
 

 

N° d’ordre : 
 

REPUBLIQUE ALGERIENNE DEMOCRATIQUE & POPULAIRE 

 

MINISTERE DE L’ENSEIGNEMENT SUPERIEUR & DE LA RECHERCHE 

SCIENTIFIQUE 
 

 

 

UNIVERSITE DJILLALI LIABES 

        FACULTE DES SCIENCES EXACTES 

SIDI BEL ABBES 
 
 

 

 

THESE DE DOCTORAT 
EN SCIENCES 

 

Présentée par      Keddar  Naima. 

 

Spécialité : Mathématiques 

Option : Equations aux dérivées partielles 
 

 

Intitulée  
 

« …………………………………………………………………… » 
 
 

 
 
   Soutenue le 07/03/2022 
   Devant le jury composé de : 
 

Président : Mr Hakem Ali                                  Prof.  Univ. Sidi  Bel  Abbes 

Examinateurs :   Mr  Amroun Noureddine        Prof.  Univ Sidi  Bel  Abbes 

                           Mr  Messirdi Sofiane               MCA  univ Oran 

                           Mme  Benmanssour Safia        MCA ESM Tlemcen 

Directeur de thèse :Mme Matallah Atika          MCA  ESM Tlemcen 

Co-Directeur de thèse :Mr Benaissa Abbes        Prof. Univ. Sidi  Bel  Abbes 
 

Année universitaire     2021/2022. 

 

 Multiple solutions for weighted nonlinear elliptic 

equations and systems with critical exponents 
 
 



1

Dedication

I perfect this work at height of my parents and my husband for their help, moti-

vation and encouragement.

To my sister Farah, my brothers.

To my children Rayane and Walid.



2

Acknowledgement

First of all, I would like to send my warmest and sincere thanks to Madame

Atika Matallah, I thank her for being the researcher who gave me the opportunity

to work in this direction, I thank her as the colleague and the supervisor to the total

commitment; her advices and indications were always successful.

All my gratitude goes to Professor Abbes Benaissa, to have contributed to the

enrichment of this thesis and to take part in my jury. I present to professor Ali

Hakem, the expression of my sincere thanks, for the honor he makes me for chairing

the jury of this thesis. I pray Mr Amroun Nouredine, to �nd the expression of

all my gratitude, for the honor he makes me by accepting to be part of the jury that

will examines this thesis. I extend to Madame Sa�a Benmansour, the expression

of my sincere thanks and my whole gratitude, to have agreed to assess and examine

my work and to take part in the jury. I thank warmly, Mr. Messirdi So�ane, to

have agreed to participate in the jury and examine this manuscript.

In the end, I would like to thank all people who helped me in the completion of

this thesis.



Contents

Introduction 5

1 Preliminaries 15

1.1 Palais-Smale condition . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Mountain Pass Theorem and Ekeland�s variational principle . . . . . 16

1.3 The Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Needed inequalities and Sobolev�s embedding . . . . . . . . . . . . . . 19

1.4.1 Some integral inequalities . . . . . . . . . . . . . . . . . . . . 20

2 Nonlinear elliptic equations with critical Ca¤arelli-Kohn-Nirenberg

exponent in bounded domain 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Nehari manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Existence of ground state solution . . . . . . . . . . . . . . . . . . . . 35

2.4 Existence of the second solution . . . . . . . . . . . . . . . . . . . . . 36

3 Elliptic p-Kirchho¤ type equations with critical Sobolev exponent

in RN 43

3



4

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Palais Smale condition . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Existence of solution with negative energy . . . . . . . . . . . . . . . 51

3.4 Existence of solution with positive energy . . . . . . . . . . . . . . . . 55

3.5 In�nitely solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6 Non-existence Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Elliptic p-Kirchho¤ type systems with critical Sobolev exponent

in RN 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Non-existence of solutions . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 In�nity solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Geometric conditions of the Mountain Pass Theorem . . . . . . . . . 80

4.5 Palais Smale condition . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Existence of a critical point with negative energy . . . . . . . . . . . 89

4.7 Existence of a critical point with positive energy . . . . . . . . . . . . 95

5 Perspectives 101



Introduction

This thesis is concerned with the following class of elliptic equations

�
�
a kukp�;� + b

��
div

�
jrujp�2ru
jxjp�

�
+ �

jujp�2u
jxjp(�+1)

�
=
jujp��2u
jxjp�� + �f (x) in 
 (1)

where 
 � RN (N � 3) containing 0 in its interior; 1 < p < N; a; b � 0; a + b > 0;

0 � � < (N � p) =p; � � � < � + 1; �1 < � < � := [(N � (�+ 1) p) =p]p ; � is

a parameter, p� = pN= [N � p (1 + �� �)] is the critical Ca¤arelli-Kohn-Nirenberg

exponent and f 2 W �= f0g : Here, W 1;p
�;� (
) denotes the completion of C

1
0 (
) with

respect to the norm

kukp�;� :=
Z



�
jrujp

jxjp� � �
jujp

jxjp�+p
�
dx;

andW � is the dual space ofW 1;p
�;� (
). For (�; �) = (0; 0) we shall work with the space

W 1;p (
) endowed with the norme

kukp :=
Z



jrujp dx:

This problem is related to the following well known Ca¤arelli-Kohn-Nirenberg

inequality [17]:

�Z



jxj�p
�� jujp

�
dx

�1=p�
� C�;�

�Z



jxj�p� jrujp dx
�1=p

for all u 2 C10 (
) ; (2)
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for some positive constant C�;�. For sharp constants and extremal functions associ-

ated to (2), see [19, 35, 49]. If � = � + 1 in (2), then p� = p; C�;� = 1=�; and we

have the following weighted Hardy inequality [4, 6, 1]:Z



jujp

jxjp�+p
dx � 1

�

Z



jrujp

jxjp� dx; for all u 2 C
1
0 (
) : (3)

If � = � = 0 in (2), then p� = pN= (N � p) we obtain the following Sobolev

inequality �Z



jujp
�
dx

�1=p�
� C0;0

�Z



jrujp dx
�1=p

for all u 2 C10 (
) ; (4)

for some positive constant C0;0:

If a 6= 0; the problem (1) is called nonlocal because of the presence of the nonlocal

term a kukp�;� ; which implies that problem (1) is no longer a pointwise identity. This

phenomenon causes some mathematical di¢ culties, which make the study of problem

(1) interesting. It is called also non degenerate if b > 0 and a � 0, while it is named

degenerate if b = 0 and a > 0.

Such class of nonlocal elliptic problem like (1) without singular weights (� = � = � = 0)

is related to the original Kirchho¤�s equation, which arises in nonlinear vibrations,

namely 8>>>>>><>>>>>>:

utt �M

�Z
jruj2 dx

�
�u = g(x; t) in 
� (0; T )

u = 0 in @
� (0; T )

u(0; x) = u0; ut(0; x) = u1;

which was �rst introduced by Kirchho¤ as an extension of the classical D�Alembert

wave equation for free vibrations of elastic strings. Kirchho¤�s model takes into

account the changes in length of the strings produced by transverse vibrations.
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Problems which involve nonlocal operator have been widely studied due to their

numerous and relevant applications in various �elds of sciences. In particular, Kirchho¤-

type problems proved to be valuable tools for modeling several physical and biological

phenomena and many works have been made to ensure the existence of solutions for

such problems; we quote in particular the article of Lions [42]. Since this famous pa-

per, very fruitful development has given rise to many works on this advantageous axis

and in most of them, the used approach relies on topological methods. However, just

few improvements were held concerning the multiplicity of solutions. At this regard,

variational approach was solicited instead of topological methods to solve this kind

of problems and also to prove the existence of multiple solutions; we refer interested

readers to the works [3], [11], [43] and [46].

In the last few years, great attention has been paid to the study of elliptic problems

involving critical nonlinearities. This problems create many di¢ culties in applying

variational methods. It is worth mentioning that the semilinear Laplace equation

of elliptic type involving critical exponent of Sobolev was investigated in the cru-

cial paper of Brézis and Nirenberg [16]. After that, many researchers dedicated to

the study of several kinds of elliptic equations with critical exponent of Sobolev or

Ca¤arelli-Kohn-Nirenberg in bounded domain or in the whole space. For p = 2 and

a = � = � = � = 0; Tarantello [50] treated the problem (1) in a bounded domain of

RN and proved the existence of at least two solutions by using Nehari manifold meth-

ods. The �rst work on the Kirchho¤-type problem with critical Sobolev exponent is

Alves, Corrêa and Figueiredo in [3]. Naimen in [46] showed a Brézis-Nirenberg type

result for Kirchho¤ problem in bounded domain. In [29], Figueiredo and al. consid-
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ered Kirchho¤ elliptic equations with critical exponent of Ca¤arelli-Kohn-Nirenberg.

Recently, Benaissa and al. in [30] discussed the problem

�
�
a

Z
RN
jrujp dx+ b

�
div
�
jrujp�2ru

�
= jujp��2u+ �f (x) in RN ;

here p� =
pN

N � p
is the critical Sobolev exponent. For a particular dimension N =

3p=2, they proved the existence of two solutions.

Note that the problem (1) without Kirchho¤ terms (a = 0) comes from the con-

sideration of starting waves in anisotropic Schrödinger equations (see [1]). It was

also introduced as models for several physical phenomena related to equilibrium of

anisotropic media that possibly are some where perfect insulator or perfect conduc-

tors [1]. This class of equations has been investigated in a series of works see [9], [14],

[49], [13], [12], [39] and the references therein.

This thesis is presented as follows.

Chapter 1 of preliminaries is devoted to the basic de�nitions, results and useful

inequalities which we use frequently in the proof of our results in this thesis .

In Chapter 2, we �rstly consider the case where 
 is a bounded domain in RN

(N � 3) containing 0 in its interior and (a; b) = (0; 1) in (1) : So, we study the

following nonhomogenous singular elliptic equation with the critical Ca¤arelli-Kohn-

Niremberg exponent8>>><>>>:
�div

 
jrujp�2ru
jxjp�

!
� �

jujp�2 u
jxjp(�+1)

=
jujp

��2 u

jxjp��
+ f(x) in 
,

u = 0 on @
:

(5)

The purpose of this chapter is to investigate the existence of a ground state solution
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for the problem (5) by a "smallness" condition on f: By using the Nehari manifold we

proved our result. On the other hand, when (�; �) = (0; 0) we proved to the existence

of a second solution of problem (5).

Chapter 3, is devoted to the case where 
 = RN , a 6= 0 and (�; �; �) =

(0; 0; 0) in (1) : So, we are concerned with the existence, multiplicity in�nity and the

non existence of solutions for the following Kirchho¤-type problem

�

0@a Z
RN

jrujp dx+ b

1A div �jrujp�2ru� = jujp��2u+ �f (x) in RN (6)

where p� = pN= [N � p] is the critical Sobolev exponent, f 2 W �n f0g : Here, W � is

the dual space of W 1;p(RN). Note that if a = � = 0; b = 1 and 1 < p < N; the

equation (6) reduces to the following problem

� div (jrujp�2ru) = jujp��2u; in RN (7)

Sciunzi in [2] provided that if u is a positive solution of (7) then u (x) = v";x0 (x)

where

v";x0 (x) :=

264"
1

p�1N
1
p

�
N�p
p�1

� p�1
p

"
p

p�1 + jx� x0j
p

p�1

375
N�p
p

" > 0, x0 2 RN : (8)

Consequently, u a minimizer for

S := inf
u2W 1;p(RN )nf0g

kukp�Z
RN
jujp� dx

�p=p� ;
and satis�es

kv";x0k
p =

Z
RN
jv";x0 j

p� dx = S
p�

p��p ; (9)

We make the following assumptions to prove the following results:
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(H0) p� > 2p; a � 0; b � 0 and a+ b > 0:

(H1) p� = 2p , a � 0 and b > 0:

(H2) p� = 2p, 0 � a < S�2 and b > 0

(H3) p� > 2p; a > 0 and b > 0:

(H4) p� = 2p; a > S�2 and b = 0:

(H5) p� = 2p; a � S�2 and b > 0:

(H6) p� < 2p; a > 0 and b > b�:

(H7) p� = 2p; a > 0 and b = 0:

(H8) p� < 2p; a > 0 and b = b� where

b� =
2p� p�

p

�
p

p� � p
a

�� p��p
2p�p�

S�
p�

2p�p� ;

and we de�ne the energy functional

I(u) =
a

2p
kuk2p + b

p
kukp � 1

p�

Z
RN

jujp�dx� �

Z
RN

f (x)udx;

then we obtain the following results.

Theorem 0.1 Suppose that f 2 W �n f0g and assume (H0) or (H1) holds. Then

there exists a constants �� > 0 such that for any � 2 (0; ��) problem (6) has a

solution u� with negative energy.

Theorem 0.2 Suppose that f 2 W �n f0g such that
R
RN f (x) v";x0dx 6= 0. Assume

(H0) or (H2) holds: Then there exists a constant �+ 2 (0; ��] such that for any

� 2 (0; �+) problem (6) has a second solution u+ with positive energy.

Theorem 0.3 Let � = 0; a > 0; b � 0; 1 < p < N . For v";x0 given by (8) the

following conclusions hold:
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(1) If p� = 2p; then under the hypothesis (H2) , the problem (6) has in�nitely

many nonnegative solutions and these solutions are

�
b

1� S2a

� 1
p��p

v";x0 for all " > 0;

and under the hypothesis (H7), the problem (6) has in�nitely many positive solutions

�
1
p v";x0 (for any � > 0) if and only if a = S�2:

(2) If p� 6= 2p; b = 0 and a > 0; then problem (6) has in�nitely many nonnegative

solutions and these solutions

�
aS

p�
p��p

�� 1
2p�p�

v";x0 for all " > 0:

(3) If (H3) satis�ed, then there exists �2 > S�1
�

ap
p��pS

2
� p��p
p��2p

such that �
1

p��p
2 v";x0 are

solutions of problem (6), for all " > 0.

(4) If (H8) satis�ed, then problem (6) has in�nitely many nonnegative solutions

and these solutions are

S�
1

p��p

�
p� � p

pa
S�2

� 1
2p�p�

v";x0 for all " > 0:

(5) If (H6) satis�ed, then there exist �3 2
 
0; S�1

�
p��p
pa

S�2
� p��p
2p�p�

!
and �4 2 

S�1
�
p��p
pa

S�2
� p��p
2p�p�

; +1
!
such that �

1
p��p
3 v";x0 and �

1
p��p
4 v";x0 solutions of prob-

lem (6) for all " > 0.

Theorem 0.4 Assume that one of the hypotheses (Hi) holds for 4 � i � 6. Then

problem (6) has no non-trivial solution for � = 0.

InChapter 4 we generalise some results of chapter 3 in the following p-Kirchho¤-
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type systems8>>>>>><>>>>>>:

�(a1 + b1 kukp) [div (jrujp�2ru)] =
2q

q + q0
jujq�2u jvjq

0
+ �1f (x) ;

�(a2 + b2 kvkp) [div (jrvjp�2rv)] =
2q0

q + q0
jujq jvjq

0�2 v + �2g (x) ;

(u; v) 2 W 1;p
�
RN
�
�W 1;p

�
RN
�

(10)

where 1 < p < N; a1; a2 � 0; b1; b2 > 0; q; q0 > 1; q + q0 = p�; p� = pN= [N � p]

�1; �2 � 0 and f; g 2 W �n f0g ; W � is the dual space of W 1;p(RN).

In this chapter we establish the existence of solutions with negative and positive

energy, in�nity results and non existence of solution for the Kirchho¤-type systems

involving the critical Sobolev exponent.

Note that the problem (10) has in�nitely many nonnegative solutions for �1 =

�2 = b1 = b2 = 0; a1 = a2 = 1 and 1 < p < N: These solutions are8>>><>>>:
u" =

�
2

p�

� 1
(p�p�)

(q)
p�q0

p(p�p�) (q0)
q0

p(p�p�) v";x0

v" =

�
2

p�

� 1
(p�p�)

(q0)
p�q

p(p�p�) q
q

p(p�p�) v";x0

for all " > 0: (11)

Let the constant

Sq;q0 := inf
(u;v)2W 1;p(RN)�W 1;p(RN)

(u;v) 6=(0;0)

kukp + kvkp�R
RN juj

q jvjq0 dx
�p=p�

which is positive. Let a = max (a1; a2) � 0, b = max (b1; b2) � 0: The following

assumptions are used in this chapter:

(H1) : p
� � 2p; b � 0 and a > 0:

(H2) : p
� > 2p; b > 0 and a = 0:

(H3) p
� = 2p; a2 = a2 = 0 and b1; b2 > S�2q;q0 :

(H4) p
� = 2p; b1; b2 � S�2q;q0 and a1; a2 > 0:
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(H5) p
� > 2p; a > 0 and b > p��p

p

�
22p�p

�

pa

� 2p�p�
p��p

2
p

p��p
(Sq;q0)

� p�
p��p :

(H6) p
� � 2p; a1 = a2 = 0; b1; b2 > 0:

(H7) p
� � 2p; a1 = 0; a2 6= 0; b1; b2 > 0:

(H8) p
� � 2p; a1 6= 0; a2 6= 0; b1; b2 > 0

We de�ne the energy functional

I(u; v) =
1

2p

�
b1 kuk2p + b2 kvk2p

�
+
1

p
(a1 kukp + a2 kvkp)

� 2
p�

Z
RN

jujqjvjq0dx�
Z
RN

�1f (x)u+ �2g (x) vdx;

and we present our results:

Case 1: (�1; �2) = (0; 0).

Result 1: If one of assumptions (H3), (H4) or (H5) is satis�ed then problem (10)

has no non-trivial solution:

Result 2: If one of assumptions (H6), (H7) or (H8) is satis�ed and if a1 = a2 = 1;

b1 = b2 = 0, then Problem (10) has in�nitely many nonnegative solutions (u0"; v
0
") =

(�1u"; �2v") for any �1; �2 > 0.

Case 2: (�1; �2) 6= (0; 0).

Result 3: If (H1) or (H2) is satis�ed then system (10) has a solution (u1; v1) with

negative energy for some conditions in (�1; �2).

