.), HDα

1+y(.)
)

(t)

=
b

Γ(α)
.
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which gives

HI1−α
1+ y(1) = b.

Leu us introduce the following assumptions:

(C1) f : J × R2 −→ R is measurable in t ∈ J , for any (u1, u2) ∈ R2 and continuous in

(u1, u2) ∈ R2, for almost all t ∈ J .

(C2) There exist constants k1, k2 > 0 such that,for every t ∈ J ,and for every (u1, u2), (v1, v2) ∈

R2,

|f(t, u1, v1)− f(t, u2, v2)| ≤ k1|u1 − u2|+ k2|v1 − v2|.

Our first result is based on Schauder fixed point theorem.

Theorem 13. Suppose that the assumptions (C1) and (C2) hold true . If

b1K(α)

Γ(α)
+ b2 < 1, (4.12)

then the IVP (4.1)− (4.2) has at least one solution y ∈ L1(J,R).

Proof. We first notice that we have:

from assumptions (C2),there exist a ∈ L1(J,R) , two constants b1 > 0 and 0 < b2 < 1

such that,for every t ∈ J ,and for every (u1, u2) ∈ R2, we have

|f(t, u1, u2)| ≤ |a(t)|+ b1|u1|+ b2|u2|.

Transform the problem (4.1)− (4.2) into a fixed point problem. Consider the operator

H : L1(J,R)→ L1(J,R)

defined by:

(Hu)(t) =
b

Γ(α)
(ln t)α−1 +H Iα1+u(t), t ∈ J, (4.13)

and

S : L1(J,R)→ L1(J,R),

defined by:

(Su)(t) = f (t, (Hu)(t), u(t)) , t ∈ J (4.14)
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The operator S is well defined, indeed, for each u ∈ L1(J,R), from assumptions (C1), (C2)

we obtain

‖Su‖L1 =

∫ T

1

|Su(t)|dt

=

∫ T

1

|f (t, (Hu)(t), u(t))| dt

=

∫ T

1

∣∣∣∣f (t, b

Γ(α)
(ln t)α−1 +H Iα1+u(t), u(t)

)∣∣∣∣ dt
≤

∫ T

1

[
|a(t)|+ b1|

b

Γ(α)
(ln t)α−1 +H Iα1+u(t)|+ b2|u(t)|

]
dt

≤ ‖a‖L1 + b1

∫ T

1

|b|
Γ(α)

(ln t)α−1dt

+b1

∫ T

1

|HIα1+u(t)|dt+ b2

∫ T

1

|u(t)|dt

≤ C + ‖a‖L1 +
b1K(α)

Γ(α)
‖u‖L1 + b2‖u‖L1

≤ C + ‖a‖L1 +

(
b1K(α)

Γ(α)
+ b2

)
‖u‖L1 < +∞, (4.15)

where C := b1|b|
∫ T

1
1

Γ(α)
(ln t)α−1dt.

Let

r :=
C + ‖a‖L1

1−
(
b1K(α)

Γ(α)
+ b2

)
and consider the set

Br = {u ∈ L1(J,R) : ‖u‖L1 ≤ r}.

Clearly Br is nonempty, bounded, convex and closed.

Now, we will show that SBr ⊂ Br, indeed, for each u ∈ Br, from (4.12) and (4.15) we get

‖Su‖L1 ≤ C + ‖a‖L1 +

(
b1K(α)

Γ(α)
+ b2

)
‖u‖L1

≤ r.

Then SBr ⊂ Br.

Assumption (C1) implies that S is continuous.

Now, we will show that S is compact, this is SBr is relatively compact. Clearly SBr is

bounded in L1(J,R), i.e condition (i) of Kolmogorov compactness criterion is satisfied.
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It remains to show (Su)h −→ (Su) as h −→ 0 uniformly with respect to u ∈ Br.

Let u ∈ Br, then we have

‖(Su)h − (Su)‖L1 =

∫ T

1

|(Su)h(t)− (Su)(t)|dt

=

∫ T

1

∣∣∣∣1h
∫ t+h

t

(Su)(s)ds− (Su)(t)

∣∣∣∣ dt
≤

∫ T

1

(
1

h

∫ t+h

t

|(Su)(s)− (Su)(t)|ds
)
dt

≤
∫ T

1

1

h

∫ t+h

t

|f (s, (Hu)(s), u(s))

−f (t, (Hu)(t), u(t)) |dsdt.

Since u ∈ Br ⊂ L1(J,R),Hu ∈ L1(J,R) and assumption (C2) that implies f (., (Hu)(.), u(.)) ∈

L1(J,R) , then we have

1

h

∫ t+h

t

|f (s, (Hu)(s), u(s)) − f (t, (Hu)(t), u(t)) |ds −→ 0

as h −→ 0, t ∈ J,

Hence (Su)h −→ (Su) as h −→ 0 uniformly with respect to u ∈ Br. Then by Kolmogorov

compactness criterion, SBr is relatively compact. As a consequence of Schauder’s fixed

point theorem the S has at least one a fixed point u? in Br (the set of fixed points of

operator S is non empty ).

