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Introduction

This thesis is concerned with the following class of elliptic equations

p*—2

—2 p—2
B » . |VulP~*Vu lulP~?u ) |u
(aHuHa’#%—b) (le <—]x\7’a +’u‘x’p(a+1) = o

where Q C RN (N > 3) containing 0 in its interior, 1 < p < N, a, b >0, a +b > 0,

u

+Af(z) inQ (1)

0<a<(N-p/pa<f<atl —oo<p<p:=I[N-(a+1)p)/pf, \is
a parameter, p* = pN/[N —p (1 + o — )] is the critical Caffarelli-Kohn-Nirenberg
exponent and f € W*/{0}. Here, W, (Q) denotes the completion of C5°(Q2) with

respect to the norm

[Vl jul”
||U||§,M = / ( [P _M|I|pa+p dz,
Q

and W* is the dual space of W, # (Q). For (a, 1) = (0,0) we shall work with the space

WP (Q) endowed with the norme

lull? = / IVl dz.
Q

This problem is related to the following well known Caffarelli-Kohn-Nirenberg

inequality [17]:

. . 1/p* 1/p
(/ |z| 777 JulP dm) < Cap (/ |z| P | Vul? dx) for all w € C5° (), (2)
Q Q

5



for some positive constant C,, 3. For sharp constants and extremal functions associ-
ated to (2), see [19, 35, 49]. If 5 = a + 1 in (2), then p* = p, Co 3 = 1/H, and we
have the following weighted Hardy inequality [4, 6, 1]:

[ul” L[ [Vul”
pa+pd S - b

dx, for all u € C§° (Q). (3)

If « =8 =0in (2), then p* = pN/ (N — p) we obtain the following Sobolev

inequality

. 1/p* 1/p
(/ lul? dx) < Cop (/ |Vul? dx) for all u € C§° (), (4)
Q Q

for some positive constant Cj .

If a # 0, the problem (1) is called nonlocal because of the presence of the nonlocal
term a|[ul[?, ,, which implies that problem (1) is no longer a pointwise identity. This
phenomenon causes some mathematical difficulties, which make the study of problem
(1) interesting. It is called also non degenerate if b > 0 and a > 0, while it is named
degenerate if b =0 and a > 0.

Such class of nonlocal elliptic problem like (1) without singular weights (o = = 1 = 0)
is related to the original Kirchhoft’s equation, which arises in nonlinear vibrations,
namely
( uy — M (/ |Vu|2dx> Au = g(x,t) in Qx (0,7)

u=0 in 09 x (0,7)

. U(O,l’) = Up; ut(ovx) = Uz,

which was first introduced by Kirchhoff as an extension of the classical D’Alembert
wave equation for free vibrations of elastic strings. Kirchhoff’s model takes into

account the changes in length of the strings produced by transverse vibrations.



Problems which involve nonlocal operator have been widely studied due to their
numerous and relevant applications in various fields of sciences. In particular, Kirchhoff-
type problems proved to be valuable tools for modeling several physical and biological
phenomena and many works have been made to ensure the existence of solutions for
such problems; we quote in particular the article of Lions [42]. Since this famous pa-
per, very fruitful development has given rise to many works on this advantageous axis
and in most of them, the used approach relies on topological methods. However, just
few improvements were held concerning the multiplicity of solutions. At this regard,
variational approach was solicited instead of topological methods to solve this kind
of problems and also to prove the existence of multiple solutions; we refer interested
readers to the works [3], [11], [43] and [46].

In the last few years, great attention has been paid to the study of elliptic problems
involving critical nonlinearities. This problems create many difficulties in applying
variational methods. It is worth mentioning that the semilinear Laplace equation
of elliptic type involving critical exponent of Sobolev was investigated in the cru-
cial paper of Brézis and Nirenberg [16]. After that, many researchers dedicated to
the study of several kinds of elliptic equations with critical exponent of Sobolev or
Caffarelli-Kohn-Nirenberg in bounded domain or in the whole space. For p = 2 and
a=a == pu=0, Tarantello [50] treated the problem (1) in a bounded domain of
RY and proved the existence of at least two solutions by using Nehari manifold meth-
ods. The first work on the Kirchhoff-type problem with critical Sobolev exponent is
Alves, Corréa and Figueiredo in [3]. Naimen in [46] showed a Brézis-Nirenberg type

result for Kirchhoff problem in bounded domain. In [29], Figueiredo and al. consid-



ered Kirchhoff elliptic equations with critical exponent of Caffarelli-Kohn-Nirenberg.

Recently, Benaissa and al. in [30] discussed the problem

— (a/ |Vul? de + b) div (|Vul"? Vu) = [u[P"2u+ \f (v) in RV,
RN

N
here p* = ]\f is the critical Sobolev exponent. For a particular dimension N =

3p/2, they proved the existence of two solutions.

Note that the problem (1) without Kirchhoff terms (¢ = 0) comes from the con-
sideration of starting waves in anisotropic Schrodinger equations (see [1]). It was
also introduced as models for several physical phenomena related to equilibrium of
anisotropic media that possibly are some where perfect insulator or perfect conduc-
tors [1]. This class of equations has been investigated in a series of works see [9], [14],
[49], [13], [12], [39] and the references therein.

This thesis is presented as follows.

Chapter 1 of preliminaries is devoted to the basic definitions, results and useful

inequalities which we use frequently in the proof of our results in this thesis .

In Chapter 2, we firstly consider the case where € is a bounded domain in RY
(N > 3) containing 0 in its interior and (a,b) = (0,1) in (1). So, we study the
following nonhomogenous singular elliptic equation with the critical Caffarelli-Kohn-

Niremberg exponent

. <|Vu|p_2Vu) wfPu  |u
—div | ——g— | — 1 =

’([‘pa |x|P(a+1) |:L“

X
—2
P

p*B

+ f(z)inQ,

(5)
u=0 on 0.

The purpose of this chapter is to investigate the existence of a ground state solution



for the problem (5) by a "smallness" condition on f. By using the Nehari manifold we
proved our result. On the other hand, when (a, 1) = (0,0) we proved to the existence
of a second solution of problem (5).

Chapter 3, is devoted to the case where @ = RY a # 0 and (o, 3,p) =
(0,0,0) in (1) . So, we are concerned with the existence, multiplicity infinity and the

non existence of solutions for the following Kirchhoff-type problem

P2 4 Af () in RY (6)

- a/ \VulP dz +b | div (|Vul[P~*Vu) = |u

RN

where p* = pN/ [N — p] is the critical Sobolev exponent, f € W*\ {0}. Here, W* is
the dual space of WP(RY). Note that if a = A = 0,b=1and 1 < p < N, the

equation (6) reduces to the following problem

—div (|Vul[P72Vu) = |u[P"?u, in RY (7)

Sciunzi in [2] provided that if u is a positive solution of (7) then u (x) = v. 4, (x)

where
N-p
oAt (N— BT
TN (5)
Ve, xq (I) = 8% n |x - |ﬁ e>0,z9 € RN. (8)
p— — Zo|P~
Consequently, u a minimizer for
G el
© uewle(RN)\{0} ] p/p*’
/ lul” dx
RN
and satisfies
* _pt
loraal? = [ loel” o = 575, )

We make the following assumptions to prove the following results:
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(Ho) p*>2p,a>0,b>0and a+b>0.
(H1) p*=2p,a>0andb>0.

(Hy) p*=2p,0<a<S2andb>0
(H3) p* >2p,a>0andb>0.

(Hs) p*=2p,a>S"2and b=0.

(Hs) p* =2p,a>S"2andb > 0.

(He) p* <2p, a>0andb > b*

(H7) p*=2p,a>0andb=0.

(Hs) p* <2p, a>0and b= b* where

*
P _—Pp

p pr—p
and we define the energy functional
2
Iw) = 55 Jull” + 7 ||p—— /f )uda,

then we obtain the following results.
Theorem 0.1 Suppose that f € W*\ {0} and assume (Ho) or (Hy) holds. Then
there ezists a constants A > 0 such that for any A € (0, A_) problem (6) has a

solution u_ with negative energy.

Theorem 0.2 Suppose that f € W*\ {0} such that [on [ (%) vegodx # 0. Assume
(Ho) or (Ha) holds. Then there exists a constant A\, € (0, A\_]| such that for any

A € (0, A\y) problem (6) has a second solution u, with positive energy.

Theorem 0.3 Let A\ =0,a > 0,b>0,1 <p < N . Forv.,, given by (8) the

following conclusions hold:
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(1) If p* = 2p, then under the hypothesis (Ha) , the problem (6) has infinitely

many nonnegative solutions and these solutions are

b p*lfp
(1 — SQa) Vego foralle >0,

and under the hypothesis (Hz), the problem (6) has infinitely many positive solutions
5%1)5@0 (for any 6 > 0) if and only if a = S72.

(2) If p* # 2p, b =0 and a > 0, then problem (6) has infinitely many nonnegative
solutions and these solutions

1

<aSpfi—p)_2p_p* Vezo Jforalle > 0.

p*—p

(3) If (H3) satisfied, then there exists o > S™1 (pf—fpba) "7 such that 67 P v, are
solutions of problem (6), for all € > 0.
(4) If (Hs) satisfied, then problem (6) has infinitely many nonnegative solutions

and these solutions are

1

* 2])—])*
s (" Pg-2 Vewo foralle>0.
pa ’°

(5) If (He) satisfied, then there exist 63 € |0, S™! <”;—;”S’2) 2pp*> and 8, €

1

Pop 1
(5‘1 (%S”) T4 oo) such that 0% "v. ., and 0} "v.., solutions of prob-

lem (6) for all e > 0.

Theorem 0.4 Assume that one of the hypotheses (H;) holds for 4 < i < 6. Then

problem (6) has no non-trivial solution for A = 0.

In Chapter 4 we generalise some results of chapter 3 in the following p-Kirchhoft-
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type systems

(

—(a1 4 by [[u]]") [div (|VuP~2Vu)] = [ult=u o] + M f (@),

q+dq
2q
q+dq

—(az + by [[o”) [div (|Vo[P=2Vv)] = [ul? [o]7 72 0 + Aag (x), (10)

| (u,v) € Wir (RN) x Whe (RN)
where 1 < p < N, aj,as >0, by,by >0, ¢,¢ > 1, g+ ¢ = p*, p* = pN/[N —p|
A, o >0 and f,g € W*\ {0}, W* is the dual space of W1P(RY).

In this chapter we establish the existence of solutions with negative and positive
energy, infinity results and non existence of solution for the Kirchhoff-type systems
involving the critical Sobolev exponent.

Note that the problem (10) has infinitely many nonnegative solutions for A; =

A =b=by=0,a; =ay=1and 1 < p < N. These solutions are

1

®=r") - '

Ue = (3*> ; (Q)p(lz’i*) (Q/)p(,ﬁp*) Ve, o

Z; - for all € > 0. (11)
Ve = <—) o (q')ﬁ QWUE 0

p* 7

Let the constant
A .y Jul” + [
G ewle (RN Lo (N / p/p*
W E ) (ol ol d)

which is positive. Let a = max (aj,a2) > 0, b = max (by,by) > 0. The following
assumptions are used in this chapter:

(Hy):p*>2p,b>0anda>0.

(Hy) : p* > 2p, b>0and a=0.

(Hs) p* =2p, az = az = 0 and by, by > S;;,.

(Hy) p* = 2p, by, by > S, 2 and ay,ay > 0.
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(Hs) p* >2p, a>0and b> =2 (221’%’) g (Sut) 77 .
(Hs) p* > 2p, a1 = az = 0, by, by > 0.
(H7)p* > 2p, a; = 0,a2 # 0, by, by > 0.
(Hg)p* > 2p, a1 #0, ay #0, by, by >0
We define the energy functional
I{u,v) = % (b el + ba [J0]|*) + % (a1 [ul]” + az [[v]]")

2 /
=2 [ ullof e — [ uf @)+ dag () v,
RN

RN

and we present our results:

Case 1: (A, A2) = (0,0).

Result 1: If one of assumptions (Hs), (Hy) or (Hs) is satisfied then problem (10)
has no non-trivial solution.

Result 2: If one of assumptions (Hg), (H7) or (Hg) is satisfied and if a; = ag = 1,
by = by = 0, then Problem (10) has infinitely many nonnegative solutions (u’,v.) =
(01ue, O2v.) for any 601,05 > 0.

Case 2: (A, A2) # (0,0).

Result 3: If (H;) or (Ha) is satisfied then system (10) has a solution (uy, v1) with
negative energy for some conditions in (A1, A2).

Result 4: If a1 =ay =1, by = by =0 and [, f (2) ucdz # 0 or [on g (@) veda #

0. Then problem (10) has a second solution (us,v9) with positive energy.
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Chapter 1

Preliminaries

In this chapter, we briefly recall the basic definitions and some important results which

we need in the proof of our results in the following chapters (see [30], [6], [14], [54], [27]).

1.1 Palais-Smale condition
Let K a Banach space, J € C' (K,R) (K* the dual of K).

Definition 1.1 A function J is called Frechet differentiable at u € K if there exists

a bounded linear application J' (u) € K* such that

[/ (u+v) = J(w) = (J'(u),v)]

1]l ¢

— 0, when ||v||; —0

A function J that is Frechet differentiable for any point of K is said to be C* if the

function J'is continuous.

Definition 1.2 We call that u € K is a critical point of J if J'(u) = 0, otherwise
u 15 called a reqular point.

15
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Let ¢ € R; we say that ¢ is a critical value of J if there exists a critical point u

in K such that J(u) = ¢, otherwise c is called regular.

Definition 1.3 We call a sequence (u,) € K is a Palais-Smale sequence on K if

J(up) — ¢ and ||J (u,)|

i — 0 asn — +oo.
Definition 1.4 Let c € R, We say that J satisfies the Palais-Smale condition at level
¢ we also note (PS). for short, if for any sequence (u,) € K such that

J(up,) —c inR
J'(u,) =0 in K*

contains a convergent subsequence in K.