Result 4: If a1 = a2 = 1; b1 = b2 = 0 and
R
RN f (x)u"dx 6= 0 or

R
RN g (x) v"dx 6=

0: Then problem (10) has a second solution (u2; v2) with positive energy.
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Chapter 1

Preliminaries

In this chapter, we brie�y recall the basic de�nitions and some important results which

we need in the proof of our results in the following chapters (see [30]; [6]; [14]; [54]; [27]).

1.1 Palais-Smale condition

Let K a Banach space, J 2 C1 (K;R) (K� the dual of K) :

De�nition 1.1 A function J is called Frechet di¤erentiable at u 2 K if there exists

a bounded linear application J 0(u) 2 K� such that

�
jJ(u+ v)� J(u)� hJ 0(u); vij

kvkK

�
! 0; when kvkK ! 0

A function J that is Frechet di¤erentiable for any point of K is said to be C1 if the

function J 0is continuous.

De�nition 1.2 We call that u 2 K is a critical point of J if J 0(u) = 0; otherwise

u is called a regular point.

15
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Let c 2 R; we say that c is a critical value of J if there exists a critical point u

in K such that J(u) = c, otherwise c is called regular.

De�nition 1.3 We call a sequence (un) 2 K is a Palais-Smale sequence on K if

J(un)! c and kJ 0(un)kK� ! 0 as n! +1:

De�nition 1.4 Let c 2 R;We say that J satis�es the Palais-Smale condition at level

c we also note (PS)c for short, if for any sequence (un) 2 K such that8>><>>:
J(un)! c in R

J 0(un)! 0 in K�

contains a convergent subsequence in K:

Let us observe that if J 2 C1(K;R) satis�es the Palais-Smale condition, any point

of accumulation u of a Palais-Smale sequence (un), is a critical point of J . We have

implicitly J 0(u) = 0; J(u) = c:

1.2 Mountain Pass Theorem and Ekeland�s varia-

tional principle

A powerful tool for proving the existence of a critical point of a functional, is given

by the following theorem.

Theorem 1.5 [38] Let (K; d) be a complete metric space, and J : K ! R: a lower

semicontinuous functional, not identically equal to +1 , which is bounded from below
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(c = infK J > -1);Then, for all "> 0; there exists " 2 K such that

c < J (") < c+ ";

J ()� J (") + "d(; ") > 0 8 2 K ; such that  6= "

Corollary 1.6 [38] If K is a Banach space and J 2 C1(K,R) is bounded from below,

then there exists a minimizing sequence (un) for J in Ksuch that

J(un)! inf
K
J; J 0(un)! 0 in K� as n! +1:

Theorem 1.7 [6] Let J 2 C1(K,R) satisfying the Palais-Smale condition.

Assume that

1) J(0) = 0;

2) There exists two numbers �and � such that J(u) � � for every u 2 K with

kukK = �.

3)There exists v 2 K such that J(v) < � and kvkK � �.

De�ne

� := f 2 C(0; 1); (0) = 0; (1) = vg ;

then

c := inf
2�

max
u2([0;1])

J(u) � �

is a critical value.
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1.3 The Sobolev spaces

De�nition 1.8 Let 
 � RN : We de�ne the Sobolev space W 1;p (
) by8<:u 2 Lp (
) =9 f1; f2; :::fN such that
Z



u
@'

@xi
= �

Z



fi' 8' 2 C10 (
) ; 8 i = 1:::N

9=; ;

and u 2 W 1;p (
) by

@u

@xi
= fi ; ru =

�
@u

@x1
; :::;

@u

@xN

�
:

De�nition 1.9 Let 
 � RN : We de�ne W 1;p
0 (
) by the completion of C10 (
) in

W 1;p (
) :

Remark 1.10 We have W 1;p
0

�
RN
�
= W 1;p

�
RN
�
:

Theorem 1.11 [16] Let u 2 W 1;p (
) ; then u 2 W 1;p
0 (
) if and only if u = 0 on @
:

De�nition 1.12 Let 
 � RN : We de�ne for p � 1

kukpW 1;p(
) :=
NX
i=1

 @u@xi
p
Lp(
)

when W 1;p
0 (
) ,! Lp

�
(
) ; there exists a constant S >0 such that

S := inf
u2W 1;p(RN )nf0g

kukp�Z
RN
jujp� dx

�p=p�
Theorem 1.13 [47] Let 
 � RN : If u is a positive solution of

� div (jrujp�2ru) = jujp��2u; in 


then u (x) = v";x0 (x) where

v";x0 (x) :=

264"
1

p�1N
1
p

�
N�p
p�1

� p�1
p

"
p

p�1 + jx� x0j
p

p�1

375
N�p
p

" > 0, x0 2 
 (1.1)
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Consequently, u a minimizer for

S := inf
u2W 1;p(RN )nf0g

kukp�Z
RN
jujp� dx

�p=p�
and satis�es

kv";x0k
p =

Z



jv";x0 j
p� dx = S

p�
p��p ; (1.2)

Theorem 1.14 Assume q; q0 > 1; q + q0 � p�; we de�ne the constant

Sq;q0 := inf
(u;v)2W 1;p(RN)�W 1;p(RN)

(u;v) 6=(0;0)

kukp + kvkp�R
RN juj

q jvjq0 dx
�p=p�

which is positive, then

Sq;q0 =

24� q
q0

� q0
q+q0

+

�
q0

q

� q
q+q0

35S0

1.4 Needed inequalities and Sobolev�s embedding

Theorem 1.15 (Sobolev-Gagliardo-Nirenberg)

Let 1 � p < N and 
 � RN ; Sobolev embedding gives

W 1;p (
) ,! Lp
�
(
)

where
1

p�
=
1

p
� 1

N
: Moreover there exists a constant C = C(p;N) such that

kukLp� (
) � C krukLp(
) ; 8u 2 W 1;p (
) :

Corollary 1.16 Let 1 � p < N , then

W 1;p (
) ,! Lq (
) ; 8q 2 [p; p�]

with continuous embedding.
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Theorem 1.17 [30] Let n � 1 and 1 � p <1: We have

if
1

p
� n

N
> 0; then W n;p

�
RN
�
,! Lq

�
RN
�
where

1

q
=
1

p
� n

N
;

Corollary 1.18 If
1

p
� n

N
= 0; then W n;p

�
RN
�
,! Lq

�
RN
�
; 8q 2 [p;+1[ ;

if
1

p
� n

N
< 0; then W n;p

�
RN
�
,! L1

�
RN
�
;

with continuous embedding.

1.4.1 Some integral inequalities

We will give here some important integral inequalities. These inequalities play an

important role in applied mathematics and also, they are very useful in our next

chapters.

Theorem 1.19 [30] Let q and q0 such that 1 < q; q0 <1 and 1
q
+ 1

q0 = 1: If f 2 L
q

and g 2 Lq0 ; then

fg 2 L1 (
) and
Z
jfgj dx �

�Z
jf jq dx

� 1
q
�Z

jgjq
0
dx

� 1
q0

:

Lemma 1.20 [30] Let 0 � m � 1. Then

kukLr(
) � kuk
m
Lt(
) kuk

1�m
Lq(
) ;

valid for u 2 Lq (
) with 1 � t � r � q,
1

r
=
m

t
+
1�m

q

Lemma 1.21 (Brézis-Lieb Lemma) [16]Let (un) be a sequence in W 1;p (
) ; if

(un) is bounded in W 1;p (
) and un ! u a. e. in 
; then

lim
n!1

(kunkp � kun � ukp) = kukp
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Theorem 1.22 [17] (Ca¤arelli-Kohn-Nirenberg inequality)

Let 
 � RN ; 1 < p < N; 0 � � < (N � p) =p; � � � < � + 1 Z



jujp
�

jxjp��
dx

!1=p�
� C�;�

�Z



jrujp

jxjp� dx
�1=p

for all u 2 C10 (
) ; (1.3)

where 
 � RN ; for some positive constant C�;�.

If � = �+1 in (1:3), then p� = p; C�;� =
1

�
=

�
p

N � (�+ 1) p

�p
and we have the

following weighted Hardy inequality

Z



jujp

jxjp(�+1)
dx � 1

�

Z



jrujp

jxjp� dx; for all u 2 C
1
0 (
) :
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Chapter 2

Nonlinear elliptic equations with

critical Ca¤arelli-Kohn-Nirenberg

exponent in bounded domain

2.1 Introduction

In this chapter we are interested to study the existence of solution to the nonhomo-

geneous problem8>>><>>>:
�div( jruj

p�2

jxjp� ru)� �
jujp�2

jxjp(�+1)
u =

jujp
��2

jxjp��
u+ f(x) in 
,

u = 0 on @
;

(2.1)

where 
 is a smooth bounded domain in RN (N � 3) containing 0 in its interior,

1 < p < N; 0 � � < (N � p) =p; � � � < �+1;�1 < � < � := [(N � (�+ 1) p) =p]p ;

� is a parameter, p� = pN= [N � p (1 + �� �)] is the critical Ca¤arelli-Kohn-Nirenberg

23
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exponent; f 2 W �= f0g. Here, W 1;p
�;� (
) denotes the completion of C

1
0 (
) with re-

spect to the norm k:k�;� and W � is the dual space of W 1;p
�;� (
) :

To state our result, let set for u 2 W 1;p
�;�

�
RN
�
and f 2 W �

�;�(the dual of W
1;p
�;� (
))

kukp
�

p� :=

Z



jujp
�

jxjp��
dx;

To start this section, we need to introduce the following notation:

If (u) :=

Z



fu dx;

f := inf
kukp�=1

8<:(p� � p)

�
1

p� � 1 kuk
p
�;�

� p��1
p��p

� If (u)

9=; :

We de�ne for 0 � � < �

S� := inf
u2W 1;p(RN )nf0g

kukp�Z
RN
jujp� dx

�p=p�
and

S0 := inf
u2W 1;p

0 (
)nf0g

kukp0�Z
RN
jujp� dx

�p=p�
where W 1;p (
) =W 1;p

0;0 (
)

From [36], S� is independent of any 
 � RN in the sense that S� (
) = S�
�
RN
�
=

S�: In addition, the constant S� is achieved by a family of functions

V"(x) := "(p�N)=p~up;�

�x
"

�
, " > 0;

where ~up;�(x) = ~up;�(jxj) is the unique radial solution for the problem8>>><>>>:
�div( jruj

p�2

jxjp� ru)� �
jujp�1 u
jxjp(�+1)

=
jujp

��2

jxjp��
u in RNn f0g

u �! 0 as jxj �! 1:
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In the other hand, from [30] S0 is independent of any 
 � RN and it is achieved by

a family of functions

U"(x) :=

"
" (N)

�
N � p

p� 1

�p�1#N�p
p(p) �

"+ jxj
p

p�1

� p�N
p
, " > 0;

Moreover the functions U" solve the equation8>><>>:
� div

�
jrujp�2ru

�
=
jujp

��2

jxjp��
u in RNn f0g

u �! 0 as jxj �! 1:

and de�ne

D :=
�
g 2 W �; g 6= 0; g > 0

	
:

Note that D 6= ? and if f 2 Lp(
) then

Z



jf jp dx < (p� � p)p
�

1

(p� � 1)

� p(p��1)
p��p

Sp
�=(p��p)
� ;

which implies that f 2 D:

Set � > 0 small enough such that B (0; �) � 
, ' 2 C10 (
) such that for

0 � ' (x) � 1; ' (x) =

8>><>>:
0 if jxj � 2�

1 if jxj � �

; and jr' (x)j � C:

Put u" = ' (x)U"(x):

By [30] we have the following estimates.

Lemma 2.1 Assume that 2 � p < N and " > 0 small enough. By taking

v" =
u"

ku"kp�
;
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so that ku"kp
�

p� = 1; we have the following estimates:

(1) kv"kp0 = S0 +O
�
"
N�p
p

�
;

(2)

Z



jrv"j� dx = O

�
"
�(N�p)

p2

�
for � = 1:::p� 1;

(3)

Z



vp
��1
"

jxjp��
dx = O

�
"
(p�1)(N�p)

p2

�
;

(4)

Z



v"

jxjp��
dx = O

�
"
N�p
p2

�
:

2.2 Nehari manifold

First we give some preliminaries about the so called Nehari manifold.

Since f 2 W �
�;� (
) then the Euler-Lagrange functional I1 associated to the prob-

lem (2:1) is given by

I1 (u) =
1

p
kukp�;� �

1

p�
kukp

�

p� � If (u) for all u 2 W 1;p
�;� (
) ;

it�s clear that I1 2 C1(W 1;p
�;� (
) ;R) and satis�es

hI 0
1 (u) ; vi = (

Z



jrujp�2

jxjp� rurv � �
jujp�2

jxjp(�+1)
uv � juj

p��2

jxjp��
uv � fv)dx;

for all u, v 2 W 1;p
�;� (
) :

Hence, weak solution of (2:1) are critical points of the functional I1:

We denote the Nehari manifold by

N =
�
u 2 W 1;p

�;� (
) = f0g ; hI 0
1 (u) ; u i = 0

	
:

It is easy to see that u 2 N if and only if

J(u) = kukp�;� � kuk
p�

p� � If (u) = 0:
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Lemma 2.2 The function I1 is coercive and bounded from below in N .

Proof. Let u 2 N ; by Holder and Young inequalities we have

I1 (u) =
1

p
kukp�;� �

1

p�
kukp

�

p� � If (u)

� 1

p
kukp�;� �

1

p�
kukp

�

p� � kuk
p
�;� + kuk

p�

p�

� �
�
p� 1
p

�
kukp�;� +

�
p� � 1
p�

�
Sp

�=p
� kukp

�

p�

Let � = kukp�;� and

h(�) = �
�
p� 1
p

�
�p +

�
p� � 1
p�

�
Sp

�=p
� �p

�
:

Direct calculations show that h is convex and achieves its minimum at

�0 =

�
p� 1
p� � 1S

p�=p
�

� 1
p��p

So

I1 (u) � h(�0) = �
(p� 1) (p� � p)

pp�
[
p� 1
p� � 1S

p�=p
� ]

p
p��p

Then I 1is coercive and bounded from below in N :

The Nehari manifold N is closely linked to the behavior of the application

�u(t) : t! I1(tu);

which for t > 0 is de�ned by

�u(t) =
tp

p
kukp�;� �

tp
�

p�
kukp

�

p� � tIf (u) :

Lemma 2.3 Let u 2 W 1;p
�;� (
) ; then tu 2 N if and only if �0u(t) = 0:
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Proof. We have

�0u(t) = hI 0
1 (tu) ; u i

=
1

t
hI 0

1 (tu) ; tu i:

Then the conclusion holds

The elements in N correspond to stationary points of the maps �u:

We note that

�0u(t) = tp�1 kukp�;� � t p
��1 kukp

�

p� � If (u) :

and

�"u(t) = (p� 1) tp�2 kukp�;� � (p� � 1) t p
��2 kukp

�

p� :

By Lemma 2:3 we have u 2 N if and only if �0u(1) = 0:Hence

�"u(1) = (p� 1) kukp�;� � (p� � 1) kuk
p�

p� :

Then it is natural to split N into three subsets corresponding to local minima,

local maxima, and point of in�exion, i.e,

N+ = fu 2 N : �"u(1) > 0g ;

N� = fu 2 N : �"u(1) < 0g ;

and

N 0 = fu 2 N : �"u(1) = 0g :

First, we prove that �"u(1) 6= 0 for all u 2 N = f0g :

Lemma 2.4 Assume that f 2 D: Then N 0 = ?.
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Proof. Suppose that N 0 6= ?. For u 2 N 0, we have

(p� 1) kukp�;� = (p� � 1) kukp
�

p�

(p� 1) If (u) = (p� � p) kukp
�

p�

and

(p� � 1) If (u) = (p� � p) kukp�;� :

Using the de�nition of S� we get

kukp
�

p� = (p� 1) kukp�;� = (p� � 1)

�
"�
(p� 1)
(p� � 1)S�

�p�=(p��p)#
:

Thus

kukp�;�
kukp�p�

=
p� � 1
p� 1 :

Therefore,

0 =
p� � p

p� � 1 kuk
p
�;� � If (u)

= kukp
�

p�

"
p� � p

p� � 1
kukp�;�
kukp�p�

� If (u)

kukp�p�

#

� kukp
�

p�

24(p� � p)

"
kukp�;�

(p� � 1) kukp�p�

#(p��1) =(p��p)
� If (u)

kukp�p�

35
> 0:

Which is impossible.

De�ne for all u 2 W 1;p
�;� (
) = f0g

tmaxu :=
h
kukp�;� (p� 1) =(p� � 1) kuk

p�

p�

i 1
p��p

:
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Lemma 2.5 Assume that f 2 D: Then for any u 2 W 1;p
�;�= f0g ; there exists a unique

positive value t+u such that

t+u > tmaxu ; t+u u 2 N� and I1
�
t+u u
�
= max

t�tmaxu

I1 (tu) :

Moreover, if If (u) > 0; then there exists a unique positive value t�u such that

0 < t�u < tmaxu ; t�u u 2 N+ and I1
�
t�u u
�
= inf

0�t�tmaxu

I1 (tu) :

Proof. Set

	u (t) = tp�1 kukp�;� � tp
��1 kukp

�

p�

for u 2 W 1;p
�;�= f0g ; then

�0u (t) = 	u (t)� If (u)

Easy computations show that 	u is concave and achieves its maximum at tmaxu ,

also

	u(t
max
u ) = (p� � p)

 
kukp�;�
p� � 1

!(p��1)=(p��p) 
p� 1
kukp�p�

!(p�1)=(p��p)
:

Then we can get easily the conclusion of our Lemma.

