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Abstract 

 

 
 In remote sensing applications, state-of-the-art pansharpening methods generally 

improve the low spatial resolution (LSR) of multispectral (MS) images by injecting into them 

the spatial details extracted from the panchromatic (PAN) image with high spatial resolution 

(HSR). Different injection models are considered. Fusion performance is highly dependent on 

the precision of the modeling and the estimation of model parameters. This thesis presents an 

optimized pansharpening algorithm based on the combination of the well-known Intensity-

Hue-Saturation (IHS) method and multiscale analysis by using the “à trous” wavelets 

(ATWT). In this new approach, a combination of the energy and correlation coefficients 

between the MS bands and the PAN image is considered to make a new approximation of the 

weighting coefficients in the injection model. Then, the intensity component is extracted from 

the upsampled MS images by IHS transformation. The weighting coefficients of the intensity 

component are computed by using the average energy ratio between the low-pass version of 

the PAN image, obtained by ATWT transformation, and the MS bands in order to obtain more 

detail information. This last is then injected into the MS bands to obtain a pansharpened 

image with high spectral and spatial information. 

 The experimental results of the proposed approach, compared with many classical and 

advanced pansharpening methods, have confirmed that it can inject more spatial information 

and ensure better color preservation. Therefore, it can achieve a good compromise between 

spectral and spatial qualities. 

 

 

 

 

 

 

 

 

 

 

 



Résumé 

 

 
 Dans les applications de télédétection, les méthodes avancées de fusion améliorent 

généralement la faible résolution spatiale (LSR) des images multispectrales (MS) en y 

injectant les détails spatiaux extraits de l'image panchromatique (PAN) à haute résolution 

spatiale (HSR). Différents modèles d'injection sont considérés. Les performances de fusion 

dépendent fortement de la précision de la modélisation et de l'estimation des paramètres du 

modèle. Cette thèse présente un algorithme de fusion optimisé basé sur la combinaison de la 

méthode bien connue Intensité-Teinte-Saturation (IHS) et d'une analyse multi-échelle en 

utilisant les ondelettes « à trous » (ATWT). Dans cette nouvelle approche, une combinaison 

des coefficients d'énergie et de corrélation entre les bandes MS et l'image PAN est considérée 

pour donner une nouvelle approximation des coefficients de pondération dans le modèle 

d'injection. Ensuite, la composante d'intensité est extraite des images MS sur-échantillonnées 

par transformation IHS. Les coefficients de pondération de la composante d'intensité sont 

calculés en utilisant le rapport d'énergie moyen entre la version passe-bas de l'image PAN, 

obtenue par transformation ATWT, et les bandes MS afin d'obtenir des informations plus 

détaillées. Ces informations sont ensuite injectées dans les bandes MS pour obtenir une image 

fusionnée avec une haute information spectrale et spatiale. 

 Les résultats expérimentaux de l'approche proposée, comparés à de nombreuses 

méthodes de fusion classiques et avancées, ont confirmé qu'elle peut injecter plus 

d'informations spatiales et assurer une meilleure préservation des couleurs. Par conséquent, 

elle peut réaliser un bon compromis entre les qualités spectrales et spatiales. 

 

 

 

 

 

 

 

 

 

 

 



 ملخص

 

 

( MS( للصور متعددة الأطياف )LSRالحديثة بشكل عام على تحسين الدقة المكانية المنخفضة ) الاندماجفي تطبيقات الاستشعار عن بعد، تعمل طرق 

عتبار. يعتمد يتم أأخذ نماذج الحقن المختلفة بعين الا (.HSR( بدقة مكانية عالية )PANعن طريق حقن التفاصيل المكانية المس تخرجة من الصورة الشاملة )

نة تعتمد على مزيج من طريقة ) ( المعروفة IHSأأداء الاندماج بشكل كبير على دقة النمذجة وتقدير معلمات النموذج. تقدم هذه الرسالة خوارزمية محس ّ

الطاقة والارتباط بين . في هذا النهج الجديد ، تم اعتبار توليفة من معاملات "à trous  (ATWT)" طريقة والتحليل متعدد النطاقات باس تخدام

بواسطة  MS. بعد ذلك، يتم اس تخراج عنصر الكثافة من صور الاندماجلإجراء تقريب جديد لمعاملات الترجيح في نموذج  PANوصورة  MSنطاقات 

صدار التمرير المنخفض لصورة. يتم حساب معاملات الترجيح لمكون الكثافة باس تخدام متوسط IHSتحويل  ، التي تم الحصول  PAN نس بة الطاقة بين اإ

للحصول على  MSفي نطاقات  هذه الأخيرةللحصول على مزيد من المعلومات التفصيلية. ثم يتم حقن  MS، ونطاقات  ATWTعليها عن طريق تحويل 

 مع معلومات طيفية ومكانية عالية. مندمجةصورة 

الكلاس يكية والمتقدمة، أأنه يمكن أأن يضخ المزيد من المعلومات المكانية ويضمن الحفاظ على أأكدت النتائج التجريبية للنهج المقترح، مقارنة بالعديد من الطرق 

 اللون بشكل أأفضل. لذلك، يمكنه تحقيق حل وسط جيد بين الصفات الطيفية والمكانية.

 

 

 



List of contents 
 

ABSTRACTS  

ACRONYMS 

LIST OF FIGURES 

LIST OF TABLES 

GENERAL INTRODUCTION 
GI. 1. Context.          1 
GI. 2. Problematic.          4 
GI. 3. Objectives of the thesis.        8 
GI. 4. Followed approach.            8 

Chapter 1: An overview of image fusion methods 
1.1. Introduction.           10 
1.2. Pansharpening of multi-spectral satellite images.     10 
1.3. Presentation of the problem.        11 
1.4. Categories of fusion methods.        14 

1.4.1. Component substitution (CS)-based methods.     15 
1.4.1.1. Advantages.         17 
1.4.1.2. Some (CS)-based methods.       18 

1.4.1.2.1. Intensity Hue Saturation (IHS) pansharpening technique.  18 
1.4.1.2.1. A) IHS transform.       18 
1.4.1.2.1. B) IHS pansharpening algorithm.     21 
1.4.1.2.2. Principal Component Analysis (PCA) pansharpening technique. 22 
1.4.1.2.2. A) PCA transform.       23 
1.4.1.2.2. B) PCA pansharpening algorithm.     24 
1.4.1.2.3. Brovey Transform (BT) pansharpening technique.   25 
1.4.1.2.4. Gram Schmidt (GS) pansharpening technique.   25 

1.4.1.3. Examples of pansharpening of some (CS)-based methods.  25 
1.4.1.4. Visual Analysis.        28 

1.4.2. Multiresolution analysis (MRA)-based methods.    28 
1.4.2.1. Some MRA-based methods.       31 

1.4.2.1.1. Discrete Wavelet Transform (DWT) pansharpening technique. 31 
1.4.2.1.1. A) DWT transform.       31 
1.4. 2.1.1. B) DWT pansharpening algorithm.     33 
1.4.2.1.2. “A Trous” Wavelet Transform (ATWT) pansharpening technique. 34 
1.4.2.1.2. A) ATWT transform.       34 
1.4. 2.1.2. B) ATWT pansharpening algorithm.     35 
1.4.2.1.3. Laplacian Pyramid (LP) pansharpening technique.   35 
1.4.2.1.3. A) LP transform.       35 
1.4. 2.1.3. B) LP pansharpening algorithm.     36 
1.4.2.1.4. Additive Wavelet Luminance (AWL) pansharpening method. 37 
1.4.2.1.5. High-Pass Filter (HPF) pansharpening method.   37  
1.4.2.1.6. Smoothing Filter-Based Intensity Modulation (SFIM).  37 



1.4.2.2. Examples of pansharpening of some (MRA)-based methods.  38 
1.4.2.3. Visual Analysis.        41 

1.4.3. Variational optimization (VO)-based methods.     41 
1.4.3.1. Some VO-based methods.       44 

1.4.3.1.1. P+XS pansharpening method.      44 
1.4.3.2. Examples of P+XS pansharpening method.     44 
1.4.3.3. Visual Analysis.        45 

1.5. Conclusion.          45 

Chapter 2: Performance evaluation and comparative study of some fusion 
methods 
2.1. Introduction.          47 
2.2. Qualitative and quantitative evaluation.         47 

2.2.1. Quantitative evaluation with reference image.     48 
2.2.2. Quantitative evaluation without reference image.    50 

2.3. Experimental study.          51 
2.4. Discussions and conclusions.          53 

Chapter 3: Pansharpening with some recent methods 
3.1. Introduction.          55 
3.2. Some recent fusion methods.          55 

3.2.1. Generalized IHS (GIHS) pansharpening method.    55 
3.2.2. Improved Adaptive IHS (IAIHS) pansharpening method.   55 
3.2.3. Additive Wavelet Luminance Proportional (AWLP) pansharpening method. 56 
3.2.4. Generalised Laplacian Pyramid with Modulation Transfer Function (MTF-GLP) 
pansharpening method.         56 
3.2.5. Band-Dependent Spatial Detail (BDSD) pansharpening method.  57 
3.2.6. Partial Replacement Adaptive CS (PRACS) pansharpening method.  57 
3.2.7. Indusion pansharpening method.       58 
3.2.8. Optimal Filter (OF) pansharpening method.     58 

3.3. Performance evaluation.         59 
3.4. Visual analysis.          62 
3.5. Quantitative analysis.         62 
3.6. Conclusion.          65  

Chapter 4: Proposed fusion method 
4.1. Introduction.          67 
4.2. Proposal of a fusion algorithm based on IHS and ATWT.       67 
4.3. Experimental results.           71 

4.3.1. Experimental results of the proposed approach.     72 
4.3.2. Discussions.           74 
4.3.3. Comparison with some state-of-the-art fusion methods.    77 
4.3.4. Discussions.           85  

4.4. Conclusion.           86 

GENERAL CONCLUSION        87 

REFERENCES 



Acronyms 

 

1D : one Dimensional. 

2D : two Dimensional. 

ADMM : Alternating Direction Method of Multipliers. 

ARSIS : Amélioration de la Résolution Spatiale par Injection de Structures. 

ATWT : “A Trous” Wavelet Transform. 

AWL : Additive Wavelet Luminance. 

AWLP : Additive Wavelet Luminance Proportional. 

BDSD : Band Dependent Spatial Detail. 

BT : Brovey Transform. 

CBD : Context-Based Decision. 

CC : Correlation Coefficient.  

CORR : Correlation.  

CS : Component Substitution. 

DWT : Discrete Wavelet Transform. 

ERGAS : Relative Dimensionless Global Error in Synthesis. 

FIHS : Fast IHS. 

GIHS : Generalized IHS. 

GLP : Generalized Laplacian Pyramid. 

GS : Gram Schmidt. 

GSA : Adaptive Gram Schmidt. 

HLS : Hue Luminance Saturation. 

HPF : High Pass Filter. 

HPM : High Pass Modulation. 

HSV : Hue Saturation Value.  

IAIHS : Improved Adaptive IHS. 

IEEE : Institute of Electrical and Electronics Engineers. 

IHS : Intensity Hue Saturation transform. 

LP : Laplacian Pyramid. 

MAP : Maximum Posterior Theory. 

MBO : Model-Based Optimization. 

MTF-GLP : Generalised Laplacian Pyramid with Modulation Transfer Function. 



MMSE : Minimum Mean Square Error. 

MRA : Multi-Resolution Analysis. 

MS : Multi-Spectral image. 

MTF : Modulation Transfer Function. 

NIR : Near Infra-Red. 

OF : Optimal Filter. 

PAN : PANchromatic image. 

PCA : Principal Component Analysis.  

PRACS : Partial Replacement Adaptive Component Substitution. 

PSF : Point Spreading Function. 

QNR : Quality with No Reference. 

RASE : Relative Average Spectral Error. 

RGB : Red, Green and Blue space. 

RMSE : Root Mean Squared Error. 

RSC : Relative Spectral Contribution. 

SAM : Spectral Angle Mapper. 

SCC : Spatial Correlation Coefficient. 

SDM : Spectral Distortion Minimizing. 

SFIM : Smoothing Filter-Based Intensity Modulation. 

SID : Spectral Information Divergence. 

SR : Sparse Reconstruction. 

SSIM : Structural Similarity index. 

TV : Total Variation. 

UDWT : Undecimated Wavelet Transformation. 

UIQI : Universal Image Quality Index. 

VO : Variational Optimization. 

 

 

  



List of figures 
 

Figure GI.1. A scene with different spatial resolutions: from left to right 1Km, 100m, 10m, 

1m and 1cm.                  1 

Figure GI.2. An example of real sizes PAN and MS satellite images.          2 

Figure GI.3. An example of upsampled images obtained from different interpolation filters. 3 

Figure GI.4. An example of fusion process.                                                                              3 

Figure 1.1. Ideal normalized spectral responses in terms of wavelength.        12  

Figure 1.2. Responses of the different spectral bands as a function of the wavelength in 

micrometers (Ikonos satellite). Black, brown, red, green and blue curves, respectively, 

correspond to PAN, NIR, red, green and blue modalities.             12   

Figure 1.3. Flowchart of the CS-based pansharpening methods.         17 

(a) The traditional scheme of the CS-based methods.          16 

(b) The new understanding based on the general formalization of the CS-based methods.    17 

Figure 1.4. Smith's HSV color model.              18 

Figure 1.5. RGB to HSV transformation.              19 

Figure 1.6. An example of transformation from RGB space to IHS space.        20 

Figure 1.7. Another example of transformation from RGB space to IHS space.       21 

Figure 1.8. Scheme of IHS image fusion.            22  

Figure 1.9. Scheme of PCA image fusion.            24  

Figure 1.10. Pansharpening urban scene. a) PAN image. b) Real size MS image. c) IHS fused 

image. d) PCA fused image. e) BT fused image. f) GS fused image.        26  

Figure 1.11. Pansharpening a vegetation scene. a) PAN image. b) Real size MS image. c) IHS 

fused image. d) PCA fused image. e) BT fused image. f) GS fused image.        27 

Figure 1.12. Flowchart of the MRA-based pansharpening methods.        30 

(a) The traditional scheme of the MRA-based pansharpening methods.        29 

(b) The new understanding scheme based on the general formalization of the MRA -based 

pansharpening methods.              30 

Figure 1.13. One decomposition level of 2D image.          32 

Figure 1.14. One reconstruction level of 2D image.           33 

Figure 1.15. Scheme of the Wavelet image fusion.           34 

Figure 1.16.  Example of an image pyramid with 5 levels.          36 



Figure 1.17. Pansharpening an urban scene. a) DWT fused image. b) ATWT fused image. c) 

LP fused image. d) HPF fused image. e) SFIM fused image. f) AWL fused image.      39 

Figure 1.18. Pansharpening a vegetation scene. a) DWT fused image. b) ATWT fused image. 

c) LP fused image. d) HPF fused image. e) SFIM fused image. f) AWL fused image.      40 

Figure 1.19. Flowchart of the VO-based pansharpening methods.         42 

Figure 1.20.Pansharpening urban and vegetation scenes, respectively. 

a) P+XS fused image. b) P+XS fused image.           45 

Figure 3.1. Pansharpening an urban scene. a) GIHS fused image. b) AIHS fused image. c) 

AWLP fused image. d) MTF-GLP fused image. e) BDSD fused image. f) PRACS fused 

image. g) Indusion fused image. h) OF fused image.             60 

Figure 3.2. Pansharpening a vegetation scene. a) GIHS fused image. b) AIHS fused image. c) 

AWLP fused image. d) MTF-GLP fused image. e) BDSD fused image. f) PRACS fused 

image. g) Indusion fused image. h) OF fused image.          61 

Figure 4.1. Flowchart of the proposed algorithm.           67 

Figure 4.2. Deimos-2 image (image 1). (a) PAN image. (b) Up-sampled MS image.      71 

Figure 4.3. Deimos-2 image (image 2). (a) PAN image. (b) Up-sampled MS image.      72 

Figure 4.4. Deimos-2 image (image 3). (a) PAN image. (b) Up-sampled MS image.      72 

Figure 4.5. Fused images by applying the proposed approach (image 1). 

(a)~(c) Pansharpened images by using 1~3 decomposition levels of the ATWT, respectively.

                 73 

Figure 4.6. Fused images by applying the proposed approach (image 2). 

(a)~(c) Pansharpened images by using 1~3 decomposition levels of the ATWT, respectively.

                 74 

Figure 4.7. Fused images by applying the proposed approach (image 3). 

(a)~(c) Pansharpened images by using 1~3 decomposition levels of the ATWT, respectively.

                 74 

Figure 4.8. Fusion results of the first Deimos-2 image for different methods.          78 

Figure 4.9. Fusion results of the second Deimos-2 image for different methods.          79 

Figure 4.10. Fusion results of the third Deimos-2 image for different methods.          80 

Figure 4.11. Zoom of fusion results of the first Deimos-2 image for different methods.        81 

Figure 4.12. Zoom of fusion results of the second Deimos-2 image for different methods.   82 

Figure 4.13. Zoom of fusion results of the third Deimos-2 image for different methods.       83 

 



List of tables 
 

Table GI. Examples of Earth observation systems offering various images to different spatial 

resolutions.                 6 

Table 2.1. Performance evaluation metrics when reference image is available.       50 

Table 2.2. Performance evaluation metrics when reference image is not available.      50 

Table 2.3. Four-band correlation between reference and merged images for different methods.               

                  51 

Table 2.4. Quality metrics, when reference image is available, for different pansharpening 

methods.                  52 

Table 2.5. Quality metrics, when reference image is not available, for different pansharpening 

methods.                  53 

Table 3.1. Four-band correlation between reference and merged images for different methods. 

                  63 

Table 3.2. Quality metrics, when reference image is available, for different pansharpening 

methods.                  63 

Table 3.3. Quality metrics, when reference image is not available, for different pansharpening 

methods.                  64 

Table 3.4. Pansharpening methods in the experiments.          66 

Table 4.1. Weighting coefficients of the 4-bands MS image, their sum and ratio average 

energy for different decomposition levels.              73 

Table 4.2. 4-bands correlation between MS and fused images.         73 

Table 4.3. Spectral quality assessment, with reference image, of different decomposition 

levels of the proposed method for different datasets.             75 

Table 4.4. Spectral quality assessment, without reference image, of different decomposition 

levels of the proposed method for different datasets.             76 

Table 4.5. Quality metrics with no reference data for different pansharpening methods using 

different satellite images (mean values).              84 

Table 4.6. Quality metrics with reference data for different pansharpening methods using 

different satellite images (mean values).           84 

Table 4.7. Calculation time for different methods.                                                                 86 

 



 
 

 
 

 

 

GENERAL INTRODUCTION 
 
 

 

 

 

 

 

 

 

  

GI.1. Context. 

GI.2. Problematic. 

GI.3. Objectives of the thesis. 

GI. 4. Followed approach.  
 



General Introduction 

 1 
 

GI.1. Context 

 It is interesting to visualize remotely sensed images with high spatial and spectral 

resolutions for better land classification, map updating, soil analysis, feature extraction, etc... 

 Earth observation satellites provide, generally, two different types of images of a scene; 

a panchromatic (PAN) image (grayscale) with high spatial and low spectral resolutions and a 

multispectral (MS) image (color) with high spectral and low spatial resolutions. 

 The spatial resolution of an image is the smallest distance between two adjacent objects 

that the sensor can identify. Or, it's the smallest area the satellite can detect on the ground. For 

example, a resolution of 30 meters detects an area on the ground of 30m x 30m. Hence, a high 

resolution implies a reduction in the surface area. The following figure represents an example 

with different spatial resolutions. 

 

 

Figure GI.1. A scene with different spatial resolutions: from left to right 1Km, 100m, 
10m, 1m and 1cm1. 

 

 The spectral resolution is the separating power of a spectrograph. The spectral 

resolution of an image is higher, the wavelength interval is narrower. 

 To compose the low spatial resolution of the MS image, MS must be up-sampled 

(interpolated) to the same spatial resolution as the PAN image. For example, a PAN image of 

spatial resolution N x M and MS image of resolution N/2 x M/2 (ratio of 4), the MS image 

must be interpolated by 2 on the rows and 2 on the columns to have the resolution N x M. The 

following figure shows an example of PAN (1024x1024 pixels) and MS (256x256 pixels) 

images of actual sizes (ratio of 4). Figure GI.3 shows an example of an image resampled by 

different interpolation filters. 

 
 

 

1https://www.// Geosys.com 
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PAN image 

 

 
MS image 

Figure GI.2. An example of real sizes PAN and MS satellite images2. 
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Original image 

 

 
         Nearest neighbor filter                    Bilinear filter                          Bicubic filter 

Figure GI.3. An example of upsampled images obtained from different interpolation 
filters2. 

