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Resumé

Dans cette thèse on a considère un système thermoelastique avec retard, ce retard met en
cause l’existence de la solution et l’effet de stabilisation de conduction de la chaleur,pour
surmonter ce problème on a ajouté a l’équation du système où figure le retard un amor-
tissement de Kelvin-Voigt. Apres un apercus sur la notion de la thermoelasticite classique,
lineaire et non lineaire,on a d’abord prouvé l’existance de la solution du système en utilisant
la théorie du semigroupe, puis on a prouvé sous des assumptions appropriées la stabilité
exponentielle du système en introduisant une fonctionalle de Lyapunov convenable. Dans
le dernier chapitre, on a considéré l’équation des ondes en présence de termes dissipatifs:
un terme dissipatif viscoélastique et un terme dissipatif non local de type fractionnaire. On
obtient des résultats de stabilité forte, uniforme et polynomiale.

Mots Clés: Systeme Thermoelsatique, retard, amortissement de Kelvin-voigt,stabilité ex-

ponentielle.
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Abstract

In this Thesis we considere a thermoelastic systeme whith delay,the presence of this delay
destroys the well-posedness and the stabilizing effect of the heat conduction.To avoid this
problem, we add to the system, at the delayed equation, a Kelvin-Voigt damping.After giv-
ing a short summary on classical thermoelasticte, we prove at first the well-posedness of the
system by the semigroup theory.then , under appropriate assumptions, we prove the expo-
nential stability of the system by introducing a suitable Lyapunov functional.

In the last chapter we considere a wave equation which present a viscoelastic dissipatif
term and a non local dissipatif term of fractionnaire type.We obtain a strong, uniform and
polynomial stability result.

Keywords: Thermoelastic system, delay, Kelvin-voigt damping, well posedness, exponential
stability.
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Notations

R: The set of real numbers.
R+: The set of non negative real numbers.
R∗: The set of non zero real numbers.
C: The set of complex numbers.
i: The imaginary unit.
Lp: The Lebesgue space.
Hm: The sobolev space.
C0: The space of continuous function.
C1: the space of continuously differentiable functions.
L(X, Y ): The space of bounded linear operators from X into Y .
|.|: The modulus.
∥.∥: The norm.
inf: The infimum.
sup: The supremum.
ℜ: The real part.
ℑ: The imaginary part.
∂: The partial derivative.
∂t: The partial derivative with respect of t.
∂ttf : The second partial derivative of f with respect of t.
∂α,η

t : Fractional Derivative.
D(A): Domain of A.
R(A): The range of A.
ker(A): The kernel of A.
A∗: The adjoint operator of A.
ρ(A): The resolvent set of A.
σ(A): The spectrum of A.
σp(A): The punctual spectrum of A.

11



12



Introduction

1 Time delay

Systems with delays abound in the world. One reason is that nature is full of transparent
delays. Another reason is that time-delay systems are often used to model a large class
of engineering systems, where propagation and transmission of information or material are
involved. The presence of delays (especially, long delays) makes system analysis and control
design much more complex. In this section, an example of time-delay system is discussed.

What is a delay?

Time delay is the property of a physical system by which the response to an applied force
(action) is delayed in its effect. Whenever material, information or energy is physically trans-
mitted from one place to another, there is a delay associated with the transmission. The
value of the delay is determined by the distance and the transmission speed. Some delays
are short, some are very long. The presence of long delays makes system analysis and control
design much more complex. What is worse is that some delays are too long to perceive and
the system is misperceived as one without delays.

Time delays abound in the world. They appear in various systems such as biological, eco-
logical, economic, social, engineering systems etc. For example, over-exposure to radiation
increases the risk of cancer, but the onset of cancer typically follows exposure to radiation
by many years. In economics, the central bank in a country often attempts to influence the
economy by adjusting interest rates; the effect of a change in interest rates takes months to
be translated into an impact on the economy. In politics, politicians need some time to make
decisions and they will have to wait for some time before they find out if the decisions are
correct or not. When reversing a car around a corner, the driver has to wait for the steering
to take effect. In engineering, on which this section focuses, there are a lot of systems with
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delays.

A general tendency in responding to some errors in a system is to react immediately to
the errors and to react more if the errors are not lessened or eliminated in time as expected.
However, for a system with time delays, only after the inherent delays will the errors start
to change. Hence, it is very important to properly understand the existence of delays and
not to over-react. Otherwise, the system is very likely to overshoot or even become unstable.
When dealing with time-delay systems, “patience is a virtue.” For a given delay element with
a delay h ≥ 0, the output y(t) corresponding to the input u(t) is

y(t) = u(t− h).

Hence, the transfer function of a delay element is given by e−sh.

An example of time-delay system

A simple example of a time-delay system from everyday life is the shower, as depicted in
Figure 1.

Figure 1: Sketch of a shower system.

Most people have experienced the difficulty in adjusting the water temperature: it gets
too cold or too warm. The actual temperature often overshoots the desired and, sometimes,
it takes a while to get the temperature right. This is because it takes time for the increased
(or decreased) hot/cold water to flow from the tap to the shower head (or the human body).
This time is a delay, which depends on the water pressure and the length of the pipe.
The change of the faucet position is almost immediate, however, the change of the water
temperature has to wait until the delay has elapsed. If the faucet position is constantly

14



adjusted according to the currently perceived temperature, then it is very likely that the
temperature will fluctuate. Assume that the water is an incompressible fluid and stationary
flow. According to the Poiseuille law, the flow rate of water is

F = πR4

8µl ∆p,

where µ = 0.01 is the kinematic viscosity of water, R is the radius of the pipe, l is the length
of the pipe and ∆p is the pressure difference between the two ends of the pipe. The time
delay h can then be found as

h = πR2l

F
= 8µ

∆p

(
l

R

)
.

2 Evolution equations in Thermoelasticity

The equations of thermoelasticity describe the elastic and the thermal behavior of elas-
tic, heat conductive media, in particular the reciprocal actions between elastic stresses and
temperature differences. We consider the classical thermoelastic system where the elastic
part is the usual second-order one in the space variable. The equations are a coupling of the
equations of elasticity and of the heat equation and thus build a hyperbolic-parabolic system.

Indeed, both hyperbolic and parabolic effects are encountered. This section discusses the
mathematical questions arising in the study of initial value problems and of initial bound-
ary value problems to these equations, both for linear and for nonlinear systems. Classical
boundary conditions of the Dirichlet type ( rigidly clamped, constant temperature ) or the
Neumann type ( traction free, insulated ) are considered, as well as the linearized equations
together with contact boundary conditions.

It is known both for hyperbolic and for parabolic nonlinear equations and systems that
global smooth solutions in general might not exist but that a blow-up may occur. The
criteria according to which global solutions still exist are different for hyperbolic and for
parabolic equations. Hence the question arises whether the behavior will be dominated by
the hyperbolic or by the parabolic part. The answer will depend on the number of space
dimensions. This also applies to the question of asymptotic behavior of solutions to the
linearized system, where the behavior will also depend on the space dimension, or to be
more precise, one dimension on one side and two or three dimensions on the other side.

15



The methods used for obtaining global existence theorems for small data consist of prov-
ing suitable a priori estimates, where one often exploits the decay of solutions to the linearized
equations. This requires a precise analysis of the asymptotic behavior of such solutions as
time tends to infinity, which will finally allow us to describe the asymptotic behavior of
solutions to the nonlinear systems as well.

We are mainly interested in proving the well-posedness in the class of smooth solutions
and in describing the asymptotic behavior of the solutions as time tends to infinity. This will
be possible in the linear case and also in the nonlinear case provided the nonlinearities and
the data satisfy certain conditions. Otherwise, a blow-up in finite time has to be expected
as examples will show; then weak solutions must be considered.

In one space dimension the picture is almost complete. Bounded or unbounded intervals
representing the reference configuration can be dealt with for all the classical boundary con-
ditions. The asymptotic behavior is known, the decay rates are known to be optimal (in the
case of absence of forces and heat supplies). For small data global smooth solutions to the
nonlinear system will exist; large data lead to a blow-up.

In two or three space dimensions generic nonlinear cases are understood, although there
are unsolved problems. Local well-posedness is known in most cases, but concerning global
solutions or blow-up for nonlinear situations, only the Cauchy problem and the bounded
radially symmetric case have been investigated. This corresponds to the fact that the dy-
namics in the linear case is complicated apart from these situations, as we shall describe in
detail.

Although the system to be considered is a rather special one, it should be stressed that
the methods employed are rather general and have been or can be used for purely hyperbolic
or parabolic problems.

The aim of this section is to present a state of the art in the treatment of initial value
problems and of initial boundary value problems both in linear and nonlinear thermoelastic-
ity. Although well-posedness in the linear theory has been studied for years, the description
of the general dynamical system with its asymptotic behavior as time tends to infinity and,
in particular, the study of nonlinear systems only started in the late sixties and the early
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eighties, respectively, and led to very interesting features.

Derivation of the equations

In this section we give a short summary of the derivation of the nonlinear resp. linearized
equations that describe the thermoelastic behavior of a body B.

Let the body B be represented by the undistorted reference configuration Ω, Ω being a
domain in Rn, n = 1, 2 or 3.

Figure 2: displacement U(t1, x) = X(t1, x) − x

A deformation goes along with a change of temperature T = T (t, x) and vice versa. The
balance of linear momentum in local form reads:

ρXtt − ∇′
S̃ = ρb (1)

where ρ is the material density in Ω, S̃ is the Piola-Kirchhoff stress tensor, and b is the
specific external body force, while ′ denotes the transposition.

This system of equations essentially describes the elastic part; actually, if S̃ does not
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depend on the temperature, it may represent the (hyperbolic) partial differential equations
in pure elasticity. The main differential equation for the temperature arises from the local
form of the first law of thermodynamics, the balance of energy:

ϵt − tr{S̃Ft} + ∇′
q = r (2)

where ϵ is the internal energy, q is the heat flux, r is the external heat supply, tr denotes
the trace and F is the deformation gradient,

F ij = ∂

∂xj

Xi,

or, in terms of the displacement vector,

F = 1 + ∇U

By η we denote the entropy and by
ψ = ϵ− Tη

the Helmholtz free energy.

The constitutive assumptions defining an elastic medium in thermoelasticity are that
S̃, p, ψ and η are functions of the present values of F, T and ∇T (and x). It is always
assumed that these functions are smooth and that

detF ̸= 0, T > 0

The local form of the second law of thermodynamics reads

ηt ≥ −∇′(q/T ) + r/T

which, combined with (2), yields the local dissipation inequality

ψt + ηTt − tr{S̃Ft} + (q∇T )/T ≤ 0 (3)

The second law of thermodynamics implies the following restrictions on the response func-
tions S̃, η, ψ, q.

Lemma 2.1 A necessary and sufficient condition that the local dissipation inequality (3) is

18



always satisfied, is that the following three statements hold:

• (i) The response functions S̃, η and ψ are independent of the temperature gradient ∇T :

S̃ = S̃(F, T ), ψ = ψ(F, T ), η = η(F, T )

• (ii) ψ determines S̃ through the stress relation

S̃(F, T ) = ∂ψ

∂F
(F, T )

and η through the entropy relation

η(F, T ) = −∂ψ

∂T
(F, T )

• (iii) q obeys the heat conduction inequality

q(F, T,∇T )∇T ≤ 0

Using these relations we rewrite (2) as

ψt + Ttη + Tηt − tr{S̃Ft} + ∇′
q = r

or
tr{S̃Ft} − ηTt + Ttη + Tηt − tr{S̃Ft} + ∇′

q = r

which implies
Tηt + ∇′

q = r

or
T

{
−∂2ψ

∂T 2Tt − ∂2ψ

∂F∂T
Ft

}
+ ∇′

q = r (4)

The equation (1) is mainly a hyperbolic system for X; the equation (4) is mainly a parabolic
equation for T .

Instead of X the variable U = (X − x) is often used, and instead of T the temperature
difference is often expressed as θ = T − T0, where T0 is a constant reference temperature.
We shall write

ψ(F, T ) = ψ(∇U, θ)
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with the same symbol ψ, analogously for the other response functions.

The problem of finding U and θ will become well-posed if additionally initial conditions

U(t = 0) = U0, Ut(t = 0) = U1, θ(t = 0) = θ0, (5)

and, if Ω ̸= Rn, boundary conditions, are prescribed, for example “rigidly clamped, constant
temperature”,

U = 0, θ = 0, on ∂Ω,

or “traction free, insulated”,
S̃ν = 0, ν ′

q = 0, (6)

or other combinations of the boundary conditions for U and θ. Here ν − ν(x) denotes the
exterior normal in x ∈ ∂Ω, ∂Ω being the boundary of Ω.

The investigation of the linearized equations will play an important role. The linearized
equations arise from (1), (4) by assuming that

|∇U |, |∇Ut|, |θ|, |θt|, |∇θ|

are small.

Using Taylor expansions
(

for example ∂2ψ

∂F∂T
(∇U, θ, x) = ∂2ψ

∂F∂T
(0, 0, x) + O(|∇U| + |θ|)

)
we arive at (T0 = 1 without loss of generality)

ρUtt − D
′
SDU + D

′
−θ = ρ, (7)

δθt − ∇′
K∇θ + Γ′

DU = , (8)

where ρ − ρ(x) can be regarded as a symmetric density matrix, S − S(x) is an M × M

symmetric, positive definite matrix containing the elastic moduli (M = 6 in R3), Γ = Γ(x)
is a vector with coefficients determining the so-called stress-temperature tensor, δ = δ(x) is
the specific heat and K = K(x) is the heat conductivity tensor. All functions are assumed
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to be smooth. D is an abbreviation for a generalized gradient,

D =



∂1 0 0
0 ∂2 0
0 0 ∂3

0 ∂3 ∂2

∂3 0 ∂1

∂2 ∂1 0


, in R3, D =


∂1 0
0 ∂2

∂2 ∂1

 in R2, D = ∂1 in R1,

In this way the general (linear) non-homogeneous, anisotropic case is described. The linear
counterpart of the boundary conditions (6) reads

N
′(SDU − Γθ) = 0, ν ′

K∇θ = 0,

where N arises from the normal vector ν in the same way as D arises from the gradient
vector ∇.

