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soutenu pendant mes études.
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Abstract

In this thesis, we investigate the existence, uniqueness and stability of solutions for
some classes of nonlinear boundary value problem involving the Riemann-Liouville,
Caputo and Hadamard fractional differential equations of variable order.
All results in this study are established by means of fixed point theorems, Mawhin’s
continuation theorem, technique of measure of noncompactness and with the help of
piece-wise constant function, we convert the Riemann-Liouville, Caputo and Hada-
mard fractional variable order to an equivalent standard Riemann-Liouville, Caputo
and Hadamard of the fractional constant order. Further, we examine the stability of the
obtained solutions in the sense of Ulam-Hyers-Rassias and in the sense of Ulam-Hyers.

Keywords : Fractional differential equations of variable order, Boundary value pro-
blem, Piecewise constant functions, Fixed point theorem, Green’s function, Kuratowski
measure of noncompactness, Stability, Resonance, Mawhin’s continuation theorem.

AMS (MOS) Subject Classifications : 26A33, 34A08, 34A37, 34A60.
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Résumé

Dans cette thèse, nous étudions l’existence, l’unicité et la stabilité de solutions de cer-
taines classes de problèmes aux limites non linéaires associés à des équations différentielles
fractionnaires (Riemann-Liouville, Caputo et Hadamard) d’ordre variable.
Tous les résultats de cette étude sont basés sur les théorèmes de points fixes, du
théorème de continuation de Mawhin, la technique des mesures de non-compactité
et à l’aide de fonction constante par morceaux, nous convertissons l’ordre des variables
fractionnaires de Riemann-Liouville, Caputo et Hadamard en un standard équivalent
Riemann-Liouville, Caputo et Hadamard de l’ordre des constantes fractionnaires. De
plus, nous examinons la stabilité des solutions obtenues au sens de Ulam-Hyers-Rassias
et au sens de Ulam-Hyers.

Mots clés : Equations différentielles fractionnaires d’ordre variable, Problème
de valeur aux limites, Fonctions constantes par morceaux, Théorème du point fixe,
Fonction de Green, Mesure de non-compactité de Kuratowski, Stabilité, Résonance,
Théorème de continuation de Mawhin.

Classifcations (AMS) : 26A33, 34A08, 34A37, 34A60.
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INTRODUCTION

The main idea of fractional calculus is to constitute the natural numbers in the order
of derivation operators with rational ones. Although this idea is preliminary and simple,
it involves remarkable effects and outcomes which describe some physical, dynamics,
modeling, control theory, bioengineering, and biomedical applications phenomena.

The subject of fractional calculus has gained considerable popularity and impor-
tance due to its frequent appearance in different research areas and engineering, such
as physics, chemistry, control of dynamical systems etc.

The operators of variable order, which fall into a more complex operator category,
are the derivatives and integrals whose order is the function of certain variables. The
variable order fractional derivative is an extension of constant order fractional deri-
vative. In recent years, the operator and differential equations of variable order have
been applied in engineering more and more frequently, for the examples and details,
see [1, 3, 18, 33, 35, 36, 43, 52, 54, 55, 56, 57, 58, 60, 61, 64, 66].

Recently, the Hadamard-type operators originally introduced in [25] and later ge-
neralized to variable fractional order have been investigated in [6, 7].

In the last years, many people paid attention to the existence and uniqueness of
solutions to boundary value problems for fractional differential equations. Although the
existing literature on solutions of boundary value problems of fractional order (constant
order) is quite wide, on the contrary, few papers deal with the existence of solutions to
boundary value problems of variable order, see, e.g., [1, 56, 57, 58, 64].

In general, it is usually difficult to solve boundary value problems of fractional
boundary variable order and obtain their analytical solution. Therefore, some methods
are introduced for the approximation of solutions to different fractional boundary value
problem of variable order. In relation to the study of the existence theory to fractional
boundary value problem of variable order, we point out some of them. In [65], Zhang
studied solutions of a two-point boundary value problem of fractional variable order
involving singular fractional differential equations. After some years, Zhang and Hu [67]
established the existence results for approximate solutions of variable order fractional
initial value problems on the half line.

9
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While several research studies have been performed on investigating the existence
solutions of the fractional constant-order problems, the existence solutions of the va-
riable order problems are rarely discussed in literature ; we refer to [58, 65, 67, 68, 69].

In 2021, Bouazza et al. [12] considered a multiterm fractional boundary value pro-
blem of variable order and derived their results by terms of fixed point methods, Hris-
tova et al. [27] turned to investigation of the Hadamard fractional boundary value
problem of variable order by means of Kuratowski MNC method. For more details on
other instances, refer to [53, 57] and the references therein.

