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SUMMARY

This thesis is devoted to the nonparametric modelization of a real response variable
conditioned by a functional covariate (valued in infinite dimensional space (semi metric
space/ Hilbert space)). We study the asymptotic properties of some functional parameters
such as the conditional density function, the conditional mode, the regression operator,
the conditional cumulative distribution and the quantile regression function for complete
and incomplete data in different situations.

In the first part, we focus on the ergodic process forecasting via a functional kernel
estimation for incomplete data. The randomly censored density prediction is treated
as a preliminary study of the conditional mode function, when we establish the explicit
expressions of the almost sure consistency rates and the asymptotic normality of the
built estimators. To illustrate the effectiveness of our method, we propose a simulation
study. Moreover, we evaluate the regression function expectation in a functional single
index framework by adapting the nonparametric methodology in two directions: ergodic
property and missing at random data (MAR).

Secondly, we deal with the central limit theorem by using single index approach.
More precisely, we examine some conditional problems including the estimation of the
conditional density and the conditional distribution functions with applications to the
conditional mode and the conditional quantile, respectively, of a scalar response vari-
able given an explanatory variable which is assumed to be of functional feature in the
sense that is supposed to take its values in Hilbert space. On the one hand, we prove
the asymptotic normality of the conditional density estimator from which we derive the
central limit theorem of the conditional mode function in the independent data case. On
the other hand, we contribute to the functional nonparametric research by investigating
the quantile regression estimation as an useful alternative to the regression model with
randomly right-censored data when the sample is considered as an α-mixing sequence. In
order to illustrate the validity and the performance of the suggested models in this part,
we introduce examples on simulated data.

Keywords : Nonparametric estimation, Functional data, Regression function, Con-
ditional cumulative distribution, Conditional density function, Functional single index
model, Censored data, Missing at random data, Ergodic processes, α-mixing sequence,
Convergence rate, Asymptotic normality.
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RÉSUMÉ

Cette thèse est consacrée à la modélisation non paramétrique d’une variable de réponse
réelle conditionnée par une covariable fonctionnelle (à valeurs dans un espace de dimension
infini (espace semi-métrique/ espace de Hilbert)). Nous étudions les propriétés asympto-
tiques de certains paramètres fonctionnels tels que la fonction de densité conditionnelle,
le mode conditionnel, la fonction de régression, la fonction de répartition conditionnelle
et le quantile conditionnel pour des données complètes et incomplètes dans des différentes
situations.

Dans la première partie, nous nous intéressons à la prévision du processus ergodique
via l’estimation à noyau fonctionnel pour des données incomplètes. La prédiction de la
densité censurée aléatoirement est traitée comme étude préliminaire de la fonction du
mode conditionnel, où nous établissons les expressions explicites des vitesses de conver-
gence presque-sûre et de la normalité asymptotique des estimateurs construits. Pour
illustrer l’efficacité de notre méthode, nous proposons une étude de simulation. De plus,
nous évaluons l’estimation de la fonction de régression dans un cadre à indice fonctionnel
simple en adaptant la méthodologie non paramétrique dans deux directions : propriété
ergodique et données manquantes au hasard (MAR).

Deuxièmement, nous traitons le théorème central limite en utilisant une approche à
indice unique. Plus précisément, nous examinons quelques problèmes conditionnels, no-
tamment, l’estimation de la fonction densité conditionnelle et la fonction de distribution
conditionnelle avec des applications au quantile conditionnel et au mode conditionnel,
respectivement, d’une variable de réponse scalaire conditionnée par une variable explica-
tive qui est supposée d’être de caractéristique fonctionnelle au sens qu’il prend ses valeurs
dans un espace de Hilbert. D’une part, nous prouvons la normalité asymptotique de
l’estimateur de la densité conditionnelle à partir duquel nous dérivons le théorème cen-
tral limite de la fonction du mode conditionnelle dans le cas des données indépendantes.
D’autre part, nous contribuons à la recherche non paramétrique fonctionnelle en étudiant
l’estimation du quantile comme alternative utile au modèle de régression avec des données
censurées à droite aléatoirement lorsque l’échantillon est considéré comme une séquence
α-mélange. Afin d’illustrer la validité et la performance des modèles proposés dans cette
partie, nous introduisons des exemples sur des données simulées.

Mots clés : Estimation non paramétrique, Données fonctionnelles, Fonction de
régression, Fonction de répartition conditionnelle, Fonction de densité conditionnelle, In-
dice fonctionnel simple, Données censurées, Données manquantes au hasard, Processus
ergodique, Séquence α-mélange, Vitesse de convergence, Normalité asymptotique.
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censorship. 9eme édition du colloque Tendances dans les Applications Mathématiques
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Chapter 1

General Introduction

1.1 Bibliographic note on the functional nonparamet-
ric statistics

The functional data analysis is a typical issue of current statistical research which has
encountered a strong infatuation recently. The many books and the recognized journals
devoted to this type of data

(
Statistica Sinica (2004), Computational Statistics and

Data Analysis (2006), Computational Statistics (2007), Journal of Multivariate Analysis
(2008)

)
, in addition to the possibility of application in several areas (such as meteorology,

quantitative chemistry, biometrics, econometrics or medical imaging) are all testimonies
of this success which is essentially due to the progress in the informatics world. conse-
quently, the use of functional data become customary in statistical problems on both the
theoretical and practical sides. Indeed, this field facilitates the data collection on thinner
and thinner discretization grid of mathematical objets such as curves, surfaces...due to
the great advancement in the domain of measuring devices and their treatment efficiency
as well as the informatics systems improvement in terms of storage capacities that al-
lowing larger data to be recorded. Contradictory to the standard multivariate methods
that are often not adapted to treat this sort of data, this new axis of infinite-dimensional
techniques is more powerful because it permits to properly examine these data with con-
serving the functional feature.
This branch of modern statistics was popularized during the last two decades, particu-
larly with the monographs of Ramsay and Silverman ((1997) [52]-(2002) [53]-(2005) [54])
and Bosq (2000) [8] for the theoretical aspects. We must cite the celebre groundbreaking
monograph of Ferraty and Vieu (2006) [33] for nonparametric statistical modelling with
functional variables and Ferraty and Romain (2011) [27] for recent developments. In the
same context, we refer to Manteiga and Vieu (2007) [45], Ferraty (2010) [21], Horvath
and Kokoszka (2012)[35] as well as Cuevas (2014)[11].

The modelization of statistical models adapted to such kind of infinite dimensional
data has attracted an increasing interest in the statistical literature. Ferraty et al. (2006)
[26] investigated a kernel estimate for a real response variable given an explicatory vari-
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able valued in a semi metric space whenever an independent observations were considered.
Precisely, this article dealt with some conditional nonparametric problems including the
estimation of the conditional distribution and the conditional density functions with an
application to the conditional quantile and the conditional mode in addition to a chemio-
metrical functional data application. The almost complete rate of convergence of each
estimator was stated. Based on the local linear approach, an application to Ozone pol-
lution prediction via the conditional quantile estimation when the data were in the form
of curves was presented by Cardo et al. (2004) [9]. In (2003), Dabo Niang in collabora-
tion with Rhomari [13] established a nonparametric treatment of the regression function
when the covariate was assumed to be of functional feature. By using a kernel smoothing
method, they constructed a consistent estimator of the regression function and demon-
strated its convergence rate almost surely and in norm L1. Moreover, they determined
the upper bound of each estimation. Few years later, exactly in (2009) [14], the same
researchers introduced similar results by considering doubly functional model (i.e. both
the response variable and the covariate were of functional kind). This latter estimator
was treated uniformly by Ferraty et al. [23] in a contribution dating in 2011. The authors
studied the almost complete consistency of the kernel estimate and they specified the
explicit expression of the convergence speed terms. Laksaci et al. (2009) [41] were inter-
ested on the robust modelization of the conditional distribution as a preliminary study of
the conditional quantile whenever a functional sample was considered. The asymptotic
results of this contribution are: Rates of almost complete consistencies and the asymp-
totic normality of the kernel estimators. A smooth kernel prediction of the conditional
mode in the i.i.d case was proved by Dabo Niang and Laksaci (2007) [12], Ezzahrioui and
Ould-Säıd (2008a) [18]. The work of Dabo Niang and Laksaci was devoted to the study
of the consistency in L1 norm of the nonparametric estimate when the random covariate
was assumed to be of functional type in the sense that was supposed to take its values
in some abstract semi metric space.The main purpose of the other paper is to evaluate
functionally the asymptotic normality of the suggested estimator in addition to the pre-
sentation of an application to confidence intervals and a simulation study. In the uniform
aspect, Ferraty et al. [22] introduced an important contribution in (2010) focused on the
functional kernel prediction via certain conditional characteristics, where they studied the
almost complete consistency rates of the nonparametric estimators.

The fact of assuming that the treated data are always independent is not realistic, for
this, many authors focused their studies on the dependent case. The functional almost
complete convergence of the conditional mode estimate via the estimator of the condi-
tional density function by using a kernel smoothing method, and the asymptotic behavior
of the kernel estimator of the regression function whenever the response variable was in a
Banach space and the explanatory variable valued in a semi-metric space were obtained
by Ferraty et al. (2005) [25] and Ferraty et al. (2012) [24], respectively, under α and
β-mixing hypotheses. Ezzahrioui and Ould-Säıd (2010) [20] established the consistency
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as well as the asymptotic normality of the conditional mode estimate under α-mixing
condition. Always in the functional space, the regression function estimation was stud-
ied by Ferraty and Vieu (2004) [32], Masry (2005) [46] when the data were assumed to
be sampled from a strong mixing process. By using the kernel approach, Ferraty et al.
(2005) [29], Ezzahrioui and Ould-Säıd (2008b) [19], Delsol (2009) [17] dealt with the non-
parametric functional time series forecasting based on conditional expectation estimation
when the sample was considered as an α-mixing sequence.

In the ergodic case, it worth telling that the ergodic theory finds its roots in the
branch of statistical physic examined in the second half of the 19th century. It was firstly
determined by Boltzmann (1871) [7] for the purposes of his kinetic theory of gases. The
ergodicity hypothesis is also applied in signal treatment in order to evaluate the evolu-
tion of the random signal. The value of this condition is assured in the study of Markov
chains, the stationary processes and for digital learning. The first significant result for
ergodic theory in mathematics is the famous Poincaré’s recurrence theorem (1980). The
development of the theory was undoubtedly only in 1931 with the ergodic theorems of
Birkhoff and Neumann. For further discussion on ergodic theory results, we refer the
reader to Krengel (1985) [38] or Peskir (2000) [50].
The context of ergodic observations has motivated a number of papers in the literature.
Ould-Säıd (1997) [48] proposed some interesting results on the kernel conditional den-
sity function estimate, where he investigated the uniform almost sure consistency of the
conditional mode via the conditional density convergence under ergodic hypotheses. A
nonparametric estimate of a regression function and its derivatives formulated by the
kernel method was proposed by Delecroix and Rosa (1996) [16], where the researchers
demonstrated almost surely the strong uniform convergence of the studied estimator. In
the same setting, we can mention also Rosa (1992) [55].
Recall that the ergodicity condition is weaker than any other kind of dependence (α-
mixing, β-mixing, ϕ-mixing...). It covers several cases that do not satisfy the usual
mixture structures. For example, there are some processes where the α-mixing condition
doesn’t hold such as the autoregressive process of order 1 (AR(1)). Further, it allows to
avoid the widely used strong mixing condition and its variants to measure the dependency
and the very involved probabilistic calculations that it implies.
The combination of the functional and ergodic data in nonparametric treatment is a re-
cent axis in statistics. This problem was established firstly by Laib and Louani (2010)
[39], who proposed the first functional ergodic version of the kernel smoothing estimation.
This last paper is based on the prediction via the classical regression function illustrated
by examples. The researchers proved the convergence rate in probability, in addition to
the asymptotic normality of the built estimator. Rates of pointwise and uniform consis-
tencies of the same estimator were investigated almost surely by Laib in collaboration
with Louani (2011) [40]. Inspired y the groundbreaking contributions of Laib and Louani
((2010)-(2011)), the nonparametric estimate when the data were sampled from an ergodic
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process was the subject of a limited number of works in functional statistics.
We cite among them Chaouch and Khardani (2015) [10], Ling et al. (2016) [43] for the case
of incomplete and ergodic observations. The contribution of Chaouch and Khardani dealt
with the smooth kernel nonparametric modelization of the conditional quantile function
when the covariates were in the form of curves. Under random censorship, the explicit
expression of the almost sure pointwise consistency rate as well as the asymptotic nor-
mality of the constructed estimator were established in this paper. In order to prove the
effectiveness of the presented results, some applications including the confidence bands,
a simulation study in addition to a real data analysis of the electricity peak demand pre-
diction were also introduced. The principal idea of the other work is the nonparametric
treatment via the conditional mode estimation whenever missing at random responses
are considered. The publishers investigated some asymptotic properties of the kernel
estimator when the explicatory variable take its values in a semi metric space.

1.2 Incomplete data
The survival analysis area is becoming increasingly popular because of its importance in
several applied sciences as medicine, epidemiology, industry, finance, biometry, economy,
sociology...This axis is interested on the term ”lifetime”, that is a positive variable des-
ignates the time elapsed until the realization of the event of interest. This variable can
be the lifetime of a patient after treatment, the duration of unemployment, the time be-
tween two successive breakdowns of a device, the lifetime of a company..., and all which is
linked with measuring the moment of arrival of the events relating to (breakdown, death,
failure...).
For such sort of studies and for various reasons, the variable of interest is not always
completely observed for certain individuals. We are talking then about incomplete data
which equates to loss of information.
Distinguishing three types of these data: censoring data, truncated data and missing data.

In this manuscript, we deal only with censoring and missing models. A brief discus-
sion of each of these kinds, in addition to a general historical overview on the topic are
introduced below.

1.2.1 Censored data
In the censorship case, the lifetime T is only known for a part of the sample individuals.
Data for which survival time is unknown are said to be censored. There are many applied
scenarios that can generate this mechanism, as the end of study while some patients still
alive (excluded-alive), patient’s withdrawal from study (for example stopping or changing
treatment due of side effects or treatment ineffectiveness), loss of follow-up (interruption
of individual monitoring before the event of interest occurrence)...
This kind of data may be generally classified into three big categories: right censoring,
left censoring and interval censoring, presented as follows
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Right censoring

Right censoring is the most frequent example of incomplete data in survival analysis, and
it was widely described in the literature. A survival time is said to be censored on the
right if the individual did not experienced the event of interest at his last observation. In
this case, the lifetime T may not be directly observable. Instead, we observe only censored
lifetimes of items under study (C). It is worth defining this situation by the couple (Y, δ),
with

Y = T ∧ C = min(T, C).

and

δ =

{
1 if T ≤ C

0 if T > C,

where, δ is named the indicator of censure: a binary variable represents the nature of the
observed duration.
The true survival time T is observed only if it is less than C. In this case, the data are
not censored and δ = 1. If δ = 0, the data are said to be right censored.
We obtain the following types:

• Type 1: fixed censoring

The survival time cannot be observed beyond a fixed maximum duration (identical for
all individuals). This type of censorship therefore comes from stopping the collection of
information on a time fixed a priori (C). For an individual i, the lifetime Ti is observed
only when Ti ≤ C. In this context, we introduce the following expression:

Yi = min(Ti, C).

The fixed censoring is used for example in the industrial field, when we observe the service
life of a component electronic over a time interval [0, C].

• Type 2: censorship waiting

The experimenter fixes a priori the number of events to be observed (denoted r). There-
fore, the end date of the experiment becomes random, while the number of events being
non-random. This model is often used in reliability studies.
Given an n-sample T1 · · · , Tn of ordered variables, where we obtain the statistics of order
T(1), T(2), · · · , T(n). Let r be a fixed positive number, such that (1 ≤ r ≤ n). The censor-
ship date is then T(r), where we only observe T1 ≤ T2 ≤ · · · ≤ Tr.

Otherwise, the observations in this case depend on the couple (Yi, δi) as follows

Yi = Ti ∧ T(r) and δi = 1{Ti≤T(r)}.
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• Type 3: random censoring

Consider (Ti) a sequence of i.i.d random variables, and suppose that they form a strictly
stationary sequence of lifetimes. Let Ci be a sequence of i.i.d. censoring random variables.
The censorship of type (3) is achieved if the observed random variables are not Ti, but
rather (Yi, δi), with Yi = min(Ti, Ci) and δi = 1{Ti≤Ci} is the censorship indicator which
informs us if the duration actually observed corresponds to a true survival time Ti (when
δi = 1), or to a random censoring if δi takes the value zero, namely

- If δi = 1 ⇒ Yi = Ti,

- if δi = 0 ⇒ Yi = Ci.

Left censoring

Left censoring is much rare. An observation is said to be censored on the left if we only
know that the individual has already experienced the event of interest before entering the
study, but the exact time of this experience is unknown. The information available on
the lifetime really observed can be summarized in the couple (Y, δ), with

Y = max(T, C),

and

δ =

{
1 if T > C ⇒ Y = T (the lifetime is observed)
0 if T ≤ C ⇒ Y = C (left censoring).

Remark 1.2.1. Right and left censoring types can be combined in the same sample. This
can happen in the case of double (or mixed) censorship. Let Cr and Cl be right and left
censorship variables, respectively, with assuming that Cr < Cl. The triplet (Y, δr, δl) is
observable, where
δr = 1{T≤Cr}, δl = 1{T≤Cl},

and
- if T ≤ Cr ⇒ Y = Cr,

- if Cr < T ≤ Cl ⇒ Y = T,

- if Cl < T ⇒ Y = Cl.

Interval censoring

In interval censorship, the exact time of the event of interest occurrence cannot be ob-
servable. Instead, we know only the lower and the upper bounds between which the
event takes place. This type of censorship can appear in medical experiments, for ex-
ample in clinical trials where patients are checked periodically, if a disease arises, the
only information available is that it produced between two medical visits. The industry is
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another area to apply interval censoring, where there are periodic inspections of machines.

In this thesis and exactly in Chapters 3 and 6, we focus only on the third type of
right censoring (random censorship). For such data and for the censoring in general, the
cause of censoring must be independent of the event of interest. This condition is very
useful and essential for classical survival analysis models, due to its ability to ensure the
identifiability of the studied models. In other words, if Ti and Ci are independent, then
the law of T is identifiable from the law of the observations.

1.2.2 Missing data

Now, we turn to another particularity of the data incompleteness so-called missing data.
It occurred when there is no observation of a variable for a given individual. In statistical
analysis, such data are as important as the observed data, what requires solutions to
manage the study successfully in the presence of the miss. We distinguish in the missing
models two big categories. The first is ignorable missing mechanism (the probability
of observing a missing data element is independent of the value of that data element)
and it includes both of Missing Completely At Random and Missing At Random
kinds, the other group is named non-ignorable missing data (contradictory to the previous
family, the probability of observing a missing data element is dependent of the value of
that data element) and it contains the type of Missing Not At Random data. These
mechanisms are suggested as follows:

Missing Completely At Random
In this missing data type, the probability that an observation is missing is not related to
any other variable. More precisely, Missing Completely At Random (MCAR) occurred
when the missing value is independent of both observed and missing data.

Missing At Random

In the aspect of Missing At Random (MAR), missing data are explained from other
observed variables. In other words, this mechanism means that the missing observations
in the data are independent of the missing variables themselves, but dependent on other
observed variables.

Missing Not At Random

If the missing value depend on the missing values of the variable itself, the mechanism is
then called Missing Not At Random (MNAR).

In this manuscript (Chapter 4), we are interested in the Random At Messing data
type which is central in the missing models.
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Historically, many authors were interested on the nonparametric modelization for in-
complete data. In the censored case, Ould-Säıd and Cai (2005) [49] established consistency
properties of the conditional mode estimate. More exactely, they investigated uniformly
the convergence rate of the kernel estimator. In (2010), Khardani et al. [37] estimated
the same function almost surely. The randomly censored mode prediction was treated
by proving the consistency rate of the studied estimator and presenting its asymptotic
normality. In the same setting of incomplete observations, Ferraty et al. (2013) [31]
examined the mean estimate for functional data with responses missing at random. The
researcher dealt with two estimators, the first one is based on the average of the predicted
values and the other was a functional adaptation of the Horvitz-Thompson estimator.
More recently, Chaouch in collaboration with Khardani [10] suggested an important work
dated in (2015) on the ergodic process forecasting via a kernel estimation in a functional
framework. In the presence of random censorship, the pointwise convergence of the con-
ditional quantile function was proved. One refers also to Ling et al. (2016) [43] for data
random at missing. The publishers evaluated nonparametrically the conditional mode
estimate through the conditional density estimator whenever the functional explicatory
variables were considered. Under general ergodic assumption, the almost sure convergence
(with rate) and the asymptotic normality in addition to an illustrative simulation study
were introduced in this contribution.

1.3 Originality and modernization of the single index
approach

1.3.1 The single index approach
The models that incorporate simultaneously parametric and nonparametric treatments
and permit to extract a compromise between the two mechanisms are called in the lit-
erature semi-parametric models or single index approaches. This sort of modeling was
intensively discussed in various situations throughout the recent statistical literature. It
progressively occupied an important place in different scientific fields, particulary econo-
metrics, due to its flexibility in dealing with the high dimensions. Indeed, this alternative
approach introduce a parameter θ, which consists in bring to the covariates a dimension
in smaller than dimension of the space variable and therefore qualifies the single index
approach to be an efficient tool for treating the curse of dimensionality problem and also
for increasing the explanatory power of each variable. As a simple example, the classi-
cal regression model r(x) = E(Y |X = x) will reformulate by using the semi-parametric
modelization as the following way

rθ(x) = Eθ(Y |X = x) = E(Y | < X, θ >=< x, θ >).

In the multivariate case, the topic of semi-parametric models has a long history in
the literature. For example, Ichimura (1993) [36] introduced a contribution dealt with
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two semi-parametric estimators, where the author studied the consistency as well as the
asymptotic normality of the proposed estimates. In the same year, another work fo-
cused on this type of models was suggested by Härdle et al. (1993) [34] for the optimal
smoothing. The estimators effectiveness in the single index model was the subject of
some contributions. We quote among them Newey and Stoker (1993) [47] and Delecroix
et al. (2003) [15]. The first paper included effectiveness properties for weighted average
derivative estimators and the construction of estimators with elevated efficiency, while the
main purpose of other work is to formulate an asymptotically effective estimator. The
publishers in this last one investigated a nonparametric conditional density estimate and
studied some asymptotic properties.

1.3.2 The semi-parametric models in functional statistics

The functional single index framework has aroused growing interest, we cite some inter-
esting works in this area. This trend was first initiated by Ferraty et al. (2003) [28]. The
contribution focused on the kernel-type modelization of the regression function, when the
observations were linked with a single index structure. The authors determined the full
expression of the almost complete consistency rate of the constructed estimator when
the data were in the form of curves. The same results for time series forecasting were
investigated by Ait-Säıdi et al. (2005) [1] in the dependent situation. In (2008), Ait-Säıdi
et al. [2] highlighted the problem of unknown functional index estimation, where they
used the cross-validation method. The topic of functional derivative estimation for this
type of models was examined by Ferraty et al. (2011) [27]. Always by using the single
index approach, Attaoui et al. (2011) [4] treated nonparametrically the kernel conditional
density prediction for a scalar response variable given an explicatory variable valued in
an Hilbert space whenever independent observations were considered. Precisely, they
studied the pointwise and the uniform almost complete consistency rate of the suggested
estimator. An application to the conditional mode including the convergence rate of the
estimator was also stated. Few years later and exactly in (2014), the dependent version of
this paper was proposed by Ling [42], where he studied the same results under α-mixing
assumption. The asymptotic normality of this last estimator was established by Ling et
al. [44] in 2012. In the same context, one can refer to Attaoui and Ling (2016) [6] for the
conditional cumulative distribution estimate, and Rabhi et al. (2017) [51] for the uniform
convergence of the conditional quantile function.
In the strongly mixing setting, some asymptotic properties of the conditional density and
the conditional mode functions when the sample was assumed to be of functional feature,
and the uniform consistency with rate of the conditional density in addition to its asymp-
totic normality with functional covariates were examined in the same year by Attaoui
(2014a) [3] and Attaoui (2014b) [4] , respectively, when the data were based always on
the single index modeling.
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1.4 Plan of the thesis
This manuscript is organized in six chapters, described successively as follows :
Naturally, we open our work with an introductory chapter of the different thematics cov-
ered in our research trend. we start with a bibliographic study of the problems related
to the functional nonparametric statistics. Next, we propose a brief presentation of in-
complete data notations, specially censored data and missing data with their deferent
types, in addition to a general historical overview on these sorts of modeling. This part
is followed by a bibliographic context on the single index approach in both multivariate
and functional cases. Finally, our introduction ends with the exposition of the obtained
asymptotic results.

Chapter 2 represents a short mathematical background that briefly includes some ba-
sic definitions, concepts and inequalities needed throughout this manuscript.

In the third chapter, we treat nonparametrically the conditional mode function via the
conditional density estimator of a randomly censored scalar response given a functional
covariate when the data are sampled from a stationary and ergodic process. The principal
obtained results are the establishment of the almost sure consistency rates and the central
limit theorems of the build estimators by the kernel-type method. In order to prove the
effectiveness of the presented results, some applications including the confidence bands in
addition to a simulation study are also introduced.

The following chapter is devoted to the convergence in probability as well as the asymp-
totic normality of the regression function operator under ergodic assumption. Here, we
deal with the functional single index model whenever missing at random responses are
considered. As an application, the asymptotic (1−ζ) confidence interval of the regression
operator is suggested for 0 < ζ < 1.

In the chapter five, we are interested on the nonparametric kernel estimation of a
randomly scalar response given a functional Hilbertian explanatory variable, when the
data are sampled from an i.i.d process with a single-index relationship. The asymptotic
normality of the conditional density estimator is investigated from which one derives
the central limit theorem of the conditional mode function. These results lead to con-
struct prediction intervals. At the end of this chapter, we clarify our methodology with
examples on simulated data where the objective is the comparative study between the
functional single index setting (FSIM) and the non-parametric functional data analysis
case (NPFDA).

The last chapter focus on the dependent data. In particular, we examine the condi-
tional cumulative distribution and the conditional quantile estimators when the data are
of functional feature and linked with a single-index structure. In the presence of the right
censorship, the asymptotic normality of the constructed estimators is treated under some
mild conditions. These asymptotic properties are illustrated through a simulation study
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to prove the validity and finite sample performance of the considered estimators.

The thesis closes with a general conclusion as well as some open questions and pre-
sumable future prolongations of our works in order to ameliorate and extend the obtained
results to short and long terms.

1.5 Brief presentation of the results
We give hereafter a short overview of the results obtained throughout our thesis.

1.5.1 Results : Ergodic case for censored data

In this part, we consider the case where the data are simultaneously functional and ergodic.
Under random censorship, we establish the almost sure convergence of the conditional
density and the conditional mode functions, in addition to the central limit theorem of
both of these nonparametric estimates.

Proposition 1.5.1. Under assumptions of concentration of the probability measure of the
functional variable, as well as other conditions of regularities and techniques, one gets

sup
t∈SR

|φ̂n(t|z)− φ(t|z)| = Oa.s.(h
α1
K + hα2

H ) +Oa.s.

(√
logn

nhHϕ(hK)

)
.

Theorem 1.5.1. In view of some hypotheses detailed in Chapter 3, it yields

|θ̂(z)− θ(z)| = Oa.s.

(
hα1
K + hα2

H

)
+Oa.s.

(√
logn

nhHϕ(hK)

)
.

Theorem 1.5.2. Under certain assumptions relating to the estimator, we have for the
asymptotic normality

√
nhHϕ(hK)(φ̂n(t|z)− φ(t|z)) D−→ N (0, σ2(z, t)),

where

σ2(z, t) =
M2

M2
1

φ(t|z)
Ḡ(t)f1(z)

∫
R
(H ′(v))2 dv,

with Mj = Kj(1)−
∫ 1

0
(Kj)′ς0(u) du for j = 1, 2.

Noting that ” D−→ ” symbolyzes the convergence in distribution.

Theorem 1.5.3. For all z ∈ E, we obtain, as n goes to infinity√
nh3Hϕ(hK)

ϱ2(z, θ(z))
(θ̂(z)− θ(z))

D−→ N (0, 1),
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where

ϱ2(z, θ(z)) =
M2

M2
1

φ(θ(z)|z)
Ḡ(t)f1(z)(φ(2)(θ(z)|z))2

∫
R
(H(2)(v))2 dv.

The proofs of these results and the detail of the imposed hypotheses will be given in
the third chapter of this thesis.

1.5.2 Results : Ergodic case for missing data

In this part, we suppose that the data are linked with the semi-parametric modeling. We
investigate some asymptotic properties of the estimator r̂n(θ, x) for the regression operator
based on the functional stationary ergodic data with MAR. More precisely, Theorem 1.5.4
shows the convergence in probability of the estimator. The asymptotic distribution of this
kernel estimator is presented in Theorem 1.5.5.

Theorem 1.5.4. Using the general ergodicity condition and the assumptions of functional
concentration, we write

a) (
nϕθ(h)

log log(n)

) 1
2

(r̂n(θ, x)− Cn(θ, x))
P−→ 0,

where P−→ means the convergence in probability.

b) (
nϕθ(h)

log log(n)

) 1
2

(r̂n(θ, x)− r(θ, x))
P−→ 0.

