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Abstract

In remote sensing applications, state-of-the-art pansharpening methods generally
improve the low spatial resolution (LSR) of multispectral (MS) images by injecting into them
the spatial details extracted from the panchromatic (PAN) image with high spatial resolution
(HSR). Different injection models are considered. Fusion performance is highly dependent on
the precision of the modeling and the estimation of model parameters. This thesis presents an
optimized pansharpening algorithm based on the combination of the well-known Intensity-
Hue-Saturation (IHS) method and multiscale analysis by using the “a trous” wavelets
(ATWT). In this new approach, a combination of the energy and correlation coefficients
between the MS bands and the PAN image is considered to make a new approximation of the
weighting coefficients in the injection model. Then, the intensity component is extracted from
the upsampled MS images by IHS transformation. The weighting coefficients of the intensity
component are computed by using the average energy ratio between the low-pass version of
the PAN image, obtained by ATWT transformation, and the MS bands in order to obtain more
detail information. This last is then injected into the MS bands to obtain a pansharpened
image with high spectral and spatial information.

The experimental results of the proposed approach, compared with many classical and
advanced pansharpening methods, have confirmed that it can inject more spatial information
and ensure better color preservation. Therefore, it can achieve a good compromise between

spectral and spatial qualities.



Résumé

Dans les applications de télédétection, les méthodes avancées de fusion améliorent
généralement la faible résolution spatiale (LSR) des images multispectrales (MS) en y
injectant les détails spatiaux extraits de l'image panchromatique (PAN) a haute résolution
spatiale (HSR). Différents modeles d'injection sont considérés. Les performances de fusion
dépendent fortement de la précision de la modélisation et de I'estimation des parametres du
modele. Cette thése présente un algorithme de fusion optimisé basé sur la combinaison de la
méthode bien connue Intensité-Teinte-Saturation (IHS) et d'une analyse multi-échelle en
utilisant les ondelettes « a trous » (ATWT). Dans cette nouvelle approche, une combinaison
des coefficients d'énergie et de corrélation entre les bandes MS et 1'image PAN est considérée
pour donner une nouvelle approximation des coefficients de pondération dans le modele
d'injection. Ensuite, la composante d'intensité est extraite des images MS sur-échantillonnées
par transformation IHS. Les coefficients de pondération de la composante d'intensité sont
calculés en utilisant le rapport d'énergie moyen entre la version passe-bas de I'image PAN,
obtenue par transformation ATWT, et les bandes MS afin d'obtenir des informations plus
détaillées. Ces informations sont ensuite injectées dans les bandes MS pour obtenir une image
fusionnée avec une haute information spectrale et spatiale.

Les résultats expérimentaux de I'approche proposée, comparés a de nombreuses
méthodes de fusion classiques et avancées, ont confirmé qu'elle peut injecter plus
d'informations spatiales et assurer une meilleure préservation des couleurs. Par conséquent,

elle peut réaliser un bon compromis entre les qualités spectrales et spatiales.
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General Introduction

GI.1. Context

It is interesting to visualize remotely sensed images with high spatial and spectral
resolutions for better land classification, map updating, soil analysis, feature extraction, etc...

Earth observation satellites provide, generally, two different types of images of a scene;
a panchromatic (PAN) image (grayscale) with high spatial and low spectral resolutions and a
multispectral (MS) image (color) with high spectral and low spatial resolutions.

The spatial resolution of an image is the smallest distance between two adjacent objects
that the sensor can identify. Or, it's the smallest area the satellite can detect on the ground. For
example, a resolution of 30 meters detects an area on the ground of 30m x 30m. Hence, a high
resolution implies a reduction in the surface area. The following figure represents an example

with different spatial resolutions.

Figure GI.1. A scene with different spatial resolutions: from left to right 1Km, 100m,
10m, Im and lcm'.

The spectral resolution is the separating power of a spectrograph. The spectral
resolution of an image is higher, the wavelength interval is narrower.

To compose the low spatial resolution of the MS image, MS must be up-sampled
(interpolated) to the same spatial resolution as the PAN image. For example, a PAN image of
spatial resolution N x M and MS image of resolution N/2 x M/2 (ratio of 4), the MS image
must be interpolated by 2 on the rows and 2 on the columns to have the resolution N x M. The
following figure shows an example of PAN (1024x1024 pixels) and MS (256x256 pixels)
images of actual sizes (ratio of 4). Figure GI.3 shows an example of an image resampled by

different interpolation filters.

"https://www.// Geosys.com
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MS image
Figure GI.2. An example of real sizes PAN and MS satellite images?.

2

Matlab images
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Original image

Nearest neighbor filter Bilinear filter Bicubic filter

Figure GI.3. An example of upsampled images obtained from different interpolation
filters?.

Due to technological limitations of the satellite sensors, it is very difficult to acquire a
high spatial resolution MS image directly. As a post-processing method by fusing the
information of the PAN and MS images, it can be employed to produce a new high spatial

resolution MS image (see Figure GI.4).

PAN image Resampled MS image Fused image

Figure GL.4. An example of fusion process”.

3https://www.grss-ieee.org




General Introduction

During the few last decades, various fusion methods have been proposed to result the
problem of remote sensing image fusion [130]. Wald [131] defines image fusion as “a formal
framework in which means and tools are expressed for the combination of data coming from
different sources whose aim is to obtain better quality information, although the exact
definition of "best quality" depends on the application ". According to Piella [132], fusion is
"the combination of relevant information in order to synthesize a more informative and more
visually perceptual image more suitable for computer processing", where the "relevance" of

the information also depends on the task of application [5].

GI.2. Problematic

One of the key elements for the Earth observation and the knowledge of our
environment are formed by space systems (satellites). These satellites carry various active
(radar) or passive sensors on board. The sensors of interest to us are passive sensors whose
bandwidth is located in the visible and infrared. They can have very different characteristics.
The images delivered by these sensors allow the distinction of geometric structures according
to the spatial resolution which will be considered here as equal to the sampling step
corresponding to the size of the pixel. Some sensors are capable of integrating the radiative
energy incident at the input of the sensor over a wide wavelength band, and therefore offer
little spectral information, but at the same time offer high spatial resolution. Typically, this
type of image is a grayscale image and it is called a "panchromatic image", noted as PAN
below. On the contrary, other sensors on board these same satellites work on much narrower
bands of the spectrum; these are a color images and therefore multispectral, denoted MS,
below. Their spectral resolution is much higher, but this comes at the cost of low spatial
resolution.

For many applications, the advantage of manipulating multispectral images with very
high spatial resolution has already been demonstrated, for example for classification [133],
[134] and [135], road mapping [136], the study of the development of urban areas [137] and
[138], archaeological prospecting [139] or even in the medical field for diagnostic aid [140].
It is of course possible to distinguish large areas in an MS or PAN images as long as they
have very distinct characteristics, such as the surface of the ocean in relation to the coastal
zone, or a farm in relation to a region very urbanized. On the other hand, it becomes much
more difficult to distinguish very heterogeneous vegetation or mineral spaces, without
considering their spectral properties. The "color" information helps to distinguish different

regions of the image with shades previously invisible in the initial grayscale PAN image.
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Therefore, if we can use these spectral contents while taking advantage of better spatial
resolution, the identification of objects in a scene will be enriched and more precise [141].

For this reason, manufacturers have not directly built sensors capable of delivering
images at high spatial and spectral resolutions. These concepts are contradictory from a
technical point of view because the wider the spectral acquisition bands of a sensor, the
greater the luminous flux incident on a pixel of the image. The opening of the entrance pupil
can then be reduced, the size of the pixels is smaller and therefore the image has better spatial
resolution. On the other hand, a much narrower band of the spectrum limits the number of
photons absorbed by the sensor, generally CCD (Charged-Coupled Device) and therefore the
energy incident on each cell. The integration time must therefore be greater than before in
order to be able to deliver a similar signal-to-noise ratio and a similar dynamic. As the spatial
vector moves, this increase in integration time results in an increase in pixel size, explaining
the lower spatial resolution.

To reduce this integration time, the solution is to increase the sensitivity of the
detectors. But a financial limitation arises because of the expensive cost of building the more
sensitive sensors. Besides the budgetary limitation, other constraints are imposed by the
satellite platform in terms of space, weight, power, electromagnetic radiation, but also mission
objectives (orbit), rocket for launch, etc. Assuming that the sensors are able to deliver MS
images of spatial resolution reaching that of the PAN, two other problems will arise; the
storage capacity on the platform and the bandwidth of the transmission channel are limited.
Take the example of the Ikonos or Quickbird satellite: these satellites have four MS bands. If
the spatial resolution of these images were increased by a factor of 4 to match that of the
PAN, their size would be multiplied by 16, or 16 times more data to store and transmit to the

ground.

Therefore, for the same geographical area, the user is in possession of a set of images;
some of which benefit from good spatial resolution, while others provide good spectral
resolution. Table GI summarizes various information concerning the imagery of the most
commonly used satellites in the environment and in mapping; SPOT4, SPOTS, Ikonos,

Quickbird, Demos 2 and Alsat-2.
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Modality MS Modality PAN
. Name of Spectral band Grour.ld Spectral band Grour}d
Satellite the band Color (um) resolution (um) resolution
(m) (m)
B1 Green 0,50-0,69 20
4 B2 Yellow 0,61-0,68 10
SPOT 4 B3 NIR 0.78-0.89 20 0,61-0,68 10
B4 MIR 1,58-1,75 20
B1 Green 0,50-0,59 10
5 B2 Yellow 0,61-0,68 10
SPOT 5 B3 NIR 0.78-0.89 10 0,48-0,71 2,50r5
B4 MIR 1,58-1,75 10
Bl Blue 0,45-0,53 4
6 B2 Green 0,52-0,61 4
Ikonos B3 Red 0.64-0.72 1 0,45-0,90 1
B4 NIR 0,77-0,88 4
Bl Blue 0,45-0,52 2,8
e 7 B2 Green 0,52-0,60 2,8
Quickbird B3 Rod 0.63-0.69 2.8 0,45-0,90 0,7
B4 NIR 0,76-0,90 2,8
Bl Blue 0,42-0,51 4
. 3 B2 Green 0,51-0,58 4
Deimos 2 B3 Red 0.6-0.72 1 0,45-0,9 1
B4 NIR 0,76-0,89 4
Bl Blue 0,45-0,52 10
B2 Green 0,53-0,59 10
9 ) ) _
Alsat-2 B3 Rod 0.62-0.69 10 0,45-0,745 2,5
B4 NIR 0,76-0,89 10

Table GI. Examples of Earth observation systems offering various images to different spatial

resolutions.

“https://earth.esa.int/web/eoportal/satellite-missions/s/spot-4
Shttps://earth.esa.int/web/eoportal/satellite-missions/s/spot-5
Shttps://www.satimagingcorp.com/satellite-sensors/ikonos/
"https://www.satimagingcorp.com/satellite-sensors/quickbird/
8https://www.deimos.com

°https://www.asal.dz




General Introduction

As the high spectral resolution and the high spatial resolution are contained in different
images, the problem becomes one of synthesizing multispectral images with the best spatial
resolution available within the dataset. Image fusion is one way to offer joint exploitation of
information originally from separate sources.

According to [131], it is a formal framework in which the means and techniques are
expressed that allows the alliance of data from various sources. Pansharpening is aimed at
obtaining higher quality information, which depends on the application and its user.

The term fusion encompasses several possible definitions. For example, the works of
[132], [142], [143] and [144] consider the fusion as a combination of relevant information
from the two images placed as input, the so-called "relevant" information depending on the
application. For example, some of these authors show examples of images acquired by the
same sensor but at different focal lengths. They define fusion as the synthesis of an image that
is focused at all points that is, having the highest spatial resolution of the two images for each
pixel. This idea of complementarily is also found in medical imaging since radio images,
obtained by nuclear magnetic resonance or even by positron emission tomography, provide
very different information on the human body [145]. Pansharpening aims to overlay relevant
information from different sources for diagnostic aid. This way of defining image fusion has
the particularity of not taking into account the characteristics of a particular sensor. The
challenge lies in the creation of a hybrid image with specific characteristics selected from the
different sets placed at the input.

The framework of this research work, that we have adopted, is the particular case of the
synthesis of multimodal images with high spatial resolution: each synthesized image must be
as close as possible to that which the corresponding sensor could have observed if it had this
spatial resolution. This last statement will be for us the fundamental property of fusion
products.

The economic interest of creating images reproducing what a multispectral sensor with
better spatial resolution should observe is real in the space field, since an efficient fusion
method makes it possible to be satisfied with simpler and therefore less expensive, and lighter
sensors, which saves weight and space on the platform.

The existing pansharpening algorithms tend to trade-off between spectral distortion and
spatial improvement. The major issues with the pansharpening process are two: spectral
distortion and decrease of spatial information in the fused image [45]. Many algorithms are
proposed to solve these problems respecting the tradeoff between spectral distortion and

spatial enhancement, which can fuse huge volume of satellite data of three, four or more
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bands. This thesis deals with the evaluation of image fusion methods in order to solve the

spatial resolution limitation of high resolution satellite imagery.

GIL.3. Objectives of the thesis

The aim of the thesis is to contribute and develop an optimized method for synthesizing
images at high spatial and spectral resolutions more efficient than current methods, as well as
for evaluating the quality of the fusion results.

The first step of the work consisted in studying the different fusion methods found in
the literature in order to be able to exploit some models and develop a more efficient model.
The second step was dedicated to the critical evaluation of existing fusion methods and
particularly the most recent methods, looking at the development paths chosen by the various
authors. The qualitative and quantitative evaluation of their performance has opened up many
perspectives for development, justifying the importance of using multi-scale or multi-
resolution analysis.

The development framework for the new method that we have chosen is that of the
ARSIS concept (Amélioration de la Résolution Spatiale par Injection de Structures), that
means in English, Improvement of Spatial Resolution by Injection of Structures, in
combination with methods based on the IHS transform. The IHS transform was chosen due to
its simplicity of implementation and its good results. The new method that we have developed
is an improvement of the hybrid method of the ATWT transform ("a trous" Wavelet
Transform) and the general IHS transform (GIHS) called AWLP. Finally, a comparative study

was made between the existing methods in the literature and our new proposed technique.

GI. 4. Followed approach

Several classifications of fusion methods have been proposed, and we have chosen that
of [27]. A presentation of the main locations of these three categories is developed. For the
high spatial resolution visual assessment which corresponds to the first step of our study, we
considered and applied, for all the methods, two images representing an urban area and a
vegetation area, respectively.

The development of new algorithms inevitably involves a stage of estimating the quality
of the fused products obtained. The bibliography showed that a normative framework for the
evaluation of the quality of fusion products is needed. To know the quality of a fusion

product, it must be compared to a reference. Chapter 2 presents a critical study of the
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quantitative parameters present in the literature then a comparative study was made between
the different fusion methods studied in the previous chapter.

Next in Chapter 3, we look at the most recent fusion methods, studying the solutions
that the authors have explored to improve the spatial and / or spectral quality of the fused
products.

Chapter 4 presents a critical state of the art of fusion methods. A hybrid method has
been proposed based on the combination of the IHS transform with the ATWT transform. The
proposed scheme shows an improvement of the well-known fusion method called AWLP. The
proposed algorithm has been published in Elsevier's Advances in Space Research journal,
indexed in the Thomson Reuter Database. The spatial resolution of images and their
geometric quality are intrinsically related to the quality of a satellite image sensor. The fusion
product quality assessment process was applied to a new set of images processed by this new
algorithm as well as by existing methods. These series are acquired by the satellites Deimos-
2, Worldview-2 and Worldview-3. The results confirmed that the proposed algorithm is
generally valid. It is applicable whatever the images, the ratio or the landscape concerned. For
this, we show that the new fusion method must be able to offer a balance between qualitative
and quantitative estimations. Analyzes combined with the results from the application of the
proposed algorithm, led to the conclusion that the new method is the best fusion method of all
those tested in this thesis.