The stability theory of functional equations has developed very rapidly during the
past decades. In 1940, Ulam posed the problem of stability of functional equations at
the University of Wisconsin, see [59]. A year later, Hayers [26] gave the first answer to
the Ulam problem in the case of Banach spaces. Therefore, this type of stability came
to be called the Ulam-Hyers stability. In 1978, Rassias [50] provided a generalization
of the Ulam-Hyers stability. After that, the study of these two types of stabilities, the
Ulam-Hyers stability and the Ulam-Hyers-Rassias stability has grown to be one of the
most essential subjects in the field of mathematical analysis and especially the stability
of differential equations, see e.g. [28, 30, 31, 44, 46, 51, 62].

The technique of measures of noncompactness which is often used in several branches
of nonlinear analysis. Especially, that technique turns out to be a very useful tool in
existence for several types of integral equations ; details are found in Akhmerov et al.
[5], Alvarez [2], Banas et al. [8, 9, 15, 16, 17], Guo et al. [23].

In 1970, Gaines and Mawhin introduced the theory of the degree of coincidence
in the analysis of functional and differential equations. Mawhin has made important
contributions since then, and this theory is also known as Mawhin’s theory of coinci-
dence. Coincidence theory is considered to be the very powerful technique, especially
with regard to questions about the existence of solutions in nonlinear differential equa-
tions. Furthermore, many researchers have used it to solve boundary value problems
at resonance, see [37, 38, 39, 40, 41, 42, 48].

In the following we give an outline of our thesis organization, consisting of 5 chap-
ters.

The first chapter gives some notations, definitions, lemmas, fixed point theorems
and coincidence degree theory which are used throughout this thesis.

In Chapter 2, we study the existence of solutions to the proposed multiterm
boundary value problem (BVP) for the nonlinear fractional differential equation of
variable order in the format{

D
u(t)

0+ x(t) + f(t, x(t), I
u(t)

0+ x(t)) = 0, t ∈ J := [0, T ],
x(0) = 0, x(T ) = 0,

(1)

where 0 < T < +∞, 1 < u(t) ≤ 2, f : J × R × R → R is a continuous function

and D
u(t)

0+ , I
u(t)

0+ are the Riemann-Liouville fractional derivative and Riemann-Liouville
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fractional integral of variable-order u(t) .

In Chapter 3, we deal with the boundary value problem{
cD

u(t)

0+ x(t) + f(t, x(t), I
u(t)

0+ x(t)) = 0, t ∈ J := [0, T ],
x(0) = 0, x(T ) = 0,

(2)

where 1 < u(t) ≤ 2, f : J × R × R → R is a continuous function and cD
u(t)

0+ , I
u(t)

0+ are
the Caputo fractional derivative and integral Riemann-Liouville of variable-order u(t).
Further, we study the stability of the obtained solution in the sense of Ulam-Hyers.

In Chapter 4, we investigate the existence of solutions for the nonlinear Hadamard
fractional boundary value problem of variable order as follows :{

HD
u(t)

1+ x(t) + f(t, x(t)) = 0, t ∈ J := [1, T ],
x(1) = x(T ) = 0,

(3)

where 1 < T < +∞, 1 < u(t) ≤ 2, f : J × X → X is a continuous function (X is a

Banach space) and HD
u(t)

1+ specifies the Hadamard derivative of variable order u(t).
Further, we study the stability of the obtained solution in the sense of Ulam-Hyers-
Rassias.

In Chapter 5, we shall investigate a nonlinear boundary value problem of variable
order which takes a structure as follows{

cD
u(t)

a+ y(t) = f(t, y(t)), t ∈ J,

y(a) = y(T ),
(4)

where J = [a, T ], 0 ≤ a < T < ∞, u(t) : J → (0, 1] is the variable order of the

fractional derivatives, f : J ×R→ R is a continuous function and cD
u(t)

a+ is the Caputo
fractional derivative of variable-order u(t).



Chapitre 1

Preliminaries

We introduce in this chapter notations, definitions, fixed point theorems and coin-
cidence degree theory which are used throughout this thesis.

1.1 Notations and definitions

Let (X; ‖.‖) be a Banach space. We denote by C(J,X) the space of X-valued
continuous functions on J with the usual supremum norm

‖y‖ = sup{‖y(t)‖ : t ∈ J},

for any y ∈ C(J,X).
and for each i ∈ {1, 2, ..., n}, the symbol Ei = C(Ji, X), indicated the Banach space

of continuous functions y : Ji → X equipped with the norm

‖y‖Ei = sup
t∈Ji
‖y(t)‖.