Theorem 1.5.5. For any x ∈ H, we have

a) √
nϕθ(h)(r̂n(θ, x)− Cn(θ, x))

D−→ N (0, σ2(θ, x)),

where D−→ means the convergence in distribution and σ2(θ, x) =
M2

M2
1

V (θ, x)

p(θ, x)f1(θ, x)
,

with Mj = Kj(1)−
∫ 1

0
(Kj)′(u)τ0(u)du for j = 1, 2.

b) √
nϕθ(h)(r̂n(θ, x)− r(θ, x))

D−→ N (0, σ2(θ, x)).

The required assumptions and the demonstrations of the above theorems will be in-
troduced in detail in Chapter 4.
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1.5.3 Results : Independent case for complete data

In the next part, we will explicit the asymptotic normality results of the conditional
density and conditional mode estimators when the observations are independent and
linked with single index structure.

Theorem 1.5.6. Under some classical hypotheses in functional nonparametric estimation
and other technical conditions, one obtains√

nhHϕθ,x(hK)

σ2(θ, y, x)

(
f̂(θ, y, x)− f(θ, y, x)

)
D−→ N (0, 1), as n→ ∞,

where σ2(θ, y, x) =
α2(θ, x)f(θ, y, x)

(α1(θ, x))2

∫
H2(t)dt,

with αl(θ, x) = K l(1)−
∫ 1

0

(K l)
′
(u)βθ,x(u)du, l = 1, 2.

” D−→ ” means the convergence in distribution.

Theorem 1.5.7. For all x ∈ H, we have as n→ ∞√
nh3Hϕθ,x(hK)

ν2(θ,Mθ(x), x)
(M̂θ(x)−Mθ(x))

D−→ N (0, 1), as n→ ∞,

where

ν2(θ,Mθ(x), x) =
α2(θ, x)f(θ,Mθ(x), x)(

α1(θ, x)f (2)(θ,Mθ(x), x)
)2 ∫ (H

′
(t))2dt.

The demonstrations and the necessary conditions to obtain these two results will be
detailed in Chapter 5 of our manuscript.

1.5.4 Results : Dependent case for incomplete data

Always in the functional single index framework, we assume now that the observations
are censored. If the conditional distribution function and the conditional quantile satisfy
the nonparametric models given in Chapter 6, then, under general technical assumptions
in NPFDA and other slightly restrictive conditions on the mixing coefficient, one obtains
the following results on the asymptotic normality of these kernel estimators, and we leave
the assumptions and the details of the proofs for the sixth chapter.

Theorem 1.5.8. Using some regularity condition, it yields

(
nϕθ,x(hK)

σ2(θ, t, x)

)1/2 (
F̂ (θ, t, x)− F (θ, t, x)

)
D−→N (0, 1),

where σ2(θ, t, x) =
a2(θ, x)

(a1(θ, x))2
F (θ, t, x)

(
1

Ḡ(t)
− F (θ, t, x)

)
,
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with al(θ, x) = K l(1)−
∫ 1

0
(K l)′(u)ξθ,xh (u) du, for l = 1, 2,

and ” D−→ ” means the convergence in distribution.

Theorem 1.5.9. By some basic hypotheses, and if γ is the unique order of the quantile
such that γ = F (θ, ζθ(γ, x), x) = F̂ (θ, ζ̂θ(γ, x), x), one gets

(
nϕθ,x(hK)

Σ2(θ, ζθ(γ, x), x)

)1/2 (
ζ̂θ(γ, x)− ζθ(γ, x)

)
D−→N (0, 1),

where Σ(θ, ζθ(γ, x), x) =
σ(θ, ζθ(γ, x), x)

f(θ, ζθ(γ, x), x)
.
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[18] Ezzahrioui, M. and Ould-Säıd, E. (2008a). Asymptotic normality of a nonparamet-
ric estimator of the conditional mode function for functional data. J. Nonparametric
Statistics, 20. No. 1, 3-18.
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Chapter 2

Necessary Tools and Definitions

In order to facilitate the reader’s examination of this thesis, we propose this short mathe-
matical background involving briefly some required definitions, concepts and inequalities
that are essential to derive the main results of this manuscript.

2.1 Definitions
Small Ball Probabilities
Firstly, we will present a powerful quantity so-called small ball probability (or concen-
tration property), which plays a key role in the functional nonparametric problems. This
is evident from its ability to propose an alternative to the curse of dimensionality prob-
lem well-known for the nonparametricians and from the strong relationship between this
measure and the asymptotic results for functional framework, where it directly effects on
the rates of convergence. Indeed, the small ball probability controls the concentration of
the probability measure of the functional variable on a small ball, and it is constructed
as reported in Ferraty and Vieu (2006) [55] as

ϕx(h) = P(X ∈ B(x, h)),

where X is a random variable taking its values in a semi metric space (E, d), x is a fixed
element of E, and B(x, h) = {x′ ∈ E, d(x, x′) ≤ h} is the ball centered at x and of radius
h (h is a real positive number).

The kernel-types are defined as follows:

Definition 2.1.1. (Ferraty and Vieu (2006) [55])

i) A function K from R into R+ such that
∫
K = 1 with compact support [−1, 1] and

such that ∀u ∈ (0, 1), K(u) > 0 is called a kernel of type 0.

ii) A function K from R into R+ such that
∫
K = 1 is called a kernel of type I if

there exist two real constants 0 < C1 < C2 <∞, such that

C11[0,1] ≤ K ≤ C21[0,1].
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iii) A function K from R into R+ such that
∫
K = 1 is called a kernel of type II if

its support is [0, 1] and if its derivative K ′ exists on [0, 1] and satisfies for two real
constants −∞ < C2 < C1 < 0:

C2 ≤ K ′ ≤ C1.

Definition 2.1.2. ”Martingale differences” (Laib and Louani (2011) [70]) A sequence
of random variables (Wn)n≥0 is said to be a sequence of martingale differences with respect
to the sequence of σ-fields (Fn)n≥0 if

(i) (Wn)n≥0 is (Fn)n≥0-measurable,

(ii) ∀n ≥ 0, E(Wn|Fn−1) = 0 almost surely.

Noting that this last definition is related to the exponential inequality for ergodic case,
where this latter will be introduced later (at the end of this chapter).

2.2 Convergence notions

Let’s (Xn)n∈N be a sequence of real random variables defined on a probability space
(Ω,A,P), while (un)n∈N is a deterministic sequence of positive real numbers.

Definition 2.2.1. ”Almost complete convergence”(Ferraty and Vieu (2006) [55])
One says that (Xn)n∈N converges almost completely (a.co.) to some real random variable
(r.r.v.) X, if and only if:

∀ε > 0,
∑
n∈N

P(|Xn −X| > ε) <∞,

and the almost complete convergence of (Xn)n∈N to X is denoted by

lim
n→∞

Xn = X, a.co. or Xn
a.co.−−−→
n→∞

X.

Definition 2.2.2. ”Rate of almost complete convergence”(Ferraty and Vieu (2006)
[55]) One says that the rate of almost complete convergence of (Xn)n∈N to X is of order
un if and only if

∃ε0 > 0,
∑
n∈N

P(|Xn −X| > ε0un) <∞,

and we write
Xn −X = Oa.co.(un).

Definition 2.2.3. ”Almost sure convergence”(Ferraty and Vieu (2006) [55]) We say
that (Xn)n∈N converge almost surely (a.s.) to some r.r.v. X if:

P
(

lim
n→∞

Xn = X
)
= 1.
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This is denoted
Xn

a.s.−−−→
n→∞

X.

Definition 2.2.4. ”Convergence in probability”(Ferraty and Vieu (2006) [55]) We
say that (Xn)n∈N converge in probability to X if:

∀ε > 0, lim
n→∞

P(|Xn −X| > ε) = 0.

This is written
lim
n→∞

Xn = X, P.

Remark 2.2.1. • If Xn
a.s.−−−→

n→∞
X, then Xn

p.−−−→
n→∞

X.

• If Xn
a.co.−−−→
n→∞

X, then Xn
a.s.−−−→

n→∞
X and Xn

p.−−−→
n→∞

X.

2.3 Dependency notions
For several phenomena of the real world, observations in the past and present may have
big impact on observations in the near future, but rather weak impact on observations
in the far future. Mathematically, such sort of phenomena is expressed by using random
sequences that satisfy strong mixing conditions. Indeed, There are various ways to mod-
elize the dependence structure via the different types of mixing that are defined according
to coefficients, noted: α, β, ρ, ψ and ϕ. For more discussions on the mixing hypothesis,
we direct the reader to Bosq (1998) [10], Rio (2000) [98]. In this thesis, we deal specifi-
cally with the alpha-mixing (or strong mixing) sequence, which is the most general and
the weakest among all the previously mentioned mixing processes and is therefore least
restraining. In this setting, some definitions that can be found in Ferraty and Vieu (2006)
[55] are suggested as follows:

Definition 2.3.1. Let (∆n)n∈Z be a sequence of random variables defined on some proba-
bilistic space (Ω,A,P) and taking values in some space (Ω′,A′). For −∞ ≤ j ≤ k ≤ +∞,
one denotes by Ak

j the σ-algebra generated by the random variables (∆s, j ≤ s ≤ k).

The strong mixing coefficients are identified in the following expression:

α(n) = sup
{k∈Z, A∈Ak

−∞, B∈A+∞
n+k}

|P(A ∩B)− P(A)P(B)|.

Definition 2.3.2. The sequence (∆n)n∈Z is said to be α-mixing (or strongly mixing), if

lim
n→∞

α(n) = 0.

Definition 2.3.3. One says that the sequence (∆n)n∈Z is arithmetically (or equivalently



2.4 Some useful inequalities 23

algebraically) α-mixing with rate a > 0 if

∃C > 0, α(n) ≤ Cn−a.

Remark 2.3.1. The following scheme summarizes the implications between the different
types of dependency

ψ − mixing =⇒ ϕ− mixing =⇒
{
ρ− mixing
β − mixing

}
=⇒ α− mixing.

2.4 Some useful inequalities
Always for the aim of simplicity, we will recall some inequalities adapted to the framework
of this thesis. Let’s now introduce two powerful inequalities for mixing sequences of real
random variables, which are stated bellow.

Proposition 2.4.1. ”Davydov-Rio’s inequality”(Ferraty and Vieu (2006) [55]) (Wn)n∈Z

will be a stationary sequence of real random variables assumed to be α-mixing. Let us,
for some k ∈ Z, consider a real variable W (resp. W ′) which is Ak

−∞-measurable (resp.
A+∞

n+k-measurable).

i) If W and W ′ are bounded, then:

∃C, 0 < C < +∞, Cov(W,W ′) ≤ Cα(n).

ii) If, for some positive numbers p, q, r such that p−1+ q−1+r−1 = 1, we have EW p <∞
and EW ′ q <∞, then:

∃C, 0 < C < +∞, Cov(W,W ′) ≤ C(EW p)
1
p (EW ′ q)

1
qα(n)

1
r .

Lemma 2.4.1. (Volkonskii and Rozanov (1959) [106]) Let W1, ...,WL be strongly mixing
random variables measurable with respect to the σ-algebras F j1

i1
, ...,F jL

iL
respectively with

1 ≤ i1 < j1 < i2 < ... < jL ≤ n, il+1 − jl ≥ V ≥ 1 and |Wj| ≤ 1 for j = 1, ..., L. Then,

∣∣∣∣∣E
(

L∏
j=1

Wj

)
−

L∏
j=1

E(Wj)

∣∣∣∣∣ ≤ 16(L− 1)α(V ),

where α(V ) is the strongly mixing coefficient.

The exponential inequality for partial sums of unbounded martingale differences is
necessary in the studies focused on the ergodic processes forecasting via functional esti-
mation, that is used to prove the asymptotic results of the constructed estimates. This
inequality is given in the following lemma:
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Lemma 2.4.2. ”Exponential inequality” (Laib and Louani (2011) [70]) Let (Wn)n≥1

be a sequence of real martingale differences with respect to the sequence of σ-fields (Fn =

σ(W1, · · · ,Wn))n≥1, where σ(W1, · · · ,Wn) is the σ-field generated by the random variables

W1, · · · ,Wn. Set Sn =
n∑

i=1

Wi. For any p ≥ 2 and any n ≥ 1, assume that there exist

some nonnegative constants c and dn such that

E(W p
n |Fn−1) ≤ Cp−2p!d2n, almost surely.

Then, for any ε > 0, we have

P(|Sn| > ε) ≤ 2 exp
{
− ε2

2(Dn + Cε)

}
,

where Dn =
n∑

i=1

d2i .
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3.1 Introduction
Survival analysis methods have been used in a number of applied fields ( medicine, bi-
ology, epidemiology, engineering, econometrics, finance, social sciences, demography...).
The analysis of failure time data usually means addressing one of three problems: the
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estimation of survival functions, the comparison of treatments or survival functions, and
the assessment of covariate effects or the dependence of failure time on explanatory vari-
ables. There are many reasons that make it difficult to get complete data in studies
involving survival times. A study is often finished before the death of all patients, and
we may keep only the information that some patients are still alive at the end of the
study, not observing when they really die. In the presence of censored data, the time to
event is unknown, and all we know is that the survival time has occurred before, between
or after certain time points, this obviates the need for inference methods for censored
data. When the failure time is observed completely, there are numerous methods to make
non parametric inference on its conditional distribution. For instance Nadaraya (1964)
[15] and Watson [18] proposed a nonparametric estimator to estimate the conditional
expectation as a locally weighted average using a kernel function. Beran (1981) [1] ex-
tended the Kaplan-Meier estimator and proposed a method for non-parametric estimation
(generalized Kaplan-Meier) of the conditional survival function for right-censored data.

Results regarding the estimation of the conditional models from right censored data
can be found for instance in Dabrowska (1992) [4], where author gave the nonparametric
regression with censored survival time data. In Li and Doss [13] an approach to non-
parametric regression for life history data using local linear fitting was given. Dehgham
and Duchesne (2016)[6] established the estimation of the conditional survival function of
a failure time given a time-varying covariate with interval-censored observations. Many
works in the statistical literature deal with nonparametric estimation when the variable
of interest is either complete or singly censored. However, in reliability and survival time
studies, one can encounter a more complicated random censorship situation. An example
of such a model, given in Patilea and Rolin (2006) [17], is to consider a reliability sys-
tem consisting of three components with two components in series and one component
in parallel with the series system, the authors defined the product-limit estimators of the
survival function with twice censored data.

On the other hand, the problem of nonparametric conditional models for censored data
where the observations can be censored from either left or right are very limited in the
literature. This gap can partially be explained by the difficulties arising in the estimation
of the conditional distribution and/or density function with two-sided censored data.
The problem of estimating the (unconditional) distribution function for data that may be
censored from above and below has been considered by several authors.

Despite the regression function is of interest, other statistics such as quantile and mode
regression might be important from a theoretical and a practical point of view. Quantile
and/or mode regression is a common way to describe the dependence structure between a
response variable T and some covariate Z. Unlike the regression function that relies only
on the central tendency of the data, the conditional quantile function allows the analyst
to estimate the functional dependence between variables for all portions of the conditional
distribution of the response variable.

Mode regression is a common way to describe the dependence structure between a
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response variable T and some covariate Z. Unlike the regression function (which is de-
fined as the conditional mean) that relies only on the central tendency of the data, the
conditional mode function allows the analysts to estimate the functional dependence be-
tween variables for all portions of the conditional distribution of the response variable.
On the other hand, compared with the standard approach based on functional conditional
mean prediction that is sensitive to outliers, functional condition mode prediction could
be seen as a reasonable alternative to conditional mean because of its robustness. More-
over, quantiles are well known for their robustness to heavy-tailed error distributions and
outliers which allow to consider them as a useful alternative to the regression function see
Chaouch and Khardani (2015) [2]. Conditional model are used in finance and/or insur-
ance to model the risks of extreme values. The regression quantile function provide a well
description of the data, specifically the conditional median function (see Chaudhuri et al.
(1997) [3]). Estimation of the conditional mode of a scalar response given a functional
covariate has attracted the attention of many researchers.

In the censored case, Ould-Säıs and Cai (2005) [16] stated the uniform strong consis-
tency with rates of the kernel estimator of the conditional mode function, in this context,
we refer to Ling et al. (2016) [14] for the estimation of conditional mode for functional
stationary ergodic data with missing at random. The ergodic theory has appeared in
statistical mechanics, notably in Maxwell’s and Gibbs’s theories. It is necessary to make
a sort of logical transition between the average behavior of the set of dynamic systems
and the temporal average of the behaviors of a single dynamic system. It is derived from
an ingenious hypothesis used for a long time without justifying it, and in various forms.
In the context of the ergodic functional case with censored observations the literature is
very restricted.

So, in the present work, we investigate the asymptotic properties of the conditional
mode function of a randomly censored scalar response given a functional covariate when
the data are sampled from a stationary and ergodic process. In practice, this study has
great importance, because, it permits us to construct a prediction method based on the
conditional mode estimator. Here, we consider a model in which the response variable
is censored but not the covariate. Besides the infinite dimensional character of the data,
we avoid here the widely used strong mixing condition and its variants to measure the
dependency and the very involved probabilistic calculations that it implies. Therefore,
we consider in our setting the ergodic property to allow the maximum possible generality
with regard to the dependence setting. Further motivations to consider ergodic data are
discussed in Laib and Louani (2010 [11] -2011 [12]) where details defining the ergodic
property of processes are also given.

The layout of the paper is as follows. In the next section, our model is described.
Section 3.3 is dedicated to fixing notations and hypotheses. We state our main result of
strong consistency rate, the asymptotic normality as well as an application to confidence
bands, where the technical proofs are given with some auxiliary results in Section 3.4. A
simulation study is also presented in Section 3.5 to illustrate the validity of the kernel
estimator. Lastly, our contribution ends with a general conclusion proposed in Section
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3.6.
Consider a random pair (Z, T ) which is valued in E×R, where E is some semi-metric

abstract space equipped with semi-metric d(·, ·), and T takes values in R. Let (Zi, Ti)1≤i≤n

be the statistical sample of pairs which are identically distributed as (Z, T ) and supposed
to be stationary and ergodic. Henceforward, Z is called functional random variable f.r.v.
For z ∈ E, we denote by φ(·|z) the conditional density function of T given Z = z and we
assume that φ(·|z) has an unique conditional mode θ(z) defined as

θ(z) = arg sup
t∈SR

φ(t|z), (3.1)

where SR is a fixed compact subset of R.

3.2 The model
Consider a randomly censored model given by two nonnegative sequences of random
variables T1, · · · , Tn (survival times) and C1, · · · , Cn (i.i.d censoring r.v) with the dis-
tribution functions F and G, respectively. In pratice, particularly, in medical appli-
cations, it is not possible to observe the lifetimes T of all patients under study in the
presence of censoring. We only observe the triples (Xi, δi, Zi), where Xi = min{Ti, Ci}
and δi = 1{Ti≤Ci}, 1 ≤ i ≤ n with 1A denotes the indicator function of the set A, where
both of Ti and Ci are expected to exhibit some kind of dependence which ensures the
identifiability of the model.

In biomedical case studies, it is assumed that Ci and (Zi, Ti) are independent, this
condition is plausible whenever the censoring is independent of the patient’s modality.

In this kind of model, it is well known that the empirical distribution is not a con-
sistent estimator for the distribution function G. Therefore, Kaplan and Meier (1958)
[9] proposed a consistent estimator, for the survival function Ḡ(·) = 1 − G(·) which is
constructed by

Ḡn(t) =


n∏

i=1

(
1−

1− δ(i)
n− i+ 1

)1{X(i)≤t}

, if t < X(n),

0, Otherwise,

where X(1) < X(2) < · · · < X(n) are the order statistics of (Xi)1≤i≤n and δ(i) is concomitant
with X(i).

Because of the relation between the conditional mode and the conditional density
given in statement (3.1), an estimator of θ(z) follows straightforwardly from an estimator
of φ(t|z). Now, we represent the kernel estimator of the conditional density function in
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the case of complete data, set

φn(t|z) =
h−1
H

n∑
i=1

K(h−1
K d(z, Zi))H

′(h−1
H (t− Ti))

n∑
i=1

K(h−1
K d(z, Zi))

, (3.2)

where, K is a probability density function (so-called kernel function), hK = hn,K(resp.
hH = hn,H) is a sequence of positive real numbers (so-called bandwidth) which goes to
zero as n tends to infinity, H ′(·) is the first derivative of a given distribution function
H(·). An analogous estimator to equation (3.2) was already given in Ferraty and Vieu
(2006) [7] in the general setting.

Firstly, we must know that our kernel type estimator of the conditional density φ(t|z)
adapted for censored samples is based on ”a pseudo-estimator” of φ(t|z) that is defined
as

φ̃n(t|z) =

n∑
i=1

δiḠ
−1(Xi)K(h−1

K d(z, Zi))H
′(h−1

H (t−Xi))

hH

n∑
i=1

K(h−1
K d(z, Zi))

=
φ̃n(z, t)

ψn(z)
,

where

φ̃n(z, t) =
1

nhHE(∆1(z))

n∑
i=1

δiḠ
−1(Xi)H

′(h−1
H (t−Xi))∆i(z),

and

ψn(z) =
1

nE(∆1(z))

n∑
i=1

∆i(z), with ∆i(z) = K(d(z, Zi)/hK).

In fact, this pseudo-estimator is not efficient since Ḡ(·) is unknown in practice. So, we
should replace Ḡ(·) by its Kaplan and Meier’s estimator Ḡn(·) previously defined.

Therefore, feasible estimator of the conditional density function φ(t|z) is denoted by

φ̂n(t|z) =

n∑
i=1

δiḠ
−1
n (Xi)K(h−1

K d(z, Zi))H
′(h−1

H (t−Xi))

hH

n∑
i=1

K(h−1
K d(z, Zi))

=
φ̂n(z, t)

ψn(z)
, (3.3)

where

φ̂n(z, t) =
1

nhHE(∆1(z))

n∑
i=1

δiḠ
−1
n (Xi)H

′(h−1
H (t−Xi))∆i(z).

Then, a natural kernel estimator of θ(z) which maximizes the kernel estimator φ̂n(·|z)



3.3 Notations and hypotheses 31

of φ(·|z) is given by

θ̂(z) = arg sup
t∈SR

φ̂n(t|z). (3.4)

3.3 Notations and hypotheses
To formulate our assumptions, some additional notations are required. For i = 1, . . . , n,

we represent Fi as the σ-field generated by ((Z1, T1), . . . , (Zi, Ti)) and Gi the one generated
by ((Z1, T1), . . . , (Zi, Ti), Zi+1). Let Nz be a fixed neighborhood of z, and let B(z, h) the
ball of center z and radius h, denote Di(z) = d(z, Zi) a nonnegative random variable such
that its cumulative distribution function is determined by Fz(u) = P(Di(z) ≤ u) = P(Zi ∈

B(z, u)). Furthermore, we define FFi−1
z (u) = P(Di(z) ≤ u|Fi−1) = P(Zi ∈ B(z, u)|Fi−1)

the conditional distribution function given the σ-field Fi−1 of (Di(z))i≥1.
Our nonparametric model will be quite general in the sense that we will just need the

following hypotheses:

(H0) For z ∈ E, there exists a sequence of nonnegative random functions (fi,1)i≥1 almost
surely bounded by a sequence of deterministic quantities (bi(z))i≥1 accordingly, a
sequence of random functions (gi,z)i≥1, a deterministic nonnegative bounded func-
tion f1 and a nonnegative real function ϕ tending to zero, as its argument tends to
0, such that if n→ ∞ and h→ 0

(a) Fz(h) = ϕ(h)f1(z) + o(ϕ(h)).

(b) For any i ∈ N, FFi−1
z (h) = ϕ(h)fi,1(z) + gi,z(h) with gi,z(h) = oa.s.(ϕ(h)) as

gi,z(h)

ϕ(h)
almost surely bounded and n−1

∑n
i=1 g

j
i,z(h) = oa.s.(ϕ

j(h)) for j = 1, 2.

(c) n−1
∑n

i=1 f
j
i,1(z) → f j

1 (z), almost surely, for j = 1, 2.

(d) There exists a nondecreasing bounded function ς0 such that, uniformly in s ∈
[0, 1],

ϕ(hs)/ϕ(h) = ς0(s) + o(1), and, for j ≥ 1,
∫ 1

0
(Kj(t))′ς0(t) dt <∞.

(e) n−1
∑n

i=1 bi(z) −→ D(z) <∞.

(H1) The conditional density function φ(t|z) satisfies

(a)
∫
R
|t|φ(t|z) dt <∞, for all z ∈ E.

(b) The Hölder condition, that is
∀(t1, t2) ∈ S2

R, ∀(z1, z2) ∈ N 2
x , for some α1 > 0 and α2 > 0

|φz1(t1)− φz2(t2)| ≤ Cz(d(z1, z2))
α1 + |t1 − t2|α2),

with Cz is a positive constant depending on z.
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(H2) φ(·|z) is twice continuously differentiable in a neighbourhood of θ(z) with

{
φ(1)(θ(z)|z) = 0,
|φ(2)(θ(z)|z)| ̸= 0.

(H3) The cumulative kernel H is derivable such that ∃C <∞, ∀(v1, v2) ∈ R2, |H ′(v1)−H ′(v2)| ≤ C|v1 − v2|,∫
|v|α2H ′(v) dv <∞, and

∫
H ′(v) dv = 1.

(H4) For any m ≥ 1, E[(H ′(h−1
H (t− Ti)))

m|Gi−1] = E[(H ′(h−1
H (t− Ti)))

m|Zi].

(H5) For any z′ ∈ E and m ≥ 2, sup
t∈SR

|gm(z′, t)| = sup
t∈SR

|E[Hm(h−1
H (t− T1))|Z1 = x′]| <∞

and gm(z
′, t) is continuous in Nz uniformly in t:

sup
t∈SR

sup
z′∈B(z,h)

|gm(z′, t)− gm(z, t)| = o(1).

(H6) K is a differentiable positive bounded function supported on [0, 1] of class C1(0, 1):

∃C ′, C ′′, −∞ < C ′ < K ′(t) < C ′′ < 0 for 0 < t < 1, |
∫ 1

0
(Kj)′(t) dt| < ∞ for

j = 1, 2.

(H7) The bandwidth hK and hH , satisfying lim
n→∞

hK = 0, lim
n→∞

hH = 0 and logn
nhHϕ(hK)

−→
n→∞

0.

(H8) (Cn)n≥1 and (Zn, Tn)n≥1 are independent.

Remark 3.3.1. Our assumptions are very standard for this kind of models. Assumption
(H0) plays an important role in our methodology, it is devoted to the ergodicity of functional
data. (H1) is a regularity condition which characterizes the functional space of our model
and is needed to evaluate the bias terms of our asymptotic results, while hypotheses (H3)
and (H7) are technical conditions and are similar to those given in Ferraty and Vieu
(2006) [7]. As for (H6), it is classical in nonparametric estimation.

3.4 Main resullts
3.4.1 Pointwise almost sure rate of convergence

We establish in Proposition 3.4.1 the rates of convergence of the kernel density estimator
φ̂n(t|z). An immediate consequence is the almost sure convergence with a rate of the
kernel mode estimator, as stated in Theorem 3.4.1.
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Proposition 3.4.1. Suppose that assumptions (H6)-(H7) and (H8) hold true, we get

sup
t∈SR

|φ̂n(t|z)− φ(t|z)| = Oa.s.(h
α1
K + hα2

H ) +Oa.s.

(√
logn

nhHϕ(hK)

)
.

Proof. First of all, denote

¯̃φn(z, t) =
1

nhHE(∆1(z))

n∑
i=1

E[δiḠ−1(Xi)H
′(h−1

H (t−Xi))∆i(z)|Fi−1],

and

ψ̄n(z) =
1

nE(∆1(z))

n∑
i=1

E[∆i(z)|Fi−1],

the conditional bias which is given by

Bn(z, t) =
¯̃φn(z, t)

ψ̄n(z)
− φ(t|z). (3.5)

In addition to quantities:

Rn(z, t) = −Bn(z, t)(ψn(z)− ψ̄n(z)),

and
Qn(z, t) = (φ̃n(z, t)− ¯̃φn(z, t))− φ(t|z)(ψn(z)− ψ̄n(z)).

Lets’s now introduce the following decomposition which is important to prove Propo-
sition 3.4.1. For all z ∈ E, we state

φ̂n(t|z)− φ(t|z) = φ̂n(t|z)− φ̃n(t|z) + φ̃n(t|z)− φ(t|z). (3.6)

The proof of this proposition is a direct consequence of the following intermediate
results. It suffices to combine Lemmas 3.4.1, 3.4.2 and decomposition (3.6).

Lemma 3.4.1. Using (H6)-(H7) and (H8), we can show that

sup
t∈SR

|φ̂n(t|z)− φ̃(t|z)| = Oa.s.

(√
log logn

n

)
.

Proof. By following the same steps as for the proof of Lemma 5.2 Khardani et al. (2010)
[10], we can also prove our Lemma.

Lemma 3.4.2. Because of the conditions (H6)-(H7) and (H8), we have as n→ ∞

sup
t∈SR

|φ̃n(t|z)− φ(t|z)| = Oa.s.(h
α1
K + hα2

H ) +Oa.s.

(√
logn

nhHϕ(hK)

)
.
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Proof. Since φ̃n(t|z) − φ(t|z) = Bn(z, t) +
Rn(z, t) +Qn(z, t)

ψn(z)
, then the proof can be

achieved by combining Lemmas 3.4.3-3.4.4 and 3.4.6 proposed below.