On then , in the spirit of Lemma (11), on could define the function y? as

y?(t) := (Hu?)(t), t ∈ J (4.16)

From (4.13), (4.14) and (4.16) we obtain

y?(t) = (Hu?)(t), t ∈ J

=
b

Γ(α)
(ln t)α−1 +H Iα1+u?(t), t ∈ J (4.17)

and

u?(t) = (Su?)(t), t ∈ J

= f (t, (Hu?)(t), u?(t)) , t ∈ J

= f (t, y?(t), u?(t)) , t ∈ J

= f

(
t,

b

Γ(α)
(ln t)α−1 +H Iα1+u?(t), u?(t)

)
, t ∈ J (4.18)
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According to (4.17), (4.18), y? satisfies the (4.3) where u? is the solution of 4.4. As

a consequence of Lemma (11), we deduce that y? is a solution of the problem (4.1) −

(4.2).

The following result is based on the Banach contraction principle.

Theorem 14. Assume that conditions (C1),(C2) hold. If

K(α)k1

Γ(α)
+ k2 < 1, (4.19)

then the IVP (4.1)− (4.2) has a unique solution y ∈ L1(J,R).

Proof. We shall use the Banach contraction principle to prove that S defined by (4.13)

has a fixed point. Let u, v ∈ L1(J,R), and t ∈ J .

In view of hypothesis (C3) and (iii) of the Proposition (2) one can write ,

|(Su)(t)− (Sv)(t)| = |f (t, (Hu)(t), u(t))− f (t, (Hv)(t), v(t)) |, t ∈ J,

≤ k1|(Hu)(t)− (Hv)(t)|+ k2|u(t)− v(t)|

≤ k1|(HIα1+u)(t)− (HIα1+v)(t)|+ k2|u(t)− v(t)|

≤ k1|HIα1+(u− v)(t)|+ k2|u(t)− v(t)|

Integration of [1, T ] yields

‖(Su)− (Sv)‖L1 =

∫ T

1

|(Su)(t)− (Sv)(t)|dt

≤ k1

∫ T

1

|HIα1+(u− v)(t)|dt+ k2

∫ T

1

|u(t)− v(t)|dt

≤ K(α)k1

Γ(α)
‖u− v‖L1 + k2‖u− v‖L1

≤
(
K(α)k1

Γ(α)
+ k2

)
‖u− v‖L1

Consequently by (4.19) ,S is a contractible and hence , in view of the Banach contraction

principle , il follows that S has a unique fixed point u? ∈ L1(J,R). In view of Lemma

(11), we deduce that

y? := Hu? ,

is a solution unique of the problem (4.1)− (4.2).
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4.3 Example

Let us consider the following fractional initial value problem,

HD
1
2

1+y(t) =
1

t(t+ 8)(1 + |y(t)|+ |HDαy(t)|)
, t ∈ J := (1, e], (4.20)

HI1−α
1+ y(1) = 1. (4.21)

Set

f(t, y, z) =
1

t(t+ 8)(1 + y + z)
, (t, y, z) ∈ J × [0,+∞)× [0,+∞).

Let y, z ∈ [0,+∞) and t ∈ J. Then we have

|f(t, y1, z1)− f(t, y2, z2)| =

∣∣∣∣ 1

t(t+ 8)

(
1

1 + y1 + z1

− 1

1 + y2 + z2

)∣∣∣∣
≤ |y1 − y2|+ |z1 − z2|

t(t+ 8)(1 + y1 + z1)(1 + y2 + z2)

≤ 1

t(t+ 8)
(|y1 − y2|+ |z1 − z2|)

≤ 1

9
|y1 − y2|+

1

9
|z1 − z2|.

Hence the condition (C2) holds with k1 = k2 = 1
9
.

Thus condition

K(α)k1

Γ(α)
+ k2 =

K(α)1
9

Γ(α)
+

1

9

<
2e

9Γ(1
2
)

+
1

9
∼= 0, 4519169

< 1.

is satisfied . Then by Theorem 14, the problem (4.20) − (4.21) has a unique integrable

solution in L1((1, e],R).



