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Abstract

In this work we study the existence of weak solutions for a class of nonlinear differential equations

with periodic boundary conditions and impulses. The approach is based on variational methods and

critical point theory.

In the first chapter we recall some basic tools of elementary functional analysis and some general

results on critical point theory.

The second chapter is devoted to the question of existence of the solutions to a class of nonlinear

differential equations with instantaneous impulses by means of variational methods.

In the third chapter we consider a class of nonlinear differential equations with non-instantaneous

impulses and obtain the existence of solutions.

For the last chapter we generalize the model studied in the foregoing chapter.

Keywords: Nonlinear differential equation with impulses. Instantaneous impulses. Non-instantaneous

impulses. Variational method. Weak solution. Critical point.
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Résumé

L’objectif de ce travail est l’étude de l’existence de solutions faibles pour une certaine classe

d’équations différentielles non linéaires avec impulsions. L’approche utilisée est basé sur la méthode

variationnelle et la théorie du point critique classique.

Dans le premier chapitre nous présentons des outils de base nécessaires à l’étude des trois prin-

cipales parties qui constituent cette thèse.

Le deuxième chapitre s’attache à l’étude de l’existence de solutions faibles pour un système

d’équations différentielles non linéaires avec impulsions de type instantanées.

On s’intéresse dans le troisième chapitre à l’existence de solutions faibles mais avec impulsions

de type non-instantanées.

Le dernier chapitre est consacré à une généralisation pour le dernier modèle.

Mots clés: Équation différentielle non linéaire avec impulsions. Impulsions de type instantanées.

Impulsions de type non-instantanées. Méthode variationnelle. Solution faible. Point critique.
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Notations

In what follows, we use the following notations

ti Impulse points, such that

0 = t0 < t1 < t2 < . . . < tm < tm+1 = T .

(ti, si] Impulse intervals, such that

0 = s0 < t1 < s1 < t2 < s2 < . . . < tm < sm < tm+1 = T .

Ii, Ji Impulse functions defined on R.

αi, βi Impulse functions defined on R. But in this work we took them constants.

u′(t+i ) The right derivative of u at ti, i.e., u′(t+i ) = limt→t+i
u′(t).

u′(t−i ) The left derivative of u at ti, i.e., u′(t−i ) = limt→t−i
u′(t).

∆u′(ti) := u′(t+i )− u′(t−i ).

fu, fv The derivatives of f(t, u, v) at u and v respectively.

Dufi, Dvfi The derivatives of fi(t, u, v) at u and v respectively.

X? Dual space.

X?? Bidual space.

〈·, ·〉X?,X Scalar product in the duality X?, X.

σ(X,X?) Weak topology on X.

⇀ Weak convergence.

→ Strong convergence.

lim inf The limit inferior.

J Canonical injection from X into X??.

dim Dimension of a vector space.

A Closure of the set A.
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|A| Measure of the set A.

BX Closed unit ball in X, i.e. BX =
{
x ∈ X; ‖x‖X ≤ 1

}
.

Ω ⊂ Rn Open set in Rn.

I Open interval in R.

∂I Boundary of I.

Lp(Ω) =
{
u : Ω→ R, u is measurable and

∫
Ω

|u(x)|pdx <∞
}
, 1 ≤ p <∞.

p′ Conjugate exponent of p, i.e.,
1

p
+

1

p′
= 1.

a.e. Almost everywhere.

L∞(Ω) =
{
u : Ω→ R, u is measurable and |u(x)| ≤ C a.e. in Ω for some canstant C

}
.

inf Infimum.

ess inf Essential infimum.

supp f Support of the function f , i.e., supp f =
{
x ∈ I, f(x) 6= 0

}
.

C(I) Space of continuous functions on I.

C∞c (I) Space of infinity times differentiable functions with compact support in I.

max Maximum.

min Minimum.

Dαu Successive derivatives of the function u, i.e. Dαu = u(α).

Wm,p,Wm,p
0 , Hm, Hm

0 ,W
1,p
T Sobolev spaces.

L(X, Y ) Space of linear bounded operators from X into Y .

o(h) Landau notation, a little quantity such that its norm when it divided by

the norm of h will tend to zero.

DF (a) or F ′(a) Differential of F at the point a.

DF Differential of F .

C1(U) Class of functions differentiable on U with the differential must be continuous on U .

∇F (a) Gradient of F at the point a.

l.s.c. Lower semi-continuous.

w.l.s.c. Weakly lower semi-continuous.
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General Introduction

The aim of this thesis is the study of some impulsive problems with regard to the existence of

weak solutions, where our results are based on the variational methods and the classical critical point

theory.

The theory of impulsive differential equations describes processes which experience a sudden

change of their state at certain moments. Processes with such a character arise naturally and often,

especially in phenomena studied in physics, chemical technology, population dynamics, biotechnology

and economics. A comprehensive introduction to the basic theory is well developed in the monographs

see for example the books [6, 10, 13, 15, 21] and in the references therein.

If a sudden change in the behavior of the phenomenon is happening and take some time before

returning to the initial situation, in this case we speak of non-instantaneous impulses, as the figure

below illustrates.
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In the above figure the impulses start abruptly at points tk, k = 1, 2, · · · ,m, and keep the derivative

constant on a finite time interval (tk, sk], k = 1, 2, · · · ,m.

Now if the change of the state happens quickly and again quickly nothing happens, here we are

talking about instantaneous impulses, as the figure below shows.
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The impulses in the above figure start abruptly at points tk, k = 1, 2, · · · ,m.

Recently Hernández and O’Regan [14] initially the theory of non-instantaneous impulsive differ-

ential equations. For example, impulses start abruptly at the instant tk and their action continue on

a finite time interval (tk, sk]. This type of problem motivates to study certain dynamical changes of

evolution processes in pharmacotheraphy [20, 12, 24]. The existence of solutions of non-instantaneous

impulsive problem has been studied via some approaches, such as fixed point theory and theory of

C0− semigroup, see, for example, [11, 9, 20]. Important contributions to the study of the mathemat-

ical aspects of such equations have been undertaken in [2].

Many problems can be understood and solved by minimization of a functional, usually related

5



to the energy, in an appropriate space of functions. Recently, variational methods have been widely

used to study impulsive problems. This method was initiated by Tian and Ge [23] and Nieto and

O’Regan [19]. For some recent works see, for example, [1, 3, 4, 5, 7, 16, 22, 25, 26] and the references

therein.

Our purpose in this work is to show that the existence of solutions of the impulsive differential

equations considered is a problem equivalent to minimize some energy functional. Also, the critical

points of the functional are indeed solutions of the impulsive differential equations problem. The goal

of this work is to solve some class of boundary value problems for impulsive differential equations by

using critical point theory. The variational structure of general non-instantaneous impulsive problem

has been study in first time by Bai and Nieto [4].

Our work is made up of four chapters, and is organized as follows

In the first one we presented some well-known basic tools of elementary functional analysis and

some general results on critical point theory which were useful for the following.

The second chapter is devoted to the question of existence of the solutions to a class of nonlinear

differential equations with instantaneous impulses by means of variational methods.

−u′′(t) = fu(t, u, v), t ∈ (0, T ) \ {t1, ..., tm},

−v′′(t) = fv(t, u, v), t ∈ (0, T ) \ {t1, ..., tm},

u(0) = u(T ) = v(0) = v(T ) = 0,

∆u′(tk) = u′(t+k )− u′(t−k ) = Ik
(
u(tk)

)
, k = 1, 2, ...,m,

∆v′(tk) = v′(t+k )− v′(t−k ) = Jk
(
v(tk)

)
, k = 1, 2, ...,m,

where the impulses start abruptly at points tk.

In the third chapter we considered a class of nonlinear differential equations with non-instantaneous

6



impulses and obtained the existence of solutions.

−u′′(t) = Dufi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
, t ∈ (si, ti+1], i = 0, 1, . . . ,m,

−v′′(t) = Dvfi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
, t ∈ (si, ti+1], i = 0, 1, . . . ,m,

u′(t) = αi, t ∈ (ti, si], i = 1, 2, . . . ,m,

v′(t) = βi, t ∈ (ti, si], i = 1, 2, . . . ,m,

u′(s+
i ) = u′(s−i ), i = 1, 2, . . . ,m,

v′(s+
i ) = v′(s−i ), i = 1, 2, . . . ,m,

u′(0+) = α0, v′(0+) = β0,

u(0) = u(T ) = v(0) = v(T ) = 0.

Here the impulses start abruptly at points ti and keep the derivative constant on a finite time interval

]ti, si].

For the last chapter we generalized the model studied in the third chapter, by adding the terms

ηi(t)
(
u(t)− u(ti+1)

)
and θi(t)

(
v(t)− v(ti+1)

)
to the principal equations.



−u′′(t) + ηi(t)
(
u(t)− u(ti+1)

)
= Dufi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
,

t ∈ (si, ti+1], i = 0, 1, . . . ,m,

−v′′(t) + θi(t)
(
v(t)− v(ti+1)

)
= Dvfi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
,

t ∈ (si, ti+1], i = 0, 1, . . . ,m,

u′(t) = αi, t ∈ (ti, si], i = 1, 2, . . . ,m,

v′(t) = βi, t ∈ (ti, si], i = 1, 2, . . . ,m,

u′(s+
i ) = u′(s−i ), i = 1, 2, . . . ,m,

v′(s+
i ) = v′(s−i ), i = 1, 2, . . . ,m,

u′(0+) = α0, v′(0+) = β0,

u(0) = u(T ) = v(0) = v(T ) = 0.
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Chapter 1

Some basic tools

In this section we introduce some notations and definitions which are used throughout this work.

1.1 Some functional spaces

1.1.1 Weak topology σ(X,X?)

Let X be a Banach space and X? be the dual space with norm

‖f‖X? = sup
x∈X
‖x‖X≤1

∣∣〈f, x〉X?,X

∣∣.
Let f ∈ X?, we denote by ϕf : X −→ R the linear functional ϕf (x) = 〈f, x〉X?,X . As f runs

through X? we obtain a collection (ϕf )f∈X? of maps from X into R. We now ignore the usual

topology on X (associated to ‖ · ‖X) and define a new topology on the set X as follows:

Definition 1.1. (Weak topology) The weak topology on X is the coarsest (or weakest) topology on

X, denoted by σ(X,X?), that makes all the maps (ϕf )f∈X? continuous.

Remark 1.1. The open sets of the weak topology σ(X,X?) are obtained by considering first ∩finite

of sets of the form ϕ−1
f (ω), ω is an open set in R, and then ∪arbitrary.

We have in the following some properties of the weak topology.
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Chapter 1 Some basic tools

Proposition 1.1. The weak topology σ(X,X?) is Hausdorff (i.e. given x1, x2 ∈ X with x1 6= x2

there are two open sets O1 and O2 for the weak topology σ(X,X?) such that x1 ∈ O1, x2 ∈ O2, and

O1 ∩O2 = ∅).

Notation. If a sequence (xn) in X converges to x in the weak topology σ(X,X?) we shall write

xn ⇀ x.

To avoid any confusion we shall sometimes say, ”xn ⇀ x weakly in σ(X,X?)”. In order to be totally

clear we shall sometimes emphasize strong convergence by saying, ”xn −→ x strongly”, meaning that

‖xn − x‖X
n→∞−→ 0.

Proposition 1.2. Let (xn) be a sequence in X. Then

1.

(
xn ⇀ x weakly in σ(X,X?)

)
⇐⇒

(
〈f, xn〉X?,X −→ 〈f, x〉X?,X , ∀f ∈ X?

)
.

2.

(
xn −→ x strongly

)
=⇒

(
xn ⇀ x weakly in σ(X,X?)

)
.

3.

(
xn ⇀ x weakly in σ(X,X?)

)
=⇒

((
‖xn‖X

)
is bounded and ‖x‖X ≤ lim inf ‖xn‖X

)
.

4.

(
xn ⇀ x weakly in σ(X,X?) and fn −→ f strongly in X?

[
i.e. ‖fn − f‖X?

n→∞−→ 0
])

=⇒(
〈fn, xn〉X?,X −→ 〈f, x〉X?,X

)
.

Remark 1.2. In a Hilbert space H with the scalar product 〈·, ·〉H , we have through Riesz-Fréchet

representation theorem:

xn ⇀ x⇐⇒ lim
n→+∞

〈y, xn〉H = 〈y, x〉H , ∀y ∈ H.

Proposition 1.3. When X is finite-dimensional, the weak topology σ(X,X?) and the usual topology

are the same. In particular, a sequence (xn) converges weakly if and only if it converges strongly.

Remark 1.3. Open (resp. closed) sets in the weak topology σ(X,X?) are always open (resp. closed)

in the strong topology. In any infinite-dimensional space the weak topology is strictly coarser than

the strong topology, i.e., there exist open (resp. closed) sets in the strong topology that are not open

(resp. closed) in the weak topology. Here are two examples:
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Chapter 1 Some basic tools

1. The unit sphere S =
{
x ∈ X; ‖x‖X = 1

}
, with X infinite-dimensional, is never closed in the

weak topology σ(X,X?). More precisely, we have

S
σ(X,X?)