 

 Due to technological limitations of the satellite sensors, it is very difficult to acquire a 

high spatial resolution MS image directly. As a post-processing method by fusing the 

information of the PAN and MS images, it can be employed to produce a new high spatial 

resolution MS image (see Figure GI.4).  

 

 
      PAN image                    Resampled MS image                           Fused image 

Figure GI.4. An example of fusion process3. 

 

3https://www.grss-ieee.org 

MSnear MSbilinear MSbicubic
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 During the few last decades, various fusion methods have been proposed to result the 

problem of remote sensing image fusion [130]. Wald [131] defines image fusion as “a formal 

framework in which means and tools are expressed for the combination of data coming from 

different sources whose aim is to obtain better quality information, although the exact 

definition of "best quality" depends on the application ". According to Piella [132], fusion is 

"the combination of relevant information in order to synthesize a more informative and more 

visually perceptual image more suitable for computer processing", where the "relevance" of 

the information also depends on the task of application [5]. 

 

GI.2. Problematic 

 One of the key elements for the Earth observation and the knowledge of our 

environment are formed by space systems (satellites). These satellites carry various active 

(radar) or passive sensors on board. The sensors of interest to us are passive sensors whose 

bandwidth is located in the visible and infrared. They can have very different characteristics. 

The images delivered by these sensors allow the distinction of geometric structures according 

to the spatial resolution which will be considered here as equal to the sampling step 

corresponding to the size of the pixel. Some sensors are capable of integrating the radiative 

energy incident at the input of the sensor over a wide wavelength band, and therefore offer 

little spectral information, but at the same time offer high spatial resolution. Typically, this 

type of image is a grayscale image and it is called a "panchromatic image", noted as PAN 

below. On the contrary, other sensors on board these same satellites work on much narrower 

bands of the spectrum; these are a color images and therefore multispectral, denoted MS, 

below. Their spectral resolution is much higher, but this comes at the cost of low spatial 

resolution. 

 For many applications, the advantage of manipulating multispectral images with very 

high spatial resolution has already been demonstrated, for example for classification [133], 

[134] and [135], road mapping [136], the study of the development of urban areas [137] and 

[138], archaeological prospecting [139] or even in the medical field for diagnostic aid [140]. 

It is of course possible to distinguish large areas in an MS or PAN images as long as they 

have very distinct characteristics, such as the surface of the ocean in relation to the coastal 

zone, or a farm in relation to a region very urbanized. On the other hand, it becomes much 

more difficult to distinguish very heterogeneous vegetation or mineral spaces, without 

considering their spectral properties. The "color" information helps to distinguish different 

regions of the image with shades previously invisible in the initial grayscale PAN image. 
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Therefore, if we can use these spectral contents while taking advantage of better spatial 

resolution, the identification of objects in a scene will be enriched and more precise [141]. 

 For this reason, manufacturers have not directly built sensors capable of delivering 

images at high spatial and spectral resolutions. These concepts are contradictory from a 

technical point of view because the wider the spectral acquisition bands of a sensor, the 

greater the luminous flux incident on a pixel of the image. The opening of the entrance pupil 

can then be reduced, the size of the pixels is smaller and therefore the image has better spatial 

resolution. On the other hand, a much narrower band of the spectrum limits the number of 

photons absorbed by the sensor, generally CCD (Charged-Coupled Device) and therefore the 

energy incident on each cell. The integration time must therefore be greater than before in 

order to be able to deliver a similar signal-to-noise ratio and a similar dynamic. As the spatial 

vector moves, this increase in integration time results in an increase in pixel size, explaining 

the lower spatial resolution. 

 To reduce this integration time, the solution is to increase the sensitivity of the 

detectors. But a financial limitation arises because of the expensive cost of building the more 

sensitive sensors. Besides the budgetary limitation, other constraints are imposed by the 

satellite platform in terms of space, weight, power, electromagnetic radiation, but also mission 

objectives (orbit), rocket for launch, etc. Assuming that the sensors are able to deliver MS 

images of spatial resolution reaching that of the PAN, two other problems will arise; the 

storage capacity on the platform and the bandwidth of the transmission channel are limited. 

Take the example of the Ikonos or Quickbird satellite: these satellites have four MS bands. If 

the spatial resolution of these images were increased by a factor of 4 to match that of the 

PAN, their size would be multiplied by 16, or 16 times more data to store and transmit to the 

ground. 

 Therefore, for the same geographical area, the user is in possession of a set of images; 

some of which benefit from good spatial resolution, while others provide good spectral 

resolution. Table GI summarizes various information concerning the imagery of the most 

commonly used satellites in the environment and in mapping; SPOT4, SPOT5, Ikonos, 

Quickbird, Demos 2 and Alsat-2. 
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 Modality MS Modality PAN 

Satellite Name of 
the band Color Spectral band 

(µm) 

Ground 
resolution 

(m) 

Spectral band 
(µm) 

Ground 
resolution 

(m) 

SPOT 44 

B1 Green 0,50-0,69 20 

0,61-0,68 10 B2 Yellow 0,61-0,68 10 
B3 NIR 0,78-0,89 20 
B4 MIR 1,58-1,75 20 

SPOT 55 

B1 Green 0,50-0,59 10 

0,48-0,71 2,5 or 5 B2 Yellow 0,61-0,68 10 
B3 NIR 0,78-0,89 10 
B4 MIR 1,58-1,75 10 

Ikonos6 

B1 Blue 0,45-0,53 4 

0,45-0,90 1 B2 Green 0,52-0,61 4 
B3 Red 0,64-0,72 4 
B4 NIR 0,77-0,88 4 

Quickbird7 

B1 Blue 0,45-0,52 2,8 

0,45-0,90 0,7 B2 Green 0,52-0,60 2,8 
B3 Red 0,63-0,69 2,8 
B4 NIR 0,76-0,90 2,8 

Deimos 28 

B1 Blue 0,42-0,51 4 

0,45-0,9  1 B2 Green 0,51-0,58 4 
B3 Red 0,6-0,72 4 
B4 NIR 0,76-0,89 4 

Alsat-29 

B1 Blue 0,45-0,52 10 

0,45-0,745 2,5 B2 Green 0,53-0,59 10 
B3 Red 0,62-0,69 10 
B4 NIR 0,76-0,89 10 

Table GI. Examples of Earth observation systems offering various images to different spatial 

resolutions. 

 

 

 

 

 

 
4https://earth.esa.int/web/eoportal/satellite-missions/s/spot-4 
5https://earth.esa.int/web/eoportal/satellite-missions/s/spot-5 
6https://www.satimagingcorp.com/satellite-sensors/ikonos/ 
7https://www.satimagingcorp.com/satellite-sensors/quickbird/ 
8https://www.deimos.com 
9https://www.asal.dz 
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 As the high spectral resolution and the high spatial resolution are contained in different 

images, the problem becomes one of synthesizing multispectral images with the best spatial 

resolution available within the dataset. Image fusion is one way to offer joint exploitation of 

information originally from separate sources. 

 According to [131], it is a formal framework in which the means and techniques are 

expressed that allows the alliance of data from various sources. Pansharpening is aimed at 

obtaining higher quality information, which depends on the application and its user. 

 The term fusion encompasses several possible definitions. For example, the works of 

[132], [142], [143] and [144] consider the fusion as a combination of relevant information 

from the two images placed as input, the so-called "relevant" information depending on the 

application. For example, some of these authors show examples of images acquired by the 

same sensor but at different focal lengths. They define fusion as the synthesis of an image that 

is focused at all points that is, having the highest spatial resolution of the two images for each 

pixel. This idea of complementarily is also found in medical imaging since radio images, 

obtained by nuclear magnetic resonance or even by positron emission tomography, provide 

very different information on the human body [145]. Pansharpening aims to overlay relevant 

information from different sources for diagnostic aid. This way of defining image fusion has 

the particularity of not taking into account the characteristics of a particular sensor. The 

challenge lies in the creation of a hybrid image with specific characteristics selected from the 

different sets placed at the input. 

 The framework of this research work, that we have adopted, is the particular case of the 

synthesis of multimodal images with high spatial resolution: each synthesized image must be 

as close as possible to that which the corresponding sensor could have observed if it had this 

spatial resolution. This last statement will be for us the fundamental property of fusion 

products. 

 The economic interest of creating images reproducing what a multispectral sensor with 

better spatial resolution should observe is real in the space field, since an efficient fusion 

method makes it possible to be satisfied with simpler and therefore less expensive, and lighter 

sensors, which saves weight and space on the platform. 

The existing pansharpening algorithms tend to trade-off between spectral distortion and 

spatial improvement. The major issues with the pansharpening process are two: spectral 

distortion and decrease of spatial information in the fused image [45]. Many algorithms are 

proposed to solve these problems respecting the tradeoff between spectral distortion and 

spatial enhancement, which can fuse huge volume of satellite data of three, four or more 
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bands. This thesis deals with the evaluation of image fusion methods in order to solve the 

spatial resolution limitation of high resolution satellite imagery. 

 

GI.3. Objectives of the thesis 

 The aim of the thesis is to contribute and develop an optimized method for synthesizing 

images at high spatial and spectral resolutions more efficient than current methods, as well as 

for evaluating the quality of the fusion results. 

 The first step of the work consisted in studying the different fusion methods found in 

the literature in order to be able to exploit some models and develop a more efficient model.  

The second step was dedicated to the critical evaluation of existing fusion methods and 

particularly the most recent methods, looking at the development paths chosen by the various 

authors. The qualitative and quantitative evaluation of their performance has opened up many 

perspectives for development, justifying the importance of using multi-scale or multi-

resolution analysis. 

 The development framework for the new method that we have chosen is that of the 

ARSIS concept (Amélioration de la Résolution Spatiale par Injection de Structures), that 

means in English, Improvement of Spatial Resolution by Injection of Structures, in 

combination with methods based on the IHS transform. The IHS transform was chosen due to 

its simplicity of implementation and its good results. The new method that we have developed 

is an improvement of the hybrid method of the ATWT transform ("à trous" Wavelet 

Transform) and the general IHS transform (GIHS) called AWLP. Finally, a comparative study 

was made between the existing methods in the literature and our new proposed technique. 

 

GI. 4. Followed approach  

 Several classifications of fusion methods have been proposed, and we have chosen that 

of [27]. A presentation of the main locations of these three categories is developed. For the 

high spatial resolution visual assessment which corresponds to the first step of our study, we 

considered and applied, for all the methods, two images representing an urban area and a 

vegetation area, respectively. 

 The development of new algorithms inevitably involves a stage of estimating the quality 

of the fused products obtained. The bibliography showed that a normative framework for the 

evaluation of the quality of fusion products is needed. To know the quality of a fusion 

product, it must be compared to a reference. Chapter 2 presents a critical study of the 
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quantitative parameters present in the literature then a comparative study was made between 

the different fusion methods studied in the previous chapter. 

 Next in Chapter 3, we look at the most recent fusion methods, studying the solutions 

that the authors have explored to improve the spatial and / or spectral quality of the fused 

products. 

 Chapter 4 presents a critical state of the art of fusion methods. A hybrid method has 

been proposed based on the combination of the IHS transform with the ATWT transform. The 

proposed scheme shows an improvement of the well-known fusion method called AWLP. The 

proposed algorithm has been published in Elsevier's Advances in Space Research journal, 

indexed in the Thomson Reuter Database. The spatial resolution of images and their 

geometric quality are intrinsically related to the quality of a satellite image sensor. The fusion 

product quality assessment process was applied to a new set of images processed by this new 

algorithm as well as by existing methods. These series are acquired by the satellites Deimos-

2, Worldview-2 and Worldview-3. The results confirmed that the proposed algorithm is 

generally valid. It is applicable whatever the images, the ratio or the landscape concerned. For 

this, we show that the new fusion method must be able to offer a balance between qualitative 

and quantitative estimations. Analyzes combined with the results from the application of the 

proposed algorithm, led to the conclusion that the new method is the best fusion method of all 

those tested in this thesis. 

 Finally, a conclusion on all the work carried out throughout this thesis, is presented. 

Development prospects and numerous recommendations are proposed. 
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1.1. Introduction 

 In recent years, image fusion has become an important technique in the field of image 

processing. The goal of image fusion is to generate a composite image by inputting additional 

information from different source images of the same scene [1]. In the image fusion system, 

the input source images can be acquired from different image sensors or from a single sensor 

with changeable optical parameters. The output of this system is an image, called merged 

image, which will be more relevant to human and machine perception than an individual 

source image. The image fusion technique has been used in several applications such as 

machine vision, surveillance, medical imaging and remote sensing [2]. 

 We must remember, in fact, than high and very high resolution images available for 

remote sensing are mostly panchromatic images. Conversely, the multispectral images, able to 

combine into one colorful composition, present more low resolutions. The fusion of a 

panchromatic image (PAN), of high spatial resolution and of low spectral resolution, with a 

multispectral image (MS), of low spatial resolution but high spectral resolution, arguably the 

most frequent application of fusion. This process is called PAN-sharpening [3]. 

In remote sensing techniques, pan-sharpening or image fusion aims to sharpen low 

spatial resolution multispectral (MS) image by injecting the details extracted from high spatial 

resolution panchromatic (PAN) image [4]. 

 The aim of this chapter is to present various image fusion techniques as part of the 

production of a colored composition using optical satellite images. The main constraints will 

therefore be linked to obtaining an image easily interpreted by a majority of users. The image 

must present visual qualities, in particular with respect to the colors returned, and offer 

maximum readability. Finally, to the extent of possible, obtaining natural colors will be 

sought [3]. 

 

1.2. Pansharpening of multi-spectral satellite images 

 Spatio-spectral fusion, such as PAN/MS (called pansharpening) [5,6], PAN/Hyper-

Spectrale (HS) [7,8], and MS/HS [7,9,10], is an important approach in remote sensing image 

fusion [5] – [7]. It consists in obtaining a fused image with both high spatial and spectral 

resolutions. 

 Pansharpening consists of producing a new image which retains part of the information 

contained in each of the original images. The objective is to create a synergy, which is to say 

to obtain an image merged geometrically and / or semantically richer than an initial image. 

Many methods are capable of performing image fusion. They differ in the way in which they 



Chapter 1: An overview of image fusion methods 

 11 
 

favor a particular characteristic of the original images. The choice of a method is therefore 

conditioned by the application. 

 The implementation of an image fusion requires several preliminary operations which 

directly interfere with the quality of the fused product. Among these, the geometric correction 

of the images subjected to the fusion is obviously essential since the images must be strictly 

super imposable. But the pre-treatments involved in radiometry are also important and diverse 

[3]. 

The goal of pansharpening is to combine the high spatial resolution of the panchromatic 

image (PAN) with the precise spectral information of the multispectral image (MS). The 

resulting image should have a high visual quality to facilitate detection and classification 

tasks. However, the merged image must contain the same spectral information (colors) as the 

original multispectral image. 

This becomes especially important as the number of bands increases, because the 

spectral signature can be used for material identification. Therefore, the pan-sharpened image 

should possess both high spatial and spectral qualities [11]. 

 

1.3. Presentation of the problem 

 It is interesting to visualize remote sensing images with high spatial and spectral 

resolutions as it can lead to better land classification, map update, soil analysis, feature 

extraction, etc. However, constraints, such as the compromise between the high resolutions of 

the sensor, the bandwidth of the channel, the storage capacity on board a satellite, etc..., limit 

the acquisition of images with high spectral and spatial resolutions. Because of this, many 

commercial remote sensing satellites such as Alsat, Quickbird, Ikonos, and Worldview 

capture the earth’s information with two types of images: a single panchromatic (PAN) image 

and a number of multispectral (MS) images. The PAN image has high spatial resolution with 

lower spectral resolution, while an MS image has higher spectral resolution with low spatial 

resolution. 

The pansharpening or multiresolution image fusion is an algorithmic approach to 

increase the spatial resolution of the MS image with the preservation of spectral contents by 

making use of the high spatial resolution PAN image [12]. 

 The main spectral characteristic of the PAN image is to cover a wide range of the 

wavelength spectrum; on the contrary, an MS band covers only a narrow spectral range. 

Since more energy comes to PAN sensor, time acquisition can be reduced still 

preserving the same intensity response as MS images in terms of the number of photons [5]. 
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 If the spectral responses of all the sensors of a satellite satisfied the ideal theoretical 

graph of Figure 1.1 [5], the hypothesis of relative spectral contribution would be perfectly 

true. The black curve represents the ideal spectral response of the PAN modality. The colors 

correspond to the MS modalities, where the blue, green, red and brown colors correspond 

respectively to the blue, green, red and NIR bands of the sensor. 

 
Figure 1.1. Ideal normalized spectral responses in terms of wavelength [5].  

 

 This figure is not realistic. It would never equal a linear combination with the MS 

responses if the panchromatic image was simulated by a combination of actual multispectral 

acquisition. MS air-borne or space-borne sensors do not offer a constant response over the 

whole bandwidth. This bandwidth is characterized by a variable response and generates a 

partial overlap between the spectra. 

 Figure 1.2 shows the normalized response of the spectral bands of the Ikonos satellite 

sensors as a function of wavelength in µm. The black curve represents the spectral response of 

the Ikonos PAN image. The color curves correspond to the MS modalities, where the blue, 

green, red and brown colors correspond respectively to the blue, green, red and near-infrared 

bands of the sensor [5]. 

 
Figure 1.2. Responses of the different spectral bands as a function of the wavelength in 
micrometers (Ikonos satellite). Black, brown, red, green and blue curves, respectively, 

correspond to PAN, NIR, red, green and blue modalities1.   
 

1http://www.geoeye.com/products/imagery/ikonos/spectral.htm. 
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 In Figure 1.2, if an object reflects solar incident energy in wavelengths located around 1 

µm, it will be impossible to infer the pixel value in the PAN image from other MS sensors 

since what this pixel will have a grayscale value equal to 0 in all MS images. Moreover, this 

figure shows that blue and green channels interference creating spectral redundancy between 

the two images [5]. 

 Even for geometrically recorded PAN and MS images, differences may exist between 

these modalities. In addition to the changes produced by their different spectral acquisition 

bands, profound changes can also occur in the same scene for two different acquisition times. 

Many authors attempt to understand relationships between these remotely sensed images for 

the development of their fusion method [5]. 

 In general, the MS and PAN modalities often display the same geographic area. It is 

assumed that the PAN and MS input data sets are a priori geometrically registered. The task 

of registration is a very challenging one [13], particularly when images come from different 

platforms. Reference [14] has shown that a geometric standard deviation distortion of 0.1 

pixels produces a considerable effect on the quality of the merged images resulting from a 

pixel-to-pixel fusion process. 

 However, even with perfectly registered images, the sets (PAN, MS) can present a 

certain local dissimilarity, the origin of which is not always well understood by the fusion 

community [15,16]. This can have an impact on the quality of the resulting images. 

 Several types of dissimilarities are illustrated and discussed in [5,17]. The most 

common dissimilarities are: moving objects, occlusion of objects, inversion of contrast and 

due to the different spectral bands of the sensors or the different acquisition times. These 

effects are due to the physics of the environment. If they are not taken into account, the 

success of the merge process could be compromised by the appearance of artifacts. 

 The steps prior to the fusion are: 

 The selection of images: 

 The criteria for selecting satellite images must be clearly established according to the 

objectives. 

 One of the criteria is the choice of the spatial resolutions of the images. The high-

resolution image can only be effectively merged within certain limits with images of coarser 

resolutions [3]. It is desirable to respect a resolution ratio 𝑅𝑟𝑒𝑠 when choosing the images to 

be merged which must verify the following condition: 
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𝑅𝑟𝑒𝑠 =
𝐿𝑟𝑒𝑠

𝐻𝑟𝑒𝑠
≤ 5                                                                             (1.1) 

Where: 

𝐿𝑟𝑒𝑠 : Low resolution 

𝐻𝑟𝑒𝑠 : High resolution 

 Another important criterion in the selection of images to be merged is the acquisition 

date. Similar recording dates are recommended, as in any multi-source manipulation, to avoid 

deviations of a pheno-logical, climatic, sunshine, humidity, etc. between the images [3]. 

 Finally, when the sensors are not limited to zenith shots, the angle of view constitutes 

another criterion to be taken into account in the selection of the images. Geometric correction 

will be more difficult when viewing angles are distinct [3]. 

 Geometric corrections: 

 The principle consists in first rectifying the image of higher spatial resolution, often 

panchromatic, which will serve as a reference. The correction method chosen depends on the 

type of image, relief, viewing angle, etc. Then, the image of lower spatial resolution is 

brought to the resolution of the reference image by multiplication of pixels. It is then 

geometrically corrected by matching with the high resolution image already corrected. 