Chapter 5

Investigation of the neutral

fractional differential inclusions of

Katugampola-type involving both

retarded and advanced arguments 1

5.1 Introduction and Motivations

In [39], Boumaaza and Benchohra investigated the following FDI:

%
cD

ξ
n+(k(t)) ∈ K(t, kt), t ∈ J := [n,m], 1 < ξ ≤ 2,

k(t) = χ(t), t ∈ [n− r, n], r > 0,

k(t) = ψ(t), t ∈ [m,m+ γ], γ > 0, (5.1)

where %
cD

ξ
n+ is a modified Caputo formulation of the Erdélyi-Kober fractional derivative

of order 1 < ξ ≤ 2. In 2016, Agarwal et al. [12] extended their study to a set-valued

1S. Etemad, M.S. Souid, B. Telli, M.K.A. Kaabar, Sh. Rezapour , Investigation of the neutral

fractional differential inclusions of Katugampola-type involving both retarded and advanced arguments

via Kuratowski MNC technique. Transylvanian Advances in Differential Equations 1 (2021), No. 2,

1-20.
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version of the functional FDI subject to retarded-advanced arguments as

Dξk(t) ∈ K(t, kt), t ∈ J := [1, e], 1 < ξ < 2,

k(t) = φ(t), t ∈ [1− r, 1], r > 0,

k(t) = ψ(t), t ∈ [e, e+ γ], γ > 0, (5.2)

where K : J × C([−r, γ],R) → P(R) is a multifunction. Regarding to the existence

solutions for this FDI they focused on some standard fixed-point methods.

Stimulated by aforesaid researches, this research work investigates the existence so-

lutions for the neutral fractional functional differential inclusions of Katugampola-type

which involves retarded and advanced arguments as follows:

%Dξ
n+(w(t)− q(t, wt)) ∈ K(t, wt), t ∈ J := [n,m], 1 < ξ ≤ 2, (5.3)

w(t) = χ(t), t ∈ [n− s, n], s > 0, (5.4)

w(t) = ψ(t), t ∈ [m,m+ γ], γ > 0, (5.5)

where a given function K : J ×C([−s, γ],R)→ P(R) exists so that χ, ψ ∈ C([n− s,m+

γ],R) via χ(n) = 0 and ψ(m) = 0, and a given mapping q : J × C([−s, γ],R)→ R exists

such that q(n, χn) = 0 and q(m,ψm) = 0. The element of C([−s, γ],R), denoted by wt, is

defined as follows:

wt(τ) := w(t+ τ), τ ∈ [−s, γ].

Unlike the previous research works, we here implement our theoretical techniques on a

generalized inclusion version of the neutral functional system via generalized derivative

attributed to Katugampola for the first time. Due to the importance of such neutral

systems, we prefer to extract the existence solutions with the help of a generalized operator

which covers some previous results by assuming special kernels. This chapter is divided

into the following sections. In section 2 which are needed to obtain our results in the

other sections. Two interesting results will be obtained in section 3 in relation to the

set-valued analogue of Nonlinear alternative for Kakutani maps and multi-valued maps

named as Nadler-Covitz. In section 4, an application example will be provided to validate

and apply our obtained results.
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5.2 Existence of solutions

This section investigates the existence solutions of (5.3)-(5.5), by considering the Banach

space C(I) := C([n− s,m+ γ],R) introduced in (1.3), with a norm:

‖u‖∞ := sup{|u(t)| : t ∈ [n− s,m+ γ]}.

Definition 24. A function w ∈ C(I) is named as a solution of (5.3)-(5.5) if

z ∈ L1([n,m],R) exists subject to z(t) ∈ K(t, wt), (a.e.) on [n,m] so that

%Dξ
n+(w(t)− q(t, wt)) = z(t) on J , w(t) = χ(t) , on [n− s, n], w(n) = 0, and w(t) = ψ(t)

, on [m,m+ γ], w(m) = 0.

For the existence of solutions for the problem (5.3) − (5.5) , we need the following

auxiliary lemma .

Lemma 12. Assume that z : J → R is an integrable function. A function w ∈ C(I) is

a solution for a fractional equation, expressed as follows:

w(t) =



χ(t), t ∈ [n− s, n], s > 0,

q(t, wt) +

∫ m

n

F (t, v)z(v)v%−1dv, t ∈ J .

ψ(t), t ∈ [m,m+ γ], γ > 0.

(5.6)

iff w is a solution of the following problem given by:

ρDξ
n+(w(t)− q(t, wt)) = z(t), t ∈ J := [n,m] 1 < ξ ≤ 2, (5.7)

w(t) = χ(t), t ∈ [n− s, n], s > 0 (5.8)

w(t) = ψ(t), t ∈ [m,m+ γ], γ > 0, (5.9)

where

F (t, v) =
1

Γ(ξ)


(
t% − v%

%
)ξ−1 − (

t% − n%

m% − n%
)ξ−1(

m% − v%

%
)ξ−1, n ≤ v ≤ t ≤ m,

−(
t% − n%

m% − n%
)ξ−1(

m% − v%

%
)ξ−1, n ≤ t ≤ v ≤ m.

