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Abstract

The problem addressed in this thesis concerns nonparametric estimation of the con-

ditional hazard function, when the explanatory variable is of functional nature and the

response variable is real. Our results are presented in the case where the observations are

strongly mixing (α−mixing). Two cases are considered; complete data and censored data.

We establish under certain conditions, the almost complete point convergence and the

almost complete uniform convergence of the kernel estimator of this model.

Key words:

Conditional models, functional data analysis (FDA), nonparametric estimation, small ball

probability.
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Résumé

La problématique abordée dans cette thèse concerne l’estimation non paramétrique de

la fonction de hasard conditionnelle, lorsque la variable explicative est fonctionnelle et

la variable réponse est de type réel. Nos résultats sont présentés dans le cas où les ob-

servations sont fortement mélangeantes (α-mixing). Deux cas sont considérés; données

complètes et données censurées.

Nous établissons sous certaines conditions, la convergence ponctuelle presque complète

et la convergence uniforme presque complète de l’estimateur à noyau de ce modèle.

Mots clés:

Modèles conditionnels, estimation non paramétrique, analyse de données fonctionnelles

(FDA), probabilité de petite boules petite.
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Chapter 1

Introduction

In recent decades, functional statistics have become a very important field in statistical

research. It is closely related to the study of data sets in which the observations are curves

or surfaces. These are infinite-dimensional data which appear in many scientific fields

such as meteorology, quantitative chemistry, biometrics, econometrics, medical imaging,

and so on.

Estimation theory plays an important role in many fields such as finance, economics,

medicine, weather forecasting, etc. In the statistical literature, two types of estimation

are omnipresent; parametric estimation (the law of the random variable admits a general

known form which depends on one or more unknown parameters to be estimated) and

nonparametric estimation (information of the random variable law is so vague). Para-

metric parameters are introduced by Rosenblatt (1969) and Parzen (1962) to estimate a

probability density, and by Nadaraya-Watson (1964) to estimate a regression function,

which are called kernel estimators. The nonparametric study of functional data is much

more recent than the parametric analysis. The first work in this subject was introduced

by Ferraty and Vieu (2006).

This thesis concerns the problem of a conditional hazard function estimate in the sin-

gle index under complete and censored data. Single-index models have a strong approx-

imation capability in the way that any nonlinear relationship may be invariably detected

by the model. So, instead of studying the relationship between a real response variable

and a functional explanatory variable, we only have to observe the relation between two

real variables: The response variable Y and the variable < θ,X >. Further, it is known that

10



1.1 Functional data 11

the use of semi-metrics permits us to have very nice rates of convergence. The case con-

sidered in this investigation is when the functional space F is an Hilbert space with inner

product <,> and when d is the semi-metric constructed (for a fixed functional direction θ)

as d(x,y) =< x − y,θ > . Moreover, in addition to the dimension reduction, the functional

index also plays a nice role in the interpretation of the data. In fact, when the covariate

variances are small (close to zero), it is the same for the variance of the functional index,

and vice versa. Further, nonparametric conditional models has become pertinent for the

censored survival data analysis. It is known for its flexibility and ability to provide a more

complete perspicacity into the stochastic relationship between variables. Unfortunately,

in contexts with multivariate covariates, we are faced with the problem of the "curse of

dimensionality". This makes it difficult to estimate conditional models. In the setting of

survival analyses, the problem is further aggravated by the presence of censored obser-

vations. The most of the literature is dedicated to the case where the variable of interest

is completely observed. This is not the case in many interesting applications, notably

survival analysis, where censorship prevents the direct application of classical methods.

The remainder of this chapter is organized as follows: In Section 1.1, we provide a

literature review on functional data. In Sections 1.2, 1.3, and 1.4, we give a fairly broad set

of results on regression, conditional models and single index models, respectively. Finally,

we present the contribution and outline of the thesis in Sections 1.5 and 1.6, respectively.

1.1 Functional data

The statistical issues concerned with modeling functional random variables study have

recited a great advantage in statistics. The pioneer work is relying on the discretization

of these functional observations to adapt traditional multivariate statistical techniques.

While, due to the progress of the data-processing tool enabling the recovery of increas-

ingly large data, an alternative has been developed consisting in treating this kind of data

in its own dimension, that is to say by preserving the functional character.

In recent years, functional models have been very privileged topics. Within the linear

framework, the contribution of Ramsay and Silverman (1997,2002) presented an impor-

tant collection of statistical methods for the functional variables. In the same way, note

that Bosq (2000) has significantly contributed to the development of statistical methods
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within the framework of process of auto-regression linear functional. By using functional

principal components analysis, Cardot et al. (1999) built an estimator for the model of

the Hilbertien linear regression similar to Bosq estimator (1991) in the case of Hilber-

tien process auto-regressive. This estimator is defined using the spectral properties of the

empirical version of variance-covariance operator of the functional explanatory variable.

They obtained convergence of probability for some cases and almost complete conver-

gence of the built estimator for other cases. Norm convergence in L2 for a regularized

version (spline) of the preceding estimator was established by the same authors in 2000.

A comprehensive overview on this field can be found in Hastie et al. (1995), Gasser et al.

(1998), Hallet al. (1999), Ferraty and Vieu (2000), Besse et al. (2000), Dabo-Niang (2002),

Hall and Heckman (2002), Dabo-Niang and Rhomari (2003), Cardot et al. (2003), Cardot

et al. (2004), Ferraty et al. (2003), Cuevas et al. (2004), Ferraty and Vieu (2004), Aït-Saïd

et al. (2005,2008), Ferré and Villa (2005), Ferraty Laksaci et al. (2013,2005), Gannoun

et al. (2007), Geenens (2011), Ferraty et al. (2011), Laksaci et al. (2013), Ling and Vieu

(2018), and Aneiros et al. (2019).

1.1.1 Application area

Increased interest in the application of statistical modeling to diverse domains includ-

ing engineering, environmental science, biology, medicine, finance etc, has greatly been

driven by the need for good data. It is important to note that these models will only be

useful in the long term if they are accurate, based on good quality data and generated by

the application of appropriate and robust statistical methods. Functional data analysis

(FDA) is one such time series data modeling approach that has begun to gain attention in

the literature, particularly in terms of public health and biomedical applications.

From Ullah and Finch (2013), we present in Table 1 a brief overview of some fields of

application.
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Table 1.1: Some fields of application of Functional data

analysis (FDA)

Field of study Outcome of interest Reference

Engineering Radar waveforms Dabo-niang and Vieu

(2007)

Temporal fertility trajectories of

medfly

Muller et al. (2009)

Biology Time-course gene expression

yeast cell cycle

Song et al. (2007)

Protein expression profiles Bensmail et al. (2005)

Age-specific mortality rates Hyndman and Shang

(2010)

Demography Mortality, fertility and migration

rates

Hyndman and Booth

(2008)

Mortality and fertility rate Hyndman and Ullah

(2007)

Gas emissions Torres et al.(2010)

Environment Diurnal ozone and NOx cycles for

transportation emission control

Guo (2004)

Stratospheric ozone levels Meiring (2007)

Cash flow and transactions Laukaitis (2008)

Finance Price formation and online auc-

tions

Bapna et al.(2008)

Cash flows in point of sale and

ATM networks

Laukaitis (2005)

Speech production variability in

fricatives of children and adults

Koenig et al. (2008)

Linguistics Tongue tip velocity Lee et al. (2006)

Speech movement records Lucero (2005)
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Diffusion tensor imaging fiber im-

ages

Zhu et al. (2010)

Gene expression microarray data Wu and Müller (2010)

Biomedicine Spinal cord dorsal horn neurons Kim et al.2010

3-Tesla magnetic resonance imag-

ing data

Gouttard et al. (2009)

Denaturing gradient gel elec-

trophoresis data

Illian et al. (2009)

Human growth Hermanussen and Aux-

ology (2010)

Age–specific breast cancer mor-

tality rates

Erbas et al. (2010)

Medicine Age–specific fall injury incidence

rates

Ullah and Finch (2010)

Haemoglobin levels in renal

anaemia

West et al. (2007)

Women urinary hormone profiles

at midlife

Meyer et al. (2007)

Neurology Joint coordination data in motor

development

Harrison et al. (2007)

Behavioural Male medfly calling behaviour Zhang et al. (2006)

Chemistry Molecular weight distributions Hutchinson et al.

(2004)

Ecology Plankton monitoring data Ikeda et al. (2008)

Biomechanics Kinematic gait data Roislien et al. (2009)

1.2 Regression models

The first results in functional nonparametric statistics were developed by Ferraty and

Vieu (2000). Authors established the almost complete convergence of a kernel estimator
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of the nonparametric model in the i.i.d case. Then, Ferraty and Vieu (2004) generalized

these results to the α-mixing case and they exploited the importance of nonparametric

modeling of functional data by applying their studies problems such as time series pre-

diction and curves discrimination. In the context of functional observations α-mixing,

Masry (2005) proved asymptotic normality of the estimator of Ferraty and Vieu (2004)

for the regression function. The reader can find in the book of Ferraty and Vieu (2006),

a wide range of applications of the regression function in functional statistics. The mean

square convergence was investigated by Ferraty et al. (2007). Specifically, they explained

the exact asymptotic term of the quadratic error. This result was used by Rachdi and

Vieu (2007) to determine an criterion for automatic smoothing parameter selection based

on cross validation. The local version of this criterion has been studied by Benhenni et

al. (2007). That article presented a comparative study between the local and global ap-

proach. Different research works were interested in estimating the regression function

using different approaches; the method of k nearest neighbors (Burba et al. (2008)); ro-

bust technical (Azzidine et al. (2008) and Crambes et al. (2008)), and the estimate via

the simplified method of local polynomial (Barrientos-Marin et al. (2010)). For more lit-

erature, we refer the reader to Delsol (2007,2009), Delsol et al. (2011), Ferraty and Vieu

(2011), Delsol (2011), Mechab and Laksaci (2016), and Akkal et al. (2018).

1.3 Conditional models

1.3.1 On conditional distribution

The estimation of the conditional distribution function in a functional framework was

introduced by Ferraty et al. (2006). Authors constructed a double-kernel estimator for

the conditional distribution function and they specified the almost complete convergence

rate of this estimator when the observations are independent and identically distributed.

The case of α-mixing observations was studied by Ferraty et al. (2005). Since then, several

authors dealt with the estimation of the conditional distribution function (e.g. Ezzahrioui

and Ould-Saïd (2005,2006), Ferraty et al. (2011), Mahiddine et al. (2014), Demongeot et.

al (2014), Attaoui and Ling (2015), and Bouanani et al. (2019)).
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1.3.2 On conditional density

The estimation of the conditional density function in functional statistics was at first

presented by Ferraty et. al (2006). Authors obtained the almost complete convergence

in the i.i.d case. Then, an abundant literature has been developed on the estimation of

the conditional density, in particular in order to use it to estimate the conditional mode.

Indeed, considering α−mixing observations, Ferraty et al. (2005) established the almost

complete convergence of a kernel estimator of the conditional mode defined by the ran-

dom variable maximizing the conditional density. Alternatively. Ezzahrioui and Ould-

Said (2005, 2006) estimated the conditional mode. The latter focused on the asymptotic

normality of the proposed estimator in both cases (i.i.d. and α−mixing). The precision

of the dominant terms of the quadratic error of the kernel estimator of the conditional

density was obtained by Laksaci (2007). After that, an extensive literature has been done

on the subject (e.g. Laksaci et al. (2013), Demongeot et al. (2013), Izbichi and Lee (2016),

Xianzhu et al. (2017), Daoudi et al. (2019), and Xiong and Meijuan (2020)).

1.3.3 On conditional hazard function

The literature on estimating the conditional hazard function is relatively restricted

into functional statistics. The article by Ferraty et al. (2008) is precursor work on the sub-

ject, the authors introduced a nonparametric estimate of the conditional hazard function,

when the covariate is functional. The α-mixing case was handled by Quintela-Del-Rio

(2010). The latter established the asymptotic normality of the estimator proposed by Fer-

raty et al. (2008), the authors have illustrated these asymptotic results by an application

on seismic data. Then, Laksaci and Mechab (2010) gave the estimation of conditional haz-

ard function for functional data spatially dependent. After that, several research works

have been given on the subject (e.g. Rabhi and Benaissa (2013), Laksaci and Mechab

(2014), Benaissa and Mechab (2015), Rabhi et al. (2015), Massim and Mechab (2016),

Hamel et al. (2017), Merouan and Mechab (2018), Tabti and Ait Saidi (2018), and Daoudi

et al. (2020)).

1.4 On single index models
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For several years, an increasing interest has been devoted to the study of semi-parametric

models. This is mainly due to the problems associated with the poor specification of cer-

tain models. Tackle a problem of misspecification semiparametric way consists in not

specifying the functional form of some model components. This approach completes

those non-parametric models, which can not be useful in small samples, or with a large

number of variables. In the classical regression case, the regression function of Y knowing

the covariate X, is denoted by r(x) = E(Y | X = x), X,Y ∈ Rd ×R. For this model, the non-

parametric method considers only regularity assumptions on the function r. Obviously,

this method has some drawbacks. One can cite the problem of curse of dimensionality.