Finally, a conclusion on all the work carried out throughout this thesis, is presented.

Development prospects and numerous recommendations are proposed.
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Chapter 1: An overview of image fusion methods

1.1. Introduction

In recent years, image fusion has become an important technique in the field of image
processing. The goal of image fusion is to generate a composite image by inputting additional
information from different source images of the same scene [1]. In the image fusion system,
the input source images can be acquired from different image sensors or from a single sensor
with changeable optical parameters. The output of this system is an image, called merged
image, which will be more relevant to human and machine perception than an individual
source image. The image fusion technique has been used in several applications such as
machine vision, surveillance, medical imaging and remote sensing [2].

We must remember, in fact, than high and very high resolution images available for
remote sensing are mostly panchromatic images. Conversely, the multispectral images, able to
combine into one colorful composition, present more low resolutions. The fusion of a
panchromatic image (PAN), of high spatial resolution and of low spectral resolution, with a
multispectral image (MS), of low spatial resolution but high spectral resolution, arguably the
most frequent application of fusion. This process is called PAN-sharpening [3].

In remote sensing techniques, pan-sharpening or image fusion aims to sharpen low
spatial resolution multispectral (MS) image by injecting the details extracted from high spatial
resolution panchromatic (PAN) image [4].

The aim of this chapter is to present various image fusion techniques as part of the
production of a colored composition using optical satellite images. The main constraints will
therefore be linked to obtaining an image easily interpreted by a majority of users. The image
must present visual qualities, in particular with respect to the colors returned, and offer
maximum readability. Finally, to the extent of possible, obtaining natural colors will be

sought [3].

1.2. Pansharpening of multi-spectral satellite images

Spatio-spectral fusion, such as PAN/MS (called pansharpening) [5,6], PAN/Hyper-
Spectrale (HS) [7,8], and MS/HS [7,9,10], is an important approach in remote sensing image
fusion [5] — [7]. It consists in obtaining a fused image with both high spatial and spectral
resolutions.

Pansharpening consists of producing a new image which retains part of the information
contained in each of the original images. The objective is to create a synergy, which is to say
to obtain an image merged geometrically and / or semantically richer than an initial image.

Many methods are capable of performing image fusion. They differ in the way in which they

10
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favor a particular characteristic of the original images. The choice of a method is therefore
conditioned by the application.

The implementation of an image fusion requires several preliminary operations which
directly interfere with the quality of the fused product. Among these, the geometric correction
of the images subjected to the fusion is obviously essential since the images must be strictly
super imposable. But the pre-treatments involved in radiometry are also important and diverse
[3].

The goal of pansharpening is to combine the high spatial resolution of the panchromatic
image (PAN) with the precise spectral information of the multispectral image (MS). The
resulting image should have a high visual quality to facilitate detection and classification
tasks. However, the merged image must contain the same spectral information (colors) as the
original multispectral image.

This becomes especially important as the number of bands increases, because the
spectral signature can be used for material identification. Therefore, the pan-sharpened image

should possess both high spatial and spectral qualities [11].

1.3. Presentation of the problem

It is interesting to visualize remote sensing images with high spatial and spectral
resolutions as it can lead to better land classification, map update, soil analysis, feature
extraction, etc. However, constraints, such as the compromise between the high resolutions of
the sensor, the bandwidth of the channel, the storage capacity on board a satellite, etc..., limit
the acquisition of images with high spectral and spatial resolutions. Because of this, many
commercial remote sensing satellites such as Alsat, Quickbird, Ikonos, and Worldview
capture the earth’s information with two types of images: a single panchromatic (PAN) image
and a number of multispectral (MS) images. The PAN image has high spatial resolution with
lower spectral resolution, while an MS image has higher spectral resolution with low spatial
resolution.

The pansharpening or multiresolution image fusion is an algorithmic approach to
increase the spatial resolution of the MS image with the preservation of spectral contents by
making use of the high spatial resolution PAN image [12].

The main spectral characteristic of the PAN image is to cover a wide range of the
wavelength spectrum; on the contrary, an MS band covers only a narrow spectral range.

Since more energy comes to PAN sensor, time acquisition can be reduced still

preserving the same intensity response as MS images in terms of the number of photons [5].

11
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If the spectral responses of all the sensors of a satellite satisfied the ideal theoretical
graph of Figure 1.1 [5], the hypothesis of relative spectral contribution would be perfectly
true. The black curve represents the ideal spectral response of the PAN modality. The colors
correspond to the MS modalities, where the blue, green, red and brown colors correspond
respectively to the blue, green, red and NIR bands of the sensor.

F

[
-

A

Figure 1.1. Ideal normalized spectral responses in terms of wavelength [5].

This figure is not realistic. It would never equal a linear combination with the MS
responses if the panchromatic image was simulated by a combination of actual multispectral
acquisition. MS air-borne or space-borne sensors do not offer a constant response over the
whole bandwidth. This bandwidth is characterized by a variable response and generates a
partial overlap between the spectra.

Figure 1.2 shows the normalized response of the spectral bands of the Ikonos satellite
sensors as a function of wavelength in um. The black curve represents the spectral response of
the Ikonos PAN image. The color curves correspond to the MS modalities, where the blue,

green, red and brown colors correspond respectively to the blue, green, red and near-infrared

bands of the sensor [5].
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Figure 1.2. Responses of the different spectral bands as a function of the wavelength in
micrometers (Ikonos satellite). Black, brown, red, green and blue curves, respectively,
correspond to PAN, NIR, red, green and blue modalities'.

'http://www.geoeye.com/products/imagery/ikonos/spectral.htm.
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In Figure 1.2, if an object reflects solar incident energy in wavelengths located around 1
um, it will be impossible to infer the pixel value in the PAN image from other MS sensors
since what this pixel will have a grayscale value equal to 0 in all MS images. Moreover, this
figure shows that blue and green channels interference creating spectral redundancy between
the two images [5].

Even for geometrically recorded PAN and MS images, differences may exist between
these modalities. In addition to the changes produced by their different spectral acquisition
bands, profound changes can also occur in the same scene for two different acquisition times.
Many authors attempt to understand relationships between these remotely sensed images for
the development of their fusion method [5].

In general, the MS and PAN modalities often display the same geographic area. It is
assumed that the PAN and MS input data sets are a priori geometrically registered. The task
of registration is a very challenging one [13], particularly when images come from different
platforms. Reference [14] has shown that a geometric standard deviation distortion of 0.1
pixels produces a considerable effect on the quality of the merged images resulting from a
pixel-to-pixel fusion process.

However, even with perfectly registered images, the sets (PAN, MS) can present a
certain local dissimilarity, the origin of which is not always well understood by the fusion
community [15,16]. This can have an impact on the quality of the resulting images.

Several types of dissimilarities are illustrated and discussed in [5,17]. The most
common dissimilarities are: moving objects, occlusion of objects, inversion of contrast and
due to the different spectral bands of the sensors or the different acquisition times. These
effects are due to the physics of the environment. If they are not taken into account, the

success of the merge process could be compromised by the appearance of artifacts.
The steps prior to the fusion are:

e The selection of images:
The criteria for selecting satellite images must be clearly established according to the
objectives.
One of the criteria is the choice of the spatial resolutions of the images. The high-
resolution image can only be effectively merged within certain limits with images of coarser
resolutions [3]. It is desirable to respect a resolution ratio R,.s; when choosing the images to

be merged which must verify the following condition:
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Ryes =1 <5 (1.1)

Hres

Where:

L,es : Low resolution

H,.s : High resolution

Another important criterion in the selection of images to be merged is the acquisition
date. Similar recording dates are recommended, as in any multi-source manipulation, to avoid
deviations of a pheno-logical, climatic, sunshine, humidity, etc. between the images [3].

Finally, when the sensors are not limited to zenith shots, the angle of view constitutes
another criterion to be taken into account in the selection of the images. Geometric correction

will be more difficult when viewing angles are distinct [3].

e Geometric corrections:

The principle consists in first rectifying the image of higher spatial resolution, often
panchromatic, which will serve as a reference. The correction method chosen depends on the
type of image, relief, viewing angle, etc. Then, the image of lower spatial resolution is
brought to the resolution of the reference image by multiplication of pixels. It is then
geometrically corrected by matching with the high resolution image already corrected.

For digital satellite images, the geometric correction methods applicable to the high
resolution image are those of polynomial transformations resolved by least squares [3]. The
geometric correction operation is always accompanied by a procedure for resampling the
pixels of the original images. The method used for resampling is the bilinear or cubic
interpolation technique to take advantage of the anti-aliasing effect during resampling [3].

Reference [10] proposes an integrated framework for the spatial, temporal and spectral
fusion of images in remote sensing. In the framework of the proposed fusion, the maximum
posterior theory (MAP) is used to describe the reverse fusion problem. The spatial, temporal
and spectral relationships between the desired image and the remote sensing observations,
obtained by different sources, are then analyzed in depth to build an integrated relationship

model.

1.4. Categories of fusion methods
To date, an oversized range of pansharpening methods are planned [18,19,20] and

these methods are classified in many other ways. Reference [21] classified the existing

14



Chapter 1: An overview of image fusion methods

pansharpening methods into two major categories, i.e., the component substitution (CS)-based
methods and the multiresolution analysis (MRA)-based methods. Reference [22] classified the
existing pansharpening methods into the CS-based methods, the MR A-based methods, and the
regularized-based methods. In addition, [23] classified them into the CS-based methods, the
MRA-based methods, and the Bayesian-based methods, and [10] classified them into the CS-
based methods, the MRA-based methods, the sparse reconstruction (SR)-based methods, and
the model-based optimization (MBO)-based methods. It should be noted that regularization-
based methods, Bayesian-based methods, MBO-based methods, and SR-based methods are
converted to a variational model optimization, so they can be generalized in variational
optimization (VO) -based methods. References [24,25] classified the existing pansharpening
methods according to the use or not of the Point Spreading Function (PSF).

However, few papers provided a complete analysis of CS-based methods, MRA-based
methods and, in particular, VO-based methods.

Excitingly, [26] first performed a comprehensive review of the VO-based strategies
supported super-resolution conception [27].

Reference [27] has presented a review of all categories of the pansharpening methods
for remote sensing images based on the idea of meta-analysis.

The three main categories of pansharpening methods, i.e., the CS-based methods, the
MRA-based methods, and the VO-based methods, are presented in the next sections,
including the process of development from the traditional understanding to the current

understanding.

1.4.1. Component substitution (CS)-based methods

The CS-based methods are the simplest to implement and the most widely used in pixel-
to-pixel fusion and are part of most professional remote sensing software including ENVI,
ERDAS Imagine, PCI Geomatica, etc. The idea of the traditional CS -based methods is that
the MS image is first projected into a new spectral space; a component of them which
represents the spatial information is replaced by the PAN image and the reverse projection is
finally performed to obtain the pansharpened image. Therefore, they are also generally called
“projection-substitution” methods [5]. The essential methods include the Intensity-Hue-
Saturation (IHS) methods [18,28], the Principal-Component-Analysis (PCA) methods
[18,29,30], the Gram-Schmidt (GS) methods [31], etc. Figure 1.3(a) shows the flowchart of
the traditional understanding of the CS-based pansharpening methods.
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Thereafter, [32] demonstrates that the CS-based methods can be generalized to a new
formalization and this was then extended in [33,34]. The new understanding, as shown in
Figure 1.3(b), is that this category of methods is based on the simple substitution of a single
component by the PAN image, and the component is usually obtained by a linear combination
of the spectral bands of the MS images, like the standard GSA (adaptive GS) [35] and BDSD
(band-dependent spatial detail) [36] methods, etc. It should be noted that in fact, it is a
question of extracting the information of high spatial structure of the PAN image through the
difference between the PAN image and the component, and this high information structure is
then injected into the MS image by an appropriate injection scheme.

This can be represented as:
M=M+g(P-1,) (1.2)

Where M is the fused image, M is the resampled MS image, I, denotes the component to be
substituted, P denotes the PAN image, which is generally normalized (e.g. by histogram

matching) with I; to reduce the spectral distortion and g is the injection weight.

The normalization operation is a common strategy used to reduce the color distortion of
the fused image by matching the spectrum of MS to that of PAN [37]. This adjustment
consists of making the statistical distribution of pixel values of the panchromatic image as

close as possible to that of channel I [3].
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Figure 1.3. Flowchart of the CS-based pansharpening methods.
(a) The traditional scheme of the CS-based methods.
(b) The new understanding based on the general formalization of the CS-based methods.

1.4.1.1. Advantages
The general formalization of the CS-based methods has two major advantages:

1) It leads to faster implementation of traditional methods. However, it should be noted
that this should satisfy the condition that the component to be substituted is generated
linearly from the available spectral bands.

2) It opens up new horizons for the development of this type of method. A number of
improved methods have subsequently been proposed. In general, improvements to the
CS-based methods have mainly focused on the optimal determination of the I}

component and the injection gain g.

In conclusion, there are several popular solutions. On the one hand, I; is calculated from
the previous simple mean of the spectral bands of the MS image [28,31,38], to the
improvement by the spectral response functions of the sensors [34,39], and the optimal
calculation by least squares regression [35,40,41]. On the other hand, it is calculated from
global solutions [18,29,30,38] to optimal solutions by consideration of the local features
[42,43]. For the determination of the injection weight g, a variety of solutions can be applied
[6,19,44]. On one hand, in the spatial dimension, the injection weight can be determined by a

global model [35] or a local model [45]. On the other hand, in the spectral dimension, the
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injection weight may be equal for all the spectral bands [32], or determined by a band-

dependent solution [31].

1.4.1.2. Some (CS)-based methods

1.4.1.2.1. Intensity Hue Saturation (IHS) pansharpening technique

The THS pansharpening method is one of the most used fusion techniques and it is a
standard procedure in image analysis for color enhancement, feature enhancement,
improvement of spatial resolution and the fusion of data sets [46]. In the IHS space, spectral
information is mostly projected on the hue and the saturation. From the visual system, the
intensity change has little effect on the spectral information and is easy to deal with. The
purpose of fusion is to ensure the spectral information and to add the detail information of
high spatial resolution; therefore, the fusion is even more adequate for processing in IHS
space [47].

In the literature, many IHS transformation algorithms have been developed. Some are

called HSV (hue, saturation, value) or HLS (hue, luminance, saturation) [48].

1.4.1.2.1. A) IHS transform

The IHS transformation, which is defined as a colored combination of three channels,
allows color information to be retrieved.

Generally, the most common color representation spaces use the three modalities
corresponding to the primary colors of the RGB spectrum "Red (R), Green (G) and Blue (B)".

IHS is a three-dimensional representation of the color space defined by Smith in 1978.

Figure 1.4 shows the defining cone of the model.

Figure 1.4. Smith's HSV color model.
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The transition from RGB space to HSV space can be achieved using the following

process (Figure 1.5):
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a) Color cube and Maxwell's triangle b) Hue and saturation in the Maxwell plane

Figure 1.5. RGB to HSV transformation.

Any color is represented by a vector in the cube, originating from black and as a norm,
the vector sum of its three components R, G and B.

The gray diagonal is considered as the axis of intensities varying from O for black to 1
for white. The intensity of a color corresponds to the length of the projection of its vector on
the gray diagonal.

The hue and saturation values are calculated in polar coordinates in the Maxwell plane,
defined as the plane perpendicular to the gray diagonal and passing through the vertices of the
R, G and B axes. The hue is the angle polar between 0 and 360° and whose origin is fixed by
the direction of the blue axis of the cube (sometimes the red). Finally, saturation is the length
of the polar radius joining the color vector to the gray diagonal.