= BX ,

where S
σ(X,X?)

denotes the closure of S in the topology σ(X,X?) and BX denotes the closed

unit ball in X,

BX =
{
x ∈ X; ‖x‖X ≤ 1

}
.

2. The unit ball U =
{
x ∈ X; ‖x‖X < 1

}
, with X infinite-dimensional, is never open in the weak

topology σ(X,X?).

Every weakly closed set is strongly closed and the converse is false in infinite-dimensional spaces.

However, it is very useful to know that for convex sets, weakly closed = strongly closed.

Theorem 1.1. Let C be a convex subset of a Banach space X. Then C is closed in the weak topology

σ(X,X?) if and only if it is closed in the strong topology.

Corollary 1.1. (Mazur) Assume (xn) converges weakly to x. Then there exists a sequence (yn) made

up of convex combinations of the xn’s:

yn =
k=n∑
k=1

αnkxk,
k=n∑
k=1

αnk = 1, αnk ≥ 0 (n ∈ N∗),

such that (yn) converges strongly to x.

1.1.2 Reflexive spaces

Let X be a Banach space and X? be the dual space with norm

‖f‖X? = sup
x∈X
‖x‖X≤1

∣∣〈f, x〉X?,X

∣∣.
The bidual X?? is the dual of X? with norm

‖ξ‖X?? = sup
f∈X?
‖f‖X?≤1

∣∣〈ξ, f〉X??,X?

∣∣.
10
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There is a canonical injection from X into X?? defined as follows

J : X −→ X??

x 7−→ Jx : X? −→ R

f 7−→ 〈Jx, f〉X??,X? = 〈f, x〉X?,X .

It is clear that J is linear and that J is an isometry, that is, ‖Jx‖X?? = ‖x‖X . It may happen that

J is not surjective from X onto X??. However, it is convenient to identify X with a subspace of X??

using J . If J turns out to be surjective then one says that X is reflexive, and X?? is identified with

X.

Definition 1.2. (Reflexive Space) The space X is said to be reflexive if the canonical injection J

from X into X?? is surjective, i.e., J(X) = X??.

When X is reflexive, X?? is usually identified with X.

Remark 1.4. Many important spaces in analysis are reflexive. Clearly, finite-dimensional spaces

are reflexive (since dimX = dimX? = dimX??). Lp spaces are reflexive for 1 < p < ∞. Hilbert

spaces are reflexive. However, equally important spaces in analysis are not reflexive, for example L1

and L∞.

The next result describes the basic properties of reflexive spaces.

Theorem 1.2. The following statements are equivalent:

1. X is reflexive.

2. The closed unit ball in X

BX =
{
x ∈ X; ‖x‖X ≤ 1

}
,

is compact in the weak topology σ(X,X?).

3. For every bounded sequence (xn) in X, there exists a subsequence (xnk) that converges in the

weak topology σ(X,X?).

In order to clarify the connection among the above equivalent, it is maybe useful to recall the

following facts:

11
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• If X is a metric space, then

X is compact ⇐⇒ every sequence in X admits a convergent subsequence.

• There exist compact topological spaces X and some sequences in X without any convergent

subsequence.

• If X is a topological space with the property that every sequence admits a convergent subse-

quence, then X need not be compact.

Here are some further properties of reflexive spaces.

Proposition 1.4. Assume that X is a reflexive Banach space and let A ⊂ X be a closed vector

subspace of X. Then A is reflexive.

Corollary 1.2. A Banach space X is reflexive if and only if its dual space X? is reflexive.

1.1.3 Lp Spaces

Let Ω ⊂ Rn with n ∈ N∗.

Definition 1.3. Let p ∈ R with 1 ≤ p <∞, we set

Lp(Ω) =
{
u : Ω→ R, u is measurable and

∫
Ω

|u(x)|pdx <∞
}
,

with norm

‖u‖Lp(Ω) =

[ ∫
Ω

|u(x)|pdx
] 1
p

.

Definition 1.4. We set

L∞(Ω) =
{
u : Ω→ R, u is measurable and |u(x)| ≤ C a.e. in Ω for some canstant C

}
,

with the norm

‖u‖L∞(Ω) = inf
{
C, |u(x)| ≤ C a.e. on Ω

}
.

We have the following properties:

12
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1. Lp is a Banach space for any p, 1 ≤ p ≤ ∞.

2. The dual of Lp is Lp
′
, for any p, 1 < p < ∞, where p′ is the conjugate exponent of p, i.e.

1

p
+

1

p′
= 1. The dual of L1 is L∞. The dual of L∞ is strictly bigger than L1.

3. Hölder’s inequality:

Assume that u ∈ Lp and v ∈ Lp′ with 1 ≤ p, p′ ≤ ∞, 1

p
+

1

p′
= 1. Then uv ∈ L1 and

∫
Ω

∣∣u(x)v(x)
∣∣dx ≤ ‖u‖Lp‖v‖Lp′ .

4. Lp is reflexive for any p, 1 < p <∞.

5. L1 and L∞ are not reflexive spaces.

6. L2 equipped with the scalar product

(u, v) =

∫
Ω

u(x)v(x)dx,

is the unique Hilbert space among all Lp spaces.

7. If u ∈ L∞ then we have

|u(x)| ≤ ‖u‖L∞ a.e. on Ω.

1.1.4 Sobolev spaces

Let I = (a, b) be an open interval, possibly unbounded, and let p ∈ R with 1 ≤ p ≤ ∞.

1.1.4.1 The space W 1,p(I)

Definition 1.5. The Sobolev space W 1,p(I) is defined to be

W 1,p(I) =

{
u ∈ Lp(I) / u′ ∈ Lp(I)

}
.

We set H1(I) = W 1,2(I).

13
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It is essential to notice here that the derivative taken above the function u is in the sense of

distributions, i.e.

u′ ∈ Lp(I)⇐⇒ ∃v ∈ Lp(I) :

∫
I

uϕ′ dx = −
∫
I

vϕ dx, ∀ϕ ∈ C∞c (I),

where C∞c (I) is the space of infinity times differentiable functions with compact support in I,

supp ϕ =
{
x ∈ I, ϕ(x) 6= 0

}
.

The space W 1,p(I) is equipped with the norm

‖u‖W 1,p = ‖u‖Lp + ‖u′‖Lp ,

or with the equivalent norm

‖u‖W 1,p =
(
‖u‖pLp + ‖u′‖pLp

) 1
p
, 1 < p <∞.

The space H1(I) is equipped with the scalar product

(u, v)H1 = (u, v)L2 + (u′, v′)L2 =

∫
I

(uv + u′v′) dx,

and with the associated norm

‖u‖H1 =
(
‖u‖2

L2 + ‖u′‖2
L2

) 1
2
.

Here some properties of Sobolev space W 1,p(I):

1. The space W 1,p is a Banach space for 1 ≤ p ≤ ∞.

2. W 1,p is reflexive for 1 < p <∞.

3. H1 is the unique Hilbert space among all W 1,p spaces.

4. For any u ∈ W 1,p(I) with 1 ≤ p ≤ ∞, and I bounded or unbounded, then there exists a function
∼
u ∈ C(I)

(
C(I): space of all continuous functions on I with norm ‖v‖∞ = maxt∈I |v(t)|

)
, such

that

u =
∼
u a.e. on I,

and
∼
u(x)− ∼u(y) =

∫ x

y

u′(t)dt, ∀x, y ∈ I.

14
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We note that if one function u belongs to W 1,p then all functions v such that v = u a.e. on I also

belong to W 1,p. Every function u ∈ W 1,p admits one (and only one) continuous representative

on I, i.e. there exists a continuous function on I that belongs to the equivalence class of u

(v ∼ u if v = u a.e.). When it is useful (for example, in order to give a meaning to u(x) for

every x ∈ I) we replace u by its continuous representative.

In order to simplify the notation we also write u for its continuous representative. We finally

point out that the property ”u has a continuous representative” is not the same as ”u is

continuous a.e.”.

5. Sobolev inequality (Sobolev embedding):

(a) There exists a constant C (depending only on |I| ≤ ∞) such that

‖u‖W∞(I) ≤ C‖u‖W 1,p(I), ∀u ∈ W 1,p(I), ∀ 1 ≤ p ≤ ∞.

In other words, W 1,p(I) ⊂ W∞(I) with continuous injection for all 1 ≤ p ≤ ∞.

(b) If I is bounded then

• The injection W 1,p(I) ⊂ C(I) is compact for all 1 < p ≤ ∞.

• The injection W 1,1(I) ⊂ Lq(I) is compact for all 1 ≤ q <∞.

Remark 1.5. The injection W 1,1(I) ⊂ C(I) is continuous but it is never compact, even if I is

a bounded interval.

Remark 1.6. (Continuous embedding / Compact embedding) If X and Y be two normed vector

spaces, with norms ‖ · ‖X and ‖ · ‖Y respectively, such that X ⊆ Y .

I We say that X is continuously embedded in Y if the identity function

i : X −→ Y,

x 7−→ x,

is continuous, i.e. if there exists a constant C ≥ 0 such that

‖x‖Y ≤ C‖x‖X , ∀x ∈ X.

I We say that X is compactly embedded in Y if

15
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• X is continuously embedded in Y .

• The identity function i of X into Y is a compact operator, i.e. any bounded subset in

X is relatively compact subset in Y (or in other words for any bounded sequence (xn)

in X, there exists a subsequence (xnk) that converges in Y .).

6. Suppose that I is an unbounded interval and u ∈ W 1,p(I) with 1 ≤ p <∞. Then

lim
x∈I
|x|→∞

u(x) = 0.

1.1.4.2 The space W 1,p
0 (I)

Let 1 ≤ p <∞.

Definition 1.6. We denote to the closure of C∞c (I) in W 1,p(I) by W 1,p
0 (I), i.e.

C∞c (I)
W 1,p(I)

= W 1,p
0 (I) ⊆ W 1,p(I).

We set H1
0 (I) = W 1,2

0 (I).

The space W 1,p
0 (I) is equipped with the norm of W 1,p(I), and the space H1

0 (I) is equipped with

the scalar product of H1(I).

Here some properties of the space W 1,p
0 (I):

1. W 1,p
0 is a Banach space for 1 ≤ p <∞, and it is reflexive if 1 < p <∞.

2. H1
0 is a Hilbert space.

3. If I = R, we have C∞c (R)
W 1,p(R)

= W 1,p(R), and therefore W 1,p
0 (R) = W 1,p(I).

4. The following property is a basic characterization of functions in W 1,p
0 (I):

If u ∈ W 1,p(I), then we have

u ∈ W 1,p
0 (I)⇐⇒ u = 0 on ∂I,

where ∂I denotes the boundary of I.
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5. Poincaré’s inequality:

Suppose I is a bounded interval. Then there exists a constant C (depending on |I| <∞) such

that

‖u‖Lp(I) ≤ C‖u′‖Lp(I), ∀u ∈ W 1,p
0 (I).

As a consequence of Poincaré’s inequality, the quantity ‖u′‖Lp(I) is a norm equivalent to the

W 1,p(I) norm.

6. If I is bounded, the expression (u′, v′)L2(I) =

∫
I

u′v′ dx, defines a scalar product on H1
0 (I), and

the associated norm, i.e., ‖u′‖L2(I) is equivalent to the H1(I) norm.

1.1.4.3 The space Wm,p(I)

Let m ≥ 0 an integer.

Definition 1.7. The Sobolev space Wm,p(I) is defined by

Wm,p(I) =

{
u ∈ Lp(I) / Dαu ∈ Lp(I), ∀α ∈ {0, 1, 2, · · · ,m}

}
,

where Dαu, α ∈ {0, 1, 2, · · · ,m} denote the successive derivatives of u, i.e.

D0u = u, D1u = u′, D2u = u′′, · · · , Dmu = u(m).

We set Hm(I) = Wm,2(I).

We have for any α ∈ {0, 1, 2, · · · ,m}:

Dαu ∈ Lp(I)⇐⇒ ∃vα ∈ Lp(I) :

∫
I

uDαϕ dx = (−1)α
∫
I

vαϕ dx, ∀ϕ ∈ C∞c (I).

The space Wm,p(I) is equipped with the norm

‖u‖Wm,p =
m∑
α=0

‖Dαu‖Lp ,

or sometimes with the equivalent norm

‖u‖Wm,p =

( m∑
α=0

‖Dαu‖pLp
) 1

p

, 1 < p <∞.
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The space Hm(I) is equipped with the scalar product

(u, v)Hm =
m∑
α=0

(Dαu,Dαv)L2 =
m∑
α=0

∫
I

DαuDαv dx,

and with the associated norm

‖u‖H1 =

( m∑
α=0

‖Dαu‖2
L2

) 1
2

.

It is easily show

· · · ⊂ W 3,p ⊂ W 2,p ⊂ W 1,p ⊂ W 0,p = Lp.

We can extend to the space Wm,p (m ≥ 2), all the properties shown for W 1,p. For example, if

I is bounded, Wm,p(I) is continuously embedded in Cm−1(I) for 1 ≤ p ≤ ∞, and it is compactly

embedded if 1 < p ≤ ∞.