Lemma 3.4.3. Suppose that assumptions (H0)-(H6) and (H7) hold true. Then, for any
z ∈ E, set

(i) ψn(z)− ψ̄n(z) = Oa.s.

(√
logn/nϕ(hK)

)
.

(ii) lim
n→∞

ψn(z) = lim
n→∞

ψ̄n(z) = 1, a.s.

Proof. The proof of this Lemma is the same of Lemma 3 and Lemma 5 in Laib and
Louani (2011) [12].

Lemma 3.4.4. Under the hypotheses (H3)-(H6) and (H7) together with (H8), we have
as n goes to infinity

sup
t∈SR

|Bn(z, t)| = Oa.s.(h
α1
K + hα2

H ), (3.7)

sup
t∈SR

|Rn(z, t)| = Oa.s.

(
(hα1

K + hα2
H )

(
logn
nϕ(hK)

)1/2
)
. (3.8)

Proof. In the beginning, we rewrite the statement (3.5)

Bn(z, t) =
¯̃φn(z, t)− ψ̄n(z)φ(t|z)

ψ̄n(z)
.

If (H4) is verified, and in addition if 1{Ti≤Ci}χ(Xi) = 1{Ti≤Ci}χ(Ti), we obtain

¯̃φn(z, t) =
1

nhHE(∆1(z))

n∑
i=1

E{∆i(z)E[δiḠ−1(Xi)H
′(h−1

H (t−Xi))|Gi−1, Ti]|Fi−1}

=
1

nhHE(∆1(z))

n∑
i=1

E{∆i(z)E[δiḠ−1(Xi)H
′(h−1

H (t−Xi))|Zi, Ti]|Fi−1}

=
1

nhHE(∆1(z))

n∑
i=1

E{Ḡ−1(Ti)H
′(h−1

H (t− Ti))∆i(x)E[1{Ti≤Ci}|Zi, Ti]|Fi−1}

=
1

nhHE(∆1(z))

n∑
i=1

E{∆i(z)H
′(h−1

H (t− Ti))|Fi−1}.

Furthermore, simple calculations by using always a double conditioning with respect
to Gi−1 leads to

¯̃φn(z, t)−ψ̄n(z)φ(t|z) =
1

nhHE(∆1(z))

n∑
i=1

E
{
∆i(z)

[
E
(
H ′
(
(t− Ti)

hH

)∣∣Zi

)
−hHφ(t|z)

]∣∣∣∣Fi−1

}
.
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In view of conditions (H1) and (H3), it follows that

|E(H ′(h−1
H (t− Ti)|Zi)− hHφ(t|z)| ≤ CzhH

∫
R
H ′(u)(hα1

K + |u|α2hα2
H ) du. (3.9)

Hence, we get

¯̃φn(z, t)− ψ̄n(z)φ(t|z) = Oa.s.(h
α1
K + hα2

H )× 1

nE(∆1(z))

n∑
i=1

E{∆i(z)|Fi−1}.

= Oa.s.(h
α1
K + hα2

H )× ψ̄n(z).

As a last step, we combine the above result with Lemma 3.4.3(ii) to obtain the fol-
lowing:

¯̃φn(z, t)− ψ̄n(z)φ(t|z)
ψ̄n(z)

= Oa.s.(h
α1
K + hα2

H ).

Now, the second part of Lemma 3.4.4 will be easily deduced from the definition of
Rn(z, t), together with Lemma 3.4.3 and equation (3.7).

Lemma 3.4.5. Assume that (H0)-(H4) and (H6)-(H8) are satisfied. Then, for any z ∈ E,
set

sup
t∈SR

|φ̃n(z, t)− ¯̃φn(z, t)| = Oa.s.

((
logn

nhHϕ(hK)

)1/2
)
.

Proof. To prove our result we need the decomposition below

sup
t∈SR

|φ̃n(z, t)− ¯̃φn(z, t)| ≤ J1,n + J2,n + J3,n,

where

J1,n = max
1≤k≤γn

sup
t∈Bk

|φ̃n(z, t)− φ̃n(z, tk)|, J2,n = max
1≤k≤γn

|φ̃n(z, tk)− ¯̃φn(z, tk)|,

J3,n = max
1≤k≤γn

sup
t∈Bk

|φ̃n(z, tk)− ¯̃φn(z, t)|.

Indeed, SR may be written as: SR ⊂ ∪γn
k=1Bk = ∪γn

k=1Bk(tk,ℜn), with tk(1 ≤ k ≤ γn)

are the balls centers. Let’s now study our three terms.
On the one hand, by a standard analytical argument and by using hypothesis (H3)
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and the result of Lemma 3.4.3, we can evaluate the first term in the following way

J1,n ≤ 1

nhHE(∆1(z))
max

1≤k≤γn
sup
t∈Bk

n∑
i=1

∣∣∣∣∣δiḠ−1(Xi)[H
′(h−1

H (t−Xi))−H ′(h−1
H (tk −Xi))]∆i(z)

∣∣∣∣∣
≤ C

nhHE(∆1(z))
max

1≤k≤γn
sup
t∈Bk

|t− tk|
hH

n∑
i=1

δiḠ
−1(Xi)∆i(z)

≤ γn
nh2HE(∆1(z))

n∑
i=1

δiḠ
−1(Xi)∆i(z),

more precisely, by the fact that lim
n→∞

nϑh2H = ∞, we obtain

J1,n −→ 0 a.s. as n→ ∞.

As the first and the third terms can be treated in the same manner, so J3,n is also
negligible almost surely

J3,n −→ 0 a.s. as n→ ∞.

On the other hand, to examine the rest term, we start by showing that

φ̃n(z, tk)− ¯̃φn(z, tk) =
1

nhHE(∆1(z))

n∑
i=1

Ψi,n(z, tk),

where
Ψi,n(z, tk) = δiḠ

−1(Xi)H
′(h−1

H (tk−Xi))∆i(z)−E(δiḠ−1(Xi)H
′(h−1

H (tk−Xi))∆i(z)|Fi−1),

represents a triangular array of stationary martingale differences with respect to the
σ-field Fi−1. Based on the proof of Lemma 5 in Laib and Louani (2011) [12] and the
assumptions (H0)-(H4) and (H5), the quantity E(Ψp

i,n(z, tk)|Fi−1) can be developed as

|E(Ψp
i,n(z, t)|Fi−1)| = p!Cp−2[C2ϕ(hK)fi,1(z) +Oa.s(gi,z(hK))] ≤ p!Cp−2ϕ(hK)[Mbi(z) + 1],

where C = 2max(1, a21) and M = (C2C)
2.

Choosing Dn =
∑n

i=1 d
2
i with d2i = ϕ(hK)[Mbi(z) + 1]. By using hypotheses (H0)(b)

and (H0)(e), it yields n−1Dn = ϕ(hK)[MD(z) + oa.s(1)] asn→ ∞.

Thus, we apply the exponential inequality given in Lemma 1 in Laib and Louani (2011)
[12] with taking Dn = Oa.s(nϕ(hK)), Sn =

∑n
i=1Ψi,n(z, t), and for any ϵ0 > 0 and C1 is a
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positive constant, the following calculations is valid

P

(
|J2,n| > ϵ0

√
logn

nhHϕ(hK)

)
≤ P

(
max

k∈1···γn
|φ̃n(z, tk)− ¯̃φn(z, tk)| > ϵ0

√
logn

nhHϕ(hK)

)

≤ max
k∈1···γn

P

(
|

n∑
i=1

Ψi,n(z, tk)| > nhHE(∆1(z))ϵ0

√
logn

nhHϕ(hK)

)

≤ 2γn exp
( −

(
nhHϵ0E(∆1(z))

)2 logn
nhHϕ(hK)

2Dn + 2CnhHE(∆1(x))ϵ0

√
logn

nhHϕ(hK)

)

≤ 2γn exp{−C1ϵ
2
0 logn}

≤ 2

nC1ϵ20
.

Lastly, to achieve the proof we need only to take ϵ0 large enough and to use the
Borel-Cantelli Lemma.
Lemma 3.4.6. By the same hypotheses of Lemma 3.4.5, it yields

sup
t∈SR

|Qn(z, t)| = Oa.s.

(√
logn

nhHϕ(hK

)
.

Proof. Lemmas 3.4.3 and 3.4.5 lead directly to the proof.

Finally, the proof of Proposition 3.4.1 is completed.

Theorem 3.4.1. Again by (H6)-(H7) and (H8) in conjunction with (H2), we obtain

|θ̂(z)− θ(z)| = Oa.s.

(
hα1
K + hα2

H

)
+Oa.s.

(√
logn

nhHϕ(hK)

)
.

Proof. The proof of Theorem 3.4.1 can be completed by the following lemma.

Lemma 3.4.7. Under the assumptions of Proposition 3.4.1, we obtain

lim
n→∞

|θ̂(z)− θ(z)| = 0, a.s.

Proof. By the continuity of the function f(t|x), it follows that

∀ϵ > 0, ∃ζ(ϵ) > 0, |φ(t|z)− φ(θ(z)|z)| ≤ ζ(ϵ) ⇒ |t− θ(z)| ≤ ϵ.

This allowing us to write

∀ϵ > 0, ∃ζ(ϵ) > 0, P
(
|θ̂(z)− θ(z)| > ϵ

)
≤ P

(
|φ(θ̂(z)|z)− φ(θ(z)|z)| > ζ(ϵ)

)
. (3.10)
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Next, by simple algebra, we also have

|φ(θ̂(z)|z)− φ(θ(z)|z)| ≤ 2 sup
t∈SR

|φ̂n(t|z)− φ(t|z)|. (3.11)

Lastly, the convergence of θ̂(z) to θ(z) almost surely will be easily deduced from the
latter together with (3.10) and Proposition 3.4.1.

• The proof of Theorem 3.4.1 is based on the Taylor expansion of order two of φ(θ̂(z)|z)
at the point θ(z), on the use of the first part of (H2). Let

φ(θ̂(z)|z)− φ(θ(z)|z) = 1

2
φ(2)(θ∗(z)|z)(θ̂(z)− θ(z))2,

where min(θ(z), θ̂(z)) < θ∗(z) < max(θ(z), θ̂(z)).
Consequently, by considering the last equality with the statement (3.11), we derive

|(θ̂(z)− θ(z))|2 ≤ 1

φ(2)(θ∗(z)|z)
sup
t∈SR

|φ̂n(t|z)− φ(t|z)|.

Now, because of φ(2)(θ∗(z)|z) −→ φ(2)(θ(z)|z), and on the use of the second part of
(H2), we directly obtain

|(θ̂(z)− θ(z))|2 = Oa.s.

(
sup
t∈SR

|φ̂n(t|z)− φ(t|z)|
)
.

Thus, Proposition 3.4.1 allow us to get the claimed result.

3.4.2 Asymptotique normality

The aim of this section is to establish the asymptotic normality which induces a confidence
interval of the conditional mode estimator. For this purpose, we shall list some basic
conditions

(A0) The smoothing parameter hH satisfies: nh3Hϕ(hK) −→ 0, as n→ ∞.

(A1) The distribution function of the censored random variable G has a bounded first
derivative G(1).

(A2) The cdf φ(t|z) verifies the Hölder condition, ∀(t1, t2) ∈ S2
R, ∀j = 1, 2, for some

α0 > 0,
|φ(j)(t1|z)− φ(j)(t2|z)| ≤ C(|t1 − t2|α0).

(A3) The kernel H is twice differentiable such that∫
|t|α0(H(j)(v))2 dv <∞, for j = 1, 2, and

∫
(H ′(v))2 dv <∞.
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Theorem 3.4.2. Using the conditions (H0)-(H6)-(H7) and (A1)-(A3), it results

√
nhHϕ(hK)(φ̂n(t|z)− φ(t|z)) D−→ N (0, σ2(z, t)),

where

σ2(z, t) =
M2

M2
1

φ(t|z)
Ḡ(t)f1(z)

∫
R
(H ′(v))2 dv,

with Mj = Kj(1)−
∫ 1

0
(Kj)′ς0(u) du for j = 1, 2.

Noting that ” D−→ ” symbolyzes the convergence in distribution.

Proof. Initially, we suggest the following decomposition:

φ̂n(t|z)− φ(t|z) = [φ̂n(t|z)− φ̃n(t|z)] + [φ̃n(t|z)− ¯̃φn(t|z)] + [¯̃φn(t|z)− φ(t|z)]

= U1,n + U2,n + U3,n.

According to the Lemma 3.4.1, the term U1,n converges almost surely to zero when n

goes to infinity, where

U1,n = Oa.s.

(√
log logn

n

)
. (3.12)

Moreover, it is simple to show that U3,n is also negligible, where we readily get

U3,n = ¯̃φn(t|z)− φ(t|z) = Bn(z, t).

Therefore, from Lemma 3.4.4, we obtain

U3,n = Oa.s.(h
α1
K + hα2

H ). (3.13)

Now, it suffices to prove the asymptotic normality of U2,n =
Qn(z, t) +Rn(z, t))

ψn(z)
, where

Rn(z, t) is negligible as n→ ∞, and ψn(z) converges almost surely towards 1, where

Rn(z, t) = −Bn(z, t)(ψn(z)− ψ̄n(z)),

with

Bn(z, t) =
¯̃φn(z, t)

ψ̄n(z)
− φ(t|z).

Thus, the asymptotic normality will be proved by the term Qn(z, t) = [φ̃n(z, t) −
¯̃φn(z, t)]− φ(t|z)(ψn(z)− ψ̄n(z)) which is treated by the Lemmas 3.4.8 and 3.4.9 below.

Lemma 3.4.8. Assume that conditions (H0)(a),(H0)(b) and (H0)(d) as well as (H6)
are satisfied. Then, For any real numbers 1 ≤ j ≤ 2 + δ and 1 ≤ k ≤ 2 + δ with
δ > 0, asn→ ∞, one has
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(i) 1

ϕ(hK)
E
[
∆j

i (z)|Fi−1

]
=Mjfi,1(z) +Oa.s.

(
gi,z(hK)

ϕ(hK)

)
.

(ii) 1

ϕ(hK)
E
[
∆j

i (z)
]
=Mjf1(z) + o(1).

(iii) 1

ϕk(hK)
(E(∆1(z)))

k =Mk
1 f

k
1 (z) + o(1).

Proof. The proof is given in Lemma 1 by Laib and Louani (2010) [11].

Lemma 3.4.9. By the same hypotheses of Theorem 3.4.2, one writes asn→ ∞

√
nhHϕ(hK)Qn(z, t)

D−→ N (0, σ2(z, t)).

Recall that σ2(z, t) is defined in Theorem 3.4.2.

Proof. Easily, we get √
nhHϕ(hK)Qn(z, t) =

n∑
i=1

µni, (3.14)

where
µni = Ξni − E[Ξni|Fi−1],

with

Ξni =

(
ϕ(hK)

nhH

)1/2(
δi

Ḡ(Xi)
H ′(h−1

H (t−Xi)− hHφ(t|z)
)

∆i(z)

E(∆1(z))
.

Obviously, based on the central limit theorem for discrete-time arrays of real-valued
martingales (see Hall and Heyde (1980) [8]), the asymptotic normality of Qn(z, t) can be
obtained if we demonstrate this two statements:

I.
∑n

i=1 E[µ2
ni|Fi−1]

P−→ σ2(z, t).

II. nE[µ21[|µni|>ϵ]] = o(1) holds for any ϵ > 0 (Linderberg condition).

• Proof of the first part(I.):
Firstly, let us consider∣∣∣∣∣

n∑
i=1

E[Ξ2
ni|Fi−1]−

n∑
i=1

E[µ2
ni|Fi−1]

∣∣∣∣∣ ≤
n∑

i=1

(E[Ξni|Fi−1])
2.

Applying Lemma 3.4.8 together with inequality (3.9), it yields

|E[Ξni|Fi−1]| =
1

E(∆1(z))

(
ϕ(hK)

nhH

)1/2∣∣∣∣E[∆i(z)

(
δi

Ḡ(Xi)
H ′(h−1

H (t−Xi))− hHφ(t|z)
)
|Fi−1

]∣∣∣∣
≤ C(hα1

K + hα2
H )

(
ϕ(hK)hH

n

)1/2(
fi,1(z)

f1(z)
+Oa.s

(
gi,z(hK)

ϕ(hK)

))
.
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Subsequently, by (H0)(b)-(c), it follows that

n∑
i=1

(E[Ξni|Fi−1])
2 = Oa.s.

(
hHϕ(hK)(h

α1
K + hα2

H )2
)
.

So, we just need to prove the following

lim
n→∞

n∑
i=1

E[Ξ2
ni|Fi−1]

P−→ σ2(z, t), (3.15)

for this, let using (H4) to get

n∑
i=1

E[Ξ2
ni|Fi−1] =

ϕ(hK)

nhH(E(∆1(z)))2

n∑
i=1

E

{
∆2

i (z)

(
δi

Ḡ(Xi)
H ′(h−1

H (t−Xi))− hHφ(t|z)
)2

|Fi−1

}

=
ϕ(hK)

nhH(E(∆1(z)))2

n∑
i=1

E

{
∆2

i (z)E
[(

δi
Ḡ(Xi)

H ′(h−1
H (t−Xi))

− hHφ(t|z)
)2

|Zi

]
|Fi−1

}
.

Moreover, set

E

[(
δi

Ḡ(Xi)
H ′(h−1

H (t−Xi))− hHφ(t|z)
)2

|Zi

]
= V ar

[
δi

Ḡ(Xi)
H ′(h−1

H (t−Xi))|Zi

]

+

[
E
(

δi
Ḡ(Xi)

H ′(h−1
H (t−Xi))|Zi

)
− hHφ(t|z)

]2
= Γ1,n + Γ2,n.

It should be noted that the second term is negligible: Γ2,n −→ 0, asn → ∞, where
we used inequality (3.9) and assumptions (H1), (H3) in order to get our result.

Now, all what is left to be study is Γ1,n, thus we state

Γ1,n = E
[

δi
Ḡ2(Xi)

(
H ′
(
t−Xi

hH

))2∣∣∣Zi

]
︸ ︷︷ ︸

Λ1

−
[
E
(

δi
Ḡ(Xi)

H ′
(
t−Xi

hH

)∣∣∣∣Zi

)]2
︸ ︷︷ ︸

Λ2

. (3.16)
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• Concerning Λ1, by simple calculations, we obtain

Λ1 = E
[
E
(

δi
Ḡ2(Xi)

H ′2
(
t−Xi

hH

)∣∣∣∣Zi, Ti

)]
= E

(
1

Ḡ(Ti)
H ′2
(
t− Ti
hH

)∣∣∣∣Zi

)
=

∫
R

1

Ḡ(ω)
H ′2
(
t− ω

hH

)
f(ω|Zi) dω

=

∫
R

1

Ḡ(t− vhH)
H ′2(v)dF (t− vhH |Zi).

Writing a Taylor expansion of order one of the function Ḡ−1(·) around zero leads to
the existence of some t∗ between t and (t− vhH) such that

Λ1 =

∫
R

1

Ḡ(t)
(H ′(v))2dF (t− vhH |Zi) +

h2H
Ḡ2(t)

∫
R
v(H ′(v))2Ḡ(1)(t∗)φ(t− vhH |Zi) dv + o(1)

= λ1 + λ2.

If the hypotheses (H1),(A3) are verified, one has

λ1 = hH

∫
R

1

Ḡ(t)
(H ′(v))2φ(t− vhH |Zi) dv

≤ hH
Ḡ(t)

∫
R
(H ′(v))2(φ(t− vhH |Zi)− φ(t|z)) dv

+
hH
Ḡ(t)

∫
R
(H ′(v))2φ(t|z) dv

≤ hH
Ḡ(t)

(
Cz

∫
R
(H ′(v))2(hα1

K + |v|α2hα2
H ) dv + φ(t|z)

∫
R
(H ′(v))2 dv

)
= O

(
hα1
K + hα2

H

)
+

hH
Ḡ(t)

φ(t|z)
∫
R
(H ′(v))2 dv.

On the other hand, by (A1), one can write

λ2 ≤ h2H(sup
v∈R

|Ḡ(1)(v)|/Ḡ2(t))

∫
R
vφ(t− vhH |Zi) dv.

This means that as n→ ∞, λ2 = O(h2H).
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• For the second term of (3.16), it suffices to evaluate its square root

Λ′
2 = E

(
δi

Ḡ(Xi)
H ′
(
t−Xi

hH

)∣∣∣∣Zi

)
= E

(
H ′
(
t− Ti
hH

)∣∣∣∣Zi

)
=

∫
R
H ′
(
t− ω

hH

)
f(ω|Zi) dω.

By changing variables, we arrive at
Λ′

2 = hH
∫
RH

′(v)(φ(t− vhH |Zi)− φ(t|z)) dv + hHφ(t|z)
∫
RH

′(v) dv.

So, under (H1) and (H3) we would have

Λ′
2 = O

(
hα1
K + hα2

H

)
+ hHφ(t|z),

which permit us to conclude that Λ2 is negligible. By Lemma 3.4.8, all of the above results
leads to

ϕ(hK)

nhH(E(∆1(z)))2

n∑
i=1

E{∆2
i (z)Γ1,n|Fi−1} =

hH
Ḡ(t)

φ(t|z)
∫
R
(H ′(v))2 dv

× ϕ(hK)

nhH(E(∆1(z)))2

n∑
i=1

E(∆2
i (z)|Fi−1),

−→ M2

M2
1

φ(t|z)
Ḡ(t)f1(z)

∫
R
(H ′(v))2 dv.

Lastly, we could establish that

n∑
i=1

E[Ξ2
ni|Fi−1] =

M2

M2
1

φ(t|z)
Ḡ(t)f1(z)

∫
R
(H ′(v))2 dv = σ2(z, t),

which is enough to confirm part (I).
• Proof of the second part(II.):

The definition of µni allows us to write: nE[µ2
ni1[|µni|>ϵ]] ≤ 4nE[Ξ2

ni1[|Ξni|>ϵ/2]].

Denote: A > 1 and B > 1 such that 1/A+1/A = 1. According to Hölder and Markov
inequalities, we have for any ϵ > 0

E[Ξ2
ni1[|Ξni|>ϵ/2]] ≤

E|Ξni|2A

(ϵ/2)2A/B
.

Choosing C0 a positive constant and 2A = 2 + δ for all δ > 0, it follows that
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4nE[Ξ2
ni1[|Ξni|>ϵ/2]] ≤ C0

(
ϕ(hK)

nhH

)(2+δ)/2
n

(E(∆1(z)))2+δ

×E

([
∆i(z)

∣∣∣ δi
Ḡ(Xi)

H ′(h−1
H (t−Xi)− hHφ(t|z)

∣∣∣]2+δ
)

≤ C0

(
ϕ(hK)

nhH

)(2+δ)/2
n

(E(∆1(z)))2+δ
E((∆i(z))

2+δ

×E
[∣∣∣H ′(h−1

H (t− Ti)− hHφ(t|z)
∣∣∣2+δ∣∣∣Zi

]
.

Meanwhile,

E

[∣∣∣H ′(h−1
H (t− Ti)− hHφ(t|z)

∣∣∣2+δ∣∣∣Zi

]
=

∫
R

(
H ′
(
t− ω

hH

)
− hHφ(t|z)

)2+δ

φ(ω|Zi) dω

≤ C

∫
R
H ′2+δ

(
t− ω

hH

)
φ(ω|Zi) dω + h2+δ

H φ2+δ(t|z)

= ChH

∫
R
H ′2+δ

(v)φ(t− vhH |Zi) dv + h2+δ
H φ2+δ(t|z)

= hH

[∫
R
H ′2+δ

(v)φ(t− vhH |Zi) dv + h1+δ
H φ2+δ(t|z)

]
,

which implies that

4nE[Ξ2
ni1[|Ξni|>ϵ/2]] ≤ C0

(
ϕ(hK)

nhH

)(2+δ)/2
nhH

E(∆1(z)))2+δ

×E

(
(∆i(z))

2+δ

[ ∫
R

(
H ′2+δ

(v)φ(t− vhH |z) dv + h1+δ
H φ2+δ(t|z)

])

≤ C0

(
ϕ(hK)

nhH

)(2+δ)/2
nhHE[(∆i(z))

2+δ]

(E(∆1(z)))2+δ
.

Making use of Lemma 3.4.8, then

4nE[Ξ2
ni1[|Ξni|>ϵ/2]] ≤ C0(nhHϕ(hK))

−δ/2 M2+δf1(z) + o(1)

M2+δ
1 f 2+δ

1 (z) + o(1)

= O((nhHϕ(hK))
−δ/2).

Ultimately, the proof of the second part is completed. Thus, Lemma 3.4.9 is proved.
From that, the Theorem 3.4.2 is valid by combining equations (3.12), (3.13) and

Lemma 3.4.9.
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Theorem 3.4.3. If the hypotheses (A0)-(A1)-(A3) as well as (H0)-(H2)-(H6) are satis-
fied, then we have √

nh3Hϕ(hK)

ϱ2(z, θ(z))
(θ̂(z)− θ(z))

D−→ N (0, 1),

where

ϱ2(z, θ(z)) =
M2

M2
1

φ(θ(z)|z)
Ḡ(t)f1(z)(φ(2)(θ(z)|z))2

∫
R
(H(2)(v))2 dv.

Proof. By the first order Taylor expansion of φ̂(1)
n (·|z) in the neighborhood of θ̂(z), and

since φ̂(1)
n (θ̂(z)|z) = 0, one has

√
nh3ϕ(hK)|θ̂(z)− θ(z)| =

−
√
nh3ϕ(hK)φ̂

(1)
n (θ(z)|z)

φ̂
(2)
n (θ∗(z)|z)

,

where θ∗(z) is between θ(z) and θ̂(z).

In the verity, the proof of the statement below is analogous to that of Theorem 3.4.2.
Let’s

−
√
nh3ϕ(hK)φ̂

(1)
n (θ(z)|z) D−→ N (0, ϱ21(z, θ(z)),

with ϱ21(z, θ(z)) =
M2

M2
1

φ(θ(z)|z)
Ḡ(t)f1(z)

∫
R
(H(2)(v))2 dv.

Then, proceeding as in Ferraty and Vieu (2006) [7], where φ̂(2)
n (θ(z)|z) −→ φ(2)(θ(z)|z) asn→

∞, and the fact that θ∗(z) is lying between θ(z) and θ̂(z), which gives

φ̂(2)
n (θ∗(z)|z) −→ φ(2)(θ(z)|z), asn→ ∞.

3.4.3 Application and Confidence bands

Observe that, both the asymptotic variance σ2(z, t) and ϱ2(z, θ(z)) are not useful in
practice since some of its related quantities (φ(·|z), φ(2)(·|z), θ(z), Ḡ(·),Mj for j = 1, 2)
and functions (ϕ(hK), f1(z)) are unknown. To overcome this difficulty and to make it
usable, we have to estimate it.

Hence, φ(·|z), φ(2)(·|z), θ(z) and Ḡ(·) must be changed respectively by the conditional

density estimators φ̂n(·|z) and φ̂
(2)
n (·|z), the conditional mode estimator θ̂(z) and the

Kaplan-Meier’s estimator Ḡn(·). Furthermore, under the conditions (H0)-(a) and (H0)-
(d), ς0(·) can be estimated by

ςn(·) =
Fz,n(uh)

Fz,n(h)
,
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where

Fz,n(u) =
1

n

n∑
i=1

1{d(z,Zi)≤u}.

Finally, since ς0 is replaced with ςn, so we can directly estimate M1 and M2 by M1,n

and M2,n,respectively.
Now, we can simply obtain a confidence interval in practice since all quantities are

known. For this purpose, let us introduce the following corollaries.

Corollary 3.4.1. By the same assumptions of Theorem 3.4.2, one gets√
nhHFz,n(hK)

σ̂2(z, t)
(φ̂n(t|z)− φ(t|z)) D−→ N (0, 1), (3.17)

where

σ̂2(z, t) =
M2,n

M2
1,n

φ̂n(t|z)
Ḡn(t)

∫
R
(H ′(v))2 dv.

Corollary 3.4.2. By the same assumptions of Theorem 3.4.3, one gets√
nh3HFz,n(hK)(θ̂(z)− θ(z))

D−→ N (0, ϱ̂2(z, θ̂(z))), (3.18)

where

ϱ̂2(z, θ̂(z)) =
M2,n

M2
1,n

φ̂n(θ̂(z)|z)
Ḡn(t)(φ̂

(2)
n (θ̂(z)|z))2

∫
R
(H(2)(v))2 dv.

Proof. Note that√
nh3HFz,n(hK)

ϱ̂2(z, θ̂(x))
(θ̂(z)− θ(z)) =

M1,n

M1

√
M2√
M2,n

[φ̂
(2)
n (θ̂(z)|z)]

[φ(2)(θ(z)|z)]

√
Fz,n(hK)Ḡn(t)φ(θ(z)|z)
ϕ(hK)Ḡ(t)φ̂n(θ̂(z)|z)f1(z)

×

√
nh3Hϕ(hK)

ϱ2(z, θ(z))
(θ̂(z)− θ(z)).

By Theorem 3.4.3, it follows that√
nh3Hϕ(hK)

ϱ2(z, θ(z))
(θ̂(z)− θ(z))

D−→ N (0, 1).