Let us observe that if J € C'(K, R) satisfies the Palais-Smale condition, any point
of accumulation @ of a Palais-Smale sequence (u,), is a critical point of J. We have

implicitly J'(w) =0, J(u) = c.

1.2 Mountain Pass Theorem and Ekeland’s varia-
tional principle

A powerful tool for proving the existence of a critical point of a functional, is given

by the following theorem.

Theorem 1.5 [38] Let (K,d) be a complete metric space, and J : K — R. a lower

semicontinuous functional, not identically equal to +00 , which is bounded from below
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(c =infg J > -00),Then, for all > 0; there exists . € K such that

c < J(v) <c+e,

J(v) = J(v) +ed(y,7.) > 0Vy €K, suchthat vy # .

Corollary 1.6 [38] If K is a Banach space and J € C*(K,R) is bounded from below,

then there exists a minimizing sequence (u,) for J in K such that

J () — i%f J, J'(up) — 0 in K* as n — +o0.

Theorem 1.7 [6] Let J € C*(K ,R) satisfying the Palais-Smale condition.

Assume that

2) There exists two numbers cand p such that J(u) > o for every u € K with
lull x = p-
3) There exists v € K such that J(v) < o and ||v||x > p.

Define

then

c:=inf max J(u)>o
vel uey([0,1])

18 a critical value.
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1.3 The Sobolev spaces

Definition 1.8 Let Q@ C RY. We define the Sobolev space WP () by

we€ LP(Q) /3 f1, fa,...[n such that /ugf = —/figp Voe Cg?(); Vi=1.N ,,
Q ' Q
and u € WP (Q) by
ou ou ou
axi == fz R VU = (8—1‘1,..., %) .

Definition 1.9 Let @ C RYN. We define W, (Q) by the completion of C° (Q) in

Wte(Q).
Remark 1.10 We have W, (RY) = Wi» (RY).
Theorem 1.11 [16] Let u € W' (Q), then u € W, (Q) if and only if u = 0 on Q.

Definition 1.12 Let @ C RY. We define for p > 1

N

“uH};{/l,p(Q) = Z

=1

p

ou
al’z‘

Lr(Q)

when Wy (Q) < LP" (Q), there exists a constant S >0 such that

lul”

inf -
ueW o (BN)\{0} O\
</ lul? dm)
RN

Theorem 1.13 [}7] Let @ C RYN. If u is a positive solution of

S =

—div (|Vul|P=2Vu) = |[ulP" "2u, in Q

then u (x) = ve 4, (x) where

2
S

. 1

p—1

Ve g (T) 1= e>0,z9€ (1.1)

_p_ _p_
g1 4 |z — xo|P T
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Consequently, v a minimizer for

S = inf ]’
" ueW iR (RN)\{0} RN
(/ |ul? dx)
RN
and satisfies

* ot

fomaoll” = [ Joel” e = 575, (1.2

Q

Theorem 1.14 Assume q,q¢' > 1, ¢+ ¢ < p*, we define the constant

p p
5 e . el +
uw)eWLP (RN ) xwip (RN !
BRI (fRN ful* fol* dx)

which is positive, then
q q+d’ q/ ﬁ
Sea = || 5 + | = So
q q

1.4 Needed inequalities and Sobolev’s embedding

Theorem 1.15 (Sobolev-Gagliardo-Nirenberg)

Let 1 <p < N and Q CRY, Sobolev embedding gives

Wi (Q) < LF (Q)

1 1
where — = N Moreover there exists a constant C' = C(p, N) such that

p

SR

||U||Lp*(Q) <C ||vu||LP(Q) , Yue W (Q).
Corollary 1.16 Let1 < p < N, then
WP (Q) — L1(Q), Vq € [p,p"]

with continuous embedding.
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Theorem 1.17 [30] Letn > 1 and 1 < p < oo. We have

if ]1) — % > 0, then W™P (RN) — [ (RN) where é =

n
N7

=

Corollary 1.18 If}% — % =0, then W™P (RN) — L1 (RN) , Vg € [p,+oo,
.1 n n 00
zf];—ﬁ<0, then WP (RN) — L> (RV),

with continuous embedding.

1.4.1 Some integral inequalities

We will give here some important integral inequalities. These inequalities play an
important role in applied mathematics and also, they are very useful in our next

chapters.

Theorem 1.19 [30] Let q and q¢' such that 1 < q, ¢ < oo and % + i =1.1If fe L1

and g € LY, then

foe (@) and [Ifglac< ([ !f|qu)é (/191" ac)

Lemma 1.20 [30] Let 0 < m < 1. Then

Qe

m 1-m
lull @) < lullpe) llullza) -

1 1-—
valid for w € L1 () wz’thlgtgrgq,—:%ju_m
r q

Lemma 1.21 (Brézis-Lieb Lemma) [16/Let (u,) be a sequence in WP (Q), if

(un) is bounded in WP () and u,, — u a. e. in ), then

Tim (flun " = Jlun = ") = fJull”
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Theorem 1.22 [17] (Caffarelli-Kohn-Nirenberg inequality)

Lt QCRY 1<p< N, 0<a<(N-p)/pa<f<a+l

( [u d:c) < Cap (/ ||V|1;|a dx) for allu € C§° (), (1.3)
o T

where Q C RN for some positive constant C, 5.

1 P P
[FB=a+1in(13), thenp* =p, Cop === |—L | and we have the
f5=a« in (1.3), then p* = p, Cy Z {N—(a—i-l)p] and we have

following weighted Hardy inequality

[uf? Vul?
e _ﬁ o 2"

o dx, for allu € C5°(Q).
x
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Chapter 2

Nonlinear elliptic equations with
critical Caffarelli-Kohn-Nirenberg

exponent in bounded domain

2.1 Introduction

In this chapter we are interested to study the existence of solution to the nonhomo-

geneous problem

[Vul”™ ul* a7
2

—div( u+ f(z) in Q,

Vu) — p——r- = ;
N 'l (2.1)

u=20 on 0,

where (Q is a smooth bounded domain in RY (N > 3) containing 0 in its interior,
l<p<N,0<a<(N-p)/pa<pf<atl,—co<pu<p:=[N-(a+1)p)/pl’,
Ais a parameter, p* = pN/ [N — p (1 + a — )] is the critical Caffarelli-Kohn-Nirenberg

23
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exponent, f € W*/{0}. Here, W, (Q) denotes the completion of C§°(€2) with re-
spect to the norm ||.||, , and W* is the dual space of W, ().

To state our result, let set for u € W2 (RY)and f € W (the dual of W) (2))

.
. Jul”
Jull?. = /Wd.ﬂ:,
o

To start this section, we need to introduce the following notation:

Iy (u) = /fu dz,

) . 1 p¥—p
TR AN P I N AT

P
flullP” =1

We define for 0 < u <

p
S, = inf lu -
u€W1Lp(RV)\{0} X p/p
(/ lul” da:)
RN
and
p
Som int [
ueW, P(Q)\{0 "
eo<)\{}</ ‘updx)
RN

where W? (Q) = Wy (Q)
From [36], S,, is independent of any Q C RY in the sense that S, () = S, (RY) =

S,.. In addition, the constant S, is achieved by a family of functions

‘/E(':E) = E(p_N)/p,&’pM (f) , € > 0’
' 9

where @, ,(x) = 4, ,(|z|) is the unique radial solution for the problem

[Vul"” L T
|z [P ) - |x|p(a+1) - z[P"P

—div( v in RM\ {0}

u—0 as |r| — oo.
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In the other hand, from [30] S; is independent of any Q C RY and it is achieved by

a family of functions

U.(z) = [e (N) (U)M] & (= + lal7) 5 eso

p—1
Moreover the functions U, solve the equation

p*—2
—div (|Vu|p*2 Vu) = [ul u in RM\ {0}

|$ p*B

u—0 as |z] — oc.

and define
D:z{gEW*, g #0; 79>0}.

Note that D # @ and if f € LP(2) then

/Qlflpdfr <@ -pF [

(p*—1)

which implies that f € D.

Set 0 > 0 small enough such that B (0,0) C €, ¢ € C§°(£2) such that for

0 if |2 > 20
0<p() <lLe(r) = ; and |V (z)| < C.
1 if |z| <o
Put u. = ¢ (x) U.(x).

By [30] we have the following estimates.

Lemma 2.1 Assume that 2 < p < N and € > 0 small enough. By taking

Ug

Ve = ;

p*

=
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so that Hu6

= 1, we have the following estimates:
@ Neelly = So+0 (=)
( 717
(2) / Vo |* do = < ) fora=1.p—1,
pP 1 (=t)(V—p)
® [ -0,
(@(/|Wwdx—oGp)

2.2 Nehari manifold

First we give some preliminaries about the so called Nehari manifold.

Since f € Wy , () then the Euler-Lagrange functional I; associated to the prob-

lem (2.1) is given by

()——II [

— Iy (u) forallu e Wor(Q),

it’s clear that I; € C* (W, r (Q),R) and satisfies

p—2 p—2 p*—2
(I (u),v)= (/ ‘V‘ZLQ VuVov — MLUU - Luv — fu)dz

P

for all u, v € W3k ().
Hence, weak solution of (2.1) are critical points of the functional I;.

We denote the Nehari manifold by
N ={ueW 5 (Q) /{0} (I} (u),u)=0}.
It is easy to see that v € N if and only if

J(u) = |lulf, = lully: = I (u) = 0.
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Lemma 2.2 The function I, is coercive and bounded from below in N .

Proof. Let u € N, by Holder and Young inequalities we have

1

R = Julf, ——H 17— 1y (u)
> L ——|| 17— ful? v
- u Q, [ p
p p*—l */
. ‘(T) ”““W(p—*) %

Let p = |ully, , and

So

Iy () = hipy) = ~ = 1;;5* _p)[;’ syt

Then [ 4is coercive and bounded from below in N . m

The Nehari manifold A is closely linked to the behavior of the application
D, (t) : t — I(tu),
which for ¢ > 0 is defined by

—tIf(u).

()=—|| l6. .

Lemma 2.3 Let u € W, (Q), then tu € N if and only if ®,,(t) = 0.
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Proof. We have
(1) = (I7(tu),u)
L,
= L (tu) tu).
Then the conclusion holds m

The elements in N correspond to stationary points of the maps ®,,.

We note that

-1 *—1
&, (1) =7 lulle, =t 7 7 llu

and

7, (t) = (p— D2 lullf, — (0" = 1)t 7 7 u

p*
p*
By Lemma 2.3 we have u € N if and only if ®/,(1) = 0.Hence

p*
p*

(1) = (p =D flullg, — " = 1) llu

Then it is natural to split A/ into three subsets corresponding to local minima,

local maxima, and point of inflexion, i.e,

Nt = {lueN:9",(1) >0},

N~ = {ueN:d",(1) <0},

and

N ={ueN:®,(1)=0}.

First, we prove that ®”,(1) # 0 for all w € N/ {0}.

Lemma 2.4 Assume that f € D. Then N° = .



Proof. Suppose that N # &. For u € N, we have

(=D uli, = @ =1)[ul

p*
p*

(p—=1D1Is(u) = (p*—p)lu

and
(p" = 1) Iy (u) = (p* —p) [[ull?, , -

Using the definition of S, we get

p* P *
[ullys = (=1l /(@ —1)
1 p*/(p*—p)
> [% )&J .
(p*—1)
Thus
lully,,  pr—1
p* T 1
||U p* p 1
Therefore,
I Ay 2T
g [ )
=l Tl

v
=

(»*-1) /(p*—p)
lul?,, ] Iy (u)
p*
p*

P+ -(p —p) [W ﬁi

lu

Which is impossible. m

Define for all u € W* (Q) / {0}

p* E
p*

= |l (= 1) /" = 1) Jlu
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Lemma 2.5 Assume that f € D. Then for any u € Wi;ﬁ/ {0}, there exists a unique

positive value t7 such that

tr >t thu e N7 oand I (tu) = max I (tu).
tZt?ax

Moreover, if If (u) > 0, then there exists a unique positive value t;, such that

0<t, <ti™, tyue Nt and I (t;u) = Og,?gfgm I (tu) .

Proof. Set

U, (8) = ullf, — " lully:
for u € Wa#%/ {0}, then
O, (1) = Wy (t) — Iy (u)

Easy computations show that ¥, is concave and achieves its maximum at ¢;'**,

u]|? (p*=1)/(p*—p) b1 (p—1)/(p*—p)
\Ilu tgax — (p* _ a, - . '
(t*) = (0" — p) (—p* - 1) (IIu ﬁ*)

Then we can get easily the conclusion of our Lemma. m

also

By the previous lemma we know that Nt and A/~ are not empty, so we can define

0" ;= inf [ do” = inf [ .
B () and 0= g B ()

Lemma 2.6 Assume that f € D. Then for any v € N*, there exist ¢ > 0 and a
differentiable function ¢ = ((v), v € Wb (Q), [vll,, < & such that £(0) = 1,
¢ (v) (u—v) € N and

|Vul|P > Vu Vo uP2uw lul” % uw
p |x|pa —H — P — fu|dz

‘x|p(a+1) |x p*p

p*
p*

(¢"(0),v) =

(=D lullg, — (" =1 [Ju
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Proof. Define ¢ : R x W} () — R such that

P(Cv) ="M lu =7, = ¢ lu— v

g*—/f(u—v) dr.
Q
As u € N and N° = &, we have

0
o(1,0) =0, a—f(m) = (p— 1) [ull?, — (»* — 1) ||u

p*
p # 0.
Then by the implicit function Theorem, we get our result. m

Lemma 2.7 Let f € D, then there exist 05 < 0 and 6y > 0 such that 67 < 0§ and

0 > 0;.

