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Introduction

Many physical phenomena in nature can be described by partial differential equations and
the control of such equations is a quite recent and very active field of investigation. The aim
of this dissertation is to survey several issues related to the study of the Lamé system under
fractional controls.

The problem of well-posedness and stability for elasticity systems in general, and the wave
equation in particular, has attracted considerable attention in recent years, where diverse types
of dissipative mechanisms have been introduced and several stability and boundedness results
have been obtained. The main problem concerning the stability of solutions is to determine
and estimate the best decay rate for solutions.

Real progress has been realized during the last three decades, Let us recall here some known
results addressing problems of existence, uniqueness and asymptotic behavior of solutions.

In particular, in the works of Haraux and Chentouf [37], [20], considering the problem
of observability, exact controllability and stability of general elasticity systems with variable
coeffcients depending on both time and space variables in bounded domains, the results hold
under linear or nonlinear, global or local feedbacks, and they generalize and improve, in some
cases, the decay rate obtained by Alabau and Komornik [41].

This thesis focuses on fractional calculus which has been applied successfully in various
areas to modify many existing models of physical processes such as heat conduction, diffusion,
viscoelasticity, wave propagation, electronics etc. Caputo and Mainardi [10] have established
the relation between fractional derivative and theory of viscoelasticity. The feedback under
consideration here is of fractional type and is described by the following fractional derivative:

∂α,ηt w(t) =
1

Γ(1− α)

∫ t

0

(t− s)−αe−η(t−s)dw

ds
(s) ds, η ≥ 0. (1)

The order of the derivative is between 0 and 1. In addition to being nonlocal, fractional
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6 Introduction

derivative involves singular and non-integrable kernels (tα, 0 < α < 1). It has been shown (see
[49]) that, as ∂t, the fractional derivative ∂αt forces the system to become dissipative and the
solution to approach the equilibrium state.

Furthermore, This thesis intended also to state the well-posedness result for the wave equa-
tion using the theory of semigroups. Linear semigroup theory received considerable attention in
the 1930s as a new approach in the study of linear partial differential equations. Note that the
linear semigroup theory has been later developed as an independent theory, with applications
in some other fields, such as ergodic theory, the theory of Markov processes, etc.

Outline: This dissertation is split into three chapters.

CHAPTER 1: Preliminaries

In this chapter, we present some well known results, definitions, properties and theorems
that are used throughout the dissertation. Firstly, we recall some basic knowledge on linear
operators and semigroups without proofs, including some theorems on strong, exponential and
polynomial stability of C0-semigroups. Next, we display a brief historical introduction to frac-
tional derivatives and we define the fractional derivative operator in the sense of Caputo. After
that, we introduce some preliminary facts on the Bessel functions and lastly, we define two
different types of geometric conditions.

CHAPTER 2: On the Stability of a DegenerateWave Equation Under Fractional
Feedbacks Acting on the Degenerate Boundary

This Chapter is devoted to the study of boundary stabilization of fractional type for degen-
erate wave equation of the form

(P )


utt(x, t)− (xγux(x, t))x = 0 in (0, 1)× (0,+∞),
(xγux)(0, t) = %∂α,ηt u(0, t) in (0,+∞),
u(1, t) = 0 in (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, 1),

where γ ∈ [0, 1) and % > 0. The notation ∂α,ηt stands for the generalized Caputo’s fractional
derivative of order α, (0 < α ≤ 1), with respect to the time variable (see [21]). It is defined as
follows

∂α,ηt u(t) =

ut(t) for α = 1, η ≥ 0,
1

Γ(1− α)

∫ t

0

(t− s)−αe−η(t−s)du

ds
(s) ds, for 0 < α < 1, η ≥ 0.
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We will explain the influence of the relation between the degenerate coefficient and the fractional
feedback on decay estimates.
CHAPTER 3: Global Existence and Asymptotic Behavior of the Solutions to a
Class of Nonlinear Second Order ODE With Delay Term

This Chapter is devoted to the study of following scalar nonlinear second order ODE with
delay term of the type

u′′ + c1|u′(t)|αu′(t) + c2|u′(t− τ)|αu′(t− τ) + c3|u|βu = 0

where α, β, c1, c2 et τ are positive constants.
We prove the global existence of its solutions in energy spaces by means of the energy

method under a condition between the weight of the delay term in the feedback and the weight
of the term without delay. Furthermore, we study the asymptotic behavior of solutions using
multiplier method and general weighted integral inequalities.
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Chapter 1

Preliminaries

1.1 Reminder on Real and complex analysis

Definition 1.1.1 A function f defined on a real interval I is said to be absolutely continuous
if for any ε > 0 there exists δ > 0 such that for any finite sequence of sub-intervals [an, bn]n≤N
of I with disjoint interiors we have

N∑
n=0

(bn − an) ≤ δ ⇒
N∑
n=0

|F (bn)− F (an)| < ε

Proposition 1.1.1 ([57]) If I = [a, b] then we have the equivalnces

1. f is absolutely continuous on I

2. ∃g ∈ L1 (I) such that ∫ x

a

g(t)dt = f (x)− f (a) ,∀x ∈ I

3. f is derivable almost everywhere, and its derivative f ′ satisfies∫ x

a

f ′(t)dt = f (x)− f (a) , almost everywhere

Definition 1.1.2 A function f : R → R is said to bo locally absolutely continuous if f is
absolutely continuous on every [a, b] ⊂ R.

9



10 CHAPTER 1. PRELIMINARIES

Theorem 1.1.1 (Rouche’s theorem, stronger version [32]) Let f and g be holomorphic
functions in a domain G. If K ⊂ G is a bounded region with continuous boundary ∂K and

|f(z)− g(z)| < |g(z)| ∀z ∈ ∂K

then f and g have the same number of roots (counting multiplicity) in K.

Definition 1.1.3 For a complex number z with <(z) > 0 we set

Γ(z) =

∫ +∞

0

tz−1e−tdt

The function z → Γ(z) is said the gamma function.

Proposition 1.1.2 ([28]) For <(z) > 0, we have

1.

Γ(z) = 2

∫ +∞

0

x2z−1e−x
2

dx

2.

Γ(z) =

∫ 1

0

(−ln(x))z−1dx

3.
Γ(z + 1) = zΓ(z)

4.
Γ(n+ 1) = n!,∀n ∈ N

Definition 1.1.4 Let Ω be an open subset of Rn. For p ∈ [1,+∞[ and m ∈ N, the set

Wm,p(Ω) = {u ∈ Lp(Ω)|Dαu ∈ Lp(Ω), ∀α ∈ Nn, |α| ≤ m}

is called the (m, p)-Sobolev space on Ω.

Wm,p is a Banach space when equipped with the norm

‖ u ‖Wm,p= (
∑
|α|≤m

‖ Dαu ‖pLp)
1
p

Proposition 1.1.3 ([14]) The space W 1,1(]0, 1[) is equal to the set of absolutely continuous
fonctions on ]0, 1[.

W 1,1(]0, 1[) = {f :]0, 1[→ R|f is absolutely continuous}
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Definition 1.1.5 For p = 2, the Sobolev space Wm,2(Ω) is denoted Hm(Ω)

Wm,2(Ω) = Hm(Ω)

Hm(Ω) is a Hilbert space, where the scalar product is given by

< u, v >Hm(Ω)=
∑
|α|≤m

< Dαu,Dαv >L2(Ω)

Theorem 1.1.2 (Rellich-Kondrachov theorem [14]) If Ω is a bounded open set of Rn with
a C1-boundary, then any bounded sequence in H1(Ω) admits a convergent subsequence in L2(Ω).

This theorem stats that any bounded set of H1(Ω) is compact in L2(Ω). We said that the
canonical injection i : H1(Ω)→ L2(Ω) is compact.

1.2 Linear Operators

The proofs of the following results can be found in [26] and [14].

Definition 1.2.1 Let X and Y be two Banach spaces. A linear mapping:

A : D(A)(⊂ X)→ Y

is called a linear operator. The D(A) ⊂ X is called the domain of A and R(A) ⊂ Y is called
the range of A:

R(A) = {Ax | x ∈ D(A)} .
A is said to be one-to-one (or injective) if Ax = 0 if and only if x = 0; A is said to be onto
(or surjective) if R(A) = Y ; A is said to be densely defined if

D(A) = X

.

Definition 1.2.2 A linear operator A is said to be closed if for any (xn)n≥1 ⊂ D(A) such that

xn → x, Axn → y, as n→∞,

then x ∈ D(A) and Ax = y. A is said to be bounded if D(A) = X and A maps a bounded set
of X into a bounded set of Y . A linear operator is bounded if and only if it is continuous, that
is,

xn → x0 ∈ X =⇒ Axn → Ax0 ∈ Y
for any (xn)n≥1 ⊂ X.
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Obviously, any operator which has bounded inverse must be closed. All the bounded opera-
tors from X to Y are denoted by L(X, Y ). In particular, when X = Y, L(X, Y ) is abbreviated
as L(X).

Theorem 1.2.1 Let X and Y be Banach spaces. Then L(X, Y ) is a Banach space with the
norm

‖A‖ = sup {‖Ax‖ | x ∈ X, ‖x‖ = 1} .

Definition 1.2.3 Let X be a Banach space. If Y = IR or Y = IC, then the operator in L(X, Y )
is called a linear functional on X. A bounded functional is also denoted by f .

By Theorem 1.2.1, all linear bounded functionals on X consist of a Banach space which is
called the dual of the space X, denoted by X∗.

A bounded operator is called compact operator if A maps any bounded set into a relatively
compact set which is a compact set but not necessarily closed. For a closed operator A, we can
define the graph space [D(A)] where the norm is defined by

‖x‖[D(A)] = ‖x‖+ ‖Ax‖, ∀x ∈ D(A). (1.1)

Let X and Y be two normed spaces. If there exists a one-to-one linear operator A mapping
X into Y having the property ‖Ax‖Y = ‖x‖X for every x ∈ X and y ∈ Y , then we call
A an isometric isomorphism between X and Y , and we say that X and Y are isometrically
isomorphic.

Definition 1.2.4 An operator sequence {An} ⊂ L(X, Y ) is said to be convergent to an operator
A ∈ L(X, Y ) in terms of the operator norm, if

‖An −A‖ → 0 as n→∞.

(An)n is said to be strongly convergent to A ∈ L(X, Y ), if for all x ∈ X,

Anx → Ax as n→∞.

(An)n is said to be weak∗ convergent to A ∈ L(X, Y ), if for all f ∈ Y ∗,

f(Anx) → f(Ax) as n→∞.

which is generally denoted by
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〈Anx, f〉 → 〈Ax, f〉 as n→∞.

where 〈., .〉 stands for the duality product between X and X∗, that is, < x, f > simply means
that

〈x, f〉 = 〈x, f〉X,X∗ = f(x).

Theorem 1.2.2 [Banach inverse theorem]
Let X and Y be two Banach spaces. If a linear operator A : X → Y defined on the whole space
X is an invertible and onto mapping, then A−1 ∈ L(Y,X).

Theorem 1.2.3 [Open mapping theorem]
Let X and Y be Banach spaces and let A be a bounded operator from X to Y . If R(A) = Y ,
then A maps an open set of X into an open set of Y .

Theorem 1.2.4 [Closed graph theorem]
Suppose that A is a closed operator in a Banach space X. Then A must be bounded provided
D(A) = X.

Theorem 1.2.5 [Uniform convergence theorem]
Let X and Y be Banach spaces. Suppose that {Tn} ⊂ L(X, Y ). If

sup
n
{‖Tnx‖} <∞, ∀x ∈ X,

then

sup
n
{‖Tn‖} <∞.

Let A be a linear operator in a Banach space. A is said to be densely defined in X if D(A)
is dense in X. For a densely defined operator A, there exists a unique operator A∗ defined in
X∗, which is called the adjoint operator of A satisfying

〈Ax, y〉 = 〈x,A∗y〉, ∀x ∈ D(A), y ∈ D(A∗),

where

D(A∗) = {f ∈ X∗ | ∃z ∈ X∗ such that〈Ax, f〉 = 〈x, z〉, ∀x ∈ D(A)} .

When X is a Hilbert space, we consider X∗ = X attributed to the following Riesz repre-
sentation theorem.
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Theorem 1.2.6 [Riesz representation theorem]
Suppose that H is a Hilbert space. Then f ∈ H∗ if and only if there is an x ∈ H such that

f(y) = 〈y, x〉, ∀x, y ∈ H

Definition 1.2.5 A closed linear operator A : X → Y between two Banach spaces is said to
be of Fredholm if

1. D(A) is dense in X.

2. dim kerA < +∞

3. dim coker A := dim(Y/ranA) < +∞

In this case, the index of Fredholm of A is

ind A = dim kerA− dim coker A

Theorem 1.2.7 (Fredholm’s alternative) If A : X → X is a compact linear operator on a
Banach space, then, exactly one of the following assertions holds

• I −A is surjective (and hence it is bijective).

• dim ker I −A > 0.

Theorem 1.2.8 [Lax Milgram theorem]
Let a(x, y) be a sesquilinear form, that is, it is linear in x and conjugate linear in y, and satisfies

• there is an M > 0 such that |a(x, y)| ≤M‖x‖‖y‖ for all x, y ∈ H;

• there is a δ > 0 such that for any x ∈ H, |a(x, x)| ≥ δ‖x‖2.

Then there exists a unique A ∈ L(H) which is bounded invertible and satisfies

a(x, y) = 〈x,Ay〉, ∀x, y ∈ H.

Definition 1.2.6 A linear operator in a Hilbert space is said to be symmetric if

A∗ = A on D(A) and D(A∗) ⊇ D(A)

A symmetric operator is said to be self-adjoint, if A∗ = A.

For bounded operators, the symmetric and self-adjoint are the same. But for unbounded
operators, they are different.
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Definition 1.2.7 A linear operator B in a Hilbert space H is said to be A-bounded if

• D(B) ⊃ D(A), and

• there are a, b > 0 such that

‖Bx‖ ≤ a‖Ax‖+ b‖x‖, ∀x ∈ D(A).

Theorem 1.2.9 [Kato-Rellich theorem]
Let A be a self-adjoint operator in a Hilbert space H and B be symmetric and A-bounded, such
that

‖Bx‖ ≤ a‖Ax‖+ b‖x‖, ∀x ∈ D(A), 0 < a < 1, b > 0

then A+ B is self-adjoint in D(A). In particular, when B is bounded, A+ B is self-adjoint.

Definition 1.2.8 Let A ∈ L(H) be a self-adjoint operator in a Hilbert space H. A is said to
be positive if

〈Ax, x〉 ≥ 0, ∀x ∈ H. (1.2)

A positive operator is denoted by A ≥ 0; A is said to be positive definite if the equality in
1.2 holds true only if x = 0, which is denoted by A > 0; A positive operator A is said to be
strictly positive if there exists an m > 0 such that

〈Ax, x〉 ≥ m‖x‖2, ∀x ∈ D(A). (1.3)

1.3 The spectrum of linear operators

The proofs of the following results can be found in [26] and [14].

Definition 1.3.1 Suppose that X is a Banach space and A : D(A)(⊂ X) → X is a linear
operator. The resolvent set ρ(A) of A is an open set in the complex plane, which is defined by

ρ(A) =
{
λ ∈ IC | (λ−A)−1 ∈ L(X)

}
.

When λ ∈ ρ(A), the operator R(λ,A) = (λ − A)−1 is called the resolvent of A. If one
of resolvents is compact, then any of the resolvents must be compact. This comes from the
following resolvent formula:

(λ−A)−1 − (µ−A)−1 = (µ− λ)(λ−A)−1(µ−A)−1, ∀λ, µ ∈ ρ(A)

The spectrum σ(A) of A is the supplement set of the resolvent set in the complex plane,
that is,
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σ(A) = IC\ρ(A).

Generally, the spectrum σ(A) is decomposed into three parts:

σ(A) = σp(A) ∪ σc(A) ∪ σr(A)

where

• the point spectrum

σp(A) = {λ ∈ IC | ∃x ∈ X\ {0} so that Ax = λx} ;

• the continuous spectrum

σc(A) =
{
λ ∈ IC | (λ−A) is invertible and R(λ−A) = X

}
;

• the residual spectrum

σr(A) =
{
λ ∈ IC | (λ−A) is invertible and R(λ−A) 6= X

}
;

When λ ∈ σp(A), any nonzero vector x satisfying Ax = λx is said to be an eigenvector
(it is also called eigenfunction if the space is a function space) of A. For a matrix in ICn, the
spectrum is just the set of eigenvalues.

1.4 Semigroups of linear operators

The proofs of the following results can be found in [26].

Definition 1.4.1 Semigroup theory is aiming to solve the following linear differential equation
in Banach space X: {

u̇(t) = Au(t), t > 0,
u(0) = x ∈ X, (1.4)

where A : D(A)(⊂ X)→ X is a linear operator.

Equation (1.4) is said to be well-posed (for bounded A) If:

• for any initial value x ∈ D(A) = X, there exists a solution u(x, t) to (1.4) which is
differentiable for t > 0, continuous at t = 0 and u(x, t) satisfies (1.4) for t > 0,
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• u(x, t) depends continuously on the initial condition x, that is:

x→ 0 implies u(x, t)→ 0 for each t > 0;

• u(x, t) is unique for each x ∈ D(A) = X.

We can then define an operator T by

T (t)x = u(x, t) for each t ≥ 0.

From the existence and uniqueness of the solution u(x, t), we know that T (t), t ≥ 0 is well
defined on X.