Making use of results given by Laib and Louani (2010) [11], we obtain M1,n
P−→

M1,M2,n
P−→ M2, Fz,n(hK)/ϕ(hK)f1(z)

P−→ 1 asn → ∞. On the other hand, we have

Ḡn −→ Ḡ, according to Deheuvels and Einmahl (2000) [5]. In addition, we have φ̂(2)
n (θ̂(z)|z) −→

φ(2)(θ(z)|z).
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Finally, in conjunction with Lemma 3.4.7 and Proposition 3.4.1, one writes

M1,n

M1

√
M2√
M2,n

[φ̂
(2)
n (θ̂(z)|z)]

[φ(2)(θ(z)|z)]

√
Fz,n(hK)Ḡn(t)φ(θ(z)|z)
ϕ(hK)Ḡ(t)φ̂n(θ̂(z)|z)f1(z)

P−→ 1, asn→ ∞.

This yields the proof.

• From Corollaries 3.4.1 and 3.4.2, it is possible to construct confidence bands. Exactly,
we can obtain for each fixed η ∈ (0, 1) approximate (1 − η)% confidence intervals
for the conditional density and conditional mode, namely[

φ̂n(t|z)−
Iη/2σ̂(z, t)√
nhHFz,n(hK)

, φ̂n(t|z) +
Iη/2σ̂(z, t)√
nhHFz,n(hK)

]
,

and [
θ̂(z)−

Iη/2ϱ̂(z, θ̂(z))√
nh3HFz,n(hK)

, θ̂(z) +
Iη/2ϱ̂(z, θ̂(z))√
nh3HFz,n(hK)

]
,

where Iη/2 denotes the η/2 quantile of the standard normal distribution.

3.5 Simulation study
This section is proposed to illustrate our study for the conditional mode and to evaluate
the effectiveness of the suggested estimator (i.e. in the censored nonparametric func-
tional data analysis case) (CNPFDA) (3.3) in comparison with the one for complete data
(NPFDA) (3.2).

First of all, let’s note that all the routines for functional data used in this application
(developed in R/S-Plus software) are available on the web site: https://www.math.
univ-toulouse.fr/staph/npfda/

Now, we start by introducing The following stationary ergodic process defined on
[0, π/3], where the covariates are curves

Zi(t) = −1− cos(2Wi(t− π/3)), i = 1, · · · , 200; t ∈ [0, π/3], (3.19)

where Wi is generated by the model constructed as: Wi =
1√
2
Wi−1 + ζi, with ζi are

i.i.d uniformly distributed on (0, 1) and Wi is also simulated independently by W0 ∼
U(0, 1). For more clarification, some of these curves (200 samples) are simulated, and the
corresponding graph is presented in Figure 3.1 below.

The scalar response variable is defined by the following regression relation Ti = r(Zi)+

ϵi, where r(Zi) =

(∫ 1

0

Z ′
i(t) dt

)2

and ϵ ∼ N (0, 0.075). Then, n i.i.d random variables

Ci, i = 1, . . . , n are drawn from an exponential distribution ε(1.5).

https://www.math.univ-toulouse.fr/staph/npfda/
https://www.math.univ-toulouse.fr/staph/npfda/
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Recall that the calculations of our estimator (for the incomplete data) are linked to
the observed triplets (Zi, Xi, δi)i=1,...,n, where Xi = min(Ti, Ci) and δi = 1{Ti≤Ci} denotes
the censorship indicator.

Concerning the other parameters of our study: The regularity of the curves Zi leads
directly to choose the semi metric in E

d(zi, zj) =

√∫ π/3

0

(z′i(t)− z′j(t))
2 dt zi, zj ∈ E.

For the kernels K(·) and H(·) were chosen to be of quadratic type as

K(u) =
3

2
(1− u2)1(0,1)(u), H(u) =

∫ u

−∞

3

4
(1− y2)1(−1,1)(y) dy,

respectively.
Then, the smoothing parameter hH ∼ hK =: h is obtained by the cross-validation

method on the k-nearest neighbours (Ferraty and Vieu (2006) [7]).

Figure 3.1: A sample of curves {Zi(t), t ∈ [0, π/3]}i=1,··· ,200

In our experience, we consider a sample of 200 observations distributed on two parts A
and B : The first one is a learning subsample (Zi, Xi)i∈A with size(A) = 150, and the other
is a testing subsample (Zj, Xj)j∈B with size(B) = 50. We also compute the estimators

X̃j = θ̃(Zj) and X̂j = θ̂(Zj) j = {151, . . . , 200} for complete data and censored data,
respectively through the learning sample. To evaluate the performance of both estimators
(3.2) and (3.3), we propose the following mean square errors(MSE):
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z Under the complete data case: NPFDA.MSE =
1

50

200∑
j=151

(Xj − X̃j)
2.

z Under the censored data case: CNPFDA.MSE =
1

50

200∑
j=151

(Xj − X̂j)
2.

In order to simplifying the obtained results, Figure 3.2 and Figure 3.3 plot the pre-
dicted values as functions of the true ones for the MSE under the complete data and
censored data cases, respectively.

Figure 3.2: Prediction via the conditional mode for complete data case

Figure 3.3: Prediction via the conditional mode for censored data case (CR∼ 3%)

The performance of the conditional mode estimator θ̂(z) is evaluated on N = 300

replications using different sample sizes. The mean square error (MSE) is considered
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here, such that, for a fixed z. It can be observed that the proposed estimator performs
well, especially when the sample size increases. This conclusion is confirmed by Table
3.1 which provides a numerical summary of the distribution of the MSE, with different
Censored Rates (CR).

Table 3.1: MSE under the case of censored data

size(n) CR% MSE(for CNPFDA) size(n) CR% MSE(for CNPFDA)
6% 0.0443 6% 0.0401

200 17% 0.1005 300 17% 0.0941
25% 0.1330 25% 0.1306
50% 0.2712 50% 0.2487

3.6 Conclusion
This paper focused on nonparametric estimation of conditional mode for dependant sta-
tionary ergodic data under random censorship and defined as an argument of the maxi-
mum of the conditional density. The resulting estimator has been shown to be asymp-
totically normally distributed under some regularity conditions. The main implication is
to obtain the confidence bands which have been given in Subsection 3.4.3. Of course, we
use the plug-in rules to obtain an estimator of the asymptotic variance term.

Our prime aim was to improve the performance of this model for the conditional mode
with censored response variable under the ergodic property. The simulations experiments
in this paper show that our methodology can be easily implemented and work very well. It
is well known that the kernel choice do not affect substantially the quality of the estimator.

Acknowledgement:
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4.1 Introduction
The focal point of this article is to study a nonparametric regression model in the case
where the variable of interest Y (called response variable) is a scalar response variable
and the explanatory variable X is of functional nature.
Let (X, Y ) be H× R-valued random elements, where H is a separable real Hilbert space
with the norm ∥ · ∥ generated by an inner product < ·, · >. Moreover, we consider
dθ(·, ·) a semi-metric associated with the single index θ ∈ H defined by dθ(x1, x2) :=
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| < x1 − x2, θ > |, for x1 and x2 in H. Suppose now that (Xi, Yi)1≤i≤n is a sequence of
stationary and ergodic functional samples.

Let us consider the following functional nonparametric regression model:

Y = r(θ,X) + ε, (4.1)

where r(θ, .) is an unknown smooth functional regression operator from H to R, and ε is
the random error with E(ε) = 0 and 0 < V ar(ε) <∞.

Compared with the classical nonparametric regression framework that the explanatory
variable is a real or finite dimensional case, model (4.1) where the explanatory variables
X are often curves or surfaces is widely applied in many fields such as in medicine,
economics, environmetrics, chemometrics and others, The reason is that the data we
observed or collected in these fields are exceptionally high-dimensional or even functional.

Let’s not that the nonparametric regression for functional modelization was widely
studied by Ferraty and Vieu ((2000) [12], (2002) [13], (2003) [14], (2004) [12]) and Ferraty
et al. (2006) [9], and the references therein, in the case that the samples are observed
completely.

However, in many practical works such as sampling survey, pharmaceutical tracing
test and reliability test and so on, some pairs of observations may be incomplete, which
is often called the case of missing data. Many examples of missing data and its statistical
inferences for regression model can be found in statistical literature when explanatory
variables are of finite dimensionality (Cheng (1994) [4], Little and Rubin (2002) [23],
Nittner (2003) [24], Tsiatis (2006) [26], Liang et al. (2007) [22], Efromovich ((2011a) [7]
, (2011b) [8]) and references therein for details. When explanatory variables are in the
case of infinite dimensionality or it is of functional nature, only very few literature was
reported to investigate the statistical properties of functional nonparametric regression
model for missing data.

Recently, Ferraty et al. (2013) [11] first proposed to estimate the mean of a scalar
response based on an i.i.d. functional sample in which explanatory variables are observed
for every subject, while the response variables are missing at random by happenstance
for some of them. It generalized the results in Cheng (1994) [4] to the case where the
explanatory variables are of functional nature.

The single-index models are becoming increasingly popular because of their impor-
tance in several areas of science such as econometrics, biostatistics, medicine, financial
econometric and so on. The single-index model, a special case of projection pursuit regres-
sion, has proven to be a very efficient way of coping with the high dimensional problem
in nonparametric regression. Such kind of modelization is intensively studied in the mul-
tivariate case. We quote for example Härdle et al. (1993) [18], Hristache et al. (2001)
[19]. Delecroix et al. (2003) [5] have studied the estimation for the single-index approach
of the regression function and established some asymptotic properties. The first work
in the fixed functional single-model was given by Ferraty et al. (2003) [10], where the
authors obtained almost complete convergence (with the rate) of the regression function
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in the i.i.d. case. Their results have been extended to dependent case by Ait-Säıdi et al.
(2005) [1]. Ait-Säıdi et al. (2008) [2] studied the case where the functional single-index
is unknown. The authors have proposed for this parameter an estimator based on the
cross-validation procedure.

The goal of this paper is to establish a nonparametric estimation on functional regres-
sion model (4.1). At first, an estimator of the regression operator in the functional single
index model of a scalar response and the functional covariate which are assumed to be
sampled from a stationary and ergodic process is constructed. Meanwhile, the response
variables are MAR. Then, the asymptotic properties of the estimator are obtained under
some mild conditions. To the best of our knowledge, the estimation of the nonparametric
regression operator in the functional single index structure combining missing data and
stationary ergodic processes has not been studied in the statistical literature.

4.2 The model and the estimates
4.2.1 The functional nonparametric framework
The estimators

In the complete data case, the kernel estimator r̃n(θ, x) of r(θ, x) is presented as follows:

r̃n(θ, x) =

n∑
i=1

YiK
(
h−1(< x−Xi, θ >)

)
n∑

i=1

K
(
h−1(< x−Xi, θ >)

) , (4.2)

where K is a kernel function, h = hn is a sequence of positive real numbers.
Meanwhile, in incomplete case with missing at random for the response variable, we
observe (Xi, Yi, δi)1≤i≤n where Xi is observed completely, and δi = 1 if Yi is observed, and
δi = 0 otherwise. We define the Bernoulli random variable δ by

P(δ = 1| < θ,X >=< θ, x >, Y = y) = P(δ = 1| < θ,X >=< θ, x >) = p(θ, x),

where p(θ, x) is a functional operator which is conditionally only on (θ,X).
Therefore, the estimator of r(θ, x) in the single index model with response MAR is given
by

r̂n(θ, x) =

n∑
i=1

δiYiK
(
h−1(< x−Xi, θ >)

)
n∑

i=1

δiK
(
h−1(< x−Xi, θ >)

) =
r̂n,2(θ, x)

r̂n,1(θ, x)
, (4.3)

where

r̂n,j(θ, x) =
1

nE(K1(θ, x))

n∑
i=1

δiY
j−1
i Ki(θ, x), j = 1, 2, (4.4)
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with
Ki(θ, x) = K(h−1(< x−Xi, θ >)).

Some notations and assumptions

For 1 ≤ i ≤ n, let Fi and gi be the σ-fields generated by ((< θ,X1 >, Y1), · · · , (<
θ,Xi >, Yi)) and ((< θ,X1 >, Y1), · · · , (< θ,Xi >, Yi), (< θ,Xi+1 >)), respectively. Let,
Bθ(x, h) = {f ∈ H : 0 < | < x − f, θ > | < h} the ball of center x and radius h.
Define Fx,θ(u) = P(< x − Xi, θ >≤ u) = P(Xi ∈ Bθ(x, u)) the distribution function

and F
Fi−1

x,θ (u) = P(< x − Xi, θ >≤ u|Fi−1) = P(Xi ∈ Bθ(x, u)|Fi−1) the conditional
distribution function given the σ-field Fi−1.

Let

rn,j(θ, x) =
1

nE(K1(θ, x))

n∑
i=1

E(δiY j−1
i Ki(θ, x)/Fi−1), j = 1, 2, (4.5)

Cn(θ, x) =
rn,2(θ, x)

rn,1(θ, x)
, (4.6)

and
Bn(θ, x) = Cn(θ, x)− rn(θ, x). (4.7)

Then,

r̂n(θ, x)− Cn(θ, x) =
Qn(θ, x) +Rn(θ, x)

r̂n,1(θ, x)
, (4.8)

where
Qn(θ, x) = (r̂n,2(θ, x)− r̄n,2(θ, x))− r(θ, x)(r̂n,1(θ, x)− r̄n,1(θ, x)), (4.9)

and
Rn(θ, x) = −Bn(θ, x)(r̂n,1(θ, x)− r̄n,1(θ, x)). (4.10)

Our results are stated under some mild assumptions we gather below for easy references.
Throughout the paper, when no confusion will be possible, we will denote by C, C0 some
positive generic constants whose values are allowed to change.

(A1) Assumptions on the kernel function K

K is a nonnegative bounded kernel function with support [0, 1], and the derivative K ′

exists on [0, 1] with K ′(t) < 0 for all t ∈ [0, 1] and |
∫ 1

0
(Kj)′(t)dt| <∞ , for j = 1, 2.

(A2) Assumptions on the stationary ergodic nature
For x∈ H, there exist a sequence of nonnegative bounded random functions (fi,1)i≥1,

a sequence of random functions (gi,x,θ)i≥1, a deterministic nonnegative bounded function
f1 and a nonnegative real function ϕθ(·) tending to zero, as its argument tends to 0, such
that

(i) Fx,θ(h) = ϕθ(h)f1(θ, x) + o(ϕθ(h)) as h→ 0.
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(ii) For any i ∈ N, FFi−1

x,θ (h) = ϕθ(h)fi,1(θ, x) + gi,x,θ(h) with gi,x,θ = oa.s(ϕ(h)) as h →

0,
gi,x,θ(h)

ϕθ(h)
almost surely bounded and n−1

∑n
i=1 g

j
i,x,θ(h) = oa.s(ϕ

j
θ(h)) as n → ∞,

for j = 1, 2.

(iii) n−1
∑n

i=1 f
j
i,1(θ, x) → f j

1 (θ, x) almost surely as n→ ∞, for j = 1, 2.

(iv) There exists a nondecreasing bounded function τ0 such that, uniformly

in t ∈ [0, 1],
ϕθ(ht)

ϕθ(h)
= τ0 + o(1), as h ↓ 0,

and
∫ 1

0
(Kj)′τ0(t)dt <∞ for j ≥ 1.

(A3) Assumptions on the conditional moments

(i) The conditional mean of Yi given the σ-field gi−1 depends only on (θ,Xi), i.e, for
any i ≥ 1, E(Yi|gi−1) = E(Yi| < θ,Xi >) = r(θ,Xi), a.s.

(ii) For any i ≥ 1,E[(Yi−r(θ,Xi))
2|gi−1] = E[(Yi−r(θ,Xi))

2| < θ,Xi >] = V (θ,Xi), a.s.

(A4) Local smoothness and continuous conditions

(i) ∃β > 0 and a constant C > 0 such that |r(u) − r(v)| ≤ Cd(u, v)β for all (u, v) ∈
H ×H.

(ii) V (·) and p(·) are continuous in a neighborhood of (θ, x) respectively, that is as h→ 0

sup
u:<x−u,θ>≤h

|V (u)− V (θ, x)| = o(1),

sup
u:<x−u,θ>≤h

|p(u)− p(θ, x)| = o(1).

(iii) ∃δ > 0: E|Y1|2+δ < ∞, and let W 2+δ(u) = E
(
|
(
Y1 − r(θ, x)

)
|2+δ|X1 = u

)
be

continuous in a neighborhood of (θ, x) for u ∈ H.

• Remarks on the assumptions

Similar to the discussions in Laib and Louani ((2010) [20], (2011) [21]), (A1), (A4)(i) are
the quite usual conditions on the kernel function and regression operator for nonpara-
metric functional data analysis. (A2) shows the ergodic nature of the data and the small
ball techniques used in this paper. Assumption (A3) on condition moment shows the
Markovian nature of the functional stationary ergodic data. (A4)(ii) and (A4)(iii) stand
as local continuous conditions, which is necessary to establish the main results and make
the results concise in this paper.
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4.3 Asymptotic properties

In this section, we show some asymptotic properties of the estimator r̂n(θ, x) for the
regression operator based on the functional stationary ergodic data with MAR in the
single index model. More precisely, Theorem 4.3.1 shows the convergence in probability
of the estimator. The asymptotic distribution of the estimator is presented in Theorem
4.3.2.

Theorem 4.3.1. Under assumptions (A1)-(A4)(i),

(a) If
nϕθ(h)

log log(n) → ∞, as n→ ∞, (4.11)

for any x ∈ H such thatf1(θ, x) > 0, then we have

(
nϕθ(h)

log log(n)

) 1
2

(r̂n(θ, x)− Cn(θ, x))
P−→ 0. (4.12)

(b) In addition, if
nϕθ(h)h

2β

log log(n) → 0, as n→ ∞, (4.13)

where β is satisfied in (A4)(i), then we have

(
nϕθ(h)

log log(n)

) 1
2

(r̂n(θ, x)− r(θ, x))
P−→ 0, (4.14)

with P−→ means the convergence in probability.

Theorem 4.3.2. Under assumptions (A1)-(A4),

(a) If
nϕθ(h) → ∞, as n→ ∞, (4.15)

for any x ∈ H such that f1(θ, x) > 0, then we have

√
nϕθ(h)(r̂n(θ, x)− Cn(θ, x))

D−→ N (0, σ2(θ, x)), (4.16)

where D−→ means the convergence in distribution and σ2(θ, x) =
M2

M2
1

V (θ, x)

p(θ, x)f1(θ, x)

with Mj = Kj(1)−
∫ 1

0
(Kj)′(u)τ0(u)du, for j = 1, 2.

(b) In addition, if

hβ
(
nϕθ(h)

) 1
2 → 0, as n→ ∞, (4.17)
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where β is specified in (A4)(i), then we have

√
nϕθ(h)(r̂n(θ, x)− r(θ, x))

D−→ N (0, σ2(θ, x)). (4.18)

It is worth being noted that the results in our work extend the complete data in
Laib and Louani ((2010) [20], (2011) [21]) to MAR case. On the other hand, as for the
asymptotic normality, we also solve the second important open issue in MAR modeling
proposed by Ferraty et al. (2013) [11]. In fact, the limiting variance in Theorem 4.3.2
contains the unknown function operator f1(θ, ·), V (θ, ·), p(θ, ·) and unknown parameter
Mj for j = 1, 2, respectively. Meanwhile, the normalization depends on the function
ϕθ(θ, ·) which is also not identifiable explicitly. Therefore, we have to estimate them
respectively so as to obtain asymptotic confidence interval of r(θ, x) in practice. First,
the estimator of the conditional variance V (θ, x) can be defined as:

Vn(θ, x) =

n∑
i=1

(δiYi − r̂n(θ, x))
2K

(
< x−Xi, θ >

h

)
n∑

i=1

δiK

(
< x−Xi, θ >

h

)

=

n∑
i=1

δiY
2
i K

(
< x−Xi, θ >

h

)
n∑

i=1

δiK

(
< x−Xi, θ >

h

) −
(
r̂n(θ, x)

)2

= ĝn(θ, x)−
(
r̂n(θ, x)

)2
. (4.19)

Second, by the assumptions (A2)(i) and (A2)(iv), the estimator of τ0(θ, x) is defined
as

τn(u) =
Fx,θ,n(uh)

Fx,θ,n(h)
,

where

Fx,θ,n(u) =
1

n

n∑
i=1

1{<x−Xi,θ>≤u}

can be used to estimate ϕθ(h). Therefore, for a given kernel K, the estimator of M1

and M2, namely M1,n and M2,n respectively, is obtained by replacing τ0 with τn in their
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respective expressions. Finally, the estimator of p(θ, x) is denoted by

Pn(θ, x) =

n∑
i=1

δiK

(
< x−Xi, θ >

h

)
n∑

i=1

K

(
< x−Xi, θ >

h

) . (4.20)

Then, the following Corollary is obtained immediately.

Corollary 4.3.1. Under the conditions of Theorem 4.3.2, we have

M1,n√
M2,n

√
nFx,θ,n(h)Pn(θ, x)

Vn(θ, x)

(
r̂n(θ, x)− r(θ, x)

) D−→ N (0, 1). (4.21)

Thus, by (4.21), the asymptotic (1 − ζ) confidence interval for the regression function
operator r(θ, x) is given by

r̂n(θ, x)± µ ζ
2

√
M2,n

M1,n

√
Vn(θ, x)

nFx,θ,n(h)Pn(θ, x)
,

where µ ζ
2
is the upper ζ

2
quantile of the Normal distribution N (0, 1).

4.4 Proofs of some lemmas and main results
In this section, we first present some lemmas and their proofs which are necessary to
establish our main results.

Lemma 4.4.1. Assume that assumptions (A1) and (A2)(i)(ii)(iv) hold true. For any
real numbers 1 ≤ j ≤ 2 + δ and 1 ≤ k ≤ 2 + δ with δ > 0, asn→ ∞, we have

(i) 1

ϕθ(h)
E
[
Kj

i (θ, x)|Fi−1

]
=Mjfi,1(θ, x) +Oa.s

(gi,θ,x(h)

ϕθ(h)

)
.

(ii) 1

ϕθ(h)
E
[
Kj

i (θ, x)
]
=Mjf1(θ, x) + o(1).

(iii) 1

ϕk
θ(h)

(
E(Kj

1(θ, x))
)k
=Mk

1 f
k
1 (θ, x) + o(1).

Proof of Lemma 4.4.1. See the proof of Lemma 1 in Laib and Louani (2010) [20].

Lemma 4.4.2. Under the assumptions (A1)-(A2) in addition to (A3), for any x ∈ H
such that f1(θ, x) > 0, we have

r̂n,1(θ, x)
P−→ p(θ, x), as n→ ∞. (4.22)
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Proof of Lemma 4.4.2. By (4.4), we have the decomposition as follows

r̂n,1(θ, x) = Rn,1(θ, x) + r̄n,1(θ, x), (4.23)

where

Rn,1(θ, x) =
1

nE(K1(θ, x))

n∑
i=1

(
δiKi(θ, x)− E

[
δiKi(θ, x)|Fi−1

])
,

and

r̄n,1(θ, x) =
1

nE
(
K1(θ, x)

) n∑
i=1

E
[
δiKi(θ, x)|Fi−1

]
.

First, we need to establish

r̄n,1(θ, x)
P−→ p(θ, x), as n→ ∞. (4.24)

By the properties of conditional expectation and the mechanism of MAR, combining
the assumptions (A2)(ii)(iii), (A3) and the continuous property of p(θ, x) with Lemma
4.4.2, we have

r̄n,1(θ, x) =
1

nE
(
K1(θ, x)

) n∑
i=1

E
[
E[(δiKi(θ, x)|Fi−1]|gi−1

]
=

1

nE
(
K1(θ, x)

) n∑
i=1

E
[
p(θ, x) + o(1)Ki(θ, x)|Fi−1

]
=

(
p(θ, x) + o(1)

) 1

nE
(
K1(θ, x)

) n∑
i=1

E[Ki(θ, x)|Fi−1]

=
(
p(θ, x) + o(1)

) 1

nE
(
K1(θ, x)

) n∑
i=1

(
ϕθ(h)M1fi1(θ, x) +Oa.s

(gi,θ,x(h)

ϕθ(h)

))

=
(
p(θ, x) + o(1)

) ϕθ(h)

E
(
K1(θ, x)

)( 1

n

n∑
i=1

M1fi1(θ, x) +
1

n

n∑
i=1

Oa.s

(gi,θ,x(h)

ϕθ(h)

))

=
(
p(θ, x) + o(1)

) 1

M1f1(θ, x) + o(1)

(
M1

(
f1(θ, x) + o(1)

)
+Oa.s(1)

)

→ p(θ, x) a.s, as n→ ∞.

Second, we will prove that

Rn,1(θ, x)
P−→ 0, as n→ ∞. (4.25)

On the one hand, we denote ηn.i(θ, x) = δiKi(θ, x)− E
(
δiKi(θ, x)|Fi−1

)
.

Then,(ηn.i, 1 ≤ i ≤ n) forms a triangular array of martingale differences with respect
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to the σ-field Fi−1 and

Rn,1(θ, x) =
1

nE
(
K1(θ, x)

) n∑
i=1

ηn,i(θ, x).

On the other hand, by Burkholders inequality of martingale differences (Hall and
Heyde (1980) [17]), we have, as n→ ∞

P
(
|Rn,1(θ, x)| > ε

)
= P

(∣∣∣∣ n∑
i=1

ηn.i(θ, x)

∣∣∣∣> εnE
(
K1(θ, x)

))

≤ C0
Eη2n.i(θ, x)

ε2n
(
E(K1(θ, x)

)
< C0

E
(
δ1K

2
1(θ, x)

)
ε2nE(K2

1(θ, x))
→ 0,

which means that (4.25) is correct. Finally, (4.22) follows from (4.23) to (4.25).

Lemma 4.4.3. Under the assumptions (A1)-(A2), (A3)(i), (A4)(i) and the condition
(4.15), for any x ∈ H such that f1(θ, x) > 0, we have

Bn(θ, x) = OP(h
β), (4.26)

and √
nϕθ(h)Rn(θ, x)

P−→ 0, as n→ ∞. (4.27)

Proof of Lemma 4.4.3. First, by (4.6) and (4.7), we have

Bn(θ, x) =
r̄n,2(θ, x)− r(θ, x)r̄n,1(θ, x)

r̄n,1
=
B̄n(θ, x)

r̄n,1(θ, x)
.

Then, by (4.24), we need to show that

B̄n(θ, x) = r̄n,2(θ, x)− r(θ, x)r̄n,1(θ, x) = Oa.s(h
β). (4.28)

In fact, by the assumptions (A3)(i) and (A4)(i), similar to the proof of Lemma 4.4.2,
it follows that
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|Bn(θ, x)| =

∣∣∣∣ 1

nE
(
K1(θ, x)

) n∑
i=1

E
[(
Yi − r(θ, x)

)
δiKi(θ, x)|Fi−1

]∣∣∣∣
=

∣∣∣∣ 1

nE
(
K1(θ, x)

) n∑
i=1

E
[
E
[
(Yi − r(θ, x))δiKi(θ, x)|gi−1

]
|Fi−1

]∣∣∣∣
=

∣∣∣∣ 1

nE
(
K1(θ, x)

) n∑
i=1

E
[
E
[
(Yi − r(θ, x))δiKi(θ, x)| < θ,Xi >

]
|Fi−1

]∣∣∣∣
=

∣∣∣∣ 1

nE
(
K1(θ, x)

) n∑
i=1

E
[
(r(θ,Xi)− r(θ, x))p(Xi)Ki(θ, x)| < θ,Xi >

]
|Fi−1

∣∣∣∣
≤ sup

u∈Bθ(x,h)

|r(u)− r(θ, x)|
∣∣∣∣ 1

nE
(
K1(θ, x)

) n∑
i=1

E
(
p(θ,Xi)Ki(θ, x)|Fi−1

)∣∣∣∣
= Oa.s(h

β).

Thus, (4.26) follows from (4.24) and (4.28).
Finally, in order to establish (4.27), observe that

r̂n,1(θ, x)− r̄n,1(θ, x) =
1

nE
(
K1(θ, x)

) n∑
i=1

ηn.i(θ, x)

is a summation of a martingale difference {ηn.i, 1 ≤ i ≤ n}. Following the same steps as
that in Laib and Louani (2010) [20], if we establish that

√
nϕθ(h)

(
r̂n,1(θ, x)− r̄n,1(θ, x)

) D−→ N (0, ρ2(θ, x)), (4.29)

where, ρ(θ, x) = M2

M2
1

p(θ, x)

f1(θ, x)
, then by (4.29), (4.26) and (4.10), (4.27) is follows.

In fact, the proof of (4.29) is similar to that of Lemma 4.4.4 which establishes the
asymptotic normality of Qn(θ, x).

Lemma 4.4.4. Under the assumptions (A1)-(A2) as well as (A3)(A4) and the condition
(4.15), for any x ∈ H such that f1(θ, x) > 0, we have

√
nϕθ(h)Qn(θ, x)

D−→ N (0, σ2
0(θ, x)), (4.30)

where

σ2
0 =

M2

M2
1

p(θ, x)V (θ, x)

f1(θ, x)
.
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Proof of Lemma 4.4.4. Let’s denote

ζni =
(ϕθ(h)

n

) 1
2 δi(Yi − r(θ, x))

Ki(θ, x)

E
(
K1(θ, x)

) ,
and

ξni = ζni − E[ζ2ni|Fi−1].