Proof. Let v € W, (Q) be the unique solution of the following problem

| Vul" 7 Vu ulf?u ,
_d’l’l}(w) — W—a+1) = f m Q,
u=20 on 0f2.
Then, as f # 0 we have I} (v) = [[v[]7, , > 0 and [jv||y, , = || f||” where |.|_ = ||||Wu :

Moreover from Lemma 2.5, there exists ¢, > 0 such that ¢t;v € N'*. This implies

that
0t < L (t,v)
(1—p) ()" 1—=p* _\p .
= el (&) el
(1—p)(t,)"
< 7,
D
1—p),_
< U=2 oy

We deduce that 7 < 6, < 0 where 6, = (lgp) EP I

On the other hand , there exists. ¢ > 0 such that ¢;v € N~ which yields
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0~ Z Il (tjv)
pr—1 -
= ) Ioll - E )
+\P M (p*/p*—p)
Z (tv) [(p* o 1) S,u] .

Therefore, 6~ > 6, > 0 where

b5 = (&) [ =,

The proof is complete. =

Lemma 2.8 Assume that f € D. Then, there exists a minimizing sequence (u,) such
that

I () — 0" and I} (u,) — 0 in W*(Q).

Proof. It is easy to prove that I;is bounded in N't, then by applying Ekeland’s

variational principle, there exists a minimizing sequence (u,) C N'* satisfying
+ + 1 1 +
07 < I (un) <07+ —and I (u) > I (up) — = |lu = uyl, , forallue N7
n n ’

From the preceding lemma we have § < . So that

11 1 1\ (1-p),_ P10
== =) ull? <(———) t ) AN A+ == I [l
(G- )z < (5= %) o2 e + e o,

and

* -1 p p p—
% ()" 1A < 2 () < P indla

for n large, this implies that C1 < [lu,|, , < Cs with

. pp—1) , \p
G = T (5)" 1)
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and
p(p*—1)
Cy = :
T -1 -p) I71l-
Now, we show that I} (u,) — 0 in Wy ,, For that, fix n such that |7 (u,)||_ # 0.

Then by Lemma 2.6 there exist € > 0 and a function (,, : B. — R such that

wy, = (, (Un) (un _Un) eNT

with

I (uy,
vy, = /1 (U )
147 (un) || -

by the Taylor expansion of I, we obtain

and 0 < § < e.

Let An = Hwn - un”a,,u’

_EAn < L (wn) — 11 (uy)
< (L () s wa—un) +0(Ay)
B . ' I (uy)
(¢ (0n) = DT, () wn) — G, (1) <fl (1) )
o(A4,).
Then
n) 1 / An °© An
G 1 )< 2= ) g 4 B 2 (g
We have
n _1 . n n) - Sn 0 !
and
A, 1
™ = i (G (00 D - G () vl

IN

Lo
= (s O tnll 1)
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Taking § — 0 in (2.2) and since (u,) is a bounded sequence we get

C
17} ()l < = (IS, O] + 1),
n

for a suitable constant C3 > 0. Now, we must show that ||, (0)|_ is uniformly
bounded in n.

From the boundedness of (u,) we have by Lemma 2.6
Cy ||U||oz,,u

(0 =D llunllc,, = (" = 1) [un

p*
p*
for all v € Wé;ﬁ (©) and some constant Cy > 0. We only need to show that for any

sequence (u,) C N'*

(0= 1) lualls, = (0" = 1) ] > Cs,

for some constant C5 > 0.

Assume by contradiction that there exists (u,) C N'* such that

lim |(p—1) lunll?, — (" = 1) [lun 5:] =0

n—oo

Then as |u,||, > C1 > 0, we get

p*

- _ (=1
I? = * 1

”U’n”a,,u p

Hun

+0, (1) and (p — 1)1 (u,) = (p* — p) [Jun Z: + o, (1),

where o,, (1) — 0 as n — oco. But this is impossible since, as in the proof of Lemma

2.4 we have

on (1) = (p—1) llunllg,, — " = 1) llunll}

= (" — D) [Jun Z: —(p— 1)1y (un)

P (p*=1)/(p*—p)
| =p) I o Iy (un)
: (

p* = 1) [l el -

= un
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At this point we conclude that I7 (u,) — 0in W;(Q). =

2.3 Existence of ground state solution

By previous results about Nehari manifold and precedent preliminary results we prove

the existence of a ground state solution of problem (2.1).

Theorem 2.9 Let —co <a < (N —p)/p,a<f<a+1land —oo < p < fi. Assume

that f € D, then problem (2.1) has a ground state solution u.

Proof. First, we prove that I; can achieve a local minimum on N*.
According to the proof of lemma 2.8, there exists a minimizing sequence

(un) C Nt such that C; < ||Un||a . < C5. Up to a subsequence if necessary, we have

U, — uyin Wyt (Q)
u, = uy in LP(Q, |27

U, — up a.ein .

For some uy € W2 (€2) . As 6% < 0 then uy # 0. Suppose otherwise,

so [|luall, , < Hm [lu,| which implies that

n—oo

a,p?

0" < I (w)

11 ) 1
_ (1—9 _ j;) fll?, (1 - j;) I (w)

: p*—p p P 1
< i (Z2P s, - P )

n——o0
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This is a contradiction, which leads to conclude that w,, — u; in Wolé:ﬁ (Q)
and I; (uy) = 6.

Moreover, we have u; € N. In fact, if v; € N~ then by Lemma 2.5, tf =1and
there exists unique ¢, > 0 such that ¢, u; € N'.

Since

d[l (tul)
dt

—0 d2[1 (tul)
- dt

t=tu; t=tu;

> 0,

there exists ¢, < 3 <t} suchthat Iy (t; ui) < I (¢S w) < I (5 u1) = I (uq),
which is a contradiction.

Hence u; € Nt and

+ . . _
0= g, 1 0= a1 )

By the Lagrange multiplier rule, there exists A € R such that
&, (1) = I '1(w) = A27(1),

with implies that

0= (I (u),u1) = MJ "(uy), ),

we have (J '(u1),u1) # 0,80 A =0 and [ {(uy) = 0.

Thus u; is a ground state solution of problem (2.1). m

2.4 Existence of the second solution

In the following, we prove that problem (2.1) has a second solution us.
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Theorem 2.10 Suppose that 2 < p < N, u =0, a =0, p* = pN/(N —pp) and
f(x) > ag > 0 in a small neighborhood of 0 and satisfies v; > 0. Then, problem

(2.1) has a second solution.

Lemma 2.11 Let 1 <p < N, p=0,a =0 and f # 0 satisfies v, > 0. Then I, (u)

N
p

1
verifies the Palais-Smale condition at level ¢ for all c < 07 + N (So)

Proof. Assume that (u,) is a sequence in W, ” () satisfying as n — oo
1 N
I () = ¢ < (So) > and I} (u,) — 0 in Wy (). (2.3)

By Lemma 2.8, we know that (u,) is bounded in W,” (). Then, there exist a

subsequence (still denoted by (u,)) and uy in W, ” (Q) such that uy % 0 and
U, — uyin Wy?(Q),
Up — U in Ly (Q, \x|_p*ﬁ) :
U, — U a.e.in ).
Denote v,, = u,, — us, then
v, — 0in WP (Q),
v, — 0in Ly <Q, |:1c|7p*’8> )
v, — 0a.ein Q.
By the Brézis - Lieb Lemma [16] we have
lunllg = llvallg + lluzllg + on (1),

and

lunlly, = llvn

DA fulP 4 0n (1)
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Then, from (2.3) we deduce that

1 1 .
c+o, (1) =11 (u2) + = loallg — = llvall}.
and
ol = l[vallbe = on (1)
Using the fact that v, — 0 in W,” (Q), we can assume that
[vallh — T and [[v,]I2. — 1 > 0.
So, by the Sobolev-Hardy inequality, we get [ > SyiP/P".
Now, assume that [ # 0, then
1> (So)p*/(p**}?)
and we obtain
B+ (5= 0 )12 B+ (5
c=1I1(u -— = U — P
1 (U2 PR 2) + 77 (50

As I, (up) > 0%, we get a contradiction. So again u,, — u in W, ” () strongly. m

In order, to prove Theorem 2.10, we need the following key lemma.

Lemma 2.12 Suppose that 2 < p < N, p = 0, = 0, f(z) > a9 > 0 in a small

neighborhood of 0 and satisfies v > 0. Then

S|z

1
0~ <0t + —
< +N(So)
Proof. Set

M, = {O}U{u e WE(Q) : |lull, < t* } and My = {u e WE () : |lull, > t* }

1 —1
ullull ullullg
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We have WOLP (N~ = My UMy, Nt C My, uy € My and uy + Tv. € My for
some real T' > 0. Let

I'={h:[0,1] = Wy"(Q) continuous, h(0) = us, h(1) =us +Tv.},

and

h(t) = uy +tTv. witht € [0,1].

It is obvious that h belongs to T' and the range of any h € T' intersects N—. Then

0~ < inf I (h(t)).
< jnf max 1(R(t))

Now, we show that

=2

1
Ii(u +tu) <07 4+ — (S
Stglg 1(u V) (N)( 0)

To this purpose, we define g (t) := Iy (uy + tv.), then

N
p

9(0) = i (ur) <07 + - (50)7

and by the continuity of g there exists ty > 0 small enough such that

==

9(0) < 0"+ (50)7

for allt € (0, ty). On the other hand, it is easy to see that g (t) — —oo ast — +oo,

that is, there exists t; > 0 large enough such that

S|

9(0) < 0"+ 5 (S0)

for all t > t;. So we only need to show that

1 N
sup g(t) <0t + N (So)”
to<t<t
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Let € be sufficiently small such that f (x) > ag > 0 in B(0,¢). Then, we get from

Lemma 2.1

1 1 «
sup I (tv.) < sup (— ol — L i g*)—to [ e
t>0 \P p

to<t<ti

A

wn

jan

go]
/I\
=

S
o
o

|

% | —
=

S

m
S,
~~

|

~
o

)

o

S

m

QL

)

VAN
—_
—
&
S~—
(2
+
Q
N
(@)
2
S
S|
N———
|
Q
—
™
|2
N |
S|
S~—

For the second one, we can assume that the first solution uy is smooth and Vu, €

Lo (). Thus we have

sup g(t) = sup I; (ug + tv.)
to<t<ty to<t<t1
< I (uy) +supl (tv.) + Cl/ (|Vu1|pf1 V| + [V P Vuq|) do +
>0 Q

/ <|“1|p**1 v + o “1> dr
Q

0" + % (So)% + O (5¥> - O(5N’“;p) +0 (6Np§p> +0 (5(Ni)"’(pl)>

IN

From

O <5N;p> — 0(61\;?)) +0 (51\;?7) + 0 (e(N_?z(p_l)) =0 <€(N_Z;)2(p_l)> + O(EN;p).

(N—p)(p—1)+N—p

>0
p? p ’



then

w1 £
sup Iy (ug +tv.) <07+ —(Sp) 7,
to<t<t: N

for e small enough.

The proof is now complete. m
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Chapter 3

Elliptic p-Kirchhoff type equations
with critical Sobolev exponent

in RV

3.1 Introduction

In this chapter we are concerned with the following regular p—Kirchhoff type problem

in RY with critical Sobolev exponent.

— (a/ |Vl dx + b) div (|VulP?Vu) = [u[" u+ Af (z) inRY (3.1)

]RN

where 1 < p < N, a, b > 0,a+b > 0, \is a parameter, p* = pN/[N —p],
f € W\ {0}. Here, W* is the dual space of W1P(RY) and W'?(RY) denotes the
completion of C§°(RY) with respect to the norm

43
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1/p

Jull = / Vul’ de

RN
Note that if a = A =0,b=1and 1 < p < N, (3.1) reduces to the following problem

—div (|Vu|P~2Vu) = |[ulP"2u, in RY (3:2)

Sciunzi in [47] provided that if u is a positive solution of (3.2) then u (z) = v 4, (x)

where
1 1 p=1 N;p
TN (5)
P
Ve (T) 1= o=y | |L1 e>0,20€RY (3.3)
p— xr — Xo|P-
Consequently, v is a minimizer for
S = inf I’
| uewp(RN)\{0} O\
</ lul? dm)
RN
and satisfies
* p*
foesall = [ oenl” do = 575, (3.4

Definition 3.1 We say that u € WP(RY)\ {0} is a weak solution of equation (3.1)
if

(a |[ul” +b) / V2 Vuds — / (Juf”" 2w + Af (2)) vdz = 0
RN RN
for any v € WHP(RY).

Next, we define the energy functional

(I 2 b ]. *
Iu:_up—i——up——/updx—)\/fxudx,
2(u) 2p|| | p|| | p*RN| J (z)

associated to problem (3.1), for all u € W1P(RY).
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Notice that the functional I is well defined in W'?(R"), belongs to C* (W'?(R"), R)

and a critical point of I is a weak solution of problem (3.1) .
First, we make the following assumptions:
(Ho) p*>2p,a>0,b>0and a+b >0,
(H1) p* =2p,a>0and b >0,
(Hy) p*=2p,0<a< S 2andb>0.

When A > 0, we have the following results.

3.2 Palais Smale condition

Lemma 3.2 Suppose that f € W*\ {0} and assume that (Hy) or (Hy) holds. Let

c € R and (u,) C WYP(RY) be a (PS). sequence for Iy, then

u, — u in WP (RY)

for some w € WHP(RN) with I (u) = 0.