Definition 1.4.2 Let X be a Banach space and T (t) : X → X be a family of linear bounded
operators, for t ≥ 0, T (t) is called a semigroup of linear bounded operators, or simply a semi-
group, on X if

• T (0) = I;

• T (t+ s) = T (t)T (s), ∀t ≥ 0, ∀s ≥ 0

A semigroup T (t) is called uniformly continuous if

lim
t→0
‖T (t)− I‖ = 0,

and is called strongly continuous, (or C0-semigroup for short), if

lim
t→0

T (t)x− x = 0, ∀x ∈ X

Definition 1.4.3 Let T (t) be a C0-semigroup on a Banach space X. The operator A defined
as 

Ax = lim
t−→0

T (t)x− x
t

, ∀x ∈ D(A),

D(A) =

{
x ∈ X | lim

t−→0

T (t)x− x
t

exists

}
is called the infinitesimal generator of the C0-semigroup T (t).

Theorem 1.4.1 Let X be a Banach space. For any bounded linear operator A on X,

T (t) = eAt

is a uniformly continuous semigroup and A is the infinitesimal generator of T (t) and we have
D(A) = X.



18 CHAPTER 1. PRELIMINARIES

Theorem 1.4.2 Let T (t) be a C0-semigroup on a Banach space X, then the following holds

• There exists constants M > 1 and ω ≥ 0 such that

‖T (t)‖ ≤Meωt, ∀t ≥ 0

• Suppose that A is the generator of T (t). Then

{λ ∈ IC | Re(λ) > ω} ⊂ ρ(A).

• In addition, if Re(λ) > ω, then

R(λ;A)x = (λ−A)−1x =

∫ ∞
0

e−λtT (t)xdt, ∀x ∈ X.

• T (t) is strongly continuous on X. i.e. for any x ∈ X, the map t→ T (t)x is continuous.

Theorem 1.4.3 Let A be the generator of a C0-semigroup T (t) on a Banach space X. we
have the following

• D(A) is dense in X

• A is a closed operator.

• For any n ≥ 1, D(An) is dense in X. The set

D =
∞⋂
n=1

D(An)

is also dense in X and is invariant under T (t). i.e. for x ∈ D, T (t)x ∈ D for t ≥ 0.
Moreover, if we define

D∞ = {x ∈ X|t→ T (t)x ∈ C∞} .

then we have D = D∞

Theorem 1.4.4 Let T (t) and S(t) be C0-semigroups, and let A and B be their infinitesimal
generators, respectively. Then

A = B ⇒ T (t) = S(t) ∀t ≥ 0.
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Definition 1.4.4 Let T (t) be a C0-semigroup on a Banach space X and let M ≥ 1 and ω ≥ 0.

If ‖T (t)‖ ≤M for t ≥ 0 then T (t) is called uniformly bounded.

Moreover, if we have M = 1, then T (t) is called a contraction.

Theorem 1.4.5 [Hille-Yosida]
Let X be a Banach space and let A be a linear (not necessirely bounded) operator in X. Then,
A is the infinitesimal generator of a C0-semigroup of contractions T (t) on X, if and only if

• A is closed and D(A) is dense in X

• There exist positive constants M and ω verifying the property: for all λ ∈ ρ(A), <λ > ω,
the following holds

‖R(λ,A)n‖ ≤ M

(<λ− ω)n
, n = 1, 2, ...

Corollary 1.4.1 Let X be a Banach space and let A be a linear (not necessirely bounded)
operator in X. Then, A is the infinitesimal generator of the C0-semigroup of contractions T (t)
on X, if and only if the following holds.

• A is closed and D(A) is dense in X

• For any λ > 0, λ ∈ ρ(A) and

‖R(λ,A)‖ ≤ 1

λ
.

Definition 1.4.5 Let X be a Banach space and let F (X) be the duality set. A linear operator
A in X is said to be dissipative if for every x ∈ D(A) there is an x∗ ∈ F (X) such that

Re〈Ax, x∗〉 ≤ 0

Corollary 1.4.2 Let A be a linear operator in a Banach space X.Then A is dissipative if and
only if

‖x‖ ≤ ‖x− hAx‖, for each h > 0 and all x ∈ D(A).

Definition 1.4.6 A linear operator A in a Banach space X is called m-dissipative if A is
dissipative and R(λ−A) = X, for some λ > 0.
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Remark 1.4.1 In a Hilbert space H, the dissipativity of A simply means that

Re〈Ax, x〉 ≤ 0, ∀x ∈ D(A).

Theorem 1.4.6 [Lümer-Phillips]
Let A be a linear operator in a Banach space X. Then A generates a C0-semigroup of

contractions on X if and only if

• D(A) = X.

• A is dissipative.

Corollary 1.4.3 Let A be a linear operator in a Banach space X. Then A generates a C0-
semigroup of contractions on X if and only if

• A is densely defined and closed.

• Both A and A∗ are dissipative.

Remark 1.4.2 When X is reflexive, the condition D(A) = X can be removed in the Lümer-
Phillips theorem.

1.5 Stability of C0-semigroups.

The proofs of the following results can be found in [26].

Definition 1.5.1 Let T (t) be a C0-semigroup on a Banach space X.

• T (t) is said to be exponentially stable, if there exist two positive constants M , ω > 0 such
that

‖T (t)‖ ≤Me−ωt, ∀t ≥ 0.

• T (t) is said to be strongly or asymptotically stable, if

lim
t→+∞

‖T (t)x‖ = 0 ∀x ∈ X.

• T (t) is said to be weakly stable, if

〈T (t)x, y〉 → 0 as t→∞, ∀x ∈ X, y ∈ X∗.
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• T (t) is said to be polynomially stable if there exist two positive constants C and α such
that

‖T (t)‖ ≤ Ct−α ∀t > 0, ∀x ∈ X.

Theorem 1.5.1 [Spectral mapping theorem]
Let T (t) be a C0-semigroup on a Banach space X and A be its infinitesimal generator. Then

etσp(A) ⊂ σp(T (t)) ⊂ etσ(A) ∪ {0} .

More precisely, if λ ∈ σp(A). then eλt ∈ σp(T (t)), and if eλt ∈ σp(T (t)) then there exists an
integer k such that λk = λ+ 2πik/t ∈ σp(A).

Theorem 1.5.2 Let T (t) be a C0-semigroup on a Banach space with generator A. Then

etσ(A) ⊂ σ(T (t)).

Proposition 1.5.1 Let X = H be a Hilbert space. Suppose that T (t) is a weakly stable C0-
semigroup on H. i.e. 〈T (t)x, y〉 → 0 as t → ∞ for all x, y ∈ H. If its infinitesimal generator
A has compact resolvent, then T (t) is asymptotically stable. i.e. ‖T (t)z‖ → 0 as t → ∞ for
all z ∈ H.

Theorem 1.5.3 Let T (t) be a uniformly bounded C0-semigroup on a Banach space X and let
A be its generator. Then

• If T (t) is asymptotically stable then σ(A) ∩ iIR ⊂ σc(A).

• If σ(A) ∩ iIR ⊂ σc(A) and σc(A) is countable, then T (t) is asymptotically stable.

• If R(λ,A) is compact, then T (t) is asymptotically stable if and only if Reλ < 0 for all
λ ∈ σ(A).

Corollary 1.5.1 Let T (t) be a C0-semigroup on a Banach space X and A be its generator.
Suppose that σ(A)∩ iIR ⊂ σc(A) and σc(A) is countable, then T (t) is weakly stable if and only
if T (t) is asymptotically stable.

Theorem 1.5.4 Let A be the infinitesimal generator of a C0-semigroup T (t) on a Banach
space X. If for some p ≥ 1∫ ∞

0

‖T (t)x‖pdt <∞, for every x ∈ X,

then T (t) is exponentially stable.
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Remark 1.5.1 We say that T (t) is exponentially asymptotically stable if for every x ∈ X,
there exist Mx, ωx > 0 depending on x such that

‖T (t)x‖ ≤Mxe
−ωxt.

Theorem 1.5.4 shows that a linear C0-semigroup is exponentially asymptotically stable if
and only if it is exponentially stable.

Theorem 1.5.5 Let T (t) be a C0-semigroup with infinitesimal generator A. The following
statements are equivalent.

• T (t) is exponentially stable, i.e.

‖T (t)x‖ ≤Me−ωt.

for M ≥ 1 and ω > 0.

• lim
t→∞
‖T (t)‖ = 0.

• There exists a t0 > 0 such that
‖T (t0)‖ < 1.

We assume, that X = H is a Hilbert space with the inner product 〈., .〉 and the induced
norm ‖.‖. Recall that if A generates a C0-semigroup T (t) on H with ‖T (t)‖ ≤Mewt, then for
all λ with Reλ > ω,

R(λ,A)x =

∫ ∞
0

e−λtT (t)x dt

Theorem 1.5.6 Let T (t) be a C0-semigroup on a Hilbert space H with generator A. Then
T (t) is exponentially stable if and only if

{λ | Reλ ≥ 0} ⊂ σ(A)

and
|R(λ,A)‖ ≤M

for all λ with Reλ ≥ 0 and some constant M > 0.

Theorem 1.5.7 [Huang-Pruss]
Assume that A is the generator of a strongly continuous semigroup of contractions (S(t))t≥0

on H. S(t) is uniformly stable if and only if
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1. iIR ⊂ ρ(A).

2. sup
β∈IR

‖(iβI −A)−1‖L(H) < +∞.

Theorem 1.5.8 [Batty , A.Borichev and Y.Tomilov, Z. Liu and B. Rao.]
Assume that A is the generator of a strongly continuous semigroup of contractions (S(t))t≥0

on H. If iIR ⊂ ρ(A), then for a fixed l > 0 the following conditions are equivalent

1. lim
|λ|→+∞

sup 1
λl
‖(λI −A)−1‖L(H) < +∞.

2. ‖S(t)U0‖H ≤ C
tl−1‖U0‖D(A) ∀t > 0, U0 ∈ D(A), for some C > 0.

1.6 Bessel functions

The proofs of the following results can be found in [28] and [59].

The second order differential equation given as

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = 0

is known as Bessel′s differential equation which is often encountered when solving boundary
value problems, especially when working in cylindrical or spherical coordinates. The constant
ν, determines the order of the Bessel functions found in the solution to Bessel′s differential
equation and can take any real numbered value. For cylindrical problems the order of the
Bessel function is an integer value (ν = n) while for spherical problems the order is of half
integer value (ν = n+ 1/2).

Since Bessel′s differential equation is a second-order equation, there must be two linearly
independent solutions. Typically the general solution is given as:

y = AJν(x) +BYν(x)

where A and B are arbitrary constants and the special functions Jν(x) and Yν(x) are:

• Bessel functions of the first kind, Jν(x), which are finite at x = 0 for all real values of ν

• Bessel functions of the second kind, Yν(x), (also known as Weber or Neumann functions)
which are singular at x = 0.
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The Bessel function of the first kind of order ν can be determined using an infinite power
series expansion as follows:

Jν(x) =
∞∑
κ=0

(−1)κ(x/2)ν+2κ

κ!Γ(ν + κ+ 1)

=
1

Γ(1 + ν)

(x
2

)ν {
1− (x/2)2

1(1 + ν)

(
1− (x/2)2

2(2 + ν)

(
1− (x/2)2

3(3 + ν)
(1− ...)

))}
or by noting that Γ(ν + κ+ 1) = (ν + κ)!, we can write

Jν(x) =
∞∑
κ=0

(−1)κ(x/2)ν+2κ

κ!(ν + κ)!

The Bessel function of the second kind, Yν(x) is sometimes referred to as a Weber function
or a Neumann function (which can be denoted as Nν(x)). It is related to the Bessel function
of the first kind as follows:

Yν(x) =
Jν(x)cos(νπ)− J−ν(x)

sin(νπ)

where we take the limit ν → n for integer values of ν.

For integer order ν, Jν , J−ν are not linearly independent:

J−ν(x) = (−1)νJν(x)

Yν(x) = (−1)νYν(x)

in which case Yν is needed to provide the second linearly independent solution of Bessel’s
equation. In contrast, for non-integer orders, Jν and J−ν are linearly independent and Yν is
redundant.

The Bessel function of the second kind of order ν can be expressed in terms of the Bessel
function of the first kind as follows:

Yν(x) =
2

π
Jν(x)

(
ln
x

2
+ γ
)
− 1

π

ν−1∑
κ=0

(ν − κ− 1)!

κ!

(x
2

)2κ−ν
+

+
1

π

∞∑
κ=0

(−1)κ−1

[(
1 +

1

2
+ ...+

1

κ

)
+

(
1 +

1

2
+ ...+

1

κ+ ν

)]
κ!(κ+ ν)!

(x
2

)2κ+ν
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Recurrence formulas satisfied by the Bessel functions

Bessel functions of higher order be expressed by Bessel functions of lower orders for all real
values of ν.

Jν+1(x) =
2ν

x
Jν(x)− Jν−1(x), Yν+1(x) =

2ν

x
Yν(x)− Yν−1(x)

J
′

ν+1(x) =
1

2
[Jν−1(x)− Jν+1(x)] , Y

′

ν+1(x) =
1

2
[Yν−1(x)− Yν+1(x)]

J
′

ν(x) = Jν−1(x)− ν

x
Jν(x), Y

′

ν (x) = Yν−1(x)− ν

x
Yν(x)

J
′

ν(x) =
ν

x
Jν(x)− Jν+1(x), Y

′

ν (x) =
ν

x
Yν(x)− Yν+1(x)

d

dx
[xνJν(x)] = xνJν−1(x),

d

dx
[xνYν(x)] = xνYν−1(x)

d

dx

[
x−νJν(x)

]
= −x−νJν+1(x),

d

dx

[
x−νYν(x)

]
= −x−νYν+1(x)

Polynomial approximations of The Bessel functions:

For x ≥ 2, we can use the following approximation based upon asymptotic expansions:

Jn(x) =

(
2

πx

)1/2

[Pn(x)cosu−Qn(x)sinu]

where u = x− (2n+ 1)
π

4
and the polynomials Pn(x) and Qn(x) are given by

Pn(x) = 1−(4n2 − 12)(4n2 − 32)

2.1(8x)2

(
1− (4n2 − 52)(4n2 − 72)

4.3(8x)2

(
1− (4n2 − 92)(4n2 − 112)

6.5(8x)2
(1− ...)

))
and

Qn(x) =
(4n2 − 12)

1!(8x)

(
1− (4n2 − 32)(4n2 − 52)

3.2(8x)2

(
1− (4n2 − 72)(4n2 − 92)

5.4(8x)2
(1− ...)

))
The general form of these terms can be written as
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Pn(x) =
(4n2 − (4k − 3)2)(4n2 − (4k − 1)2)

2k(2k − 1)(8x)2
, k = 1, 2, 3...

Qn(x) =
(4n2 − (4k − 1)2)(4n2 − (4k + 1)2)

2k(2k + 1)(8x)2
, k = 1, 2, 3...

• Asymptotic approximation of Bessel Functions (large values of x):

Y0(x) =

(
2

πx

)1/2

[P0(x)sin(x− π/4) +Q0(x)cos(x− π/4)]

Y1(x) =

(
2

πx

)1/2

[P1(x)sin(x− 3π/4) +Q1(x)cos(x− 3π/4)]

1.7 Fractional derivatives

Some history of fractional calculus:

In a letter dated September 30th, 1695 L’Hospital wrote to Leibniz asking him about
the meaning of dny/dxn if n = 1/2, that is ”what if n is fractional?”. Leibniz’s response:”An
apparent paradox, from which one day useful consequences will be drawn.”
In 1819 S. F. Lacroix was the first to mention in some two pages a derivative of arbitrary order.
Thus for y = xa, a ∈ IR+, he showed that

d1/2y

dx1/2
=

Γ(a+ 1)

Γ(1 + 1/2)
xa−1/2.

In particular he had (d/dx)1/2x = 2
√
x/π.

In 1822 J. B. J. Fourier derived an integral representation for f(x),

f(x) =
1

2π

∫
IR
f(α)dα

∫
IR

cos p(x− α)dp,

obtained (formally) the derivative version

dν

dxν
f(x) =

1

2π

∫
IR
f(α)dα

∫
IR
pν cos[p(x− α) +

νπ

2
]dp

where ”the number v will be regarded as any quantity whatever, positive or negative”.
In 1823 Abel resolved the integral equation arising from the brachistochrone problem, namely

1

Γ(α)

∫ x

0

g(u)

(x− u)1−αdu = f(x), 0 < α < 1
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with the solution

g(x) =
1

Γ(1− α)

d

dx

∫ x

0

f(u)

(x− u)α
du

Abel never solved the problem by fractional calculus but, in 1832 Liouville did solve this
integral equation.
Perhaps the first serious attempt to give a logical definition of a fractional derivative is due to
Liouville; he published nine papers on the subject between 1832 and 1837, the last in the field
in 1855. They grew out of Liouville’s early work on electromagnetism. There is further work
of George Peacock (1833), D. F. Gregory (1841), Augustus de Morgan (1842), P. Kelland
(1846), William Center (1848). Especially basic is Riemann’s student paper of 1847.
After the participation of Riemann and the work of Cayley in 1880, among the mathematicians
spearheading research in the broad area of fractional calculus until 1941 were S.F. Lacroix,
J.B.J. Fourier, N.H. Abel, J. Liouville, A. De Morgan, B. Riemann, Hj. Holmgren, K. Griinwald,
A.V. Letnikov, N.Ya. Sonine, J. Hadamard, G.H. Hardy, H. Weyl, M. Riesz, H.T. Davis, A.
Marchaud, J.E. Littlewood, E.L. Post, E.R. Love, B.Sz.-Nagy, A. Erdelyi and H. Kober.
Fractional calculus has developed especially intensively since 1974 when the first international
conference in the field took place.It was organized by Bertram Ross.
Samko et al in their encyclopedic volume state and we cite: ”We pay tribute to investigators
of recent decades by citing the names of mathematicians who have made a valuable scientific
contribution to fractional calculus development from 1941 until the present [1990]. These are
M.A. Al- Bassam, L.S. Bosanquet, P.L. Butzer, M.M. Dzherbashyan, A. Erdelyi, T.M. Flett,
Ch. Fox, S.G. Gindikin, S.L. Kalla, LA. Kipriyanov, H. Kober, P.I. Lizorkin, E.R. Love, A.C.
McBride, M. Mikolas, S.M. Nikol’skii, K. Nishimoto, LI. Ogievetskii, R.O. O’Neil, T.J. Osier, S.
Owa, B. Ross, M. Saigo, I.N. Sneddon, H.M. Srivastava, A.F. Timan, U. Westphal, A. Zygmund
and others”. To this list must of course be added the names of the authors of Samko et al and
many other mathematicians, particularly those of the younger generation. Books especially
devoted to fractional calculus include K.B. Oldham and J. Spanier, S.G. Samko, A.A. Kilbas
and O.I. Marichev, V.S. Kiryakova [91], K.S. Miller and B. Ross, B. Rubin. Books containing
a chapter or sections dealing with certain aspects of fractional calculus include H.T. Davis,
A. Zygmund, M.M.Dzherbashyan, I.N. Sneddon, P.L. Butzer and R.J. Nessel, P.L. Butzer and
W. Trebels, G.O. Okikiolu, S. Fenyo and H.W. Stolle, H.M. Srivastava and H.L. Manocha, R.
Gorenfio and S. Vessella.