The elastic moduli Cijkl, i, j, k, l = 1, · · ·, n, which are given in general by:

Cijkl = ∂2ψ(0, 0, x)
∂(∂jUi)∂(∂kUl)

satisfy in the linear case
Cijkl = Cklij = Cjikl = Cijkl(x)

The assumption of positive definiteness of (Cijkl)ijkl in the sense

∃k0 > 0,∀ξij = ξji ∈ R,∀x ∈ Ω : ξijCijklξkl ≥ k0

n∑
j,k=1

|ξjk|2,

where and throughout this section, the Einstein summation convention (i.e. repeated indices
indicate summation) is used unless there is a statement to the contrary, implies that the
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matrix S = S(x) is uniformly positive definite since

S =



C1111 C1122 C1133 C1123 C1131 C1112

· C2222 C2233 C2223 C2231 C2212

· · C3333 C3323 C3331 C3312

· · · C2323 C2331 C2312

· · · · C3131 C3112

· · · · · C1212


in R3,

S =


C1111 C1122 C1112

· C2222 C2212

· · C1212

 in R2, S = C1111 in R1,

In the simplest case of a homogeneous medium which is isotropic we have

S =



2µ+ λ λ λ 0 0 0
· 2µ+ λ λ 0 0 0
· · 2µ+ λ 0 0 0
· · · µ 0 0
· · · · µ 0
· · · · · µ


in R3,

S =


2µ+ λ λ 0

· 2µ+ λ 0
· · µ

 in R2, S = τ > 0 in R1,

and the equations reduce in two or three space dimensions to

Utt − ((2µ+ λ)∇∇′ − µ∇ × ∇×)U + γ∇θ = b, (9)

δθt − κ∆θ + γ∇′
Ut = r, (10)

where the density ρ = 1 without loss of generality and µ, λ, γ, δ and κ, are constants; µ, λ
are the Lamé moduli,

µ > 0, 2µ+ nλ > 0,

moreover
δ, κ > 0, γ ̸= 0.
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Notice that in two space dimensions the rotation of a scalar field f in R2 is defined to be
the vector field

∇ × f = (∂2f,−∂1f)′

and the rotation of a vector field F in R2 is defined to be the scalar

∇ × f = ∂1F2 − ∂2F1

In particular the formula
∆ = ∇∇′ − ∇ × ∇

holds in R2 and in R2.

In one space dimension the basic equations for the homogeneous (and necessarily isotropic)
case are:

Utt − τUxx + γθx = b, (11)

δθt − κθxx + γUtx = r, (12)

and we shall often write in this case u instead of U .
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Chapter I

Preliminaries

1 Sobolev spaces

We denote by Ω an open domain in Rn, n ≥ 1, with a smooth boundary Γ = ∂Ω. In general,
some regularity of Ω will be assumed. We will suppose that either Ω is Lipschitz, a.e., the
boundary Γ is locally the graph of a Lipschitz function, or

Ω is of class Cr, r ≥ 1,

a.e., the boundary Γ is a manifold of dimension n ≥ 1 of class Cr. In both cases we assume
that Ω is totally on one side of Γ. These definition mean that locally the domain Ω is below
the graph of some function ψ, the boundary Γ is represented by the graph of ψ and its
regularity is determined by that of the function ψ. Moreover, it is necessary to note that a
domain with a continuous boundary is never on both sides of its boundary at any point of
this boundary and that a Lipschitz boundary has almost everywhere a unit normal vector ν.

We will also use the following multi-index notation for partial differential derivatives of
a function:

∂k
i u = ∂ku

∂xk
i

for all k ∈ N and i = 1, ..., n,

Dαu = ∂α1
1 ∂α2

2 . . . ∂αn
n u = ∂α1+...+αnu

∂xα1
1 . . . ∂xαn

n

,

α = (α1, α2, . . . , αn) ∈ Nn, |α| = α1 + . . .+ αn.

We denote by C(D) (respectively Ck(D), k ∈ N or k = +∞) the space of real continuous
functions on D (respectively the space of k times continuously differentiable functions on
D), where D plays the role of Ω or its closure Ω. The space of real C∞ functions on Ω
with a compact support in Ω is denoted by C∞

0 (Ω) or D(Ω) as in the distributions theory
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of Schwartz.The distributions space on Ω is denoted by D′(Ω), a.e., the space of continuous
linear form over D(Ω).

Definition 1.1 We define Lp(Ω) as:
If p ∈ [1,+∞[,

Lp(Ω) =
{
f : Ω → R

/ ∫
Ω

|f(x)|pdx < ∞
}

We define on Lp(Ω) the norm :

∥f∥Lp(Ω) =
(∫

Ω
|f(x)|pdx

) 1
p

If p = +∞,
L∞(Ω) = {f : Ω −→ R /∃c ∈ R |f(x)|⩽c a.e in Ω}.

We define in L∞(Ω) the norm :

||f ||L∞(Ω) = inf {c ∈ R : |f |⩽c a.e in Ω}.

For 1 ≤ p ≤ ∞, we call Lp(Ω) the space of measurable functions f on Ω such that

∥f∥Lp(Ω) =
(∫

Ω
|f(x)|pdx

)1/p

< +∞ for p < +∞

∥f∥L∞(Ω) = sup
Ω

|f(x)| < +∞ for p = +∞

The space Lp(Ω) equipped with the norm f −→ ∥f∥Lp is a Banach space: it is reflexive and
separable for 1 < p < ∞ (its dual is L

p
p−1 (Ω)), separable but not reflexive for p = 1 (its dual

is L∞(Ω)), and not separable, not reflexive for p = ∞ (its dual contains strictly L1(Ω)). In
particular the space L2(Ω) is a Hilbert space equipped with the scalar product defined by

(f, g)L2(Ω) =
∫

Ω
f(x)g(x)dx.

We denote by Lp
loc(Ω) the space of functions which are Lp on any bounded sub-domain of Ω.

Similar space can be defined on any open set other than Ω, in particular, on the cylinder
set Ω×]a, b[ or on the set Γ×]a, b[, where a, b ∈ R and a < b. Let X the space of Hilbert and
]a, b[ an open interval in Rn. we refer to the measure of Lebesgue as dt in ]a, b[ and as ∥.∥X

The norm in X.

Definition 1.2 - We call Lp(a, b;X), 1⩽p⩽ + ∞ , the space
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Lp(a, b;X) = {f :]a, b[−→ X mesurable}

We provide the space Lp(a, b;X) of the norm

∥f∥Lp(a,b;X) =
(∫ b

a
∥f(t)∥p

X

) 1
p

- We define L∞(a, b;X), as being the espace of functions defined from ]a, b[→ X, measurable
et bounded presume all over in ]a, b[, provided of the norm

∥f∥L∞(a,b;X) = sup
t∈[a,b]

ess∥f(t)∥X

- Lp(a, b;X) (1⩽p⩽ + ∞) is space of Banach for the norm defined above.

a- The space L2(a, b;X) is space of Hilbert for the inner product

(f, g)L2(a,b;X) =
∫ b

a
(f(t), g(t))xdt

or (., .)X is the inner product in X.

b- For 1⩽p⩽ + ∞, Lp(a, b;X) is an space separable.

The injection of Lp(a, b;X) in D′(]a, b[;X) is strongly and weakly sequentializing continuous
a.e: If : fj → f strongly (resp weakly) in Lp(a, b;X), the fj tends strongly (resp weakly)
towards f in the meaning of D′(]a, b[;X).

∥f∥Lp(a,b;X) =
(∫ b

a
∥f(x)∥p

X dt

)1/p

< +∞ for p < +∞

and for the norm

∥f∥L∞(a,b;X) = sup
t∈(a,b)

∥f(x)∥X < +∞ for p = +∞

Similarly, for a Banach space X, k ∈ N and −∞ < a < b < +∞, we denote by C([a, b];X)
(respectively Ck([a, b];X)) the space of continuous functions (respectively the space of k
times continuously differentiable functions) f from [a, b] into X, which are Banach spaces,
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respectively, for the norms

∥f∥C(a,b;U) = sup
t∈(a,b)

∥f(x)∥X , ∥f∥Ck(a,b;X) =
k∑

i=0

∥∥∥∥∥∂if

∂ti

∥∥∥∥∥
C(a,b;X)

Definition of Sobolev Spaces

Now, we will introduce the Sobolev spaces: The Sobolev space W k,p(Ω) is defined to be the
subset of Lp such that function f and its weak derivatives up to some order k have a finite
Lp norm, for given p ≥ 1.

W k,p(Ω) = {f ∈ Lp(Ω);Dαf ∈ Lp(Ω). ∀α; |α| ≤ k} ,

With this definition, the Sobolev spaces admit a natural norm,

f −→ ∥f∥W k,p(Ω) =
 ∑

|α|≤m

∥Dαf∥p
Lp(Ω)

1/p

, for p < +∞

and
f −→ ∥f∥W k,∞(Ω) =

∑
|α|≤m

∥Dαf∥L∞(Ω) , for p = +∞

Space W k,p(Ω) equipped with the norm ∥ . ∥W k,p is a Banach space. Moreover is a reflexive
space for 1 < p < ∞ and a separable space for 1 ≤ p < ∞. Sobolev spaces with p = 2 are
especially important because of their connection with Fourier series and because they form
a Hilbert space. A special notation has arisen to cover this case:

W k,2(Ω) = Hk(Ω)

the Hk inner product is defined in terms of the L2 inner product:

(f, g)Hk(Ω) =
∑

|α|≤k

(Dαf,Dαg)L2(Ω) .

The space Hm(Ω) and W k,p(Ω) contain C∞(Ω) and Cm(Ω). The closure of D(Ω) for the
Hm(Ω) norm (respectively Wm,p(Ω) norm) is denoted by Hm

0 (Ω) (respectively W k,p
0 (Ω)).

Now, we introduce a space of functions with values in a space X (a separable Hilbert
space).
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The space L2(a, b;X) is a Hilbert space for the inner product

(f, g)L2(a,b;X) =
∫ b

a
(f(t), g(t))X dt

We note that L∞(a, b;X) = (L1(a, b;X))′.
Now, we define the Sobolev spaces with values in a Hilbert space X
For k ∈ N, p ∈ [1,∞], we set:

W k,p(a, b;X) =
{
v ∈ Lp(a, b;X); ∂v

∂xi

∈ Lp(a, b;X). ∀i ≤ k

}
,

The Sobolev space W k,p(a, b;X) is a Banach space with the norm

∥f∥W k,p(a,b;X) =
 k∑

i=0

∥∥∥∥∥ ∂f∂xi

∥∥∥∥∥
p

Lp(a,b;X)

1/p

, for p < +∞

∥f∥W k,∞(a,b;X) =
k∑

i=0

∥∥∥∥∥ ∂v∂xi

∥∥∥∥∥
L∞(a,b;X)

, for p = +∞

The spaces W k,2(a, b;X) form a Hilbert space and it is noted Hk(0, T ;X). The Hk(0, T ;X)
inner product is defined by:

(u, v)Hk(a,b;X) =
k∑

i=0

∫ b

a

(
∂u

∂xi
,
∂v

∂xi

)
X

dt .

Theorem 1.3 Let 1 ≤ p ≤ n, then

W 1,p(Rn) ⊂ Lp∗(Rn)

where p∗ is given by 1
p∗ = 1

p
− 1
n

(where p = n, p∗ = ∞). Moreover there exists a constant
C = C(p, n) such that

∥u∥Lp∗ ≤ C∥∇u∥Lp(Rn)∀u ∈ W 1,p(Rn).

Corolary 1.4 Let 1 ≤ p < n, then

W 1,p(Rn) ⊂ Lq(Rn) ∀q ∈ [p, p∗]

with continuous imbedding.
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For the case p = n, we have

W 1,n(Rn) ⊂ Lq(Rn) ∀q ∈ [n,+∞[

Theorem 1.5 Let p > n, then

W 1,p(Rn) ⊂ L∞(Rn)

with continuous imbedding.

Corolary 1.6 Let Ω a bounded domain in Rn of C1 class with Γ = ∂Ω and 1 ≤ p ≤ ∞. We
have

if 1 ≤ p < ∞, then W 1,p(Ω) ⊂ Lp∗(Ω) where 1
p∗ = 1

p
− 1
n
.

if p = n, then W 1,p(Ω) ⊂ Lq(Ω),∀q ∈ [p,+∞[.
if p > n, then W 1,p(Ω) ⊂ L∞(Ω)

with continuous imbedding.
Moreover, if p > n, we have: ∀u ∈ W 1,p(Ω),

|u(x) − u(y)| ≤ C|x− y|α∥u∥W 1,p(Ω) a.e x, y ∈ Ω

with α = 1 − n

p
> 0 and C is a constant which depend on p, n and Ω. In particular

W 1,p(Ω) ⊂ C(Ω).

Corolary 1.7 Let Ω a bounded domain in Rn of C1 class with Γ = ∂Ω and 1 ≤ p ≤ ∞. We
have

if p < n, then W 1,p(Ω) ⊂ Lq(Ω)∀q ∈ [1, p∗[ where 1
p∗ = 1

p
− 1
n
.

if p = n, then W 1,p(Ω) ⊂ Lq(Ω),∀q ∈ [p,+∞[.
if p > n, then W 1,p(Ω) ⊂ C(Ω)

with compact imbedding.

Remark 1.8 We remark in particular that

W 1,p(Ω) ⊂ Lq(Ω)

with compact imbedding for 1 ≤ p ≤ ∞ and for p ≤ q < p∗.
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Corolary 1.9

if
1
p

− m

n
> 0, then Wm,p(Rn) ⊂ Lq(Rn) where 1

q
= 1
p

− m

n
.

if
1
p

− m

n
= 0, then Wm,p(Rn) ⊂ Lq(Rn),∀q ∈ [p,+∞[.

if
1
p

− m

n
< 0, then Wm,p(Rn) ⊂ L∞(Rn)

with continuous imbedding.

Some inequalities.

Formula of Green: Let u, v ∈ W (a, b, V, V ′) with a, b finished. Then we have the formula
of the Green:

∫ b

a

〈
du

dt
(x), v(t)

〉
V ×V ′

dt+
∫ b

a

〈
dv

dt
(x), u(t)

〉
V ×V ′

dt = (u(b), v(b)) − (u(a), v(a)).

Proposition 1.10 For u ∈ W (a, b, V, V ′) et v ∈ V , we have:
〈
du

dt
(.), v

〉
V ×V ′

= d

dt
(u(.), v), in D′(]a, b[).

Young Inequality : For all a, b ∈ R, (or C) and for all p, q ∈ [1,+∞[ with 1
q

+ 1
p

= 1, we
have :

|ab|⩽1
p

|a|p + 1
q

|b|q.

Hölder Inequality : Let 1 < p, q < +∞, with 1
p

+ 1
q

= 1. Let f the function de Lp(Ω)
et g one function de Lq(Ω). Then Hölder l’inequality writes:

∥fg∥L1(Ω) = ∥f∥Lp(Ω) ∥g∥Lq(Ω)·

a.e 

∫
Ω

|f(x)g(x)| dx⩽
(∫

Ω
|f(x)p| dx

) 1
p
(∫

Ω
|g(x)q| dx

) 1
q

, if p, q ∈ [1,+∞[,

∫
Ω

|f(x)g(x)|dx⩽∥g∥L∞

∫
Ω

|f(x)| dx, if p = 1, and q = +∞.
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Green Formula: Let Ω an open bounded of frontiers regulars ∂Ω and v(x) the normal
exteriors the point x. Let u a function of H2(Ω) and v a function de H1(Ω). then the Green
formula write :∫

Ω
(∆u)vdx =

∫
∂Ω

∂u

∂n
vds−

∫
Ω

∇u ∇vdx

∫
Ω
(u△v − v△u)dx =

∫
∂Ω

(
u
∂u

∂n
− v

∂u

∂n

)

2 Weak convergence

Let (E; ∥.∥E) a Banach space and E ′ its dual space, a.e., the Banach space of all continuous
linear forms on E endowed with the norm ∥.∥′

E defined by

∥f∥E′ =: sup
x ̸=0

|⟨f, x⟩|
∥x∥

; where ⟨f, x⟩; denotes the action of f onx, i.e.⟨f, x⟩ := f(x). In the same way, we can define
the dual space of E ′ that we denote by E ′′. (The Banach space E ′′ is also called the bi-dual
space of E.) An element x of E can be seen as a continuous linear form on E ′ by setting
x(f) := ⟨x, f⟩, which means that E ⊂ E ′′:

Definition 2.1 The Banach space E is said to be reflexive if E = E ′′.