Proof. We have

I (u,,) — ¢ and I (u,) — 0,

that is

¢+ 0n (1) = I (un) and oy (1) [Jv[| = (I3 (un) ,v) ,

for any v € W1P(RY), where 0, (1) denotes any quantity that tends to zero as n — oo.
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Then as n — o0, it follows that

c+ o, (1) — ;%On (D) llun|l = Iz (un) — I% (15 (un) , un)

— 2222 [y % 4 DESE [fuy || — A / @ uds,
> AP ([ 4+ B2 [l [” = AL LF g Neaall

that is, (u,) is bounded in WP(RY) if (Hy) or (H;) holds. Up to a subsequence if

necessary, there exists a function u € W'?(RY) such that
u, — uw in WP(RY) and in L <RN, |:1:|7p*) , Up — U a. e. in RY,

and
RN RN
Then

(I} (uy) ,v) =0 for all v € C5° (RY) ,

thus 1), (u) = 0. This completes the proof. m
Before giving the local Palais Smale condition, we need the following lemma which

is a key step to obtain a solution with positive energy (Mountain Pass type solution).

Lemma 3.3 Let a,b >0, a+b>0 and o > 1. For y > 0 we consider the function
U : R — R*, given by
U (y) =Sy —aSy —b.
Then
(1) Ifc =1,0<a < S? and b > 0 then the equation ¥ (y) = 0 has a unique

positive solution

b
"= ETo a8



and ¥ (y) > 0 for all y > y.
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(2) If o > 1 then the equation V¥ (y) = 0 has a unique positive solution ys >

(%SQ)ﬁ and ¥ (y) > 0 for all y > ys.
(3) Ifo < 1. Let § = (%S”)i , then we have:
i) ¥ has no zero point for ¥ (g) < 0.

i1) U has unique zero point for W (7) = 0, Consequently, for

b=S"1(1-0) (fs—2) e

a
i11) U has two different zero points for W () > 0, with
0<ys <Yy <Y
Proof. (1) Forc =1,0<a < S? and b > 0, we have
U(y)=5(S?—a)y—1b

that is, the equation V¥ (y) = 0 has a unique positive solution

b
" EToas

and U (y) > 0 for all y > y;.

(2) For o > 1 we have ¥’ (y) = ¢S~ 'y°~! — aS and

V' (y)=0c(c—1)S1y2>0, Vy>D0.

Then ¥’ ((gSQ)ﬁ) =0, V(y) <0 fory < (%SQ)ﬁ and ¥’ (y) > 0 for y >

1
(%S 2) =1 Hence VU is a concave function and

y>0

min¥ (y) = ¥ (@52)"11) — (015" (352)””1 <0.

(3.5)
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Moreover, we have W <(352)ﬁ> < 0 and lim V¥ (y) = +oo, thus from (3.5) and

Yy——+00

the concavity of U we can conclude that the equation ¥ (y) = 0 has a unique positive

solution y, > (%SQ)ﬁ and U (y) > 0 for all y > y».

(3) For 0 < 1. Let ¥’ (y) = 0, one has

1= (5

and when 0 < y < gy, V is increasing, while y > ¢, ¥ is decreasing.

from ¥ (0) = —b < 0, we obtain that
i) ¥ has no zero point for ¥ () < 0.

ii) ¥ has unique zero point for ¥ (7) = 0, Consequently, for

b=5"(1-0) (2572 e

a
iii) ¥ has two different zero points for ¥ (7) > 0. =

Next, for i € {1,2} we put

and

O, ifpr=2p, 0<a<S2 b>0,
C* =

Cy ifp*>2p,a>0,b>0,a+b>0.

Moreover,

(3.6)

Now, we prove an important lemma which ensures the local compactness of the Palais

Smale sequence for Is.

Lemma 3.4 Suppose that f € W*\ {0} and (Ho) or (Hs) holds. Let (u,) C WHP(RY)

be a Palais Smale sequence for Is for some ¢ € R. Then

either u, — u orc> I (u) + C*.
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Proof. By the proof of Lemma 3.2 we have (u,) is a bounded sequence in
WhP(RY) and u, — u in W'P(RY) for some u € W'P(RY) with I (u) = 0. Fur-

thermore, if we write v, = u,, — u, we derive

(

vn—AOinLVMKRN)andian*<RNJxrﬂ>

v, — 0 a. e. in RY (3.7)

f(x)vpdx — 0.

\ RN

On the one hand, by using Brézis-Lieb’s Lemma [16], one has

[ull® = llonll” + llull” + on (1) )

. (3.8)
’unp o | p*
—dx = d + lulP"dz + 0, (1).
P rv |l RN
As (I} (u) ,u) = 0 we obtain by (3.7) and (3.8) that
0n (1) = (I3 (tn) , tn) = [lvn " — (3.9)
and
1 !/
cton(l) = 12(un)_1?<]2(un)7un>
11 ) (1 ) )
= a|——— Un|l” + ||U - — Un|l” + ||U
(35~ 3 ) Qonll + 1P 45 (5 = =) ol + P
+A <i* - 1) /f () vpdr — (l - ) / x)udx
P RN RN
11 ) 1
> a|——— np+b<———> vp|lP + I L (u),u).
(55~ ) Tl 4 (5 = =) Boll + Faw) = = (5 0)
Consequently,
a a b b
C+@11211L+(—“——) v || + (———) valP . 3.10
(1) > Ix(u) o [[onl e [[onl (3.10)

Assume that lim |v,|| = [ > 0, then by (3.9) and the Caffarelli-Kohn-Nirenberg

inequality we obtain

P
P

P> S (blP + al®)?
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this implies that

p*

STHPTP —qlP — b > 0. (3.11)

Let y = S~ and 0 = %, then by (77) we get
S™ly7 —aSy —b>0.

It is clear that o > 1, thanks to p* > 2p. So, from the definition of ¥ we get ¥ (y) > 0.
We will discuss two cases:
Case 1. p* =2p, 0 < a < S 2 and b > 0. According to Lemma 3.3, we have

W (y) > 0if y >y, with

b
"= EE g

which implies that [P > Sy;.
Case 2. p* >2p,a>0,b>0and a+ b > 0. In this case, it follows from lemma

3.3 that ¥ (y) > 0 if y > y, with

P
a p*—2p
Y2 > ( * b 52) )
p =D

which implies that [P > Sys. Then by (3.10), one has

b b
22
2p p* p D

*

p? _*pSyl if p* =2p,0<a<S2andb>0,
ap2 *p (Sys)? +bp *pSyQ if p*>2p, a,b>0and a+b>0.
Pp

The proof of Lemma 3.4 is completed. m
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3.3 Existence of solution with negative energy

Theorem 3.5 Suppose that [ € W*\ {0} and assume that (Hy) or (H1) holds. Then
there exists a constants A\_ > 0 such that for any A\ € (0, A_) problem (3.1) has a

solution u_ with negative energy.

Remark 3.6 Ifp* <2p,a>0,b>0anda+b>0 orp*=2p,a=S"2andb >0
or p* =2p, a > S"% and b > 0, then for any X > 0, we can easily show the existence

of one solution which is a ground state solution.

We give here the proof of our Theorem 3.5 by using Ekeland’s variational principle.

Proof. Let w € WH(RM)\ {0}, b > 0, a > 0 and p* > 2p. By Holder and

Caffarelli-Kohn-Nirenberg inequalities we have

o Il + HW——/M

Sp

IQ(U)

/ f(z)udx

™ = A1 f -

2
> —|| ||p+—|| [

ull -

Now we divide the proof in two cases.

Firstly, assume that b > 0 and a > 0. If (H,) or (H;) holds, we get

-1 1
b P b\ » b\r
L) 2 2l - 7= (5) " M- (5)
Xe y?
it follows from the inequality XY < — + —- for any X, Y > 0 and ¢, ¢' > 0 with
q q
1 1
—+—/:1,that
q 4
b »"/p 1((b\7 RN A
. p— P p
Luw) > —ul|f — up——(—))\f* ——(—)u
) 2 Dy -2 - (2 -] =5 ((5) 1l

p

-1 —
b o, ST p—1((b\7
— - -— (=) A . .
o [ p | p 5 11l

v
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For p > 0 we consider the function h; : Rt — R*, given by

b S—r/p
h = —p' —
direct calculation shows that
P P ;
[ ey A ) b, .« | PP
max hy (p) = ha (py) = - sp—p (§)p P with p, = {55]’ /”}
and hy (p) > 0Vp € B, (0).
Consequently,
p—1 b\ 7 v
B ()]0 2 -2 (<5) A anW*) - (3.12)
Moreover, for ||u|| = p; we have

1 (b\T =

h(w) > mm—%(@ A||f||W*> ,
1 1 1 {/b\7F o
> (o) + m(pl)—pT((—) A||f||W*> ,

1
> ];hl <P1)

= 251

for all A € (0, ;) with

p—1 b p*—1
PP\ ? -1 v
AL = Svr=»p v« <—> )
= (E22s75) Tt (5

We turn to the case where a > 0 and b > 0. If (H,) holds we obtain

.
L(u) > —|ju]® -

> 2 = () M- ) (2 o)

2p

¥ - 2p
a ) S P*/p * 2p—1 a Tl 2p—1 1 a 2i
ol = Z—— full”” - (5)7 M- ) =5 ((5)7 I
2p p 2p 2 2p \ \2

1

v

2p

a S 2p— a\ = -1
=l = Z——p" - (5)7 Afllw-)
4p P 2p 2

v
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Now, we consider the function hy : R™ — R*, given by

a S
hy (p) = 4pp p

then

R PR T A
— el e -P /p _QqQp /p p P 3 — -Qp /p p D
I;lzagc ha (p) = ha (ps) (2]? p*) S [25 } with py [25 }
and hy (p) > 0Vp € B, (0).

Consequently,

2p

2p—1 (ra\ % -1
B0 2 -2t ()7 M)

Moreover, for ||u|| = p, we have

2p

2p—1 1 2p — P -1
o)+ ot (o) - 2 (8) A )

L) = h2<p2>—2p_1(< quW*)Q_l
1

v

for all A € (0, A\y) with

2p—1 p *_q

* 2p* 2p 2
Ay = (5)7 I
= (B 2s) T (5 Il

Choosing d,, p, and A_ such that

(01, p1, A1) if (Ho) satisfies
(0s, puy A\_) = (3.13)
(02, py, A2) if (H;) satisfies.

Then, for all A € (0, A\_) we have

B (Wl ) = O (314
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and

v

I3 (u) |B,)* 0 = —Ch

with

p—1( ()"
L5 ((2) Ml

a

H
i
L

2p

Now, we define

if (Ho) satisfies

% ((2) )\HfHW) if (H;) satisfies.

c. =inf{I,(u), ue B, (0)}.

(3.15)

(3.16)

(3.17)

As f € W*\ {0} we can choose ¢ € W1P(RY) such that f (z)odxr > 0. Then,
RN

for a fixed A € (0, A_), there exists to > 0 such that ||top| < p, and

c_ < IQ(to(,D) <0 forte (0, to) .

Hence, c_ < I5(0) = 0. Using Ekeland’s variational principle, for the complete metric

space B,_(0) with respect to the norm of W'?(R"), we obtain the result that there

exists a Palais Smale sequence u,, € B,_(0) at level c_. From Lemma 3.2 there exists

u_ € B, (0) such that u, — u_ in W"?(RY) and I} (u_) = 0.
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Now, we shall show that u, — wu_ in W'P. Suppose otherwise, then |u_|| <

lim inf ||u,|| , which implies that
n— 00

c. < Iy(u-)

- <u_>_%<f; (u_) ,u_)

o I e O e R AL
2pp pp o
R

*

< liminf ap
n—-+oo

2pp* D D

n— 00

— limin Jé<un)-ié<zg(un),un{
p

et Ci7

2p pr—p pr—1
|+ b——= [[un || = A\ [ (@) updz
RN

which is a contradiction. We conclude that u,, — u_ strongly in W1?(RY). Therefore,

IL(u) =0and Iy(u_) = c. <0 = I(0). Hence u_ is a nonzero solution of (3.1)

with negative energy. m

3.4 Existence of solution with positive energy

Theorem 3.7 Suppose that f € W*\ {0} such that [on [ (%) vegodx # 0. Assume

that (Ho) or (Hz) holds. Then there exists a constant A, € (0, A\_| such that for any

A € (0, A\y) problem (3.1) has a second solution u, with positive energy.

Notice that assumption [,y f (@) veg,dz # 0 certainly holds if f € W*\ {0} does

not change sign. Also we have f € LT (RN) since f € W*\ {0} and u_,u; > 0 for

f > 0. Furthermore, in Remark 3.6 [32], the authors mentioned that it difficult to
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obtain the second solution in the case p < N < p*, a > 0 and b > 0. For special
dimension N = 3p/2, this case is studied in [11].

Now, we prove the existence of a Mountain Pass type solution and we give the
proof of Theorems 3.7 with the help of Theorem 3.5. Here we need the following

lemma.

Lemma 3.8 Assume that all conditions in Theorem 3.7 are fulfilled. Then there

exists z. € WYP(RY) and \* > 0 such that

sup Ir(tz.) <c_ +C* ¥V A€ (0,\)

t>0

where c_, C* are given in (3.17) and (3.6) respectively.
Proof. Since f(x) vea, () dx # 0 there exists z. = £, ,, satisfies
RN

/f(x) 2. (x) dz > 0.

Given any A > 0 and fixed ¢ > 0, then from (3.4) we have

*

b tP
Litz) = L |\z€y\2p+-tp||z€||’9——/ )\t/f 2) 2ode

2p D p*

2 b
— L peiS | 2psit —Sp = — A f ) z.dx.

2p P

Define ¢, h : ]0,4+00[ — R by g(t) = I1(tz.) and

2 b P
ht) = Lirsis 4 Cpsit - —Sp

2p P p*

Then

*

W (t) = — 7157 (tp*—p — aSTIP — b) :
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it follows from A’ (t) = 0 that
aSTFF 4 b— 7P =0, (3.18)

So

7" = aST TP 4 bt? (3.19)
Let y = S75tP, 0 = ? and

y1 if (Hz) holds

y2 if (H;) holds.