Definitions of fractional integrals and derivatives of different kind

Let f be a real function of a real variable. All the following definitions are formal.

Definition 1.7.1 The left Riemann-Liouville fractional integral of order α > 0 starting from
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a has the following form

(aI
αf)(x) =

1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt.

Definition 1.7.2 The right Riemann-Liouville fractional integral of order α > 0 ending at
b > a is defined by

(Iαb f)(x) =
1

Γ(α)

∫ b

x

(x− t)α−1f(t)dt.

Definition 1.7.3 The left Riemann-Liouville fractional derivative of order α > 0 starting at
a is given below

(aD
αf)(x) = (

d

dx
)n(aI

n−αf)(x), n = [α] + 1.

Definition 1.7.4 The right Riemann-Liouville fractional derivative of order α > 0 ending at
b becomes

(Dα
b f)(x) = (− d

dx
)n(In−αb f)(x).

Definition 1.7.5 The left Caputo fractional derivative of order α > 0 starting from a has the
following form

(aD
αf)(x) = (aIn−αf (n))(x), n = [α] + 1.

Definition 1.7.6 The right Caputo fractional derivative of order α > 0 ending at b becomes

(Dα
b f)(x) = (In−αb (−1)nf (n))(x).

The Hadamard type fractional integrals and derivatives were introduced in [15] as:

Definition 1.7.7 The left Hadamard fractional integral of order α > 0 starting from a has the
following form

(aI
αf)(x) =

1

Γ(α)

∫ x

a

(lnx− ln t)α−1f(t)dt

Definition 1.7.8 The right Hadamard fractional integral of order α > 0 ending at b > a is
defined by

(Iαb f)(x) =
1

Γ(α)

∫ b

x

(ln t− lnx)α−1f(t)dt

Definition 1.7.9 The left Hadamard fractional derivative of order α > 0 starting at a is given
below

(aD
αf)(x) = (x

d

dx
)n(aIn−αf)(x), n = [α] + 1.
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Definition 1.7.10 The right Hadamard fractional derivative of order α > 0 ending at b is

(Dα
b f)(x) = (−x d

dx
)n(In−αb f)(x).

Definition 1.7.11 The fractional derivative of order α, 0 < α < 1, in sense of Caputo, is
defined by

Dαf(t) =
1

Γ(1− α)

∫ t

0

(t− s)−α df
ds

(s)ds.

Definition 1.7.12 The fractional integral of order α, 0 < α < 1, in sense of Riemann-
Liouville, is defined by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds.

Remark 1.7.1 From the above definitions, clearly

Dαf = I1−αDf, 0 < α < 1.

Lemma 1.7.1
IαDαf(t) = f(t)− f(0), 0 < α < 1.

Lemma 1.7.2 If
Dβf(0) = 0.

then
DαDβf = Dα+βf, 0 < α < 1, 0 < β < 1.

Now, we give the definitions of the generalized Caputo’s fractional derivative and the gener-
alized fractional integral. These exponentially modified fractional integro-differential operators
were first proposed in [54].

Definition 1.7.13 The generalized Caputo’s fractional derivative is given by

Dα,ηf(t) =
1

Γ(1− α)

∫ t

0

(t− s)−αe−η(t−s) df

ds
(s) ds, 0 < α < 1, η ≥ 0.

Remark 1.7.2 The operators Dα and Dα,η differ just by their kernels.

Definition 1.7.14 The generalized fractional integral is given by

Iα,ηf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1e−η(t−s)f(s) ds, 0 < α < 1, η ≥ 0.

Remark 1.7.3 We have

Dα,ηf = I1−α,ηDf, 0 < α < 1, η ≥ 0.
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Chapter 2

On the stability of a degenerate wave
equation under fractional feedbacks
acting on the degenerate boundary

2.1 Introduction

In this chapter, we are concerned with the boundary stabilization of fractional type for
degenerate wave equation of the form

(P )


utt(x, t) = (xγux(x, t))x0 in (0, 1)× (0,+∞),
(xγux)(0, t) = %∂α,ηt u(0, t) in (0,+∞),
u(1, t) = 0 in (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, 1),

where γ ∈ [0, 1) and % > 0. The notation ∂α,ηt stands for the generalized Caputo’s fractional
derivative of order α, (0 < α ≤ 1), with respect to the time variable (see [21]). It is defined as
follows

∂α,ηt u(t) =

ut(t) for α = 1, η ≥ 0,
1

Γ(1− α)

∫ t

0

(t− s)−αe−η(t−s)du

ds
(s) ds, for 0 < α < 1, η ≥ 0.

The degenerate wave equation (P ) (i.e γ 6= 0) can describe the vibration problem of an elastic
string. In a neighborhood of an endpoint x = 0 of this string, the elastic is sufficiently small
or the linear density is large enough. Indeed a mathematical model that describes transverse
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vibration of an elastic string is given by

utt(x, t)−
(
T (x)

ρ(x)
ux(x, t)

)
x

+ lower terms = 0,

where T is the tension of a string and ρ is the density of the string. The elasticity of the
string can stretch proportionally to a variation in tension. Hence, the wave equation becomes
degenerate when T (x)→ 0 as x→ 0 or ρ(x)→ +∞ as x→ 0.

In [55], G. Propst and J. Pruss consider the following model for the evolution of sound in
a compressible fluid with viscoelastic surface, that is{

ptt(x, t)−∆p(x, t) = 0, t ∈ IR, x ∈ Ω
∂p

∂n
(x, t) + a ∗ pt(x, t) = 0, t ∈ IR, x ∈ ∂Ω,

where p(x, t) ∈ IR denote acoustic pressure, Ω ⊂ IR3 is a domain with smooth boundary and
n(x) is the outer normal to ∂Ω at x. The convolution is a∗ v(t, .) =

∫ t
−∞ a(t− s)v(s, .) ds, a is a

given real-valued function on [0,∞). Physically, the boundary condition models the interaction
of a viscoelastic boundary material with memory and the incident waves. It is mentioned in
[55] that these boundary conditions model well the reflexion of sound at surfaces of materials
that are of interest in ingineering practice.

It has been shown (see [50], [48] and [24]) that, as ∂t, the fractional derivative ∂αt forces the
system to become dissipative and the solution to converge to the equilibrium state. Therefore,
when applied on the boundary, we can consider them as controllers which help to reduce the
vibrations.

Moreover, fractional derivatives can improve performance not achievable before using con-
trols of integer-order type and provide an excellent instrument for the description of memory
and hereditary properties of various materials and processes (see [45]). This is the main advan-
tage of fractional derivatives in comparison with classical integer-order models, in which such
effects are in fact neglected.

The bibliography of works concerning the stabilization of nondegenerate wave equation with
different types of dampings is truly long (see e.g. [22], [23] and [20] and the references therein).
In [23], for a(x) = a1x + a0 : D’Andrea-Novel, F. Boustany and B. Rao have established
aymptotics stabilization with the following boundary damping{

(aux)(0, t) = 0,
(aux)(1, t) = −ku(1, t)− ut(1, t), k > 0.

In [20], B. Chentouf, C.Z. Xu and G. Sallet considered the following modelization of a flexible
torque arm controlled by two feedbacks depending only on the boundary velocities:utt(x, t)− (a(x)ux)x + αut(x, t) + βu(x, t) = 0, 0 < x < 1, t > 0,

(a(x)ux)(0) = k1ut(0, t), t > 0,
(a(x)ux)(1) = −k2ut(1, t), t > 0,
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where {
α ≥ 0, β > 0, k1, k2 ≥ 0, k1 + k2 6= 0,
a ∈ W 1,∞(0, 1), a(x) ≥ a0 for all x ∈ [0, 1].

They proved the exponential decay of the solutions.
On the contrary, when the coefficient a(x) is degenerate very little is known in the literature,

even though many problems that are relevant for applications are described by hyperbolic
equations degenerating at the boundary of the space domain (see [33]).

The controllability problems for degenerate/singular heat equations have been studied by
many authors in the last decade (see, for instance, [12], [18], [4], [17], [16], [30] and [31]).

New Carleman estimates and moment methods (based on spectral analysis) have been used
to derive observability inequalities for the corresponding dual problems. Recently, there are
more and more authors who studied the exact controllability of the degenerate wave equations,
see related studies [33], [63], [8]. In [33], for any 0 < γ < 1, the null controllability of the
following degenerate wave equation was considered:

(PC)

utt(x, t)− (xγux(x, t))x = 0 on (0, 1)× (0, T ),
u(0, t) = θ(t), u(1, t) = 0 on (0, T ),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, 1),

where θ(t) is the control variable and it acts on the degenerate boundary. He proved that the
degeneracy affect the exact controllability and an explicit expression for the controllability time
depending on the parameter γ is given.

Very recently, A. Benaissa and C. Aichi [10] studied the degenerate wave equation of the
type

utt(x, t) = (a(x)ux(x, t))x in (0, 1)× (0,+∞), (2.1)

where the coefficient a is a positive function on ]0, 1] but vanishes at zero. The degeneracy of
(2.1) at x = 0 is measured by the parameter µa defined by

µa = sup
0<x≤1

x|a′(x)|
a(x)

(2.2)

and the initial conditions are

u(x, 0) = u0(x), ut(x, 0) = u1(x), (2.3)

followed by the boundary conditions

(P1)


{
u(0, t) = 0 if 0 ≤ µa < 1
(aux)(0, t) = 0 if 1 ≤ µa < 2

in (0,+∞),

(aux)(1, t) + %∂α,ηt u(1, t) + βu(1, t) = 0 in (0,+∞).
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They obtained optimal polynomial stability of the solutions. Moreover, the degeneracy does
not affect the decay rates of the energy.

Here we want to focus on the following remarks:

• System (P ) under study is different from one studied on [10]. Indeed, the control is
located at x = 0.

• The explicit representation of the resolvent gives us a sharp polynomial decay rate, how-
ever in [10], stabilization is done under the frequency domain method based on multiplier
techniques (see [41]). Unfortunately, this method does not seem to be applicable in the
case of damping acting at x = 0.

In this work, we explain the influence of the relation between the degenerate coefficient and
the fractional feedback on decay estimates. To our best knowledge, this is the first attempt to
study the global decaying solutions for a degenerate wave equation under a control acting on
the degenerate boundary.

This chapter is organized as follows. In sections 2 and 3, we give preliminary results and
we reformulate the system (P ) into an augmented system by coupling the degenerate wave
equation with a suitable diffusion equation and we show the well-posedness of our problem
by semigroup theory. In section 4, we prove lack of exponential stability by spectral analysis
and by using Bessel functions. In the last section, we prove an optimal decay rate. The proof
heavily relies on Bessel equations and Borichev-Tomilov Theorem.

2.2 Preliminary results

Now, we introduce, as in [19], the following weighted Sobolev spaces:

H1
0,γ(0, 1) =

{
u is locally absolutely continuous in (0, 1] : xγ/2ux ∈ L2(0, 1)/ u(1) = 0

}
,

H1
γ(0, 1) =

{
u is locally absolutely continuous in (0, 1] : xγ/2ux ∈ L2(0, 1)

}
.

We remark that H1
γ(0, 1) is a Hilbert space with the scalar product

(u, v)H1
γ(0,1) =

∫ 1

0

(uv + xγux(x)vx(x)) dx, ∀u, v ∈ H1
γ(0, 1).

Let us also set

|u|H1
0,γ(0,1) =

(∫ 1

0

xγ|ux(x)|2 dx
)1/2

∀u ∈ H1
γ(0, 1).
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Actually, | · |H1
0,γ(0,1) is an equivalent norm on the closed subspace H1

0,γ(0, 1) to the norm of

H1
γ(0, 1). This fact is a simple consequence of the following version of Poincaré’s inequality.

Proposition 2.2.1 There is a positive constant C∗ = C(γ) such that

‖u‖2
L2(Ω) ≤ C∗|u|2H1

0,γ(0,1) ∀u ∈ H1
0,γ(0, 1). (2.4)

Proof. Let u ∈ H1
0,γ(0, 1). For any x ∈]0, 1] we have that

|u(x)| =
∣∣∣∣∫ 1

x

ux(s) ds

∣∣∣∣ ≤ |u|H1
0,γ(0,1)

{∫ 1

0

1

sγ
ds

}1/2

.

Therefore ∫ 1

0

|u(x)|2 dx ≤ 1

1− γ
|u|2H1

0,γ(0,1).

Next, we define
H2
γ(0, 1) = {u ∈ H1

γ(0, 1) : xγux ∈ H1(0, 1)},
where H1(0, 1) denotes the classical Sobolev space.

Remark 2.2.1 Notice that if u ∈ H2
γ(0, 1), γ ∈ [1, 2), we have (xγux)(0) ≡ 0 since 1/xγ is

not integrable over neighbourhoods of 0. Hence the problem is not well-posed in terms of the
semigroups in the Hilbert space.

The elements of H1
0,γ(0, 1) satisfy the following property.

Proposition 2.2.2 For every u ∈ H1
0,γ(0, 1), u is absolutely continuous in [0, 1] and we have

(∗) ‖u‖L∞(0,1) ≤
1√

1− γ
‖u‖H1

0,γ(0,1).

Proof. As

u′(x) =
1

xγ/2
xγ/2u′(x) ∀x ∈]0, 1].

then ∫ 1

0

|u′(x)| dx ≤
(∫ 1

0

1

xγ
dx

)1/2

‖u‖H1
0,γ(0,1)

=
1√

1− γ
‖u(x)‖H1

0,γ(0,1)

u′ is summable over (0, 1). So u is absolutely continuous in [0, 1]. Moreover

|u(x)| =
∣∣∣∣∫ 1

x

u′(s) ds

∣∣∣∣ ≤ ∫ 1

0

|u′(x)| dx ≤ 1√
1− γ

‖u‖H1
0,γ(0,1).

(∗) is thus proved.
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2.2.1 Augmented model

In this section, we reformulate (P ) into an augmented system. For that, we need the following
proposition.

Proposition 2.2.3 (see [49]) Let µ be the function:

µ(ξ) = |ξ|(2α−1)/2, −∞ < ξ < +∞, 0 < α < 1. (2.5)

Then the relationship between the ‘input’ U and the ‘output’ O of the system

∂tφ(ξ, t) + (ξ2 + η)φ(ξ, t)− U(t)µ(ξ) = 0, −∞ < ξ < +∞, η ≥ 0, t > 0, (2.6)

φ(ξ, 0) = 0, (2.7)

O(t) = (π)−1 sin(απ)

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ, (2.8)

where U ∈ C0([0,+∞)), is given by
O = I1−α,ηU, (2.9)

where

[Iα,ηf ](t) =
1

Γ(α)

∫ t

0

(t− τ)α−1e−η(t−τ)f(τ) dτ.

Lemma 2.2.1 (see [3]) If λ ∈ Dη = IC\]−∞,−η] then∫ +∞

−∞

µ2(ξ)

λ+ η + ξ2
dξ =

π

sinαπ
(λ+ η)α−1.

Using now Proposition 2.2.3 and relation (2.9), system (P ) may be recast into the following
augmented system

(P ′)



utt(x, t) = (xγux(x, t))x,
φt(ξ, t) + (ξ2 + η)φ(ξ, t) = ut(0, t)µ(ξ), −∞ < ξ < +∞, t > 0,

(xγux)(0, t) = ζ

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ,

u(1, t) = 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), φ(ξ, 0) = 0,

where ζ = %(π)−1 sin(απ).
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2.3 Well-posedness

In this section, we are interested in showing that system (P ′) is well posed in the sens of
semigroups. We introduce the following Hilbert space

H = H1
0,γ(0, 1)× L2(0, 1)× L2(−∞,+∞)

equipped with the inner product〈 u
v
φ

 ,

 ũ
ṽ
φ̃

〉
H

=

∫ 1

0

xγuxũxdx+

∫ 1

0

vṽdx+ ζ

∫ +∞

−∞
φφ̃ dξ.

If we put U = (u, ut, φ)T , it is clear that (P ′) can be written in the following form

Ut = AU, U(0) = U0, (2.10)

where U0 = (u0, u1, 0)T and A : D(A) ⊂ H → H is defined by

A

 u
v
φ

 =

 v
(xγux)x

−(ξ2 + η)φ+ v(0)µ(ξ)

 (2.11)

with domain

D(A) =


(u, v, φ) in H : u ∈ H2

γ(0, 1) ∩H1
0,γ(0, 1), v ∈ H1

0,γ(0, 1),
−(ξ2 + η)φ+ v(0)µ(ξ) ∈ L2(−∞,+∞),

(xγux)(0) = ζ

∫ +∞

−∞
µ(ξ)φ(ξ) dξ,

|ξ|φ ∈ L2(−∞,+∞)

 . (2.12)

Our main result is giving by the following theorem.