 For digital satellite images, the geometric correction methods applicable to the high 

resolution image are those of polynomial transformations resolved by least squares [3]. The 

geometric correction operation is always accompanied by a procedure for resampling the 

pixels of the original images. The method used for resampling is the bilinear or cubic 

interpolation technique to take advantage of the anti-aliasing effect during resampling [3]. 

 Reference [10] proposes an integrated framework for the spatial, temporal and spectral 

fusion of images in remote sensing. In the framework of the proposed fusion, the maximum 

posterior theory (MAP) is used to describe the reverse fusion problem. The spatial, temporal 

and spectral relationships between the desired image and the remote sensing observations, 

obtained by different sources, are then analyzed in depth to build an integrated relationship 

model. 

 

1.4. Categories of fusion methods 

 To date, an oversized range of pansharpening methods are planned [18,19,20] and 

these methods are classified in many other ways. Reference [21] classified the existing 
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pansharpening methods into two major categories, i.e., the component substitution (CS)-based 

methods and the multiresolution analysis (MRA)-based methods. Reference [22] classified the 

existing pansharpening methods into the CS-based methods, the MRA-based methods, and the 

regularized-based methods. In addition, [23] classified them into the CS-based methods, the 

MRA-based methods, and the Bayesian-based methods, and [10] classified them into the CS-

based methods, the MRA-based methods, the sparse reconstruction (SR)-based methods, and 

the model-based optimization (MBO)-based methods. It should be noted that regularization-

based methods, Bayesian-based methods, MBO-based methods, and SR-based methods are 

converted to a variational model optimization, so they can be generalized in variational 

optimization (VO) -based methods. References [24,25] classified the existing pansharpening 

methods according to the use or not of the Point Spreading Function (PSF). 

 However, few papers provided a complete analysis of CS-based methods, MRA-based 

methods and, in particular, VO-based methods. 

 Excitingly, [26] first performed a comprehensive review of the VO-based strategies 

supported super-resolution conception [27]. 

 Reference [27] has presented a review of all categories of the pansharpening methods 

for remote sensing images based on the idea of meta-analysis. 

The three main categories of pansharpening methods, i.e., the CS-based methods, the 

MRA-based methods, and the VO-based methods, are presented in the next sections, 

including the process of development from the traditional understanding to the current 

understanding. 

 

1.4.1. Component substitution (CS)-based methods 

 The CS-based methods are the simplest to implement and the most widely used in pixel-

to-pixel fusion and are part of most professional remote sensing software including ENVI, 

ERDAS Imagine, PCI Geomatica, etc. The idea of the traditional CS -based methods is that 

the MS image is first projected into a new spectral space; a component of them which 

represents the spatial information is replaced by the PAN image and the reverse projection is 

finally performed to obtain the pansharpened image. Therefore, they are also generally called 

“projection-substitution” methods [5]. The essential methods include the Intensity-Hue-

Saturation (IHS) methods [18,28], the Principal-Component-Analysis (PCA) methods 

[18,29,30], the Gram-Schmidt (GS) methods [31], etc. Figure 1.3(a) shows the flowchart of 

the traditional understanding of the CS-based pansharpening methods. 
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 Thereafter, [32] demonstrates that the CS-based methods can be generalized to a new 

formalization and this was then extended in [33,34]. The new understanding, as shown in 

Figure 1.3(b), is that this category of methods is based on the simple substitution of a single 

component by the PAN image, and the component is usually obtained by a linear combination 

of the spectral bands of the MS images, like the standard GSA (adaptive GS) [35] and BDSD 

(band-dependent spatial detail) [36] methods, etc. It should be noted that in fact, it is a 

question of extracting the information of high spatial structure of the PAN image through the 

difference between the PAN image and the component, and this high information structure is 

then injected into the MS image by an appropriate injection scheme. 

This can be represented as: 

𝑀̂ = 𝑀̃ + 𝑔(𝑃 − 𝐼𝐿)                                                                    (1.2) 

Where 𝑀̂ is the fused image, 𝑀̃ is the resampled MS image, 𝐼𝐿 denotes the component to be 

substituted, 𝑃 denotes the PAN image, which is generally normalized (e.g. by histogram 

matching) with 𝐼𝐿 to reduce the spectral distortion and 𝑔 is the injection weight. 

 The normalization operation is a common strategy used to reduce the color distortion of 

the fused image by matching the spectrum of MS to that of PAN [37]. This adjustment 

consists of making the statistical distribution of pixel values of the panchromatic image as 

close as possible to that of channel I [3]. 

 

 

a) Traditional understanding of the CS-based methods. 
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b) New understanding based on the general formalization of the CS-based methods. 

Figure 1.3. Flowchart of the CS-based pansharpening methods. 
(a) The traditional scheme of the CS-based methods. 

(b) The new understanding based on the general formalization of the CS-based methods. 
 

1.4.1.1. Advantages 

The general formalization of the CS-based methods has two major advantages: 

1) It leads to faster implementation of traditional methods. However, it should be noted 

that this should satisfy the condition that the component to be substituted is generated 

linearly from the available spectral bands. 

2) It opens up new horizons for the development of this type of method. A number of 

improved methods have subsequently been proposed. In general, improvements to the 

CS-based methods have mainly focused on the optimal determination of the 𝐼𝐿 

component and the injection gain 𝑔. 

 In conclusion, there are several popular solutions. On the one hand, 𝐼𝐿 is calculated from 

the previous simple mean of the spectral bands of the MS image [28,31,38], to the 

improvement by the spectral response functions of the sensors [34,39], and the optimal 

calculation by least squares regression [35,40,41]. On the other hand, it is calculated from 

global solutions [18,29,30,38] to optimal solutions by consideration of the local features 

[42,43]. For the determination of the injection weight 𝑔, a variety of solutions can be applied 

[6,19,44]. On one hand, in the spatial dimension, the injection weight can be determined by a 

global model [35] or a local model [45]. On the other hand, in the spectral dimension, the 
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injection weight may be equal for all the spectral bands [32], or determined by a band-

dependent solution [31]. 

 

1.4.1.2. Some (CS)-based methods 

1.4.1.2.1. Intensity Hue Saturation (IHS) pansharpening technique 

 The IHS pansharpening method is one of the most used fusion techniques and it is a 

standard procedure in image analysis for color enhancement, feature enhancement, 

improvement of spatial resolution and the fusion of data sets [46]. In the IHS space, spectral 

information is mostly projected on the hue and the saturation. From the visual system, the 

intensity change has little effect on the spectral information and is easy to deal with. The 

purpose of fusion is to ensure the spectral information and to add the detail information of 

high spatial resolution; therefore, the fusion is even more adequate for processing in IHS 

space [47]. 

 In the literature, many IHS transformation algorithms have been developed. Some are 

called HSV (hue, saturation, value) or HLS (hue, luminance, saturation) [48]. 

 

1.4.1.2.1. A) IHS transform 

 The IHS transformation, which is defined as a colored combination of three channels, 

allows color information to be retrieved. 

 Generally, the most common color representation spaces use the three modalities 

corresponding to the primary colors of the RGB spectrum "Red (R), Green (G) and Blue (B)". 

 IHS is a three-dimensional representation of the color space defined by Smith in 1978. 

Figure 1.4 shows the defining cone of the model. 

 
Figure 1.4. Smith's HSV color model. 
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 The transition from RGB space to HSV space can be achieved using the following 

process (Figure 1.5): 

 
a) Color cube and Maxwell's triangle           b) Hue and saturation in the Maxwell plane 

Figure 1.5. RGB to HSV transformation. 

 

 Any color is represented by a vector in the cube, originating from black and as a norm, 

the vector sum of its three components R, G and B. 

 The gray diagonal is considered as the axis of intensities varying from 0 for black to 1 

for white. The intensity of a color corresponds to the length of the projection of its vector on 

the gray diagonal. 

 The hue and saturation values are calculated in polar coordinates in the Maxwell plane, 

defined as the plane perpendicular to the gray diagonal and passing through the vertices of the 

R, G and B axes. The hue is the angle polar between 0 and 360° and whose origin is fixed by 

the direction of the blue axis of the cube (sometimes the red). Finally, saturation is the length 

of the polar radius joining the color vector to the gray diagonal. 

 The relationship allowing the switch from RGB mode to HSV mode, and vice versa, 

appears in numerous works, such as, [18,28,32,49,50], etc. A comparative study of different 

models of the IHS transform was made in [48]. Taking the formulation proposed by Marion 

which guarantees an exact conversion in both directions of the transformation [3]: 
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{
𝐻 = 𝑎𝑟𝑐𝑡𝑎𝑛

𝑣2

𝑣1

𝑆 = √𝑣1
2 + 𝑣2

2
                                                                          (1.4) 

 The relation allowing returning to the RGB mode from the IHS mode is obtained by 

carrying out the following equations: 

{
𝑣1 = 𝑆 cos𝐻
𝑣2 =  𝑆 sin 𝐻

                                                                             (1.5) 

And: 

(
𝑅
𝐺
𝐵

) = 

(

 
 

1 −1
3⁄

1
√3

⁄

1 −1
3⁄ −1

√3
⁄

1 2
3⁄ 0 )

 
 

(
𝐼
𝑣1

𝑣2

)                                      (1.6) 

 To illustrate this passage, we take the example of an RGB image in the following 

figures: 

 

 

Figure 1.6. An example of transformation from RGB space to IHS space2. 

 

 

2 MATLAB images 

RGB image

Intensity image Hue image Saturation image
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Figure 1.7. Another example of transformation from RGB space to IHS space2. 

 

 The Hue values show a linear transition from top to bottom. If we compare the tinted 

image and the original image, we can see that the shades of blue have the highest values, and 

the shades of red have the lowest values. 

 The saturation can be thought of as the purity of a color. The saturation image shows 

that the colors with the highest saturation are shown as white. The center of the image, where 

there are shades of gray, is a mixture of colors. 

 The intensity image gives the brightness represented by light areas which correspond to 

the brightest colors in the original image. 

 

1.4.1.2.1. B) IHS pansharpening algorithm 

Figure 1.8 represents this process. Color image RGB space is converted to the IHS 

space. The 𝐼 (intensity) band is replaced by the panchromatic PAN image and it is calculated 

using: 

𝐼 =  ∑ 𝛼𝑖𝑀𝑆𝑖
𝑁
𝑖=1                                                                            (1.7) 

Where 𝑀𝑆𝑖 the ith band of the MS image and 𝛼𝑖 = 1/3. Yet, most multispectral images consist 

of four bands, RGB and an infrared band. Researchers have extended this method for other 

multispectral images by using 𝛼𝑖=1/N where N is the number of bands [51,52]. For the 

IKONOS satellite, the coefficients 𝛼 were experimentally determined [53]. 

Hue image Saturation image

Intensity image RGB image

Hue image Saturation image

Intensity image RGB imageHue image Saturation image

Intensity image RGB image

Hue image Saturation image

Intensity image RGB image
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Before fusing the two images, a histogram matching of the panchromatic image 𝑃 is 

applied to ensure that the mean and standard deviation of the panchromatic and multispectral 

images are within the same range, using:  

𝑃∗ = 
𝜎𝐼

𝜎𝑃
(𝑃 − 𝜇𝑃) + 𝜇𝐼                                                                  (1.8) 

Where 𝜇𝑃 and 𝜎𝑃 are the mean and standard deviation of the PAN image and 𝜇𝐼 and 𝜎𝐼 are 

the mean and standard deviation of the intensity image, respectively. 

Finally, the fused multi-channel image 𝐹 is obtained by [40]: 

𝐹𝑖 = 𝑀𝑆𝑖 + (𝑃∗ − 𝐼)                                                                    (1.9) 

 

Figure 1.8. Scheme of IHS image fusion.  

 

1.4.1.2.2. Principal Component Analysis (PCA) pansharpening technique 

 PCA transformation, developed by Pearson in 1901 and Hotelling in 1933, is a 

technique derived from statistics to simplify a set of data, while the best modern benchmark is 

Jolliffe in 2002. The goal of this method is to reduce the size of the data while preserving as 
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much relevant information as possible. By using this method, the redundancy of the image 

data can be decreased as it converts the correlated data set into an uncorrelated data set [46]. 

 

1.4.1.2.2. A) PCA transform 

The eigenvalues 𝜆 of a matrix A are the scalars verifying the following characteristic 

equation:  

det(𝐴 − 𝜆𝐼) = 0                                                                           (1.10) 

Where, I  is the identity matrix. 

The eigenvectors V associated with the eigenvalues 𝜆 verify the following equation: 

𝐴𝑉 = 𝜆𝐼𝑉 ↔ (𝐴 − 𝜆𝐼)𝑉 = 0                                                       (1.11) 

 Let V be the unit matrix whose columns represent the eigenvectors V = (𝑣1,…, 𝑣𝑛), with 

𝑣𝑘 = (𝑣1,𝑘 , … , 𝑣𝑛,𝑘)
𝑡
. The kth component 𝑃𝑘 of the PCA transform is given by: 

(

⋯
⋯
𝑃𝑘
⋯
⋯

) =

(

 
 

𝑣1,1 ⋯
⋯ ⋯

⋯ ⋯ 𝑣1,𝑁

⋯ ⋯ ⋯
𝑣𝑘,1 ⋯
⋯

𝑣𝑁,1

⋯
⋯

⋯ ⋯ 𝑣𝑘,𝑁

⋯
⋯

⋯ ⋯
⋯ 𝑣𝑁,𝑁)

 
 

(

 
 

𝑀𝑆1,1

⋯
𝑀𝑆𝑘,1

⋯
𝑀𝑆𝑁,1)

 
 

                        (1.12) 

So: 

𝑃𝑘 = ∑ 𝑣𝑝,𝑘. 𝑀𝑆𝑝,1
𝑁
𝑝=1                                                                   (1.13) 

 If C corresponds to the covariance matrix (cov) of the set B where 𝐶(𝑖, 𝑗) =

𝑐𝑜𝑣(𝐵𝑖, 𝐵𝑗), then C is a symmetric matrix, which also implies that this matrix is 

diagonalizable: 

𝑉𝑡  𝐶 𝑉 =  (

𝛿1 0
⋯ ⋯

⋯ 0
⋯ ⋯

⋯ ⋯
0 ⋯

⋯ 0
⋯ 𝛿𝑁

)                                                    (1.14) 

Where {𝛿1, … , 𝛿𝑛} are the eigenvalues in descending order: 𝛿1 > ⋯ > 𝛿𝑁. The total variance 

is equal to the sum of 𝛿𝑘 with 𝑘 = {1,… , 𝑁} [17]. 
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1.4.1.2.2. B) PCA pansharpening algorithm 

The multispectral MS image is transformed by PCA transform. The eigenvalues and 

corresponding eigenvectors of correlation matrix between the images in the individual bands 

of the multispectral image are calculated to obtain the principle components of each matrix. 

The matched PAN image replaces the first principle component of the multispectral MS 

image, and then we get the new first principle component. This later and the other principle 

components are used in inverse PCA transformation to form the fused image. We replace the 

first principal component image with PAN image data because the first principle component 

image has the common information to all the bands [29] (see Figure 1.9). 

 The role of image registration is to make the pixels in different images coincide 

precisely [54,55]. 

 As in any substitution, it is recommended to adjust the variance and the mean of the 

high-resolution channel to those of the first component before replacing [3]. 

 

Figure 1.9. Scheme of PCA image fusion.  

 

 

 



Chapter 1: An overview of image fusion methods 

 25 
 

1.4.1.2.3. Brovey Transform (BT) pansharpening technique 

 The BT pansharpening method preserves the relative spectral contribution of each pixel 

and replaces its overall luminance with the panchromatic image [56]. It is calculated by:  

[
𝑅𝐵𝑇

𝐺𝐵𝑇

𝐵𝐵𝑇

] =
𝑃𝐴𝑁

𝐼
. [

𝑅
𝐺
𝐵
]                                                                         (1.15) 

And I, is the intensity of resized MS image calculated as above [57]. 

The group of methods defined by (1.2), varying with the choice of spectral weights in 

(1.7), is sometimes referred to as relative spectral contribution (RSC) [5,58]. In this thesis, 

however, following [44], all CS methods are considered as a unique class. According to (1.2), 

RSC can be seen as a particular case of the CS class since such methods can be formalized 

and exhibit the same features as all CS methods [21,6]. 

 

1.4.1.2.4. Gram Schmidt (GS) pansharpening technique 

GS transform was first introduced for image fusion by Laben and Brower in 2000 [42]. 

The GS method can be calculated as: 

𝐼 =  ∑ 𝛼𝑖𝑀𝑆𝑖
𝑁
𝑖=1                                                                                 (1. 16) 

And: 

𝐹𝑖 = 𝑀𝑆𝑖 + 𝑔𝑖(𝑃 − 𝐼)                                                                      (1. 17) 

Where, 𝛼𝑖 is the weighting factor; 𝛼𝑖 = 1/𝑁, 𝑁is the number of MS image bands and 𝑔𝑖 is 

the injection gain and is calculated as 𝑔𝑖 = 𝑐𝑜𝑣(𝐼,𝑀𝑆𝑖)/𝑣𝑎𝑟(𝐼), where 𝑐𝑜𝑣(𝐴, 𝐵) denotes the 

covariance between images A and B, and var(A) is the variance of image 𝐴 [59]. 

 

1.4.1.3. Examples of pansharpening of some (CS)-based methods 

Four-band multispectral data, representing pansharpening an urban and vegetation 

scenes, was used for the following examples to show the results of different (CS)-based fusion 

techniques (figures 1.10 and 1.11, respectively). The algorithms were implemented in Matlab. 

PAN image is 1024x1024 pixels and the MS is an R, G and B color composition image 

with 256x256 pixels and with ratio 4. 
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a)                                              b) 

 
c)                                                                          d) 

 
e)                                                                           f) 

Figure 1.10. Pansharpening urban scene. a) PAN image2. b) Real size MS image2. c) IHS 
fused image. d) PCA fused image. e) BT fused image. f) GS fused image.  

 

PAN

MS

IHS PCA

Brovey GS
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a)                                             b) 

 
c)                                                                          d) 

 
e)                                                                           f) 

Figure 1.11.Pansharpening a vegetation scene. a) PAN image2. b) Real size MS image2. c) 
IHS fused image. d) PCA fused image. e) BT fused image. f) GS fused image. 
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IHS PCA
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1.4.1.4. Visual Analysis 

The best evaluation of spatial quality of fused images is visual test. In this test, the 

edges, boundaries, blurring and other details are noticed. 

 The resampled true color MS image is considered the visual reference for evaluating 

spectral quality and visual inspection. The MS image is resampled (interpolated) to the size of 

the PAN image using bilinear interpolation. 

 Visual inspection can reveal that the classical IHS method produces images with 

excellent visual quality, but the fused images contain noticeable spectral distortions. It 

provides more spatial details, while the BT preserves better spectral information. In general, 

PCA and IHS-based approaches produce results with larger spectral distortion. This is due to 

overusing the PAN image. The colors look visually very different from those of the original 

MS image. The GS method has good spatial details but little color distortion.  

 The boundary of urban area is more distinct and the contrast is clearer. The spatial 

details are a little blurred because of the significant change of contrast of the fused images. 

This is due to the replacement of substituted component to the histogram matched PAN 

image. In vegetation areas of the fused images, we found an obvious spectral distortion. 

 The obtained results give evidence that the good visual appearance and the spectral 

content preservation represent the main salient features of the CS-based methods. The 

attractive visual characteristics of the CS-based methods were highlighted by the absence of 

aliasing. Their widespread use is supported by such favorable characteristics, as well as the 

robustness of these methods to errors induced by a possible bad recording between the 

available MS and PAN Datasets and a relatively low computational load. 

 

1.4.2. Multiresolution analysis (MRA)-based methods 

The MRA-based methods originated in the 1980s [60] which are based on extracting the 

high frequency details from the PAN image and injecting them into the MS image. This 

fusion idea is generalized using the ARSIS concept [12]. The traditional idea of the MRA-

based methods is [62]: “The high-frequency channels coming from the PAN decomposition 

are inserted into the corresponding MS band channels, decomposed into a series of band-pass 

channels based on wavelet transform or Laplacian pyramids, etc., before the reconstruction 

step”. Figure 1.12(a) shows the flowchart of the traditional idea of the MRA-based 

pansharpening methods. 
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Reference [32] subsequently extended the MRA methods based on the general 

formalization, and this general formalization was further extended in [6,33,62] as a unifying 

framework. Most of the MRA-based methods can be explained by: 

𝑀̂ = 𝑀̃ + 𝑔(𝑃 − 𝑃𝐿)                                                                    (1.18) 

Where, 𝑀̂ is the fused image, 𝑀̃ is the MS image, 𝑃 is the PAN image, 𝑔 the injection gain 

and 𝑃𝐿is the low pass version of the PAN image. 