A measurable function y : J → X is Bochner integrable if and only if ‖y‖ is
Lebesgue integrable.
Let L1(J,X) denote the Banach space of measurable functions y : J → X which are
Bochner integrable normed by

‖y‖L1 =

∫ T

0

‖y(t)‖dt.

For properties of the Bochner integrable functions, see [63].

12
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1.2 Fractional calculus.

1.2.1 Fractional calculus of constant-order

Definition 1.1 ([34, 49]). The left Riemann-Liouville fractional integral of the func-
tion h ∈ L1([a, b],R+) of order α ∈ R+ is defined by

Iαa h(t) =
1

Γ(α)

∫ t

a

(t− s)α−1h(s)ds,

where Γ(.) is the gamma function.

Definition 1.2 ([34, 49]). The left Riemann-Liouville fractional derivative of order
α > 0 of function h ∈ L1([a, b],R+), is given by

(Dα
a+h)(t) =

1

Γ(n− α)

( d
dt

)n ∫ t

a

(t− s)n−α−1h(s)ds,

here n = [α] + 1 and [α] denotes the integer part of α. If α ∈ (0, 1], then

(Dα
a+h)(t) =

d

dt
I1−α
a+ h(t) =

1

Γ(1− α)

d

ds

∫ t

a

(t− s)−αh(s)ds.

The following properties are some of the main ones of the fractional derivatives and
integrals.

Lemma 1.1 ([34]). Let α > 0, a ≥ 0, h ∈ L1(a, b), Dα
a+h ∈ L1(a, b). Then, the

differential equation
Dα
a+h = 0

has unique solution

h(t) = ω1(t− a)α−1 + ω2(t− a)α−2 + ...+ ω`(t− a)α−` + ...+ ωn(t− a)α−n,

where n = [α] + 1, ω` ∈ R, ` = 1, 2, ..., n.

Lemma 1.2 ([34]). Let α > 0, a ≥ 0, h ∈ L1(a, b), Dα
a+h ∈ L1(a, b). Then,

Iαa+D
α
a+h(t) = h(t) +ω1(t− a)α−1 +ω2(t− a)α−2 + ...+ω`(t− a)α−` + ...+ωn(t− a)α−n,

where n = [α] + 1, ω` ∈ R, ` = 1, 2, ..., n.

Lemma 1.3 ([34]). Let α > 0, a ≥ 0, h ∈ L1(a, b), Dα
a+h ∈ L1(a, b). Then,

Dα
a+I

α
a+h(t) = h(t).
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Lemma 1.4 ([34]). Let α, β > 0, a ≥ 0, h ∈ L1(a, b). Then,

Iαa+I
β
a+h(t) = Iβa+I

α
a+h(t) = Iα+β

a+ h(t).

Definition 1.3 ([34, 49]). The left Caputo fractional derivative of order α > 0 of
function h ∈ L1([a, b],R+), is given by

cDα
a+h(t) =

1

Γ(n− α)

∫ t

a

(t− s)n−α−1h(n)(s)ds,

where n = [α] + 1.

Lemma 1.5 ([34]). Let α > 0, a ≥ 0, h ∈ L1(a, b), cDα
a+h ∈ L1(a, b). Then, the

differential equation
cDα

a+h = 0

has unique solution

h(t) = ω0 + ω1(t− a) + ω2(t− a)2 + ...+ ω`(t− a)` + ...+ ωn−1(t− a)n−1,

where n = [α] + 1, ω` ∈ R, ` = 0, 1, ..., n− 1.

Lemma 1.6 ([34]). Let α > 0, a ≥ 0, h ∈ L1(a, b), cDα
a+h ∈ L1(a, b). Then,

Iαa+
cDα

a+h(t) = h(t) +ω0 +ω1(t− a) +ω2(t− a)2 + ...+ω`(t− a)` + ...+ωn−1(t− a)n−1,

where n = [α] + 1, ω` ∈ R, ` = 0, 1, ..., n− 1.

Lemma 1.7 ([34]). Let α > 0, a ≥ 0, h ∈ L1(a, b), cDα
a+h ∈ L1(a, b). Then,

cDα
a+I

α
a+h(t) = h(t).

Definition 1.4 ([34, 49]). The left Hadamard fractional integral of the function h ∈
L1([a, b],R+) of order α ∈ R+ is defined by

HIαa+h(t) =
1

Γ(α)

∫ t

a

(ln
t

s
)α−1h(s)

s
ds, t > a.

Definition 1.5 ([34, 49]). The left Hadamard fractional derivative of order α > 0 of
function h ∈ L1([a, b],R+), is given by

HDα
a+h(t) =

1

Γ(n− α)
(t
d

dt
)n
∫ t

a

(ln
t

s
)n−α−1h(s)

s
ds, t > a,

where n = [α] + 1.