Theorem 2.3.1 The operator A defined by (2.11) and (2.12), generates a C0-semigroup of
contractions etA in the Hilbert space H.

Proof.
To prove this result, we shall use the Lumer-Phillips’ Theorem. Sine we have for for every
U = (u, v, φ) ∈ D(A)

<〈AU,U〉H = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ)|2 dξ. (2.13)

then A is dissipative.
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Let λ > 0. we prove that the operator (λI − A) is a surjection. In other words, we shall
demonstrate that given any triplet F = (f1, f2, f3) ∈ H, there is an other triplet U = (u, v, φ)
in D(A) such that

(λI −A)U = F. (2.14)

Equation (2.14) is equivalent toλu− v = f1,
λv − (xγux)x = f2,
λφ+ (ξ2 + η)φ− v(0)µ(ξ) = f3.

(2.15)

Suppose u is found with the appropriate regularity. Then, (2.15)1 and (2.15)3 yield

v = λu− f1 ∈ H1
0,γ(0, 1), (2.16)

φ =
f3(ξ) + µ(ξ)v(0)

ξ2 + η + λ
. (2.17)

By using (2.15)2 and (2.16) it can easily be shown that u satisfies

λ2u− (xγux)x = f2 + λf1. (2.18)

Solving equation (2.18) is equivalent to finding u ∈ H2
γ(0, 1) ∩H1

0,γ(0, 1) such that∫ 1

0

(λ2uw − (xγux)xw) dx =

∫ 1

0

(f2 + λf1)w dx, (2.19)

for all w ∈ H1
0,γ(0, 1). By using (2.19), the boundary condition (2.12)3 and (2.17) the function

u satisfies the following equation∫ 1

0

(λ2uw + (xγux)wx) dx+ ζ̃v(0)w(0)

=

∫ 1

0

(f2 + λf1)w dx− ζ
∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξw(0),

(2.20)

where ζ̃ = ζ

∫ +∞

−∞

µ2(ξ)

ξ2 + η + λ
dξ. Using again (2.16), we deduce that

v(0) = λu(0)− f1(0). (2.21)

Inserting (2.21) into (2.20), we get
∫ 1

0

(λ2uw + xγuxwx) dx+ λζ̃u(0)w(0)

=

∫ 1

0

(f2 + λf1)w dx− ζ
∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξw(0) + ζ̃f1(0)w(0).

(2.22)
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Problem (2.22) is of the form

B(u,w) = L(w), (2.23)

where the sesquilinear1 form B : [H1
0,γ(0, 1)×H1

0,γ(0, 1)]→ IC and the antilinear2 form
L : H1

0,γ(0, 1)→ IC are defined by

B(u,w) =

∫ 1

0

(λ2uw + xγuxwx) dx+ λζ̃u(0) w(0),

L(w) =

∫ 1

0

(f2 + λf1)w dx− ζ
∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξw(0) + ζ̃f1(0)w(0).

It is clear that B is a continuous and coercive form on H1
0,γ(0, 1)×H1

0,γ(0, 1) and L is a continuous
form on H1

0,γ(0, 1). Hence, by means of the Lax-Milgram Lemma, system (2.23) has a unique
solution u ∈ H1

0,γ(0, 1). In particular, setting w ∈ D(0, 1) in (2.23), we get

λ2u− (xγux)x = f2 + λf1 in D′(0, 1). (2.24)

As f2 + λf1 ∈ L2(0, 1), using (2.24), we deduce that

λ2u− (xγux)x = f2 + λf1 in L2(0, 1). (2.25)

Due to the fact that u ∈ H1
0,γ(0, 1) we get (xγux)x ∈ L2(0, 1), and we deduce that

u ∈ H2
γ(0, 1) ∩H1

0,γ(0, 1).

Multiplying the conjugate of the equality (2.25) by w ∈ H1
0,γ(0, 1), integrating by parts on

(0, 1), and comparing with (2.23) we get

−(xγux)(0)w(0) + %λ(λ+ η)α−1u(0)w(0)

+ζ

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξw(0) − %(λ+ η)α−1f1(0)w(0) = 0.

Consequently, defining v = λu− f1 and φ by (2.17), we deduce that

−(xγux)(0) + ζ

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = 0.

1An application B : V × V → C where V is a C vector space is said to be sesquilinear if it is linear for one
variable and antilinear for the other.

2An application L : V → C where V is a C vector space is said to be antilinear if L (λx) = λL (x) for all
x ∈ V and λ ∈ C.
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In order to complete the existence of U ∈ D(A), we need to prove φ and |ξ|φ ∈ L2(−∞,∞).
From (2.17), we get∫

IR
|φ(ξ)|2 dξ ≤ 3

∫
IR

|f3(ξ)|2

(ξ2 + η + λ)2
dξ + 3(λ2|u(0)|2 + |f1(0)|2)

∫
IR

|ξ|2α−1

(ξ2 + η + λ)2
dξ.

Using Proposition 2.2.3, it easy to see that∫
IR

|ξ|2α−1

(ξ2 + η + λ)2
dξ = (1− α)

π

sinαπ
(λ+ η)α−2.

On the other hand, using the fact that f3 ∈ L2(IR), we obtain∫
IR

|f3(ξ)|2

(ξ2 + η + λ)2
dξ ≤ 1

(η + λ)2

∫
IR
|f3(ξ)|2 dξ < +∞.

It follows that φ ∈ L2(IR). Next, using (2.17), we get∫
IR
|ξφ(ξ)|2 dξ ≤ 3

∫
IR

|ξ|2|f3(ξ)|2

(ξ2 + η + λ)2
dξ + 3(λ2|u(0)|2 + |f1(0)|2)

∫
IR

|ξ|2α+1

(ξ2 + η + λ)2
dξ.

Using again Proposition 2.2.3, it easy to see that∫
IR

|ξ|2α+1

(ξ2 + η + λ)2
dξ = α

π

sinαπ
(λ+ η)α−1.

Now, using the fact that f3 ∈ L2(IR), we obtain∫
IR

|ξ|2|f3(ξ)|2

(ξ2 + η + λ)2
dξ ≤ 1

(η + λ)

∫
IR
|f3(ξ)|2 dξ < +∞.

It follows that |ξ|φ ∈ L2(IR). Finally, since φ ∈ L2(IR), we get

−(ξ2 + η)φ+ v(0)µ(ξ) = λφ(ξ)− f3(ξ) ∈ L2(IR).

Then U ∈ D(A) and Therefore, the operator λI −A is surjective for any λ > 0.

�

As a consequence of Theorem 2.3.1, the system (P ′) is well-posed in the energy space H
and we have the following proposition.
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Proposition 2.3.1 For (u0, u1, 0) ∈ H, the problem (P ′) admits a unique weak solution

(u, ut, φ) ∈ C0(IR+,H).

and for (u0, u1, 0) ∈ D(A), the problem (P ′) admits a unique strong solution

(u, ut, φ) ∈ C0(IR+, D(A)) ∩ C1(IR+,H).

Moreover, from the density of D(A) in H, the energy of (u(t), φ(t)) at time t ≥ 0 given by

E(t) =
1

2

∫ 1

0

(|ut|2 + xγ|ux|2)dx+
ζ

2

∫ +∞

−∞
|φ(ξ, t)|2 dξ (2.26)

decays as follows

E ′(t) = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2 dξ ≤ 0. (2.27)

Proof of Proposition 2.3.1. Noting that the regularity of the solution of the problem (P ′)
is consequence of the semigroup properties. We have just to prove (2.27).

Multiplying the first equation in (P ′) by ut, integrating over (0, 1) and using integration by
parts, we get ∫ 1

0

utt(x, t)utdx−
∫ 1

0

(xγux(x, t))xutdx = 0.

then
d

dt

(
1

2

∫ 1

0

|ut(x, t)|2dx
)

+
1

2

d

dt

∫ 1

0

xγ|ux(x, t)|2 dx−<
[
(xγux)(x, t)ut

]1

0
= 0.

then

1

2

d

dt

∫ 1

0

(
|ut(x, t)|2 + xγ|ux(x, t)|2

)
dx+ ζ<ut(0, t)

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ = 0. (2.28)

Multiplying the second equation in (P ′) by ζφ and integrating over (−∞,+∞), to obtain:

ζ

∫ +∞

−∞
φt(ξ, t)φ(ξ, t)dξ + ζ

∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2dξ − ζut(0, t)

∫ +∞

−∞
µ(ξ)φ(ξ, t)dξ = 0.

Hence

ζ

2

d

dt

∫ +∞

−∞
|φ(ξ, t)|2dξ + ζ

∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2dξ − ζ<ut(0, t)

∫ +∞

−∞
µ(ξ)φ(ξ, t)dξ = 0. (2.29)

Consequently, it is resulted from (2.26), (2.28) and (2.29) that

E ′(t) = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2 dξ ≤ 0.

This completes the proof of the Proposition.
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Remark 2.3.1 In the case α = 1, we take %ut(0, t) instead of %∂α,ηt u(0, t). We do not need to
introduce an augmented system. In this case the operator A takes the form

Ã
(
u
v

)
=

(
v

(xγux)x

)
(2.30)

with domain

D(Ã) =

{
(u, v) in H̃ : u ∈ H2

γ(0, 1) ∩H1
0,γ(0, 1), v ∈ H1

0,γ(0, 1),
(xγux)(0) = %v(0),

}
, (2.31)

where
H̃ = H1

0,γ(0, 1)× L2(0, 1)

with inner product 〈(
u
v

)
,

(
ũ
ṽ

)〉
H

=

∫ 1

0

xγuxũxdx+

∫ 1

0

vṽdx.

The well-posedness result follows exactly as in the case 0 < α < 1. Moreover, the energy
function is defined as

Ẽ(t) =
1

2

∫ 1

0

(|ut|2 + xγ|ux|2)dx (2.32)

and decays as follows
Ẽ ′(t) = −%|ut(0, t)|2 ≤ 0.

�

2.4 Spectral analysis and lack of uniform stability

This section will be devoted to the study of the lack of exponential decay of solutions associated
with the system (2.10). To do this, we shall use the following well-known result from semigroup
theory.

Theorem 2.4.1 ([56]-[40]) Let S(t) be a C0-semigroup of contractions on Hilbert space X
with generator A. Then S(t) is exponentially stable if and only if

ρ(A) ⊇ {iβ : β ∈ IR} ≡ iIR (2.33)

and
lim
|β|→∞

‖(iβI −A)−1‖L(X ) <∞. (2.34)
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Our main result is the following.

Theorem 2.4.2 The semigroup generated by the operator A is not exponentially stable if η = 0
or α 6= 2νγ = 21−γ

2−γ .

Proof. We will examine two cases.
•Case 1 η = 0 and α 6= 1: We shall show that iλ = 0 is not in the resolvent set of the
operator A. Indeed, noting that F = (sin(x − 1), 0, 0)T ∈ H, and assume that there exists
U = (u, v, φ)T ∈ D(A) such that −AU = F . It follows−v = sin(x− 1),

−(xγux)x = 0,
ξ2φ = v(0)µ(ξ).

We see that φ(ξ) = |ξ| 2α−5
2 sin 1. But, then φ 6∈ L2(−∞,+∞), since α ∈]0, 1[. So we get

(u, v, φ)T 6∈ D(A). Then the operator −A is not invertible.
• Case 2 η 6= 0 and α 6= 2νγ:

We aim to show that an infinite number of eigenvalues of A approach the imaginary axis
which prevents the system (P ) from being exponentially stable. Indeed we first compute the
characteristic equation that gives the eigenvalues of A. Let λ be an eigenvalue of A with
associated eigenvector U = (u, v, φ)T . Then AU = λU is equivalent toλu = v,

λv = (xγux)x,
λφ+ (ξ2 + η)φ = v(0)µ(ξ)

(2.35)

with boundary conditions u(1) = 0,

(xγux)(0) = ζ

∫ +∞

−∞
µ(ξ)φ(ξ) dξ.

(2.36)

Inserting (2.35)1 into (2.35)2 and (2.35)3, we get{
λ2u = (xγux)x,
(λ+ ξ2 + η)φ = λu(0)µ(ξ).

(2.37)

From the condition (2.36)2, (2.37)2 and Lemma 2.2.1, we obtain that

(xγux)(0) = %λ(λ+ η)α−1u(0). (2.38)

Finally, we get the following problemλ2u = (xγux)x,
u(1) = 0,
(xγux)(0) = %λ(λ+ η)α−1u(0).

(2.39)
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It is well-known that Bessel functions play an important role in this type of problem. Assume
that u is a solution of (2.39)1 associated to eigenvalue −λ2, then one easily checks that the
function

u(x) = x
1−γ
2 Ψ

(
2

2− γ
iλx

2−γ
2

)
is a solution of the following problem:

y2Ψ′′(y) + yΨ′(y) +

(
y2 − (

γ − 1

2− γ
)2

)
Ψ(y) = 0. (2.40)

We have
u(x) = c+Φ̃+ + c−Φ̃−, (2.41)

where Φ̃+ and Φ̃− are defined by

Φ̃+(x) := x
1−γ
2 Jνγ

(
2

2− γ
iλx

2−γ
2

)
and

Φ̃−(x) := x
1−γ
2 J−νγ

(
2

2− γ
iλx

2−γ
2

)
,

where

Jν(y) =
∞∑
m=0

(−1)m

m!Γ(m+ ν + 1)

(y
2

)2m+ν

=
∞∑
m=0

c+
ν,my

2m+ν , (2.42)

J−ν(y) =
∞∑
m=0

(−1)m

m!Γ(m− ν + 1)

(y
2

)2m−ν
=

∞∑
m=0

c−ν,my
2m−ν , (2.43)

νγ =
1− γ
2− γ

.

Jνγ and J−νγ are Bessel functions of the first kind of order νγ and −νγ. As νγ 6∈ IN, so Jνγ
and J−νγ are linearly independent and therefore the pair (Jνγ , J−νγ ) (classical result) forms a
fundamental system of solutions (2.40).

Then, using the series expansion of Jνγ and J−νγ , one obtains

Φ̃+(x) =
∞∑
m=0

c̃+
νγ ,mx

1−γ+(2−γ)m, Φ̃−(x) =
∞∑
m=0

c̃−νγ ,mx
(2−γ)m

with

c̃+
νγ ,m = c+

νγ ,m

(
2

2− γ
iλ

)2m+νγ

, c̃−νγ ,m = c−νγ ,m

(
2

2− γ
iλ

)2m−νγ
.
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Next one easily verifies that Φ+,Φ− ∈ H1
0,γ(0, 1): indeed,

Φ̃+(x) ∼0 c̃
+
νγ ,0x

1−γ, xγ/2Φ̃′+(x) ∼0 (1− γ)c̃+
νγ ,0x

−γ/2,

Φ̃−(x) ∼0 c̃
−
νγ ,0, xγ/2Φ̃′−(x) ∼0 (2− γ)c̃−νγ ,0x

1−γ/2,

where we have used the following relation

xJ ′ν(x) = νJν(x)− xJν+1(x). (2.44)

Hence, given c+ and c−, u(x) = c+Φ̃+(x) + c−Φ̃−(x) ∈ H1
0,γ(0, 1) with the following boundary

condition {
(xγux)(0) = %λ(λ+ η)α−1u(0),
u(1) = 0.

Then

M(λ)C(λ) =

(
(1− γ)c̃+

νγ ,0 −%λ(λ+ η)α−1c̃−νγ ,0

Jνγ

(
2

2−γ iλ
)

J−νγ

(
2

2−γ iλ
) )(

c+

c−

)
=

(
0
0

)
. (2.45)

Hence, a non-trivial solution u exists if and only if the determinant of M(λ) vanishes. Set
f(λ) = detM(λ) thus the characteristic equation is f(λ) = 0.

Our purpose is to prove, thanks to Rouché’s Theorem ([32]), that there is a subsequence of
eigenvalues for which their real part tends to 0.

In the sequel, since A is dissipative, we study the asymptotic behavior of the large eigen-
values λ of A in the strip −α0 ≤ <(λ) ≤ 0, for some α0 > 0 large enough and for such λ, we
remark that Φ+,Φ− remain bounded.

Lemma 2.4.1 There exists N ∈ IN such that

{λk}k∈Z∗,|k|≥N ⊂ σ(A), (2.46)

where
• If γ = 0 and α = 1, then

λk =


ln

√
%− 1

%+ 1
+ ikπ if % > 1

ln

√
1− %
%+ 1

+ i

(
k +

1

2

)
π if % < 1

 , k ∈ Z.

• If 0 < γ < 1 and α = 1, then

λk = −2− γ
2

i

(
k +

νγ
2

+
3

4

)
π +

β

k1−2νγ
+ o

(
1

k1−2νγ

)
, k ≥ N, β ∈ IR, β < 0.

λk = λ−k if k ≤ −N,
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where

β = −1− γ
%

c+
νγ ,0

c−νγ ,0

sin νγπ

π1−2νγ
.

• If α = 2νγ, then

λk = −i2− γ
4

(
2kπ + θ − π

2

)
− 2− γ

4
ln

1 + Ã√
1 + Ã2 + 2Ã cos 2νγπ

+O

(
1

k

)
, k ∈ Z,

λk = λ−k if k ≤ −N,
where

Ã =
1− γ
%

(
2

2− γ

)2νγ c+
νγ ,0

c−νγ ,0

and θ is such that 
cos θ =

(1 + Ã) cos νγπ√
1 + Ã2 + 2Ã cos 2νγπ

,

sin θ =
(1− Ã) sin νγπ√

1 + Ã2 + 2Ã cos 2νγπ
.