This problem appears when the number of regressors d increases, the rate of con-

vergence of the nonparametric estimator r which is supposed k times differentiable is

O(n−k/2k+d) deteriorates. The second drawback is the lack of means to quantify the effect

of each explanatory variable. To alleviate in these drawbacks, an alternative approach is

naturally provided by the semi-parametric model which supposes the introduction of a

parameter on the regressors, by considering

Eθ(Y | X) = E(Y |< X,θ >= x).

The models are known in the literature as the single-index models. These models allow to

obtain a compromise between parametric models, generally too restrictive and nonpara-

metric models where the rate of convergence of the estimators deteriorate quickly in the

presence of a large number of explanatory variables. In this area, different types of models

have been studied in the literature: amongst the most famous, there may be mentioned

additive models, partially linear models or single index models. The idea of these models,

in the case of estimating the conditional density or regression consists in bringing to the

covariate a dimension smaller than dimension of the variable space, thus allowing to over-

come the problem of curse of dimensionality. For example, in the partially linear model,

we decompose the quantity to be estimated, into a linear part and a functional part. This

latter quantity does not pose estimation problem since it’s expressed as a function of ex-

planatory variables of finite dimension, thus avoiding the problems associated with curse

of dimensionality. In order to treat the problem of curse of dimensionality in the case of

chronological series, several semi-parametric approaches have been proposed. A general
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presentation of this type of model is given in Ichimura et al. (1993) where the conver-

gence and asymptotic normality are obtained. In the case of M-estimators, Delecroix et al.

(1999) proved the consistency and asymptotic normality of the estimator, and they study

its effectiveness. The literature on these methods is abundant. Huber (1985) and Hall

(1989) presented an estimation method which consists in projecting the density and the

regression function on a space of dimension one, to bring a nonparametric estimation for

dimensional covariate. Attaoui et al. (2011) established the pointwise and the uniform

almost complete convergence (with rate) of the kernel estimate of this model. The inter-

est of their study is to show how the estimate of the conditional density can be used to

obtain an estimate of the simple functional index if the latter is unknown. More precisely,

this parameter can be estimated by pseudo-maximum likelihood method which is based

on the preliminary estimate of the conditional density. Later, Mahiddine et al. (2014)

established the pointwise almost complete convergence and the uniform almost complete

convergence (with the rate) of some characteristics of the conditional distribution and the

successive derivatives of the conditional density when the observations are linked with

a single-index structure and they are applied to the estimations of the conditional mode

and conditional quantiles.

The single-index approach is widely applied in econometrics as a reasonable compromise

between nonparametric and parametric models. Such kind of modelization is intensively

studied in the multivariate case (e.g. Härdle et al. (1993) and Hristache et al. (2001)).

Based on the regression function, Delecroix et al. (2003) studied the estimation of the

single-index and established some asymptotic properties. The literature is strictly limited

in the case where the explanatory variable is functional (that is a curve). The first asymp-

totic properties in the fixed functional single-model were obtained by Ferraty et al. (2003).

They established the almost complete convergence, in the i.i.d. case, of the link regression

function of this model. Their results were extended to dependent case by Aït-Saidi et al.

(2005). Aït-Saidi Saidi et al. (2008) studied the case where the functional single-index is

unknown. They proposed an estimator of this parameter, based on the cross-validation

procedure. Attaoui (2014) and Attaoui and Ling (2016) studied, respectively, the estima-

tion of the conditional density and the conditional cumulative distribution function based

on a single functional index model under strong mixing condition. Bouchentouf et al.
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(2014) investigated the semi-parametric estimation of the hazard function. Goia and Vieu

(2015) introduced a semi-parametric methodology, which approximates the unknown re-

gression operator through a single index approach, taking possible structure changes into

account. For more recent review on functional single-index models, one refers the reader

to Ling and Xu (2012), Shang (2018) and Sang and Cao (2020).

1.5 Brief presentation of the results established in this the-

sis

In this section, we give a brief presentation of different results obtained in this thesis.

1.5.1 Presentation of the considered model

Let X denote a random variable associated to a lifetime (ie, a random variable with

values in R
+).

When X has a density f with respect to the measure of Lebesgues, the hazard rate is

written, for all x as follows:

h(x) =
f (x)
S(x)

,

where, f is the density function, S = 1 − F is survival function of X, and F denotes the

distribution function of X such that F(x) < 1.

Let the conditional random rate for x > 0,

hZ(x) =
f Z(x)
SZ(x)

,

with f Z(·) the conditional density, SZ = 1−Fz the conditional survival function and, FZ(·)

the conditional distribution function of X knowing Z.

Let z be a fixed element of the functional spaceH,Nz denotes a fixed neighborhood of

z and S
R

is a fixed compact of R+.

Let (Xi ,Zi)1≤i≤n be random variables, each of them follows the same law of a couple

(X,Z) where X is valued in R and Z has values in the Hilbert space (H,< ·; · >) . Here, we

assume that Xi and Zi are observed.
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Let the following functional kernel estimators:

F̂(θ,x,z) =

n∑
i=1

K
(
h−1
K (< z −Zi ,θ >)

)
H

(
h−1
H (x −Xi)

)
n∑
i=1

K
(
h−1
K (< z −Zi ,θ >)

) ,

and

f̂ (θ,x,z) =

n∑
i=1

K
(
h−1
K (< z −Zi ,θ >)

)
H ′

(
h−1
H (x −Xi)

)
hH

n∑
i=1

K
(
h−1
K (< z −Zi ,θ >)

) ,

with K a kernel, H a distribution function and, hK = hK,n (resp. hH = hH,n) is a sequence

of positive real numbers.

A kernel estimator of the functional conditional hazard function h(θ, ·,Z) is therefore

given as:

ĥ(θ,x,Z) =
f̂ (θ,x,Z)

1− F̂(θ,x,Z)
.

1.5.2 The model under censorship

Let C be a positive variable, and variables (Ti ,∆i ,Zi) the observed random, where Ti =

min(Xi , Ci) and ∆i = IXi≤Ci . F1(θ, ·,Z) and f1(θ, ·,Z) to describe the distribution function

and conditional density of C knowing Z and we use the notation S1(θ, ·,Z) = 1−F1(θ, ·,Z).

Let L(θ, ·,Z) = 1− S1(θ, ·,Z)S(θ, ·,Z) and ϕ(θ, ·,Z) = f (θ, ·,Z)S1(θ, ·,Z), we can reformu-

late the expression (4.1) as follow:

h(θ,t,Z) =
ϕ(θ,t,Z)

1−L(θ,t,Z)
, ∀t, L(θ,t,Z) < 1.

So, we can define ϕ(θ, ·,Z) and L(θ, ·,Z) by setting

L̂(θ,t,Z) =

n∑
i=1

K
(
h−1
K (< z −Zi ,θ >)

)
H

(
h−1
H (t − Ti)

)
n∑
i=1

K
(
h−1
K (< z −Zi ,θ >)

)
and

ϕ̃(θ,t,Z) =

n∑
i=1

K
(
h−1
K (< z −Zi ,θ >)

)
∆iH

′
(
h−1
H (t − Ti)

)
hH

n∑
i=1

K
(
h−1
K (< z −Zi ,θ >)

) .
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Finally, the hazard function estimator is given as:

h̃(θ,t,Z) =
ϕ̃(θ,t,Z)

1− L̂(θ,t,Z)
.

1.5.3 First result: Pointwise almost complete Convergence

The objective is to establish the pointwise almost complete convergence of the kernel

estimator ĥ(θ, ·,Z) of the conditional hazard function h(θ, ·,Z) including censored and

uncensored variables.

Case of complete data

Theorem 1.1. Under some hypotheses, we have:

sup
x∈S

R

|ĥ(θ,x,z)− h(θ,x,z)| = O
(
hb1
K + hb2

H

)
+Oa.co.


√

logn
nhH φθ,z(hK )

 .
Case of censored data

Theorem 1.2. Under some assumptions, we have:

sup
t∈S

R

|̃h(θ,t,z)− h(θ,t,z)| = O
(
hb1
K + hb2

H

)
+Oa.co.


√

logn
nhH φθ,z(hK )

 .
1.5.4 Second result: Uniform almost complete convergence

The following condition is necessary for our results. Consider

SH ⊂
d
SH
n⋃
k=1

B(zk , rn) and ΘH ⊂
d
ΘH
n⋃
j=1

B(sj , rn)

with xk (resp. tj) ∈ H and rn,d
SH
n ,d

ΘH
n are sequences of positive real numbers which tend

to infinity as n goes to infinity.

Case of complete data
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Let

s2n,0 =
n∑
i=1

n∑
j=1

∣∣∣∣Cov (ψi(x,θ),ψj(x,θ)
)∣∣∣∣ ,

s2n,1 =
n∑
i=1

n∑
j=1

∣∣∣∣Cov (ψi(x,θ)Hi (t) ,ψj(x,θ)Hj (t)
)∣∣∣∣ ,

s2n,3 =
n∑
i=1

n∑
j=1

∣∣∣∣Cov (Λi ,Λj

)∣∣∣∣ , s2n,4 =
n∑
i=1

n∑
j=1

∣∣∣∣Cov (Ωi ,Ωj

)∣∣∣∣ ,
s2n,5 =

n∑
i=1

n∑
j=1

∣∣∣∣Cov (ψi (xk(x),θm(θ)

)
,ψj

(
xk(x),θm(θ)

))∣∣∣∣ ,
s2n,6 =

n∑
i=1

n∑
j=1

∣∣∣∣Cov (Γi ,Γj)∣∣∣∣ , s2n,7 =
n∑
i=1

n∑
j=1

∣∣∣∣∣Cov (Γ (l)
i ,Γ

(l)
j

)∣∣∣∣∣ ,
where

ψi(x,θ) =
K(h−1

K (< x −Xi ,θ >))
EK1(θ,x)

,

Λi(x,θ) =
1

hKφ(hK )
1Bθ(x,h)∪Bθ(xk(x),h)(Xi),

Ωi(x,θ) =
1

hKφ(hK )
1Bθ(xk(x),h)∪Bθm(θ)

(xk(x),h)(Xi),

ψi
(
xk(x),θm(θ)

)
=
K

(
h−1
K < xk(x) −Xi ,θm(θ) >

)
EK

(
h−1
K < xk(x) −Xi ,θm(θ) >

) ,
Γi =

K
(
h−1
K < xk(x) −Xi ,θm(θ) >

)
EK

(
h−1
K < xk(x) −Xi ,θm(θ) >

)H (
h−1
H (ty −Yi)

)
− E

 K
(
h−1
K < xk(x) −Xi ,θm(θ) >

)
EK

(
h−1
K < xk(x) −Xi ,θm(θ) >

)H (
h−1
H (ty −Yi)

)
and

Γ
(l)
i =

1

hlH

K
(
h−1
K < xk(x) −Xi ,θm(θ) >

)
EK

(
h−1
K < xk(x) −Xi ,θm(θ) >

)H (l)
(
h−1
H (ty −Yi)

)
− 1

hlH
E

 K
(
h−1
K < xk(x) −Xi ,θm(θ) >

)
EK

(
h−1
K < xk(x) −Xi ,θm(θ) >

)H (l)
(
h−1
H (ty −Yi)

) .
Theorem 1.3. Under some hypotheses, we have:

sup
θ∈ΘH

sup
x∈SH

sup
y∈S

R

|ĥ(θ,y,x)− h(θ,y,x)| = O
(
hb1
K + hb2

H

)
+Oa.co.


√

logdSHn + logdΘHn
nhHφ(hK )


+ Oa.co.


√
s
′∗2
n logdSFn d

ΘF
n

n

 .
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where

s
′∗
n = max{sn,0;sn,1;sn,2;sn,3;sn,4;sn,5;sn,7}.

When functional single-index is fixed, we get

Corollary 1.4. Under some assumptions, as n goes to infinity, we have

sup
x∈SH

sup
y∈S

R

|ĥ(θ,y,x)− h(θ,y,x)| = O
(
hb1
K + hb2

H

)
+Oa.co.


√

logdSHn
nhHφ(hK )


+ Oa.co.


√
s
′∗2
n logdSFn
n

 .

Case of censored data

Theorem 1.5. Under some hypotheses, we get:

sup
θ∈ΘH

sup
z∈SH

sup
t∈S

R

|̃h(θ,t,z)− h(θ,t,z)| = O
(
hb1
K + hb2

H

)
+Oa.co.


√

logdSHn + logdΘHn
nhHφ(hK )


+ Oa.co.


√
s
′∗2
n logdSFn d

ΘF
n

n

 .
In the case of fixed functional single-index, we have:

Corollary 1.6. Under some assumptions, as n goes to infinity, we have

sup
z∈SH

sup
t∈S

R

|̃h(θ,t,z)− h(θ,t,z)| = O
(
hb1
K + hb2

H

)
+Oa.co.


√

logdSHn
nhHφ(hK )


+ Oa.co.


√
s
′∗2
n logdSFn
n

 .

1.6 Outline of the thesis

This thesis consists of three chapters including the introductory chapter.