The following properties are some of the main ones of the fractional derivatives and
integrals.
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Lemma 1.8 ([34]). Assume that a ≥ 1, α > 0, h ∈ L1(a, b), HDα
a+h ∈ L1(a, b). Then,

the homogeneous differential equation

HDα
a+h = 0

has unique solution

h(t) = ω1(ln
t

a
)α−1 + ω2(ln

t

a
)α−2 + ...+ ω`(ln

t

a
)α−` + ...+ ωn(ln

t

a
)α−n,

and

HIαa+(HDα
a+)h(t) = h(t)+ω1(ln

t

a
)α−1 +ω2(ln

t

a
)α−2 +...+ω`(ln

t

a
)α−`+...+ωn(ln

t

a
)α−n,

with n = [α] + 1, ω` ∈ R, ` = 1, 2, ..., n.

Lemma 1.9 ([34]). Let α > 0, a ≥ 1, h ∈ L1(a, b), Dα
a+h ∈ L1(a, b). Then,

HDα
a+(HIαa+)h(t) = h(t).

Lemma 1.10 ([34]). Let α, β > 0. Then,

HIαa+(HIβa+)h(t) =H Iβa+(HIαa+)h(t) =H Iα+β
a+ h(t).

1.2.2 Fractional calculus of variable-order

Definition 1.6 ([54, 61]). For −∞ < a < b < +∞, we consider the mapping
u(t) : [a, b] → (0,+∞). Then, the left Riemann-Liouville fractional integral (RLInVo)
of variable-order u(t) for function h(t) is expressed by

I
u(t)

a+ h(t) =

∫ t

a

(t− s)u(s)−1

Γ(u(s))
h(s)ds, t > a, (1.1)

where the gamma function is denoted by Γ(.).

Definition 1.7 ([54, 61]). For −∞ < a < b < +∞, we consider the mapping
u(t) : [a, b]→ (n− 1, n), n ∈ N. Then, the left Riemann-Liouville fractional derivative
of variable-order u(t) for function h(t) is expressed by

D
u(t)

a+ h(t) =
( d
dt

)n
I
n−u(t)

a+ h(t) =
( d
dt

)n ∫ t

a

(t− s)n−u(s)−1

Γ(n− u(s))
h(s)ds, t > a. (1.2)

Obviously, if the order u(t) is a constant function u, then the Riemann-Liouville frac-
tional derivative of variable-order (1.2) and Riemann-Liouville fractional integral of
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variable-order(1.1) are the usual Riemann-Liouville fractional derivative and Riemann-
Liouville fractional integral, respectively ; see [54, 55, 34].

Remark ([69, 65]). Generally, for functions u(t) and v(t), the semigroup property
does not hold, i.e.,

I
u(t)

a+ I
v(t)

a+ h(t) 6= I
u(t)+v(t)

a+ h(t).

Example : Let

u(t) =

{
2, t ∈ [0, 1],
1, t ∈]1, 3],

v(t) =

{
1, t ∈ [0, 1],
2, t ∈]1, 3],

and h(t) = t, t ∈ [0, 3].

I
u(t)

0+ I
v(t)

0+ h(t) =

∫ 1

0

(t− s)u(s)−1

Γ(u(s))

∫ s

0

(s− τ)v(τ)−1

Γ(v(τ))
h(τ)dτds

+

∫ t

1

(t− s)u(s)−1

Γ(u(s))

∫ s

0

(s− τ)v(τ)−1

Γ(v(τ))
h(τ)dτds,

=

∫ 1

0

(t− s)1

Γ(2)

∫ s

0

(s− τ)0

Γ(1)
τdτds

+

∫ t

1

(t− s)0

Γ(1)
[

∫ 1

0

(s− τ)0

Γ(1)
τdτ +

∫ s

1

(s− τ)1

Γ(2)
τdτ ]ds,

=

∫ 1

0

(t− s)s2

2Γ(2)
ds+

∫ t

1

s3

6
− s

2
+

5

6
ds,

I
u(t)+v(t)

0+ h(t) =

∫ t

0

(t− s)u(s)+v(s)−1

Γ(u(s) + v(s))
h(s)ds,

we see that

I
u(t)

0+ I
v(t)

a+ h(t)|t=2 =

∫ 1

0

(2− s)s2

2Γ(2)
ds+

∫ 2

1

s3

6
− s

2
+

5

6
ds,

=
5

24
+

17

24
=

22

24
,

I
u(t)+v(t)

0+ h(t)|t=2 =

∫ 1

0

(2− s)2+1−1

Γ(2 + 1)
sds+

∫ 2

1

(2− s)1+2−1

Γ(1 + 2)
sds =

11

24
+

5

24
=

16

24
.