Then by (3.18) and the definition of ¥ we get
U(y)=S5"1y" —aSy—b=0, (3.20)

which implies from the proof of Lemma 3.2 that ¥ (y,) = 0, ¥ (y) < 0 for all y €
10, y.[ and ¥ (y) > 0 for all y € ]y, + oo[. Therefore, ' (t.) =0, b’ (t) > 0 for all

t €10, t.[ and A’ (t) <O for all ¢t € ]t,, + oco| where

1

S#ry? if (Hy) holds

B 1
S#ryd i (Ho) holds.

Moreover, since i (0) =0 and lim A (t) = —oo if (Hy) or (Hz) holds, then h attains

t——+o0

its maximum at ¢,.
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So, from (3.19) we deduce that

maxh (t) = h(t,)

t>0

* * p *
= itipsz*p%p —+ étiSPf—p — tLSpf—p
2p p p*

= Ly Peets (L Lpsids
2p P p* p*

1 1 p* 1 1 p*
= a (— — —) 12575 + b (— — —) Sy
2p  p* p D

1 1 1 1
(DY (t- s,
2p  p* p D

= C".

We know from the proof of Theorem 2.5 that ¢ > —C, for all A € (0, \.). So, we
can choose A3 < A_ such that for any A € (0, A\3) we have C* —c_ > C* — C) > 0.
Hence C* —c_ > 0 for all A € (0, A3).

Now, we consider the function g (t) := I5(tz.), t > 0. Then
g(t)=h(t)— At / f(z) z.dzx.
RN
So, for all A € (0, A3) we have
g(0>:O<C*—C)\
Hence, by the continuity of ¢ (¢), there exists ¢; > 0 small enough such that
g(t) <C*—=Cy\Vte (0, ty).

We know also that lim ¢ (t) = —oo if (Hy) or (Hz) holds. Then for t5 > 0 sufficiently

t——+o00

large, one has

g(t)<C*—CAVt€(t2, +OO)
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On the other hand, as f () zedz > 0 we can deduce from the above estimate on
RN

h (t) that for all ¢t € [t1, t5]

g(t) <C* =Xty [ f(x)zdz.
!

Set
p Pty
(p 1t1 f(x) zgda:) 5 |l if (H2) or (Ho) with b> 0 holds
Ay = R RY 2p—1
9 p
( P t f(x) zadx> 4 ||f||;[,25 if (Ho) with a > 0 holds
1" an 2

Then for any A € (0, A\4) one has

-\t / f(x) zede < —=C)
RN
Taking Ay = min{A_, A3, Ay} then ¢ > —C) and we deduce that

sup Ir(tz.) < C*+c_, forall A € (0, \y).

>0
This concludes the proof of Lemma 3.8. m
Now we can prove Theorem 3.7.
Proof. Note that I5(0) = 0 and from (3.14) we have I, (u)|aBP* (0) = 0+ > 0 for all
A € (0, A_) where p,, 0, are defined in (3.13). We know also that lim; ., I5 (tz.) =
—o0 if (Ho) or (Hz) holds, then I5(T'z.) < 0 for T large enough, hence /5 satisfies the
geometry conditions of the Mountain Pass Theorem [6]. Then, there exists a Palais

Smale sequence (u,,) at level ¢, such that
Iy (u,) — ¢y and I} (u,) — 0 as n — +oo
with

0 < ¢; = inf max Ir(y (t)) <sup [L(tTz) < C* +c_, forall A € (0, \}),
Vel t€[0,1] t=0
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where

I'={yeC([0,1], WRY)), v(0)=0, v(1) =Tz}.

Using Lemma 3.1 we have that (u,) has a subsequence, still denoted by (u,), such
that u, — u, in WH(RY) as n — +oco. Hence, from Lemma 3.4 if u, - u, in

WLP(RY) as n — +oo0, it holds
ey > Ih(u)+C*>c +C*
which is a contradiction with Lemma 3.4. Hence, I} (uy) = 0 and
Iy(uy)=cy >0.

So, as ¢y > 0 = I (0) we can conclude that u, is a nonzero solution of (3.1) with

positive energy. This completes the proof of Theorem 3.7. m

3.5 Infinitely solutions

we use the following assumptions:
(Hy) p*=2p,0<a< S ?andb>0,
(Hs3) p* >2p,a>0and b >0,
(Hg) p* < 2p, a>0andb> b*
(H7) p*=2p,a>0and b=0,

(Hs) p* <2p, a>0and b= b* where

_ E3 72ﬁ *
oo D ( p a) S a
p \pr—p
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Theorem 3.9 Let A\ =0,a >0,b> 0,1 < p < N. For v.,, given by (3.3) the

following conclusions hold:

(1) If p* = 2p, then under the hypothesis (Hz), the problem (3.1) has infinitely

many nonnegative solutions and these solutions are

1

b P*—p

(1 o2 ) Veg, Jforalle >0,
- 5%a

(2) Under the hypothesis (Hz), the problem (3.1) has infinitely many positive solutions
(5%1)5@0 (for any § > 0) if and only if a = S~2.

(3) If p* # 2p, b = 0 and a > 0, then problem (3.1) has infinitely many nonnegative
solutions and these solutions

1

<a5p’1377p>_2p7p* Vezo Jfor alle > 0.

*
p —p

*—2p %
(4) If (Hs3) satisfied, then there exists 63 > S~ (pf—fpS2) " such that 65 . 4, are

solutions of problem (3.1), for all € > 0.
(5) If (Hs) satisfied, then problem (3.1) has infinitely many nonnegative solutions

and these solutions are

1

x p—p*
s 7 (L Pg-2 Vewo foralle>0.
pa "

(6) If (He) satisfied, then there exist 03 € (0, g-1 (%5—2)%—1'*)

e 1 1
and 04 € (S‘l (%S”) T4 oo) such that 85 v, 4, and 65 V., solu-

tions of problem (3.1) for all £ > 0.

Proof. We give the proof of Theorem 3.9.
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For any § > 0 and v. 4, in (3.4) define V.5 = 0 ﬁvwo. Using the solutions v, 4,

of problem (3.1), then V. 5 weakly solves the following equation:

—5div (|VVes[P2VVes) = [Veg P2 s

Moreover, according to (3.4), one has
5 = allVelP +b
_pr
= adr-» ”Us,roHp +b
— ST 4 b,

Therefore, the positive solution of problem (3.1) is corresponding to the solution of

the following equation about ¢ > 0
§— aSFF6TT —bh=0 (3.21)
1) For p* = 2p, equation (3.21) is equal to
§(1—aS?)—b=0

i) Ifb >0 and 0 < a < S™2, we have that

b

60:1—5%

1
is a solution of equation (3.21). Hence, V.5, = 6§ " .., satisfies the following equa-

tion in the weak sense:
— (al[u]/” +b) div (|Vu|P>Vu) = |[u” >u.
ii) If b = 0 and a > 0 equation (3.21) is equal to

6 (1—aS?)=0.
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Obviously, for § > 0, this equality is true if and only if 1 — aS? = 0. Thus, when
p* = 2p, problem (3.1) has infinity many positive solutions V.5 = 5%%,10 (for any
§ > 0) if and only if a = S2.

2) For p* # 2p

i) If b =0 and a > 0 it is easy to see that

*
P _—p

61 = (as75) 7

is a solution of equation (3.21). Then, problem (3.1) has infinity many positive
N
solutions V.5, = 07 "z 4.

3) Let y = (Sd)ﬁ, equation (3.21) is equal to
Silyp*Tip —aSy—b=0.
Now we consider the following equation:
U (y) = Silyp*Tip —aSy—b=0.

i) For p* > 2p, according to Lemma 2.3, we have that ¥ (y) = 0 has a unique positive

solution o > ( ™) 2) . Thus, problem (3.1) has infinity many positive solutions

1 — p*—p

‘/552 = 5p stm with 52 S y2 > S ( ap SQ)p —2p ‘

ii) For 2p > p*, according to Lemma 2.3, we have:

*

For b = # (p*p_ pa) e S”™% 5 then ¥ (y) = 0 has a unique positive solution

p
y = uS —2) Thus, problem (3.1) has infinity many positive solutions V_z =
Yy £,0
P ep

o7 7pvaa:an1th(S_S y P forb<2ppp (pppa> = ST , ¥ has two different

zero points y3 and y4 with 0 < y3 < § < y4. Consequently, problem (3.1) has infinitely
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*

1 1 p —p
many positive solutions V. 5, = 0% Pv. o and V5, = 07 Pve,, with 63 = S 1y, 7 €

(o,s—l <%5—2)> and 6, = S‘ly:*% c (S—l (%5—2)‘ ,+oo>. .

3.6 Non-existence Result

Now we make the following assumptions:
(Hy) p*=2p,a>S"2and b=0,
(Hs) p*=2p,a>S"2and b >0,
(Hg) p* <2p, a>0and b > b*, where

p*—p

ok T 2p—_p* *
b= 22 p( : a> =
D pt—0p

Theorem 3.10 Assume that one of the hypotheses (H;) holds for 4 < i < 6. Then

problem (3.1) has no non-trivial solution for A = 0.

Remark 3.11 The authors in [34] proved the non existence solution only in the case

p* < 2p, while the case p* = 2p is considered in the preceeding theorem.

From this point of view, Theorem 3.10 could be viewed as some extension and

completeness of related results in [34].

Proof. Suppose that (H,) is satisfied and that v € W1P(RY)\{0} is a solution

of the problem (3.1). Then

o lu]> = / ul?” de (3.22)
RN
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P'dr < S72||ul| *", we have by (3.22)

lu

Asa> S72 and/

RN

- 2 2
Sl < allul®

RN

572 |lull™,

P dx

IN

which leads to a contradiction.
Suppose now that (Hs) is satisfied and that u € W?(RY)\{0} is a solution of (3.1).

Then
ool + bl = [ Jul” da.
RN
From this last equality and because a > S~2, b > 0 and the fact that

K
RN

Pdr < S72 ||ul””

we get

— 2 2
Sl < allul™ +blull?

RN

S

P dx

which is a contradiction.
In the same way as above, we suppose that under the condition (Hg) we have the
existence of a solution v € WHP(RY)\{0}, that is,

ol + bl = [ 1ul”da,

RN



66

and then we got

*

« _p* * *_(2p—p* _p* 2y m*
Juras < 87 Jull” = Jul 0 5 g
RN
;p . _p*;p . )
- ( P ) 2" (L) 55l
) p—D
. p*—p p*p—p
p —D p P 2(p* —
< ( - a) Hu” (p*—p)
p p—D
P
9 . 711*;1) . 2p—p*
- P
+ 2L (*p ) S5 Jlul™
p p—D
9 . _p*—p 2pfp*
J— p *
< aful?+ 222 ( L ) S ul|?
p Y

_ P P
= aful + 222 < - a) T ST e
p \p—>p

2
< allull™ +blul”

= /|u|p*d:17,
RN

which lead to a contradiction. m



Chapter 4

Elliptic p-Kirchhoff type systems

with critical Sobolev exponent

in RV

4.1 Introduction

In this chapter, we study the following Kirchhoff-type systems involving the critical

Sobolev exponent

(

2 /
—(ay + by ||ul]?) [div (|Vu[P72Vu)] = p +qq,|u]q_2u l0|T + A\ f (),
p . _2 2q/ q/_2 . RN 4 1
(o b Jo1?) [ (Ve 290)] = 2o o 20 g @), WRY ()

\ (u,v) € WP (RN) x Whe (RY)

where 1 <p < N, ay, ag >0, by, bo >0, q, ¢ > 1, ¢g+¢ =p*, p" =pN/[N —p]is

the critical Sobolev exponent, A;, Ay > 0 are a parameters, f, g € W*\ {0} and

67
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ol = [ (Val? + V0P da
RN
is the norm in W' (RY) x W'» (RY) .

The problem (4.1) is related to the following well known Sobolev inequality [17]

. 1/p* 1/p
(/ lul? dx) <C (/ |Vul? dx) for all u € Cg° (RV), (4.2)
RN RN

for some positive constant C'.

Sciunzi in [47] provided that if V. is a positive solution of the critical problem
— [div (|Vu[P*Vu)] = [uf”"*u in RY (4.3)

then, for any € > 0 the extremal functions of (4.3) is V. (z) = V.4, () where

N—p
1 1 =
i (5)
Ve (2) = | — =7 £>0, 9 RY (4.4)
grp-1 4 |l’ — ZE0|p_1
is a minimizer for
p
S = i?f “u* p/p*
ueWLp\{0} (f]R’N Juf” d:c)
and satisfies
* "
€ = €,x20 = €,x0 r = oprP P, .
IV = Veaoll® - Veaol” do =S¥ (4.5)

Note that if a; = as =1, Ay = Ay = 0 and by = by = 0, system (4.1) reduces to

the following system:

.

— [div (|Vulr=2Vu)] = 24 )2 o]
q+q in RN
— [div (|Vo|P~2V0)] = 22, |ul |v]? 2w, (4.6)

q+q

(u,v) € WP (RY) x WP (RY) .

\
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Let the constant

p p
5 - ol + Il
() WP (RN ) xwhe (RN) <fRN ’u|q ‘U|QI dx)
(u,0)#(0,0)
which is positive.
Next we define the energy functional
I _ 1 b 24y 2p 1 p P
s(u,v) = 2—p( o[l =+ b [|v]] )+I—?(a1||UI| +a [[v]|”)
2 /
=2 [ttt = [ s @)ut dag () v,
g RN RN

associated to problem (4.1), for all (u,v) € Wt# (RY) x Wtr (RY)
Notice that the functional I3 is well defined in W1 (RN ) and belongs to C* (WP R)

and that we have

(L(u,v), (u,0)) = (br Jull™ + b2 0] ) + (ar Jull” + az |[o]|")

—2/|u|q|v|q/d:p—/)qf(x)u+/\gg(x)vdx

RN RN
for all (u,v) € W'? (RY) x W'? (RY) . Hence a critical point of functional I3 is a

weak solution of problem (4.1) .