In the first chapter, we give the basics notion of nonparametric statistics for functional

data. Then, we give an overview on the conditional models. The single index models have
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been also introduced. We finish this chapter by including a synthesis of the results ob-

tained in this thesis. In second chapter, we present the basic concepts in survival analysis.

In chapter three, we give some asymptotic notations and definitions, where we provide

importance tools useful for our results; almost complete convergence, properties of differ-

ent kernels, and some results of strongly mixing conditions. In chapter four, we present

some asymptotic properties related to the nonparametric estimation of the conditional

hazard function with functional data. Firstly, we introduce the estimator of the of the

conditional hazard function from the estimates of the conditional distribution and the

conditional density, in two cases, namely, with complete and censored and censored data.

Then, we study the both almost complete and uniform convergence of our estimator.

We finish the thesis by a conclusion, we summarize our results given in this thesis. We

also give some points prospects.



Chapter 2

Basic concepts in survival analysis

Analysis of survival data dates back to 1693 with the famous English astronomer Ed-

mond Halley who studied the birth and death records of Breslau city, which had been

transmitted to the Royal Society by Caspar Neumann. He produced a life table showing

the number of people surviving to any age from a cohort born the same year. He also

employed his table to compute the price of life annuities. These analyzes were refined in

the 19th century, with the appearance of the exogenous variables. In the 20th century, the

analysis of survival data began to go beyond the strict framework of demography, espe-

cially after the second world war, where the analysis of survival data has been very sig-

nificant for industrial applications using parametric models with exponential or Weibull

laws. It is only recently, motivated by medical applications (pharmaceutical, biomedical),

that the nonparametric methods (Kaplan-Meier (1958)) appeared for the estimation of the

survival function.

2.1 Survival data Analysis

Survival data analysis is the study of the occurrence, over time, of a specific event for

one or more groups of given individuals. This event is generally a change of a state, it is

often referred to a death, which can be the death of an individual as well as the illness

onset, response to treatment, or machine failure. Each observation is defined by:

The date of origin: each individual has an original date. In order to make comparison

of survival times between individuals, a precise definition of the interest event is neces-

25
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sary. If it is a death caused by an illness, it must be ensured that each death is due to the

illness being studied, and not to other causes.

Survival time: it is defined as the time between the starting date and the occurrence

of the event of interest.

Individuals or groups of individuals are likely to differ in one or more factors. These

factors, called explanatory variables, can explain a significant difference in the survival

time of the subjects studied. Their effects are analyzed by regression models. These may

be individual factors (sex, age, biological parameters relating to a disease, genetic param-

eters, etc.), or linked to a therapeutic test (belonging to the treatment group or to the

placebo group, drug dosage, etc.). The analysis of survival data is attached to the descrip-

tion of survival times and to see how much they depend on these explanatory variables.

Classical approaches of the survival data analysis are of stochastic type, the time of occur-

rence of an event is assumed to be the realization of a random process associated with a

particular distribution.

Excellent research works devoted to the analysis of survival data can be found in

Kalbeisch and Prentice (1980), Cox and Oakes (1984), and Klein and Moeschberger (1997).

2.2 Incomplete data

One of the characteristics of survival data is the existence of incomplete observations.

In fact, data are often partially collected, in particular because of the censorship and trun-

cation processes. Censored or truncated data results from incomplete access to all the in-

formation. Instead of observing i.i.d realizations of Y duration, we observe the realization

of the variable Y subjected to various disturbances, whether or not independent of the

studied event. The mechanisms of censorship and truncation can occur simultaneously.

2.2.1 Truncation

The censored data are not the unique type of incomplete data. The other classical

case is the one of the so-called truncated data, that models the lifetime by a variable Y

which must be big enough to be observed. Contrarily to the censored data, variables are

not still observed being given that if Y < T , nor Y nor the truncation variable T can not
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be observed. It is a model that first appeared in astronomy where is composed of astral

objects. The truncated data are frequently used on the lifetime study. At the end of

1980, some statistical studies were undertaken on the time of incubation of the virus of

the AIDS, that is the time during which a person is seropositive without to develop the

illness as much.

Definition 2.2.1. Truncation is a variant of censoring but different which occurs when the

incomplete nature of the observation is due to a systematic selection process inherent to the

study design.

Randomly truncated data frequently arise in medical studies, other application areas

include economics, insurance and astronomy.... In a broad sense, random truncation cor-

responds to biased sampling, where only partial or incomplete data are available about

the variable of interest. One has two type of truncation, as follows:

i) Right truncation: only individuals with event time less than some threshold are in-

cluded in the study. As example, if you ask a group of smoking school pupils at

what age they started smoking, you necessarily have truncated data, as individuals

who start smoking after leaving school are not included in the study.

ii) Left truncation: due to structure of the study design, we can only observe those in-

dividuals whose event time is greater than some truncation threshold. As example,

imagine you Wish to study how long people who have been hospitalized for a heart

attack survive taking some treatment at home. The start time is taken to be the time

of the heart attack. Only those individuals who survive their stay in hospital are

able to be included in the study.

ii) Interval truncation: this is due when Y is truncated on the right and left. This type of

truncation is encountered when studying patients in a registry: patients diagnosed

before the registry is set up or listed after consulting the registry will not be included

in the study.

2.2.2 Censoring
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Definition 2.2.2. Censoring is when an observation is incomplete due to some random case.

The cause of the censoring must be independent of the event of interest if we are to use standard

methods of analysis.

In what follow, we distinguish the different types of censorship:

(i) Type I censorship: instead of looking at the variables Y1, Y2,...,Yn which we are in-

terested in, we observe Yi when it is less than a fixed duration C, otherwise we

only know that Yi is greater than C. We therefore observe a variable Ti such that

Ti = min(Yi ,C).

(ii) Type II censorship: we observe the life time of n patients untilm of them are died and

we stop at that moment. If we order the Y1, Y2,...,Yn, we obtain the statistics of order

Y(1), Y(2), ...,Y(n). The date of censorship is then Y(r) and we observe T(1) = Y(1),T(2) =

Y(2), ...,T(m) = Y(m),T(m+1) = Y(m), ...T(n) = Y(m).

(iii) Type III censorship: there are two cases:

- Right-censoring: we observe the pair (T ,δ) where T is the observed duration

and δ is a variable representing the nature of this duration which takes the

value 1 if it this is a true life time and 0 if it is censorship.

- Left-censoring: instead of observing Y1, Y2,...,Yn we observe (Ti ,δi) where Ti =

max(Y ,Ci) and δi = 1{Yi≥C} for i = 1, ...,n and Ci is a random censorship.

(IV) Double censorship: there are double censorship in a data sample if there is both left

and right censorship in that sample (data are censored both right and left).

(IV) Interval censoring: a date is interval censored if, instead of observing with certainty

the time of the event, the only information available is that it took place between

two known dates.

Remark 2.2.1. The commonest form of censoring is right censoring. Subjects followed until

some time, at which the event has yet to occur, but then talks no further part in the study. This

may be because:

• the subject dies from another cause, independently of the cause of interest,
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• the study ends while the subject survives, or

• the subject is lost to the study, by dropping out, moving to a different area, etc.

Remark 2.2.2. Left censoring is much rare. Examples of left censoring include: infection with

a sexually transmitted disease such as HIV /AIDS and time at which teenagers begin to drink

alcohol.

Remark 2.2.3. Examples of interval censoring include: infection withHIV /AIDS with regular

testing and failure of a machine during the Chinese new Year.

2.2.3 Kaplan-Meier estimator

A very popular estimator of the distribution function in the setting of right censored

data is the Kaplan-Meier estimator (also known as product-limit estimator) introduced

by Kaplan and Meier (1958).

Let X1,...,Xn be a sample representing the durations of interest (these variables are

therefore assumed to be positive), with distribution function F, and let C1,...,Cn denote

a sample representing the censoring times, which we suppose to be independent of the

durations of interest, of distribution function G. In the right random censorship model,

we do not observe the duration of interest Xi but rather the smaller of the two values

Zi = min(Xi ;Ci), as well as the censorship indicator δi which is equal to 1 if the duration

of interest is observed, and 0 if it is censored, ie δi = 1Xi≤Ci . In this kind of data, the

distribution function F is estimated by the estimator introduced by Kaplan and Meier

(1958):

F̂KM(t) := 1−
∏
[0,t]

1−
∑
j 1{Zj=s,∆j=0}∑
j 1{Zj≥s}

 .
The Kaplan-Meier estimator can also be represented as

F̂KM(t) = 1−Π[0,t]{1−Λ−(ds)},

where Λ̂−(ds) is the Nelson-Aalen estimator of the predictable hazard measure.

Λ−n(ds) :=
N (ds)∑
j 1{Zj≥s}

,
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and N (t) :=
∑
j 1{Zj≤t,∆j=1}.



Chapter 3

Some probability tools and definitions

In this chapter, based on what has been done in the book of Ferraty (2005), we present

different definitions and properties that are useful for our research work.

Let X1,X2, ...,Xn denote n functional random variables valued in E and let χ denote

a fixed element of E. A functional extension of multivariate kernel local weighting ideas

would be to transform the n functional random variables X1,X2, ...,Xn into the n quantities

1
V (h)

= K
(
d(χ,χi)
h

)
,

where d is a semi-metric on E, K is an asymmetrical real kernel. In this expression

V (h) would be the volume of

B(χ,h) = {χ
,
∈ E,d(χ,χ,) ≤ h}

which is the ball, with respect to the topology induced by d, centered at χ and of

radius h. Nevertheless, this approach requests to define V (h). That is, this needs to have

at hand a measure on E. This is the main difference with real and multivariate cases for

which the Lebesgue measure is implicitly used whereas in the functional space E we do

not have such a universally accepted reference measure. Thus, we build the normalization

by utilizing directly the probability distribution of the functional random variables. The

functional kernel local weighted variables are defined by:

31
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∆i =
K

(
d(χ,Xi )
h

)
E

(
K(d(χ,Xi )

h )
) .

Note that for the multivariate case, we have for some constant C depending on K and on

the norm ‖.‖ used in R
p,

EK(‖x −Xi‖/h) ∼ cf (x)hp

as long as Xi has a density f with respect to Lebesgue measure which is continuous and

such that f (x) > 0, this result is known in the literature as the Bochner’s type Theorem.

3.1 Kernel types and proprieties

We present two kinds of kernels for weighting functional variables and consider their man

properties from Ferraty (2005).

Definition 3.1.1. (Ferraty(2005)).

i) A function K from R into R
+ such that

∫
K = 1 is called a kernel of type I if there exit two

real constants 0 < C1 < C2 <∞ such that :

C11[0,1] ≤ K ≤ c21[0,1].

ii) A function K from R into R
+ such that

∫
K = 1 is called a kernel of type II if its support

is [0,1] and if its derivative K ′ exists on [0,1] and satisfies for two real constants −∞ <

C1 < C2 < 0:

C2 ≤ K ′ ≤ C1

.

Definition 3.1.2. (Ferraty(2005)). A function K from R into R
+ such that

∫
K = 1 with com-

pact support [−1,1] and such that ∀u ∈ [0,1], K(0) > 0 is called a kernel of type 0.

Next, we can put:

E

(
1[0,1]

(
d(χ,X)
h

))
= E(1B(χ,h)(X)) = P(X ∈ B(χ,h)).
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It is quite clear that the probability of the ball B(χ,h) appears in the normalization. The

smoothing parameter h (also said the bandwidth) decreases with the size of the sample of

the functional variables (more precisely, h tends to zero when n tends to ∞). Therefore,

when we take n very large, h is close to zero and then B(χ,h) is considered as a small ball

and P (χ ∈ B(χ,h)) as a small ball probability. Thus, for all χ in E and for all positive real

h, we will use the notation:

ϕχ(h) = P(χ ∈ B(χ,h)).

It should be emphasized that small ball probabilities play an important role both from

a theoretical and practical point of view. The notion of ball being strongly linked with

the semi-metric d, the choice of this semi-metric is very important since the convergence

rates of our nonparametric functional estimates are systematically linked with d through

the behaviour, around 0, of the small ball probability function ϕχ.

Next, we present two results, according to the fact that the kernel is of type I or II. Let

X denote a functional random variable taking its values in the semi-metric space (E,d),

let χ denote a fixed element of E, let h be a real positive number and let K be a kernel

function.

Lemma 3.1.1. (Ferraty(2005)). If K is a kernel of type I , then there exist non negative finite

real constants C and C′ such that:

Cϕχ(h) ≤ EK(
d(χ,X)
h

) ≤ C′ϕχ(h).

Lemma 3.1.2. (Ferraty(2005)). If K is a kernel of type II and if ϕχ(.) satisfies

∃C3 > 0,∃ε0,

∫ ε

0
ϕχ(u)d(u) > C3ϕχ(ε),

then there exist non negative finite real constants C and C′ such that ,for hsmall enough:

Cϕχ(h) ≤ EK(
d(χ,X)
h

) ≤ C′ϕχ(h).