Definition 2.2 The Banach space E is said to be separable if there exists a countable subset
D of E which is dense in E, a.e. D = E.

Theorem 2.3 (Riesz). If (H; ⟨., .⟩) is a Hilbert space, ⟨., .⟩ being a scalar product on H,
then H ′ = H in the following sense: to each f ∈ H ′ there corresponds a unique x ∈ H such
that f = ⟨x, .⟩ and ∥f∥′

H = ∥x∥H

Remark : From this theorem we deduce that H ′′ = H. This means that a Hilbert space is
reflexive.

Proposition 2.4 If E is reflexive and if F is a closed vector subspace of E, then F is
reflexive.

Corolary 2.5 The following two assertions are equivalent: (i) E is reflexive; (ii) E ′ is
reflexive.
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Weak and strong convergence

Definition 2.6 (Weak convergence in E). Let x ∈ E and let {xn} ⊂ E. We say that {xn}
weakly converges to x in E, and we write xn ⇀ x in E, if ⟨f, xn⟩ → ⟨f, x⟩, for all f ∈ E ′.

Definition 2.7 (weak convergence in E ′). Let f ∈ E ′ and let {fn} ⊂ E ′. We say that {fn}
weakly converges to f in E ′, and we write fn ⇀ f in E ′, if ⟨fn, x⟩ → ⟨f, x⟩, for all x ∈ E ′′.

Definition 2.8 (strong convergence). Let x ∈ E(resp. f ∈ E ′) and let {xn} ⊂ E (resp
{fn} ⊂ E ′). We say that {xn} (resp. {fn}) strongly converges to x (resp. f), and we write
xn → x in E (resp. fn → f in E ′), if

lim
n

∥xn − x∥E = 0; (resp. lim
n

∥fn − f∥′
E = 0)

Proposition 2.9 Let x ∈ E, let {xn} ⊂ E, let f ∈ E ′ and let {fn} ⊂ E ′.

i. If xn → x in E then xn ⇀ x in E.

ii. If xn ⇀ x in E then {xn} is bounded.

iii. If xn ⇀ x in E then lim inf
n→∞

∥xn∥E ≥ ∥x∥E

iv. If fn → f in E ′ then fn ⇀ f inE ′ (and so fn
∗
⇀ f in E ′).

v. If fn ⇀ f in E ′ then {fn} is bounded.

vi. If fn ⇀ f in E ′ then then lim inf
n→∞

∥fn∥′
E ≥ ∥f∥′

E.

Proposition 2.10 (finite dimension). If dimE < ∞ then strong, weak and weak star
convergence are equivalent.

Bounded and unbounded linear operators

Let (E, ∥.∥E) and (F, ∥.∥F ) be two Banach spaces over C, and H will always denote a Hilbert
space equipped with the scalar product < ., . >H and the corresponding norm ∥.∥H . A linear
operator T : E −→ F is a transformation which maps linearly E in F , that is

T (αu+ βv) = αT (u) + βT (v), ∀u, v ∈ E and α, β ∈ C.
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Definition 2.11 A linear operator T : E −→ F is said to be bounded if there exists c ≥ 0
such that

∥Tu∥F ≤ c∥u∥E ∀u ∈ E.

The set of all bounded linear operators from E into F is denoted by L(E,F ). Moreover, the
set of all bounded linear operators from E into E is denoted by L(E).

Definition 2.12 A bounded operator T ∈ L(E,F ) is said to be compact if for each sequence
(xn)n∈N ∈ E with ∥xn∥E = 1 for each n ∈ N, the sequence (Txn)n∈N has a subsequence which
converges in F .
The set of all compact operators from E into F is denoted by K(E,F ). For simplicity one
writes K(E) = K(E,F ).

Definition 2.13 Let T ∈ L(E,F ) we define
• Range of T by

R(T ) = {Tu : u ∈ E} ⊂ F.

• Kernel of T by
ker(T ) = {u ∈ E : Tu = 0} ⊂ E.

Theorem 2.14 (Fredholm alternative)
If T ∈ K(E), then
• ker(I − T ) is finite dimension, (I is the identity operator on E) .
• R(I − T ) is closed.
• ker(I − T ) = 0 ⇔ R(I − T ) = E.

Definition 2.15 An unbounded linear operator T from E into F is a pair (T,D(T )), con-
sisting of a subspace D(T ) ⊂ E (called the domain of T ) and a linear transformation.

T : D(T ) ⊂ E 7→ F.

In the case when E = F then we say (T,D(T )) is an unbounded linear operator on E. If
D(T ) = E then T ∈ L(E,F ).

Definition 2.16 Let T : D(T ) ⊂ E 7→ F be an unbounded linear operator.
• The range of T is defined by

R(T ) = {Tu : u ∈ D(T )} ⊂ F.
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• The Kernel of T is defined by

ker(T ) = {u ∈ D(T ) : Tu = 0} ⊂ E.

• The graph of T is defined by

G(T ) = {(u, Tu) : u ∈ D(T )} ⊂ E × F.

Definition 2.17 A map T is said to be closed if G(T ) is closed in E × F . The closedness
of an unbounded linear operator T can be characterize as following if un ∈ D(T ) such that
un → u in E and Tun → v in F , then u ∈ D(T ) and Tu = v.

Definition 2.18 Let T : D(T ) ⊂ E 7→ F be a closed unbounded linear operator.
• The resolvent set of T is defined by

ρ(T ) = {λ ∈ C : λI − T is bijective fromD(T ) ontoF}.

• The resolvent of T is defined by

R(λ, T ) = {(λI − T )−1 : λ ∈ ρ(T )}

• The spectrum set of T is the complement of the resolvent set in C , denoted by

σ(T ) = C/ρ(T )

Definition 2.19 Let T : D(T ) ⊂ E 7→ F be a closed unbounded linear operator. we can
split the spectrum σ(T ) of T into three disjoint sets, given by
• The punctual spectrum of T is define by

σp(T ) = {λ ∈ C : ker(λI − T ) ̸= {0}}

in this case λ is called an eigenvalue of T .
• The continuous spectrum of T is define by:

σc(T ) = {λ ∈ C : ker (λI − T ) = 0, R(λI − T ) = F and (λI − T )−1 is not bounded }.
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• The residual spectrum of T is define by

σr(T ) = {λ ∈ C : ker (λI − T ) = 0, and R(λI − T ) is not dense in F}

Definition 2.20 Let T : D(T ) ⊂ E −→ F be a closed unbounded linear operator and let
λ be an eigevalue of A. non-zero element e ∈ E is called a generalized eigenvector of T
associated with the eigenvalue value λ, if there exists n ∈ N∗ such that

(λI − T )ne = 0 and (λI − T )n−1e ̸= 0.

if n = 1, then e is called an eigenvector.

Definition 2.21 Let T : D(T ) ⊂ E −→ F be a closed unbounded linear operator. We say
that T has compact resolvent, if there exist λ0 ∈ ρ(T ) such that (λ0I − T )−1 is compact.

Theorem 2.22 Let (T,D(T )) be a closed unbounded linear operator on H then the space
(D(T ), ∥.∥D(T )) where ∥u∥D(T ) = ∥Tu∥H + ∥u∥H ∀u ∈ D(T ) is Banach space .

Theorem 2.23 Let (T,D(T )) be a closed unbounded linear operator on H then, ρ(T ) is an
open set of C.

3 Linear operators

Definition 3.1 Let X and Y be two Banach spaces. A linear mapping: A : D(A)(⊂ X) →
Y is called a linear operator. The D(A) ⊂ X is called the domain of A and R(A) ⊂ Y is
called the range of A:

R(A) = {Ax | x ∈ D(A)} .

A is said to be invertible (or injective) if Ax = 0 if and only if x = 0; A is said to be onto
(or surjective) if R(A) = Y ; A is said to be densely defined if D(A) = X.

Definition 3.2 A linear operator A is said to be closed if for any xn ∈ D(A), n ≥ 1,

xn → x, Axn → y, as n → ∞,

it must have x ∈ D(A) and Ax = y. A is said to be bounded if D(A) = X and A maps
a bounded set of X into a bounded set of Y . A linear operator is bounded if and only if it is

36



continuous, that is,
xn → x0 ∈ X =⇒ Axn → Ax0 ∈ Y

for any xn ⊂ X.

Obviously, any operator which has bounded inverse must be closed. All the bounded
operators from X to Y are denoted by L(X, Y ). In particular, when X = Y, L(X, Y ) is
abbreviated as L(X).

Theorem 3.3 Let X and Y be Banach spaces. Then L(X, Y ) is a Banach space with the
norm

∥A∥ = sup {∥Ax∥ | x ∈ X, ∥x∥ = 1} .

Definition 3.4 Let X be a Banach space. If Y = R or Y = C, then the operator in L(X, Y )
is called a linear functional on X. A bounded functional is also denoted by f .

By Theorem 3.3, all linear bounded functionals on X consist of a Banach space which is
called the dual of the space X, denoted by X∗.

A bounded operator is called compact operator if A maps any bounded set into a relatively
compact set which is a compact set but not necessarily closed. For a closed operator A, we
can define the graph space [D(A)] where the norm is defined by

∥x∥[D(A)] = ∥x∥ + ∥Ax∥, ∀x ∈ D(A). (I.1)

Theorem 3.5 [Open mapping theorem]
Let X and Y be Banach spaces and let A be a bounded operator from X to Y . If R(A) = Y ,
then A maps an open set of X into an open set of Y .

Theorem 3.6 [Closed graph theorem]
Suppose that A is a closed operator in a Banach space X. Then A must be bounded provided
D(A) = X.

Theorem 3.7 [Lax Milgram theorem]
Let a(x, y) be a bilinear form, that is, it is linear in x and conjugate linear in y, and satisfies
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• there is an M > 0 such that |a(x, y)| ≤ M∥x∥∥y∥ for all x, y ∈ H;

• there is a δ > 0 such that for any x ∈ H, |a(x, x)| ≥ δ∥x∥2.

Then there exists a unique A ∈ L(H) which is bounded invertible and satisfies

a(x, y) = ⟨x,Ay⟩, ∀x, y ∈ H.

Definition 3.8 A linear operator in a Hilbert space is said to be symmetric if

A∗ = A on D(A) and D(A∗) ⊇ D(A)

A symmetric operator is said to be self-adjoint, if A∗ = A.

For bounded operators, the symmetric and self-adjoint are the same. But for unbounded
operators, they are different.

Definition 3.9 A linear operator B in a Hilbert space H is said to be A-bounded if

• D(B) ⊃ D(A), and

• there are a, b > 0 such that

∥Bx∥ ≤ a∥Ax∥ + b∥x∥, ∀x ∈ D(A).

Definition 3.10 Let A ∈ L(H) be a self-adjoint operator in a Hilbert space H. A is said
to be positive if

⟨Ax, x⟩ ≥ 0, ∀x ∈ H. (I.2)

A positive operator is denoted by A ≥ 0; A is said to be positive definite if the equality
in I.2 holds true only if x = 0, which is denoted by A > 0; A positive operator A is said to
be strictly positive if there exists an m > 0 such that

⟨Ax, x⟩ ≥ m∥x∥2, ∀x ∈ D(A). (I.3)
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4 The spectrum of linear operators

Definition 4.1 Suppose that X is a Banach space and A : D(A)(⊂ X) → X is a linear
operator. The resolvent set ρ(A) of A is an open set in the complex plane, which is defined
by

ρ(A) =
{
λ ∈ C | (λ− A)−1 ∈ L(X)

}
.

when λ ∈ ρ(A), the operator R(λ,A) = (λ − A)−1 is called the resolvent of A. If one
of resolvents is compact, then any of the resolvents must be compact. This comes from the
following resolvent formula:

(λ− A)−1 − (µ− A)−1 = (µ− λ)(λ− A)−1(µ− A)−1, ∀λ, µ ∈ ρ(A).

The spectrum σ(A) of A is the supplement set of the resolvent set in the complex plane,
that is,

σ(A) = C \ ρ(A).

Generally, the spectrum σ(A) is decomposed into three parts:

σ(A) = σp(A) ∪ σc(A) ∪ σr(A)

where

• the point spectrum

σp(A) = {λ ∈ C | there exists a 0 ̸= x ∈ X so that Ax = λx} ;

• the continuous spectrum

σc(A) =
{
λ ∈ C | (λ− A) is invertible and R(λ− A) = X

}
;

• the residual spectrum

σr(A) =
{
λ ∈ C | (λ− A) is invertible and R(λ− A) ̸= X

}
;

When λ ∈ σp(A), any nonzero vector x satisfying Ax = λx is said to be an eigenvector
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(it is also called eigenfunction if the space is the function space) of A. For a matrix in Cn,
the spectrum is just the set of eigenvalues.

5 Semigroups of linear operators

Definition 5.1 Semigroup theory is aiming to solve the following linear differential equation
in Banach space X:

{
u̇(t) = Au(t), t > 0,
u(0) = x ∈ X,

(I.4)

where A : D(A)(⊂ X) → X is a linear operator.

Eq (I.4) is said to be well-posed (for bounded A) If:

• for any initial value x ∈ D(A) = X, there exists a solution u(x, t) to (I.4) which is
differentiable for t > 0, continuous at t = 0 and u(x, t) satisfies (I.4) for t > 0,

• u(x, t) depends continuously on the initial condition x, that is:

x → 0 implies u(x, t) → 0 for each t > 0;

• u(x, t) is unique for each x ∈ D(A) = X.

We can then define an operator T (t) by T (t)x = u(x, t) for each t ≥ 0. From the existence
and uniqueness of the solution u(x, t), we know that T (t), t ≥ 0 is well defined on X.

Definition 5.2 Let X be a Banach space and T (t) : X → X be a family of linear bounded
operators, for t ≥ 0, T (t) is called a semigroup of linear bounded operators, or simply a
semigroup, on X if

• T (0) = I;

• T (t+ s) = T (t)T (s), ∀t ≥ 0, s ≥ 0

A semigroup T (t) is called uniformly continuous if

lim
t→0

∥T (t) − I∥ = 0,

and is called strongly continuous, ( or C0-semigroup for short), if
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lim
t→0

T (t)x− x = 0, ∀x ∈ X

Definition 5.3 Let T (t) be a C0-semigroup on a Banach space X. The operator A is defined
as


Ax = lim

t−→0

T (t)x− x

t
, ∀x ∈ D(A),

D(A) =
{
x ∈ X | lim

t−→0

T (t)x− x

t
exists

}
is called the infinitesimal generator of the C0-semigroup T (t).