4.2 Non-existence of solutions

First we introduced some assumptions which we need to prove non-existence of solu-
tion for problem (4.1)

* — — — —2
(Hl) p = 2p7 Ao = Q2 = 0, bl, b2 > Sq,q"
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(H2) p* = 2p7 bla b2 > S;jl, ay, Qg > 0.

*

2p—p P *

(Hy) p*>2p, a >0, b > P52 (Q252) 770 977 (5, )75

Theorem 4.1 Suppose that (A1, \2) = 0 and assume that (Hy) or (Hy) or (Hs) . Then

the problem (4.1) has no non-trivial solution.

Proof. Suppose that (H;) is satisfied and (u,v) € W'P\{0} x W'P\{0} is a

solution of the problem (4.1). Then
b1 [[ull + by [|o]| = 2 / [ul?|o| da. (4.7)
RN

As by,by > S72, 2% + 12 > L (x +y) and fo ul? [u|” dz < S (Jull” + [|v]")?, we

have by (4.7)

S2 w4+ S22 ol < by [Jull® + b o]

_ 2/ ul? o] da
RN

-2 P P\2
25, o (lull” + [[v][*)

IN

IN

— 2 — 2
Sea 1™ + S g 10]1™

which leads to a contradiction.
Suppose now that (Hs) is satisfied and that (u,v) € WP\{0} x WP\{0} is a

solution of (4.1). Then
2 2 /
(b [l + b2 [0]) + (ax [Jull” + az [0]|") = p/ [u|*fo[* da.
RN

From this last equality and as by, by > S; 3,, a1, as > 0 and the fact that

Ja Tul" [0l dz < 8.3 (lull” + Jo]]")°, we get



_ 2 _ 9 9 9
S 2 |l + S22 ol < (by [full™ + b [|0]|*?)

< (b lull™ + 02 [[0*) + (a1 l[ull” + az [|v]|*)

_ 2/ o] da
RN

-2 p P2 —2 2p -2 2p
<28, 5 ([ull” + o)™ < S ull™ + S 4 [[v]]

is a contradiction.

In the same way as above, we suppose that under the condition (Hj3) we have the

existence of a solution (u,v) € WP\{0} x W'P\{0}, that is,

(b [[ull™ + 02 [[0]1) + (ax [[ull” + az [|v]") = 2 /RN [ul?[v]” d

and then we get

, 2 P
Jen Ml 0| de < S, 7 (lull” + [Jv]”) >

<

<

IN

IN

<

2p—p* 2p—p*

(222) " s (e + oI5 ()l + Boll) 5
- 0. 2(2p—p*)

* * 2p_pp* p* 2p*—2p pm=p
<vor((222) 7 (8,075 (JulP + o)

2 * 2p—p” 2p—p* QPEP*
_ - 2p—p*
+EE (2(25:0*)) (lull” 4+ [Jo[|") 7

*

p—p 2p—p* - e 2p opy L2 o
ee2 | (2222) 7 2(S,0) 7 (Jul? + o))

. 2p—p* 2pp* 217517*
2p— P Zp—p
+EE (2(25317*)) (lull” + (o))

2p—p* p

Eo (920 ) T 97 (8, )7 ((lul + o))

pa
1p*—p (92p—p* QPP*?; 2ﬁ g - 2p 2p
2 p pa (q,q’) b p(HU’H _'_”UH )

+3a ([ull” + [[0]")
36 (™ + 121%) + 5a (lull” + [[o]")

2 2
3 (ba[[ull™ + b2 [0]™) + 5 (aa [lul” + az [[0]]")

!
= fRN lul®|v]? dz,

which lead to a contradiction. m

2p—p

*
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4.3 Infinity solutions

Now, we prove that the problem (4.1) has infinitely many nonnegative solutions, we

present the following results.

Lemma 4.2 Leta; = as =1, \{ =X =0,b; =by =0, and1 <p < N. ForV,
given by (4.4) the following conclusions hold:
If p* > 2p then the problem (4.1) has infinitely many nonnegative solutions and

these solutions are (ug,v.), which give

1

—p") 0 ’
U = (3 nr (q)p(’;—i*) (q’)p(pq—p*) V.

*

1 for all € > 0. (4.8)

=" -
v — (E) T () gL
p*

Proof. Indeed by [6] , we know that

u. = kV.and v, = [V, (4.9)
1 1
V. = e and V. = 7V (4.10)

is a solution of he following problem

.
—2
PV

 [div ([VVP29V)] = V.

then

I ... _ 1 _ :
= [div (|Vu.|? 2Vu5)] = ]{;q—llq/|u5|q 2, |U€|q
1

. B 1 i,
— [div (|Vo.[P~2V,)] = lq'*lkq‘vs‘q 20, Jue|?

/

a4
kpr—aq

q

[div (| VP2 Vue)] = Ju] " u. |U€|q,

[div (VP2 V) | = 02|70, |ugl|®

[p—d
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which implies

kp_q . 2q
17 p
[P 2g
ka — pr

wiche implies that

P .
(p—p*) —
- (3) () gt
p*
1
P
k= [21 z
q
then 1
&) —d /
Uy = <z) o q =) (q’)p(pgp*) V.
P )
(p—p*) —
Vv, = <3) o q’ p(ﬁ—g*) qﬁ%
p*

solution of (4.6). m
Now, we introduce some assumptions :
(He) p* > 2p, a1 = az = 0, by, by > 0.
(H7)p* > 2p, a; = 0,a2 # 0, by, by > 0.

(Hg)p* >2p, a1 #0, ax #0, by, by >0

Theorem 4.3 Assume that A\ = Ay = 0. Suppose that (Hg) or (H;) or (Hs) and
(ue,ve) is a positive solution of (4.6)
then we have that the problem (4.1) has infinitely many nonnegative solutions

(ul,vl) for any 61,02 > 0, where

gr Ve
r_
u. = 0yu,

!
vl = 00,
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Proof. The proof of theorem is inspired by the idea in [43],

For any 61,65 > 0 we define (ul,v.) =

[oRERE)

(01ue, 030, ) where (ue,v.) is given in (4.8).

Since (ue,ve) is a solution of problem (4.6), then (u’,v.) solves the following system:

(

— [div (|Vue|P2Vu.)] =

- prerd (U LR T (O ’q

e v,

— [div (|Vv.|P2Vv.)| =

q+q

Moreover, according to (4.5) and (4.8), one has

P

pP—q —q
A7 (R) " = e bl = o b

—q pP—q
(&) =+ bl = as -+ bath o,

P—q —q 2\ ®—pH p=d’ _d
(ei) =a; + b0} (E) (q)r=" (¢')»=7

P—q -4
—(2) (%) v (Tu V)] = 22l |l

| () (3) i (V) = 2 e

q-2
UE,

We have

_ P
(p—p™) _ / *
m(3>pp<@ﬁ§«nfwsﬁwﬁp

)
)
%) o (%)p—q’ = ag + byt (%) o (ql)% qr=r" 7
)
)

01
\
( 2 (p—p*) p—q’ q p* !
bi0% (E ) (@)= (¢)r=m Sz = (61)" 703 + a1 =0
< P
2 (p—p*) p— q
b29127 (E) (q’)p p* qr— p SP 713—9(19(1 p+(l2—0 (3)

D
2\ (p—p%) p*
+anf — <a2eg+529§1’ (—) ()7 g 57 )
p

(4.11)
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and we have

9 2\ -5 p—d’ , q’ p*
A = aj +4b; | — (q) p—p* (q )p—p* S =p [a2912)
p*
P
(p—p*) - *
+by03" <3> () st (4.12)
p*

we deduce that

1 9
) ! / *

(»—p%) p—q q p*
bg (—) (q/) p—p* qp—p* Sp*—peg (413)

007" +ay  (4.14)

=) — / .
(le)% (3) nr (C]) ((;—pq*)?’ (q’)(pgz*)p S(PESP)P

- 0 (4.15)

50, 6 is solution of (4.13).

i) If a; = as = 0, we have

0, = (bzq) 0,
b1q

1
4 *
_ T 2 —a(p—p* )y \TT
0y = ((52)2gpq (bl)% (3) o (q) MQ:("_Q‘SS) - q;”(g]”‘p”%SPfP)

p*
Hence we have

/

1
P - -
_ o—p") (p—q)— % % « p*—2p
& ((52)2‘%;’ Ok (2) B (C]/)% T qu(fp-pp*)>5 pr> .
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ii) If a; = 0 and ay # 0, we have by (4.11)

(p*—2p+d')p (p*—p)2p \ 2P

where q
) o / .\ 2
(451 (E) @ (@) Spfp)
b
A= q
=9 g / .
(2b1>% (3) p=p (q) ((17;77:*2;13 (q/) (pf;i*)p S(p*‘“ip)p
p*
(p—p%) _ .
B = b2 (3) p—p (q/) pp—pq* Q#Spffp
p*
INT  pg 4
¢ =0 (—) ()= g S
p*
We define
(" —2p+d")p (v*—p)2p \ 25
f(z) =Ba" = Al ax 4 +Cx + as
then

f'(x) = pBaP™!

(p*—2p+q’)p—

. / q _ (p*—p)2p—q
_211)14 <a2 Vi 25+q w7 Lol qp)2p$7q )

9
(p* —2p+d')p (p*—p)2p \ 2p 1
X | asx a +Cx a

= 2"~ pB
—5£A (a2wx(q/gpm + C@ﬂ“ﬁ”””) (aﬂw N Cx(pq,gzp) 2”’,,1]
and g (z) = pB

iii) If a; # 0 and ay = 0, we have by (4.12)

2p
p—d'+q

( — *) _ ’ *
A = aj + 4b;by (3) )T (o) s
p*




then (4.13) implies

p
2\ ®—p%) p—q g P
” <E ) ()= qv=rm S¥0 63
(_‘“J”/K)% pe P
) 2
q ( : ) o ot 94 qp*
(201)P | — (q) @=P)P (¢/) (p=P")P 5 (P* —P)P
p*

= 0

—q q

f (92) =

P
2 (p—p*) *
b2 (E) (q/) pP_p* C]P*P* SP’?*P 912)

—a1+

a% +4b1 b2 (

2p
2\ T peatd  pedba 2t
— ! — —_ —
. (¢") P=P" (q) P=P" SPT-PO;

(2
2b1 —~
p

ql / p*
E3

P
(P=p*)  p- q
(q)P=>" (q/) =" 57"

2\ —p%) p—gq g P
F(02) =0 <_) (q')r=" g7 S7 =203

!
p—q¢'+q _2p*

2\ =9 p—q+q
a%+4b1b2 — (q/) p—p* (q) p—p* Sp**ﬁegp

3
*

qa 1
04 —P
)r 0
—q’ 2q¢’ 2p*

2\ G-
(2b1)? (E) (@)

Il
e

Let

—p* (q,) p—p* §P* —p

then

2 (p—p
p

W
o
S
VRS
[ b0
\—/
I
3
i
JH
*
—
Q
2
”?*a
i
<l

! q/ p*
T (q)PPT ST

) _ *
(q/) pp—pq* qp—qp* Spf—p> (972)

(¢ =p)p+1 — (¢ —p)p+1 »
“\% T e e -ah ) %=0

LSRR

q—p
05

7
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p
2\ (—r") - *
(bg <E> (¢) b g SPf‘P) 05

2(¢’—p)p+2 , 2(q’ —p)p+2+2pq (¢’ —p)p+1 %
-\, © Ci+Lze, — 0, ° 02 =0

2\ ey .
bQ E (q)p ppSp—p 92

2(q’ —p)p+2 ) 2(p* —p)p+2 (¢ —p)p+1\ P
—{\e, © Ch+LEe,  —Chf, C 0 =0

P 2 /
(=) _ * a (¢'—p)p+1
<b2 (%) o (q/)pp”’q* Q”‘q"’*spf‘p> +Ci0, °
p

2(¢'—p)p+2 / 2(p* —p)p+2
q'by 2e-pivt2

— 9 q C2+ 9 q

\/ 2 1 by 2

then we have

(¢'—p)p+1 2 2(q —p)p+2 q b2 (p 7p)p+2
CQ + 0162 4 — 02 4 C2 92

qb1
9\ 75 ‘
P—p - *
where CQ = <b2 (—*) (q,) Pp—Pq* qp—qp* Spf—p>
p

we obtain that

2(q' —p)p+2 (d'—p)p+1 2(¢'—p)p+2 q bg 2(p 7p)p+2
q 1
Let
q,bg 2(p* —p)p+2 (¢ —p)p+1
f(0) = b 0y, ¢ —2C5,C40, ° — 022 =0
1
9 . 24'b 2(p* 7p)p+2 o 1 (¢ —p)p+1
f/ (02) _ (p qp)p_l' (Z]b292 -1 2(C] Iz])p—{_ 020102 q
1

if ¢ > p, we have

if f(65) = 0 we have #9 = ( 9 W =pptl av oy o ) B mpmale

2(p*—p)p+2 ¢'b2

-1
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such that f (63) < 0, then there exist #; such that f (6}) = 0.