By the previous lemma we know that N+ and N� are not empty, so we can de�ne

�+ := inf
u2N+

I1 (u) and �
� := inf

u2N�
I1 (u) :

Lemma 2.6 Assume that f 2 D: Then for any u 2 N�; there exist " > 0 and a

di¤erentiable function � = � (v) ; v 2 W 1;p
�;� (
), kvk�;� < ", such that � (0) = 1;

� (v) (u� v) 2 N� and

(� 0 (0) ; v) =

Z



"
p

 
jrujp�2ru rv

jxjp� � �
up�2uv

jxjp(�+1)

!
� p�

jujp
��2 uv

jxjp��
� fv

#
dx

(p� 1) kukp�;� � (p� � 1) kuk
p�

p�

:
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Proof. De�ne ' : R�W 1;p
�;� (
) �! R such that

'(�; v) = �p�1 ku� vkp�;� � �p
��1 ku� vkp

�

p� �
Z



f (u� v) dx:

As u 2 N and N 0 = ?, we have

'(1; 0) = 0;
@'

@�
(1; 0) = (p� 1) kukp�;� � (p� � 1) kuk

p�

p� 6= 0:

Then by the implicit function Theorem, we get our result.

Lemma 2.7 Let f 2 D; then there exist �+0 < 0 and ��0 > 0 such that �+ � �+0 and

�� > ��0 :

Proof. Let v 2 W 1;p
�;� (
) be the unique solution of the following problem8>>><>>>:

�div( jruj
p�2ru
jxjp� )� �

jujp�2 u
jxjp(�+1)

= f in 
;

u = 0 on @
:

Then, as f 6� 0 we have If (v) = kvkp�;� > 0 and kvk
p
�;� = kfk

p
� where k:k� = k:kW �

�
:

Moreover from Lemma 2:5, there exists t�v > 0 such that t�v v 2 N+. This implies

that

�+ � I1
�
t�v v
�

=
(1� p) (t�v )

p

p
kvkp�;� +

1� p�

p�
�
t�v
�p� kvkp�p�

� (1� p) (t�v )
p

p
kvkp�;�

� (1� p)

p

�
t�v
�p kfkp� :

We deduce that �+ � �0 < 0 where �0 =
(1�p)
p
(t�v )

p kfkp� :

On the other hand , there exists: t+v > 0 such that t
+
v v 2 N�which yields
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�� � I1
�
t+v v
�

=
�
t+v
�p kvkp� � p� � 1

p� 1
�
t+v
�p� kvkp�p�

�
�
t+v
�p
[
(p� 1)
(p� � 1) S�]

(p�=p��p):

Therefore, �� � ��0 > 0 where

��0 =
�
t+v
�p
[
(p� 1)
(p� � 1) S�]

(p�=p��p):

The proof is complete.

Lemma 2.8 Assume that f 2 D: Then, there exists a minimizing sequence (un) such

that

I1 (un) �! �+ and I 01 (un)! 0 in W � (
) :

Proof. It is easy to prove that I1is bounded in N+, then by applying Ekeland�s

variational principle, there exists a minimizing sequence (un) � N+ satisfying

�+ � I1 (un) � �+ +
1

n
and I1 (u) � I1 (un)�

1

n
ku� unk�;� for all u 2 N+:

From the preceding lemma we have �+ � �0: So that�
1

p
� 1

p�

�
kukp�;� <

�
1

p
� 1

p�

�
(1� p)

p

�
t�v
�p kfkp� + p� � 1

p�
kfkp�1� kunk�;� ;

and

p�(p� 1)
p

�
t�v
�p kfkp� � If (un) � kfkp�1� kunk�;� ;

for n large, this implies that C1 � kunk�;� � C2 with

C1 =
p�(p� 1)
p (p� � 1)

�
t�v
�p kfk
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and

C2 =
p (p� � 1)

(p� 1)(p� � p)
kfk� :

Now, we show that I 01 (un)! 0 in W �
�;�; For that, �x n such that kI 01 (un)k� 6= 0:

Then by Lemma 2:6 there exist " > 0 and a function �n : B" �! R such that

wn = �n (vn) (un � vn) 2 N+

with

vn = �
I 01 (un)

kI 01 (un)k�
and 0 < � < ":

Let An = kwn � unk�;� ; by the Taylor expansion of I1, we obtain

� 1
n
An � I1 (wn)� I1 (un)

� hI 01 (un) ; wn � uni+ � (An)

= (�n (vn)� 1) hI 01 (un) ; uni � ��n (vn)

�
I 01 (un) ;

I 01 (un)

kI 01 (un)k�

�
+

� (An) :

Then

�n (vn) kI 01 (un)k� �
�n (vn)� 1

�
hI 01 (un) ; uni+

An
n�
+
�(An)
�

: (2.2)

We have

lim
�!0

�n (vn) = 1; lim
�!0

j�n (vn)� 1j
�

= lim
�!0

j�n (vn)� �n (0)j
�

� k� 0n (0)k� ;

and

lim
�!0

An
n�

= lim
�!0

1

n�
k(�n (vn)� 1)un � �n (vn) vnk�

� 1

n

�
k� 0n (0)k� kunk�;� + 1

�
:
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Taking � ! 0 in (2:2) and since (un) is a bounded sequence we get

kI 01 (un)k�;� �
C3
n

�
k� 0n (0)k� + 1

�
;

for a suitable constant C3 > 0: Now, we must show that k� 0n (0)k� is uniformly

bounded in n:

From the boundedness of (un) we have by Lemma 2:6

h� 0n (0) ; vi �
C4 kvk�;����(p� 1) kunkp�;� � (p� � 1) kunkp�p���� ,

for all v 2 W 1;p
�;� (
) and some constant C4 > 0: We only need to show that for any

sequence (un) � N+

���(p� 1) kunkp�;� � (p� � 1) kunkp�p���� > C5;

for some constant C5 > 0:

Assume by contradiction that there exists (un) � N+ such that

lim
n!1

h
(p� 1) kunkp�;� � (p� � 1) kunk

p�

p�

i
= 0:

Then as kunk� � C1 > 0; we get

kunkp
�

p�

kunkp�;�
=
(p� 1)
p� � 1 + �n (1) and (p� 1)If (un) = (p

� � p) kunkp
�

p� + �n (1) ;

where �n (1) ! 0 as n ! 1: But this is impossible since, as in the proof of Lemma

2:4 we have

�n (1) = (p� 1) kunkp�;� � (p� � 1) kunk
p�

p�

= (p� � p) kunkp
�

p� � (p� 1)If (un)

= kunkp�

24(p� � p)

 
kunkp�;�

(p� � 1) kunkp
�

p�

!(p��1)=(p��p)
� If (un)

kunkp�

35
> 0:
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At this point we conclude that I 01 (un)! 0 in W �
� (
) :

2.3 Existence of ground state solution

By previous results about Nehari manifold and precedent preliminary results we prove

the existence of a ground state solution of problem (2:1) :

Theorem 2.9 Let �1 < � < (N � p) =p; � � � < �+1 and �1 � � < ��: Assume

that f 2 D, then problem (2:1) has a ground state solution u:

Proof. First, we prove that I1 can achieve a local minimum on N+:

According to the proof of lemma 2:8, there exists a minimizing sequence

(un) � N+ such that C1 � kunk�;� � C2: Up to a subsequence if necessary, we have

un * u1 in W 1;p
�;� (
)

un * u1 in Lp
�
(
; jxj�p

��)

un ! u1 a.e in 
:

For some u1 2 W 1;p
�;� (
) : As �

+ < 0 then u1 6� 0: Suppose otherwise,

so ku1k�;� < lim
n!1

kunk�;� ; which implies that

�+ � I1 (u1)

=

�
1

p
� 1

p�

�
ku1kp�;� �

�
1� 1

p�

�
If (u1)

< lim
n!!1

�
p� � p

p�p
kunkp�;� �

p� � 1
p�

If (un)

�
= �+
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This is a contradiction, which leads to conclude that un ! u1 in W 1;p
�;� (
)

and I1 (u1) = �+:

Moreover, we have u1 2 N+: In fact, if u1 2 N� then by Lemma 2:5, t+u1 = 1 and

there exists unique t�u1 > 0 such that t
�
u1
u1 2 N+:

Since

dI1 (tu1)

dt

����
t=t�u1

= 0;
d2I1 (tu1)

dt

����
t=t�u1

> 0;

there exists t�u1 < t0u1 < t+u1 such that I1
�
t�u1u1

�
< I1

�
t0u1u1

�
� I1

�
t+u1u1

�
= I1 (u1) ;

which is a contradiction.

Hence u1 2 N+ and

�+ = inf
u2N+

I1 (u) = inf
u2N

I1 (u):

By the Lagrange multiplier rule, there exists � 2 R such that

�0u1(1) = I 0
1(u1) = ��"(1);

with implies that

0 = hI 0
1(u1); u1i = �hJ 0(u1); u1i;

we have hJ 0(u1); u1i 6= 0; so � = 0 and I 0
1(u1) = 0:

Thus u1 is a ground state solution of problem (2:1) :

2.4 Existence of the second solution

In the following, we prove that problem (2:1) has a second solution u2.
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Theorem 2.10 Suppose that 2 � p < N; � = 0; � = 0; p� = pN= (N � p�) and

f (x) � a0 > 0 in a small neighborhood of 0 and satis�es f > 0. Then, problem

(2:1) has a second solution.

Lemma 2.11 Let 1 < p < N; � = 0; � = 0 and f 6� 0 satis�es f > 0: Then I1 (u)

veri�es the Palais-Smale condition at level c for all c < �+ +
1

N
(S0)

N
p :

Proof. Assume that (un) is a sequence in W
1;p
0 (
) satisfying as n!1

I1 (un)! c <
1

N
(S0)

N
p and I 01 (un)! 0 in W �

0 (
) . (2.3)

By Lemma 2:8, we know that (un) is bounded in W 1;p
0 (
). Then, there exist a

subsequence (still denoted by (un)) and u2 in W
1;p
0 (
) such that u2 6� 0 and

un * u2 in W
1;p
0 (
) ;

un * u2 in Lp�
�

; jxj�p

��
�
;

un ! u2 a.e.in 
:

Denote vn = un � u2, then

vn * 0 in W 1;p
0 (
) ;

vn * 0 in Lp�
�

; jxj�p

��
�
;

vn ! 0 a:e:in 
:

By the Brézis - Lieb Lemma [16] we have

kunkp0 = kvnk
p
0 + ku2k

p
0 + �n (1) ;

and

kunkp�p� = kvnk
p�
p�
+ ku2kp�p� + �n (1) :
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Then, from (2:3) we deduce that

c+ �n (1) = I1 (u2) +
1

p
kvnkp0 �

1

p�
kvnkp

�

p�

and

kvnkp0 � kvnk
p�

p� = �n (1) :

Using the fact that vn * 0 in W 1;p
0 (
) ; we can assume that

kvnkp0 ! l and kvnkp
�

p� ! l � 0:

So, by the Sobolev-Hardy inequality, we get l � S0l
p=p�.

Now, assume that l 6= 0; then

l � (S0)p
�=(p��p)

and we obtain

c = I1 (u2) +

�
1

p
� 1

p�

�
l � I1 (u2) +

1

N
(S0)

N
p :

As I1 (u2) � �+; we get a contradiction. So again un ! u in W 1;p
0 (
) strongly:

In order, to prove Theorem 2:10, we need the following key lemma.

Lemma 2.12 Suppose that 2 � p < N; � = 0; � = 0; f (x) � a0 > 0 in a small

neighborhood of 0 and satis�es f > 0. Then

�� < �+ +
1

N
(S0)

N
p :

Proof. Set

M1 = f0g[
n
u 2 W 1;p

0 (
) : kuk0 < t+
ukuk�10

o
andM2 =

n
u 2 W 1;p

0 (
) : kuk0 > t+
ukuk�10

o
:
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We have W 1;p
0 (
) nN� =M1 [M2, N+ � M1; u1 2 M1 and u1 + Tv" 2 M2 for

some real T > 0: Let

� =
�
h : [0; 1]! W 1;p

0 (
) continuous, h(0) = u1; h(1) = u1 + Tv"
	
;

and

~h(t) = u1 + tTv" with t 2 [0; 1] :

It is obvious that ~h belongs to � and the range of any h 2 � intersects N�: Then

�� � inf
h2�

max
t2[0;1]

I1(h(t)):

Now, we show that

sup
t�0

I1(u1 + tv") < �+ +
1

(N)
(S0)

N
p :

To this purpose, we de�ne g (t) := I1 (u1 + tv") ; then

g (0) = I1 (u1) < �+ +
1

N
(S0)

N
p ;

and by the continuity of g there exists t0 > 0 small enough such that

g (t) < �+ +
1

N
(S0)

N
p ;

for all t 2 (0; t0) : On the other hand, it is easy to see that g (t)! �1 as t! +1;

that is, there exists t1 > 0 large enough such that

g (t) < �+ +
1

N
(S0)

N
p ;

for all t � t1: So we only need to show that

sup
t0�t�t1

g (t) < �+ +
1

N
(S0)

N
p :
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Let " be su¢ ciently small such that f (x) � a0 > 0 in B (0; "). Then, we get from

Lemma 2:1

sup
t0�t�t1

I1 (tv") � sup
t�0

�
1

p
ktv"kp0 �

1

p�
ktv"kp

�

p�

�
� t0

Z



fv"dx

� sup
t�0

�
1

p
ktv"kp0 �

1

p�
ktv"kp

�

p�

�
� t0a0

Z



v"dx

� 1

N
(S0)

N
p +O

�
"
N�p
p

�
�O("

N�p
p2 ):

For the second one, we can assume that the �rst solution u1 is smooth and ru1 2

L1 (
). Thus we have

sup
t0�t�t1

g (t) = sup
t0�t�t1

I1 (u1 + tv")

� I1 (u1) + sup
t�0

I1 (tv") + C1

Z



�
jru1jp�1 jrv"j+ jrv"jp�1 jru1j

�
dx+Z




�
ju1jp

��1 v" + jv"jp
��1 u1

�
dx

� �+ +
1

N
(S0)

N
p +O

�
"
N�p
p

�
�O("

N�p
p2 ) +O

�
"
N�p
p2

�
+O

�
"
(N�p)(p�1)

p2

�

From

N � p

p
>
N � p

p2
>
(N � p) (p� 1)

p2

we have

O
�
"
N�p
p

�
�O("

N�p
p2 ) +O

�
"
N�p
p2

�
+O

�
"
(N�p)(p�1)

p2

�
= O

�
"
(N�p)(p�1)

p2

�
+O("

N�p
p ):

Since

(N � p) (p� 1)
p2

+
N � p

p
> 0;
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then

sup
t0�t�t1

I1 (u1 + tv") < �+ +
1

N
(S0)

N
p ;

for " small enough.

The proof is now complete.



42



Chapter 3

Elliptic p-Kirchho¤ type equations

with critical Sobolev exponent

in RN

3.1 Introduction

In this chapter we are concerned with the following regular p�Kirchho¤ type problem

in RN with critical Sobolev exponent.

�

0@a Z
RN

jrujp dx+ b

1A div �jrujp�2ru� = jujp��2u+ �f (x) in RN (3.1)

where 1 < p < N; a; b � 0; a + b > 0; � is a parameter, p� = pN= [N � p],

f 2 W �n f0g : Here, W � is the dual space of W 1;p(RN) and W 1;p(RN) denotes the

completion of C10 (RN) with respect to the norm

43
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kuk =

0@Z
RN

jrujp dx

1A1=p

:

Note that if a = � = 0; b = 1 and 1 < p < N; (3:1) reduces to the following problem

� div (jrujp�2ru) = jujp��2u; in RN (3.2)

Sciunzi in [47] provided that if u is a positive solution of (3:2) then u (x) = v";x0 (x)

where

v";x0 (x) :=

264"
1

p�1N
1
p

�
N�p
p�1

� p�1
p

"
p

p�1 + jx� x0j
p

p�1

375
N�p
p

" > 0, x0 2 RN (3.3)

Consequently, u is a minimizer for

S := inf
u2W 1;p(RN )nf0g

kukp�Z
RN
jujp� dx

�p=p�
and satis�es

kv";x0k
p =

Z
RN
jv";x0j

p� dx = S
p�

p��p ; (3.4)

De�nition 3.1 We say that u 2 W 1;p(RN)n f0g is a weak solution of equation (3:1)

if

(a kukp + b)

Z
RN

jrujp�2rudx�
Z
RN

�
jujp��2u+ �f (x)

�
vdx = 0

for any v 2 W 1;p(RN):

Next, we de�ne the energy functional

I2(u) =
a

2p
kuk2p + b

p
kukp � 1

p�

Z
RN

jujp�dx� �

Z
RN

f (x)udx;

associated to problem (3:1), for all u 2 W 1;p(RN):
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Notice that the functional I2 is well de�ned inW 1;p(RN); belongs toC1
�
W 1;p(RN); R

�
and a critical point of I2 is a weak solution of problem (3:1) :

First, we make the following assumptions:

(H0) p� > 2p; a � 0; b � 0 and a+ b > 0;

(H1) p
� = 2p , a > 0 and b > 0;

(H2) p� = 2p, 0 < a < S�2 and b > 0:

When � > 0; we have the following results.

3.2 Palais Smale condition

Lemma 3.2 Suppose that f 2 W �n f0g and assume that (H0) or (H1) holds. Let

c 2 R and (un) � W 1;p(RN) be a (PS)c sequence for I2, then

un * u in W 1;p(RN)

for some u 2 W 1;p(RN) with I 02 (u) = 0:

Proof. We have

I2 (un)! c and I 02 (un)! 0;

that is

c+ on (1) = I2 (un) and on (1) kvk = hI 02 (un) ; vi ;

for any v 2 W 1;p(RN); where on (1) denotes any quantity that tends to zero as n!1:
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Then as n!1, it follows that

c+ on (1)� 1
p� on (1) kunk = I2 (un)� 1

p� hI
0
2 (un) ; uni

= ap
��2p
2pp� kunk

2p + bp
��p
pp� kunk

p � �p
��1
p�

Z
RN
f (x)undx;

� ap
��2p
2pp� kunk

2p + bp
��p
pp� kunk

p � �p
��1
p� kfkW � kunk ;

that is, (un) is bounded in W 1;p(RN) if (H0) or (H1) holds. Up to a subsequence if

necessary, there exists a function u 2 W 1;p(RN) such that

un * u in W 1;p(RN) and in Lp�
�
RN ; jxj�p

�
�
; un ! u a. e. in RN ;

and Z
RN

f (x)undx!
Z
RN

f (x)udx:

Then

hI 02 (un) ; vi = 0 for all v 2 C10
�
RN
�
;

thus I 02 (u) = 0: This completes the proof.