(5.10)
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Proof. From (1.5), we have

w(t)−q(t, wt) =
1

Γ(ξ)

∫ t

n

(
t% − v%

%
)ξ−1z(v)v%−1dv+c1(

t% − n%

%
)ξ−1 +c2(

t% − n%

%
)ξ−2 (5.11)

Using w(n) = q(n, χn) = w(m) = q(m,ψm) = 0, we find that c2 = 0 and

c1 = −(
m% − n%

%
)1−ξ 1

Γ(ξ)

∫ m

n

(
m% − v%

%
)ξ−1z(v)v%−1dv

By substituting the value of c1 and c2 in (5.11), we obtain

w(t) = q(t, wt) +
1

Γ(ξ)

∫ t

n

(
t% − v%

%
)ξ−1z(v)v%−1dv

−(
t% − n%

%
)ξ−1(

m% − n%

%
)1−ξ 1

Γ(ξ)

∫ m

n

(
m% − v%

%
)ξ−1z(v)v%−1dv

= q(t, wt) +
1

Γ(ξ)

∫ t

n

[(
t% − v%

%
)ξ−1 − (

t% − n%

m% − n%
)ξ−1(

m% − v%

%
)ξ−1]z(v)v%−1dv

+
1

Γ(ξ)

∫ m

t

[−(
t% − n%

m% − n%
)ξ−1(

m% − v%

%
)ξ−1]z(v)v%−1dv

= q(t, wt) +

∫ m

n

F (t, v)z(v)v%−1dv

where F (t, v) is given by (5.10). On the contrary, if w satisfies equation (5.6), then

equations (5.7)-(5.9) hold obviously and the argument is ended.

Corollary 1. Let K : J × C[−s, γ] → P(R) is Carathéodory.A function w ∈ C(I) is a

solution for inclusion problem (5.3)-(5.5) iff

w(t) =



χ(t), t ∈ [n− s, n], s > 0,

q(t, wt) +

∫ m

n

F (t, v)z(v)v%−1dv, t ∈ J .

ψ(t), t ∈ [m,m+ γ], γ > 0.

where z ∈ L1([n,m],R) with

z(t) ∈ K(t, wt), (a.e.) t ∈ J

Remark 3. The function t 7→
∫ m

n

|F (t, v)|v%−1dv is continuous on [n,m], and hence is

bounded. Thus, we assume:

F̃ := sup{
∫ m

n

|F (t, v)|v%−1dv, t ∈ [n,m]}.
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Let us assume the following:

(A1) The multivalued map K : J × C[−s, γ]→ P(R) is Carathéodory;

(A2) There exist l ∈ L∞(J ,R+) and constants 0 < c1 and c2 ≥ 0 provided

‖K(t, u)‖P := sup{|υ| : υ ∈ K(t, u)} ≤ l(t)(c1‖u‖[−s,γ] + c2),

for any u ∈ C[−s, γ] and a.e t ∈ J ;

(A3) there exists `1 > 0, such that

Hd(K(t, x), K(t, x)) ≤ `1‖x− x‖[−s,γ], ∀x, x ∈ C[−s, γ]; t ∈ J

and

d(0, K(0, ut)) ≤ `1, ∀u ∈ C[n,m]; (a.e.) t ∈ J

;

(A4) the function q is continuous , and for any bounded set M in C[n,m] , the set

{t 7→ q(t, wt) : w ∈M} is equicontinous in C[n,m];

(A5) There exist constants 0 ≤ d1 < 1 and d2 ≥ 0 such that

|q(t, h)| ≤ d1‖h‖[−s,γ] + d2, t ∈ J , h ∈ C[−s, γ].

(A6) There exists a nonnegative constant L such that:

|q(t, h)− q(t, h)| ≤ L‖h− h‖[−s,γ],

for every h, h ∈ C[−s, γ], t ∈ J .

by setting l∗ := ess supt∈J l(t)

5.2.1 The Convex Case

Now, we state and prove our existence result for problem (5.3)-(5.5) based on a nonlinear

alternative for Kakutani maps. Here K is assumed to have convex and compact values.
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Theorem 15. Assume that our assumptions (A1)-(A2) and (A4)-(A5) are settled. If

d1 + l∗c1F̃ < 1, (5.12)

then the problem (5.3)-(5.5) has at least one solution w ∈ C(I).

Proof. Let the operator E : C(I) −→ P(C(I)) defined by

E(w) =


~ ∈ C(I) : ~(t) =


χ(t), t ∈ [n− s, n],

q(t, wt) +

∫ m

n

F (t, v)z(v)v%−1dv, t ∈ J , z ∈ SK,w

ψ(t), t ∈ [m,m+ γ]


,

(5.13)

where

SK,w :=
{
z ∈ L1[n,m] : z(t) ∈ K(t, wt), (a.e.) t ∈ J

}
.

By Corollary 1 it is clear that the fixed points of E are solutions of the problem (5.3)-(5.5).

Let the constant R be such that

R ≥ max{(d1 + l∗c1F̃ )R + d2 + l∗F̃ c2, ‖χ‖[n−s,n], ‖ψ‖[m,m+γ],µ+1} (5.14)

where µ := d2+l∗F̃ c2
1−d1−l∗c1F̃

and define

G := {w ∈ C(I) : ‖w‖∞} ≤ R}.