3.2 Kernel estimators

3.2.1 Estimating the conditional distribution function (c.d.f.)
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Let F̂XY be the estimator of the conditional c.d.f. FXY . The FXY (χ,y) = P(Y ≤ y|X = χ) can

be expressed in terms of conditional expectation:

FχY (χ,y) = E(1(−∞,y](Y )|X = χ),

and by analogy with the functional regression context, a naive kernel conditional c.d.f.

estimator could be defined as follows:

F̃XY (χ,y) =

∑n
i=1K(h−1d(χ,Xi))1(−∞,y](Yi)∑n

i=1K(h−1d(χ,Xi))
.

By following the ideas previously developed by Roussas (1969)and Samanta (1989)in

the finite dimensional case, it is easy to construct a smooth version of this naive estimator.

To do so, it suffices to change the basic indicator function into a smooth c.d.f. Let K0 be

an usual symmetrical kernel , let H be defined as:

∀u ∈R H(u) =
∫ u

−∞
K0(v)dv,

and define the kernel conditional c.d.f. estimator as follows:

F̂XY (χ,y) =
∑n
i=1K(h−1d(χ,Xi))H(g−1(y −Yi))∑n

i=1K(h−1d(χ,Xi))
.

It is clear that the parameter g acts as the bandwidth h. The smoothness of the function

F̂XY (χ, .) is controled both by the smoothing parameter g and by the regularity of the c.d.f.

H. The idea to build such a smooth c.d.f. estimate was introduced by Azzalini (1981) and

Reiss (1981). The roles of the other parameters involved in this functional kernel c.d.f.

estimate [i.e., the roles of K and h] are the same as in the regression setting.

3.2.2 Estimating the conditional density



3.2.3 Estimating the regression 35

It is known that,under some differentiability assumption, the conditional density func-

tion can be obtained by derivating the conditional c.d.f. . Since we have the estimator F̂XY

of FXY , we suggest the following estimate:

f̂ XY (χ,y) =
∂
∂y
F̂XY .

Assuming the differentiability of H , we have

∂
∂y
F̂XY =

∑n
i=1K(h−1d(χ,Xi)) ∂∂yH(g−1(y −Yi))∑n

i=1K(h−1d(χ,Xi))
,

and this is motivating the following expression for the kernel functional conditional den-

sity estimate:

f̂ XY (χ,y) =

∑n
i=1K(h−1d(χ,Xi))1

gH
′(g−1(y −Yi))∑n

i=1K(h−1d(χ,Xi))
.

More generally, we can state for any kernel K0 the following definition:

f̂ XY (χ,y) =

∑n
i=1K(h−1d(χ,Xi))1

gHK0(g−1(y −Yi))∑n
i=1K(h−1d(χ,Xi))

.

Note that we can easily get the following kernel functional conditional mode estimator of

θ(χ):

θ̂(χ) = argsup
y∈S

f̂ XY (χ,y).

3.2.3 Estimating the regression

We propose for the nonlinear operator r the following functional kernel regression

estimator:

r̂ =
∑n
i=1YiK(h−1d(x,Xi))∑n
i=1K(h−1d(x,Xi))

,
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where K is an asymmetrical kernel and h (depending on n) is a strictly positive real. It

is a functional extension of the familiar Nadaraya- Watson estimate (see Nadaraya (1964)

and Watson (1964) which was previously introduced for finite dimensional nonparametric

regression (see Härdle (1990) for extensive discussion). The main change comes from the

semi-metric d which measures the proximity between functional objects. To see how such

an estimator works, let us consider the following quantities:

wi,h =
K(h−1d(x,Xi))∑n
i=1K(h−1d(x,Xi))

.

Thus, it is easy to rewrite estimator r̂ as follows:

r̂ =
n∑
i=1

wi,h(x)Yi ,

which is really a weighted average because:
n∑
i=1

wi,h(x) = 1.

The behavior of the wi,h(x) can be deduced from the shape of the asymmetrical kernel

function K .

3.2.4 Estimation of the hazard function

The estimation of the hazard function is of great interest in statistics. Indeed, it is used

in risk analysis or for the study of survival phenomena. The hazard rate h(t) is defined by:

h(t) = lim
∆t−→0+

P (t ≤ τ < t +∆t/τ ≥ t)
∆t

, t > 0.

It is not difficult, to see that the hazard rate can be rewritten as the rate of the density

f (.) of which it is absolutely continuous with respect to the Lebesgue measure and the

survival function S(.) = 1−F(.) of t. In other words:

h(t) =
f (t)
S(t)

,

where the survival function S(t) is none other than the complement of the distribution

function. In fact it is the derivative of a probability that the duration is between t and ∆, t

knowing that the period t is reached. More practically, this is an instantaneous rate of exit

from the state at the date t. The survival curve takes a particular meaning given by:

S(t) = exp
(
−
∫ t

0
h(u)d(u)

)
.
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There is an extended literature, on the estimator of the nonparametric hazard rate, in

an approximate way and for the nonparametric case, two methods have been proposed to

estimate the hazard rate. The first approach replaces f (t) and S(t) in the expression of h(t)

by their estimatorsf (t) and S(t) respectively, which gives us the estimator of the hazard

rate by:

ĥ(t) = f̂ (t)Ŝ(t).

Nielsen and Linton (1995) named this type of estimator by (external estimator). The esti-

mator with external kernel of the hazard rate of non censured data has been introduced

by Watson and Leadbetter (1964).

The second method is based on the relation between cumulative hazard and the hazard

rate, where the cumulative hazard is defined by:

λ(t) = −
∫ t

0
h(u)d(u).

Nielsen and Linton (1995) named this type of estimators by (internal estimator). The

relation between cumulative hazard and the hazard rate suggests that h(t) can be obtained

by smoothing H(t) using a kernel, in other words:

h(t) =
∫ t

0
Kh(t −u)dλ̂(u),

where h is a window width such that h −→ 0 when n −→ 1.

The internal hazard rate estimator for censored data has also been introduced by Wat-

son and Leadbetter (1964), and Tanner and Wong (1983, 1984). Then, Tanner and Wang

(1984), and Sarda and Vieu (1996) used selection in window width for this type of hazard

rate estimators. In a more interesting work, Rice and Rosenblatt compared the asymptotic

properties of the two classes of the kernel estimator of the hazard rate, they showed that

the two have the same asymptotic variance, but their asymptotic biases are different. Un-

til now, to take interest to the hazard rate will generally depend on certain covariances,

for example, the survival time of a patient will be affected by many characteristics such as

age and gender. The conditional hazard rate of t knowing Z = z is defined by:

h(t/z) = lim
∆−→

P (t ≤ τ < t +∆t/τ ≥ t,Z = z)
∆t

, t > 0.

As well as the conditional hazard function τ knowing Z = z is defined by:
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h(t/z) =
f (t/z)

1−F(t/z)
,

such that F(t/z) (resp: f (t/z) is the conditional distribution (resp. the conditional den-

sity) of T knowing Z = z, which is supposed absolutely continuous with respect to the

Lebesgue measure on R.

3.3 On mixing conditions

For many phenomena of the real world, observations in the past and present may have

considerable influence on observations in the near future, but rather weak influence on

observations in the far future. Random sequences that satisfy strong mixing conditions

are used to model such phenomena.

In the reality, the treated data present a certain form of dependence or mixing, and there

exist several form of mixing according to coefficients, noted: α,β,ρ,ψ and φ among those,

the alpha-mixing is weakest and is therefore least restraining. Thus, all results statement

for alpha mixing data will be valid for the submissive data to another type of mixing.

3.3.1 Strong mixing conditions

Suppose X : (Xk;k ∈ Z) is a (not necessarily stationary) sequence of random variables.

For −∞ ≤ I ≤ J ≤∞, define the σ−field:

F JI := σ (Xk; I ≤ k ≤ J, (k ∈Z)).

The notation σ (· · ·) means the σ− field ⊂ F generated by (· · ·). For each n ≥ 1, let us define

the following dependence coefficients:

α(n) := sup
i∈Z

α(F j−∞,F ∞j+n), φ(n) := supi∈Zφ(F j−∞,F ∞j+n)

ψ(n) := sup
i∈Z

ψ(F j−∞,F ∞j+n), ρ(n) := supi∈Zρ(F j−∞,F ∞j+n), and

β(n) := sup
i∈Z

β(F j−∞,F ∞j+n).

The random sequence X is said to be:

• α−mixing (or strong mixing) if α(n)→ 0 as n→∞,
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• φ−mixing if φ(n)→ 0 as n→∞,

• ψ−mixing if ψ(n)→ 0 as n→∞,

• ρ−mixing if ρ(n)→ 0 as n→∞,

• β−mixing (or absolutely regular) if β(n)→ 0 as n→∞,

3.3.2 α−Mixing conditions

We recall some definitions and fix some notations of the α−mixing (or strong mixing)

notion, which is one of the most general among the different mixing structures intro-

duced in the literature. Let (ξn)n∈Z be a sequence of random variables defined on some

probabilistic space (Ω,A,P) and taking values in some space (Ω
′
,A′ ). Let us denote, for

−∞ ≤ j ≤ k ≤ +∞, by Akj the σ−algebra generated by the random variables (ξs, j ≤ s ≤ k).

The strong mixing coefficients are defined to be the following quantities:

α(n) = sup
k

sup
A∈A−∞k

sup
A∈A+∞

n+k

| P(A∩B)−P(A)P(B) | .

Definition 3.3.1. (Ferraty(2005)). The sequence (ξn)n∈Z is said to be α−mixing (or strongly

mixing), if lim
n→+∞

α(n) = 0.

In order to simplify the presentation of the results and not to mask our main purpose,

we will mainly consider both of the following subclasses of mixing sequences:

Definition 3.3.2. (Ferraty(2005)). The sequence (ξn)n∈Z is said to be arithmetically (or equiv-

alently algebraically) α−mixing with rate a > 0 if ∃C > 0, α(n) ≤ Cn−a. It is called geometri-

cally α−mixing if ∃C > 0, ∃t ∈ (0,1), α(n) ≤ Ctn.

Next, we present some general results on mixing sequences of functional random vari-

ables by using probabilistic results for mixing sequences of real random variables.

Proposition 3.3.1. (Ferraty(2005)).

Assume that Ω
′

is a semi-normed space with semi-norm ‖.‖ and that A′ is the σ−algebra

spanned by the open balls for this semi-norm then we have:

• (ξn)n∈Z is α−mixing⇒ (‖ξn‖n∈Z) is α−mixing.



3.4 Almost complete convergence 40

• In addition, if the coefficients of (ξn)n∈Z are geometric (resp. arithmetic) then those of

(‖ξn‖n∈Z) are also geometric (resp. arithmetic with the same order).

3.4 Almost complete convergence

Definition 3.4.1. (Ferraty(2006)). One says that (Xn)n∈N converges almost completely to

some r.r.v. X, if and only if

∀ε > 0,
∑
n∈N

(P | Xn −X |> ε) <∞,

and the almost complete convergence of (Xn)n∈N to X is denoted by limn−→∞Xn = X, a.co.

Proposition 3.4.1. If lim
n→+∞

Xn = X a.co., then w have:

i) lim
n→+∞

Xn = X, p.

ii) lim
n→+∞

Xn = X, a.s.

Definition 3.4.2. One says that the rate of almost complete convergence of (Xn)n∈N to X is of

order one if and only if

∀ε > 0,
∑
n∈N

(P | Xn −X |> εun) <∞,

and we write

Xn −X =Oa.co.(un).

Proposition 3.4.2. Assume that Xn −X =Oa.co.(un). We have:

i) Xn −X =Op(un).

ii) Xn −X =Oa.s(un).

The proof of the above propositions can also be found in Ferraty and Vieu (2006).

Proposition 3.4.3. Assume that lim
n→+∞

un = 0, lim
n→+∞

Xn = ιX a.co., and lim
n→+∞

Yn = ιY a.co.,

where ιX and ιY are two deterministic real numbers.

i) We have:

a) lim
n→+∞

Xn +Yn = ιX + ιY , a.co.
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b) lim
n→+∞

XnYn = ιX ιY , a.co.

c) lim
n→+∞

1
Yn

= 1
ιY
, a.co. as along as ιY , 0.

ii) If Xn − ιX =Oa.co(un) and Yn − ιY =Oa.co(un), we have:

a) (Xn +Yn)− (ιX + ιY ) =Oa.co.(un);

b) XnYn − ιX ιY =Oa.co.(un),

c) 1
Yn
− 1
ιY

=Oa.co.(un) as along as ιY , 0.

3.5 Some useful inequalities

3.5.1 Hölder inequality

Theorem 3.1. (Baillo and Grane(2009)). Let X and Y be two random variables such that

X ∈ Lp(Ω,A,P) and Y ∈ Lq(Ω,A,P) with 1
r = 1

p + 1
q and p ≥ 1,q ≥ 1. Then(

E | XY |
1
2
)
≤ E(| X |p)

1
2E(| X |q)

1
2 .

3.5.2 Bernstein’s inequality

Let Z1, ...,Zb be a independent real random variables with zero mean. It is worth being

pointed out that the statement of almost complete convergence properties needs to find

an upper bound for some probabilities involving sum of real random variables such as

P

(∣∣∣ n∑
i

Zi
∣∣∣ > ε),

where eventually, the positive real decreases with n. In this context, there exist powerful

probabilistic tools, generically called exponential inequalities. We focus here on the so-

called Bernstein inequality.

