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Abbreviations and Notation

FODE : Fractional ordinary differential equation
FPDE : Fractional Partial differential equation IVP : Initial value problem

BVP : Boundary value problem
Γ(·) : Gamma function
β(·, ·) : Beta function
Eα(·) : Mittag-Leffler function

Iα0+
: Right-fractional Riemann-Liouville integral

GLDα
0+

: Grunwald-Letnikov fractional derivative
RLDα

0+
: Right-fractional Riemann-Liouville derivative

CDα
0+

: Right-fractional Caputo derivative
CD0+ : Right-fractional Caputo derivative

[·] : Integer part of a real number
, : Denoted by

C(I,R) : Space of continuous functions on I
Cn(I,R) : Space of n− time continuously differentiable functions on I

AC(I,R) : Space of absolutely continuous functions on I
BC (R+,R) : Space of bounded continuous functions on I

L1(I,R) : space of Lebesgue integrable functions on I
Lp(I,R) : space of measurable functions u with |u|p belongs to L1(I,R)

Lp,σ(I,R) : Weighted Lp
− space with weighted function

σ L∞((I,R) : space of measurable functions essentially bounded on I
Wm,p(I,R) : (m, p)− Sobolev space
W8,p

RL (I,R) : (s, p)− Riemann-Liouville fractional Sobolev space
D′(I) : Space of distributions
∇u : Gradiant of u
∆u : Laplacian of u
∂u : Boundary of u

resp : respectively R − L Riemann-Liouville
a.e : almost everywhere
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Introduction

What if n = 1
2 ?. It was the question raised in the year 1695 by Marquis de L’Hopital

(1661-1704) to Gottfried Wilhelm Leibniz (1646-1716), the response was "This is an
apparent paradox from which one day, useful consequences will be drawn "

The subject of fractional differential equations has grown in popularity and relevance over
the last three decades or more, owing mostly to its proved applications in a wide range
of seemingly disparate and diverse fields of science and engineering including fluid flow,
economics, electrical networks, and etc. (see [25])..

It does, in fact, give some potentially valuable methods for solving differential and integral
equations, as well as their usefulness in the modeling of a wide range of physical events
involving very rapid and very small changes.

Furthermore, the fractional integral and fractional derivatives appear in the theory of control
of dynamic systems, when the controlled system and -or- the controller is described by
fractional differential equation.

While, the fractional Brownian motion was first introduced within a Hilbert space fra-
mework by Kolmogorov in 1940 in [73], where it was called Wiener Helix. It was further
studied by Yaglom in [131]. The name fractional Brownian motion is due to Mandelbrot and
Van Ness, who in 1968 provided in [85] a stochastic integral representation of this process
in terms of a standard Brownian motion.

On the other hand, It is well known that the Gronwall-Bellman inequality [1, 10] and their
generalizations can provide explicit bounds for solutions to differential and integral equa-
tions as well as difference equations.Many authors have researched various inequalities
and investigated the boundedness, global existence, uniqueness, stability, and continuous
dependence on the initial value and parameters of solutions to differential equations, inte-
gral equations see [2, 6, 20]. However, we notice that the existing results in the literature are
inadequate for researching the qualitative and quantitative properties of solutions to some
fractional integral equations see [11, 14, 22, 33, 34] . As far as the existence of such a theory
is concerned, the foundations of the subject were laid by Liouville in a paper from 1832. The
autodidact Oliver Heaviside introduce the practical use of fractional differential operators
in electrical transmission line analysis circa 1890. Many authors have established a variety
of inequalities for those fractional integral and derivative operators,for some of which have
turned out to be useful in analyzing solutions of certain fractional integral and differential
equations, for example, we refer the reader to [11, 20, 33, 34] and the references therein.
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The main objective of the present thesis is to, gives in the first part a new Bihari’s inequality
with singular kernel and give a simple proof of the fractional Gronwall lemma. And in
the second part,studied the Existence and uniqueness solutions for nonlinear fractional
stochastic differential systems with nonlocal conditions of functional type.

So, for our purpose this thesis consist of five chapters.

In chapter 1 We present some definitions and property about the Fractional integrals and
fractional derivatives,an introduction to the theory of specials functions as the Gamma
function, Beta function and the Mittag-Leffler function are given.These function play a most
important role in the study of fractional derivatives and fractional differential equations.

In Chapter 2 some results about the stochastic calculus and stochastic system theory are
presented.

Chapter 3 we introduced the principal results about the fixed point theory, the theorem
of non linear alternative of Leray-Shauder and others theorems are given. In addition the
theory of C0semi group and HIlle-Yosida theorem are given.

The chapters 4 and 5 are consecrated to presents our results
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Chapitre 1
Fractional Integrals and Fractional
Derivatives

This chapter contains definitions and properties from such topics of Analysis as functio-
nal spaces, special functions, and some properties of fractional integrals and fractional
derivatives of different types.

1.1. Banach Spaces of Continuous Functions

A topological space X is locally compact if, for every x ∈ X, there is an open set U ⊂ X
containing x such that Ū is compact. Assuming X is locally compact, let Cb(X) denote the
set of all functions f : X → C that are continuous and bounded. Thus, for every f ∈ Cb(X)
means that there is an R > 0 such that | f (x)| < R for all x ∈ X

Theorem 1.1.1. If X is a locally compact space, then Cb(X) is a Banach space, where the vector
space operations are given by the usual pointwise operations, and where the norm of f ∈ Cb(X) is
defined by

‖ f ‖ = sup
x∈X
| f (x)|. (1.1.1)

Proof. It is elementary that Cb(X) is a vector space and that (1.1.1) defines a norm on Cb(X).
Thus, it remains only to show that every Cauchy sequence in Cb(X) is convergent in Cb(X) Let{
fk
}
k∈N ⊂ Cb(X) denote a Cauchy sequence. For each x ∈ X,∣∣∣ fn(x) − fm(x)

∣∣∣ ≤ sup
y∈X

∣∣∣ fn(y) − fm(y)
∣∣∣ =

∥∥∥ fn − fm
∥∥∥ .

Since
{
fk
}
k∈N is a Cauchy sequence in Cb(X),

{
fk(x)

}
k∈N is a Cauchy sequence in C for each x ∈ X.

Because C is complete, lim
k

fk(x) exists for every x ∈ X. Therefore,

define f : X→ C by f (x) = lim
k

fk(x), for each x ∈ X. We aim to show.

(i) that f is continuous and bounded, and
(ii) that

{
fk
}
k∈N converges to f in Cb(X).

9
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Let ε > 0. Because
{
fk
}
k∈N is a Cauchy sequence, there exists Nε ∈ N such that

∥∥∥ fn − fm
∥∥∥ < ε for

all n,m ≥ Nε. Assume that n ≥ Nε. Choose any x ∈ X; thus,∣∣∣ f (x) − fn(x)
∣∣∣ ≤ ∣∣∣ f (x) − fm(x)

∣∣∣ +
∣∣∣ fm(x) − fn(x)

∣∣∣
≤

∣∣∣ f (x) − fm(x)
∣∣∣ +

∥∥∥ fm − fn
∥∥∥ .

As the inequalities above are true for all m ∈N∣∣∣ f (x) − fn(x)
∣∣∣ ≤ inf

m∈N

(∣∣∣ f (x) − fm(x)
∣∣∣ +

∥∥∥ fm − fn
∥∥∥)

≤ 0 + ε.

This right-hand side of the inequality above is independent of the choice of x ∈ X. Hence, if n ≥ Nε

is fixed, then f − fn is a bounded function X→ C and

sup
x∈X

∣∣∣ f (x) − fn(x)
∣∣∣ ≤ ε.

Since f is uniformly within ε of a continuous function, f is continuous at each x ∈ X. Furthermore,
since the sum of bounded functions is bounded, fn +

(
f − fn

)
= f is bounded. This proves that

f ∈ Cb(X). Finally, since f ∈ Cb(X) satisfies
∥∥∥ f − fn

∥∥∥ ≤ ε for all n ≥ Nε, the Cauchy sequence{
fk
}
k∈N converges in Cb(X) to f ∈ Cb(X).

1.2. Banach Spaces of p-Integrable Functions

Proposition 1.2.1. Suppose that (X,Σ, µ) is a measure space, and that p ≥ 1. If

L
p(X,Σ, µ) = { f : X→ C | f is p -integrable }. (1.2.1)

then Lp(X,Σ, µ) is a complex vector space. Furthermore, if ρ : Lp(X,Σ, µ)→ R is given by

ρ( f ) =

(∫
X
| f |pdµ

)1/p

. (1.2.2)

For all f ∈ Lp(X,Σ, µ), then ρ is a semi-norm on Lp(X,Σ, µ).

Proof. It is clear that α f ∈ Lp(X,Σ, µ), for every α ∈ C and f ∈ Lp(X,Σ, µ). If f , g ∈ Lp(X,Σ, µ),
then f + g ∈ Lp(X,Σ, µ), by Minkowski’s inequality 1. Hence,Lp(X,Σ, µ) is a vector space To verify
that ρ is a semi-norm, the only nontrivial fact to confirm is the triangle inequality holds. To this end,
Minkowski’s inequality yields :

ρ( f + g) =

(∫
X
| f + g|pdµ

)1/p

≤

(∫
X
| f |pdµ

)1/p

+

(∫
X
|g|pdµ

)1/p

= ρ( f ) + ρ(g).

(1.2.3)

Hence, ρ is a semi-norm.

1. If 1 ≤ p < ∞, then
‖u + v‖p ≤ ‖u‖p + ‖v‖p

10
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Let Ω = [a, b](−∞ ≤ a < b ≤ ∞) be a finite or infinite interval of the real axis R = (−∞,∞).
We denote by Lp(a, b)(1 ≤ p ≤ ∞) the set of those Lebesgue complex-valued measurable
functions f on Ω for which ‖ f ‖p < ∞, where

‖ f ‖p =

(∫ b

a
| f (t)|pdt

)1/p

(1 ≤ p < ∞). (1.2.4)

And
‖ f ‖∞ = ess sup

a≤x≤b
| f (x)|. (1.2.5)

Here ess sup | f (x)| is the essential maximum of the function | f (x)| [see, for example, Nikol’skii
[99], pp. 12 − 13 )].

We also need the weighted Lp -space with the power weight. Such a space, which we denote
by Xp

c (a, b)(c ∈ R; 1 ≤ p ≤ ∞), consists of those complex valued Lebesgue measurable
functions f on (a, b̄) for which ‖ f ‖Xp

c
< ∞, with

‖ f ‖Xp
e

=

(∫ b

a

∣∣∣tc f (t)
∣∣∣p dt

t

)1/p

(1 ≤ p < ∞). (1.2.6)

And
‖ f ‖X∞c = ess sup

a≤x≤b

[
xc
| f (x)

]
. (1.2.7)

In particular, when c = 1/p, the space Xp
c (a, b) coincides with the Lp(a, b) -space :

Xp
1/p(a, b) = Lp(a, b) Let now [a, b](−∞ < a < b < ∞) be a finite interval and let AC[a, b] be

the space of functions f which are absolutely continuous on [a, b]. It is known that AC[a, b]
coincides with the space of primitives of Lebesgue summable functions :

f (x) ∈ AC[a, b]⇔ f (x) = cste +

∫ x

a
ϕ(t)dt (ϕ(t) ∈ L(a, b)). (1.2.8)

And therefore an absolutely continuous function f (x) and has a derivative f ′(x) = ϕ(x)
almost everywhere on [a, b]. Thus (1.2.7) yields

ϕ(t) = f ′(t) and c = f (a). (1.2.9)

For n ∈N := {1, 2, 3, · · · }we denote by ACn[a, b] the space of complex-valued functions f (x)
which have continuous derivatives up to order n − 1 on [a, b] such that f (n−1)(x) ∈ AC[a, b] :

ACn[a, b] =
{

f : [a, b]→ C and
(
Dn−1 f

)
(x)

}
∈ AC[a, b]

(
D =

d
dx

)
. (1.2.10)

C being the set of complex numbers. In particular, AC1[a, b] = AC[a, b]. This space is charac-
terized by the following assertion [see Samko et al. ([120, Lemma 2.4]).

1.3. Special Functions

We presents in this section some definition about special function like Gamma function,
Beta function . . . ,ect.
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1.3.1. Gamma Function

Undoubtedly, the Euler’s gamma function Γ(z), is one of the basic functions of the fractional
calculus is which generalizes the factorial n! and allows n! to take also non-integer and even
complex values.

We will recall in this section some results on the gamma function which are important for
other parts of this work.

Definition 1.3.1. The gamma function Γ(z) is defined by the integral

Γ(z) =

∫
∞

0
e−ttz−1dt. (1.3.1)

Theorem 1.3.2. Function Γ(p) is convergent for p > 0.

Proof. The integral can be written as :

Γ(p) =

∫ 1

0
e−xxp−1dx +

∫
∞

1
e−xxp−1dx = I1 + I2. (1.3.2)

Where I1 =
∫ 1

0 e−xxp−1dx is convergent. Since e−x is decreasing on the interval [0, 1],
from x = 0, we have : ∫ 1

0
e−xxp−1dx <

∫ 1

0
xp−1dx =

1
p
. (1.3.3)

Moreover, I2 =
∫
∞

1 e−xxp−1dx is also convergent. We obtain :

1 ≤ x⇒ xp−1e−x
≤ e−x/2

⇔ xp−1
≤ ex/2

⇔
xp−1

ex/2 ≤ 1. (1.3.4)

Because limx→∞
xp−1

ex/2 = 0, we have :∫
∞

1
e−xxp−1dx ≤

∫
∞

1
e−x/2dx = 2e−1/2.

The integral (1.3.1) is convergent for p > 0 and divergent for p ≤ 0.

1.3.2. Some Properties of the Gamma Function

One of the basic properties of the gamma function is that it satisfies the following functional
equation :

Γ(z + 1) = zΓ(z). (1.3.5)

Which can be easily proved by integrating by parts :

Γ(z + 1) =

∫
∞

0
e−ttzdt =

[
−e−ttz

]t=∞

t=0
+ z

∫
∞

0
e−ttz−1dt = zΓ(z). (1.3.6)

Obviously, Γ(1) = 1, and using (1.3.5) we obtain for z = 1, 2, 3, . . . :

Γ(2) =1 · Γ(1) = 1 = 1!
Γ(3) =2 · Γ(2) = 2 · 1! = 2!
Γ(4) =3 · Γ(3) = 3 · 2! = 3!

. . . . . . . . . . . .

Γ(n + 1) =n · Γ(n) = n · (n − 1)! = n!.

12
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The second integral defines an entire function of the complex variable z. Indeed, let us write

ϕ(z) =

∫
∞

1
e−ttz−1dt =

∫
∞

1
e(z−1) log(t)−tdt. (1.3.7)

The function e(z−1) log(t)−t is a continuous function of z and t for arbitrary z and t ≥ 1. Moreover,
if t ≥ 1 (and therefore log(t) ≥ 0), then it is an entire function of z. Let us consider an arbitrary
bounded closed domain D in the complex plane (z = x + iy) and denote x0 = maxz∈D Re(z).
Then we have : ∣∣∣e−ttz−1

∣∣∣ =
∣∣∣e(z−1) log(t)−t

∣∣∣ =
∣∣∣e(x−1) log(t)−t

∣∣∣ ∣∣∣eiy log(t)
∣∣∣

=
∣∣∣e(x−1) log(t)−t|

∣∣∣ ≤ e(x0−1) log(t)−t = e−ttx0−1.

This means that the integral (1.3.7) converges uniformly in D and, therefore, the function
ϕ(z) is regular in D and differentiation under the integral in (1.3.7) is allowed. Because
the domain D has been chosen arbitrarily, we conclude that the function ϕ(z) has the
above properties in the whole complex plane. Therefore, ϕ(z) is an entire function allowing
differentiation under the integral. Bringing together the above considerations, we see that.

Γ(z) =

∞∑
k=0

(−1)k

k!
1

k + z
+

∫
∞

1
e−ttz−1dt

=

∞∑
k=0

(−1)k

k!
1

k + z
+ entire function, .

and, indeed, Γ(z) has only simple poles at the points z = −n,n =

0, 1, 2, . . .

1.3.3. Limit Representation of the Gamma Function

The gamna function can be represented also by the limit

Γ(z) = lim
n→∞

n!nz

z(z + 1) . . . (z + n)
. (1.3.8)

Where we initially suppose Re(z) > 0 To prove (1.3.8), let us introduce an auxiliary function

fn(z) =

∫ n

0

(
1 −

t
n

)n
tz−1dt.

Performing the substitution τ = t
n and then repeating integration by parts we obtain ;

fn(z) = nz
∫ 1

0
(1 − τ)nτz−1dτ

=
nz

z
n
∫ 1

0
(1 − τ)n−1τzdτ

=
nzn!

z(z + 1) . . . (z + n − 1)

∫ 1

0
τz+n−1dτ

=
nzn!

z(z + 1) . . . (z + n − 1)(z + n)
.
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Taking into account the well-known limit

lim
n→∞

(
1 −

t
n

)n
= e−t.

We may expect that

lim
n→∞

fn(z) = lim
n→∞

∫ n

0

(
1 −

t
n

)n
tz−1dt =

∫
∞

0
e−ttz−1dt. (1.3.9)

Which ends the proof of the limit representation (1.3.8) of the gamma function, if the
interchange of the limit and the integral in (1.3.9) is justified. To do this, let us estimate the
difference

∆ =

∫
∞

0
e−ttz−1dt − fn(z)

=

∫ n

0

[
e−t
−

(
1 −

t
n

)n]
tz−1dt +

∫
∞

n
e−ttz−1dt.

Let us take an arbitrary ε > 0. Because of the convergence of the integral (1.3.9) there exists
an N such that for n ≥ N we have∣∣∣∣∣∫ ∞

n
c−ttz−1dt

∣∣∣∣∣ ≤ ∫
∞

n
e−ttx−1dt <

ε
3
, (x = Re(z)).

Fixing now N and considering n > N we can write ∆ as a sum of three integrals :

∆ =

(∫ N

0
+

∫ n

N

) [
e−t
−

(
1 −

t
n

)n]
tz−1dt +

∫
∞

n
e−ttz−1dt. (1.3.10)

∆ =

(∫ N

0
+

∫ n

N

) [
e−t
−

(
1 −

t
n

)n]
tz−1dt +

∫
∞

n
e−ttz−1dt. (1.3.11)

The last term is less then ε
3 . For the second integral we have :∣∣∣∣∣∫ n

N

[
e−t
−

(
1 −

t
n

)n]
tz−1dt

∣∣∣∣∣ ≤ ∫ n

N

[
e−t
−

(
1 −

t
n

)n]
tx−1dt

<

∫
∞

N
e−ttx−1dt <

ε
3
.

Where, as above, x = Re(z). For the estimation of the first integral in (1.3.11) we need the
following auxiliary inequality :

0 < e−t
−

(
1 −

t
n

)n
<

t2

2n
, (0 < t < n). (1.3.12)

Which follows from the relationships

1 − ct
(
1 −

t
n

)n
=

∫ t

0
eτ

(
1 −

τ
n

)n τ
n

dτ. (1.3.13)

And

0 <
∫ t

0
eτ

(
1 −

τ
n

)n τ
n

dτ <
∫ t

0
e>
τ
n

dτ = et t2

2n
. (1.3.14)
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(Relationship (1.3.14) can be verified by differentiating both sides.) Using the auxiliary
inequality (1.3.12) we obtain for large n and fixed N :∣∣∣∣∣∣

∫ N

0

[
e−t
−

(
1 −

t
n

)n]
tz−1dt

∣∣∣∣∣∣ < 1
2n

∫ N

0
tx+1dt <

ε
3
. (1.3.15)

Taking into account inequalities (1.3.10),(1.3.12) and (1.3.15) and the arbitrariness of ε we
conclude that the interchange of the limit and the integral in (1.3.9) is justified.

This definitely completes the proof of the formula (1.3.8) for the limit representation of the
gamma function for Re(z) > 0.

With the help of (1.3.11) the condition Re(z) > 0 can be weakened to z , 0,−1,−2, . . . in the
following manner. If −m < Re(z) ≤ −m + 1, where m is a positive integer, then,

Γ(z) =
Γ(z + m)

z(z + 1) . . . (z + m − 1)

=
1

z(z + 1) . . . (z + m − 1)
lim
n→∞

nz+mn!
(z + m) . . . (z + m + n)

=
1

z(z + 1) . . . (z + m − 1)
lim
n→∞

(n −m)2+m(n −m)!
(z + m)(z + m + 1) . . . (z + n)

= lim
n→∞

nzn!
z(z + 1) . . . (z + n)

.

Therefore, the limit representation (1.3.1) holds for all z excluding
z , 0,−1,−2, . . .

1.3.4. Mittag-Leffler Functions

The exponentials function, eZ. plays a crucial role in the theory of integer-order. differential
equations . Its one-parameter generalizations, the function which is denoted by

Eα,α(z) =

∞∑
k=0

zk

Γ(αk + 1)
. (1.3.16)

Was introduced by G.M.Mittag-Leffler[89], and studied also by A.Wiman [?] We present
some properties as ; E1(z) = ez and E2(z) = cosh(

√
z)

The two parameter function of the Mittag-Leffler type, which plays a very important role
in the fractional calculus. was in fact introduced by Agarwal [4].

Definition 1.3.3. A two-parameter function of the Mittag-Leffler type is defined by the series
expansion [42]

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
(α > 0, β > 0). (1.3.17)

It follows from the definition 1.3.3 that

E1,1(z) =

∞∑
k=0

zk

Γ(z + 1)
=

∞∑
k=0

zk

k!
= ez. (1.3.18)
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And

E2,2(z) =

∞∑
k=0

z2k

Γ(2z + 2)
=

1
z

∑ z2k+1

(2k + 1)!
=

sinh z
z

. (1.3.19)

The hyperbolic functions of order n , which are generalizations of the hyperbolic sine and
cosine, can also be expressed in terms of the Mittag-Leffler function[42] :

hr(z,n) =

∞∑
k=0

znk+r−1

(nk + r − 1)!
= zr−1En,r(zn) (r = 1, 2, . . . ,n). (1.3.20)

E1,3(z) =

∞∑
k=0

zk

Γ(k + 3)
=

∞∑
k=0

zk

(k + 2)!
=

1
z2

∞∑
k=0

zk+2

(k + 2)
=

ez
− 1 − z

z2 . (1.3.21)

E1,m =
1

zm−1

ez
−

m−2∑
k=0

zk

k!

 (1.3.22)

E1,2 =

∞∑
k=0

z2k

Γ(2k + 1)
= cosh(z). (1.3.23)

The trigonometric function of order n denoted by kr(z,n), which are the generalization of
the sine and the cosine function

kr(z,n) =

∞∑
j=0

znj+z−1

(nj + r − 1)!
= zr−1En,r(−zn). (1.3.24)

1.4. Riemann-Liouville Fractional Integrals and Fractional De-
rivatives.

Lemma 1.4.1. Let I be the operator integral defined by following formula

I f (x) =

∫ s

0
f (s)ds (1.4.1)

then the The following formula is true for any n ∈N

In f (x) =

∫ x

0

(x − s)n−1

(n − 1)!
f (s)ds. (1.4.2)

Proof. By recurrence ;

Assume that (1.4.2) is true for n = k and proof it for n = k + 1 for n = k

Ik f (x) =

∫ x

0

(x − s)k−1

(k − 1)!
f (s)ds.
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so

Ik+1 f (x) = I
(
Ik f (x)

)
=

∫ x

0

(x − s)k−1

(k − 1)!
f (s)ds

=

∫ x

0

∫ y

0

(y − s)k−1

(k − 1)!
f (s)dsdy.

Changing the order of integration and using 0 ≤ y ≤ x, 0 ≤ s ≤ y we get

Ik+1 f (x) =

∫ x

0

∫ x

s

(y − s)k−1

(k − 1)!
f (s)dyds =

∫ x

0
f (s)

∫ x

s

(y − s)k−1

(k − 1)!
dyds

=

∫ x

0
f (s)

(x − s)k

k(k − 1)!
ds =

∫ x

0

(x − s)k

k!
f (s)ds.

thus (1.4.2) is trus for n = k + 1 so it is trus for n ∈N

Let us consider some of the starting points for a discussion of classical fractional calculus.
One development begins with a generalization of repeated integration. In the same manner.

Lemma 1.4.2. Consider a locally integrable 2 Real valued function f : J → R whose domain of
definition J = [a, b] ⊂ R is an interval with −∞ ≤ a < b ≤ ∞. Integrating n times gives the
fundamental formula

(
In
a+ f

)
(x) =

∫ x

a

∫ x1

a
. . .

∫ xn−1

a
f (xn) dxn . . . dx2dx1

=
1

(n − 1)!

∫ x

a
(x − y)n−1 f (y)dy.

(1.4.3)

Where a < x < b and n ∈N. This formula may be proved by induction. It reduces n−fold integration
to a single convolution integral. The subscript a+ indicates that the integration has a as its lower
limit. An analogous formula holds with lower limit x and upper limit a. In that case the subscript a
- will be used.

Definition 1.4.3 (Riemann-Liouville fractional integrals). Let −∞ ≤ a < x < b ≤ ∞. The
Riemann-Liouville fractional integrals Iαa+ f , Iαb− of order α ∈ C,R(α) > 0 is defined for functions
f : [a, b]→ C by (

Iαa+ f
)

(x) =
1

Γ(α)

∫ x

a
(x − t)α−1 f (t)dt. (1.4.4)

(
Iαb− f

)
(x) =

(
xIαb f

)
(x) =

1
Γ(α)

∫ b

x
(t − x)α−1 f (t)dt. (1.4.5)

Respectively. Here Γ(α) is the Gamma function . These integrals are called the left-sided
and the right-sided fractional integrals. When α = n ∈ N, the definitions (1.4.4) and (1.4.5)
coincide with the nth integrals defined in (1.4.3).

2.
1 A function f : J = [a, b] ⊂ R is called locally integrable if it is integrable on all compact

subsets K ⊂ J.
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Definition 1.4.4 (Riemann-Liouville fractional Derivatives). The Riemann-Liouville fractional
derivatives Dα

a+y and Dα
b−y of order α ∈ C(R(α) > 0) are defined by

Dα
a+y =

(
d

dx

)n (
In−α
a+ y

)
(x)

=
1

Γ(n − α)

(
d
dx

)n ∫ x

a

y(t)dt
(x − t)α−n+1 (n = [R(α)] + 1, x > a). (1.4.6)

And

Dα
b−y =

(
−

d
dx

)n (
In−α
b− y

)
(x)

=
1

Γ(n − α)

(
d

dx

)n ∫ b

x

y(t)dt
(t − x)α−n+1 (n = [R(α)] + 1, x < b). (1.4.7)

Respectively, where [R(α)] means the integral part of α.

Property 1.4.1. (a) when α = n ∈N,
then (

D0
a+y

)
(x) =

(
D0

b−y
)

(x) = y(x);
(
Dn

a+y
)

(x) = y(n)(x).

and (
Dn

b−

)
(x) = (−1)ny(n)(n ∈N)

where (y(n)x) is the usual derivative of y(x) of order n.
(b) When 0 < R(α) < 1, then

(
Dα

a+y
)

(x) =
1

Γ(1 − α)
d

dx

∫ x

a

y(t)dt
(x − t)α−[R(α)]

(0 < R(α) < 1, x > a). (1.4.8)

(
Dα

b−y
)

(x) =
1

Γ(1 − α)
d

dx

∫ b

x

y(t)dt
(t − x)α−[R(α)]

(0 < R(α) < 1, x < b). (1.4.9)

(c) When α ∈ R+,
then (1.4.6) and (1.4.7) take the following forms,

(
Dα

a+y
)

(x) =
1

Γ(n − α)

(
d

dx

)n ∫ x

a

y(t)dt
(x − t)α−n+1 (n = [α] + 1, x > a). (1.4.10)

And (
Dα

b y
)

(x) =
1

Γ(n − α)

(
−

d
dx

)n ∫ b

x

y(t)dt
(t − x)α−n+1 (n = [α] + 1, x < b). (1.4.11)

While (1.4.8) and (1.4.9) are given by

(
Dx

a+y
)

(x) =
1

Γ(1 − α)
d
dx

∫ x

a

y(t)dt
(x − t)α

(0 < α < 1, x > a). (1.4.12)

And (
Dx

b−y
)

(x) =
−1

Γ(1 − α)
d
dx

∫ b

x

y(t)dt
(t − x)α

(0 < α < 1, x < b). (1.4.13)
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(d) If R(α) = 0, (α , 0) then (1.4.6) and (1.4.7) yield the Fractional derivatives of purely
imaginary order (

Diθ
a+y

)
(x) =

1
Γ(1 − iθ)

d
dx

∫ x

a

y(t)dt
(x − t)iθ (θ ∈ R∗, x > a). (1.4.14)

(
Diθ

b−y
)

(x) =
−1

Γ(1 − iθ)
d

dx

∫ b

x

y(t)dt
(t − x)iθ (θ ∈ R∗, x < b). (1.4.15)

1.4.1. Basic Properties of RL Fractional Integrals

Property 1.4.2. The Riemann-Liouville integral operator of order α is a linear operator. That means ;

Iα[a f (x) + bg(x)] = aIα f (x) + bIαg(x)

Proof. Using the definition ofIα , we get

Iα[a f (x) + bg(x)] =
1

Γ(α)

∫ x

0

a f (s) + bg(s)
(x − s)1−α ds

=
1

Γ(α)

[∫ x

0

a f (s)
(x − s)1−α ds +

∫ x

0

bg(s)
(x − s)1−α ds

]
= aIα( f (x)) + bIα(g(x)).