1.1.4.4 The space Wm,p
0 (I)

Let 1 ≤ p <∞, and let m ≥ 2 an integer.

Definition 1.8. Wm,p
0 (I) is defined as the closure of C∞c (I) in Wm,p(I), i.e.

C∞c (I)
Wm,p(I)

= Wm,p
0 (I) ⊆ Wm,p(I).

We set Hm
0 (I) = Wm,2

0 (I).

Remark 1.7.

1. We can also define Wm,p
0 (I) as follow

Wm,p
0 (I) =

{
u ∈ Wm,p(I) / Dαu = 0 on ∂I, ∀α ∈ {0, 1, · · · ,m− 1}

}
.

2. It is necessary to note the distinction between:

W 2,p
0 (I) =

{
u ∈ W 2,p(I) / u = Du = 0 on ∂I

}
,

and

W 2,p(I) ∩W 1,p
0 (I) =

{
u ∈ W 2,p(I) / u = 0 on ∂I

}
.

18
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We finish this section by adding the following result

Proposition 1.5. (Proposition 1.2. of [17]) Let 1 < p < ∞, and let T > 0. If the sequence (xn)

converges weakly to x in W 1,p
T (0, T ), then (xn) converges uniformly to x on [0, T ].

Here the Sobolev space W 1,p
T (0, T ) is the space of functions u ∈ W 1,p(0, T ) with u(0) = u(T ) , i.e.

W 1,p
T (0, T ) =

{
u ∈ W 1,p(0, T ) / u(0) = u(T )

}
.

1.2 Some classical definitions and results on critical point

theory

Let X and Y two normed spaces.

1.2.1 Differentiable maps

We begin by defining two kinds of differentiability, the notion of Fréchet derivative and then recall

the definition of Gateaux derivative.

Definition 1.9. (Bounded operator) A linear operator F : X −→ Y is called bounded (or continuous)

if there is a constant C ≥ 0 such that

‖F (x)‖Y ≤ C‖x‖X , ∀x ∈ X.

We denote by L(X, Y ) to the space of all linear bounded operators from X into Y .

The norm of a bounded operator is defined by

‖F‖L(X,Y ) = sup
x∈X
x 6=0

‖F (x)‖Y
‖x‖X

= sup
x∈X
‖x‖X≤1

x 6=0

‖F (x)‖Y = sup
x∈X
‖x‖X=1

‖F (x)‖Y .

Definition 1.10. (Fréchet derivative) Let U a nonempty open subset in X.

An operator F : U ⊂ X −→ Y is called Fréchet differentiable at a point a ∈ U , if there exists a

function Ga ∈ L(X, Y ) such that

F (a+ h)− F (a) = Ga(h) + o(h), h ∈ X,
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where the remainder o(h) (Little o -Landau notation-) is in Y and satisfies

lim
‖h‖X→0

‖o(h)‖Y
‖h‖X

= 0.

It is essential to notice if a ∈ U , and since U is open, then there exists r > 0 such that the ball

B(a, r) =
{
x ∈ X / ‖x − a‖X < r

}
⊂ U . Hence we can choose h ∈ X with ‖h‖X < r to ensure

a+ h ∈ U , therefore F (a+ h) will be well defined.

Usually the operator Ga will be denoted by

DF (a), dF (a), daF or F ′(a),

and it is called the Fréchet derivative (differential) of F at the point a ∈ U .

The image of h ∈ X under DF (a)
(
DF (a)(h) ∈ Y

)
is called the Fréchet differential of F at the

point a taken at h.

We say F is Fréchet differentiable on U if F is Fréchet differentiable at each point of U . In this

case, the mapping a 7−→ DF (a) is called Fréchet derivative (differential) of F on U , and it is denoted

by DF , hence

DF : U −→ L(X, Y )

a 7−→ DF (a).

F is said to be of class C1 on U if the differential DF is continuous on U , and we write F ∈

C1(U, F ) = C1(U).

Definition 1.11. (Gateaux derivative) Let U a nonempty open subset in X.

An operator F : U ⊂ X −→ Y is called Gateaux differentiable at a point a ∈ U , if there exists

Ga ∈ L(X, Y ) such that

lim
t→0

F (a+ th)− F (a)

t
= Ga(h), ∀h ∈ X,

where the limit is taken for real t and convergence in the norm of Y is meant.

As in the notion of Fréchet derivative Ga will be denoted by

DF (a), dF (a), daF or F ′(a),

and is called the Gateaux derivative of F at the point a ∈ U .

The image of h ∈ X under DF (a)
(
DF (a)(h) ∈ Y

)
is called the Gateaux differential of F at the

point a in the direction h.
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We say F is Gateaux differentiable on U if F is Gateaux differentiable at each point of U . In this

case, the mapping a 7−→ DF (a) is called Gateaux derivative of F on U , and it is denoted by DF ,

hence DF : U −→ L(X, Y ).

Remark 1.8.

1. It follows immediately from the definitions, if F is Fréchet differentiable at a ∈ U , then F is

Gateaux differentiable at a, and the Fréchet and Gateaux derivatives of F at a are the same.

The converse is not always true, but we have the following

If the Gateaux derivative DF exists in some neighborhood U(a) ⊂ U of the point a ∈ U ,

and is continuous at a, then the Fréchet derivative DF (a) exists and the Fréchet and Gateaux

derivatives of F at a are the same. In other words, a continuous Gateaux derivative is a Fréchet

derivative.

2. If F is Fréchet differentiable at a ∈ U , then F is continuous at a.

1.2.1.1 Some basic examples

In the following some basic examples which are used in the next chapters (regarding the con-

struction of the energy functional).

Example 1.1. Let H be a Hilbert space with the scalar product (·, ·)H . Consider the functional F

defined as following

F : H −→ R

u 7−→ F (u) =
1

2
‖u‖2

H =
1

2
(u, u)H .

Since

F (u+ ϕ)− F (u) =
1

2
‖u+ ϕ‖2

H −
1

2
‖u‖2

H = (u, ϕ)H +
1

2
‖ϕ‖2

H ,

so F is Fréchet differentiable at any point u ∈ H, and we have

DF (u) : H −→ R

ϕ 7−→ DF (u)(ϕ) = (u, ϕ)H ,

and o(ϕ) =
1

2
‖ϕ‖2

H .
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Example 1.2. Let F : Rn −→ R be a real function and n ≥ 1.

If F is differentiable (in the sense of Fréchet) at the point a ∈ Rn, then all the partial derivatives of

F at the point a are exist, and we have

DF (a) : Rn −→ R

h 7−→ DF (a)(h) = 〈∇F (a), h〉 =
n∑
i=1

∂F

∂xi
(a)hi,

where ∇F (a) is the gradient of F at the point a, and 〈·, ·〉 denotes the canonical scalar product in

Rn.

The converse is not always true, but we have the following

If the partial derivatives of F at the point a are exist and continuous, then F is differentiable at the

point a.

Example 1.3. If F : R −→ R be a derivable function. So for any x ∈ R we have DF (x)(h) =

F ′(x)h, h ∈ R.

As a special case if f : R −→ R be a continuous function, and F defined as follows:

F : R −→ R

x 7−→ F (x) =

∫ x

0

f(s)ds,

then F is derivable, and we have DF (x)(h) = f(x)h, h ∈ R.

1.2.2 Extreme points

Let F be a real functional defined on a nonempty open subset U ⊆ X
(
F : U ⊆ X −→ R

)
.

Definition 1.12. (Extremum point) A point x0 ∈ U is called an extremum of F if there exists an

open neighborhood U(x0) ⊆ X of x0 such that

F (x) ≤ F (x0), for every x ∈ U(x0) ∩ U, i.e., F is maximal at x0,

or

F (x) ≥ F (x0), for every x ∈ U(x0) ∩ U, i.e., F is minimal at x0.
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Definition 1.13. (Critical point -Stationary point-) If F is differentiable at x0 ∈ U , then x0 is called

a critical point (or stationary point) of F if

DF (x0) = 0.

In the following result a necessary condition for x0 to be an extremum.

Theorem 1.3. Suppose F is differentiable at x0 ∈ U .

If x0 is an extremum of F , then DF (x0) = 0
(
i.e., x0 is a critical point of F

)
. In other words a

necessary condition for x0 to be an extremum is that it is critical.

Remark 1.9.

1. The foregoing theorem shows us if we need to find the extremum points of a function F we have

to look for them among the critical points.

2. Not always a critical point is an extremum point. For example the function F defined on R by

F (x) = x3 has a critical point at 0, but 0 not an extremum point.

3. In the case X = Rn, we have the following equivalents

DF (x) = 0 ⇐⇒ ∇F (x) = 0,

⇐⇒ ∂F

∂xi
(x) = 0, ∀i = 1, 2, · · · , n,

so the problem of finding the critical points returns to solve a system of n algebraic equations
∂F

∂xi
(x1, x2, · · · , xn) = 0,

i = 1, 2, · · · , n.

1.2.3 Minimizing sequence / Weakly lower semi-continuous functions /

Coercive functions

Definition 1.14. (Minimizing sequence) A minimizing sequence of a functional F : X −→ R, is a

sequence (xj) ⊂ X, such that

lim
j−→∞

F (xj) = inf
x∈X

F (x).

23



Chapter 1 Some basic tools

Definition 1.15. (Lower semi-continuous / Weakly lower semi-continuous) A functional F : X −→

R, is lower semi-continuous (resp. weakly lower semi-continuous), if

∀(xj) ⊂ X : xj −→ x =⇒ lim inf
j−→∞

F (xj) ≥ F (x),

(
resp. ∀(xj) ⊂ X : xj ⇀ x =⇒ lim inf

j−→∞
F (xj) ≥ F (x)

)
.

The following properties are easy consequences of the definition:

1. The sum of two l.s.c. (resp. w.l.s.c.) functions is l.s.c. (resp. w.l.s.c.).

2. The product of a l.s.c. (resp. w.l.s.c.) function by a positive constant is l.s.c. (resp. w.l.s.c.).

3. If (ϕλ)λ∈Λ is a family of l.s.c. (resp. w.l.s.c.) functions, the function supλ∈Λ ϕλ defined by(
sup
λ∈Λ

ϕλ

)
(u) = sup

λ∈Λ
ϕλ(u),

is l.s.c. (resp. w.l.s.c.).

Remark 1.10.

1. If the functional F is w.l.s.c. then F is l.s.c.

2. If the functional F is continuous then F is l.s.c.

Definition 1.16. (Coercive) A functional F : X −→ R, is called coercive if, for every x ∈ X,

F (x)→ +∞ if ‖x‖X → +∞.

Now we are interested to find conditions that ensure that a functional, defined on all of a Banach

space, achieves its extremum. So we have the following result

Theorem 1.4. (Th. 1.1 of [17]) Let F be a functional defined on a reflexive Banach space X.

If F satisfies

1. F is w.l.s.c.

2. F has a bounded minimizing sequence.

24



Chapter 1 Some basic tools

Then, F has a minimum on X. In other words F is bounded from below on X and achieves its

infimum at some point x0 ∈ X. If moreover F is differentiable at x0, then DF (x0) = 0.

Proof. Let (xj) be a bounded minimizing sequence. Going if necessary to a subsequence, we can

assume, by the reflexivity of X, that (xj) converges weakly to some x ∈ X. Thus,

F (x) ≤ lim inf
j−→∞

F (xj) = lim
j−→∞

F (xj) = inf
y∈X

F (y),

so that infy∈X F (y) = F (x).

Remark 1.11. The existence of a bounded minimizing sequence will be in particular insured when

F is coercive.

Corollary 1.3. If F satisfies

1. F is w.l.s.c.

2. F is coercive.

Then, F has a minimum on X.

1.2.4 Convex functions

Definition 1.17 (Convex function). A functional F : X −→ R, is convex if

F
(
(1− λ)x+ λy

)
≤ (1− λ)F (x) + λF (y),

for all λ ∈ (0, 1), x, y ∈ X.

The following properties are easy consequences of the definition:

1. The sum of two convex functions is a convex function.

2. The product of a convex function by a positive constant is a convex function.

3. If (ϕλ)λ∈Λ is a family of convex functions then supλ∈Λ ϕλ is a convex function.

In view of theorem 1.4, it is important to obtain sufficient conditions for weak lower semi-

continuity.
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Theorem 1.5. (Th. 1.2. of [17]) If X is a normed space and F : X −→ R, is l.s.c. and convex,

then F is w.l.s.c.

Proof. Assume that xj ⇀ x and let c > lim infj→+∞ F (xj). Going if necessary to a subsequence,

we can assume that c > F (xj) for all j ∈ N∗. By Mazur’s theorem (corollary 1.1), there exists a

sequence (yj) with

yj =

j∑
k=1

αjkxk,

j∑
k=1

αjk = 1, αjk ≥ 0,

such that yj → x. Since F is l.s.c. and convex, we obtain

F (x) ≤ lim inf
j→+∞

F (yj),

= lim inf
j→+∞

F

( j∑
k=1

αjkxk

)
,

≤ lim inf
j→+∞

j∑
k=1

αjkF (xk),

≤ lim inf
j→+∞

(
c

j∑
k=1

αjk

)
,

= lim inf
j→+∞

(
c
)
,

= c.