 The main difference between CS-based and MRA-based methods is how to extract high 

spatial details from the source images. 

For the MRA-based methods, the difference between the PAN image and its low-pass 

version 𝑃𝐿 is calculated to obtain the high spatial detail information. The scheme of the MRA-

based methods based on a general formalization is shown in Figure 1.12(b). 

 

 

a) Traditional undestanding of the MRA-based methods. 
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b) New understanding based on the general formalization of the MRA -based 

methods. 

Figure 1.12. Flowchart of the MRA-based pansharpening methods. 
(a) The traditional scheme of the MRA-based pansharpening methods. 

(b) The new understanding scheme based on the general formalization of the MRA -based 
pansharpening methods. 

 

 The MRA-based methods are characterized by the method of obtaining the image 𝑃𝐿 

and the injection gain 𝑔. For the solution of 𝑃𝐿, there is a number of ways. Among of these 

methods: 

 Methods based on single-level decomposition, such as the High-Pass Filter (HPF) 

method [18,60]. 

 Methods based on multiresolution analysis algorithms and methods based on more 

general MRA framework. 

 The pansharpening methods based on multiresolution Discrete Wavelet Transform 

(DWT) [61,63,64] are popular due to their better spectral preservation capacity. However, due 

to the existence of down-sampling in the wavelet decomposition, artifacts usually appear in 

spatial structures. Therefore, pansharpening methods based on discrete un-decimated wavelet 

transformation (UDWT) [65,66], in particular the “à trous” wavelet transformation method 

[62,67,68,69] have been proposed and attracting more and more attention, such as the popular 

additive wavelet luminance proportional (AWLP) method [70,67]. In addition, the 
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Generalized Laplacian Pyramid (GLP) [71,72], the Contourlet Transform [73,74], and the 

Curvelet Transform [75] are also MRA-based methods and have become popular. 

 Overall, the calculation of 𝑃𝐿 can be divided into two ways, i.e., the calculation based 

on decimated filters and undecimated filters. For the calculation with the undecimated filters, 

the low-pass version 𝑃𝐿 has the same spatial dimension with 𝑃. For processes with decimated 

filters, such as the DWT filter, the low pass band 𝑃𝐿 must go through the operation of 

downsampling and then interpolation, which usually leads to artifacts. However, it should be 

noted that MRA-based methods would work best if the filters used are tightly tuned to match 

the Modulation Transfer Function (MTF) of the sensor [70,71,72], such as the typical MTF-

GLP method [72]. 

 The determination of the injection weight 𝑔 is similar as in the CS-based methods. 

Among of the most popular injection models are High-Pass Modulation (HPM) [76], the 

Context-Based Decision (CBD) model [77], the Spectral Distortion Minimizing (SDM) model 

[77], and the representative methods including the MTF-GLP-HPM and MTF-GLP-CBD 

[77], etc. 

 

1.4.2.1. Some MRA-based methods 

1.4.2.1.1. Discrete Wavelet Transform (DWT) pansharpening technique 

1.4.2.1.1. A) DWT transform 

 Wavelets offer good resolution in the time and frequency domains, they have been 

widely used in image processing which provides multiresolution decomposition of an image 

in a bi-orthogonal basis and results in a non-redundant image representation. The bases are 

called wavelets and these are functions generated by translation and dilation of mother 

wavelet. In wavelet analysis, the signal is broken down into scaled (expanded) and shifted 

(translated) versions of the chosen mother wavelet or function. A wavelet, as the name 

suggests, is a small wave that basically grows and decays within a limited amount of time. A 

wavelet must satisfy two basic properties: 

 (i) The time integral should be zero: 

∫ 𝛹(𝑡)𝑑𝑡 = 0
+∞

−∞
                                                                           (1.19) 

(ii) The time-integrated wavelet square is the unit: 
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∫ 𝛹2(𝑡)𝑑𝑡 = 1
+∞

−∞
                                                                            (1.20) 

 The wavelet transform of a 1D signal f (x) based on wavelet functions is defined as: 

𝑊𝑎,𝑏(𝑓(𝑥)) = ∫ 𝑓(𝑥)
+∞

𝑥=−∞
𝛹𝑎,𝑏(𝑥)𝑑𝑥                                           (1.21) 

 The basis is obtained by translation and expansion of the mother wavelet as: 

𝛹𝑎,𝑏(𝑥) =
1

√𝑎
𝛹 (

𝑥−𝑏

𝑎
)                                                                   (1.22) 

 The mother wavelet would localize in both spatial and frequency domain and it has to 

satisfy zero mean constraint. In the Discrete Wavelet Transform (DWT), the expansion factor 

𝑎 is 2𝑚 and the translation factor 𝑏 is 𝑛2𝑚, where m and n are integers. 

 The information flow in one level of 2D image decomposition is illustrated in Figure 

1.13. Wavelet separately filters and down-samples the image in the vertical and horizontal 

directions (separable filter bank). The input image 𝐼(𝑥, 𝑦) is filtered horizontally by a pair of 

filters, low-pass filter (L) and high-pass filter (H), then downsampled by a factor of two to 

create the coefficients matrixes 𝐼𝐿(𝑥, 𝑦) and 𝐼𝐻(𝑥, 𝑦). 𝐼𝐿(𝑥, 𝑦) and 𝐼𝐻(𝑥, 𝑦) are both vertically 

filtered by L and H and then downsampled by a factor of two to create 𝐼𝐿𝐿(𝑥, 𝑦), 𝐼𝐿𝐻(𝑥, 𝑦), 

𝐼𝐻𝐿(𝑥, 𝑦), and 𝐼𝐻𝐻(𝑥, 𝑦) subbands (sub-images) [78]. 

  

 

Figure 1.13. One decomposition level of 2D image. 
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 𝐼𝐿𝐿(𝑥, 𝑦) contains the low frequency band of the multiscale decomposition. It can be 

thought of as an approximate smoothed and downsampled version of the source image 

𝐼(𝑥, 𝑦). Horizontal, vertical and diagonal images (𝐼𝐿𝐻(𝑥, 𝑦), 𝐼𝐻𝐿(𝑥, 𝑦) and 𝐼𝐻𝐻(𝑥, 𝑦)) are the 

detail sub-images of the source image 𝐼(𝑥, 𝑦). Multiresolution could be obtained by 

recursively applying the same algorithm to the low-pass coefficients of the previous 

decomposition [79,80,81]. 

 The reconstruction of the image 𝐼(𝑥, 𝑦) is obtained from the inverse 2D wavelet 

transform using the sub-images 𝐼𝐿𝐿(𝑥, 𝑦), 𝐼𝐿𝐻(𝑥, 𝑦), 𝐼𝐻𝐿(𝑥, 𝑦) and 𝐼𝐻𝐻(𝑥, 𝑦) as shown in 

Figure 1.14. This involves up-sampling in columns and low-pass (𝐿̃) and high-pass (𝐻̃) 

filtering for each sub-image, then in rows. The summation of all the resulting matrices would 

build the image 𝐼(𝑥, 𝑦) [78]. 

 

 

Figure 1.14. One reconstruction level of 2D image. 

 

1.4. 2.1.1. B) DWT pansharpening algorithm 

The information flow diagram of wavelet-based image fusion algorithm is shown in 

Figure 1.15. In wavelet image fusion scheme, the source images are decomposed into 

approximation and detail coefficients at required level using DWT. The approximation and 

detail coefficients of both images are combined using a fusion rule. The fused image could be 

obtained by taking the inverse discrete wavelet transform [78]. 
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Figure 1.15. Scheme of the Wavelet image fusion. 

 

1.4.2.1.2. “A Trous” Wavelet Transform (ATWT) pansharpening technique 

1.4.2.1.2. A) ATWT transform 

 The “à trous” wavelets are the most flexible than other types of wavelets. Only one 

non-directional image is produced; this image will have the same dimensions as the original 

image since no decimation is required. In this type of transform, the approximation image is 

obtained by filtering the input image by a cubic spline filter “h” [82]. To perform the process 

of decomposition, the mask “h” is filled with zeros and the approximation is filtered by the 

new mask. The difference between two levels of approximation is called the wavelet plane at 

that level. This process is represented as follows: 

𝑝𝑗+1 = 𝑝𝑗 ∗ ℎ𝑗                                                                                (1.23) 

𝑤𝑗+1 = 𝑝𝑗 − 𝑝𝑗+1                                                                           (1.24) 

Where initially, 𝑝0 is the original image and 𝑤𝑗 and 𝑝𝑗 are the wavelet and approximation 

plane at level j, respectively. "*" is the symbol of convolution. 
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The reconstructed image can simply be obtained by adding the wavelet planes to the 

approximation image of the last layer [83]. 

The mask of “à tous” filter at level j is defined as follow: 

ℎ𝑗 =
1

256

[
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                                                  (1.25) 

At each level j, ℎ𝑗 is modified by doubling its size and inserting null values between the 

original coefficients [4]. 

 

1.4. 2.1.2. B) ATWT pansharpening algorithm 

In additive ATWT based fusion method, the PAN wavelet planes are added directly to 

the MS image (equation (1.26)): 

𝐹 = ∑ 𝑤𝑃𝐴𝑁𝑗
𝑛
𝑗=1 + 𝑀𝑆                                                                   (1.26) 

Where, 𝐹 is the fused image, 𝑛 is the number of wavelet planes, 𝑤𝑃𝐴𝑁𝑗   is the wavelet plane 

of the PAN image at level j, and 𝑀𝑆 is the multispectral image [83]. 

 

1.4.2.1.3. Laplacian Pyramid (LP) pansharpening technique 

1.4.2.1.3. A) LP transform 

The Laplacian Pyramid was first proposed by [84] for compact image representation. 

The main steps are as follows: 

1. Filtering the original image 𝑔0 with a low pass mask “w” (the Gaussian filter, for example) 

and downsample it by 2 to create a reduced low-pass version 𝑔1. 

2. This image is then upsampled and filtered with the same mask “w” to create the extended 

low-pass image 𝑔1
′ . The detail image 𝐿0 is obtained by calculating the following difference: 

𝐿0 = 𝑔0 − 𝑔1
′                                                                                 (1.27) 

The above steps can be performed recursively on the low-pass and subsampled image 

𝑔1 a maximum of N times and the image size is 2Nx2N. Thus, the end result is a number of 
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detail images 𝐿0, 𝐿1, … , 𝐿𝑁 and the lowpass image 𝑔𝑁. Each obtained image recursively is 

smaller, in size by a factor of 4, than the previous image and its center frequency is reduced 

by an octave (see Figure 1.16). 

The N detail images 𝐿0, 𝐿1, … , 𝐿𝑁 and the low-pass image 𝑔𝑁 are used to obtain the 

original image 𝑔0 by the inverse transform as follows: 

1. 𝑔𝑁 is upsampled and filtered with the masque “w” to obtain the image 𝑔𝑁
′ . 

2. The approximation image at the next upper level is obtained by adding the image 𝑔𝑁
′  

and the lowest level detail image 𝐿𝑁 to obtain: 

𝑔𝑁−1 = 𝐿𝑁 − 𝑔𝑁
′                                                                           (1.28) 

Steps 1 and 2 are repeated on the detail images 𝐿0, 𝐿1, … , 𝐿𝑁−1 to obtain the original 

image [85]. 

 
Figure 1.16.  Example of an image pyramid with 5 levels. 

 

1.4. 2.1.3. B) LP pansharpening algorithm 

 The Laplacian Pyramid fusion algorithm consists of calculating Gaussian and Laplacian 

pyramids of each source image, iteratively, pansharpening the Laplacian images at each 

pyramid level by selecting the pixel of greatest absolute values, combining the merged 



Chapter 1: An overview of image fusion methods 

 37 
 

Laplacian pyramid with the extended combined pyramid of the lower level, and extending the 

combined pyramids at the upper level. The pixel selection step above can also be done using a 

PCA-based weighted averaging technique [86]. 

 

1.4.2.1.4. Additive Wavelet Luminance (AWL) pansharpening method 

 Many shift-invariant wavelet transform based algorithms have been proposed [82] such 

as the “à trous” Wavelet transform based additive and substitutive methods. In the addit ive 

process, the PAN and MS images are decomposed into wavelet planes and the PAN image 

planes are directly added to the MS bands. In the substitute method, the MS planes are 

replaced by PAN image planes. Hybrid methods between IHS/decimated wavelets and 

IHS/undecimated wavelets have also been introduced to improve fusion performance [67,87]. 

 AWL is an additive and hybrid method between IHS/undecimated wavelet transforms. 

In the AWL method, firstly, the MS image is transformed into IHS. Then, the histogram of 

the PAN image is matched with the Intensity (I) component of the MS image. The matched 

PAN image is transformed into wavelet planes. The new I is obtained by adding the wavelet 

planes of the matched PAN image 𝑤𝑝𝑙 with the original I component. Finally, the inverse IHS 

is applied to the components H, S and the new I [83,87]. 

𝐼𝑛𝑒𝑤 = ∑ 𝑤𝑝𝑙 + 𝐼𝑛
𝑗=1                                                                       (1.29) 

 

1.4.2.1.5. High-Pass Filter (HPF) pansharpening method [18] 

 It should be noted that the various MRA- based methods are only characterized by the 

way of obtaining the image 𝑃𝐿 and the injection weight g. For the 𝑃𝐿, there are several ways; 

methods which use a single level of decomposition, methods based on multi-level 

multiresolution analysis algorithms and methods based on a more general MRA framework. 

Specifically, within the early stage, the HPF methodology is that the representative approach 

[27]. A high-pass filtering is applied to the PAN image in order to extract the high 

frequencies, then, these high frequencies are introduced in the MS image by addition, which 

leads to a synthetic image [88]. The mask is a high-pass Laplacian filter of 3 by 3 pixels. 

 

1.4.2.1.6. Smoothing Filter-Based Intensity Modulation (SFIM) 

 The SFIM fusion method controls the trade-off between spatial and spectral 

information. Moreover, it suffers more loss in spatial information but it preserves more 

spectral information. Its effectiveness depends mainly on the design of the filter. 
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 SFIM is a BT-type approach, uses a smooth version of the PAN image 𝑃𝐿, instead of the 

intensity component of the MS image. This method is defined by: 

[
𝑅𝑆𝐹𝐼𝑀

𝐺𝑆𝐹𝐼𝑀

𝐵𝑆𝐹𝐼𝑀

] =
𝑃𝐴𝑁

𝑃𝐿
. [

𝑅
𝐺
𝐵
]                                                                    (1.30) 

Where, 𝑃𝐿 is often obtained from a 7x7 mean filter. It is known that the spatial resolution can 

be improved by increasing the mask size of the low-pass filter in the SFIM method [37,57].  

 

1.4.2.2. Examples of pansharpening of some (MRA)-based methods 

Figures 1.17 and 1.18 show the application of different pansharpening (MRA)-based 

methods with the same precedent data of figures 1.10.(a) and (b) and 1.11.(a) and (b), 

respectively. 
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a)                                                                           b) 

 
c)                                                                         d) 

 
e)                                                                         f) 

Figure 1.17. Pansharpening an urban scene. a) DWT fused image. b) ATWT fused image. c) 
LP fused image. d) HPF fused image. e) SFIM fused image. f) AWL fused image. 

DWT ATWT

LP HPF

SFIM AWL
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a)                                                                       b) 

 
c)                                                                         d) 

 
e)                                                                           f) 

Figure 1.18. Pansharpening a vegetation scene. a) DWT fused image. b) ATWT fused image. 
c) LP fused image. d) HPF fused image. e) SFIM fused image. f) AWL fused image. 

 

DWT ATWT

LP HPF

SFIM AWL
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1.4.2.3. Visual Analysis 

Considering the techniques belonging to the MRA-based methods, which benefit from 

proper detail extraction, in particular, the match of the low-pass filter with the sensor MTF 

which allows significantly reducing the classical blur of the MRA final products. 

 The best visualization is given by the decimated approaches in the LP method, 

especially for urban areas, due to greater aliasing robustness compared to the ATWT. The 

resulted image using the ATWT method has good color information, which leads to good 

preservation of spectral information. However, the fused image suffers from vital spatial 

distortions. The DWT method is much slower to compute and the fused image often has lower 

visual quality than images produced by other methods. It can be seen that the fused image of 

the HPF gets good spectral quality, but it is a bit too accentuated on the vegetation areas due 

to poor detail injection. The SFIM method offers the best color preserving but suffers more 

spatial detail loss in the fused image. The AWL method greatly improves the spatial qualities 

of the original MS images and is most visible in vegetation areas. 

 However, the similarity of the frequency response of the filters in the MRA approaches 

with that of the MS-MTF sensor, explains the good performances. The application of the filter 

leads to poorer performance. This is mainly due to the spatial artifacts due to the presence of 

ripples in the pass-band in the representation of this filter in the frequency domain and to its 

greater dissimilarity with respect to the transfer function of the sensor. 

 

1.4.3. Variational optimization (VO)-based methods 

 The VO-based methods are an interesting category of the pansharpening family. The 

major process of this category is generally based on the optimization of a variational model. 

The VO-based methods consist of two main parts; building functional energy and 

optimization solution. Figure 1.19 shows the schematic of the VO-based pansharpening 

strategies. 
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Figure 1.19. Flowchart of the VO-based pansharpening methods. 

 

 The methods based on observation model [89] – [95] and the sparse representation [22], 

[96] – [98] are the most popular for the construction of the functional energy. Functional 

energy can be represented by three models; the spectral fidelity, the spatial enhancement and 

the a priori models. Generally, it can be represented by the following expression: 

𝐸(𝑥) = 𝑓𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙(𝑥, 𝑀𝑆) + 𝑓𝑠𝑝𝑎𝑡𝑖𝑎𝑙(𝑥, 𝑃𝐴𝑁) + 𝑓𝑝𝑟𝑖𝑜𝑟(𝑥)              (1.31) 

Where, 𝑥 denotes the ideal fused image which is divided on three terms. The first is the 

spectral fidelity model, the second is the spatial enhancement model, and the third is the prior 

model. The spectral fidelity model relates the ideal fused image to the MS image and it is 

generally constructed on the assumption that the observed MS image can be obtained by 

blurring, downsampling and noising operations performed on the MS image 

[10,95,99,100,101]. The spatial enhancement model is generally built on two assumptions; the 

first is the spectral degradation between the MS image and the PAN image, i.e., the PAN band 

is assumed to be a linear combination of the MS bands [95,100,102]. The second is the spatial 

structures of the fused image, which are approximately consistent with the PAN image 

[11,90,103,104]. This is generally represented by gradient features [90,103,105], wavelet 

coefficients [11], or other approaches [92,106]. Some VO-based pansharpening methods are 

based on the Laplacian prior model [107], the Huber-Markov prior model [95], the total 

variation (TV) prior model [94], the nonlocal prior model [108] and the low-rank prior model 
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[109], etc. A certain number of fusion energy functions can be generally simplified as the 

following two basic expressions: 

𝐸(𝑥) = 𝜆1‖𝑀𝑆 − 𝐷𝑆𝑥‖ + ‖𝑃𝐴𝑁 − 𝐶𝑥‖ + 𝜆2𝑝𝑟𝑖𝑜𝑟(𝑥)                      (1.32) 

𝐸(𝑥) = 𝜆1‖𝑀𝑆 − 𝐷𝑆𝑥‖ + ∑ ‖𝑊∗𝑃𝐴𝑁 − 𝑊∗𝑥𝑏‖
𝐵
𝑏=1 + 𝜆2𝑝𝑟𝑖𝑜𝑟(𝑥)   (1.33) 

Where, 𝐷 and 𝑆 denote the downsampling and blurring matrix, respectively, the 𝐶 denotes 

the spectral combination matrix, and the 𝑊 represents the operator to extract the high spatial 

structure information. 𝜆1 and 𝜆2 are two parameters of the model to balance the three terms. It 

can be seen that an obvious characteristic of the two representative energy functions in (1.32) 

and (1.33) depends on the two classical assumptions of the spatial enhancement models.  
 Furthermore, the two hypotheses are strongly correlated with the basic idea of 

extracting the spatial structure of the CS-based methods and the MRA-based methods, 

respectively. 

 The sparse-based methods are mainly based on sparse representation theory [110]. This 

is generally represented as: 𝑥 = 𝛹𝛼, where the 𝛹 denotes the dictionary of signals of the 

remote sensing images, and the 𝛼 denotes the sparse coefficients. The sparse-based 

pansharpening strategies were first projected by [22], and since then, they need got speedy 

development. 

 We must note that the dictionary acquisition is relatively important for this kind of 

pansharpening methods. 