Property 1.4.3. If R(α) ≥ 0 and β ∈ C(R(β) > 0), then(
Iαa+(t − a)β−1

)
(x) =

Γ(β)
Γ(β + α)

(x − a)β+α−1(R(α) > 0). (1.4.16)

(
Dα

a+(t − a)β−1
)

(x) =
Γ(β)

Γ(β + α)
(x − a)β−α−1(R(α) ≥ 0). (1.4.17)

and (
Iαb−(b − t)β−1

)
(x) =

Γ(β)
Γ(β + α)

(b − x)β+α−1(R(α) > 0). (1.4.18)

(
Dα

b−(t − a)β−1
)

(x) =
Γ(β)

Γ(β + α)
(b − x)β−α−1(R(α) ≥ 0). (1.4.19)

In particular, when β = 1 and R(α) ≥ 0 we have,

(
Dα

a+1
)

(x) =
(x − a)−a

Γ(1 − α)
, and

(
Dα

b−1
)

(x) =
(b − x)−α

Γ(1 − α)
(0 < R(α) < 1). (1.4.20)

What mean that, the RL-Fractional derivatives of a constant, are in general not equal to zero.

In the other hand, and for j = 1, 2, ..., [R(α)] + 1(
Dα

a+(t − x)α− j
)

(x) = 0,
(
Dα

b−(b − t)α− j
)

(x) = 0. (1.4.21)

19



Fractional Integrals and Fractional Derivatives 2021-2022

Property 1.4.4 (Integration by parts). [69] The following results∫ b

a
f (x)

(
Iαa+g(x)

)
dx =

∫ b

a
g(x)

(
Iαb− f (x)

)
dx, f , g ∈ L1(a, b).

is called the property of "integration by parts" for fractional integrals.

Proof. Putting for f , g ∈ L1(a, b) and using the Dirichlet’s Formula 3 we get

I1 =

∫ b

a

(
Iαa+g

)
(x)dx =

1
Γ(α)

∫ b

a
f (x)

∫ x

a
g(t)(x − t)α−1dtdx

=
1

Γ(α)

∫ b

a

{∫ b

t
f (x)(x − t)α−1dx

}
g(t)dt

=

∫ b

a

{
1

Γ(α)

∫ b

t
f (x)(x − t)α−1dx

}
g(t)dt.

Changing t by x we obtain,I1 =

∫ b

a
g(x)

(
Iαb− f

)
(x)dx

Lemma 1.4.5 (Semigroup property). Let φ be integrable real valued function
φ : R −→ R then the Fractional integrals obey the following semigroup property :

Iαa+Iβa+φ = Iα+β
a+ φ = Iβa+Iαa+φ

Iαb−Iβb−φ = Iα+β
b− φ = Iβb−Iαb−φ.

Proof.

Iα
[
Iβ f (x)

]
I = Iα

 1
Γ(β)

∫ x

0

f (s)
x − s

1−β

ds


=

1
Γ(α)

∫ x

0

1
(x − y)1−α

1
Γ(β)

∫ y

0

f (s)ds
(y − s)1−α dy

=
1

Γ(α)Γ(β)

∫ x

0

∫ y

0

1
(x − y)1−α(y − s)1−β f (s)dsdy

=
1

Γ(α)Γ(β)

∫ x

0

[∫ x

s

1
(x − y)1−α

dy
(y − s)1−β

]
f (s)ds.

Denote now

A(x, s) =

∫ x

0

1
(x − y)1−α

dy
(y − s)1 − β

(1.4.22)

and putting y − s = t then dy = dt ,we gate

A(x, s) =

∫ x−s

0

dt
(x − s − t)1−αt1−β

3. Let g continuous function, and let µ, ν > 0 then∫ t

0
f (x)(t − ξ)µ−1dξ

∫ ξ

0
(ξ − x)ν−1 g(ξ, x)dx =

∫ t

0
dx

∫ t

x
(t − ξ)µ−1(ξ − x)ν−1 g(ξ, x)dξ.
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and by a change of variable, t = (x − s)u and dt = (x − s)du, we have

A(x, s) =

∫ 1

0

(x − s)du
(x − s)1−(α)(1 − u)1−α(x − s)1−β

=
1

(x − s)1−(α+β)

∫ 1

0

du
(1 − u)1−αu1−β

=
1

(x − s)1−(α+β)
β(α, β)

=
Γ(α)Γ(β)
Γ(α + β)

.

Now we can write ∫ x

s

du
(x − s)1−α(y − s)1−β =

1
(x − s)1−(α+β)

Γ(α)Γ(β)
Γ(α + β)

.

Then

Iα
[
Iβ f (x)

]
=

1
Γ(α)Γ(β)

∫ x

0

1
(x − s)1−(α+β)

Γ(α)Γ(β)
Γ(α + β)

f (s)ds

=
1

Γ(α + β)

∫ x

0

f (s)ds
(x − s)1−(α+β)

= Iα+β f (x).

Lemma 1.4.6. [120]
(a) The fractional integral operator Iαa+ and Iαb−, whith R(α) > 0

are bounded in Lp(a, b)(1 ≤ p ≤ ∞)

‖Iαa+ f ‖p ≤ K‖ f ‖p, and ‖Iαb− f ‖p ≤ K‖ f ‖p. (1.4.23)

Where K =
(b−a)R(α)

R(α)|Γ(α)|

(b) If 0 < α < 1 and 0 < p < 1
α , then the operator Iαa+ and Iαb− are bounded from Lp(a, b) into

Lq(a, b), where q = p(1 − αp).
(c) If R(α) > 0 and f (x) ∈ Lp(a, b) 1 < p ≤ ∞, then(

Dα
a+Iαa+ f

)
(x) = f (x), and

(
Dα

b−Iαb− f
)

(x) = f (x) where (R(α) > 0). (1.4.24)

Hold almost everywhere.

1.5. Caputo Fractional Derivatives

In this section the definitions and some properties of the Caputo fractional derivatives are
presented[69]. Let [a, b] be a finite interval of the real line R, and let

(Dα
a+[y(t)])(x) = (Dα

a+y)(x) and (Dα
b−[y(t)]) = (Dα

b−(y))(x)

be the Riemann-Liouville fractional derivatives of order α ∈ C(R(α) > 0) defined by (1.4.6)
and (1.4.7), respectively. The fractional derivatives (cDα

a+y)(x) and (cDα
b−y)(x) of order α ∈

CR(α) ≥ 0 on [a, b] are defined by ;
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Definition 1.5.1. Let α > 0, n = dαe. The Caputo derivative operator of order α is defined as

c
aDα

t f (t) =
1

Γ(n − α)

∫ t

a
(t − u)n−α−1

(
d

du

)n

f (u)du.

For a = 0, we introduce the notation :
cDα

t f (t) = Dα f (t).

Theorem 1.5.2. For t > 0, α ∈ R,n − 1 < α < n,n ∈ N, and a function f (t) which obey the
conditions of Taylor 4 theorem, the following representation is valid :

aDα
t f (t) = c

aDα
t f (t) +

n−1∑
k=0

f (k)(a)
Γ(1 + k − α)

(t − a)k−α.

Proof. Proof In order to simplify our presentation, we consider a = 0. Because f (t) can be expanded
in Taylor series we can write

f (t) =

n−1∑
k=0

tk

Γ(k + 1)
f (k)(0) + Rn−1,

where :

Rn−1 =

∫ t

0

f (n)(y)(t − y)n−1

(n − 1)!
dy =

1
Γ(n)

∫ t

0
f (n)(y)(t − y)n−1dy = In f (n).

If we apply the operator Dα we obtain successively :

Dα f (t) = Dα

n−1∑
k=0

tk

Γ(k + 1)
f (k)(0) + Rn−1


=

n−1∑
k=0

Dαtk

Γ(k + 1)
f (k)(0) + DαRn−1

=

n−1∑
k=0

tk−α

Γ(k − α + 1)
f (k)(0) + In−α f n(t)

=

n−1∑
k=0

tk−α

Γ(k − α + 1)
f (k)(0) + Dα f (t).

Definition 1.5.3 (The Caputo Fractional Derivative in the Origin). For a function f (t), for
which f (t) = 0, if t < 0, it can be defined :

c
0Dα

t f (t) =
1

Γ(n − α)

∫ t

0
(t − u)n−α−1 f (n)(u)du,

where R(α) = n.

Property 1.5.1. If C is a constant, then :
c
0Dα

t C = 0,

and the Riemann-Liouville Fractional Derivatives of C is :

0Dα
t C =

Cx−α

Γ(1 − α)
, α = 1, 2, . . .

4. B.Taylor (1685-1731).

22



Fractional Integrals and Fractional Derivatives 2021-2022

In what follows we note the Caputo derivative in the origin, simply, using the notation
Dα f (x).

Theorem 1.5.4. If n − 1 < α < n, where n ∈N, and α ∈ R, then :

1. limα→n Dα f (t) = f (n)(t),

2. limα→n−1 Dα f (t) = f (n−1)(t) − f (n−1)(0).

Proof. In the formula

Dα f (t) =
1

Γ(n − α)

∫ t

0

f (n)(y)dy
(t − y)α+1−n ,

we will use the integration by parts, obtaining :∫ t

0
u(y)v′(y)dy = u(y)v(y)

∣∣∣t
0
−

∫ t

0
u′(y)v(y)dy,

u(y) = f (n)(y), v′(y) = (t − y)n−α−1

u′(y) = f (n+1)(y), v(y) = −(t − y)n−α.

It results :

Dα f (t) =
1

Γ(n − α)

[
− f (n)(y)

(t − y)n−α

n − α

∣∣∣∣∣t
0

+
1

n − α

∫ t

0
(t − y)n−α f (n+1)(y)dy

]
.

Using the property of Γ function

Γ(n − α + 1) = (n − α)Γ(n − α),

it results :

Dα f (t) =
1

Γ(n − α + 1)

[
f (n)(0) +

∫ t

0
f (n+1)(y)(t − y)n−αdy

]
,

lim
α→n

Dα f (t) =

[
f (n)(0) +

∫ t

0
f (n+1)(y)dy

]
= f (n)(0) + f (n)(y)

∣∣∣t
0

= f (n)(t).

lim
α→n−1

Dα f (t) =

[
f (n)(0) +

∫ t

0
f (n+1)(y)(t − y)dy

]
= f (n)(0)t + (t − y) f (n)(y)

∣∣∣t
0

= f (n−1)(t) − f (n−1)(0).

Example 1.5.5. Let us calculate the FD for α > 0,n−1 < α < n, β > n−1 of the function f (t) = tβ

using the definitions, for the case : Riemann-Liouville, and Caputo in the origin,using the definition.

Solution. 1. For the Riemann-Liouville derivative, we can write :

I = Dαtβ =
1

Γ(n − α)
dn

dtn

∫ t

0
uβ(t − u)n−α−1du.

and we take :
u = vt, du = tdv.
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It follows :

I =
1

Γ(n − α)
dn

dtn

∫ t

0
(vt)β[(1 − v)t]n−α−1tdv

=
1

Γ(n − α)
dn

dtn

∫ t

0
(1 − v)n−α−1vβtn−α+βdv

I =
1

Γ(n − α)

∫ t

0
(1 − v)n−α−1vβ

dn

dtn tn−α+βdv.

but
dn

dtn tλ =
Γ(λ + 1)

Γ(λ − n + 1)
tλ−n,

B(p, q) =

∫ 1

0
vp−1(1 − v)q−1dv,

so that it results :

I =
1

Γ(n − α)
Γ(n − α + β + 1)
Γ(−α + β + 1)

t−α+β

∫ 1

0
(1 − v)n−α−1vβdv∫ 1

0
(1 − v)n−α−1vβdv = B(n − α, β + 1) =

Γ(n − α)Γ(β + 1)
Γ(n − α + β + 1)

Dαtβ = I =
Γ(β + 1)

Γ(−α + β + 1)
tβ−α.

2. In this case we apply the definition of the Caputo derivative of tβ :

I = Dαtβ =
1

Γ(n − α)

∫ t

0

(
uβ

)(n)

(t − u)α+1−β du

I =
1

Γ(n − α)

∫ t

0

Γ(β + 1)
Γ(β − n + 1)

uβ−n(t − u)n−α−1du.

We use the change of variable u = vt, resulting after calculations :

du = tdv,

I =
Γ(β + 1)

Γ(n − α)Γ(β − n + 1)

∫ 1

0
(uv)β−n

[
(t − v)n−α−1

]
tdv.

Finally, we obtain :

I =
Γ(β + 1)

Γ(n − α)Γ(β − n + 1)
B(β − n + 1,n − α) =

Γ(β + 1)
Γ(β − α + 1)

tβ−α.

Example 1.5.6. Find the Riemann-Liouville Fractional Integral and Fractional Derivative of

f (t) = (t − a)β.

Solution. For the Fractional Integral we apply the Riemann-Liouville definition :

I = aIαt f (t) =
1

Γ(α)

∫ t

a
(t − u)α−1(u − a)βdu.
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The following change of variable
u − a
t − a

= v,

du = (t − a)dv,

allows to calculate :

I =
(t − a)α+β

Γ(α)

∫ 1

0
(1 − v)α−1vβdv =

(t − a)α+β

Γ(α)
B(α, β + 1),

I =
Γ(β + 1)

Γ(α + β + 1)
(t − a)α+β.

For the Fractional Derivatives we apply the Riemann-Liouville definition :

D f = aDα
t (t − a)β =

dn

dtn aIn−α(t − a)β,

and finally :

D f =
Γ(β + 1)

Γ(β + n − α + 1)
dn

dtn (t − a)β+n−α =
Γ(β + 1)

Γ(β − α + 1)
(t − a)β−α.
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Chapitre 2
Stochastic Calculus

This chapter are focused on the Itô lemma for that we presente some definitions about
Probability theory and others proprieties are given

2.1. Functions Calculus

2.1.1. Continuous and Differentiable Functions

Definition 2.1.1. A function g is called continuous at the point t = t0 if the increment of g over
small intervals is small,

∆g(t) = g(t) − g(t0) −→ 0 as ∆t = t − t0 −→ 0.

If g is continuous at every point of its domain of definition, it is simply called continuous. g is called
differentiable at the point t = t0 if at that point

∆g ∼ C∆t or lim
∆t−→0

∆g(t)
∆t

= C,

this constant C is denoted by g′ (t0). If g is differentiable at every point of its domain, it is called
differentiable. An important application of the derivative is a theorem on finite increments.

2.1.2. Right and Left-Continuous Functions

Definition 2.1.2. A function g is called continuous at the point t = t0 if

lim
t−→t0

g(t) = g(t0),

it is called right-continuous (left-continuous) at t0 if the values of the function g(t) approach g(t0)
when t approaches t0 from the right (left)

lim
t↑t0

g(t) = g(t0), (lim
t↓t0

g(t) = g(t0).)
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If g is continuous it is, clearly, both right and left-continuous. The left-continuous version
of g, denoted by g(t−), is defined by taking left limit at each point,

g(t−) = lim
s↑t

g(s).

From the definitions we have, g is left-continuous if g(t) = g(t−). The concept of g(t+) is
defined similarly,

g(t+) = lim
s↓t

g(s).

If g is a right-continuous function then g(t+) = g(t) for any t, so that g+ = g.

2.1.3. Variation of a Function

If g is a function of real variable, its variation over the interval [a, b] is defined as ;

Vg([a, b]) = sup
n∑

i=1

|g(tn
i ) − g(tn

i−1)|, (2.1.1)

Clearly, (by the triangle inequality) the sums in (2.1.1) increase as new points are added to
the partitions. Therefore variation of g is

Vg([a, b]) = lim
δn−→0

n∑
i=1

|g(tn
i ) − g(tn

i−1)|, (2.1.2)

where δn = max1≤i≤n(ti − ti−1). If Vg([a, b]) is finite then g is said to be a function of finite
variation on [a, b]. If g is a function of t ≥ 0, then the variation function of g as a function of
t is defined by

Vg(t) = Vg([0, t]).

Clearly, Vg(t) is a non-decreasing function of t.

Proof.

[g](t) = lim
δn−→0

n−1∑
i=0

(g(tn
i+1) − g(tn

i ))2 (2.1.3)

≤ lim
δn−→0

max
i
|g(tn

i+1) − g(tn
i )|

n−1∑
i=0

|g(tn
i+1) − g(tn

i )| (2.1.4)

≤ lim
δn−→0

max
i
|g(tn

i+1) − g(tn
i )|Vg(t). (2.1.5)

Since g is continuous, it is uniformly continuous on [0, t], hence limδn−→0 maxi |g(tn
i+1)− g(tn

i )| = 0,
and the result follows.

2.1.4. Riemann Integral

Definition 2.1.3 (Riemann Integral). The Riemann Integral of f continue over interval [a, b] is
defined as the limit of Riemann sums ;∫ b

a
f (t)dt = lim

δ−→0

n∑
i=1

f (ξn
i )(tn

i − tn
i−1), (2.1.6)
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where the tn
i represent partitions of the interval,

a = tn
0 < tn

1 < · · · < tn
n = b, δ = max

1≤i≤n
(tn

i − tn
i−1), and tn

i−1 ≤ ξ
n
i ≤ tn

i .

It is feasible to demonstrate that the Riemann Integral is well defined for continuous func-
tions and that it may be extended to functions that are discontinuous at a finite number of
points by breaking up the interval.

Theorem 2.1.4 (The fundamental theorem of calculus)). If f is differentiable on [a, b] and f ′ is
Riemann integrable on [a, b] then

f (b) − f (a) =

∫ b

a
f
′

(s)ds.

2.1.5. Stieltjes Integral

The Stieltjes Integral is an integral of the form
∫ b

a f (t)dg(t), where g is a finite variation
function. Because a function of finite variation is the difference of two rising functions,
defining the integral with regard to monotone functions suffices.

Stieltjes Integral with respect to Monotone Functions

Definition 2.1.5. The Stieltjes Integral of f with respect to a monotone function g over an interval
(a, b] is defined as ∫ b

a
f dg =

∫ b

a
f (t)dg(t) = lim

δ−→0

n∑
i=1

f (ξn
i )(g(tn

i ) − g(tn
i−1)), (2.1.7)

with the quantities in the formulation being the same as for the Riemann Integral above.
This integral is a generalization of the Riemann Integral, which may be recovered by taking
g(t) = t. The Riemann-Stieltjes integral is another name for this integral.

Definition 2.1.6 (Change of Variables). Let f have a continuous derivative ( f ∈ C1) and g be of
finite variation and continuous, then

f (g(t)) − f (g(0)) =

∫ t

0
f
′

(g(s))dg(s) =

∫ g(t)

g(0)
f
′

(u)du.

If g is of finite variation has jumps, and is right-continuous then

f (g(t)) − f (g(0)) =

∫ t

0
f
′

(g(s−))dg(s) (2.1.8)

+
∑

0<s≤t

(
f (g(s)) − f (g(s−)) − f

′

(g(s−))∆g(s)
)
, (2.1.9)

where δg(s) = g(s) − g(s−) denotes the jump of g at s. This is known in stochastic calculus as Itô’s
formula.
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Example 2.1.7. Take f (x) = x2, then we obtain

g2(t) − g2(0) = 2
∫ t

0
g(s−)dg(s) +

∑
s≤t

(∆g(s))2.

Remark 2.1.1. Note that for a continuous f and finite variation g on [0, t] the approximating sums
converge as δ = maxi

(
tn
i+1 − tn

i

)
→ 0,

∑
i

f
(
g
(
tn
i

)) (
g
(
tn
i+1

)
− g

(
tn
i

))
→

∫ t

0
f (g(s−))dg(s).

Theorem 2.1.8 (Lebesgue). A finite variation function g on [a, b] is differentiable almost everyw-
here on [a, b].

2.2. Measure Theory

In this section, we will recall some definitions and results from measure theory. Our purpose
here is to provide an introduction for readers who have not seen these concepts before and
to review that material for those who have.

2.2.1. Probability Spaces

Definition 2.2.1 (σ−algebra). Consider a set Ω. a σ−algebra A of subsets of Ω is a collection A
of subsets of Ω satisfying the following conditions :

(a) ∅ ∈ A
(b) If B ∈ A then its complement Bc is also inA
(c) If B1,B2, . . . is a countable collection of sets inA then their union ∪∞n=1Bn is inA

There are two extreme examples of sigma-algebras :
— The collection {∅,Ω} is a sigma-algebra of subsets of Ω
— the set P(Ω) of all subsets of Ω is a sigma-algebra

Any σ−algebraA of subsets of Ω lies between these two extremes :

{∅,Ω} ⊂ A ⊂ P(X).

Definition 2.2.2 (Mesure). A measure is a nonnegative countably additive set function ; that is, a
function µ : A→ R with

(i) µ(A) ≥ µ(∅) = 0 for all A ∈ A, and
(ii) if (Ai)i∈I ∈ A is a countable sequence of disjoint sets, then

µ(∪i∈IAi) =
∑
i∈I

µ(Ai)

If µ(Ω) = 1,we call µ a probability measure. In this thesis, probability measures are usually
denoted by P. The next result gives some consequences of the definition of a measure.

Theorem 2.2.3. Let µ be a measure on (Ω,A)
(i) Monotonicity. If A ⊆ B then µ(A) ≤ µ(B).
(ii) Subadditivity. If A ⊆ ∪mAm then µ(A) ≤

∑
m µ(Am).
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(iii) Continuity from below. If Ai ↑ A (i.e., A1 ⊂ A2 ⊂ · · · and ∪iAi = A) then µ(Ai) ↑ µ(A).
(iv) Continuity from above. If Ai ↓ A (i.e., A1 ⊃ A2 ⊃ · · · and ∩iAi = A), with µ(A1) < ∞ then

µ(Ai) ↓ µ(A).

Property 2.2.1. IfA is a σ−algebra, and An is a sequence inA, then the fol lowing properties follow
immediately by checking the axioms :

1. ∩nAn ∈ A

2. lim supn An := ∩+∞
n=1 ∪

+∞
k=n Ak ∈ A

3. lim infn An := ∪+∞
n=1 ∩

+∞
k=n Ak ∈ A

4. ifA,B are algebras, thenA∩B is an algebra.

Definition 2.2.4. For any set C of subsets of Ω, we can define σ(C), the smallest σ−algebra A
which contains C. The σ−algebraA is the intersection of all σ−algebras which contain C. It is again
a σ−algebra.

Definition 2.2.5. (E,O) is a topological space, where O is the set of open sets in E. then σ(O) is
called the Borel σ−algebra of the topological space. IfA ⊂ B, thenA is called a sub-algebra of B. a
set B in B is also called a Borel set.

Remark 2.2.1. One sometimes defines the Borel σ−algebra as the σ−algebra generated by the set of
compact sets C of a topological space. Compact sets in a topological space are sets for which every
open cover has a finite subcover. In Euclidean spaces Rn, where compact sets coincide with the sets
which are both bounded and closed, the Borel σ−algebra generated by the compact sets is the same as
the one generated by open sets. The two definitions agree for a large class of topological spaces like
"locally compact separable metric spaces".

Remark 2.2.2. Often, the Borel σ−algebra is enlarged to the σ−algebra of all Lebesgue measurable
sets, which includes all sets B which are a subset of a Borel set A of measure 0. The smallest σ−algebra
Bwhich contains all these sets is called the completion ofB. The completion of the Borel σ−algebra is
the σ−algebra of all Lebesgue measurable sets. It is in general strictly larger than the Borel σ−algebra.

Definition 2.2.6. A probability space is a triple (Ω,F ,P) where Ω is a set of "outcomes," F is a set
of "events," and P : F → [0, 1] is a function that assigns probabilities to events. We assume that F
is a σ−field (or σ−algebra), i.e., a (nonempty) collection of subsets of Ω that satisfy

(i) if A ∈ F then Ac
∈ F , and

(ii) if Ai ∈ F is a countable sequence of sets then ∪iAi ∈ F .

Definition 2.2.7. A map X from a measure space (Ω,A) to an other measure space (∆,B) is called
measurable, if X−1(B) ∈ A for all B ∈ B. The set X−1(B) consists of all points x ∈ A for which
X(x) ∈ B. This pull back set X−1(B) is defined even if X is non-invertible. For example, for X(x) = x2

on (R,B) one has X−1([1, 4]) = [1, 2] ∪ [−2,−1].

Definition 2.2.8. function X : Ω → R is called a random variable, if it is a measurable map from
(Ω,A) to (R,B), whereB is the Borel σ−algebra ofR. Denote byC the set of all real random variables.
The setC is an algebra under addition and multiplication : one can add and multiply random variables
and gets new random variables. More generally, one can consider random variables taking values in
a second measurable space (E,B). If E = Rd, then the random variable X is called a random vector.
For a ran dom vector X = (X1, ...,Xd), each component Xi is a random variable.
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2.2.2. Convergence of Random Variables

In order to formulate the strong law of large numbers, we need some other notions of
convergence.

Definition 2.2.9. sequence of random variables Xn converges in probability to a random variable
X, if

P [|Xn − X| ≥ ε] −→ 0 for all ε > 0.

Definition 2.2.10. sequence of random variables Xn converges almost every where or almost surely
to a random variable X, if P [Xn −→ X] = 1.

Definition 2.2.11. sequence ofLP random variables Xn converges inLP to a random variable X, if

‖Xn − X‖p −→ 0 for n −→ ∞.

Definition 2.2.12. sequence of random variables Xn converges fast in probability, or completely to
a random variable X, if ∑

n

P [‖Xn − X‖ ≥ ε] < ∞ for all ε > 0.

We have so four notions of convergence of random variables Xn −→ X, if the random
variables are defined on the same probability space (Ω,A,P). we will gives now the two
equivalent but weaker notions convergence in distribution and weak convergence, which
not necessarily assume Xn and X to be defined on the same probability space.

Definition 2.2.13. sequence of random variables Xn converges in distribution to a random variable
X,, if FXn (x) −→ FX(x) for all points x, where FX is continuous.

Definition 2.2.14. sequence of random variables Xn converges in law to a random variable X, if the
laws µn of Xn converge weakly to the law µ of X.

Remark 2.2.3. [72] In other words, Xn converges weakly to X if for every continuous function f
on R of compact support, one has∫

f (x)dµn(x) −→
∫

f (x)dµ(x).

Property 2.2.2. Given a sequence random variables Xn ∈ L
1. The following is equivalent :

(a) Xn converges in probability to X and {Xn}n∈N is uniformly integrable.
(b) Xn converges in L1 to X.

Theorem 2.2.15 (Dominated convergence theorem). Suppose
{
fn
}
n is a sequence of measurable

functions on a measure space (Ω,F , µ) such that

f (x) = lim
n→∞

fn(x), µ a.e. x ∈ Ω.

If there is an integrable function g, i.e.
∫

Ω
g dµ < ∞, such that∣∣∣ fn(x)

∣∣∣ ≤ g(x), for µ a.e. x ∈ Ω and for all n ∈N.

then f is integrable and

lim
n→∞

∫
Ω

fn dµ =

∫
Ω

f dµ.
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Theorem 2.2.16 (Bounded convergence theorem). Let
{
fn
}
n be a sequence of uniformly bounded

and measurable functions on a bounded measure space (Ω,F , µ) such that

f (x) = lim
n→∞

fn(x), µ a.e. x ∈ Ω.

Then, f is integrable and

lim
n→∞

∫
Ω

fn dµ =

∫
Ω

f dµ.

2.3. Stochastic Processes

In order to study stochastic calculus, we must first understand stochastic processes. In this
section, we define stochastic processes in general and give definitions of some of the most
important processes.

Definition 2.3.1 (A stochastic process). X is a family {Xt : t ∈ T} of random variables which map
the sample space Ω into the state space S ⊆ R.

We can observe stochastic processes in two manners : by studying fixed realizations of the
process, or by studying the distributional properties of the process.

Definition 2.3.2. The realization (or sample path) of X at ω for a fixed ω ∈ Ω is the collection
{Xt(ω) : t ∈ T} of members of S.

Definition 2.3.3. Let t = (t1, t2, . . . , tn) be a vector with each ti ∈ T. Then the vector
(
Xt1 ,Xt2 , . . . ,Xtn

)
has the joint distribution function Ft : Rn

→ [0, 1] defined by

Ft(x) = P
(
Xt1 ≤ x1,Xt2 ≤ x2, . . . ,Xtn ≤ xn

)
.

Letting t range over all finite-length vectors of members of T, the collection {Ft} is called the collection
of finite-dimensional distributions (fdds) of X.