Since c > lim infj→+∞ F (xj) is arbitrary, we have F (x) ≤ lim infj→+∞ F (xj), so that F is w.l.s.c.

Corollary 1.4. If the functional F is continuous and convex on a normed space X, then F is w.l.s.c.

In particular, for every sequence (xj) ⊂ X converging weakly to x, we have

lim inf
j−→∞

‖xj‖X ≥ ‖x‖X .
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Chapter 2

Variational approach to instantaneous

impulsive differential system

In this chapter we consider a nonlinear Dirichlet problem with instantaneous impulses and obtain

the existence of solutions by means of variational methods.

−u′′(t) = fu(t, u, v), t ∈ (0, T ) \ {t1, ..., tm},

−v′′(t) = fv(t, u, v), t ∈ (0, T ) \ {t1, ..., tm},

u(0) = u(T ) = v(0) = v(T ) = 0,

∆u′(tk) = u′(t+k )− u′(t−k ) = Ik
(
u(tk)

)
, k = 1, 2, ...,m,

∆v′(tk) = v′(t+k )− v′(t−k ) = Jk
(
v(tk)

)
, k = 1, 2, ...,m,

(2.1)

where 0 = t0 < t1 < t2 < ... < tm < tm+1 = T , the impulses start abruptly at points tk, here

u′(t±k ) = limt→t±k
u′(t). The nonlinear functions fu, fv (the derivatives of f(t, u, v) with respect to

u and v respectively) are Carathéodory functions on (0, T ) × R2, and Ik, Jk, (k = 1, ...,m), are

continuous functions on R.

2.1 Functional space framework

We define the following functional spaces:
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Chapiter 2 Variational approach to instantaneous impulsive differential system

C[0, T ] be the space of all continuous functions on [0, T ] with the norm

‖u‖∞ = max
t∈[0,T ]

|u(t)|.

H1
0 (0, T ) is the Sobolev space with the inner products

(u, v)1 =

∫ T

0

u′(t)v′(t) dt,

and

(u, v)2 =

∫ T

0

u(t)v(t) dt+

∫ T

0

u′(t)v′(t) dt,

which induce the corresponding norms

‖u‖1 =

(∫ T

0

∣∣u′(t)∣∣2 dt) 1
2

,

and

‖u‖2 =

(∫ T

0

∣∣u(t)
∣∣2 dt+

∫ T

0

∣∣u′(t)∣∣2 dt) 1
2

.

By Poincare’s inequality,(∫ T

0

u2(t) dt

) 1
2

≤ 1√
λ1

(∫ T

0

∣∣u′(t)∣∣2 dt) 1
2

, for any u ∈ H1
0 (0, T ),

we easily obtain that the norms ‖.‖1 and ‖.‖2 are equivalent. Here, λ1 =
π2

T 2
is the first eigenvalue

of the Dirichlet problem

−u′′(t) = λu(t), t ∈ (0, T ); u(0) = u(T ) = 0.

Set H = H1
0 (0, T )×H1

0 (0, T ), in the Hilbert space H, for any (u, v) ∈ H, we set the norm

‖(u, v)‖H =

(
‖u‖2

1 + ‖v‖2
1

) 1
2

.

Lemma 2.1. There exists γ > 0 such that, if (u, v) ∈ H, then

‖u‖∞, ‖v‖∞ ≤ γ
∥∥(u, v)

∥∥
H
.
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Proof. For any (u, v) ∈ H, it follows from the mean value theorem that

u(τ) =
1

T

∫ T

0

u(s) ds,

for some τ ∈ (0, T ). Hence, for t ∈ [0, T ], using Hölder’s inequality and Poincare’s inequality

|u(t)| =

∣∣∣∣u(τ) +

∫ t

τ

u′(s) ds

∣∣∣∣,
≤ |u(τ)|+

∫ T

0

|u′(s)| ds,

≤ 1

T

∫ T

0

|u(s)| ds+

∫ T

0

|u′(s)| ds,

≤ 1√
T
‖u‖L2 +

√
T‖u′‖L2 ,

≤ 1√
λ1T
‖u′‖L2 +

√
T‖u′‖L2 ,

=

(
1√
λ1T

+
√
T

)
‖u′‖L2 ,

≤

(
1√
λ1T

+
√
T

)∥∥∥(u, v)
∥∥∥
H
.

Then, there exists γ =
1√
λ1T

+
√
T > 0, such that

‖u‖∞ ≤ γ
∥∥(u, v)

∥∥
H
.

Similarly, we can get

‖v‖∞ ≤ γ
∥∥(u, v)

∥∥
H
.

2.2 Variational approach

In the following, we are concerned with problem (2.1) subject to impulses in the derivative at

the prescribed instantsts tk, k = 1, 2, ...,m. We are interested in the solution (u, v) of problem (2.1)

satisfying the impulse conditions,

∆u′(tk) = u′(t+k )− u′(t−k ) = Ik(u(tk)), (2.2)
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and

∆v′(tk) = v′(t+k )− v′(t−k ) = Jk(v(tk)), k = 1, 2, ...,m. (2.3)

For u, v ∈ H2(0, T ), we have that u, v, u′ and v′ are both absolutely continuous. Meanwhile,

u′′, v′′ ∈ L2(0, T ). Hence, ∆u′(t) = u′(t+) − u′(t−) = 0 and ∆v′(t) = v′(t+) − v′(t−) = 0 for any

t ∈ [0, T ].

If u, v ∈ H1
0 (0, T ), then u, v are absolutely continuous and u′, v′ ∈ L2(0, T ). In this case, the

one-sided derivatives u′(t+), u′(t−), v′(t+) and v′(t−) may not exist.

Thus, we need to introduce a concept of solution which is different from a classical solution. We

say that (u, v) is a classical solution of problem (2.1) if it satisfies the corresponding equations a.e.

on [0, T ], the limits u′(t+k ), u′(t−k ), v′(t+k ) and v′(t−k ), k = 1, 2, ...,m, exist and (2.2), (2.3) hold.

Taking (ϕ, ψ) ∈ H and multiplying the two sides of the equalities

−u′′(t) = fu(t, u, v),

and

−v′′(t) = fv(t, u, v),

by ϕ and ψ respectively, then integrating from 0 to T , we have

−
∫ T

0

u′′(t)ϕ(t) dt =

∫ T

0

fu(t, u, v)ϕ(t) dt, (2.4)

and

−
∫ T

0

v′′(t)ψ(t) dt =

∫ T

0

fv(t, u, v)ψ(t) dt. (2.5)

The first terms of (2.4) and (2.5) are now

−
∫ T

0

u′′(t)ϕ(t) dt = −
m∑
k=0

∫ tk+1

tk

u′′(t)ϕ(t) dt,

=
m∑
k=1

Ik
(
u(tk)

)
ϕ(tk) +

∫ T

0

u′(t)ϕ′(t) dt, (2.6)

and

−
∫ T

0

v′′(t)ψ(t) dt = −
m∑
k=0

∫ tk+1

tk

v′′(t)ψ(t) dt,

=
m∑
k=1

Jk
(
v(tk)

)
ψ(tk) +

∫ T

0

v′(t)ψ′(t) dt. (2.7)
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In connection with (2.4), (2.5), (2.6) and (2.7), we have∫ T

0

u′(t)ϕ′(t) dt+

∫ T

0

v′(t)ψ′(t) dt+
m∑
k=1

Ik
(
u(tk)

)
ϕ(tk) +

m∑
k=1

Jk
(
v(tk)

)
ψ(tk)

=

∫ T

0

fu(t, u, v)ϕ(t) dt+

∫ T

0

fv(t, u, v)ψ(t) dt. (2.8)

Based on equality (2.8), we introduce the concept of weak solution for problem (2.1).

Definition 2.1. We say that a pair of functions (u, v) ∈ H is a weak solution for problem (2.1) if

identity (2.8) holds for any (ϕ, ψ) ∈ H.

We consider the energy functional corresponding to problem (2.1)

Φ : H −→ R,

defined by

Φ(u, v) =
1

2

∫ T

0

(
u′(t)

)2

dt+
1

2

∫ T

0

(
v′(t)

)2

dt+
m∑
k=1

∫ u(tk)

0

Ik(t)dt+
m∑
k=1

∫ v(tk)

0

Jk(t)dt

−
∫ T

0

f(t, u, v) dt,

for more details about the construction of Φ, see the subsection 1.2.1.1.

Therefore

Φ(u, v) =
1

2

∥∥∥(u, v)
∥∥∥2

H
+

m∑
k=1

∫ u(tk)

0

Ik(t) dt +
m∑
k=1

∫ v(tk)

0

Jk(t) dt −
∫ T

0

f(t, u, v) dt. (2.9)

Proposition 2.1. The functional Φ : H −→ R, defined by (2.9) is continuously Fréchet-differentiable

and weakly lower semi-continuous. Moreover, the critical points of Φ are weak solutions of (2.1).

Proof. Using the continuity of fu, fv, Ik and Jk, k = 1, 2, ...,m, we easily obtain that the functional

Φ ∈ C1(H,R). Furthermore, we have the differential of Φ at (u, v) ∈ H

Φ′(u, v) : H −→ R,

is defined by

Φ′(u, v)(ϕ, ψ) =

∫ T

0

u′(t)ϕ′(t) dt+

∫ T

0

v′(t)ψ′(t) dt

+
m∑
k=1

Ik
(
u(tk)

)
ϕ(tk) +

m∑
k=1

Jk
(
v(tk)

)
ψ(tk)

−
∫ T

0

fu(t, u, v)ϕ(t) dt−
∫ T

0

fv(t, u, v)ψ(t) dt.
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This shows that the critical points of Φ give us the weak solutions of (2.1).

To show that Φ is weakly lower semi-continuous, let {(uj, vj)} ⊂ H, with (uj, vj) ⇀ (u, v), then

we have that {uj} and {vj} converge uniformly to u and v on [0, T ] respectively (Proposition 1.5).

In connection with the fact that lim infj−→∞ ‖(uj, vj)‖H ≥ ‖(u, v)‖H (Corollary 1.4), one has

lim inf
j−→∞

Φ(uj, vj) = lim inf
j−→∞

{
1

2

∥∥∥(uj, vj)
∥∥∥2

H
+

m∑
k=1

∫ uj(tk)

0

Ik(t) dt

+
m∑
k=1

∫ vj(tk)

0

Jk(t) dt−
∫ T

0

f(t, uj, vj) dt

}
,

≥ 1

2

∥∥∥(u, v)
∥∥∥2

H
+

m∑
k=1

∫ u(tk)

0

Ik(t) dt

+
m∑
k=1

∫ v(tk)

0

Jk(t) dt−
∫ T

0

f(t, u, v) dt,

= Φ(u, v).

This implies that the functional Φ is weakly lower semi-continuous.

2.3 Main results

Theorem 2.1. Suppose that fu, fv verify the following condition:

(H1) There exist M > 0, such that |fu(t, u, v)| ≤M, for every (t, u, v) ∈ (0, T )× R2,

|fv(t, u, v)| ≤M, for every (t, u, v) ∈ (0, T )× R2,

and the impulsive functions Ik, Jk, k = 1, 2, ...,m, verify

(H2) There exist Mk > 0, k = 1, 2, ...,m, such that |Ik(u)| ≤Mk, for every u ∈ R,

|Jk(v)| ≤Mk, for every v ∈ R.

Then there is a critical point of Φ, and (2.1) has at least one solution.

Proof. From the theorem 1.4, the remark 1.11 and the proposition 2.1, to get the result, we just

show that Φ is coercive.
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For any (u, v) ∈ H, we have

Φ(u, v) =
1

2

∥∥∥(u, v)
∥∥∥2

H
+

m∑
k=1

∫ u(tk)

0

Ik(t) dt+
m∑
k=1

∫ v(tk)

0

Jk(t) dt−
∫ T

0

f(t, u, v) dt,

≥ 1

2

∥∥∥(u, v)
∥∥∥2

H
−

m∑
k=1

∫ u(tk)

0

Mk dt−
m∑
k=1

∫ v(tk)

0

Mk dt−
∫ T

0

(
M |u|+M |v|

)
dt,

≥ 1

2

∥∥∥(u, v)
∥∥∥2

H
−mmax

k
{Mk}‖u‖∞ −mmax

k
{Mk}‖v‖∞ −MT

(
‖u‖∞ + ‖v‖∞

)
,

from the lemma 2.1, we have

Φ(u, v) ≥ 1

2

∥∥∥(u, v)
∥∥∥2

H
− 2mγmax

k
{Mk}

∥∥∥(u, v)
∥∥∥
H
− 2MTγ

∥∥∥(u, v)
∥∥∥
H
.

This implies that Φ(u, v)→∞ if ‖(u, v)‖H →∞, then Φ is coercive on H.

Remark 2.1. We can relax the conditions (H1) and (H2) by the condition (H3) and (H4) to obtain

the generalized result.