Theorem 5.4 Let X be a Banach space. For any bounded linear operator A on X, T (t) =
eAt is a uniformly continuous semigroup and A is the infinitesimal generator of T (t) with
D(A) = X.

Theorem 5.5 Let T (t) be a C0-semigroup on a Banach space X, then the following holds

• There exists constants M > 1 and ω ≥ 0 such that

∥T (t)∥ ≤ Meωt, ∀t ≥ 0

• Suppose that A is the generator of T (t). Then

{λ ∈ C | Re(λ) > ω} ⊂ ρ(A).

• In addition, if Re(λ) > ω, then

R(λ,A)x = (λ− A)−1x =
∫ ∞

0
e−λtT (t)xdt, ∀x ∈ X.

• T (t) is strongly continuous on X. i.e. for any x ∈ X, the map t → T (t)x is continuous.

Theorem 5.6 Let A be the generator of a C0-semigroup T (t) on a Banach space X. we
have the following

• D(A) is dense in X

• A is a closed operator.
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• For any n ≥ 1, D(An) is dense in X. The set D = ∩∞
n=1D(An) is also dense in X and

is invariant under T (t). i.e. for x ∈ D, T (t)x ∈ D for t ≥ 0. Moreover, if we define
D∞ = {x ∈ X|t → T (t)x ∈ C∞}. then we have D = D∞

Theorem 5.7 [Hille-Yosida]
Let X be a Banach space and let A be a linear (not necessirely bounded) operator in X.
Then, A is the infinitesimal generator of a C0-semigroup of contractions T (t) on X, if and
only if

• A is closed and D(A) is dense in X

• There exist positive constants M and ω verifying the property: for all λ > ω, λ ∈ ρ(A),
the following holds

∥R(λ,A)n∥ ≤ M

(λ− ω)n
, n = 1, 2, ...

Definition 5.8 Let T (t) be a C0-semigroup on a Banach space X and let M ≥ 1 and ω ≥ 0.

If ω = 0, then we have ∥T (t)∥ ≤ M for t ≥ 0 and T (t) is called uniformly bounded.

Moreover, if we have M = 1, then T (t) is called a contraction.

Corolary 5.9 Let X be a Banach space and let A be a linear (not necessirely bounded)
operator in X. Then, A is the infinitesimal generator of the C0-semigroup of contractions
T (t) on X, if and only if the following holds.

• A is closed and D(A) is dense in X

• For any λ > 0, λ ∈ ρ(A) and
∥R(λ,A)∥ ≤ 1

λ

.

Definition 5.10 Let X be a Banach space and let F (x) be the duality set. A linear operator
A in X is said to be dissipative if for every x ∈ D(A) there is an x∗ ∈ F (x) such that

Re⟨Ax, x∗⟩ ≤ 0

Definition 5.11 A linear operator A in a Banach space X is called m-dissipative if A is
dissipative and R(λ− A) = X, for some λ > 0.
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Remark 5.12 In a Hilbert space H, the dissipativity of A simply means that

Re⟨Ax, x⟩ ≤ 0, ∀x ∈ D(A).

Theorem 5.13 [Lümer-Phillips]
Let A be a linear operator in a Banach space X. Then A generates a C0-semigroup of
contractions on X if and only if

• D(A) = X.

• A is dissipative.

Remark 5.14 When X is reflexive, the condition D(A) = X can be removed in the Lümer-
Phillips theorem.

6 Fractional Derivative control

In this part, we introduce the necessary elements for the good understanding of this manuscript.
It includes a brief reminder of the basic elements of the theory of fractional computation as
well as some examples of applications of this theory in this scientific field.

The concept of fractional computation is a generalization of ordinary derivation and in-
tegration to an arbitrary order. Derivatives of non-integer order are now widely applied in
many domains, for example in economics, electronics, mechanics, biology, probability and
viscoelasticity.

A particular interest for fractional derivation is related to the mechanical modeling of
gums and rubbers. In short, all kinds of materials that preserve the memory of previous
deformations in particular viscoelastic. Indeed, the fractional derivation is introduced natu-
rally.

There exists a many mathematical definitions of fractional order integration and deriva-
tion. These definitions do not always lead to identical results but are equivalent for a wide
large of functions. We introduce the fractional integration operator as well as the two most
definitions of fractional derivatives, used, namely that Riemann-Liouville and Caputo, by
giving the most important properties of the notations.
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Fractional systems appear in different fields of research. however, the progressive inter-
est in their applications in the basic and applied sciences. It can be noted that for most of
the domains presented (automatic, physics, mechanics of continuous media). The fractional
operators are used to take into account memory effects. We can mention the works that
reroute various applications of fractional computation.

In physics, on of the most remarkable applications of fractional computation in physics
was in the context of classical mechanics. Riewe, has shown that the Lagragien of the notion
of temporal derivatives of fractional orders leads to an equation of motion with friction forces
and nonconservative are essential in macroscopic variational processing such as friction. This
result are remarkable because friction forces and non conservative forces are essential in the
usual macroscopic variational processing and therefore in the most advances methods clas-
sical mechanics.

Riewe, has generalized the usual Lagrangian variation which depends on the fractional
derivatives in order to deal with the usual non-conservative forces. On the another hand,
serval approaches have been developed to generalize the principle of least action and the
Euler-Lagrange equation to the case of fractional derivative.

The definition of the fractional order derivation is based on that of a fractional order
integration, a fractional order derivation takes on a global character in contrast to an inte-
gral derivation. It turns out that the derivative of a fractional order integration, a fractional
order derivation takes on a global character in contrast to an integral derivation.

It turns out that the derivative of a fractional order of a function requires the knowledge
of f(t) over the entire interval ]a, b[, where in the whole case only the local knowledge of
f around around t is necessary. This property allows to interpret fractional order systems
as long memory systems, the whole systems being then interpretable as systems with short
memory. Now, we give the definition of the fractional derivatives in the sense of Riemann-
Liouville as well as some essential properties.

Definition 6.1 The fractional integral of order α > 0, in sense Rieamann-Liouville is given
by

Iα
a f(t) = 1

Γ(α)

∫ t

a
(t− s)α−1f(s)ds, t > a

Definition 6.2 The fractional derivative of order α > 0, in sens of Rieamann-Liouville of
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a function f defined on the interval [a, b] is given by

Dα
RL,a(t) = DnIn−α

α f(t) = 1
Γ(n− α)

dn

dtn

∫ t

a
(t− s)n−α−1f(s)ds, n = [α] + 1, t > a

In particular, if α = 0, then

D0
RL,af(t) = I0

af(t) = f(t)

If α = n ∈ N, then
D0

RL,af(t) = f (n)(t).

moreover, if 0 < α < 1, then n = 1, then

Dα
RL,af(t) = 1

Γ(1 − α)
d

dt

∫ t

a
(t− s)−αf(s)ds, t > a

Example 6.1 Let α > 0, γ > −1 and f(t) = (t− a)γ, then

Iα
a f(t) = Γ(γ + 1)

Γ(γ + α + 1)(t− a)γ+α,

Dα
RL,af(t) = Γ(γ)

Γ(γ − α + 1)(t− a)γ−α

In particular, if γ = 0 and α > 0, then Dα
RL,a(C) = C

(t− α)−α

Γ(1 − α)

The derivatives of Riemann-Liouville have certain disadvantages when attempting to
model real world phenomena. The problems studied require a definition of the fractional
derivatives allowing the use of the physically interpretable initial conditions introducing
y(0), y′(0), etc. There shortcomings led to an alternatives that satisfies these demands in
the last sixties. It was introduced by Caputo.In fact, Caputo and Minardi used this defini-
tion in their work on viscoelasticity.

Now, we give the definition of the fractional derivatives in the sense of Caputo as well as
some essential properties.

Definition 6.3 The fractional derivative of order α > 0, in sense of Caputo, defined on the
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interval [a, b], is given by

Dα
C,af(t) = Dα

RL,a

(
f(t) −

n−1∑
k=0

f (k)(a)
k! (t− a)k

)
.

where
n =

{
[α] + 1 if α ̸∈ N,
α if α ∈ N∗,

In particular, where 0 < α < 1, the relation (6.3) take the form

Dα
C,af(t) = Dα

C,a([f(t) − f(a)])
= I1−α

a f
′(t)

= 1
Γ(1 − α)

∫ t

a
(t− a)−αf

′(s)ds

If α ∈ N, then f (n)(t) Dα
C,af(t) = fn(t) coincides i.e

Dα
Caf(t) = fn(t).

Example 6.2 Let α > 0 and f(t)(t− a)γ where γ > −1. then

Dα
Caf(t) = Γ(γ)

Γ(γ − α + 1)(t− a)γ−α.

In particular, if γ = 0 and α > 0, then Dα
CaC = 0 .

7 Caputo’s fractional derivative

There are various ways of defining the fractional derivative, but we will focus primarily on
the Caputo fractional derivative defined by Podlubny [? ] (chapter 2.4) who gave few formal
definitions and theorems.

The approach suggested by Caputo is very useful for the formulation and solution of
applied problems and their transparency. It allows the formulation of initial conditions
for initial-value problems for fractional-order differential equations in a form involving the
limit values of integer-order derivatives at the lower terminal (initial time) t = a , such as
y

′(a), y′′(a) etc.
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The definition of the fractional derivative of the Reimann-Liouville type played an impor-
tant role in the development of the theory of fractional derivatives and integrals and for its
applications in pure mathematics (solution of integer-order differential equations, definitions
of new function classes, summation of series, etc.). We define it by

aD
α
t f(t) = 1

Γ(n− α)
dn

dtn

∫ t

a
(t− s)n−α−1f(s) ds, (n− 1 ≤ α < n)

or

aD
α
t f(t) = dn

dtn

(
aD

−(n−α)
t f(t)

)
, (n− 1 ≤ α < n)

Moreover, we see that for α = n ≥ 1 and t > a

aD
α
t f(t) = dn

dtn

(
aD

0
t f(t)

)
= dnf(t)

dtn
= fn(t)

which means that for t > a the Riemann-Liouville fractional derivative of order α = n > 1
coincides with the conventional derivative of order n.

However, there have appeared a number of works, especially in the theory of viscoelas-
ticity and in solid mechanics, where fractional derivatives are used for a better description
of material properties. Mathematical modeling naturally leads to differential equations of
fractional order, and to the necessity of the formulation of initial conditions to such equa-
tions. This means that the Riemann-Liouville is not the best definition to take when solving
some problems, their solutions are practically useless because there is no known physical
interpretation for such types of initial conditions, it is better to use a different definition,
such as the Caputo definition which makes initial conditions for differential equations nicer.

Caputo’s definition can be written as

C
a D

α
t f(t) = 1

Γ(1 − n)

∫ t

a

f (n)(s) ds
(t− s)α+1−n

, (n− 1 < α < n).

Under natural conditions on the function f(t), for α → n the Caputo derivative becomes a
conventional nth derivative of the function f(t). Indeed, let us assume that 0 ≤ n−1 < α < n

and that the function f(t) has n+ 1 continuous bounded derivatives in [a, t] for every t > a,
then
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lim
α→n

C
a D

α
t f(t) = lim

α→n

(
f (n)(a)(t− a)n−α

Γ(n− α + 1) + 1
Γ(n− α + 1)

∫ t

a
(t− s)n−αf (n+1)(s) ds

)
= f (n)(a) +

∫ t

a
f (n+1)(s) ds

= fn(t) n = 1, 2, ...

The main advantage of Caputo’s approach is that the initial conditions for fractional
differential equation with Caputo derivatives take on the same form as for integer-order
differential equations, i.e. contain the limit values of integer-order derivatives of unknown
functions at the lower terminal t = a.

Definition 7.1 The fractional derivative of order α, 0 < α < 1, in sense of Caputo, is
defined by

Dαf(t) = 1
Γ(1 − α)

∫ t

0
(t− s)−α df

ds
(s)ds.

Definition 7.2 The fractional integral of order α, 0 < α < 1, in sense Riemann-Liouville,
is defined by

Iαf(t) = 1
Γ(α)

∫ t

0
(t− s)α−1f(s)ds.

Remark 7.1 From the above definitions, clearly

Dαf = Iα−1Df, 0 < α < 1.

Now, we give the definitions of the generalized Caputo’s fractional derivative and the
generalized fractional integral.

Definition 7.3 The generalized Caputo’s fractional derivative is given by

Dα,ηf(t) = 1
Γ(1 − α)

∫ t

0
(t− s)−αe−η(t−s) df

ds
(s) ds, 0 < α < 1, η ≥ 0.

Definition 7.4 The generalized fractional integral in sense Riemann-Liouville, is given by

Iα,ηf(t) = 1
Γ(α)

∫ t

0
(t− s)α−1e−η(t−s)f(s) ds, 0 < α < 1, η ≥ 0.

Remark 7.2 We have

Dα,ηf = I1−α,ηDf, 0 < α < 1, η ≥ 0.
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Chapter II

Well-posedness and exponential
stability of a thermoelastic system
with internal delay

1 Introduction

Let us consider the following thermoelastic system with delay
utt(x, t) − αuxx(x, t− τ) + γθx(x, t) = 0, in (0, ℓ) × (0,∞),
θt(x, t) − κθxx(x, t) + γuxt(x, t) = 0, in (0, ℓ) × (0,∞),
u(0, t) = u(ℓ, t) = θx(0, t) = θx(ℓ, t) = 0, t ≥ 0

(II.1)

where α, γ, κ and ℓ are some positive constants. The functions u = u(x, t) and θ = θ(x, t)
describe respectively the displacement and the temperature difference, with x ∈ (0, ℓ) and
t ≥ 0. Moreover, τ > 0 is the time delay. Racke proved in [32] that, under some initial and
boundary conditions, the system (II.1) is not well posed and unstable even if τ is relatively
small. However, it is well known that, in the absence of delay, the damping through the
heat conduction is strong enough to produce an exponential stable system (see for example
[18, 30, 33]), and specially, [30] and [19] where various types of boundary conditions are
associated to the one dimensional thermoelastic systems.

In recent years, the PDEs with time delays effects become an active area of research.
In fact, time delays so often arise in many applications since, most physical phenomena
not only depend on the present state but also on some past occurrences, see for instance
[34] and references therein, but as for the classical thermoelastic system, an arbitrary small
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delay may destroy the well-posedness of the problem or may destroy the stability, see also
[7, 14, 15, 28].