A specific class of stochastic processes,witch have a particular interest, is Gaussian processes.

Definition 2.3.4. A real-valued, meaning that S = R, continuous-time, meaning that T = [0,∞),
stochastic process X is called a Gaussian process if each finite-dimensional vector

(
Xt1 ,Xt2 , . . . ,Xtn

)
has the multivariate normal distribution N(µ(t),Σ(t)) for mean vector µ(t) and covariance matrix
Σ(t) which may depend on t.

Definition 2.3.5 (Filtrations and adapted processes). A filtrationF = (Ft)t ≥ 0 of a probability
space (Ω,F ,P)is a family of σ−algebras Ft indexed by t ∈ [0,∞], all contained in F , satisfying

1. if s ≤ t then Fs ⊂ Ft , and

2. F∞ = σ(∪t≥0Ft).

A stochastic process (Xt)t≥0 defined on (Ω;F ;P) is said to be adapted to the filtrationF if for
each t ≥ 0 the random variable (or random vector, if the stochastic process is vector-valued)
Xt is measurable relative to Ft.
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2.3.1. The Normal Distribution

The normal distribution is the most important one in all of probability and statistics. Many
numerical populations have distributions that can be fit very closely by an appropriate
normal curve.

Definition 2.3.6. A continuous random variable X is said to have a normal distribution with
parameters µ and σ (or µ and σ2), where −∞ < µ < +∞ and σ > 0 if the pdf 1 of X is

f (x;µ, σ) =
1

σ
√

2π
e
−(x−µ)2

2σ2 −∞ < x < +∞, (2.3.1)

Definition 2.3.7 (The Standard Normal Distribution). The normal distribution with parameter
values µ = 0 and σ = 1 is called the standard normal distribution. A random variable having a
standard normal distribution is called a standard normal random variable and will be denoted by Z.
The pdf of Z is

f (z; 0, 1) =
1
√

2π
e

z2
2 −∞ < z < +∞. (2.3.2)

Definition 2.3.8 (The Multivariate Gaussian Distribution). A vector-valued random variable

X = [X1,X2,X3, . . . ,Xn]T

is said to have a multivariate normal (or Gaussian) distribution with mean µ ∈ Rn and covariance
matrix Σ ∈ Sn

++
2 if its probability density function is given by

p(x;µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1/2(x − µ)TΣ−1(x − µ)

)
.

We write this as X ∼ N(µ,Σ).

Definition 2.3.9. A random vector (X1, . . . ,Xn) is called a Gaussian random vector if there exists an
n×m matrix A, and an n-dimensional vector b such that XT = AY+b, where Y is an m-dimensional
vector with independent standard normal entries.

2.4. Brownian Motion

The Brownian Motion (called Wiener process) is a stochastic process that will be important
for our study of stochastic calculus and the applications of stochastic calculus.

Definition 2.4.1. A Brownian motion (Wiener process) B = {Bt : t ≥ 0} is a real-valued Gaussian
process such that :

1. For any n,X j = Bt j − Bs j where 1 ≤ j ≤ n are independent variables whenever the intervals(
s j, t j

]
are disjoint (B has independent increments).

1. pdf : Probability distribution function
2. Recall from the section notes on linear algebra that Sn

++ is the space of symmetric positive definite n × n
matrices, defined as

Sn
++ =

{
A ∈ Rn×n : A = AT and xTAx > 0 for all x ∈ Rn such that x , 0

}
.
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2. Bs+t − Bs ∼ N
(
0, σ2t

)
∀s, t ≥ 0, where σ2 is a positive constant.

3. The sample paths of B are continuous. A Wiener process B is called standard if B0 = 0 and
σ2 = 1.

A standard d-dimensional Wiener process is a vector-valued stochastic process

Bt = (B(1)
t ,B

(2)
t , . . . ,B

(d)
t )

whose components B(i)
t are independent, standard one-dimensional Wiener processes.

2.4.1. Properties

In this section, we begin to prove some basic properties of Brownian motions that will
become invaluable as we start delving into more complex proofs.

Lemma 2.4.2 (Scaling invariance). Suppose (Bt)t≥0 is a standard Brownian motion and let a > 0.
Then, the process Xt = 1

a Ba2t is also a standard Brownian motion.

Proof. Continuity of the paths, independence and stationarity of the increments remain unchanged
under the rescaling. Considering Bt+h − Bt, we have

E (X(t + h) − X(t)) = E
(1

a
B(a2(t + h)) −

1
a

B(a2t)
)

=
1
a
E

(
B(a2t + a2h) − B(a2t)

)
,

and we can deduce thatE (X(t + h) − X(t)) = 0 as the same way we proof that Var(X(t+h)−X(t)) = h

Var (X(t + h) − X(t)) = Var
(1

a
B(a2(t + h)) −

1
a

B(a2t)
)

=
1
a2 (a2h) = h

Because the function t −→ B(t) is almost surely continuous, the function

t −→ X(t) =
1
a

B(a2t).

Is the composition of (almost surely) continuous functions and is therefore almost surely continuous.

thus X(t) is also a standard Brownian motion.

Theorem 2.4.3 (Time inversion). Suppose Bt is a standard Brownian motion. Then, the process
defined by Xt,

Xt =

{
0 if t = 0

tB1/t if t > 0 .

is a standard Brownian motion.
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Proof. The increments of this process having an expected value of zero is immediate. To see that the
other properties are satisfied, note that for Brownian motions, we have

Cov [Bt,Bt+s] = E [BtBt+s] = E [Bt (Bt+s − Bt + Bt)]

= E
[
B2

t

]
+ E [Bt+s]E [Bt − Bs] = t.

Then, for Xt we get

Cov [Xt,Xt+s] = Cov
[
tB1/t, (t + s)B1/(t+s)

]
= t(t + s) Cov

[
B1/t,B1/(t+s

]
= (t + s)

t
t + s

= t.

Thus,
Cov [Xt,Xt+s − Xt] = Cov [Xt,Xt+s] − Var [Xt] = t − t = 0

Var [Xt+s − Xt] = Var [Xt+s] + Var [Xt] − 2 Cov [Xt+s,Xt]
= (t + s) + t − 2t = s.

This shows that the increments have the right variance. Independence of increments holds due to Xt
and Xt+s having zero covariance and being normal variables.

Lastly, we need to demonstrate continuity. When t > 0, this is clear. Now, recall that the distribution
of Xt over the rationals is the same as the distribution for a Brownian Motion. This implies that for
t ∈ Q,

lim
t→0

Xt = 0.

Thus, completing the proof.

Corollary 2.4.4. Let {Bt}t≥0 be a Brownian motion with admissible filtration {Ft}t≥0, and let τ be
a stopping time for this filtration. Let

{
B∗s

}
s≥0 be a second Brownian motion on the same probability

space that is independent of the stopping field {Fτ}τ. Then the spliced process.

B̃t =

{
Bt for t ≤ τ

Bτ + B∗t−τ for t ≥ τ. .

is also a Brownian motion.

Corollary 2.4.5 (Law of large numbers). Almost surely,

lim
t→∞

Bt

t
= 0.

Proof. Let {X(t) : t ≥ 0} be as defined in Theorem 2.4.3 . Using this theorem, we see that

lim
t−→∞

B(t)/t = lim
t−→∞

X(1/t) = X(0) = 0.

Lemma 2.4.6. Let {Bt}t≥0 be a Wiener process and {Gt}t≥0 a filtration of the probability space on
which the Wiener process is defined. The filtration is said to be admissible for the Wiener process if

(a) The Wiener process is adapted to the filtration, and
(b) for every t ≥ 0, the process {Bt+s − Bt}s≥0 is independent of the σ− algebra Gt.
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2.4.2. Markov Process

Definition 2.4.7. Given a measurable space (S,B) called state space, where S is a set and B is a
σ−algebra on S. A function P : S × B −→ R is called a transition probability function if P(x, .) is a
probability measure on (S,B) for all x ∈ S and if for every B ∈ B,
the map s −→ P(s,B) is B−measurable. Define P1(x,B) = P(x,B) and inductively the measures

Pn+1(x,B) =

∫
s
Pn(y,B)P(x, dy),

where we write
∫

P(x, dy) for the integration on S with respect to the measure P(x, .).

Definition 2.4.8. Given a probability space (Ω,A,P) with a filtration An of σ−algebras. An
An−adapted process Xn with values in S is called a discrete time Markov process if there exists a
transition probability function P such that

P (Xn ∈ B\Ak) (ω) = Pn−k (Xk ∈ B) .

Definition 2.4.9. If the state space S is a discrete space, a finite or countable set, then the Markov
process is called a Markov chain, A Markov chain is called a denumerable Markov chain, if the state
space S is countable, a finite Markov chain, if the state space is finite.

Remark 2.4.1. It follows from the definition of a Markov process that Xn satisfies the elementary
Markov property : for n > k :,

P [Xn ∈ B\X1, . . . ,Xk] = P [Xn ∈ B\Xk] .

This means that the probability distribution of Xn is determined by know ing the probability distri-
bution of Xn−i. The future depends only on the present and not on the past.

Theorem 2.4.10 (Markov processes exist). For any state space (S,B) and any transition proba-
bility function P, there exists a corresponding Markov process X.

2.4.3. The Strong Markov Property

In this section, we begin to discuss multi-dimensional Brownian motion. Let us start with
this definition.

Definition 2.4.11. If B1, . . . ,Bd are all independent Brownian motions started in x1, . . . , xd, then
the random process Bt given by

Bt = (B1, . . . ,Bd) .

is called a d-dimensional Brownian motion started in (x1, . . . , xd). If Bt starts at the origin it is
termed a standard d-dimensional Brownian motion.

Theorem 2.4.12 (Markov Property). Let {Bt : t ≥ 0} is a Brownian motion started in x ∈ Rd.
Then the process {Bt+s − Bs : t, s > 0} is a Brownian motion started at the origin and is independent
of {Bt : 0 ≤ t ≤ s}.

Proof. Properties 1 and 3 follow from the cancellation of the B(s) terms and the fact that {B(t)t≥0}

is a Brownian motion. Because the map t −→ (B(t + s) − B(s)) is the composition of (almost surely)
continuous functions, the map t −→ (B(t + s)B(s)) is continuous.
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Finally, {B(t + s) − B(s)}t≥0 is a standard Brownian motion since B(0 + s) − B(s) = 0. Recall that
two stochastic processes {X(t)t≥0} and {Y(t)t≥0} are said to be independent if for any sets of times
t1, t2, . . . , tn ≥ 0 and s1, s2, . . . , sm ≥ 0 the vectors (X(t1), . . . ,X(tn)) and (Y(s1), . . . ,Y(sm)) are
independent. Let t1, . . . , tn ≥ 0 and s ≥ s1, . . . , sm ≥ 0. Because Brownian motion has independent
increments, it follows that (B(t1+s)−B(s), . . . ,B(tn+s)−B(s)) and (B(s1), . . . ,B(sm)) are independent
random vectors.

Definition 2.4.13. The germ σ-algebra is defined as F +(0), where

F
+(t) =

⋂
s>t

F
0(s),

and
{
F

0 : t ≥ 0
}

is the σ-algebra generated by {Bt : 0 ≤ s ≤ t}.

Definition 2.4.14. The tail σ-algebra, T of a Brownian motion is defined as

T =
⋂
t≥0

G(t),

where G(t) is the σ algebra generated by {Bs : s ≥ t}.

Theorem 2.4.15. For all s ≥ 0, the random process {Bt+s − Bs : t ≥ 0} is independent of F +(s).

Proof. By continuity B(t + s)− B(s) = limn−→∞ B(sn + t)− B(sn) for a strictly decreasing sequence
{sn : n ∈N} converging to s. By Theorem 2.4.12, for any t1, . . . , tm = 0, the vector

(B(t1 + s) − B(s), . . . ,B(tm + s) − B(s)) = lim
j↑∞

(B(t1 + s j) − B(s j), . . . ,B(tm + s j) − B(s j)). (2.4.1)

is independent of F +(s), and so is the process B(t + s) − B(s) : t ≥ 0.

Definition 2.4.16. A nonnegative random variable τ (possibly taking the value +∞ ) is a stopping
time with respect to a filtration (Ft)t≥0 if for every t ≥ 0 the event {τ ≤ t} ∈ Ft. The stopping time
τ is proper if τ < ∞ on Ω. The stopping field Fτ associated with a stopping time τ is the σ-algebra
consisting of all events B ⊂ F∞ such that B ∩ {τ ≤ t} ∈ Ft for every t ≥ 0.

Theorem 2.4.17 (Strong Markov property). For every almost surely finite stopping time T, the
process {BT+t − BT : t ≥ 0} is a standard Brownian motion independent of F +(T).

Proof. Let T be a stopping time. We can then define

Tn = (m + 1)2−n, where m/2n
≤ T < (m + 1)/2n.

This can be thought of as a discrete approximation which stops at the first dyadic rational next to the
original. Keeping in mind that this definition implies that Tn is also as stopping time, we then define
the following :

Bk(t) = Bt+k/2n − Bk/2n and Bk = {Bk(t) : t ≥ 0}
B∗(t) = Bt+Tn − BTn and B∗ = {B∗(t) : t ≥ 0} .

Now, take E ∈ F + (Tn) and the event {B∗ ∈ A}. We have

P
(
{B∗ ∈ A}

⋂
E
)

=

∞∑
k=1

P
(
{Bk ∈ A}

⋂
E
⋂
{Tn = k/2n

}

)
.
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Note, however, that E
⋂
{Tn = k/2n

} ∈ F
+ (k/2n), which by Theorem 2.4.15 is independent of

{Bk ∈ A}. Thus, we have

P
(
{B∗ ∈ A}

⋂
E
)

=

∞∑
k=0

P {Bk ∈ A}P
(
E
⋂
{Tn = k/2n

}

)
.

Now, using the Markov property 2.4.17we see that for all k ∈ N,P{B ∈ A} = P {Bk ∈ A}. This
yields

∞∑
k=0

P {Bk ∈ A}P
(
E
⋂
{Tn = k/2n

}

)
= P{B ∈ A}

∞∑
k=0

P
(
E
⋂
{Tn = k/2n

}

)
= P{B ∈ A}P(E).

Thus, B∗ is independent of every E and hence independent of F + (Tn). Now, recall that the sequence
Tn is a uniformly decreasing sequence that converges to T, henceF + (Tn) ⊂ F +(T) is independent of
the Brownian motion

(
Bs+Tn − BTn

)
. Then, the random process (Br+T − BT), defined by the increments

Bs+t+T − Bt+T = lim
n→∞

(
Bs+t+Tn − Bt+Tn

)
,

is independent, N(0, s), and almost surely continuous. Thus, it is a Brownian motion and inde-
pendent of F +(T).

2.5. Itô Integral

we define the stochastic integral
∫ +∞

0
ψ(s)dBs, as the mean square limit of Riemann-Stieltjes

sums.

We first define the integral for a simpler set of stochastic processes, random step functions,
as a Riemann-Stieltjes sum. We then show that, for stochastic processes ψ(s) satisfying
certain conditions, the process can be expressed as the limit of a sequence of random step
functions. We define the Itô integral to be the mean square limit of the sequence of integrals
of the random step functions.

Definition 2.5.1. Denote by {Ft}t the filtration generated by the one-dimensional Brownian motion
Bt and by B the Borel σ-algebra on [0,∞). LetV =V(v,w) be the class of functions

f : [0,∞) ×Ω→ R.

Such that
(i) (t, ω)→ f (t, ω) is B × F measurable.
(ii) f (t, ω) is Ft adapted.
(iii) E

[∫ w

v ( f (t, ω))2 dt
]
< ∞.

Definition 2.5.2 (Elementary function). A function φ ∈ V is called elementary if it has the form

φ(t, ω) =
∑

j

e j(ω)I[t j,t j+1)(t).

- Note that since φ ∈ V each function e j must be Ft j -measurable - For elementary functions
φ(t, ω) we define the integral as :∫ w

v
φ(t, ω)dBt(ω) =

∑
j≥0

e j(ω)
[
Bt j+1 − Bt j

]
(ω).
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Lemma 2.5.3 (The Itô isometry). If φ(t, ω) is bounded and elementary then

E

(∫ w

v
φ(t, ω)dBt(ω)

)2 = E

[∫ w

v
(φ(t, ω))2 dt

]
.

Proof. Let ∆B j = Bt j+1 − Bt j . Then

E
[
eie j∆Bi∆B j

]
=

{
0 if i , j
E

[
e2

j

] (
t j+1 − t j

)
if i = j .

using independence of eie j∆Bi and ∆B j if i < j. Thus

E

(∫ w

v
φdB

)2 =
∑

i, j

E
[
eie j∆Bi∆B j

]
=

∑
j

E
[
e2

j

] (
t j+1 − t j

)
= E

[∫ w

v
φ2 dt

]
.

We now use the Itô isometry to extend the definition from elementary functions to functions
onV.

Lemma 2.5.4. Let g ∈ V be bounded and g(·, ω) continuous for eachω. Then there exist elementary
functions φn ∈ V such that

E

[∫ w

v

(
g − φn

)2
dt

]
→ 0 as n→∞.

Proof. Define φn(t, ω) =
∑

j g
(
t j, ω

)
I[t j,t j+1)(t). Then φn is elementary since g ∈ V, and, for each

ω ∫ w

v

(
g − φn

)2
dt→ 0 as n→∞,

since g(·, ω) is continuous for each ω. Hence E
[∫ W

V

(
g − φn

)2
dt

]
→ 0 as n → ∞ by bounded

convergence 2.2.16.

Lemma 2.5.5. Let h ∈ V be bounded. Then there exist bounded functions gn ∈ V such that gn(·, ω)
is continuous for all ω and n, and

E

[∫ w

v

(
h − gn

)2 dt
]
→ 0 as n→∞.

Proof. Suppose |h(t, ω)| ≤M for all (t, ω). For each n let ψn be a non-negative, continuous function
on R such that ;

(i) ψn(x) = 0 for x ≤ −1/n and x ≥ 0
(ii)

∫ +∞

−∞
ψn(x)dx = 1.

Let us define

gn(t, ω) =

∫ t

0
ψn(s − t)h(s, ω)ds.
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Clearly, gn(·, ω) is continuous for each ω and
∣∣∣gn(t, ω)

∣∣∣ ≤M. Since h ∈ V, gn(t, ·) is Ft-measurable
for all t. Moreover, ∫ w

v

(
h(s, ω) − gn(s, ω)

)2 ds→ 0 as n→∞, for each ω,

By bounded convergence we get

E

[∫ w

v

(
h(s, ω) − gn(s, ω)

)2 ds
]
→ 0, as n→∞.

Lemma 2.5.6. Let f ∈ V. There exists a sequence of bounded functions {hn} ⊂ V such that

E

[∫ w

v

(
f − hn

)2 dt
]
→ 0 as n→∞.

Proof. Let us define

hn(t, ω) =


−n if f (t, ω) < −n
f (t, ω) if − n < f (t, ω) < n.
n if f (t, ω) > n

.

Then hn is bounded for each n ∈N and∫ w

v

(
f (s, ω) − hn(s, ω)

)2 ds→ 0 as n→∞, for each ω.

The result then follows by dominated convergence2.2.15.

- We can now complete the definition of the Itô integral∫ w

v
f (t, ω)dBt(ω), for f ∈ V.

- If f ∈ V by Lemmas 2.5.4 to 2.5.6 we can choose elementary functions φn ∈ V such that

E

[∫ w

v

(
f − φn

)2
dt

]
→ 0 as n→∞

- We can then define

I[ f ](ω) =

∫ w

v
f (t, ω)dBt(ω) = lim

n→∞

∫ T

S
φn(t, ω)dBt(ω).

- The limit above exists as an element of L2(P) since{∫ w

v
φn(t, ω)dBt(ω)

}
.

is a Cauchy sequence in L2(P) by the Itô Isometry.
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2.5.1. The Itô Integral

Definition 2.5.7 (The Itô integral). Let f ∈ V(v,w). Then the Itô integral of f (from v to w ) is
defined by ∫ w

v
f (t, ω)dBt(ω) = lim

n→∞

∫ w

v
φn(t, ω)dBt(ω) limit in L2(P), (2.5.1)

where
{
φn

}
is a sequence of elementary functions such that

E
[∫ w

v

(
f (t, ω) − φn(t, ω)

)2
dt

]
→ 0 as n→∞. (2.5.2)

Note that :
— such a sequence

{
φn

}
exists by Lemmas 2.5.4 to 2.5.6 .

— the limit in 2.5.1 exists and does not depend on the choice of
{
φn

}
, as long as 2.5.2

holds.

Corollary 2.5.8 (The Itô isometry).

E

(∫ w

v
f (t, ω)dBt(ω)

)2 = E

[∫ w

v
( f (t, ω))2 dt

]
for all f ∈ V(v,w) (2.5.3)

Corollary 2.5.9. If f (t, ω) ∈ V(v,w), fn(t, ω) ∈ V(t, ω) for n = 1, 2, . . . and

E

[∫ w

v

(
fn(t, ω) − f (t, ω)

)2 dt
]
→ 0 as n→∞,

then ∫ w

v
fn(t, ω)dBt(ω)→

∫ w

v
f (t, ω)dBt(ω) in L2(P) as n→∞.

Example 2.5.10. Assume B0 = 0. Then∫ t

0
Bs dBs =

1
2

B2
t −

1
2

t.

To prove this we consider the sequence of elementary functions

φn(t, ω) =
∑

j

B j(ω)I[t j,t j+1)(t),

where B j = Bt j . Then

E

[∫ t

0

(
φn − Bs

)2
ds

]
= E

∑
j

∫ t j+1

t j

(
B j − Bs

)2
ds


=

∑
j

∫ t j+1

t j

(
s − t j

)
ds

=
∑

i

1
2

(
t j+1 − t j

)2
→ 0 as ∆t j → 0.
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By the previous corollary, we get that∫ t

0
Bs dBs = lim

∆t j→0

∫ t

0
φn dBs = lim

∆t j→0

∑
j

B j∆B j.

We now note that

∆
(
B2

j

)
= B2

j+1 − B2
j =

(
B j+1 − B j

)2
+ 2B j

(
B j+1 − B j

)
=

(
∆B j

)2
+ 2B j∆B j,

and therefore

B2
t =

∑
j

∆
(
B2

j

)
=

∑
j

(
∆B j

)2
+ 2

∑
j

B j∆B j.

that is ∑
j

B j∆B j =
1
2

B2
t −

1
2

∑
j

(
∆B j

)2
.

Noting that
∑

j

(
∆B j

)2
→ t in L2(P) as ∆t j → 0, we obtain the result.

2.5.2. The Itô Lemma

Let f : R → R be an infinitely differentiable function. If we consider a sample path of a
Wiener process Bt(ω), we have the following Taylor expansion, writing dBt = Bt+dt − Bt :

f (Bt + dBt) − f (Bt) = f ′(Bt)dBt +
1
2

f ′′(Bt)(dBt)2 + . . . .

Then, because (dBt)
2 m.s.
→ dt as dt → 0, third and higher order terms have negligible contri-

bution to the Taylor expansion, so we have :

f (Bt) − f (Bs) =

∫ w

v
f ′ (Bx) dBx +

1
2

∫ w

v
f ′′ (Bx) dx.

where
∫ w

v f ′ (Bx) dBx is an Itô integral, and
∫ w

v f ′′ (Bz) dx is a Riemann integral, and equality
is in the mean square sense.

If we let f : R2
→ R have infinite partial derivatives, the Taylor expansion yields :

f (t + dt,Bt+dt) − f (t,Bt) = f1 (t,Bt) dt + f2 (t,Bt) dBt

+
1
2

[
f11 (t,Bt) (dt)2 + 2 f12 (t,Bt) dtdBt + f22 (t,Bt) (dBt)

2

Because (dBt)
2 m.s.
→ dt as dt→ 0, we have the following :

1. The contribution of third and higher order terms to the Taylor expansion are negligible.

2. The contribution of the dtdBt term is negligible. Therefore, we have :

f (t,Bt) − f (s,Bs) =

∫ w

v

[
f1 (x,Bα) +

1
2

f22 (x,Bx)
]

dx +

∫ w

v
f2 (x,Bx) dBx.

where again
∫ w

v f2 (x,Bx) dBx is an Itô integral, and
∫ w

v

[
f1 (x,Bx) + 1

2 f2 (x,Bx)
]

dx is a
Riemann integral, and equality is in the mean square sense.
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2.5.3. Itô Processes

There are a subset of stochastic processes, called Itô processes, which can be represented as
the solution to a stochastic differential equation (SDE).

Definition 2.5.11. A stochastic process Xt is an Itô process if it is a solution to the stochastic
differential equation :

Xt = X0 +

∫ t

0
µ (s,Xs) ds +

∫ t

0
σ (s,Xs) dBs.

where µ and σ are stochastic processes,
∫ t

0 µ (s,Xs) ds is a Riemann integral, and
∫ t

0 σ (s,Xs) dBs is
an Itô integral. We abbreviate this SDE to :

dX = µ(t,X)dt + σ(t,X)dW.

We state without proof the following facts :

1. So long as weak conditions on µ, σ, and X0 are satisfied, the SDE

dX = µ(t,X)dt + σ(t,X)dB

has a unique solution which has continuous sample paths.

2. If X is an Itô process, the processes µ and σ are uniquely determined :

µ1(t,X)dt + σ1(t,X)dW = dX = µ2(t,X)dt + σ2(t,X)dW ⇒ µ1 = µ2 and σ1 = σ2.

We will now extend the Itô Lemma to stochastic processes that are functions of Itô processes.
a justification for the formula rather than a rigorous proof. Suppose Xt is an Itô process with

dXt = µ (t,Xt) dt + σ (t,Xt) dBt.

Let f : R2
→ R have infinite partial derivatives. Then a Taylor expansion for

f (t + dt,Xt+dt) − f (t,Xt)

yields :

f (t + dt,Xt+dt) − f (t,Xt) = f1 (t,Xt) dt + f2 (t,Xt) dXt

+
1
2

[
f11 (t,Xt) (dt)2 + 2 f12 (t,Xt) dtdXt + f22 (t,Xt) (dXt)

2
]

· · ·

= f1 (t,Xt) dt + µ f2 (t,Xt) dt + σ f2 (t,Xt) dBt

+
1
2

[
σ2 f22 (t,Xt) (dBt)

2
]
.

Then we have the following extension of the Itö Lemma :

f (t,Xt) − f (s,Xs) =

∫ t

s

[
f1

(
y,Xy

)
+ µ f2

(
y,Xy

)
+
σ2

2
f22

(
y,Xy

)]
dy

+

∫ t

s
σ f2

(
y,Xy

)
dBy.
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2.5.4. Geometric Brownian motion

Let µ, σ ∈ R with σ > 0. Consider the SDE :

dXt = Xt
(
µdt + σdBt

)
.

where Wt is a standard Wiener process. The unique solution to this SDE is given by :

Xt = f (t,Bt) = X0e(µ− 22 )t+σBt .

and Xt is called a geometric Brownian motion. The geometric Brownian motion of this form
is clearly an Itö process with

µ (s,Xs) = µXs and σ (s,Xs) = σXs.

where µ (s,Xs) and σ (s,Xs) are stochastic processes determining the Itô process, and µ and
σ are constant parameters of the geometric Brownian motion.

Definition 2.5.12 (Stochastic variables). A random (or stochastic) variable X(ω), ω ∈ Ω is a real
valued function defined on the sample space Ω. In the following we omit the parameter ω whenever
no confusion is possible.

Definition 2.5.13 (Probability of an event). The probability of an event equals the number of
elementary outcomes divided by the total number of all elementary outcomes, provided that all cases
are equally likely.

Definition 2.5.14 (Probability distribution function and probability density). In the conti-
nuous case, the probability distribution function (PDF)FX(x) of a vectorial stochastic variable
X = (X1, . . . ,Xn) is defined by the monotonically increasing real function

FX (x1, . . . , xn) = P (X1 ≤ x1, . . . ,Xn ≤ xn) . (2.5.4)

where we used the convention that the variable itself is written in upper case letters, whereas the
actual values that this variable assumes are denoted by lower case letters.

The probability density pX (x1, . . . , xn) (PD) of the random variable is then defined by

FX (x1, . . . , xn) =

∫ x1

−∞

· · ·

∫ xn

−∞

px (u1, . . . ,un) du1 · · ·dun. (2.5.5)

and this leads to
∂n FX

∂x1 · · · ∂xn
= pX (x1, . . . , xn) .

Note that we can express (2.5.4) and (2.5.5) alternatively if we put

P (x11 ≤ X1 ≤ x12, . . . , xn1 ≤ Xn ≤ xn2)
=

∫ x12

x11
· · ·

∫ xn2

xn1
· · ·pX (x1, . . . , xn) dx1 · · ·dxn.

The conditions to be imposed on the PD are given by the positiveness and the normalization condition

PX (x1, . . . , xn) ≥ 0;
∫
· · ·

∫
pX (x1, . . . , xn) dx1 · · ·dxn = 1.