The relationship allowing the switch from RGB mode to HSV mode, and vice versa,
appears in numerous works, such as, [18,28,32,49,50], etc. A comparative study of different
models of the IHS transform was made in [48]. Taking the formulation proposed by Marion

which guarantees an exact conversion in both directions of the transformation [3]:

1/3 1/3 1/3
I
(v1>= I/— Yo =2 1 \I<§) (13)

Uy \\/g/z _\/g/z 0/ B

With:
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i (1.4)

{H = arctan2
S =4vi+v3:

The relation allowing returning to the RGB mode from the IHS mode is obtained by

carrying out the following equations:

v, =ScosH
{vzl = SsinH (1.5)
And:
_1 1
R /1 1/3 {‘/3_’ I
AR (A )
1 2%/ 0

To illustrate this passage, we take the example of an RGB image in the following

figures:

RGB image

Intensity image Saturation image

Figure 1.6. An example of transformation from RGB space to IHS space?.

2 MATLAB images
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RGB image

Intensity image Hue image

Figure 1.7. Another example of transformation from RGB space to IHS space?.

The Hue values show a linear transition from top to bottom. If we compare the tinted
image and the original image, we can see that the shades of blue have the highest values, and
the shades of red have the lowest values.

The saturation can be thought of as the purity of a color. The saturation image shows
that the colors with the highest saturation are shown as white. The center of the image, where
there are shades of gray, is a mixture of colors.

The intensity image gives the brightness represented by light areas which correspond to

the brightest colors in the original image.

1.4.1.2.1. B) IHS pansharpening algorithm
Figure 1.8 represents this process. Color image RGB space is converted to the IHS
space. The I (intensity) band is replaced by the panchromatic PAN image and it is calculated

using:
I = £V=1 aiMSi (17)

Where MS; the ith band of the MS image and a; = 1/3. Yet, most multispectral images consist
of four bands, RGB and an infrared band. Researchers have extended this method for other
multispectral images by using a;=1/N where N is the number of bands [51,52]. For the
IKONOS satellite, the coefficients @ were experimentally determined [53].
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Before fusing the two images, a histogram matching of the panchromatic image P is

applied to ensure that the mean and standard deviation of the panchromatic and multispectral

images are within the same range, using:

P = ZL(P—up) + 1y (1.8)

P

Where pp and gp are the mean and standard deviation of the PAN image and y; and o; are

the mean and standard deviation of the intensity image, respectively.
Finally, the fused multi-channel image F is obtained by [40]:

F,=MS;,+ (P*—1) (1.9)
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Figure 1.8. Scheme of IHS image fusion.

1.4.1.2.2. Principal Component Analysis (PCA) pansharpening technique
PCA transformation, developed by Pearson in 1901 and Hotelling in 1933, is a
technique derived from statistics to simplify a set of data, while the best modern benchmark is

Jolliffe in 2002. The goal of this method is to reduce the size of the data while preserving as
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much relevant information as possible. By using this method, the redundancy of the image

data can be decreased as it converts the correlated data set into an uncorrelated data set [46].

1.4.1.2.2. A) PCA transform

The eigenvalues A of a matrix A are the scalars verifying the following characteristic
equation:

det(A — AI) = 0 (1.10)

Where, / is the identity matrix.

The eigenvectors V associated with the eigenvalues A verify the following equation:

AV=AIVeo (A—ADV =0 (1.11)

Let V' be the unit matrix whose columns represent the eigenvectors V' = (vy,..., v, ), with

v = (V1,k; . vn,k)t. The k" component P, of the PCA transform is given by:

/vl,l oo vl,N MSl,l
{f,f =| vk o ven || MSq | (1.12)
UN,l P UN,N MSN,l
So:
Pe= XN_1 vy MSy, (1.13)

If C corresponds to the covariance matrix (cov) of the set B where C(i,j) =

COU(Bi, Bj), then C is a symmetric matrix, which also implies that this matrix is

diagonalizable:
5 0 -« 0
vicyo [ 0 (1.14)
0 Sy
Where {8, ..., 8, } are the eigenvalues in descending order: §; > -+ > &y. The total variance

is equal to the sum of &, with k = {1, ..., N} [17].
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1.4.1.2.2. B) PCA pansharpening algorithm

The multispectral MS image is transformed by PCA transform. The eigenvalues and
corresponding eigenvectors of correlation matrix between the images in the individual bands
of the multispectral image are calculated to obtain the principle components of each matrix.
The matched PAN image replaces the first principle component of the multispectral MS
image, and then we get the new first principle component. This later and the other principle
components are used in inverse PCA transformation to form the fused image. We replace the
first principal component image with PAN image data because the first principle component
image has the common information to all the bands [29] (see Figure 1.9).

The role of image registration is to make the pixels in different images coincide
precisely [54,55].

As in any substitution, it is recommended to adjust the variance and the mean of the

high-resolution channel to those of the first component before replacing [3].
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v

Fegister to PAN

v

Hiztogram Resarnple
Matching/Replace |
P, v
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Itrretse PCA

v

Fused images

¥

Figure 1.9. Scheme of PCA image fusion.
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1.4.1.2.3. Brovey Transform (BT) pansharpening technique
The BT pansharpening method preserves the relative spectral contribution of each pixel

and replaces its overall luminance with the panchromatic image [56]. It is calculated by:

RBT PAN R
Gyr|=".|G (1.15)
Bgr B

And 1, is the intensity of resized MS image calculated as above [57].

The group of methods defined by (1.2), varying with the choice of spectral weights in
(1.7), is sometimes referred to as relative spectral contribution (RSC) [5,58]. In this thesis,
however, following [44], all CS methods are considered as a unique class. According to (1.2),
RSC can be seen as a particular case of the CS class since such methods can be formalized

and exhibit the same features as all CS methods [21,6].

1.4.1.2.4. Gram Schmidt (GS) pansharpening technique
GS transform was first introduced for image fusion by Laben and Brower in 2000 [42].

The GS method can be calculated as:

I= 2L, a;MS; (1. 16)
And:

Fi=MS;+ g;(P—1) (1. 17)

Where, «a; is the weighting factor; a; = 1/N, Nis the number of MS image bands and g; is
the injection gain and is calculated as g; = cov(I, MS;)/var(l), where cov(4, B) denotes the

covariance between images A and B, and var(A) is the variance of image A [59].

1.4.1.3. Examples of pansharpening of some (CS)-based methods
Four-band multispectral data, representing pansharpening an urban and vegetation
scenes, was used for the following examples to show the results of different (CS)-based fusion
techniques (figures 1.10 and 1.11, respectively). The algorithms were implemented in Matlab.
PAN image is 1024x1024 pixels and the MS is an R, G and B color composition image
with 256x256 pixels and with ratio 4.
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Figure 1.10. Pansharpening urban scene. a) PAN image?®. b) Real size MS image?. ¢) IHS
fused image. d) PCA fused image. e) BT fused image. f) GS fused image.
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Figure 1.11.Pansharpening a vegetation scene. a) PAN image®. b) Real size MS image’. c)
IHS fused image. d) PCA fused image. e) BT fused image. f) GS fused image.
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1.4.1.4. Visual Analysis

The best evaluation of spatial quality of fused images is visual test. In this test, the
edges, boundaries, blurring and other details are noticed.

The resampled true color MS image is considered the visual reference for evaluating
spectral quality and visual inspection. The MS image is resampled (interpolated) to the size of
the PAN image using bilinear interpolation.

Visual inspection can reveal that the classical IHS method produces images with
excellent visual quality, but the fused images contain noticeable spectral distortions. It
provides more spatial details, while the BT preserves better spectral information. In general,
PCA and IHS-based approaches produce results with larger spectral distortion. This is due to
overusing the PAN image. The colors look visually very different from those of the original
MS image. The GS method has good spatial details but little color distortion.

The boundary of urban area is more distinct and the contrast is clearer. The spatial
details are a little blurred because of the significant change of contrast of the fused images.
This is due to the replacement of substituted component to the histogram matched PAN
image. In vegetation areas of the fused images, we found an obvious spectral distortion.

The obtained results give evidence that the good visual appearance and the spectral
content preservation represent the main salient features of the CS-based methods. The
attractive visual characteristics of the CS-based methods were highlighted by the absence of
aliasing. Their widespread use is supported by such favorable characteristics, as well as the
robustness of these methods to errors induced by a possible bad recording between the

available MS and PAN Datasets and a relatively low computational load.

1.4.2. Multiresolution analysis (MRA)-based methods

The MRA-based methods originated in the 1980s [60] which are based on extracting the
high frequency details from the PAN image and injecting them into the MS image. This
fusion idea is generalized using the ARSIS concept [12]. The traditional idea of the MRA-
based methods is [62]: “The high-frequency channels coming from the PAN decomposition
are inserted into the corresponding MS band channels, decomposed into a series of band-pass
channels based on wavelet transform or Laplacian pyramids, etc., before the reconstruction
step”. Figure 1.12(a) shows the flowchart of the traditional idea of the MRA-based

pansharpening methods.
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Reference [32] subsequently extended the MRA methods based on the general
formalization, and this general formalization was further extended in [6,33,62] as a unifying

framework. Most of the MRA-based methods can be explained by:
M=M+g(P—-P) (1.18)

Where, M is the fused image, M is the MS image, P is the PAN image, g the injection gain

and P, is the low pass version of the PAN image.

The main difference between CS-based and MRA-based methods is how to extract high
spatial details from the source images.

For the MRA-based methods, the difference between the PAN image and its low-pass
version P; is calculated to obtain the high spatial detail information. The scheme of the MRA -

based methods based on a general formalization is shown in Figure 1.12(b).
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a) Traditional undestanding of the MRA-based methods.
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Figure 1.12. Flowchart of the MRA-based pansharpening methods.
(a) The traditional scheme of the MR A-based pansharpening methods.
(b) The new understanding scheme based on the general formalization of the MRA -based
pansharpening methods.

The MRA-based methods are characterized by the method of obtaining the image P,
and the injection gain g. For the solution of P;, there is a number of ways. Among of these
methods:

e Methods based on single-level decomposition, such as the High-Pass Filter (HPF)

method [18,60].
e Methods based on multiresolution analysis algorithms and methods based on more

general MRA framework.

The pansharpening methods based on multiresolution Discrete Wavelet Transform
(DWT) [61,63,64] are popular due to their better spectral preservation capacity. However, due
to the existence of down-sampling in the wavelet decomposition, artifacts usually appear in
spatial structures. Therefore, pansharpening methods based on discrete un-decimated wavelet
transformation (UDWT) [65,66], in particular the “a trous” wavelet transformation method
[62,67,68,69] have been proposed and attracting more and more attention, such as the popular

additive wavelet luminance proportional (AWLP) method [70,67]. In addition, the
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Generalized Laplacian Pyramid (GLP) [71,72], the Contourlet Transform [73,74], and the
Curvelet Transform [75] are also MRA-based methods and have become popular.

Overall, the calculation of P; can be divided into two ways, i.e., the calculation based
on decimated filters and undecimated filters. For the calculation with the undecimated filters,
the low-pass version P; has the same spatial dimension with P. For processes with decimated
filters, such as the DWT filter, the low pass band P, must go through the operation of
downsampling and then interpolation, which usually leads to artifacts. However, it should be
noted that MRA-based methods would work best if the filters used are tightly tuned to match
the Modulation Transfer Function (MTF) of the sensor [70,71,72], such as the typical MTF-
GLP method [72].

The determination of the injection weight g is similar as in the CS-based methods.
Among of the most popular injection models are High-Pass Modulation (HPM) [76], the
Context-Based Decision (CBD) model [77], the Spectral Distortion Minimizing (SDM) model
[77], and the representative methods including the MTF-GLP-HPM and MTF-GLP-CBD
[77], etc.

1.4.2.1. Some MRA-based methods
1.4.2.1.1. Discrete Wavelet Transform (DWT) pansharpening technique

1.4.2.1.1. A) DWT transform

Wavelets offer good resolution in the time and frequency domains, they have been
widely used in image processing which provides multiresolution decomposition of an image
in a bi-orthogonal basis and results in a non-redundant image representation. The bases are
called wavelets and these are functions generated by translation and dilation of mother
wavelet. In wavelet analysis, the signal is broken down into scaled (expanded) and shifted
(translated) versions of the chosen mother wavelet or function. A wavelet, as the name
suggests, is a small wave that basically grows and decays within a limited amount of time. A

wavelet must satisfy two basic properties:

(1) The time integral should be zero:
[Pw(t)dt=0 (1.19)

(i) The time-integrated wavelet square is the unit:
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[2wrde =1 (1.20)
The wavelet transform of a 1D signal 1 (x) based on wavelet functions is defined as:

Wop(F(0) = [ £ () Wop(x)dx (1.21)

The basis is obtained by translation and expansion of the mother wavelet as:

Wop(¥) = =¥ (=) (1.22)

a

The mother wavelet would localize in both spatial and frequency domain and it has to
satisfy zero mean constraint. In the Discrete Wavelet Transform (DWT), the expansion factor
a is 2™ and the translation factor b is n2™, where m and n are integers.

The information flow in one level of 2D image decomposition is illustrated in Figure
1.13. Wavelet separately filters and down-samples the image in the vertical and horizontal
directions (separable filter bank). The input image I(x,y) is filtered horizontally by a pair of
filters, low-pass filter (L) and high-pass filter (H), then downsampled by a factor of two to
create the coefficients matrixes I; (x,y) and Iy (x,y). I, (x,y) and Iy(x,y) are both vertically
filtered by L and H and then downsampled by a factor of two to create I;; (x,y), I,5(x,y),
Iy (x,y), and Iy (x, y) subbands (sub-images) [78].
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Figure 1.13. One decomposition level of 2D image.
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I;; (x,y) contains the low frequency band of the multiscale decomposition. It can be
thought of as an approximate smoothed and downsampled version of the source image
I(x,y). Horizontal, vertical and diagonal images (I 5 (x,V), Iy, (x,y) and Iy (x,y)) are the
detail sub-images of the source image I(x,y). Multiresolution could be obtained by
recursively applying the same algorithm to the low-pass coefficients of the previous
decomposition [79,80,81].

The reconstruction of the image I(x,y) is obtained from the inverse 2D wavelet
transform using the sub-images I;;(x,y), I15(x,y), Iy, (x,y) and Iyy(x,y) as shown in
Figure 1.14. This involves up-sampling in columns and low-pass (L) and high-pass (H)
filtering for each sub-image, then in rows. The summation of all the resulting matrices would

build the image I(x,y) [78].
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Figure 1.14. One reconstruction level of 2D image.

1.4. 2.1.1. B) DWT pansharpening algorithm

The information flow diagram of wavelet-based image fusion algorithm is shown in
Figure 1.15. In wavelet image fusion scheme, the source images are decomposed into
approximation and detail coefficients at required level using DWT. The approximation and
detail coefficients of both images are combined using a fusion rule. The fused image could be

obtained by taking the inverse discrete wavelet transform [78].
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Figure 1.15. Scheme of the Wavelet image fusion.

1.4.2.1.2. “A Trous” Wavelet Transform (ATWT) pansharpening technique

1.4.2.1.2. A) ATWT transform

The “a trous” wavelets are the most flexible than other types of wavelets. Only one
non-directional image is produced; this image will have the same dimensions as the original
image since no decimation is required. In this type of transform, the approximation image is
obtained by filtering the input image by a cubic spline filter “h” [82]. To perform the process
of decomposition, the mask “4” is filled with zeros and the approximation is filtered by the
new mask. The difference between two levels of approximation is called the wavelet plane at

that level. This process is represented as follows:
Dj+1 =Dj * hy (1.23)
Wjt1 = DPj — Pj+1 (1.24)

Where initially, p, is the original image and w; and p; are the wavelet and approximation

plane at level j, respectively. "*" is the symbol of convolution.
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The reconstructed image can simply be obtained by adding the wavelet planes to the

approximation image of the last layer [83].

The mask of “a tous” filter at level j is defined as follow:

[1 4 6 4 1]

|4 16 24 16 4]
h,-=E| 6 24 36 24 6| (1.25)

[4 16 24 16 4J

1 4 6 4 1

At each level j, h; is modified by doubling its size and inserting null values between the

original coefficients [4].