Proposition 3.5.1. (Ferraty(2005)). Assume that ∀m ≥ 2, E|Zmi | ≤ (m/2)(ai)2bm−2, and let

(A2
n = (a2

1 + ......+ a2
1). Then we have

∀ε ≥ 0, P
(∣∣∣ n∑

i

Zi
∣∣∣ > εAn) ≤ exp{− ε2

2(2 + εb
εAn

)

}
.
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Note that this inequality is stated for non-identically distributed real random vari-

ables. Note also that each variable Zi may depend on n. Indeed, for our statistical purpose,

the next Corollary is used more often than the previous general proposition.

Corollary 3.2. (Ferraty(2005)).

• If ∀m > 2, ∃Cm > 0, E | Zmi |≤ Cma
2(m−1), we have

∀ε ≥ 0, P
(∣∣∣∣∣ n∑

i

Zi

∣∣∣∣∣ > εn) ≤ exp{− ε2n

2a2(1 + ε)

}
.

• Assume that the variables depend on n (Zi = Zi,n).

If ∀m > 2, ∃Cm > 0, E | Zmi |≤ Cma
2(m−1), and if un = n−1a2

n logn verifies lim
n→∞

un = 0, we

have:
1
n

n∑
i

Zi = oa.co.(
√
un).

Note that all previous inequalities are given for unbounded random variables, which

is useful for functional nonparametric regression. They apply directly for bounded vari-

ables, such as those appearing along functional conditional density or c.d.f. studies.

Corollary 3.3. (Ferraty(2005)).

• if ∃M <∞, | Z1 |≤M, and denoting σ2 = EZ2
i , we have

∀ε ≥ P
(
|
n∑
i

Zi |> εn
)
≤ exp

{
− ε2n

2σ2(1 + εM
σ2 )

}
.

• Assume that the variables depend on n (that is, assume that Zi = Zi,n).and are such that

∃M = Mn < ∞, | Z1 |≤M and define σ2 = EZ2
i . If un = n−1σ2

n logn verifies lim
n→∞

un = 0,

and if M/σ2
n < C <∞ then we have :

1
n

n∑
i

Zi =Oa.co.(
√
un).
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3.6 Topological considerations

3.6.1 Kolmogorov’s entropy

As specified in Ferraty and Vieu (2006), all the asymptotic results in nonparametric

statistics for functional variables are closely related to the concentration properties of the

probability measure of the functional variableX. Here, we have to consider the uniformity

aspect. To this end, let SF be a fixed subset of H; we the following assumption:

∀x ∈ S ,0 < Cφx(h) ≤ P(X ∈ B(x,h)) ≤ C′φx(h) <∞.

The firs contribution of the topological structure of the functional space can be seen

through the function φx controlling the concentration of the measure of probability of

the functional variable on as mall ball. Further, for the uniform consistency, where the

main tool is to cover a subset SF with a finite number of balls, one introduces an other

topological concept defined as follows:

Definition 3.6.1. Let SF be a subset of a semi-metric space H, and let ε > 0 be given. A finite

set of points x1,x2, ....,xN in F is called an ε− set for SF if SF ⊂
⋃N
k=1B(xk ,ε). The quantity

ψSF = log(Nε(SF )), where Nε(SF ) is the minimal number of open balls in F of radius ε which

is necessary to cover SF , is called the Kolmogorov’s ε-entropy of the set SF .

This concept was presented for the first time by Kolmogorov in the mid-l950’s (see

Kolmogorov and Tikhomirov (1959)) and it represents a measure of the complexity of

a set, in sense that, high entropy means that much information is needed to describe

an element with an accuracy ε. Then, the choice of the topological structure will play a

crucial role when one is looking at uniform (over some subset SF ) of F asymptotic results.

In Ferraty et al. (2006), the phenomenon of concentration of the probability measure of

the functional variable by computing the small ball probabilities in standard situations

has been highlighted. For more details on entropy and small ball probabilities) or/and

the use of the Kolmogorov’s ε−entropy in dimensionality reduction problems, see Kuelbs

and Li (1993) or/and Theodoros and Yannis (1997).
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4.1 Introduction

The estimation of the hazard function is a problem of considerable interest, especially

to inventory theorists, medical researchers, logistics planners, reliability engineers and

seismologists Rabhi et al. (2015). Nonparametric estimation of the hazard function has

been extensively discussed in the literature Quintela (2008). The first who introduced the

estimation of the hazard rate was Watson and Leadbetter (1964), after that many works

were given on these topic; Ahmad (1976), Singpurwalla and Wong (1983) and many oth-

ers. Recently, Massim and Mechab (2016) presented the local linear estimation of the

conditional hazard function, Quintela (2007) can be sited for a survey.

Single-index models are becoming increasingly popular in many scientific fields in-

cluding biostatistics, medicine, economics and financial econometrics Cui et al. (2011).

This sort of kind modelization is excessively studied in the multivariate case, let’s cite for

instance Härdle et al. (1993) and Hristache et al. (2001). Based on the regression function,

Delecroix et al. (2003) constructed an asymptotically efficient estimator for general con-

ditional single-index response models; the estimation and some asymptotic properties of

the single-index models were established. Let’s note that when the explanatory variable

is functional the literature is strictly limited. Ferraty et al. (2003) were the first who ob-

tained the asymptotic properties in the fixed functional single-model, authors established

the almost complete convergence, in the i.i.d. case of the link regression function of this

model. Their results were extended to dependent case by Aït Saidi et al. (2005). The

case where the functional single-index is unknown was studied by Aït Saidi et al. (2008).

Later, many authors focused on the study of conditional single-index models; Mahiddine

et al. (2014) studied the nonparametric estimation of some characteristics of the condi-

tional distribution in single functional index model, Bouchentouf et al. (2014) presented

a nonparametric estimation of hazard function with functional explicatory variable in

single functional index and the variables are independent. The authors proved some con-

sistency properties (with rates) in various situations, including censored and complete

data. Bouchentouf et al. (2015) gave a strong uniform consistency rates of conditional

quantiles for time series data in the single functional index model, they estimated non-

parametrically the quantiles of a conditional distribution when the sample is considered
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as an α-mixing sequence.

The present work presents a study of a nonparametric estimation of the conditional

hazard function, when the covariate is functional and when the sample is considered as

an α-mixing sequence. We prove the consistency properties in various situations; cen-

sored and complete variables. The pointwise almost complete convergence and the uni-

form almost complete convergence (with rate) of the kernel estimator of this model are

established.

The chapter is organized as follows, in Section 4.2 the model of the hazard rate pre-

dictor for functional single functional index is presented. In Section 4.3.1 we give results

in the simple framework of dependent and complete data. Extensions to censored frame-

work are presented in Section 4.3.2. To complete the range of our results, we extend them

to the frame of the uniform almost complete convergence. Specifically, we give in sections

4.4.1 and 4.4.2 the uniform convergence results when the variables are derived from a

dependent process.

The proof of the results presented in Section 4.3 will be given using up the existing

literature. Then, technical details of the proofs of the results done in Sections 4.3.2 and

4.4.2 are shown at the end of chapter.

4.2 The model

Let X be a random variable associated to a lifetime (ie, a random variable with values

in R
+).

When X has a density f with respect to the measure of Lebesgues, the hazard rate is

written, for all x as follows:

h(x) =
f (x)
S(x)

,

where, f is the density function, S = 1 − F is survival function of X, and F denotes the

distribution function of X such that F(x) < 1.

Let the conditional random rate for x > 0,

hZ(x) =
f Z(x)
SZ(x)

, (4.1)

with f Z(·) the conditional density, SZ = 1− Fz the conditional survival function and FZ(·)
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the conditional distribution function of X knowing Z.

Let z be a fixed element of the functional space H, Nz denotes a fixed neighborhood

of z and S
R

is a fixed compact of R+. Here, we give an assumption on the concentration

function φθ,z:

(H0) ∀hK > 0, P (Z ∈ Bθ(z,hK )) = φθ,z(hK ) > 0, φθ,z(hK ) −→
hK→0

0,

where K is a kernel, H is a distribution function and hK = hK,n.

(H1a) The sequence (Xi ,Zi)i∈N is α-mixing and its mixing coefficients α(n) are such that:

∃a, c ∈R∗+ : ∀n ∈N α(n) ≤ cn−a.

(H1b) The joint density (Yi ,Yj) knowing (Zi ,Zj) exists and is bounded, and

∃γ1 ∈]0,1], 0 < sup
i,j

P

(
(Zi ,Zj) ∈ Bθ(z,h)×Bθ(z,h)

)
= O

(
φz(h))1+γ1

)
.

(H1c) ∃γ2 ∈]0,1[, a > 1+γ1
γ1γ2

and hHφθ,z(hK ) = O(n−γ2).

Let’s note that these hypotheses are common in nonparametric estimation problems

with dependent variables, functional or not (see Ferraty and Vieu (2006), Chapter 11).

The nonparametric model on the estimated function hZ will be determined by the

regularity conditions on the conditional distribution of X knowing Z. These conditions

are the following:

(H2) ∃Aθ,z <∞,∃b1,b2 > 0,∀(x1,x2) ∈ S2
R
, ∀(z1, z2) ∈ N 2

z :

|F(θ,x1, z1)−F(θ,x2, z2)| ≤ Aθ,z
(
‖z1, z2‖b1 + |x1 − x2|b2

)
,

|f (θ,x1, z1)− f (θ,x2, z2)| ≤ Aθ,z
(
‖z1, z2‖b1 + |x1 − x2|b2

)
;

(H3) ∃ν <∞,∀(x,z′) ∈ S
R
×Nz, f (θ,x,z′) ≤ ν;

(H4) ∃β > 0, ∀(x,z′) ∈ S
R
×Nz, F(θ,x,z′) ≤ 1− β.

Let (Xi ,Zi)1≤i≤n be random variables, each of them follows the same law of a couple

(X,Z) where X is valued in R and Z has values in the Hilbert space (H,< ·; · >) . In this

section, we suppose that Xi and Zi are observed.
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Now, it is natural to construct an estimator of the function h(θ, ·,Z). To estimate the

conditional distribution function and the conditional density in the presence of variable

Z, Mahiddine et al. (2014) proposed the following functional kernel estimators:

F̂(θ,x,z) =

n∑
i=1

K
(
h−1
K (< z −Zi ,θ >)

)
H

(
h−1
H (x −Xi)

)
n∑
i=1

K
(
h−1
K (< z −Zi ,θ >)

) , (4.2)

and

f̂ (θ,x,z) =

n∑
i=1

K
(
h−1
K (< z −Zi ,θ >)

)
H ′

(
h−1
H (x −Xi)

)
hH

n∑
i=1

K
(
h−1
K (< z −Zi ,θ >)

) , (4.3)

with K a kernel, H a distribution function and hK = hK,n (resp. hH = hH,n) is a sequence of

positive real numbers.

A kernel estimator of the functional conditional hazard function h(θ, ·,Z) may there-

fore be constructed in the following way:

ĥ(θ,x,Z) =
f̂ (θ,x,Z)

1− F̂(θ,x,Z)
. (4.4)

The assumptions we need later for the parameters of the estimator, i.e. on K, H, hH

and hK are not restrictive.

Next, we introduce the following conditions which guarantee the good behavior of the

estimators F̂(θ,x,Z) and f̂ (θ,x,Z) (see Ferraty and Vieu (2006)):

(H5) The cumulative kernel H is derivable such that:

i) ∃A <∞,∀(x1,x2) ∈R2, |H ′(x1)−H ′(x2)| ≤ A|x1 − x2|;

ii) H ′ is of compact support with values in [−1,1] and H ′(t) > 0,∀t ∈ [−1,1].

(H6) The functional kernel K verifies the following conditions:

i) K is of compact support with values in (0,1);

ii) ∃A1,A2,∀t ∈ (0,1), 0 < A1 < K(t) < A2 <∞.

(H7) The bandwidth hK has to satisfy
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lim
n→∞

hK = 0 and lim
n→∞

logn
nhHφθ,x(hK )

= 0,

(H8) The bandwidth hH has to satisfy

lim
n→∞

hH = 0 and ∃a > 0, lim
n→∞

nahH =∞.

Under these general conditions, we establish in Section 1.4 the pointwise convergence

of the kernel estimator ĥ(θ,x,z) of the functional conditional hazard function h(θ,x,z)

when the observed sample is complete. In section 1.4, these results will be generalized to

censored variables.

4.2.1 Censored data

Estimation of the hazard function when the data are censored is an important problem

in medicine. This problem is usually modeled by considering a positive variable called

C, and the observed random variables (Ti ,∆i ,Zi), where Ti = min(Xi , Ci) and ∆i = IXi≤Ci .

In the following we use the notations F1(θ, ·,Z) and f1(θ, ·,Z) to describe the distribution

function and conditional density of C knowing Z and we use the notation S1(θ, ·,Z) =

1−F1(θ, ·,Z).