In the latter equation we used the convention that integrals without explicitly given limits refer to
integrals extending from the lower boundary −∞ to the upper boundary ∞. In a continuous phase
space the PD may contain Dirac delta functions

P(x) =
∑

k

q(k)δ(x − k) + P̂(x); q(k) = P(x = k).
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where q(k) represents the probability that the variable x of the discrete set equals the integer
value k. We also dropped the index X in the latter formula. We can interpret it to correspond
to a PD of a set of discrete states of probabilities q(k) that are embedded in a continuous
phase space S. The normalization condition (1.4) yields now∑

k

qk +

∫
s
p̂(x)dx = 1.
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Chapitre 3
Fixed Point Theorems &
C0−semigroup

In this chapter we present some definitions and theorem of fixed point and others properties
of the semi-group theory are presented.

3.1. Generalized Metric and Banach Spaces

In this section we define vector metric spaces and generalized Banach spaces and prove
some properties. If, x, y ∈ Rn, x = (x1, . . . , xn), y = (y1, . . . , yn), by x ≤ y we mean xi ≤ yi for
all i = 1, . . . ,n. Also |x| = (|x1|, . . . , |xn|) and max(x, y) = max(max(x1, y1), . . . ,max(xn, yn)). If
c ∈ R, then x ≤ c means xi ≤ c for each i = 1, . . . ,n. For x ∈ Rn, (x)i = xi, i = 1, . . . ,n.

Definition 3.1.1. Let X be a nonempty set. By a vector-valued metric on X we mean a map
d : X × X→ Rn with he following properties :

(i) d(u, v) ≥ 0 for all u, v ∈ X ; if d(u, v) = 0 then u = v
(ii) d(u, v) = d(v,u) for all u, v ∈ X
(iii) d(u, v) ≤ d(u,w) + d(w, v) for all u, v,w ∈ X.

Note that for any i ∈ {1, . . . ,n} (d(u, v))i = di(u, v) is a metric space in X.

We call the pair (X, d) generalized metric space .For r = (r1, r2, . . . , rn) ∈ Rn
+,we will denote

by
B(x0, r) = {x ∈ X : d(x0, x) < r}.

the open ball centrad in x0 with radius r and

B(x0, r) = {x ∈ X : d(x0, x) ≤ r}.

the closed ball centered in x0 with radius r.

Definition 3.1.2. Let E be a vector space onK = R or C. By a vector-valued norm on E we mean a
map ‖ · ‖ : E→ Rn

+ with the following properties :
(i) ‖x‖ ≥ 0 for all x ∈ E; if ‖x‖ = 0 then x = 0.
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(ii) ‖λx‖ = |λ|‖x‖ for all x ∈ E and λ ∈ K.
(iii) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ E.

The pair (E, ‖ · ‖) is called a generalized normed space. If the generalized metric generated
by ‖ · ‖ (i.e d(x, y) = ‖x− y‖) is complete then the space (E, ‖ · ‖) is called a generalized Banach
space, where

‖x − y‖ =

‖x − y‖1
. . .

‖x − y‖n

 .
Notice that ‖ · ‖ is a generalized Banach space on E if and only if ‖ · ‖i, i = 1, . . . ,n are norms
on E. In the following, we are interested by giving some fixed point theorems with related
notions :

Definition 3.1.3. Let E and F two Banach spaces and A be an application defined on E in F. We say
that A is completely continuous if it is continuous and transforms any bounded of E into a relatively
compact set in F.A is called compact if A(E) is relatively compact in F.

3.2. Fixed Point Theorems

Theorem 3.2.1 ([50]). [Banach contraction principle]Let E be a Banach space. If A : E → E is a
contraction, then A has a unique fixed point in E.

Theorem 3.2.2 (Schauder’s fixed point theorem). LetM be a closed convex subset of a Banach
space E. If A :M→M is continuous and the set A(M) is compact, then A has a fixed point inM.

Theorem 3.2.3. [50][Non linear Alternative of Leray-Shauder type for contractive maps] Suppose
U is an open subset of Banach space X, 0 ∈ U and N : U→ X a contraction with N(U) bounded.Then
either

1. N has a fixed point in U
Or

2. There exist λ ∈ (0; 1) and u ∈ ∂U with u = λN(u)

Theorem 3.2.4 (Perov). [112] Let (X; d) be a complete generalized metric space and T : X → X a
generalized contraction with Lipschitz matrix M : Then T has a unique .fixed point x∗ and for each
x ∈ X we have

d(Tk(x); x∗) ≤Mk(I −M)−1d(x; T(x)); k ∈N

Theorem 3.2.5. [112]Let (X, d) be a complete generalized metric space with d : X ×X −→ Rn and
let N : X −→ X be such that

d(N(x),N(y)) ≤Md(x, y).

For all x, y ∈ X and some square matrix M of nonnegative numbers. If the matrix M is convergent
to zero, that is Mk

−→ 0 as k −→ ∞, then N has a unique fixed point x∗ ∈ X

d(Nk(x0), x∗) ≤Mk(I −M)−1d(N(x0), x0).

For every x0 ∈ X and k ≥ 1.

Lemma 3.2.6. If A ∈ Mn×n(R+) is a matrix with ρ(A) < 1 ; then ρ(A + B) < 1 for every matrix
B ∈Mn×n(R+) whose elements are small enough.
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The role of matrices with spectral radius less than one in the study of semilinear operator
systems was pointed out in [113], also in connection with other abstract principles from
nonlinear functional analysis.

Theorem 3.2.7 (Schauder). Let X be a Banach space, D ⊂ X a nonempty closed bounded convex
set and T : D → Da completely continuous operator (i.e., T is continuous and T(D) is relatively
compact). Then T has at least one fixed point.

Theorem 3.2.8 (Leray-Schauder). Let (X; |.|X) be a Banach space, R > 0 and

T : BX(0; R)→ X

a completely continuous operator. If |u|X < R for every solution u of the equation u = λT(u) and
any λ ∈ (0; 1) ; then T has at least one fixed point.

Theorem 3.2.9 (Krasnosel’skii, M.A. (1955)). [75] Let M be a closed, convex, bounded and
nonempty subset of a Banach space X. Let A1 and A2 be two operators such that

a) A1x + A2y ∈M for all x, y ∈M;
b) A1 is a completely continuous operator (continuous, and compact, that is, it maps bounded

sets into relatively compact sets) ;
c) A2 is a contraction mapping.

Then there exists z ∈M such that z = A1z + A2z.

3.3. Semigroup Theory

Definition 3.3.1. Let X be a (real or complex) Banach space. A one-parameter semigroup on X is
a function T : [0, 1) → L(X) (where L(X) denotes the space of bounded linear operators in X, with
domain all of X), satisfying,

(i) T(t + s) = T(t)T(s), for all t, s > 0.
If additionally

(ii) lim
t→0+

T(t)x = x for all x ∈ X,

then T is called a C0−semigroup (on X) (also a strongly continuous semigroup). If T is defined on
R instead of [0, 1), and (i) holds for all t, s ∈ R, then T is called a one-parameter group, and if
additionally (ii) holds, then T is called a C0−group.

Remark 3.3.1. (a) Property (i) implies that for t, s ≥ 0 the operatiors T(t),T(s) commute also,

if t1, t2, · · · , tn ≥ 0 , then T

 n∑
j=1

t j

 =
∏n

j=1 T(t j).

(b) Preperty (i) implies that T(0) = T(0)2 is a projection.
(c) If T is a C0−semigroup, then T(0)x = limt→0+

T(t)T(0)x = lim
t→0+

T(t)x = x for all x ∈ X, ie.,

T(0) = I

Lemma 3.3.2. [54] Let A ∈ L(X), and define

T(t) = etA =

∞∑
j=0

(tA) j

j!
for t ∈ R. (3.3.1)

Then T is C0−semigroup.
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Lemma 3.3.3 ([54]). Let T be a one-parameter semigroup on X, and assume that there existsδ > 0
such that M := sup

0≤t<δ
‖T(t)‖ < ∞. Then there exists ω ∈ R such that

‖T(t)‖ ≤Meωt for all t ≥ 0

Proposition 3.3.4 ([54]). Let T be a semi-group on X
(a) Then there exist M ≥ 0 and ω ∈ R such that

‖T(t)‖ ≤Meωt for all t ≥ 0.

(b) For all x ∈ X the function t ∈ [0,∞) 7→ T(t)x is continuous. In other words, the function T
is strongly continuous.

(c) If T is C0−group on X, then there exist M ≥ 0 and ω ∈ R such that

‖T(t)‖ ≤Meω|t| for all t ∈ R.

For all x ∈ X the function R 3 t 7→ T(t)x ∈ X is continuous.

Lemma 3.3.5 ([54]). Let T be a one-parameter semigroup on X. Assume that

sup
0≤t<1

‖T(t)‖ < ∞

and that there exists a dense subset D of X such that limt→0−+ T(t)x = x. Then T is a C0−semigroup.

This lemma is an immediate consequence of the following fundamental fact of functional
analysis, which we insert here, also for further reference.

Theorem 3.3.6 ([54]). Let X,Y be Banach spaces over the same field, and let a, b ∈ R, a < b.
(a) Let f : [a, b]→ X be continuous, and let A ∈ L(X,Y). Then

A
∫ b

a
f (t)dt =

∫ b

a
A f (t)dt.

(b) (Hille’s theorem) Let A be a closed operator from X to Y. Let f : [a, b] → X be continuous,
f (t) ∈ dom(A) for all t ∈ [a, b], and t 7→ A f (t) ∈ Y continuous. Then

∫ b

a f (t)dt ∈ dom(A),
and

A
∫ b

a
f (t)dt =

∫ b

a
A f (t)dt.

3.3.1. The Generator of a C0−semigroup

Let X,Y be two vector spaces over the same field K ∈ R,C. For a linear relation in X×Y, i.e.,
a subspace A ⊆ X × Y, we define the domain of A,

dom(A) := {x ∈ X; there exists y ∈ Y such that (x, y) ∈ A}.

the range of A,

ran(A) := {y ∈ Y; there exists x ∈ X such that (x, y) ∈ A}.

and the kernel (or null space) of A,

ker(A) := {x ∈ X; (x, 0) ∈ A}.
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Definition 3.3.7 ([54]). Let X be a Banach space. For a C0−semigroup T we define the generator
(also called the infinitesimal generator) A, an operator in X, by

A :=
{
(x, y) ∈ X × X; y = lim

h→0+
h−1(T(h)x − x) exists.

}
.

Theorem 3.3.8 ([54]). Let T be a C0−semigroup on X, with generator A. Then :
(a) For x ∈ dom(A) one has T(t)x ∈ dom(A) for all t > 0, the function t → T(t)x is conti-

nuously differentiable on [0, 1), and

d
dt

T(t)x = AT(t)x = T(t)Ax(t ≤ 0).

(b) For all x ∈ X, t > 0 one has
∫ t

0 T(s)xds ∈ dom(A),

A
∫ t

0
T(s)xds = T(t)x − x.

(c) dom(A) is dense in X, and A is a closed operator.

3.4. Hille-Yosida Theorem

Let E be a Banach space and let A : dom(A) ⊆ E→ E be an unbounded linear operator. One
says that A is m-accretive if dom(A) = E and for every λ > 0, I + λA is bijective from D(A)
into E with ‖(I + λA)−1

‖L(E) ≤ 1.

Theorem 3.4.1. Hille-yosida[23] Let A be m-accretive. Then given any u0 ∈ dom(A) there exists
a unique function

u ∈ C1([0,+∞); E) ∩ C([0,+∞); dom(A)).

Such that {
du
dt Au = 0 on [0; +∞)
u(0) = u0

(3.4.1)

Moreover
‖u(t)‖ ≤ ‖u0‖ and

∥∥∥∥∥du
dt

∥∥∥∥∥ (t) = ‖Au(t)‖ ≤ ‖Au0‖∀t ≥ 0.

The map u0 → u(t) extended by continuity to all of E is denoted by SA(t). It is a continuous
semigroup of contractions on E. Conversely, given any continuous semigroup of contractions S(t),
there exists a unique m-accretive operator A such that S(t) = SA(t)∀t ≥ 0.

3.4.1. The Exponential Formula

There are numerous iteration techniques for solving (3.4.1). Let us mention a basic method

Theorem 3.4.2. [54] Assume that A is m-accretive. Then for every u0 ∈ D(A) the solution u of
(3.4.1) is given by the "exponential formula"

u(t) = lim
n→0

[(
I +

t
n

A
)−1

]n

u0. (3.4.2)
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Consider, in a Banach space E, the problem{
du
dt t + Au(t) = f (t) on [0,T]

u(0) = u0
(3.4.3)

The following holds.

Theorem 3.4.3 ([54]). Assume that A is m-accretive. Then for every u0 ∈ dom(A) and every
f ∈ C1([0,T]; E) there exists a unique solution u of (3.4.3) with

u ∈ C1([0,T]; E) ∩ C([0,T]; dom(A)).

Moreover, u is given by the formula

u(t) = SA(t)u0 +

∫ t

0
SA(t − s) f (s)ds, (3.4.4)

where SA(t) is the semigroup.

51



Chapitre 4
Fractional Bihari Inequalities and
Applications

The Gronwall-Bellman and the Bihari inequalities provide excellent tools in the qualitative
theory of differential equations (see [14, 104, 114, 115]). There are many generalizations in
the literature both linear and nonlinear cases [5, 6, 105, 106, 117]. Bihari’s inequality [22] is
perhaps the most important generalization of the Gronwall-Bellman inequality.

Fractional differential equations have now proved to be valuable tools modeling many real
world phenomena (like physics and chemistry [45, 82, 84, 96]). Moreover, there has also been
a major theoretical development in fractional differential equations ; see the monographs of
Abbas et al. [1], Kilbas et al. [68], Podlubny [109] and Samko et al. [119].

One main advantage of the fractional Gronwall lemma is in the study of qualitative proper-
ties of solutions of fractional differential equations, integral equations with singular kernels
and impulsive fractional differential equations.

In 1981, Henry [53] established the following Gronwall-like nonlinear integral inequality :

If

v(t) ≤ w(t) + a
∫ t

0

v(s)
(t − s)γ

ds, for every t ∈ [0, b],

for some function w and constants a > 0 and 0 < γ < 1, then there exists a constant K = K(γ)
such that

v(t) ≤ w(t) + Ka
∫ t

0

w(s)
(t − s)γ

ds, for every t ∈ [0, b].

Ye et al. [136] studied the following fractional integral inequality :

Let v : [0, b) → [0,∞) be a real function,supposed nonnegative and locally integrable on
0 ≤ t < b. and w(·) be a nonnegative, locally integrable function on [0, b) (some b ≤ +∞), and
let a(t) be a nonnegative, nondecreasing continuous function defined on 0 ≤ t < b, a(t) ≤M
(constant).
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Assume γ > 0 such that

v(t) ≤ w(t) + a(t)
∫ t

0

v(s)
(t − s)1−γ ds.

Then

v(t) ≤ w(t) +

∫ t

0
φ(s)w(s)ds, for every t ∈ [0, b),

where

φ(s) =

∞∑
n=1

(a(t)Γ(γ))n

Γ(nγ)
(t − s)nγ−1.

Researchers have developed many useful and recent integral inequalities based on the above
inequalities, primarily motivated by their uses in various branches of fractional differential
equations (see [2, 3, 36, 43, 53, 83, 126, 136] and the references therein).

However, in certain situations, such as some classes of fractional differential equations
or fractional integral equations, where the right sides have nonlinear growth, it will be
desirable to explore some new Bihari inequalities in order to obtain some estimates. In
this paper, we discuss a class of integral inequalities with singular kernels. Mathematical
analysis techniques, combined with Young’s and Hölder’s inequalities, are used to obtain
explicit estimates. Finally, to illustrate the applications of our results some examples are
given.

4.1. The Bihari Fractional Inequality

First, we present a nonlinear version of Gronwall’s lemma for singular kernels.

Theorem 4.1.1. Let 0 < α < 1 and k, k̄ > 0. Suppose f is a nonnegative function, which is integrable
(or locally integrable) on I = [0, b], andψ : [0,∞)→ [0,∞) is a nondecreasing continuous function.
If u(t) is a continuous function on I satisfying

u(t) ≤ k +

∫ t

0
f (s)ψ(u(s))ds + k̄

∫ t

0
(t − s)α−1u(s)ds,

then

u(t) ≤ Ψ−1

Ψ(k∗) +

1 +

∞∑
n=1

(k̄Γ(α)bα)n

Γ(nα + 1)

 ∫ t

0
f (s)ds

,
where

Ψ(z) =

∫ z

1

dy
ψ(y)

, k∗ = 1 +

∞∑
n=1

(k̄Γ(α)bα)n

Γ(nα + 1)
,

and Ψ−1 is the inverse function of Ψ, and for every t ∈ [0, b],

Ψ(k∗) +

1 +

∞∑
n=1

(k̄Γ(α)bα)n

Γ(nα + 1)

 ∫ t

0
f (s)ds ∈ Dom(Ψ−1), t ∈ [0, b],

with Dom(Ψ−1) denoting the domain of Ψ−1.
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Proof. Let us consider

v(t) = k +

∫ t

0
f (s)ψ(u(s))ds, t ∈ [0, b].

Then
v′(t) = f (t)ψ(u(t)), v(0) = k.

and

u(t) ≤ v(t) +

∫ t

0
(t − s)α−1u(s)ds.

Hence

u(t) ≤ v(t) +

∫ t

0

∞∑
n=1

(k̄Γ(α))n

Γ(nα)
(t − s)nα−1v(s)ds

≤ v(t) +

∫ t

0

∞∑
n=1

(k̄Γ(α))n

Γ(nα)
(t − s)nα−1v(t)ds.

Therefore

u(t) ≤

1 +

∞∑
n=1

(k̄Γ(α)bα)n

Γ(nα + 1)

 v(t).

We set

w(t) =

1 +

∞∑
n=1

(k̄Γ(α)bα)n

Γ(nα + 1)

 v(t).

Since ψ is a nondecreasing function, we obtain

v′(t)
ψ(w(t))

≤ f (t), t ∈ [0, b].

By integrating both sides of the above inequality from 0 to t, we get∫ t

0

v′(s)

ψ


1 +

∞∑
n=1

(k̄Γ(α)bα)n

Γ(nα + 1)

 v(s)


ds ≤

∫ t

0
f (s)ds.

Then, we obtain ∫ w(t)

w(0)

dz
ψ(z)

≤

1 +

∞∑
n=1

(k̄Γ(α)bα)n

Γ(nα + 1)

 ∫ t

0
f (s)ds.

Thus, it follows that

u(t) ≤ Ψ−1

Ψ(k∗) +

1 +

∞∑
n=1

(k̄Γ(α)bα)n

Γ(nα + 1)

 ∫ t

0
f (s)ds

.
Remark 4.1.1.
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• For α→ 1 and f = 0, we obtain the classical result that

u(t) ≤ k + k
∫ t

0
u(s)ds

implies that
u(t) ≤ kek̄t.

• If f = 0 and α ∈ (0, 1) we obtain the Henry [53] inequality.

• If k̄ = 0, we obtain the classical Bihari [22] inequality.

Next, we present a version of the fractional Bihari inequality on a bounded interval.

Theorem 4.1.2. Let u : [0, b]→ [0,∞) be a continuous function and ψ : [0,∞)→ [0,∞) be a non-
negative non-decreasing continuous function such that ψ(0) = 0. Assume that there are constants
k > 0, k̃ ≥ 0, 0 < α < 1 and p

(
1 − 1

q

)
= 1, q > 1

α such that

u(t) ≤ k + k̃
∫ t

0
(t − s)α−1ψ(u(s))ds.

Then, for every t ∈ [0, b] we have

u(t) ≤ Φ−1

(
Φ(k̄) +

t
q

)
, (4.1.1)

where

Φ(z) =

∫ z

k

du
(ψ(u))q du, k̄ = k +

k̃bp(α−1)+1

p(p(α − 1) + 1)

and
Φ(k̄) +

t
q
∈ Dom(Φ−1).

Proof. Using Young’s inequality, we have

(t − s)α−1ψ(u(s)) ≤
1
p

(t − s)p(α−1) +
1
q

(ψ(u(s)))q, s ∈ [0, t).

This implies that

u(t) ≤ k +
1
p

∫ t

0
(t − s)p(α−1)ds +

1
q

∫ t

0
(ψ(u(s)))qds.

Since q > 1
α and p

(
1 − 1

q

)
= 1, hence p < 1

1−α , so p(α − 1) + 1 > 0. We obtain immediately

u(t) ≤ k +
k̃tp(α−1)+1

p(p(α − 1) + 1)
+

1
q

∫ t

0
(ψ(u(s)))qds

and

u(t) ≤ k +
k̃bp(α−1)+1

p(p(α − 1) + 1)
+

1
q

∫ t

0
(ψ(u(s)))qds.
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Putting

v(t) = k +
k̃bp(α−1)+1

p(p(α − 1) + 1)
+

1
q

∫ t

0
(ψ(u(s)))qds,

it is obvious that
v′(t) =

1
q

(ψ(u(t)))q, v(0) = k̄.

Since u(t) ≤ v(t) and ψ is a nondecreasing function, we get that

v′(t) ≤
1
q
(
ψ(v(t))

)q , t ∈ [0, b].

By integrating the above inequality over 0 to t, we write∫ t

0

v′(s)
(ψ(v(s)))q ds ≤

t
q
.

We then have ∫ v(t)

k̄

dz
(ψ(z))q ≤

t
q
.

This means that

Φ(v(t)) =

∫ v(t)

k

dz
(ψ(z))q ≤ Φ(k) +

t
q
.

Therefore

v(t) ≤ Φ−1

(
Φ(k̄) +

t
q

)
, t ∈ [0, b],

which gives us the desired estimate (4.1.2).

By the same argument of the above theorem, we can easily prove the following corollary.

Corollary 4.1.3. Let u : R+ → [0,∞) be a continuous function and ψ : [0,∞) → [0,∞) be a
non-negative non-decreasing continuous function such that ψ(0) = 0. Assume there are constants
k > 0, k̃ ≥ 0, 0 < α < 1 and p

(
1 − 1

q

)
= 1, q > 1

α such that

u(t) ≤ k + k̃
∫ t

0
(t − s)α−1 q

√
ψ(u(s))ds.

Then, for every t ∈ [0, b] we have

u(t) ≤ Φ−1

(
Φ(k̄) +

t
q

)
, (4.1.2)

where

Φ(z) =

∫ z

k

du
ψ(u)

du, k̄ = k +
k̃bp(α−1)+1

p(p(α − 1) + 1)

and
Φ(k̄) +

t
q
∈ Dom(Φ−1).

By using Hölder’s inequality, we give a natural generalization of the above inequality.
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Theorem 4.1.4. Let k > 0 and u, f : [0,∞)→ (0,∞) be continuous functions and
ψ : [0,∞)→ [0,∞), be continuous, nondecreasing and ψ(0) = 0. If

u(t) ≤ k +

∫ t

0
(t − s)α−1 f (s)ψ(u(s))ds

then

u(t) ≤
[
Ψ−1

(
2qbq(p(α−1)+1)(
p(α − 1) + 1

)q

∫ t

0
f q(s)ds

)] 1
q

t ∈ [0, b], (4.1.3)

where

Ψ(z) =

∫ z

2qkq

dx
(ψ( q
√

x))q
, z ≥ 2qkq, p

(
1 −

1
q

)
= 1, q >

1
α
.

For c > 2qkq,

u(t) ≤
[
Ψ−1

(
Ψ(c) +

2qbq(p(α−1)+1)(
p(α − 1) + 1

)q

∫ t

0
f q(s)ds

)] 1
q

t ∈ [0, b]. (4.1.4)

Proof. Applying Hölder’s inequality, we obtain

u(t) ≤ k +

(∫ t

0
(t − s)p(α−1)ds

) 1
p
(∫ t

0
f q(s)ψq(u(s))ds

) 1
q

.

For every t ∈ [0, b], we obtain

u(t) ≤ k +
bp(α−1)+1

p(α − 1) + 1

(∫ t

0
f q(s)ψq(u(s))ds

) 1
q

.

Then

uq(t) ≤ 2qkq +
bqp(α−1)+q

(p(α − 1) + 1)q

∫ t

0
f q(s)ψq(u(s))ds.

Hence

u(t) ≤ 2
(
kq + 2q bqp(α−1)+q

(p(α − 1) + 1)q

∫ t

0
f q(s)ψq(u(s))ds

) 1
q

.

Define the function

v(t) = 2qkq +
2qbqp(α−1)+q

(p(α − 1) + 1)q

∫ t

0
f q(s)ψq(u(s))ds, t ∈ [0, b].

Then

v′(t) =
2qbqp(α−1)+q

(p(α − 1) + 1)q f q(t)ψq(u(t)).

From the definitions of Ψ and v, it follows that

dΨ(v(t))
dt

= Ψ′(v(t))v′(t) =
v′(t)

ψq
(

q
√

v(t)
)

=
bqp(α−1)+q f q(t)ψq(u(t))

(p(α − 1) + 1)qψq
(

q
√

v(t)
) .
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Because ψ is a nondecreasing function, we can get

dΨ(v(t))
dt

≤
2qbqp(α−1)+q f q(t)
(p(α − 1) + 1)q .

Integrating this from 0 to t and using Ψ(v(0)) = Ψ(2qkq) = 0,

Ψ(v(t)) ≤
2qbqp(α−1)+q

(p(α − 1) + 1)q

∫ t

0
f q(s)ds.

As a result, since Ψ is strictly decreasing,we have

v(t) ≤ Ψ−1

(
2qbqp(α−1)+q

(p(α − 1) + 1)q

∫ t

0
f q(s)ds

)
, t ∈ [0, b],

which concludes the proof of theorem.

We now consider more classes of functions in developing a new Gronwall-Bellman-Bihari
type fractional integral inequality on bounded or unbounded intervals.

Definition 4.1.5. A function ψ : [0,∞)→ [0,∞) is said to belong to the class H if
H1) ψ(z) is continuous, nondecreasing for z ≥ 0 and positive for every z > 0.
H2) There exists a continuous function φ : [0,∞) → [0,∞) (called a “multiplier function”)

such that
ψ(γz) ≤ φ(γ)ψ(z), for every z ≥ 0, γ > 0.

For examples about this class of functions we suggest [34].

Now we give the first of our main results of this part.

Theorem 4.1.6. Let u, f : [0,∞)→ [0,∞) be two continuous functions andψ ∈ H, with correspon-
ding multiplier function ψ on [0,∞), and h(t) > 0 be a monotonic, nondecreasing and continuous
function on [0,∞). If

u(t) ≤ h(t) +

∫ t

0
(t − s)α−1 f (s)ψ(u(s))ds, t ∈ [0, b],

then

u(t) ≤ h(t)Ψ−1

(
Ψ(k′) +

1
q

∫ t

0

(
φ(h(s)) f (s)

h(s)

)q

ds
)
, t ∈ [0, b],

where

Ψ(z) =

∫ z

1

du
(ψ(u))q , p

(
1 −

1
q

)
= 1, q ≥

1
α
, k′ = 1 +

bp(α−1)+1

p(p(α − 1) + 1)

and

Ψ(k′) +
1
q

∫ t

0

(
φ(h(s)) f (s)

h(s)

)q

ds ∈ Dom(Ψ−1), t ∈ [0, b].

Proof. According to the hypothesis, we have

u(t) ≤ h(t) +

∫ t

0
(t − s)α−1 f (s)ψ(u(s))ds, t ∈ [0, b].
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Then

u(t)
h(t)

≤ 1 +

∫ t

0
(t − s)α−1 f (s)

h(s)
ψ(u(s))ds

≤ 1 +

∫ t

0
(t − s)α−1φ(h(s)) f (s)

h(s)
ψ

(
u(s)
h(s)

)
ds.

From Young’s inequality, we get

u(t)
h(t)

≤ 1 +

∫ t

0
(t − s)α−1 f (s)

h(s)
ψ(u(s))ds

≤ 1 +
1
p

∫ t

0
(t − s)p(α−1)+1ds +

1
q

∫ t

0

(
φ(h(s)) f (s)

h(s)

)q (
ψ

(
u(s)
h(s)

))q

ds.

This implies that

u(t)
h(t)

≤ 1 +
bp(α−1)+1

p(p(α − 1) + 1)
+

1
q

∫ t

0

(
φ(h(s)) f (s)

h(s)

)q (
ψ

(
u(s)
h(s)

))q

ds.

Define

v(t) = 1 +
bp(α−1)+1

p(p(α − 1) + 1)
+

1
q

∫ t

0

(
φ(h(s)) f (s)

h(s)

)q (
ψ

(
u(s)
h(s)

))q

ds.

It follows that

v′(t) =

(
φ(h(t)) f (t)

h(t)

)q (
ψ

(
u(t)
h(t)

))q

, v(0) = k′.

Since ψ is a nondecreasing function, then

v′(t) ≤
(
φ(h(t)) f (t)

h(t)

)q (
ψ(v(t))

)q .