Therefore, we obtain
I
u(t)

0+ I
v(t)

0+ h(t)|t=2 6= I
u(t)+v(t)

0+ h(t)|t=2.

Definition 1.8 ([54, 55, 61]). For −∞ < a < b < +∞, we consider the mapping
v(t) : [a, b] → (n − 1, n). Then, the left Caputo fractional derivative of variable-order
v(t) for function h(t) is

cD
v(t)

a+ h(t) =

∫ t

a

(t− s)n−v(t)−1

Γ(n− v(t))
h(n)(s)ds, t > a. (1.3)
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As anticipated, in case of v(t) is constant, then Caputo fractional derivative of variable-
order is coincide with the standard Caputo fractional derivative, see e.g. [34, 54, 55].

Definition 1.9 ([6, 7]). For 1 ≤ a < b < +∞, we consider the mapping
u(t) : [a, b] → (0,+∞). Then, the left Hadamard fractional integral of variable order
u(t) for function h(t) is

HI
u(t)

a+ h(t) =
1

Γ(u(t))

∫ t

a

(ln
t

s
)u(t)−1h(s)

s
ds, t > a. (1.4)

Definition 1.10 ([6, 7]). For 1 ≤ a < b < +∞, we consider the mapping
v(t) : [a, b]→ (n−1, n). Then, the left Hadamard fractional derivative of variable order
v(t) for function h(t) is

HD
v(t)

a+ h(t) =
1

Γ(n− v(t))
(t
d

dt
)n
∫ t

a

(ln
t

s
)n−v(t)−1h(s)

s
ds, t > a. (1.5)

Obviously, in case of u(t) and v(t) are constant, then both above Hadamard variable
order operators are in coincidence with the usual Hadamard constant order operators
(see [34, 55, 54]).

Remark 1.1 . The semigroup property is not fulfilled for the functions u(t) and v(t),
i.e.,

HI
u(t)

a+ (HI
v(t)

a+ )h(t) 6=H I
u(t)+v(t)

a+ h(t).

Example : Let

u(t) =

{
1, t ∈ [1, 2],

2, t ∈]2, 4],
v(t) =

{
3, t ∈ [1, 2],

4, t ∈]2, 4],
h(t) = 2t2, t ∈ [1, 4].

We obtain

HI
u(t)

1+ (HI
v(t)

1+ )h(t) =
1

Γ(u(t))

∫ t

1

1

s
(ln

t

s
)u(t)−1

[ 1

Γ(v(s))

∫ s

1

(ln
s

τ
)v(s)−1h(τ)

τ
dτ
]
ds

=
1

Γ(u(t))

∫ 2

1

1

s
(ln

t

s
)u(t)−1

[ 1

Γ(v(s))

∫ s

1

(ln
s

τ
)v(s)−1h(τ)

τ
dτ
]
ds

+
1

Γ(u(t))

∫ t

2

1

s
(ln

t

s
)u(t)−1

[ 1

Γ(v(s))

∫ s

1

(ln
s

τ
)v(s)−1h(τ)

τ
dτ
]
ds

=
1

Γ(1)

∫ 2

1

1

s
(ln

t

s
)0

∫ s

1

1

Γ(3)
(ln

s

τ
)22τdτds

+
1

Γ(2)

∫ t

2

1

s
(ln

t

s
)
[ 1

Γ(3)

∫ 2

1

(ln
s

τ
)22τdτ +

1

Γ(4)

∫ s

2

(ln
s

τ
)32τdτ

]
ds
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=

∫ 2

1

(s
4
− 1

2s
(ln s)2 − 1

2s
(ln s)− 1

4s

)
ds

+

∫ t

2

1

s
(ln

t

s
)
[
− 2

3
(ln

s

2
)3 + (ln

s

2
)2

+ (ln
s

2
)− 1

2
(ln s)2 − 1

2
(ln s) +

1

8
s2 +

1

4
]ds,

and

HI
u(t)+v(t)

1+ h(t) =
1

Γ(u(t) + v(t))

∫ t

1

(ln
t

s
)u(t)+v(t)−1h(s)

s
ds.

So,

HI
u(t)

1+ (HI
v(t)

1+ )h(t)|t=3 = − 1

30
(ln

3

2
)5 +

1

24
(ln

3

2
)4 +

1

12
(ln

3

2
)3 +

1

8
(ln

3

2
)2

− 1

4
(ln

3

2
)− 1

6
(ln 2)2(ln

3

2
)2 − 1

6
(ln 2)(ln

3

2
)3 − (ln 2)3

6

− (ln 2)2

4
− ln 2

4
− 1

4
(ln 2)(ln

3

2
)2 +

17

32
' 0.0522.