In order to solve the problem, additional conditions or control terms have been used, we
refer to [2, 3, 14, 16, 27, 31], see also [23] and references therein . In this paper we add to
the delayed equation, a Kelvin-Voigt damping of the form −βuxxt(x, t) for some real positive
number β, which eventually depends on α, γ, κ and τ. Then our system takes the form

utt(x, t) − αuxx(x, t− τ) − βuxxt(x, t) + γθx(x, t) = 0, in Ω × (0,∞),
θt(x, t) − κθxx(x, t) + γuxt(x, t) = 0, in Ω × (0,∞),
u(0, t) = u(ℓ, t) = 0, in (0,∞),
θx(0, t) = θx(ℓ, t) = 0, in (0,∞),
ux(x, t− τ) = f0(x, t− τ), in Ω × (0, τ),
u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), in Ω

(II.2)

where the initial data (u0, u1, f0, θ0) belongs to a suitable space and with Ω = (0, ℓ). We
meanly investigate well-posedness and exponential stability of such initial-boundary value
problem.

This idea arises from [4] where the authors added a Kelvin-Voigt damping term to the
abstract equation. More precisely, they considered the following system

u′′(t) + aBB∗u′(t) +BB∗u(t− τ) = 0, in (0,∞),
u(0) = u0, u′(0) = u1,

B∗u(t− τ) = f0(t− τ), in (0, τ),
(II.3)

where a "prime" denotes a one-dimensional derivative with respect to "t" and where B :
D(B) ⊂ H1 → H is a linear unbounded operator from a Hilbert space H1 to a Hilbert
space H, such that B∗, the adjoint of B, satisfies some properties of coercivity and compact
embedding. They obtained an exponential decay result under the assumption τ ≤ a.

In [26], the authors dropped the time delay in the harmonic term of the elastic equation in
(II.1) and added a delay term of the form

∫ τ2
τ1
µ(s)θxx(x, t−sτ)ds in the heat equation, where

τ1 and τ2 are non-negative constants such that τ1 < τ2 and µ : [τ1, τ2] → R is a bounded
function. They proved an exponential decay result under the condition

∫ τ2
τ1

|µ(s)|ds < κ.

We define the energy of a solution of problem (II.2) as

E(t) := 1
2

∫
Ω

(
u2

t (x, t) + αu2
x(x, t) + θ2(x, t)

)
dx+ ξ

∫
Ω

∫ 1

0
u2

x(x, t− τρ)dρdx
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where ξ > 0 is a parameter fixed later on.

We first formulate the problem (II.2) into an appropriate Hilbert space, and then we study
the well-posedness of the system using semigroup theory.Then we prove, using Lyapunov’s
method, a result of exponential stability of system (II.2).

2 Well-posedness of the problem

We introduce, as in [4], the new variable

z(x, ρ, t) = ux(x, t− τρ), in Ω × (0, 1) × (0,∞), (II.4)

Clearly, z(x, ρ, t) satisfies

τzt(x, ρ, t) + zρ(x, ρ, t) = 0, x ∈ Ω, ρ ∈ (0, 1), t ∈ (0,+∞), (II.5)
z(x, 0, t) = ux(x, t), x ∈ Ω, t ∈ (0,+∞). (II.6)

Then, problem (II.2) takes the form

utt(x, t) − αzx(x, 1, t) − βuxxt(x, t) + γθx(x, t) = 0, in Ω × (0,∞), (II.7)
τzt(x, ρ, t) + zρ(x, ρ, t) = 0, in Ω × (0, 1) × (0,+∞), (II.8)

θt(x, t) − κθxx(x, t) + γuxt(x, t) = 0, in Ω × (0,∞), (II.9)
u(0, t) = u(ℓ, t) = 0, in (0,∞), (II.10)

θx(0, t) = θx(ℓ, t) = 0, in (0,∞), (II.11)

z(x, 0, t) = ux(x, t), in Ω × (0,∞), (II.12)
u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), in Ω, (II.13)

z(x, ρ, 0) = f0(x,−τρ), in Ω × (0, 1). (II.14)

Observe that it follows from (II.9)-(II.11) that
∫

Ω θt(x, t)dx = 0 that is,
∫

Ω θ(x, t)dx is
conservative all the time. Without loss of generality, we assume that

∫
Ω θ(x, t)dx = 0.

Otherwise, we can make the substitution θ̃(x, t) = θ(x, t) − 1
ℓ

∫
Ω θ0(x)dx, in fact (u, v, z, θ)

and (u, v, z, θ̃) satisfy the same system (III.2)-(III.4).
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Let

H =
{

(f, g, p, h) ∈ H1
0 (Ω) × L2(Ω) × L2(Ω × (0, 1)) × L2(Ω) |

∫
Ω
h(x)dx = 0

}
.

Equipped with the following inner product: for any Uk = (fk, gk, pk, hk) ∈ H, k = 1, 2,

⟨U1, U2⟩H =
∫

Ω
(αf1x(x)f2x(x) + g1(x)g2(x) + h1(x)h2(x)) dx+ ξ

∫
Ω

∫ 1

0
p1(x, ρ)p2(x, ρ)dρdx,

H is a Hilbert space.

Define
U := (u, ut, z, θ)

then, problem (II.2) can be formulated as a first order system of the form
 U ′ = AU,

U(0) = (u0, u1, f0(.,−.τ), θ0)
(II.15)

where the operator A is defined by

A


u

v

z

θ

 =


v

(αz(., 1) + βvx)x − γθx

− 1
τ
zρ

−γvx + κθxx


with domain

D(A) =
 U = (u, v, z, θ) ∈ H ∩ [H1

0 (Ω) ×H1
0 (Ω) × L2(Ω;H1(0, 1)) ×H2(Ω)] |

z(., 0) = ux and (αz(., 1) + βvx) ∈ H1(Ω)


in the Hilbert space H.

To establish the existence of solution, we will prove that the operator A generates a
C0-semigroup, and to do this, we will prove that A − mId generates a C0-semigroup (of
contractions), for an appropriate real number m, function of ξ, α, β and τ. Then we apply
the bounded perturbation theorem (Sect. III.1 of [17]). In fact, we begin by the following
result

Lemma 2.1 If ξ > 2τα2

β
, then there exists m ∈ R such that A −mId is dissipatif maximal.
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Proof 2.2 Take U = (u, v, z, h) ∈ D(A).

⟨AU,U⟩H = α
∫

Ω
vx(x)ux(x)dx+

∫
Ω

((αz(., 1) + βvx)x(x) − γθx) v(x)dx (II.16)

+
∫

Ω
(−γvx + κθxx) (x)θ(x)dx− ξ

τ

∫
Ω

∫ 1

0
zρ(x, ρ)z(x, ρ)dρdx. (II.17)

Integrating by parts, using boundary conditions of u, v and θ to get
∫

Ω
((αz(., 1) + βvx)x − γθx) (x)v(x)dx+

∫
Ω

(−γvx + κθxx) (x)θ(x)dx

= −α
∫

Ω
z(x, 1)v(x)dx− β

∫
Ω
v2

x(x)dx− κ
∫

Ω
θ2

x(x)dx.

Integrating by parts in ρ, we get
∫

Ω

∫ 1

0
zρ(x, ρ)z(x, ρ)dρdx = 1

2

∫
Ω

(
z2(x, 1) − z2(x, 0)

)
dx.

Then (II.17) become

⟨AU,U⟩H = α
∫

Ω
vx(x)ux(x)dx− α

∫
Ω
z(x, 1)vx(x)dx

− β
∫

Ω
v2

x(x)dx− κ
∫

Ω
θ2

x(x)dx− ξ

2τ

∫
Ω

(
z2(x, 1) − z2(x, 0)

)
dx,

from which follows, using the Young’s inequality and that z(x, 0) = ux(x),

⟨AU,U⟩H ≤ (αε− β)
∫

Ω
v2

x(x)dx+
(
α

2ε − ξ

2τ

)∫
Ω
z2(x, 1)dx+

(
α

2ε + ξ

2τ

)∫
Ω
u2

x(x)dx

− κ
∫

Ω
θ2

x(x)dx.

Choosing αε = β
2 , or equivalently, ε = β

2α
, we get

⟨AU,U⟩H ≤ −β

2

∫
Ω
v2

x(x)dx+
(
α2

β
− ξ

2τ

)∫
Ω
z2(x, 1)dx+

(
α2

β
+ ξ

2τ

)∫
Ω
u2

x(x)dx−κ
∫

Ω
θ2

x(x)dx.

Then we choose ξ > 0 such that α2

β
− ξ

2τ
< 0, that is, ξ > 2τα2

β
. Furthermore we take

m = α2

β
+ ξ

2τ
> 2α2

β
, to get

⟨(A −mId)U,U⟩H ≤ −β

2

∫
Ω
v2

x(x)dx+
(
α2

β
− ξ

2τ

)∫
Ω
z2(x, 1)dx− κ

∫
Ω
θ2

x(x)dx ≤ 0
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which means that the operator A −mId is dissipatif.

Now, we will prove the maximality of A − mId. It suffices to show that λId − A is
surjective for a fixed λ > m. Given (f, g, p, h) ∈ H, we look for U = (u, v, z, θ) ∈ D(A),
solution of

(λId− A)


u

v

z

θ

 =


f

g

p

h

 ,

that is verifying 

λu− v = f,

λv − (αz(., 1) + βvx)x + γθx = g,

λz − 1
τ
zρ = p,

λθ + γvx − κθxx = h.

(II.18)

Suppose that we have found u with the appropriate regularity. Then,

v = λu− f. (II.19)

To determine z, recall that z(., 0) = ux, then, by (II.18)3, we obtain

z(., ρ) = e−λτρux + τe−λτρ
∫ ρ

0
p(s)eλτsds, (II.20)

and, in particular
z(x, 1) = e−λτux + z0, (II.21)

with z0 ∈ L2(Ω) defined by
z0 = τe−λτ

∫ 1

0
p(s)eλτsds.

Now, Multiplying (II.18)2 and (II.18)4 respectively by w ∈ H1
0 (Ω) and φ ∈ H2(Ω) such that

φx(0) = φx(ℓ) = 0, we obtain after some integrations by parts taking into account boundary
conditions on v, θ and w,

λ
∫

Ω
vwdx+

∫
Ω

(αz(., 1) + βvx)wxdx+ γ
∫

Ω
θxwdx =

∫
Ω
gwdx (II.22)

and
λ
∫

Ω
θφdx− γ

∫
Ω
vφxdx+ κ

∫
Ω
θxφxdx =

∫
Ω
hφdx. (II.23)
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Substituting (II.19) and (II.21) into (II.22) and (II.23), we get

λ2
∫

Ω
uwdx+

(
αe−λτ + λβ

) ∫
Ω
uxwxdx+ γ

∫
Ω
θxwdx =

∫
Ω
(g + λf)wdx+

∫
Ω
(fx − αz0)wxdx

(II.24)
and

λ
∫

Ω
θφdx− λγ

∫
Ω
uφxdx+ κ

∫
Ω
θxφxdx =

∫
Ω
(h− γf)φdx. (II.25)

Summing (II.24), and (II.25) multiplied by 1
λ
, we get

b ((u, θ), (w,φ)) = F (w,φ) (II.26)

with

b ((u, θ), (w,φ)) =
∫

Ω

[
λ2uw +

(
αe−λτ + λβ

)
uxwx

]
dx+

∫
Ω

(
θφ+ κ

λ
θxφx

)
dx+γ

∫
Ω

(θxw − uφx) dx

and
F (w,φ) =

∫
Ω
(g + λf)wdx+

∫
Ω
(fx − αz0)wxdx+ 1

λ

∫
Ω
(h− γf)φdx.

The space
F :=

{
(w,φ) ∈ H1

0 (Ω) ×H2(Ω) | θx(0) = θx(ℓ) = 0
}
,

equipped with the inner product

⟨(w1, φ1), (w2, φ2)⟩F =
∫

Ω
(w1w2 + w1xw2x + φ1φ2 + φ1xφ2x) dx,

is a Hilbert space; the bilinear form b on F × F and the linear form F on F are continuous.
Moreover, for every (w,φ) ∈ F,

|b ((w,φ), (w,φ)) | ≥ c∥(w,φ)∥2
H

with c := min
(
λ2,

(
αe−λτ + λβ

)
, 1, κ

λ

)
> 0.

By the Lax-Milgram lemma, equation (II.26) has a unique solution (u, θ) ∈ F. Imme-
diately, from (II.19), we have that v ∈ H1

0 (Ω). Now, if we consider (w,φ) ∈ {0} × D(Ω)
in (II.26) we deduce that equation (II.18)4 holds true. The function z, defined by (II.21),
belongs to L1(Ω, H1(0, 1)) and satisfies (II.18)3 and z(., 0) = ux. The functions z(., 1) and
vx belong to L2(Ω), then we take (w,φ) ∈ D(Ω) × {0} in (II.26) to deduce that αz(., 1) +βvx

belongs to H1
0 (Ω) and that equation (II.18)1 holds true.

Let θ̃ = θ − 1
ℓ

∫
Ω θ0dx, then we have that U = (u, v, z, θ̃) belongs to D(A), and AU =
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(f, g, p, h). Thus, λId− A is surjective for every λ > 0.

In conclusion the operator A−mId generates a C0-semigroup of contraction. By the bounded
perturbation theorem (Sect. III.1 of [17]), we have

Lemma 2.3 The operator A generates a C0-semigroup on H.

Finally, the well-posedness result follows from semigroup theory.

Theorem 2.4 For any initial datum U0 ∈ H there exists a unique solution U ∈ C([0,+∞),H)
of problem (II.15). Moreover, if U0 ∈ D(A), then U ∈ C([0,+∞),D(A)) ∩ C1([0,+∞),H).

3 Exponential stability

Based on Lyapunov method, we prove that the system (II.2) is exponentially stable for some
β > 0. More precisely:

Theorem 3.1 There exists β0 > 0 such that for every β ≥ β0, the system (II.2) is exponen-
tially stable.

Proof 3.2 We take as Lyapunov function

V (t) := N1V1(t) + αN2V2(t) +N3V3(t) +N4V4(t) +N5V5(t) +N6V6(t)

where

V1(t) := 1
2 ∥ut∥2 = 1

2

∫
Ω
u2

tdx, V2(t) := 1
2 ∥ux∥2 = 1

2

∫
Ω
u2

xdx, V3(t) := 1
2 ∥θ∥2 = 1

2

∫
Ω
θ2dx,

V4(t) :=
∫ 1

0
e−2λρ ∥z(., ρ, t)∥2 dρ =

∫ 1

0
e−2λρ

∫
Ω
z2(x, ρ, t)dxdρ,

V5(t) := −
∫ 1

0
e−λρf(ρ) ⟨z(., ρ, t), ux⟩ dρ = −

∫ 1

0
e−λρf(ρ)

∫
Ω
z(x, ρ, t)ux(x, t)dxdρ and

V6(t) := ⟨u, ut⟩ =
∫

Ω
uutdx.

f is a real function defined on [0, 1] and that will be determined later. The constants
N1, N2, N3, N4, N5 and N6 are positive numbers to be fixed later too.