It is clear that G is a bounded, closed and convex subset of C(I).

We shall show that E satisfies the assumptions of Lemma 7.

Step I:E(ω) is convex for all w ∈ C(I).

Indeed, if ~1, ~2 belong to E(w),there exists z1, z2 ∈ SK,w such that for all t ∈ J we obtain

~j(t) = q(t, wt) +

∫ m

n

F (t, v)zj(v)v%−1dv, j = 1, 2.

Suppose that 0 ≤ γ ≤ 1. Then ,for each t ∈ J ,we obtain

(γ~1 + (1− γ)~2)(t) = q(t, wt) +

∫ m

n

F (t, v)(γz1(v) + (1− γ)z2(v))v%−1dv.

Since SK,w is convex due to the convexity values of K, we get

γ~1 + (1− γ)~2 ∈ E(w)
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and our first claim is verified.

STEP II: For each w ∈ G,E(w) ∈ P(G)

Let w ∈ G. Then ,for each ~ ∈ E(w).

It t ∈ [n− s, n] ,then

|~(t)| ≤ ‖χ‖[n−s,n] ≤ R,

and it t ∈ [m,m+ γ] ,then

|~(t)| ≤ ‖ψ‖[m,m+γ] ≤ R,

and it t ∈ J ,then for each ~ ∈ E(w), there exists z ∈ SK,w such that

~(t) = q(t, wt) +

∫ m

n

F (t, v)z(v)v%−1dv.

By (A2) ,(A5) , we have

|~(t)| ≤ |q(t, wt)|+
∫ m

n

|F (t, v)||z(v)|vρ−1dv

≤ d1‖wt‖[−s,γ] + d2 +

∫ m

n

|F (t, v)|l(v)(c1‖wv‖[−s,γ] + c2)vρ−1dv

≤ d1‖w‖∞ + d2 +

∫ m

n

|F (t, v)|l(v)(c1‖w‖∞ + c2)vρ−1dv

≤ d1‖w‖∞ + d2 + l∗(c1‖w‖∞ + c2)

∫ m

n

|F (t, v)|vρ−1dv

≤ (d1 + l∗c1F̃ )‖w‖∞ + d2 + l∗F̃ c2

≤ (d1 + l∗c1F̃ )R + d2 + l∗F̃ c2

≤ (d1 + l∗c1F̃ )R + (1− d1 − l∗c1F̃ )R

≤ R,

from which it follows that for each t ∈ [n − s,m + γ], we have |~(t)| ≤ R, which implies

that ‖~‖∞ ≤ R, and so E(w) ∈ P(G).

STEP III E maps bounded sets into bounded sets in C(I).

Let Br be bounded set of G, as in Step 2 we have

E(Br) ⊂ E(G) ⊂ G.

STEP IV: E maps bounded sets in G into equicontinous sets .

We consider Br is bounded set in G, for arbitrary t∗, t
∗ ∈ J , with t∗ < t∗, let w ∈ Br ,
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~ ∈ E(w).Then, there exists z ∈ SK,w such that

|~(t∗)− ~(t∗)| = |q(t∗, wt∗)− q(t∗, wt∗)|+
∫ m

n

|F (t∗, v)− F (t∗, v)||z(v)|v%−1dv (5.15)

≤ |q(t∗, wt∗)− q(t∗, wt∗)|+ l∗(c1r + c2)

∫ m

n

|F (t∗, v)− F (t∗, v)|v%−1dv.

By (A4), we have |q(t∗, wt∗) − q(t∗, wt∗)| → 0, as t∗ → t∗. As a result, as t∗ → t∗, the

inequality (5.15) goes to zero, which proves that E(Br) is equicontinous. As consequence

of Step 3 to Step 4, together withe the Arzela-Ascoli theorem, we can conclude that E is

completely continuous multi-valued operator.

STEP IV :E has a closed graph.

Assume that wk → w∗, ~k ∈ E(wk), and ~k → ~∗. We need to show that ~∗ ∈ E(w∗).

Now, ~k ∈ E(wk) implies that there exists zk ∈ SK,wk provided for t ∈ J ,

~k(t) = q(t, wtk) +

∫ m

n

F (t, v)zk(v)v%−1dv.

Let us verify that some z∗ ∈ SK,w∗ can be chosen so that

~∗(t) = q(t, wt∗) +

∫ m

n

F (t, v)z∗(v)v%−1dv

for all t ∈ J . Since K(t, ·) is up-semi-con, so for each ε > 0, k0(ε) ≥ 0 exists provided for

all k ≥ k0, we get:

zk(t) ∈ K(t, wtk) ⊂ K(t, wt∗) + εBALL(0, 1), (a.e.) t ∈ J .

On the other side, due to the compactness values of K, a subsequence zkr(·) exists that

zkr(t)→ υ∗(t) as r →∞, a.e. t ∈ J ;

and thus z∗(t) ∈ K(t, wt∗) for almost all t ∈ J . Further, it is apparent that

|zkr(t)| ≤ l(t)(c1R + c2).