Before giving the local Palais Smale condition, we need the following lemma which

is a key step to obtain a solution with positive energy (Mountain Pass type solution).

Lemma 3.3 Let a; b � 0; a + b > 0 and � � 1: For y � 0 we consider the function

	 : R+ ! R�; given by

	(y) = S�1y� � aSy � b:

Then

(1) If � = 1, 0 � a < S�2 and b > 0 then the equation 	(y) = 0 has a unique

positive solution

y1 =
b

(S�2 � a)S



47

and 	(y) � 0 for all y � y1:

(2) If � > 1 then the equation 	(y) = 0 has a unique positive solution y2 >�
a
�
S2
� 1
��1 and 	(y) � 0 for all y � y2:

(3) If � < 1: Let ~y =
�
�
a
S�2

� 1
1�� ; then we have:

i) 	 has no zero point for 	(~y) < 0.

ii) 	 has unique zero point for 	(~y) = 0; Consequently, for

b = S�1 (1� �)
��
a
S�2

� �
1��

iii) 	 has two di¤erent zero points for 	(~y) > 0; with

0 < y3 < ~y < y4:

Proof. (1) For � = 1, 0 � a < S�2 and b > 0, we have

	(y) = S
�
S�2 � a

�
y � b

that is, the equation 	(y) = 0 has a unique positive solution

y1 =
b

(S�2 � a)S

and 	(y) � 0 for all y � y1:

(2) For � > 1 we have 	0 (y) = �S�1y��1 � aS and

	00 (y) = � (� � 1)S�1y��2 > 0; 8y > 0:

Then 	0
��

a
�
S2
� 1
��1
�
= 0; 	0 (y) < 0 for y <

�
a
�
S2
� 1
��1 and 	0 (y) > 0 for y >�

a
�
S2
� 1
��1 . Hence 	 is a concave function and

min
y�0
	(y) = 	

��a
�
S2
� 1
��1
�
= � (� � 1)S�1

�a
�
S2
� �
��1

< 0: (3.5)
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Moreover, we have 	
��

a
�
S2
� 1
��1
�
< 0 and lim

y!+1
	(y) = +1; thus from (3:5) and

the concavity of 	 we can conclude that the equation 	(y) = 0 has a unique positive

solution y2 >
�
a
�
S2
� 1
��1 and 	(y) � 0 for all y � y2:

(3) For � < 1: Let 	0 (y) = 0, one has

~y =
��
a
S�2

� 1
1��

;

and when 0 < y < ~y, 	 is increasing, while y > ~y; 	 is decreasing. Moreover,

from 	(0) = �b < 0, we obtain that

i) 	 has no zero point for 	(~y) < 0.

ii) 	 has unique zero point for 	(~y) = 0; Consequently, for

b = S�1 (1� �)
��
a
S�2

� �
1��

iii) 	 has two di¤erent zero points for 	(~y) > 0:

Next, for i 2 f1; 2g we put

Ci = a

�
1

2p
� 1

p�

�
(Syi)

2 + b

�
1

p
� 1

p�

�
Syi

and

C� =

8>><>>:
C1 if p� = 2p; 0 � a < S�2; b > 0,

C2 if p� > 2p; a � 0; b � 0; a+ b > 0.

(3.6)

Now, we prove an important lemma which ensures the local compactness of the Palais

Smale sequence for I2:

Lemma 3.4 Suppose that f 2 W �n f0g and (H0) or (H2) holds. Let (un) � W 1;p(RN)

be a Palais Smale sequence for I2 for some c 2 R: Then

either un ! u or c � I2 (u) + C�:
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Proof. By the proof of Lemma 3:2 we have (un) is a bounded sequence in

W 1;p(RN) and un * u in W 1;p(RN) for some u 2 W 1;p(RN) with I 02 (u) = 0: Fur-

thermore, if we write vn = un � u, we derive8>>>>>>><>>>>>>>:

vn * 0 in W 1;p(RN) and in Lp�
�
RN ; jxj�p

�
�

vn ! 0 a. e. in RNZ
RN
f (x) vndx! 0:

(3.7)

On the one hand, by using Brézis-Lieb�s Lemma [16], one has8>>><>>>:
kukp = kvnkp + kukp + on (1) ;Z
RN

junjp
�

jxjp� dx =
Z
RN

jvnjp
�

jxjp� dx+
Z

RN
jujp�dx+ on (1) :

(3.8)

As hI 02 (u) ; ui = 0 we obtain by (3:7) and (3:8) that

on (1) = hI 02 (un) ; uni = kvnk
p �

Z
RN

jvnjp
�

jxjp� dx (3.9)

and

c+ on (1) = I2 (un)�
1

p�
hI 02 (un) ; uni

= a

�
1

2p
� 1

p�

�
(kvnkp + kukp)2 + b

�
1

p
� 1

p�

�
(kvnkp + kukp)

+�

�
1

p�
� 1
� Z
RN

f (x) vndx� �

�
1

p�
� 1
� Z
RN

f (x)udx

� a

�
1

2p
� 1

p�

�
kvnk2p + b

�
1

p
� 1

p�

�
kvnkp + I2(u)�

1

p�
hI 02 (u) ; ui :

Consequently,

c+ on (1) � I2(u) +

�
a

2p
� a

p�

�
kvnk2p +

�
b

p
� b

p�

�
kvnkp . (3.10)

Assume that lim
n!1

kvnk = l > 0, then by (3:9) and the Ca¤arelli-Kohn-Nirenberg

inequality we obtain

lp � S
�
blp + al2p

� p
p� ;
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this implies that

S�
p�
p lp

��p � alp � b � 0: (3.11)

Let y = S�1lp and � = p��p
p
; then by (??) we get

S�1y� � aSy � b � 0.

It is clear that � � 1; thanks to p� � 2p: So, from the de�nition of 	 we get 	(y) � 0:

We will discuss two cases:

Case 1. p� = 2p; 0 � a < S�2 and b > 0: According to Lemma 3:3, we have

	(y) � 0 if y � y1 with

y1 =
b

(S�2 � a)S
;

which implies that lp � Sy1:

Case 2. p� > 2p; a � 0; b � 0 and a + b > 0: In this case, it follows from lemma

3:3 that 	(y) � 0 if y � y2 with

y2 >

�
ap

p� � p
S2
� p

p��2p

;

which implies that lp � Sy2: Then by (3:10) ; one has

c � I2(u) +

�
a

2p
� a

p�

�
l2p +

�
b

p
� b

p�

�
lp

� I2(u) +

8>><>>:
b
p� � p

pp�
Sy1 if p� = 2p; 0 � a < S�2 and b > 0,

a
p� � 2p
2pp�

(Sy2)
2 + b

p� � p

pp�
Sy2 if p� > 2p; a; b � 0 and a+ b > 0 .

= I2 (u) + C�:

The proof of Lemma 3:4 is completed.
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3.3 Existence of solution with negative energy

Theorem 3.5 Suppose that f 2 W �n f0g and assume that (H0) or (H1) holds. Then

there exists a constants �� > 0 such that for any � 2 (0; ��) problem (3:1) has a

solution u� with negative energy.

Remark 3.6 If p� < 2p; a � 0; b � 0 and a + b > 0 or p� = 2p, a = S�2 and b > 0

or p� = 2p, a > S�2 and b � 0; then for any � > 0; we can easily show the existence

of one solution which is a ground state solution.

We give here the proof of our Theorem 3:5 by using Ekeland�s variational principle.

Proof. Let u 2 W 1;p(RN)n f0g ; b > 0; a � 0 and p� � 2p: By Hölder and

Ca¤arelli-Kohn-Nirenberg inequalities we have

I2(u) =
a

2p
kuk2p + b

p
kukp � 1

p�

Z
RN

jujp�dx� �

Z
RN

f (x)udx

� b

p
kukp + a

2p
kuk2p � S�p

�=p

p�
kukp

�
� � kfkW � kuk :

Now we divide the proof in two cases.

Firstly, assume that b > 0 and a � 0. If (H0) or (H1) holds, we get

I2(u) �
b

p
kukp � S�p

�=p

p�
kukp

�
�
�
b

2

��1
p

� kfkW �

�
b

2

� 1
p

kuk ;

it follows from the inequality XY � Xq

q
+
Y q0

q0
for any X; Y � 0 and q; q0 > 0 with

1

q
+
1

q0
= 1; that

I2(u) � b

p
kukp � S�p

�=p

p�
kukp

�
� p� 1

p

 �
b

2

��1
p

� kfkW �

! p
p�1

� 1
p

 �
b

2

� 1
p

kuk
!p

� b

2p
kukp � S�p

�=p

p�
kukp

�
� p� 1

p

 �
b

2

��1
p

� kfkW �

! p
p�1

:



52

For � � 0 we consider the function h1 : R+ ! R�; given by

h1 (�) =
b

2p
�p � S�p

�=p

p�
�p

�
;

direct calculation shows that

max
��0

h1 (�) = h1 (�1) =
p� � p

pp�
S

p�

p� � p
�
b

2

� p�

p� � p with �1 =
�
b

2
Sp

�=p

� 1
p��p

and h1 (�) � 0 8� 2 B�1 (0) :

Consequently,

I2 (u)jB�1(0) � �
p� 1
p

 �
b

2

��1
p

� kfkW �

! p
p�1

: (3.12)

Moreover, for kuk = �1 we have

I2(u) � h1 (�1)�
p� 1
p

 �
b

2

��1
p

� kfkW �

! p
p�1

;

� 1

p
h1 (�1) +

p� 1
p

h1 (�1)�
p� 1
p

 �
b

2

��1
p

� kfkW �

! p
p�1

;

� 1

p
h1 (�1)

= : �1

for all � 2 (0; �1) with

�1 =

�
p� � p

pp�
S

p�
p��p

� p�1
p

kfk�1W �

�
b

2

� p��1
p��p

:

We turn to the case where a > 0 and b � 0. If (H0) holds we obtain

I2(u) � a

2p
kuk2p � S�p

�=p

p�
kukp

�
�
��a
2

��1
2p
� kfkW �

���a
2

� 1
2p kuk

�
� a

2p
kuk2p � S�p

�=p

p�
kukp

�
� 2p� 1

2p

��a
2

��1
2p
� kfkW �

� 2p
2p�1

� 1

2p

��a
2

� 1
2p kuk

�2p
� a

4p
kuk2p � S�p

�=p

p�
�p

� � 2p� 1
2p

��a
2

��1
2p
� kfkW �

� 2p
2p�1

:
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Now, we consider the function h2 : R+ ! R�; given by

h2 (�) =
a

4p
�2p � S�p

�=p

p�
�p

�

then

max
��0

h2 (�) = h2 (�2) =

�
1

2p
� 1

p�

�
S�p

�=p
ha
2
Sp

�=p
i p�
p��2p

with �2 =
ha
2
Sp

�=p
i 1
p��2p

and h2 (�) � 0 8� 2 B�2 (0) :

Consequently,

I2 (u)jB�2 (0) � �
2p� 1
2p

��a
2

��1
2p
� kfkW �

� 2p
2p�1

:

Moreover, for kuk = �2 we have

I2(u) � h2 (�2)�
2p� 1
2p

��a
2

��1
2p
� kfkW �

� 2p
2p�1

;

� 2p� 1
2p

h2 (�2) +
1

2p
h2 (�2)�

2p� 1
2p

��a
2

��1
2p
� kfkW �

� 2p
2p�1

;

� 1

2p
h2 (�2)

= : �2

for all � 2 (0; �2) with

�2 =

�
p� � 2p
2pp�

S
2p�

p��2p

� 2p�1
2p �a

2

� p��1
p��2p kfk�1W � :

Choosing ��; �� and �� such that

(��; ��; ��) =

8>><>>:
(�1; �1; �1) if (H0) satis�es

(�2; �2; �2) if (H1) satis�es.

(3.13)

Then, for all � 2 (0; ��) we have

I2 (u)j@B�� (0) � �� (3.14)
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and

I2 (u)jB�� (0) � �C� (3.15)

with

C� :=

8>>>><>>>>:
p� 1
p

 �
b

2

��1
p

� kfkW �

! p
p�1

if (H0) satis�es

2p� 1
2p

��a
2

��1
2p
� kfkW �

� 2p
2p�1

if (H1) satis�es.

(3.16)

Now, we de�ne

c� = inf
�
I2 (u) ; u 2 B�� (0)

	
: (3.17)

As f 2 W �n f0g we can choose ' 2 W 1;p(RN) such that
Z

RN
f (x)'dx > 0: Then,

for a �xed � 2 (0; ��), there exists t0 > 0 such that kt0'k < �� and

c� � I2(t0') < 0 for t 2 (0; t0) :

Hence, c� < I2(0) = 0: Using Ekeland�s variational principle, for the complete metric

space B�� (0) with respect to the norm of W 1;p(RN), we obtain the result that there

exists a Palais Smale sequence un 2 B�� (0) at level c�: From Lemma 3:2 there exists

u� 2 B�� (0) such that un * u� in W 1;p(RN) and I 02 (u�) = 0.
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Now, we shall show that un ! u� in W 1;p: Suppose otherwise, then ku�k <

lim inf
n!+1

kunk ; which implies that

c� � I2 (u�)

= I2 (u�)�
1

p�
hI 02 (u�) ; u�i

= a
p� � 2p
2pp�

ku�k2p + b
p� � p

pp�
ku�kp � �

p� � 1
p�

Z
RN

f (x)u�dx

< lim inf
n!+1

24ap� � 2p
2pp�

kunk2p + b
p� � p

pp�
kunkp � �

p� � 1
p�

Z
RN

f (x)undx

35
= lim inf

n!+1

�
I2 (un)�

1

p�
hI 02 (un) ; uni

�
= c�;

which is a contradiction. We conclude that un ! u� strongly inW 1;p(RN). Therefore,

I 02 (u�) = 0 and I2 (u�) = c� < 0 = I2 (0) : Hence u� is a nonzero solution of (3:1)

with negative energy.

3.4 Existence of solution with positive energy

Theorem 3.7 Suppose that f 2 W �n f0g such that
R
RN f (x) v";x0dx 6= 0. Assume

that (H0) or (H2) holds: Then there exists a constant �+ 2 (0; ��] such that for any

� 2 (0; �+) problem (3:1) has a second solution u+ with positive energy.

Notice that assumption
R
RN f (x) v";x0dx 6= 0 certainly holds if f 2 W

�n f0g does

not change sign. Also we have f 2 L
p�

p��1
�
RN
�
since f 2 W �n f0g and u�; u+ � 0 for

f � 0. Furthermore, in Remark 3:6 [32], the authors mentioned that it di¢ cult to
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obtain the second solution in the case p < N < p�; a > 0 and b > 0: For special

dimension N = 3p=2; this case is studied in [11].

Now, we prove the existence of a Mountain Pass type solution and we give the

proof of Theorems 3:7 with the help of Theorem 3:5. Here we need the following

lemma.

Lemma 3.8 Assume that all conditions in Theorem 3:7 are ful�lled. Then there

exists z" 2 W 1;p(RN) and �� > 0 such that

sup
t�0

I2(tz") < c� + C� 8 � 2 (0; ��)

where c�; C� are given in (3:17) and (3:6) respectively.

Proof. Since
Z

RN
f (x) v";x0 (x) dx 6= 0 there exists z" = �v";x0 satis�esZ

RN

f (x) z" (x) dx > 0:

Given any � > 0 and �xed t > 0, then from (3:4) we have

I2(tz") =
a

2p
t2p kz"k2p +

b

p
tp kz"kp �

tp
�

p�

Z
RN

jz"jp
�
dx� �t

Z
RN

f (x) z"dx

=
a

2p
t2pS

2p�
p��p +

b

p
tpS

p�
p��p � tp

�

p�
S

p�
p��p � �t

Z
RN

f (x) z"dx:

De�ne g; h : ]0;+1[! R by g(t) = I2(tz") and

h(t) =
a

2p
t2pS

2p�
p��p +

b

p
tpS

p�
p��p � tp

�

p�
S

p�
p��p :

Then

h0 (t) = �tp�1S
p�

p��p

�
tp
��p � aS

p�
p��p tp � b

�
;
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it follows from h0 (t) = 0 that

aS
p�

p��p tp + b� tp
��p = 0: (3.18)

So

tp
�
= aS

p�
p��p t2p + btp: (3.19)

Let y = S
p

p��p tp; � = p��p
p
and

y� :=

8>><>>:
y1 if (H2) holds

y2 if (H1) holds.

Then by (3:18) and the de�nition of 	 we get

	(y) = S�1y� � aSy � b = 0, (3.20)

which implies from the proof of Lemma 3:2 that 	(y�) = 0; 	(y) < 0 for all y 2

]0; y�[ and 	(y) > 0 for all y 2 ]y�; +1[ : Therefore, h0 (t�) = 0; h0 (t) > 0 for all

t 2 ]0; t�[ and h0 (t) < 0 for all t 2 ]t�; +1[ where

t� :=

8>><>>:
S

�1
p��py

1
p

1 if (H2) holds

S
�1
p��py

1
p

2 if (H0) holds.

Moreover, since h (0) = 0 and lim
t!+1

h (t) = �1 if (H0) or (H2) holds, then h attains

its maximum at t�.