(H3) There exist a, b > 0, and α1, α2 ∈ [0, 1), such that |fu(t, u, v)| ≤ a+ b|u|α1 , for every (t, u, v) ∈ (0, T )× R2,

|fv(t, u, v)| ≤ a+ b|v|α2 , for every (t, u, v) ∈ (0, T )× R2.

(H4) There exist ak, bk > 0, and βk ∈ [0, 1), k = 1, 2, ...,m, such that |Ik(u)| ≤ ak + bk|u|βk , for every u ∈ R,

|Jk(v)| ≤ ak + bk|v|βk , for every v ∈ R.

Theorem 2.2. Assume that (H3) and (H4) are hold, then the problem (2.1) has at least one solution.

Proof. For any (u, v) ∈ H, we have

Φ(u, v) =
1

2

∥∥∥(u, v)
∥∥∥2

H
+

m∑
k=1

∫ u(tk)

0

Ik(t) dt+
m∑
k=1

∫ v(tk)

0

Jk(t) dt−
∫ T

0

f(t, u, v) dt,

≥ 1

2

∥∥∥(u, v)
∥∥∥2

H
−

m∑
k=1

∫ u(tk)

0

(
ak + bk|t|βk

)
dt−

m∑
k=1

∫ v(tk)

0

(
ak + bk|t|βk

)
dt

−
∫ T

0

(
a|u|+ a|v|+ b|u|α1+1 + b|v|α2+1

)
dt,

≥ 1

2

∥∥∥(u, v)
∥∥∥2

H
−mmax

k
{ak}‖u‖∞ −max

k
{bk}

m∑
k=1

‖u‖βk+1
∞

−mmax
k
{ak}‖v‖∞ −max

k
{bk}

m∑
k=1

‖v‖βk+1
∞

−aT
(
‖u‖∞ + ‖v‖∞

)
− bT

(
‖u‖α1+1

∞ + ‖v‖α2+1
∞

)
,
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now using the lemma 2.1, we get

Φ(u, v) ≥ 1

2

∥∥∥(u, v)
∥∥∥2

H
− 2mγmax

k
{ak}

∥∥∥(u, v)
∥∥∥
H
− 2 max

k
{bk}

m∑
k=1

γβk+1
∥∥∥(u, v)

∥∥∥βk+1

H

−2aTγ
∥∥∥(u, v)

∥∥∥
H
− bTγα1+1

∥∥∥(u, v)
∥∥∥α1+1

H
− bTγα2+1

∥∥∥(u, v)
∥∥∥α2+1

H
.

Because α1 + 1, α2 + 1, βk + 1 < 2, k = 1, 2, ...,m, we have that

lim
‖(u,v)‖H→∞

Φ(u, v) =∞,

it follows that the functional Φ is coercive on H.

Example 2.1. Let T = π, t1 = 1. We consider the following problem with impulses

−u′′(t) = t2 + 5
√
u(t), t ∈ (0, π) \ {t1},

−v′′(t) = t+ 3
√
v(t), t ∈ (0, π) \ {t1},

u(0) = u(π) = v(0) = v(π) = 0,

∆u′(t1) = u′(t+1 )− u′(t−1 ) = 2 + 3
√
u(t1),

∆v′(t1) = v′(t+1 )− v′(t−1 ) = t1 + 3
√
v(t1),

(2.10)

where the functions f : (0, π)× R× R −→ R and I1, J1 : R −→ R are defined by

f(t, u, v) = t2u+ tv +
5

6
u

6
5 +

3

4
v

4
3 ,

I1(u) = 2 + 3
√
u,

J1(v) = 1 + 3
√
v.

We can see that

|fu(t, u, v)| = |t2 + 5
√
u| ≤ π2 + |u|

1
5 ,

|fv(t, u, v)| = |t+ 3
√
v| ≤ π + |v|

1
3 ,

and

|I1(u)| = |2 + 3
√
u| ≤ 2 + |u|

1
3 ,

|J1(v)| = |1 + 3
√
v| ≤ 1 + |v|

1
3 .

Taking a = π2, b = 1, α1 = 1
5

and α2 = 1
3

so (H3) holds, for a1 = 2, b1 = 1, β1 = 1
3

then (H4) holds.

By Theorem 2.2, the instantaneous impulsive problem (2.10) has at least one solution.

34



Chapter 3

Variational approach to

non-instantaneous impulsive differential

system

In this chapter we present the variational structure associated to the following nonlinear problem

with no instantaneous impulses

−u′′(t) = Dufi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
, t ∈ (si, ti+1], i = 0, 1, . . . ,m,

−v′′(t) = Dvfi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
, t ∈ (si, ti+1], i = 0, 1, . . . ,m,

u′(t) = αi, t ∈ (ti, si], i = 1, 2, . . . ,m,

v′(t) = βi, t ∈ (ti, si], i = 1, 2, . . . ,m,

u′(s+
i ) = u′(s−i ), i = 1, 2, . . . ,m,

v′(s+
i ) = v′(s−i ), i = 1, 2, . . . ,m,

u′(0+) = α0, v′(0+) = β0,

u(0) = u(T ) = v(0) = v(T ) = 0,

(3.1)

where 0 = s0 < t1 < s1 < t2 < s2 < . . . < tm < sm < tm+1 = T , the impulses start abruptly at

points ti, i = 0, 1, 2, . . . ,m, and keep the derivative constant on a finite time interval (ti, si]. Here

u′(s±i ) = lims→s±i
u′(s), and αi, βi, i = 0, 1, 2, . . . ,m, are given constants. For each i = 0, 1, 2, . . . ,m,

the nonlinear functions Dufi, Dvfi
(
the derivatives of fi(t, u, v) with respect to u and v respectively

)
are Carathéodory functions on (si, ti+1]× R2.
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3.1 Functional space framework

We need to define as like as the previous chapter the following functional spaces:

C[0, T ] be the space of all continuous functions on [0, T ] with the norm

‖u‖∞ = max
t∈[0,T ]

|u(t)|.

H1
0 (0, T ) is the Sobolev space with the inner product

(u, v)1 =

∫ T

0

u′(t)v′(t) dt,

and the corresponding norm

‖u‖1 =

(∫ T

0

∣∣u′(t)∣∣2 dt) 1
2

.

Set H = H1
0 (0, T )×H1

0 (0, T ), in the Hilbert space H, for any (u, v) ∈ H, we set the norm

‖(u, v)‖H =

(
‖u‖2

1 + ‖v‖2
1

) 1
2

.

By Hölder’s inequality and Poincare’s inequality we have the following lemma

Lemma 3.1. There exists γ > 0 such that, if (u, v) ∈ H, then

‖u‖∞, ‖v‖∞ ≤ γ
∥∥(u, v)

∥∥
H
.

For the proof we can see the previous chapter.
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3.2 Variational formula

We use the ideas of the variational approach of the problem (3.1), for each (ϕ, ψ) ∈ H, we have

−
∫ T

0

u′′(t)ϕ(t) dt = −
∫ t1

0

u′′(t)ϕ(t) dt−
m∑
i=1

∫ si

ti

u′′(t)ϕ(t) dt

−
m−1∑
i=1

∫ ti+1

si

u′′(t)ϕ(t) dt−
∫ T

sm

u′′(t)ϕ(t) dt

=

∫ T

0

u′(t)ϕ′(t) dt−
m∑
i=1

(
u′(t−i )− u′(t+i )

)
ϕ(ti)

−
m∑
i=1

(
u′(s−i )− u′(s+

i )
)
ϕ(si)

=

∫ T

0

u′(t)ϕ′(t) dt−
m∑
i=1

(
u′(t−i )− αi

)
ϕ(ti).

To determine u′(t−i ), i = 1, 2, . . . ,m, on (si−1, ti] we have

−
∫ ti

si−1

u′′(t)dt =

∫ ti

si−1

Dufi−1

(
t, u(t)− u(ti), v(t)− v(ti)

)
dt

then

−u′(t−i ) + u′(s+
i−1) =

∫ ti

si−1

Dufi−1

(
t, u(t)− u(ti), v(t)− v(ti)

)
dt,

and as u′(s+
i−1) = u′(s−i−1) = αi−1, i = 2, . . . ,m,

(
for i = 1, we have u′(s+

0 ) = u′(0+) = α0

)
, we obtain

u′(t−i ) = αi−1 −
∫ ti

si−1

Dufi−1

(
t, u(t)− u(ti), v(t)− v(ti)

)
dt, i = 1, 2, . . . ,m.

Therefore

−
∫ T

0

u′′(t)ϕ(t) dt =

∫ T

0

u′(t)ϕ′(t) dt−
m∑
i=1

(
αi−1 − αi

)
ϕ(ti)

+
m−1∑
i=0

(∫ ti+1

si

Dufi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
dt

)
ϕ(ti+1).

(3.2)

On the other hand,

−
∫ T

0

u′′(t)ϕ(t) dt = −
m∑
i=0

∫ ti+1

si

u′′(t)ϕ(t) dt−
m∑
i=1

∫ si

ti

u′′(t)ϕ(t) dt

=
m∑
i=0

∫ ti+1

si

Dufi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
ϕ(t) dt

−
m∑
i=1

∫ si

ti

d

dt
(αi)ϕ(t) dt.
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Hence

−
∫ T

0

u′′(t)ϕ(t) dt =
m∑
i=0

∫ ti+1

si

Dufi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
ϕ(t) dt. (3.3)

Thus, in view of ϕ(tm+1) = ϕ(T ) = 0, (3.2), and (3.3), we find that∫ T

0

u′(t)ϕ′(t) dt−
m∑
i=1

(
αi−1 − αi

)
ϕ(ti)

=
m∑
i=0

∫ ti+1

si

Dufi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)(
ϕ(t)− ϕ(ti+1)

)
dt. (3.4)

Similarly ∫ T

0

v′(t)ψ′(t) dt−
m∑
i=1

(
βi−1 − βi

)
ψ(ti)

=
m∑
i=0

∫ ti+1

si

Dvfi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)(
ψ(t)− ψ(ti+1)

)
dt. (3.5)

We combined (3.4) and (3.5), we obtain∫ T

0

u′(t)ϕ′(t) dt+

∫ T

0

v′(t)ψ′(t) dt−
m∑
i=1

(
αi−1 − αi

)
ϕ(ti)−

m∑
i=1

(
βi−1 − βi

)
ψ(ti)

=
m∑
i=0

∫ ti+1

si

Dufi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)(
ϕ(t)− ϕ(ti+1)

)
dt

+
m∑
i=0

∫ ti+1

si

Dvfi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)(
ψ(t)− ψ(ti+1)

)
dt. (3.6)

Now, we introduce the concept of weak solution for problem (3.1).

Definition 3.1. We say that a pair of functions (u, v) ∈ H is a weak solution for problem (3.1) if

identity (3.6) holds for any (ϕ, ψ) ∈ H.

We consider the energy functional corresponding to problem (3.1)

Φ : H −→ R,
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is defined by

Φ(u, v) =
1

2

∫ T

0

(
u′(t)

)2

dt+
1

2

∫ T

0

(
v′(t)

)2

dt−
m∑
i=1

(
αi−1 − αi

)
u(ti)−

m∑
i=1

(
βi−1 − βi

)
v(ti)

−
m∑
i=0

∫ ti+1

si

fi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
dt,

=
1

2

∥∥∥(u, v)
∥∥∥2

H
−

m∑
i=1

(
αi−1 − αi

)
u(ti)−

m∑
i=1

(
βi−1 − βi

)
v(ti)

−
m∑
i=0

∫ ti+1

si

fi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
dt, (3.7)

for more details about the construction of Φ, see the subsection 1.2.1.1.

Proposition 3.1. The functional Φ : H −→ R, defined by (3.7) is continuously Fréchet-differentiable

and weakly lower semi-continuous. Moreover, the critical points of Φ are weak solutions of (3.1).

Proof. Using the continuity of Dufi, Dvfi, i = 0, 1, . . . ,m, we easily obtain that the functional Φ ∈

C1(H,R). Furthermore, we have the differential of Φ at (u, v) ∈ H

Φ′(u, v) : H −→ R,

defined by

Φ′(u, v)(ϕ, ψ) =

∫ T

0

u′(t)ϕ′(t) dt+

∫ T

0

v′(t)ψ′(t) dt−
m∑
i=1

(
αi−1 − αi

)
ϕ(ti)−

m∑
i=1

(
βi−1 − βi

)
ψ(ti)

−
m∑
i=0

∫ ti+1

si

Dufi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)(
ϕ(t)− ϕ(ti+1)

)
dt

−
m∑
i=0

∫ ti+1

si

Dvfi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)(
ψ(t)− ψ(ti+1)

)
dt.

This shows that the critical points of Φ give us the weak solutions of (3.1).