1.4.2.1.2. B) ATWT pansharpening algorithm

In additive ATWT based fusion method, the PAN wavelet planes are added directly to
the MS image (equation (1.26)):

F=Z?=1WPAN]' +MS (126)
Where, F is the fused image, n is the number of wavelet planes, wp,y; is the wavelet plane
of the PAN image at level j, and MS is the multispectral image [83].
1.4.2.1.3. Laplacian Pyramid (LP) pansharpening technique

1.4.2.1.3. A) LP transform

The Laplacian Pyramid was first proposed by [84] for compact image representation.

The main steps are as follows:

1. Filtering the original image g, with a low pass mask “w” (the Gaussian filter, for example)

and downsample it by 2 to create a reduced low-pass version g;.

2. This image is then upsampled and filtered with the same mask “w” to create the extended

low-pass image g;. The detail image L, is obtained by calculating the following difference:
Lo =9go— 91 (1.27)

The above steps can be performed recursively on the low-pass and subsampled image

g1 a maximum of N times and the image size is 2Mx2"N. Thus, the end result is a number of
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detail images L, L4, ..., Ly and the lowpass image gy. Each obtained image recursively is
smaller, in size by a factor of 4, than the previous image and its center frequency is reduced

by an octave (see Figure 1.16).

The N detail images Ly, Ly, ..., Ly and the low-pass image g, are used to obtain the

original image g, by the inverse transform as follows:

1. gy is upsampled and filtered with the masque “w” to obtain the image gy .

2. The approximation image at the next upper level is obtained by adding the image gy

and the lowest level detail image Ly to obtain:
In-1=Ln—gn (1.28)

Steps 1 and 2 are repeated on the detail images L, Lq, ..., Ly_; to obtain the original

image [85].
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Figure 1.16. Example of an image pyramid with 5 levels.

1.4. 2.1.3. B) LP pansharpening algorithm
The Laplacian Pyramid fusion algorithm consists of calculating Gaussian and Laplacian
pyramids of each source image, iteratively, pansharpening the Laplacian images at each

pyramid level by selecting the pixel of greatest absolute values, combining the merged
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Laplacian pyramid with the extended combined pyramid of the lower level, and extending the
combined pyramids at the upper level. The pixel selection step above can also be done using a

PCA-based weighted averaging technique [86].

1.4.2.1.4. Additive Wavelet Luminance (AWL) pansharpening method

Many shift-invariant wavelet transform based algorithms have been proposed [82] such
as the “a trous” Wavelet transform based additive and substitutive methods. In the additive
process, the PAN and MS images are decomposed into wavelet planes and the PAN image
planes are directly added to the MS bands. In the substitute method, the MS planes are
replaced by PAN image planes. Hybrid methods between IHS/decimated wavelets and
[HS/undecimated wavelets have also been introduced to improve fusion performance [67,87].

AWL is an additive and hybrid method between IHS/undecimated wavelet transforms.
In the AWL method, firstly, the MS image is transformed into IHS. Then, the histogram of
the PAN image is matched with the Intensity (/) component of the MS image. The matched
PAN image is transformed into wavelet planes. The new [ is obtained by adding the wavelet

planes of the matched PAN image w,,; with the original / component. Finally, the inverse IHS

is applied to the components H, S and the new 7 [83,87].

Lnew = X7y wp + 1 (1.29)
1.4.2.1.5. High-Pass Filter (HPF) pansharpening method [18]

It should be noted that the various MRA- based methods are only characterized by the
way of obtaining the image P, and the injection weight g. For the P;, there are several ways;
methods which use a single level of decomposition, methods based on multi-level
multiresolution analysis algorithms and methods based on a more general MRA framework.
Specifically, within the early stage, the HPF methodology is that the representative approach
[27]. A high-pass filtering is applied to the PAN image in order to extract the high
frequencies, then, these high frequencies are introduced in the MS image by addition, which

leads to a synthetic image [88]. The mask is a high-pass Laplacian filter of 3 by 3 pixels.

1.4.2.1.6. Smoothing Filter-Based Intensity Modulation (SFIM)
The SFIM fusion method controls the trade-off between spatial and spectral
information. Moreover, it suffers more loss in spatial information but it preserves more

spectral information. Its effectiveness depends mainly on the design of the filter.
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SFIM is a BT-type approach, uses a smooth version of the PAN image P;, instead of the
intensity component of the MS image. This method is defined by:

Rseim PAN R
Gsrim | =—=+|G (1.30)
Bsrim B

Where, P, is often obtained from a 7x7 mean filter. It is known that the spatial resolution can

be improved by increasing the mask size of the low-pass filter in the SFIM method [37,57].

1.4.2.2. Examples of pansharpening of some (MRA)-based methods
Figures 1.17 and 1.18 show the application of different pansharpening (MRA)-based
methods with the same precedent data of figures 1.10.(a) and (b) and 1.11.(a) and (b),

respectively.
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Figure 1.17. Pansharpening an urban scene. a) DWT fused image. b) ATWT fused image. c)
LP fused image. d) HPF fused image. ) SFIM fused image. f) AWL fused image.
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DWT ATWT

SFIM AWL

Figure 1.18. Pansharpening a vegetation scene. a) DWT fused image. b) ATWT fused image.
c) LP fused image. d) HPF fused image. ¢) SFIM fused image. f) AWL fused image.
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1.4.2.3. Visual Analysis

Considering the techniques belonging to the MRA-based methods, which benefit from
proper detail extraction, in particular, the match of the low-pass filter with the sensor MTF
which allows significantly reducing the classical blur of the MRA final products.

The best visualization is given by the decimated approaches in the LP method,
especially for urban areas, due to greater aliasing robustness compared to the ATWT. The
resulted image using the ATWT method has good color information, which leads to good
preservation of spectral information. However, the fused image suffers from vital spatial
distortions. The DWT method is much slower to compute and the fused image often has lower
visual quality than images produced by other methods. It can be seen that the fused image of
the HPF gets good spectral quality, but it is a bit too accentuated on the vegetation areas due
to poor detail injection. The SFIM method offers the best color preserving but suffers more
spatial detail loss in the fused image. The AWL method greatly improves the spatial qualities
of the original MS images and is most visible in vegetation areas.

However, the similarity of the frequency response of the filters in the MRA approaches
with that of the MS-MTF sensor, explains the good performances. The application of the filter
leads to poorer performance. This is mainly due to the spatial artifacts due to the presence of
ripples in the pass-band in the representation of this filter in the frequency domain and to its

greater dissimilarity with respect to the transfer function of the sensor.

1.4.3. Variational optimization (VO)-based methods

The VO-based methods are an interesting category of the pansharpening family. The
major process of this category is generally based on the optimization of a variational model.
The VO-based methods consist of two main parts; building functional energy and
optimization solution. Figure 1.19 shows the schematic of the VO-based pansharpening

strategies.
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Figure 1.19. Flowchart of the VO-based pansharpening methods.

The methods based on observation model [89] — [95] and the sparse representation [22],
[96] — [98] are the most popular for the construction of the functional energy. Functional
energy can be represented by three models; the spectral fidelity, the spatial enhancement and

the a priori models. Generally, it can be represented by the following expression:
E(x) = /‘:s‘pectral (x, MS) + f:spatial (x, PAN) + fprior (x) (1.31)

Where, x denotes the ideal fused image which is divided on three terms. The first is the
spectral fidelity model, the second is the spatial enhancement model, and the third is the prior
model. The spectral fidelity model relates the ideal fused image to the MS image and it is
generally constructed on the assumption that the observed MS image can be obtained by
blurring, downsampling and noising operations performed on the MS image
[10,95,99,100,101]. The spatial enhancement model is generally built on two assumptions; the
first is the spectral degradation between the MS image and the PAN image, i.e., the PAN band
is assumed to be a linear combination of the MS bands [95,100,102]. The second is the spatial
structures of the fused image, which are approximately consistent with the PAN image
[11,90,103,104]. This is generally represented by gradient features [90,103,105], wavelet
coefficients [11], or other approaches [92,106]. Some VO-based pansharpening methods are
based on the Laplacian prior model [107], the Huber-Markov prior model [95], the total
variation (TV) prior model [94], the nonlocal prior model [108] and the low-rank prior model
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[109], etc. A certain number of fusion energy functions can be generally simplified as the

following two basic expressions:
E(x) = A,||IMS — DSx|| + ||[PAN — Cx|| + A prior(x) (1.32)
E(x) = 2,|IMS — DSx|| + X5_,IW*PAN — W*x, || + A,prior(x) (1.33)

Where, D and S denote the downsampling and blurring matrix, respectively, the C denotes
the spectral combination matrix, and the W represents the operator to extract the high spatial
structure information. A, and A, are two parameters of the model to balance the three terms. It
can be seen that an obvious characteristic of the two representative energy functions in (1.32)
and (1.33) depends on the two classical assumptions of the spatial enhancement models.

Furthermore, the two hypotheses are strongly correlated with the basic idea of
extracting the spatial structure of the CS-based methods and the MRA-based methods,
respectively.

The sparse-based methods are mainly based on sparse representation theory [110]. This
is generally represented as: x = Wa, where the ¥ denotes the dictionary of signals of the
remote sensing images, and the a denotes the sparse coefficients. The sparse-based
pansharpening strategies were first projected by [22], and since then, they need got speedy
development.

We must note that the dictionary acquisition is relatively important for this kind of
pansharpening methods.

The optimization solution of the fusion model is generally based on an iterative
optimization algorithm [111,112,114], such as the gradient descent algorithm [95,113], the
conjugate gradient algorithm [114], the split Bregman iteration algorithm [90], the alternating
direction method of multipliers (ADMM) algorithm [101] and the optimization solution based
on the Sylvester equation [101,114] etc. On the full, there are three key points within the VO-
based pansharpening strategies. The first is the construction of the optimal fusion functional
energy, the second is the adaptive selection of model parameters, and the third is the rapid
optimal solution. It should be noted that the application of the VO-based pansharpening

methods is hampered due to their low efficiency [27].
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1.4.3.1. Some VO-based methods

1.4.3.1.1. P+XS pansharpening method

P+XS image fusion model is proposed in [89] for merging the PAN and the MS image,
on the assumption that the geometry structure of the PAN image should be contained in the
MS image. An extended variational fusion model is presented in [115] for sharpening the
hyper-spectral image while preserving its spectral pattern [116].

The P+XS technique is a variational method, which determines the pansharpened image
by minimizing its functional energy. The total functional energy minimized by the P+XS

model is [11]:

E(un) = Xho1¥n J, (IVus| +div(0).u,) dx + A [ (51 apu, — PAN)?dx +

//‘Zg:l fﬂ HS((kn * un) - MSn)de (1-34)

Where, u,, are the desired high resolution multispectral bands, 2 and w are the image
domains, k,, is a convolution kernel, Il a Dirac comb and y,,, 4, a, and u are parameters to
weight the different terms. The level sets of an image can be represented by the vector field 8
consisting of all unit normal vectors of those level sets and is implemented as: 6(x) =

[27].

VPAN (x)
|VPAN (x)|e

The P+XS method is more complex and there are several parameters to tune. However,
for most of them, their values were left at default. The most important parameters are the
weights for each multispectral band in the merged image and the regularization term A [94].

The P+XS method obtains the edge information of the PAN image using the gradient.

The spectral information is obtained by approximating the PAN image as a linear combination

of the MS bands [89].

1.4.3.2. Examples of P+XS pansharpening method
Figure 1.20 shows the application of the P+XS pansharpening method with the same
precedent data of figures 1.10.(a) and (b), and 1.11.(a) and (b), respectively.
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Figure 1.20.Pansharpening urban and vegetation scenes, respectively.
a) P+XS fused image. b) P+XS fused image.

1.4.3.3. Visual Analysis

The P+XS pansharpening method is not good, as other methods, in visual spatial
quality. Its fusion results look more blurred. It demands more development, mostly, in the
injection of spatial details. The P+XS method is more complex and there are several

parameters to tune. Because of this, it demands a huge computing time.

1.5. Conclusion

The fusion methods mentioned in this chapter only constitute an inventory not
exhaustive of commonly used processes.

This chapter has presented the problem of pansharpening of multi-spectral satellite
images and a comprehensive review of the pansharpening methods for remote sensing images
based on the three main categories, such as, the CS-based methods, the MRA-based methods,
and the VO-based methods.

In any pansharpening technique, the resulting image ought to have high visual quality to
help within the detection and classification tasks.

However, the fused image should contain the same colors (spectral information) as the
original MS. This becomes especially important as the number of bands increases, because the
spectral signature can be used for material identification. Therefore, the pansharpened image

should possess both high spatial and spectral qualities.
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A visual comparison, using all methods is shown in Figures 1.10, 1.11, 1.17, 1.18 and
1.20, can be made by careful observation of these images and it can be easily found that all of
the fused images are visually enhanced over the resampled MS image.

The hybrid result is better than other methods while maintaining color information
similar to the original MS image.

In the case of other fusion results, some color distortion has occurred. In addition, in
some features, such as building edges and moving cars, some blurring has occurred. These
visual results show that hybrid pansharpening can considerably improve the spatial quality
while preserving the spectral information of the original MS image.

The spatial quality can be judged visually, but in this way, subtle color changes are
harder to notice. Therefore, we look at performance metrics to assess spectral quality. Since
high resolution ground truth was not available, we will compare the fusion results with an

upsampled version of the original MS data.

46



Chapter 2: Performance evaluation and comparative study of

some fusion methods

2.1. Introduction.
2.2. Qualitative and quantitative evaluation.
2.3. Experimental study.

2.4. Discussions and conclusions.



Chapter 2: Performance evaluation and comparative study of some fusion methods

2.1. Introduction

Each method, discussed in chapter 1, experiences a trade-off between the quality of the
spectral and spatial resolutions [4].

For a qualitative evaluation, all these methods gave good results. The spatial quality is
enhanced compared to the relative MS images [4].

There are many ways to analyze the results of fused images and compare different
pansharpening methods. When comparing methods, we are interested in spectral and spatial
quality.

To judge spatial quality, it is much easy to see the acuity of the edges. But when
evaluating the spectral quality, it is much more difficult to match the colors of the resulting
image to the original multispectral image by visual inspection.

Qualitative evaluation may be used to evaluate the pansharpened images. In addition
to the visual analysis, quantitative evaluation must be considered.

There are many image quality metrics that analyze spectral quality. They can be also
used to compare pansharpening algorithms [55].

It should be noted that due to the lack of reference images in the real experiments, the
quantitative evaluation was comprehensively performed from two aspects. First, the MS
image was applied as the reference image for the quantitative evaluation. Second, the fused
results were evaluated based on non-reference quality evaluation indices [4,120].

In this chapter, quality assessment is discussed, where qualitative and quantitative
evaluations are analyzed in section 2.2. The quantitative indices are classified using a
reference image or without a reference image. In section 2.3, experimental results are

measured to compare the different pansharpening methods presented in Chapter 1.

2.2. Qualitative and quantitative evaluation

Qualitative or visual analysis is performed by human observers’ experiences, which will
introduce some uncertainty [55]. In the qualitative evaluation, the resulting images are
compared with the colors of the MS images and also to the spatial details of the PAN images.

Most of the pansharpening methods have good spatial details. However, they show
visually a little spectral distortion [4].

Since visual analysis can be influenced by personal preferences, quantitative evaluation
of pansharpening algorithms is an effective method to assess the quality of the resulting

images.
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2.2.1. Quant

itative evaluation with reference image

When the reference image is available, we can use several different metrics. An

evaluation of the performance of the image fusion algorithms can be performed using the

metrics prese

nted in Table 2.1.