If we introduce the notation L(θ, ·,Z) = 1−S1(θ, ·,Z)S(θ, ·,Z) andϕ(θ, ·,Z) = f (θ, ·,Z)S1(θ, ·,Z),

we can reformulate the expression (4.1) as follow:

h(θ,t,Z) =
ϕ(θ,t,Z)

1−L(θ,t,Z)
, ∀t, L(θ,t,Z) < 1. (4.5)

So, we can define ϕ(θ, ·,Z) and L(θ, ·,Z) by setting

L̂(θ,t,Z) =

n∑
i=1

K
(
h−1
K (< z −Zi ,θ >)

)
H

(
h−1
H (t − Ti)

)
n∑
i=1

K
(
h−1
K (< z −Zi ,θ >)

) , (4.6)

and

ϕ̃(θ,t,Z) =

n∑
i=1

K
(
h−1
K (< z −Zi ,θ >)

)
∆iH

′
(
h−1
H (t − Ti)

)
hH

n∑
i=1

K
(
h−1
K (< z −Zi ,θ >)

) . (4.7)
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Finally, the hazard function estimator is given as:

h̃(θ,t,Z) =
ϕ̃(θ,t,Z)

1− L̂(θ,t,Z)
. (4.8)

In addition to the assumptions introduced above, we need some additional conditions:

(H9) Conditionally to Z, the variables X and C are independent.

(H10) ∃Aθ,z <∞,∃b1,b2 > 0,∀(t1, t2) ∈ S2
R
, ∀(z1, z2) ∈ N 2

z :

|L(θ,t1, z1)−L(θ,t2, z2)| ≤ Aθ,z
(
‖z1 − z2‖b1 + |t1 − t2|b2

)
|ϕ(θ,t1, z1)−ϕ(θ,t2, z2)| ≤ Aθ,z

(
‖z1 − z2‖b1 + |t1 − t2|b2

)
;

(H11) ∃µ <∞, ϕ(θ,t,z′) < µ, ∀(t, z′) ∈R+ ×Nz.

(H12) ∃η > 0, L(θ,t,z′) ≤ 1− η, ∀(t, z′) ∈R+ ×Nz.

We begin by studying a statistical samples satisfying a classical assumption of depen-

dency, the couples (Xi ,Zi) are dependent.

(H13a) The sequence (Xi ,Ci ,Zi)i∈N is α-mixing and its mixing coefficients α(n) are as:

∃a, c ∈R∗+ : ∀n ∈N α(n) ≤ cn−a.

(H13b) The join distribution of (Yi ,Yj) knowing (Zi ,Zj) exists and is bounded, and

∃γ1 ∈]0,1] : 0 < sup
i,j

P

(
(Zi ,Zj) ∈ Bθ(z,h)×Bθ(z,h)

)
= O

(
φθ,z(hK )1+γ1

)
.

(H13c) ∃γ2 ∈]0,1[, a > 1+γ1
γ1γ2

and hHφθ,z(hK ) = O(n−γ2).

4.3 Pointwise almost complete Convergence

The objective of this part is to establish the pointwise almost complete convergence of

the kernel estimator ĥ(θ, ·,Z) of the conditional hazard function h(θ, ·,Z) including cen-

sored and complete variables.

4.3.1 Case of complete data

Theorem 4.1. Under hypotheses (H0)-(H8), we have:

sup
x∈S

R

|ĥ(θ,x,z)− h(θ,x,z)| = O
(
hb1
K + hb2

H

)
+Oa.co.


√

logn
nhH φθ,z(hK )

 . (4.9)
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Proof. The proof of the Theorem is based on the following inequality, valid for any

x ∈ S
R

:

ĥ(θ,x,z)− h(θ,x,z) =
1

(1− F̂(θ,x,z))(1−F(θ,x,z))

(
f̂ (θ,x,z)− f (θ,x,z)

)
+

f (θ,x,z)

(1− F̂(θ,x,z))(1−F(θ,x,z))

(
F̂(θ,x,z)−F(θ,x,z)

)
− F(θ,x,z)

(1− F̂(θ,x,z))(1−F(θ,x,z))

(
f̂ (θ,x,z)− f (θ,x,z)

)
=

1

1− F̂(θ,x,z)

(
f̂ (θ,x,z)− f (θ,x,z)

)
+

h(θ,x,z)

1− F̂(θ,x,z)

(
F̂(θ,x,z)−F(θ,x,z)

)
.

Thus,

sup
x∈S

R

∣∣∣ĥ(θ,x,z)− h(θ,x,z)
∣∣∣ ≤ 1

inf
x∈S

R

∣∣∣1− F̂(θ,x,z)
∣∣∣
sup
x∈S

R

∣∣∣f̂ (θ,x,z)− f (θ,x,z)
∣∣∣

+

sup
x∈S

R

|h(θ,x,z)|

inf
x∈S

R

∣∣∣1− F̂(θ,x,z)
∣∣∣
sup
x∈S

R

∣∣∣F̂(θ,x,z)−F(θ,x,z)
∣∣∣ , (4.10)

which leads to (a constant C <∞):

sup
x∈S

R

∣∣∣ĥ(θ,x,z)− h(θ,x,z)
∣∣∣ ≤ C

{
supx∈S

R

(∣∣∣f̂ (θ,x,z)− f (θ,x,z)
∣∣∣+

∣∣∣F̂(θ,x,z)−F(θ,x,z)
∣∣∣)}

infx∈S
R

∣∣∣1− F̂(θ,x,z)
∣∣∣ .

(4.11)

Then, the rest of the proof is based on the following properties:

sup
x∈S

R

|F(θ,x,z)− F̂(θ,x,z)| = O
(
hb1
K + hb2

H

)
+Oa.co.


√

logn
nφθ,z(hK )

 , (4.12)

and

sup
x∈S

R

|f (θ,x,z)− f̂ (θ,x,z)| = O
(
hb1
K + hb2

H

)
+Oa.co.


√

logn
nhH φθ,z(hK )

 , (4.13)

and the next result which is a consequence of property (4.12).

Corollary 4.2. Under the conditions of Theorem 4.1, we have

∃δ > 0 such that
∞∑
n=1

P

{
inf
x∈S

R

|1− F̂(θ,x,z)| < δ
}
<∞.
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The proof of the properties (4.12) and (4.13) is similar as in Ferraty et al. (2008).

These results are an be seen as a particular case of Propositions 11.22.ii et 11.23.ii given

in Ferraty and Vieu (2006).

4.3.2 Case of censored data

The main goal of this part is to study the asymptotic properties in the broader con-

text of a censored sample. We begin by studying statistical samples satisfying a standard

assumption of dependency, ie. the triples (Xi ,Ci ,Zi) are dependent such that condition

(H13) is satisfied.

Theorem 4.3. Under assumptions (H0)-(H12), and (H13a)-(H13c), we have:

sup
t∈S

R

|̃h(θ,t,z)− h(θ,t,z)| = O
(
hb1
K + hb2

H

)
+Oa.co.


√

logn
nhH φθ,z(hK )

 . (4.14)

Proof. The result is based on the bellow decomposition, wherein C is a real constant

strictly positive:

sup
t∈S

R

∣∣∣̃h(θ,t,z)− h(θ,t,z)
∣∣∣ ≤ 1

inf
t∈S

R

|1− L̂(θ,t,z)|

sup
t∈S

R

|ϕ̃(θ,t,z)−ϕ(θ,t,z)|

+

sup
t∈S

R

|h(θ,t,z)|

inf
t∈S

R

|1− L̂(θ,t,z)|
sup
t∈S

R

|L̂(θ,t,z)−L(θ,t,z)|

 , (4.15)

which leads to (a constant C <∞):

sup
t∈S

R

∣∣∣̃h(θ,t,z)− h(θ,t,z)
∣∣∣ ≤ sup

t∈S
R

{
|ϕ̃(θ,t,z)−ϕ(θ,t,z)|+

∣∣∣L(θ,t,z)− L̂(θ,t,z)
∣∣∣}

inf
t∈S

R

∣∣∣1− L̂(θ,t,z)
∣∣∣ . (4.16)

The announced result follows from the following property:

sup
t∈S

R

∣∣∣L̂(θ,t,Z)−L(θ,t,Z)
∣∣∣ = O

(
hb1
K + hb2

H

)
+Oa.co.


√

logn
nφθ,z(hK )

 , (4.17)

Lemma 4.3.1. Under the hypotheses of Theorem 4.1, we have

sup
t∈S

R

|ϕ̃(θ,t,Z)−ϕ(θ,t,Z)| = O
(
hb1
K + hb2

H

)
+Oa.co.


√

logn
nhH φθ,z(hK )

 , (4.18)
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and

Corollary 4.4. Under the conditions of Theorem 4.1, we have

∃δ > 0 such that
∞∑
n=1

P

{
inf
x∈S

R

|1− L̂(θ,x,z)| < δ
}
<∞.

Following Ferraty and Vieu (2006), the property (4.17) remains valid in the case of

single index. Therefore, the result (4.3) follows from (4.16) and Lemma 4.3.1.

4.4 Uniform almost complete convergence

In this part of chapter, we derive the uniform version of Theorem 4.1. To this end,

some additional tools and topological conditions are required (see Ferraty et al. (2003)

for more discussion on the uniform convergence in nonparametric functional statistics).

Thus, in addition to the conditions introduced previously, we need the following ones.

Firstly, consider

SH ⊂
d
SH
n⋃
k=1

B(zk , rn) and ΘH ⊂
d
ΘH
n⋃
j=1

B(sj , rn) (4.19)

with xk (resp. tj) ∈ H and rn,d
SH
n ,d

ΘH
n are sequences of positive real numbers which tend

to infinity as n goes to infinity.

4.4.1 Case of complete data

To establish the uniform almost complete convergence of our estimator defined in

(4.4), we need the following assumptions:

(A1) There exists a differentiable function φ(·) such that ∀x ∈ SH and ∀θ ∈ΘH,

0 < Cφ(h) ≤ φθ,x(h) ≤ C′φ(h) <∞ and ∃η0 > 0, ∀η < η0, φ
′(η) < C,

(A2) ∃b1,b2 > 0, ∀(x1,x2) ∈ S
R
×S

R
,∀(z1, z2) ∈ SH ×SH and ∀θ ∈ΘH,

|F(θ,x1, z1)−F(θ,x2, z2)| ≤ A
(
‖z1, z2‖b1 + |x1 − x2|b2

)
,

|f (θ,x1, z1)− f (θ,x2, z2)| ≤ A
(
‖z1, z2‖b1 + |x1 − x2|b2

)
;

(A3) ∃ν <∞,∀(x,z′) ∈ S
R
×Nz, ∀θ ∈ΘH, f (θ,x,z′) ≤ ν;
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(A4) ∃β > 0, ∀(x,z′) ∈ S
R
×Nz, ∀θ ∈ΘH, F(θ,x,z′) ≤ 1− β.

(A5) The kernel K satisfies (H3) and Lipschitz’s condition holds:

|K(x)−K(y)| ≤ C‖x − y‖.

(A6) For rn = O
( logn

n

)
the sequences dSHn and dΘHn satisfy:

(logn)2

nφ(hK )
< logdSHn + logdΘHn <

nφ(hK )
logn

,

and
∞∑
n=1

n1/2b2(dSHn d
ΘH
n )1−β <∞ for some β > 1.

(A7) For some γ ∈ (0,1), lim
n→∞

nγhH =∞, and for rn = O
( logn

n

)
the sequences dSFn and

d
ΘF
n satisfy:

(log n)2

nhHφ(hK )
< log dSFn + logdΘFn <

nhHφ(hK )
logn

,

and
∞∑
n=1

n(3γ+1)/2(dSFn d
ΘF
n )1−β <∞, for some β > 1

Let

s2n,0 =
n∑
i=1

n∑
j=1

∣∣∣∣Cov (ψi(x,θ),ψj(x,θ)
)∣∣∣∣

s2n,1 =
n∑
i=1

n∑
j=1

∣∣∣∣Cov (ψi(x,θ)Hi (t)) ,ψj(x,θ)Hj (t))
)∣∣∣∣

s2n,3 =
n∑
i=1

n∑
j=1

∣∣∣∣Cov (Λi ,Λj

)∣∣∣∣ , s2n,4 =
n∑
i=1

n∑
j=1

∣∣∣∣Cov (Ωi ,Ωj

)∣∣∣∣
s2n,5 =

n∑
i=1

n∑
j=1

∣∣∣∣Cov (ψi (xk(x),θm(θ)

)
,ψj

(
xk(x),θm(θ)

))∣∣∣∣ , s2n,6 =
n∑
i=1

n∑
j=1

∣∣∣∣Cov (Γi ,Γj)∣∣∣∣
s2n,7 =

n∑
i=1

n∑
j=1

∣∣∣∣∣Cov (Γ (l)
i ,Γ

(l)
j

)∣∣∣∣∣ ,
where

ψi(x,θ) =
K(h−1

K (< x −Xi ,θ >))
EK1(θ,x)

Λi(x,θ) =
1

hKφ(hK )
1Bθ(x,h)∪Bθ(xk(x),h)(Xi),

Ωi(x,θ) =
1

hKφ(hK )
1Bθ(xk(x),h)∪Bθm(θ)

(xk(x),h)(Xi),

ψi
(
xk(x),θm(θ)

)
=
K

(
h−1
K < xk(x) −Xi ,θm(θ) >

)
EK

(
h−1
K < xk(x) −Xi ,θm(θ) >

) ,
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Γi =
K

(
h−1
K < xk(x) −Xi ,θm(θ) >

)
EK

(
h−1
K < xk(x) −Xi ,θm(θ) >

)H (
h−1
H (ty −Yi)

)
− E

 K
(
h−1
K < xk(x) −Xi ,θm(θ) >

)
EK

(
h−1
K < xk(x) −Xi ,θm(θ) >

)H (
h−1
H (ty −Yi)

)
and

Γ
(l)
i =

1

hlH

K
(
h−1
K < xk(x) −Xi ,θm(θ) >

)
EK

(
h−1
K < xk(x) −Xi ,θm(θ) >

)H (l)
(
h−1
H (ty −Yi)

)
− 1

hlH
E

 K
(
h−1
K < xk(x) −Xi ,θm(θ) >

)
EK

(
h−1
K < xk(x) −Xi ,θm(θ) >

)H (l)
(
h−1
H (ty −Yi)

)
Remark 4.4.1. Note that assumptions (A1)-(A4) are respectively, the uniform version of (H1a)-

(H4). Assumptions (A1) and (A6) are linked with the the topological structure of the functional

variable, see Ferraty and Vieu (2006).