Denote by Ṽ (t) the energy defined by

Ṽ (t) := N1V1(t) + αN2V2(t) +N3V3(t) +N4V4(t).
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It is clear that Ṽ (t) is equivalent to E(t). Then for a suitable choice of f we will prove that
we can find {N1, ..., N6} and β > 0 such that the following two assumptions are satisfied:

(A1) V (t) is equivalent to Ṽ (t),

(A2) V ′(t) ≤ −n0Ṽ (t), for some positive number n0.

The rest of the proof will be divided into three parts:
First part: it concerns the second assumption (A2). We start with the following lemma

Lemma 3.3 Let V (t) be defined as before. By choosing a function f satisfying

−e−2λρ = (e−λρf(ρ))′, λ > 0 (II.27)

and by taking N3 = N1, N6β = N2α and N6α = f(1)e−λ

τ
N5 we have that for every positive

real numbers ε1, ε2, ε3 and ε4,

V ′(t) ≤
(

−N4
e−2λ

τ
+N1

αε1

2

)
∥z(., 1, .)∥2

+
(

−2k1

τ
N4 + N5

2τ

(
ε2 + τ

ε3

))
V4(t)

+
(
N4

1
τ

+ N5

τ

(
Γ

2ε2
− Λ

)
+N5

Ψγε4cp

2ατ

)
∥ux∥2

+
(
N1

(
α

2ε1
− β

)
+N5

(
ε3

2 Φ + Ψcp

2ατ

))
∥utx∥2

+
(

−N1κ+N5
Ψγ

2ατε4

)
∥θx∥2

where cp > 0 is the Poincaré constant associated to Ω, (it can be taken equal to ℓ2

2 ) and

Ψ := f(1)e−λ, Λ := f(0) and Φ :=
∫ 1

0
f 2(ρ)dρ.

Furthermore,

Γ :=
∫ 1

0
e−2λρdρ = 1 − e−2λ

2λ .

Notice that
Λ = Ψ + Γ.

Proof 3.4 Computing the derivatives of V1, V2, V3, V4 and V5 using integration by parts,
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boundary conditions and Youg’s inequality, we have

V ′
1(t) = ⟨utt, ut⟩ = ⟨(αz(., 1, .) + βutx)x, ut⟩ − γ ⟨θx, ut⟩

= − ⟨αz(., 1, .) + βutx, utx⟩ − γ ⟨θx, ut⟩

= − ⟨αz(., 1, .), utx⟩ − β ∥utx∥2 − γ ⟨θx, ut⟩

≤
(
α

2ε1
− β

)
∥utx∥2 + αε1

2 ∥z(., 1, .)∥2 − γ ⟨θx, ut⟩ ,

V ′
2(t) = ⟨uxt, ux⟩ ,

V ′
3(t) = ⟨θt, θ⟩ = −γ ⟨(uxt, θ⟩ + κ ⟨θxx, θ⟩

= γ ⟨ut, θx⟩ − κ ∥θx∥2 .

The derivative of V4 is

V ′
4(t) = 2

∫ 1

0
e−2λρ ⟨z(., ρ, .), zt(., ρ, .)⟩ dρ

= −2
τ

∫ 1

0
e−2λρ ⟨z(., ρ, .), zρ(., ρ, .)⟩ dρ

= −e−2λ

τ
∥z(., 1, .)∥2 + 1

τ
∥ux∥2 − 2λ

τ

∫ 1

0
e−2λρ ∥z(., ρ, .)∥2 dρ

≤ −e−2λ

τ
∥z(., 1, .)∥2 + 1

τ
∥ux∥2 − 2λ

τ
V4(t).

The derivative of V5 is calculated as follows

V ′
5(t) = 1

τ

∫ 1

0
e−λρf(ρ) ⟨zρ(., ρ, .), ux⟩ dρ−

∫ 1

0
e−λρf(ρ) ⟨z(., ρ, .), uxt⟩ dρ

= 1
τ
e−λf(1) ⟨z(., 1, .), ux⟩ − 1

τ
f(0) ∥ux∥2

+ 1
τ

∫ 1

0
(e−λρf(ρ))′ ⟨z(., ρ, .), ux⟩ dρ−

∫ 1

0
e−λρf(ρ) ⟨z(., ρ, .), uxt⟩ dρ.

Replacing e−λf(1) by Ψ, f(0) by Λ and (e−λρf(ρ))′ by −e−2λρ, we obtain (using Young’s
inequality),

V ′
5(t) ≤ 1

τ

(
Γ

2ε2
− Λ

)
∥ux∥2 + 1

2τ

(
ε2 + τ

ε3

)
V4(t) + ε3

2 Φ ∥utx∥2 + Ψ
τ

⟨z(., 1, .), ux⟩ .
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Finally, the derivative of V6 is

V ′
6(t) = ∥ut∥2 − α ⟨z(., 1, .), ux⟩ − β ⟨ux, uxt⟩ + γ ⟨u, θx⟩ .

To conclude, it suffices to sum up N1V
′

1(t), αN2V
′

2(t), N3V
′

3(t), N4V
′

4(t), N5V
′

5(t), and N6V
′

6(t).

In view of Lemma 3.3, for the assumption (A2) to be satisfied, it suffices that

−N4
e−2λ

τ
+N1

αε1

2 = 0, (II.28)

n1 := −2λ
τ
N4 + N5

2τ

(
ε2 + τ

ε3

)
< 0, (II.29)

n2 := N4
1
τ

+ N5

τ

(
Γ

2ε2
− Λ

)
+N5

Ψγε4cp

2ατ < 0, (II.30)

n3 := N1

(
α

2ε1
− β

)
+N5

(
ε3

2 Φ + Ψcp

ατ

)
< 0, (II.31)

n4 := −N1κ+N5
Ψγ

2ατε4
< 0. (II.32)

The first condition (II.28) is equivalent to

N4 = aN1

with a := 1
2αε1τe

2λ.

The second condition (II.29) means that there exists 0 < k < 1 such that

N5 = bN4 = abN1

with b := 4λk
ε2+ τ

ε3
.

Note that, we have then

N6 = Ψ
ατ
N5 = abΨ

ατ
N1 and N2 = β

α
N6 = abΨβ

α2τ
N1.

Replacing N5 by abN1 and a by 1
2αε1τe

2λ in (II.31), then multiplying the inequality by
α
ε1

, we obtain
1
2bΨαe

2λcp + 1
4τbΦε3α

2e2λ <
α

ε1

(
β − α

2ε1

)
. (II.33)
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We take ε1 = α
β
, then (II.33) turns into

bΨαe2λcp + 1
2τbΦε3α

2e2λ < β2. (II.34)

Return back to (II.32), replacing N5 by abN1 to obtain

abΨγ
2ατε4

< κ. (II.35)

Also inequality (II.30) becomes

bΨγε4cp

2α <

((
Λ − Γ

2ε2

)
b− 1

)
. (II.36)

Already, it is necessary that Λ − Γ
2ε2

> 0, that is Λ > Γ
2ε2
, and

(
Λ − Γ

2ε2

)
b− 1 > 0, that is,

b = A

Λ − Γ
2ε2

, A > 1, (II.37)

hence (II.36) turns into
bΨγε4cp

2α < (A− 1) . (II.38)

Combining (II.35) and (II.38) to obtain

abΨγ
2ατκ < ε4 <

2α
γbΨcp

(A− 1). (II.39)

Replacing a by 1
2αε1τe

2λ in (II.39) to get

αγbΨ
4βκ e2λ < ε4 <

2α
γbΨcp

(A− 1). (II.40)

Now, going back with more detail on assumption (II.37). To do this, replacing b by 4λk
ε2+ τ

ε3
,

we obtain
A

Λ − Γ
2ε2

= 4λk
ε2 + τ

ε3

, (II.41)

or equivalently,
A

4λkε
2
2 −

(
Λ − A

4λk
τ

ε3

)
ε2 + Γ

2 = 0 (II.42)
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the discriminant of such equation in ε2 is

∆ :=
(

Λ − A

4λk
τ

ε3

)2
− AΓ

2λk (II.43)

which must be at least zero. In the sequel, we choose it zero. On the other hand ε2 is positive,
then

Λ − A

4λk
τ

ε3
=
√
AΓ
2λk (II.44)

or equivalently
A

4λk
τ

ε3
= Λ −

√
AΓ
2λk . (II.45)

It is obvious that the left hand side of the last equation is positive, that is

A

k
< 2λΛ2

Γ . (II.46)

Moreover, since A > 1 and 0 < k < 1 we have

1 < A

k
< 2λΛ2

Γ . (II.47)

Finally, note that

ε2 =
√

2λΓ k
A
. (II.48)

Second part: it concerns the equivalence between V (t) and Ṽ (t). Let ε5 > 0 and ε6 > 0, we
have

|N5V5| ≤ N5

2ε5
V4 + N5Φε5

2 ∥ux∥2

and
|N6V6| ≤ N6ε6

2 cp ∥ux∥2 + N6

2ε6
∥ut∥2 .

For V (t) to be equivalent to Ṽ (t) it is sufficient that

N6

2ε6
<
N1

2 ,
N5

2ε5
< N4, (II.49)

N6ε6

2 cp + N5Φε5

2 <
N2α

2 . (II.50)
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Using N6 = abΨ
ατ
N5 and N5 = abN1 in(II.49) we get

ε6 >
abΨ
τα

, ε5 >
b

2 .

We choose
ε6 = 2abΨ

τα
, ε5 = b.

Using again N6 = Ψ
ατ
N5 and N2 = βΨ

α2τ
N5, inequality (II.50) become

bΨ2

βτ
cp + Φb < βΨ

ατ
(II.51)

Third part: It is enough to examine the equations (II.47), (II.34), (II.40) and (II.51). We
take h := Ψ

Γ , then Λ = Ψ + Γ = (1 + h)Γ = (1 + h) 2λ
1−e−2λ

First step. We begin by assumption (II.47) which can be translated into

1 < A

k
< (1 − e−2λ)(1 + h)2 (II.52)

We choose h := e−2λ. Then

(1 − e−2λ)(1 + h)2 = (1 − h)(1 + h)2 = 1 + h− h2 − h3 > 1

for λ large enough. We choose A = 1 + h− h2 − 2h3 − 4h4 and k = 1 − h4. We have, for λ
large enough, A > 1, 0 < k < 1 and (II.52) is satisfied since

1 < A

k
= 1 + h− h2 − 2h3 + o(h3) < (1 − h)(1 + h)2 (II.53)

Second step. Estimate of ε2, b and ε3 according to h and λ for λ large enough. We have

k

A
= 1 + o(h2)

1 + h− h2 + o(h2) (II.54)

= 1 − h+ 2h2 + o(h2) (II.55)

and
Γ = 1

2λ(1 − h)
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then

2λΓ k
A

= (1 − h)(1 − h+ 2h2 + o(h2))

= 1 − 2h+ 3h2 + o(h2).

Hence we obtain, using (II.48),

ε2 = (1 − h+ 3
2h

2 − 1
2h

2 + o(h2))

= (1 − h+ h2 + o(h2)).

We evaluate b. First,

1
2ε2

= 1
2(1 − h+ h2 + o(h2))

= 1
2
(
1 + h− h2 + (h− h2)2 + o(h2)

)
= 1

2
(
1 + h+ o(h2)

)
,

then

1 + h− 1
2ε2

= 1
2(1 + h+ o(h2))

hence

1
1 + h− 1

2ε2

= 2(1 − h+ h2 + o(h2)).

Finally, from(II.37) and using that Λ = (1 + h)Γ we have

b = A

Γ(1 + h− 1
2ε2

) = 4λ(1 + h− h2 + o(h2))(1 − h+ h2 + o(h2))
1 − h

(II.56)

= 4λ(1 + h+ o(h2)). (II.57)

Now we evaluate ε3 :

First, recall that

A

2λk = 1
2λ(1 + h− h2 − 2h3 − 3h4 + o(h4)) (II.58)

63



then
AΓ
2λk = 1

4λ2 (1 − 2h2 − h3 − h4 + o(h4))

and √
AΓ
2λk = 1

2λ(1 − h2 − 1
2h

3 − h4 + o(h4)) (II.59)

Using (II.45), (II.58), (II.59) and that Λ = 1
2λ

(1 − h2) we have

ε3 = τ

h3 (1 − h+ o(h)). (II.60)

Third step. Interpretation of Inequality (II.34). First, we need to express Φ according to h

and λ.

Since

f(ρ) = eλρ
(
hΓ +

∫ 1

ρ
e−2λsds

)
= 1

2λe
λρ
(
e−2λ(1 − e−2λ) + (e−2λρ − e−2λ)

)
= 1

2λe
λρ
(
e−2λρ − e−4λ

)
then,

f 2(ρ) = 1
4λ2 e

2λρ
(
e−4λρ − 2e−4λe−2λρ + e−8λ

)
= 1

4λ2

(
e−2λρ − 2e−4λ + e−8λe2λρ

)
.

Hence

Φ =
∫ 1

0
f 2(ρ)dρ

= 1
4λ2

(
1 − e−2λ

2λ − 2e−4λ + 1
2λ

(
e−6λ − e−8λ

))

= 1
8λ3 (1 − h− 4λh2 + o(h2)).

Now, inequality (II.34) can be rewritten as:

2αcp(1 − h2 + o(h2)) + τ 2α2

4λ2h4 (1 − h+ o(h)) < β2.
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Then we take

2
(
cp

ατ 2 + e8λ

8λ2

)
<

(
β

ατ

)2

(II.61)

with λ large enough.
Fourth step. Condition (II.40) and existence of ε4. Inequality (II.40) can be rewritten as:

αγ

2βκ(1 − h2 + o(h2)) < ε4 <
α

γcp

(1 − h+ o(h)).

Then we take
γ2

2κcp < β(1 − h+ o(h)) (II.62)

and ε4 can be taken equal to α
2

(
γ

2βκ
+ 1

γcp
(1 − h+ o(h))

)
, with λ large enough.

Fifth step. Interpretation of assumption (II.51). It can be rewritten as:

2h cp

τβ
(1 − h2 + o(h2)) + 1

λh
(1 + h+ o(h)) < β

τα
.

It suffices to take (
2e−2λ cp

τβ
+ 1
λ

(e2λ + 1 + o(1))
)
<

β

ατ
. (II.63)

with λ large enough.
Note that for λ large enough, β = ατe4λ satisfies the three conditions (II.61, II.62) and

(II.63). Moreover, there exists β0 > 0 such that every β > β0 satisfies the three conditions
(II.61, II.62) and (II.63).