By integration from 0 to t, we obtain∫ v(t)

v(0)

dz
ψ(z)

≤
1
q

∫ t

0

(
φ(h(s)) f (s)

h(s)

)q

ds.

Consequently, it follows that

v(t) ≤ Ψ−1

(
Ψ(k′) +

1
q

∫ t

0

(
φ(h(s)) f (s)

h(s)

)q

ds
)
, t ∈ [0, b].

Hence

u(t) ≤ h(t)Ψ−1
(
Ψ(k′) +

1
q

∫ t

0

(
φ(h(s)) f (s)

h(s)

)q

ds
)
, t ∈ [0, b].

Corollary 4.1.7. Let k > 0 and f , g : [0,∞) → (0,∞) be continuous functions and ψ ∈ H, with
corresponding multiplier function ψ on [0,∞). If

u(t) ≤ k +

∫ t

0
f (s)ψ(u(s))ds +

∫ t

0
(t − s)α−1g(s)ψ(u(s))ds,
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then

u(t) ≤
[
Ψ−1

(
2qbq(p(α−1)+1)(
p(α − 1) + 1

)q

∫ t

0
f q(s)ds

)] 1
q

t ∈ [0, b], (4.1.5)

where

Ψ(z) =

∫ z

2qkq

dx
(ψ( q
√

x))q
, z ≥ 2qkq, q

(
1 −

1
p

)
= 1, q >

1
α
.

For c > 2qkq,

u(t) ≤
[
Ψ−1

(
Ψ(c) +

2qbq(p(α−1)+1)(
p(α − 1) + 1

)q

∫ t

0
f q(s)ds

)] 1
q

t ∈ [0, b]. (4.1.6)

Proof. For every t ∈ [0, b] we have

u(t) ≤ k +

∫ t

0
f (s)ψ(u(s))ds +

∫ t

0
(t − s)α−1g(s)ψ(u(s))ds

= k +

∫ t

0
(t − s)1−α(t − s)α−1 f (s)ψ(u(s))ds +

∫ t

0
(t − s)α−1g(s)ψ(u(s))ds

≤ k + b1−α
∫ t

0
(t − s)α−1 f (s)ψ(u(s))ds +

∫ t

0
(t − s)α−1g(s)ψ(u(s))ds.

Then

u(t) ≤ k +

∫ t

0
(t − s)α−1L(s)ψ(u(s))ds, t ∈ [0, b],

where
L(t) = b1−α f (t) + g(t), t ∈ [0, b].

From Theorem 4.1.6, we obtain

u(t) ≤ kΨ−1

(
Ψ(k′) +

φq(k)
kqq

∫ t

0
Lq(s)ds

)
, t ∈ [0, b],

and this concludes the proof of corollary.

Using Hölder’s inequality, we establish a simple proof of the fractional Gronwall inequality.

Theorem 4.1.8. Let u, g : [0,∞)→ [0,∞) be two continuous functions and h(t) > 0 be a monotonic,
nondecreasing and continuous function on [0,∞). If

u(t) ≤ h(t) + g(t)
∫ t

0
(t − s)α−1u(s)ds, t ∈ [0, b],

then

u(t) ≤ h(t)

1 + g∗(t)

(∫ t

0 m(s)ds
) 1

q

1 − (1 −m(s))
1
q

 , t ∈ [0,∞), (4.1.7)

where

m(t) = exp
(
−

∫ t

0
gq
∗ (s)ds

)
, g∗(t) = g(t)t

p(α−1)+1
p , p

(
1 −

1
q

)
= 1, q >

1
α
.
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Proof. By Hölder’s inequality, we obtain

u(t) ≤ h(t) + g(t)
(∫ t

0
(t − s)p(α−1)ds

) 1
p
(∫ t

0
uq(s)ds

) 1
q

.

Since h is a monotonic, nondecreasing and positive function, we have

u(t)
h(t)
≤ 1 + g(t)

(∫ t

0
(t − s)p(α−1)ds

) 1
p
(∫ t

0

(
u(s)
h(s)

)q

ds
) 1

q

.

Using a Pachpatte inequality [104], the result follows from (4.1.7).

Now, we give a nonlinear version of the above inequality on an unbounded interval.

Theorem 4.1.9. Let u, f1, f2, g : [0,∞) → [0,∞) be continuous functions and ψ ∈ H, with
corresponding multiplier function φ on [0,∞), and h(t) > 0 be a monotonic, nondecreasing and
continuous function on J = [0,∞) and f1

h ∈ Lp(J,R+). If

u(t) ≤ h(t) + g(t)
∫ t

0
(t − s)α−1u(s)ds +

∫ t

0
f1(s) f2(s)ψ(u(s))ds,

then, for t ∈ J,

u(t) ≤ h∗(t)Ψ−1

Ψ(1 + k) +
1
q

∫ t

0

(
f2(s)φ(h(s))

)q

φ
1 + g∗(s)

(∫ s

0 m(r)dr
) 1

q

1 − (1 −m(s))
1
q




q′

ds

 ,
where

h∗(t) = h(t)

1 + g∗(t)

(∫ t

0 m(s)ds
) 1

q

1 − (1 −m(t))
1
q

 , t ∈ J,

Ψ(z) =

∫ z

1

dx
(ψ(x))q ,m(t) = exp

(
−

∫ t

0
gq
∗ (s)ds

)
, g∗(t) = g(t)t

p(α−1)+1
p , t ∈ J,

and

k =
1
p

∥∥∥∥∥ f1
h

∥∥∥∥∥p

Lp
, p

(
1 −

1
q

)
= 1, q ≥

1
α
.

Proof. From Young’s inequality, we obtain that,

u(t)
h(t)

≤ 1 + g(t)
∫ t

0
(t − s)α−1 u(s)

h(s)
ds +

1
p

∫ t

0

(
f1(s)
h(s)

)p

ds

+
1
q

∫ t

0
f q
2 (s)

(
ψ(u(s))

)q ds.

This implies

u(t)
h(t)

≤ 1 + g(t)
∫ t

0
(t − s)α−1 u(s)

h(s)
ds +

1
p

∥∥∥∥∥ f1
h

∥∥∥∥∥p

Lp

+
1
q′

∫ t

0

(
f2(s)φ(h(s))

)q
(
ψ

(
u(s)
h(s)

))q

ds.
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Let

v(t) = 1 +
1
p

∥∥∥∥∥ f1
h

∥∥∥∥∥p

Lp
+

1
q

∫ t

0

(
f2(s)φ(h(s))

)q
(
ψ

(
u(s)
h(s)

))q

ds.

Hence

v′(t) =
1
q

(
f2(t)φ(h(t))

)q
(
ψ

(
u(t)
h(t)

))q

, v(0) = 1 + k, k :=
1
p

∥∥∥∥∥ f1
h

∥∥∥∥∥p

Lp
,

and

u(t)
h(t)

≤ v(t) + g(t)
∫ t

0
(t − s)α−1 u(s)

h(s)
ds.

By Theorem 4.1.8,

u(t)
h(t)
≤ v(t)

1 + g∗(t)

(∫ t

0 m(s)ds
) 1

q

1 − (1 −m(t))
1
q

 .
Since ψ is nondecreasing and has corresponding multiplier function φ,

(
ψ

(
u(t)
h(t)

))q

≤

ψ
v(t)

1 + g∗(t)

(∫ t

0 m(s)ds
) 1

q

1 − (1 −m(t))
1
q





q

.

Then

v′(t)
(ψ(v(t)))q ≤

1
q

(
f2(t)φ(h(t))

)q

φ
1 + g∗(t)

(∫ t

0 m(s)ds
) 1

q

1 − (1 −m(t))
1
q




q

.

Integration from 0 to t yields

∫ v(t)

1+k

dz
(ψ(z))q ≤

1
q

∫ t

0

(
f2(s)φ(h(s))

)q

φ
1 + g∗(s)

(∫ s

0 m(r)dr
) 1

q

1 − (1 −m(s))
1
q




q

ds.

Finally, we have

v(t) ≤ Ψ−1

Ψ(1 + k) +
1
q

∫ t

0

(
f2(s)φ(h(s))

)q

φ
1 + g∗(s)

(∫ s

0 m(r)dr
) 1

q

1 − (1 −m(s))
1
q




q

ds

 .
4.1.1. Fractional Cauchy Problems

In this section, we assume the usual definitions of Iαh(t),Dαh(t) and cDαh(t) for, respectively,
the Riemann-Liouville fractional integral, Riemann-Liouville fractional derivative and Ca-
puto fractional derivative.

For b > 0 and α ∈ (0, 1], in this part, we consider the following Caputo fractional differential
equation : {

cDαy(t) = f (t, y(t)), t ∈ [0, b],
y(0) = a. (4.1.8)
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where f : R+ × Rn
→ Rn is a continuous function and a ∈ Rn. We will now establish the

first result of this section.

Theorem 4.1.10. Let q > 1
α and p(1− 1

q ) = 1.Assume there existsψ : [0,∞)→ [0,∞) a continuous,
nondecreasing function and ψ(0) = 0 such that

‖ f (t, x) − f (t, y)‖ ≤ ψ(‖x − y‖), for all x, y ∈ Rn. (4.1.9)

If ∫
∞

0

dr
(ψ( q
√

r))q
= ∞, for every x > 0, (4.1.10)

then the problem (4.1.8) has unique solution on [0,∞).
In addition, if

b∞ =

∫
∞

0

dr
(ψ( q
√

r))q
< ∞,

then for each b < b∞, the problem (4.1.8) has unique solution on [0, b].

Proof. For every b > 0, we consider the following Cauchy problem{
cDαy(t) = f (t, y(t)), t ∈ [0, b],

y(0) = a. (4.1.11)

Step 1 : Uniqueness of a solution. For this, suppose there exist two solutions x and y of (4.1.11).
Then

x(t) = a +
1

Γ(α)

∫ t

0
(t − s)α−1 f (s, x(s))ds, t ∈ [0, b]

and

y(t) = a +
1

Γ(α)

∫ t

0
(t − s)α−1 f (s, y(s))ds, t ∈ [0, b].

It follows from (4.1.9) that

‖x(t) − y(t)‖ ≤
1

Γ(α)

∫ t

0
(t − s)α−1

‖ f (s, y(s)) − f (s, x(s))‖ds

≤
1

Γ(α)

∫ t

0
(t − s)α−1ψ(‖x(s) − y(s)‖)ds

Thus, for each ε > 0, we obtain

‖x(t) − y(t)‖ ≤ ε +
1

Γ(α)

∫ t

0
(t − s)α−1ψ(‖x(s) − y(s)‖)ds.

Theorem 4.1.4, implies that

‖x(t) − y(t)‖ ≤ Ψ−1

(
bp(α−1)+1

p(α − 1) + 1

∫ t

0
f q(s)ds

)
,

and from the condition (4.1.10) we have that

x(t) = y(t), for all t ∈ [0, b].
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Step 2 : Existence of the solution. Indeed, since f is a continuous function, then it is easy to
prove that the operator N : C([0, b],Rn)→ C([0, b],Rn) defined by

N(y)(t) = a +
1

Γ(α)

∫ t

0
(t − s)α−1 f (s, y(s))ds, t ∈ [0, b]

is completely continuous.
• A priori bounds on solutions.

Let y = γN(y) for some 0 < γ < 1. This implies by (4.1.9),

‖y(t)‖ ≤ ‖a‖ +
1

Γ(α)

∫ t

0
(t − s)α−1

‖ f (s, y(s))‖ds

≤ ‖a‖ +
1

Γ(α)

∫ t

0
(t − s)α−1ψ(‖y(s)‖)ds +

1
Γ(α)

∫ t

0
(t − s)α−1

‖ f (s, 0)‖ds.

Hence

‖y(t)‖ ≤ ‖a‖ + 1 +
bα‖ f (·, 0)‖∞

Γ(α + 1)
+

1
Γ(α)

∫ t

0
(t − s)α−1ψ(‖y(s)‖)ds.

From Theorem 4.1.4, we have

‖y(t)‖ ≤
[
Ψ−1

(
Ψ(k̄) +

2qtqp(α−1)+2q(
Γ(α)(p(α − 1) + 1)

)q

)] 1
q

,

where

Ψ(z) =

∫ z

1

dx
ψq( q
√

x)
.

Then

‖y‖∞ ≤
[
Ψ−1

(
Ψ(k̄) +

2qbqp(α−1)+2q(
Γ(α)(p(α − 1) + 1)

)q

)] 1
q

=: M.

Set
U := {y ∈ C([0, b],Rn) : ‖y‖∞ < M + 1},

and consider the operator N : U→ C([0, b],Rn). From the choice of U, there is no y ∈ ∂U such that
y = γN(y) for some γ ∈ (0, 1). As a consequence of the nonlinear alternative of Leray-Schauder type
[50, 37], we deduce that N has a fixed point y in U which is a solution of the problem (4.1.11). We
can conclude that for every b > 0 the Problem (4.1.8) has unique solution on [0, b).

Now, we show that the problem has unique solution defined on [0,∞).

Let
b∞ = sup{b ∈ R+ : the problem (4.1.8) has unique solution on [0, b)}.

If b∞ < ∞, then for b∗ = b∞ + 1, we introduce similarly that the fractional Cauchy problem{
cDαy(t) = f (t, y(t)), t ∈ t ∈ [0, b∗],

y(0) = a. (4.1.12)

has unique solution defined on [0, b∗], therefore b∗ = b∞ + 1 ≤ b∞ which is contradiction. This
concludes the proof of the existence of a global solution of the problem (4.1.8) on R+.
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As a consequence of above theorem we have :

Corollary 4.1.11. Let f : R+ × Rn
→ Rn be a continuous function and f (·, 0) = 0. Assume that

there exists K > 0 such that

‖ f (t, x) − f (t, y)‖ ≤ K‖x − y‖, for all x, y ∈ Rn, t ∈ R+. (4.1.13)

Then the problem (4.1.8) has a unique solution on R+.

Proof. From the condition (4.1.13), we have

‖ f (t, x)‖ ≤ K‖x‖, for all x ∈ Rn, t ∈ R+.

Let ψ : R+ → [0,∞) be defined by

ψ(x) = Kx, x ∈ R+.

It is clear that ψ(x) is a continuous, nondecreasing function, ψ(0) = 0, and∫
∞

0

dxr
ψ( q
√

r)
=

∫ x

0

dr
q√Kr

= ∞, q >
1
α
.

From Theorem 4.1.10 the problem (4.1.8) has unique solution defined on R+.

4.1.2. Stochastic Fractional Differential Equations

Stochastic differential equations play a retrograde role in various applied fields, including
physics, biology and engineering problems ; see for instance the monographs of Arnold [10],
Han and Kloeden [52], Øksendal, [103], Pardoux and Rascanu [107], Tsokos and Padgett
[125] and Sobczyk [123]. However few publications treat stochastic differential differential
equations involving fractional derivatives. The most of these papers have attempted to
prove the nature and uniqueness of solutions under Lipschitz and linear growth condi-
tions. The existence and uniqueness of solutions, for some classes of stochastic differential
equations with integer and fractional order derivative, by employing the fixed point theory
have been discussed in [20, 30, 33, 36, 38, 118, 124, 127, 132, 135, 134] and the references
therein.

In this subsection, we relax the Lipschitz and linear growth conditions for the existence and
uniqueness of solutions for fractional stochastic differential equations of the type, cDαy(t) = f (t, y(t)) + g(t, y(t))

dw(t)
dt

, t ∈ R+,

y(0) = y0 ∈ L2(Ω,F0,P),
(4.1.14)

where 1
2 < α < 1, f , g : R+ ×Rm

→ Rm are continuous and W(t) = (W1(t),W2(t), . . . ,Wm(t))T

is an m-dimensional Brownian motion defined on the complete probability space
(Ω,F , {Ft}t≥0,P) with a filtration F = {Ft}t≥0 satisfying the usual conditions (i.e., right
continuous and F0 containing all P-null sets).

For each t ∈ R+,L2(Ω,Ft,P) denotes the space of all Ft-measurable, mean square integrable
functions x = (x1, . . . , xm) : Ω→ Rm with

‖x‖ms =
√
E‖x‖22, ‖x‖

2
2 =

m∑
i=1

|xi|
2.
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Definition 4.1.12. A process y : R+ × Rm
→ Rm is said to be F−adpted if for every t ∈ R+, we

have y(t) ∈ L2(Ω,Ft,P).

Let (Ω,F ,Ft,P) be a complete probability space furnished with a complete family of right
continuous increasing σ-algebras {Ft, t ∈ [0, b]} satisfying Ft ⊂ F . Let L2(Ω,F ,Ft,P) be a
space of all square random variables with values inRm, that are measurable with respect to
{Ft, t ∈ [0, b]}. Let M̂2([0, b],Rm) denote the class of Rm-valued stochastic processes
{ξ(t) : t ∈ [0, b]}which are Ft-adapted and have finite second moments, that is,

‖ξ‖M̂2
= sup

t∈[0,b]
(E|ξ(t)|2)

1
2 < ∞.

It is easy to verify that M̂2 furnished with the norm topology as defined above, is a Banach
space. White noise is usually regarded as informal time derivative W′(t) of Brownian motion
or Wiener process W(t). In Itô’s theory of stochastic integration an integral with respect to
W′(t) is rewritten as one with respect to dW(t), that is,∫ b

a
ψ(t)dW(t) =

∫ b

a
ψ(t)W′(t)dt.

The Itô integral
∫ b

a ψ(t)dW(t) is defined for any process ψ(t) which satisfies the conditions,
(1) ψ is nonanticipating,

(2) Almost all sample paths of ψ belong to L2([a, b]). Moreover,
∫ b

a ψ(t)dW(t) ∈ L2(Ω) if
and only if ψ ∈ L2([a, b] ×Ω). In fact the following equality holds

E

∣∣∣∣∣∣
∫ b

a
ψ(t)dW(t)

∣∣∣∣∣∣
2

= E

∫ b

a
|ψ(t)|2dt.

Definition 4.1.13. An F−adpted process y : R+ × Ω → Rm is called a solution of (4.1.14) with
initial condition y(0) = y0 if the following integral stochastic equation holds for all t ∈ [0,∞),

y(t) = y0 +
1

Γ(α)

∫ t

0
(t − s)α−1 f (s, y(s))ds +

1
Γ(α)

∫ t

0
(t − s)α−1g(s, y(s))dW(s).

Theorem 4.1.14. Let f , g : [0, b] ×Rm
→ Rm be continuous functions. Assume that there exist a

continuous nondecreasing function ψ : R+ → (0,∞) and K > 0 such that

E‖ f (t, x) − f (t, y)‖2 ≤ Kψ(E‖x − y‖2), ∀x, y ∈ Rm,

∫ b

0
‖ f (s, 0)‖2ds < ∞, (4.1.15)

E‖g(t, x) − g(t, y)‖2 ≤ Kψ(E‖x − y‖2), ∀ x, y ∈ Rm, (4.1.16)

and ∫ x

0

dz
ψ(z)

= ∞, for all x > 0. (4.1.17)

Consequently, the following fractional stochastic differential equation, cDαy(t) = f (t, y(t)) + g(t, y(t))
dW(t)

dt
, t ∈ [0, b],

y(0) = y0 ∈ L2(Ω,F0,P),
(4.1.18)

has a unique solution on [0, b].

66



Fractional Bihari Inequalities and Applications 2021-2022

Proof. We define the operator S : M̂2([0, b],Rm)→ M̂2([0, b],Rm) by

Sy(t) = y0 +
1

Γ(α)

∫ t

0
(t − s)α−1 f (s, y(s))ds +

1
Γ(α)

∫ t

0
(t − s)α−1g(s, y(s))dW(s), t ∈ [0, b].

Step 1 : First, we show that the operator S is well-defined.
Let y ∈ M̂2([0, b],Rm), then

‖Sy(t)‖2 ≤ 3‖y0‖
2 +

3
Γ2(α)

∥∥∥∥∥∥
∫ t

0
(t − s)α−1 f (s, y(s))ds

∥∥∥∥∥∥2

+
3

Γ2(α)

∥∥∥∥∥∥
∫ t

0
(t − s)α−1g(s, y(s))dW(s)

∥∥∥∥∥∥2

≤ 3‖y0‖
2 +

6
Γ2(α)

∥∥∥∥∥∥
∫ t

0
(t − s)α−1( f (s, y(s)) − f (s, 0))ds

∥∥∥∥∥∥2

+
6

Γ2(α)

∥∥∥∥∥∥
∫ t

0
(t − s)α−1 f (s, 0)ds

∥∥∥∥∥∥2

+
6

Γ2(α)

∥∥∥∥∥∥
∫ t

0
(t − s)α−1(g(s, y(s)) − g(s, 0))dW(s)

∥∥∥∥∥∥2

+
6

Γ2(α)

∥∥∥∥∥∥
∫ t

0
(t − s)α−1g(s, 0)dW(s)

∥∥∥∥∥∥2

.

Then

E‖Sy(t)‖2 ≤ 3E‖y0‖
2 +

6
Γ2(α)

E

∥∥∥∥∥∥
∫ t

0
(t − s)α−1( f (s, y(s)) − f (s, 0))ds

∥∥∥∥∥∥2

+
6

Γ2(α)
E

∥∥∥∥∥∥
∫ t

0
(t − s)α−1 f (s, 0)ds

∥∥∥∥∥∥2

+
6

Γ2(α)
E

∥∥∥∥∥∥
∫ t

0
(t − s)α−1(g(s, y(s)) − g(s, 0))dW(s)

∥∥∥∥∥∥2

+
6

Γ2(α)
E

∥∥∥∥∥∥
∫ t

0
(t − s)α−1g(s, 0)dW(s)

∥∥∥∥∥∥2

.
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Combining the Hölder inequality and Itô isometry, we obtain

E‖Sy(t)‖2 ≤ 3E‖y0‖
2 +

6b2α−1

αΓ2(α)

∫ t

0
E(‖ f (s, y(s)) − f (s, 0)‖2)ds

+
6b2α−1

αΓ2(α)

∫ b

0
‖ f (s, 0)‖2ds +

6
Γ2(α)

∫ t

0
(t − s)2α−2E‖g(s, y(s)) − g(s, 0)‖2ds

+
6

Γ2(α)

∫ t

0
(t − s)2α−2

‖g(s, 0)‖2ds

≤ 3E‖y0‖
2 +

6b2α

αΓ2(α)

∫ t

0
Kψ(E(‖y(s)‖2)ds

+
6b2α−1

αΓ2(α)

∫ b

0
‖ f (s, 0)‖2ds +

6
Γ2(α)

∫ t

0
(t − s)2α−2Kψ(E‖y(s)‖2)ds

+
6

Γ2(α)

∫ t

0
(t − s)2α−2

‖g(s, 0)‖2ds.

Therefore

‖Sy)‖2
M̂2
≤ 3E‖y0‖

2 +
6b2αK
αΓ2(α)

ψ(‖y‖2
M̂2

) +
6b2α−1

αΓ2(α)
‖ f (·, 0)‖2L2

+
6b2αK

(2α − 1)Γ2(α)
ψ(‖y‖2

M̂2
) +

6b2α

(2α − 1)Γ2(α)
‖g(·, 0)‖2∞.

This implies that, the operator S is well-defined.
Clearly, the fixed points of operator S are solutions of problem (4.1.18).

Step 2 : S is continuous.

Let (yn)n∈N be a sequence such that yn → y in M̂2. Then, for t ∈ [0, b], by the dominated convergence
theorem, we have

E‖Syn(t) − Sy(t)‖2 ≤
2

Γ(α)
E
∥∥∥∥∫ t

0
(t − s)α−1[ f (s, yn(s)) − f (s, y(s))]ds

∥∥∥∥2

+
2

Γ(α)
E
∥∥∥∥∫ t

0
(t − s)α−1[g(s, yn(s)) − g(s, y(s))]dW(s)

∥∥∥∥2

≤
2b2α−1

(2α − 1)Γ(α)

∫ t

0
E‖ f (s, yn(s)) − f (s, y(s))‖2ds

+
2

Γ(α)

∫ t

0
(t − s)2α−2E‖g(s, yn(s)) − g(s, y(s))‖2ds.

Then

‖Syn − Sy‖2
M̂2
≤

2b2αK
(2α − 1)Γ(α)

ψ(‖yn − y‖2
M̂2

)

+
2b2α−1K

(2α − 1)Γ(α)
ψ(‖yn − y‖2

M̂2
)→ 0, as n→∞.

Thus S is continuous on M̂2([0, b],Rm).
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Step 3 : S maps bounded sets into bounded sets in M̂2([0, b],Rm).

Indeed, it is enough to show that for any q > 0, there exists l > 0 such that for each

y ∈ Br = {y ∈ M̂2([0, b],Rm) : ‖y‖2
M̂2
≤ r},

one has ‖Sy‖2
M̂2
≤ l.

Let y ∈ Br, then for each t ∈ [0, b], we have

E
∥∥∥Sy(t)

∥∥∥2
= E

∥∥∥∥∥∥y0 + 1
Γ(α)

∫ t

0
(t − s)α−1 f (s, y(s))ds +

1
Γ(α)

∫ t

0
(t − s)α−1g(s, y(s))dW(s)

∥∥∥∥∥∥2

≤ E
∥∥∥y0

∥∥∥2
+ 3

Γ2(α)E
∥∥∥∥∫ t

0
(t − s)α−1 f (s, y(s))ds

∥∥∥∥2

+ 3
Γ2(α)E

∥∥∥∥∫ t

0
(t − s)α−1g(s, y(s))dW(s)

∥∥∥∥2

≤ E
∥∥∥y0

∥∥∥2
+ 3Kb2α

(2α−1)Γ2(α)ψ(r) + 3b2α

(2α−1)Γ2(α)

∥∥∥ f (·, 0)
∥∥∥2

L2

+ 3Kb2α−1

(2α−1)Γ2(α)ψ(r) + 3b2α−1

(2α−1)Γ2(α)

∥∥∥g(·, 0)
∥∥∥
∞

:= l.

Therefore, we obtain
‖Sy‖2

M̂2
≤ l.

Step 4 : The map S is equicontinuous.

Let τ1, τ2 ∈ [0, b], τ1 < τ2 and y ∈ Br, we have

E‖Sy(τ2) − Sy(τ1)‖2 ≤
4

Γ2(α)
E

∥∥∥∥∥∫ τ1

0
[(τ1 − s)α−1

− (τ2 − s)α−1]‖ f (s, y(s))‖ds
∥∥∥∥∥2

+
8

Γ2(α)

∫ τ2

τ1

(τ2 − s)2α−2ds
∫ b

0
E‖ f (s, y(s))‖2ds

+
8

Γ2(α)

∫ τ1

0
[(τ1 − s)α−1

− (τ2 − s)α−1]2E‖g(s, y(s))‖2ds

+
8

Γ2(α)

∫ τ2

τ1

(τ2 − s)2α−2E‖g(s, y(s))‖2ds.

Combining Young’s inequality, Hölder’s inequality and Itô’s isometry, we obtain

E‖Sy(τ2) − Sy(τ1)‖2 ≤
8(bKψ(r) + ‖ f (·, 0)‖2L2 )

Γ2(α)

(∫ τ1

0
((τ1 − s)α−1

− (τ2 − s)α−1)ds
)2

+
8(bKψ(r) + ‖ f (·, 0)‖2L2 )

Γ2(α)

∫ τ2

τ1

(τ2 − s)2α−2ds

+
8(Kψ(r) + ‖g(·, 0)‖2∞

Γ2(α)

∫ τ1

0
((τ1 − s)α−1

− (τ2 − s)α−1)2ds

+
8(Kψ(r) + ‖g(·, 0)‖2∞)

Γ2(α)

∫ τ2

τ1

(τ2 − s)2α−2ds.
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Since for every a ≥ ā ≥ 0, we have (a − ā)2
≤ a2
− ā2, then we obtain

E‖Sy(τ2) − Sy(τ1)‖2 ≤

8(bKψ(r) + ‖ f (·, 0)‖2L2 )

Γ2(α)

(
τα1
α
−
τα2
α

+
(τ2 − τ1)α

α

)2

+
8(bKψ(r) + ‖ f (·, 0)‖2L2 )

(2α − 1)Γ2(α)
(τ2 − τ1)2α−1

+
8(Kψ(r) + ‖g(·, 0)‖2∞)

Γ2(α)

∫ τ1

0
((τ1 − s)2α−2

− (τ2 − s)2α−2)ds

+
8(Kψ(r) + ‖g(·, 0)‖2∞)

Γ2(α)

∫ τ2

τ1

(τ2 − s)2α−2ds.

Therefore

≤

8(bKψ(r) + ‖ f (·, 0)‖2L2 )

Γ2(α)

(
τα1
α
−
τα2
α

+
(τ2 − τ1)α

α

)2

+
8(bKψ(r) + ‖ f (·, 0)‖2L2 )

(2α − 1)Γ2(α)
(τ2 − τ1)2α−1

+
8(Kψ(r) + ‖g(·, 0)‖2∞)

(2α − 1)Γ2(α)
(τ2α−1

1 + (τ2 − τ1)2α−1
− τα2 )

+
8(Kψ(r) + ‖g(·, 0)‖2∞)

(2α − 1)Γ2(α)
(τ2 − τ1)2α−1.