Theorem 4.5. Under hypotheses (H0)-(H1),(H13b)-(H13c) and (A1)-(A7) we have:

sup
θ∈ΘH

sup
x∈SH

sup
y∈S

R

|ĥ(θ,y,x)− h(θ,y,x)| = O
(
hb1
K + hb2

H

)
+Oa.co.


√

logdSHn + logdΘHn
nhHφ(hK )


+ Oa.co.


√
s
′∗2
n logdSFn d

ΘF
n

n

 .
where s

′∗
n = max{sn,0;sn,1;sn,2;sn,3;sn,4;sn,5;sn,7}.

In the particular case, where the functional single-index is fixed we get the following

result.

Corollary 4.6. Under assumptions of Theorem 4.5, as n goes to infinity, we have

sup
x∈SH

sup
y∈S

R

|ĥ(θ,y,x)− h(θ,y,x)| = O
(
hb1
K + hb2

H

)
+Oa.co.


√

logdSHn
nhHφ(hK )


+ Oa.co.


√
s
′∗2
n logdSFn
n

 .
Proof of Theorem 4.5. Clearly, the proofs of these two results, namely Theorem 4.5

and Corollary 4.6 can be deduced easily from the following intermediate results given in

Bouchentouf et al. (2015).
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sup
θ∈ΘH

sup
x∈SH

sup
y∈S

R

∣∣∣F̂(θ,y,x)−F(θ,y,x)
∣∣∣ = O

(
hb1
K + hb2

H

)
+Oa.co.


√

logdSFn + logdΘFn
nφ(hK )


+Oa.co.


√
s∗2n logdSFn d

ΘF
n

n


and

sup
θ∈ΘH

sup
x∈SH

sup
y∈S

R

∣∣∣∣f̂ (θ,y,x)− f (θ,y,x)
∣∣∣∣ = O

(
hb1
K + hb2

H

)
+Oa.co.


√

logdSFn + logdΘFn
nφ(hK )


+Oa.co.


√
s
′∗2
n logdSFn d

ΘF
n

nhH


where s∗n = max{sn,0;sn,1;sn,2;sn,3;sn,4;sn,5;sn,6}, s

′∗
n = max{sn,0;sn,1;sn,2;sn,3;sn,4;sn,5;sn,7}.

4.4.2 Case of censored data

To study the uniform almost complete convergence of our estimator defined above

(4.8), we need the following assumptions:

(A2a) ∀(t1, t2) ∈ S
R
×S

R
,∀(z1, z2) ∈ SH ×SH and ∀θ ∈ΘH,

|L(θ,t1, z1)−L(θ,t2, z2)| ≤ A
(
‖z1, z2‖b1 + |t1 − t2|b2

)
,

|ϕ(θ,t1, z1)−ϕ(θ,x2, z2)| ≤ A
(
‖z1, z2‖b1 + |t1 − t2|b2

)
,

(A3a) ∃ν <∞,∀(t, z′) ∈ S
R
×Nz, ∀θ ∈ΘH, ϕ(θ,t,z′) ≤ ν;

(A4a) ∃β > 0, ∀(t, z′) ∈ S
R
×Nz, ∀θ ∈ΘH, L(θ,t,z′) ≤ 1− β.

Theorem 4.7. Under hypotheses (A1), (A5)-(A7) and (A2a)-(A4a), we get:

sup
θ∈ΘH

sup
z∈SH

sup
t∈S

R

|̃h(θ,t,z)− h(θ,t,z)| = O
(
hb1
K + hb2

H

)
+Oa.co.


√

logdSHn + logdΘHn
nhHφ(hK )


+ Oa.co.


√
s
′∗2
n logdSFn d

ΘF
n

n

 .
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Now, when the functional single-index is fixed we have.

Corollary 4.8. Under assumptions (A1), (A5)-(A7), (A2a)-(A4a) and (H4), as n goes to infin-

ity, we have

sup
z∈SH

sup
t∈S

R

|̃h(θ,t,z)− h(θ,t,z)| = O
(
hb1
K + hb2

H

)
+Oa.co.


√

logdSHn
nhHφ(hK )


+ Oa.co.


√
s
′∗2
n logdSFn
n

 .
Proof of Theorem 4.7. The result is based on the decomposition (4.15). Clearly the

proofs of these two results namely the Theorem 4.7 and Corollary 4.8 can be deduced from

the following intermediate results which are only uniform version of properties (4.17) and

(4.18).

The properties of the estimators L̂(θ, ·, z) and ϕ̃(θ, ·, z) are given in Lemma 4.4.5.

Finally, the desired result is obtained directly from (4.15), (4.20) and (4.21).

sup
θ∈ΘH

sup
x∈SH

sup
y∈S

R

∣∣∣̂L(θ,y,x)−L(θ,y,x)
∣∣∣ = O

(
hb1
K + hb2

H

)
+Oa.co.


√

logdSFn + logdΘFn
nφ(hK )


+Oa.co.


√
s∗2n logdSFn d

ΘF
n

n


and

sup
θ∈ΘH

sup
x∈SH

sup
y∈S

R

∣∣∣ϕ̂(θ,y,x)−ϕ(θ,y,x)
∣∣∣ = O

(
hb1
K + hb2

H

)
+Oa.co.


√

logdSFn + logdΘFn
nφ(hK )


+Oa.co.


√
s
′∗2
n logdSFn d

ΘF
n

nhH


Lemma 4.4.1. Under assumptions (A1), (A2) and (H5), we have, as n goes to infinity

sup
θ∈ΘH

sup
z∈SH

sup
t∈S

R

|L(θ,t,z)−E(L̂N (θ,t,z))| = O(hb1
K ) +O(hb2

H ).
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Lemma 4.4.2. Under assumptions (A1), (A5)-(A7) and (A2a)-(A4a) we have, as n goes to

infinity

sup
θ∈ΘH

sup
z∈SH

sup
t∈S

R

|L̂N (θ,t,z)−E
[
L̂N (θ,t,z)

]
| = Oa.co.


√

logdSHn + log dΘHn
nφ(hK )

 .
Lemma 4.4.3. Under assumptions (A1), (A2a) and (H5), we have, as n goes to infinity

sup
θ∈ΘF

sup
z∈SF

sup
t∈S

R

|ϕ(θ,t,z)−E(ϕ̃N (θ,t,z))| = O(hb1
K ) +O(hb2

H ).

Lemma 4.4.4. Under the assumptions (A1), (A5) ,(A2a), (A7) and (H5), we have, as n goes to

infinity

sup
θ∈ΘF

sup
w∈SF

sup
t∈S

R

|ϕ̃N (θ,t,w)]−E [ϕ̃N (θ,t,w)]| = Oa.co.


√

logdSFn + logdΘFn
nhHφθ,w(hK )

 .
Lemma 4.4.5. Under hypotheses of Theorem 4.7, we have:

sup
θ∈ΘH

sup
z∈SH

sup
t∈S

R

|L̂(θ,t,z)−L(θ,t,z)| = O
(
hb1
K + hb2

H

)
+Oa.co.


√

logdSHn + logdΘHn
nφ(hK )

 , (4.20)

and

sup
θ∈ΘH

sup
z∈SH

sup
t∈S

R

|ϕ̃(θ,t,z)−ϕ(θ,t,z)| = O
(
hb1
K + hb2

H

)
+Oa.co.


√

logdSHn + logdΘHn
nhHφ(hK )

 . (4.21)

Corollary 4.9. Under assumptions (A1), (A5) and (A6), we have as n→∞

sup
θ∈ΘH

sup
z∈SH
|ϕ̂D(θ,z)− 1| = Oa.co


√

logdSHn + logdΘHn
nφ(hK )

 , (4.22)

and
∞∑
n=1

P

(
inf
θ∈ΘH

inf
z∈SH

ϕ̂D(θ,z) <
1
2

)
<∞. (4.23)

4.5 Proofs of technical lemmas

In what follows C and c denote generic strictly positive real constants. Furthermore,

the following notation are introduced: Ki(θ,z) = K(h−1
K (< z −Zi ,θ >)),Hi(t) =H ′

(
h−1
H (t − Ti)

)
,
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ϕ̃N (θ,t,z) = 1
nhHEK1(θ,z)

n∑
i=1

Ki(θ,z)Hi(t)∆i , ϕ̂D(θ,z) =
1

nEK1(θ,z)

n∑
i=1

Ki(θ,z),

Vi = 1
EK1(θ,z)Ki(θ,z),

Wi = 1
hHEK1(θ,z)Ki(θ,z)Hi(t)∆i ,

s2n =
n∑

i1=1

n∑
i2=1

cov(Vi1 ,Vi2),

S2
n =

n∑
i1=1

n∑
i2=1

cov(Wi1 ,Wi2).

Proof of Lemma 4.3.1. By using the following decomposition:

ϕ̃(θ,t,z)−ϕ(θ,t,z) =
(ϕ̃N (θ,t,z)−ϕN (θ,t,z))ϕD(θ,z)− (ϕ̂D(θ,z)−ϕD(θ,z))ϕN (θ,t,z)

ϕ̂D(θ,z)ϕD(θ,z)
,

(4.24)

and because of the dependency of the variables and under the Proposition A6ii of Fer-

raty and Vieu (2006), the result of Lemma 4.3.1 will arise directly following the three

properties:

|ϕ̂D(θ,z)− 1| = Oa.co.


√

logn
nhH φθ,z(hK )

 , (4.25)

sup
t∈S

R

|Eϕ̃N (θ,t,z)−ϕ(θ,t,z)| = O(hb1
K + hb2

H ), (4.26)

and

1
ϕ̂D(z)

supt∈S
R

|ϕ̃N (θ,t,z)−Eϕ̃N (θ,t,z)| = Oa.co.


√

logn
nhH φθ,z(hK )

 , a.co. (4.27)

 Proof of (4.25). It suffices to note that we can write

ϕ̂D(θ,z) =
1
n

n∑
i=1

Vi ,

with

|Vi | = O
(

1
φθ,z(h)

)
, (4.28)

and

EV 2
i = O

(
1

φθ,z(h)

)
. (4.29)
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The main step of the proof is to obtain the assessment of the sum of the covariances

s2n. For i1 , i2, according to hypothesis (H13b) we have:

|EVi1Vi2 | ≤
C

(EK1(θ,z))2φθ,z(hK )1+γ1 = O(φθ,z(hK )−1+γ1),

thus,

|cov(Vi1 ,Vi2)| ≤ C

(EK1(θ,z))2φθ,z(hK )1+γ1 = O(max{φθ,z(hK )−1+γ1 ,1}). (4.30)

On other hand, by using the inequality of covariance for the mixing process (see

Proposition A10i of Ferraty and Vieu (2006)) we can write:

cov(Vi1 ,Vi2) ≤ Cφθ,z(hK )−2α(|i1 − i2|). (4.31)

Finally, for each positive sequence vn we can write

s2n =
n∑
i=1

var(Vi) +
∑

0<|i1−i2|≤vn

cov(Vi1 ,Vi2) +
∑

|i1−i2|>vn

cov(Vi1 ,Vi2), (4.32)

and by using respectively (4.42), (4.30) and (4.31) to treat each of the three terms of

(4.32) we get:

s2n = O
(

n
φθ,z(hK )

)
+ O(nvnmax{φθ,z(hK )−1+γ1 ,1})

+ O(φθ,z(hK )−2
∑

|i1−i2|>vn

α(|i1 − i2|)).

It suffices now to choose vn = φθ,z(hK )−γ1 to obtain

s2n = O
(

n
φθ,z(hK )

)
+O(φθ,z(hK )−2n(n− vn)α(vn))

= O
(

n
φθ,z(hK )

)
+O(φθ,z(hK )−2n2φθ,z(hK )aγ1)

= O
(

n
φθ,z(hK )

)
, (4.33)

the last inequality flows directly from the condition (H1c).