For every β > β0 we have
V̇ (t) ≤ −n0Ṽ (t) (II.64)

where n0 = min{n1, n2,
1
cp
n3,

1
cp
n4}. Recall that V (t), Ṽ (t) and E(t) are equivalent then,

there exists a0 > 0, C > 0 such that

E(t) < Ce−a0t.
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Comments

We can replace the Neumann conditions for θ

θx(0, t) = θx(ℓ, t) = 0

by the Dirichlet conditions
θ(0, t) = θ(ℓ, t) = 0,

we then obtain the same results.
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Chapter III

On the stabilization of a wave
equation with past history and
fractional damping controls

1 Introduction

In this chapter, we are concerned with the well-posedness, smoothness and asymptotic be-
havior of the solution of the following wave equation
(P )

utt(x, t) − uxx(x, t) +
∫ ∞

0
g(s)uxx(t− s) ds+ γ∂α,η

t u(x, t) = 0 in (0, 1) × (0,+∞),
u(0, t) = u(1, t) = 0 in (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, 1),

where g : R+ → R+, γ > 0. u0 and u1 are given initial data. The infinite integral term in
(P ) and γ∂α,η

t u represent, respectively, the past history (infinite memory) and the fractional
damping. The notation ∂α,η

t stands for the generalized Caputo’s fractional derivative of order
α, (0 < α ≤ 1), with respect to the time variable (see [12]). It is defined as follows

∂α,η
t u(t) =

ut(t) for α = 1, η ≥ 0,
1

Γ(1 − α)

∫ t

0
(t− s)−αe−η(t−s)du

ds
(s) ds, for 0 < α < 1, η ≥ 0.

During the last few years, many people have been interested in the question of stability
of wave equation with various kinds of (internal or boundary) controls. To focus on our
motivation, let us mention here only some known results related to the stabilization with
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finite or infinite memory controls (for further results of stabilization, we refer the reader to
the list of references of this paper, which is not exhaustive, and the references therein).

In the case γ = 0 and g satisfies

∃δ1, δ2 > 0 : −δ1g(s) ≤ g′(s) ≤ −δ2g(s), ∀s ∈ R+,

the authors of [11] proved that (P ) is exponentially stable.

In the case γ = 0 and g satisfies

∃δ > 0,∃p ∈]1, 3/2[: g′(s) ≤ −δ2g
p(s), ∀s ∈ R+,

it was proved in [24] that (P ) is polynomially stable.

Very recently, in [5], Ammari et al., studied the wave equation with internal fractional
damping. The system considered is as follows:

utt(x, t) − ∆u(x, t) + γ∂α,η
t u(x, t) = 0 in Ω × (0,+∞),

u(x, t) = 0 on ∂Ω × (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on Ω.

(III.1)

The authors proved that the energy decays polynomially as t−2/(1−α). Our goals in this paper
are: Investigating the effect of each control on the asymptotic behavior of the solutions of
(P ) and on the decay rate of its energy and giving an explicit and general characterization
of the decay rate depending on the growth of g and α.

The chapter is organized as follows. In section 2, we give preliminary results and we
reformulate the system (P ) into an augmented system by coupling the viscoelastic wave
equation with a suitable diffusion equation. Then, We convert the system into an evolution
equation in an appropriate Hilbert space, and prove the well-posedness of our problem by
semigroup theory. In section 3, we study asymptotic stability of above model and we establish
an unform decay for η ̸= 0 and polynomial energy decay for η = 0 for smooth solution.
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2 Preliminary results

The integral term represents a history term with kernel g satisfying the following hypothesis:


g : R+ → R+ is a non-increasing differentiable function such that lims→0+ g(s)
exists and there exists c > 0 such that

g′(s) ≤ −cg(s).
Furthermore, we assume that 1 − g0 > 0, where g0 =

∫ +∞

0
g(s) ds.

(H)

In this section we reformulate (P ) into an augmented system. For that, we need the
following proposition.

Proposition 2.1 (see [21]) Let µ be the function:

µ(ξ) = |ξ|(2α−1)/2, −∞ < ξ < +∞, 0 < α < 1. (III.2)

Then the relationship between the ‘input’ U and the ‘output’ O of the system

∂tϕ(ξ, t) + (ξ2 + η)ϕ(ξ, t) − U(t)µ(ξ) = 0, −∞ < ξ < +∞, η ≥ 0, t > 0, (III.3)

ϕ(ξ, 0) = 0, (III.4)

O(t) = (π)−1 sin(απ)
∫ +∞

−∞
µ(ξ)ϕ(ξ, t) dξ, (III.5)

where U ∈ C0([0,+∞)), is given by

O = I1−α,ηU, (III.6)

where
[Iα,ηf ](t) = 1

Γ(α)

∫ t

0
(t− τ)α−1e−η(t−τ)f(τ) dτ.

We introduce, as in [13], the new variables

ν(x, t, s) = u(x, t) − u(x, t− s)
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This functional satisfies 
∂tν + ∂sν − ut = 0 in ]0, 1[×R+ × R+,

ν(0, t, s) = ν(1, t, s) = 0 in R+ × R+,

ν(x, t, 0) = 0 in ]0, 1[×R+

(III.7)

In order to convert our problem to a system of first-order ordinary differential equations, we
note the following:

ν0(x, s) = ν(x, 0, s)

U = (u, ut, ν, ϕ)

and
U0 = (u0, u1, ν

0, 0)

Then (P ) is equivalent to the following abstract system:

Ut = AU, U(0) = U0, (III.8)

where A : D(A) ⊂ H → H is defined by

A


u

v

ν

ϕ

 =


v

(1 −
∫∞

0 g(s) ds)uxx +
∫∞

0 g(s)νxx ds− ζ
∫+∞

−∞ µ(ξ)ϕ(x, ξ)dξ
v − ∂sν

−(ξ2 + η)ϕ+ v(x)µ(ξ)

 . (III.9)

We define the functional space of U as follows.

H = H1
0 (0, 1) × L2(0, 1) ×H∗ × L2((0, 1) × (0,∞)), (III.10)

where
H∗ = {f : R+ → H1

0 (0, 1),
∫ 1

0

∫ ∞

0
g(s)|fx(s)|2 ds dx < +∞} (III.11)

The domain D(A) of A is defined by

D(A) = {U ∈ H\AU ∈ H, ν(x, t, 0) = 0, |ξ|ϕ ∈ L2(−∞,+∞)}.
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H is a Hilbert spaces equipped with the inner product defined

⟨U, Ũ⟩H =
∫

Ω

(
vṽ + (1 −

∫∞
0 g(s) ds)uxũx

)
dx+

∫ 1
0
∫+∞

0 g(s)νx(s)ν̃x(s) ds dx
+ζ

∫ 1
0
∫+∞

−∞ ϕϕ̃ dξdx,

Now, the domain D(A) is dense in H, and a simple computation implies that, for U ∈ D(A),

ℜ⟨AU,U⟩H = −1
2ℜ

∫ 1

0
g(s)

∫ +∞

0
∂s|∂xν|2 ds dx− ζ

∫ 1

0

∫ +∞

−∞
(ξ2 + η)|ϕ(ξ)|2 dξ dx.

Integration by parts, using (H1) and the boundary conditions in (III.7), yields

ℜ⟨AU,U⟩H = 1
2

∫ 1

0
g′(s)

∫ +∞

0
|∂xν|2 ds dx− ζ

∫ 1

0

∫ +∞

−∞
(ξ2 + η)|ϕ(ξ)|2 dξ dx (III.12)

and then, because the kernel g is non-increasing,

ℜ⟨AU,U⟩H ≤ 0.

This implies that A is a dissipative operator. Next, we prove that λId − A is surjective.
Let F = (f1, f2, f3, f3) ∈ H. We prove the existence of U = (u, v, ϕ) ∈ D(A) solution of the
equation

(λI − A)U = F. (III.13)

Equation (III.13) is equivalent to


λu− v = f1,

λv − (1 −
∫∞

0 g(s) ds)uxx −
∫∞

0 g(s)νxx ds+ ζ
∫+∞

−∞ µ(ξ)ϕ(x, ξ)dξ = f2,

λν − v + ∂sν = f3,

λϕ+ (ξ2 + η)ϕ− v(x)µ(ξ) = f4.

(III.14)

The first equation of (III.14) gives

v = λu− f1 ∈ H1
0 (0, 1) (III.15)

The last equation of (III.14) gives

ϕ = f4(x, ξ) + µ(ξ)v(x)
ξ2 + η + λ

= f4(ξ)
ξ2 + η + λ

+ λu(x)µ(ξ)
ξ2 + η + λ

− f1(x)µ(ξ)
ξ2 + η + λ

. (III.16)
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The third equation of (III.14) and (III.15) give

∂sν + λν = λu− f1 + f3

By integrating this differential equation and using the fact that ν(x, 0) = 0, we get

ν = 1
λ

(1 − e−λs)(λu− f1) +
∫ s

0
eλ(τ−s)f3(τ) dτ. (III.17)

Inserting the Equation (III.15) into (III.14)2, we get

λ2u− (1 −
∫ ∞

0
g(s) ds)uxx −

∫ ∞

0
g(s)νxx ds+ ζ

∫ +∞

−∞
µ(ξ)ϕ(x, ξ)dξ = λf1 + f2 (III.18)

Inserting Equations (III.16) and (III.17) into (III.18), we get

(λ2 + γλ(λ+ η)α−1)u−
(

1 −
∫ ∞

0
g(s)e−λs ds

)
uxx =

γ(λ+ η)α−1f1 + λf1 + f2 − ζ
∫ +∞

−∞

f4(x, ξ)µ(ξ)
ξ2 + η + λ

dξ

− 1
λ

∫ ∞

0
g(s)(1 − e−λs) dsf1xx +

∫ ∞

0
g(s)

∫ s

0
eλ(τ−s)f3xx(τ) dτ ds

(III.19)

multiplying them by u and integrating over ]0, 1[, we get

a(u,w) = L(w). (III.20)

where the sesquilinear form a : [H1
0 (0, 1) × H1

0 (0, 1)] → C and the antilinear form L :
H1

0 (0, 1) → C are defined by

a(u,w) =
∫ 1

0
((λ2 + γλ(λ+ η)α−1)uw +

(
1 −

∫ ∞

0
g(s)e−λs ds

)
uxwx) dx,

L(w) =
∫ 1

0
(γ(λ+ η)α−1f1 + λf1 + f2)w dx− ζ

∫ 1

0

∫ +∞

−∞

µ(ξ)
ξ2 + η + λ

f4(x, ξ) dξw dx
1
λ

∫ ∞

0
g(s)(1 − e−λs) ds

∫ 1

0
f1xwx dx−

∫ ∞

0
g(s)

∫ s

0
eλ(τ−s)

∫ 1

0
f3x(τ)wx dx dτ ds

It is easy to verify that a is continuous and coercive, and L is continuous. So applying the
Lax-Milgram theorem, we deduce that for all w ∈ H1

0 (0, 1) problem (III.20) admits a unique
solution u ∈ H1

0 (0, 1). Applying the classical elliptic regularity, it follows from (III.19) that
u ∈ H2(0, 1). Therefore, the operator λI − A is surjective for any λ > 0. Consequently,
using Hille-Yosida theorem, we have the following results.

Theorem 2.2 (Existence and uniqueness)
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(1) If U0 ∈ D(A), then system (III.8) has a unique strong solution

U ∈ C0(R+, D(A)) ∩ C1(R+,H).

(2) If U0 ∈ H, then system (III.8) has a unique weak solution

U ∈ C0(R+,H).

□

3 Strong stability of the System

3.1 Strong stability of the System

In this subsection, we use a general criteria of Arendt-Batty in [20] to show the strong stabil-
ity of the C0-semigroup etA associated to the system (P ) in the absence of the compactness
of the resolvent of A. Our main result is the following theorem:

Theorem 3.1 Then, the C0-semigroup etA is strongly stable in H, i.e, for all U0 ∈ H, the
solution of (III.8) satisfies

lim
t→+∞

∥etAU0∥H = 0.

Lemma 3.2 We have
σ(A) ∩ {iλ, λ ∈ R, λ ̸= 0} = ∅.

Lemma 3.3 A does not have eigenvalues on iR.

Let us first prove Lemma 3.3.
Proof.
From (III.9) we get that (u, v, ν, ϕ)T ∈ Ker(A) ⊂ D(A) if and only if



−v = 0,
−(1 −

∫∞
0 g(s) ds)uxx −

∫∞
0 g(s)νxx ds+ ζ

∫+∞
−∞ µ(ξ)ϕ(x, ξ)dξ = 0,

−v + ∂sν = 0,
(ξ2 + η)ϕ− v(x)µ(ξ) = 0.

(III.21)
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This implies that v = 0, ϕ = 0 and
∫ 1

0
g′(s)

∫ +∞

0
|∂xν|2 ds dx = 0.

Due to hypothesis (H), it follows that
∫ 1

0
g(s)

∫ +∞

0
|∂xν|2 ds dx = 0.

This implies that
ν = 0.

Then, we have
u = cx+ c′.

As u(0) = u(1) = 0, we deduce that u = 0. Thus U = 0. This concludes the proof of Lemma
3.3.

□

Let us suppose that there is λ ∈ R, λ ̸= 0 and U ̸= 0, such that AU = iλU . Then, we
get 

iλu− v = 0,
iλv − (1 −

∫∞
0 g(s) ds)uxx −

∫∞
0 g(s)νxx ds+ ζ

∫+∞
−∞ µ(ξ)ϕ(x, ξ)dξ = 0,

iλν − v + ∂sν = 0,
iλϕ+ (ξ2 + η)ϕ− v(x)µ(ξ) = 0.

(III.22)

Then, from (III.12) we have
ϕ ≡ 0, (III.23)

and
∂xν = 0. (III.24)

From (III.22)4 and (III.22)1, we have

u = v = 0. (III.25)

Hence, from (III.22)3 we obtain
ν = 0. (III.26)
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Then, we have
u = cx+ c′.

As u(0) = u(1) = 0, we deduce that u = 0. Thus U = 0. This concludes the proof of Lemma
3.2.

Now, we prove Lemma 3.2.

We will prove that the operator iλI − A is surjective for λ ̸= 0. For this purpose, let
(f1, f2, f3, f4)T ∈ H, we seek U = (u, v, ν, ϕ)T ∈ D(A) solution of solution of the following
equation

(iλ− A)U = F. (III.27)

Equivalently, we have the following system

iλu− v = f1,

iλv − (1 −
∫∞

0 g(s) ds)uxx −
∫∞

0 g(s)νxx ds+ ζ
∫+∞

−∞ µ(ξ)ϕ(x, ξ)dξ = f2,

iλν − v + ∂sν = f3,

iλϕ+ (ξ2 + η)ϕ− v(x)µ(ξ) = f4.