• If α > 2νγ, then

λk = −2− γ
2

i

(
k +

νγ
2

+
3

4

)
π+

α̃

kα−2νγ
+

β

kα−2νγ
+o

(
1

kα−2νγ

)
, k ≥ N, α̃ ∈ iIR, β ∈ IR, β < 0,

λk = λ−k if k ≤ −N,
where

β = −1− γ
%

c+
νγ ,0

c−νγ ,0

(
2− γ

2

)1−α cos(1− α)π
2

sin νγπ

πα−2νγ
.

• If α < 2νγ, then

λk = −2− γ
2

i

(
k − νγ

2
+

3

4

)
π+

α̃

k2νγ−α
+

β

k2νγ−α
+o

(
1

k2νγ−α

)
, k ≥ N, α̃ ∈ iIR, β ∈ IR, β < 0,

λk = λ−k if k ≤ −N,
where

β = − %

1− γ
c−νγ ,0

c+
νγ ,0

(
2− γ

2

)1+α cos(1− α)π
2

sin νγπ

πα−2νγ
.

Moreover for all |k| ≥ N , the eigenvalues λk are simple.
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The proof of Lemma 2.4.1 will be given in Appendix A.
Now, setting Ũk = (λ0

k − A)Uk, where Uk is a normalized eigenfunction associated to λk.
We then have

‖(λ0
k −A)−1‖L(H) = sup

U∈H,U 6=0

‖(λ0
k −A)−1U‖H
‖U‖H

≥ ‖(λ0
k −A)−1Ũk‖H
‖Ũk‖H

≥ ‖Uk‖H
‖(λ0

k −A)Uk‖H
.

Hence, by Lemma 2.4.1, we deduce that

‖(λ0
k −A)−1‖L(H) ≥ c

{
|k|α−2νγ if α > 2νγ,
|k|2νγ−α if α < 2νγ.

Thus, (2.34) is not satisfied for α 6= 2νγ. So that, the semigroup etA is not exponentially stable.
Thus the proof is complete.

�

2.5 Optimality of energy decay when η 6= 0

By Lemma 2.4.1, the spectrum of A is at the left of the imaginary axis, but approaches this
axis for α 6= 2νγ. Hence, the decay of the energy depends on the asymptotic behavior of the
real part of these eigenvalues.

Unfortunately, we were not able to prove this decay rate by frequency domain method
based on multiplier method as the problem (P ) is degenerate and the control is acting on the
degenerate boundary.

To state and prove our stability results, we need some results from semigroup theory.

Theorem 2.5.1 ([6]) Let A be the generator of a uniformly bounded C0-semigroup {S(t)}t≥0

on a Hilbert space X . If:

(i) A does not have eigenvalues on iIR.

(ii) The intersection of the spectrum σ(A) with iIR is at most a countable set,

then the semigroup {S(t)}t≥0 is asymptotically stable, i.e, ‖S(t)z‖X → 0 as t → ∞ for any
z ∈ X .

Theorem 2.5.2 ([13]) Let S(t) be a bounded C0-semigroup on a Hilbert space X with gener-
ator A. If

iIR ⊂ ρ(A) and lim
|β|→∞

1

βl
‖(iβI −A)−1‖L(X ) <∞,
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for some l, then there exist c such that

‖eAtU0‖2 ≤ c

t
2
l

‖U0‖2
D(A).

First, we use Theorem 2.5.1 to show the strong stability of the C0-semigroup etA associated
to the system (P ′). Our main result is the following Theorem.

Theorem 2.5.3 The C0-semigroup etA is strongly stable in H; i.e, for all U0 ∈ H, the solution
of (2.10) satisfies

lim
t→∞
‖etAU0‖H = 0.

For the proof of Theorem 3.2.1, we need the following two lemmas.

Lemma 2.5.1 A does not have eigenvalues on iIR.

Proof.
We make a distinction between iλ = 0 and iλ 6= 0.
Step 1. Solving for AU = 0 leads to the system v = 0,

(xγux)x = 0,
(ξ2 + η)φ = v(0)µ(ξ)

(2.47)

together with the conditions (2.36).
Then v = 0, φ = 0, (xγux)(0) = 0 and

(xγux)(x) = c,

where c is a constant. As (xγux)(0) = 0, we have (xγux)(x) = 0. Hence

ux(x) = 0 for x ∈ (0, 1).

As u(1) = 0, then u = 0. We have U = 0. Hence, iλ = 0 is not an eigenvalue of A.

Step 2. Let λ ∈ IR−{0}. We prove that iλ is not an eigenvalue of A. Let U = (u, v, φ)T with
‖U‖H = 1, be such that

AU = iλU. (2.48)
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Using the definition of A it follows that AU = iλU if and only if iλu = v,
iλv = (xγux)x,
iλφ+ (ξ2 + η)φ = v(0)µ(ξ)

(2.49)

together with the conditions (2.36). Using (2.13) and (2.48), we find

φ ≡ 0, (2.50)

then, using the third equation in (2.49), we deduce that

v(0) = 0. (2.51)

Therefore, from (2.49)1 and (2.36)2, we get

u(0) = 0 and (xγux)(0) = 0. (2.52)

Thus, by eliminating v, the system (2.49) implies thatλ2u+ (xγux)x = 0 on (0, 1),
u(0) = u(1) = 0,
(xγux)(0) = 0.

(2.53)

The solution of the equation (2.53) is given by

u(x) = C1Φ+(x) + C2Φ−(x),

where Φ+ and Φ− are defined by

Φ+(x) = x
1−γ
2 Jνγ

(
2

2− γ
λx

2−γ
2

)
, Φ−(x) = x

1−γ
2 J−νγ

(
2

2− γ
λx

2−γ
2

)
. (2.54)

From boundary conditions (2.53)2 and (2.53)3, we deduce that

C2
˜̃c
−
νγ,0

= 0,

C1Jνγ

(
2

2− γ
λ

)
+ C2J−νγ

(
2

2− γ
λ

)
= 0,

C1(1− γ)˜̃c
+

νγ,0
= 0,

where

˜̃c
−
νγ,0

= c−νγ,0

(
2

2− γ
λ

)−νγ
, ˜̃c

+

νγ,0
= c+

νγ,0

(
2

2− γ
λ

)νγ
.

Hence
u ≡ 0.

Therefore U = 0, which contradicts ‖U‖H = 1. This completes the proof of Lemma 2.5.1.
�
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Lemma 2.5.2
If λ 6= 0, the operator iλI −A is surjective.
If λ = 0 and η 6= 0, the operator iλI −A is surjective.

Proof.
Case 1: λ 6= 0. Let F = (f1, f2, f3)T ∈ H be given, and let U = (u, v, φ)T ∈ D(A) be such
that

(iλI −A)U = F. (2.55)

Equivalently, we have  iλu− v = f1,
iλv − (xγux)x = f2,
iλφ+ (ξ2 + η)φ− µ(ξ)v(0) = f3

(2.56)

together with the conditions (2.36).
Inserting (2.56)1 into (2.56)2, we get

−λ2u− (xγux)x = (f2 + iλf1). (2.57)

Solving system (2.57) is equivalent to finding u ∈ H2
γ ∩H1

0,γ(0, 1) such that∫ 1

0

(−λ2uw − (xγux)xw dx =

∫ 1

0

(f2 + iλf1)w dx (2.58)

for all w ∈ H1
0,γ(0, 1). By using (2.56)3 and (2.56)1 the function u satisfies the following system

∫ 1

0

(−λ2uw + xγuxwx) dx+ i%λ(iλ+ η)α−1u(0)w(0)

=

∫ 1

0

(f2 + iλf1)w dx− ζ
∫ +∞

−∞

µ(ξ)

ξ2 + η + iλ
f3(ξ) dξ w(0) + %(iλ+ η)α−1f1(0)w(0).

(2.59)
We can rewrite (2.59) as

B(u,w) = l(w), ∀w ∈ H1
0,γ(0, 1), (2.60)

where

B(u,w) = B1(u,w) + B2(u,w)

with 
B1(u,w) =

∫ 1

0

xγuxwx dx+ i%λ(iλ+ η)α−1u(0)w(0),

B2(u,w) = −
∫ 1

0

λ2uw dx,

(2.61)
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and

l(w) =

∫ 1

0

(f2 + iλf1)w dx− ζ
∫ +∞

−∞

µ(ξ)

ξ2 + η + iλ
f3(ξ) dξ w(0)

+%(iλ+ η)α−1f1(0)w(0).

Let (H1
0,γ(0, 1))′ be the dual space of H1

0,γ(0, 1). Let us define the following operators

B : H1
0,γ(0, 1)→ (H1

0,γ(0, 1))′

u 7→ Bu
Bi : H1

0,γ(0, 1)→ (H1
0,γ(0, 1))′ i ∈ {1, 2}

u 7→ Biu
(2.62)

such that
(Bu)w = B(u,w), ∀w ∈ H1

0,γ(0, 1),
(Biu)w = Bi(u,w), ∀w ∈ H1

0,γ(0, 1), i ∈ {1, 2}. (2.63)

We need to prove that the operator B is an isomorphism. For this aim, we divide the proof
into three steps:
Step 1. In this step, we want to prove that the operator B1 is an isomorphism. For this aim,
it is easy to see that B1 is sesquilinear, continuous form on H1

0,γ(0, 1). Furthermore

<B1(u, u) = ‖xγ/2ux‖2
2 + %λ< (i(iλ+ η)α−1) |u(0)|2

≥ ‖xγ/2ux‖2
2,

where we have used the fact that

%λ<
(
i(iλ+ η)α−1

)
= ζλ2

∫ +∞

−∞

µ(ξ)2

λ2 + (η + ξ2)2
dξ > 0.

Thus B1 is coercive. Then, from (2.62) and Lax-Milgram theorem, the operator B1 is an
isomorphism.
Step 2. In this step, we want to prove that the operator B2 is compact. For this aim, from
(2.61) and (2.63), we have

|B2(u,w)| ≤ c‖u‖L2(0,1)‖w‖L2(0,1),

and consequently, using the compact embedding from H1
0,γ(0, 1) to L2(0, 1) (see [4]) we deduce

that B2 is a compact operator. Therefore, from the above steps, we obtain that the operator
B = B1 +B2 is a Fredholm operator of index zero. Now, following Fredholm alternative, we still
need to prove that the operator B is injective to obtain that the operator B is an isomorphism.
Step 3. Let u ∈ ker(B), then

B(u,w) = 0 ∀w ∈ H1
0,γ(0, 1). (2.64)

In particular for w = u, it follows that

λ2‖u‖2
L2(0,1) − i%λ(iλ+ η)α−1|u(0)|2 = ‖xγ/2ux‖2

L2(0,1).
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Hence, we have

u(0) = 0. (2.65)

From (2.64), we obtain

(xγ/2ux)(0) = 0 (2.66)

and then −λ
2u− (xγux)x = 0,

u(0) = (xγ/2ux)(0) = 0,
u(1) = 0.

(2.67)

Then, according to Lemma 2.5.1, we deduce that u = 0 and consequently Ker(B) = {0}.
Finally, from Step 3 and Fredholm alternative, we deduce that the operator B is isomorphism.
It is easy to see that the operator l is a antilinear and continuous form on H1

0,γ(0, 1). Conse-
quently, (2.60) admits a unique solution u ∈ H1

0,γ(0, 1). By using the classical elliptic regularity,
we deduce that U ∈ D(A) is a unique solution of (2.55). Hence iλ − A is surjective for all
λ ∈ IR∗.

Case 2: λ = 0 and η 6= 0. Using Lax-Milgram Lemma, we obtain the result.
Taking account of Lemmas 2.5.1, 2.5.2 and from Theorem 2.5.1 The C0-semigroup etA is

strongly stable in H.
�

Next, by an explicit representation of the resolvent of the generator on the imaginary axis
and the use of Theorem 2.5.2, we prove an optimal decay rate. Our main result is the following.

Theorem 2.5.4 If η 6= 0, then the global solution of the problem (P ) has the following energy
decay property

E(t) = ‖SA(t)U0‖2
H ≤


c

t
2

α−2νγ

‖U0‖2
D(A) if α > 2νγ,

c

t
2

2νγ−α
‖U0‖2

D(A) if α < 2νγ,

ce−ωt‖U0‖2
H if α = 2νγ.

Moreover, the rate of energy decay is optimal for general initial data in D(A).

Proof.
Let us consider the resolvent equation iλu− v = f1,

iλv − (xγux)x = f2,
iλφ+ (ξ2 + η)φ− v(0)µ(ξ) = f3,

(2.68)
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where F = (f1, f2, f3)T ∈ H. From (2.68)1 and (2.68)2, we have

λ2u+ (xγux)x = −(f2 + iλf1) (2.69)

with {
(xγux)(0) = ζ

∫ ∞
−∞

µ(ξ)φ(ξ) dξ,

u(1) = 0.
(2.70)

The substitution of φ given by (2.68)3 into (2.70)1 gives us

(xγux)(0) = %(iλ+ η)α−1v(0) + ζ

∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ. (2.71)

Moreover, from (2.68)1, we have

v(0) = iλu(0)− f1(0).

Then, the condition (2.71) become

(xγux)(0)− %iλ(iλ+ η)α−1u(0) = −%(iλ+ η)α−1f1(0) + ζ

∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ. (2.72)

Assume that Φ is a solution of (2.69), then one easily checks that the function Ψ defined by

Φ(x) = x
1−γ
2 Ψ

(
2

2− γ
λx

2−γ
2

)
(2.73)

is solution of the following inhomogeneous Bessel equation:

y2Ψ′′(y) + yΨ′(y) +

(
y2 −

(
γ − 1

2− γ

)2
)

Ψ(y) =

−( 2
2−γ )2(2−γ

2
1
λ
y)

3−γ
2−γ

(
f2

(
(2−γ

2
1
λ
y)

2
2−γ

)
+ iλf1

(
(2−γ

2
1
λ
y)

2
2−γ

))
.

(2.74)

The solution can be written as

Ψ(y) = AJνγ (y) +BJ−νγ (y)− π

2 sin νγπ

∫ y

0

f(s)

s

(
Jνγ (s)J−νγ (y)− Jνγ (y)J−νγ (s)

)
ds,

where

f(s) = −(
2

2− γ
)2(

2− γ
2

1

λ
s)

3−γ
2−γ

(
f2

(
(
2− γ

2

1

λ
s)

2
2−γ

)
+ iλf1

(
(
2− γ

2

1

λ
s)

2
2−γ

))
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Thus,

u(x) = Ax
1−γ
2 Jνγ

(
2

2−γλx
2−γ
2

)
+Bx

1−γ
2 J−νγ

(
2

2−γλx
2−γ
2

)
+

π

2 sin νγπ

(
2

2− γ

)
x

1−γ
2

∫ x

0

s
1−γ
2 (f2(s) + iλf1(s))

(
Jνγ

(
2

2− γ
λs

2−γ
2

)
J−νγ

(
2

2− γ
λx

2−γ
2

)
−Jνγ

(
2

2−γλx
2−γ
2

)
J−νγ

(
2

2−γλs
2−γ
2

))
ds.

Therefore,

u(x) = AΦ+(x) +BΦ−(x)

+
π

2 sin νγπ

(
2

2− γ

)∫ x

0

(f2(s) + iλf1(s))(Φ+(s)Φ−(x)− Φ+(x)Φ−(s)) ds,
(2.75)

where Φ+ and Φ− are defined by

Φ+(x) = x
1−γ
2 Jνγ

(
2

2− γ
λx

2−γ
2

)
, Φ−(x) = x

1−γ
2 J−νγ

(
2

2− γ
λx

2−γ
2

)
. (2.76)

Then

ux(x) = AΦ′+(x) +BΦ′−(x)

+
π

2 sin νγπ

(
2

2− γ

)∫ x

0

(f2(s) + iλf1(s))(Φ+(s)Φ′−(x)− Φ′+(x)Φ−(s)) ds.
(2.77)

From (2.72), (2.77) and (2.75), we conclude that

(1− γ)c̃+
νγ ,0A− %iλ(iλ+ η)α−1c̃−νγ ,0B = −%(iλ+ η)α−1f1(0) + ζ

∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ (2.78)

AΦ+(1) +BΦ−(1) = − π

2 sin νγπ
(

2

2− γ
)

∫ 1

0

(f2(s) + iλf1(s))(Φ+(s)Φ−(1)− Φ+(1)Φ−(s)) ds,

(2.79)
where

c̃+
νγ ,m = c+

νγ ,m

(
2

2− γ
λ

)2m+νγ

, c̃+
νγ ,m = c−νγ ,m

(
2

2− γ
λ

)2m−νγ

and

Φ+(1) = Jνγ

(
2

2− γ
λ

)
, Φ−(1) = J−νγ

(
2

2− γ
λ

)
.

Using (2.78) and (2.79), a linear system in A and B is obtained(
r11 r12

r21 r22

)(
A
B

)
=

(
C
C̃

)
, (2.80)
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where
r11 = (1− γ)c̃+

νγ ,0,

r12 = −%iλ(iλ+ η)α−1c̃−νγ ,0,

r21 = Jνγ

(
2

2−γλ
)
,

r22 = J−νγ

(
2

2−γλ
)
,

C = −%(iλ+ η)α−1f1(0) + ζ

∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ,

C̃ = − π

2 sin νγπ
(

2

2− γ
)

∫ 1

0

(f2(s) + iλf1(s))(Φ+(s)Φ−(1)− Φ+(1)Φ−(s)) ds.