58

So, from (3:19) we deduce that

max
t�0

h (t) = h (t�)

=
a

2p
t2p� S

2p�
p��p +

b

p
tp�S

p�
p��p � tp

�
�
p�
S

p�
p��p

=
a

2p
t2p� S

2p�
p��p +

b

p
tp�S

p�
p��p �

�
a

p�
t2p� S

2p�
p��p +

b

p�
tp�S

p�
p��p

�
= a

�
1

2p
� 1

p�

�
t2p" S

2p�
p��p + b

�
1

p
� 1

p�

�
tp"S

p�
p��p

= a

�
1

2p
� 1

p�

�
S2y2� + b

�
1

p
� 1

p�

�
Sy�

= C�:

We know from the proof of Theorem 2:5 that c� � �C� for all � 2 (0; ��) : So, we

can choose �3 � �� such that for any � 2 (0; �3) we have C� � c� � C� � C� > 0:

Hence C� � c� > 0 for all � 2 (0; �3) :

Now, we consider the function g (t) := I2(tz"); t � 0: Then

g (t) = h(t)� �t

Z
RN

f (x) z"dx:

So, for all � 2 (0; �3) we have

g (0) = 0 < C� � C�

Hence, by the continuity of g (t) ; there exists t1 > 0 small enough such that

g (t) < C� � C� 8t 2 (0; t1) :

We know also that lim
t!+1

g (t) = �1 if (H0) or (H2) holds. Then for t2 > 0 su¢ ciently

large, one has

g (t) < C� � C� 8t 2 (t2; +1) :
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On the other hand, as
Z
RN
f (x) z"dx > 0 we can deduce from the above estimate on

h (t) that for all t 2 [t1; t2]

g (t) < C� � �t1

Z
RN

f (x) z"dx:

Set

�4 =

8>>><>>>:
�

p

p� 1t1
Z
RN
f (x) z"dx

�p�1
b

2
kfk�pW � if (H2) or (H0) with b > 0 holds�

2p

2p� 1t1
Z

RN
f (x) z"dx

�2p�1
a

2
kfk�2pW � if (H0) with a > 0 holds

Then for any � 2 (0; �4) one has

��t1
Z
RN

f (x) z"dx < �C�

Taking �+ = min f��; �3; �4g then c� � �C� and we deduce that

sup
t�0

I2(tz") < C� + c�; for all � 2 (0; �+) .

This concludes the proof of Lemma 3:8.

Now we can prove Theorem 3:7.

Proof. Note that I2(0) = 0 and from (3:14) we have I2 (u)j@B�� (0) � �� > 0 for all

� 2 (0; ��) where ��; �� are de�ned in (3:13) : We know also that limt!1 I2 (tz") =

�1 if (H0) or (H2) holds, then I2(Tz") < 0 for T large enough; hence I2 satis�es the

geometry conditions of the Mountain Pass Theorem [6]. Then, there exists a Palais

Smale sequence (un) at level c+, such that

I2 (un)! c+ and I 02 (un)! 0 as n! +1

with

0 < c+ = inf
2�

max
t2[0;1]

I2( (t)) � sup
t�0

I2(tTz") < C� + c�; for all � 2 (0; �+);
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where

� =
�
 2 C

�
[0; 1] ; W 1;p(RN)

�
;  (0) = 0;  (1) = Tz"

	
:

Using Lemma 3:1 we have that (un) has a subsequence, still denoted by (un), such

that un * u+ in W 1;p(RN) as n ! +1. Hence, from Lemma 3:4 if un 9 u+ in

W 1;p(RN) as n! +1; it holds

c+ � I2 (u+) + C� � c� + C�

which is a contradiction with Lemma 3:4. Hence, I 02 (u+) = 0 and

I2 (u+) = c+ > 0:

So, as c+ > 0 = I2 (0) we can conclude that u+ is a nonzero solution of (3:1) with

positive energy. This completes the proof of Theorem 3:7.

3.5 In�nitely solutions

we use the following assumptions:

(H2) p� = 2p, 0 < a < S�2 and b > 0;

(H3) p� > 2p; a > 0 and b > 0;

(H6) p� < 2p; a > 0 and b > b�;

(H7) p� = 2p; a > 0 and b = 0;

(H8) p� < 2p; a > 0 and b = b� where

b� =
2p� p�

p

�
p

p� � p
a

�� p��p
2p�p�

S�
p�

2p�p� :
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Theorem 3.9 Let � = 0; a > 0; b � 0; 1 < p < N . For v";x0 given by (3:3) the

following conclusions hold:

(1) If p� = 2p; then under the hypothesis (H2), the problem (3:1) has in�nitely

many nonnegative solutions and these solutions are

�
b

1� S2a

� 1
p��p

v";x0 for all " > 0;

(2) Under the hypothesis (H7), the problem (3:1) has in�nitely many positive solutions

�
1
p v";x0 (for any � > 0) if and only if a = S�2:

(3) If p� 6= 2p; b = 0 and a > 0; then problem (3:1) has in�nitely many nonnegative

solutions and these solutions

�
aS

p�
p��p

�� 1
2p�p�

v";x0 for all " > 0:

(4) If (H3) satis�ed, then there exists �2 > S�1
�

ap
p��pS

2
� p��p
p��2p

such that �
1

p��p
2 v";x0 are

solutions of problem (3:1), for all " > 0.

(5) If (H8) satis�ed, then problem (3:1) has in�nitely many nonnegative solutions

and these solutions are

S�
1

p��p

�
p� � p

pa
S�2

� 1
2p�p�

v";x0 for all " > 0:

(6) If (H6) satis�ed, then there exist �3 2
 
0; S�1

�
p��p
pa

S�2
� p��p
2p�p�

!

and �4 2
 
S�1

�
p��p
pa

S�2
� p��p
2p�p�

; +1
!
such that �

1
p��p
3 v";x0 and �

1
p��p
4 v";x0 solu-

tions of problem (3:1) for all " > 0.

Proof. We give the proof of Theorem 3:9.
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For any � > 0 and v";x0 in (3:4) de�ne V";� = �
1

p��pv";x0. Using the solutions v";x0

of problem (3:1), then V";� weakly solves the following equation:

�� div
�
jrV";�jp�2rV";�

�
= jV";�jp

��2V";�

Moreover, according to (3:4), one has

� = a kV";�kp + b

= a�
p

p��p kv";x0k
p + b

= aS
p�

p��p �
p

p��p + b:

Therefore, the positive solution of problem (3:1) is corresponding to the solution of

the following equation about � > 0

� � aS
p�

p��p �
p

p��p � b = 0 (3.21)

1) For p� = 2p; equation (3:21) is equal to

�
�
1� aS2

�
� b = 0

i) If b > 0 and 0 � a < S�2, we have that

�0 =
b

1� S2a

is a solution of equation (3:21). Hence, V";�0 = �
1

p��p
0 v";x0 satis�es the following equa-

tion in the weak sense:

� (a kukp + b) div
�
jrujp�2ru

�
= jujp��2u:

ii) If b = 0 and a > 0 equation (3:21) is equal to

�
�
1� aS2

�
= 0:
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Obviously, for � > 0, this equality is true if and only if 1 � aS2 = 0. Thus, when

p� = 2p, problem (3:1) has in�nity many positive solutions V";� = �
1
pv";x0 (for any

� > 0) if and only if a = S�2:

2) For p� 6= 2p

i) If b = 0 and a > 0 it is easy to see that

�1 =
�
aS

p�
p��p

�� p��p
2p�p�

is a solution of equation (3:21). Then, problem (3:1) has in�nity many positive

solutions V";�1 = �
1

p��p
1 v";x0.

3) Let y = (S�)
p

p��p , equation (3:21) is equal to

S�1y
p��p
p � aSy � b = 0:

Now we consider the following equation:

	(y) = S�1y
p��p
p � aSy � b = 0:

i) For p� > 2p, according to Lemma 2:3, we have that 	(y) = 0 has a unique positive

solution y2 >
�

ap
p��pS

2
� p
p��2p

: Thus, problem (3:1) has in�nity many positive solutions

V";�2 = �
1

p��p
2 v";x0 ; with �2 = S�1y

p��p
p

2 > S�1
�

ap
p��pS

2
� p��p
p��2p

:

ii) For 2p > p�, according to Lemma 2:3, we have:

For b = 2p�p�
p

�
p

p��pa
�� p��p

2p�p�
S�

p�
2p�p� then 	(y) = 0 has a unique positive solution

~y =
�
p��p
pa

S�2
� p
2p�p�

: Thus, problem (3:1) has in�nity many positive solutions V";~� =

~�
1

p��pv";x0 ; with ~� = S�1~y
p��p
p ; for b < 2p�p�

p

�
p

p��pa
�� p��p

2p�p�
S�

p�
2p�p� , 	 has two di¤erent

zero points y3 and y4 with 0 < y3 < ~y < y4: Consequently, problem (3:1) has in�nitely
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many positive solutions V";�3 = �
1

p��p
3 v";x0 and V";�4 = �

1
p��p
4 v";x0 with �3 = S�1y

p��p
p

3 2 
0; S�1

�
p��p
pa

S�2
� p��p
2p�p�

!
and �4 = S�1y

p��p
p

4 2
 
S�1

�
p��p
pa

S�2
� p��p
2p�p�

;+1
!
:

3.6 Non-existence Result

Now we make the following assumptions:

(H4) p� = 2p; a > S�2 and b = 0;

(H5) p� = 2p; a � S�2 and b > 0;

(H6) p� < 2p; a > 0 and b > b�; where

b� =
2p� p�

p

�
p

p� � p
a

�� p��p
2p�p�

S�
p�

2p�p� :

Theorem 3.10 Assume that one of the hypotheses (Hi) holds for 4 � i � 6. Then

problem (3:1) has no non-trivial solution for � = 0.

Remark 3.11 The authors in [34] proved the non existence solution only in the case

p� < 2p; while the case p� = 2p is considered in the preceeding theorem.

From this point of view, Theorem 3:10 could be viewed as some extension and

completeness of related results in [34].

Proof. Suppose that (H4) is satis�ed and that u 2 W 1;p(RN)nf0g is a solution

of the problem (3:1). Then

a kuk2p =
Z
RN

jujp�dx: (3.22)
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As a > S�2 and
Z

RN
jujp�dx � S�2 kuk p

�
, we have by (3:22)

S�2 kuk2p < a kuk2p

=

Z
RN

jujp�dx

� S�2 kuk2p ;

which leads to a contradiction.

Suppose now that (H5) is satis�ed and that u 2 W 1;p(RN)nf0g is a solution of (3:1).

Then

a kuk2p + b kukp =
Z
RN

jujp�dx:

From this last equality and because a � S�2; b > 0 and the fact that

Z
RN

jujp�dx � S�2 kukp
�

we get

S�2 kuk2p < a kuk2p + b kukp

=

Z
RN

jujp�dx

� S�2 kuk2p ;

which is a contradiction.

In the same way as above, we suppose that under the condition (H6) we have the

existence of a solution u 2 W 1;p(RN)nf0g, that is,

a kuk2p + b kukp =
Z
RN

jujp�dx;
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and then we got

Z
RN

jujp�dx � S�
p�
p kukp

�
= kukp

��(2p�p�) S�
p�
p kuk2p�p

�

=

�
p

p� � p
a

� p��p
p

kuk2(p
��p)

�
p

p� � p
a

�� p��p
p

S�
p�
p kuk2p�p

�

� p� � p

p

0@� p

p� � p
a

� p��p
p

kuk2(p
��p)

1A
p

p��p

+
2p� p�

p

0@� p

p� � p
a

�� p��p
p

S�
p�
p kuk2p�p

�

1A
p

2p�p�

� a kuk2p + 2p� p�

p

0@� p

p� � p
a

�� p��p
p

S�
p�
p

1A
p

2p�p�

kukp

= a kuk2p + 2p� p�

p

�
p

p� � p
a

�� p��p
2p�p�

S�
p�

2p�p� kukp

< a kuk2p + b kukp

=

Z
RN

jujp�dx;

which lead to a contradiction.



Chapter 4

Elliptic p-Kirchho¤ type systems

with critical Sobolev exponent

in RN

4.1 Introduction

In this chapter, we study the following Kirchho¤-type systems involving the critical

Sobolev exponent

8>>>>>><>>>>>>:

�(a1 + b1 kukp) [div (jrujp�2ru)] =
2q

q + q0
jujq�2u jvjq

0
+ �1f (x) ;

�(a2 + b2 kvkp) [div (jrvjp�2rv)] =
2q0

q + q0
jujq jvjq

0�2 v + �2g (x) ;

(u; v) 2 W 1;p
�
RN
�
�W 1;p

�
RN
�

in RN (4.1)

where 1 < p < N; a1; a2 � 0; b1; b2 > 0; q; q0 > 1; q + q0 = p�; p� = pN= [N � p] is

the critical Sobolev exponent, �1; �2 > 0 are a parameters, f; g 2 W �n f0g and

67
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ku; vkp :=
Z
RN

(jrujp + jrvjp) dx

is the norm in W 1;p
�
RN
�
�W 1;p

�
RN
�
:

The problem (4:1) is related to the following well known Sobolev inequality [17]�Z
RN
jujp

�
dx

�1=p�
� C

�Z
RN
jrujp dx

�1=p
for all u 2 C10

�
RN
�
; (4.2)

for some positive constant C.

Sciunzi in [47] provided that if V" is a positive solution of the critical problem

�
�
div
�
jrujp�2ru

��
= jujp��2u in RN (4.3)

then, for any " > 0 the extremal functions of (4:3) is V" (x) = V";x0 (x) where

V";x0 (x) :=

264"
1

p�1N
1
p

�
N�p
p�1

� p�1
p

"
p

p�1 + jx� x0j
p

p�1

375
N�p
p

" > 0, x0 2 RN (4.4)

is a minimizer for

S := inf
u2W 1;pnf0g

kukp�R
RN juj

p� dx
�p=p�

and satis�es

kV"kp = kV";x0k
p =

Z
RN
jV";x0j

p� dx = S
p�

p��p : (4.5)

Note that if a1 = a2 = 1; �1 = �2 = 0 and b1 = b2 = 0, system (4:1) reduces to

the following system:

8>>>>>><>>>>>>:
� [div (jrujp�2ru)] = 2q

q+q0 juj
q�2u jvjq

0
;

� [div (jrvjp�2rv)] = 2q0

q+q0 juj
q jvjq

0�2 v;

in RN

(u; v) 2 W 1;p
�
RN
�
�W 1;p

�
RN
�
:

(4.6)
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Let the constant

Sq;q0 := inf
(u;v)2W 1;p(RN)�W 1;p(RN)

(u;v) 6=(0;0)

kukp + kvkp�R
RN juj

q jvjq0 dx
�p=p�

which is positive.

Next we de�ne the energy functional

I3(u; v) =
1

2p

�
b1 kuk2p + b2 kvk2p

�
+
1

p
(a1 kukp + a2 kvkp)

� 2
p�

Z
RN

jujqjvjq0dx�
Z
RN

�1f (x)u+ �2g (x) vdx;

associated to problem (4:1), for all (u; v) 2 W 1;p
�
RN
�
�W 1;p

�
RN
�

Notice that the functional I3 is well de�ned inW 1;p
�
RN
�
and belongs toC1 (W 1;p; R)

and that we have

hI 03(u; v); (u; v)i =
�
b1 kuk2p + b2 kvk2p

�
+ (a1 kukp + a2 kvkp)

�2
Z
RN

jujqjvjq0dx�
Z
RN

�1f (x)u+ �2g (x) vdx

for all (u; v) 2 W 1;p
�
RN
�
�W 1;p

�
RN
�
: Hence a critical point of functional I3 is a

weak solution of problem (4:1) :

4.2 Non-existence of solutions

First we introduced some assumptions which we need to prove non-existence of solu-

tion for problem (4:1)

(H1) p
� = 2p; a2 = a2 = 0; b1; b2 > S�2q;q0 :
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(H2) p
� = 2p; b1; b2 � S�2q;q0 ; a1; a2 > 0:

(H3) p
� > 2p; a > 0; b > p��p

p

�
22p�p

�

pa

� 2p�p�
p��p

2
p

p��p
(Sq;q0)

� p�
p��p :

Theorem 4.1 Suppose that (�1; �2) = 0 and assume that (H1) or (H2) or (H3) :Then

the problem (4:1) has no non-trivial solution.

Proof. Suppose that (H1) is satis�ed and (u; v) 2 W 1;pnf0g � W 1;pnf0g is a

solution of the problem (4:1). Then

b1 kuk2p + b2 kvk2p = 2
Z
RN

jujqjvjq0dx: (4.7)

As b1; b2 > S�2q;q0 ; x
2 + y2 � 1

2
(x+ y)2 and

R
RN juj

q jvjq
0
dx � S�2q;q0 (kuk

p + kvkp)2, we

have by (4:7)

S�2q;q0 kuk
2p + S�2q;q0 kvk

2p < b1 kuk2p + b2 kvk2p

= 2

Z
RN
jujq jvjq

0
dx

� 2S�2q;q0 (kuk
p + kvkp)2

� S�2q;q0 kuk
2p + S�2q;q0 kvk

2p

which leads to a contradiction.

Suppose now that (H2) is satis�ed and that (u; v) 2 W 1;pnf0g �W 1;pnf0g is a

solution of (4:1). Then

�
b1 kuk2p + b2 kvk2p

�
+ (a1 kukp + a2 kvkp) = p

Z
RN

jujqjvjq0dx:

From this last equality and as b1; b2 � S�2q;q0 ; a1; a2 > 0 and the fact thatR
RN juj

q jvjq
0
dx � S�2q;q0 (kuk

p + kvkp)2 ; we get
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S�2q;q0 kuk
2p + S�2q;q0 kvk

2p �
�
b1 kuk2p + b2 kvk2p

�
<
�
b1 kuk2p + b2 kvk2p

�
+ (a1 kukp + a2 kvkp)

= 2

Z
RN
jujqjvjq0dx

� 2S�2q;q0 (kuk
p + kvkp)2 � S�2q;q0 kuk

2p + S�2q;q0 kvk
2p

is a contradiction.