It is easy to see that (
nϕθ(h)

)2
Qn(θ, x) =

n∑
i=1

ξni. (4.31)

Thus the {ξni, 1 ≤ i ≤ n} forms a triangular array of stationary martingale differences
with respect to the σ-field Fi−1. We apply the central limit theorem for discrete-time
arrays of real-valued martingales (Hall and Heyde (1980) [17] ) to obtain the asymptotic
normality of Qn(θ, x). Therefore, we have to establish the following statements:

(a)
∑n

i=1 E[ξ2ni|Fi−1]
P−→ σ2

0(θ, x);

(b) nE
[
ξ2niI[|ξni|>ε]

]
= o(1), for ∀ε > 0.

Proof of part (a). Observe that

∣∣∣∣ n∑
i=1

E
[
ζ2ni|Fi−1

]
−

n∑
1

E
[
ξ2ni|Fi−1

]∣∣∣∣≤ n∑
i=1

(
E
[
ζni|Fi−1

])2
. (4.32)

By (A4), the continuous condition of p(θ, x) and Lemma 4.4.1, we obtain that

∣∣E[ζni|Fi−1]
∣∣ =

(
ϕθ(h)
n

) 1
2

E
(
K1(θ, x)

)∣∣∣∣E[(r(θ,Xi)− r(θ, x))p(θ,Xi)Ki(θ, x)|Fi−1

]∣∣∣∣
≤

(
ϕθ(h)
n

) 1
2

E
(
K1(θ, x)

) sup
u∈Bθ(x,h)

∣∣r(u)− r(θ, x)
∣∣E(Ki(θ, x)|Fi−1

)
hβ
(
o(1) + p(θ, x)

)
≤ C

(
ϕθ(h)

n

) 1
2
(
fi1(θ, x)

f1(θ, x)
+Oa.s

(gi,θ,x(h)

ϕθ(h)

))
hβ
(
o(1) + p(θ, x)

)
.

Thus, by (A2)(ii) and (A2)(iii), we have

n∑
i=1

(
E[ζni|Fi−1]

)2 ≤ Oa.s

(
h2βϕθ(h)

)( 1

f 2
1 (θ, x)

1

n

n∑
i=1

f 2
i1(θ, x) +Oa.s(1)

)(
o(1) + p(θ, x)

)2
= Oa.s(h

2βϕθ(h)).
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Hence, the statement (a) follows if we show that

n∑
i=1

E[ζ2ni|Fi−1]
P−→ σ2

0(θ, x). (4.33)

To establish (4.33), we have the decomposition as follows

n∑
i=1

E[ζ2ni|Fi−1] =
ϕθ(h)

n
(
EKi(θ, x)

)2 n∑
i=1

E
[(
Yi−r(θ, x)

)2
δiK

2
i (θ, x)|Fi−1

]
= J1n+J2n, (4.34)

where,

J1n =
ϕθ(h)

n
(
EK1(θ, x)

)2 n∑
i=1

E
[(
Yi − r(θ,Xi)

)2
δiK

2
i (θ, x)|Fi−1

]
,

and

J2n =
ϕθ(h)

n
(
EK1(θ, x)

)2 n∑
i=1

E
[(
r(θ,Xi)− r((θ, x)

)2
δiK

2
i (θ, x)|Fi−1

]
.

Thus, by the properties of conditional expectation and on the use of assumption
(A3)(ii), we obtain that

J1n =
ϕθ(h)

n
(
EK1(θ, x)

)2 n∑
i=1

E
[
E
[(
Yi − r(θ,Xi)

)2
δiK

2
i (θ, x)|gi−1

]
|Fi−1

]

=
ϕθ(h)

n
(
EK1(θ, x)

)2 n∑
i=1

E
[
K2

i (θ, x)E
[(
Yi − r(θ,Xi)

)2
δi| < θ,Xi >

]
|Fi−1

]

=
ϕθ(h)

n
(
EK1(θ, x)

)2 n∑
i=1

E
[
V (θ,Xi)p(θ,Xi)K

2
i (θ, x)|Fi−1

]
.

Then, by (A2)(ii) and smoothness conditions (A4) as well as Lemma 4.4.1, we have
that

J1n =
ϕθ(h)

n
(
EK1(θ, x)

)2 n∑
i=1

E
[(
o(1) + V (θ, x)

)(
o(1) + p(θ, x)

)
K2

i (θ, x)|Fi−1

]

=
ϕθ(h)

n
(
EK1(θ, x)

)2 n∑
i=1

(
o(1) + V (θ, x)

)(
o(1) + p(θ, x)

)(
M2ϕθ(h)fi1(θ, x) +Oa.s

(gi,θ,x(h)

ϕθ(h)

))

→ M2V (θ, x)p(θ, x)

M2
1 f1(θ, x)

= σ2
0(θ, x). (4.35)

Similarly, by the assumptions (A2)(ii)(iii) and (A4)(i) together with Lemma 4.4.1
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again, it follows that

J2n = O(h2β)
ϕθ(h)

n
(
EK1(θ, x)

)2 n∑
i=1

E
[
δiK

2
i (θ, x)|Fi−1

]
≤ O(h2β)

(
M2

M2
1

1

f1(θ, x)
+ oa.s(1)

)
−→ 0, as n→ ∞. (4.36)

Finally, by (4.34)-(4.36), (4.33) is valid.
Proof of part (b).

The proof of this part is also similar to that in Laib and Louani (2010) [20]. In fact, by
the definition of ξni, we have nE

[
ξ2niI(|ξni|>ε)

]
≤ 4nE

[
ζ2niI(|ζni|> ε

2
)

]
, where IA is an indicator

function of a set A. Let a > 1 and b > 1 such that 1
a
+ 1

b
= 1. By Hölder and Markov

inequalities, one can write, for all ε > 0,

E
[
ζ2niI
(
|ζni|> ε

2

)]≤ E|ζni|2a

( ε
2
)
2a
b

. (4.37)

Taking C0 a positive constant and 2a = 2 + δ (with δ as in (A4)(iii)), by the local
continuous condition, we can obtain

4nE
[
ζ2niI(|ζni|> ε

2
)

]
≤ C0

(
ϕθ(h)
n

) 2+δ
2

n(
E
(
K1(θ,x)

))2+δE
([

|Yi − r(θ, xi|
)2
δiK

2
i (θ, x)

]2+δ
)

≤ C0

(
ϕθ(h)
n

) 2+δ
2

n(
E
(
K1(θ,x)

))2+δE
(
E
[
|Yi − r(θ, xi)|2+δδi

(
Ki(θ, x)

)2+δ| < θ,Xi >
])

≤ C0

(
ϕθ(h)
n

) 2+δ
2

n(
E
(
K1(θ,x)

))2+δE
[(
Ki(θ, x)

)2+δ
p(θ,Xi)W 2+δ(θ,Xi)

]
= C0

(
ϕθ(h)
n

) 2+δ
2

n(
E
(
K1(θ,x)

))2+δE
[(
Ki(θ, x)

)2+δ(
p(θ, x) + o(1)

)(
W 2+δ(θ, x) + o(1)

)]

≤ C0

(
ϕθ(h)
n

) 2+δ
2 nE

(
K1(θ,x)

)2+δ(
E(K1(θ,x))

)2+δ

(
p(θ, x)W 2+δ(θ, x) + o(1)

)
.

Thus, by Lemma 4.4.1, it follows that

4nE
[
ζ2niI(|ζni|> ε

2
)

]
≤ C0

(
nϕθ(h)

)− δ
2
M2+δf1(θ, x) + o(1)

M2+δ
1 f 2+δ

1 (θ, x) + o(1)

(
p(θ, x)W 2+δ(θ, x) + o(1)

)
= O

(
nϕθ(h)

)− δ
2 .

Finally, by (4.15), the proof of part (b) is completed. Then, (4.30) is valid.

Proof of Theorem 4.3.1. First, we present the proof of (4.12). By Lemma 4.4.4, it
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follows that
(
nϕθ(h)

) 1
2Qn(θ, x) = OP(1), which leads to

(
nϕθ(h)

log logn

) 1
2

Qn(θ, x) = OP(1). (4.38)

On the other hand, by Lemma 4.4.3, we have

(
nϕθ(h)

log logn

) 1
2

Rn(θ, x) = OP(1). (4.39)

Thus, by Lemma 4.4.2 and (4.8), (4.12) is valid.
Second, we give the proof of (4.14). Since

r̂n(θ, x)− r(θ, x) = r̂n(θ, x)− Cn(θ, x) +Bn(θ, x). (4.40)

Hence, by (4.40) together with (4.3), (4.4) and (4.15), (4.14) follows.

Proof of Theorem 4.3.2. On the one hand, (4.16) follows directly from (4.8), (4.22),
(4.27), (4.30) and the Slulsky Theorem. On the other hand, by (4.16), (4.17), (4.26),
(4.40) and the Slulsky Theorem again, (4.18) is also obtained.

Proof of Corollary 4.3.1. First, one can observe that

M1.n√
M2.n

√
nPn(θ, x)Fx,θ,n(h)

Vn(θ, x)

(
r̂n(θ, x)− r(θ, x)

)

=
M1.n

M1

√
M2√
M2.n

√
nFx,θ,n(h)Pn(θ, x)V (θ, x)

p(θ, x)Vn(θ, x)nϕθ(h)f1(θ, x)
× M1√

M2

√
nϕθ(h)f1(θ, x)p(θ, x)

V (θ, x)

(
r̂n(θ, x)− r(θ, x)

)
.

By (4.18), we have

M1√
M2

√
p(θ, x)nϕθ(h)f1(θ, x)

V (θ, x)

(
r̂n(θ, x)− r(θ, x)

) D−→ N (0, 1), as n→ ∞.

Therefore, we need to establish the following statement

M1.n

M1

√
M2√
M2.n

√
nFx,θ,n(h)V (θ, x)Pn(θ, x)

p(θ, x)Vn(θ, x)nϕθ(h)f1(θ, x)

P−→ 1, asn → ∞. (4.41)

Similar to the proof of Corollary 1 in Laib and Louani (2010) [20], we have

M1.n
P−→M1,M2.n

P−→M2,
Fx,θ,n(h)

ϕθ(h)f1(θ, x)

P−→ 1, as n→ ∞. (4.42)
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In addition, by (4.11) and (4.14), it follows that

r̂n(θ, x)
P−→ r(θ, x), as n→ ∞. (4.43)

On the other hand, by the same steps as in the proof of Theorem 4.3.1, we have

ĝn(θ, x)
P−→ E(Y 2| < θ,X >=< θ, x >), as n→ ∞. (4.44)

Then, by (4.19), we obtain

Vn(θ, x)
P−→ V (θ, x), as n→ ∞. (4.45)

Finally, by Proposition 2 in Laib and Louani (2010) [20], it follows that

Pn(θ, x)
P−→ P(δ = 1| < θ,X >=< θ, x >) = p(θ, x), as n→ ∞. (4.46)

Hence, (4.41) follows from (4.42)-(4.46).
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Abstract: The main objective of this paper is to investigate the nonparametric esti-
mation of the conditional density of a scalar response variable Y , given the explanatory
variable X taking value in an Hilbert space when the sample of observations is considered
as an independent random variables with identical distribution (i.i.d) and are linked with
a single functional index structure. First of all, a kernel type estimator for the conditional
density function (cond-df) is introduced. Afterwards, the asymptotic properties are stated
for a conditional density estimator when the observations are linked with a single-index
structure from which one derives a central limit theorem (CLT) of the conditional density
estimator to show the asymptotic normality of the kernel estimate of this model. As
an application, the conditional mode in functional single-index model is presented, and
the asymptotic (1 − ξ) confidence interval of the conditional mode function is given for
0 < ξ < 1. A simulation study is also presented to illustrate the validity and finite sample
performance of the considered estimator. Finally, the estimation of the functional index
via the pseudo-maximum likelihood method is discussed.

Keywords: Asymptotic normality, Conditional density, Functional single index model,
Functional random variable, Nonparametric estimation.

JEL Classification: C13, C14, C15.

5.1 Introduction
The statistical analysis of functional variables has grown considerably over the last two
decades. In fact, an important innovation in measuring devices has emerged, permitting
to monitor several objects in a continuous way, such as stock market index, pollution,
climatology, and satellite images, etc.
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Thus, a new branch of statistics called functional statistics has been developed to treat
observations as functional random elements.

As a conditional nonparametric model, the regression was one of the first predictive
analysis tools. Quantile regression is the common way to describe the dependence struc-
ture between a response variable Y and some covariate X. Unlike the regression function
(which is defined as the conditional mean) that relies only on the central tendency of
the data, the conditional mode function allows the analyst to estimate the functional
independence between variables for all portions of the conditional density of the response
variable. However, compared with the standard approach based on functional conditional
mean prediction that is sensitive to outliers, functional condition mode prediction could
be seen as a reasonable alternative to the conditional mean because of its robustness,
which allows to consider it as a useful alternative to the regression function.

The conditional model estimator has been widely used to estimate some characteris-
tic features of the data set, such as the conditional mode, the conditional median, and
the conditional quantiles. Many authors are interested in the estimation of the condi-
tional mode of a scalar response given a functional covariate. Ferraty et al. (2006) [12]
introduced a nonparametric study of the kernel-type estimation of some characteristics
of the conditional cumulative distribution function and the conditional density and its
derivatives. Some asymptotic properties were established with particular attention to
the conditional mode and conditional quantiles. An application to a chemometrical data
set coming from the food industry was also presented. The uniform strong consistency
with rates and the asymptotic normality for the kernel conditional mode estimator were
obtained by Ezzahrioui and Ould-Säıd (2008) [11] in the i.i.d case.

In the case of censoring data, Ould-Säıd and Cai (2005) [26] established the strong
uniform convergence (with rate) of kernel conditional mode estimator for i.i.d random
variables, while Ould-Säıd (2006) [25] constructed a kernel estimator of the conditional
quantile and establish its strong uniform convergence rate. Next, Khardani et al. (2010)
[19] obtained strong consistency with the rate and asymptotic normality of the conditional
mode Khardani et al. (2011) [20] established strong consistency with the rate of the
conditional mode for the censored dependent case, while Khardani et al. (2014) [21]
presented asymptotic normality.

For infinite dimensional purpose, the study used the terminology functional nonpara-
metric, where the term functional refers to the infinite dimensionality of the data, and
where nonparametric refers to the infinite dimensionality of the model. Such functional
nonparametric statistics is also called doubly infinite dimensional (see Ferraty and Vieu
(2003) [14], for more details). Conditional density function estimation is one of the crucial
problems in non-parametric statistics, see (De Gooijer and Zerom (2003) [9]). Ling and
Xu (2012) [24] established the asymptotic normality of the conditional density estimator
and the conditional mode estimator for the α-mixing dependence functional time series
data. Ling et al. (2014) [23] investigated the pointwise almost complete consistency and
the uniform almost complete convergence of the kernel estimation with a rate for the
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conditional density in the setting of the α-mixing functional data. Attaoui (2014b) [4]
investigated the nonparametric estimation of the conditional density of a scalar response
variable given a random variable taking values in separable Hilbert space. The author
established under general conditions the uniform almost complete convergence rates and
the asymptotic normality of the conditional density kernel estimator, when the variables
satisfy the strong mixing dependency, based on the single-index structure.

The single index models have been used and studied in both statistical and econo-
metric literature, and are very popular in the economics community as they address two
important concerns. The first is the reduction of dimension, since this type of model
makes it possible to solve the problem of the scourge of the dimension. The second is
related to the interpretability of the index (parameter) introduced in these models. The
statistical study of these models, in the context of vectorial explanatory random variables,
was initiated by Härdle and Marron (1985) [59]. Hristache et al. (2001) [18] provided both
new theoretical and bibliographic elements. Based on the regression function, Delecroix et
al. (2003) [10] studied the estimation of the single-index and established some asymptotic
properties. In the same setting, we can cite Härdle et al. (1993) [16]. Several authors
have worked on simple functional index models, e.g. (Attaoui and Boudiaf (2014a) [3],
Ait-Säıdi et al. (2008) [2], Belabbaci et al (2015) [7], Ferraty et al. (2003) [13]).

These models attracted the attention of many researchers, such as Ait-Säıdi et al.
(2005) [1]. Bouchentouf et al. (2014) [8] established a nonparametric estimation of
some characteristics of the conditional cumulative distribution function and the successive
derivatives of the conditional density of a scalar response variable Y given a Hilbertian
random variable X when the observations are linked with a single-index structure. At-
taoui et al. (2011) [5] studied the functional single-index model via its conditional density
kernel estimator, and established its pointwise and uniform almost complete convergence
rates.

The main contribution of this work is to generalize the result of Ezzahrioui and Ould-
Säıd (2008) [11], where a functional parameter θ is present in the model. The results can
be used to construct prediction intervals, for instance regarding electricity when one wants
to construct a maximum interval of demand (or need) for chemometrical data coming from
the food industry.

This study established the asymptotic properties of the asymptotic normality for the
estimators of conditional density function and conditional mode of a randomly scalar
response, given a functional covariate when the data are sampled from an i.i.d process
with a single-index structure.

The paper is organized as follows. The model and some basic assumptions are pre-
sented in Section 5.2. Section 5.3 shows the main results, and the proofs of some lemmas.
In Section 5.4, an application of the conditional mode in functional single-index model is
presented. The next section illustrates those asymptotic properties through some simula-
tions. Finally, a general conclusion to this contribution is proposed in Section 5.6.
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5.2 Model and some basic assumptions

Let (Xi, Yi)i=1,...,n be a sequence of independent functional samples, with the same distri-
bution as (X, Y ), where Y is a real-valued random variable and X be a functional random
variable (frv), which takes its values in a separable real Hilbert space H with the norm
∥ · ∥ generated by an inner product < ·, · >.

Moreover, we consider dθ(·, ·) a semi-metric associated with the single index θ ∈ H
defined by dθ(x1, x2) := | < x1 − x2, θ > |, for x1 and x2 in H.

For a fixed x in H, let F (θ, y, x) be the conditional cumulative distribution function
(cond-cdf) of Y given < θ,X >=< θ, x >, specifically:

∀y ∈ R, F (θ, y, x) = P(Y ≤ y| < X, θ >=< x, θ >).

Saying that, we are implicitly assuming the existence of a regular version of the con-
ditional distribution and that it’s absolutely continuous with respect to the Lebesgue
measure on R, our aim is to build nonparametric estimates of several functions related
with the conditional density of Y given < X, θ >=< x, θ >. Let

∀y ∈ R, fθ(y|x) = f(y| < x, θ >),

be the conditional density of Y given < X, θ >=< x, θ >, for x ∈ H.
In the following, we denote by f(θ, ·, x) the conditional density of Y given < x, θ >

and we define the kernel estimator f̂(θ, ·, x) of f(θ, ·, x) by:

f̂(θ, y, x) =

h−1
H

n∑
i=1

K(h−1
K (< x−Xi, θ >))H(h−1

H (y − Yi))

n∑
i=1

K(h−1
K (< x−Xi, θ >))

, (5.1)

with the convention 0/0 = 0, where K and H are kernel functions and hK := hn,K (resp.
hH = hn,H) is a sequence of bandwidths that decrease to zero as n goes to infinity.

Let, for any x ∈ H, i = 1, . . . , n and y ∈ R:

Ki(θ, x) := K(h−1
K | < x−Xi, θ > |), Hi(y) := H(h−1

H (y − Yi)).

We denote by Bθ(x, hK) = {χ ∈ H/0 < | < x−χ, θ > | < hK} the ball of center x and
radius h. Let Nx be a fixed neighborhood of x in H, SR will be a fixed compact subset of
R. Now, we consider the following basic assumptions that are necessary in deriving the
main result of this paper.

(H1) P(X ∈ Bθ(x, hK)) = ϕθ,x(hK) > 0; ϕθ,x(hK) −→ 0 as hK → 0.

(H2) The conditional density f(θ, y, x) satisfies the Hölder condition, that is:

∀(y1, y2) ∈ SR × SR , ∀(x1, x2) ∈ Nx ×Nx
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|f(θ, y1, x1)− f(θ, y2, x2)| ≤ Cθ,x(∥x1 − x2∥b1 + |y1 − y2|b2), b1 > 0, b2 > 0.

(H3) The kernel H is a positive bounded function such that ∀(t1, t2) ∈ R2,

|H(t1)−H(t2)| ≤ C|t1 − t2|,
∫
H2(t)dt <∞ and

∫
|t|b2H(t)dt <∞.

(H4) The kernel K is a positive bounded function supported on [0, 1] and is differentiable
on [0, 1] with derivative such that: ∃C1, C2, −∞ < C1 < K ′(t) < C2 < 0, for
0 < t < 1.

(H5) There exists a function βθ,x(·) such that lim
hK→+∞

ϕθ,x(shK)

ϕθ,x(hK)
= βθ,x(s), for ∀s ∈ [0, 1].

(H6) The bandwidth hK and hH , small ball probability ϕθ,x(hK) satisfying

(i) lim
n→+∞

hK = 0, lim
n→+∞

hH = 0 and lim
n→+∞

log n

nhHϕθ,x(hK)
= 0.

(ii) hb2H
√
nhHϕθ,x(hK) −→ 0, as n→ ∞.

(iii) nh3Hϕ
3
θ,x(hK) −→ 0, as n→ ∞.

5.3 Main results
In this section, the asymptotic normality of the estimator f̂(θ, ·, x) in the single functional
index model is established.

Theorem 5.3.1. Under the assumptions (H1)-(H6), we have for all x ∈ H

√
nhHϕθ,x(hK)

σ2(θ, y, x)

(
f̂(θ, y, x)− f(θ, y, x)

)
D−→ N (0, 1), as n→ ∞,

where σ2(θ, y, x) =
α2(θ, x)f(θ, y, x)

(α1(θ, x))2

∫
H2(t)dt,

with αl(θ, x) = K l(1)−
∫ 1

0

(K l)
′
(u)βθ,x(u)du, l = 1, 2,

and ” D−→ ” means the convergence in distribution.

Proof. In order to establish the asymptotic normality of f̂(θ, y, x), we need further no-
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tations and definitions. First, we consider the following decomposition

f̂(θ, y, x)− f(θ, y, x) =
f̂N(θ, y, x)

f̂D(θ, x)
− α1(θ, x)f(θ, y, x)

α1(θ, x)

=
1

f̂D(θ, x)

(
f̂N(θ, y, x)− Ef̂N(θ, y, x)

)
− 1

f̂D(θ, x)

(
α1(θ, x)f(θ, y, x)− Ef̂N(θ, y, x)

)
+
f(θ, y, x)

f̂D(θ, x)

(
α1(θ, x)− Ef̂D(θ, x)

)
−f(θ, y, x)
f̂D(θ, x)

(
f̂D(θ, x)− Ef̂D(θ, x)

)
=

1

f̂D(θ, x)
(An(θ, y, x) +Bn(θ, y, x)) ,

where f̂N(θ, y, x) =
∑n

i=1Ki(θ, x)Hi(y)

nhHE(K1(θ, x))
, f̂D(θ, x) =

∑n
i=1Ki(θ, x)

nE(K1(θ, x))
and

An(θ, y, x) =
1

nhHEK1(θ, x)

n∑
i=1

(Hi(y)− hHf(θ, y, x))Ki(θ, x)− E [(Hi(y)− hHf(θ, y, x))Ki(θ, x)]

=
1

nhHEK1(θ, x)

n∑
i=1

Ni(θ, y, x).

It follows that,

nhHϕθ,x(hK)V ar(An(θ, y, x)) =
ϕθ,x(hK)

hH(EK1(θ, x))2
V ar(N1(θ, y, x))

= Vn(θ, y, x),

and

Bn(θ, y, x) = α1(θ, x)f(θ, y, x)− Ef̂N(θ, y, x) + f(θ, y, x)(α1(θ, x)− Ef̂D(θ, x)).

Then, the proof of Theorem 5.3.1 can be deduced from the following Lemmas.

Lemma 5.3.1. Assume that hypotheses (H1)-(H2)-(H3) in addition to (H4) hold true,
then we get √

nhHϕθ,x(hK)An(θ, y, x)
D−→ N (0, σ2(θ, y, x)),

where σ2(θ, y, x) is given in Theorem 5.3.1.
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Proof.

Vn(θ, y, x) =
ϕθ,x(hK)

hH(EK1(θ, x))2
E
[
K2

1(θ, x) (H1(y)− hhf(θ, y, x))
2
]

=
ϕθ,x(hK)

hH(EK1(θ, x))2
E
[
K2

1(θ, x)E
(
(H1(y)

− hHf(θ, y, x))
2| < θ,X1 >

)]
. (5.2)

Using the definition of conditional variance, we have

E
[
(H1(y)− hHf(θ, t, x))

2 | < θ,X1 >
]
= J1n + J2n,

where

J1n = V ar (H1(y)| < θ,X1 >) ,

J2n =
[
E (H1(y)| < θ,X1 >)− hHf(θ, y, x)

]2
.

• Concerning J1n

J1n = E
(
H2

1 (y)| < θ,X1 >
)
− E (H1(y)| < θ,X1 >)

2 = J1 + J2.

As for J1, by the property of conditional expectation and by changing variables, one
gets

J1 = E
(
H2

1

(
y − Y1
hH

)
| < θ,X1 >

)
=

∫
R
H2

1

(
y − v

hH

)
f(θ, v,X1)dv

=

∫
R
H2

1 (u)dF (θ, y − uhH , X1).
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On the other hand, by applying (H2) and (H3), we have

J1 =

∫
R
H2

1 (u)dF (θ, y − uhH , X1)

= hH

∫
R
H2

1 (u)f(θ, y − uhH , X1)du

≤ hH

∫
R
H2

1 (u)(f(θ, y − uhH , X1)− f(θ, y, x))du

+hH

∫
R
H2

1 (u)f(θ, y, x)du

≤ hH

(
Cx,θ

∫
R
H2(u)

(
hb1K + |v|b2hb2H

)
du+ f(θ, y, x)

∫
R
H2(u)du

)
= O

(
hb1K + hb2H

)
+ hHf(θ, y, x)

∫
R
H2(u)du. (5.3)

As for J2,

J
′
2 = E (H1(y)| < θ,X1 >) =

∫
R
H

(
y − v

hH

)
f(θ, y,X1)dv.

Moreover, by changing variables, we have :

J
′

2 = hH

∫
R
H(u)(f(θ, y − uhH , X1 − f(θ, y, x))du+ hHf(θ, y, x)

∫
R
H(u)du,

the last equality is due to the fact that H is a probability density, thus, we have :

J
′

2 = O
(
hb1k + hb2H

)
+ hHf(θ, y, x).

Finally, we get J2 −→
n → ∞ 0.

Concerning J2n, by (H1)-(H3), we obtain that J2n −→
n → ∞ 0.

Meanwhile, by (H1)-(H3), it follows that

ϕθ,x(hK)EK2
1(θ, x)

E2K1(θ, x)
−→
n→∞

α2(θ, x)

(α1(θ, x))2
.

By combining equations (5.2) and (5.3), it yields

Vn(θ, t, x) −→
α2(θ, x)f(θ, y, x)

(α1(θ, x))2

∫
R
H2(u)du.

Lemma 5.3.2. If the assumptions (H1)-(H3)-(H4) and (H6) are satisfied, then we have
as n −→ ∞, √

nhHϕθ,x(hK)Bn(θ, y, x) −→ 0, in probability.
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Proof. We have

√
nhHϕθ,x(hK)Bn(θ, y, x) =

√
nhHϕθ,x(hK)

f̂D(θ, x)

{
Ef̂N(θ, y, x)− α1(θ, x)f(θ, y, x)

+f(θ, y, x)(α1(θ, x)− Ef̂D(θ, x))
}
.

Firstly, observed that the results below

1

ϕθ,x(hK)
E
[
K l

(
< x−Xi, θ >

hK

)]
−→ αl(θ, x), as n→ ∞, for l = 1, 2, (5.4)

E
[
f̂D(θ, x)

]
−→ α1(θ, x) and E

[
f̂N(θ, y, x)

]
−→ α1(θ, x)f(θ, y, x), as n→ ∞, (5.5)

can be proved in the same way as in Ezzahrioui and Ould-Säıd (2008) [11] corresponding
to their lemmas Lemma 1 and Lemma 3, and then their proofs are omitted.

Secondly, on the one hand, making use of (5.4) and (5.5), we have{
Ef̂N(θ, y, x)− α1(θ, x)f(θ, y, x) + f(θ, y, x)(α1(θ, x)− Ef̂D(θ, x))

}
−→
n→∞

0.

On other hand,

√
nhHϕθ,x(hK)

f̂D(θ, x)
=

√
nhHϕθ,x(hK)f̂(θ, y, x)

f̂D(θ, x)f̂(θ, y, x)
=

√
nhHϕθ,x(hK)f̂(θ, y, x)

f̂N(θ, y, x)
.

Since K(·) and H(·) are continuous with support on [0, 1], then by (H3) and (H4)
∃m = inf[0,1]K(t)H(t), if follows that

f̂N(θ, y, x) ≥
m

hHϕθ,x(hK)
, which gives

√
nhHϕθ,x(hK)

f̂N(θ, y, x)
≤

√
nh3Hϕ

3
θ,x(hK)

m
.

Finally, using (H6)-(iii), the proof of Lemma 5.3.2 is completed.

5.4 Application: The conditional mode in functional
single-index model

The main objective of this section is to establish the asymptotic normality of the kernel
estimator of the conditional mode Mθ(x) defined as

M̂θ(x) = arg sup
y∈SR

f̂x
θ (y). (5.6)
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In order to present the estimation of the conditional mode in the functional single-
index model, we introduce the following additional smoothness condition.