Let the determinant of the linear system given in (2.80) be denoted by D. Then

D = (1− γ)c̃+
νγ ,0J−νγ

(
2

2−γλ
)

+ %iλ(iλ+ η)α−1c̃−νγ ,0Jνγ

(
2

2−γλ
)

= (1− γ)c+
νγ ,0

(
2

2−γ

)νγ
λνγ

[(
2− γ
πλ

)1/2

cos
(

2
2−γλ+ νγ

π
2
− π

4

)
+O(

1

λ3/2
)

]

+%iλ(iλ+ η)α−1c−νγ ,0

(
2

2−γ

)−νγ
λ−νγ

[(
2− γ
πλ

)1/2

cos
(

2
2−γλ− νγ

π
2
− π

4

)
+O(

1

λ3/2
)

]

= (1− γ)c+
νγ ,0

(
2

2−γ

)νγ (2− γ
π

)1/2

λνγ−
1
2 cos

(
2

2−γλ+ νγ
π
2
− π

4

)
+%iαc−νγ ,0

(
2

2−γ

)−νγ (2− γ
π

)1/2

λα−νγ−
1
2 cos

(
2

2−γλ− νγ
π
2
− π

4

)
O(

1

λ3/2−νγ
) +O(

1

λ3/2+νγ−α
).

As D 6= 0 for all λ 6= 0, then A and B are uniquely determined by (2.80).
Now, we will prove that

|D| ≥
{
c|λ|νγ−1/2 for large λ if α ≥ 2νγ,
c|λ|α−νγ−1/2 for large λ if α ≤ 2νγ.

(2.81)

Indeed, suppose (2.81) was wrong. We consider the case α ≥ 2νγ. The case α ≤ 2νγ is similar.
Then ∃λn such that |λn| → ∞ with

|D||λn|1/2−νγ → 0 as n→∞. (2.82)

By <D,

|λn|1/2J−νγ
(

2

2− γ
λn

)
→ 0 as n→ +∞.
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By =D,

|λn|α−2νγ+1/2Jνγ

(
2

2− γ
λn

)
→ 0 as n→ +∞.

By asymptotic behavior of Jνγ and J−νγ (see formula (2.87)), we obtain cos
(

2
2−γλn + νγ

π
2
− π

4

)
→ 0 as n→ +∞,

|λn|α−2νγ cos
(

2
2−γλn − νγ

π
2
− π

4

)
→ 0 as n→ +∞.

This is impossible. Indeed, ∃kn ∈ Z with |kn| → +∞ n→ +∞ such that

2

2− γ
λn + νγ

π

2
− π

4
= (kn +

1

2
)π + o(1).

Then ∣∣∣∣cos

(
2

2− γ
λn − νγ

π

2
− π

4

)∣∣∣∣→ sin νγπ as n→ +∞.

In the following Lemma, we will prove some technical inequalities which will be useful for
showing the optimal polynomial decay of the solution.

Lemma 2.5.3
(I) For all λ ∈ IR− {0} large, we have

‖Φ+‖L2(0,1), ‖Φ−‖L2(0,1) ≤
c√
|λ|
. (2.83)

(II) ∥∥∥∥x− 1
2Jνγ

(
2

2− γ
λx

2−γ
2

)∥∥∥∥
L2(0,1)

,

∥∥∥∥x− 1
2J−νγ

(
2

2− γ
λx

2−γ
2

)∥∥∥∥
L2(0,1)

≤ c
√
|λ|. (2.84)

(III) There exists a constant C > 0 such that, for all f1 ∈ H1
0,γ(0, 1), f2 ∈ L2(0, 1) and

λ ∈ IR− {0},

∣∣∣∣∫ 1

0

(f2(s) + iλf1(s))(Φ+(s)Φ−(1)− Φ+(1)Φ−(s)) ds

∣∣∣∣ ≤ C
(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1)

)
|λ|

. (2.85)

The proof of Lemma 2.5.3 will be given in Appendix B.
Now

A =
1

D
(Cr22 − C̃r12),
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B =
1

D
(−Cr21 + C̃r11).

Considering only the dominant terms of λ, the following is obtained:

|D||A| ≤ c1|λ|α−
3
2 + c2|λ|α−νγ−1 ≤ c3|λ|α−νγ−1,

|D||B| ≤ c1|λ|α−
3
2 + c2|λ|νγ−1 ≤

{
c3|λ|α−νγ−1 if α > 2νγ,
c̃3|λ|νγ−1 if α < 2νγ,

where we have used the fact that f1 ∈ H1
0,γ(0, 1) and∣∣∣∣∫ 1

0

(f2(s) + iλf1(s))(Φ+(s)Φ−(1)− Φ+(1)Φ−(s)) ds

∣∣∣∣ ≤ 1

|λ|

(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1)

)
,

∣∣∣∣∫ 1

0

(f2(s) + iλf1(s))(Φ+(s)Φ′−(1)− Φ′+(1)Φ−(s)) ds

∣∣∣∣ ≤ (‖f1‖H1
0,γ(0,1) + ‖f2‖L2(0,1)

)
.

Then, we conclude that

|A| ≤
{
c|λ|α−2νγ− 1

2 if if α > 2νγ,
c|λ|−1/2 if if α < 2νγ,

|B| ≤
{
c|λ|α−2νγ− 1

2 if if α > 2νγ,

c|λ|2νγ−α− 1
2 if if α < 2νγ.

Then

‖u‖L2(0,1) ≤

 c|λ|α−2νγ−1
(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1)

)
if α > 2νγ,

c|λ|2νγ−α−1
(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1)

)
if if α < 2νγ.

Using (2.68)1 and (2.75), we get

‖v‖L2(0,1) ≤

 c|λ|α−2νγ
(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1)

)
if α > 2νγ,

c|λ|2νγ−α
(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1)

)
if if α < 2νγ.

From (2.76) and (2.44), we havexγ/2Φ′+(x) = (1−γ
2

+ 2νγ
2−γ )x−1/2Jνγ

(
2

2−γx
)
− λx 1−γ

2 J1+νγ

(
2

2−γx
)
,

xγ/2Φ′−(x) = (1−γ
2
− 2νγ

2−γ )x−1/2J−νγ

(
2

2−γx
)
− λx 1−γ

2 J1−νγ

(
2

2−γx
)
.

Then from (2.77), we can get

‖xγ/2ux‖L2(0,1) ≤

 c|λ|α−2νγ
(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1)

)
if α > 2νγ,

c|λ|2νγ−α
(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1)

)
if α < 2νγ.
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Now, taking inner product of (2.68) with U in H and using (2.13) we get

|Re〈AU,U〉| ≤ ‖U‖H‖F‖H.

This implies that

ζ

∫ +∞

−∞
(ξ2 + η)|φ(ξ)|2 dξ ≤ ‖U‖H‖F‖H. (2.86)

Since η > 0, we have

‖φ‖2
L2(−∞,∞) ≤

∫ +∞

−∞
(ξ2 + η)|φ(ξ)|2 dξ ≤ c‖U‖H‖F‖H.

Thus, we conclude that

‖(iλI −A)−1‖L(H) ≤

 c|λ|α−2νγ as |λ| → ∞ if α > 2νγ,
c|λ|2νγ−α as |λ| → ∞ if α < 2νγ,

c as |λ| → ∞ if α = 2νγ.

The conclusion then follows by applying Theorem 2.5.2 for α 6= 2νγ and Theorem 2.4.1 for
α = 2νγ.

Besides, we prove that the decay rate is optimal. Indeed, the decay rate is consistent with
the asymptotic expansion of eigenvalues.

�

2.6 Appendix

2.6.1 Appendix A. Proof of Lemma 2.4.1

This appendix is devoted to prove Lemma 2.4.1.
Proof.

• γ = 0 and α = 1.
System (2.39) becomes λ2u− uxx = 0,

ux(0) = %λu(0),
u(1) = 0.

The solution u is given by
u = c1e

λx + c2e
−λx.

Thus, the boundary conditions give

e2λ =
%− 1

%+ 1
.
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If % > 1 and if we set λ = x+ iy, then

e2x =
%− 1

%+ 1
and e2iy = 1.

Hence

x =
1

2
ln
%− 1

%+ 1
and y = kπ, k ∈ Z.

Then

λ =
1

2
ln
%− 1

%+ 1
+ ikπ, k ∈ Z.

Now if % < 1, we have

e2x =
1− %
%+ 1

and e2iy = −1.

Hence

x =
1

2
ln

1− %
%+ 1

and y = (k +
1

2
)π, k ∈ Z.

Then

λ =
1

2
ln

1− %
%+ 1

+ i(k +
1

2
)π, k ∈ Z.

• 0 < γ < 1 and α = 1.
Step 1. From (2.45), our aim is to solve the equation

f(λ) = (1− γ)c̃+
νγ ,0J−νγ

(
2

2− γ
iλ

)
+ %λc̃−νγ ,0Jνγ

(
2

2− γ
iλ

)
= 0

We will use the following classical development (see [44] p. 122, (5.11.6)): for all δ > 0, the
following development holds when | arg z| < π − δ:

Jν(z) =

√
2√
πz

cos
(
z − ν π

2
− π

4

)
−

(ν2 − 1

4
)

2

sin
(
z − ν π

2
− π

4

)
z

+O

(
1

|z|2

) . (2.87)

Then

f(λ) =

(
2

πz̃

)1/2

%λ1−νγc−νγ ,0

(
2

2− γ
i

)−νγ e−i(z̃−νγ π2−π4 )

2
f̃(λ), (2.88)

where

z̃ =
2

2− γ
iλ
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and

f̃(λ) = (e2i(z̃−νγ π2−
π
4

) + 1) +
1− γ
%

(
2

2− γ
i

)2νγ c+
νγ ,0

c−νγ ,0

e2i(z̃−π
4

) + e−iνγπ

λ1−2νγ
+O

(
1

λ

)
= f0(λ) + f1(λ)

λ1−2νγ +O
(

1
λ

)
,

(2.89)

where
f0(λ) = e2i(z̃−νγ π2−

π
4

) + 1. (2.90)

f1(λ) =
1− γ
%

(
2

2− γ
i

)2νγ c+
νγ ,0

c−νγ ,0
(e2i(z̃−π

4
) + e−iνγπ). (2.91)

Note that f0 and f1 remain bounded in the strip −α0 ≤ <(λ) ≤ 0.
Step 2. We look at the roots of f0. From (2.90), f0 has one family of roots that we denote λ0

k.

f0(λ) = 0⇔ e2i(z̃−νγ π2−
π
4

) + 1 = 0

Hence

2i

(
2

2− γ
iλ− νγ

π

2
− π

4

)
= i(2k + 1)π, k ∈ Z,

i.e.,

λ0
k = −2− γ

2
i

(
k +

νγ
2

+
3

4

)
π, k ∈ Z.

We will now use Rouché’s Theorem. Let Bk(λ
0
k, rk) be the ball of centrum λ0

k and radius

rk =
1

k(1−2νγ)/2
and λ ∈ ∂Bk (i.e λ = λ0

k + rke
iθ, θ ∈ [0, 2π]). Then, we successively have:

f0(λ) =
4

2− λ
rke

iθ +O(r2
k).

It follows that there exists a positive constant c such that

∀λ ∈ ∂Bk, |f0(λ)| ≥ crk =
c

k(1−2νγ)/2
.

Then we deduce from (2.91) that |f̃(λ)− f0(λ)| = O
(

1
λ(1−2νγ )

)
= O

(
1

k(1−2νγ )

)
. It follows that,

for k large enough
∀λ ∈ ∂Bk, |f̃(λ)− f0(λ)| < |f0(λ)|,

Then f̃ and f0 have the same number of zeros in Bk. Consequently, there exists a subsequence
of roots of f̃ which tends to the roots λ0

k of f0. Equivalently, it means that there exists N ∈ IN
and a subsequence {λk}|k|≥N of roots of f(λ), such that λk = λ0

k +o(1) which tends to the roots

−2− γ
2

i

(
k +

νγ
2

+
3

4

)
π of f0. Finally for |k| ≥ N, λk is simple since λ0

k is.
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Step 3. From Step 2, we can write

λk = −2− γ
2

i

(
k +

νγ
2

+
3

4

)
π + εk. (2.92)

Using (2.92), we get

e2i( 2
2−γ iλk−νγ

π
2
−π

4 ) = −e−
4

2−γ εk

= −1 + 4
2−γ εk +O(ε2

k).
(2.93)

Substituting (2.93) into (2.90), using that f̃(λk) = 0, we get:

f̃(λk) =
4

2− γ
εk −

1− γ
%

(
2

2− γ
i

)2νγ c+
νγ ,0

c−νγ ,0

2i sin νγπ

(−2−γ
2
ikπ)1−2νγ

+ o(εk) + o

(
1

k1−2νγ

)
= 0 (2.94)

and hence

εk = −1− γ
%

c+
νγ ,0

c−νγ ,0

sin νγπ

(kπ)1−2νγ
+ o

(
1

k1−2νγ

)
(2.95)

From (2.95) we have in that case |k|1−α<λk ∼ β with

β = −1− γ
%

c+
νγ ,0

c−νγ ,0

sin νγπ

(π)1−2νγ
.

• α = 2νγ.
From (2.45), our aim is to solve the equation

f(λ) = (1− γ)c̃+
νγ ,0J−νγ

(
2

2− γ
iλ

)
+ %λ(λ+ η)α−1c̃−νγ ,0Jνγ

(
2

2− γ
iλ

)
= 0

Then

f(λ) =

(
2

πz̃

)1/2

%λ1−νγ (λ+ η)α−1c−νγ ,0

(
2

2− γ
i

)−νγ e−i(z̃−νγ π2−π4 )

2
f̃(λ), (2.96)

where

f̃(λ) = (e2i(z̃−νγ π2−
π
4

) + 1) +
1− γ
%

(
2

2− γ
i

)2νγ c+
νγ ,0

c−νγ ,0
(e2i(z̃−π

4
) + e−iνγπ) +O

(
1

λ

)
= f0(λ) +O

(
1
λ

)
.

(2.97)

We look at the roots of f0. From (2.90), f0 has one family of roots that we denote λ0
k.

f0(λ) = 0⇔ e2iz̃ = −i 1 + Ã

e−iνγπ + Ãeiνγπ
,
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where

Ã =
1− γ
%

(
2

2− γ

)2νγ c+
νγ ,0

c−νγ ,0
.

Let us set λ = x+ iy. Then, we have
e−

4
2−γ x =

1 + Ã√
1 + Ã2 + 2Ã cos 2νγπ

,

− 4
2−γy = 2kπ − π

2
+ θ, k ∈ Z,

where θ is such that 
cos θ =

(1 + Ã) cos νγπ√
1 + Ã2 + 2Ã cos 2νγπ

,

sin θ =
(1− Ã) sin νγπ√

1 + Ã2 + 2Ã cos 2νγπ
.

Hence 
x = −2−γ

4
ln

1 + Ã√
1 + Ã2 + 2Ã cos 2νγπ

,

y = −2−γ
4

(2kπ − π

2
+ θ), k ∈ Z.

Now with the help of Rouché’s Theorem, we conclude.
• α > 2νγ.
Step 1. From (2.45), we have

f(λ) =

(
2

πz̃

)1/2

%λ1−νγ (λ+ η)α−1c−νγ ,0

(
2

2− γ
i

)−νγ e−i(z̃−νγ π2−π4 )

2
f̃(λ), (2.98)

f̃(λ) = (e2i(z̃−νγ π2−
π
4

) + 1) +
1− γ
%

(
2

2− γ
i

)2νγ c+
νγ ,0

c−νγ ,0

e2i(z̃−π
4

) + e−iνγπ

λα−2νγ
+O

(
1

λ

)
= f0(λ) + f1(λ)

λα−2νγ +O
(

1
λ

)
,

(2.99)

where
f0(λ) = e2i(z̃−νγ π2−

π
4

) + 1. (2.100)

f1(λ) =
1− γ
%

(
2

2− γ
i

)2νγ c+
νγ ,0

c−νγ ,0
(e2i(z̃−π

4
) + e−iνγπ). (2.101)

We look at the roots of f0. From (2.100), f0 has one family of roots that we denote λ0
k.

f0(λ) = 0⇔ e2i(z̃−νγ π2−
π
4

) + 1 = 0.
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Hence

2i

(
2

2− γ
iλ− νγ

π

2
− π

4

)
= i(2k + 1)π, k ∈ Z,

i.e.,

λ0
k = −2− γ

2
i

(
k +

νγ
2

+
3

4

)
π, k ∈ Z.

Step 2. From Step 1, we can write

λk = −2− γ
2

i

(
k +

νγ
2

+
3

4

)
π + εk. (2.102)

Using (2.102), we get

e2i( 2
2−γ iλk−νγ

π
2
−π

4 ) = −e−
4

2−γ εk

= −1 + 4
2−γ εk +O(ε2

k).
(2.103)

Substituting (2.103) into (2.99), using that f̃(λk) = 0, we get:

f̃(λk) =
4

2− γ
εk−

1− γ
%

(
2

2− γ
i

)2νγ c+
νγ ,0

c−νγ ,0

2i sin νγπ

(−2−γ
2
ikπ)α−2νγ

+ o(εk) + o

(
1

kα−2νγ

)
= 0 (2.104)

and hence

εk = −1− γ
%

(
2− γ

2

)1−α c+
νγ ,0

c−νγ ,0

sin νγπ

(kπ)α−2νγ
(−i)1−α + o

(
1

kα−2νγ

)

=



γ − 1

%

(
2− γ

2

)1−α c+
νγ ,0

c−νγ ,0

sin νγπ

(kπ)α−2νγ

(
cos(1− α)

π

2
− i sin(1− α)

π

2

)
+ o

(
1

kα−2νγ

)
for k ≥ 0,
γ − 1

%

(
2− γ

2

)1−α c+
νγ ,0

c−νγ ,0

sin νγπ

(−kπ)α−2νγ

(
cos(1− α)

π

2
+ i sin(1− α)

π

2

)
+ o

(
1

kα−2νγ

)
for k ≤ 0.

(2.105)
From (2.105) we have in that case |k|α−2νγ<λk ∼ β with

β = −1− γ
%

(
2− γ

2

)1−α c+
νγ ,0

c−νγ ,0

1

πα−2νγ
sin νγπ cos(1− α)

π

2
.