The right-hand side tends to zero as τ2 − τ1 → 0. Then S(Br) is equicontinuous. As a consequence
of Steps 1 to 3 together with the Arzelà-Ascoli we can conclude that

S : M̂2([0, b],Rm)→ M̂2([0, b],Rm),

is completely continuous.

Step 5 : A priori bounds on solutions.

Let y = γS(y) for some 0 < γ < 1. Then,

y(t) = γ

(
y0 +

1
Γ(α)

∫ t

0
(t − s)α−1 f (s, y(s))ds +

1
Γ(α)

∫ t

0
(t − s)α−1g(s, y(s))dW(s)

)
.

This implies, for each t ∈ J, that

E‖y(t)‖2 ≤ 3E‖y0‖
2 +

3
Γ(α)
E

∥∥∥∥∥∥
∫ t

0
(t − s)α−1 f (s, y(s))ds

∥∥∥∥∥∥2

+
3

Γ2(α)
E

∥∥∥∥∥∥
∫ t

0
(t − s)α−1g(s, y(s))dW(s)

∥∥∥∥∥∥2

.
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Using the Hölder inequality and Itô isometry together, we obtain

E‖y(t)‖2 ≤ 3E‖y0‖
2 +

3b2α

(2α − 1)Γ2(α)

∫ t

0
E‖ f (s, y(s))‖2ds

+
3

Γ(α)

∫ t

0
(t − s)2α−2E‖g(s, y(s))‖2ds

≤ 3E‖y0‖
2 +

6b2α

(2α − 1)Γ2(α)

∫ t

0
Kψ(E‖y(s)‖2)ds

+
6b2α

(2α − 1)Γ(α)

∫ t

0
K‖ f (s, 0)‖2ds

+
6

Γ2(α)

∫ t

0
(t − s)2α−2Kψ(E‖y(s)‖2)ds +

6
Γ2(α)

∫ t

0
(t − s)2α−2

‖g(s, 0)‖2)ds.

Thus, we obtain

E‖y(t)‖2 ≤ K0 + K1

∫ t

0
ψ(E‖y(s)‖2)ds + K2

∫ t

0
(t − s)γ−1ψ(E‖y(s)‖2))ds. (4.1.19)

From corollary 4.1.7, there exists a constant M such that

E‖y(t)‖2 ≤M, t ∈ [0, b].

Thus
‖y‖M̂2

≤

√

M.

Let
U =

{
y ∈ M̂2([0, b],Rn); ‖y‖M̂2

≤

√

M + 1
}

The operator S : Ū −→ M̂2([0, b],Rn) is completely continuous.Then by the choice of U there no
y ∈ ∂U such U = S(U)for some γ ∈ (0, 1). As a consequence of the nonlinear alternative of Leray-
Schauder type5.2.6, we deduce that S has a fixed point y in U which is a solution of the problem4.1.11
.And we can conclude that for every b > 0 the problem 4.1.14 has a unique solution.

Step 6 : Now we show that the problem (4.1.18), has a unique solution.
Let x and y be two solutions of (4.1.18), then

x(t) = y0 +
1

Γ(α)

∫ t

0
(t − s)α−1 f (s, x(s))ds +

1
Γ(α)

∫ t

0
(t − s)α−1g(s, x(s))dW(s), t ∈ [0, b],

and

y(t) = y0 +
1

Γ(α)

∫ t

0
(t − s)α−1 f (s, y(s))ds +

1
Γ(α)

∫ t

0
(t − s)α−1g(s, x(s))ds, t ∈ [0, b].
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Then

E‖x(t) − y(t)‖2 ≤
2

Γ(α)
E
∥∥∥∥∫ t

0
(t − s)α−1[ f (s, x(s)) − f (s, y(s))]ds

∥∥∥∥2

+
2

Γ(α)
E
∥∥∥∥∫ t

0
(t − s)α−1[g(s, x(s)) − g(s, y(s))]dW(s)

∥∥∥∥2

≤
2b2α−1

(2α − 1)Γ(α)

∫ t

0
E‖ f (s, x(s)) − f (s, y(s))‖2ds

+
2

Γ(α)

∫ t

0
(t − s)2α−2E‖g(s, x(s)) − g(s, y(s))‖2ds

≤
2b2α−1

(2α − 1)Γ(α)

∫ t

0
(t − s)2−2α(t − s)(2α−1)−ψ(E‖x(s) − y(s)‖2)ds

+
2

Γ(α)

∫ t

0
(t − s)(2α−1)−2ψ(E‖x(s) − y(s)‖2)ds.

Therefore

E‖x(t) − y(t)‖2 ≤ K
∫ t

0
(t − s)β−1ψ(E‖x(s) − y(s)‖2)ds

where
K =

2
Γ(α)

+
2b

(2α − 1)Γ(α)
, β = 2α − 1.

For each ε > 0 we have

E‖x(t) − y(t)‖2 ≤ ε + K
∫ t

0
(t − s)β−1ψ(E‖x(s) − y(s)‖2)ds.

Theorem 4.1.4 implies that

E‖x(t) − y(t)‖2 ≤ Ψ−1

(
bp(α−1)+1

p(α − 1) + 1

∫ t

0
f q(s)ds

)
:= x,

and from the condition (4.1.17) we conclude that

E‖x(t) − y(t)‖2 = 0, for all t ∈ [0, b].

The uniqueness is proved.

With a very similar proof as in Theorem 3.1 we can establish the next result.

Theorem 4.1.15. Assume there existsψ : [0,∞)→ [0,∞) be a continuous function, nondecreasing
and ψ(0) = 0 such that

E‖ f (t, x) − f (t, y)‖2 ≤ ψ(E‖x − y‖2), ∀x, y ∈ Rn (4.1.20)

and
E‖g(t, x) − g(t, y)‖2 ≤ ψ(E‖x − y‖2), ∀x, y ∈ Rn. (4.1.21)

If ∫ x

0

dx
(ψ(
√

x))2
= ∞, for every x > 0, (4.1.22)
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then the problem (4.1.8) has unique solution on [0,∞).
If

b∞ =

∫
∞

0

dx
(ψ(
√

x))2
< ∞

then the for each b < b∞ the problem (4.1.8) has unique solution on [0, b].

4.1.3. Random fractional problem

In this part, we prove the existence of solutions to the following fractional differential
equations with random effect :{

cDαx(t, ω) = f (t, x(t, ω), ω) + g(t, x(t, ω), ω), 0 < α < 1, t ∈ [0, b],
x(0, ω) = x0(ω), ω ∈ Ω,

(4.1.23)

where f , g : [0, b] ×Rm
×Rm

×Ω→ Rm, (Ω,A) is a measurable space and x0 : Ω→ Rm is a
random variable. Random fractional differential equations, seem to be a natural extensions
of deterministic ones. For quantitative and qualitative results, we cite [15, 65, 80, 81, 122, 129]
and the references therein.

Definition 4.1.16. The random variable x : Ω → C([0, b],R) is said to be a solution of problem
(4.1.23) if

x(t, ω) = x0(ω) +
1

Γ(α)

∫ t

0
(t − s)α−1 f (s, x(s, ω), ω)ds

+
1

Γ(α)

∫ t

0
(t − s)α−1g(s, x(s, ω), ω)ds, t ∈ [0, b].

For every τ > 0, we define

‖x‖τ := sup
t∈[0,b]

‖x(t)‖
Eα(τtα)

for all x ∈ C([0, b],Rm),

where Eα(·) is the Mittag-Leffler function such that

Eα(t) :=
∞∑

k=1

tk

Γ(αk + 1)
for all t ∈ R.

For more details about Mittag-Leffler functions, see [35]. We observe that for every
x ∈ (C([0, b],Rm) we have

‖x‖∞ ≤M‖x‖τ, M := sup
t∈[0,b]

E(τtα)

and
‖x‖τ ≤ ‖x‖∞.

Thus, the norms ‖ · ‖∞ and ‖ · ‖τ are equivalent. Hence (C([0, b],Rm), ‖ · ‖τ) is a Banach space.

Proposition 4.1.17. For any α ∈ (0, 1) and τ > 0, the following inequality holds :

τ
Γ(α)

∫ t

0
(t − s)α−1Eα(τsα)ds ≤ Eα(τtα).
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Proof. Let 0 < τ ≤ 1. We consider first the linear problem

cDαx(t) = τx(t), t ∈ R+. (4.1.24)

From [35, Theorem 7.2 and Remark 7.1], the function x(t) = E(τtα) is solution of (4.1.24) and for
any t ∈ R+ we have

E(τtα) = 1 +
τ

Γ(α)

∫ t

0
(t − s)α−1Eα(τsα)ds.

This yields the proof of proposition.

We introduce the following hypotheses.
(H1) For every ω ∈ Ω, the functions f (·, ·, ω) and g(·, ·, ω) are continuous and

ω→ f (·, ·, ω), ω→ g(·, ·, ω) are measurable.
(H2) There exists a measurable function γ : Ω→ R+ and ψ ∈ H such that

‖ f (t, x, y, ω)‖ ≤ γ(ω)ψ(‖x‖),

for all t ∈ [0, b], ω ∈ Ω and x, y ∈ Rm.
(H3) There exists random variable p1 : Ω→ R+ such that

‖g(t, x, ω) − g(t, x̃, ω)‖ ≤ p1(ω)‖x − x̃‖ x, x̃ ∈ Rm, ω ∈ Ω.

Now, we establish the existence of a solution of problem (4.1.23) by using the Krasnosel’skii
random fixed point theorem type in a Banach space.

Theorem 4.1.18. [49, 59] Let E be a separable Banach space. Suppose that T and B are two random
operators from Ω × E into E such that

(A1) T be a completely continuous random operator.
(A2) B be a continuous random operator.

If

M =

{
x : Ω→ E is measurable | λ(ω)T(ω, x) + λ(ω)B

(
x

λ(ω)
, ω

)
= x

}
,

is bounded for all measurable λ : Ω→ R with 0 < λ(ω) < 1 on Ω. Then the random equation

x = T(ω, x) + B(ω, x), x ∈ E,

has at least one random solution.

LetNω : C([0, b],Rm)→ C([0, b],Rm) be an operator defined by

Nω(x, y) = Gω(x) + Kω(x), x,∈ C([0, b],Rm),

where

Gω(x) =
1

Γ(α)

∫ t

0
(t − s)α−1 f (s, x(s, ω), ω)ds + x0(ω), t ∈ [0, b]

and

Kω(x) =
1

Γ(α)

∫ t

0
(t − s)α−1g(s, x(s, ω), ω)ds, t ∈ [0, b].

Lemma 4.1.19. Under assumption (H3). The operator Kω is contraction on C([0, b],Rm).
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Proof. Indeed let (x(·, ω), x̃(·, ω)) ∈ C([0, b],Rm) × C([0, b],Rm). Then

‖Kω(x(t)) − Kω(x̃(t))‖ =

∥∥∥∥∥∥
∫ t

0

1
Γ(α)

∫ t

0
(t − s)α−1 (

g(s, x(s, ω), ω) − g(s, x̃(s, ω), ω)
)

ds

∥∥∥∥∥∥
≤

1
Γ(α)

∫ t

0
p1(ω)(t − s)α−1

‖x(s, ω) − x̃(s, ω)‖ds.

Let τ > 1. Then,

‖Kω(x(t)) − Kω(x̃(t))‖ ≤
τp1(ω)
τΓ(α)

∫ t

0
(t − s)α−1Eα(τp1(ω)sα)ds‖x(·, ω) − x̃(·, ω)‖τp1(ω).

By Proposition 4.1.17, we obtain

‖Kω(x(t)) − Kω(x̃(t))‖ ≤
Eα(τp1(ω)tα)

τ
‖x(·, ω) − x̃(·, ω)‖τp1(ω), t ∈ [0, b].

Together, we have

‖Kω(x) − Kω(x̃)‖τp1(ω) ≤
1
τ
‖x − x̃‖τp1(ω), for all x, x̃ ∈ C([0, b],Rm).

We conclude that Kω is a contraction.

Lemma 4.1.20. Under assumption (H1). The operator Gω : C([0, b],Rm) → C([0, b],Rm) is
completely continuous.

Proof. The proof will be given in several steps.
— Step 1. Gω is continuous.

Let xn(·, ω) be a sequence such that xn(·, ω)→ x(·, ω) ∈ C([0, b],Rm) as n→∞. Then

‖Gω(xn(·, ω)) − Gω(x(·, ω))‖∞ ≤
bα

Γ(α + 1)
‖ f (·, xn(·, ω)) − f (·, x(·, ω))‖∞.

Since f is a continuous function, thus

‖Gω(xn(·, ω)) − Gω(x(·, ω))‖∞ → 0 as n→∞.

— Step 2. Gω maps bounded sets into bounded sets in C([0, b],Rm).
Indeed, it suffices to show that for any q > 0 there exists a positive constant l such that for
each x(·, ω) ∈ Bq = {x ∈ C([0, b],R) : ‖x(·, ω)‖∞ ≤ q}, we have

‖Gω(x(·, ω)‖∞ ≤ l.

In that direction, for each t ∈ [0, b], we get

‖Gω(x(t, ω))‖ =

∥∥∥∥∥∥x0(ω) +
1

Γ(α)

∫ t

0
(t − s)α−1 f (s, x(s, ω))ds

∥∥∥∥∥∥
≤ ‖x0(ω)‖ +

γ1(ω)
Γ(α)

∫ b

0
‖ f (s, x(s, ω))‖ds.

So, from (H2),

‖Gω(x(·, ω))‖∞ ≤ ‖x0(ω)‖ +
2bαψ(q)
Γ(α + 1)

γ1(ω) := l.
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— Step 3. Gω maps bounded sets into equicontinuous sets of C([0, b],Rm).
Let Bq be a bounded set in C([0, b],Rm) × C([0, b],Rm) as in Step 2. Let r1, r2 ∈ J, r1 < r2
and u ∈ Bq. Thus we have

‖Gω(x(r2, ω)) − Gω(x(r1, ω))‖ ≤
2qγ1(ω)

Γ(α)

[∫ r2

r1

(r2 − s)α−1ds

+

∫ r1

0
(r1 − s)α−1

− (r2 − s)α−1ds
]
.

Hence

‖Gω(x(r2, ω)) − Gω(x(r1, ω))‖ ≤
4ψ(q)γ1(ω)

Γ(α + 1)
(r2 − r1)α.

The right-hand term tends to zero as |r2 − r1| → 0. As a consequence of Steps 1 to 3
together with the Arzelà-Ascoli, we conclude that Gω maps Bq into a precompact set in
C([0, b],R) × C([0, b],R).

Lemma 4.1.21. Assume that (H1) − (H3) hold. Then the set

A(ω) =

{
x(·, ω) ∈ C([0, b],Rm) : x(·, ω) = λ(ω)Gω(x(·, ω)) + λ(ω)Kω

(
x(·, ω)
λ(ω)

)
, λ(ω) ∈ (0, 1)

}
is bounded.

Proof. Let x ∈ A(ω). Then x(·, ω) = λ(ω)Gω(x(·, ω)) + λ(ω)Kω
(

x(·,ω)
λ(ω)

)
. Thus, for t ∈ [0, b], we

have

‖x(t, ω)‖ ≤ ‖x0(ω)‖ +
1

Γ(α)

∫ t

0
(t − s)α−1

‖ f (s, x(s, ω), ω)‖ds

+
1

Γ(α)

∫ t

0
(t − s)α−1

‖g(s, x(s, ω), ω)‖ds

≤ ‖x0(ω)‖ +
1

Γ(α)

∫ t

0
γ1(ω)(t − s)α−1ψ(‖x(s, ω)‖)ds

+
1

Γ(α)

∫ t

0
(t − s)α−1p1(ω)‖x(s, ω)‖ds +

1
Γ(α)

∫ t

0
(t − s)α−1

‖g(s, 0, ω)‖ds.

Hence

‖x(t, ω)‖ ≤ c(ω) +
1

Γ(α)

∫ t

0
(t − s)α−1p1(ω)‖x(s, ω)‖ds

+
γ1(ω)
Γ(α)

∫ t

0
(t − s)α−1ψ(‖x(s, ω)‖)ds,

where

c(ω) = ‖x0(ω)‖ +
bα‖g(·, 0, ω)‖∞

Γ(α + 1)
+ 1.

By Theorem 4.1.9, there exists K(α,ω) > 0 such that

‖x(t, ω)‖ ≤ K(α,ω), for each t ∈ [0, b].
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Consequently
‖x‖∞ ≤ K(α,ω).

This shows thatA(ω) is bounded.

We are now in the position to prove our main existence result for (4.1.23).

Theorem 4.1.22. Assume that the following conditions (H1)−(H3) hold. Then the problem (4.1.23)
has at least on random solution.

Proof. Let N : C([0, b],Rm) ×Ω→ C([0, b],Rm),

x 7→ G(x, ω) + K(x, ω)

where

G(x, ω) =
1

Γ(α)

∫ t

0
(t − s)α−1 f (s, x(s, ω))ds + x0(ω)

and

K(x, ω) =
1

Γ(α)

∫ t

0
(t − s)1−αg(s, x(s, ω), ω)ds.

First we show that N is a random operator on C([0, b],Rm). Since f and g are Carathédory functions,
then ω → f (t, x, ω) and ω → g(t, x, ω) are measurable maps. Further, the integral is a limit of a
finite sum of measurable functions, and therefore, the maps

ω→ G(x(t, ω), ω), ω→ K(x(t, ω), ω)

are measurable. As a result, N is a random operator on C([0, b],Rm) ×Ω into C([0, b],Rm).

Now we show that all the conditions of Theorem 4.1.18 are satisfied.

We observe that from Lemmas 4.1.19 and 4.1.20, the operator N is a contraction and K is completely
continuous. It is clear by Lemma 4.1.21 that the set

A(ω) =

{
x(·, ω) ∈ C([0, b],Rm) : x(·, ω) = λ(ω)Gω(x(·, ω)) + λ(ω)Kω

(
x(·, ω)
λ(ω)

)
, λ(ω) ∈ (0, 1)

}
is bounded. As a consequence of Theorem 4.1.18, we deduce that N has at least one random fixed
point, which is a solution to the problem (4.1.23).

Remark 4.1.2. Many researchers have established existence of a unique solution for fractional
differential equations with, or without, impulses for Cauchy-Lipschitz problems with some restrictive
conditions on the Lipschitz constant. But via application of Proposition 4.1.17, we can establish those
results without the restrictive conditions. For example, in the problem when f = 0, Lemma 4.1.19
yields a unique solution of (4.1.23).

4.1.4. Rδ Solutions Sets

In this part, we recall some elementary concepts and definitions from geometric topology.
For more information about this section, we recommend [37, 48, 78]. In what follows (X, d)
and (Y, d′) stand for two metric spaces. Denote by P(X) = {Y ⊂ E : Y , ∅}. Let E be a Banach
space and Pcv,cl(E) = {Y ∈ P(E) : Y convex, closed}.
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Definition 4.1.23. Let A ∈ P(X). The set A is said a contractible space if there exists a continuous
homotopy H : A × [0, 1]→ A and x0 ∈ A such that

(a) H(x, 0) = x, for every x ∈ A,
(b) H(x, 1) = x0, for every x ∈ A,

i.e. if the identity map is homotopic to a constant map (A is homotopically equivalent to a point).

Note that if A ∈ Pcv,cl(X), then A is contractible, but the class of contractible sets is much
larger than the class of closed convex sets.

Definition 4.1.24. A compact nonempty space X is called an Rδ−set if there exists a decreasing
sequence of compact nonempty contractible spaces {Xn}

∞

n=1 such that

X =

∞⋂
n=1

Xn.

The next result deals with the topological structure of the solution set of some nonlinear
functional equations is due to Aronszajn and developed by Browder and Gupta in [24] (see
also [9, Th. 1.2]).

Theorem 4.1.25. Let (X, d) be a metric space, (E, ‖ · ‖) a Banach space and F : X→ E a proper map,
i.e., F is continuous and for every compact K ⊂ E, the set F−1(K) is compact. Assume further that
for each ε > 0, a proper map Fε : X→ E is given, and the following two conditions are satisfied :

(a) ‖Fε(x) − F(x)‖ < ε, for every x ∈ X,
(b) for every ε > 0 and u ∈ E in a neighborhood of the origin such that ‖u‖ ≤ ε, the equation

Fε(x) = u has exactly one solution xε.
Then the set S = F−1(0) is an Rδ−set.

Lemma 4.1.26. Let E be a Banach space, C ⊂ E be a nonempty closed bounded subset of E and
F : C→ E be a completely continuous map, then G = Id − F is a proper map.

Under classical Lipschitz and linear growth conditions the solutions set of ordinary and
fractional differential equations has been studied by many authors ; see, for example, the
monographs and papers [31, 37, 40, 51, 55] and the references therein.

In the following, we will study the existence, compactness and Rδ properties of solutions
sets of the fractional problem (4.1.8) on a compact interval [0, b]. Denote the solution sets of
the problem (4.1.8) by

S( f , a) = {y ∈ C([0, b],Rm) : y is a solution of the problem (4.1.8)}.

Theorem 4.1.27. Assume that f is Carathédory function and satisfies the following condition :
(H1) There exists g ∈ L∞([0, b],R+) such that

‖ f (t, x)‖ ≤ g(t)ψ(‖x‖), for all x ∈ Rn, t ∈ [0, b]

where ψ : [0,∞) → (0,∞) is a continuous, increasing function, ψ(0) = 0 and q > 1
α with

p
(
1 − 1

q

)
= 1.

Then the solution set S( f , a) is an Rδ−set.
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Proof. Let N : C([0, b],Rn)→ C([0, b],Rn) be defined by

N(y)(t) = a +
1

Γ(α)

∫ t

0
(t − s)α−1 f (s, y(s))ds, t ∈ [0, b].

Thus Fix N = S( f , a) and we show that S( f , a) , ∅. In particlar, we shall show that N satisfies the
assumptions of the nonlinear alternative of Leray-Schauder type. The proof will be given in several
steps.

Step 1 : N is continuous.

Let {ym} be a sequence such that ym → y in C([0, b],Rn). Then

‖N(yn)(t) −N(y)(t)‖ ≤
∫ t

0
(t − s)α−1

‖ f (s, ym(s)) − f (s, y(s))‖ds

≤
1

Γ(α)

(∫ t

0
(t − s)p(α−1)ds

) 1
p
(∫ b

0
‖ f (s, ym(s)) − f (s, y(s))‖qds

) 1
q

.

This implies

‖N(ym) −N(y)‖∞ ≤
bp(α−1)+1

(p(α − 1) + 1)Γ(α)
‖ f (·, ym(·)) − f (·, y(·))‖Lq .

By (H1) and since f is a Carathéodory function, the Lebesgue dominated convergence theorem
implies

‖N(ym) −N(y)‖∞ → 0 as m→∞.

Step 2 : N maps bounded sets into bounded sets in C([0, b],Rn).

Indeed, it suffices to show that there exists a positive constant ` such that for each

y ∈ Br = {y ∈ C([0, b],Rn) : ‖y‖∞ ≤ r},

one has ‖N(y)‖∞ ≤ `.
Let y ∈ Br. Then for each t ∈ [0, b], we have

N(y)(t) = a +
1

Γ(α)

∫ t

0
(t − s)α−1 f (s, y(s))ds.

By (H1) we have for each t ∈ [0, b]

‖N(y)(t)‖ ≤ ‖a‖ +
1

Γ(α)

∫ t

0
(t − s)1−α

‖ f (s, y(s))‖ds

≤ ‖a‖ +
ψ(r)
Γ(α)

∫ t

0
(t − s)α−1g(s)ds.

From Hölder’s inequality, we get

‖N(y)(t)‖ ≤ ‖a‖ +

(
ψp(r)tp(α−1)+1

(p(α − 1) + 1)Γ(α)

) 1
p
(∫ b

0
gq(s)ds

) 1
q

.
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Then for each y ∈ Br we have

‖N(y)‖∞ ≤ ‖a‖ +

(
ψp(r)bp(α−1)+1

(p(α − 1) + 1)Γ(α)

) 1
p

‖g‖Lq := `.

Step 3 : N maps bounded set into equicontinuous sets of C([0, b],Rn).

Let τ1, τ2 ∈ [0, b], τ1 < τ2 and Br be a bounded set of C([0, b],Rn) as in Step 2. Let y ∈ Br and
t ∈ [0, b]. We have

‖N(y)(τ2) −N(y)(τ1)‖ ≤
1

Γ(α)

∫ τ1

0
|(τ2 − s)α−1

− (τ1 − s)α−1
|‖ f (s, y(s))‖ds

+
1

Γ(α)

∫ τ2

τ1

(τ2 − s)α−1
‖ f (s, y(s))‖ds

≤
1

Γ(α)

∫ τ1

0
|(τ2 − s)α−1

− (τ1 − s)α−1
|g(s)ψ(‖y(s)‖)ds

+
1

Γ(α)

∫ τ2

τ1

(τ2 − s)α−1g(s)ψ(‖y(s)‖)ds

≤
ψ(r)
Γ(α)

∫ τ1

0
|(τ2 − s)α−1

− (τ1 − s)α−1
|g(s)ds

+
ψ(r)
Γ(α)

∫ τ2

τ1

(τ2 − s)α−1g(s)ds.

Since g ∈ L∞([0, b],R+), then g ∈ Lq. Using Hölder’s inequality, we obtain

‖N(y)(τ2) −N(y)(τ1)‖ ≤
ψ(r)
Γ(α)

∫ τ1

0
|(τ2 − s)α−1

− (τ1 − s)α−1
|
pds‖g‖L∞

+
ψ(r)
Γ(α)

(∫ τ2

τ1

(τ2 − s)p(α−1)ds
) 1

p

‖g‖Lq .

Then

‖N(y)(τ2) −N(y)(τ1)‖ ≤
ψ(r)

Γ(α + 1)

(
(τ − τ1)α − τα2 + τα1

)
‖g‖L∞

+
ψ(r)

(α − 1 + 1
p )Γ(α)

‖g‖Lq (τ2 − τ1)α−1+ 1
p .

As τ2 −→ τ1 the right-hand side of the above inequality tends to zero. Then N(Br) is equicontinuous.
As a consequence of Steps 1 to 3 together with the Arzelà-Ascoli theorem we can conclude that
N : C([0, b],Rn)→ C([0, b],Rn) is completely continuous.

Step 4 : A priori bounds on solutions.

Let y = γN(y) for some 0 < γ < 1. This implies

‖y(t)‖ ≤ ‖a‖ +
1

Γ(α)

∫ t

0
(t − s)α−1

‖ f (s, y(s))‖ds

≤ ‖a‖ +
1

Γ(α)

∫ t

0
(t − s)α−1g(s)ψ(‖y(s)‖)ds.
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Therefore

‖y(t)‖ ≤ ‖a‖ + 1 +
‖g‖L∞
Γ(α)

∫ t

0
(t − s)α−1ψ(‖y(s)‖)ds.

From Theorem 4.1.2, we have

‖y(t)‖ ≤ Φ−1

(
Φ(k̄) +

t
q

)
, t ∈ [0, b],

where

Φ(z) =

∫ z

k

dx
(ψ(x))q , k = ‖a‖ + 1, k̄ = k +

‖g‖L∞bp(α−1)+1

p(p(α − 1) + 1)
.

Hence

‖y‖∗ ≤ Φ−1

(
Φ(k̄) +

b
q

)
:= M.

Set
U := {y ∈ C([0, b],Rn) : ‖y‖∞ < M + 1},

and consider the operator N : U→ C([0, b],Rn). From the choice of U, there is no y ∈ ∂U such that
y = γN(y) for some γ ∈ (0, 1). As a consequence of the nonlinear alternative of Leray-Schauder type
[50, 37], we deduce that N has a fixed point y in U which is a solution of the problem (4.1.8).

Now, we prove that S( f , a) is compact. Let {ym}m≥1 be a sequence in S( f , a), then

ym(t) = a +
1

Γ(α)

∫ t

0
(t − s)α−1 f (s, ym(s))ds, m ≥ 1, t ∈ [0, b].

As in Steps 3 and 4 we can easily prove that there exists M > 0 such that

‖ym‖∞ < M, for all m ≥ 1,

and the set {ym : m ≥ 1} is equicontinuous in C([0, b],Rn). Hence by the Arzelà-Ascoli Theorem we
conclude that there exists a subsequence of {ym : m ≥ 1} converging to y in C([0, b],Rn).Using that
fact that f is Carathédory we can prove that

y(t) = a +
1

Γ(α)

∫ t

0
(t − s)α−1 f (s, y(s))ds, t ∈ [0, b].

Thus S( f , c) is compact. Define

f̃ (t, x) =


f (t, x), if ‖x‖ ≤M,

f
(
t, Mx
‖x‖

)
, if ‖x‖ ≥M.