Name of the Features and Reference
. Formula
Metric Properties value
cc
. Iivi1 Z;y=1[(Fi,j - #F)- (Ri,j - #R)]
- > > The average of the
M §N L M N L=
\/Zi=1 Zf:l(F” ”F) iz Zl:l(R” ”r) absolute values of the
Correlation change in correlation
Coefficient |y ere Fi; and R; j: Value of the pixel (i, j) of the coefficients between 0
[122] merged image F and of the reference image R, bands before and
. after the sharpening
respectively.
urp and up: Means of the fused image F and the Process.
reference image R, respectively.
MxN: Reference image size.
2C i
— CORR = - -:12 Shows the correlation
orrelation F VR between the reference 1
[78] Where Cr = Zlivil Zﬁy=1 Fi,jz, Cr = Z?il Z?:l Ri,j2 d fused
and Cpp = XM, Z?’:l Fij.Ri; and fused images.
It models three
0, 2 2070 i i i
Universal U1l = FR_ ZMF#R — FOR dlfferer}t dlS'FOI‘thIl
OpOR Up? + UR? 0p? + ox? factors: luminance
Image Quality distortion, contrast
Where o and op: Standard deviations of the|distortion and loss of 1
Index ; . . !
merged image F and the reference image R, correlation. So, it
[123,124] |respectively. measures the
orgr : Covariance between the fused image F and the structure distortion
reference image R. degree.
Root Mean It is the average
M N squared difference
1 2 ..
Squared Error RMSE = —Z Z( F;j —Rij) between the original 0
[122] M.N i=1j=1 multispectral and
fused images.
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Relative n
100 |1 Calculates the mean
— - 2
Average RASE = u(R) [n Z RMSE; error of all bands per
Spectral Error =1 radiance of the
175] image.
‘Where RMSE;: The RMSE value of the ith band.
u(R) : The mean value of the reference image R.
Up, U
Spectral Angle SAM = arccos M Calculates the.
lugl. [ugl average change in

Mapper [125]

Where up and ug: Spectral vectors of the fused
image /" and the reference image R, respectively.

angle of all spectral
vectors.

Relative

n
h |1 RMSE\? Takes the average
Dimensionless ERGAS = 100'7 N4 ( u(R) ) mean square error
Global Error In =1 normalized by the
. mean of each band. It
Synthesis  |Where ///: The ratio between pixel sizes of the PAN|measures the spectral
[126] image and the MS image. distortion.
u(R;) : The mean value of the ith band of the
reference image R.
SID(x,y) = D(x|ly) + D(yllx) Visualizes each pixel
spectrum as a random
Spectral  \where D(x||y): Relative entropy defined by: variable and thus
Information measure the probability
—_ VL ] pi N difference between two
Divergence D(x”}’) - i=1 pllog( /qi)’ p.’ Z?:lxi and Spectra vectors.
=Y
[127] qj Sy
X =(xy,..,x )T andY = (yq, ..., )T : Vectors be
taken from the MS image and the fused image,
respectively.
Compares the high
To extract the high frequency data of a band, it is] frequency data
Spatial  |convoluted with the following high-pass mask: obtained from the
Correlation panchromatic image
Coefficient with the one
[121] extracted from each

-1 -1 -1
SCCmask=|-1 8 -1
-1 -1 -1

The SCC value is the average of the CCs for each|
band of the MS image.

band of the fused

image.
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Structural
Similarity

index [78]

Cz:

SSIM =

Qurpug + ;). 2ogg + C,)

(up? + up? + Cy). (0p? + 0% + C3)

Where C; : A constant that is included to avoid the

instability when up? + pg? is close to zero.

A constant that is included to avoid the

instability when o2 + ox? is close to zero.

the image would be

their pixels show
strong dependencies.
These dependencies
would carry vital
information about the
structures of the
objects.

The natural signals of]

highly structured and

Table 2.1. Performance evaluation metrics when reference image is available.

2.2.2. Quantitative evaluation without reference image

When the reference image is not available, the performance metrics shown in Table

2.2 could be used.
Name of the Features and Reference
. Formula .
metric Properties value
1 n n
Di= [0 D la(ss) - o(Fu )|
Spectral |4 ntn—1) z z _ i M9 Y
distortion i=1 j=1,%i Asses;gstths spectral 0
[128] istortion.
Where Q(4,B) : The UIQI value between the image A
and image B.
Spatial
distortion 1w
[128] D, = —ZIQ(FL-,PAN) —Q(MS;, P.p)| Assesses the spatial 0
= distortion.
Where P;p: A spatially degraded version of PAN.
Measures the overall
Quality with ﬁJSlop guahty without
No requiring a reference
MS image by merging
Reference
QNR=(1-D;).(1—-Dy) the measurements of
[128] 1
the spectral and
spatial distortions
based on the UIQI
index at the full scale
of PAN [129].

Table 2.2. Performance evaluation metrics when reference image is not available.
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2.3. Experimental study

After representing the different metrics in Tables 2.1 and 2.2, we calculated them for all

the pansharpening methods presented in Chapter 1 to show the effectiveness of each method.

Except the IHS method that can’t be used because it contains only 3 bands and the P+XS

method because of its modest visual result. Table 2.3 shows the calculation of the correlation

between the spectral bands of the reference image and the corresponding bands of the fused

image for all pansharpening methods presented in Chapter 1.

The two images are those used in Chapter 1 representing two areas, the first one is an

urban image and the second one is a vegetation image.

Test Correlation
Images | Methods cl €2 3 c4

PCA 0.9353 | 0.9421 0.9305 0.9150
BT 0.9382 | 0.9457 | 0.9496 | 0.9487
GS 0.9467 | 0.9437 | 0.9454 | 0.9545
” £ DWT 0.9529 | 0.9590 | 0.9658 0.9645
eh o ATWT 0.9681 0.9684 | 0.9684 | 0.9679
E2 LP 0.9773 | 0.9807 | 0.9833 0.9815
HPF 0.9770 | 0.9771 0.9771 0.9769
SFIM 0.9725 | 0.9739 | 09750 | 0.9772
AWL 0.9590 | 0.9629 | 0.9682 0.9685
PCA 0.8135 | 0.7996 | 0.8283 0.8121
BT 0.8117 | 0.7968 | 0.7880 | 0.8256
- GS 0.7829 | 0.7834 | 0.7908 0.8617
N § DWT 0.8532 | 0.8605 0.8295 0.8665
o £ ATWT 0.9074 | 0.9081 0.9057 | 0.9135
g éo LP 0.9304 | 0.9351 0.9164 | 0.9431
= HPF 0.9134 | 09139 | 09126 | 0.9167
SFIM 0.9185 | 0.9175 0.9164 | 09138
AWL 0.9082 | 0.9131 0.8928 0.9194

Table 2.3. Four-band correlation between reference and merged images for different methods.

The quality assessment metrics, when reference image is available or not, are shown in

Tables 2.4 and 2.5, respectively, for different pansharpening methods.
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Test
Images

etrics
Methods

CC

ERGAS

RASE

RMSE

SAM

SID

SCC

UIQI

SSIM

0

0

0

0

0

1

1

1

Image 1
(Urban)

PCA

0.2408

11.6578

46.4863

26.2995

6.3342

0.1173

0.9652

0.8030

0.7329

BT

0.0104

7.5234

30.0312

16.9901

1.8174
e-007

0.9759

0.9453

0.9329

GS

0.0023

7.3762

29.4087

16.6379

3.4284

0.1145

0.9945

0.9475

0.9261

DWT

0.0160

6.6265

26.3275

14.8947

3.8348

0.1373

0.7434

0.9595

0.9682

ATWT

0.0237

6.3785

25.5305

14.4438

2.6950

0.0928

0.9783

0.9642

0.9606

LP

0.0350

5.3688

23.8552

13.4960

2.3560

0.0204

0.8366

0.9701

0.9582

HPF

0.0151

5.1828

20.7446

11.7362

2.0340

0.0866

0.9635

0.9755

0.9805

SFIM

0.0107

5.4640

21.5671

12.2015

0.5083

0.0003

0.9390

0.9732

0.9814

AWL

0.0265

6.8408

27.2759

15.4313

2.8780

0.0893

0.9704

0.9593

0.9522

Image 2
(Vegetation)

PCA

0.1945

7.0812

28.0228

31.4376

2.5419

0.0320

0.9807

0.6935

0.7695

BT

0.0461

6.9688

27.8603

31.2553

1.7614
e-007

0.9892

0.7995

0.8350

GS

0.0357

6.9267

27.4166

30.7575

2.6499

0.0297

0.9973

0.8020

0.8315

DWT

0.0552

6.9181

27.2210

30.5381

5.5415

0.0393

0.9255

0.8400

0.8837

ATWT

0.0493

5.4615

21.7219

24.3688

3.8697

0.0318

0.9933

0.8974

0.9150

LP

0.0463

4.9629

22.3844

25.1120

2.1727

0.0152

0.8282

0.9201

0.9069

HPF

0.0403

5.1100

20.3239

22.8004

2.7765

0.0318

0.9869

0.9069

0.9497

SFIM

0.0356

5.0333

19.9960

22.4326

1.1499

0.0021

0.9661

0.9096

0.9493

AWL

0.0532

5.5610

22.0400

24.7257

4.4207

0.0323

0.9860

0.8951

0.9019

Table 2.4. Quality metrics, when reference image is available, for different pansharpening
methods.
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Metrics dx ds QNR

TestImages | \rohods 0 0 1
PCA 0.1116 | 0.2670 0.6511
BT 0.0058 | 0.0058 0.9885
GS 0.0267 | 0.0205 0.9533
=F DWT 0.0292 | 0.0057 0.9653
o 8 ATWT 0.0311 0.0274 0.9424
ER2 LP 0.0513 0.0112 0.9380
HPF 0.0226 | 0.0106 0.9671
SFIM 0.0141 0.0045 0.9815
AWL 0.0359 | 0.0298 0.9354
PCA 0.0746 | 0.1583 0.7789
BT 0.0790 | 0.1127 0.8173
- GS 0.1006 | 0.1224 0.7894
oS DWT 0.1273 | 0.0771 0.8054
o £ ATWT 0.1081 0.0962 0.8061
g §) LP 0.1199 | 0.0450 0.8404
< HPF 0.0984 | 0.0690 0.8394
SFIM 0.0937 | 0.0629 0.8492
AWL 0.1142 | 0.0960 0.8008

Table 2.5. Quality metrics, when reference image is not available, for different pansharpening
methods.

2.4. Discussions and conclusions
All these methods have good results. Since there are many different quality metrics, it is
not easy to class the different pansharpening methods by performance.

In Table 2.3, the LP method has the best correlation in urban and vegetation areas
although the fused image is visually degraded. The HPF method comes in second place.

In Table 2.4, in urban area, the HPF method has the best results (ERGAS, RASE,
RMSE and UIQI), respectively, and the SFIM is the best in vegetation area (CC, RASE and
RMSE). It is necessary to note that the BT method has the best SAM and SID and the GS
method has the best SCC.

In Table 2.5, the BT and PCA methods have the best quality metric for spectral
distortion and the SFIM and LP methods have the best indices for spatial distortion. Best
QNR is for BT and SFIM methods.

It is also interesting to note that PCA and DWT methods perform slightly worse in

these experiments.
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From these results, it can be concluded that all the methods, whether CS-based methods
or MRA-based methods, contribute to preserving the edges and improving the performance of
the pansharpened images. Each method has advantages and drawbacks.

From a visual, quantitative and computation time comparison, it can be concluded that
there are some methods that behave very well with the fusion process, such us the GS, BT,
LP, ATWT and SFIM, because of their spectral and spatial qualities.

According to the previous results, it is necessary to seek preferment methods which
enable a good compromise between the spatial and spectral qualities. More recent improved

methods are presented in Chapter 3.
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3.1. Introduction

Pansharpening algorithms are improved and a variety of state-of-the-art methods are
planned in recent years [27].

Also, there is an interesting phenomenon that CS-based pansharpening methods and
MRA-based pansharpening methods show similar statistical results, which is different from
the general understanding that CS-based methods tend to bring serious consequences. This is
because of the application of the traditional pansharpening scheme of CS-based methods or a

particular part of the popular pansharpening algorithms.

3.2. Some recent fusion methods

It should be noted that the CS-based methods have been improved and a number of
advanced methods have been proposed. Especially since 2000, CS-based methods have been
simplified and generalized in the unifying framework, and various advanced strategies can be
applied to improve their performance.

Therefore, the approaching performance of the advanced CS-based methods to the

MRA-based methods is intelligible and inspiring [27].

3.2.1. Generalized IHS (GIHS) pansharpening method
GIHS or Fast IHS (FIHS) is a CS-based method, which is a unifying image fusion
method in which the inverse transform to the original RGB space is obtained by [32] as

follows:

(R) |/1 _1/\/5 1{\/5\| I
Gl=11 -1, -1 (vl) (3.1)
g \1 ﬁﬁ oﬁ/ ”

3.2.2. Improved Adaptive IHS (IAIHS) pansharpening method
It is a CS-based method proposed by [40], in which the / component is estimated as
closely as possible through approximation of the PAN image by resolution the subsequent

optimization problem:
_ 2
min [|[P = XN, a;MS;| (3.2)
a,...aN

With, a¢; =0, ...,ay =0
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In addition, in the IAIHS pansharpening method, a new gain is introduced in the
injecting procedure, which is structured according to the PAN image and each band of the MS

image. The injection gain is calculated as:

MS;

9i = @3N s, (Bwp + (1 — Bwys,) (3.3)

Where £ is a tradeoff parameter, w, denotes the edge detecting weighting matrix on image 4.

Wa = €xp (_ |VAT4+£) (3.4)

Where, VA is the gradient of the image A, A and ¢ are the tuning parameters [59].

3.2.3. Additive Wavelet Luminance Proportional (AWLP) pansharpening method

It is a MRA-based method. The method was reported to be the joint winner in the 2006
IEEE Data Fusion Contest [42]. It is a hybrid method which combines the ATWT and IHS
transforms. It aims to inject high frequency information in proportion to their original values.
This is one way to better preserve the radiometric signature between the bands of the MS
image.

It was first proposed (AWL) in [87], and then later extended to images with more than
three bands (AWLP) in [67].

The AWLP weight factor is the ratio of the MS bands to the mean value of all MS
bands, in the experiments. AWLP method is given using a weighted injection scheme such as
[67]:

MS;

Fi = M5 G i, 2=

(3.5)
Where, the injection of details to the original MS bands is done proportionally because of the
weighting coefficient. The denominator of the weight factor can be interpreted as the intensity

component given by the IHS transform [83] and wy, is the wavelet planes of matched PAN

image.

3.2.4. Generalised Laplacian Pyramid with Modulation Transfer Function (MTF-GLP)
pansharpening method
The downsampling and interpolation operations in MRA-based methods with decimated

filters (DWT filter, for example) generally cause spatial aliasing artifacts. However, for
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proper operation of MRA-based methods, the filters used are tightly tuned to match the
Modulation Transfer Function (MTF) of the sensor [70] — [72], like the MTF-GLP method
[27,72].

3.2.5. Band-Dependent Spatial Detail (BDSD) pansharpening method
The BDSD algorithm [36] starts from an extended version of the generic formulation

(1.2) of the CS methods class as follows:

—

MS; = MS; + g;(P = XN_, 0 MS;), i=1,..,N (3.6)

By defining the coefficients:

Vik { —J;- Wik otherwise (3.7)
Equation (1.2) can be rewritten in compact matrix form as:

In which H = [1\773'1, ...,mN,P] and y; = [yi,l, ...,yi,Nﬂ]T(all the images are organized by
columns). The optimal minimum mean square error (MMSE) joint estimation of the weights-

and-gains vector ¥ would encompass the use of the unknown target image MS; and is thus

performed at a reduced resolution. Consequently, the solution is found as:
" _ — — LP
7 = (HHy) Y (M5, — M5, (3.9)

. . . . — LP . . — .
In which Hj is the reduced-resolution version of H, and MS; is a version of MS; obtained
through a low-pass filter, whose spatial frequency response matches the average modulation

transfer function (MTF) of the MS sensor [6].