In the same way as above, we suppose that under the condition (H3) we have the

existence of a solution (u; v) 2 W 1;pnf0g �W 1;pnf0g, that is,�
b1 kuk2p + b2 kvk2p

�
+ (a1 kukp + a2 kvkp) = 2

Z
RN
jujqjvjq0dx

and then we getR
RN juj

q jvjq
0
dx � S

� p�
p

q;q0 (kuk
p + kvkp)

p�
p

�
�
22p�p

�

pa

� 2p�p�
p

S
� p�

p

q;q0 (kuk
p + kvkp)

2p��2p
p

�
pa

2(2p�p�)

� 2p�p�
p
(kukp + kvkp)

2p�p�
p

� p��p
p

 �
22p�p

�

pa

� 2p�p�
p
(Sq;q0)

� p�
p (kukp + kvkp)

2p��2p
p

! p
p��p

+2p�p�
p

 �
pa

2(2p�p�)

� 2p�p�
p
(kukp + kvkp)

2p�p�
p

! p
2p�p�

� p��p
p

"�
22p�p

�

pa

� 2p�p�
p
2 (Sq;q0)

� p�
p��p

�
kuk2p + kvk2p

� 2p��2p
2p

# p
p��p

+2p�p�
p

 �
pa

2(2p�p�)

� 2p�p�
p
(kukp + kvkp)

2p�p�
p

! p
2p�p�

� 1
2
p��p
p

�
22p�p

�

pa

� 2p�p�
p��p

2
p

p��p
(Sq;q0)

� p�
p��p

�
kuk2p + kvk2p

�
� 1

2
p��p
p

�
22p�p

�

pa

� 2p�p�
p��p

2
p

p��p
(Sq;q0)

� p�
p��p

�
kuk2p + kvk2p

�
+1
2
a (kukp + kvkp)

< 1
2
b
�
kuk2p + kvk2p

�
+ 1

2
a (kukp + kvkp)

< 1
2

�
b1 kuk2p + b2 kvk2p

�
+ 1

2
(a1 kukp + a2 kvkp)

=
R
RN juj

q jvjq
0
dx;

which lead to a contradiction.
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4.3 In�nity solutions

Now, we prove that the problem (4:1) has in�nitely many nonnegative solutions, we

present the following results.

Lemma 4.2 Let a1 = a2 = 1; �1 = �2 = 0, b1 = b2 = 0; and 1 < p < N . For V"

given by (4:4) the following conclusions hold:

If p� � 2p then the problem (4:1) has in�nitely many nonnegative solutions and

these solutions are (u"; v") ; which give8>>><>>>:
u" =

�
2

p�

� 1
(p�p�)

(q)
p�q0

p(p�p�) (q0)
q0

p(p�p�) V"

v" =

�
2

p�

� 1
(p�p�)

(q0)
p�q

p(p�p�) q
q

p(p�p�)V":

for all " > 0: (4.8)

Proof. Indeed by [6] , we know that

u" = kV" and v" = lV" (4.9)

V" =
1

k
u" and V" =

1

l
v" (4.10)

is a solution of he following problem

�
�
div
�
jrV"jp�2rV"

��
= jV"jp

��2V"

then 8>><>>:
� 1

kp�1
[div (jru"jp�2ru")] =

1

kq�1lq0
ju"jq�2u" jv"jq

0

� 1

lp�1
[div (jrv"jp�2rv")] =

1

lq0�1kq
jv"jq

0�2v" ju"jq8>><>>:
� lq

0

kp�q
[div (jru"jp�2ru")] = ju"jq�2u" jv"jq

0

� kq

lp�q0
[div (jrv"jp�2rv")"] = jv"jq

0�2v" ju"jq
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which implies 8>><>>:
kp�q

l q0
=
2q

p�

l p�q
0

k q
=
2q0

p�

wiche implies that 8>>><>>>:
k =

�
2

p�

� 1
(p�p�)

(q)
p�q0

p(p�p�) (q0)
q0

p(p�p�)

l =

�
2

p�

� 1
(p�p�)

(q0)
p�q

p(p�p�) q
q

p(p�p�)

k =

�
q

q0

� 1
p

l

then 8>>><>>>:
u" =

�
2

p�

� 1
(p�p�)

(q)
p�q0

p(p�p�) (q0)
q0

p(p�p�) V"

v" =

�
2

p�

� 1
(p�p�)

(q0)
p�q

p(p�p�) q
q

p(p�p�)V"

solution of (4:6) :

Now, we introduce some assumptions :

(H6) p
� � 2p; a1 = a2 = 0; b1; b2 > 0:

(H7) p
� � 2p; a1 = 0; a2 6= 0; b1; b2 > 0:

(H8) p
� � 2p; a1 6= 0; a2 6= 0; b1; b2 > 0

Theorem 4.3 Assume that �1 = �2 = 0. Suppose that (H6) or (H7) or (H8) and

(u"; v") is a positive solution of (4:6)

then we have that the problem (4:1) has in�nitely many nonnegative solutions

(u0"; v
0
") for any �1; �2 > 0, where 8>><>>:

u0" = �1u"

v0" = �2v"
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Proof. The proof of theorem is inspired by the idea in [43],

For any �1; �2 > 0 we de�ne (u0"; v
0
") = (�1u"; �2v") where (u"; v") is given in (4:8).

Since (u"; v") is a solution of problem (4:6), then (u0"; v
0
") solves the following system:8>><>>:

� [div (jru"jp�2ru")] = 2q
q+q0 ju"j

q�2u" jv"jq
0
;

� [div (jrv"jp�2rv")] = 2q0

q+q0 ju"j
q jv"jq

0�2 v";8>><>>:
�
�
1
�1

�p�q �
1
�2

��q0
[div (jru0"jp�2ru0")] = 2q

q+q0 ju
0
"jq�2u0" jv0"j

q0 ;

�
�
1
�1

��q �
1
�2

�p�q0
[div (jrv0"jp�2rv0")] = 2q0

q+q0 ju
0
"jq jv0"j

q0�2 v0";

Moreover, according to (4:5) and (4:8), one has8>><>>:
�
1
�1

�p�q �
1
�2

��q0
= a1 + b1 ku0"k

p = a1 + b1�
p
1 ku"k

p ;�
1
�1

��q �
1
�2

�p�q0
= a2 + b2 kv0"k

p = a2 + b2�
p
2 kv"k

p ;8>>><>>>:
�
1
�1

�p�q �
1
�2

��q0
= a1 + b1�

p
1

�
2

p�

� p
(p�p�)

(q)
p�q0
p�p� (q0)

q0
p�p� kV"kp ;�

1
�1

��q �
1
�2

�p�q0
= a2 + b2�

p
2

�
2

p�

� p
(p�p�)

(q0)
p�q
p�p� q

q
p�p� kV"kp ;8>>><>>>:

�
1
�1

�p�q �
1
�2

��q0
= a1 + b1�

p
1

�
2

p�

� p
(p�p�)

(q)
p�q0
p�p� (q0)

q0
p�p� S

p�
p��p ; (1)�

1
�1

��q �
1
�2

�p�q0
= a2 + b2�

p
2

�
2

p�

� p
(p�p�)

(q0)
p�q
p�p� q

q
p�p� S

p�
p��p ; (2)8>>><>>>:

b1�
p
1

�
2

p�

� p
(p�p�)

(q)
p�q0
p�p� (q0)

q0
p�p� S

p�
p��p � (�1)q�p �q

0

2 + a1 = 0

b2�
p
2

�
2

p�

� p
(p�p�)

(q0)
p�q
p�p� q

q
p�p� S

p�
p��p � �q1�

q0�p
2 + a2 = 0 (3)

(4.11)

We have

b1

�
2

p�

� p
(p�p�)

(q)
p�q0
p�p� (q0)

q0
p�p� S

p�
p��p �2p1

+a1�
p
1 �

 
a2�

p
2 + b2�

2p
2

�
2

p�

� p
(p�p�)

(q0)
p�q
p�p� q

q
p�p� S

p�
p��p

!
= 0;
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and we have

� = a21 + 4b1

�
2

p�

� p
(p�p�)

(q)
p�q0
p�p� (q0)

q0
p�p� S

p�
p��p [a2�

p
2

+b2�
2p
2

�
2

p�

� p
(p�p�)

(q0)
p�q
p�p� q

q
p�p� S

p�
p��p (4.12)

> 0;

we deduce that

�1 =

�
�a1 +

p
�
� 1
p

(2b1)
1
p

�
2

p�

� 1
(p�p�)

(q)
p�q0

(p�p�)P (q0)
q0

(p�p�)p S
p�

(p��p)p

;

by (4:11) we have

b2

�
2

p�

� p
(p�p�)

(q0)
p�q
p�p� q

q
p�p� S

p�
p��p �p2 (4.13)

�

�
�a1 +

p
�
� q
p

(2b1)
q
p

�
2

p�

� q
(p�p�)

(q)
(p�q0)q
(p�p�)P (q0)

qq0
(p�p�)p S

qp�
(p��p)p

�q
0�p
2 + a2 (4.14)

= 0 (4.15)

so, �2 is solution of (4:13) :

i) If a1 = a2 = 0; we have8>>>><>>>>:
�1 =

�
b2q

0

b1q

� 1
2p

�2

�2 =

 
(b2)

2p�q
2p (b1)

q
2p

�
2

p�

� p
(p�p�)

(q0)
2p(p�q)�q(p�p�)

2p(p�p�) q
q(p�p�)
2p(p�p�)S

p�
p��p

! 1
p��2p

Hence we have8>>>>>>>><>>>>>>>>:

u0" =

�
b2q

0

b1q

� 1
2p

�2u"

v0" = �2v"

�2 =

 
(b2)

2p�q
2p (b1)

q
2p

�
2

p�

� p
(p�p�)

(q0)
2p(p�q)�q(p�p�)

2p(p�p�) q
q(p�p�)
2p(p�p�)S

p�
p��p

! 1
p��2p

:
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ii) If a1 = 0 and a2 6= 0; we have by (4:11)

B�p2 � A

 
a2�

(p��2p+q0)p
q

2 + C�
(p��p)2p

q

2

! q
2p

+ a2 = 0

where

A =

 
4b1

�
2

p�

� p
(p�p�)

(q)
p�q0
p�p� (q0)

q0
p�p� S

p�
p��p

! q
2p

(2b1)
q
p

�
2

p�

� q
(p�p�)

(q)
(p�q0)q
(p�p�)P (q0)

qq0
(p�p�)p S

qp�
(p��p)p

B = b2

�
2

p�

� p
(p�p�)

(q0)
p�q
p�p� q

q
p�p� S

p�
p��p

C = b2

�
2

p�

� p
(p�p�)

(q0)
p�q
p�p� q

q
p�p� S

p�
p��p :

We de�ne

f(x) = Bxp � A

�
a2x

(p��2p+q0)p
q + Cx

(p��p)2p
q

� q
2p

+ a2

then

f 0(x) = pBxp�1

� q
2p
A

�
a2

(p��2p+q0)p
q

x
(p��2p+q0)p�q

q + C (p��p)2p
q

x
(p��p)2p�q

q

�
�
�
a2x

(p��2p+q0)p
q + Cx

(p��p)2p
q

� q
2p
�1

= xp�1[pB

� q
2p
A

�
a2

(p��2p+q0)p
q

x
(q0�p)2p

q + C (p��p)2p
q

x
(q0�p)2p+qp

q

��
a2x

(p��2p+q0)p
q + Cx

(p��p)2p
q

� q
2p
�1

]

and g (x) = pB

� q
2p
A

�
a2

(p��2p+q0)p
q

x
(q0�p)2p

q + C (p��p)2p
q

x
(q0�p)2p+qp

q

��
a2x

(p��2p+q0)p
q + Cx

(p��p)2p
q

� q
2p
�1

:

iii) If a1 6= 0 and a2 = 0; we have by (4:12)

� = a21 + 4b1b2

�
2

p�

� 2p
(p�p�)

(q0)
p�q+q0
p�p� (q)

p�q0+q
p�p� S

2p�
p��p �2p2
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then (4:13) implies

f (�2) = b2

�
2

p�

� p
(p�p�)

(q0)
p�q
p�p� q

q
p�p� S

p�
p��p �p2

� (�a1+
p
�)

q
p

(2b1)
q
p

0@ 2
p�

1A
q

(p�p�)
(q)

(p�q0)q
(p�p�)P (q0)

qq0
(p�p�)p S

qp�
(p��p)p

�q
0�p
2

= 0

f (�2) = b2

�
2

p�

� p
(p�p�)

(q0)
p�q
p�p� q

q
p�p� S

p�
p��p �p2

�

0BBBBB@
�a1+

vuuuuta21+4b1b2
0@ 2
p�

1A
2p

(p�p�)
(q0)

p�q+q0
p�p� (q)

p�q0+q
p�p� S

2p�
p��p �2p2

2b1

0@ 2
p�

1A
p

(p�p�)
(q)

p�q0
p�p� (q0)

q0
p�p� S

p�
p��p

1CCCCCA

q
p

�q
0�p
2

= 0

f (�2) = b2

�
2

p�

� p
(p�p�)

(q0)
p�q
p�p� q

q
p�p� S

p�
p��p �p2

�( �a1

2b1

0@ 2
p�

1A
p

(p�p�)
(q)

p�q0
p�p� (q0)

q0
p�p� S

p�
p��p

+

vuuuuuut
a21+4b1b2

0@ 2
p�

1A
2p

(p�p�)
(q0)

p�q+q0
p�p� (q)

p�q0+q
p�p� S

2p�
p��p �2p2

(2b1)
2

0@ 2
p�

1A
2p

(p�p�)
(q)

2
p�q0
p�p� (q0)

2q0
p�p� S

2p�
p��p

)
q
p �q

0�p
2

= 0:

Let

C1 =
a1

2b1

0@ 2
p�

1A
p

(p�p�)
(q)

p�q0
p�p� (q0)

q0
p�p� S

p�
p��p

then  
b2

�
2

p�

� p
(p�p�)

(q0)
p�q
p�p� q

q
p�p� S

p�
p��p

!
�p2

�
 
�
(q0�p)p+1

q

2

q
C21 +

q0b2
qb1
�2p2 � C1�

(q0�p)p+1
q

2

! q
p

�p2 = 0
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b2

�
2

p�

� p
(p�p�)

(q0)
p�q
p�p� q

q
p�p� S

p�
p��p

!
�p2

�
 r

�
2(q0�p)p+2

q

2 C21 +
q0b2
qb1
�
2(q0�p)p+2+2pq

q

2 � C1�
(q0�p)p+1

q

2

! q
p

�p2 = 0 
b2

�
2

p�

� p
(p�p�)

(q0)
p�q
p�p� q

q
p�p� S

p�
p��p

!
�p2

�
 r

�
2(q0�p)p+2

q

2 C21 +
q0b2
qb1
�
2(p��p)p+2

q

2 � C1�
(q0�p)p+1

q

2

! q
p

�p2 = 0

 
b2

�
2

p�

� p
(p�p�)

(q0)
p�q
p�p� q

q
p�p� S

p�
p��p

! p
q

+ C1�
(q0�p)p+1

q

2

=

s
�
2(q0�p)p+2

q

2 C21 +
q0b2
qb1

�
2(p��p)p+2

q

2

then we have  
C2 + C1�

(q0�p)p+1
q

2

!2
= �

2(q0�p)p+2
q

2 C21 +
q0b2
qb1

�
2(p��p)p+2

q

2

where C2 =

 
b2

�
2

p�

� p
(p�p�)

(q0)
p�q
p�p� q

q
p�p� S

p�
p��p

! p
q

we obtain that

C22 + C21�
2(q0�p)p+2

q

2 + 2C2C1�
(q0�p)p+1

q

2 = �
2(q0�p)p+2

q

2 C21 +
q0b2
qb1

�
2(p��p)p+2

q

2 :

Let

f (�2) =
q0b2
qb1

�
2(p��p)p+2

q

2 � 2C2C1�
(q0�p)p+1

q

2 � C22 = 0

f 0 (�2) =
2 (p� � p) p+ 2

q

q0b2
qb1

�
2(p��p)p+2

q
�1

2 � 2(q
0 � p) p+ 1

q
C2C1�

(q0�p)p+1
q

�1
2

if q0 > p; we have

if f 0 (�2) = 0 we have �
0
2 =

�
2 (q0�p)p+1
2(p��p)p+2

qb1
q0b2

C2C1

� q

[2p��p�q0]p+1
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such that f
�
�02
�
< 0; then there exist �12 such that f

�
�12
�
= 0:

Hence we have 8>><>>:
u0" =

�
b2q

0

b1q

� 1
2p

�12u"

v0" = �12v":

where �12 is solution of
q0b2
qb1
�
2(p��p)p+2

q

2 � 2C2C1�
(q0�p)p+1

q

2 � C22 = 0

and

C1 = a1

2b1

0@ 2
p�

1A
p

(p�p�)
(q)

p�q0
p�p� (q0)

q0
p�p� S

p�
p��p

C2 =

 
b2

�
2

p�

� p
(p�p�)

(q0)
p�q
p�p� q

q
p�p� S

p�
p��p

! p
q

:

iv) If a1; a2 6= 0; we have

B�p2 �

�
�a1 +

p
�
� q
p

A
q
p

�q
0�p
2 + a2 = 0

and � = a21 + 2A
�
a2�

p
2 +B�2p2

�
; where

A = 2b1

�
2

p�

� p
(p�p�)

(q)
p�q0
p�p� (q0)

q0
p�p� S

p�
p��p

B = b2

�
2

p�

� p
(p�p�)

(q0)
p�q
p�p� q

q
p�p� S

p�
p��p :

So

BA
q
p �p2 + A

q
pa2 =

�
�a1 +

q
a21 + 2A

�
a2�

p
2 +B�2p2

�� q
p

�q
0�p
2�

BA
q
p �2p�q

0

2 + A
q
p �
�(q0�p)
2 a2

� p
q
+ a1 =

q
a21 + 2A

�
a2�

p
2 +B�2p2

�
�
BA

q
p �2p�q

0

2 + A
q
p �
�(q0�p)
2 a2

� 2p
q
+ 2

�
BA

q
p �2p�q

0

2 + A
q
p �
�(q0�p)
2 a2

� p
q
a1 = 2A

�
a2�

p
2 +B�2p2

�
A2
�
[B�p2 + a2] �

p�q0
2

� 2p
q
+ 2

�
[B�p2 + a2] �

p�q0
2

� p
q
Aa1 = 2A (a2 +B�p2) �

p
2

A
�
[B�p2 + a2] �

p�q0
2

� 2p
q
+ 2

�
[B�p2 + a2] �

p�q0
2

� p
q
a1 = 2 (a2 +B�p2) �

p
2:

(4.16)
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Then there exist �2> 0 such that �2 is solution of (4:16) :

4.4 Geometric conditions of the Mountain Pass

Theorem

In �rst we verify that I3 satis�es the geometric conditions of the Mountain Pass

Theorem.