On the other hand,

HI
u(t)+v(t)

1+ h(t)|t=3 =

∫ 2

1

1

Γ(4)
(ln

3

s
)32sds+

∫ 3

2

1

Γ(6)
(ln

3

s
)52sds

= − 1

30
(ln

3

2
)5 − 1

12
(ln

3

2
)4 +

1

3
(ln

3

2
)3 +

3

4
(ln

3

2
)2

+
3

4
(ln

3

2
)− 1

6
(ln 3)3 − 1

4
(ln 3)2 − 1

4
(ln 3) +

17

32
' 0.1809.

Therefore, we obtain

HI
u(t)

1+ (HI
v(t)

1+ )h(t)|t=3 6=H I
u(t)+v(t)

1+ h(t)|t=3.

Lemma 1.11 ([70]). Let u : J := [0, T ]→ (1, 2] be a continuous function, then for
h ∈ Cδ(J,X) = {h(t) ∈ C(J,X), tδh(t) ∈ C(J,X)}, (0 ≤ δ ≤ mint∈J |u(t)|),

the variable order fractional integral I
u(t)

0+ h(t) exists for any points on J .

Lemma 1.12 ([70]). Let u : J := [0, T ]→ (1, 2] be a continuous function, then

I
u(t)

0+ h(t) ∈ C(J,X) for h ∈ C(J,X).

Lemma 1.13 ([54]). If u : J := [1, T ]→ (1, 2] be a continuous function, then for
h ∈ Cδ(J,R) = {h(t) ∈ C(J,R), (lnt)δh(t) ∈ C(J,R)}, 0 ≤ δ ≤ 1,

the variable order fractional integral HI
u(t)

1+ h(t) exists for any points on J .
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Proof. Taking the continuity of Γ(u(t)) into account, we shall claim that Mu =
maxt∈J | 1

Γ(u(t))
| exists. We let u∗ = maxt∈J |(u(t))|. Thus, for 1 ≤ s ≤ t ≤ T , we

have

(ln
t

s
)u(t)−1 ≤ 1, if 1 ≤ t

s
≤ e

(ln
t

s
)u(t)−1 ≤ (ln

t

s
)u

∗−1, if
t

s
> e

Then, for 1 ≤ t
s
< +∞, we know

(ln
t

s
)u(t)−1 ≤ max{1, (ln t

s
)u

∗−1} = M∗.

For h ∈ Cδ(J,R), by the definition of (1.4), we deduce that

|HIu(t)

1+ h(t)| =
1

Γ(u(t))

∫ t

1

(ln
t

s
)u(t)−1 |h(s)|

s
ds

≤ Mu

∫ t

1

(ln
t

s
)u(t)−1(ln s)−δ(ln s)δ

|h(s)|
s

ds

≤ MuM
∗
∫ t

1

1

s
(ln s)−δ max

s∈J
(ln s)δ|h(s)|ds

≤ MuM
∗max
s∈J

(ln s)δh?
∫ t

1

1

s
(ln s)−δds

≤ MuM
∗max
s∈J

(ln s)δh?
(lnT )1−δ

1− δ
<∞,

where h? = maxt∈J |h(t)|. It yields that the variable order fractional integral HI
u(t)

1+ h(t)
exists for any points on J .

Lemma 1.14 ([54]). Let u : J := [1, T ]→ (1, 2] be a continuous function, then

HI
u(t)

1+ h(t) ∈ C(J,R), for h ∈ C(J,R).
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Proof. For t, t0 ∈ J, t0 ≤ t and h ∈ C(J,R), we obtain∣∣∣HIu(t)

1+ h(t)−H Iu(t0)

1+ h(t0)
∣∣∣ =

∣∣∣ ∫ t

1

1

Γ(u(t))
(ln

t

s
)u(t)−1h(s)

s
ds

−
∫ t0

1

1

Γ(u(t0))
(ln

t0
s

)u(t0)−1h(s)

s
ds
∣∣∣

=
∣∣∣ ∫ 1

0

1

Γ(u(t))

(t− 1)

r(t− 1) + 1
(ln

t

r(t− 1) + 1
)u(t)−1h(r(t− 1) + 1)dr

−
∫ 1

0

1

Γ(u(t0))

(t0 − 1)

r(t0 − 1) + 1
(ln

t0
r(t0 − 1) + 1

)u(t0)−1h(r(t0 − 1) + 1)dr
∣∣∣

=
∣∣∣ ∫ 1

0

[ 1

Γ(u(t))