3.2.6. Partial Replacement Adaptive CS (PRACS) pansharpening method

In [45], the concept of partial replacement of the intensity component is introduced. In
the PRACS method, the PAN image is not directly used instead of the component
substitution. The algorithm utilizes a weighted sum of PAN and of the ith MS band (P(®) to

calculate the ith sharpened band in (1.2). For this reason, this methodology is spoken as
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Partial Replacement Adaptive CS (PRACS). For i =1,...,N, the band-dependent high

resolution sharpened image is calculated as:
PO = C(1,,15;).P + (1 - cC(1,, 115,). 175, ) (3.10)

In which, I\TSi’ is the ith MS band histogram-matched to PAN, CC(X,Y) is the correlation

coefficient between X and Y, and I; is given by (1.7), where the weights @; are obtained

through the linear regression of 1\71‘.1511-', i=1,..,N, on P, ie., the PAN image spatially
degraded to the MS resolution.

The injection gains {g;} are obtained according to:

_ () jre)__ Std(MS)
gi=B.CC(P, 'MSL)%sttd(ﬁsk) ‘

(3.11)

According to [45], (3.11) is given by the product of:

1) An empirically tuned parameter 8 that normalizes the high frequencies, so that they
lie in the correct dynamic range.

2) A correlation calculated to minimize the global dissimilarity between each band of

the MS image and the low-resolution image P, ", calculated by low-pass filtering of P®.
3) A coefficient calculated by standard deviations among the MS bands.
4) An adaptive factor L;, defined by equation (3.12), aimed at removing the local
spectral instability error [6].
MS;

Li=1- |1—CC(IL,1W:9[)W (3.12)

3.2.7. Indusion pansharpening method
It is a MRA-based method. Indusion is a Decimated Wavelet Transform using an
additive injection model [117,6], based on the induction scaling technique, which profits from

multiple equalization steps to improve the performance [118].

3.2.8. Optimal Filter (OF) pansharpening method [119]
It is a MRA-based method. Designing an optimal filter, that is able to extract relevant

and non-redundant information from the PAN image, is presented in this method. Statistical
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properties of the images are used to obtain the optimal filter coefficients. These coefficients

are more consistent with type of remotely sensed images compared with other masques [119].

3.3. Performance evaluation

Figures 3.1 and 3.2 show the results of the application of some recent pansharpening

methods using the same set of figures 1.10.(a) and (b) and 1.11.(a) and (b), respectively.
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aHs IS

Figure 3.1. Pansharpening an urban scene. a) GIHS fused image. b) AIHS fused image. c)
AWLP fused image. d) MTF-GLP fused image. e) BDSD fused image. f) PRACS fused
image. g) Indusion fused image. h) OF fused image.

60



Chapter 3: Pansharpening with some recent methods

GHs IAHS

BDSD PRACS

Figure 3.2. Pansharpening a vegetation scene. a) GIHS fused image. b) AIHS fused image. c)
AWLP fused image. d) MTF-GLP fused image. ) BDSD fused image. f) PRACS fused
image. g) Indusion fused image. h) OF fused image.
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3.4. Visual analysis

It is shown that all the state-of-the-art methods present excellent performances relied to
detail enhancement. However, OF, AWLP and MTF-GLP methods clearly show a slight
spectral distortion. In the AWLP method, colors have been pretty well distributed and the
fused image has high spectral quality but the image has been blurred and there are many
artifacts perceptible on the trees in the fused images.

The results of the AWLP and TAIHS methods seem slightly too precise, and the spectral
distortion is more visible in areas covered with vegetation.

In addition, the IATHS method can produce an image whose colors are similar to the
original and whose objects are clearer than those of the original. The IAIHS fused image
suffers from over-injection of details from the PAN image. The spectral distortion caused by
IAIHS method is most visible in the areas covered by vegetation and forest.

Severe artifacts are introduced in the case of applying the Indusion method because of
the decimation.

The BDSD and PRACS, achieve the best visual appearance of the fused images and a
reduced spectral distortion. Indeed, very interesting performances are attained by adaptive CS
approaches, namely the BDSD, PRACS and IAIHS, with the reduction of the spectral
distortion.

GIHS and AWLP are more adequate than the original ones (IHS and AWL), in
particular, on four-band data sets.

By visually comparing them with the original ones, all this methods can greatly improve

the spatial qualities of the original MS images.

3.5. Quantitative analysis

After representing a visual comparison, we calculated the different metrics, cited in
Chapter 2, for all the pansharpening methods presented in this chapter to show the
effectiveness of each method.

Table 3.1 shows the calculation of the correlation between the spectral bands of the
reference image and the corresponding bands of the fused image.

The two images are those used in the precedent chapters. The quality assessment
metrics, when reference image is available or not, are shown in Tables 3.2 and 3.3,

respectively, for different recent pansharpening methods presented in this Chapter.
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Test Correlation
Images | Methods ¢l €2 €3 c4

GIHS 0.9372 0.9433 0.9530 0.9548
IAIHS 0.9371 0.9426 0.9516 0.9533
_ AWLP 0.9696 | 0.9696 0.9660 0.9633
o Ec MTEF-GLP 0.9634 | 0.9638 0.9637 0.9633
g =) BDSD 0.9336 | 0.9346 0.9372 0.9372
- PRACS 0.9718 | 0.9624 0.9588 0.9726
INDUSION 0.9418 0.9422 0.9421 0.9423
OF 0.9510 | 0.9521 0.9647 0.9707
GIHS 0.7978 0.8111 0.7590 0.8515
IAIHS 0.8483 0.8548 0.8276 0.8554
~ B AWLP 0.9187 0.9046 0.9259 0.8817
& § MTF-GLP 0.9001 0.9009 0.8982 0.9067
g :ojn BDSD 09164 | 0.8830 0.8958 0.8707
> PRACS 0.9494 | 0.9299 0.9654 0.8659
INDUSION 0.8549 | 0.8540 0.8556 0.8517
OF 0.8859 | 0.8892 0.8795 0.8758

Table 3.1. Four-band correlation between reference and merged images for different methods.

Test etricy CC |ERGAS| RASE | RMSE | SAM SCC | UIQI | SSIM
Images{Metho 0 0 0 0 0 1 1 1

GIHS 0.0027 | 7.3905 {29.3621|16.6115] 3.2880 | 0.1138 | 0.9945 | 0.9470 | 0.9259

IAIHS | 0.0012 | 7.4723 {29.6872|16.7954| 3.4756 | 0.1136 | 0.9944 | 0.9461 | 0.9224

_ AWLP |[0.0164|6.5025|26.1780|14.8101| 0.7981 | 0.0860 | 0.9614 | 0.9629 | 0.9633

go_cg MTF-GLP | 0.0253 | 6.8483 |27.4548(15.5325|2.9951 | 0.1269 | 0.9729 | 0.9589 | 0.9513

;835 BDSD | 0.0490|9.4060 |37.7759|21.3716| 8.1558 | 0.1326 | 0.9726 | 0.9260 | 0.8998

PRACS |[0.0112]6.2131 (24.7444|13.9991| 2.7698 | 0.1029 | 0.9745 | 0.9651 | 0.9611

INDUSION| 0.0065 | 7.8430 [31.3922|17.7601| 4.0464 | 0.1425 | 0.9206 | 0.9419 | 0.9312

OF 0.0190 | 7.0064 |27.6845[15.6624| 3.0941 | 0.1305 | 0.8345 | 0.9564 | 0.9419

GIHS 0.0338 | 6.9361 [27.3687|30.7037| 2.5784 | 0.0298 | 0.9974 | 0.8019 | 0.8315

TIAIHS | 0.0046 | 6.2461 |24.6406|27.6432| 2.8345 | 0.0334 | 0.9958 | 0.8461 | 0.8427

o & AWLP | 0.0415|5.4701 |22.2863|25.0020| 2.6146 | 0.0384 | 0.9858 | 0.8955 | 0.9172

é’o}‘% MTF-GLP | 0.0519 | 5.7130 |22.7481{25.5201| 4.1433 | 0.0358 | 0.9929 | 0.8888 | 0.8940

g go BDSD | 0.1187 (11.0602|44.1266|50.8497| 7.9421 | 0.1462 | 0.6931 | 0.8634 | 0.8138

> | PRACS |0.0171 | 4.4989 [18.8940(21.1964| 2.7098 | 0.0105 | 0.9781 | 0.9225 | 0.9266

INDUSION| 0.0159 | 6.1595 [24.4983|27.4835| 3.1009 | 0.0381 | 0.9789 | 0.8530 | 0.8806

OF 0.0514 | 6.1420 |24.5657(27.5592| 3.9843 | 0.0373 | 0.8897 | 0.8703 | 0.8954

Table 3.2. Quality metrics, when reference image is available, for different pansharpening
methods.
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Test Metrics dx ds QNR
Images | Methods 0 0 1

GIHS 0.0285 0.0215 0.9506

IATHS 0.0307 0.0160 0.9538

B AWLP 0.0202 0.0181 0.9622

o _§ MTF-GLP 0.0339 0.0269 0.9402

g5 BDSD 0.0368 0.0145 0.9492

~ PRACS 0.0154 0.0175 0.9673

INDUSION 0.0272 0.0528 0.9215

OF 0.0279 0.0152 0.9574

GIHS 0.1021 0.1226 0.7878

IATHS 0.0908 0.0580 0.8565

o E AWLP 0.0880 0.0868 0.8329

2§ MTF-GLP 0.1113 0.1021 0.7980

£ & BDSD 0.1012 0.0829 0.8242

> PRACS 0.0457 0.0486 0.9079

INDUSION 0.0950 0.0287 0.8790

OF 0.1136 0.0254 0.8639

Table 3.3. Quality metrics, when reference image is not available, for different pansharpening
methods.

All these methods have good results. In Table 3.1, the AWLP and PRACS methods
have the best correlation in urban area. The PRACS and MTF-GLP methods have the best
correlation in vegetation area.

In Table 3.2, in urban and vegetation areas, the PRACS method has the best results
(ERGAS, RASE, RMSE and UIQI) followed by the AWLP method. The GIHS method has
the best SCC and the IAIHS method has the best CC.

In Table 3.3, the PRACS method has the best quality metric for spectral distortion and
QNR. The BDSD and OF methods have the best indices for spatial distortion. The BDSD,
INDUSION and OF methods perform slightly worse in these experiments. Each method has
advantages and disadvantages.

From a visual, quantitative and computation time comparison, it can be concluded that
there are some methods that behave very well, compared to others, with the fusion process,
such us the AWLP, GIHS, IAIHS and PRACS methods, because of their spectral and spatial
qualities.

The PRACS method presents a little spatial distortion despite its good quantitative
results. The THS-based methods (GIHS, TAIHS and AWLP) show excellent visual results

despite their modest quantitative results. For this reason, we have to develop a hybrid method

64



Chapter 3: Pansharpening with some recent methods

like the AWLP based on the IHS transform which gives a good compromise between the

spatial and spectral qualities.

3.6. Conclusion

In this chapter, some state-of-the-art of pansharpening methods has been presented
based on articles ever published between 2000 and 2014. We have presented the formulas and
properties based on CS and MRA-based algorithms. Eight pansharpening algorithms were
applied. Each method contributes on either side to improve the fusion products. Quantitative
and qualitative comparison was necessary made to show the effectiveness of each method.

The visual comparison showed that all of the fused images are visually enhanced over
the resampled MS image. A quantitative comparison showed that all these methods have good
results.

The PRACS method, IHS-based and MRA-based methods were presented the best
results but they all lack the right compromise between quantitative and qualitative qualities.

Wavelet transformation may be a representative technique to extract high-frequency
information from panchromatic images. For this reason, its application is preferred in the field
of fusion. An effective pansharpening algorithm should be selected for optimal utilization of
satellite imagery.

In the next chapter, we will propose a new fusion scheme based on a hybrid method of
fusion between the IHS and wavelet transforms to take advantage of the good characteristics
of the two transforms which aims to improve the visual and quantitative qualities of high
resolution satellite imagery.

Table 3.4 resumes the pansharpening methods used in the precedent experiments with

some basic meaning and parameter settings.
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Methods and

Basic meaning and parameter settings

years
GIHS [32] | A generalization of the traditional IHS pansharpening method [50] —[52] (2001) for
(2004) fusion of more than three MS bands.
Brovey [56] | A CS-based method under the general understanding. It has been marketed in
(2000) professional software, such as ENVI.
PCA [29] A typical CS-based method based on the PCA transformation. It has been marketed
(2004) in professional software, such as ENVI.
A data-dependent self-adaptive CS-based approach, featured by two advantages: 1)
BDSD [36] : ) . : : S .2,
(2008) optimal solution of the spatial detqll e)ftractlon and 1njectlop based on minimum
mean-square-error; 2) parameter estimation based on local regions.
GS [42] A typical CS-based method based on the Gram-Schmidt transformation. It has been
(2000) marketed in professional software, such as ENVI.
PRACS [45] A CS?based 'me'thod based on part?al replacement of the intensity component.. The
2011) PAN image is simulated by the weighted average of the MS and PAN bands, in the
place of using the original PAN image to replace the intensity component directly.
IAIHS [40] | An improved adaptive IHS. A new injection gain, the injection procedure is
(2010) structured according to the PAN image and the bands of the MS image.
DWT [61] | A typical MRA-based method. In the experiments, the default level of
(1995) decomposition is 2 and the wavelet used was that of Haar.
LP [86] A typical' 'MR'A-based methqd. In thg exp.eriments,. the default level ' of
(2000) decomposition is 2, the coefficient selection high-pass is 4 and the coefficient
selection base image is 1.
AWL [87] | A typical MRA-based method. In the experiments, the number of wavelet planes is
(1999) 2.
HPF [18] A typical MRA-based method. In the experiments, the default parameter with 5x5
(1991) box filter was used.
SFIM [37, | An improvement of the HPF method based on a High-Pass-Modulation (HPM)
57] spatial detail injection scheme, which is calculated by the ratio of the resampled MS
(2000) image and the low pass version of the PAN image.
Indusion The “Indusion” = “Induction” + “Fusion”. It is a pansharpening method consists of
[117] the induction scaling technique, which improves the performance by several
(2008) equalization steps.
MTF-GLP . . :
(72] A'popular MRA—baseq method based on GLP with MTF filter, the unitary detail
(2006) injection model is applied.
ATWT [82] | A MRA-based method based on the additive “a trous” wavelet transform with unit
(1999) injection model.
A generalization of the AWL pansharpening method [85] in terms of a proportional
AWLP [67] : o . . 2 .
(2005) spatial .deta.ll injection weight, relying on the original MS band radiance
proportionality.
OF [119] A typical MRA-based method. The coefficients of the optimal filter are calculated
(2014) using the statistical properties of the images.
A typical VO-based method. In the experiments, the default parameters are:
P+XS [89] | magnitude=4; alpha(1)=0.3/3; alpha(2)=0.75/3; alpha(3)=0.25/3; alpha(4)=1.7/3;
(2006) gamma(i)=1; lambda=0.5; mue=3 ; iterations=80 ; deltat=0.01; epsilon=0.0005 and

deviation=5.

Table 3.4. Pansharpening methods in the experiments.
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Chapter 4: Proposed fusion method

4.1. Introduction

This chapter is devoted to the proposal of a combination between the IHS and the
ATWT methods by introducing a new approximation of the coefficients of the multispectral
bands MS. In the first section of this chapter, we present our algorithm including definitions
and mathematical formulas. In the second section, we present the results of applying the
proposed algorithm. A comparative study between the proposed method and some recent
image fusion methods was carried out, followed by an interpretation of the results. The
evaluation was made qualitatively and quantitatively. We finished this chapter by some

discussions and conclusions.

4.2. Proposal of a fusion algorithm based on IHS and ATWT
The main objective of the combination of classical IHS and ATWT methods is to

improve spatial resolution by injecting more spatial information while ensuring better color

preservation.