 The optimization solution of the fusion model is generally based on an iterative 

optimization algorithm [111,112,114], such as the gradient descent algorithm [95,113], the 

conjugate gradient algorithm [114], the split Bregman iteration algorithm [90], the alternating 

direction method of multipliers (ADMM) algorithm [101] and the optimization solution based 

on the Sylvester equation [101,114] etc. On the full, there are three key points within the VO-

based pansharpening strategies. The first is the construction of the optimal fusion functional 

energy, the second is the adaptive selection of model parameters, and the third is the rapid 

optimal solution. It should be noted that the application of the VO-based pansharpening 

methods is hampered due to their low efficiency [27]. 
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1.4.3.1. Some VO-based methods 

1.4.3.1.1. P+XS pansharpening method 

P+XS image fusion model is proposed in [89] for merging the PAN and the MS image, 

on the assumption that the geometry structure of the PAN image should be contained in the 

MS image. An extended variational fusion model is presented in [115] for sharpening the 

hyper-spectral image while preserving its spectral pattern [116]. 

 The P+XS technique is a variational method, which determines the pansharpened image 

by minimizing its functional energy. The total functional energy minimized by the P+XS 

model is [11]: 

𝐸(𝑢𝑛) = ∑ 𝛾𝑛 ∫ (|∇𝑢𝑛| + 𝑑𝑖𝑣(𝜃). 𝑢𝑛)
𝛺

4
𝑛=1 𝑑𝑥 + 𝜆 ∫ (∑ 𝛼𝑛𝑢𝑛 − 𝑃𝐴𝑁4

𝑛=1 )2𝑑𝑥 +
𝜔

𝜇 ∑ ∫ П𝑆((𝑘𝑛 ∗ 𝑢𝑛) − 𝑀𝑆𝑛)
2
𝑑𝑥

𝛺
4
𝑛=1                                           (1.34) 

Where, 𝑢𝑛 are the desired high resolution multispectral bands, 𝛺 and 𝜔 are the image 

domains, 𝑘𝑛 is a convolution kernel, П𝑆 a Dirac comb and 𝛾𝑛, 𝜆, 𝛼𝑛 and 𝜇 are parameters to 

weight the different terms. The level sets of an image can be represented by the vector field 𝜃 

consisting of all unit normal vectors of those level sets and is implemented as: 𝜃(𝑥) =

∇𝑃𝐴𝑁(𝑥)

|∇𝑃𝐴𝑁(𝑥)|𝜖
 [27]. 

 The P+XS method is more complex and there are several parameters to tune. However, 

for most of them, their values were left at default. The most important parameters are the 

weights for each multispectral band in the merged image and the regularization term 𝜆 [94]. 

The P+XS method obtains the edge information of the PAN image using the gradient. 

The spectral information is obtained by approximating the PAN image as a linear combination 

of the MS bands [89]. 

 

1.4.3.2. Examples of P+XS pansharpening method 

Figure 1.20 shows the application of the P+XS pansharpening method with the same 

precedent data of figures 1.10.(a) and (b), and 1.11.(a) and (b), respectively. 
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a)                                                                  b) 

Figure 1.20.Pansharpening urban and vegetation scenes, respectively. 
a) P+XS fused image. b) P+XS fused image. 

 

1.4.3.3. Visual Analysis 

 The P+XS pansharpening method is not good, as other methods, in visual spatial 

quality. Its fusion results look more blurred. It demands more development, mostly, in the 

injection of spatial details. The P+XS method is more complex and there are several 

parameters to tune. Because of this, it demands a huge computing time. 

 

1.5. Conclusion 

The fusion methods mentioned in this chapter only constitute an inventory not 

exhaustive of commonly used processes.  

 This chapter has presented the problem of pansharpening of multi-spectral satellite 

images and a comprehensive review of the pansharpening methods for remote sensing images 

based on the three main categories, such as, the CS-based methods, the MRA-based methods, 

and the VO-based methods. 

 In any pansharpening technique, the resulting image ought to have high visual quality to 

help within the detection and classification tasks. 

 However, the fused image should contain the same colors (spectral information) as the 

original MS. This becomes especially important as the number of bands increases, because the 

spectral signature can be used for material identification. Therefore, the pansharpened image 

should possess both high spatial and spectral qualities. 

P+XS P+XS
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A visual comparison, using all methods is shown in Figures 1.10, 1.11, 1.17, 1.18 and 

1.20,  can be made by careful observation of these images and it can be easily found that all of 

the fused images are visually enhanced over the resampled MS image. 

 The hybrid result is better than other methods while maintaining color information 

similar to the original MS image. 

 In the case of other fusion results, some color distortion has occurred. In addition, in 

some features, such as building edges and moving cars, some blurring has occurred. These 

visual results show that hybrid pansharpening can considerably improve the spatial quality 

while preserving the spectral information of the original MS image. 

 The spatial quality can be judged visually, but in this way, subtle color changes are 

harder to notice. Therefore, we look at performance metrics to assess spectral quality. Since 

high resolution ground truth was not available, we will compare the fusion results with an 

upsampled version of the original MS data.  
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2.1. Introduction 

 Each method, discussed in chapter 1, experiences a trade-off between the quality of the 

spectral and spatial resolutions [4]. 

 For a qualitative evaluation, all these methods gave good results. The spatial quality is 

enhanced compared to the relative MS images [4]. 

 There are many ways to analyze the results of fused images and compare different 

pansharpening methods. When comparing methods, we are interested in spectral and spatial 

quality. 

 To judge spatial quality, it is much easy to see the acuity of the edges. But when 

evaluating the spectral quality, it is much more difficult to match the colors of the resulting 

image to the original multispectral image by visual inspection. 

 Qualitative evaluation may be used to evaluate the pansharpened images. In addition 

to the visual analysis, quantitative evaluation must be considered. 

 There are many image quality metrics that analyze spectral quality. They can be also 

used to compare pansharpening algorithms [55]. 

 It should be noted that due to the lack of reference images in the real experiments, the 

quantitative evaluation was comprehensively performed from two aspects. First, the MS 

image was applied as the reference image for the quantitative evaluation. Second, the fused 

results were evaluated based on non-reference quality evaluation indices [4,120]. 

 In this chapter, quality assessment is discussed, where qualitative and quantitative 

evaluations are analyzed in section 2.2. The quantitative indices are classified using a 

reference image or without a reference image. In section 2.3, experimental results are 

measured to compare the different pansharpening methods presented in Chapter 1.    

 

2.2. Qualitative and quantitative evaluation 

 Qualitative or visual analysis is performed by human observers’ experiences, which will 

introduce some uncertainty [55]. In the qualitative evaluation, the resulting images are 

compared with the colors of the MS images and also to the spatial details of the PAN images.  

 Most of the pansharpening methods have good spatial details. However, they show 

visually a little spectral distortion [4]. 

 Since visual analysis can be influenced by personal preferences, quantitative evaluation 

of pansharpening algorithms is an effective method to assess the quality of the resulting 

images. 
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2.2.1. Quantitative evaluation with reference image 

 When the reference image is available, we can use several different metrics. An 

evaluation of the performance of the image fusion algorithms can be performed using the 

metrics presented in Table 2.1. 

 

Name of the 

Metric 
Formula 

Features and 

Properties 

Reference 

value 

Correlation 

Coefficient 

[122] 

𝐶𝐶

=
∑ ∑ [(𝐹𝑖,𝑗 − 𝜇𝐹). (𝑅𝑖,𝑗 − 𝜇𝑅)]𝑁

𝑗=1
𝑀
𝑖=1

√∑ ∑ (𝐹𝑖,𝑗 − 𝜇𝐹)
2

. ∑ ∑ (𝑅𝑖,𝑗 − 𝜇𝑟)
2𝑁

𝑗=1
𝑀
𝑖=1

𝑁
𝑗=1

𝑀
𝑖=1

 

Where 𝐹𝑖,𝑗  and 𝑅𝑖,𝑗: Value of the pixel (i, j) of the 

merged image F and of the reference image R, 

respectively. 

𝜇𝐹 and 𝜇𝑅: Means of the fused image F and the 

reference image R, respectively. 

MxN: Reference image size.  

The average of the 

absolute values of the 

change in correlation 

coefficients between 

bands before and 

after the sharpening 

process. 

0 

Correlation 
[78] 

𝐶𝑂𝑅𝑅 =
2𝐶𝐹𝑅

𝐶𝐹 + 𝐶𝑅
 

Where 𝐶𝐹 = ∑ ∑ 𝐹𝑖,𝑗
2𝑁

𝑗=1
𝑀
𝑖=1 , 𝐶𝑅 = ∑ ∑ 𝑅𝑖,𝑗

2𝑁
𝑗=1

𝑀
𝑖=1  

and 𝐶𝐹𝑅 = ∑ ∑ 𝐹𝑖,𝑗
𝑁
𝑗=1 . 𝑅𝑖,𝑗

𝑀
𝑖=1  

Shows the correlation 

between the reference 

and fused images. 

1 

Universal 

Image Quality 

Index 

[123,124] 

 

𝑈𝐼𝑄𝐼 =
𝜎𝐹𝑅

𝜎𝐹𝜎𝑅
.

2𝜇𝐹𝜇𝑅

𝜇𝐹
2 + 𝜇𝑅

2
.

2𝜎𝐹𝜎𝑅

𝜎𝐹
2 + 𝜎𝑅

2
 

Where 𝜎𝐹 and 𝜎𝑅: Standard deviations of the 
merged image F and the reference image R, 
respectively. 
𝜎𝐹𝑅 : Covariance between the fused image F and the 
reference image R.  

It models three 
different distortion 
factors: luminance 
distortion, contrast 

distortion and loss of 
correlation. So, it 

measures the 
structure distortion 

degree. 

1 

Root Mean 

Squared Error 

[122] 

 

𝑅𝑀𝑆𝐸 = √
1

𝑀. 𝑁
∑ ∑(𝐹𝑖,𝑗 − 𝑅𝑖,𝑗)

2
𝑁

𝑗=1

𝑀

𝑖=1

 

 

It is the average 
squared difference 

between the original 
multispectral and 

fused images. 

0 
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Relative 

Average 

Spectral Error 

[75] 

 

𝑅𝐴𝑆𝐸 =
100

𝜇(𝑅)
√

1

𝑛
∑ 𝑅𝑀𝑆𝐸𝑖

2

𝑛

𝑖=1

 

Where RMSEi: The RMSE value of the ith band. 
 𝜇(𝑅) : The mean value of the reference image R.  

Calculates the mean 
error of all bands per 

radiance of the 
image. 

0 

Spectral Angle 

Mapper [125] 

 

𝑆𝐴𝑀 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
〈𝑢𝐹 , 𝑢𝑅〉

|𝑢𝐹|. |𝑢𝑅|
) 

Where 𝑢𝐹 and 𝑢𝑅: Spectral vectors of the fused 
image F and the reference image R, respectively. 

Calculates the 
average change in 

angle of all spectral 
vectors. 

0 

Relative 

Dimensionless 

Global Error In 

Synthesis 

[126] 

 

𝐸𝑅𝐺𝐴𝑆 = 100.
ℎ

𝑙
√

1

𝑛
∑ (

𝑅𝑀𝑆𝐸𝑖

𝜇(𝑅𝑖)
)

2𝑛

𝑖=1

 

Where h/l: The ratio between pixel sizes of the PAN 
image and the MS image. 
𝜇(𝑅𝑖 ) : The mean value of the ith band of the 
reference image R.  

Takes the average 
mean square error 
normalized by the 

mean of each band. It 
measures the spectral 

distortion. 

0 

Spectral 

Information 

Divergence 

[127] 

 
𝑆𝐼𝐷(𝑥, 𝑦) = 𝐷(𝑥‖𝑦) + 𝐷(𝑦‖𝑥) 

Where 𝐷(𝑥‖𝑦): Relative entropy defined by: 

𝐷(𝑥‖𝑦) = ∑ 𝑝𝑖𝑙𝑜𝑔(
𝑝𝑖

𝑞𝑖
⁄ )𝐿

𝑖=1 , 𝑝𝑗 =
𝑥𝑗

∑ 𝑥𝑖
𝑛
𝑖=1

  and 

𝑞𝑗 =
𝑦𝑗

∑ 𝑦𝑖
𝑛
𝑖=1

. 

𝑋 = (𝑥1, … , 𝑥𝑛)𝑇 and 𝑌 = (𝑦1, … , 𝑦𝑛)𝑇 : Vectors be 
taken from the MS image and the fused image, 

respectively. 

Visualizes each pixel 
spectrum as a random 

variable and thus 
measure the probability 
difference between two 

spectra vectors. 

 

0 

Spatial 

Correlation 

Coefficient 

[121] 

 

To extract the high frequency data of a band, it is 

convoluted with the following high-pass mask: 

 

SCC 𝑚𝑎𝑠𝑘 = [
−1 −1 −1
−1 8 −1
−1 −1 −1

] 

 

The SCC value is the average of the CCs for each 
band of the MS image.  

Compares the high 

frequency data 

obtained from the 

panchromatic image 

with the one 

extracted from each 

band of the fused 

image. 

1 
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Structural 

Similarity 

index [78] 

 

𝑆𝑆𝐼𝑀 =
(2𝜇𝐹𝜇𝑅 + 𝐶1). (2𝜎𝐹𝑅 + 𝐶2)

(𝜇𝐹
2 + 𝜇𝑅

2 + 𝐶1). (𝜎𝐹
2 + 𝜎𝑅

2 + 𝐶2)
 

 

Where 𝐶1 : A constant that is included to avoid the 

instability when 𝜇𝐹
2 + 𝜇𝑅

2 is close to zero. 

𝐶2 : A constant that is included to avoid the 
instability when  𝜎𝐹

2 + 𝜎𝑅
2 is close to zero. 

The natural signals of 
the image would be 

highly structured and 
their pixels show 

strong dependencies. 
These dependencies 

would carry vital 
information about the 

structures of the 
objects. 

1 

Table 2.1. Performance evaluation metrics when reference image is available. 

 
2.2.2. Quantitative evaluation without reference image 

 When the reference image is not available, the performance metrics shown in Table 

2.2 could be used. 

 

Name of the 
metric Formula Features and 

Properties 
Reference 

value 

Spectral 
distortion 

[128] 

𝐷𝜆 = √
1

𝑛(𝑛 − 1)
∑ ∑ |𝑄(𝑀𝑆𝑖 , 𝑀𝑆𝑗) − 𝑄(𝐹𝑖 , 𝐹𝑗)|

𝑛

𝑗=1,𝑗≠𝑖

𝑛

𝑖=1

 

 
Where Q(A,B) : The UIQI value between the image A 
and image B.  

Assesses the spectral 
distortion. 

0 

Spatial 
distortion 

[128] 

 

𝐷𝑠 = √
1

𝑛
∑|𝑄(𝐹𝑖 , 𝑃𝐴𝑁) − 𝑄(𝑀𝑆𝑖 , 𝑃𝐿𝑃)|

𝑛

𝑖=1

 

 
Where  𝑃𝐿𝑃: A spatially degraded version of PAN. 

Assesses the spatial 
distortion. 

0 

Quality with 
No 

Reference 
[128] 

 

𝑄𝑁𝑅 = (1 − 𝐷𝜆). (1 − 𝐷𝑠) 
 

Measures the overall 
fusion quality without 
requiring a reference 

MS image by merging 
the measurements of 

the spectral and 
spatial distortions 
based on the UIQI 

index at the full scale 
of PAN [129]. 

1 

Table 2.2. Performance evaluation metrics when reference image is not available. 
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2.3. Experimental study 

 After representing the different metrics in Tables 2.1 and 2.2, we calculated them for all 

the pansharpening methods presented in Chapter 1 to show the effectiveness of each method. 

Except the IHS method that can’t be used because it contains only 3 bands and the P+XS 

method because of its modest visual result. Table 2.3 shows the calculation of the correlation 

between the spectral bands of the reference image and the corresponding bands of the fused 

image for all pansharpening methods presented in Chapter 1. 

 The two images are those used in Chapter 1 representing two areas, the first one is an 

urban image and the second one is a vegetation image. 

  

Test 
Images 

Correlation 
Methods C1 C2 C3 C4 

Im
ag

e 
1 

(U
rb

an
) 

PCA 0.9353 0.9421 0.9305 0.9150 
BT 0.9382 0.9457 0.9496 0.9487 
GS 0.9467 0.9437 0.9454 0.9545 

DWT 0.9529 0.9590 0.9658 0.9645 
ATWT 0.9681 0.9684 0.9684 0.9679 

LP 0.9773 0.9807 0.9833 0.9815 
HPF 0.9770 0.9771 0.9771 0.9769 

SFIM 0.9725 0.9739 0.9750 0.9772 
AWL 0.9590 0.9629 0.9682 0.9685 

Im
ag

e 
2 

(V
eg

et
at

io
n)

 

PCA 0.8135 0.7996 0.8283 0.8121 
BT 0.8117 0.7968 0.7880 0.8256 
GS 0.7829 0.7834 0.7908 0.8617 

DWT 0.8532 0.8605 0.8295 0.8665 
ATWT 0.9074 0.9081 0.9057 0.9135 

LP 0.9304 0.9351 0.9164 0.9431 
HPF 0.9134 0.9139 0.9126 0.9167 

SFIM 0.9185 0.9175 0.9164 0.9138 
AWL 0.9082 0.9131 0.8928 0.9194 

Table 2.3. Four-band correlation between reference and merged images for different methods. 

 

 The quality assessment metrics, when reference image is available or not, are shown in 

Tables 2.4 and 2.5, respectively, for different pansharpening methods. 
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Test 
Images 

Metrics 
Methods 

CC ERGAS RASE RMSE SAM SID SCC UIQI SSIM 

0 0 0 0 0 0 1 1 1 
Im

ag
e 

1 
(U

rb
an

) 

PCA 0.2408 11.6578 46.4863 26.2995 6.3342 0.1173 0.9652 0.8030 0.7329 

BT 0.0104 7.5234 30.0312 16.9901 1.8174
e-007 0 0.9759 0.9453 0.9329 

GS 0.0023 7.3762 29.4087 16.6379 3.4284 0.1145 0.9945 0.9475 0.9261 

DWT 0.0160 6.6265 26.3275 14.8947 3.8348 0.1373 0.7434 0.9595 0.9682 

ATWT 0.0237 6.3785 25.5305 14.4438 2.6950 0.0928 0.9783 0.9642 0.9606 

LP 0.0350 5.3688 23.8552 13.4960 2.3560 0.0204 0.8366 0.9701 0.9582 

HPF 0.0151 5.1828 20.7446 11.7362 2.0340 0.0866 0.9635 0.9755 0.9805 

SFIM 0.0107 5.4640 21.5671 12.2015 0.5083 0.0003 0.9390 0.9732 0.9814 

AWL 0.0265 6.8408 27.2759 15.4313 2.8780 0.0893 0.9704 0.9593 0.9522 

Im
ag

e 
2 

(V
eg

et
at

io
n)

 

PCA 0.1945 7.0812 28.0228 31.4376 2.5419 0.0320 0.9807 0.6935 0.7695 

BT 0.0461 6.9688 27.8603 31.2553 1.7614
e-007 0 0.9892 0.7995 0.8350 

GS 0.0357 6.9267 27.4166 30.7575 2.6499 0.0297 0.9973 0.8020 0.8315 

DWT 0.0552 6.9181 27.2210 30.5381 5.5415 0.0393 0.9255 0.8400 0.8837 

ATWT 0.0493 5.4615 21.7219 24.3688 3.8697 0.0318 0.9933 0.8974 0.9150 

LP 0.0463 4.9629 22.3844 25.1120 2.1727 0.0152 0.8282 0.9201 0.9069 

HPF 0.0403 5.1100 20.3239 22.8004 2.7765 0.0318 0.9869 0.9069 0.9497 

SFIM 0.0356 5.0333 19.9960 22.4326 1.1499 0.0021 0.9661 0.9096 0.9493 

AWL 0.0532 5.5610 22.0400 24.7257 4.4207 0.0323 0.9860 0.8951 0.9019 

Table 2.4. Quality metrics, when reference image is available, for different pansharpening 
methods. 
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Test Images Metrics 
Methods 

dλ ds QNR 
0 0 1 

Im
ag

e 
1 

(U
rb

an
) 

PCA 0.1116 0.2670 0.6511 
BT 0.0058 0.0058 0.9885 
GS 0.0267 0.0205 0.9533 

DWT 0.0292 0.0057 0.9653 
ATWT 0.0311 0.0274 0.9424 

LP 0.0513 0.0112 0.9380 
HPF 0.0226 0.0106 0.9671 
SFIM 0.0141 0.0045 0.9815 
AWL 0.0359 0.0298 0.9354 

Im
ag

e 
2 

(V
eg

et
at

io
n)

 

PCA 0.0746 0.1583 0.7789 
BT 0.0790 0.1127 0.8173 
GS 0.1006 0.1224 0.7894 

DWT 0.1273 0.0771 0.8054 
ATWT 0.1081 0.0962 0.8061 

LP 0.1199 0.0450 0.8404 
HPF 0.0984 0.0690 0.8394 
SFIM 0.0937 0.0629 0.8492 
AWL 0.1142 0.0960 0.8008 

Table 2.5. Quality metrics, when reference image is not available, for different pansharpening 
methods. 