Since f is Carathédory, the function f̃ is Carathédory and is also bounded. So there exists M∗ > 0
such that

‖ f̃ (t, x)‖ ≤M∗, for all x ∈ Rn, a.e. t ∈ [0, b]. (4.1.25)

Consider the following modified problem :{
cDαy(t) = f̃ (t, y(t)), a.e. t ∈ [0, b],

y(0) = a.
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We can easily prove that S( f , a) = S( f̃ , a) = FixÑ, where Ñ : C([0, b],Rn) → C([0, b],Rn) is as
defined by

Ñ(y)(t) = a +
1

Γ(α)

∫ t

0
(t − s)α−1 f̃ (s, y(s))ds, t ∈ [0, b].

By the inequality (4.1.25), we deduce that there exists R > 0 such that

‖Ñ(y)‖∞ ≤ R.

Then Ñ is uniformly bounded. As in Steps 2 and 3, we can prove that

Ñ : C([0, b],Rn)→ C([0, b],Rn),

is compact which allows us to define the compact perturbation of the identity G̃(y) = y− Ñ(y) which
is a proper map. From the compactness of Ñ, we can easily prove that all conditions of Theorem
4.1.25 are met. Therefore the solution set S( f̃ , a) = G̃−1(0) is an Rδ set, hence an acyclic space.

Theorem 4.1.28. Assume that f is a Carathédory function and satisfies the following condition :
(H1) There exists g ∈ L∞loc(R+,R+) such that

‖ f (t, x)‖ ≤ g(t)ψ(‖x‖), for all x ∈ Rn, t ∈ [0, b]

where ψ : [0,∞) → (0,∞) is a continuous, increasing function, ψ(0) = 0 and q > 1
α with

p
(
1 − 1

q

)
= 1.

Then the problem (4.1.8) has at least one solution.

4.1.5. Fractional Differential Inclusions on Banach lattices

Multivalued analysis and differential inclusions have been investigated by many authors
from different points of view. A comprehensive overview of this theory can be found in
[11, 49, 56, 57, 74, 67] among others.

In 2009, Michta and J. Motyl [86], introduced a new class of multivalued maps in Banach
lattices, a class they called “upper separated.” The notion of an upper separated multifunc-
tion function F is necessary and sufficient for proving the existence of a convex selection of
F. The deterministic and stochastic differential inclusions have been considered by Michta
and Motyl in [87, 91, 92, 93, 94, 95].

The aim of this section is to give the existence of some classes of fractional differential
inclusions in Euclidean spaces satisfying the property of an order complete Banach lattice.
More precisely, we will consider the following problem,{

cDαx(t) ∈ F(t, x(t)), a.e. t ∈ [0, b],
x(0) = x ∈ Rm,

(4.1.26)

where F : [0, b] ×Rm
→ Pcp,cv(Rm) is a multifunction.

First, we recall some notations, and basic definitions from multivalued analysis and Banach
lattices which will be used in the sequel.

Let X be a Banach space and (Y,�) be a Banach lattice space generated by a positive cone
K

+.We use the notation x � y if x−y ∈ K+.We denote the space of linear bounded operators
by B(X,Y).
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Definition 4.1.29. The Banach lattice space (Y,�) is called complete, if every nonempty majorized
set ofY has a supremum inY.

• A set A ⊂ Y is called order bounded, if there exist a, b ∈ Y such that

A ⊂ [a, b] = {y ∈ Y : a � t � b}.

• A set A ofY is called order convex (or full) if for every x, y ∈ A we have [x, y] ⊂ A.

We adjoin to Y the greatest element +∞ and the lowest element −∞. We extend the space
Y in a natural way Ȳ = Y ∪ {+∞,−∞}. Now we define an extended function g : X → Ȳ.
Let Dom(g) = {x ∈ X : g(x) , ±∞} and we define the epigraph of g by

Epi(g) = {(x, y) ∈ X × Y : g(x) � y}.

Definition 4.1.30. A function g : X → Y is called order convex if for every x, x̄ ∈ X and λ ∈ [0, 1]
we have

g(λx + (1 − λ)x̄) � λg(x) + (1 − λ)g(x̄).

The function g is locally order Lipshitz if for all x0 ∈ X there exist an open neighbourhoodUx0 and
a ∈ K+ such hat

|g(x) − g(x̄)| � a‖x − x̄‖ for all x, x̄ ∈ Ux0 .

— A multifunction G : X → P(Y) is called upper semi-continuous (u.s.c. for short) if the
set

G−1
− (V) = {x ∈ X : G(x) ⊂ V}

is open for any open set V inY.
— G is called lower semi-continuous (l.s.c. for short) on X if the set

G−1
+ (V) = {x ∈ X, G(x) ∩ V , ∅}

is open for any open set V inY.

Definition 4.1.31. We say that the multifunction F : X → P(Y) is majorized in neighborhood of
x0 if there exist an openUx0 and y ∈ Y such that for every x ∈ Ux0 we have

a � y for any a ∈ F(x).

LetV,W : X → Y be two functions defined by

V(x) = sup{a : a ∈ F(x)}

and
W(x) = inf{b : b ∈ F(x)}.

We denote by
∏

F(x)(c) the metric projection of c ∈ Y onto the set F(x) and we define

V(x) =

{ ∏
F(x)(V(x)) if x ∈ Dom(V),

+∞ if x < Dom(V),

and

W(x) =

{ ∏
F(x)(W(x)) if x ∈ Dom(W),

−∞ if x < Dom(W).
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Definition 4.1.32. Let F : X → P(Ȳ) be a multivalued map.

We say that F is upper separated if for all x ∈ X and ε > 0 there exists a hyperplane H(x, ε) strongly
separating a point (x,W(x) − x) from the set Epi(V).

The term “separated” is in the following sense : for every x ∈ X and all ε ∈ K+
\{0} there exist

A ∈ B(X,Y), a ∈ R and η ∈ K+
\{0} such that for any y ∈ DomV and each b ∈ K+ we have

A(x) − A(y) + a(W(x) −V(y) − ε − b) − η ∈ K+.

For more information about Banach lattice we refer the reader to [8, 108, ?, 121].

Let (Ω,F , µ) be a complete σ−finite measurable space, B(X) be the Borel σ−algebra of X
and F ⊗ B(X) be a product σ−algebra of Ω × X.

Definition 4.1.33. A multi-valued map F : Ω→ P(Y) is said to be measurable provided for every
openU ⊂ Y, the set F−1

+ (U) ∈ F .

Definition 4.1.34. A multifunction F is called a Carathéodory function if
(a) the multifunction t 7→ F(t, x) is measurable for each x ∈ X;
(b) for a.e. t ∈ Ω, the map x 7→ F(t, x) is continuous.

The space Rm, is equipped with the Euclidean norm and the following canonical order :
— If, x, y ∈ Rm, x = (x1, . . . , xm), y = (y1, . . . , ym), by x � y we mean xi ≤ yi for all

i = 1, . . . ,m. We define the positive cone by

K
+ = {x ∈ Rm : xi ≥ 0, i = 1, . . . ,m}.

Then (Rm,�) is a complete Banach lattice with order unit e = (1, . . . , 1).

Theorem 4.1.35. [90, 91] Let F : Ω×X → Pcp,cv(Rm) be a multivalued map. Suppose the following
conditions hold :

1) F is a Carathédory map.
2) For every ω ∈ Ω, the multifunction F(ω, ·) is upper separated.

Then there exists a single-valued function f : Ω × X → Y such that

a) f is F ⊗ B(X)−measurable.

b) For any (ω, x) ∈ Ω × X we have
f (t, x) ∈ F(t, x).

c) For all ω ∈ Ω, f (ω, ·) is order-convex.

Proposition 4.1.36. [91] Let (Ω,F , µ) be a complete measurable space, (X, ‖ · ‖) be a separable
Banach space and F : Ω ×X → P(Rm) be a multivalued map. Assume that there exist h : Ω→ R+

a measurable function and ψ : R+ → R+ a continuous nondecreasing function such that

‖F(ω, x)‖P = sup{‖v‖ : v ∈ F(ω, x)} ≤ h(t)ψ(‖x‖) for all ω ∈ Ω, x ∈ Rm.

Then every Carathédory order convex selection of F is continuous.

We introduce the following conditions
(H4) F is a Carathédory multifunction.
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(H5) For all t ∈ [0, b], the multifunction F(t, ·) is upper separated.
(H6) There exist ψ ∈ H and f̄ ∈ Lq([0, b],R+) such that

‖F(t, x)‖P = sup{‖v‖ : v ∈ F(t, x)} ≤ f̄ (t)ψ(‖x‖) for all x ∈ Rm.

Theorem 4.1.37. Assume that the conditions (H4)− (H6) are satisfied. Then the problem (4.1.26),
has at least one solution.

Proof. Let Ω = [0, b], F = B([0, b]) be a Borel σ−algebra and X = Y = Rm. The hypotheses (H4)
and (H5) imply that F satisfies the conditions of Theorem 4.1.35 and Proposition 4.1.36. Then there
exists a Carathédory function f : [0, b] ×Rm

→ R such that

f (t, x) ∈ F(t, x) for any (t, x) ∈ [0, b] ×Rm.

We consider the following problem
cDαx(t) = f (t, x(t)), a.e. t ∈ [0, b],

x(0) = x ∈ Rm.
(4.1.27)

We define the operator L : C([0, b],Rm)→ C([0, b],Rm) by

L(x(t)) = x0 +
1

Γ(α)

∫ t

0
(t − s)α−1 f (s, x(s))ds, t ∈ [0, b].

Step 1 : L is continuous.

Let (xn)n∈N be a sequence such that xn → x in C([0, b],Rm). Then, for t ∈ [0, b], we have by the
Lebesgue dominated convergence theorem

‖L(xn(t)) − L(x(t))‖ =
1

Γ(α)

∥∥∥∥∫ t

0
(t − s)α−1[ f (s, xn(s)) − f (s, x(s))]ds

∥∥∥∥
≤

1
Γ(α)

∫ t

0
(t − s)α−1

‖ f (s, xn(s)) − f (s, x(s))‖ds

≤
1

Γ(α)

(∫ t

0
(t − s)p(α−1)ds

) 1
p
(∫ t

0
‖ f (s, xn(s)) − f (s, x(s))‖qds

) 1
q

.

Then

‖L(xn) − L(x)‖∞ ≤
bp(α−1)+1

(p(α − 1) + 1)Γ(α)
‖ f (·, xn(·)) − f (·, x(·))‖Lq → 0, as n→∞.

This implies that L is continuous on C([0, b],Rm).

Step 2 : L maps bounded sets into bounded sets in C([0, b],Rm).

Indeed, it is enough to show that for any q > 0, there exists l > 0 such that for each

y ∈ Br = {x ∈ C([0, b],Rm) : ‖x‖∞ ≤ r},

one has ‖L(x)‖∞ ≤ l.
Let x ∈ Br, then for each t ∈ [0, b], we have
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‖L(x(t))‖ =
∥∥∥∥y0 + 1

Γ(α)

∫ t

0 (t − s)α−1 f (s, x(s))ds
∥∥∥∥

≤ ‖x0‖ + 1
Γ(α)

∫ t

0 (t − s)α−1
‖ f (s, x(s))‖ds

≤
ψ(r)
Γ(α)

(∫ t

0 ‖ f̄ (s)‖qds
) 1

q
.

Therefore, we obtain

‖L(x)‖∞ ≤
bp(α−1)+1ψ(r)

(p(α − 1) + 1)Γ(α)
‖ f̄ ‖Lq .

Step 3 : The map L is equicontinuous.

Let τ1, τ2 ∈ [0, b], τ1 < τ2 and y ∈ Br, we have

‖L(x(τ2)) − L(x(τ1))‖ ≤
1

Γ(α)

∫ τ1

0
|(τ1 − s)α−1

− (τ2 − s)α−1
|‖ f (s, x(s))‖ds

+
ψ(r)
Γ(α)

∫ τ2

τ1

(τ2 − s)p(α−1)+1ds‖ f̄ ‖Lq .

Therefore

‖L(x(τ2)) − L(x(τ1))‖ ≤
ψ(r)‖ f̄ ‖Lq

Γ(α)

(∫ τ1

0
((τ1 − s)α−1

− (τ2 − s)α−1)pds
) 1

p

+
ψ(r)
Γ(α)

∫ τ2

τ1

(τ2 − s)p(α−1)ds‖ f̄ ‖Lq

≤
ψ(r)‖ f̄ ‖Lq

Γ(α)

(∫ τ1

0
((τ1 − s)p(α−1)

− (τ2 − s)p(α−1))ds
) 1

p

+
ψ(r)
Γ(α)

∫ τ2

τ1

(τ2 − s)p(α−1)ds‖ f̄ ‖Lq

≤
ψ(r)‖ f̄ ‖Lq

Γ(α) p
√

p(α − 1) + 1

(
τp(α−1)+1

2 − τp(α−1)+1
1 − (τ2 − τ1)p(α−1)+1

) 1
p

+
ψ(r)‖ f̄ ‖Lq

Γ(α) p
√

p(α − 1) + 1
(τ2 − τ1)p(α−1)+1.

The right-hand side tends to zero as τ2 − τ1 → 0. Then L(Br) is equicontinuous. As a consequence
of Steps 1 to 3 together with the Arzelà-Ascoli theorem, we can conclude that
L : C([0, b],Rm))→ C([0, b],Rm) is completely continuous.

Step 4 : A priori bounds on solutions.

Let x = γL(x) for some 0 < γ < 1. Then,

x(t) = γ

[
x0 +

1
Γ(α)

∫ t

0
(t − s)α−1 f (s, x(s))ds

]
t ∈ [0, b].

This implies, for each t ∈ [0, b],

‖x(t)‖ ≤ ‖x0‖ +
1

Γ(α)

∫ t

0
(t − s)α−1

‖ f (s, x(s))‖ds.
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Thus, we obtain

‖x(t)‖ ≤ ‖x0‖ +
1

Γ(α)

∫ t

0
(t − s)α−1ψ(‖x(s)‖)ds.

From Theorem 4.1.6, there exists a constant M such that

‖x‖∞ ≤M.

Let
U := {x ∈ C([0, b],Rm) : ‖x‖∞ < M + 1},

and consider the operator L : U → C([0, b],Rm). From the choice of U, there is no y ∈ ∂U such
that x = γL(x) for some γ ∈ (0, 1). As a consequence of the Leray-Schauder nonlinear alternative,
we deduce that L has a fixed point y inU which is a solution of problem (4.1.27).
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Chapitre 5
Fractional Stochastic Differential
Systems with Nonlocal Conditions

5.1. Introduction

The more realistic way to describe many scientific phenomena, such as in economics,
finance, chemistry, physics, and biology, is to use differential equations involving fractional
derivatives in time. In 1940, Kolmogorov [73] introduced fractional Brownian motion within
a Hilbert space framework where it was called a Wiener Helix. In 1968, Mandelbrot and
Van Ness used the term fractional Brownian motion after introducing a stochastic integral
description of this process in terms of a standard Brownian motion.

The nature, uniqueness, and asymptotic behavior of mild solutions to stochastic delay
evolution equations with fractional Brownian motion have only been studied in a few
papers. Ciu and Yan [33] used Sadovskii’s fixed point theorem to explore the presence
of a mild solution to neutral stochastic integro-differential equations with infinite delay.
Sakthivel et al. [116] proved the existence of a mild solution to a nonlocal fractional stochastic
differential equation, and more recently Jingyun et al. [66] gave sufficient condition for the
existence and uniqueness of mild solutions to a system with nonlocal fractional stochastic
Brownian motion and Hurst index H > 1/2.

The purpose of this paper is examine the existence and uniqueness of a mild solution to the
system of fractional differential equations driven by Brownian motion

cDqx(t) = [A1x(t) + f 1(s, x(s), y(s))]ds + σ1(t)dBH1
t , 1/2 < q ≤ 1, J = [0, b],

cDqy(t) = [A2y(t) + f 2(s, x(s), y(s))]ds + σ2(t)dBH2
t ,

x(0) = α[x, y],
y(0) = β[x, y],

(5.1.1)

where cDq denotes the Caputo fractional derivative of order q ∈
(

1
2 , 1

]
with the lower limit 0.

We assume that a probability space (Ω,Fb,P) together with a normal filtration {Ft}t∈[0,b] are
given. The stochastic process {X(t)}t∈[0,b] takes values in the real separable Hilbert space W.
We take A to be the infinitesimal generator of a strongly continuous semigroup {S(t) : t ≥ 0}
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in W. Here, for i = 1, 2, BHi
t =

{
BHi (t) : t ∈ J

}
is a fractional Brownian motion ( f Bm) with

Hurst index Hi ∈
(

1
2 , 1

)
on a real separable Hilbert space V. We will need the following

spaces
L(V,W) = {g : V →W | g is a bounded linear operator};

L2 (Ω,Fb; W) :=
{
f : Ω→W | f is a Fb-measurable square integrable random variable

}
;

C(J,L2(Ω,Fb; W)) := {X : J→ L2(Ω,Fb,W) | is a continuous

mapping from J into L2(Ω,Fb; W)}

such that sup
t∈J
E

[
‖X(t)‖2

]
< ∞ ;

C :=
{
X : J ×Ω→W |X ∈ C

(
J,L2 (Ω,Fb; W)

)
is an Ft-adapted stochastic process

}
.

For X ∈ C, define a norm by ‖X‖C =

sup
t∈J
E

[
‖X(t)‖2

]
1
2

. It is clear that (C, ‖ · ‖c) is a Banach

space.

Here, for each i = 1, 2, the linear operator −Ai : D(Ai) ⊆ Ci → Ci generates a strongly
continuous semigroup of contractions {Sq(t) : t ≥ 0} on the Banach space (Ci, ‖ · ‖Ci ). We let
f i : [0,T] : X1×X2 → Xi and σi : [0,T]→ Xi, i = 1, 2, be given functions. It will be convenient
to write the constraints in the equivalent form of nonlocal conditions, namely,

x(0) = α[x, y], y(0) = β[x, y].

As mentioned above, the main purpose of this paper is to study the existence of mild
solutions to the above described system.

5.2. Some Mathematical Preliminaries

Definition 5.2.1. Let X be a nonempty set. By a vector-valued metric on X we mean a map
d : X × X→ Rn satisfying :

(i) d(u, v) ≥ 0 for all u, v ∈ X, and if d(u, v) = 0, then u = v ;
(ii) d(u, v) = d(v,u) for all u, v ∈ X ;
(iii) d(u, v) ≤ d(u,w) + d(w, v) for all u, v, w ∈ X.

Note that for any i ∈ {1, · · · ,n}, (d(u, v))i = di(u, v) is a metric space on X.

We call the pair (X, d) a generalized metric space. For r = (r1, r2, · · · , rn) ∈ Rn
+,

B(x0, r) = {x ∈ X : d(x0, x) < r}

denotes the open ball centered at x0 with radius r, and by B(x0, r) its closure.

Definition 5.2.2. A square matrix of real numbers is said to be convergent to zero if its spectral
radius ρ(M) is strictly less than 1. This means that all the eigenvalues of M are in the open unit disc
|λ| < 1 for every λ ∈ C with det(M − λI) = 0, where I denotes the identity matrix inMn×n(R).

Theorem 5.2.3. ([112]) Let M ∈ Mn×n(R+). The following assertions are equivalent :
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(i) M is convergent to zero ;
(ii) Mk

→ 0 as k→∞ ;
(iii) The matrix (I −M) is nonsingular and

(I −M)−1 = I + M + M2 + . . . + Mk + . . . ;

(iv) The matrix (I −M) is nonsingular and (I −M)−1 has nonnegative elements.

Definition 5.2.4. Let (X, d) be a generalized metric space. An operator N : X → X is said to be
contractive if there exists a convergent to zero matrix M such that

d(N(x),N(y)) ≤Md(x, y) for all x, y ∈ X.

For n = 1, this reduces to the classical Banach contraction fixed point result.

5.2.1. Fixed point theorems

The following fixed point theorems are the tools to be used in our proofs.

Theorem 5.2.5. (Perov [112]) Let (X, d) be a complete generalized metric space with

d : X × X −→ Rn

and let N : X −→ X satisfy
d(N(x),N(y)) ≤Md(x, y)

for all x, y ∈ X and some square matrix M of nonnegative numbers. If the matrix M is convergent
to zero, then N has a unique fixed point x∗ ∈ X and

d(Nk(x0), x∗) ≤Mk(I −M)−1d(N(x0), x0)

for every x0 ∈ X and k ≥ 1.

The role of matrices with spectral radius less than one in the study of semilinear operator
systems as well as their connection to other abstract principles from nonlinear functional
analysis was pointed out in [113].

Theorem 5.2.6. (Leray-Schauder Theorem) Let (X, | · |X) be a Banach space, R > 0,

BX(0,R) = {x ∈ X : |x|X ≤ R},

and
T : BX(0,R)→ X

be a completely continuous operator. If |u|X < R for every solution u of the equation u = λT(u) and
any λ ∈ (0, 1), then T has at least one fixed point.

5.2.2. Fractional Brownian motion

We first give the definition of a one-dimensional f Bm.
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Definition 5.2.7. A one-dimensional f Bm, BH
t = {BH(t) : t ∈ J}, of Hurst index H ∈ (0, 1) is a

continuous and centered Gaussian process with covariance function

RH(t, s) = E
[
BH(t)BH(s)

]
=

1
2

(
t2H + s2H

− |t − s|2H
)
, t, s ∈ J. (5.2.1)

Remark 5.2.1. (i) If H = 1
2 , then B

1
2
t is a standard Brownian motion.

(ii) For 1
2 < H < 1, BH

t can be represented over a finite interval as

BH(t) =

∫ t

0
KH(t, s) dW(s),

where W = {W(t) : t ∈ J} is a Wiener process,

KH(t, s) = cH

(
H −

1
2

)
s

1
2−H

∫ t

s
(u − s)H− 3

2 uH− 1
2 du,

and cH is a constant depending on H.

Notice that if H = 1, the process Bt is a standard Brownian motion, but if H , 1, then it does
not have independent increments. From (5.2.1), it follows that E[Bt · Bs]2 = |t − s|2H. As a
consequence, the process BH

t has λ-Hölder continuous paths for all λ ∈ (0,H).

For what follows it will be convenient to have the following definition.

Definition 5.2.8. Let (Ω,F ,P) be a probability space, (E,A) be a measurable space and X : Ω→ E
be a random variable. The law of X is the probability measure µX : A→ R+ defined by

µX(A) = P(X−1(A)), A ∈ A.

From (5.2.1) we see that a standard f Bm BH
t has the following properties :

1. BH(0) = 0 and E[BH
t ] = 0 for all t ≥ 0.

2. BH
t has homogeneous increments, i.e., BH(t + s) − BH(s) has the same law as BH(t) for

s, t ≥ 0.

3. BH
t is a Gaussian process and E[(BH(t))2] = t2H, t ≥ 0, for all H ∈ (0, 1).

4. BH
t has continuous trajectories.

In the remainder of this paper we will assume that H ∈ ( 1
2 , 1).

Denote by ε the linear space of step functions on J of the form

φ(t) =

n−1∑
i=1

aiI(ti,ti+1](t),

where 0 = t1 < t2 < · · · < tn = b, n ∈ N, ai ∈ R. We let H be the closure of ε with respect to
the scalar product 〈I[0,t], I[0,s]〉H = RH(t, s). The Wiener integral of φ ∈ ε with respect to BH is
given by ∫ b

0
φ(s) dBH(s) =

n−1∑
i=1

ai

(
BH(ti+1) − BH(ti)

)
.
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Moreover, the mapping

φ→

∫ b

0
φ(s) dBH(s)

is an isometry between ε and the linear space span{BH(t) : t ∈ J} viewed as a subspace of
L2(Ω). This mapping can be extended to an isometry betweenH and the first Wiener chaos
of the f Bm

spanL2(Ω)
{BH(t) : t ∈ J}.

The image of an element h ∈ H by this isometry is also called the Wiener integral of h with
respect to BH

t .

For any τ ∈ [0, b], consider the linear operator K∗τ : ε→ L2[0, b] given by(
K∗τφ

)
(s) =

∫ τ

s
φ(t)

∂KH(t, s)
∂t

dt.

The operator K∗b induces an isometry between ε and L2[0, b] that can be extended toH .

We have the following relation between the Wiener integral with respect to the f Bm BH
t and

the Itô integral with respect to the Wiener process :∫ b

0
h(s) dBH(s) =

∫ b

0

(
K∗bh

)
(s) dW(s), h ∈ H , iff K∗bh ∈ L2[0, b].

For t ∈ [0, b],
∫ t

0 h(s) dBH(s) is defined by∫ t

0
h(s) dBH(s) :=

∫ t

0
h(s)I[0,t](s) dBH(s).

Moreover, we have∫ t

0
h(s) dBH(s) =

∫ t

0

(
K∗th

)
(s) dW(s), t ∈ [0, b], hI[0,t] ∈ H , provided K∗th ∈ L2[0, b].

Define L2
H

[0, b] by

L2
H

[0, b] =
{
h ∈ H : K∗bh ∈ L2[0, b]

}
.

For H > 1
2 , we have that (see [10])

L
1
H [0, b] ⊂ L2

H
[0, b]. (5.2.2)

Next, we define the infinite dimensional f Bm and give the definition of the corresponding
stochastic integral.

Let Q ∈ L(V,W) be a non-negative self-adjoint trace class operator defined by Qen = λnen
with

tr Q =

∞∑
n=1

λn < ∞,

where λn ≥ 0, n = 1, 2, . . ., are real numbers and {en}, n = 1, 2, . . . is a complete orthonormal
basis for V. Define the V-valued Q-cylindrical f Bm on (Ω,Fb,P) with covariance operator
Q by

BH(t) =

∞∑
n=1

Q
1
2 enBH

n (t) =

∞∑
n=1

√
λnenBH

n (t),
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where BH
n are real, independent, one-dimensional f Bm. Define the space L0

Q(V,Y) by

L0
Q(V,W) = {ξ : V →W | ξ is a Q-Hilbert-Schmidt operator}.

Note that ξ ∈ L(V,W) is called a Q-Hilbert-Schmidt operator if

‖ξ‖2L0
Q(V,W) :=

∞∑
n=1

‖

√
λnξen‖

2 < ∞.

The space L0
Q(V,W) equipped with the inner product

〈ξ, ζ〉L0
Q(V,W) =

∞∑
n=1

〈ξen, ζen〉

is a separable Hilbert space.

Definition 5.2.9 ([?],[?]). Let Λ : [0, b]→ L0
Q(V,W) satisfy

∞∑
n=1

∥∥∥K∗b
(
ΛQ

1
2

)
en

∥∥∥
L2([0,b],W)

< ∞. (5.2.3)

Then its stochastic integral with respect to the f Bm BH is defined as∫ t

0
Λ(s) dBH(s) :=

∞∑
n=1

∫ t

0
Λ(s)Q

1
2 en dBH

n (s)

=

∞∑
n=1

∫ t

0

(
K∗b

(
ΛQ

1
2 en

))
(s) dW(s), t ∈ [0, b].

Remark 5.2.2. Notice that if
∞∑

n=1

∥∥∥ΛQ
1
2 en

∥∥∥
L

1
H ([0,b],W)

< ∞, (5.2.4)

then (5.2.3) follows immediately from (5.2.2).

Lemma 5.2.10. ([?], [?]) If
Λ : [0, b]→ L0

Q(V,W)

satisfies (5.2.4), then for any 0 ≤ s < t ≤ b,

E


∥∥∥∥∥∥
∫ t

s
Λ(τ) dBH(τ)

∥∥∥∥∥∥2

L0
Q(V,W)

 ≤ CH(t − s)2H−1
∞∑

n=1

∫ t

s

∥∥∥Λ(τ)Q
1
2 en

∥∥∥2

L0
Q(V,W)

dτ,

where CH is a constant depending on the Hurst index H. If, in addition,
∑
∞

n=1

∥∥∥Λ(t)Q
1
2 en

∥∥∥
L0

Q(V,W)
is

uniformly convergent for t ∈ [0, b], then

E


∥∥∥∥∥∥
∫ t

s
Λ(τ) dBH(τ)

∥∥∥∥∥∥2

L0
Q(V,W)

 ≤ CH(t − s)2H−1
∫ t

s

∥∥∥Λ(τ)
∥∥∥2

L0
Q(V,W)

dτ.
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We now give some basic definitions and properties from the fractional calculus. Here, Γ(·)
is the Gamma function and [q] is the integer part of q

Definition 5.2.11. ([12]) The fractional integral of the function f : [0,∞) → R of order q with
lower limit 0 is defined as

Iq
0+ f (t) =

1
Γ(q)

∫ t

0

f (s)
(t − s)1−q ds, t > 0, q > 0,

provided that the right side is point-wise defined on [0,∞).

Definition 5.2.12. ([12]) The Riemann-Liouville’s derivative of the function f : [0,∞) → R of
order q with lower limit 0 is given by

LDq f (t) =
1

Γ(n − q)
dn

dtn

∫ t

0

f (s)
(t − s)q+1−n ds, t > 0, n = [q] + 1.