(U1) f(θ, ·, x) is twice continuously differentiable around the pointMθ(x) with f (1)(θ,Mθ(x), x) =

0 and f (2)(θ, ·, x) is uniformly continuous on SR such that f (2)(θ,Mθ(x), x) ̸= 0,
where f (j)(θ, ·, x) (j = 1, 2) is the jth order derivative of the conditional density
f(θ, y, x).

(U2) ∀ε > 0, ∃η > 0, ∀y ∈ SR

|Mθ(x)− y| ≥ ε⇒ |f(θ,Mθ(x), x)− f(θ, y, x)| ≥ η.

(U3) The conditional density function f(θ, y, x) satisfies: ∃β0 > 0, ∀(y1, y2) ∈ SR × SR,

|f (j)(θ, y1, x)− f (j)(θ, y2, x)| ≤ C
(
|y1 − y2|β0

)
, ∀j = 1, 2.

(U4) H
′and H

′′ are bounded respectively with∫ (
H

′
(t)
)2
dt <∞ ,

∫
|t|β0H(t)dt <∞.

Theorem 5.4.1. Suppose that hypotheses (H1)-(H6) and (U1)-(U4) are satisfied. If

nh3Hϕθ,x(hK) −→
n → ∞ 0, (5.7)

we have as n→ ∞ √
nh3Hϕθ,x(hK)

ν2(θ,Mθ(x), x)
(M̂θ(x)−Mθ(x))

D−→ N (0, 1), (5.8)

where

ν2(θ,Mθ(x), x) =
α2(θ, x)f(θ,Mθ(x), x)(

α1(θ, x)f (2)(θ,Mθ(x), x)
)2 ∫ (H

′
(t))2dt.

Proof. Writing the first order Taylor expansion for f (1)(θ, y, x) at point Mθ(x) leads to

the existence of someM∗
θ (x) between M̂θ(x) andMθ(x), and by the fact that f (1)(θ,Mθ(x), x) =

0 (condition (U1)), we obtain

√
nh3Hϕθ,x(hK)(M̂θ(x)−Mθ(x)) =

−
√
nh3Hϕθ,x(hK)f̂

(1)(θ,Mθ(x), x)

f̂ (2)(θ,M∗
θ (x), x)

.

In order to prove (5.8), we only need to show that

−
√
nh3Hϕθ,x(hK)f̂

(1)(θ,Mθ(x), x)
D−→ N (0, ν20(θ,Mθ(x), x)), (5.9)
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and
f̂ (2)(θ,M∗

θ (x), x) −→ f (2)(θ,Mθ(x), x) ̸= 0, in probability, (5.10)

where

ν20(θ,Mθ(x), x) =
α2(θ, x)f(θ,Mθ(x), x)(

α1(θ, x)
)2 ∫

(H
′
(t))2dt.

In fact, because the continuity of the function f(θ, y, x) and by (U2) and the definitions

of M̂θ(x) and Mθ(x), we have, for all ε > 0, ∃η(ε) > 0 such that:

P
(
|M̂θ(x)−Mθ(x)| ≥ ε

)
≤ P

(
|f(θ,Mθ(x), x)− f̂(θ,Mθ(x), x)| ≥

η(ε)

2

)
+ P

(
|f̂(θ, M̂θ(x), x)− f(θ, M̂θ(x), x)| ≥

η(ε)

2

)
.(5.11)

Thus, similar to Ferraty and Vieu (2006) [15], by (H1)-(H4) and (H6)-(i), we have

f̂(θ, y, x) −→ f(θ, y, x) in probability, which implies that M̂θ(x) −→Mθ(x) in probability

by (5.11). Similarly, the methodology can be also applied to obtain f̂ (2)(θ, y, x) −→
f (2)(θ, y, x) in probability as n → ∞ by (H1), (H4), (H6), (U3) and (U4). Therefore,
(5.10) is valid by the fact that f (2)(θ, y, x) is uniformly continuous with respect to y on
SR. Next, we prove (5.9). In fact, since

f̂ (1)(θ,Mθ(x), x) =
1

f̂D(θ, x)

(
f̂
(1)
N (θ,Mθ(x), x)− Ef̂ (1)

N (θ,Mθ(x), x)
)

− 1

f̂D(θ, x)

(
f (1)(θ,Mθ(x), x)− Ef̂ (1)

N (θ,Mθ(x), x)
)
. (5.12)

By (U1), (U3)-(U4) and (5.12), similar to the proof of Lemmas, Lemma 5.3.1 and
Lemma 5.3.2 respectively, (5.9) follows directly. Then, the proof of Theorem 5.4.1 is
completed.

5.4.1 Application and Confidence bands

The asymptotic variances σ2(θ, y, x) and ν2(θ,Mθ(x), x) in Theorem 5.3.1 and Theorem
5.4.1 depend on some unknown quantities including α1(θ, x), α2(θ, x), Mθ(x) and f(θ, ·, x).

So, Mθ(x) and f(θ, ·, x) should be replaced by their estimators M̂θ(x) and f̂(θ, ·, x) pre-
viously given in (5.6) and (5.1), respectively.

By the assumptions (H1)-(H4), αl(θ, x) for l = 1, 2, can be estimated by α̂l(θ, x), which
is defined as :

α̂l(θ, x) =
1

nϕ̂θ,x(hK)

n∑
i=1

K l
i(θ, x), for l = 1, 2, where ϕ̂θ,x(hK) =

1

n

n∑
i=1

1{|<x−Xi,θ>|<hK},
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with 1{·} being the indicator function.
By applying the kernel estimator of f(θ, y, x) given above, the quantity σ2(θ, y, x) can

be estimated finally by:

σ̂2(θ, y, x) =
α̂2(θ, x)f̂(θ, y, x)

α̂2
1(θ, x)

∫
H2(t)dt.

Hence, we can derive the following corollary:

Corollary 5.4.1. Under the assumptions of Theorem 5.3.1, we have as n→ ∞√
nhH ϕ̂θ,x(hK)

σ̂2(θ, y, x)

(
f̂(θ, y, x)− f(θ, y, x)

)
D−→ N (0, 1).

Proof. Observe that

Σ =
α̂1(θ, x)√
α̂2(θ, x)

√
nhH ϕ̂θ,x(hK)

f̂(θ, y, x)

(
f̂(θ, y, x)− f(θ, y, x)

)

=
α̂1(θ, x)

√
α2(θ, x)

α1(θ, x)
√
α̂2(θ, x)

√√√√nhH ϕ̂θ,x(hK)f(θ, y, x)

f̂(θ, y, x)nhHϕθ,x(hK)

× α1(θ, x)√
α2(θ, x)

√
nhHϕθ,x(hK)

f(θ, y, x)

(
f̂(θ, y, x)− f(θ, y, x)

)
.

Via Theorem 5.3.1, we have

α1(θ, x)√
α2(θ, x)

√
nhHϕθ,x(hK)

f(θ, y, x)

(
f̂(θ, y, x)− f(θ, y, x)

)
−→ N (0, 1) .

Next, by Laib and Louani (2010) [22], we can prove that

α̂1(θ, x)
P−→ α1(θ, x), α̂2(θ, x)

P−→ α2(θ, x), and ϕ̂θ,x(hK)

ϕθ,x(hK)

P−→ 1, as n→ ∞. (5.13)

Therefore, we obtain

α̂1(θ, x)
√
α2(θ, x)

α1(θ, x)
√
α̂2(θ, x)

√√√√nhH ϕ̂θ,x(hK)f(θ, y, x)

f̂(θ, y, x)nhHϕθ,x(hK)
−→ 1, as n→ ∞.

This yields the proof of Corollary 5.4.1.

Now, in order to show the asymptotic (1 − ξ) confidence interval of Mθ(x), we need
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to consider the estimator of ν2(θ,Mθ(x), x) as follows :

ν̂2(θ, M̂θ(x), x) =
α̂2(θ, x)f̂(θ, M̂θ(x), x)(

α̂1(θ, x)f̂ (2)(θ, M̂θ(x), x)
)2 ∫ (H

′
(t))2dt.

Thus, the following corollary is obtained.

Corollary 5.4.2. Under conditions of Theorem 5.4.1, as n→ ∞ we have√
nh3H ϕ̂θ,x(hK)

ν̂2(θ, M̂θ(x), x)
(M̂θ(x)−Mθ(x))

D−→ N (0, 1).

Proof. Observe that

Σ′ =
α̂1(θ, x)f̂

(2)(θ, M̂θ(x), x)√
α̂2(θ, x)

√
nh3H ϕ̂θ,x(hK)

f̂(θ, M̂θ(x), x)

(
M̂θ(x)−Mθ(x)

)

=
α̂1(θ, x)

√
α2(θ, x)

α1(θ, x)
√
α̂2(θ, x)

√√√√nh3H ϕ̂θ,x(hK)f(θ,Mθ(x), x)

f̂(θ, M̂θ(x), x)nh3Hϕθ,x(hK)

f̂ (2)(θ, M̂θ(x), x)

f (2)(θ,Mθ(x), x)

× α1(θ, x)√
α2(θ, x)

√
nh3Hϕθ,x(hK)

f(θ,Mθ(x), x)
f (2)(θ,Mθ(x), x)

(
M̂θ(x)−Mθ(x)

)
.

Making use of Theorem 5.4.1, we obtain

α1(θ, x)√
α2(θ, x)

√
nh3Hϕθ,x(hK)

f(θ,Mθ(x), x)
f (2)(θ,Mθ(x), x)

(
M̂θ(x)−Mθ(x)

)
−→ N (0, 1) .

Further, by considering (5.10) and (5.13), we obtain

α̂1(θ, x)
√
α2(θ, x)

α1(θ, x)
√
α̂2(θ, x)

√√√√nh3H ϕ̂θ,x(hK)f(θ,Mθ(x), x)

f̂(θ, M̂θ(x), x)nh3Hϕθ,x(hK)

f̂ (2)(θ, M̂θ(x), x)

f (2)(θ,Mθ(x), x)

P−→ 1, as n→ ∞.

Hence, the proof is completed.

Remark 5.4.1. Thus, following the corollaries, Corollary 5.4.1 and Corollary 5.4.2, the
asymptotic (1− ξ) confidence interval of f(θ, y, x) and Mθ(x) are given by

f̂(θ, y, x)± τξ/2 ×
σ̂(θ, x)√

nhH ϕ̂θ,x(hK)
and M̂θ(x)± τξ/2 ×

ν̂(θ, M̂θ(x), x)√
nh3H ϕ̂θ,x(hK)

,

where τξ/2 is the upper ξ/2 quantile of standard Normal N (0, 1).
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5.5 Simulation study
To study the behavior of our conditional mode estimator, we consider in this part two ex-
amples of simulation, where we compare our model FSIM (fonctional single index model)
with that of NPFDA (non-parametric functional data analysis).
The best way to know the behavior of the estimator of conditional density is to compute
its mean square error. So, in this part of paper we compare between the conditional den-
sity estimation in the FSIM which is our model and the conditional density estimation in
the NPFDA defined in (5.14).

f̂n(y|x) =
h−1
H

n∑
i=1

K
(
h−1
K d(x,Xi)

)
H
(
h−1
H (y − Yi)

)
n∑

i=1

K
(
h−1
K d(x,Xi)

) , (5.14)

where we estimate the conditional mode function M̂(x) such that

M(x) = arg sup
y∈SR

f(y|x) and M̂(x) = arg sup
y∈SR

f̂n(y|x).

In the following, our purpose consists in assessing the performance in terms of prediction

of M̂θ(x) and M̂(x). For each given predictor (Xj)j∈J in the testing subsample, we
are interested in the prediction of the response variable (Yj)j∈J via the single functional

index conditional mode M̂θ(x) and the fully nonparametric conditional mode M̂(x) so as
to compare the finite-sample behavior of the estimator. As assessment tool, we consider
the mean square error (MSE) defined as follows:

MSE =
1

|J |
∑
j∈J

(
Yj − Ŷj

)2
, (5.15)

where Ŷj is a predictor of Yj obtained either semi-parametrically by M̂θ(x) or nonpara-

metrically via M̂(x).
Furthermore, some tuning parameters have to be specified. The kernel K(·) is chosen

to be the quadratic function defined as K (u) = 3
2
(1− u2)1[0,1], and the cumulative df

H (u) =
∫ u

−∞
3
4
(1− z2)1[−1,1] (z) dz.

The semi-metric d(·, ·) will be specified according to the choice of the functional space
H discussed in the scenarios below. It is well-known that one of the crucial parameters in
semi-parametric models is the smoothing parameters which are involved in defining the
shape of the link function between the response and the covariate.
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Using the result given in Theorem 5.4.1, the variance of our estimator is obtained as

CV =
α2(θ, x)f(θ,Mθ(x), x)

nh3Hϕθ,x(hK)
(
α1(θ, x)f (2)(θ,Mθ(x), x)

)2 .
The idea is to choose the parameters hK and hH so that the variance is minimal. Since

the variance (CV ) depends on several unknown parameters that must be estimated, the
calculus becomes tedious. Thus, by replacing the unknown parameters by their respective

estimators α̂1(θ, x), α̂2(θ, x), M̂θ(x), f̂(θ, ·, x), and ϕ̂θ,x(hK), we obtain

(hK , hH) = arg min
hK ,hH

CV (hK , hH) = arg min
hK ,hH

α̂2(θ, x)f̂(θ, M̂θ(x), x)

nh3H ϕ̂θ,x(hK)
(
α̂1(θ, x)f̂ (2)(θ, M̂θ(x), x)

)2 .
Now, for simplifying the implementation of our methodology, we take the bandwidths

hH ∼ hK = h, where h will be chosen by the cross-validation method on the k-nearest
neighbors (see Ferraty and Vieu (2006) [15], p. 102).

Example 5.5.1. Case of smooth curves:

Let us consider the following regression model, where the covariate is a curve and the
response is a scalar:

Ti = R (Xi) + ϵi, i = 1, . . . , n,

where ϵi is a sequence of i.i.d. random variables normally distributed with a variance
equal to 0.1.

The functional covariate X is assumed to be a diffusion process defined on [0, 1] and
generated by the following equation:

Xi(t) = ai cos(bi + πWit) + ci sin(di + πWit) + (1− ai) sin(πtWi), t ∈ [0, 1] ,

where Wi, bi and di are independent of normal distributions N (0, 1), N (0, 0.03) and
 N (0, 0.05), respectively. The variables ai and ci are Bernoulli’s laws Bernoulli(0.5).
Figure 5.1 depicts a sample of 200 curves representing a realization of the functional
random variable X.

Take into account of the smoothness of the curves Xi(t) (see Figure 5.1), we choose
the distance deriv1 (the semi-metric based on the first derivatives of the curves) in H as:

d (χ1, χ2) =

(∫ 1

0

(χ′
1 (t)− χ′

2 (t))
2
dt

)1/2

.

as semi-metric.
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Figure 5.1: A sample of 200 curves Xi=1,...,200(t), t ∈ [0, 1]

Then, we consider a nonlinear regression function defined as

R (X) = 4 log
{
1/

(∫ 1

0

(X ′(t))
2
dt+

[∫ 1

0

X ′(t)dt

]2)}
.

Given X = x, we have T  N (R (x) , 0.2).
The computation of our estimator is based on the observed data (Xi, Yi)i=1,...,n , and the
single index θ which is unknown and has to be estimated.

In practice, this parameter can be selected by cross-validation approach (see Ait-Säıdi et
al. (2008) [2]). In this passage, it may be that one can select the real-valued function θ (t)
among the eigenfunctions of the covariance operator E [(X ′ − EX ′) < X ′, · >H], where
X (t) is a diffusion processes defined on a real interval [a, b] and X ′ (t) its first derivative
(see Attaoui and Ling (2016) [6] ). Hence, for the chosen training sample L, by applying
the principal component analysis (PCA) method, the computation of the eigenvectors

of the covariance operator estimated by its empirical covariance operator: 1

L
∑
i∈L

(X ′
i −

EX ′) t(X ′
i −EX ′) will be the one best approximation of our functional parameter θ. Now,

let us denote θ⋆ the first eigenfunction corresponding to the first higher eigenvalue of the
empirical covariance operator, which will replace θ during the simulation step.

In the following graphs, the covariance operator for L = {1, . . . , 125} gives the dis-
cretization of the first eigenfunction θ (presented by a continuous curve), twenty, and all
the eigenfunctions θi(t) (Figure 5.2, Figure 5.3 and Figure 5.4).
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Figure 5.2: The curves θi=1,2,3(t), t ∈ [0, 1]

Figure 5.3: The curves θi=1,...,20(t), t ∈ [0, 1]

In this simulation part, we divide our sample of size 200 into two parts. The first one
from 1 to 125 (learning sample) and the second from 126 to 200 (test sample).

We follow the following steps:

Step 1. Simulate the responses variables Yi.

Step 2. For each j in the test sample J = {126, . . . , 200}, we compute: Ŷj = M̂θ⋆(Xj)

and Ŷj = M̂(Xj).

Finally, we present the results by plotting the predicted values versus the true values
and compute the mean square error (MSE) defined by (5.15).

We see that the mean square error (MSE) of our method Functional-Single-Index-Model
(FSIM) is less than the one of the Non-Parametric-Functional-Data-Analysis (NPFDA).
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Figure 5.4: The curves θi=1,...,125(t), t ∈ [0, 1]

This is confirmed by the following graphs, when we compare the conditional mode by
(FSIM) against the conditional mode by (NPFDA) (Figure 5.5). Our estimator is so
acceptable. As intuitively expected, it is well observed that the mean square errors of our
estimator are smaller than that of NPFDA. Thus, again, the FSIM model produces much
more accurate estimation accuracies than NPFDA model in all criteria.

Figure 5.5: Comparison between the NPFDA and the FSIM via the conditional mode

In order to construct conditional confidence bands we proceed by the following algo-
rithm:

Step 1. We compute the inner product: < θ⋆, X1 >, · · · , < θ⋆, X200 >.

Step 2. For each i in the training sample, we calculate the estimator: Ŷi = M̂θ⋆(Xi).

Step 3. For each Xj in the test sample J = 126, . . . , 200, we set: i⋆ := arg min
i∈L

dθ(Xi, Xj).

Step 4. For each j in the test sample J = 126, . . . , 200, we define the confidence bands by[
M̂θ⋆(Xi⋆)− τ0.975 ×

( ν̂(θ⋆, Xi⋆)√
Lh3H ϕ̂θ⋆,x(hK)

)
, M̂θ⋆(Xi⋆) + τ0.975 ×

( ν̂(θ⋆, Xi⋆)√
Lh3H ϕ̂θ⋆,x(hK)

)]
.
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We obtain the following figure (Figure 5.6 ) which gathers asymptotic confidence bands
study.

Figure 5.6: The 95% conditional predictive bands. The solid curve connects the true
values. The crossed curve joins the predicted values. The dashed curves connects the
lower and upper predicted values

For making a decision, we choose an other Example 5.5.2 in which the distribution of
the model is known and usual.

Example 5.5.2. Let X1, . . . , Xn be a standard Brownian movements in [0, 1], with n =

100. Our study focuses on the linear model with defined functional index by:

Yi =
|< θ, Xi >|

150
+ 0.5 ϵi,

where (ϵi)i are i.i.d and ϵi  N (0, 1). We keep the values of θ⋆ and (Xi)i=1,...,100 of the
precedent example (θ is replaced by θ⋆).

According to this model, it is clear that, when X = x, the variable Y  N
(
|< θ, x >|

150
, 4

)
.

In this study, as the curves are rough (see Figure 5.7), we use the semi-metric pca.

Table 5.1: Estimation accuracy of the conditional mode function between the functional
single index model and the nonparametric functional model for different values of ξ

Error Model Semi-metric n = 100
ξ = 0.05 ξ = 0.50 ξ = 0.95

MSE FSIM pca 0.0116 0.0112 0.0127
NPFDA pca 0.0634 0.0621 0.0641
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Figure 5.7: Standard Brownian motions

Table 5.1 presents the MSE of FSIM and NPFDA models by considering different
values of ξ, with 100 replications. From the obtained results presented in Table 5.1, we
can confirm that our FSIM estimator of conditional mode is better than that of NPFDA.
It gives a smaller mean square error. So it allows for a more accurate estimation.

After the calculation of the errors, we find for our method an error MSE = 0.0225.
The NPFDA method gives an error MSE = 0.0763, while the real error (knowing that

Y  N
(
|< θ, x >|

150
, 4

)
) is equal to MSE = 1.938 10−31 (see Figure 5.8). This confirms

once again that our estimator is much better than that of NPFDA case. So, in the context
of i.i.d data, our estimator is much preferable.

Figure 5.8: Comparison between the NPFDA and the FSIM via the conditional mode
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5.6 Conclusion
This paper focused on the nonparametric estimation of the conditional mode in the single
functional index model for independent data. Both the asymptotic normality as well
as a confidence interval of the resulted estimator were derived. The proofs are based
on a combination of existing techniques. The study’s prime aim was to improve the
performance of the single-index model for the conditional mode with a scalar response
variable conditioned by a functional Hilbertian regressor under the independent property.
Through a series of simulations, this model out performs the nonparametric functional
estimator. The contribution in this study is focused on the estimation of the conditional
density function for complete data in a functional framework. This approach is used for
the estimation of the conditional mode. Then on parametric aspect is properly exploited in
the first two sections by the given hypotheses. The proposed estimators are consistent an
asymptotically distributed under appropriate conditions. Note that this approach is more
significant in the presence of a simple single functional index. Then, the estimation and
forecast accuracies between the FSIM and NPFDA models were evaluated and compared,
and via empirical analysis, it was shown that the considered estimator has good finite
sample behavior for the prediction, and provides improved estimation and prediction
accuracy compared to the NPFDA estimator.

In addition, in order to explore the effectiveness of our method in real situations,
we can apply our approach to data constituting hourly electricity demand as well as
spectrometric data. Another real example is forecasting the daily peak in electricity
demand, accurate prediction of daily peak load demand is very important for decision
in the energy sector. In fact, short-term load forecasts enable effective load shifting
between transmission substations, scheduling of startup times of peak stations, load flow
analysis and power system security studies. Other real data application (Maximum Ozone
Concentration, Peak electricity demand) can be highlighted several attractive features of
in functional prediction context, with unknown scale parameter estimator.

Research in the nonparametric field remains an open question which will be the subject
of several future studies in order to improve and highlight the results obtained in this
work. Extend our study of estimation of the conditionals mode to the estimation of the
conditional models of a MAR (missing at random) response to the independent case and
the dependent case. Another type of dependency could be considered such as the quasi-
associated case. Develop the asymptotic properties of a kernel estimator of the k-nearest
neighbors. Generalize the obtained results by using other families of semi-metrics in order
to improve the prediction performance of our estimators so the choice of the smoothing
window is important.
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2, 356-378.

[4] Attaoui, S. (2014b). Strong uniform consistency rates and asymptotic normality of
conditional density estimator in the single functional index modeling for time series
data. J. AStA Adv. Stat. Anal, 98, 257-286.
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6.1 Introduction
Multivariate regression analysis is a powerful statistical tool in biomedical research and
many fields of life (Muharisa et al. (2018) [27]) with numerous applications. While linear
regression can be used to model the expected value (ie, mean) of a continuous outcome
given the covariates in the model, quantile regression can be used to compare the entire
distribution of a continuous response or a specific quantile of the response between groups.
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Despite the regression function is of interest, other statistics such as quantile and mode
regression might be important from a theoretical and a practical point of view. Quantile
regression is a common way to describe the dependence structure between a response
variable T and some covariate X. Unlike the regression function that relies only on
the central tendency of the data, the conditional quantile function allows the analyst to
estimate the functional dependence between variables for all portions of the conditional
distribution of the response variable. Moreover, it is well known that conditional quantiles
can give a good description of the data (see Chaudhuri et al. (1997) [9]), such as robustness
to heavy-tailed error distributions and outliers to ordinary mean-based regression. As a
particular case, note that the conditional median is useful for asymmetric distributions.

Quantile regression(QR) is one of the major statistical tools and is gradually developing
into a comprehensive strategy for completing the regression prediction. It is emerging as
a popular statistical approach, which complements the estimation of conditional mean
models. While the latter only focuses on one aspect of the conditional distribution of
the dependent variable, the mean, quantile regression provides more detailed insights
by modeling conditional quantiles. Her can therefore detect whether the partial effect
of a regressor on the conditional quantiles is the same for all quantiles or differs across
quantiles, and can provide evidence for a statistical relationship between two variables
even if the mean regression model does not. In many fields of applications like quantitative
finance, econometrics, marketing and also in medical and biological sciences, QR is a
fundamental element for data analysis, modeling and inference. An application in finance
is the analysis of conditional Value-at-Risk, moreover, her is the development of statistical
tools used to explain the relationship between response and predictor variables (see Yanuar
et al. (2019) [37]). The quantile method is a technique of dividing a group of data into
several parts after the data is sorted from the smallest to the largest Yanuar et al. (2017)
[36]. QR enjoys some very appealing features. Apart from enabling some very exible
patterns of partial effects, quantile regressions are also interesting because they satisfy
some equivariance and robustness principles.

The advantage of the QR methodology is that it allows for understanding relation-
ships between variables outside of the conditional mean of the response; it is useful for
understanding an outcome at its various quantiles and comparing groups or levels of an
exposure on those quantiles. QR is a common way to describe the dependence structure
between a response variable T and some covariate X. Unlike the regression function
(which is defined as the conditional mean) that relies only on the central tendency of
the data, the conditional quantile function allows the analysts to estimate the functional
dependence between variables for all portions of the conditional distribution of the re-
sponse variable. Moreover, quantiles are well known for their robustness to heavy-tailed
error distributions and outliers which allow to consider them as a useful alternative to the
regression function Chaouch and Khardani (2015) [8].

Moreover, it is a statistical technique intended to estimate, and conduct inference
about, conditional quantile functions. Just as classical linear regression methods based
on minimizing sums of squared residuals enable one to estimate models for conditional
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mean functions, quantile regression methods offer a mechanism for estimating models for
the conditional median function, and the full range of other conditional quantile func-
tions. By supplementing the estimation of conditional mean functions with techniques
for estimating an entire family of conditional quantile functions, quantile regression is
capable of providing a more complete statistical analysis of the stochastic relationships
among random variables.

For example, QR has been used in a broad range of application settings. Reference
growth curves for children’s height and weight have a long history in pediatric medicine;
quantile regression methods may be used to estimate upper and lower quantile refer-
ence curves as a function of age, sex, and other covariates without imposing stringent
parametric assumptions on the relationships among these curves. In ecology, theory of-
ten suggests how observable covariates affect limiting sustainable population sizes, and
quantile regression has been used to directly estimate models for upper quantiles of the
conditional distribution rather than inferring such relationships from models based on
conditional central tendency. In survival analysis, and event history analysis more gener-
ally, there is often also a desire to focus attention on particular segments of the conditional
distribution, for example survival prospects of the oldest-old, without the imposition of
global distributional assumptions.

In recent years, estimating conditional quantiles has received increasing interest in
the literature, for both independent and dependent data; Samanta (1989) [31] established
a nonparametric estimation of conditional quantiles, Wang and Zhao (1999) [35] pre-
sented a kernel estimator for conditional t-quantiles for mixing samples and established
its strong uniform convergence. Ferraty et al. (2005) [15] studied the estimation of a
conditional quantiles for functional dependent data with application to the climatic El
Ninö phenomenon. Ezzahrioui & Elias Ould-Säıd (2008) [14] considered the estimation of
the conditional quantile function when the covariates take values in some abstract func-
tion space, the almost complete convergence and the asymptotic normality of the kernel
estimator of the conditional quantile under the α-mixing assumption were established.

In life time data analysis, nonparametrically estimated conditional survival curves
(such as the conditional Kaplan-Meier estimate) are useful for assessing the influence
of risk factors, predicting survival probabilities, and checking goodness-of-fit of various
survival regression models. It is well known that in medical studies the observation
on the survival time of a patient is often incomplete due to right censoring. Classical
examples of the causes of this type of censoring are that the patient was alive at the
termination of the study, that the patient withdrew alive during the study, or that the
patient died from other causes than those under study. The censored quantile regression
model is derived from the censored model. This method is used to overcome problems in
modeling censored data as well as to overcome the assumptions of linear models that are
not met, in this linear models Sarmada and Yanuar (2020) [32] have compared the results
of the analysis of the quantile regression method with the censored quantile regression
method for censored data. In the context of censored data, Gannoun et al. (2003)
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[17] introduced a local linear (LL) estimator of the quantile regression and established
its almost sure consistency (without rate) as well as its asymptotic normality in the
independent and identically distributed (i.i.d.) case. El Ghouch and Van Keilegom (2009)
[13] considered the LL estimation of the quantile regression and its first derivative under
an α-mixing assumption and studied their asymptotic properties. Ould-Säıd (2006) [28]
constructed a kernel estimator of the conditional quantile under an i.i.d. censorship model
and established its strong uniform convergence rate. Under an α-mixing assumption,
Liang and Alvarez (2011) [21] established the strong uniform convergence (with rate) of
the conditional quantile function as well as its asymptotic distribution.