(III.28)

The function u satisfies the following equation

(−λ2 + iγλ(iλ+ η)α−1)u−
(

1 −
∫ ∞

0
g(s)e−iλs ds

)
uxx =

γ(iλ+ η)α−1f1 + iλf1 + f2 − ζ
∫ +∞

−∞

f4(x, ξ)µ(ξ)
ξ2 + η + iλ

dξ

− 1
iλ

∫ ∞

0
g(s)(1 − e−iλs) dsf1xx +

∫ ∞

0
g(s)

∫ s

0
eiλ(τ−s)f3xx(τ) dτ ds

(III.29)

Then∫ 1

0
((−λ2 + iγλ(iλ+ η)α−1)uw +

(
1 −

∫ ∞

0
g(s)e−iλs ds

)
uxwx) dx

=
∫ 1

0
(γ(iλ+ η)α−1f1 + iλf1 + f2)w dx− ζ

∫ 1

0

∫ +∞

−∞

µ(ξ)
ξ2 + η + iλ

f4(x, ξ) dξw dx
1
iλ

∫ ∞

0
g(s)(1 − e−iλs) ds

∫ 1

0
f1xwx dx−

∫ ∞

0
g(s)

∫ s

0
eiλ(τ−s)

∫ 1

0
f3x(τ)wx dx dτ ds

for all w ∈ H1
0 (0, 1). We can rewrite (III.29) as

B(u,w) = l(w), ∀w ∈ H1
0 (0, 1), (III.30)

where
B(u,w) = B1(u,w) + B2(u,w)
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with

(∗)


B1(u,w) =

∫ 1

0
((iγλ(iλ+ η)α−1)uw +

(
1 −

∫ ∞

0
g(s)e−iλs ds

)
uxwx) dx,

B2(u,w) = −
∫ 1

0
λ2uw dx,

and

l(w) =
∫ 1

0
(γ(iλ+ η)α−1f1 + iλf1 + f2)w dx− ζ

∫ 1

0

∫ +∞

−∞

µ(ξ)
ξ2 + η + iλ

f4(x, ξ) dξw dx
1
iλ

∫ ∞

0
g(s)(1 − e−iλs) ds

∫ 1

0
f1xwx dx−

∫ ∞

0
g(s)

∫ s

0
eiλ(τ−s)

∫ 1

0
f3x(τ)wx dx dτ ds.

Let (H−1(0, 1))′ be the dual space of H1
0 (0, 1). Let us define the following operators

(∗∗)
B : H1

0 (0, 1) → H−1(0, 1)
u 7→ Bu

Bi : H1
0 (0, 1) → H−1(0, 1) i ∈ {1, 2}

u 7→ Biu

such that

(∗ ∗ ∗)
(Bu)w = B(u,w), ∀w ∈ H1

0 (0, 1),
(Biu)w = Bi(u,w), ∀w ∈ H1

0 (0, 1), i ∈ {1, 2}.

We need to prove that the operator B is an isomorphism. For this aim, we divide the proof
into three steps:
Step 1. In this step, we want to prove that the operator B1 is an isomorphism. For this
aim, it is easy to see that B1 is sesquilinear, continuous form on H1

0 (0, 1). Furthermore

ℜB1(u, u) =
(

1 −
∫ ∞

0
g(s) cosλs ds

)
∥ux∥2

2 + γλℜ (i(iλ+ η)α−1) ∥u∥2

≥
(

1 −
∫ ∞

0
g(s) ds

)
∥xγ/2ux∥2

2,

where we have used the fact that

γλℜ
(
i(iλ+ η)α−1

)
= ζλ2

∫ +∞

−∞

µ(ξ)2

λ2 + (η + ξ2)2 dξ > 0.

Thus B1 is coercive. Then, from (∗∗) and Lax-Milgram theorem, the operator B1 is an
isomorphism.
Step 2. In this step, we want to prove that the operator B2 is compact. For this aim, from
(∗) and (∗ ∗ ∗), we have

|B2(u,w)| ≤ c∥u∥L2(0,1)∥w∥L2(0,1),

and consequently, using the compact embedding from H1
0 (0, 1) to L2(0, 1) we deduce that

76



B2 is a compact operator. Therefore, from the above steps, we obtain that the operator
B = B1 + B2 is a Fredholm operator of index zero. Now, following Fredholm alternative,
we still need to prove that the operator B is injective to obtain that the operator B is an
isomorphism.
Step 3. Let u ∈ ker(B), then

B(u,w) = 0 ∀w ∈ H1
0 (0, 1). (III.31)

In particular for w = u, it follows that

λ2∥u∥2
L2(0,1) + iγλ(iλ+ η)α−1∥u∥2

L2(0,1) =
(

1 −
∫ ∞

0
g(s)e−iλs ds

)
∥ux∥2

L2(0,1).

Hence, we have that iλ is an eigenvalue of the operator A. Then, according to Lemma 3.2,
we deduce that u = 0 and consequently Ker(B) = {0}. Finally, from Step 3 and Fredholm
alternative, we deduce that the operator B is isomorphism. It is easy to see that the operator
l is a antilinear and continuous form on H1

0 (0, 1). Consequently, (III.30) admits a unique
solution u ∈ H1

0 (0, 1). By using the classical elliptic regularity, we deduce that U ∈ D(A) is
a unique solution of (III.27). Hence iλ− A is surjective for all λ ∈ R∗.

3.2 Exponential Stability (for η ̸= 0)

In order to establish the exponential energy decay rate, we need the following theorem.

Theorem 3.4 ([29]) Let S(t) be a C0-semigroup of contractions on Hilbert space with gen-
erator A. Then S(t) is exponentially stable if and only if

ρ(A) ⊇ {iβ : β ∈ R} ≡ iR

and
lim

|β|→∞
∥(iβI − A)−1∥L(H) < ∞.

Our main result is the following.

Theorem 3.5 The semigroup SA(t)t≥0 is polynomially stable and there exists a positive
constant ω such that

E(t) = ∥SA(t)U0∥2
H ≤ e−ωt∥U0∥2

D(A).
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Proof.
Given F = (f1, f2, f3, f4)T ∈ H, let U = (u, v, ν, ϕ)T ∈ D(A) be the solution of the resolvent
equation (iλI − A)U = F , for λ ∈ R, i.e.,



iλu− v = f1,

iλv − (1 −
∫∞

0 g(s) ds)uxx −
∫∞

0 g(s)νxx ds+ ζ
∫+∞

−∞ µ(ξ)ϕ(x, ξ)dξ = f2,

iλν − v + ∂sν = f3,

iλϕ+ (ξ2 + η)ϕ− v(x)µ(ξ) = f4.

(III.32)

Taking the real part of the inner product of (iλI −A)U with U in H and using (??), we get

|Re⟨AU,U⟩H| ≤ ∥U∥H∥G∥H. (III.33)

This implies that

−1
2

∫ 1

0
g′(s)

∫ +∞

0
|∂xν|2 ds dx+ ζ

∫ 1

0

∫ +∞

−∞
(ξ2 + η)|ϕ(ξ, x)|2 dξ dx ≤ ∥U∥H∥F∥H (III.34)

Using condition (H) into (III.34), we obtain
∫ 1

0
g(s)

∫ +∞

0
|∂xν|2 ds dx ≤ ∥U∥H∥F∥H. (III.35)

Multiplying (III.32)3 by u in L2
g(R+, H

1
0 ), then using the fact that ∥u∥2

g = g0∥ux∥2
2, we get

g0∥ux∥2
2 =

∫ 1

0

∫ +∞

0
g(s)νxux ds dx+ 1

iλ

∫ 1

0

∫ +∞

0
g(s)νsxux ds dx

− 1
iλ

∫ 1

0

∫ +∞

0
g(s)(f3 − f1)uxx ds dx

(III.36)

Using by parts integration, condition (H) and the fact that ν(x, 0) = 0, we get

1
iλ

∫ 1

0

∫ +∞

0
g(s)νsxux ds dx = − 1

iλ

∫ 1

0

∫ +∞

0
g′(s)νxux ds dx

Applying Holder’s inequality in L2(0, 1) and L2(0,+∞), then using (III.34) and lims→0

√
g(s)
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exists, we obtain
∣∣∣∣1λ
∫ 1

0

∫ +∞

0
g(s)νsxux ds dx

∣∣∣∣ ≤
lims→0

√
g(s)

|λ|

(∫ 1

0

∫ +∞

0
−g′(s)|νx|2 ds dx

)1/2
∥ux∥2

≤ C

|λ|
(∥U∥H∥F∥H)1/2∥ux∥2.

(III.37)
Using (III.35), we get

|
∫ 1

0

∫ +∞

0
g(s)νxux ds dx| ≤ g

1/2
0

(∫ 1

0

∫ +∞

0
g(s)|νx|2 ds dx

)1/2
∥ux∥2

≤ g
1/2
0 (∥U∥H∥F∥H)1/2∥ux∥2.

(III.38)

∣∣∣∣1λ
∫ 1

0

∫ +∞

0
g(s)(f3 − f1)uxx ds dx

∣∣∣∣ ≤ 1
|λ|

(g1/2
0 + g0)∥F∥H∥ux∥2 (III.39)

Using (III.36), (III.37), (III.38) and (III.39), we deduce that

∥ux∥2
2 ≤ C∥U∥H∥F∥H + C

|λ|2
∥U∥H∥F∥H + C

|λ|2
∥F∥2

H. (III.40)

Now, multiplying (III.32)2 by u in L2(0, 1), we get

−λ2∥u∥2
2 + (1 −

∫∞
0 g(s) ds)∥ux∥2

2 +
∫ 1

0
∫∞

0 g(s)νxux ds dx+ ζ
∫ 1

0 u
∫+∞

−∞ µ(ξ)ϕ(x, ξ)dξ dx
=
∫ 1

0 (f2 + iλf1)u dx∣∣∣∫ 1
0 u

∫+∞
−∞ µ(ξ)ϕ(x, ξ) dξ dx

∣∣∣
≤
(∫ +∞

−∞

µ2(ξ)
ξ2 + η

dξ

) 1
2

∥u∥L2(0,1)

(∫ 1

0

∫ +∞

−∞
(ξ2 + η)|ϕ(x, ξ)|2 dx dξ

) 1
2

≤ 1√
ζ

(∫ +∞

−∞

µ2(ξ)
ξ2 + η

dξ

) 1
2

∥u∥L2(0,1)(∥U∥H∥F∥H)1/2.

Since η > 0, we have

∥ϕ∥2
L2((0,1)×(−∞,∞)) ≤ 1

η

∫ 1

0

∫ +∞

−∞
(ξ2 + η)|ϕ(ξ)|2 dξ dx ≤ c∥U∥H∥F∥H.

Thus, we conclude that
∥(iλI − A)−1∥H ≤ C.

Applying Theorem 3.4, we obtain that

E(t) ≤ e−ωt∥U0∥2
D(A).
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3.3 Polynomial Stability (for η = 0)

Lack of exponential stability

Theorem 3.6 The semigroup generated by the operator A is not exponentially stable.

Proof.
We shall show that iλ = 0 is not in the resolvent set of the operator A. Indeed, noting that
(x sin xπ, 0, 0, 0)T ∈ H, and denoting by (u, v, ν, ϕ)T the image of (x sin xπ, 0, 0, 0)T by A−1,
we see that ϕ(x, ξ) = −|ξ| 2α−5

2 x sin xπ. But, then ϕ ̸∈ L2((0, 1)×(−∞,+∞)), since α ∈]0, 1[.
So (u, v, ν, ϕ)T ̸∈ D(A).

By theorem 3.6: 0 is a spectral point. Therefore it is convenient to have the following
generalization of theorem 3.4 at hand:

Theorem 3.7 ([8]) Let S(t) be a bounded C0-semigroup on a Hilbert space H with generator
A. Assume that σ(A) ∩ iR = {0} and that there exist ϑ > 1 and υ > 0 such that

∥(isI − A)−1∥L(H) =
{
O(|s|−ϑ), s → 0,
O(|s|υ), |s| → ∞.

Then there exist constants C, t0 > 0 such that for all t ≥ t0 and U0 ∈ D(A) ∩R(A) we have

∥eAtU0∥2 ≤ C
1
t

2
ς

∥U0∥2
D(A)∩R(A),

where ς = max{ϑ, υ}.

Our main result is the following.

Theorem 3.8 The semigroup SA(t)t≥0 is polynomially stable and

E(t) = ∥SA(t)U0∥2
H ≤ 1

t
∥U0∥2

D(A)∩R(A).

Now, from (III.32)4, we obtain

v(x)µ(ξ) = (iλ+ ξ2 + η)ϕ− f4(x, ξ). (III.41)

By multiplying (III.41) by (iγ + ξ2 + η)−2|ξ|, we get

(iλ+ ξ2 + η)−2v(x)µ(ξ)|ξ| = (iλ+ ξ2 + η)−1|ξ|ϕ− (iλ+ ξ2 + η)−2|ξ|f4(x, ξ). (III.42)
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Hence, by taking absolute values of both sides of (III.42), integrating over the interval
] − ∞,+∞[ with respect to the variable ξ and applying Cauchy-Schwartz inequality, we
obtain

S|v(x)| ≤
√

2U
(∫ +∞

−∞
ξ2|θ|2 dξ

) 1
2

+ 2V
(∫ +∞

−∞
|f4(x, ξ)|2 dξ

) 1
2
, (III.43)

where

S =
∣∣∣∣∫ +∞

−∞
(iλ+ ξ2 + η)−2|ξ|κ(ξ) dξ

∣∣∣∣ = |1 − 2α|
4

π

| sin (2α+3)
4 π|

|iλ+ η|
(2α−5)

4 ,

U =
(∫ +∞

−∞
(|λ| + ξ2 + η)−2 dξ

) 1
2

= (π2 )1/2||λ| + η|−
3
4 ,

V =
(∫ +∞

−∞
(|λ| + ξ2 + η)−4|ξ|2 dξ

) 1
2

=
(
π

16 ||λ| + η|−
5
2

)1/2
.

Thus, by using the inequality 2PQ ≤ P 2 +Q2, P ≥ 0, Q ≥ 0, again, we get

S2
∫ 1

0
|v(x)|2 dx ≤ 2U2

(∫ 1

0

∫ +∞

−∞
(ξ2 + η)|θ|2 dξ dx

)
+ 4V2

(∫ 1

0

∫ +∞

−∞
|f4(x, ξ)|2 dξ dx

)
.

(III.44)
We deduce that For λ near 0, we have from (III.44)

∫ 1

0
|v(x)|2 dx ≤ c|λ|1−α∥U∥H∥F∥H + c|λ|−α∥F∥2

H. (III.45)

∥ϕ∥2 ≤ 2
∫ 1

0
|v(x)|2 dx

∫ +∞

−∞

µ2(ξ)
|iλ+ ξ2|2

dξ + 2
∫ 1

0

∫ +∞

−∞

|f4(x, ξ)|2
|iλ+ ξ2|2

dξ dx

≤ 4
∫ 1

0
|v(x)|2 dx

∫ +∞

−∞

µ2(ξ)
(|λ| + ξ2)2 dξ + 4

∫ 1

0

∫ +∞

−∞

|f4(x, ξ)|2
(|λ| + ξ2)2 dξ dx

≤ 4(1 − α) π

sinαπ∥v∥2
L2(0,1)|λ|(α−2) + 4|λ|−2∥f4∥2

L2((0,1)×(−∞,+∞)).

(III.46)

Then
∥ϕ∥2

L2((0,1)×(−∞,+∞)) ≤ c|λ|−1∥U∥H∥F∥H + c|λ|−2∥F∥2
H.

Finally, we deduce that
∥(iλI − A)−1∥H ≤ C

|λ|2
as λ → 0.

Applying Theorem 3.7, we obtain that

E(t) ≤ 1
t
∥U0∥2

D(A)∩R(A).
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