According to the theorem of Lebesgue dominated convergence, it is derived that z∗ ∈

L1(J ) which yields z∗ ∈ SK,w∗ . In conclusion,

~∗(t) = q(t, wt∗) +

∫ m

n

F (t, v)z∗(v)v%−1dv, t ∈ J .
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So ~∗ ∈ E(w∗).

STEP V:A priori bounds on solutions.

let w ∈ C(I) be such that w ∈ σE(w) for all σ ∈ (0, 1).Then, there exists z ∈ SK,w such

that for each t ∈ J , we have

w(t) = σq(t, wt) + σ

∫ m

n

F (t, v)z(v)v%−1dv. (5.16)

From (A2) and (A5), we get:

|w(t)| ≤ |q(t, wt)|+
∫ m

n

|F (t, v)||z(v)|v%−1dv

≤ d1‖wt‖[−s,γ] + d2 +

∫ m

n

|F (t, v)|l(v)(c1‖wv‖[−s,γ] + c2)v%−1dv

≤ d1‖w‖∞ + d2 +

∫ m

n

|F (t, v)|l(v)(c1‖w‖∞ + c2)v%−1dv

≤ d1‖w‖∞ + d2 + l∗(c1‖w‖∞ + c2)

∫ m

n

|F (t, v)|v%−1dv

≤ (d1 + l∗c1F̃ )‖w‖∞ + d2 + l∗F̃ c2.

Then

‖w‖∞ ≤ (d1 + l∗c1F̃ )‖w‖∞ + d2 + l∗F̃ c2,

i.e.

(1− d1 − l∗c1F̃ )‖w‖∞ ≤ d2 + l∗F̃ c2.

Thus, by (5.12), we have

‖w‖∞ ≤
d2 + l∗F̃ c2

1− d1 − l∗c1F̃
:= µ

Set

U := {w ∈ C(I) : ‖w‖∞ < µ+ 1}.

From the choice of U , there is no w ∈ ∂U such that w ∈ σE(w) for some σ ∈ (0, 1).

At last, from the above steps and Lemma 7, we deduce that E : U −→ Pcp,cv(G) has a

fixed point w ∈ U which is a solution of (5.3)-(5.5) and the argument is ended.
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5.2.2 The Non-convex Case

We now prove an existence result for (5.3)-(5.5) with non-convex valued right hand side.

Our considerations are based on the fixed point Lemma for contraction multivalued maps

given by Covitz and Nadler. Let us suppose that K has compact values.

Theorem 16. Assume that our assumptions, i.e. (A1)− (A6) are satisfied. If we have(
L+ `1F̃

)
< 1, (5.17)

then the problem (5.3)-(5.5) has at least one solution w ∈ C(I).

Proof. For each w ∈ C(I), the set SK,w is nonempty since,

by (A1), K(., w(.)) : J → Pcl(R) is measurable; and by this fact that R is separable,then

by Theorem 6 de Kuratowski-Ryel-Naradzewski K(., w(.)) has a measurable selection

z : J → R. By (A2) ,we have

|z(t)| ≤ p(t)

where p(t) := l(t)(c1‖ωt‖[−s,γ] + c2) a.e t ∈ J ; and since l ∈ L∞(J ,R+), by Hölder’s

Inequality p ∈ L1(J ,R+), thus z ∈ L1(J ,R). Consequently z ∈ SK,w.

We shall prove that E given by (5.13) satisfies the assumptions of Lemma 8. The proof

will be given in two steps.

STEP I: E(w) ∈ Pcl(C(I)) for all w ∈ C(I).

let (~k)k≥0 ⊂ E(w) be such that ~k → ~∗ in C(I). Then, there exists zk ∈ SK,w so that

for any t ∈ J ,

~k(t) = q(t, wt) +

∫ m

n

F (t, v)zk(v)v%−1dv.

From (A1) and by this fact that K has compact values, we need to move to a subsequence

in order to deduce that zk → z∗ weakly in L1
W (J ,R) which is a space furnished with the

weak topology. As a result, by a simple approach, it is verified that zk converges strongly

to z∗ and so z∗ ∈ SK,w. Hence, for any t ∈ J ,

~k(t)→ ~∗(t) = q(t, wt) +

∫ m

n

F (t, v)z∗(v)v%−1dv.

Thus ~∗ ∈ E(w) and E(w) ∈ Pcl(C(I)) for all w ∈ C(I).
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STEP II: There exists β < 1 such that Hd(E(w), E(w)) ≤ β‖w−w‖∞ for all w,w ∈ C(I).

Let w,w ∈ C(I) and ~1 ∈ E(w). Then, there exists z1(t) ∈ K(t, wt) such that for each

t ∈ J ,

~1(t) = q(t, wt) +

∫ m

n

F (t, v)z1(v)v%−1dv.