To show that Φ is weakly lower semi-continuous, let {(uj, vj)} ⊂ H, with (uj, vj) ⇀ (u, v), then

we have that {uj} and {vj} converge uniformly to u and v on [0, T ] respectively (Proposition 1.5).
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In connection with the fact that lim infj−→∞ ‖(uj, vj)‖H ≥ ‖(u, v)‖H (Corollary 1.4), one has

lim inf
j−→∞

Φ(uj, vj) = lim inf
j−→∞

{
1

2

∥∥∥(uj, vj)
∥∥∥2

H
−

m∑
i=1

(
αi−1 − αi

)
uj(ti)−

m∑
i=1

(
βi−1 − βi

)
vj(ti)

−
m∑
i=0

∫ ti+1

si

fi

(
t, uj(t)− uj(ti+1), vj(t)− vj(ti+1)

)
dt

}

≥ 1

2

∥∥∥(u, v)
∥∥∥2

H
−

m∑
i=1

(
αi−1 − αi

)
u(ti)−

m∑
i=1

(
βi−1 − βi

)
v(ti)

−
m∑
i=0

∫ ti+1

si

fi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
dt

= Φ(u, v).

This implies that the functional Φ is weakly lower semi-continuous.

3.3 Main results

In this section we give the proofs of our main results in this chapter.

Theorem 3.1. Suppose that Dufi, Dvfi, verify the following condition:

(H1) There exist Mi > 0, i = 0, 1, . . . ,m, such that |Dufi(t, u, v)| ≤Mi, for every (t, u, v) ∈ (si, ti+1]× R2,

|Dvfi(t, u, v)| ≤Mi, for every (t, u, v) ∈ (si, ti+1]× R2.

Then there is a critical point of Φ, and (3.1) has at least one solution.

Proof. From the theorem 1.4, the remark 1.11 and the proposition 3.1, to get the result, we just

show that Φ is coercive.
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For any (u, v) ∈ H, we have

Φ(u, v) =
1

2

∥∥∥(u, v)
∥∥∥2

H
−

m∑
i=1

(
αi−1 − αi

)
u(ti)−

m∑
i=1

(
βi−1 − βi

)
v(ti)

−
m∑
i=0

∫ ti+1

si

fi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
dt

≥ 1

2

∥∥∥(u, v)
∥∥∥2

H
−

m∑
i=1

(
αi−1 − αi

)
u(ti)−

m∑
i=1

(
βi−1 − βi

)
v(ti)

−
m∑
i=0

∫ ti+1

si

(
Mi

∣∣u(t)− u(ti+1)
∣∣+Mi

∣∣v(t)− v(ti+1)
∣∣)dt

≥ 1

2

∥∥∥(u, v)
∥∥∥2

H
−m max

i=1,...,m

{
|αi−1 − αi|

}
‖u‖∞ −m max

i=1,...,m

{
|βi−1 − βi|

}
‖v‖∞

−2(m+ 1)T max
i=0,...,m

{
Mi

}(
‖u‖∞ + ‖v‖∞

)
,

from the lemma 3.1, we have

Φ(u, v) ≥ 1

2

∥∥∥(u, v)
∥∥∥2

H
−mγ max

i=1,...,m

{
|αi−1 − αi|

}∥∥∥(u, v)
∥∥∥
H
−mγ max

i=1,...,m

{
|βi−1 − βi|

}∥∥∥(u, v)
∥∥∥
H

−4(m+ 1)γT max
i=0,...,m

{
Mi

}∥∥∥(u, v)
∥∥∥
H
.

This implies that Φ(u, v)→∞ if ‖(u, v)‖H →∞, then Φ is coercive on H.

Remark 3.1. We can relax the condition (H1) by the following condition

(H2) There exist ai, bi > 0, and γ1, γ2 ∈ [0, 1), i = 0, 1, . . . ,m, such that |Dufi(t, u, v)| ≤ ai + bi|u|γ1, for every (t, u, v) ∈ (si, ti+1]× R2,

|Dvfi(t, u, v)| ≤ ai + bi|v|γ2, for every (t, u, v) ∈ (si, ti+1]× R2.

Theorem 3.2. Assume that (H2) holds, then the problem (3.1) has at least one solution.

Proof. By the same argument of the above theorem, we show that the functional φ is coercive.
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Let (u, v) ∈ H, then

Φ(u, v) =
1

2

∥∥∥(u, v)
∥∥∥2

H
−

m∑
i=1

(
αi−1 − αi

)
u(ti)−

m∑
i=1

(
βi−1 − βi

)
v(ti)

−
m∑
i=0

∫ ti+1

si

fi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
dt

≥ 1

2

∥∥∥(u, v)
∥∥∥2

H
−

m∑
i=1

(
αi−1 − αi

)
u(ti)−

m∑
i=1

(
βi−1 − βi

)
v(ti)

−
m∑
i=0

∫ ti+1

si

(
ai
∣∣u(t)− u(ti+1)

∣∣+ ai
∣∣v(t)− v(ti+1)

∣∣
+bi
∣∣u(t)− u(ti+1)

∣∣γ1+1
+ bi

∣∣v(t)− v(ti+1)
∣∣γ2+1

)
dt.

Then

Φ(u, v) ≥ 1

2

∥∥∥(u, v)
∥∥∥2

H
−m max

i=1,...,m

{
|αi−1 − αi|

}
‖u‖∞ −m max

i=1,...,m

{
|βi−1 − βi|

}
‖v‖∞

−2(m+ 1)T max
i=0,...,m

{
ai
}(
‖u‖∞ + ‖v‖∞

)
−2γ1+1(m+ 1)T max

i=0,...,m

{
bi
}
‖u‖γ1+1

∞ − 2γ2+1(m+ 1)T max
i=0,...,m

{
bi
}
‖v‖γ2+1

∞ ,

now using the lemma 3.1, we get

Φ(u, v) ≥ 1

2

∥∥∥(u, v)
∥∥∥2

H
−mγ max

i=1,...,m

{
|αi−1 − αi|

}∥∥∥(u, v)
∥∥∥
H
−mγ max

i=1,...,m

{
|βi−1 − βi|

}∥∥∥(u, v)
∥∥∥
H

−4(m+ 1)γT max
i=0,...,m

{
ai
}∥∥∥(u, v)

∥∥∥
H

−(2γ)γ1+1(m+ 1)T max
i=0,...,m

{
bi
}∥∥∥(u, v)

∥∥∥γ1+1

H

−(2γ)γ2+1(m+ 1)T max
i=0,...,m

{
bi
}∥∥∥(u, v)

∥∥∥γ2+1

H
.

Because γ1 + 1, γ2 + 1 < 2, we have that

lim
‖(u,v)‖H→∞

Φ(u, v) =∞,

it follows that the functional Φ is coercive on H.
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Example 3.1. Let T = 1, we consider the following problem with non-instantaneous impulses

−u′′(t) =
1−

[
u(t)− u(ti+1)

]2(
1 +

[
u(t)− u(ti+1)

]2)2 , t ∈ (si, ti+1], i = 0, 1, . . . ,m,

−v′′(t) =
1−

[
v(t)− v(ti+1)

]2(
1 +

[
v(t)− v(ti+1

]2)2 , t ∈ (si, ti+1], i = 0, 1, . . . ,m,

u′(t) = αi, t ∈ (ti, si], i = 1, 2, . . . ,m,

v′(t) = βi, t ∈ (ti, si], i = 1, 2, . . . ,m,

u′(s+
i ) = u′(s−i ), i = 1, 2, . . . ,m,

v′(s+
i ) = v′(s−i ), i = 1, 2, . . . ,m,

u′(0+) = α0, v′(0+) = β0,

u(0) = u(1) = v(0) = v(1) = 0,

(3.8)

taking f : R× R→ R by

f(x, y) =
x

1 + x2
+

y

1 + y2
, ∀x, y ∈ R.

It’s clear that

|Dxf(x, y)| =
∣∣∣∣ 1− x2

(1 + x2)2

∣∣∣∣ ≤ 1, ∀x, y ∈ R,

and

|Dyf(x, y)| =
∣∣∣∣ 1− y2

(1 + y2)2

∣∣∣∣ ≤ 1, ∀x, y ∈ R.

Then all the conditions of Theorem 3.1, and thus Problem (3.8) has at least one solution.
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Chapter 4

Variational approach to

non-instantaneous impulsive differential

generalized system

In this chapter we deal with the following not instantaneous impulsive differential system of the

form 

−u′′(t) + ηi(t)
(
u(t)− u(ti+1)

)
= Dufi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
,

t ∈ (si, ti+1], i = 0, 1, . . . ,m,

−v′′(t) + θi(t)
(
v(t)− v(ti+1)

)
= Dvfi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
,

t ∈ (si, ti+1], i = 0, 1, . . . ,m,

u′(t) = αi, t ∈ (ti, si], i = 1, 2, . . . ,m,

v′(t) = βi, t ∈ (ti, si], i = 1, 2, . . . ,m,

u′(s+
i ) = u′(s−i ), i = 1, 2, . . . ,m,

v′(s+
i ) = v′(s−i ), i = 1, 2, . . . ,m,

u′(0+) = α0, v′(0+) = β0,

u(0) = u(T ) = v(0) = v(T ) = 0,

(4.1)

where 0 = s0 < t1 < s1 < t2 < s2 < . . . < tm < sm < tm+1 = T . For each i = 0, 1, 2, . . . ,m, ηi, θi ∈

L∞(si, ti+1], the nonlinear functions Dufi, Dvfi
(
the derivatives of fi(t, u, v) with respect to u and

v respectively
)

are Carathéodory functions on (si, ti+1] × R2. And for i = 1, 2 . . . ,m, u′(s±i ) =
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lims→s±i
u′(s), αi, βi are given constants where the impulses start abruptly at points ti keep the

derivative constant on a finite time interval (ti, si].

Throughout this chapter we need the following assumptions

(A1) Assume that

νi > −λi, ∀i = 0, 1, . . . ,m,

where νi = min
{
ess inft∈(si,ti+1] ηi(t), ess inft∈(si,ti+1] θi(t)

}
and λi =

2

(ti+1 − si)2
(see lemma

4.1).

(A2) Suppose that Dufi, Dvfi verify the following condition:

There exist ai, bi > 0, and γ1, γ2 ∈ [0, 1), i = 0, 1, . . . ,m, such that |Dufi(t, u, v)| ≤ ai + bi|u|γ1 , for every (t, u, v) ∈ (si, ti+1]× R2,

|Dvfi(t, u, v)| ≤ ai + bi|v|γ2 , for every (t, u, v) ∈ (si, ti+1]× R2.

4.1 Functional space framework

We define the following functional spaces:

C[0, T ] be the space of all continuous functions on [0, T ] with the norm

‖u‖∞ = max
t∈[0,T ]

|u(t)|.

H1
0 (0, T ) is the Sobolev space with the inner product

(u, v)1 =

∫ T

0

u′(t)v′(t) dt,

and the corresponding norm

‖u‖1 =

(∫ T

0

∣∣u′(t)∣∣2 dt) 1
2

.

Set H = H1
0 (0, T )×H1

0 (0, T ), in the Hilbert space H, for any (u, v) ∈ H, we set the norm

‖(u, v)‖H =

(
‖u‖2

1 + ‖v‖2
1

) 1
2

.

We need the following results
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Lemma 4.1. We have for each w ∈ H1
0 (0, T )

λi

∫ ti+1

si

(
w(t)− w(ti+1)

)2

dt ≤
∫ ti+1

si

∣∣w′(t)∣∣2dt, ∀i = 0, 1, . . . ,m,

where λi =
2

(ti+1 − si)2
.

Proof. For i ∈ {0, 1, . . . ,m} and t ∈ (si, ti+1], we have

(
w(t)− w(ti+1)

)2

=

(∫ ti+1

t

w′(s)ds

)2

,

≤

(∫ ti+1

t

12ds

)(∫ ti+1

t

∣∣w′(s)∣∣2ds),
≤

(
ti+1 − t

)(∫ ti+1

si

∣∣w′(s)∣∣2ds),
so ∫ ti+1

si

(
w(t)− w(ti+1)

)2

dt ≤
[
−
(
ti+1 − t

)2

2

]ti+1

si

(∫ ti+1

si

∣∣w′(t)∣∣2dt),
therfore ∫ ti+1

si

(
w(t)− w(ti+1)

)2

dt ≤
(
ti+1 − si

)2

2

(∫ ti+1

si

∣∣w′(t)∣∣2dt).

By (A1), we also introduce the norm

‖(u, v)‖∗H =

[∫ T

0

∣∣u′(t)∣∣2dt+
m∑
i=0

∫ ti+1

si

ηi(t)
(
u(t)− u(ti+1)

)2

dt

+

∫ T

0

∣∣v′(t)∣∣2dt+
m∑
i=0

∫ ti+1

si

θi(t)
(
v(t)− v(ti+1)

)2

dt

] 1
2

,

clear that ‖ · ‖∗H is well defined, since for each w ∈ H1
0 (0, T )∫ T

0

∣∣w′(t)∣∣2dt+
m∑
i=0

∫ ti+1

si

ηi(t)
(
w(t)− w(ti+1)

)2

dt

≥
∫ T

0

∣∣w′(t)∣∣2dt+
m∑
i=0

νi

∫ ti+1

si

(
w(t)− w(ti+1)

)2

dt,
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using (A1), we obtain∫ T

0

∣∣w′(t)∣∣2dt+
m∑
i=0

∫ ti+1

si

ηi(t)
(
w(t)− w(ti+1)

)2

dt

≥
∫ T

0

∣∣w′(t)∣∣2dt− m∑
i=0

λi

∫ ti+1

si

(
w(t)− w(ti+1)

)2

dt,

from the lemma 4.1, we have∫ T

0

∣∣w′(t)∣∣2dt+
m∑
i=0

∫ ti+1

si

ηi(t)
(
w(t)− w(ti+1)

)2

dt ≥
∫ T

0

∣∣w′(t)∣∣2dt− m∑
i=0

∫ ti+1

si

∣∣w′(t)∣∣2dt,
so ∫ T

0

∣∣w′(t)∣∣2dt+
m∑
i=0

∫ ti+1

si

ηi(t)
(
w(t)− w(ti+1)

)2

dt ≥
∫ T

0

∣∣w′(t)∣∣2dt− ∫ T

0

∣∣w′(t)∣∣2dt,
as a result ∫ T

0

∣∣w′(t)∣∣2dt+
m∑
i=0

∫ ti+1

si

ηi(t)
(
w(t)− w(ti+1)

)2

dt ≥ 0.