• α < 2νγ.
Step 1.

f(λ) =

(
2

πz̃

)1/2

(1− γ)λνγc+
νγ ,0

(
2

2− γ
i

)νγ e−i(z̃+νγ π2−π4 )

2
f̃(λ), (2.106)
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f̃(λ) = (e2i(z̃+νγ
π
2
−π

4
) + 1) +

%

1− γ

(
2

2− γ
i

)−2νγ c−νγ ,0

c+
νγ ,0

e2i(z̃−π
4

) + eiνγπ

λ2νγ−α
+O

(
1

λ

)
= f0(λ) + f1(λ)

λα−2νγ +O

(
1

λ

)
,

(2.107)

where
f0(λ) = e2i(z̃+νγ

π
2
−π

4
) + 1. (2.108)

f1(λ) =
%

1− γ

(
2

2− γ
i

)−2νγ c−νγ ,0

c+
νγ ,0

(e2i(z̃−π
4

) + eiνγπ). (2.109)

We look at the roots of f0. From (2.108), f0 has one family of roots that we denote λ0
k.

2i

(
2

2− γ
iλ+ νγ

π

2
− π

4

)
= i(2k + 1)π, k ∈ Z,

i.e.,

λ0
k = −2− γ

2
i

(
k − νγ

2
+

3

4

)
π, k ∈ Z.

Step 2. From Step 1, we can write

λk = −2− γ
2

i

(
k − νγ

2
+

3

4

)
π + εk. (2.110)

Using (2.110), we get

e2i( 2
2−γ iλk+νγ

π
2
−π

4 ) = −e−
4

2−γ εk

= −1 + 4
2−γ εk +O(ε2

k).
(2.111)

Substituting (2.111) into (2.107), using that f̃(λk) = 0, we get:

f̃(λk) =
4

2− γ
εk+

%

1− γ

(
2

2− γ
i

)−2νγ c−νγ ,0

c+
νγ ,0

2i sin νγπ

(−2−γ
2
ikπ)2νγ−α

+o(εk)+o

(
1

kα−2νγ

)
= 0 (2.112)

and hence

εk = − %

1− γ

(
2− γ

2

)1+α c−νγ ,0

c+
νγ ,0

sin νγπ

(kπ)2νγ−α
(−i)α−1 + o

(
1

k2νγ−α

)

=



− %

1− γ

(
2− γ

2

)1+α c−νγ ,0

c+
νγ ,0

sin νγπ

(kπ)2νγ−α

(
cos(1− α)

π

2
+ i sin(1− α)

π

2

)
+ o

(
1

k2νγ−α

)
for k � 0,

− %

1− γ

(
2− γ

2

)1+α c−νγ ,0

c+
νγ ,0

sin νγπ

(−kπ)2νγ−α

(
cos(1− α)

π

2
− i sin(1− α)

π

2

)
+ o

(
1

k2νγ−α

)
for k � 0.

(2.113)
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From (2.113) we have in that case |k|2νγ−α<λk ∼ β with

β = − %

1− γ

(
2− γ

2

)1+α c−νγ ,0

c+
νγ ,0

1

π2νγ−α
sin νγπ cos(1− α)

π

2
.

2.6.2 Appendix B. Proof of Lemma 2.5.3

Suppose that λ 6= 0. It is enough to consider λ > 0. We will use the following results .

Lemma 2.6.1 ([28]-[59]) If a 6= b are complex numbers and <ϑ > −1, we have

(a2 − b2)

∫ x

0

tJϑ(at)Jϑ(bt) dt = x

(
Jϑ(ax)

d

dx
(Jϑ(bx))− Jϑ(bx)

d

dx
(Jϑ(ax))

)
,

2a2

∫ x

0

t(Jϑ(at))2 dt = (a2x2 − ϑ2) (Jϑ(ax))2 +

(
x
d

dx
(Jϑ(ax))

)2

,

(2.114)

d

dx
(xϑJϑ(x)) = xϑJϑ−1(x),

d

dx
(x−ϑJϑ(x)) = −x−ϑJϑ+1(x).

(2.115)

Remark 2.6.1 The equalities (2.114) are proposed as exercises in [28] but we can find the
proof in [59] p. 134-135, formula 7 and 11.

(I)

‖Φ+‖2
L2(0,1) =

∫ 1

0

x1−γ
(
Jνγ

(
2

2− γ
λx

2−γ
2

))2

dx. (2.116)

Let z = 2
2−γλx

2−γ
2 in equation (2.116) and using (2.114)2, we get

‖Φ+‖2
L2(0,1) =

2− γ
2λ2

∫ r

0

z
(
Jνγ (z)

)2
dz

(
we set r =

2λ

2− γ

)
=

1

2− γ
1

r2

[(
r2 − ν2

γ

) (
Jνγ (r)

)2
+
(
rJ ′νγ (r)

)2
]

=
1

2− γ
1

r2

[(
rJνγ (r)

)2
+
(
rJνγ+1(r)

)2 − 2νγrJνγ (r) Jνγ+1 (r)
]
,

where we have used (2.44). Using the asymptotic formula (2.87) for large λ, we conclude that

‖Φ+‖L2(0,1) ≤
c√
λ
.

Similarly, we prove that

‖Φ−‖L2(0,1) ≤
c√
λ
.
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(II) ∥∥∥∥x− 1
2Jνγ

(
2

2− γ
λx

2−γ
2

)∥∥∥∥2

L2(0,1)

=

∫ 1

0

x−1
(
Jνγ

(
rx

2−γ
2

))2

dx

=
2

2− γ

∫ r

0

z−1
(
Jνγ (z)

)2
dz

Now, using (2.44), we have

I =

∫ r

0

z−1
(
Jνγ (z)

)2
dz =

1

νγ

∫ r

0

Jνγ (z)(J ′νγ (z) + Jνγ+1(z)) dz

=
1

2νγ

(
Jνγ (r)

)2
+

1

νγ

∫ r

0

Jνγ (z)Jνγ+1(z) dz

≤ 1

2νγ

(
Jνγ (r)

)2
+

1

4
I +

1

ν2
γ

∫ r

0

z(Jνγ+1(z))2 dz.

Using (2.114)2 and (2.87), we obtain

I ≤ c(Jνγ (r))
2 + c′

∫ r

0

z(Jνγ+1(z))2 dz.

≤ cλ.

Hence ∥∥∥∥x− 1
2Jνγ

(
2

2− γ
λx

2−γ
2

)∥∥∥∥
L2(0,1)

≤ c
√
λ.

Similarly, we prove that ∥∥∥∥x− 1
2J−νγ

(
2

2− γ
λx

2−γ
2

)∥∥∥∥
L2(0,1)

≤ c
√
λ.

(III) Let f1 ∈ H1
0,γ(0, 1) and f2 ∈ L2(0, 1). First we estimate I =

∫ 1

0

f1(s)Φ+(s) ds. After a

change of variables z = rs
2−γ
2 , using (2.115)2 and integration by parts, we get

I =
1

λ

1

r
1

2−γ

∫ r

0

f1

((z
r

) 2
2−γ
)
z

1
2−γ Jνγ (z) dz

= −1

λ

1

r
1

2−γ

∫ r

0

f1

((z
r

) 2
2−γ
)
d

dz

(
z

1
2−γ J− 1

2−γ
(z)
)
dz

=
1

λ

1

r
1

2−γ

[
c−1

2−γ ,0
f1(0) +

∫ r

0

d

dz

(
f1

((z
r

) 2
2−γ
))

z
1

2−γ J− 1
2−γ

(z) dz

]
=

1

λ

1

r
1

2−γ
c−1

2−γ ,0
f1(0) +

1

λ

2

2− γ
1

r
3

2−γ

∫ r

0

f ′1

((z
r

) 2
2−γ
)
z
γ+1
2−γ J− 1

2−γ
(z) dz

=
1

λ

1

r
1

2−γ
c−1

2−γ ,0
f1(0) +

1

λ

∫ 1

0

f ′1(s)s
1
2J− 1

2−γ

(
rs

2−γ
2

)
ds.
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Applying the Cauchy-Schwartz inequality, using the fact that

|f1(0)| ≤ ‖f1‖L∞(0,1) ≤
1√

1− γ
‖f1‖H1

γ,0(0,1)

and perform a change of variables, then by (2.114)2, we have

|I| ≤ 1

λ

1

r
1

2−γ
c−1

2−γ ,0
|f1(0)|+ 1

λ
‖sγ/2f ′1‖L2(0,1)

∥∥∥s 1−γ
2 J− 1

2−γ

(
rs

2−γ
2

)∥∥∥
L2(0,1)

≤ 1

λ

1

r
1

2−γ
c−1

2−γ ,0
|f1(0)|+ 1

λ

(
2− γ
2λ2

)1/2

‖f1‖H1
γ,0(0,1)

(∫ r

0

z(J− 1
2−γ

(z))2 dz

)1/2

≤ c
1

|λ|
3−γ
2−γ
‖f1‖H1

γ,0(0,1) + c′
1

|λ| 32
‖f1‖H1

γ,0(0,1) ≤ c
1

|λ| 32
‖f1‖H1

γ,0(0,1).

Hence, using (2.87), we deduce that∣∣∣∣iλ∫ 1

0

f1(s)Φ+(s)Φ−(1) ds

∣∣∣∣ ≤ c

|λ|
‖f1‖H1

γ,0(0,1).

Also, we have∣∣∣∣∫ 1

0

f2(s)Φ+(s)Φ−(1) ds

∣∣∣∣ ≤ |Φ−(1)|‖f2‖L2(0,1)‖Φ+(s)‖L2(0,1) ≤ c
1

|λ|
‖f2‖L2(0,1).

In the same way, one can check that∣∣∣∣∫ 1

0

f1(s)Φ−(s) ds

∣∣∣∣ ≤ c
1

|λ| 32
‖f1‖H1

γ,0(0,1)

and ∣∣∣∣∫ 1

0

f2(s)Φ−(s)Φ+(1) ds

∣∣∣∣ ≤ c
1

|λ|
‖f2‖L2(0,1).

Consequently, we get (2.85). Thus, the proof of the Lemma 2.5.3 is complete.
�
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Chapter 3

Global existence and asymptotic
behavior of the solutions to a class of
nonlinear second order ODE with delay
term

3.1 Introduction

In this chapter we investigate the existence and decay properties of solutions to the scalar
nonlinear second order ODE with delay term of the type

u′′ + c1|u′ (t) |αu′ (t) + c2|u′ (t− τ) |αu′ (t− τ) + c3|u|βu = 0
u(0) = u0,
ut(0) = u1,
u(γ) = u0, γ ∈]− τ, 0[.

(3.1)

where α, β, c1, c2, c3 et τ are positive constants.

It is well known that if c2 = 0, that is, in absence of delay, the energy of problem (P ) is
exponentially decaying to zero (see for instance [37], [34], [36] and [51]). On the contrary, if
c1 = 0, that is, there exits only the delay part in the internal, the system (P ) becomes unstable
(see, for instance [25]). In recent years, the PDEs with time delay effects have become an
active area of research and arise in many pratical problems (see for example [1], [58]). In
[25], the authors showed that a small delay in a boundary control could turn such well-behave
hyperbolic system into a wild one and therefore, delay becomes a source of instability. To
stabilize a hyperbolic system involving input delay terms, additional control terms will be
necessary (see [52], [60], [53]). In [52] the authors examined the problem (P ) and determined

69
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suitable relations between µ1 and µ2, for which the stability or alternatively instability takes
place.

Our purpose in this chapter is to give a global solvability in Sobolev spaces and energy decay
estimates of the solutions to the problem (P ) for a nonlinear damping and a time varying delay
term.

To prove decay estimates, we use a multiplier method. These arguments were introduced
and developed by Haraux [37], Komornik [41] and used by Liu and Zuazua [46], Eller et al
[29].

3.2 Preliminaries and main results

First assume the following hypotheses:
(H1) The positive constants c1 and c2 satisfy the next inequality

c2 ≤ c1 (3.2)

The following technical lemmas will play an important role in the sequel.

Lemma 3.2.1 ([37], [41]) Let E : IR+ → IR+ be a non increasing function and assume that
there are two constants σ > −1 and ω > 0 such that∫ +∞

S

E1+σ(t) dt ≤ 1

ω
Eσ(0)E(S). 0 ≤ S < +∞, (3.3)

then we have

E(t) = 0 ∀t ≥ E(0)σ

ω|σ|
∀t ≥ 0, if − 1 < σ < 0, (3.4)

E(t) ≤ E(0)

(
1 + σ

1 + ωσt

) 1
σ

∀t ≥ 0, if σ > 0 (3.5)

and
E(t) ≤ E(0)e1−ωt ∀t ≥ 0, if σ = 0. (3.6)

We introduce, as in [52], the new variables

u′(t− ρτ) = Z(t, ρ) (3.7)

Then, we have
τZt(t, ρ) + Zρ(t, ρ) = 0 (3.8)
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and
−τu′′(t− ρτ) = d

dρ
Z(t, ρ) = Zρ(t, ρ)

⇒ −Zρ(t,ρ)

τ
= u′′(t− ρτ) = Zt(t, ρ)

⇒ τZt(t, ρ) + Zρ(t, ρ) = 0

Therefore, problem (P ) is equivalent to:
u′′ + c1|u′ (t) |αu′ (t) + c2|Z (t, 1) |αZ (t, 1) + c3|u|βu = 0
τZt (t, ρ) + Zp (t, ρ) = 0.
u(0) = u0, ut(0) = u1,
u(γ) = u0, γ ∈]− τ, 0[,
Z(0, ρ) = f0

(3.9)

Let ξ̄ be a positive constant such that

c2 < ξ < c1. (3.10)

We define the energy associated to the solution of the problem (3.9) by:

E(t) =
1

2
|u′(t)|2 +

1

β + 2
|u|β+2 +

ξ

α + 2

∫ 1

0

|Z(t, ρ)|α+2dρ. (3.11)

Lemma 3.2.2 Let (u, z) be a solution of the problem (3.9). Then, the energy functional defined
by (3.11) satisfies

E ′(t) ≤ −
(
c1 − ξ

(α+2)τ
− c2

(α+2)

)
|u′(t)|α+2 −

(
− c2

α+2
α+1

+ ξ
(α+2)τ

)
|Z(t, 1)|α+2

≤ 0.
(3.12)

Proof.
Multiplying the first equation in (3.9) by u′(t), we get

1

2

d

dt
|u′(t)|2 + c1|u′(t)|α+2 + c2|Z(t, 1)|αZ(t, 1)u′(t) +

1

β + 2

d

dt
|u|β+2 = 0. (3.13)

We multiply the second equation in (3.9) by ξ|Z(t, ρ)|αZ(t, ρ), we obtain

ξ

α + 2

d

dt
|Z(t, ρ)|α+2 +

ξ

(α + 2)τ

d

dρ
|Z(t, ρ)|α+2 = 0. (3.14)

By integrating equation (3.14) over (0, 1) we get

ξ

α + 2

d

dt

∫ 1

0

|Z(t, ρ)|α+2dρ+
ξ

(α + 2)τ
(|Z(t, 1)|α+2 − |Z(t, 0)|α+2) = 0. (3.15)
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Summing (3.13) and (3.15) we get

d
dt

[
1
2
|u′(t)|2 + 1

β+2
|u|β+2 + ξ

α+2

∫ 1

0

|Z(t, ρ)|α+2dρ

]
+ c1|u′(t)|α+2

+c2|Z(t, 1)|αZ(t, 1)u′(t) + ξ
(α+2)τ

(|Z(t, 1)|α+2 − |Z(t, 0)|α+2) = 0.

As
Z (t, 0) = u′(t). (3.16)

Hence

E ′(t) = −
(
c1 −

ξ

(α + 2) τ

)
|u′(t)|α+2 − c2|Z(t, 1)|αZ(t, 1)u′(t)− ξ

(α + 2) τ
|Z(t, 1)|α+2. (3.17)

Using young’s inequality

ab ≤ εp

p
ap +

1

qεq
bq,∀ε > 0,

1

p
+

1

q
= 1 (3.18)

then

−c2|Z(t, 1)|αZ(t, 1)u′(t) ≤ c2|Z(t, 1)|α+1|u′(t)| ≤ c2
εp

p
|Z(t, 1)|p(α+1) + c2

1

qεq
|u′(t)|q. (3.19)

Hence

E ′(t) ≤ −
(
c1 −

ξ

(α + 2) τ

)
|u′(t)|α+2+c2

εp

p
|Z(t, 1)|p(α+1)+c2

1

qεq
|u′(t)|q− ξ

(α + 2) τ
|Z(t, 1)|α+2.

(3.20)
We Choose q = α + 2. Thus p = (α + 2)/(α + 1). We obtain

E ′(t) ≤ −
(
c1 −

ξ

(α + 2) τ
− c2

(α + 2) ε(α+2)

)
|u′(t)|α+2 −

(
−c2

ε
α+2
α+1

α+2
α+1

+
ξ

(α + 2) τ

)
|Z(t, 1)|α+2

(3.21)
To get E ′(t) ≤ 0, it suffices 

(
c1 − ξ

(α+2)τ
− c2

(α+2)ε(α+2)

)
≥ 0(

−c2
ε
α+2
α+1

α+2
α+1

+ ξ
(α+2)τ

)
≥ 0

(3.22)

i.e

c2
ε
α+2
α+1

α+2
α+1

≤ c1 − c2
1

(α + 2) ε(α+2)

⇒ c2

(
ε
α+2
α+1

α+2
α+1

+
1

(α + 2) ε(α+2)

)
≤ c1
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By Young’s inequality

aθ+1 = aaθ ≤ ap

p
+
aqθ

q
(3.23)

for p = θ + 1 and q = θ+1
θ

we get

aθ+1 =
ap

p
+
aqθ

q
(3.24)

so for

θ =
1

α + 1
(3.25)

i.e for b = 1
ε

and a = ε, wet get

1

ε
= ε

1
α+1 ⇒ ε1+ 1

α+1 = 1⇒ ε = 1. (3.26)

Hence for ε = 1
c2 ≤ c1. (3.27)

Our main result is the following.