The proposed fusion algorithm is illustrated in Figure 4.1. It can be executed by

performing the following steps:

P
L
*

PAN

Histogram -
matching

IATWT Computation of [T Tazp
PAN » LFAN 1™ the Wﬂg‘jt _.Q‘? Lk
coefficients C;
PAN image 4
PAN"- e ATWT. E
I Y . '
I I Fesampling PANI

MS image

Fused image

Figure 4.1. Flowchart of the proposed algorithm [4].
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Step 1: Low resolution PAN image extraction (LPAN)
To get the best approximation, MS and LPAN should have the same spatial resolution.
By using the multiresolution analysis associated with the ATWT, we can estimate the
acquisition of the low resolution panchromatic sensor, which does not exist on the satellite.
The LPAN image at level j is obtained by the following equation, using equations (1.23)
and (1.25):

LPAN; = LPAN;_, * h; (4.1)
Where, initially, LPAN| is the PAN image.

Step 2: Determination of the adapted intensity image (1,4)
In fact, in most cases the similarity between each MS and LPAN image is rarely too low
or zero, so we conclude that the intensity image is equal to the LPAN image.

The intensity image can be calculated by using the following equation:
LPAN =1 =" ,C. MS; (4.2)
Where C; is the weight coefficient of the itk band of the MS image with:
i <1 (4.3)

In this work, C; is based on the energy coefficient and the similarity coefficient between
MS and LPAN images.

The PAN image sensor spectrum covers the majority of the MS sensor spectra.
Therefore, the radiation detected by the MS sensors is the same as that detected by the PAN
sensor, so that the MS image which contains high energy contributes significantly to the
construction of the PAN image, and that is the opposite which is true.

The ratio of the average energies (ratio of the average energy MS; to the average energy
LPAN) is given by:

EMS;
RE; = =L
ELPAN

(4.4)

Where EMS; and ELPAN are the mean energies of the images MS; and LPAN, respectively.

The energy coefficient CE; of the band MS; is calculated by:
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RE;
CEi= n .
Zi:lREi

(4.5)

These coefficients are effective in forming the intensity image in the case where the MS;
images are individually correlated to the LPAN image.

In this case, the intensity image I is given by the following equation:
I = 11'1=1 CELMSL (46)

To calculate the new MS band coefficients, we propose to also use the similarity

coefficient between the ith band of the MS image and the LPAN image CS; as follows:

CC(LPAN, MS;) if CC(LPAN,MS;) >0

0 if CC(LPAN,MS;) <0 (4.7)

CSL={

Where CC(LPAN, MS;) is the correlation coefficient between LPAN and MS; images and it is
defined by the following equation:

Y(LPAN-mean(LPAN))(MS;j—mean(MS;))

CC(LPAN,MS;) = (4.8)
\/Z(LPAN—mean(LPAN))Z Z(MSi—mean(MSi))2
The new proposed coefficients of the MS bands are calculated as follows:

Where CE; is the energy coefficient of the MS; band and CS; is the correlation coefficient
between the ith band of the MS image and the LPAN image.

This brings us to a new adapted intensity component Iqp,:
logp = X1 Ci. MS; (4.10)

If there is a similarity between the images MS; and LPAN, the correlation coefficient
will be 1. In this case, the image MS; multiplied by the energy coefficient CE; is fully injected

for the creation of the intensity component I,y .

For lower values of the correlation coefficients, the value of the coefficient C; of the MS
bands will decrease in order to minimize the influence of the diversity which produces

spectral distortions in the fused images.
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Step 3: Calculation of the error image (Er)

In the third step, we make a correction to improve the quality of the fused images. The
use of multiresolution analysis in the extraction of LPAN image and the proposed MS band
coefficients do not give ideal fusion results, as the fusion process is based on the special case
of equation (4.2) with an intensity adaptation given by equation (4.10). For this reason, we

propose a simple solution, in order to reduce the error between the PAN and the 1,4, images,

given by the following equations:
E = PAN* — Ioqp (4.11)
E, =Exh; (4.12)

Where, E is the error image that contains low and high resolution details, PAN™ is the
histogram-matched PAN image, I,4, is the adapted intensity image, Ej, is the low resolution

error image and h; is the mask of the “a tous” filter at level ;.

Step 4: Calculation of the new intensity image (1,ew)

In this step, the new intensity image is obtained by using the following equation:
Lnew = Iqap + Ey (4.13)

Step 5: Obtaining of the fused image

Finally, the pansharpened image of our algorithm is given by:
MS = MS + (PAN* — I,,,) (4.14)
Where, MS is the fused image and MS is the resampled MS image.
The resampled MS image can be obtained by bilinear or bi-cubic filters.

Equation (4.14) is equivalent to the equation used for the computation of the fused
image in the Additive Wavelet Luminance method (AWL) [87] except that the high frequency
detail image is different. Thus, our main contribution in this step is an improvement of the

AWL method with a new intensity image I, .
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4.3. Experimental results

In this part, the parameter settings of the proposed method are analyzed and compared
with a state-of-the-art of some pansharpening methods. In the fusion experiments, a number
of different remote sensing satellites including the Deimos-2, Worldview-2 and Worldview-3
images were employed experimentally.

The satellite Deimos-2 provides PAN images of 1 meter spatial resolution and 4 bands
(Near-Infra-Red, Red, Green and Blue) at a spatial resolution of 4 meters.

The resolution of the PAN and MS images of WorldView-2 satellite has 0.5m and 2m,
respectively. That of WorldView-3 satellite has 31cm and 1.24m, respectively.

A set of data, acquired on May 30, 2015 by the Deimos-2 satellite which covers
different areas of British Columbia (Canada), is used to evaluate the proposed approach. PAN
images are 1312 x 864 pixels in size and MS images are 1/4 (328 x 216 pixels). Figures 4.2,
4.3 and 4.4 represent these data sets.

Figure 4.2. Deimos-2 image (image 1). (a) PAN image. (b) Up-sampled MS image.
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(a) PAN image. (b) Up-sampled MS image.

Figure 4.3. Deimos-2 image (image 2). (a) PAN image. (b) Up-sampled MS image.

(a) PAN image. (b) Up-sampled MS image.

Figure 4.4. Deimos-2 image (image 3). (a) PAN image. (b) Up-sampled MS image.

4.3.1. Experimental results of the proposed approach

The up-sampled MS images are obtained by bilinear interpolation at the spatial scale of
the PAN images.

The results of the application of the proposed method for the fusion of the Deimos-2
datasets using different decomposition levels of the ATWT are shown in Tables 4.1 and 4.2.
In Table 4.1, the injection gains of the MS image of equation (4.9) and the ratio average
energy of equation (4.4) are calculated. Table 4.2 shows the 4-bands correlation of the MS

image with the resulting image.
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Test Level Cnr Cr Ca Cs z C; RE

Images

Image 1 0.2582 | 0.2085 | 0.2109 | 0.2173 0.8949 0.7623

1 2 0.2640 | 0.2128 | 0.2156 | 0.2224 0.9147 0.7811

3 0.2616 | 0.2088 | 0.2116 | 0.2189 0.9009 0.7730

Image 1 0.3969 | 0.1070 | 0.1352 | 0.1358 0.7750 0.7299

) 2 0.4084 | 0.1090 | 0.1380 | 0.1381 0.7935 0.7505

3 0.4059 | 0.1041 0.1324 | 0.1321 0.7745 1.0062

Image 1 0.2497 | 0.2011 0.2025 | 0.2077 0.8610 0.8700

3 2 0.2552 | 0.2071 | 0.2090 | 0.2148 0.8861 0.8969

3 0.2483 | 0.2040 | 0.2065 | 0.2132 0.8721 0.8859

Table 4.1. Weighting coefficients of the 4-bands MS image, their sum and ratio average
energy for different decomposition levels.

Test orrelation Corrnig | Corrg Corrg | Corrg
Images | Level

1 0.9968 | 0.9948 | 0.9930 | 0.9935

Image 1 2 0.9869 | 0.9790 | 0.9717 | 0.9737

3 0.9801 | 0.9677 | 0.9569 | 0.9595

1 0.9981 | 0.9900 | 0.9875 | 0.9890

Image 2 2 0.9921 | 0.9598 | 0.9502 | 0.9561

3 0.9881 | 0.9422 | 0.9291 | 0.9375

1 0.9870 | 0.9868 | 0.9849 | 0.9840

Image 3 2 0.9534 | 0.9534 | 0.9468 | 0.9434

3 0.9162 | 0.9169 | 0.9060 | 0.8992

Table 4.2. 4-bands correlation between MS and fused images.

Figures 4.5, 4.6 and 4.7 present the application of the proposed approach of the Deimos-

2 datasets using one, two and three decomposition levels of the ATWT.

(a) ne Level. » (b) Two levels. (c) Three levels.
Figure 4.5. Fused images by applying the proposed approach (image 1).
(a) ~(c) Pansharpened images by using 1 ~3 decomposition levels of the ATWT,
respectively.
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_ S VI B
(a) One Level. (b) Two levels.

-

Figure 4.6. Fused images by applying the proposed approach (image 2).
(a) ~(c) Pansharpened images by using 1 ~3 decomposition levels of the ATWT,
respectively.

A& TE TS

(a) Oe evel.

( c) Three lee.

Figure 4.7. Fused images by applying the proposed approach (image 3).
(a) ~(c) Pansharpened images by using 1 ~3 decomposition levels of the ATWT,
respectively.

4.3.2. Discussions

Visual analysis of Figures 4.5, 4.6 and 4.7 shows an apparent improvement in spatial
quality in the merged images. In these figures, the colors of the resulting images are
comparable to those of the input MS images with an obvious increase in spatial resolution. It
is clear from these figures that the spatial resolution of pansharpened images increases with
increasing level of ATWT decomposition.

Quantitative analysis in Table 4.1 shows the values of the energy ratio between the MS
and the LPAN images, as well as the values of the weighting coefficients used for the
calculation of the adapted intensity component (/u.4p) for three levels of decomposition of the
ATWT. By correspondence of the equation (4.3), one notices that for the entire test images,

the level 2 gave a sum which approaches the unit.
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Table 4.2 shows the correlation values between the four spectral bands of the MS and
merged images, for three levels of ATWT decomposition. We notice that as we increase the
level of decomposition, the values decrease. So the results for one level are the best although
visually the most degraded for all the test images. Level two gives good values by comparison
with level three. These values are logical because the comparison is made with the up-
sampled MS image and not with a reference image.

Two additional data sets acquired by the WorldView-2 and WorldView-3 satellites were
also used to evaluate and test the performance of the proposed algorithm, as shown in Table
4.3 [4]. The datasets used in this experiment cover different areas with different sizes. The
image of Stockholm (Sweden) was acquired on August 27, 2016 and the images of Rio de
Janeiro (Brazil) were acquired on February 5, 2016 and the images of Sidney were acquired in
2009 [4].

In Table 4.3, the quality assessment is evaluated by the different metrics described in

Chapter 2 with different decomposition levels and for nine images.

Metrics | CC |ERGAS| RASE |RMSE | SAM | SID SCC | UIQI | SSIM

Test Images Ref, values] 0 0 0 0 0 0 1 1 1

Level 1 [0.0023] 1.8992 | 7.5223 | 8.6684 | 0.4352 | 0.0235 | 0.9183 | 0.9945 |0.9973

Image 1 of Fig. 4.2 = 0 15 700003] 3.8857 |15.3905|17.7354| 0.8187 | 0.0157 | 0.9839 | 0.9776 [0.9766

(Deimos-2) Level 3 [0.0160] 4.8702 [19.2901]22.2291] 1.0469 | 0.0439 | 0.9885 | 0.9653 |0.9463

Level 1 [0.0046] 2.6052 | 8.5294 | 9.2596 | 0.7905 | 0.0014 | 0.9026 | 0.9911 |0.9948

Image 2 of Fig. 4.3 = C 15 700189[ 5.3979 [17.6745/19.1879] 1.6613 | 0.0256 | 0.9715 | 0.9634 [0.9562

(Deimos-2) Level 3 |0.0304] 6.6751 |21.8602(23.7319] 2.1598 | 0.0395 | 0.9769 | 0.9461 |0.9106

Level 1 10.0044| 1.4907 | 5.8887 | 9.2864 | 0.2987 | 0.0003 | 0.9207 | 0.9930 [0.9973

Image 3 of Fig. 4.4 = 510701711 2.9556 [11.6761]18.4129] 0.6417 | 0.0008 | 0.9826 | 0.9733 [0.9760

(Deimos-2) Level 3 |0.0276] 3.6077 |14.2527(22.4762] 0.8434 | 0.0026 | 0.9863 | 0.9609 |0.9454

Image 4 (WV-2) Level 1 |0.0071| 2.5536 | 8.3703 |25.7584| 0.8324 | 0.0200 | 0.9250 | 0.9833 |0.9245

(500x500) Level 2 [0.0053| 3.5505 {11.6365|35.8096| 1.1753 | 0.0157 | 0.9575 | 0.9648 |0.8313

Stokholm — Sweden | Level 3 [0.0053| 3.5079 [11.4968|35.3797| 1.1612 | 0.0134 | 0.9476 | 0.9685 |0.8327

Image 5 (WV-2) Level 1 10.0018) 2.1529 | 8.0656 |21.8824| 0.4568 | 0.0041 | 0.9375 | 0.9898 |0.9508

(500x500) Level 2 |0.0054| 3.9863 [14.9339]40.5162| 0.8932 | 0.0186 | 0.9884 | 0.9664 |0.8538

Sidney — Australia Level 3 0.0061|4.3689 [16.3681(44.4072| 1.0179 | 0.0174 | 0.9896 | 0.9602 [0.8313

Image 6 (WV-2) Level 1 10.0016| 1.8149 | 6.9347 [22.0814| 0.4149 | 0.0021 | 0.9332 | 0.9933 |0.9554

(500x600) Level 2 |0.0056| 3.4203 {13.0687|41.6133| 0.8199 | 0.0035 | 0.9865 | 0.9769 [0.8619

Sidney — Australia Level 3 |0.0075| 3.8395 [14.6721|46.7190| 0.9502 | 0.0025 | 0.9883 | 0.9713 |0.8366

mage 7 (WV-3) Level 1 10.0044| 2.0289 | 6.4988 [20.9553| 0.7955 | 0.0127 | 0.9230 | 0.9879 |0.9345

(768x672) Level 2 [0.0069| 3.1368 |10.0482(32.4004| 1.2561 | 0.0287 | 0.9634 | 0.9715 |0.7869

Rio de Janeiro - Brazil | Level 3 |[0.0067| 3.4104 [10.9260(35.2308| 1.3950 | 0.0121 | 0.9604 | 0.9662 |0.7032

Image 8 (WV-3) Level 1 [0.0020| 2.4753 | 8.1312 |25.1762| 0.9220 | 0.0296 | 0.9373 | 0.9915 |0.8098

(500x500) Level 2 {0.0034| 3.8586 |12.6760(39.2481| 1.4338 | 0.0488 | 0.9730 | 0.9795 |0.6378

Rio de Janeiro - Brazil | Level 3 |0.0042| 4.4325|14.5632(45.0912| 1.6683 | 0.0267 | 0.9735 | 0.9730 |0.5546

Image 9 (WV-3) Level 1 [0.0094| 2.3997 | 7.7146 |25.8465| 0.8057 | 0.0388 | 0.9312 | 0.9831 |0.8803

(512x512) Level 2 |0.0145| 3.4223 111.0018|36.8599| 1.1107 | 0.0306 | 0.9622 | 0.9662 |0.7655

Rio de Janeiro - Brazil | Level 3 ]0.0064| 3.4726 |11.1636/37.4019| 1.1250 | 0.0121 | 0.9560 | 0.9649 |0.7459

Table 4.3. Spectral quality assessment, with reference image, of different decomposition
levels of the proposed method for different datasets.
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Metrics dy ds | QNR
Ref. values| 0 0 1
Level 1 ]0.0496 (0.0342{0.9178
Level 2 |0.0812]0.0589|0.8646
Level 3 10.0974]0.1003]0.8120
Level I ]0.0369(0.01570.9480
Level 2 |0.0158(0.0843{0.9012
Level 3 10.0599]0.0583|0.8852
Level 1 |0.0158(0.0843{0.9012
Level 2 10.0450(0.0107|0.9447
Level 3 |0.0634]0.0518/0.8881
Image 4 (WV-2) Level 1 |0.0081(0.0402|/0.9520
(500x500) Level 2 |0.0143]0.0378|0.9485
Stokholm — Sweden Level 3 10.0062[0.0420[0.9520
Image 5 (WV-2) Level 1 |0.0062|0.0580[{0.9362
(500x500) Level 2 {0.0204(0.0372/0.9431
Sidney — Australia Level 3 0.0192]0.0394/0.9422
Image 6 (WV-2) Level 1 {0.0030(0.0381]/0.9590

Test Images

Image 1 of Fig. 4.2
(Deimos-2)

Image 2 of Fig. 4.3
(Deimos-2)

Image 3 of Fig. 4.4
(Deimos-2)

(500x600) Level2 0.0100/0.0148]0.9753
Sidney — Australia Level 3 0.01330.0099/0.9769
mage 7 (WV-3) Level 1 |0.0410[0.0446]0.9163
(768x672) Level2 |0.0624|0.0787]0.8637

Rio de Janeiro - Brazil | Level 3 |0.0553(0.0721{0.8765
Image 8 (WV-3) Level 1 [0.0273(0.0324(0.9412
(500x500) Level 2 0.0430 (0.0656(0.8942

Rio de Janeiro - Brazil | Level 3 |0.0384 (0.0591{0.9048
Image 9 (WV-3) Level 1 |0.0538(0.0380({0.9102
(512x512) Level 2 [0.0683(0.0677|0.8687

Rio de Janeiro - Brazil | Level 3 |0.0616(0.0626[0.8797

Table 4.4. Spectral quality assessment, without reference image, of different decomposition
levels of the proposed method for different datasets.