Hence we have

! _ pl
v, = 050,
. 2(p* —p)p+2 (a'—p)p+1
where 0; is solution of <26, ¢ —20,C10, ° - C2=0
q01
and
C’1 - P 4
2\ -9 p—q’ q p*
21| — (q)p=P" (¢')P=P" SP* -

p*

D
q

2 (P—pp*) , pP—gq q p*
G o= ()" @ s

iv) If a1, as # 0, we have

(- +VA)"
BQ’Q’— Ag Qg p+(12:0

and A = a? + 2A (az05 + BO3’) , where

2\ Ty g
A =2 (E) (q) p—p* (C]/) p—p* S§'p*—p

P

=) - -

B =10 (2) o (q’) P q,,fp* Spf*p,
p*

So

BA»0E + Avay = (—a1 + \/ai + 24 (az65 + Begp)) gy

(BARGY ™ + 456, Pa)" 40y = [ + 24 (b + )

( BA» > 4 A%e;(q"p)a2> +2 <BA%0§”‘q' + A6, (q"”)a2> " ay = 24 (a6} + BOZ)
2p P

't ([Beg + ay) eg*q’) 49 ([Beg + ag) eg*q’)

2p
q

Aay = 24 (ay + B6E) 68

¥

P 2}
q

A ([Beg + ap] eg—q’> T4 ([Beg + ag] eg—q') ar =2 (az + BOL) 62,

(4.16)
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Then there exist 65> 0 such that 5 is solution of (4.16). =

4.4 Geometric conditions of the Mountain Pass

Theorem

In first we verify that I3 satisfies the geometric conditions of the Mountain Pass
Theorem.

The following assumptions are used in this section :

(Hy) p* =2p, ag =az =0, by, by > S;j,.

<H5) p* = 2]), bl,bz > 5;3’7 ai, g > 0.

Lemma 4.4 Let f € W*\ {0}, a = max (a1, as), b = max (by,bs) > 0. Then there

exist positive numbers d1, pyand A}, A5, A3 > 0 such that

I3(u,v) > 6, >0, with |Ju,v| = py,

and )
A <A if A\ #0 and My =0
Ao < A if A =0 and Ay # 0 (4.17)
| min (A A2) S X5 if A # 0 and A # 0
and
rny s ] TG (T Ol

2 (57 [ )T + Ot gl )7T] i ()

for all (u,v) € B, (0,0).
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Proof. Let (u,v) € WP\ {(0,0)} x W'\ {(0,0)}, a = max (a;,as) and b =

max (bl, bg) Z O,

1 ) o 1
Ii(u,v) = — (bl [l + by [|v]| ) + . (ar [[ul]” + a2 [[v]|")

——/|u| |v|qu—/)\1f( )u+ ag () vl

RN
b 2 2
> (lul® + o))+ (full? + [Jo]?
55 (Il =+ [01) + 2 (Jull? + o1?)
——/|u| |v|qu—/A1f( Y+ ag () vz
RN

by the elementary inequality
2 21 2
r+y 2 5@"‘9)
we have that
I > i P 2, @ P P
s(u,0) = — ([[ull” +[[v]]") +p(HUH + [[v[I")

4p
——/|u| |v|qu—/ Mf () u+ Aag (x) vdw

RN

IV

b
T HUaU” 2 + = ||U,UHp
p

4p
——/]u\ \v|qd:c—/)\1f( Yu+ g (x) vdx
RN
by the definition of S, ,, we have

b 2 a *
I > 2 p @ P S p*/p P
3(“7 U) = 4p Hu?UH + » HuvU“ p* a9 HU’UH

=1 f Il

|

ull = A2 [l

When b > 0, a > 0 and p* > 2p, we have that

a *
e *Sq;’/pnu,vup

—(g)"lAl 10 (5 ) ll - (5 ) X 119y (g)%n
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by the elementary inequality

p ) 1 1
xy<$——|—y—,x>0,y>0 such that — 4+ - =1
p q p q

we have that

Is(u,v) = %H(u’v)llp L5, 2w, o)l

*qq

p—1 (a>pl =
g - A . _ -
5 ( 5) " Al I ;

1

((5)" 1)’
(@) dtl ) (2 1)

* a
Sl (11|

2p

a p—1/(ra\% P op—1 [ /a\ 3 p=1
ol =2 ((3)7 M) =222 ((5) pelal )

ﬁ%gmmwp

[\)

a 2 o /p
*Sqq

[, v

vV
|
B
=
_"s

v
|
=
=3
_%

p

_%;(gyﬁmmwy%—%;(@yﬁﬂwwyl

Let p = ||u, v|| we have that

I3(u,v) = —pp—— o "

*qq
P

—%;(QVUANW)%—%;(@fﬂﬂmwyl-

Now we consider the function 4 : R™ — R*, given by
()z—w—*&gﬂf

direct calculation shows that

1

. a * p*—p
h(p) >0 for all p < p, with p, = <2_p Sf;q{p)
we immediately derive that

p—1 ra\r1 _ p_
() 5, 00 = =2 (5) 7 [ 1) T + Qe llglhy) 77 -



So, for ||lu,v|| = p; we have

B 2 Al =2 (3)7 [0 e + O gy

—1
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1 p—1 p—1 a\r1 . 2
> o)+ =h () = P (5) 7 [0 1)+ O lglh-)
1
> ]—?h(m)

for

hip) = (5)7 (Culf )™ + e llglhy-)7)
(ﬁ)?ll (A1 “wa)”%1 if \y 0 and A\, =0

a\ p—1 _r_ . '
5) (N2 llgllyp )77 if Ay = 0 and Ay # 0.

/N

Finally, we obtain

p pp* 2p
for
1 5:155:1173 p P pp%l p—1 p*
- »F—p p*—p
one Q) (£2) s it
or
p*(p—1)

p**l

1\ rle*-p) — 3 7 —p
bns ()T (E0)T S () ol and 0 =0

and if A\; # 0, Ay # 0 we have

p*(p—1) p—1
. 1\ rGe*-p) p* —-Dp P a g - p 7p
min(Ay, Ao) < (—) ( ) (577 SEF 1% + gl

p p*

Then we can choose 61, pjand A], A3, A3 such that

. _1

p —p a \ P*-r a p*/p p*—p

5 S — (L) :
LT ppr T (2p> e (210 o >

p*(p—1) p—1

*_1mp*_p71?p_p*p . —
Al_(p) ( p* ) 5 <> ||f||w* if Ay #0 and Ay =0,
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p*(p—1) p—1 .
(N =\ e B
ha = (5) < p* > Sq,q’ (5) llglly if Ay =0 and Ay # 0,
and
1 % * p=1 p*—1
* pp~—p p —p P a 7 p p _p
ne (1_7) ( p* ) <§) (HfHW + lglly-) if Ay # 0 and Mg # 0

When b > 0, a =0 and p* > 2p, we have that

= Al fllw) lull = (A2 [lglly-) Tl

7= () I ) ()

Ig(U,U) > 4%; HU7UH2p

2 _ *
> L (u0)* = 28,577 |(u,0)
_1 1
— (R (&) llglly) ) ol

By the elementary inequality: xy < %p + %, x>0,y >0 such that Il) + % =1 we

have that

2p

-1 2p—1
b 2p p*/p pr 2p—1 b\ > b 2p
I3(u,v) > ™ [Ju, ]| p*Sqq Ju, o[ — o Al g 1S Iy~ ~ % [l

2

2 —1 b\ % EE .
_ Mo [ 2 . AT
- ((4) ||guw> ol
2p

b 2 p*/p - 2p-1 b “u o b 2
o)l = 252w ol = L= (A (F) e ) =g el

2

2 —1 b\ % N .
. Mo (2 ) — 2l
. ( :(3) " toll ) ol

b .
=~ % (el + ol + 4 el ffoll?) = L8277 ), )]

v

*qq

% —1 b\ % 2*% b\
S (Al (%) HfHW*> +(A2 (%) ||g||W*)

b 2 2 *
> & (Il + 1ol + 2 {Jull” [lv][") - 252 )

2p
p—1

N

*qq

2% — 1 b\ e b\ %
-2 (Al (%) ||f||W*) +(A2 (%) ||g||W*>

2p
p—1

N
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b 2 . .
= g, o)l = 25,0 ) (u, 0)|1”
1
2p—1 (b %1 2 2
S (3) T [+ Ol 7).
Let p = ||(u,v)|| we have that

b 2 —p¥* *
Ia(w,0) = oo = S0 2o

1
W —1 (b =1 . .
(D) T [+ Ol

Now we consider the function h : R — R*, given by

2 _—m* * b
hip)=—=S2"p" + —p¥
(p) ¥ I +8pp

and

_ —p* * b
W (p) = p" (—qu,f} gy 4 1) :

1
b . p*—2p
Thus, /' (p) = 0 has a unique positive solution p; = (4—55 q{p ) . Thus, direct
p b
calculation shows that

h(p) >0 forall p<py,

we immediately derive that

2p—1
2p

b “mpT _2p_ _2p
(3) 7 [ + gl 5],

I3(u, U)|Bpl(0,0) ==

So, for ||u,v|| = p; we have

2p—1 (b = 2 2p_
B = hle) = Tt (3) 7 [0 + Ol )]

1
2p—1 2p—1 (b 21 2 2
po+ 2 = 22 (3) 7 [l P+ Ol )]

2p
h (:01)

v

v

1
2p
1
2p
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for

1

b\ 21 2 _2p_
po) = (5) 7 [0+ O gl )]

2p

_—1 2
(52T (Mg [[ £l )T if Ay #£ 0 and Ay = 0

2p

(227 (g [lgllyp) T i Ay = 0 and Ay # 0.

Finally, we obtain

L L AT
I3(u,v) > £ pgp - <_) ’

4pp* 7,9’ 4p
for
( _ o 2
1 2p* b p*PjQP 2p—1
== *_ ¥ —92p —1 .
ns (0P s () Il 520 70 and 3o =0
- 2 2
* 2p—1
b\2p | p*—2p % b\ 7= -1 .
o< ()7 |55 " | lgllw- i As =0 and Ay # 0,
\ L .

and if A\; # 0, Ay # 0,we have

2p
2p—1

1
. b\ |Pp" = 2p % (D7 ~1 -1
minva) < (1) (P50 (4 (1715 + ol
Then we can choose d;, pjand A], A5, \; are positives such that

5, = P (ﬁ) o

4pp* 7,q' 4p
1
AN
Pr = (4_qu,q’
and
( r * '2551
* b\ 35 *—2 % b pp_Qp -1 .
A= 550 \ 4, [ £l i A # 0 and A =0
- - _2p
p* 2p—1
. 2| ey 2 h O\ P2 1.
A= (37 | B Sy (4_]9) lgllw if A =0and X> #0
\ | .




and if \; # 0 and Ay # 0

1
b\ 2 * 9 fl’* b\ rF—2»
= (2)7 [ (L
4 2p* 9,9 4p

This completes the proof of Lemma. m

4.5 Palais Smale condition
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(1f Iy + g ll)

Lemma 4.5 Suppose that f ,g € W*\ {0} and assume that (H,) or (Hs) holds. Let

c € R and (un,v,) C WP (RY) x WP (RY) be a Palais Smale sequence for I3,

then

(U, ) = (w,0) in WP (RY) x WHP (RY)

for some (u,v) € W'? (RN) x W'# (RN) with I} (u,v) = 0.

Proof. Let (u,,v,) C WP (]RN ) x Whp (]RN ) be a Palais Smale sequence for I3

such that
I3 (tup,v,) > c€R
and
I (up, v,) — 0.
We have
ct+o, (1) = I3(uy,vy,)
on (1) = (I3 (tn,vn), (tn,vn)),

that is

1
¢+ 0 (e, vall) = 5 (ttm, n) = {13 (ttn, V), (t0n, )



38

1 1
o (lmvnll) = 5= (b luall + B ol ) + > (s el + aa )
2 /
2 / 2| e — / S (2) 1ty + Aog (2) vnde
p RN RN

1 ) ) 1
o (01 [lunl[™ 4 bz [[on][ ) — p (a1 [Jun||” + az [lon||”)

2 / 1
2 [ ualtonl o+ 2 [ f (2)un + g (0)vada
p i p Iy

Pt —2p 9 2 P —p
= b [|un||® + ba [|va || ) + —
e (00 4 b o )+ 5

*—1
£ » /f (7) up A1 + Aag (v) vnda,
p Iy

ay [[un|” + az ||vn]|”)

using a = max (ag, az) and b = max (b1, by), we have

p*—2p 2 p*—0p
c+o Up, Un 2 b Un, Un p_|_a— Up , Un P
(l 1) v I )l v I( )|
pr—1
— pe A f () up + Aog () vpdex.

RN

Then (uy, v,) is bounded in W* (RY) x W'# (RY) . Up to a subsequence if necessary,

we obtain
(wnyva) = (u,0) in Wo (RY) > W (RY)
() = (o) in I (RY),
(Un,vn) — (u,v) a. e in RY x RY
and
/f(x) updr — /f(x) udx
RN RN
/g(x)vndx — /g(:c) vdz.
RN RN
Then

(I3 (un, vn) , (p,10)) = 0 for all (p,9) € C5° (RN) 5
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thus 75(u,v) = 0. This completes the proof. m

4.6 Existence of a critical point with negative en-

ergy

In this section we prove the existence of critical point with negative energy.

Theorem 4.6 Suppose that f,g € W*\ {0} and assume that (H,) or (Hs) holds, then
there exist constants A7, A3, \; > 0 such that for any A1, Ay verifying (4.17), system

(4.1) has a solution (uy,v1) with negative energy.

Proposition 4.7 Let f,g € W*\ {0} and p* > 2p. For all Ay, \verifying (4.17),

there exists a nontrivial solution (uy,v1) of (4.1) with negative energy.
Proof. First, by Lemma 4.4, we can define
¢ = inf {I3 (u,v), (u,v) € B, (0,0)} (4.18)

Now we claim that —co < ¢; < 0. As f,g € W*\ {0} we can choose ¢;,p; €
Wir (RN) x Wh» (RN) such that

/f(w) @ dx or /g(x) wodx > 0.
R

RN

Then, for a fixed \; and A in (4.17), there exists ty > 0 such that o ||y, psl < py
and 13 (to(pl,to(,OQ) <0 forte ]0, to[ .
Hence,

c < [3(0,0) =0.
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Using the Ekeland’s variational principle, for the complete metric space Epl (0,0) with
respect to the norm of W1? (]RN ), we obtain the existence of a Palais-Smale sequence
(un,vn) € B,, (0,0) at level ¢, and from Lemma 4.4 we have (u,,v,) — (u1,v;) in
Wie (RN) x WP (RN) for some (ug,vy) with [Jug, v1]| < p;.