The following assumptions are used in this section :

(H4) p
� = 2p; a2 = a2 = 0; b1; b2 > S�2q;q0 :

(H5) p
� = 2p; b1; b2 � S�2q;q0 ; a1; a2 > 0:

Lemma 4.4 Let f 2 W �n f0g ; a = max (a1; a2), b = max (b1; b2) � 0: Then there

exist positive numbers �1; �1and �
�
1; �

�
2; �

�
3 > 0 such that

I3(u; v) � �1 > 0; with ku; vk = �1;

and 8>>>>>><>>>>>>:
�1 � ��1 if �1 6= 0 and �2 = 0

�2 � ��2 if �1 = 0 and �2 6= 0

min (�1; �2) � ��3 if �1 6= 0 and �2 6= 0

(4.17)

and

I3(u; v) �

8>><>>:
�p�1

p

�a
2

� �1
p�1
�
(�1 kfkW �)

p
p�1 + (�2 kgkW �)

p
p�1

�
if (H4)

�2p�1
2p

�
b
4

�� 1
2p�1

h
(�1 kfkW �)

2p
2p�1 + (�2 kgkW �)

2p
2p�1

i
if (H5)

for all (u; v) 2 B�1 (0; 0) :
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Proof. Let (u; v) 2 W 1;pn f(0; 0)g � W 1;pn f(0; 0)g, a = max (a1; a2) and b =

max (b1; b2) � 0;

I3(u; v) =
1

2p

�
b1 kuk2p + b2 kvk2p

�
+
1

p
(a1 kukp + a2 kvkp)

� 2
p�

Z
RN

jujqjvjq0dx�
Z
RN

�1f (x)u+ �2g (x) vdx

� b

2p

�
kuk2p + kvk2p

�
+
a

p
(kukp + kvkp)

� 2
p�

Z
RN

jujqjvjq0dx�
Z
RN

�1f (x)u+ �2g (x) vdx

by the elementary inequality

x2 + y2 � 1

2
(x+ y)2

we have that

I3(u; v) � b

4p
(kukp + kvkp)2 + a

p
(kukp + kvkp)

� 2
p�

Z
RN

jujqjvjq0dx�
Z
RN

�1f (x)u+ �2g (x) vdx

� b

4p
ku; vk2p + a

p
ku; vkp

� 2
p�

Z
RN

jujqjvjq0dx�
Z
RN

�1f (x)u+ �2g (x) vdx

by the de�nition of Sq;q0, we have

I3(u; v) � b

4p
ku; vk2p + a

p
ku; vkp � 2

p�
S
�p�=p
q;q0 ku; vkp

�

��1 kfkW � kuk � �2 kgkW � kvk :

When b � 0; a > 0 and p� � 2p; we have that

I3(u; v) � a

p
ku; vkp � 2

p�
S
�p�=p
q;q0 ku; vkp

�

�
�a
2

��1
p
�1 kfkW �

�a
2

� 1
p kuk �

�a
2

��1
p
�2 kgkW �

�a
2

� 1
p kvk
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by the elementary inequality

xy <
xp

p
+
yq

q
; x > 0; y > 0 such that

1

p
+
1

q
= 1

we have that

I3(u; v) � a

p
k(u; v)kp � p

p�
S
�p�=p
q;q0 k(u; v)kp

�

�p� 1
p

��a
2

��1
p
�1 kfkW �

� p
p�1

� 1
p

��a
2

� 1
p kuk

�p
�p� 1

p

��a
2

��1
p
�2 kgkW �

� p
p�1

� 1
p

��a
2

� 1
p kvk

�p
� a

p
ku; vkp � 2

p�
S
�p�=p
q;q0 ku; vkp

�
� a

2p
kukp

� a

2p
kvkp � p� 1

p

��a
2

��1
p
�1 kfkW �

� p
p�1

� p� 1
p

��a
2

��1
p
�2 kgkW �

� p
p�1

� a

2p
ku; vkp � 2

p�
S
�p�=p
q;q0 ku; vkp

�

�p� 1
p

��a
2

��1
p
�1 kfkW �

� p
p�1

� p� 1
p

��a
2

��1
p
�2 kgkW �

� p
p�1

:

Let � = ku; vk we have that

I3(u; v) � a

2p
�p � 2

p�
S
�p�=p
q;q0 �p

�

�p� 1
p

��a
2

��1
p
�1 kfkW �

� p
p�1

� p� 1
p

��a
2

��1
p
�2 kgkW �

� p
p�1

:

Now we consider the function h : R+ ! R�; given by

h (�) =
a

2p
�p � 2

p�
S
�p�=p
q;q0 �p

�

direct calculation shows that

h (�) � 0 for all � � �1 with �1 =
�
a

2p
S
p�=p
q;q0

� 1
p��p

we immediately derive that

I3(u; v)jB�1 (0;0) � �
p� 1
p

�a
2

� �1
p�1
h
(�1 kfkW �)

p
p�1 + (�2 kgkW �)

p
p�1

i
:



83

So, for ku; vk = �1 we have

I3(u; v) � h (�1)�
p� 1
p

�a
2

� �1
p�1
h
(�1 kfkW �)

p
p�1 + (�2 kgkW �)

p
p�1

i
� 1

p
h (�1) +

p� 1
p

h (�1)�
p� 1
p

�a
2

� �1
p�1
h
(�1 kfkW �)

p
p�1 + (�2 kgkW �)

p
p�1

i
� 1

p
h (�1)

for

h (�1) �
�a
2

� �1
p�1
�
(�1 kfkW �)

p
p�1 + (�2 kgkW �)

p
p�1

�

�

8>><>>:
�a
2

� �1
p�1
(�1 kfkW �)

p
p�1 if �1 6= 0 and �2 = 0�a

2

� �1
p�1
(�2 kgkW �)

p
p�1 if �1 = 0 and �2 6= 0.

:

Finally, we obtain

I3(u; v) �
1

p
h (�1) =

p� � p

pp�
S

p
p��p
q;q0

�
a

2p

� p�
p��p

;

for

0 < �1 �
�
1

p

� p�(p�1)
p(p��p)

�
p� � p

p�

� p�1
p

S
p�1
p��p
q;q0

�a
2

� p��1
p��p kfk�1W � and �2 = 0

or

0 < �2 �
�
1

p

� p�(p�1)
p(p��p)

�
p� � p

p�

� p�1
p

S
p�1
p��p
q;q0

�a
2

� p��1
p��p kgk�1W � and �1 = 0

and if �1 6= 0, �2 6= 0 we have

min(�1; �2) �
�
1

p

� p�(p�1)
p(p��p)

�
p� � p

p�

� p�1
p �a

2

� p��1
p��p

S
p�1
p��p
q;q0 (kfk

�1
W � + kgk�1W �):

Then we can choose �1; �1and �
�
1; �

�
2; �

�
3 such that

�1 =
p� � p

pp�
S

p
p��p
q;q0

�
a

2p

� p�
p��p

; �1 =

�
a

2p
S
p�=p
q;q0

� 1
p��p

;

��1 =

�
1

p

� p�(p�1)
p(p��p)

�
p� � p

p�

� p�1
p

S
p�1
p��p
q;q0

�a
2

� p��1
p��p kfk�1W � if �1 6= 0 and �2 = 0;



84

��2 =

�
1

p

� p�(p�1)
p(p��p)

�
p� � p

p�

� p�1
p

S
p�1
p��p
q;q0

�a
2

� p��1
p��p kgk�1W � if �1 = 0 and �2 6= 0;

and

��3 =

�
1

p

� p�(p�1)
p(p��p)

�
p� � p

p�

� p�1
p �a

2

� p��1
p��p

S
p�1
p��p
q;q0 (kfk

�1
W � + kgk�1W �) if �1 6= 0 and �2 6= 0

When b > 0; a = 0 and p� > 2p; we have that

I3(u; v) � b
4p
ku; vk2p � 2

p�S
�p�=p
q;q0 ku; vkp

�
� (�1 kfkW �) kuk � (�2 kgkW �) kvk

� b
4p
k(u; v)k2p � 2

p�S
�p�=p
q;q0 k(u; v)kp

�
�
�
�1
�
b
4

�� 1
2p kfkW �

� �
b
4

� 1
2p kuk

�
�
�2
�
b
4

�� 1
2p kgkW �

� �
b
4

� 1
2p kvk :

By the elementary inequality: xy < xp

p
+ yq

q
; x > 0; y > 0 such that 1

p
+ 1

q
= 1 we

have that

I3(u; v) � b

4p
ku; vk2p � 2

p�
S
�p�=p
q;q0 ku; vkp

�
� 2p� 1

2p

 
�1

�
b

4

�� 1
2p

kfkW �

! 2p
2p�1

� b

8p
kuk2p

�2p� 1
2p

 
�2

�
b

4

�� 1
2p

kgkW �

! 2p
2p�1

� b

8p
kvk2p

� b

4p
k(u; v)k2p � 2

p�
S
�p�=p
q;q0 k(u; v)kp

�
� 2p� 1

2p

 
�1

�
b

4

�� 1
2p

kfkW �

! 2p
2p�1

� b

8p
kuk2p

�2p� 1
2p

 
�2

�
b

4

�� 1
2p

kgkW �

! 2p
2p�1

� b

8p
kvk2p

=
b

8p

�
kuk2p + kvk2p + 4 kukp kvkp

�
� p

p�
S
�p�=p
q;q0 k(u; v)kp

�

�2p� 1
2p

24 �1� b
4

�� 1
2p

kfkW �

! 2p
2p�1

+

 
�2

�
b

4

�� 1
2p

kgkW �

! 2p
2p�1
35

>
b

8p

�
kuk2p + kvk2p + 2 kukp kvkp

�
� 2

p�
S
�p�=p
q;q0 k(u; v)kp

�

�2p� 1
2p

24 �1� b
4

�� 1
2p

kfkW �

! 2p
2p�1

+

 
�2

�
b

4

�� 1
2p

kgkW �

! 2p
2p�1
35
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=
b

8p
k(u; v)k2p � 2

p�
S
�p�=p
q;q0 k(u; v)kp

�

�2p� 1
2p

�
b

4

�� 1
2p�1 h

(�1 kfkW �)
2p

2p�1 + (�2 kgkW �)
2p

2p�1

i
:

Let � = k(u; v)k we have that

I3(u; v) � b

8p
�2p � 2

p�
S
�p�=p
q;q0 �p

�

�2p� 1
2p

�
b

4

�� 1
2p�1 h

(�1 kfkW �)
2p

2p�1 + (�2 kgkW �)
2p

2p�1

i
:

Now we consider the function h : R+ ! R�; given by

h (�) = � 2
p�
S
�p�=p
q;q0 �p

�
+

b

8p
�2p

and

h0 (�) = �2p�1
�
�pS�p

�=p
q;q0 �p

��2p +
b

4

�
:

Thus, h0 (�) = 0 has a unique positive solution �1 =
�
b

4p
S
p�=p
q;q0

� 1
p��2p

: Thus, direct

calculation shows that

h (�) � 0 for all � � �1,

we immediately derive that

I3(u; v)jB�1 (0;0) � �
2p� 1
2p

�
b

4

�� 1
2p�1 h

(�1 kfkW �)
2p

2p�1 + (�2 kgkW �)
2p

2p�1

i
:

So, for ku; vk = �1 we have

I3(u; v) � h (�1)�
2p� 1
2p

�
b

4

�� 1
2p�1 h

(�1 kfkW �)
2p

2p�1 + (�2 kgkW �)
2p

2p�1

i
� 1

2p
h (�1) +

2p� 1
2p

h (�1)�
2p� 1
2p

�
b

4

�� 1
2p�1 h

(�1 kfkW �)
2p

2p�1 + (�2 kgkW �)
2p

2p�1

i
� 1

2p
h (�1)
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for

h (�1) �
�
b

4

�� 1
2p�1 h

(�1 kfkW �)
2p

2p�1 + (�2 kgkW �)
2p

2p�1

i

�

8>><>>:
�
b
4

� �1
2p�1 (�1 kfkW �)

2p
2p�1 if �1 6= 0 and �2 = 0�

b
4

� �1
2p�1 (�2 kgkW �)

2p
2p�1 if �1 = 0 and �2 6= 0.

:

Finally, we obtain

I3(u; v) �
p� � 2p
4pp�

S
2p�

p��2p
q;q0

�
b

4p

� p�
p��2p

;

for 8>>>>>>><>>>>>>>:
�1 �

�
b
4

� 1
2p

24p��2p
2p� S

2p�
p��2p
q;q0

�
b

4p

� p�
p��2p

35
2p

2p�1

kfk�1W � if �1 6= 0 and �2 = 0

�2 �
�
b
4

� 1
2p

24p��2p
2p� S

2p�
p��2p
q;q0

�
b

4p

� p�
p��2p

35
2p

2p�1

kgk�1W � if �1 = 0 and �2 6= 0,

and if �1 6= 0, �2 6= 0;we have

min(�1; �2) �
�
b

4

� 1
2p

24p� � 2p
2p�

S
2p�

p��2p
q;q0

�
b

4p

� p�
p��2p

35
2p

2p�1

(kfk�1W � + kgk�1W �):

Then we can choose �1; �1and �
�
1; �

�
2; �

�
3 are positives such that

�1 =
p� � 2p
4pp�

S
2p�

p��2p
q;q0

�
b

4p

� p�
p��2p

;

�1 =

�
b

4p
S
p�=p
q;q0

� 1
p��2p

and 8>>>>>>><>>>>>>>:
��1 =

�
b
4

� 1
2p

24p��2p
2p� S

2p�
p��2p
q;q0

�
b

4p

� p�
p��2p

35
2p

2p�1

kfk�1W � if �1 6= 0 and �2 = 0

��2 =
�
b
4

� 1
2p

24p��2p
2p� S

2p�
p��2p
q;q0

�
b

4p

� p�
p��2p

35
2p

2p�1

kgk�1W � if �1 = 0 and �2 6= 0



87

and if �1 6= 0 and �2 6= 0

��3 =

�
b

4

� 1
2p

24p� � 2p
2p�

S
2p�

p��2p
q;q0

�
b

4p

� p�
p��2p

35
2p

2p�1

(kfk�1W � + kgk�1W �)

This completes the proof of Lemma.

4.5 Palais Smale condition

Lemma 4.5 Suppose that f ; g 2 W �n f0g and assume that (H4) or (H5) holds. Let

c 2 R and (un; vn) � W 1;p
�
RN
�
�W 1;p

�
RN
�
be a Palais Smale sequence for I3,

then

(un; vn)* (u; v) in W 1;p
�
RN
�
�W 1;p

�
RN
�
;

for some (u; v) 2 W 1;p
�
RN
�
�W 1;p

�
RN
�
with I 03 (u; v) = 0:

Proof. Let (un; vn) � W 1;p
�
RN
�
�W 1;p

�
RN
�
be a Palais Smale sequence for I3

such that

I3 (un; vn)! c 2 R

and

I 03 (un; vn)! 0:

We have

c+ on (1) = I3 (un; vn)

on (1) = hI 03 (un; vn) ; (un; vn)i ;

that is

c+ o (kun; vnk) = I3 (un; vn)�
1

p�
hI 03 (un; vn) ; (un; vn)i
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c+ o (kun; vnk) =
1

2p

�
b1 kunk2p + b2 kvnk2p

�
+
1

p
(a1 kunkp + a2 kvnkp)

� 2
p�

Z
RN

junjqjvnjq
0
dx�

Z
RN

�1f (x)un + �2g (x) vndx

� 1
p�
�
b1 kunk2p + b2 kvnk2p

�
� 1

p�
(a1 kunkp + a2 kvnkp)

+
2

p�

Z
RN

junjqjvnjq
0
dx+

1

p�

Z
RN

�1f (x)un + �2g (x) vndx

=
p� � 2p
2pp�

�
b1 kunk2p + b2 kvnk2p

�
+
p� � p

pp�
(a1 kunkp + a2 kvnkp)

�p
� � 1
p�

Z
RN

f (x)un�1 + �2g (x) vndx;

using a = max (a1; a2) and b = max (b1; b2), we have

c+ o (kun; vnk) � p� � 2p
4pp�

b k(un; vn)k2p + a
p� � p

pp�
k(un; vn)kp

�p
� � 1
p�

Z
RN

�1f (x)un + �2g (x) vndx:

Then (un; vn) is bounded inW 1;p
�
RN
�
�W 1;p

�
RN
�
: Up to a subsequence if necessary,

we obtain

(un; vn) * (u; v) in W 1;p
�;�

�
RN
�
�W 1;p

�;�

�
RN
�

(un; vn) * (u; v) in Lp
� �RN� ;

(un; vn) ! (u; v) a. e. in RN � RN

and Z
RN

f (x)undx !
Z
RN

f (x)udx

Z
RN

g (x) vndx !
Z
RN

g (x) vdx:

Then

hI 03 (un; vn) ; (';  )i = 0 for all (';  ) 2 C10
�
RN
�
;
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thus I 03(u; v) = 0: This completes the proof.

4.6 Existence of a critical point with negative en-

ergy

In this section we prove the existence of critical point with negative energy.

Theorem 4.6 Suppose that f; g 2 W �n f0g and assume that (H4) or (H5) holds, then

there exist constants ��1; �
�
2; �

�
3 > 0 such that for any �1; �2 verifying (4:17), system

(4:1) has a solution (u1; v1) with negative energy.

Proposition 4.7 Let f; g 2 W �n f0g and p� � 2p: For all �1; �2verifying (4:17) ;

there exists a nontrivial solution (u1; v1) of (4:1) with negative energy.