Lemma 4.2. Assume that assumption (A1) holds, then, for the Sobolev space H, the norm ‖ · ‖H
and the norm ‖ · ‖∗H are equivalent.

Proof. Since νi > −λi, there exists ζi ∈ (0, 1) such that νi ≥ −λi(1 − ζi), which implies that

νi ≥ −λi(1− ζ), for i = 0, . . . ,m, where ζ = min{ζi, i = 0, . . . ,m}.

For any (u, v) ∈ H, we have

‖(u, v)‖∗2H =

∫ T

0

∣∣u′(t)∣∣2dt+
m∑
i=0

∫ ti+1

si

ηi(t)
(
u(t)− u(ti+1)

)2

dt

+

∫ T

0

∣∣v′(t)∣∣2dt+
m∑
i=0

∫ ti+1

si

θi(t)
(
v(t)− v(ti+1)

)2

dt,

≥
∫ T

0

∣∣u′(t)∣∣2dt+
m∑
i=0

νi

∫ ti+1

si

(
u(t)− u(ti+1)

)2

dt

+

∫ T

0

∣∣v′(t)∣∣2dt+
m∑
i=0

νi

∫ ti+1

si

(
v(t)− v(ti+1)

)2

dt,

≥
∫ T

0

∣∣u′(t)∣∣2dt− (1− ζ)
m∑
i=0

λi

∫ ti+1

si

(
u(t)− u(ti+1)

)2

dt

+

∫ T

0

∣∣v′(t)∣∣2dt− (1− ζ)
m∑
i=0

λi

∫ ti+1

si

(
v(t)− v(ti+1)

)2

dt,
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by lemma 4.1, we get

‖(u, v)‖∗2H ≥
∫ T

0

∣∣u′(t)∣∣2dt− (1− ζ)
m∑
i=0

∫ ti+1

si

∣∣u′(t)∣∣2dt
+

∫ T

0

∣∣v′(t)∣∣2dt− (1− ζ)
m∑
i=0

∫ ti+1

si

∣∣v′(t)∣∣2dt,
≥

∫ T

0

∣∣u′(t)∣∣2dt− (1− ζ)

∫ T

0

∣∣u′(t)∣∣2dt
+

∫ T

0

∣∣v′(t)∣∣2dt− (1− ζ)

∫ T

0

∣∣v′(t)∣∣2dt,
= ζ

∫ T

0

∣∣u′(t)∣∣2dt+ ζ

∫ T

0

∣∣v′(t)∣∣2dt,
therefore

‖(u, v)‖∗2H ≥ ζ‖(u, v)‖2
H .

Moreover, one has

‖(u, v)‖∗2H =

∫ T

0

∣∣u′(t)∣∣2dt+
m∑
i=0

∫ ti+1

si

ηi(t)
(
u(t)− u(ti+1)

)2

dt

+

∫ T

0

∣∣v′(t)∣∣2dt+
m∑
i=0

∫ ti+1

si

θi(t)
(
v(t)− v(ti+1)

)2

dt,

≤
∫ T

0

∣∣u′(t)∣∣2dt+
m∑
i=0

‖ηi‖∞
∫ ti+1

si

(
u(t)− u(ti+1)

)2

dt

+

∫ T

0

∣∣v′(t)∣∣2dt+
m∑
i=0

‖θi‖∞
∫ ti+1

si

(
v(t)− v(ti+1)

)2

dt,

using lemma 4.1, we obtain

‖(u, v)‖∗2H ≤
∫ T

0

∣∣u′(t)∣∣2dt+
m∑
i=0

‖ηi‖∞
λi

∫ ti+1

si

∣∣u′(t)∣∣2dt
+

∫ T

0

∣∣v′(t)∣∣2dt+
m∑
i=0

‖θi‖∞
λi

∫ ti+1

si

∣∣v′(t)∣∣2dt,
≤

∫ T

0

∣∣u′(t)∣∣2dt+ |η|∞
∫ T

0

∣∣u′(t)∣∣2dt
+

∫ T

0

∣∣v′(t)∣∣2dt+ |θ|∞
∫ T

0

∣∣v′(t)∣∣2dt,
where |η|∞ = max

{
‖ηi‖∞
λi

, i = 0, . . . ,m

}
, and |θ|∞ = max

{
‖θi‖∞
λi

, i = 0, . . . ,m

}
.
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Hence

‖(u, v)‖∗2H ≤
(

1 + |η|∞
)∫ T

0

∣∣u′(t)∣∣2dt+
(

1 + |θ|∞
)∫ T

0

∣∣v′(t)∣∣2dt,
so

‖(u, v)‖∗2H ≤
(

1 + max
{
|η|∞, |θ|∞

})
‖(u, v)‖2

H .

Thereby, the norm ‖ · ‖H and the norm ‖ · ‖∗H are equivalent.

Lemma 4.3. There exists γ > 0 such that, if (u, v) ∈ H, then

‖u‖∞, ‖v‖∞ ≤ γ
∥∥(u, v)

∥∥∗
H
.

Proof. By Holder’s inequality and Poincare’s inequality, there exists a constant δ such that (For more

details about the proof see the previous chapters)

‖u‖∞ ≤ δ
∥∥(u, v)

∥∥
H
.

Using Lemma 4.2, there exists γ such that

‖u‖∞ ≤ γ
∥∥(u, v)

∥∥∗
H
.

Similarly, we can get

‖v‖∞ ≤ γ
∥∥(u, v)

∥∥∗
H
.

4.2 Variational formula

Following the ideas of the variational approach of the problem (4.1), for each (ϕ, ψ) ∈ H, we have

−
∫ T

0

u′′(t)ϕ(t) dt = −
∫ t1

0

u′′(t)ϕ(t) dt−
m∑
i=1

∫ si

ti

u′′(t)ϕ(t) dt

−
m−1∑
i=1

∫ ti+1

si

u′′(t)ϕ(t) dt−
∫ T

sm

u′′(t)ϕ(t) dt,

=

∫ T

0

u′(t)ϕ′(t) dt−
m∑
i=1

(
u′(t−i )− u′(t+i )

)
ϕ(ti)

−
m∑
i=1

(
u′(s−i )− u′(s+

i )
)
ϕ(si),

=

∫ T

0

u′(t)ϕ′(t) dt−
m∑
i=1

(
u′(t−i )− αi

)
ϕ(ti).
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To determine u′(t−i ), i = 1, 2, . . . ,m, on (si−1, ti] we have

−
∫ ti

si−1

u′′(t)dt+

∫ ti

si−1

ηi−1(t)
(
u(t)− u(ti)

)
dt =

∫ ti

si−1

Dufi−1

(
t, u(t)− u(ti), v(t)− v(ti)

)
dt,

then

−u′(t−i ) + u′(s+
i−1) +

∫ ti

si−1

ηi−1(t)
(
u(t)− u(ti)

)
dt =

∫ ti

si−1

Dufi−1

(
t, u(t)− u(ti), v(t)− v(ti)

)
dt.

And as u′(s+
i−1) = u′(s−i−1) = αi−1, i = 2, 3, . . . ,m, for i = 1, we have u′(s+

0 ) = u′(0+) = α0, we

obtain

u′(t−i ) = αi−1 +

∫ ti

si−1

ηi−1(t)
(
u(t)− u(ti)

)
dt−

∫ ti

si−1

Dufi−1

(
t, u(t)− u(ti), v(t)− v(ti)

)
dt,

for: i = 1, 2, . . . ,m.

Therefore

−
∫ T

0

u′′(t)ϕ(t)dt =

∫ T

0

u′(t)ϕ′(t)dt−
m∑
i=1

(
αi−1 − αi

)
ϕ(ti)

+
m−1∑
i=0

(∫ ti+1

si

Dufi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
dt

)
ϕ(ti+1)

−
m−1∑
i=0

(∫ ti+1

si

ηi(t)
(
u(t)− u(ti+1)

)
dt

)
ϕ(ti+1). (4.2)

On the other hand,

−
∫ T

0

u′′(t)ϕ(t) dt = −
m∑
i=0

∫ ti+1

si

u′′(t)ϕ(t)dt−
m∑
i=1

∫ si

ti

u′′(t)ϕ(t)dt,

=
m∑
i=0

∫ ti+1

si

Dufi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
ϕ(t)dt

−
m∑
i=0

∫ ti+1

si

ηi(t)
(
u(t)− u(ti+1)

)
ϕ(t)dt−

m∑
i=1

∫ si

ti

d

dt

(
αi

)
ϕ(t)dt,

hence

−
∫ T

0

u′′(t)ϕ(t) dt =
m∑
i=0

∫ ti+1

si

Dufi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
ϕ(t)dt

−
m∑
i=0

∫ ti+1

si

ηi(t)
(
u(t)− u(ti+1)

)
ϕ(t)dt. (4.3)
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Thus, in view of ϕ(tm+1) = ϕ(T ) = 0, (4.2), and (4.3), we find that∫ T

0

u′(t)ϕ′(t)dt−
m∑
i=1

(
αi−1 − αi

)
ϕ(ti)

=
m∑
i=0

∫ ti+1

si

Dufi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)(
ϕ(t)− ϕ(ti+1)

)
dt

−
m∑
i=0

∫ ti+1

si

ηi(t)
(
u(t)− u(ti+1)

)(
ϕ(t)− ϕ(ti+1)

)
dt. (4.4)

Similarly∫ T

0

v′(t)ψ′(t)dt−
m∑
i=1

(
βi−1 − βi

)
ψ(ti)

=
m∑
i=0

∫ ti+1

si

Dvfi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)(
ψ(t)− ψ(ti+1)

)
dt

−
m∑
i=0

∫ ti+1

si

θi(t)
(
v(t)− v(ti+1)

)(
ψ(t)− ψ(ti+1)

)
dt. (4.5)

We combined (4.4) and (4.5), we obtain∫ T

0

u′(t)ϕ′(t)dt+

∫ T

0

v′(t)ψ′(t)dt−
m∑
i=1

(
αi−1 − αi

)
ϕ(ti)−

m∑
i=1

(
βi−1 − βi

)
ψ(ti)

=
m∑
i=0

∫ ti+1

si

Dufi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)(
ϕ(t)− ϕ(ti+1)

)
dt

+
m∑
i=0

∫ ti+1

si

Dvfi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)(
ψ(t)− ψ(ti+1)

)
dt

−
m∑
i=0

∫ ti+1

si

ηi(t)
(
u(t)− u(ti+1)

)(
ϕ(t)− ϕ(ti+1)

)
dt

−
m∑
i=0

∫ ti+1

si

θi(t)
(
v(t)− v(ti+1)

)(
ψ(t)− ψ(ti+1)

)
dt. (4.6)

Based on equality (4.6), we introduce the concept of weak solution for problem (4.1).

Definition 4.1. We say that a pair of functions (u, v) ∈ H is a weak solution for problem (4.1) if

identity (4.6) holds for any (ϕ, ψ) ∈ H.

We consider the energy functional corresponding to problem (4.1)

Φ : H −→ R,
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defined by

Φ(u, v) =
1

2

∫ T

0

(
u′(t)

)2

dt+
1

2

∫ T

0

(
v′(t)

)2

dt

+
m∑
i=1

(
αi − αi−1

)
u(ti) +

m∑
i=1

(
βi − βi−1

)
v(ti)

−
m∑
i=0

∫ ti+1

si

fi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
dt

+
1

2

m∑
i=0

∫ ti+1

si

ηi(t)
(
u(t)− u(ti+1)

)2

dt+
1

2

m∑
i=0

∫ ti+1

si

θi(t)
(
v(t)− v(ti+1)

)2

dt,

so

Φ(u, v) =
1

2

∥∥∥(u, v)
∥∥∥∗2
H

+
m∑
i=1

(
αi − αi−1

)
u(ti) +

m∑
i=1

(
βi − βi−1

)
v(ti)

−
m∑
i=0

∫ ti+1

si

fi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
dt. (4.7)

For more details about the construction of Φ, see the subsection 1.2.1.1.

Proposition 4.1. The functional Φ : H −→ R, defined by (4.7) is continuously Fréchet-differentiable

and weakly lower semi-continuous. Moreover, the critical points of Φ are weak solutions of (4.1).