Theorem 3.2.1 Let (u0, u1, f0) ∈ IR2 × C1(0, 1) satisfy the compatibility condition

f0(0) = u1.

Assume that (H1) holds. Then problem (P ) admits a unique

u ∈ C1(IR+), u′ ∈ C1(IR+)

and we obtain the following decay property:

(i) If α ≥ β

β + 2
, then there exists a positive constant C(E(0)) depending continuously on

E(0) such that

E(t) ≤
(
C(E(0))

t

)− 2
α

.

(ii) If α <
β

β + 2
, then there exists a positive constant C(E(0)) depending continuously on

E(0) such that

E(t) ≤
(
C(E(0))

t

)− (α+1)(β+2)
β−α

.

Moreover, the rate of energy decay t−2/α in part (i) is optimal.
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3.2.1 Global existence

To show the existence of the solution for (P ), we write the problem as first order system


u′ = v
v′ = −c1|v|αv − c2|Z(t, 1)|αZ(t, 1)− c3|u|βu
Zt(t, ρ) = −1

τ
Zρ(t, ρ)

(3.28)

This is the initial value problem for an ordinary differential equation, which admits a unique
local solution u ∈ C2([0, Tmax)). The energy in (3.28) is given by

E(t) =
1

2
|u′(t)|2 +

1

β + 2
|u|β+2 +

ξ

α + 2

∫ 1

0

|Z(t, ρ)|α+2dρ (3.29)

From Lemma 3.2.2 for some constants M1,M2, we have

∀t ∈ [0, Tmax), |u′(t)| ≤M1, |u| ≤M2.

In particular Tmax = +∞, u is global, u ∈ C2([0,+∞)).

Now, we shall derive the decay estimate for the solutions in Theorem 3.2.1. For this we use
the method of multipliers. We denote by c various positive constants which may be different
at different occurrences.

3.2.2 Asymptotic behaviour

We multiply equation (3.9)1 by Equ, where q is positive constant, and integrate over (S, T )
where S, T are positive constants

0 =

∫ T

S

Equ
(
u′′ + c1|u′|αu′ + c2|z(t, 1)|αz(t, 1) + c3|u|βu

)
dt

= [Equ′u]TS −
∫ T

S

(
qE ′Eq−1

)
u′u dt− 2

∫ T

S

Equ′2dt

+

∫ T

S

Eq
(
u′2 + c3|u|β+2

)
dt+ c1

∫ T

S

Eq|u′|αuu′ dt

+c2

∫ T

S

Equ|z(t, 1)|αz(t, 1) dt

(3.30)
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Similarly, we multiply the second equation of (3.9)2 by Eqe(−2τρ)(α + 2) |z|α z, we have

0 =

∫ T

S

Eq

∫ 1

0

e−2τρ(α + 2)|z|αz (τzt + zρ) dρdt

=

[
Eq

∫ 1

0

τe−2τρ|z|α+2 dρ

]T
S

− τ
∫ T

S

(
qE ′Eq−1

) ∫ 1

0

e−2τρ|z|α+2 dρdt

+

∫ T

S

Eq

∫ 1

0

(
∂

∂ρ

(
e−2τρ|z|α+2

)
+ 2τe−2τρ|z|α+2

)
dρdt

=

[
Eq

∫ 1

0

τe−2τρ|z|α+2 dρ

]T
S

− τ
∫ T

S

(
qE ′Eq−1

) ∫ 1

0

e−2τρ|z|α+2 dρdt

+

∫ T

S

Eq
(
e−2τ |z(t, 1)|α+2 − |z(t, 0)|α+2

)
dt+ 2τ

∫ T

S

Eqe−2τρ|z|α+2 dρdt

(3.31)

Summing (3.31) and (3.30), we obtain that

A

∫ T

S

Eq+1dt ≤ − [Equ′u]TS +

∫ T

S

(
qE ′Eq−1

)
u′u dt+ 2

∫ T

S

Equ′2 dt

−c1

∫ T

S

Equ|u′|αu′ dt− c2

∫ T

S

Equ|z(t, 1)|αz(t, 1) dt

−
[
Eq

∫ 1

0

τe−2τρ|z|α+2 dρ

]T
S

+ τ

∫ T

S

(
qE ′Eq−1

) ∫ 1

0

e−2τρ|z|α+2 dρdt

−
∫ T

S

Eq
(
e−2τ |z(t, 1)|α+2 + |z(t, 0)|α+2

)
dt

(3.32)
where A = 2 min {1, τe−2τ/ξ} . Since E is non-increasing, is abounded non-negative function
on IR+, using the Cauchy-Schwartz inequality, we find that

− [Equ′u]TS = Eq(S)u′(S)u(S)− Eq(T )u′(T )u(T )
≤ cEq+1/2+1/β+2(S).

(3.33)

and ∣∣∣∣∫ T

S

(
qE ′Eq−1

)
u′u dt

∣∣∣∣ ≤ cγ

∫ T

S

q|E ′|Eq− 1
2

+ 1
β+2dt

≤ cEq+ 1
2

+ 1
β+2 (S).

(3.34)

and

−
[
Eq

∫ 1

0

e−2τρ|z|α+2dρ

]T
S

= Eq(S)

∫ 1

0

e−2τρ|z(S, ρ)|α+2 dρ− Eq(T )

∫ 1

0

e−2τρ|z(T, ρ)|α+2 dρ

≤ cEq+1(S).

(3.35)
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and ∫ T

S

(
qE ′Eq−1

) ∫ 1

0

e−2τρ|z|α+2 dρdt ≤ c

∫ T

S

q (E ′)Eqdt

≤ cEq+1(S).
(3.36)

and ∫ T

S

Eqe−2τ |z(t, 1)|α+2 dt ≤ c

∫ T

S

Eq (−E ′) dt

≤ cEq+1(S).
(3.37)

and ∫ T

S

Eq|z(t, 0)|α+2 dt =

∫ T

S

Eq|u′(t)|α+2dt

≤ c

∫ T

S

Eq (−E ′) dt

≤ cEq+1(S).

(3.38)

Using estimates (3.33)-(3.38), we conclude from inequality (3.32) that

A

∫ T

S

Eq+1dt ≤ cµEq+1(S) + c′Eq+ 1
2

+ 1
β+2 (S) +

∫ T

S

Equ′2dt

+µ1

∫ T

S

Eq |u| |u′|α+1
dt+ µ2

∫ T

S

Eq |u| |z(t, 1)|α+1 dt

≤ cµEq+1(S) + c′Eq+ 1
2

+ 1
β+2 (S) +

∫ T

S

Eq(−E ′)
2

α+2 dt

+µ1

∫ T

S

Eq+ 1
β+2 (−E ′)

α+1
α+2dt+ µ2

∫ T

S

Eq+ 1
β+2 (−E ′)

α+1
α+2 dt

(3.39)

Using young’s inequality

(aε)

(
1

ε

)
b ≤ εp

p
ap +

1

qεq
bq,∀ε > 0 (3.40)

we deduce that∫ T

S

Eq(−E ′)
2

α+2 dt ≤ α

α + 2
ε
α+2
α

∫ T

S

Eq α+2
α dt+

2

α + 2

1

ε
α+2
2

∫ T

S

(−E ′) dt

∫ T

S

Eq+ 1
β+2 (−E ′)

α+1
α+2 dt ≤ 1

α + 2
εα+2

∫ T

S

E(q+ 1
β+2

)(α+2) dt+
α + 1

α + 2

1

ε
α+2
α+1

∫ T

S

(−E ′) dt

We deduce that

A

∫ T

S

Eq+1dt ≤ c1E
q+1(S) + c2E

q+ 1
2

+ 1
β+2 (S) + c3

1

ε
α+2
2

E(S) + c4
1

ε
α+2
α+1

1

E(S)

+c5ε
α+2
α

∫ T

S

Eq α+2
α dt+ c6ε

α+2
1

∫ T

S

E(q+ 1
β+2

)(α+2) dt

(3.41)
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We distinguish five cases related to the parameters α and β.

(i) If α ≥ β

β + 2
We choose q such that

q
α + 2

α
= q + 1.

Thus, we find q = α/2 and hence (q + 1
β+2

)(α + 2) = q + 1 + γ with

γ =
(α + 2)(α(β + 2)− β)

2(β + 2)
> 0.

Set ε1 =
ε2

E(0)
γ
α+2

. Choosing ε and ε2 small enough, we deduce from (3.41) that

∫ T

S

Eq+1dt ≤ CEq+1(S) + C ′E(S) + C ′′′Eq+ 1
2

+ 1
β+2 (S) + C ′′′′E(0)

γ
α+1E(S)

≤

(
C ′ + CE(0)q + C ′′′E(0)q−

1
2

+ 1
β+2 + C ′′′′E(0)

γ
α+1

E(0)q

)
E(0)qE(S)

where C,C ′, C ′′, C ′′′ and C ′′′′ are different positive constants independent of E(0). Hence, we
deduce from Lemma 3.2.1 that

E(t) ≤
(

1 + q

q

)1/q (
C ′ + CE(0)q + C ′′′E(0)q−

1
2

+ 1
β+2 + C ′′′′E(0)

γ
α+1

)
t−1/q.

(ii) If α <
β

β + 2
We choose q such that

(q +
1

β + 2
)(α + 2) = q + 1.

Thus, we find q = (β−α)
(α+1)(β+2)

and hence qα+2
α

= q + 1 + γ with

γ =
(α + 2)(β − α(β + 2))

α(α + 1)(β + 2)
> 0.

Set ε =
ε2

E(0)
αγ
α+2

. Choosing ε1 and ε2 small enough, we deduce from (3.41) that

∫ T

S

Eq+1dt ≤ CEq+1(S) + C ′E(S) + C ′′′Eq+ 1
2

+ 1
β+2 (S) + C ′′′′E(0)

αγ
2 E(S)

≤

(
C ′ + CE(0)q + C ′′′E(0)q−

1
2

+ 1
β+2 + C ′′′′E(0)

αγ
2

E(0)q

)
E(0)qE(S)
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where C,C ′, C ′′, C ′′′ and C ′′′′ are different positive constants independent of E(0). Hence, we
deduce from Lemma 3.2.1 that

E(t) ≤
(

1 + q

q

)1/q (
C ′ + CE(0)q + C ′′′E(0)q−

1
2

+ 1
β+2 + C ′′′′E(0)

αγ
2

)
t−1/q.

which completes the proof.



Conclusion and perspectives

The summary provided below considers some problems for future research works that arise
from this dissertation.

The second chapter of this thesis, was devoted to study of the boundary stabilization of the
degenerate wave system with dissipation law of fractional derivative type acting at a degenerate
point. Using a spectral analysis we have proved a non-uniform stability. Using Arendt-Batty
Theorem, we have proved the strong asymptotic stability. We obtain a sharp estimate for the
rate of energy decay of classical solutions depending on parameters γ and α. Our approach is
based on the asymptotic theory of C0- semigroups and in particular on a result due to Borichev
and Tomilov [13], which reduces the problem of estimating the rate of energy decay to finding
a growth bound for the resolvent of the semigroup generator. In particular, we obtain uniform
decay estimates for a weakly hyperbolic equation under a weak damping. This is a suprising
effect. As for an interesting open problem, is to prove that the results obtained in this chapter
hold for the case η = 0. The Borochev-Tomilov theorem do not work in this case.

Future works

1) It seems to be interesting to develop some multipliers method to treat the following problem
(also in the case a(x) = xγ)

(PR)


utt(x, t)− (a(x)ux(x, t))x = 0 in (0, 1)× (0,+∞),
(a(x)ux)(0, t) = %∂α,ηt u(0, t) in (0,+∞),
u(1, t) = 0 in (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, 1).

Here a is weakly degenerate at x = 0 in the sense that∫ 1

0

1

a(s)
ds < +∞.
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Moreover, an explicit representation need to develop some tools similar to Bessel equations.
This is an interesting problem.

2) More general problem is the following
utt(x, t)−M(‖

√
a(x)ux‖2

L2(0,1))(a(x)ux)x(x, t) = 0 in (0, 1)× (0,+∞)

M(‖
√
a(x)ux‖2

L2(0,1))(aux)(0, t) = %∂α,ηt u(0, t) in (0,+∞)

u(1, t) = 0 in (0,+∞)
u(x, 0) = u0(x), ut(x, 0) = u1(x) in (0, 1).

The problem of global existence and energy decay is open. It is clear that the energy decay
rate depends on the order of degeneracy of M,a and the parameter α.

3) Another interesting problem is the following
utt(x, t)− (a(x)ux)x(x, t) = 0 in (0, 1)× (0,+∞)
(aux)(0, t) = h(ut(0, t)) in (0,+∞)
u(1, t) = 0 in (0,+∞)
u(x, 0) = u0(x), ut(x, 0) = u1(x) in (0, 1).

at least for a(x) = xγ, 0 < γ < 1 and h(s) = |s|m−1s (m > 1). It is clear that the energy decay
depends on the form of a and h.
4) It seems to be interesting to study stabilization, exact controllability and null controllability
of solutions to the following hyperbolic-parabolic system

(P1)



yt(x, t)− (xγ1yx(x, t))x = 0 in (0, 1)× (0,+∞),
ztt(x, t)− (|x|γ2zx(x, t))x = 0 in (−1, 0)× (0,+∞),
(xγ1yx)(0, t) = (|x|γ2zx)(0, t) in (0,+∞),
y(0, t) = z(0, t) in (0,+∞),
y(1, t) = 0 in (0,+∞),
z(−1, t) = 0 in (0,+∞),
y(x, 0) = y0(x), on (0, 1),
z(x, 0) = z0(x), zt(x, 0) = z1(x) on (−1, 0),

(P2)



yt(x, t)− (xγ1yx(x, t))x = 0 in (0, 1)× (0,+∞),
ztt(x, t)− (|x|γ2zx(x, t))x = 0 in (−1, 0)× (0,+∞),
(xγ1yx)(0, t) = (|x|γ2zx)(0, t) in (0,+∞),
y(0, t) = z(0, t) in (0,+∞),
y(1, t) = 0 in (0,+∞),
z(−1, t) = g(t) in (0,+∞),
y(x, 0) = y0(x), on (0, 1),
z(x, 0) = z0(x), zt(x, 0) = z1(x) on (−1, 0),
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and

(P3)



yt(x, t)− (xγ1yx(x, t))x = 0 in (0, 1)× (0,+∞),
ztt(x, t)− (|x|γ2zx(x, t))x = 0 in (−1, 0)× (0,+∞),
(xγ1yx)(0, t) = (|x|γ2zx)(0, t) in (0,+∞),
y(0, t) = z(0, t) in (0,+∞),
y(1, t) = g(t) in (0,+∞),
z(−1, t) = 0 in (0,+∞),
y(x, 0) = y0(x), on (0, 1),
z(x, 0) = z0(x), zt(x, 0) = z1(x) on (−1, 0),

by means of the boundary control g.
Although, the last chapter has dealt with the multiplier technic which is widely used to

control various systems and became nowadays, an indispensable tool for the study of all systems.
whether they are finite or infinite, linear or nonlinear, time-invariant or time varying, continuous
or discrete. Consequently, reproducing the result obtained in the chapter, with a time delay of
fractional type and time-varying delay would be very interesting.

5) For the ordinary second order differential equation with delay, it is interesting to study
the same problem, but replacing the nonlinear terms by a fractional derivatives

u′′ + c1∂
α,η
t u (t) + c2∂

α,η
t u (t− τ) + c3|u|βu = 0

u(0) = u0,
ut(0) = u1,
u(γ) = u0, γ ∈]− τ, 0[.

(3.42)
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ملخص
الثانية. الدرجة من التطور معادلات لبعض كيفية دراسة : العنوان

التفاضلية المعادلات بعض إعتبار تم بالأخص، تشتت. وجود مع الثانية الدرجة من التطور مسائل بعض إستقرار بدراسة الإهتمام تم الأطروحة، هذه في
تم و للحلول، المقارب السلوك و الكلي الوجود حول الدراسة لتركزت الحدية، الشروط و الإبتدائية المعطيات حول الفرضيات بعض تحت الثانية. الدرجة من

الطاقة. خصائص حول النتائج بعض على التحصل
: المفتاحية الكلمات

المضاعفات. طريقة بيسيل. دوال الإستقرار. الزمر. أنصاف نظرية الكسري. الحدي التحكم التشوه. ضعيفة الأمواج معادلات

Abstract
Title : Qualitative study of some evolution equation of second order.
This thesis is devoted to the study of the stabilisation of some evolution problems of second

order with the presence of dissipation. In particular, we consider some ordinary differential
of second order. Under assumptions on initial data and boundary conditions, we focused our
study on the global existence and asymptotic behavior of solutions where we obtained several
results.

Keywords :
Weakly degenerate wave equation, Fractional boundary control, Semigroup theory, Sta-

bility, Bessel functions, Multiplier method.

Résumé
Titre : Etude qualitative de quelques équations d’évolution du second ordre.
Dans cette thèse, nous avons considéré quelques problèmes d’évolution du second ordre

avec la présence des termes dissipatifs. En particulier, on considère quelques équations diffé-
rentielles du second ordre. Sous quelques hypothèses sur les données initiales et aux bords,
nous avons concentré notre étude sur l’existence globale et le comportement asymptotique
des solutions où nous avons obtenu plusieurs résultats sur les propriétés de l’énergie.

Mots Clés :
Equation des ondes dégénérée, Contrôle frontière de type fractionnaire, Théorie des semi-

groupes, Stabilité, Fonctions de Bessel, Méthode des multiplicateurs.
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