(t− 1)

r(t− 1) + 1
(ln

t

r(t− 1) + 1
)u(t)−1h(r(t− 1) + 1)

− 1

Γ(u(t))

(t0 − 1)

r(t0 − 1) + 1
(ln

t

r(t− 1) + 1
)u(t)−1h(r(t− 1) + 1)

]
dr

+

∫ 1

0

[ 1

Γ(u(t))

(t0 − 1)

r(t0 − 1) + 1
(ln

t

r(t− 1) + 1
)u(t)−1h(r(t− 1) + 1)

− 1

Γ(u(t))

(t0 − 1)

r(t0 − 1) + 1
(ln

t0
r(t0 − 1) + 1

)u(t0)−1h(r(t− 1) + 1)
]
dr

+

∫ 1

0

[ 1

Γ(u(t))

(t0 − 1)

r(t0 − 1) + 1
(ln

t0
r(t0 − 1) + 1

)u(t0)−1h(r(t− 1) + 1)

− 1

Γ(u(t0))

(t0 − 1)

r(t0 − 1) + 1
(ln

t0
r(t0 − 1) + 1

)u(t0)−1h(r(t− 1) + 1)
]
dr

+

∫ 1

0

[ 1

Γ(u(t0))

(t0 − 1)

r(t0 − 1) + 1
(ln

t0
r(t0 − 1) + 1

)u(t0)−1h(r(t− 1) + 1)

− 1

Γ(u(t0))

(t0 − 1)

r(t0 − 1) + 1
(ln

t0
r(t0 − 1) + 1

)u(t0)−1h(r(t0 − 1) + 1)
]
dr
∣∣∣

≤ h?
∫ 1

0

1

Γ(u(t))
(ln

t

r(t− 1) + 1
)u(t)−1

∣∣∣ (t− 1)

r(t− 1) + 1
− (t0 − 1)

r(t0 − 1) + 1

∣∣∣dr
+h?

∫ 1

0

1

Γ(u(t))

(t0 − 1)

r(t0 − 1) + 1

∣∣∣(ln t

r(t− 1) + 1
)u(t)−1 − (ln

t0
r(t0 − 1) + 1

)u(t)−1
∣∣∣dr

+h?
∫ 1

0

(t0 − 1)

r(t0 − 1) + 1
(ln

t0
r(t0 − 1) + 1

)u(t0)−1
∣∣∣ 1

Γ(u(t))
− 1

Γ(u(t0))

∣∣∣dr
+

∫ 1

0

1

Γ(u(t0))

(t0 − 1)

r(t0 − 1) + 1
(ln

t0
r(t0 − 1) + 1

)u(t0)−1
∣∣∣h(r(t− 1) + 1)− h(r(t0 − 1) + 1)

∣∣∣dr,
where h? = maxt∈J |h(t)|. On account of the continuity of functions ln, h, we get that

the integral HI
u(t)

1+ h(t) is continuous at the point t0, then HI
u(t)

1+ h(t) ∈ C(J,R) for
h(t) ∈ C(J,R).
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Definition 1.11 ([32, 66]). A generalized interval is a subset I of R which is either
an interval (i.e. a set of the form [a, b], (a, b), [a, b) or (a, b]), a point {a}, or the empty
set ∅.

Definition 1.12 ([32, 66]). If I is a generalized interval. A partition of I is a finite
set P of generalized intervals contained in I, such that every x in I lies in exactly one
of the generalized intervals J in P.

Example : The set P = {{1}, (1, 6), [6, 7), {7}, (7, 8]} of generalized intervals is a
partition of [1, 8].

Definition 1.13 ([32, 66]). Let I be a generalized interval, let f : I → R be a function,
and let P a partition of I. f is said to be piecewise constant with respect to P if for
every J ∈ P, f is constant on J .

Example : The function f : [1, 6]→ R defined by

f(x) =



3, 1 ≤ x < 3

4, x = 3

5, 3 < x < 6

2, x = 6

is piecewise constant with respect to the partition
{

[1, 3), {3}, (3, 6), {6}
}

of [1, 6].

Definition 1.14 ([32, 66]). Let I be a generalized interval. The function f : I → R is
called piecewise constant on I, if there exists a partition P of I such that f is piecewise
constant with respect to P .

1.3 Measure of noncompactness

We define in this section the Kuratowski measure of noncompactness and give their
basic properties in Banach space.