Proof. Using the continuity of Dufi, Dvfi, i = 0, 1, ...,m, we easily obtain that the functional Φ ∈

C1(H,R). Furthermore, we have the differential of Φ at (u, v) ∈ H

Φ′(u, v) : H −→ R,
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is defined by

Φ′(u, v)(ϕ, ψ) =

∫ T

0

u′(t)ϕ′(t)dt+

∫ T

0

v′(t)ψ′(t)dt

−
m∑
i=1

(
αi−1 − αi

)
ϕ(ti)−

m∑
i=1

(
βi−1 − βi

)
ψ(ti)

−
m∑
i=0

∫ ti+1

si

Dufi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)(
ϕ(t)− ϕ(ti+1)

)
dt

−
m∑
i=0

∫ ti+1

si

Dvfi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)(
ψ(t)− ψ(ti+1)

)
dt

+
m∑
i=0

∫ ti+1

si

ηi(t)
(
u(t)− u(ti+1)

)(
ϕ(t)− ϕ(ti+1)

)
dt

+
m∑
i=0

∫ ti+1

si

θi(t)
(
v(t)− v(ti+1)

)(
ψ(t)− ψ(ti+1)

)
dt,

this shows that the critical points of Φ give us the weak solutions of (4.1).

To show that Φ is weakly lower semi-continuous, let {(uj, vj)} ⊂ H, with (uj, vj) ⇀ (u, v), then

we have that {uj} and {vj} converge uniformly to u and v on [0, T ] respectively (Proposition 1.5).

In connection with the fact that lim infj−→∞ ‖(uj, vj)‖∗H ≥ ‖(u, v)‖∗H (Corollary 1.4), one has

lim inf
j−→∞

Φ(uj, vj) = lim inf
j−→∞

{
1

2

∥∥∥(uj, vj)
∥∥∥∗2
H
−

m∑
i=1

(
αi−1 − αi

)
uj(ti)−

m∑
i=1

(
βi−1 − βi

)
vj(ti)

−
m∑
i=0

∫ ti+1

si

fi

(
t, uj(t)− uj(ti+1), vj(t)− vj(ti+1)

)
dt

}
,

≥ 1

2

∥∥∥(u, v)
∥∥∥∗2
H
−

m∑
i=1

(
αi−1 − αi

)
u(ti)−

m∑
i=1

(
βi−1 − βi

)
v(ti)

−
m∑
i=0

∫ ti+1

si

fi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
dt,

= Φ(u, v).

This implies that the functional Φ is weakly lower semicontinuous.

4.3 Main result

In this section we give the proof of our main result in this chapter.
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Theorem 4.1. Suppose that assumptions (A1) and (A2) are satisfied. Then there is a critical point

of Φ, and (4.1) has at least one solution.

Proof. From the theorem 1.4, the remark 1.11 and the proposition 4.1, to get the result, we just

show that Φ is coercive.

For any (u, v) ∈ H, we have

Φ(u, v) =
1

2

∥∥∥(u, v)
∥∥∥∗2
H
−

m∑
i=1

(
αi−1 − αi

)
u(ti)−

m∑
i=1

(
βi−1 − βi

)
v(ti)

−
m∑
i=0

∫ ti+1

si

fi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
dt,

≥ 1

2

∥∥∥(u, v)
∥∥∥∗2
H
−

m∑
i=1

(
αi−1 − αi

)
u(ti)−

m∑
i=1

(
βi−1 − βi

)
v(ti)

−
m∑
i=0

∫ ti+1

si

(
ai
∣∣u(t)− u(ti+1)

∣∣+ ai
∣∣v(t)− v(ti+1)

∣∣
+bi
∣∣u(t)− u(ti+1)

∣∣γ1+1
+ bi

∣∣v(t)− v(ti+1)
∣∣γ2+1

)
dt,

≥ 1

2

∥∥∥(u, v)
∥∥∥∗2
H
−m max

i=1,...,m

{
|αi−1 − αi|

}
‖u‖∞ −m max

i=1,...,m

{
|βi−1 − βi|

}
‖v‖∞

−2(m+ 1)T max
i=0,...,m

{
ai
}(
‖u‖∞ + ‖v‖∞

)
−2γ1+1(m+ 1)T max

i=0,...,m

{
bi
}
‖u‖γ1+1

∞ − 2γ2+1(m+ 1)T max
i=0,...,m

{
bi
}
‖v‖γ2+1

∞ ,

now using the lemma 4.3, we get

Φ(u, v) ≥ 1

2

∥∥∥(u, v)
∥∥∥∗2
H
−mγ max

i=1,...,m

{
|αi−1 − αi|

}∥∥∥(u, v)
∥∥∥∗
H
−mγ max

i=1,...,m

{
|βi−1 − βi|

}∥∥∥(u, v)
∥∥∥∗
H

−4(m+ 1)γT max
i=0,...,m

{
ai
}∥∥∥(u, v)

∥∥∥∗
H

−(2γ)γ1+1(m+ 1)T max
i=0,...,m

{
bi
}∥∥∥(u, v)

∥∥∥∗γ1+1

H

−(2γ)γ2+1(m+ 1)T max
i=0,...,m

{
bi
}∥∥∥(u, v)

∥∥∥∗γ2+1

H
.

Because γ1 + 1, γ2 + 1 < 2, we have that

lim
‖(u,v)‖∗H→∞

Φ(u, v) =∞,

it follows that the functional Φ is coercive on H.
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Corollary 4.1. Suppose that assumption (A1) is satisfied and Dufi, Dvfi, i = 0, 1, . . . ,m, are bounded.

Then there is a critical point of Φ, and (4.1) has at least one solution.

Example 4.1. Let T = 1, we consider the following problem with non-instantaneous impulses

−u′′(t) +

(
1

ti+1 − si
(t− si) + 1

)(
u(t)− u(ti+1)

)
= t2 +

√∣∣∣u(t)− u(ti+1)
∣∣∣,

t ∈ (si, ti+1], i = 0, 1, . . . ,m,

−v′′(t) +

(
(t− si) + (t− si)2

)(
v(t)− v(ti+1)

)
= t+ 3

√∣∣∣v(t)− v(ti+1)
∣∣∣,

t ∈ (si, ti+1], i = 0, 1, . . . ,m,

u′(t) = αi, t ∈ (ti, si], i = 1, 2, . . . ,m,

v′(t) = βi, t ∈ (ti, si], i = 1, 2, . . . ,m,

u′(s+
i ) = u′(s−i ), i = 1, 2, . . . ,m,

v′(s+
i ) = v′(s−i ), i = 1, 2, . . . ,m,

u′(0+) = α0, v′(0+) = β0,

u(0) = u(1) = v(0) = v(1) = 0.

(4.8)

First we can see that for i = 0, 1, . . . ,m, ηi(t) = 1
ti+1−si (t− si) + 1, θi(t) = (t− si) + (t− si)2, and

νi = 0 > − 2
(ti+1−si)2 , then (A1) holds. Next, taking ai = 1, bi = 1, γ1 =

1

2
and γ2 =

1

3
, i = 0, 1, ...,m,

(A2) holds. Then, by Theorem 4.1, the non-instantaneous impulsive problem (4.8) has at least one

nontrivial solution.

55



Conclusion and perspectives

We divided this thesis into three parts. In the first one, we focused our attention on a class of

nonlinear differential equations with instantaneous impulses, of the form

−u′′(t) = fu(t, u, v), t ∈ (0, T ) \ {t1, ..., tm},

−v′′(t) = fv(t, u, v), t ∈ (0, T ) \ {t1, ..., tm},

u(0) = u(T ) = v(0) = v(T ) = 0,

∆u′(tk) = u′(t+k )− u′(t−k ) = Ik
(
u(tk)

)
, k = 1, 2, ...,m,

∆v′(tk) = v′(t+k )− v′(t−k ) = Jk
(
v(tk)

)
, k = 1, 2, ...,m,

(1)

where the nonlinear functions fu, fv are Carathéodory on (0, T ) × R2, and Ik, Jk are continuous on

R.

By means of a variational method we have shown the existence of weak solutions under the

following two conditions on the functions fu, fv, Ik and Jk

1. There exist a, b > 0, and α1, α2 ∈ [0, 1), such that |fu(t, u, v)| ≤ a+ b|u|α1 , for every (t, u, v) ∈ (0, T )× R2,

|fv(t, u, v)| ≤ a+ b|v|α2 , for every (t, u, v) ∈ (0, T )× R2.

2. There exist ak, bk > 0, and βk ∈ [0, 1), k = 1, 2, ...,m, such that |Ik(u)| ≤ ak + bk|u|βk , for every u ∈ R,

|Jk(v)| ≤ ak + bk|v|βk , for every v ∈ R.

In the second part, we were interested in studying of a problem with non-instantaneous impulses,
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of the type

−u′′(t) = Dufi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
, t ∈ (si, ti+1], i = 0, 1, . . . ,m,

−v′′(t) = Dvfi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
, t ∈ (si, ti+1], i = 0, 1, . . . ,m,

u′(t) = αi, t ∈ (ti, si], i = 1, 2, . . . ,m,

v′(t) = βi, t ∈ (ti, si], i = 1, 2, . . . ,m,

u′(s+
i ) = u′(s−i ), i = 1, 2, . . . ,m,

v′(s+
i ) = v′(s−i ), i = 1, 2, . . . ,m,

u′(0+) = α0, v′(0+) = β0,

u(0) = u(T ) = v(0) = v(T ) = 0,

(2)

where αi, βi are given constants. The nonlinear functions Dufi, Dvfi are Carathéodory on (si, ti+1]×

R2.

As in the foregoing model based on a variation method we obtained the existence of weak solutions

when the following condition is satisfied

• There exist ai, bi > 0, and γ1, γ2 ∈ [0, 1), i = 0, 1, . . . ,m, such that |Dufi(t, u, v)| ≤ ai + bi|u|γ1, for every (t, u, v) ∈ (si, ti+1]× R2,

|Dvfi(t, u, v)| ≤ ai + bi|v|γ2, for every (t, u, v) ∈ (si, ti+1]× R2.

Then in the third part, we generalized the previous model as follows

−u′′(t) + ηi(t)
(
u(t)− u(ti+1)

)
= Dufi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
,

t ∈ (si, ti+1], i = 0, 1, . . . ,m,

−v′′(t) + θi(t)
(
v(t)− v(ti+1)

)
= Dvfi

(
t, u(t)− u(ti+1), v(t)− v(ti+1)

)
,

t ∈ (si, ti+1], i = 0, 1, . . . ,m,

u′(t) = αi, t ∈ (ti, si], i = 1, 2, . . . ,m,

v′(t) = βi, t ∈ (ti, si], i = 1, 2, . . . ,m,

u′(s+
i ) = u′(s−i ), i = 1, 2, . . . ,m,

v′(s+
i ) = v′(s−i ), i = 1, 2, . . . ,m,

u′(0+) = α0, v′(0+) = β0,

u(0) = u(T ) = v(0) = v(T ) = 0,

(3)

where ηi, θi ∈ L∞(si, ti+1], and the nonlinear functions Dufi, Dvfi are Carathéodory functions on

(si, ti+1]× R2, αi, βi are given constants.
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Under the following assumptions

(A1) Assume that

νi > −λi, ∀i = 0, 1, . . . ,m,

where νi = min
{
ess inft∈(si,ti+1] ηi(t), ess inft∈(si,ti+1] θi(t)

}
and λi =

2

(ti+1 − si)2
.

(A2) Suppose that Dufi, Dvfi verify the following condition:

There exist ai, bi > 0, and γ1, γ2 ∈ [0, 1), i = 0, 1, . . . ,m, such that |Dufi(t, u, v)| ≤ ai + bi|u|γ1 , for every (t, u, v) ∈ (si, ti+1]× R2,

|Dvfi(t, u, v)| ≤ ai + bi|v|γ2 , for every (t, u, v) ∈ (si, ti+1]× R2,

there is at least one solution of the generalized problem.

This work raises a number of questions for researchers to explore in further studies. Several

generalizations are considered

1. We can consider a more general case by taking functions f and g, instead of fu and fv derivatives

of f(t, u, v) at u and v respectively.

2. For models (2) and (3), there are significant difficulties when considering non-constant impulses.

For that, we can consider αi and βi depend on t or on u(t) and v(t).

3. What may happens when T tends to infinity? How about the global solutions? And then the

stability.

4. It would also be interesting to give a multivalued version to the previous problems. More

precisely, we can consider the following impulsive differential inclusions problem

−u′′(t) ∈ F (t, u, v), t ∈ (0, T ) \ {t1, ..., tm},

−v′′(t) ∈ G(t, u, v), t ∈ (0, T ) \ {t1, ..., tm},

u(0) = u(T ) = v(0) = v(T ) = 0,

∆u′(tk) = u′(t+k )− u′(t−k ) = Ik
(
u(tk)

)
, k = 1, 2, ...,m,

∆v′(tk) = v′(t+k )− v′(t−k ) = Jk
(
v(tk)

)
, k = 1, 2, ...,m,

where F,G : [0, T ]× R2 −→ 2R.
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