Definition 5.2.13. ([12]) The Caputo derivative of the function f : [0,∞) → R of order q with
lower limit 0 is defined as

cDq f (t) = LDq
[

f (t) −
n−1∑
k=0

tk

k!
f (k)(0)

]
, t > 0, n = [q] + 1.

Moreover, if f (n)
∈ C[0,∞), then

cDq f (t) =
1

Γ(n − q)

∫ t

0

f (n)(s)
(t − s)q+1−n ds, n = [q] + 1.

Next, we define what is meant by a mild solution to system (5.1.1). To do this, we need the
following concepts.

Definition 5.2.14. A filtrationF = (Ft)t≥0 of a probability space (Ω,F ,P)is a family of σ−algebras
Ft, indexed by t ∈ [0,∞] and all belonging to F , satisfying

1. if s ≤ t then Fs ⊂ Ft, and
2. F∞ = σ(∪t≥0Ft).

Definition 5.2.15. A stochastic process (Xt)t≥0 defined on (Ω,F ,P) is said to be adapted to the
filtration F if for each t ≥ 0, the random variable Xt is measurable relative to Ft.

Here is our definition of a mild solution.

Definition 5.2.16. A real-valued stochastic process u = (x, y) ∈ C × C is said to be a solution of
(5.1.1) with respect to the probability space (Ω,F ,P) if :

1) x(0) = α[x, y] and y(0) = β[x, y] ;
2) u(t) is Ft-adapted for all t ∈ J = (0, b] ;
3) u(t) is right continuous and has a limit from the left at all t ∈ J ;
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4) u(t) satisfies 

x(t) = Sq(t)α[x, y] +

∫ t

0
(t − s)q−1Tq(t − s) f 1(s, x(s), y(s)) d(s)

+

∫ t

0
(t − s)q−1Tq(t − s)σ1(s)dBH1 (s), t ∈ J,

y(t) = Sq(t)β[x, y] +

∫ t

0
(t − s)q−1Tq(t − s) f 2(s, x(s), y(s))d(s)

+

∫ t

0
(t − sq−1Tq(t − s))σ2(s)dBH2 (s), t ∈ J,

where

Sq(t) =

∫
∞

0
ξq(θ)S (tqθ) dθ, Tq(t) = q

∫
∞

0
θξq(θ)S

(
tqθ

)
dθ,

{S(t) : t ≥ 0} is our strongly continuous semigroup in W,

ξq(θ) =
1
q
θ−(1+ 1

q )ωq

(
θ−

1
q
)
≥ 0,

ωq(θ) =
1
π

∞∑
n=1

(−1)n−1θ−nq−1 Γ(nq + 1)
n!

sin(nπq), θ ∈ (0,∞),

and ξq is a probability density function defined on (0,∞) such that

ξq(θ) ≥ 0 for θ ∈ (0,∞), and
∫
∞

0
ξq(θ) dθ = 1.

Lemma 5.2.17. ([60]) The following properties are satisfied :
(i) Sq(t) and Tq(t) are bounded linear operators for each fixed t ≥ 0. In particular, there is a

constant M > 0 such that∥∥∥Sq(t)x
∥∥∥ ≤M‖x‖ and

∥∥∥Tq(t)x
∥∥∥ ≤ qM

Γ(q + 1)
‖x‖, for x ∈ X;

(ii) {Sq(t) : t ≥ 0} and {Tq(t) : t ≥ 0} are strongly continuous ;
(iii) if for every t > 0, S(t) is compact, then Sq(t) and Tq(t) are also compact operators.

This system can be viewed as a fixed point problem in C([0,T],X1) × C([0,T],X2) for the
nonlinear operator

T = (T1,T2) : C × C → C × C (5.2.5)

defined by 

T1(x, y) = Sq(t)α[x, y] +

∫ t

0
(t − s)q−1Tq(t − s) f 1(s, x(s), y(s))ds

+

∫ t

0
(t − s)q−1Tq(t − s)σ1(s)dBH1 (s),

T2(x, y) = Sq(t)β[x, y] +

∫ t

0
(t − s)q−1Tq(t − s) f 2(s, x(s), y(s))ds

+

∫ t

0
(t − s)q−1Tq(t − s)σ2(s)dBH2 (s).
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5.3. Existence and Uniqueness Results

We begin by introducing the following conditions that will be use to obtain our first existence
result.

(H1) There exist nonnegative numbers ai and bi for i ∈ {1, 2} such that{
‖ f 1(t, x(s), y(s)) − f 1(t, x(s), y(s))‖2 ≤ a1E[(|x − x|)2] + b1E[(|y − y|)2],
‖ f 2(t, x(s), y(s)) − f 2(t, x(s), y(s))‖2 ≤ a2E[(|x − x|)2] + b2E[(|y − y|)2],

for all x, y, x, y ∈ R and t ∈ J.
(H2) There exist positive constants Ai and Bi for i = 1, 2 such that{

‖α[x, y] − α[x, y]‖2 ≤ A1‖x − x‖2 + B1‖y − y‖2,
‖β[x, y] − β[x, y]‖2 ≤ A2‖x − x‖2 + B2‖y − y‖2,

for all x, y, x, y ∈ R.

Here is our first existence and uniqueness result. Its proof is based on Perov’s fixed point
theorem.

Theorem 5.3.1. Assume that conditions (H1)–(H2) are satisfied and the matrix

M = M
√

2


√

A1 + b2q−1

(Γ(q))2(2q−1) a1

√
B1 + b2q−1

(Γ(q))2(2q−1) b1√
A2 + b2q−1

(Γ(q))2(2q−1) a2

√
B2 + b2q−1

(Γ(q))2(2q−1) b2


converges to zero. Then the problem (5.1.1) has a unique solution.

Démonstration. We will show that the hypotheses of Perov’s fixed point theorem are satis-
fied. Now

Ξ1 = E[‖T1(x(t), y(t)) − T1(x(t), y(t))‖2]

≤ 2E[
∥∥∥Sq(t)

(
α[x, y] − α[x, y]

)∥∥∥2
]

+ 2E

∥∥∥∥∥∥
∫ t

0
(t − s)q−1Tq(t − s)

(
f 1(s, x(s), y(s)) − f 1(s, x(s), y(s))

)
ds

∥∥∥∥∥∥2 ,
and using Lemma 5.2.17, Fubini’s stochastic theorem, Hölder’s inequality, and conditions
(H1)–(H2), we obtain

Ξ1 ≤ 2M2E[‖α[x, y] − α[x, y]‖2]

+ 2
(qM)2

(Γ(q + 1))2E

[∫ t

0

∥∥∥ f 1(s, x(s), y(s)) − f 1(s, x(s), y(s))
∥∥∥2

ds
]

≤ 2M2E[‖α[x, y] − α[x, y]‖2]

+ 2
(qM)2

(Γ(q + 1))2E

[∫ t

0

∥∥∥ f 1(s, x(s), y(s)) − f 1(s, x(s), y(s))
∥∥∥2

ds
]

≤ 2M2
(
A1‖x − x‖2C + B1‖y − y‖2C

)
+ 2

(qM)2b2q−1

(Γ(q + 1))2(2q − 1)

(
a1‖x − x‖2C + b1‖y − y‖2C

)
.
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Hence,

Ξ1 = E[‖T1(x(t), y(t)) − T1(x(t), y(t))‖2] ≤
(
2M2A1 +

2M2b2q−1

(Γ(q))2(2q − 1)
a1

)
‖x − x‖2C

+

(
2M2B1 +

2M2b2q−1

(Γ(q))2(2q − 1)
b1

)
‖y − y‖2C.

Similarly, we have

Ξ2 = E[‖T2(x(t), y(t)) − T2(x(t), y(t))‖2] ≤
(
2M2A2 +

2M2b2q−1

(Γ(q))2(2q − 1)
a2

)
‖x − x‖2C

+

(
2M2B2 +

2M2b2q−1

(Γ(q))2(2q − 1)
b2

)
‖y − y‖2C.

Therefore,

‖T(x, y) − T(x, y)‖C =

(
‖T1((x, y) − T1(x, y)‖C
‖T2(x, y) − T2(x, y)‖C

)
≤ 2M2

A1 + b2q−1

(Γ(q))2(2q−1) a1 B1 + b2q−1

(Γ(q))2(2q−1) b1

A2 + b2q−1

(Γ(q))2(2q−1) a2 B2 + b2q−1

(Γ(q))2(2q−1) b2

 (‖x − x‖C
‖y − y‖C

)
, (5.3.1)

so

‖T(x, y) − T(x, y)‖C ≤ M
(
‖x − x‖C
‖y − y‖C

)
.

From Perov’s fixed point theorem (Theorem 5.2.5 above) the mapping T has a unique fixed
point (x, y) ∈ C × C that is a unique solution of problem (5.1.1). �

We will now give an existence result based on the nonlinear alternative of Leray-Schauder
type. We need the following conditions to obtain our result.

(H3) The functions f 1 and f 2 are L1
−Carathédory functions.

(H4) There are constants Ã1, B̃1, K1, Ã2, B̃2, and K2 such that‖α[x, y]‖2 ≤ Ã1‖x‖2C + B̃1‖y‖2C + K1,

‖β[x, y]‖2 ≤ Ã2‖x‖2C + B̃2‖y‖2C + K2,

for all x, y ∈ C[0, b].
(H5) There exist functions p, q, h, p̃, q̃, h̄ ∈ L1 ([0, b],R+) such that∥∥∥ f 1 (

t, x, y
)∥∥∥2
≤ p(t) ‖x‖ + q(t)

∥∥∥y
∥∥∥2

+ h(t)

and ∥∥∥ f 2 (
t, x, y

)∥∥∥2
≤ p̃(t) ‖x‖2 + q̃(t)

∥∥∥y
∥∥∥2

+ h̃(t)

for each t ∈ J and x, y ∈ C[0, b].
(H6) The functions σi : J → L0

Q(V,Y), i = 1, 2, are measurable and there exist constants
ξi > 0 for i = 1, 2 such that :

(i) sup
0≤s≤b

‖σi(s)‖2L0
Q(V,W) ≤ ξi ;
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(ii)
∞∑

n=1

‖σiQ
1
2 εn‖L0

Q(V,W) < ∞ ;

(iii)
∞∑

n=1

‖σiQ
1
2 εn‖W is uniformly convergent for t ∈ [0, b].

Theorem 5.3.2. Assume that (H3)–(H6) hold and

M∗ = max(3M2(Ãi + B̃i)) < 1, i = 1, 2. (5.3.2)

Then problem (5.1.1) has at least one solution on J.

Démonstration. It is easy to see that the fixed points of the operator T given in (5.2.5) are
solutions to (5.1.1). In order to apply Theorem 5.2.6, we first show that T is completely
continuous. The proof will be given in several steps.

Step 1. T = (T1,T2) is continuous. Let (xn, yn) be a sequence such that (xn, yn)→ (x̃, ỹ) ∈ C×C
as n→∞. Then,

E[‖T1(xn(t),yn(t)) − T1(x̃, ỹ)‖2]

≤ E

[∥∥∥∥∥∥Sq(t)α[xn, yn] +

∫ t

0
(t − s)q−1Tq(t − s) f 1(s, xn(s), yn(s))d(s)

+

∫ t

0
Sq(t)(t − s)q−1Tq(t − s)σ1(s)dBH(s) − Sq(t)α1

[
x̃, ỹ

]
−

∫ t

0
(t − s)q−1Tq(t − s) f 1(s, x̃(s), ỹ(s))d(s)

−

∫ t

0
Sq(t)(t − s)q−1Tq(t − s)σ1(s)dBH(s)

∥∥∥∥∥∥2 .
Thus,

E[‖T1(xn(t),yn(t)) − T1(x̃(t), ỹ(t))‖2]

≤ 2E
[∥∥∥Sq(t)

(
α[xn, yn] − α[x̃ − ỹ]

)∥∥∥2
]

+ 2E

∥∥∥∥∥∥
∫ t

0
(t − s)q−1Tq(t − s)

(
f 1(s, xn(s), yn(s)) − f 1(s, x̃(s), ỹ(s))

)
ds

∥∥∥∥∥∥2
=: I1 + I2.

Applying condition (H2),

I1 ≤ E[A1‖xn − x̃‖2 + B1‖yn − ỹ‖2], (5.3.3)

and by the Lebesgue dominated convergence theorem, I1 → 0 as n → ∞ since (xn, yn) →
(x̃, ỹ). Now using Lemma 5.2.17 and Hölder’s inequality,

I2 ≤
2M2b2q−1

Γ(q)2(2q − 1)
E

[∫ t

0

∥∥∥ f 1(s, xn(s), yn(s)) − f 1(s, x̃, ỹ)
∥∥∥ ds

]
(5.3.4)
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Since f 1 is an L1−Carathédory function, by the Lebesgue dominated convergence theorem,
I2 → 0 again since (xn, yn)→ (x̃, ỹ). Similarly,

E[‖T2(xn(t),yn(t)) − T2(x̃(t), ỹ(t))‖2]

≤ 2E
[∥∥∥Sq(t)β[xn, yn] − β[x̃, ỹ]

∥∥∥2
]

+ 2E

∥∥∥∥∥∥
∫ t

0
(t − s)q−1Tq(t − s)

(
f 1(s, xn(s), yn(s)) − f 1(s, x̃(s), ỹ(s))

)∥∥∥∥∥∥2 ds

=: Ĩ1 + Ĩ2

and again Ĩi → 0 for i = 1, 2. Therefore, T is continuous.

Step 2. T maps bounded sets into bounded sets in C × C. It suffices to show that for any K > 0,
there exists a positive constant l = (l1, l2) such that, for

(x, y) ∈ BK = {(x, y) ∈ C × C : ‖x‖C ≤ K, ‖y‖C ≤ K},

we have
‖T(x, y)‖C ≤ l. (5.3.5)

Now for each t ∈ J,

E[
∥∥∥T1(x(t), y(t))

∥∥∥2
] = E

[∥∥∥∥∥∥Sq(t)α[x, y] +

∫ t

0
(t − s)q−1Tq(t − s) f 1(s, x(s), y(s))d(s)

+

∫ t

0
(t − s)q−1Tq(t − s)σ1(s)dBH(s)

∥∥∥∥∥∥2
≤ 3E[

∥∥∥Sq(t)α[x, y]
∥∥∥2

]

+ 3E

∥∥∥∥∥∥
∫ t

0
(t − s)q−1Tq(t − s) f 1(s, x(s), y(s))d(s)

∥∥∥∥∥∥2
+ 3E

∥∥∥∥∥∥
∫ t

0
(t − s)q−1Tq(t − s)σ1(s)dBH(s)

∥∥∥∥∥∥2
=: j1 + j2 + j3,

where

j1 = 3E
[
‖Sq(t)α[x, y]‖2

]
≤ 3M2(Ã1‖x‖2C + B̃1‖y‖2C + K1) = l̃11
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by (H4). Using Hölder’s inequality, Lemma 5.2.17, and condition (H5), we see that

j2 = 3E

∥∥∥∥∥∥
∫ t

0
(t − s)q−1Tq(t − s) f 1(s, x(s), y(s))d(s)

∥∥∥∥∥∥2
≤

3M2

(Γ(q))2E

∥∥∥∥∥∥
∫ t

0
(t − s)q−1 f 1(s, x(s), y(s))ds

∥∥∥∥∥∥2
≤

3M2

(Γ(q))2

(∫ t

0
(t − s)q−1ds

)2

E

[∫ t

0
‖ f 1(s, x(s), y(s))ds‖2

]
≤

3M2b2q−1

(Γ(q))2(2q − 1)
E

[∫ t

0

(
p(s)‖x‖C + q(s)‖y‖C + h(s)

)
ds

]
≤

3M2b2q−1 (
K‖p‖L1 + K‖q‖L1 + ‖h‖L1

)
(Γ(q))2(2q − 1)

= l̃21,

and for j3, we use Lemma 5.2.17 and condition (H6) to obtain

j3 = 3E

∥∥∥∥∥∥
∫ t

0
(t − s)q−1Tq(t − s)σ1(s)dBH(s)

∥∥∥∥∥∥2
≤ 3CHt2H−1

∫ t

0

∥∥∥(t − s)q−1Tq(t − s)σ(s)
∥∥∥2

L0
Q(V,W)

ds

≤
3CHM2ξ2b2H+2q+2

(Γ(q))2(2q − 1)
= l̃31.

Therefore,
‖T1‖

2
C

= E[‖T1(x(t), y(t))‖2] ≤ l̃11 + l̃21 + l̃31 = l1.

Similarly, we have

‖T2‖
2
C

= E[‖T2(x(t), y(t))‖2] ≤ l̃12 + l̃22 + l̃32 = l2,

where
l̃12 = 3M2(Ã2‖x‖2C + B̃2‖y‖2C + K2),

l̃22 =
3M2b2q−1

(
K‖p̃‖L1 + K‖̃q‖L1 + ‖̃h‖L1

)
(Γ(q))2(2q − 1)

,

and

l̃32 =
3CHM2c2b2H+2q+2

(Γ(q))2(2q − 1)
.

Hence, (5.3.5) holds.

Step 3. T maps bounded sets into equicontinuous sets of C×C. Let BK be a bounded set in C×C
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as in Step 2. Let r1, r2 ∈ J with r1 < r2 and u = (x, y) ∈ BK. Then,

Θ1 := E
[
‖T1(x(r2), y(r2)) − T1(x(r1), y(r1))‖2

]
≤ 3E

[∥∥∥(Sq(r2) − Sq(r1))α[x, y]
∥∥∥2

]
+ 3E

[∥∥∥∥∥∫ r2

0
(r2 − s)q−1Tq(r2 − s) f 1(s, x(s), y(s))ds

−

∫ r1

0
(r1 − s)q−1Tq(r1 − s)( f 1(s, x(s), y(s))d(s)

∥∥∥∥∥2
+ 3E

[∥∥∥∥∥∫ r2

0
(r2 − s)q−1Tq(r2 − s)σ1(s)dBH(s)

−

∫ r1

0
(r1 − s)q−1Tq(r1 − s)σ1(s)dBH(s)

∥∥∥∥∥2
=: k1 + k2 + k3.

By the strong continuity of Sq(t), we see that lim
r2→r1

(
Sq(r2) − Sq(r1)

)
(α[x, y]) =0. Also, using

Lemma 5.2.17 and condition (H4), we have

E[‖(Sq(r2) − Sq(r1))α[x, y]‖2] ≤ (Sq(r2) − Sq(r1))
(
Ã1‖x‖2C + B̃1‖y‖2C + K1

)
(5.3.6)

By the Lebesgue dominated convergence theorem,

lim
r2→r1

k1 = 3E[
∥∥∥(Sq(r2) − Sq(r1))α[x, y]

∥∥∥2
] = 0.

Now

k2 ≤ 6E
[∥∥∥∥∥∫ r1

0
(r2 − s)q−1Tq(r2 − s) f 1(s, x(s), y(s))ds

+

∫ r2

r1

(r2 − s)q−1Tq(r2 − s) f 1(s, x(s), y(s))ds

−

∫ r1

0
(r1 − s)q−1Tq(r1 − s) f 1(s, x(s), y(s))ds

∥∥∥∥∥2
≤ 6E

∥∥∥∥∥∫ r1

0
[(r2 − s)q−1Tq(r2 − s) − (r1 − s)q−1Tq(r1 − s)] f 1(s, x(s), y(s))ds

∥∥∥∥∥2
+ E

∥∥∥∥∥∥
∫ r2

r1

(r2 − s)q−1Tq(r2 − s) f 1(s, x(s), y(s))dBH(s)

∥∥∥∥∥∥2
≤ k21 + k22.
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Using Lemma 5.2.17, Fubini’s stochastic theorem, Hölder’s inequality, and condition (H5),

k21 ≤ 6E

(∫ r1

0
[(r2 − s)Tq(r2 − s) − (r1 − s)q−1Tq(r1 − s)]ds

)2E [∫ r1

0
‖ f 1(s, x(s), y(s))‖2ds

]
≤ 6

(∫ r1

0
[(r2 − s)q−1Tq(r2 − s) − (r1 − s)q−1Tq(r1 − s)]ds

)2

× E

[∫ r1

0
(p(s)‖x‖C + q(s)‖y‖C + h(s))2ds

]
≤

6M2[K‖p‖L1 + K‖q‖L1 + ‖h(s)‖L1 ]
Γ2(q)(q − 2)2 [(r2 − r1)q−1 + rq−2

2 − rq−2
1 ].

Clearly, the right hand side of the above inequality tends to zero as r2 → r1. Hence,
lim

r2→r1
k21 = 0. Similarly,

k22 ≤ 6E

∥∥∥∥∥∥
∫ r2

r1

(r2 − s)q−1Tq(r2 − s) f 1(s, x(s), y(s))ds

∥∥∥∥∥∥2
≤ 6

(∫ r2

r1

(r2 − s)q−1Tq(r2 − s)ds
)2

E

[∫ r2

r1

‖ f 1(s, x(s, y(s)))‖2ds
]

By Lemma 5.2.17 and condition (H5),

k22 ≤
6M2b2q−1ξ2[K‖p‖L1 + K‖q‖L1 + ‖h‖L1 ]

Γ2(q)(2q − 1)
[(r2 − r1)2q−1],

so lim
r2→r1

k22 = 0.

Finally,

k3 ≤ 3E
[∥∥∥∥∥∫ r1

0
(r2 − s)q−1Tq(r2 − s)σ1(s)dBH(s)

−

∫ r1

0
(r1 − s)Tq(r2 − s)σ1(s)dBH(s)

+

∫ r2

r1

(r2 − s)q−1Tq(r2 − s)σ1(s)dBH(s)

∥∥∥∥∥∥2 ,
=: k31 + k32

and

k31 = 6E

∥∥∥∥∥∫ r1

0

(
(r2 − s)q−1Tq(r2 − s) − (r1 − s)q−1Tq(r1 − s)

)
σ1(s)dBH(s)

∥∥∥∥∥2
+ 6E

∥∥∥∥∥∥
∫ r2

r1

(r2 − s)q−1Tq(r2 − s)σ1(s)dBH(s)

∥∥∥∥∥∥2 .
Using (H5) and Lemma 5.2.17,

k31 ≤ 6CHt2H−1
∫ r1

0
‖

[
(r2 − s)q−1

− (r1 − s)q−1
]
σ1(s)‖2L0

Q(V,W)ds

≤
6CHt2H−1ξ2M2

(Γ(q))2(2q − 1)

[
r2q−1

1 + (r2 − r1)2q−1
− r2q−1

2

]
.
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Hence, lim
r2→r1

k31 = 0. Similarly,

k32 ≤ 6E

∥∥∥∥∥∥
∫ t2

t1

(r2 − s)q−1
− Tq(r2 − s)σ1(s)dBH(s)

∥∥∥∥∥∥2
≤

6CHt2H−1ζ2M2(r2 − r1)2q−1

Γ2(q)(2q − 1)
→ 0

as r2 → r1, so lim
r2→r1

k32 = 0. Thus,

lim
r2→r1

E
[
‖T(x(r2), y(r2)) − T(x(r1, y(r1))‖2

]
= 0.

Therefore, the function t → T(x(t), y(t)) is continuous on [0, b], so by the Arzelà-Ascoli
theorem, T : BK → C× C is completely continuous.

Step 4. Solutions are a priori bounded. For t ∈ J, we have

E[‖x(t)‖2] ≤ 3E[‖Sq(t)α[x, y]‖2] + E

∥∥∥∥∥∥
∫ t

0
(t − s)q−1Tq(t − s) f 1(s, x(s), y(s))ds

∥∥∥∥∥∥2
+ 3E

∥∥∥∥∥∥
∫ t

0
(t − s)q−1Tq(t − s)σ1(s)dBH(s)

∥∥∥∥∥∥2
≤ 3M2[Ã1E[‖x(t)‖2] + B̃1E[‖y(t)‖2] + K1]

+
3M2t2q−1

Γ2(q)(2q − 1)

∫ t

0
(p(s)E[‖x(s)‖2] + q(s)E[‖y(s)‖2] + ‖h(s)‖)ds

+
3M2CHt2H+2b−1ξ1

Γ2(q)(2q − 1)
.

by (H4), (H5), and (H6)(i).

Similarly,

E[‖y(t)‖2] ≤ 3M2[Ã2E[‖x(t)‖2] + B̃2E[‖y(t)‖2] + K1]

+
3M2t2q−1

Γ2(q)(2q − 1)

∫ t

0
(p(s)E[‖x(s)‖2] + q(s)E[‖y(s)‖2] + ‖̃h(s)‖)ds

+
3M2CHt2H+2b−1ξ2

Γ2(q)(2q − 1)
.

Therefore,

E[‖x(t)‖2] + E[‖y(t)‖2] ≤ M̃ +

∫ t

0
γ(t)(E[‖x(s)‖2] + E[‖y(s)‖2])ds,

where

M̃ =
3M2

1 −M∗

K1 + K2 +
CHb2H+2b−1(ξ1 + ξ2)

Γ2(q)(2q − 1)
+

b2q−1(‖h‖L1 + ‖̃h‖L1 )
Γ2(q)(2q − 1)


and

γ(t) =
3M2b2q−1

Γ2(q)(2q − 1)(1 −M∗)
(
p(t) + q(t) + p̃(t) + q̃(t)

)
.
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Hence, by Gronwall’s inequality, there exists M > 0 such that

E[‖x(t)‖2] + E[‖y(t)‖2] ≤M, for all t ∈ [0, b].

Set
U := {(x, y) ∈ C × C : ‖x‖C <

√

M + 1, ‖y‖C <
√

M + 1},

and consider the operator T : U→ C× C. From the choice of U, there is no (x, y) ∈ ∂U such
that (x, y) = λT(x, y) for some λ ∈ (0, 1). As a consequence of Theorem 5.2.6, T has a fixed
point (x, y) in U that in turn is a solution of the problem (5.1.1). �

We conclude this paper with an example of our results.

Example 5.3.3. Consider the partial neutral stochastic functional differential system

du(t, ξ) + ∂2

∂ξ2 u(t, ξ) = F(t,u(t, ξ), v(t, ξ)) + σ(t) dBH

dt , t ∈ [0, b], 0 ≤ ξ ≤ π,
dv(t, ξ) + ∂2

∂ξ2 v(t, ξ) = G(t,u(t, ξ), v(t, ξ)) + σ(t) dBH

dt , t ∈ [0, b], 0 ≤ ξ ≤ π,
u(t, 0) = u(t, π) = 0, t ∈ [0, b],
v(t, 0) = v(t, π) = 0, t ∈ [0, b],
u(0, ξ) =

∫ π
0 k(ξ, y)x(t, y)dy, 0 ≤ ξ ≤ π,

v(0, ξ) =
∫

0 vπk(ξ, x)y(t, x)dx, 0 ≤ ξ ≤ π,

(5.3.7)

where BH denotes a fractional Brownian motion, and G, F : [0, b] × R × R → R and
k : [0, b] × [0, π]→ R are continuous functions. Let

x(t)(ξ) = u(t, ξ), y(t)(ξ) = v(t, ξ), ξ ∈ [0, π],
f (t, x(t), y(t))(ξ) = F(t,u(t, ξ), v(t, ξ)), ξ ∈ [0, π],
g(t, x(t), y(t))(ξ) = G(t,u(t, ξ), v(t, ξ)), ξ ∈ [0, π]

for all t ∈ J. TakeK = H = L2([0, π]) and define the operator A by Au = u′′ with domain

D(A) =
{
u ∈ H : u′,u′′ ∈ H and u(0) = u(π) = 0

}
.

Then, it is well known that

Az = −

∞∑
n=1

e−n2t
〈z, en〉 en, z ∈ H ,

and A is the infinitesimal generator of an analytic semigroup {S(t)}t≥0 onH given by

S(t)u =

∞∑
n=1

e−n2t
〈u, en〉 en, u ∈ H ,

and en(u) = (2/π)1/2 sin(nu), n = 1, 2, · · · , is the orthogonal set of eigenvectors of A. The
analytic semigroup {S(t)}t>0, t ∈ J, is compact, and there exists a constant M ≥ 1 such that
‖S(t)‖2 ≤M. Thus, problem (5.3.7) can be written in the abstract form

dx(t) = [A1x(t) + f (t, x, y)]dt + σ1(t)dBH(t), t ∈ J := [0,T],
dy(t) = [A2y(t) + g(t, x, y)]dt + σ2(t)dBH(t), t ∈ J := [0,T],
x(0) = α[x, y],
y(0) = β[x, y].
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We now take
f (t,u, v) =

tu
1 + u2 + v2 and g(t,u, v) =

tv
1 + u2 + v2 ,

which are clearly are continuous functions and note that

| f (t,u, v)|2 ≤ b|u|2 and |g(t,u, v)|2 ≤ b|v|2.

Hence, conditions (H3), (H5), and (H6) hold. If we assume that there exist

α(u, v) =

∫ π

0
k(ξ, y)u(t, y)dy and β(u, v) =

∫ π

0
k(ξ, x)v(t, x)dx

satisfying condition (H4), then we can apply Theorem 5.3.2 to see that the problem (5.3.7)
has a unique solution on [0, b] × [0, π].
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