Now, we shall show that (u,,v,) — (u1,v1) in WP (RY) x Wh? (RY) . Suppose

otherwise, then ||uy, v1|| <lim, 4 co ||tn, vs||, which implies that

a < I3 (up,v)

1
= I3 (Ula?h) - Z; <I§ (Ul,?h) ) (Ul, U1)>

*

p*—2p pr—p
= = (b flua | + ba [[v1 ) + === (ax |lwa|” + az [[o1]|")
2pp
*—1
P . /f(x)ulx\l—l—)\gg(x)vldx,
p N
R
: pt—2p 2 oy, PP =D
< h_mn%oo[ oo (O lunlI™ + Do [0alI™) + == (ar lunll” + az [|va||")

*—1
_P - /f () upA1 + Aag (z) vpdx | |
p Oy

. 1 !
= lim, ,|[3 (tn, V) — E (I3 (U, V) 5 (U, Un))

= (1.

This is a contradiction, we conclude that (uy, v,) — (u1, v1) strongly in W'? (RY) x
WP (RN) . Therefore, I} (u1,v1) = 0 and I3 (uq,v1) = ¢; < 0.

Thus (ug,v1) is a critical point of I3 i.e. (ug,v;) is a weak solution of (4.1). As
I3(0,0) = 0 and 15 (uy,v;) < O then, (uj,v1) # (0,0). Thus (uy,v1) is a nontrivial
solution of (4.1) with negative energy. m

Now assume that a; = ao, = 1 and by = by = 0.



91

1 1\ /1 2\7>
O* - (5 - E) (58(:(]/) . (419)

Next, we prove an important lemma which ensures the local compactness of the Palais

Let

Smale sequence for I5.

Lemma 4.8 Suppose that f, g € W*\ {0}. Then if (u,,v,) C WP (RY)xWhr (RV)

18 a Palais Smale sequence for I3 for some ¢ € R, then
either (up,v,) — (u,v) or ¢ > I3(u,v) + C™.

Proof. By the proof of Lemma 4.5 we have (u,,v,) is a bounded sequence in
Wi (RYN) x Wi (RY) and (up,v,) — (u,v) in Wh? (RY) x W (RY) for some
(u,v) € WP (RY) x Wt? (RY) with I (u,v) = 0.

Furthermore, if we write w,, = u,, — v and t,, = v,, — v, we derive

(Un,vn) — (0,0) in W' (RY) x W (RY)
(Un,vn) — (0,0) in L”" (RY),

(Un,vn) — (u,v) a. e in RY,

and

/f () wydxr — 0, (4.20)

/g () tpdx — 0,
]RN

and by using Brézis-Lieb we have

lunll” = flwall” + [[u]l” + 0n (1) (4.21)
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and

[onll™ = lall” + l0]l” + 0n (1),

and by a similar argument of [32] and Lemma 4.4 we have

/ |u"|q |’Un|q/dx - / |wn|q |tn|qld$ - / |u|f1 |U|q/dx + On (1) .

RN RN RN

Using together (4.20), (4.21) and [32]

I (up,v,) — 0 asn — 400

and
I3 (up,v,) — casn — +oo .
Therefore,
1 !
& + Op, (]-) = ]3 (uny Un) - E <13 (una vn) ) (una Un)) )
SO

1 2 ,
cto,(l) = 5(Hun\|p+||vn||p)—l;/!Un!q|vn|q
RN
- / M F (%) tn + Aog () vnda
RN

/

1 2
- unp+ Unp+_/unqvnq
p*(H 1"+ [lon ") e |tn]* [V
RN

1
= / M F (%)t + Aog () vnd,
RN

(4.22)



this implique that

1
cto,(l) = 1—)(||wn||p + [Jull” + [tall” + [Jv]I")
1
o (lwa " + flu)l” + [t " + [[v]")
—/Alf(x)u—i-)qg(x)vdx
RN
1
L / MS (#) 6+ Dog (x) vd,
P
and
cto,(l) = (1—i) (lewall? + 107 + X (i + o)
p p* D
2 /
——*/|u|q|v\q d:v—/)\lf(a:)u—l—)\gg(a;)vd:c
p RN RN
1 p p 1
—Z;(HUH + [|v]| )+]; Af () u+ Aog (@) vdx
RN
2 /
—i——*/lumv\q dx.
p
RN
We obtain

1 1

¢t on(l) (]; - E) (P + n17) + 15 ) = = (0 0) )

Consequently,
1 1 » »
¢+ 0n (1) = Is (u,v) + i (lwnll” + 11tall")
using
Fou 2 Tafuo) + (5= ) funtalP
c+o, (1) > I3 (u,v — — — ) ||wa, t.]|”
’ p p*

By the definition of S, , and (4.23) we obtain

(Jwnll” + [£all") + on (1)

NO| —

/ |w,|? [t|” dz + 0, (1) =
]RN
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(4.23)

(4.24)
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then

/ ] [l + 0 (1) < S, 277 [, £

RN

On the other hand, (4.25)we have

N | —

So (4.26) becomes
1 p -p*/p p*
5 o, tall” + 00 (1) < S, 5w, 2™

Assume that ||wy,t,|| — | > 0, then by (4.27) we obtain

1

—p*/pyp*
2lp < SM, r,

this implies that
we obtain

Using (4.24), consequently

(lenll” + [[£all”) + 0 (1) < .57 e, tal” -

(4.25)

(4.26)

(4.27)
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4.7 Existence of a critical point with positive en-

ergy

Now, we proof the existence of a Mountain Pass type solution.

Lemma 4.9 Suppose that f, g € W*\ {0}such that [on [ (2) uedx # 0, [on g () vedr #
0 anda; = ay = 1 and by = by = 0. Then there exists (u.,v.) € W» (RN) x Wtp (RN)

and \i*, A5, A" > 0 such that

P

)\1§)\>{* Zf)\17é0 CLTZd)\QZO

Ao < A3 if M =0 and Xy #0 (4.28)

min ()\1,)\2) S )\;’* Zf )\1 7é 0 and )\2 7é 0
\

and

sup I3 (tul, tvl) < c; + C* for all N[*, A3, A3 >0

>0

where ¢, C* are given in (4.18) and (4.19) respectively..
Proof. Let

tP
ht) = 13(tu;tv2)=;(\IUQ\IP+I|UQI|p)

—]%tp /yu ! \qda:—t/)\lf( V! + Dog (z) v da.)

RN

and

pt) = - (Ilu 17+ llvzll”) = /Iu [ vz dz

p(t) = tp‘1(|IUi;Hp+||vé|lp)—2tp*‘1/|u;lq|v2|q'dx-
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Then there exists t. > 0 such that p'(t) = 0, we have

1

p*—p
o |l Qo]
.=
2 [ fuclerieds
RN
the above estimate on p (t) yields
¢ t) = 2 () + |1 tp ‘4
maxp (t) =p(te) = (lull” + e l”) = = |u [ |vc]* dee

from p’ (t.) = 0 ,we have

tP
/WWWW¢w—§m¢W+ww%,

become (4.29) and (4.30)

pT—p

el + floell”

2 [l
RN

te =

and

~

(

maxp (t) =

>0

tP
e) =t (lull” + IlVII°) — e (" + 1oz ]1”)

(el + 1oz1”)

*
*

Z%Spfip
p—p* N
a9’

|
3 |F4
— —

I
Y 3
Sl B

"V~ RN R,r-BI-

I
<

By the above estimates, we deduce that sup p(t) = C*.
>0

Choosing A; defined in (4.17) such that

o =222 (3)7 00 1T + 11 > 0

(4.29)

(4.30)
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then there exists ¢; € (0, 1) such that

Cop—1[1\"7T ., » 2 2
swp I (tua,toa) < €= 2= ()7 007 (I + Dl |
0<t<ty p 2

-1

L b1 L\ = En

< e =222 (5)7 (AT + gl

for all A;, Ay verifying (4.17). Moreover, since f, g # 0, we can choose £; > 0 such

that f () ue, dx, f (z) ve,dx > 0 then
RN RN

—1/1\rt e .
_p (5) [H)\lf”II/JV_* + H)\Q.g”{/){;*} > —Altl/f(x) Ugldl'—)\ztl/g(x) Ualdm
g RN RN

for each Ay, Ay verifying (4.17).

Then, for any A\, Ay verifying (4.17), one has

sup I (tue,, tv.,,) < C* — Altl/f(x) Ug, dx — Aoty /g(x) Ve, dx

t>t1
RN RN

* p—l L\ »=t ﬁ p%l
< e =P (D)7 [T + gl

Using Lemma 4.5 we see that

—1
p—1/1\r1 p_ p_
oz =P (5)7 [ 7 + Ol )]
Therefore, we have

sup I3 (tuey, tvag) < C* + ¢;.

t>0
Ther} we can choose - o B
A < (ﬁ(]*) (L) _Hngﬁ} ’ if Ay # 0 and Ay = 0
p—1 _ _p=1
< ()T () _||g||5§} ’ i\ = 0 and Ay 0
p— _ _p=1
< (20) T @ IR +10157] 7 £ 0 and A £ 0

This concludes the proof of Lemma 4.9. m



98

Theorem 4.10 Suppose that f, g € W*\ {0}such that [, f(x) u.dx # 0, [on g (x) vedz #
0. a1 =as =1 and by = by = 0. Then, there exists constants (\J*, A\5*, A3") > 0 such

that A1, Ay satisfying (4.28), such that the problem (4.1) has a nontrivial solution

(ug, v9) with positive energy .

Proof. Note that I3(0,0) = 0 and by the fact that
lim 7 (tul, tv.) = —o0 ,

then I3 (Tu.,Tv.) < 0 for T large enough, and by Lemma 4.7, we know that I3
is satisfying the geometry conditions of the Mountain Pass theorem. Then, by the
Mountain Pass theorem [6], there exists a Palais Smale sequence (u,,,v,,) at level cs,

such that

I3 (U, v,) — c2 > 0 and 15 (uy, v,) — 0 as n — 400

with

0 < ¢ = inf max I3(y (¢),{(t)) < sup I3(tul, tv.) < C* + ¢y,
vel' te[0,1] t>0

for all A, As satisfying (4.28) , where for T' large enough

L ={(7.0€C (0,1, W (RY)),(7,¢)(0,0) = (0,0), (v,¢) (1,1) = (Tur, TW.)} .

Using Lemma 4.8 and Lemma 4.9 we have that (u,,v,) has a subsequence, still
denoted by (us, v2), such that (us,v,) — (ug,vs) in WH* (RY) x W2 (RY) as n —

~+00. Hence, it holds

I3 (Ug,’Ug) = 11I+I1 I3 (UQ,UQ) =cy > 0,
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which implies that (us, v2) # (0,0) . Furthermore, from the continuity of 75, we obtain
that (ug, v2) is a nontrivial solution with energy positive that follows immediately from

the preceding lemma. This completes the proof of theorem 4.10. m
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Chapter 5

Perspectives

1) The existence of the second solution to the following nonhomogeneous elliptic

problem

[Vul'~2

™

ul”*  Ju”

Vu) —u u= u+ f(z) in £,

mp(aﬂ) \x p*p

—div(

(5.1)
u=20 on 052,

where  is a smooth bounded domain in RY (N > 3) containing 0 in its in-
terior, 1 < p < N0 < a< (N—=p)/p,a < <a+l —c0 < pu<imp:=
(N —=(a+1)p)/pl”, p* = pN/[N —p(14+«a—f)] is the critical Caffarelli-Kohn-
Nirenberg exponent, and f is function different than 0.

2) The existence of the second solution to the following Kirchhoff-type systems

involving the critical Sobolev exponent

;

—(ar + by [[ull”) [div (IVal2Vu)] = 24 |ul=2u o] + M f (),

(a2 + by J0|") [div (|VolP2Vo)] = 2L jujt [v] v + dog (z), MRY (5:2)

T qt+q

(u,v) € WP (RY) x Wi? (RY) |

\

101
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where 1 <p < N, ay, a3 >0, by, by >0, ¢, ¢ > 1, ¢+¢ =p*, p* =pN/[N —p] is

the critical Sobolev exponent, A1, Ay > 0 are parameters, f, g € W*\ {0}.
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Résumé :

Dans cette these, nous avons considéré quelques équations et systéemes quasi
linéaires elliptiques non homogenes de type Kirchhoff contenant I’exposant
critique de Sobolev ou de Caffarelli-Kohn-Niremberg. , Nous avons montre
I’existence des solutions par le principe variationel d’Ekeland et le Théoreme de
Pass Montagne.

Les mots clés : Méthodes variationnelles, Théoreme de Pass Montagne, Principe
variationel d’Ekeland, Exposant critique de Sobolev, Exposant critique de
Caffarelli-Kohn-Niremberg , Problemes de Kirchhoff.

Abstract:

In this thesis we have considered some nonhomogeneous elliptic quasi-linear
equations and systems of Kirchhoff type containing the critical exponent of
Sobolev or of Caffarelli-Kohn-Niremberg. We have show the existence of
solutions by Ekeland’s variational principle and Mountain Pass Theorem.
Keywords: Variational methods, Mountain Pass Theorem, Ekeland Variational
Principle, critical exponent of Sobolev, critical exponent of Caffarelli-Kohn-
Niremberg, Kirchhoff problems.