From Tables 4.3 and 4.4, it is clear that the merged images resulting from the
application of the proposed approach with a single level of decomposition show almost the
highest spectral quality, although they are visually degraded.

The results of the quantitative assessment are based on the metrics from Chapter 2, as
shown in Tables 4.3 and 4.4, show better fusion quality from which we can conclude that the
proposed approach offers more spatial information and reasonable spectral quality for high
levels of decomposition (2 and 3 levels). In the case of the application of ATWT with three
levels of decomposition, the merged images show the best quality of spatial resolution and
this is also confirmed by the values obtained from SCC as shown in Table 4.3. For one level

of decomposition, the proposed method retains more spectral information, while retaining
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good spatial quality. In addition, it can be clearly seen that when the ATWT decomposition
level is two, the fusion results reach the optimum quality, hence a good compromise between
spatial and spectral quality.

The influence of the Er error image, from equation (4.12), on the spectral and spatial
qualities of the combined images is obvious and this is due to the presence of the high

resolution details in Er which vary depending on the image error.

4.3.3. Comparison with some state-of-the-art fusion methods

In this section, the performance evaluation of the suggested pansharpening approach is
compared with various state-of-the-art fusion methods. Several methods have been used for
comparison with the proposed approach such as Generalized THS (GIHS) [32], PCA-based
image fusion [29], Improved Adaptive IHS (IATHS) [40], the Proportional AWL (AWLP)
[67], the Partial Replacement Adaptive Component Substitution (PRACS) [45] and the fusion
of MS and PAN images preserving spectral quality by Optimal Filter (OF) [119]. Each
method is subject to a compromise between the quality of the spectral and spatial resolutions.

The experimental results obtained after the application of different pansharpening
methods of three Deimos-2 images (image 1, image 2 and image 3) are presented in Figures
4.8, 49 and 4.10. Tables 4.5 and 4.6 illustrate the performance of our pansharpening
algorithm compared to the previous methods. We applied 2 levels of decomposition for the

multiresolution methods.
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(2) Prooed tho.
Figure 4.8. Fusion results of the first Deimos-2 image for different methods.
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() Proposed rnetilo.
Figure 4.9. Fusion results of the second Deimos-2 image for different methods.
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(g)Propose fneto.
Figure 4.10. Fusion results of the third Deimos-2 image for different methods.
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For better visualization of fusion results, we have zoomed in the same part of each

image. Figures 4.11, 4.12 and 4.13 represent this zoom.

(d) PCA. () PRACS. | () OF.

Figure 4.11. Zoom of fusion results of the first Deimos-2 image for different methods.
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(a) GIHS. (b) AIHS. (c) AWLP.

(d) PCA.

(g) Proposed method.

Figure 4.12. Zoom of fusion results of the second Deimos-2 image for different methods.
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(d) PCA. (¢) PRACS. () OF.

(g) Proposed method.

Figure 4.13. Zoom of fusion results of the third Deimos-2 image for different methods.
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Test ImagesMetrics CC |ERGAS| RASE |RMSE | SAM SID | SCC | UIQI | SSIM
ethods| 0 0 0 0 0 0 1 1 1

» GIHS 0.0285] 5.6985 [22.5444/30.1408] 1.7161 |0.0311]0.9916 | 0.9280 | 0.8886
% AIHS 0.0043| 5.7104 |22.4819|29.7967| 2.1875 |0.0443]0.9903 | 0.9315 | 0.8961
£ AWLP 0.02134.3249 [17.4812]23.4077] 2.3309E-7| 0.0013 | 0.9509 | 0.9627 | 0.9581
5 PCA 0.2683|7.7880 [31.1688|41.2881| 4.0265 |0.0515]0.9471|0.8141 | 0.8007
g PRACS ]0.0204|4.2847117.4401|23.1224| 1.2166 |0.0677]0.9688 | 0.9643 | 0.9483
35) OF 0.0317]4.7057 |18.9366|25.3195] 1.1819 |0.0620] 0.8451 | 0.9560 | 0.9428
a Proposed |0.0132| 3.4207 |13.5333|18.0741| 0.7302 | 0.0082 | 0.9832 | 0.9755 | 0.9763
GIHS 0.0089|4.5698 [17.2795|50.7240] 1.4450 |0.0076 | 0.9910 | 0.9555 | 0.8103

“:’n AIHS 0.0010| 4.3303 [16.7635|49.1225] 1.2774 |0.0133]0.9896 | 0.9635 | 0.8301
g AWLP 0.0086| 4.5449 |18.2989|53.7066|2.4291 E-7| 0.0004 | 0.9481 | 0.9579 | 0.8338
3 PCA 0.1783]8.6275 |32.9548|97.1180] 4.6856 |0.0329]0.9168 | 0.7952 | 0.7236
= PRACS [0.0056|4.4537|18.1805|53.2766] 1.0780 |0.0032|0.9820|0.9638 | 0.8391
= OF 0.0119]5.5075 |21.1254/61.9830] 1.4337 |0.0692]0.8298 | 0.9495 | 0.7992
Proposed | 0.0055] 3.7033 |14.0013|41.0648| 0.8565 |0.0110]0.9874 | 0.9717 | 0.8579

GIHS 0.0406| 5.7943 |18.8313|60.6717] 2.2267 |0.0512]0.9818 | 0.9309 | 0.5300

q:)_)o AIHS 0.0111]6.0724 {19.7170/63.4380] 2.0189 |0.0478]0.9849 | 0.9246 | 0.5421
g AWLP 0.0514|4.4063 [17.0148|54.9083] 0.0306 | 0.0721]0.9373]0.9534 | 0.7377
- PCA 0.3438] 7.4928 |26.6934/85.4653| 3.4903 |0.0487]0.9416 |0.8712 | 0.4411
= PRACS ]0.0171]3.7532(12.8878|41.4724| 1.3918 |0.0016 | 0.9293 | 0.9721 | 0.7387
= OF 0.0151]5.1888 [15.1875|48.9939| 2.3728 |0.1263]0.8228 | 0.9531 | 0.6688
Proposed |0.0089| 3.6405 |11.8389|38.0540| 1.2723 |0.0397]0.9676 | 0.9728 | 0.7017

Table 4.5. Quality metrics with no reference data for different pansharpening methods using

different satellite images (mean values).

Test Metrics d ds QNR
Images Methods 0 0 1

% GIHS 0.0873 0.0941 0.8269
oh ATHS 0.0668 0.0571 0.8800
E AWLP 0.0665 0.0423 0.8940
G PCA 0.0539 0.1921 0.7644
g PRACS 0.0548 0.0358 0.9113
$5) OF 0.0730 0.0069 0.9206
A Proposed 0.0450 0.0107 0.9447
GIHS 0.0283 0.0644 0.9092

a ATHS 0.0201 0.0426 0.9382
g AWLP 0.0614 0.0660 0.8766
= PCA 0.1792 0.2754 0.5948
= PRACS 0.0192 0.0490 0.9327
= OF 0.0379 | 0.0270 [ 0.9361
Proposed 0.0190 0.0375 0.9442

GIHS 0.0894 0.0608 0.8552

5 ATHS 0.1035 0.1328 0.7774
éﬁ AWLP 0.0970 0.0979 0.8146
- PCA 0.1662 0.2714 0.6075
> PRACS 0.0453 0.0792 0.8791
= OF 0.0884 0.0743 0.8439
Proposed 0.0683 0.0677 0.8687

Table 4.6. Quality metrics with reference data for different pansharpening methods using
different satellite images (mean values).
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4.3.4. Discussions

For a qualitative assessment, all of these methods are good. Spatial quality is improved
compared to MS images and the edges are more representative. Obviously, the results
obtained depend on the specific input image, but images fused by applying the PCA method
have a clear spectral distortion especially on the regions containing green vegetation. After
applying the proposed fusion scheme, the spectral and spatial qualities of the pansharpened
images obtained are close to the spectral quality of the original MS image and the spatial
quality of the original PAN image, respectively. The results of the visual comparison agree
with the quality assessment presented in Tables 4.5 and 4.6. In Table 4.5, the SCC values are
closer to the optimal values when using IHS-based methods. The adaptive IHS image method
(IAIHS) works better than the original IHS.

The majority of the used methods have good spatial detail. However, they visually show
a small spectral distortion especially the AWLP, PCA, PRACS and OF methods. The
resulting image of our proposed algorithm gives the best visual and quantitative quality.

It should be noted that due to the lack of reference images in real experiments, the
quantitative evaluation was carried out exhaustively in two aspects. First, the dimension of the
merged image was changed to spatial dimension of the MS image, and the MS image was
taken as a reference image. Second, the fusion results were assessed on the basis of
unreferenced quality assessment indices [120]. Since there is no reference image here, the
QNR index is used to assess spectral and spatial distortions between the merged image and
the original PAN image and the MS image, as shown in the Table 4.6.

It is clear from Tables 4.5 and 4.6 that the proposed algorithm surpasses the other
techniques in terms of spatial quality and in most of spectral quality indices. It should be
noted that the proposed scheme gives the best results for the following quality indices:
ERGAS, RASE, RSME UIQI, SSIM and QNR. The main advantage of the proposed scheme
is the adaptive gain injection, in which spatial details are inserted into each upsampled MS

band while retaining its spectral information.

The computation time of an algorithm is an important comparative element. The
following table represents the execution time of the methods studied in this chapter and for
the same image.

We can see the difference in time between the different methods. A direct method

requires less time than a method that uses multiple resolutions or more complicated.
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Test Image Methods Calculation time in
seconds
GIHS 0.2358
: AIHS 1.3374
Ima%e)éircl)lf;)sli%. 4.2 AWLP 03045
PAN : 1312 x 864 pixels PCA 0.4880
MS : 328 x 216 pixels PRACS 3.4999
OF 30.4684
Proposed 0.7337

Table 4.7. Calculation time for different methods.

Some information about the computer that performed these calculations:
e Processor: Intel(R) Core(TM) 15 CPU M 460 @ 2.53GHz, 2534 MHz, 2 core(s), 4
logical processor(s).
e Physical memory (RAM) installed 4.00 GB.
e x64-based PC type.

e 064-bit operating system.

4.4. Conclusion

In this chapter, a new combination between multi-resolution analysis (MRA-based
method) and component substitution method (CS-based method) is proposed to design a new
pansharpening scheme. The proposed pansharpening algorithm is based on the IHS injection
model, in which the spatial details are first selected and extracted from the PAN image, then
injected into the MS bands by applying the ATWT transform. In addition, weighting
coefficients are introduced to improve the spatial details of the resulting image while
preserving its spectral information. The weighting coefficients of the intensity component (/)
are calculated using the average energy ratio and the correlation coefficients between the MS
bands and the wavelet decomposed version of the PAN image. The detail information is then
injected into the high spectral resolution MS bands to obtain a merged image with high spatial
information.

Experimental results and performance evaluation measures demonstrated the ability of
the proposed fusion algorithm to increase the spatial resolution of the resulting fused images

while preserving their spectral information.
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General Conclusion

Image fusion has multiple applications, and choosing to synthesize MS spectral bands
with high spatial resolution creates constraints that are not always understood by the
community. Developers of new fusion methods need to take more account of the local
dissimilarities between the MS image to be fused and the high spatial resolution PAN image
that contains the structures to be injected. We generally note an absence of physical
considerations in establishing and evaluating methods.

It was essential to consider quality assessment before developing new fusion methods.
However, some efforts had attempted to provide a framework for the evaluation with success.
We have provided an algorithm capable of being used regardless of the ratio, the spatial
resolution, the type of landscape considered and the number of spectral bands.

After giving an introduction representing the notion of pansharpening and the objective
of this work with the constraints that can be encountered in practice and literature during the
fusion process, we have first of all, studied the already published methods by identifying their
advantages and disadvantages (Chapter 1). Three categories of fusion methods were
considered. We have presented and studied some of the most used and popular methods of
each category. Then, a fitness check was presented in Chapter 2 to make a comparative study
between the different fusion methods considered in the first chapter in order to be able to
extract the qualitative and quantitative properties. In the third chapter, recent methods of each
category have been studied and presented in order to make a comparative qualitative and
quantitative study. In the fourth chapter, we have contributed to the enhancement of the well-
known AWLP method by improving its quality, visually and quantitatively, by proposing a
new scheme for injection gains, using the IHS transform, which takes into account the energy
ratio between the MS and PAN images, transformed by ATWT, and which is based on the
contours contained in the satellite images. This algorithm has been validated for Deimos-2,
World view-2 and World view-3 satellite imagery. The results obtained with this method
agree with the qualitative and quantitative analyzes obtained by fusion methods of which we
knew a priori their impact on the edges. The proposed scheme can inject more spatial
information and provide better color preservation. The new proposed fusion method has the
advantage of not reproducing the artifacts identified for the previous methods. It also shows
very good results for quantitative quality analysis.

The important conclusion is that the improvement of the AWLP fusion method
corresponds to a compromise between visual and parametric constraints. Hybrid methods

make it possible to take advantage of the better properties obtained for each method.
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We have therefore satisfied our objective, namely to offer a more efficient method.

It is necessary to clearly define the framework of fusion applications in which the
developer places himself in order to understand all the constraints. Next, the fusion methods
should be evaluated by applying quality evaluation parameters.

For visual evaluation, fused products in color or grayscale should be compared to their
references. In addition, the conclusions of the visual evaluation depend on the areas of work
of the developers, and are not necessarily generalizable to other applications. With regard to
quantitative analysis, care should be taken to use parameters that cover different aspects of the
quality of the fusion products.

We wish in the near future to adapt and apply the proposed approach for the fusion of
multimodal medical images and to further improve our algorithm by using the adaptive IHS

transform (IAIHS) instead of the classical IHS transform.
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