From (A3), we obtain the following:

Hd(K(t, wt), K(t, wt)) ≤ `1‖wt − wt‖[−s,γ].

Thus, there exists θ ∈ K(t, wt) such that

|z1(t)− θ| ≤ `1‖wt − wt‖[−s,γ], t ∈ J .

At this moment, consider H : J → Pcp(R) which is expressed as:

H(t) = {θ ∈ R : |z1(t)− θ| ≤ `1‖wt − wt‖[−s,γ]}.

Since U(t) = H(t) ∩ K(t, wt) is measurable (see Proposition [48], III.4), there exists a

function z2 which is measurable selection for U . So , z2(t) ∈ K(t, wt) and for each t ∈ J ,

|z1(t)− z2(t)| ≤ `1‖wt − wt‖[−s,γ] .

Now, introduce

~2(t) = q(t, wt) +

∫ m

n

F (t, v)z2(v)v%−1dv.

In that case, for t ∈ J ,

|~1(t)− ~2(t)| ≤ |q(t, wt)− q(t, wt)|+
∫ m

n

|F (t, v)||z1(v)− z2(v)|v%−1dv

≤ L‖wt − wt‖[−s,γ] +

∫ m

n

|F (t, v)|`1‖wv − wv‖[−s,γ]v
%−1dv

≤ L‖wt − wt‖[−s,γ] +

∫ m

n

|F (t, v)|`1‖w − w‖∞v%−1dv

≤ L‖w − w‖∞ + `1F̃‖w − w‖∞

≤
(
L+ `1F̃

)
‖w − w‖∞

Therefore, we have

‖~1 − ~2‖∞ ≤
(
L+ `1F̃

)
‖w − w‖∞.
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According to the analogous relation and interchanging the roles of w and w, we arrive at

Hd(E(w), E(w)) ≤
(
L+ `1F̃

)
‖w − w‖∞.

Therefore, by (5.17), E is a contraction, and according to Lemma 8, E possesses a fixed

point w that is a solution of (5.3)-(5.5). Thus, the argument is fully completed.

5.3 Application

In this section we give two examples to our results introduced above in Theorem 15 and

Theorem 16.

Example 2. Let us consider the following neutral fractional problem:

1
2D

3
2

n+(w(t)− q(t, wt)) ∈ K(t, wt), t ∈ J := [1, 2],

w(t) = χ(t), t ∈ [0, 1],

w(t) = ψ(t), t ∈ [2, 3].

(5.18)

Set K(t, wt) = [k1(t, wt), k2(t, wt)] , where

k1 : J × C([−1, 1],R)→ R

is formulated by k1(t, u) = 0 and

k2 : J × C([−1, 1],R)→ R

is formulated as k2(t, u) =
1

2(t+ 2)
(‖u‖[−1,1]) + 1). Let

q(t, u) =
‖u‖[−1,1]

2(1 + ‖u‖[−1,1])
.

and

% =
1

2
, ξ =

3

2
, s = γ = 1

It is obvious that K has compact and convex values.

Also, K(·, u) : J → Pcl(R) is measurable for any u ∈ C([−1, 1],R).

For each t ∈ [1, 2], k1(t, ·) is lower semi-continuous, and k2(t, ·) is upper semi-continuous.
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This express that u→ K(t, u) is upper semicontinuous for almost all t ∈ J .

Therefore, (A1) is verified

For each u ∈ C[−s, γ], t ∈ J ; we have

‖K(t, u)‖P := sup{|υ| : υ ∈ K(t, u)} ≤ 1

2(t+ 2)
(‖u‖[−1,1] + 1)

Therefore, (A2) is verified , with l(t) =
1

2(t+ 2)
, c1 = c2 = 1 , and l∗ =

1

6
.

The function q is continuous , and for each u ∈ C[−s, γ], t ∈ J ; we have

|q(t, u)| =
‖u‖[−1,1]

2(1 + ‖u‖[−1,1])
≤ 1

2
.

Therefore, the conditions (A4)− (A5) are verified , with, d1 = 0 and d2 =
1

2
.

For each t ∈ J ; we have∫ m

n

|F (t, v)|v%−1dv ≤ 1

Γ(ξ)

∫ t

n

(
t% − v%

%
)ξ−1v%−1dv

+(
t% − n%

m% − n%
)ξ−1 1

Γ(ξ)

∫ m

n

(
m% − v%

%
)ξ−1v%−1dv

≤ 1

Γ(ξ)

∫ t

n

(
t% − v%

%
)ξ−1v%−1dv

+
1

Γ(ξ)

∫ m

n

(
m% − v%

%
)ξ−1v%−1dv

≤ 1

Γ(ξ + 1)
(
t% − n%

%
)ξ +

1

Γ(ξ + 1)
(
m% − n%

%
)ξ

≤ 2

Γ(ξ + 1)
(
m% − n%

%
)ξ.