 

2.4. Discussions and conclusions  

 All these methods have good results. Since there are many different quality metrics, it is 

not easy to class the different pansharpening methods by performance. 

 In Table 2.3, the LP method has the best correlation in urban and vegetation areas 

although the fused image is visually degraded. The HPF method comes in second place.  

 In Table 2.4, in urban area, the HPF method has the best results (ERGAS, RASE, 

RMSE and UIQI), respectively, and the SFIM is the best in vegetation area (CC, RASE and 

RMSE). It is necessary to note that the BT method has the best SAM and SID and the GS 

method has the best SCC.  

 In Table 2.5, the BT and PCA methods have the best quality metric for spectral 

distortion and the SFIM and LP methods have the best indices for spatial distortion. Best 

QNR is for BT and SFIM methods. 

 It is also interesting to note that PCA and DWT methods perform slightly worse in 

these experiments. 
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 From these results, it can be concluded that all the methods, whether CS-based methods 

or MRA-based methods, contribute to preserving the edges and improving the performance of 

the pansharpened images. Each method has advantages and drawbacks. 

 From a visual, quantitative and computation time comparison, it can be concluded that 

there are some methods that behave very well with the fusion process, such us the GS, BT, 

LP, ATWT and SFIM, because of their spectral and spatial qualities. 

 According to the previous results, it is necessary to seek preferment methods which 

enable a good compromise between the spatial and spectral qualities. More recent improved 

methods are presented in Chapter 3. 
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3.1. Introduction 

Pansharpening algorithms are improved and a variety of state-of-the-art methods are 

planned in recent years [27].  

 Also, there is an interesting phenomenon that CS-based pansharpening methods and 

MRA-based pansharpening methods show similar statistical results, which is different from 

the general understanding that CS-based methods tend to bring serious consequences. This is 

because of the application of the traditional pansharpening scheme of CS-based methods or a 

particular part of the popular pansharpening algorithms. 

 

3.2. Some recent fusion methods 

It should be noted that the CS-based methods have been improved and a number of 

advanced methods have been proposed. Especially since 2000, CS-based methods have been 

simplified and generalized in the unifying framework, and various advanced strategies can be 

applied to improve their performance. 

Therefore, the approaching performance of the advanced CS-based methods to the 

MRA-based methods is intelligible and inspiring [27]. 

 

3.2.1. Generalized IHS (GIHS) pansharpening method 

GIHS or Fast IHS (FIHS) is a CS-based method, which is a unifying image fusion 

method in which the inverse transform to the original RGB space is obtained by [32] as 

follows: 

(
𝑅
𝐺
𝐵
) = 

(

 
 
1 −1

√2
⁄ 1

√2
⁄

1 −1
√2
⁄ −1

√2
⁄

1 √2 0 )

 
 
(
𝐼
𝑣1
𝑣2

)                                       (3.1) 

 

3.2.2. Improved Adaptive IHS (IAIHS) pansharpening method 

It is a CS-based method proposed by [40], in which the I component is estimated as 

closely as possible through approximation of the PAN image by resolution the subsequent 

optimization problem: 

min
𝛼1,…,𝛼𝑁

‖𝑃 − ∑ 𝛼𝑖𝑀𝑆𝑖
𝑁
𝑖=1 ‖

2
                                                      (3.2) 

With, 𝛼1 ≥ 0,… , 𝛼𝑁 ≥ 0 
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 In addition, in the IAIHS pansharpening method, a new gain is introduced in the 

injecting procedure, which is structured according to the PAN image and each band of the MS 

image. The injection gain is calculated as: 

𝑔𝑖 =
𝑀𝑆𝑖

(1 𝑁⁄ )∑ 𝑀𝑆𝑖
𝑁
𝑖=1

(𝛽𝑤𝑃 + (1 − 𝛽)𝑤𝑀𝑆𝑖)                                    (3.3) 

Where 𝛽 is a tradeoff parameter, 𝑤𝐴 denotes the edge detecting weighting matrix on image A: 

𝑤𝐴 = 𝑒𝑥𝑝 (−
𝜆

|∇𝐴|4+𝜀
)                                                                    (3.4) 

Where, ∇𝐴 is the gradient of the image A, 𝜆 and 𝜀 are the tuning parameters [59]. 

 

3.2.3. Additive Wavelet Luminance Proportional (AWLP) pansharpening method 

 It is a MRA-based method. The method was reported to be the joint winner in the 2006 

IEEE Data Fusion Contest [42]. It is a hybrid method which combines the ATWT and IHS 

transforms. It aims to inject high frequency information in proportion to their original values. 

This is one way to better preserve the radiometric signature between the bands of the MS 

image. 

It was first proposed (AWL) in [87], and then later extended to images with more than 

three bands (AWLP) in [67]. 

 The AWLP weight factor is the ratio of the MS bands to the mean value of all MS 

bands, in the experiments. AWLP method is given using a weighted injection scheme such as 

[67]: 

𝐹𝑖 = 𝑀𝑆𝑖 +
𝑀𝑆𝑖

(1 𝑁⁄ )∑ 𝑀𝑆𝑖
𝑁
𝑖=1

∑ 𝑤𝑝𝑙
𝑛
𝑗=1                                               (3.5) 

Where, the injection of details to the original MS bands is done proportionally because of the 

weighting coefficient. The denominator of the weight factor can be interpreted as the intensity 

component given by the IHS transform [83] and 𝑤𝑝𝑙 is the wavelet planes of matched PAN 

image. 

 

3.2.4. Generalised Laplacian Pyramid with Modulation Transfer Function (MTF-GLP) 

pansharpening method 

 The downsampling and interpolation operations in MRA-based methods with decimated 

filters (DWT filter, for example) generally cause spatial aliasing artifacts. However, for 
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proper operation of MRA-based methods, the filters used are tightly tuned to match the 

Modulation Transfer Function (MTF) of the sensor [70] – [72], like the MTF-GLP method 

[27,72]. 

 

3.2.5. Band-Dependent Spatial Detail (BDSD) pansharpening method 

The BDSD algorithm [36] starts from an extended version of the generic formulation 

(1.2) of the CS methods class as follows: 

𝑀𝑆̂𝑖 = 𝑀𝑆̃𝑖 + 𝑔𝑖(𝑃 − ∑ 𝜔𝑖,𝑘
𝑁
𝑘=1 𝑀𝑆̃𝑘) ,   𝑖 = 1,… , 𝑁                   (3.6) 

By defining the coefficients: 

𝛾𝑖,𝑘 = {
      𝑔𝑖                     if 𝑘 = 𝑁 + 1
−𝑔𝑖 . 𝜔𝑖,𝑘             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                          (3.7) 

Equation (1.2) can be rewritten in compact matrix form as: 

𝑀𝑆̂𝑖 = 𝑀𝑆̃𝑖 + 𝐻𝛾𝑖                                                                         (3.8) 

In which 𝐻 = [𝑀𝑆̃1, … ,𝑀𝑆̃𝑁 , 𝑃] and   𝛾𝑖 = [𝛾𝑖,1, … , 𝛾𝑖,𝑁+1]
𝑇
(all the images are organized by 

columns). The optimal minimum mean square error (MMSE) joint estimation of the weights-

and-gains vector 𝛾 would encompass the use of the unknown target image 𝑀𝑆̂𝑖 and is thus 

performed at a reduced resolution. Consequently, the solution is found as: 

𝛾𝑖 = (𝐻𝑑
𝑇𝐻𝑑)

−1𝐻𝑑
𝑇 (𝑀𝑆̃𝑖 −𝑀𝑆̃𝑖

𝐿𝑃
)                                              (3.9) 

In which 𝐻𝑑 is the reduced-resolution version of 𝐻, and 𝑀𝑆̃𝑖
𝐿𝑃

 is a version of 𝑀𝑆̃𝑖 obtained 

through a low-pass filter, whose spatial frequency response matches the average modulation 

transfer function (MTF) of the MS sensor [6]. 

 

3.2.6. Partial Replacement Adaptive CS (PRACS) pansharpening method 

 In [45], the concept of partial replacement of the intensity component is introduced. In 

the PRACS method, the PAN image is not directly used instead of the component 

substitution. The algorithm utilizes a weighted sum of PAN and of the 𝑖th MS band (𝑃(𝑖)) to 

calculate the 𝑖th sharpened band in (1.2). For this reason, this methodology is spoken as 
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Partial Replacement Adaptive CS (PRACS). For 𝑖 = 1,… , 𝑁, the band-dependent high 

resolution sharpened image is calculated as: 

𝑃(𝑖) = 𝐶𝐶(𝐼𝐿, 𝑀𝑆̃𝑖). 𝑃 + (1 − 𝐶𝐶(𝐼𝐿 ,𝑀𝑆̃𝑖).𝑀𝑆̃𝑖
′
)                         (3.10) 

In which, 𝑀𝑆̃𝑖
′
 is the 𝑖th MS band histogram-matched to PAN, 𝐶𝐶(𝑋, 𝑌) is the correlation 

coefficient between 𝑋 and 𝑌, and 𝐼𝐿 is given by (1.7), where the weights 𝛼𝑖 are obtained 

through the linear regression of  𝑀𝑆̃𝑖
′
, 𝑖 = 1, … ,𝑁, on 𝑃𝐿, i.e., the PAN image spatially 

degraded to the MS resolution. 

The injection gains {𝑔𝑖} are obtained according to: 

𝑔𝑖 = 𝛽.𝐶𝐶(𝑃𝐿
(𝑖),𝑀𝑆̃𝑖)

𝑠𝑡𝑑(𝑀𝑆̃𝑖)
1

𝑁
∑ 𝑠𝑡𝑑(𝑀𝑆̃𝑘)
𝑁
𝑘=1

𝐿𝑖                                       (3.11) 

According to [45], (3.11) is given by the product of:  

1) An empirically tuned parameter 𝛽 that normalizes the high frequencies, so that they 

lie in the correct dynamic range. 

2) A correlation calculated to minimize the global dissimilarity between each band of 

the MS image and the low-resolution image 𝑃𝐿(𝑖), calculated by low-pass filtering of  𝑃(𝑖). 

3) A coefficient calculated by standard deviations among the MS bands. 

4) An adaptive factor 𝐿𝑖, defined by equation (3.12), aimed at removing the local 

spectral instability error [6]. 

𝐿𝑖 = 1− |1 − 𝐶𝐶(𝐼𝐿 ,𝑀𝑆̃𝑖)
𝑀𝑆̃𝑖

𝑃𝐿
(𝑖)|                                       (3.12) 

 

3.2.7. Indusion pansharpening method 

It is a MRA-based method. Indusion is a Decimated Wavelet Transform using an 

additive injection model [117,6], based on the induction scaling technique, which profits from 

multiple equalization steps to improve the performance [118]. 

 

3.2.8. Optimal Filter (OF) pansharpening method [119] 

It is a MRA-based method. Designing an optimal filter, that is able to extract relevant 

and non-redundant information from the PAN image, is presented in this method. Statistical 



Chapter 3: Pansharpening with some recent methods 
 

 59 
 

properties of the images are used to obtain the optimal filter coefficients. These coefficients 

are more consistent with type of remotely sensed images compared with other masques [119].  

 

3.3. Performance evaluation  

Figures 3.1 and 3.2 show the results of the application of some recent pansharpening 

methods using the same set of figures 1.10.(a) and (b) and 1.11.(a) and (b), respectively. 
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a)                                            b) 

 
c)                                                    d) 

 
e)                                                     f) 

 
g)                                                       h) 

Figure 3.1. Pansharpening an urban scene. a) GIHS fused image. b) AIHS fused image. c) 
AWLP fused image. d) MTF-GLP fused image. e) BDSD fused image. f) PRACS fused 

image. g) Indusion fused image. h) OF fused image. 
 

GIHS IAIHS

AWLP MTF-GLP

BDSD PRACS

Indusion OP
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a)                                            b) 

     
                                              c)                                                      d) 

     
                                               e)                                                     f) 

     
                                               g)                                                     h) 

Figure 3.2. Pansharpening a vegetation scene. a) GIHS fused image. b) AIHS fused image. c) 
AWLP fused image. d) MTF-GLP fused image. e) BDSD fused image. f) PRACS fused 

image. g) Indusion fused image. h) OF fused image. 
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3.4. Visual analysis 

It is shown that all the state-of-the-art methods present excellent performances relied to 

detail enhancement. However, OF, AWLP and MTF-GLP methods clearly show a slight 

spectral distortion. In the AWLP method, colors have been pretty well distributed and the 

fused image has high spectral quality but the image has been blurred and there are many 

artifacts perceptible on the trees in the fused images.  

 The results of the AWLP and IAIHS methods seem slightly too precise, and the spectral 

distortion is more visible in areas covered with vegetation. 

In addition, the IAIHS method can produce an image whose colors are similar to the 

original and whose objects are clearer than those of the original. The IAIHS fused image 

suffers from over-injection of details from the PAN image. The spectral distortion caused by 

IAIHS method is most visible in the areas covered by vegetation and forest. 

Severe artifacts are introduced in the case of applying the Indusion method because of 

the decimation. 

The BDSD and PRACS, achieve the best visual appearance of the fused images and a 

reduced spectral distortion. Indeed, very interesting performances are attained by adaptive CS 

approaches, namely the BDSD, PRACS and IAIHS, with the reduction of the spectral 

distortion. 

GIHS and AWLP are more adequate than the original ones (IHS and AWL), in 

particular, on four-band data sets.  

By visually comparing them with the original ones, all this methods can greatly improve 

the spatial qualities of the original MS images. 

 

3.5. Quantitative analysis 

 After representing a visual comparison, we calculated the different metrics, cited in 

Chapter 2, for all the pansharpening methods presented in this chapter to show the 

effectiveness of each method. 

 Table 3.1 shows the calculation of the correlation between the spectral bands of the 

reference image and the corresponding bands of the fused image. 

 The two images are those used in the precedent chapters. The quality assessment 

metrics, when reference image is available or not, are shown in Tables 3.2 and 3.3, 

respectively, for different recent pansharpening methods presented in this Chapter.  
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Test 
Images 

Correlation 
Methods C1 C2 C3 C4 

Im
ag

e 
1 

U
rb

an
 

GIHS 0.9372 0.9433 0.9530 0.9548 
IAIHS 0.9371 0.9426 0.9516 0.9533 
AWLP 0.9696 0.9696 0.9660 0.9633 

MTF-GLP 0.9634 0.9638 0.9637 0.9633 
BDSD 0.9336 0.9346 0.9372 0.9372 

PRACS 0.9718 0.9624 0.9588 0.9726 
INDUSION 0.9418 0.9422 0.9421 0.9423 

OF 0.9510 0.9521 0.9647 0.9707 

Im
ag

e 
2 

V
eg

et
at

io
n 

GIHS 0.7978 0.8111 0.7590 0.8515 
IAIHS 0.8483 0.8548 0.8276 0.8554 
AWLP 0.9187 0.9046 0.9259 0.8817 

MTF-GLP 0.9001 0.9009 0.8982 0.9067 
BDSD 0.9164 0.8830 0.8958 0.8707 

PRACS 0.9494 0.9299 0.9654 0.8659 
INDUSION 0.8549 0.8540 0.8556 0.8517 

OF 0.8859 0.8892 0.8795 0.8758 

Table 3.1. Four-band correlation between reference and merged images for different methods. 

 

Test 
Images 

        Metrics 
Methods 

CC ERGAS RASE RMSE SAM SID SCC UIQI SSIM 
0 0 0 0 0 0 1 1 1 

Im
ag

e 
1 

U
rb

an
 

GIHS 0.0027 7.3905 29.3621 16.6115 3.2880 0.1138 0.9945 0.9470 0.9259 
IAIHS 0.0012 7.4723 29.6872 16.7954 3.4756 0.1136 0.9944 0.9461 0.9224 
AWLP 0.0164 6.5025 26.1780 14.8101 0.7981 0.0860 0.9614 0.9629 0.9633 

MTF-GLP 0.0253 6.8483 27.4548 15.5325 2.9951 0.1269 0.9729 0.9589 0.9513 
BDSD 0.0490 9.4060 37.7759 21.3716 8.1558 0.1326 0.9726 0.9260 0.8998 

PRACS 0.0112 6.2131 24.7444 13.9991 2.7698 0.1029 0.9745 0.9651 0.9611 
INDUSION 0.0065 7.8430 31.3922 17.7601 4.0464 0.1425 0.9206 0.9419 0.9312 

OF 0.0190 7.0064 27.6845 15.6624 3.0941 0.1305 0.8345 0.9564 0.9419 

Im
ag

e 
2 

V
eg

et
at

io
n 

GIHS 0.0338 6.9361 27.3687 30.7037 2.5784 0.0298 0.9974 0.8019 0.8315 
IAIHS 0.0046 6.2461 24.6406 27.6432 2.8345 0.0334 0.9958 0.8461 0.8427 
AWLP 0.0415 5.4701 22.2863 25.0020 2.6146 0.0384 0.9858 0.8955 0.9172 

MTF-GLP 0.0519 5.7130 22.7481 25.5201 4.1433 0.0358 0.9929 0.8888 0.8940 
BDSD 0.1187 11.0602 44.1266 50.8497 7.9421 0.1462 0.6931 0.8634 0.8138 

PRACS 0.0171 4.4989 18.8940 21.1964 2.7098 0.0105 0.9781 0.9225 0.9266 
INDUSION 0.0159 6.1595 24.4983 27.4835 3.1009 0.0381 0.9789 0.8530 0.8806 

OF 0.0514 6.1420 24.5657 27.5592 3.9843 0.0373 0.8897 0.8703 0.8954 

Table 3.2. Quality metrics, when reference image is available, for different pansharpening 
methods. 
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Test 
Images 

Metrics 
Methods 

dλ ds QNR 
0 0 1 

Im
ag

e 
1 

U
rb

an
 

GIHS 0.0285 0.0215 0.9506 
IAIHS 0.0307 0.0160 0.9538 
AWLP 0.0202 0.0181 0.9622 

MTF-GLP 0.0339 0.0269 0.9402 
BDSD 0.0368 0.0145 0.9492 

PRACS 0.0154 0.0175 0.9673 
INDUSION 0.0272 0.0528 0.9215 

OF 0.0279 0.0152 0.9574 

Im
ag

e 
2 

V
eg

et
at

io
n 

GIHS 0.1021 0.1226 0.7878 
IAIHS 0.0908 0.0580 0.8565 
AWLP 0.0880 0.0868 0.8329 

MTF-GLP 0.1113 0.1021 0.7980 
BDSD 0.1012 0.0829 0.8242 

PRACS 0.0457 0.0486 0.9079 
INDUSION 0.0950 0.0287 0.8790 

OF 0.1136 0.0254 0.8639 

Table 3.3. Quality metrics, when reference image is not available, for different pansharpening 
methods. 

 

 All these methods have good results. In Table 3.1, the AWLP and PRACS methods 

have the best correlation in urban area. The PRACS and MTF-GLP methods have the best 

correlation in vegetation area.  

 In Table 3.2, in urban and vegetation areas, the PRACS method has the best results 

(ERGAS, RASE, RMSE and UIQI) followed by the AWLP method. The GIHS method has 

the best SCC and the IAIHS method has the best CC.  

 In Table 3.3, the PRACS method has the best quality metric for spectral distortion and 

QNR. The BDSD and OF methods have the best indices for spatial distortion. The BDSD, 

INDUSION and OF methods perform slightly worse in these experiments. Each method has 

advantages and disadvantages. 

 From a visual, quantitative and computation time comparison, it can be concluded that 

there are some methods that behave very well, compared to others, with the fusion process, 

such us the AWLP, GIHS, IAIHS and PRACS methods, because of their spectral and spatial 

qualities. 

 The PRACS method presents a little spatial distortion despite its good quantitative 

results. The IHS-based methods (GIHS, IAIHS and AWLP) show excellent visual results 

despite their modest quantitative results. For this reason, we have to develop a hybrid method 
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like the AWLP based on the IHS transform which gives a good compromise between the 

spatial and spectral qualities. 

 

3.6. Conclusion  

 In this chapter, some state-of-the-art of pansharpening methods has been presented 

based on articles ever published between 2000 and 2014. We have presented the formulas and 

properties based on CS and MRA-based algorithms. Eight pansharpening algorithms were 

applied. Each method contributes on either side to improve the fusion products. Quantitative 

and qualitative comparison was necessary made to show the effectiveness of each method.  