By using the boundaries given by (4.42) and (4.42), and by applying the exponen-

tial inequality for mixing bounded variables (Corollary A13ii of Ferraty and Vieu

(2006)), we obtain

ϕ̂D(θ,z)−Eϕ̂D(θ,z) = O(n−1
√

logns2n), a.co. (4.34)

We get (4.25) directly from (4.33) and (4.34).
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 Proof of (4.26.) We have, for any t ∈ S
R

:

Eϕ̃N (θ,t,z) =
1

hHEK1(θ,z)
E (K1(θ,z)H1(t)∆1)

=
1

hHEK1(θ,z)
E

(
K1(θ,z)1Bθ(z;hK )E

(
H1(t)IX1≤C1

∣∣∣Z1

))
=

1
hHEK1(θ,z)

E (K1(θ,z)E(H1(t)S1(θ,X1,Z1)|Z1)) . (4.35)

Furthermore, we have

E(H1(t)S1(θ,X1, z)|Z1) =
∫
H ′

(
t −u
hH

)
S1(θ,u,z))f Z1(u)du

= hH

∫
H ′(v)ϕ(θ,t − vhH ,Z1)dv

= hH
(
ϕ(θ,t,z) + o(hb2

H + hb1
K )

)
, (4.36)

the last equality is arising from the property of Lipschitz function ϕ(θ, ., z) intro-

duced in (H10) and the fact that H ′ is a probability density. It should be noted again

that because of the condition (H10), the therm o() involved in the result (4.36) is

uniform for t ∈ S
R
. Thus, the result (4.26) is an immediate consequence of (4.35)

and (4.36).

 Proof of (4.27). The compactness of the set S
R

can be covered by a un disjoint inter-

vals as follows:

S
R
⊂ ∪unk=1[τk − ln, τk + ln[,

where τ1, . . . , τun are points of S
R

and where ln and un are chosen such that

∃C > 0,∃c > 0, ln = Cu−1
n = n−c. (4.37)

For each t ∈ S
R
, let note τt the single τk such as t ∈ [τk − ln, τk + ln[. Finally, (4.27) can be

easily deduced from the following results:

1
ϕ̂D(θ,z)

sup
t∈S

R

|ϕ̃N (θ,t,z)− ϕ̃N (θ,τx, z)| = Oa.co.


√

logn
nhH φθ,z(hK )

 , (4.38)

1
ϕ̂D(θ,z)

sup
t∈S

R

|Eϕ̃N (θ,t,z)−Eϕ̃N (θ,τx, z)| = Oa.co.


√

logn
nhH φθ,z(hK )

 , (4.39)

and
1

ϕ̂D(θ,z)
sup
t∈S

R

|ϕ̃N (θ,τx, z)−Eϕ̃N (θ,τx, z)| = Oa.co.


√

logn
nhH φθ,z(hK )

 . (4.40)
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 Proof of (4.38.) Because of the condition (H5), there is exists a finite constant C such

that for all t ∈ S
R

:

|ϕ̃N (θ,t,z)− ϕ̃N (θ,τt, z)| =
1

nhHEK1(θ,z)

n∑
i=1

∆iKi(θ,z) (Hi(t)−Hi(τt))

≤ C
nhHEK1(θ,z)

n∑
i=1

Ki(θ,z)
|t − τt |
hH

≤ Cϕ̂D(θ,z)lnh
−2
H . (4.41)

By using (4.37) and choosing c large enough, we obtain directly (4.38).

 Proof of (4.39). This result is obtained directly from (4.25) and (4.41) using Propo-

sition A6ii of Ferraty and Vieu (2006).

 Proof of (4.40). Note that we can have:

ϕ̂D(θ,z) =
1
n

n∑
i=1

Wi ,

with

|Wi | = O
(

1
hHφθ,z(h)

)
,

and

EW 2
i = O

(
1

hHφθ,z(h)

)
.

Then, by using condition (4.37), we get

P

sup
x∈S

R

|ϕ̃N (θ,τt, z)−E(φ̃N (θ,τt), z)| > ε
√

logn
nhHφθ,z(h)


≤ nc max

j=1,...,un
P

(
|ϕ̃N (θ,τt, z)−E(φ̃N (θ,τt), z)| > ε

√
logn

nhHφθ,z(h)

)
.

(4.42)

The main step of the demonstration is to get the evaluation of the sum of covariances

S2
n . For i1 , i2, we have:

|EWi1Wi2 | ≤
C

(h2
HEK1(θ,z))2

φθ,z(hK )1+γ1 = O(h−2
H φθ,z(hK )−1+γ1),
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and thus,

|cov(Wi1 ,Wi2)| ≤ C

(h2
HEK1(θ,z))2

φθ,z(hK )1+γ1 = O(h−2
H max{φθ,z(hK )−1+γ1 ,1}). (4.43)

On another side, by using the covariance inequality for the mixing process (Propo-

sition A10i of Ferraty and Vieu (2006)) we can write:

cov(Wi1 ,Wi2) ≤ Ch−2
H φθ,z(hK )−2α(|i1 − i2|). (4.44)

Finally, for any positive sequence vn we can write

S2
n =

n∑
i=1

var(Wi) +
∑

0<|i1−i2|≤vn

cov(Wi1 ,Wi2) +
∑

|i1−i2|>vn

cov(Wi1 ,Wi2), (4.45)

and using respectively (4.42), (4.43) and (4.44) to treat the three terms (4.45) we get:

S2
n = O

(
n

hHφθ,z(hK )

)
+ O(nvnh

−2
H max{φθ,z(hK )−1+γ1 ,1})

+ O(h−2
H φθ,z(hK )−2

∑
|i1−i2|>vn

α(|i1 − i2|)).

Now, we have just to choose vn = φθ,z(hK )−γ1 to get

S2
n = O

(
n

hHφθ,z(hK )

)
, (4.46)

the last inequality flows directly from the condition (H1c).

By using (4.42), (4.42), and (4.42), and applying the exponential inequality for mixing

bounded variables (for instance the Corollary A13ii of Ferraty and Vieu (2006)), we obtain

ϕ̃N (θ,τj , z)−Eϕ̃N (θ,τj , z) = O(n−1
√

lognS2
n), a.co. (4.47)

the result (4.25) flows directly from (4.46) and (4.47).

Proof of Lemma 4.4.2. The proof can be completed along the same line as that of Lemma

4.2(ii)of Bouchentouf et al. (2015).

Proof of Lemma 4.4.3. Let H (1)
i (t) =H (1)

(
h−1
H (t − Ti)

)
, note that

Eϕ̃N (θ,t,z)−ϕ(θ,t,z) =
1

hHEK1(z,θ)
E

(
K1(z,θ)

[
E

(
H

(1)
1 (t)| < Z,θ >

)
− hHϕ(θ,t,z)

])
.

(4.48)
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Condition (H8) allows us to write:∣∣∣∣∣E(
H

(1)
1 (t)| < Z,θ >

)
− hHϕ(θ,t,z)

∣∣∣∣∣ ≤ hH

∫
R

H (1)(t) |ϕ(θ,t − hH t,Z)−ϕ(θ,t,z)|dt.

Finally, (A5) allows us to write∣∣∣∣∣E(
H

(1)
1 (t)| < Z,θ >

)
− hHϕ(θ,t,z)

∣∣∣∣∣ ≤ Cθ,zhH

∫
R

H (1)(t)
(
hb1
K + |t|b2hb2

H

)
dt. (4.49)

This inequality is uniform on (θ,t,z) ∈ΘF ×SF ×SR, now to finish the proof it is suffi-

cient to use (H5). �

Proof of Lemma 4.4.4. Let SF ∈
wn⋃
k=1

(tj − ln, tj + ln) with ln = n−
3
2γ−

1
2 and wn ≤ Cn−

3
2γ−

1
2 .

Taking j(t) = arg min
{1...wn}

|t − sj |. Consider the following decomposition

|ϕ̃N (θ,t,z)−E (ϕ̃N (θ,t,z))| =
∣∣∣ϕ̃N (θ,t,z)− ϕ̃N (θ,t,zk(z))

∣∣∣︸                            ︷︷                            ︸
T1

+
∣∣∣∣ϕ̃N (θ,t,zk(z))−E

(
ϕ̃N (θ,t,zk(z))

)∣∣∣∣︸                                     ︷︷                                     ︸
T2

+2
∣∣∣ϕ̃N (sj(θ), t, zk(z))− ϕ̃N (sj(θ), tj(t), zk(z))

∣∣∣︸                                           ︷︷                                           ︸
T3

+2
∣∣∣∣E(

ϕ̃N (sj(θ), t, zk(z))
)
−E

(
ϕ̃N (sj(θ), tj(t), zk(z))

)∣∣∣∣︸                                                     ︷︷                                                     ︸
T4

+
∣∣∣∣E(

ϕ̃N (θ,t,zk(z))
)
−E (ϕ̃N (θ,t,z))

∣∣∣∣︸                                      ︷︷                                      ︸
T5

 Concerning T1. We use the Hölder continuity condition on K, the Cauchy-Schwartz’s

inequality and the Bernstein’s inequality. With theses arguments we get

T1 = O


√

logdSHn + logdΘHn
nhHφ(hK )

 .
Then using the fact that T5 ≤ T1, we obtain

T5 = O


√

logdSHn + logdΘHn
nhHφ(hK )

 . (4.50)
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 For T2, we follow the same idea given for Γ2, we get

T2 = O


√

logdSHn + logdΘHn
nhHφ(hK )


 Concerning T3 and T4. Using Lipschitz’s condition on the kernel H,∣∣∣ϕ̃N (sj(θ), t, zk(z))− ϕ̃N (sj(θ), tj(t), zk(z))

∣∣∣ ≤ ln
h2
Hφ(hk)

,

using the fact that lim
n→∞

nγhH =∞ and choosing ln = n−
3
2γ−

1
2 implies

ln
h2
Hφ(hk)

= o


√

logdSHn + logdΘHn
nhHφ(hK )

 .
So, for n large enough, we have

T3 = Oa.co


√

logdSHn + logdTHn
nhHφ(hK )

 .
And as T4 ≤ T3, we obtain

T4 = Oa.co


√

logdSHn + logdΘHn
nhHφ(hK )

 . (4.51)

Finally, the lemma can be easily deduced from (4.50) and (4.51).

Proof of Lemma4.4.5.

The proof of (4.20) is based on some results depending on the following decomposi-

tion;

L̂(θ,t,z)−L(θ,t,z) =
1

ϕ̂D(θ,z)

{(
L̂N (θ,t,z)−EL̂N (θ,t,z)

)
−
(
L(θ,t,z)−EL̂N (θ,t,z)

)}
+
L(θ,t,z)
ϕ̂D(θ,z)

{1− ϕ̂D(θ,z)} . (4.52)

Then, the rest of the proof is deduced directly from Corollary 4.9 and Lemma 4.4.2.

The proof of these points are similar to ones given in Bouchentouf et al. (2015), so it is

sufficient to replace F̂D(θ,z), F(θ,t,z) and E(F̂N (θ,t,z)) (Lemma 6, Corollary 3 and Lemma

7) by L̂D(θ,z), L(θ,t,z), and E(L̂N (θ,t,z)) respectively.
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Concerning(4.21), we consider the following decomposition:

ϕ̃(θ,t,z)−ϕ(θ,t,z) =
1

ϕ̂D(θ,z)
(ϕ̃N (θ,t,z)−E(ϕ̃N (θ,t,z))

− 1
ϕ̂D(θ,z)

(ϕ(θ,t,z)−Eϕ̃N (θ,t,z))

+
ϕ(θ,t,z)
ϕ̂D(θ,z)

(1− ϕ̂D(θ,z))

The rest of the proof is deduced directly from Lemma 4.4.2, Lemma 4.4.3, Lemma

4.4.4 and Corollary 4.9.



Conclusion and future work

In this thesis, we consider the problem of conditional hazard function estimation. Al-

though extensive research has been done on this topic in the recent decades, we believe

that combining different features including functional, censorship, and single index can

find its has not been addressed, yet. In what follows, we first reiterate the main conclu-

sions of this thesis, then we propose some possible extensions that can contribute to the

literature on subject.

In Chapter 1, a comprehensive review of the recent literature on functional data anal-

ysis, conditional models, survival models, and single index models was given.

In Chapter 2, we provided some definitions and tools utilized for our research.

In chapter 3, we established the consistency properties, with rates, of the conditional

hazard function in the single functional index model for dependant functional data un-

der random censorship; the pointwise almost complete and the uniform almost complete

convergence (with rates) of the kernel estimate of this model are obtained.

The study established in this thesis offers different perspectives, let us cite for instance:

− Asymptotic normality of the model studied.

− It is quite possible to generalize our results to the case of ergodic data as well as

spatial data.

− Recursive estimation of the considered model.

− Recursive estimation of the considered model for truncated data.

− Recursive estimation of the considered model for ergodic observations.
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