The single index model is a natural extension of the linear regression model for applica-
tions in which linearity does not hold. This last approach is widely applied in econometrics
as a reasonable compromise between nonparametric and parametric models. In the past
few recent years, the single functional index models have received much attention, and it
has been studied extensively in both statistical and econometric literatures. Interesting to
this methods, many authors worked on this sort of problems, see for instance Ait-Säıdi et
al. ( (2005) [1], (2008) [2]). Attaoui et al. (2011) [4] investigated the kernel estimator of
the conditional density of a scalar response variable T , given a Hilbertian random variable
X when the observations are from a single functional index model. Ling et al. (2014)
[23] reconsidered the kernel estimator of the conditional density when the scalar response
variable T and the Hilbertian random variable X also come from the single functional
index model. The asymptotic results such as pointwise almost complete consistency and
the uniform almost complete convergence of the kernel estimation with rates in the set-
ting of the α mixing functional data are also obtained, which extend the i.i.d. case in
Attaoui et al. (2011) [4] to the dependence setting. Ling & Xu (2012) [24] investigated the
estimation of conditional density function based on the single-index model for functional
time series data. Under α-mixing condition, the asymptotic normality of the conditional
density estimator and the conditional mode estimator where obtained. Attaoui (2014) [3]
studied a nonparametric estimation of the conditional density of a scalar response vari-
able given a random variable taking values in separable Hilbert space when the variables
satisfy the strong mixing dependency, based on the single-index structure.

Inspired by all the papers above, our work in this paper aims to contribute to the
research on functional nonparametric regression model, by giving an alternative estimation
of QR estimation in the single functional index model with randomly right-censored data
under α-mixing conditions whose definition is given below.

Recall that a process (Xi, Ti)i≥1 is called α-mixing or strongly mixing (see Lin and Lu
(1996) [22] for more details and examples), if

sup
k

sup
A∈Fk

1

sup
B∈F∞

n+k

|P(A ∩B)− P(A)P(B)| = α(n) → 0 as n→ ∞,

where Fk
j denotes the σ-field generated by the random variables {(Xi, Ti), j ≤ i ≤ k}.

The process {(Xi, Ti), i ≥ 1} is said to be arithmetically α mixing with order a > 0, if
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∃C > 0, α(n) ≤ Cn−a.
The strong-mixing condition is reasonably weak and has many practical applications

(see, e.g., Cai (2011) [6], Doukhan (1994) [12], Dedecker et al. (2007) [10] Ch. 1, for
more details). In particular, Masry and Tøjstheim (1995) [26] proved that, both ARCH
processes and nonlinear additive autoregressive models with exogenous variables, which
are particularly popular in finance and econometrics, are stationary and α-mixing.

This article is organized as follows: In Section 6.2, we describe our model and construct
precisely the QR estimator based on the functional stationary data under censorship
model. In Section 6.3, we build up asymptotic theorems for our model. Section 6.4
illustrates those asymptotic properties through some simulated data. Finally, the proofs
of the main results are postponed to Section 6.5.

6.2 Notations and estimators of the semi-parametric
framework

6.2.1 The model
Let (X,T ) be a pair of random variables where T is a real-valued random variable and X
takes its values in a separable Hilbert space H with the norm ∥ · ∥ generated by an inner
product < ·, · >. Let C be a censoring variable with common continuous distribution
function G. The continuity of G allows to use the convergence results for the Kaplan and
Meier estimator of G. ( (1958)[19]).

From now on, we suppose that (X,T ) and C are independent. It is plausible whenever
the censoring is independent of the characteristics of the patients under study. In the right
censorship model, the pair (T,C) is not directly observed and the corresponding available
information is given by Y = min(T,C) and δ = 1{T≤C}, where 1A is the indicator function
of the set A.

Such censorship models have been amply studied in the literature for real or multi-
dimensional random variables, and in nonparametric frameworks the kernel techniques are
particularly used (see Tanner and Wong (1983) [33], Padgett (1988) [29], Lecoutre and
Ould-Säıd (1995) [20] and Van Keilegom and Veraverbeke (2001) [34], for a necessarily
non-exhaustive sample of literature in this area).

Furthermore, let (Xi, Ti)1≤i≤n be the statistical sample of pairs which are identically
distributed like (X,T ), but not necessarily independent, (Ci)1≤i≤n is a sequence of i.i.d.
random variables which is independent of (Xi, Ti)1≤i≤n. Therefore, we assume that the
sample {(Xi, δi, Yi), i = 1, . . . , n} is at our disposal. Moreover, we consider dθ(·, ·) a semi-
metric associated with the single index θ ∈ H defined by dθ(x1, x2) := | < x1 − x2, θ > |,
for x1 and x2 in H.

For a fixed x in H, the conditional cumulative distribution function (cond-cdf) of T
given < θ,X >=< θ, x >, is defined as follows:

∀t ∈ R, F (θ, t, x) := P(T ≤ t| < X, θ >=< x, θ >).
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Saying that, we are implicitly assuming the existence of a regular version for the
conditional distribution of T given < θ,X >. Now, let ζθ(γ, x) be the γth-conditional
quantile of the distribution of Y given < θ,X >=< θ, x >. Formally, ζθ(γ, x) is defined
as:

ζθ(γ, x) := inf{t ∈ R : F (θ, t, x) ≥ γ}, ∀γ ∈ (0, 1).

In order to simplify our framework and to focus on the main interest of our paper
(the functional feature of < θ,X >), we assume that F (θ, ·, x) is strictly increasing and
continuous in a neighborhood of ζθ(γ, x). This is insuring that the conditional quantile
ζθ(γ, x) is uniquely defined by:

ζθ(γ, x) = F−1(θ, γ, x) equivalently F (θ, ζθ(γ, x) , x) = γ. (6.1)

Next, in all what follows, we assume only smoothness restrictions for the cond-cdf
F (θ, ·, x) through nonparametric modeling. Assume also that (Xi, Ti)i∈N is an α-mixing
sequence, which is one among the most general mixing structures.

6.2.2 The estimators
The kernel estimator Fn(θ, ·, x) of F (θ, ·, x) is presented as follows:

Fn(θ, t, x) =

n∑
i=1

K
(
h−1
K (< x−Xi, θ >)

)
H
(
h−1
H (t− Ti)

)
n∑

i=1

K
(
h−1
K (< x−Xi, θ >)

) , (6.2)

where K is a kernel function, H a cumulative distribution function and hK = hK,n (resp.
hH = hH,n) a sequence of positive real numbers. Note that using similar ideas, Roussas
(1969) [30] introduced some related estimates but in the special case when X is real, while
Samanta [31] (1989) produced previous asymptotic study.

As a by-product of (6.1) and (6.2), it is easy to derive an estimator ζθ,n(γ, x) of ζθ(γ, x):

ζθ,n(γ, x) = F−1
n (θ, γ, x). (6.3)

Such an estimator is unique as soon as H is an increasing continuous function. Such an
approach has been largely used in the case where the variable X is of finite dimension (see
e.g Whang and Zhao (1999) [35], Cai (2002) [7], Zhou and Liang (2003) [38] or Gannoun
et al. (2003) [17]).

The objective of this section is to adapt these ideas under functional random variable
X, and build a kernel type estimator of the conditional distribution F (θ, ·, X) adapted for
censored samples. In the censoring case, based on the observed sample (Xi, δi, Yi)i=1,...,n

we define the following ”pseudo-estimator” of F (θ, ·, X) which is used as an intermediate
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estimator. Thus, we have

F̃ (θ, t, x) =

n∑
i=1

δi
Ḡ(Yi)

K
(
h−1
K (< x−Xi, θ >)

)
H
(
h−1
H (t− Yi)

)
n∑

i=1

K
(
h−1
K (< x−Xi, θ >)

) . (6.4)

In practice Ḡ(·) = 1 − G(·) is unknown, hence it is impossible to use the estimator
(6.4). Then, we replace Ḡ(·) by its Kaplan and Meier (1958) [19] estimate Ḡn(·) given by

Ḡn(t) = 1−Gn(t) =


n∏

i=1

(
1−

1− δ(i)
n− i+ 1

)1{Y(i)≤t}

, if t < Y(n);

0, if t ≥ Y(n),

(6.5)

where Y(1) < Y(2) < . . . < Y(n) are the order statistics of Yi and δ(i) is the concomitant
of Y(i). Therefore, a full estimator of the conditional distribution function F (θ, ·, x) is
defined as:

F̂ (θ, t, x) =

n∑
i=1

δi
Ḡn(Yi)

K
(
h−1
K (< x−Xi, θ >)

)
H
(
h−1
H (t− Yi)

)
n∑

i=1

K
(
h−1
K (< x−Xi, θ >)

) . (6.6)

Consequently, a natural estimator of ζθ(γ, x) is given by

ζ̂θ(γ, x) = F̂−1(θ, γ, x)

= inf{t ∈ R : F̂ (θ, t, x) ≥ γ}, (6.7)

which satisfies
F̂ (θ, ζ̂θ(γ, x) , x) = γ. (6.8)

6.3 Assumptions and results

6.3.1 Assumptions on the functional variable

Let Nx be a fixed neighborhood of x and let Bθ(x, hK) be the ball of center x and radius
h, namely Bθ(x, hK) = {f ∈ H/0 < | < x− f, θ > | < hK}. Assume that, (Ci)i≥1 and
(Ti)i≥1 are independent and we assume that τG := sup{t : G(t) < 1} and let τ be a
positive real number such that τ < τG.

Now, let’s consider the following hypotheses:

(H1) ∀hK > 0, P (X ∈ Bθ(x, hK)) = ϕθ,x(hK) > 0.
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(H2) (Xi, Yi)i∈N is an α-mixing sequence whose the coefficients of mixture verify:

∃a > 0, ∃c > 0 : ∀n ∈ N, α(n) ≤ cn−a.

(H3) 0 < sup
i̸=j

P ((Xi, Xj) ∈ Bθ(x, hK)×Bθ(x, hK)) = O

(
(ϕθ,x(hK))

(a+1)/a

n1/a

)
.

6.3.2 The nonparametric model

As usually in nonparametric estimation, we suppose that the cond-cdf F (θ, ·, x) verifies
some smoothness constraints. Let β1 and β2 be two positive numbers; such that:

(H4) ∀(x1, x2) ∈ Nx ×Nx, ∀(t1, t2) ∈ S2
R,

(i) |F (θ, t1, x1)− F (θ, t2, x2)| ≤ Cθ,x

(
∥x1 − x2∥β1 + |t1 − t2|β2

)
,

(ii)
∫
R
tf(θ, t, x)dt <∞ for all θ, x ∈ H.

(H5) ∀(t1, t2) ∈ R2, |H(t1)−H(t2)| ≤ C|t1 − t2| with
∫
H(1)(t)dt = 1,∫

H2(t)dt <∞ and
∫

|t|β2H(1)(t)dt <∞.

(H6) K is a positive bounded function with support [0, 1].

(H7) The df of the censored random variable G has bounded first derivative G′.

(H8) For all u ∈ [0, 1], lim
h→0

ϕθ,x(uh)

ϕθ,x(h)
= lim

h→0
ξθ,xh (u) = ξθ,x0 (u).

(H9) The bandwidth hH satisfies,

(i) nh2Hϕ
2
θ,x(hK) −→ ∞, and nh3Hϕθ,x(hK)

log2 n
−→ ∞ as n→ ∞,

(ii) nh2Hϕ
3
θ,x(hK) −→ 0, as n→ ∞.

(H10) There exist sequences of integers (un) and (vn) increasing to infinity such that
(un + vn) ≤ n, satisfying

(i) vn = o((nϕθ,x(hK))
1/2) and

(
n

ϕθ,x(hK)

)1/2

α(vn) → 0 as n→ ∞,

(ii) qnvn = o((nϕθ,x(hK))
1/2) and qn

(
n

ϕθ,x(hK)

)1/2

α(vn) → 0 as n→ ∞,

where qn is the largest integer such that qn(un + vn) ≤ n.
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6.3.3 Comments of the assumptions

(H1) can be interpreted as a concentration hypothesis acting on the distribution of the
f.r.v. X, while (H3) concerns the behavior of the joint distribution of the pairs (Xi, Xj).
Indeed, this hypothesis is equivalent to assume that, for n large enough

sup
i̸=j

P ((Xi, Xj) ∈ Bθ(x, hK)×Bθ(x, hK))

P (X ∈ Bθ(x, hK))
≤ C

(
ϕθ,x(hK)

n

)1/a

.

This is one way to control the local asymptotic ratio between the joint distribution
and its margin. Remark that the upper bound increases with a. In other words, more
the dependence is strong, (H3) is more restrictive. The hypothesis (H2) specifies the
asymptotic behavior of the α-mixing coefficients. Assumptions (H5), (H6) and (H7) are
classical in nonparametric estimation. To establish the asymptotic normality dealing with
strong mixing random variables (under (H2)), we use the well-known sectioning device
introduced by Doob (1953) [11] in (H10).

This part of paper is devoted to the main result, the asymptotic normality of F̂ (θ, t, x)

and ζ̂θ(γ, x).

Theorem 6.3.1. Under assumptions (H1)-(H10), we have

(
nϕθ,x(hK)

σ2(θ, t, x)

)1/2 (
F̂ (θ, t, x)− F (θ, t, x)

)
D−→N (0, 1), (6.9)

where σ2(θ, t, x) =
a2(θ, x)

(a1(θ, x))2
F (θ, t, x)

(
1

Ḡ(t)
− F (θ, t, x)

)
,

with al(θ, x) = K l(1)−
∫ 1

0
(K l)′(u)ξθ,xh (u) du, for l = 1, 2,

and ” D−→ ” means the convergence in distribution.

Theorem 6.3.2. If the assumptions (H1)-(H10) are satisfied, and γ is the unique order

of the quantile such that γ = F (θ, ζθ(γ, x), x) = F̂ (θ, ζ̂θ(γ, x), x),

(
nϕθ,x(hK)

Σ2(θ, ζθ(γ, x), x)

)1/2 (
ζ̂θ(γ, x)− ζθ(γ, x)

)
D−→N (0, 1), (6.10)

where Σ(θ, ζθ(γ, x), x) =
σ(θ, ζθ(γ, x), x)

f(θ, ζθ(γ, x), x)
.

As one can see, the asymptotic variance Σ(θ, ζθ(γ, x), x) depends on some unknown
functions f(θ, ζθ(γ, x), x) and ϕθ,x(hK) and other theoretical quantities F (θ, t, x), G(·), al(θ, x)
for l = 1, 2, and ζθ(γ, x) that have to be estimated in practice. Therefore, G(·), F (θ, t, x),
f(θ, ζθ(γ, x), x) and ζθ(γ, x) should be replaced, respectively, by the Kaplan-Meier’s es-

timator Gn(·), the kernel-type estimators of the joint distribution F̂ (θ, t, x) and of the
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joint density f̂(θ, ζθ(γ, x), x), ζ̂θ(γ, x) the conditional quantile estimator given by equa-
tion (6.7). Moreover, by assumption (H1), one can estimate ϕθ,x(hK) by Fx,n(hK) =

1/n
∑n

i=1 1{Xi∈Bθ(x,hK)}. The quantity al(θ, x) for l = 1, 2 must be estimated by âl(θ, x).
The corollary below allows one to obtain a confidence interval in practice since all

quantities are known.

6.3.4 Confidence intervals
Corollary 6.3.1. Using the same hypotheses of Theorem 6.3.2, one gets

(
nFx,n(hK)

Σ̂2(θ, ζ̂θ(γ, x), x)

)1/2 (
ζ̂θ(γ, x)− ζθ(γ, x)

)
D−→N (0, 1),

where Σ̂(θ, ζ̂θ(γ, x), x) =
σ̂(θ, ζ̂θ(γ, x), x)

f̂(θ, ζ̂θ(γ, x), x)
.

Now, based on the quantities estimation, we easily get a plug-in estimator Σ̂(θ, ζ̂θ(γ, x), x)
of Σ(θ, ζθ(γ, x), x). The Corollary 6.3.1 can be used to provide the 100(1−γ)% confidence
bands for ζθ(γ, x) which is given, for x ∈ H, by[

ζ̂θ(γ, x)− cγ/2
Σ̂(θ, ζ̂θ(γ, x), x)√

nFx,n(hK)
, ζ̂θ(γ, x) + cγ/2

Σ̂(θ, ζ̂θ(γ, x), x)√
nFx,n(hK)

]
,

where cγ/2 is the upper γ/2 quantile of the distribution of N (0, 1).

6.4 Finite sample performance
This section considers simulated data study to assess the finite-sample performance of the
proposed estimator and compare it to its competitor. More precisely, we are interested
in comparing the conditional quantile estimator based on single functional index model
(SFIM) to the kernel-type conditional quantile estimator (NP) introduced in Chaouch and
Khardani (2015) [8], when the data is dependent and the response variable is subject to a
random right-censorship phenomena. Throughout the simulation part, the n i.i.d. random
variables (Ci)i ( censured variables) are simulated through the exponential distribution
E (1.5). Similarly, in the real data applications, the censored variables are simulated
according to the aforementioned exponential law.

The single functional index θ ∈ H is usually unknown and has to be estimated in
practice. This topic was discussed in single functional regression model literature and
an estimation approaches based on cross-validation or maximum-likelihood methods were
discussed, for instance, in Ait Säıdi et al. (2008) [2] and the references therein. Another
alternative which will be adopted in this section consists in selecting θ (t) among the
eigenfunctions of the covariance operator E [(X ′ − E(X ′)) < X ′, . >H] , where X (t) is,
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for instance, a diffusion-type process defined on a real interval [a, b] and X ′ (t) its first
derivative (see, for instance, Attaoui and Ling (2016) [5]). Given a training sample L, the
covariance operator can be estimated by its empirical version 1

|L|
∑

i∈L(X
′
i − EX ′) t(X ′

i −

EX ′). Consequently, one can obtain a discretized version of the eigenfunctions θi(t) by
applying the principle component analysis method. Let θ⋆ be the first eigenfunction
corresponding to the highest eigenvalue of the empirical covariance operator, which will
replace θ in the simulation steps to calculate the estimator of the conditional distribution
as well as the conditional quantiles.

6.4.1 Simulation study

We generate n copies, say (Xi, δi, Yi)i=1,...,n, of (X, δ, Y ), where X and Y are simulated
according to the following functional regression model.

Ti = R (Xi) + ϵi, i = 1, . . . , n,

where ϵi is the error assumed to be generated according to an autoregressive model defined
as:

ϵi = 1/
√
2ϵi−1 + ηi, i = 1, . . . , n,

where (ηi)i is a sequence of i.i.d. random variables normally distributed with a variance
equal to 0.1. The functional covariate X is assumed to be a diffusion process defined on
[0, 1] and generated by the following equation:

Xi (t) = Ai (2− cos (πtWi)) + (1− Ai) cos(πtWi), t ∈ [0, 1] ,

where Wi  N (0, 1) and Ai  Bernoulli(1/2).
Figure 6.1 depicts a sample of 100 realizations of the functional random variable X

sampled in 100 equidistant points over the interval [0, 1].

Figure 6.1: A sample of 100 curves {Xi (t) , t ∈ [0, 1]}i=1,...,100
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On the other side, a nonlinear functional regression defined as follows is considered

R (X) =
1

4

∫ 1

0

(X ′ (t))
2
dt.

The computation of our estimator is based on the observed data (Xi, δi, Yi)i=1,··· ,n, where
Yi = min (Ti, Ci) , δi = 1{Ti≤Ci}.

To assess the accuracy of the proposed estimator, we split the generated data into a
training (L) and a testing (J ) subsamples. The training subsample is used to estimate
the single functional index and to select the smoothing parameters hk and hH . Whereas
the testing subsample is used to assess and compare the single functional index model
based on the estimator of the conditional quantile, namely ζ̂θ(γ, ·), to the kernel-type

conditional quantile estimator, say ζ̂(γ, ·), which is introduced in Chaouch and Khardani
(2015) [8] as follows:

ζ̂(γ, x) = inf
{
t ∈ R, F̂ x (t) ≥ γ

}
,

where

F̂ x (t) =

∑n
i=1

δi
Ḡn(Yi)

K
(
h−1
K d (x, Xi)

)
H
(
h−1
H (t− Yi)

)∑n
i=1K (h−1d (x, Xi))

, ∀t ∈ R.

Figure 6.2 displays the first two eigenfunctions calculated from the estimated covariance
operator using the data in the training subsample.

Figure 6.2: The first two eigenfunctions θi(t), i = 1, 2

Given a fixed curve X = x, we can observe that the random variable T has a normal
distribution with mean equal to R(x) and standard deviation equal to 0.2. Therefore, the
conditional median is equal to R(x). A 500 Monte-Carlo simulations are performed in
order to assess the estimation accuracy of R(x) using the conditional median estimation by
the single functional index approach and by the nonparametric approach. The simulations
were performed for two sample sizes n = 100, 500, and for two Censorship Rates CR =

60%, 30%. Furthermore, some tuning parameters have to be specified. The kernel K(·) is
chosen to be the quadratic function defined as K (u) = 3

2
(1− u2)1[0,1], and the cumulative
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Table 6.1: First, second and third quartile of the Absolute errors (AEk,θ and AEk, k =
1, . . . , 500) obtained for CR=60% and CR=30%(between parentheses).

n=100 n=500
NP SFIM NP SFIM

1st quartile of AE 0.709 0.69 0.62 0.53
(0.29) (0.212) (0.136) (0.097)

Median of AE 0.955 0.93 0.95 0.75
(0.557) (0.573) (0.584) (0.346)

3rd quartile of AE 1.085 1.08 1.07 0.92
(0.73) (0.76) (0.718) (0.624)

distribution function H (u) =

∫ u

−∞

3

4

(
1− z2

)
1[−1,1] (z) dz. As shown in Figure 6.1, the

covariate is a smooth process and the regression function R(·) is defined as the integral of
the derivative of the functional random variable X. Consequently, according to Ferraty
and Vieu (2006) [16], the appropriate choice of the semi-metric is the L2 distance between
the first derivatives of the curves. In this section, we assume that h := hK = hH , is
selected using a cross-validation method based on the k-nearest neighbors as described in
Ferraty and Vieu (2006) [16], p. 102.

We consider the absolute error (AE) as a measure of accuracy of the estimators:

AEk,θ = |ζ̂θ(0.5, x)−R(x)| and AEk = |ζ̂(0.5, x)−R(x)|, k = 1, . . . , 500,

where ζ̂θ(0.5, x) and ζ̂(0.5, x) are, respectively, the estimators of the conditional median
using the single functional index model and the nonparametric approach. Table 6.1 shows
that the SFIM estimator performs better that the NP one in estimating R(x). Higher
is the sample size and lower is the censorship rate better will be the accuracy of the
SFIM compared to the NP one. Moreover, even when CR=60% and n = 100, the SFIM
estimator is still performing better than the NP one.

The next phase of this simulation study consists in comparing the accuracy of the
SFIM and the NP approaches in terms of prediction. For this purpose, a sample of
550 observations was simulated according to the previous functional regression model
defined above. A subsample of size 500 is considered for training and the remaining 50

observations are used for prediction assessment. The purpose consists in predicting the
response variable Yi in the test sample using the conditional median which is estimated
either by SFIM or NP approach. An overall assessment of the predictions is performed
using the median square error, where the square error (SE) is defined as follows: SEj,θ :=

(Yj − ζ̂θ(0.5, x)) and SEj := (Yj − ζ̂(0.5, x)), j = 1, . . . , 50. Two censorship rates are
considered here: CR = 45% and CR = 2%.

Figures 6.3 and 6.4 show that the SFIM estimator performs better than the NP estima-
tor in predicting the response variable in the testing subsample. The accuracy increases
when the censorship rate decreases. Indeed when CR = 45%, the median square error
is equal to 0.011 using the SFIM approach and 0.055 for the NP one. whereas, when



6.5 Proofs 111

Figure 6.3: Prediction of (Yj)j=1,...,50 in the test subsample when CR = 45%.

Figure 6.4: Prediction of (Yj)j=1,...,50 in the test subsample when CR = 2%.

CR = 2%, the median square error is equal to 0.008 for the SFIM and 0.012 for the NP
approach.

6.5 Proofs
In order to prove our results, let’s first introduce some further notations.
Observe that (6.6) can be rewritten as:

F̂ (θ, t, x) =
F̂N(θ, t, x)

F̂D(θ, x)
, (6.11)

with

F̂N(θ, t, x) =
1

nE(K1(θ, x))

n∑
i=1

δi
Ḡn(Yi)

Ki(θ, x)Hi(t);



6.5 Proofs 112

F̃N(θ, t, x) =
1

nE(K1(θ, x))

n∑
i=1

δi
Ḡ(Yi)

Ki(θ, x)Hi(t);

F̂D(θ, x) =
1

nE(K1(θ, x))

n∑
i=1

Ki(θ, x),

where,
Ki(θ, x) = K(h−1

K (< x−Xi, θ >)) , Hi(t) = H(h−1
h (t− Yi)).

Now, we consider the following decomposition

F̂ (θ, t, x)− F (θ, t, x) =
F̂N(θ, t, x)

F̂D(θ, x)
− a1(θ, x)F (θ, t, x)

a1(θ, x)

=
1

F̂D(θ, x)

(
F̂N(θ, t, x)− EF̂N(θ, t, x)

)
− 1

F̂D(θ, x)

(
a1(θ, x)F (θ, t, x)− EF̂N(θ, t, x)

)
+
F (θ, t, x)

F̂D(θ, x)

(
a1(θ, x)− E

[
F̂D(θ, x)

])
−F (θ, t, x)
F̂D(θ, x)

(
F̂D(θ, x)− EF̂D(θ, x)

)
=

1

F̂D(θ, x)
An(θ, t, x) + Bn(θ, t, x), (6.12)

where

An(θ, t, x) =
1

nEK1(x, θ)

n∑
i=1

{( δi
Ḡn

Hi(t)− F (θ, t, x)

)
Ki(θ, x)

−E
[(

δi
Ḡn

Hi(t)− F (θ, t, x)

)
Ki(θ, x)

]}
=

1

nEK1(x, θ)

n∑
i=1

Ni(θ, t, x).
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It follows that,

nϕθ,x(hK)V ar (An(θ, t, x)) =
ϕθ,x(hK)

E2K1(x, θ)
V ar(N1)

+
ϕθ,x(hK)

nE2K1(x, θ)

n∑∑
|i−j|>0

Cov(Ni, Nj)

= Vn(θ, t, x)

+
ϕθ,x(hK)

nE2K1(x, θ)

n∑∑
|i−j|>0

Cov(Ni, Nj), (6.13)

where Ni = Ni(θ, t, x) and Nj = Nj(θ, t, x).

Lemma 6.5.1. Under hypotheses (H1)-(H4) and (H5)-(H6), as n→ ∞ we have

nϕθ,x(hK)V ar (An(θ, t, x)) −→ V (θ, t, x),

where V (θ, t, x) =
a2(θ, x)

(a1(θ, x))2
F (θ, t, x)

(
1

Ḡ(t)
− F (θ, t, x)

)
.

Lemma 6.5.2. Under hypotheses (H1)-(H3), (H6) and (H8)-(H10), as n→ ∞ we have

(
nϕθ,x(hK)

V (θ, t, x)

)1/2

An(θ, t, x)
D−→N (0, 1),

where D−→ denotes the convergence in distribution.

Lemma 6.5.3. Under assumptions (H1)-(H3) and (H6)-(H9), as n→ ∞ we have

√
nϕθ,x(hK)Bn(θ, t, x) −→ 0 in Probabilty.

Next, making use of Proposition 3.2 for l = 1 and Theorem 3.1 in Kadiri et al. (2018)
[18], we get the following corollary.

Corollary 6.5.1. Under hypotheses of Lemma 6.5.3, as n→ ∞ we have

(nϕθ,x(hK))
1/2Bn(θ, t, x)

f̂
(
θ, ζ∗θ,n(γ, x), x

) −→ 0 in Probabilty.

Proof of Theorem 6.3.1. To prove Theorem 6.3.1, it suffices to use (6.12). Applying
Lemmas Lemma 6.5.1 and Lemma 6.5.3, we get the result.
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Proof of Theorem 6.3.2. For Theorem 6.3.2, making use of (6.12), we have

√
nϕθ,x(hK) (ζθ(γ, x)− ζθ,n(γ, x)) =

√
nϕθ,x(hK)

Fn(θ, ζθ(γ, x), x)

F ′
n(θ, ζ

∗
θ,n(γ, x), x)

−
√
nϕθ,x(hK)

F (θ, ζθ(γ, x), x)

F ′
n(θ, ζ

∗
θ,n(γ, x), x)

=

√
nϕθ,x(hK)An(θ, t, x)

F ′
n(θ, ζ

∗
θ,n(γ, x), x)

−
√
nϕθ,x(hK)Bn(θ, t, x)

F ′
n(θ, ζ

∗
θ,n(γ, x), x)

.

Then, using Theorem 6.3.1, Corollary 6.5.1 and Lemma 6.5.3, we obtain the result.

Proof of Lemma 6.5.1.

Vn(θ, t, x) =
ϕθ,x(hK)

E2K1(θ, x)
E

[
K2

1(θ, x)

(
δ1

Ḡ(Y1)
H1(t)− F (θ, t, x)

)2
]

=
ϕθ,x(hK)

E2K1(θ, x)
E

[
K2

1(θ, x)E

((
δ1H1(t)

Ḡ(Y1)
− F (θ, t, x)

)2

| < θ,X1 >

)]
. (6.14)

Using the definition of conditional variance, we have

E

[(
δ1

Ḡ(Y1)
H(h−1

H (t− Y1))− F (θ, t, x)

)2

| < θ,X1 >

]
= J1n + J2n,

where J1n = V ar
(

δ1
Ḡ(Y1)

H(h−1
H (t− Y1))| < θ,X1 >

)
,

J2n =
[
E
(

δ1
Ḡ(Y1)

H(h−1
H (t− Y1))| < θ,X1 >

)
− F (θ, t, x)

]2
.