 The visual comparison showed that all of the fused images are visually enhanced over 

the resampled MS image. A quantitative comparison showed that all these methods have good 

results. 

 The PRACS method, IHS-based and MRA-based methods were presented the best 

results but they all lack the right compromise between quantitative and qualitative qualities. 

 Wavelet transformation may be a representative technique to extract high-frequency 

information from panchromatic images. For this reason, its application is preferred in the field 

of fusion. An effective pansharpening algorithm should be selected for optimal utilization of 

satellite imagery. 

 In the next chapter, we will propose a new fusion scheme based on a hybrid method of 

fusion between the IHS and wavelet transforms to take advantage of the good characteristics 

of the two transforms which aims to improve the visual and quantitative qualities of high 

resolution satellite imagery. 

Table 3.4 resumes the pansharpening methods used in the precedent experiments with 

some basic meaning and parameter settings. 
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Methods and 
years Basic meaning and parameter settings 

GIHS [32] 
(2004) 

A generalization of the traditional IHS pansharpening method [50] – [52] (2001) for 
fusion of more than three MS bands.  

Brovey [56] 
(2000) 

A CS-based method under the general understanding. It has been marketed in 
professional software, such as ENVI. 

PCA [29] 
(2004) 

A typical CS-based method based on the PCA transformation. It has been marketed 
in professional software, such as ENVI. 

BDSD [36] 
(2008) 

A data-dependent self-adaptive CS-based approach, featured by two advantages: 1) 
optimal solution of the spatial detail extraction and injection based on minimum 
mean-square-error; 2) parameter estimation based on local regions. 

GS [42] 
(2000) 

A typical CS-based method based on the Gram-Schmidt transformation. It has been 
marketed in professional software, such as ENVI. 

PRACS [45] 
(2011) 

A CS-based method based on partial replacement of the intensity component. The 
PAN image is simulated by the weighted average of the MS and PAN bands, in the 
place of using the original PAN image to replace the intensity component directly. 

IAIHS [40] 
(2010) 

An improved adaptive IHS. A new injection gain, the injection procedure is 
structured according to the PAN image and the bands of the MS image. 

DWT [61] 
(1995) 

A typical MRA-based method. In the experiments, the default level of 
decomposition is 2 and the wavelet used was that of Haar. 

LP [86] 
(2000) 

A typical MRA-based method. In the experiments, the default level of 
decomposition is 2, the coefficient selection high-pass is 4 and the coefficient 
selection base image is 1. 

AWL [87] 
(1999) 

A typical MRA-based method. In the experiments, the number of wavelet planes is 
2. 

HPF [18] 
(1991) 

A typical MRA-based method. In the experiments, the default parameter with 5×5 
box filter was used. 

SFIM [37, 
57] 

(2000) 

An improvement of the HPF method based on a High-Pass-Modulation (HPM) 
spatial detail injection scheme, which is calculated by the ratio of the resampled MS 
image and the low pass version of the PAN image. 

Indusion 
[117] 

(2008) 

The “Indusion” = “Induction” + “Fusion”. It is a pansharpening method consists of 

the induction scaling technique, which improves the performance by several 
equalization steps. 

MTF-GLP 
[72] 

(2006) 

A popular MRA-based method based on GLP with MTF filter, the unitary detail 
injection model is applied. 

ATWT [82] 
(1999) 

A MRA-based method based on the additive “à trous” wavelet transform with unit 

injection model. 

AWLP [67] 
(2005) 

A generalization of the AWL pansharpening method [85] in terms of a proportional 
spatial detail injection weight, relying on the original MS band radiance 
proportionality. 

OF [119] 
(2014) 

A typical MRA-based method. The coefficients of the optimal filter are calculated 
using the statistical properties of the images. 

P+XS [89] 
(2006) 

A typical VO-based method. In the experiments, the default parameters are: 
magnitude=4; alpha(1)=0.3/3; alpha(2)=0.75/3; alpha(3)=0.25/3; alpha(4)=1.7/3; 
gamma(i)=1; lambda=0.5; mue=3 ; iterations=80 ; deltat=0.01; epsilon=0.0005 and 
deviation=5. 

 

Table 3.4. Pansharpening methods in the experiments. 
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4.1. Introduction  

 This chapter is devoted to the proposal of a combination between the IHS and the 

ATWT methods by introducing a new approximation of the coefficients of the multispectral 

bands MS. In the first section of this chapter, we present our algorithm including definitions 

and mathematical formulas. In the second section, we present the results of applying the 

proposed algorithm. A comparative study between the proposed method and some recent 

image fusion methods was carried out, followed by an interpretation of the results. The 

evaluation was made qualitatively and quantitatively. We finished this chapter by some 

discussions and conclusions. 

 

4.2. Proposal of a fusion algorithm based on IHS and ATWT 

 The main objective of the combination of classical IHS and ATWT methods is to 

improve spatial resolution by injecting more spatial information while ensuring better color 

preservation. 

 The proposed fusion algorithm is illustrated in Figure 4.1. It can be executed by 

performing the following steps: 

 

Figure 4.1. Flowchart of the proposed algorithm [4]. 
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Step 1: Low resolution PAN image extraction (LPAN) 

 To get the best approximation, MS and LPAN should have the same spatial resolution. 

By using the multiresolution analysis associated with the ATWT, we can estimate the 

acquisition of the low resolution panchromatic sensor, which does not exist on the satellite. 

 The LPAN image at level j is obtained by the following equation, using equations (1.23) 

and (1.25): 

LPAN𝑗 = LPAN𝑗−1 ∗ ℎ𝑗                                                                (4.1) 

Where, initially, LPAN0 is the PAN image. 

Step 2: Determination of the adapted intensity image (𝑰𝒂𝒅𝒑) 

 In fact, in most cases the similarity between each MS and LPAN image is rarely too low 

or zero, so we conclude that the intensity image is equal to the LPAN image.  

 The intensity image can be calculated by using the following equation: 

𝐿𝑃𝐴𝑁 ≅ 𝐼 = ∑ 𝐶𝑖. 𝑀𝑆𝑖
𝑛
𝑖=1                                                             (4.2) 

Where 𝐶𝑖 is the weight coefficient of the ith band of the MS image with: 

∑ 𝐶𝑖𝑖 ≤ 1                                                                                       (4.3) 

 In this work, 𝐶𝑖 is based on the energy coefficient and the similarity coefficient between 

MS and LPAN images. 

 The PAN image sensor spectrum covers the majority of the MS sensor spectra. 

Therefore, the radiation detected by the MS sensors is the same as that detected by the PAN 

sensor, so that the MS image which contains high energy contributes significantly to the 

construction of the PAN image, and that is the opposite which is true. 

 The ratio of the average energies (ratio of the average energy 𝑀𝑆𝑖 to the average energy 

LPAN) is given by: 

𝑅𝐸𝑖 =
𝐸𝑀𝑆𝑖

𝐸𝐿𝑃𝐴𝑁
                                                                                (4.4) 

Where 𝐸𝑀𝑆𝑖 and 𝐸𝐿𝑃𝐴𝑁 are the mean energies of the images 𝑀𝑆𝑖 and 𝐿𝑃𝐴𝑁, respectively. 

 The energy coefficient 𝐶𝐸𝑖 of the band 𝑀𝑆𝑖 is calculated by: 
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𝐶𝐸𝑖 =
𝑅𝐸𝑖

∑ 𝑅𝐸𝑖
𝑛
𝑖=1

                                                                               (4.5) 

 These coefficients are effective in forming the intensity image in the case where the 𝑀𝑆𝑖 

images are individually correlated to the LPAN image. 

 In this case, the intensity image 𝐼  is given by the following equation: 

𝐼 = ∑ 𝐶𝐸𝑖 . 𝑀𝑆𝑖
𝑛
𝑖=1                                                                       (4.6) 

 To calculate the new MS band coefficients, we propose to also use the similarity 

coefficient between the ith band of the MS image and the LPAN image 𝐶𝑆𝑖 as follows: 

𝐶𝑆𝑖 = {
𝐶𝐶(𝐿𝑃𝐴𝑁, MSi)           𝑖𝑓      𝐶𝐶(𝐿𝑃𝐴𝑁, MSi) > 0

0                                      𝑖𝑓      𝐶𝐶(𝐿𝑃𝐴𝑁, MSi) ≤ 0
           (4.7) 

Where 𝐶𝐶(𝐿𝑃𝐴𝑁, MSi) is the correlation coefficient between LPAN and 𝑀𝑆𝑖 images and it is 

defined by the following equation: 

𝐶𝐶(𝐿𝑃𝐴𝑁, MSi) =
∑(𝐿𝑃𝐴𝑁−𝑚𝑒𝑎𝑛(𝐿𝑃𝐴𝑁))(MSi−𝑚𝑒𝑎𝑛(MSi))

√∑(𝐿𝑃𝐴𝑁−𝑚𝑒𝑎𝑛(𝐿𝑃𝐴𝑁))
2

∑(MSi−𝑚𝑒𝑎𝑛(MSi))
2
    (4.8) 

The new proposed coefficients of the MS bands are calculated as follows: 

𝐶𝑖 = 𝐶𝐸𝑖 . 𝐶𝑆𝑖                                                                               (4.9) 

Where 𝐶𝐸𝑖 is the energy coefficient of the 𝑀𝑆𝑖 band and 𝐶𝑆𝑖 is the correlation coefficient 

between the ith band of the MS image and the LPAN image. 

 This brings us to a new adapted intensity component  𝐼𝑎𝑑𝑝: 

𝐼𝑎𝑑𝑝 = ∑ 𝐶𝑖 . 𝑀𝑆𝑖
𝑛
𝑖=1                                                                        (4.10) 

 If there is a similarity between the images 𝑀𝑆𝑖 and LPAN, the correlation coefficient 

will be 1. In this case, the image 𝑀𝑆𝑖 multiplied by the energy coefficient 𝐶𝐸𝑖 is fully injected 

for the creation of the intensity component 𝐼𝑎𝑑𝑝 . 

 For lower values of the correlation coefficients, the value of the coefficient 𝐶𝑖  of the MS 

bands will decrease in order to minimize the influence of the diversity which produces 

spectral distortions in the fused images. 



Chapter 4: Proposed fusion method 
 

 70 
 

Step 3: Calculation of the error image (EL) 

 In the third step, we make a correction to improve the quality of the fused images. The 

use of multiresolution analysis in the extraction of LPAN image and the proposed MS band 

coefficients do not give ideal fusion results, as the fusion process is based on the special case 

of equation (4.2) with an intensity adaptation given by equation (4.10).  For this reason, we 

propose a simple solution, in order to reduce the error between the PAN and the 𝐼𝑎𝑑𝑝  images, 

given by the following equations: 

𝐸 = 𝑃𝐴𝑁∗ − 𝐼𝑎𝑑𝑝                                                                           (4.11) 

𝐸𝐿 = 𝐸 ∗ ℎ𝑗                                                                                    (4.12) 

Where, E is the error image that contains low and high resolution details, 𝑃𝐴𝑁∗ is the 

histogram-matched PAN image,  𝐼𝑎𝑑𝑝  is the adapted intensity image,  𝐸𝐿  is the low resolution 

error image and  ℎ𝑗 is the mask of the “à tous” filter at level j. 

Step 4: Calculation of the new intensity image (Inew) 

 In this step, the new intensity image is obtained by using the following equation: 

𝐼𝑛𝑒𝑤 = 𝐼𝑎𝑑𝑝 + 𝐸𝐿                                                                           (4.13) 

Step 5: Obtaining of the fused image 

 Finally, the pansharpened image of our algorithm is given by: 

𝑀𝑆̂ = 𝑀𝑆̃ + (𝑃𝐴𝑁∗ − 𝐼𝑛𝑒𝑤)                                                        (4.14) 

Where, 𝑀𝑆̂ is the fused image and  𝑀𝑆̃ is the resampled MS image. 

 The resampled MS image can be obtained by bilinear or bi-cubic filters. 

 Equation (4.14) is equivalent to the equation used for the computation of the fused 

image in the Additive Wavelet Luminance method (AWL) [87] except that the high frequency 

detail image is different. Thus, our main contribution in this step is an improvement of the 

AWL method with a new intensity image 𝐼𝑛𝑒𝑤. 
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4.3. Experimental results 

 In this part, the parameter settings of the proposed method are analyzed and compared 

with a state-of-the-art of some pansharpening methods. In the fusion experiments, a number 

of different remote sensing satellites including the Deimos-2, Worldview-2 and Worldview-3 

images were employed experimentally. 

 The satellite Deimos-2 provides PAN images of 1 meter spatial resolution and 4 bands 

(Near-Infra-Red, Red, Green and Blue) at a spatial resolution of 4 meters. 

 The resolution of the PAN and MS images of WorldView-2 satellite has 0.5m and 2m, 

respectively. That of WorldView-3 satellite has 31cm and 1.24m, respectively. 

 A set of data, acquired on May 30, 2015 by the Deimos-2 satellite which covers 

different areas of British Columbia (Canada), is used to evaluate the proposed approach. PAN 

images are 1312 x 864 pixels in size and MS images are 1/4 (328 x 216 pixels). Figures 4.2, 

4.3 and 4.4 represent these data sets. 

 

 
(a) PAN image.                             (b) Up-sampled MS image. 

Figure 4.2. Deimos-2 image (image 1). (a) PAN image. (b) Up-sampled MS image. 

 
 

image faible résolution
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(a) PAN image.                           (b) Up-sampled MS image. 

Figure 4.3. Deimos-2 image (image 2). (a) PAN image. (b) Up-sampled MS image. 
 

 
(a) PAN image.                           (b) Up-sampled MS image. 

Figure 4.4. Deimos-2 image (image 3). (a) PAN image. (b) Up-sampled MS image. 
 

4.3.1. Experimental results of the proposed approach 

 The up-sampled MS images are obtained by bilinear interpolation at the spatial scale of 

the PAN images. 

 The results of the application of the proposed method for the fusion of the Deimos-2 

datasets using different decomposition levels of the ATWT are shown in Tables 4.1 and 4.2. 

In Table 4.1, the injection gains of the MS image of equation (4.9) and the ratio average 

energy of equation (4.4) are calculated. Table 4.2 shows the 4-bands correlation of the MS 

image with the resulting image.   

image haute résolution image faible résolution

image haute résolution image faible résolution
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Test 
Images Level CNIR CR CG CB ∑ 𝐶𝑖 RE 

Image 
1 

1 0.2582 0.2085 0.2109 0.2173 0.8949 0.7623 
2 0.2640 0.2128 0.2156 0.2224 0.9147 0.7811 
3 0.2616 0.2088 0.2116 0.2189 0.9009 0.7730 

Image 
2 

1 0.3969 0.1070 0.1352 0.1358 0.7750 0.7299 
2 0.4084 0.1090 0.1380 0.1381 0.7935 0.7505 
3 0.4059 0.1041 0.1324 0.1321 0.7745 1.0062 

Image 
3 

1 0.2497 0.2011 0.2025 0.2077 0.8610 0.8700 
2 0.2552 0.2071 0.2090 0.2148 0.8861 0.8969 
3 0.2483 0.2040 0.2065 0.2132 0.8721 0.8859 

Table 4.1. Weighting coefficients of the 4-bands MS image, their sum and ratio average 
energy for different decomposition levels. 

 

Test 
Images 

 Correlation 
Level CorrNIR CorrR CorrG CorrB 

Image 1 
1 0.9968 0.9948 0.9930 0.9935 
2 0.9869 0.9790 0.9717 0.9737 
3 0.9801 0.9677 0.9569 0.9595 

Image 2 
1 0.9981 0.9900 0.9875 0.9890 
2 0.9921 0.9598 0.9502 0.9561 
3 0.9881 0.9422 0.9291 0.9375 

Image 3 
1 0.9870 0.9868 0.9849 0.9840 
2 0.9534 0.9534 0.9468 0.9434 
3 0.9162 0.9169 0.9060 0.8992 

Table 4.2. 4-bands correlation between MS and fused images. 

 

 Figures 4.5, 4.6 and 4.7 present the application of the proposed approach of the Deimos-

2 datasets using one, two and three decomposition levels of the ATWT.  

 
(a)  One Level.                      (b)   Two levels.                    (c)   Three levels.  

Figure 4.5. Fused images by applying the proposed approach (image 1). 
(a) ~(c) Pansharpened images by using 1 ~3 decomposition levels of the ATWT, 

respectively. 

image fusionnée de 1 niveau image fusionnée de 2 niveaux image fusionnée de 3 niveaux
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(a) One Level.                       (b)  Two levels.                          (c)  Three levels.  

Figure 4.6. Fused images by applying the proposed approach (image 2). 
(a) ~(c) Pansharpened images by using 1 ~3 decomposition levels of the ATWT, 

respectively. 
 

 
(a) One Level.                         (b)  Two levels.                          (c)  Three levels.  

Figure 4.7. Fused images by applying the proposed approach (image 3). 
(a) ~(c) Pansharpened images by using 1 ~3 decomposition levels of the ATWT, 

respectively. 
 

4.3.2. Discussions  

 Visual analysis of Figures 4.5, 4.6 and 4.7 shows an apparent improvement in spatial 

quality in the merged images. In these figures, the colors of the resulting images are 

comparable to those of the input MS images with an obvious increase in spatial resolution. It 

is clear from these figures that the spatial resolution of pansharpened images increases with 

increasing level of ATWT decomposition. 

 Quantitative analysis in Table 4.1 shows the values of the energy ratio between the MS 

and the LPAN images, as well as the values of the weighting coefficients used for the 

calculation of the adapted intensity component (Iadp) for three levels of decomposition of the 

ATWT. By correspondence of the equation (4.3), one notices that for the entire test images, 

the level 2 gave a sum which approaches the unit. 

image fusionnée de 1 niveau image fusionnée de 2 niveaux image fusionnée de 3 niveaux

image fusionnée image fusionnée
image fusionnée
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 Table 4.2 shows the correlation values between the four spectral bands of the MS and 

merged images, for three levels of ATWT decomposition. We notice that as we increase the 

level of decomposition, the values decrease. So the results for one level are the best although 

visually the most degraded for all the test images. Level two gives good values by comparison 

with level three. These values are logical because the comparison is made with the up-

sampled MS image and not with a reference image. 

 Two additional data sets acquired by the WorldView-2 and WorldView-3 satellites were 

also used to evaluate and test the performance of the proposed algorithm, as shown in Table 

4.3 [4]. The datasets used in this experiment cover different areas with different sizes. The 

image of Stockholm (Sweden) was acquired on August 27, 2016 and the images of Rio de 

Janeiro (Brazil) were acquired on February 5, 2016 and the images of Sidney were acquired in 

2009 [4].  
 In Table 4.3, the quality assessment is evaluated by the different metrics described in 

Chapter 2 with different decomposition levels and for nine images.  