Therefore, we get

F̃ ≤ 2

Γ(ξ + 1)
(
m% − n%

%
)ξ.

The condition (5.12) is satisfied. Indeed, we have

d1 + l∗c1F̃ ≤ 0 +
1

6
× 1× 2

Γ(5
2
)
(
2

1
2 − 1

1
2

)
3
2

≤ 1

3Γ(5
2
)
(
2

1
2 − 1

1
2

)
3
2 ' 0, 189070603 < 1.

Hence all conditions of Theorem 15 are satisfied. It follows that the problem (5.18) has

at least one solution w ∈ C(I) .



5.3 Application 57

Example 3. Let us consider the following neutral fractional problem:

1
2D

3
2

n+(w(t)− q(t, wt)) ∈ K(t, wt), t ∈ J := [1, 2],

w(t) = χ(t), t ∈ [0, 1],

w(t) = ψ(t), t ∈ [2, 3].

(5.19)

Set K(t, wt) = K1(t, wt) ∪K2(t, wt) , K1(t, wt) = [k1(t, wt), k2(t, wt)] , and

K2(t, wt) = [k3(t, wt), k4(t, wt)] , where

k1 : J × C([−1, 1],R)→ R

is formulated by k1(t, u) = 0 and

k2 : J × C([−1, 1],R)→ R

is formulated as k2(t, u) =
1

2(t+ 4)
(‖u‖[−1,1]) + 1).

k3 : J × C([−1, 1],R)→ R

is formulated as k3(t, u) =
1

2(t+ 3)
(‖u‖[−1,1]) + 1).

k4 : J × C([−1, 1],R)→ R

is formulated as k4(t, u) =
1

2(t+ 2)
(‖u‖[−1,1]) + 1). Let

q(t, u) =
‖u‖[−1,1]

2(1 + ‖u‖[−1,1])
.

It is obvious that K has compact and nonconvex values.

Also, K(·, u) : J → Pcl(R) is measurable for any u ∈ C([−1, 1],R).

By Proposition (4),this express that u → K(t, u) is upper semicontinuous for almost all

t ∈ J .

Therefore, (A1) is verified .

For each u ∈ C[−s, γ], t ∈ J ; we have

‖K(t, u)‖P := sup{|υ| : υ ∈ K(t, u)} ≤ 1

2(t+ 2)
(‖u‖[−1,1] + 1)
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Therefore, (A2) is verified , with l(t) =
1

2(t+ 2)
, c1 = c2 = 1 .

The function q is continuous , and for each u ∈ C[−s, γ], t ∈ J ; we have

|q(t, u)| =
‖u‖[−1,1]

2(1 + ‖u‖[−1,1])
≤ 1

2
.

Therefore, the conditions (A4)− (A5) are verified , with, d1 = 0 and d2 =
1

2
.

For each u, u ∈ C[−s, γ], t ∈ J ; we have

Hd(K(t, u), K(t, u)) ≤ 1

2(t+ 2)
‖u− u‖[−s,γ], ;

Hd(K(t, u), K(t, x)) ≤ 1

4
‖u− u‖[−s,γ], ;

Therefore, (A3) is verified , with `1 = 1
4
.

For each u, u ∈ C[−s, γ], t ∈ J ; we have

|q(t, u)− q(t, u)| ≤ 1

2
|‖u‖[−s,γ] − ‖u‖[−s,γ]|

≤ 1

2
‖u− u‖[−s,γ]

Therefore, (A6) is verified , with L = 1
2
.

We have

F̃ ≤ 2

Γ(ξ + 1)
(
m% − n%

%
)ξ.

The condition (5.17) is satisfied. Indeed, we have(
L+ `1F̃

)
≤ 1

2
+

1

4
× 2

Γ(5
2
)
(
2

1
2 − 1

1
2

)
3
2 ' 0, 5354507382 < 1.

Hence all conditions of Theorem 16 are satisfied. It follows that the problem (5.19) has

at least one solution w ∈ C(I) .



Conclusion and Perspectives

In this thesis, We have established the existence and uniqueness of integral solutions for a

class of initial value problem, local and nonlocal conditions and of boundary value prob-

lem for nonlinear implicit fractional differential equations involving the Caputo and the

Hadamard fractional derivative. Our results will be obtained by means of fixed points

theorems.

Also in this work we have discussed the existence of continuous solutions for our proposed

fractional boundary value problem (FBVP) has been successfully investigated for the neu-

tral fractional differential inclusions of Katugampola fractional derivative (KaFrD) which

involves retarded and advanced arguments. Two cases have been discussed throughout

our investigation via fixed point theorems for convex and non-convex multifunctions. An

application in the format of a simulative example of the neutral functional FBVP has

been provided to validate our obtained results. This research work sheds the light on

the importance of studying neutral fractional problem with its application in science and

engineering.

All results obtained in this thesis can be considered as a contribution to this emerging

field.

In the future, we will generalize this approach for the resolution the problems in Lp(x)

space.
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