Concerning J1n,

J1n = E
[

δ1
Ḡ2(Y1)

H2

(
t− Y1
hH

)
| < θ, x >

]

−
(
E
[

δ1
Ḡ(Y1)

H

(
t− Y1
hH

)
| < θ,X1 >

])2

= J1 + J2.
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As for J1, by the property of double conditional expectation, we get

J1 = E
{
E
[

δ1
Ḡ2(Y1)

H2

(
t− Y1
hH

)
| < θ,X1 >, T1

]}
= E

{
δ1

Ḡ2(T1)
H2

(
t− T1
hH

)
E [1T1≤C1 |T1] | < θ,X1 >

}
= E

(
1

Ḡ(T1)
H2

(
t− T1
hH

)
| < θ,X1 >

)
=

∫
R

1

Ḡ(v)
H2

(
t− v

hH

)
dF (θ, v,X1)

=

∫
R

1

Ḡ(t− uhH)
H2(u)dF (θ, t− uhH , X1). (6.15)

By the first order Taylor’s expansion of the function Ḡ−1(·) around zero, one gets

J1 =

∫
R

1

Ḡ(t)
H2(u)dF (θ, t− uhH , X1)

+
h2H
Ḡ2(t)

∫
R
uH(u)Ḡ(1)(t∗)f(θ, t− uhH , X1)du+ o(1),

where t∗ is between t and t− uhH .
Under hypothesis (H7) and using hypothesis (H4), we get

J ′
1 =

h2H
Ḡ2(t)

∫
R
uH2(t)Ḡ(1)(t∗)f(θ, t− uhH , X1)du = o(h2H).

Indeed,

J ′
1 ≤ h2H

(
sup
u∈R

|G′(u)|/Ḡ2(t)

)∫
R
uf(θ, t− uhH , x)du.

On the other hand, by integrating by part and under assumption (H5), we have

∫
R

H2(u)

Ḡ(t)
dF (θ, t− uhH , X1) =

1

Ḡ(t)

∫
R
2H(u)H ′(u)F (θ, t− uhH , X1)du

− 1

Ḡ(t)

∫
R
2H(u)H ′(u)F (θ, t, x)du

+
1

Ḡ(t)

∫
R
2H(u)H ′(u)F (θ, t, x)du.

Clearly, we have∫
R
2H(u)H ′(u)F (θ, t, x)du =

[
H2(u)F (θ, t, x)

]+∞

−∞
= F (θ, t, x), (6.16)
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thus, ∫
R

1

Ḡ(t)
H2(u)dF (θ, t− uhH , X1) =

F (θ, t, x)

Ḡ(t)
+O(hβ1

K + hβ2

H ). (6.17)

• Concerning J2

J ′
2 = E

[
δ1

Ḡ(Y1)
H1(t)| < θ,X1 >

]
= E

(
E
[

δ1
Ḡ(Y1)

H1(t)| < θ,X1 >, T1

])
= E

(
1

Ḡ(T1)
H

(
t− T1
hH

)
E [1T1≤C1 |T1] | < θ,X1 >

)
= E

(
H

(
t− T1
hH

)
| < θ,X1 >

)
=

∫
H

(
t− v

hH

)
f(θ, t,X1)dv.

Moreover, we have by integration by parts and changing variables

J ′
2 = F (θ, t, x)

∫
H ′(u)du+

∫
H ′(u) (F (θ, t− uhH , x)− F (θ, t, x)) du,

the last equality is due to the fact that H ′ is a probability density.
Thus we have:

J ′
2 = F (θ, t, x) +O

(
hβ1

K + hβ2

H

)
. (6.18)

Finally, by hypothesis (H5), we get J2 −→
n→∞

F 2(θ, t, x)

As for J2n, by (H2), (H4) and (H5), and using Lemma 3.2 in Kadiri et al. (2018) [18],
we obtain that

J2n −→ 0, as n→ ∞.

Meanwhile, by (H1), (H4), (H6) and (H8), it follows that:

ϕθ,x(hK)EK2
1(θ, x)

E2K1(θ, x)
−→
n→∞

a2(θ, x)

(a1(θ, x))2
.

Thus, by combining equations (6.14)-(6.18), it yields

Vn(θ, t, x) −→
n→∞

a2(θ, x)

(a1(θ, x))2
F (θ, t, x)

(
1

Ḡ(t)
− F (θ, t, x)

)
. (6.19)
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Secondly, by the boundness of H and conditioning on (< θ,Xi >,< θ,Xj >), we have

E (|NiNj|) = E [(Ωi) (Ωj)Ki(θ, x)Kj(θ, x)]

= E
(
E
[
(Ωi) (Ωj) | < θ,Xi >,< θ,Xj >

]
Ki(θ, x)Kj(θ, x)

)
≤

(
1 +

1

Ḡ(τF )

)2

E(Ki(θ, x)Kj(θ, x))

≤ CP ((Xi, Xj) ∈ Bθ(x, h)×Bθ(x, h))

≤ C

((
ϕθ,x(hK)

n

)1/a

ϕθ,x(hK)

)
,

where Ωi =
δi
Ḡi

Hi(t)− F (θ, t, x).

Then, taking

ϕθ,x(hK)

nE2K1(x, θ)

n∑∑
|i−j|>0

Cov(Ni, Nj) =
ϕθ,x(hK)

nE2K1(x, θ)

n∑
0<|i−j|≤mn

Cov(Ni, Nj)

+
ϕθ,x(hK)

nE2K1(x, θ)

n∑
|i−j|>mn

Cov(Ni, Nj)

= K1n +K2n.

Therefore,

K1n ≤ C mn

{(
ϕθ,x(hK)

n

)1/a
}
, ∀i ̸= j.

Now, choose mn =
(

ϕθ,x(hK)

n

)−1/a

, we get K1n = o(1).

For K2n : since the variable (∆i)1≤i≤n is bounded (i.e, ∥∆i∥∞ < ∞), we can use the
Davydov-Rio’s inequality. So, we have for all i ̸= j,

|Cov(∆i,∆j)| ≤ Cα(|i− j|).

By the fact that
∑

k≥mn+1

k−a ≤
∫ ∞

mn

v−adv =
m−a+1

n

a− 1
, we get by applying (H1)

K2n ≤
∑

|i−j|≥mn+1

|i− j|−a ≤ nm−a+1
n

a− 1
.

With the same choice of mn, we get K2n = o(1).
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Finally, by
ϕθ,x(hK)

nE2K1(x, θ)

n∑∑
|i−j|>0

Cov(Ni, Nj) = o(1), (6.20)

we complete the proof of the lemma.

Proof of Lemma 6.5.2. We will establish the asymptotic normality of An(θ, t, x) suit-
ably normalized. We have

√
nϕθ,x(hK)An(θ, t, x) =

√
nϕθ,x(hK)

nEK1(θ, x)

n∑
i=1

Ni(θ, t, x)

=

√
ϕθ,x(hK)√

nEK1(θ, x)

n∑
i=1

Ni(θ, t, x)

=
1√
n

n∑
i=1

Ξi(θ, t, x) =
1√
n
Sn.

Now, we can write Ξi =

√
ϕθ,x(hK)

EK1(θ, x)
Ni, we have

V ar(Ξi) =
ϕθ,x(hK)

E2K1(θ, x)
V ar(Ni) = Vn(θ, t, x).

Note that by (6.19), we have V ar(Ξi) −→ V (θ, t, x) as n goes to infinity and by (6.20),
we get ∑

|i−j|>0

|Cov(Ξi,Ξj)| =
ϕθ,x(hK)

E2K1(x, θ)

n∑
|i−j|>0

|Cov(Ni, Nj)| = o(n). (6.21)

Obviously, we have√
nϕθ,x(hK)

V (θ, t, x)
(An(θ, t, x)) = (nV (θ, t, x))−1/2 Sn.

Thus, the asymptotic normality of (nV (θ, t, x))−1/2 Sn, is sufficient to show the proof
of this Lemma. This last is shown by the blocking method, where the random variables
Ξi are grouped into blocks of different sizes defined.

We consider the classical big- and small-block decomposition. We split the set {1, 2, . . . , n}
into 2kn + 1 subsets, with large blocks of size un and small blocks of size vn and put

kn :=
[ n

un + vn

]
.
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Now, assumption (H10)-(ii) allows us to define the large block size by

un =:
[(nϕθ,x(hK)

qn

)1/2 ]
.

Using assumption (H10) and by simple algebra, it yields

vn
un

→ 0,
un
n

→ 0,
un√

nϕθ,x(hK)
→ 0, and n

un
α(vn) → 0. (6.22)

Let Υj, Υ′
j and Υ

′′
j be defined as follows:

Υj(θ, t, x) = Υj =

j(u+v)+u∑
i=j(u+v)+1

Ξi(θ, t, x), 0 ≤ j ≤ k − 1,

Υ′
j(θ, t, x) = Υ′

j =

(j+1)(u+v)∑
i=j(u+v)+u+1

Ξi(θ, t, x), 0 ≤ j ≤ k − 1,

Υ
′′

j (θ, t, x) = Υ
′′

j =
n∑

i=k(u+v)+1

Ξi(θ, t, x), 0 ≤ j ≤ k − 1.

Clearly, we can write

Sn(θ, t, x) = Sn =
k−1∑
j=1

Υj +
k−1∑
j=1

Υ′
j +Υ

′′

k

= Ψn(θ, t, x) + Ψ′
n(θ, t, x) + Ψ

′′

n(θ, t, x)

= Ψn +Ψ′
n +Ψ

′′

n.

We prove that

(i)
1

n
E(Ψ′

n)
2 −→ 0, (ii)

1

n
E(Ψ′′

n)
2 −→ 0, (6.23)

∣∣∣E{exp
(
izn−1/2Ψn

)}
−

k−1∏
j=0

E
{

exp
(
izn−1/2Υj

)} ∣∣∣ −→ 0, (6.24)

1

n

k−1∑
j=0

E
(
Υ2

j

)
−→ V (θ, t, x), (6.25)

1

n

k−1∑
j=0

E
(
Υ2

j1{|Υj |>ε
√

nV (θ,t,x)}

)
−→ 0 for every ε > 0. (6.26)
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Expression (6.23) shows that the terms Ψ′
n and Ψ′′

n are asymptotically negligible, while
equations (6.24) and (6.25) show that the Υj are asymptotically independent, verifying
that the sum of their variances tends to V (θ, t, x). Expression (6.26) is the Lindeberg-
Feller’s condition for a sum of independent terms. The asymptotic normality of Sn is a
consequence of equations (6.23)-(6.26).

• Proof of (6.23). Because of E(Ξj) = 0, ∀j, we have that

E(Ψ′
n)

2 = V ar

(
k−1∑
j=1

Υ′
j

)
=

k−1∑
j=1

V ar
(
Υ′

j

)
+

k−1∑
|i−j|>0

Cov
(
Υ′

i,Υ
′
j

)
:= Π1 +Π2.

By the second-order stationarity and (6.21), we get

V ar
(
Υ′

j

)
= V ar

 (j+1)(un+vn)∑
i=j(un+vn)+un+1

Ξi(θ, t, x)


= vnV ar(Ξ1(x)) +

vn∑
|i−j|>0

Cov (Ξi(θ, t, x),Ξj(θ, t, x))

= vnV ar(Ξ1(x)) + o(vn).

Then,

Π1

n
=

kvn
n
V ar(Ξ1(θ, t, x)) +

k

n
o(vn)

≤ kvn
n

{
ϕθ,x(hK)

E2K1(x)
V ar (Ξ1(x))

}
+
k

n
o(vn)

≤ kvn
n

{
1

ϕθ,x(hK)
V ar (Ξ1(x))

}
+
k

n
o(vn).

Simple algebra gives us

kvn
n

∼=
(

n

un + vn

)
vn
n

∼=
vn

un + vn
∼=

vn
un

−→ 0 as n→ ∞.

Using equation (6.20), we have

lim
n→∞

Π1

n
= 0. (6.27)
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Now, let us turn to Π2/n. We have

Π2

n
=

1

n

k−1∑
|i−j|>0

Cov (Υi(x),Υj(x))

=
1

n

k−1∑
|i−j|>0

vn∑
l1=1

vn∑
l2=1

Cov
(
Ξmj+l1 ,Ξmj+l2

)
,

with mi = i(un + vn) + un +1. As i ̸= j, we have |mi −mj + l1 − l2| ≥ un. It follows
that

Π2

n
≤ 1

n

n∑
|i−j|≥un

Cov (Ξi(x),Ξj(x)) = o(1),

then,

lim
n→∞

Π2

n
= 0. (6.28)

By equations (6.27) and (6.28), we get part(i) of the equation(6.23).

As for (ii), we have

1

n
E (Ψ′′

n)
2

=
1

n
V ar (Υ′′

k)

=
ϑn

n
V ar (Ξ1(x)) +

1

n

ϑn∑
|i−j|>0

Cov (Ξi(x),Ξj(x)) ,

where ϑn = n− kn(un + vn); by the definition of kn, we have ϑn ≤ un + vn.

Then
1

n
E (Ψ′′

n)
2 ≤ un + vn

n
V ar (Ξ1(x)) +

1

n

ϑn∑
|i−j|>0

Cov (Ξi(x),Ξj(x))

By the definitions of un and vn, we achieve the proof of (ii) of equation (6.23).

• Proof of (6.24). We make use of Volkonskii and Rozanov’s lemma (see the
appendix in Masry (2005) [25]), and the fact that the process (Xi, Xj) is strong
mixing.

Note that Υa is F ja
ia

-mesurable with ia = a(un + vn) + 1 and ja = a(un + vn) + un;

hence, with Vj = exp
(
izn−1/2Ψn

)
, we have

∣∣∣E {Vj} −
k−1∏
j=0

E
{

exp
(
izn−1/2Υj

)} ∣∣∣ ≤ 16knα(vn + 1)

∼=
n

vn
α(vn + 1),
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which goes to zero by the last part of equation (6.22). Now, we establish equation
(6.25).

• Proof of (6.25). Note that V ar(Ψn) −→ V (θ, t, x) by equation (6.23) (by the
definition of the Ξi). Then because

E (Ψn)
2 = V ar (Ψn) =

k−1∑
j=0

V ar (Υj) +
k−1∑
i=0 i̸=j

k−1∑
j=1

Cov (Υi,Υj) ,

all we have to prove is that the double sum of covariances in the last equation tends
to zero. Using the same arguments as those previously used for Π2 in the proof of
first term of Equation (6.23), we obtain

1

n

k−1∑
j=1

E
(
Υ2

j

)
=
kun
n
V ar (Ξ1) + o(1).

As V ar (Ξ1) −→ V (θ, t, x) and kun
n

−→ 1, we get the result.

Finally, we prove equation (6.26).

• Proof of (6.26). Recall that

Υj =

j(un+vn)+un∑
i=j(un+vn)+1

Ξi.

To establish (6.26), it suffices to show for n large enough that the set {|Υj| >

ε
√
nV (θ, t, x)} is empty .

Making use of assumptions (H3) and (H5), we have∣∣∣Ξi

∣∣∣ ≤ C (ϕθ,x(hK))
−1/2 ,

therefore, ∣∣∣Υj

∣∣∣ ≤ Cun (ϕθ,x(hK))
−1/2 ,

which goes to zero as n goes to infinity by equation (6.22).

Since |Hi(t)− F (θ, t, x)| ≤ 1, then

∣∣∣Υj

∣∣∣ ≤ unNj√
ϕθ,x(hK)

≤ Cun√
ϕθ,x(hK)

.



6.5 Proofs 123

Thus,
1√
n

∣∣∣Υj

∣∣∣ ≤ Cun√
nϕθ,x(hK)

.

Then, for n large enough, the set
{
|Υj| > ε (nV (θ, t, x))−1/2

}
becomes empty, this

completes the proof and therefore that of the asymptotic normality of (nV (θ, t, x))−1/2 Sn

and the Lemma 6.5.2.

Proof of Lemma 6.5.3. We have

√
nϕθ,x(hK)Bn(θ, t, x) =

√
nϕθ,x(hK)

F̂D(θ, x)

{
EF̂N(θ, t, x)− a1(θ, x)F (θ, t, x)

+F (θ, t, x)
(
a1(θ, x)− EF̂D(θ, x)

)}
.

Firstly, observed that the results below

1

ϕθ,x(hK)
E
[
K l

(
< x−Xi, θ >

hK

)]
−→ al(θ, x), for l = 1, 2, (6.29)

E
[
F̂D(θ, x)

]
−→ a1(θ, x), (6.30)

and

E
[
F̂N(θ, t, x)

]
−→ a1(θ, x)F (θ, t, x), (6.31)

can be proved in the same way as in Ezzahrioui and Ould-Säıd (2008) [14] corresponding
to their Lemmas 5.1 and 5.2, and then their proofs are omitted.

Secondly, on the one hand, making use of (6.29), (6.30) and (6.31), we have as n→ ∞{
EF̂N(θ, t, x)− a1(θ, x)F (θ, t, x) + F (θ, t, x)

(
a1(θ, x)− EF̂D(θ, x)

)}
−→ 0.

On the other hand,

√
nϕθ,x(hK)

F̂D(θ, x)
=

√
nϕθ,x(hK)F̃

′(θ, t, x)

F̂D(θ, x)F̃ ′(θ, t, x)
=

√
nϕθ,x(hK)F̃

′(θ, t, x)

F̃ ′
N(θ, t, x)

. (6.32)

Then, using Proposition 3.2 in Kadiri et al. (2018) [18], it suffices to show that
√

nϕθ,x(hK)

F̃ ′
N (θ,t,x)

tends to zero as n goes to infinity.
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Indeed,

F̃ ′
N(θ, t, x) =

1

nhHEK1(θ, x)

n∑
i=1

δi
Ḡ(Yi)

K

(
< x−Xi, θ >

hK

)
H ′
(
t− Yi
hH

)
.

Since K(·)H ′(·) is continuous with support on [0, 1], then by (H5) and (H6) ∃ m =

inf
[0,1]

K(t)H ′(t), it follows that

F̃ ′
N(θ, t, x) ≥

m

hHϕθ,x(hK)
,

which gives
nϕθ,x(hK)

F̃ ′
N(θ, t, x)

≤
√
nh2Hϕθ,x(hK)3

m
.

Finally, using (H9), the proof of Lemma 6.5.3 is achieved.
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[14] Ezzahrioui, M. and Ould-Säıd, E. (2008). Asymptotic results of a nonparametric
conditional quantile estimator for functional time series. Comm. Statist. Theory and
Methods, 37, 2735-2759.

[15] Ferraty, F., Rabhi, A. and Vieu, P. (2005). Conditional quantiles for functional de-
pendent data with application to the climatic ElNinõ phenomenon. Sankhyã B, Special
Issue on Quantile Regression and Related Methods, 67. No. 2, 378-399.

[16] Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis: Theory and
practice. Springer Series in Statistics, Springer, New York.

[17] Gannoun, A., Saracco, J. and Yu, K. (2003). Nonparametric prediction by conditional
median and quantiles. J. Statist. Plann. Inference, 117, 207-223.

[18] Kadiri, N., Rabhi, A. and Bouchentouf, A. (2018). Strong uniform consistency rates
of conditional quantile estimation in the single functional index model under random
censorship. Journal Dependence Modeling, 6. No. 1, 197-227.

[19] Kaplan, E. and Meier, P. (1958). Nonparametric estimation from incomplete obser-
vations. Journal of the American Statistical Association, 53, 457-481.
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General Conclusion and Prospects

Conclusion
The problem addressed in this thesis is the nonparametric estimation of some functional

parameters by using the kernel approach. Many models were studied in this work in
diverse cases, all dealt with the functional explanatory random variables (valued in infinite
dimensional space) by treating two issues : complete data and incomplete data.

The obtained asymptotic results covered several functions, where we established in
Chapter 3 the consistency rate of the conditional density and the conditional mode func-
tion as well as the asymptotic normality of these kernel estimators. Under general ergodic
condition, the regression function operator was examined in Chapter 4 whenever miss-
ing at random responses were considered. Further, we investigated in Chapters 5 and
6 the central limit theorems of the functional estimators of the conditional density and
the conditional mode function, and of the randomly censored conditional distribution and
conditional quantile estimation, for independent and dependent data cases, respectively.
Note that the asymptotic normality gained considerable interest in the statistical litera-
ture. It is used for the construction of confidence intervals and to make statistical tests
.

The fact of assuming that the treated data are always independent is not realistic,
for this, we sought to mitigate this independence hypothesis by adopting the dependent
case. Precisely, we dealt in Chapter 6 with the α-mixing sequence, which is reasonably
weak among various dependence process and has many practical applications such as in
time series prediction. We also focused on the ergodic property in the Chapters 3 and 4.
Recall that the ergodicity condition is very general, it is less restrictive than the α-mixing
assumption. This kind of dependence has not been investigated much before, it allows to
avoid the widely used strong mixing condition and its variants to measure the dependency
and the very involved probabilistic calculations that it implies.

The single index methodology was also used in the most of our works (Chapters 4,
5 and 6 ). This sort of modeling is very popular in the econometrics community, as it
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addresses two important concerns. The first is the reduction of dimension, since this
methodology can effectively solve ”curse of dimensionality”. The second is related to the
interpretability of the index (parameter) introduced in these models.

Finally, we emphhasize the effectiveness and the superiority of our models which are
based on a combination of pivotal approaches. This is confirmed by the simulation studies
that was often generated in the presented contributions.

Some Prospects
Research in the nonparametric field remains an open question which will be the subject of
several future studies in order to improve and highlight the results obtained in this work.

• The extension of our studies of the censored data and the missing data to the
truncated data case is a logical suite to follow.

• Another type of dependency could be considered such as the quasi-associated case.

• It is possible to elaborate the asymptotic properties of our estimators to other
alternative estimation methods, such as, the k nearest neighbor method and the
local linear approach.

• The expansion of the introduced contributions to the robust treatment is another
future prospect.

• Our properties can be examined for the recursive kernel estimation.

• Generalize the obtained results by using other families of semi-metrics in order to
improve the prediction performance of our estimators so the choice of the smoothing
window is important.

• Other open questions could be addressed in the long term, such as the case where the
two variables (the response variable and the explanatory variable) are functional.
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[28] Delecroix, M., Härdle, W. and Hristache, M. (2003). Efficient estimation in condi-
tional single-index regression. J. Multivariate Anal, 86, 213-226.

[29] Delecroix, M. and Rosa, A. C. (1996). Nonparametric estimation of a regression
function and its derivatives under an ergodic hypothesis. J. Nonparametric Statistics,
6, 367-382.

[30] Delsol, L. (2009). Advances on asymptotic normality in nonparametric functional
time series analysis. Statistics, 43. No. 1, 13-33.

[31] Doob, J. L. (1953). Stochastic Processes, New York: Wiley.

[32] Doukhan, P. (1994). Mixing: Properties and examples. Lecture Notes in Statistics,
85, New York: Springer-Verlag.

[33] Durrett, R. (2005). Probability: Theory and examples, third ed. Cengage Learning
Asia Pte. Ltd.

[34] Efromovich, S. (2011a). Nonparametric regression with responses missing at random.
J. Statist. Plann. Inference, 141, 3744–3752.

[35] Efromovich, S. (2011b). Nonparametric regression with predictors missing at random.
J. Amer. Statist. Assoc, 106, 306–319.

[36] El Ghouch A. and Van Keilegom, I. (2009). Local linear quantile regression with
dependent censored data. Statistica Sinica, 19, 1621-1640.
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ゾガヤョ                                                                                                        

シゲムョ るェヱゲヅΕや ログワる るィグヨレヤャ るΒヨヤバョΚャや Βピわヨャ ゲΗやるよゅイわシ  ゲΒピわヨよ ヅヱゲゼヨャや ヶボΒボエャやク ¬ゅツプ ヶプ( ヶヘΒドヱ ゲΒビ ギバよ ヱ
ヶヰわレョ.)  ゲΒらバわよベキぺ∩ や ゾもゅダガャや サケギルャや ヂバらャ るよケゅボヨャメやヱギ るΒヘΒドヲャや ゅルゅΒらヤャゲΒビ れゅルゅΒらャや ヱ るヤョゅムャや れ ヤョゅムャや る ヶプ ブホやヲョ

.るヘヤわガョ Εや ¬ゴイャや ヶプゴミゲル ∩メヱ るΒヤヨバよ ぽらレわャや ヴヤハ ぺマΑギィケ ャや ゲΒビ れゅルゅΒらヤャ るΒヘΒドヲャや りやヲレャや ゲΑギボゎ ゲらハ ノョ モョゅバわャや ユわΑ .るヤョゅム
ャや るよゅホゲヤャ るバッゅガャや るプゅんムャゅよ ぽらレわャやるャやギャ るΒャヱぺ るシやケギミ るΒもやヲゼバ ャやメやヲレヨ わよ ュヲボル ∩マャク ヴヤハ りヱΚハ .ヶヅゲゼャや るャやキ れゅバホヲゎ ユΒΒボ

ョ テΒジよ ヶヘΒドヱ ゲセぽョ ケゅヅま ヶプ ケやギエルΙやΒヨヤバョΚャや るΒイヰレヨャや ブΒΒムゎ メΚカ リ る ワゅイゎや ヶプ リΒ るΒタゅカ :ぺギィケΑよ ヱ マ れゅルゅΒ
 ∩ゅ⇔Βルゅを .りキヲボヘョ るΒもやヲゼハノョ モョゅバわル  ヵゴミゲヨャや ギエャや るΑゲヌルアヰル ュやギガわシゅよ るΒェゅル リョ .テΒジよ ゲセぽョ∩ るシやケキ ゥゲわボル  ケギボョ ヴヤハ

ャやャや ヴヤハ ペΒらトゎ ノョ るΒヅゲゼャや るプゅんムメやヲレヨ ヅゲゼャやヶ .るヤボわジヨャや れゅルゅΒらャや るャゅェ ヶプ ンゲカや るΒェゅル リョ∩ ルゾエヘ ャゅェる  れゅルゅΒらャや
メΚカ リョ るトらゎゲヨャや やキヶヅゲゼャや ノΑコヲわャや るャ るΒもやヲゼバャや るよゅホゲヤャ リΒバッゅガャや るΒヅゲゼャや るΒヨムャや るャやキ ヱ. ウΒッヲわャ プ ∩ゅレィクゅヨル るΒャゅバ

ゅ⇔らャゅビ ゅョ キ ュギボルりゅミゅエョ るシやケ  .                                                                                                                   

 ������
  

Cette thèse est consacrée < ﾉ; ﾏﾗSYﾉｷゲ;デｷﾗﾐ ﾐﾗﾐ ヮ;ヴ;ﾏYデヴｷケ┌W Sげ┌ﾐW ┗;ヴｷ;HﾉW SW ヴYヮﾗﾐゲW 
réelle conditionnée par une covariable fonctionnelle (à valeurs dans un espace de dimension 

infini (espace semi-métrique/espace de Hilbert)). Plus précisément, nous étudions les 

propriétés asymptotiques de certains paramètres fonctionnels pour des données complètes 

et incomplètes dans des différentes situations. Dans la première partie, nous nous 

intéressons à la prévision du processus ergodique ┗ｷ; ﾉげestimation à noyau fonctionnel pour 

des données incomplètes. La prédiction de la densité censurée aléatoirement est traitée 

comme étude préliminaire de la fonction du mode conditionnel. De plus, nous évaluons 

ﾉげWゲデｷﾏ;デｷﾗﾐ SW ﾉ; aﾗﾐIデｷﾗﾐ SW ヴégression dans un cadre à indice fonctionnel simple en 

adaptant la méthodologie non paramétrique dans deux directions: propriété ergodique et 

données manquantes au hasard (MAR). Deuxièmement, nous traitons le théorème central 

limite en utilisant une approche à indice unique. D'une part, nous proposons une étude sur 

l'estimateur de la densité conditionnelle avec une application au mode conditionnel dans le 

cas des données indépendantes. D'autre part, nous examinons le cas des données 

dépendantes à travers la distribution conditionnelle et le quantile conditionnel censurés 

aléatoirement. Pour illustrer l'efficacité de nos modèles, nous introduisons souvent des 

études de simulation. 

 �������   

This thesis is devoted to the nonparametric modelization of a real response variable 

conditioned by a functional covariate (valued in infinite dimensional space (semi metric 

space/ Hilbert space)). More precisely, we study the asymptotic properties of some 

functional parameters for complete and incomplete data in different situations. In the first 

part, we focus on the ergodic process forecasting via a functional kernel estimation for 

incomplete data. The randomly censored density prediction is treated as a preliminary study 

of the conditional mode functionく Moreover, we evaluate the regression function 

expectation in a functional single index framework by adapting the nonparametric 

methodology in two directions: ergodic property and missing at random data (MAR). 

Secondly, we deal with the central limit theorem by using single index approach. On the one 

hand, we propose a study on the conditional density estimator with an application to the 

conditional mode in the independent data case. On the other hand,  we examine the 

dependent data case through the randomly censored conditional distribution and 

conditional quantile functions. To illustrate the effectiveness of our models, we often 

introduce simulation studies. 
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