 

Test Images Metrics CC ERGAS RASE RMSE SAM SID SCC UIQI SSIM 
Ref. values 0 0 0 0 0 0 1 1 1 

Image 1 of  Fig. 4.2 
(Deimos-2) 

Level 1 0.0023 1.8992 7.5223 8.6684 0.4352 0.0235 0.9183 0.9945 0.9973 
Level 2 0.0093 3.8857 15.3905 17.7354 0.8187 0.0157 0.9839 0.9776 0.9766 
Level 3 0.0160 4.8702 19.2901 22.2291 1.0469 0.0439 0.9885 0.9653 0.9463 

Image 2 of  Fig. 4.3 
(Deimos-2) 

Level 1 0.0046 2.6052 8.5294 9.2596 0.7905 0.0014 0.9026 0.9911 0.9948 
Level 2 0.0189 5.3979 17.6745 19.1879 1.6613 0.0256 0.9715 0.9634 0.9562 
Level 3 0.0304 6.6751 21.8602 23.7319 2.1598 0.0395 0.9769 0.9461 0.9106 

Image 3 of  Fig. 4.4 
(Deimos-2) 

Level 1 0.0044 1.4907 5.8887 9.2864 0.2987 0.0003 0.9207 0.9930 0.9973 
Level 2 0.0171 2.9556 11.6761 18.4129 0.6417 0.0008 0.9826 0.9733 0.9760 
Level 3 0.0276 3.6077 14.2527 22.4762 0.8434 0.0026 0.9863 0.9609 0.9454 

Image 4 (WV-2) 
(500x500) 

Stokholm – Sweden 

Level 1 0.0071 2.5536 8.3703 25.7584 0.8324 0.0200 0.9250 0.9833 0.9245 
Level 2 0.0053 3.5505 11.6365 35.8096 1.1753 0.0157 0.9575 0.9648 0.8313 
Level 3 0.0053 3.5079 11.4968 35.3797 1.1612 0.0134 0.9476 0.9685 0.8327 

Image 5 (WV-2) 
(500x500) 

Sidney – Australia 

Level 1 0.0018 2.1529 8.0656 21.8824 0.4568 0.0041 0.9375 0.9898 0.9508 
Level 2 0.0054 3.9863 14.9339 40.5162 0.8932 0.0186 0.9884 0.9664 0.8538 
Level 3 0.0061 4.3689 16.3681 44.4072 1.0179 0.0174 0.9896 0.9602 0.8313 

Image 6 (WV-2) 
(500x600) 

Sidney – Australia 

Level 1 0.0016 1.8149 6.9347 22.0814 0.4149 0.0021 0.9332 0.9933 0.9554 
Level 2 0.0056 3.4203 13.0687 41.6133 0.8199 0.0035 0.9865 0.9769 0.8619 
Level 3 0.0075 3.8395 14.6721 46.7190 0.9502 0.0025 0.9883 0.9713 0.8366 

mage 7 (WV-3) 
(768x672) 

Rio de Janeiro - Brazil 

Level 1 0.0044 2.0289 6.4988 20.9553 0.7955 0.0127 0.9230 0.9879 0.9345 
Level 2 0.0069 3.1368 10.0482 32.4004 1.2561 0.0287 0.9634 0.9715 0.7869 
Level 3 0.0067 3.4104 10.9260 35.2308 1.3950 0.0121 0.9604 0.9662 0.7032 

Image 8 (WV-3) 
(500x500) 

Rio de Janeiro - Brazil 

Level 1 0.0020 2.4753 8.1312 25.1762 0.9220 0.0296 0.9373 0.9915 0.8098 
Level 2 0.0034 3.8586 12.6760 39.2481 1.4338 0.0488 0.9730 0.9795 0.6378 
Level 3 0.0042 4.4325 14.5632 45.0912 1.6683 0.0267 0.9735 0.9730 0.5546 

Image 9 (WV-3) 
(512x512) 

Rio de Janeiro - Brazil 

Level 1 0.0094 2.3997 7.7146 25.8465 0.8057 0.0388 0.9312 0.9831 0.8803 
Level 2 0.0145 3.4223 11.0018 36.8599 1.1107 0.0306 0.9622 0.9662 0.7655 
Level 3 0.0064 3.4726 11.1636 37.4019 1.1250 0.0121 0.9560 0.9649 0.7459 

Table 4.3. Spectral quality assessment, with reference image, of different decomposition 
levels of the proposed method for different datasets. 
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Test Images Metrics dλ ds QNR 
Ref. values 0 0 1 

Image 1 of  Fig. 4.2 
(Deimos-2) 

Level 1 0.0496 0.0342 0.9178 
Level 2 0.0812 0.0589 0.8646 
Level 3 0.0974 0.1003 0.8120 

Image 2 of  Fig. 4.3 
(Deimos-2) 

Level 1 0.0369 0.0157 0.9480 
Level 2 0.0158 0.0843 0.9012 
Level 3 0.0599 0.0583 0.8852 

Image 3 of  Fig. 4.4 
(Deimos-2) 

Level 1 0.0158 0.0843 0.9012 
Level 2 0.0450 0.0107 0.9447 
Level 3 0.0634 0.0518 0.8881 

Image 4 (WV-2) 
(500x500) 

Stokholm – Sweden 

Level 1 0.0081 0.0402 0.9520 
Level 2 0.0143 0.0378 0.9485 
Level 3 0.0062 0.0420 0.9520 

Image 5 (WV-2) 
(500x500) 

Sidney – Australia 

Level 1 0.0062 0.0580 0.9362 
Level 2 0.0204 0.0372 0.9431 
Level 3 0.0192 0.0394 0.9422 

Image 6 (WV-2) 
(500x600) 

Sidney – Australia 

Level 1 0.0030 0.0381 0.9590 
Level 2 0.0100 0.0148 0.9753 
Level 3 0.0133 0.0099 0.9769 

mage 7 (WV-3) 
(768x672) 

Rio de Janeiro - Brazil 

Level 1 0.0410 0.0446 0.9163 
Level 2 0.0624 0.0787 0.8637 
Level 3 0.0553 0.0721 0.8765 

Image 8 (WV-3) 
(500x500) 

Rio de Janeiro - Brazil 

Level 1 0.0273 0.0324 0.9412 
Level 2 0.0430 0.0656 0.8942 
Level 3 0.0384 0.0591 0.9048 

Image 9 (WV-3) 
(512x512) 

Rio de Janeiro - Brazil 

Level 1 0.0538 0.0380 0.9102 
Level 2 0.0683 0.0677 0.8687 
Level 3 0.0616 0.0626 0.8797 

Table 4.4. Spectral quality assessment, without reference image, of different decomposition 
levels of the proposed method for different datasets. 

 

 From Tables 4.3 and 4.4, it is clear that the merged images resulting from the 

application of the proposed approach with a single level of decomposition show almost the 

highest spectral quality, although they are visually degraded. 

 The results of the quantitative assessment are based on the metrics from Chapter 2, as 

shown in Tables 4.3 and 4.4, show better fusion quality from which we can conclude that the 

proposed approach offers more spatial information and reasonable spectral quality for high 

levels of decomposition (2 and 3 levels). In the case of the application of ATWT with three 

levels of decomposition, the merged images show the best quality of spatial resolution and 

this is also confirmed by the values obtained from SCC as shown in Table 4.3. For one level 

of decomposition, the proposed method retains more spectral information, while retaining 
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good spatial quality. In addition, it can be clearly seen that when the ATWT decomposition 

level is two, the fusion results reach the optimum quality, hence a good compromise between 

spatial and spectral quality. 

 The influence of the EL error image, from equation (4.12), on the spectral and spatial 

qualities of the combined images is obvious and this is due to the presence of the high 

resolution details in EL which vary depending on the image error. 

 

4.3.3. Comparison with some state-of-the-art fusion methods 

 In this section, the performance evaluation of the suggested pansharpening approach is 

compared with various state-of-the-art fusion methods. Several methods have been used for 

comparison with the proposed approach such as Generalized IHS (GIHS) [32], PCA-based 

image fusion [29], Improved Adaptive IHS (IAIHS) [40], the Proportional AWL (AWLP) 

[67], the Partial Replacement Adaptive Component Substitution (PRACS) [45] and the fusion 

of MS and PAN images preserving spectral quality by Optimal Filter (OF) [119]. Each 

method is subject to a compromise between the quality of the spectral and spatial resolutions. 

 The experimental results obtained after the application of different pansharpening 

methods of three Deimos-2 images (image 1, image 2 and image 3) are presented in Figures 

4.8, 4.9 and 4.10. Tables 4.5 and 4.6 illustrate the performance of our pansharpening 

algorithm compared to the previous methods. We applied 2 levels of decomposition for the 

multiresolution methods. 
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                                      (a) GIHS.                                           (b) AIHS. 

     
                                    (c) AWLP.                                           (d) PCA. 

     
                                 (e) PRACS.                                                 (f) OF. 

 
(g) Proposed method. 

Figure 4.8. Fusion results of the first Deimos-2 image for different methods. 

image fusionnée par GIHS image fusionnée par AIHS

image fusionnée par AWLP image fusionnée par PCA

image fusionnée par PRACS image fusionnée par OF

image fusionnée par la méthode proposée
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                                     (a) GIHS.                                             (b) AIHS. 

     
                                     (c) AWLP.                                          (d) PCA. 

     
                                   (e) PRACS.                                             (f) OF. 

 
(g) Proposed method. 

Figure 4.9. Fusion results of the second Deimos-2 image for different methods. 

image fusionnée par GIHS image fusionnée par AIHS

image fusionnée par AWLP image fusionnée par PCA

image fusionnée par PRACS image fusionnée par OF

image fusionnée par la méthode proposée
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                                   (a) GIHS.                                             (b) AIHS. 

     
                                    (c) AWLP.                                             (d) PCA. 

     
                                      (e) PRACS.                                         (f) OF. 

 
(g) Proposed method. 

Figure 4.10. Fusion results of the third Deimos-2 image for different methods. 

image fusionnée par GIHS image fusionnée par AIHS

image fusionnée par AWLP image fusionnée par PCA

image fusionnée par PRACS image fusionnée par OF

image fusionnée par la méthode proposée
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 For better visualization of fusion results, we have zoomed in the same part of each 

image. Figures 4.11, 4.12 and 4.13 represent this zoom. 

 

 
                      (a) GIHS.                               (b) AIHS.                             (c) AWLP. 

 
                      (d) PCA.                             (e) PRACS.                                  (f) OF. 

 
(g) Proposed method. 

Figure 4.11. Zoom of fusion results of the first Deimos-2 image for different methods. 
 

image fusionnée par GIHS image fusionnée par AIHS image fusionnée par AWLP

image fusionnée par PCA image fusionnée par PRACS image fusionnée par OF

image fusionnée par la méthode proposée
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                     (a) GIHS.                                (b) AIHS.                              (c) AWLP. 

 
                     (d) PCA.                             (e) PRACS.                                  (f) OF. 

 
(g) Proposed method. 

Figure 4.12. Zoom of fusion results of the second Deimos-2 image for different methods. 
 

image fusionnée par GIHS image fusionnée par AIHS image fusionnée par AWLP

image fusionnée par PCA image fusionnée par PRACS image fusionnée par OF

image fusionnée par la méthode proposée
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                     (a) GIHS.                              (b) AIHS.                               (c) AWLP. 

 
                      (d) PCA.                               (e) PRACS.                              (f) OF. 

 
(g) Proposed method. 

Figure 4.13. Zoom of fusion results of the third Deimos-2 image for different methods. 
 
 
 
 
 
 
 
 
 
 

image fusionnée par GIHS image fusionnée par AIHS image fusionnée par AWLP

image fusionnée par PCA image fusionnée par PRACS image fusionnée par OF

image fusionnée par la méthode proposée



Chapter 4: Proposed fusion method 
 

 84 
 

 
Test Images Metrics 

Methods 
CC ERGAS RASE RMSE SAM SID SCC UIQI SSIM 
0 0 0 0 0 0 1 1 1 

D
ei

m
os

-2
 im

ag
es

 GIHS 0.0285 5.6985 22.5444 30.1408 1.7161 0.0311 0.9916 0.9280 0.8886 
AIHS 0.0043 5.7104 22.4819 29.7967 2.1875 0.0443 0.9903 0.9315 0.8961 

AWLP 0.0213 4.3249 17.4812 23.4077 2.3309E-7 0.0013 0.9509 0.9627 0.9581 
PCA 0.2683 7.7880 31.1688 41.2881 4.0265 0.0515 0.9471 0.8141 0.8007 

PRACS 0.0204 4.2847 17.4401 23.1224 1.2166 0.0677 0.9688 0.9643 0.9483 
OF 0.0317 4.7057 18.9366 25.3195 1.1819 0.0620 0.8451 0.9560 0.9428 

Proposed 0.0132 3.4207 13.5333 18.0741 0.7302 0.0082 0.9832 0.9755 0.9763 

W
V

-2
 im

ag
es

 GIHS 0.0089 4.5698 17.2795 50.7240 1.4450 0.0076 0.9910 0.9555 0.8103 
AIHS 0.0010 4.3303 16.7635 49.1225 1.2774 0.0133 0.9896 0.9635 0.8301 

AWLP 0.0086 4.5449 18.2989 53.7066 2.4291 E-7 0.0004 0.9481 0.9579 0.8338 
PCA 0.1783 8.6275 32.9548 97.1180 4.6856 0.0329 0.9168 0.7952 0.7236 

PRACS 0.0056 4.4537 18.1805 53.2766 1.0780 0.0032 0.9820 0.9638 0.8391 
OF 0.0119 5.5075 21.1254 61.9830 1.4337 0.0692 0.8298 0.9495 0.7992 

Proposed 0.0055 3.7033 14.0013 41.0648 0.8565 0.0110 0.9874 0.9717 0.8579 

W
V

-3
 im

ag
es

 GIHS 0.0406 5.7943 18.8313 60.6717 2.2267 0.0512 0.9818 0.9309 0.5300 
AIHS 0.0111 6.0724 19.7170 63.4380 2.0189 0.0478 0.9849 0.9246 0.5421 

AWLP 0.0514 4.4063 17.0148 54.9083 0.0306 0.0721 0.9373 0.9534 0.7377 
PCA 0.3438 7.4928 26.6934 85.4653 3.4903 0.0487 0.9416 0.8712 0.4411 

PRACS 0.0171 3.7532 12.8878 41.4724 1.3918 0.0016 0.9293 0.9721 0.7387 
OF 0.0151 5.1888 15.1875 48.9939 2.3728 0.1263 0.8228 0.9531 0.6688 

Proposed 0.0089 3.6405 11.8389 38.0540 1.2723 0.0397 0.9676 0.9728 0.7017 

Table 4.5. Quality metrics with no reference data for different pansharpening methods using 
different satellite images (mean values). 

 

Test 
Images 

Metrics 
Methods 

dλ ds QNR 
0 0 1 

D
ei

m
os

-2
 im

ag
es

 GIHS 0.0873 0.0941 0.8269 
AIHS 0.0668 0.0571 0.8800 
AWLP 0.0665 0.0423 0.8940 
PCA 0.0539 0.1921 0.7644 

PRACS 0.0548 0.0358 0.9113 
OF 0.0730 0.0069 0.9206 

Proposed 0.0450 0.0107 0.9447 

W
V

-2
 im

ag
es

 GIHS 0.0283 0.0644 0.9092 
AIHS 0.0201 0.0426 0.9382 
AWLP 0.0614 0.0660 0.8766 
PCA 0.1792 0.2754 0.5948 

PRACS 0.0192 0.0490 0.9327 
OF 0.0379 0.0270 0.9361 

Proposed 0.0190 0.0375 0.9442 

W
V

-3
 im

ag
es

 GIHS 0.0894 0.0608 0.8552 
AIHS 0.1035 0.1328 0.7774 
AWLP 0.0970 0.0979 0.8146 
PCA 0.1662 0.2714 0.6075 

PRACS 0.0453 0.0792 0.8791 
OF 0.0884 0.0743 0.8439 

Proposed 0.0683 0.0677 0.8687 

Table 4.6. Quality metrics with reference data for different pansharpening methods using 
different satellite images (mean values). 
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4.3.4. Discussions  

 For a qualitative assessment, all of these methods are good. Spatial quality is improved 

compared to MS images and the edges are more representative. Obviously, the results 

obtained depend on the specific input image, but images fused by applying the PCA method 

have a clear spectral distortion especially on the regions containing green vegetation. After 

applying the proposed fusion scheme, the spectral and spatial qualities of the pansharpened 

images obtained are close to the spectral quality of the original MS image and the spatial 

quality of the original PAN image, respectively. The results of the visual comparison agree 

with the quality assessment presented in Tables 4.5 and 4.6. In Table 4.5, the SCC values are 

closer to the optimal values when using IHS-based methods. The adaptive IHS image method 

(IAIHS) works better than the original IHS. 

 The majority of the used methods have good spatial detail. However, they visually show 

a small spectral distortion especially the AWLP, PCA, PRACS and OF methods. The 

resulting image of our proposed algorithm gives the best visual and quantitative quality. 

 It should be noted that due to the lack of reference images in real experiments, the 

quantitative evaluation was carried out exhaustively in two aspects. First, the dimension of the 

merged image was changed to spatial dimension of the MS image, and the MS image was 

taken as a reference image. Second, the fusion results were assessed on the basis of 

unreferenced quality assessment indices [120]. Since there is no reference image here, the 

QNR index is used to assess spectral and spatial distortions between the merged image and 

the original PAN image and the MS image, as shown in the Table 4.6. 
 It is clear from Tables 4.5 and 4.6 that the proposed algorithm surpasses the other 

techniques in terms of spatial quality and in most of spectral quality indices. It should be 

noted that the proposed scheme gives the best results for the following quality indices: 

ERGAS, RASE, RSME UIQI, SSIM and QNR. The main advantage of the proposed scheme 

is the adaptive gain injection, in which spatial details are inserted into each upsampled MS 

band while retaining its spectral information. 

 The computation time of an algorithm is an important comparative element. The 

following table represents the execution time of the methods studied in this chapter and for 

the same image. 

 We can see the difference in time between the different methods. A direct method 

requires less time than a method that uses multiple resolutions or more complicated. 
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Test Image Methods Calculation time in 
seconds 

Image 1 of  Fig. 4.2 
(Deimos-2) 

 PAN : 1312 x 864 pixels 
MS : 328 x 216 pixels 

GIHS 0.2358 
AIHS 1.3374 
AWLP 0.3945 
PCA 0.4880 

PRACS 3.4999 
OF 30.4684 

Proposed 0.7337 

Table 4.7. Calculation time for different methods. 

 

 Some information about the computer that performed these calculations: 

 Processor: Intel(R) Core(TM) i5 CPU M 460 @ 2.53GHz, 2534 MHz, 2 core(s), 4 

logical processor(s). 

 Physical memory (RAM) installed 4.00 GB. 

 x64-based PC type. 

 64-bit operating system. 

 

4.4. Conclusion  

 In this chapter, a new combination between multi-resolution analysis (MRA-based 

method) and component substitution method (CS-based method) is proposed to design a new 

pansharpening scheme. The proposed pansharpening algorithm is based on the IHS injection 

model, in which the spatial details are first selected and extracted from the PAN image, then 

injected into the MS bands by applying the ATWT transform. In addition, weighting 

coefficients are introduced to improve the spatial details of the resulting image while 

preserving its spectral information. The weighting coefficients of the intensity component (I) 

are calculated using the average energy ratio and the correlation coefficients between the MS 

bands and the wavelet decomposed version of the PAN image. The detail information is then 

injected into the high spectral resolution MS bands to obtain a merged image with high spatial 

information. 

 Experimental results and performance evaluation measures demonstrated the ability of 

the proposed fusion algorithm to increase the spatial resolution of the resulting fused images 

while preserving their spectral information. 
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 Image fusion has multiple applications, and choosing to synthesize MS spectral bands 

with high spatial resolution creates constraints that are not always understood by the 

community. Developers of new fusion methods need to take more account of the local 

dissimilarities between the MS image to be fused and the high spatial resolution PAN image 

that contains the structures to be injected. We generally note an absence of physical 

considerations in establishing and evaluating methods. 

 It was essential to consider quality assessment before developing new fusion methods. 

However, some efforts had attempted to provide a framework for the evaluation with success. 

We have provided an algorithm capable of being used regardless of the ratio, the spatial 

resolution, the type of landscape considered and the number of spectral bands. 

 After giving an introduction representing the notion of pansharpening and the objective 

of this work with the constraints that can be encountered in practice and literature during the 

fusion process, we have first of all, studied the already published methods by identifying their 

advantages and disadvantages (Chapter 1). Three categories of fusion methods were 

considered. We have presented and studied some of the most used and popular methods of 

each category. Then, a fitness check was presented in Chapter 2 to make a comparative study 

between the different fusion methods considered in the first chapter in order to be able to 

extract the qualitative and quantitative properties. In the third chapter, recent methods of each 

category have been studied and presented in order to make a comparative qualitative and 

quantitative study. In the fourth chapter, we have contributed to the enhancement of the well-

known AWLP method by improving its quality, visually and quantitatively, by proposing a 

new scheme for injection gains, using the IHS transform, which takes into account the energy 

ratio between the MS and PAN images, transformed by ATWT, and which is based on the 

contours contained in the satellite images. This algorithm has been validated for Deimos-2, 

World view-2 and World view-3 satellite imagery. The results obtained with this method 

agree with the qualitative and quantitative analyzes obtained by fusion methods of which we 

knew a priori their impact on the edges. The proposed scheme can inject more spatial 

information and provide better color preservation. The new proposed fusion method has the 

advantage of not reproducing the artifacts identified for the previous methods. It also shows 

very good results for quantitative quality analysis. 

 The important conclusion is that the improvement of the AWLP fusion method 

corresponds to a compromise between visual and parametric constraints. Hybrid methods 

make it possible to take advantage of the better properties obtained for each method. 
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 We have therefore satisfied our objective, namely to offer a more efficient method. 

 It is necessary to clearly define the framework of fusion applications in which the 

developer places himself in order to understand all the constraints. Next, the fusion methods 

should be evaluated by applying quality evaluation parameters. 

 For visual evaluation, fused products in color or grayscale should be compared to their 

references. In addition, the conclusions of the visual evaluation depend on the areas of work 

of the developers, and are not necessarily generalizable to other applications. With regard to 

quantitative analysis, care should be taken to use parameters that cover different aspects of the 

quality of the fusion products.  

 We wish in the near future to adapt and apply the proposed approach for the fusion of 

multimodal medical images and to further improve our algorithm by using the adaptive IHS 

transform (IAIHS) instead of the classical IHS transform. 
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