Proof. First, by Lemma 4.4, we can de�ne

c1 = inf
�
I3 (u; v) ; (u; v) 2 B�1 (0; 0)

	
(4.18)

:Now we claim that �1 < c1 < 0. As f; g 2 W �n f0g we can choose '1; '1 2

W 1;p
�
RN
�
�W 1;p

�
RN
�
such that

Z
RN

f (x)'1dx or
Z
RN

g (x)'2dx > 0:

Then, for a �xed �1 and �2 in (4:17), there exists t0 > 0 such that t0 k'1; '2k < �1

and I3 (t0'1; t0'2) < 0 for t 2 ]0; t0[ :

Hence,

c1 < I3(0; 0) = 0:
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Using the Ekeland�s variational principle, for the complete metric space B�1 (0; 0) with

respect to the norm ofW 1;p
�
RN
�
, we obtain the existence of a Palais-Smale sequence

(un; vn) 2 B�1 (0; 0) at level c1; and from Lemma 4.4 we have (un; vn) * (u1; v1) in

W 1;p
�
RN
�
�W 1;p

�
RN
�
for some (u1; v1) with ku1; v1k < �1.

Now, we shall show that (un; vn) ! (u1; v1) in W 1;p
�
RN
�
�W 1;p

�
RN
�
: Suppose

otherwise, then ku1; v1k <limn!+1 kun; vnk ; which implies that

c1 � I3 (u1; v1)

= I3 (u1; v1)�
1

p�
hI 03 (u1; v1) ; (u1; v1)i

=
p� � 2p
2pp�

�
b1 ku1k2p + b2 kv1k2p

�
+
p� � p

pp�
(a1 ku1kp + a2 kv1kp)

�p
� � 1
p�

Z
RN

f (x)u1�1 + �2g (x) v1dx;

< limn!+1

�
p� � 2p
2pp�

�
b1 kunk2p + b2 kvnk2p

�
+
p� � p

pp�
(a1 kunkp + a2 kvnkp)

�p
� � 1
p�

Z
RN

f (x)un�1 + �2g (x) vndx

35 ;
= limn!+1

�
I3 (un; vn)�

1

p�
hI 03 (un; vn) ; (un; vn)i

�
= c1:

This is a contradiction, we conclude that (un; vn)! (u1; v1) strongly inW 1;p
�
RN
�
�

W 1;p
�
RN
�
: Therefore, I 03 (u1; v1) = 0 and I3 (u1; v1) = c1 < 0:

Thus (u1; v1) is a critical point of I3 i.e. (u1; v1) is a weak solution of (4:1) : As

I3 (0; 0) = 0 and I3 (u1; v1) < 0 then, (u1; v1) 6= (0; 0) : Thus (u1; v1) is a nontrivial

solution of (4:1) with negative energy.

Now assume that a1 = a2 = 1 and b1 = b2 = 0:
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Let

C� =

�
1

p
� 1

p�

��
1

2
S

p�
p

q;q0

� p
p��p

: (4.19)

Next, we prove an important lemma which ensures the local compactness of the Palais

Smale sequence for I3:

Lemma 4.8 Suppose that f; g 2 W �n f0g. Then if (un; vn) � W 1;p
�
RN
�
�W 1;p

�
RN
�

is a Palais Smale sequence for I3 for some c 2 R;then

either (un; vn)! (u; v) or c � I3 (u; v) + C�:

Proof. By the proof of Lemma 4:5 we have (un; vn) is a bounded sequence in

W 1;p
�
RN
�
�W 1;p

�
RN
�
and (un; vn) ! (u; v) in W 1;p

�
RN
�
�W 1;p

�
RN
�
for some

(u; v) 2 W 1;p
�
RN
�
�W 1;p

�
RN
�
with I 03 (u; v) = 0:

Furthermore, if we write wn = un � u and tn = vn � v, we derive

(un; vn) ! (0; 0) in W 1;p
�
RN
�
�W 1;p

�
RN
�

(un; vn) ! (0; 0) in Lp
� �RN� ;

(un; vn) ! (u; v) a. e. in RN ,

and Z
RN

f (x)wndx! 0, (4.20)

Z
RN

g (x) tndx! 0;

and by using Brézis-Lieb we have

kunkp = kwnkp + kukp + on (1) (4.21)
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and

kvnkp = ktnkp + kvkp + on (1) ;

and by a similar argument of [32] and Lemma 4:4 we have

Z
RN

junjq jvnjq
0
dx =

Z
RN

jwnjq jtnjq
0
dx+

Z
RN

jujq jvjq0dx+ on (1) :

Using together (4:20) ; (4:21) and [32]

I 03 (un; vn)! 0 as n! +1 (4.22)

and

I3 (un; vn)! c as n! +1 :

Therefore,

c+ on (1) = I3 (un; vn)�
1

p�
hI 03 (un; vn) ; (un; vn)i ;

so

c+ on (1) =
1

p
(kunkp + kvnkp)�

2

p�

Z
RN

junjq jvnjq
0

�
Z
RN

�1f (x)un + �2g (x) vndx

� 1
p�
(kunkp + kvnkp) +

2

p�

Z
RN

junjq jvnjq
0

+
1

p�

Z
RN

�1f (x)un + �2g (x) vndx;
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this implique that

c+ on (1) =
1

p
(kwnkp + kukp + ktnkp + kvkp)

� 1
p�
(kwnkp + kukp + ktnkp + kvkp)

�
Z
RN

�1f (x)u+ �2g (x) vdx

+
1

p�

Z
RN

�1f (x)u+ �2g (x) vdx;

and

c+ on (1) =

�
1

p
� 1

p�

�
(kwnkp + ktnkp) +

1

p
(kukp + kvkp)

� 2
p�

Z
RN

jujqjvjq0dx�
Z
RN

�1f (x)u+ �2g (x) vdx

� 1
p�
(kukp + kvkp) + 1

p�

Z
RN

�1f (x)u+ �2g (x) vdx

+
2

p�

Z
RN

jujqjvjq0dx:

We obtain

c+ on (1) �
�
1

p
� 1

p�

�
(kwnkp + ktnkp) + I 03 (u; v)�

1

p�
hI 03 (u; v) ; (u; v)i : (4.23)

Consequently,

c+ on (1) � I3 (u; v) +

�
1

p
� 1

p�

�
(kwnkp + ktnkp) ,

using

c+ on (1) � I3 (u; v) +

�
1

p
� 1

p�

�
kwn; tnkp : (4.24)

By the de�nition of Sq;q0 and (4:23) we obtainZ
RN

jwnjq jtnjq
0
dx+ on (1) =

1

2
(kwnkp + ktnkp) + on (1)
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then Z
RN

jwnjq jtnjq
0
dx+ on (1) � S

�p�=p
q;q0 kwn; tnkp

�
: (4.25)

On the other hand, (4:25)we have

1

2
(kwnkp + ktnkp) + on (1) � S

�p�=p
q;q0 kwn; tnkp

�
: (4.26)

So (4:26) becomes

1

2
kwn; tnkp + on (1) � S

�p�=p
q;q0 kwn; tnkp

�
: (4.27)

Assume that kwn; tnk ! l > 0, then by (4:27) we obtain

1

2
lp � S

�p�=p
q;q0 lp

�
;

this implies that

S
� p�

p

q;q0 l
p��p � 1

2
� 0

we obtain

l �
�
1

2
S

p�
p

q;q0

� 1
p��p

:

Using (4:24), consequently

c � I3 (u; v) +

�
1

p
� 1

p�

�
lp

� I3 (u; v) +

�
1

p
� 1

p�

��
1

2
S

p�
p

q;q0

� p
p��p

� I3 (u; v) + C�:
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4.7 Existence of a critical point with positive en-

ergy

Now, we proof the existence of a Mountain Pass type solution.

Lemma 4.9 Suppose that f; g 2 W �n f0gsuch that
R
RN f (x)u"dx 6= 0;

R
RN g (x) v"dx 6=

0 and a1 = a2 = 1 and b1 = b2 = 0: Then there exists (u0"; v
0
") 2 W 1;p

�
RN
�
�W 1;p

�
RN
�

and ���1 , �
��
2 ; �

��
3 > 0 such that8>>>>>><>>>>>>:

�1 � ���1 if �1 6= 0 and �2 = 0

�2 � ���2 if �1 = 0 and �2 6= 0

min (�1; �2) � ���3 if �1 6= 0 and �2 6= 0

(4.28)

and

sup
t�0

I3 (tu
0
"; tv

0
") < c1 + C� for all ���1 ; �

��
2 ; �

��
3 > 0

where c1; C� are given in (4:18) and (4:19) respectively.:

Proof. Let

h(t) = I3 (tu
0
"; tv

0
") =

tp

p

�
ku0"k

p
+ kv0"k

p�
� 2
p�
tp
�
Z
RN

ju0"jqjv0"jq
0
dx� t

Z
RN

�1f (x)u
0
" + �2g (x) v

0
"dx:)

and

p(t) =
tp

p

�
ku0"k

p
+ kv0"k

p�� 2

p�
tp
�
Z
RN

ju0"jqjv0"jq
0
dx

p0(t) = tp�1
�
ku0"k

p
+ kv0"k

p�� 2tp��1 Z
RN

ju0"jqjv0"jq
0
dx:
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Then there exists t� > 0 such that p0(t) = 0; we have

t" =

0BB@ ku0"k
p + kv0"k

p

2

Z
RN
ju0"jqjv0"jq

0dx

1CCA
1

p��p

(4.29)

the above estimate on p (t) yields

max
t�0

p (t) = p (t") =
tp"
p

�
ku0"k

p
+ kv0"k

p�� 2

p�
tp
�

"

Z
RN

ju0"jqjv0"jq
0
dx (4.30)

from p0 (t") = 0 ,we have

tp
�

"

Z
RN

ju0"jqjv0"jq
0
dx =

tp"
2

�
ku0"k

p
+ kv0"k

p�
;

become (4:29) and (4:30)

t" =

0BB@ ku0"k
p + kv0"k

p

2

Z
RN
ju0"jqjv0"jq

0dx

1CCA
1

p��p

= 1

and

max
t�0

p (t) = p (t") = tp"
�
ku0"k

p
+ kv0"k

p�� tp"
p�
�
ku0"k

p
+ kv0"k

p�
=

�
1

p
� 1

p�

��
ku0"k

p
+ kv0"k

p�
=

�
1

p
� 1

p�

�
2

p
(p�p�)S

p�
p��p
q;q0

=

�
1

p
� 1

p�

��
1

2
S

p�
p

q;q0

� p
p��p

= C�:

By the above estimates, we deduce that sup
t�0

p(t) = C�:

Choosing ��3 de�ned in (4:17) such that

C� � p� 1
p

�
1

2

� �1
p�1

(��3)
p

p�1

h
kfk

p
p�1
W � + kgk

p
p�1
W �

i
> 0
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then there exists t1 2 (0; 1) such that

sup
0�t�t1

I3 (tu"1; tv"1) < C� � p� 1
p

�
1

2

� �1
p�1

(��3)
p

p�1

h
kfk

p
p�1
W � + kgk

p
p�1
W �

i
< C� � p� 1

p

�
1

2

� �1
p�1 h

k�1fk
p

p�1
W � + k�2gk

p
p�1
W �

i
for all �1; �2 verifying (4:17) : Moreover, since f; g 6= 0, we can choose "1 > 0 such

that
Z
RN
f (x)u"1dx;

Z
RN
f (x) v"1dx > 0 then

�p� 1
p

�
1

2

� �1
p�1 h

k�1fk
p

p�1
W � + k�2gk

p
p�1
W �

i
> ��1t1

Z
RN

f (x)u"1dx� �2t1

Z
RN

g (x) v"1dx

for each �1; �2 verifying (4:17) :

Then, for any �1; �2 verifying (4:17) ; one has

sup
t�t1

I3 (tu"1 ; tv"1) < C� � �1t1

Z
RN

f (x)u"1dx� �2t1

Z
RN

g (x) v"1dx

< C� � p� 1
p

�
1

2

� �1
p�1 h

k�1fk
p

p�1
W � + k�2gk

p
p�1
W �

i
:

Using Lemma 4:5 we see that

c1 � �
p� 1
p

�
1

2

� �1
p�1 h

(�1 kfkW �)
p

p�1 + (�2 kgkW �)
p

p�1

i
:

Therefore, we have

sup
t�0

I3 (tu"1; tv"1) < C� + c1.

Then we can choose8>>>>>><>>>>>>:
���1 <

�
p
p�1C

�
� p�1

p �1
2

� 1
p

h
kfk

p
p�1
W �

i� p�1
p

if �1 6= 0 and �2 = 0

���2 <
�

p
p�1C

�
� p�1

p �1
2

� 1
p

h
kgk

p
p�1
W �

i� p�1
p

if �1 = 0 and �2 6= 0

���3 <
�

p
p�1C

�
� p�1

p �1
2

� 1
p

h
kfk

p
p�1
W � + kgk

p
p�1
W �

i� p�1
p

if �1 6= 0 and �2 6= 0:
This concludes the proof of Lemma 4:9:
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Theorem 4.10 Suppose that f; g 2 W �n f0gsuch that
R
RN f (x)u"dx 6= 0;

R
RN g (x) v"dx 6=

0: a1 = a2 = 1 and b1 = b2 = 0: Then, there exists constants (�
��
1 ; �

��
2 ; �

��
3 ) > 0 such

that �1, �2 satisfying (4:28) ; such that the problem (4:1) has a nontrivial solution

(u2; v2) with positive energy .

Proof. Note that I3 (0; 0) = 0 and by the fact that

lim
t!1

I3 (tu
0
"; tv

0
") = �1 ;

then I3 (Tu
0
"; T v

0
") < 0 for T large enough; and by Lemma 4:7, we know that I3

is satisfying the geometry conditions of the Mountain Pass theorem. Then, by the

Mountain Pass theorem [6], there exists a Palais Smale sequence (un; vn) at level c2,

such that

I3 (un; vn)! c2 > 0 and I 03 (un; vn)! 0 as n! +1

with

0 < c2 = inf
2�

max
t2[0;1]

I3( (t) ; �(t)) < sup
t�0

I3(tu
0
"; tv

0
") < C� + c1;

for all �1, �2 satisfying (4:28) ; where for T large enough

� =
�
(; �) 2 C

�
[0; 1] ;W 1;p

�
RN
��
; (; �) (0; 0) = (0; 0) ; (; �) (1; 1) = (Tu0"; T v

0
")
	
:

Using Lemma 4:8 and Lemma 4:9 we have that (un; vn) has a subsequence, still

denoted by (u2; v2), such that (un; vn) ! (u2; v2) in W 1;p
�
RN
�
�W 1;p

�
RN
�
as n !

+1. Hence, it holds

I3 (u2; v2) = lim
n!+1

I3 (u2; v2) = c2 > 0;
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which implies that (u2; v2) 6= (0; 0) : Furthermore, from the continuity of I 03, we obtain

that (u2; v2) is a nontrivial solution with energy positive that follows immediately from

the preceding lemma. This completes the proof of theorem 4:10.
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Chapter 5

Perspectives

1) The existence of the second solution to the following nonhomogeneous elliptic

problem 8>>><>>>:
�div( jruj

p�2

jxjp� ru)� �
jujp�2

jxjp(�+1)
u =

jujp
��2

jxjp��
u+ f(x) in 
,

u = 0 on @
;

(5.1)

where 
 is a smooth bounded domain in RN (N � 3) containing 0 in its in-

terior, 1 < p < N; 0 � � < (N � p) =p; � � � < � + 1; �1 < � < � :=

[(N � (�+ 1) p) =p]p ; p� = pN= [N � p (1 + �� �)] is the critical Ca¤arelli-Kohn-

Nirenberg exponent; and f is function di¤erent than 0:

2) The existence of the second solution to the following Kirchho¤-type systems

involving the critical Sobolev exponent8>>>>>><>>>>>>:
�(a1 + b1 kukp) [div (jrujp�2ru)] = 2q

q+q0 juj
q�2u jvjq

0
+ �1f (x) ;

�(a2 + b2 kvkp) [div (jrvjp�2rv)] = 2q0

q+q0 juj
q jvjq

0�2 v + �2g (x) ;

(u; v) 2 W 1;p
�
RN
�
�W 1;p

�
RN
�
;

in RN (5.2)

101
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where 1 < p < N; a1; a2 � 0; b1; b2 > 0; q; q0 > 1; q + q0 = p�; p� = pN= [N � p] is

the critical Sobolev exponent, �1; �2 > 0 are parameters, f; g 2 W �n f0g :
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 :الملخص

 شبً انخطٍت غٍرانمتجاوست َ الأوظمت مه وُع كٍرشُف انتً  فً ٌذي الأطرَحت درسىا بعض انمعادلاث

نقذ اظٍروا َجُد حهُل مه خلال مبذا . تحتُي عهى الأس انحرج نسُبُنٍف اَ كافارنً ــ كُن ـ وٍرمبرج

 . اٌكلاوذ انمتغٍر َ وظرٌت ممر انجبم 

 انطرق انمتغٍرة ، وظرٌت ممر انجبم، مبذا اٌكلاوذ انمتغٍر، الأس انحرج نسُبُنٍف ، :الكلمات المفتاحية

 .الأس انحرج كافارنً ــ كُن ـ وٍرمبرج،  مشاكم كٍرشُف

 

 

Résumé : 

Dans cette thèse, nous avons considéré  quelques équations  et systèmes quasi 

linéaires elliptiques  non homogènes  de type Kirchhoff contenant l’exposant 

critique de Sobolev ou de Caffarelli-Kohn-Niremberg. , Nous avons montré 

l’existence des solutions par le principe variationel d’Ekeland et le Théorème de 

Pass Montagne. 

Les mots clés : Méthodes variationnelles, Théorème de Pass Montagne, Principe 

variationel d’Ekeland, Exposant critique de  Sobolev, Exposant critique de  

Caffarelli-Kohn-Niremberg , Problemes de Kirchhoff. 

 

 

Abstract: 

In this thesis we have considered some nonhomogeneous elliptic quasi-linear 

equations and systems of Kirchhoff type containing the critical exponent of 

Sobolev or of Caffarelli-Kohn-Niremberg. We have show the existence of 

solutions by Ekeland’s variational principle and Mountain Pass Theorem. 

Keywords: Variational methods, Mountain Pass Theorem, Ekeland Variational 

Principle, critical   exponent of Sobolev, critical exponent of Caffarelli-Kohn-

Niremberg, Kirchhoff  problems. 

 
 