Definition 1.15 ([9]). Let X be a Banach space and ΩX is a bounded set in X. The
KMNC is the function µ : ΩX → [0,∞] which is constructed as follows :

µ(D) = inf{ε > 0 : ∃(Di)i=1,2,...,n ⊂ X, D ⊆ ∪ni=1Di, diam(Di) ≤ ε},

where
diam(Di) = sup{||x− y|| : x, y ∈ Di}.

Proposition 1.1 ([9, 15]). Let X be a Banach space, D, D1, D2 are bounded subsets
of X, then
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(a) D is relatively compact ⇐⇒ µ(D) = 0.

(b) µ(∅) = 0.

(c) µ(D) = µ(D).

(d) D1 ⊂ D2 =⇒ µ(D1) ≤ µ(D2).

(e) µ(D1 +D2) ≤ µ(D1) + µ(D2).

(f) µ(λD) = |λ|µ(D), λ ∈ R.

(g) µ(D1 ∪D2) = max{µ(D1), µ(D2)}.
(h) µ(D1 ∩D2) = min{µ(D1), µ(D2)}.
(i) µ(D + x0) = µ(D) for any x0 ∈ X.

Lemma 1.15 ([23]). If the bounded set U ⊂ C(J,X) is equicontinuous, then
(i) the function µ(U(t)) is continuous for t ∈ J , and

µ̂(U) = sup
t∈J

µ(U(t)).

(ii) µ
(∫ T

0
x(θ)dθ : x ∈ U

)
≤
∫ T

0
µ(U(θ))dθ,

where
U(s) = {x(s) : x ∈ U}, s ∈ J.

1.4 Coincidence degree theory

Definition 1.16 ([24, 39]). Let X and Y be normed spaces. A linear operator
L : domL ⊂ X → Y is said to be a Fredholm operator of index zero provided that

1. imgL is a closed subset of Y ;

2. dim kerL = codim imgL < +∞.

It follows from Definition 1.16 that there exist continuous projections P : X → X
and Q : Y → Y such that

imgP = kerL, kerQ = imgL, X = kerL⊕ kerP, Y = imgL⊕ imgQ.

This implies that the restriction of L to domL ∩ kerP , which we will denote by LP , is
an isomorphism onto its image.

Definition 1.17 ([24, 39]). Let L be a Fredholm operator of index zero and let Ω ⊆ X
be a bounded set with domL ∩ Ω 6= ∅. The operator N : Ω→ Y is L-compact in Ω if

1. the mapping QN : Ω→ Y is continuous and QN(Ω) ⊆ Y is bounded,

2. the mapping (LP )−1(I −Q)N : Ω→ X is completely continuous.
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Theorem 1.1 (Mawhin’s continuation Theorem)[47]. Let X and Y be Banach
spaces and let Ω ⊂ X be a bounded open symmetric set with 0 ∈ Ω.
Let L : domL ⊂ X → Y be a Fredholm operator of index zero with domL ∩ Ω 6= ∅ and
N : X → Y be an L-compact operator on Ω.

Assume that
Lx−Nx 6= −λ(Lx+N(−x))

for all x ∈ domL ∩ ∂Ω and all λ ∈ (0, 1], where ∂Ω is the boundary of Ω with respect
to X. Then the equation Lx = Nx has at least one solution on domL ∩ Ω.

1.5 Some fixed point theorems

Definition 1.18 . Let T : M ⊂ X −→ X be a bounded operator from a Banach
space X into itself. The operator T is called a k-set contraction if there is a number k
(0 ≤ k < 1) such that

µ(T (A)) ≤ kµ(A)

for all bounded sets A in M . The bounded operator T is called condensing if
µ(T (A)) < µ(A) for all bounded sets A in M with µ(M) > 0.

Obviously, every k-set contraction for 0 ≤ k < 1 is condensing. Every compact map T
is a k-set contraction with k = 0.

Theorem 1.2 (Banach’s fixed point theorem [21]). Let C be a non-empty closed subset
of a Banach space X, then any contraction mapping T of C into itself has a unique
fixed point.

Theorem 1.3 (Schauder fixed point theorem [19]). Let X a Banach space and Q be a
convex subset of X and T : Q −→ Q is compact, and continuous map. Then T has at
least one fixed point in Q.

Theorem 1.4 (Darbo’s fixed point theorem [9]). Let M be nonempty, bounded, convex
and closed subset of a Banach space X and T : M −→ M is a continuous operator
satisfying µ(TA) ≤ kµ(A) for any nonempty subset A of M and for some constant
k ∈ [0, 1). Then T has at least one fixed point in M .

1.6 Types of stability

Theorem 1.5 ([14, 51]). The boundary value problem is Ulam-Hyers stable if there
exists cf > 0, such that for any ε > 0 and for every solution z ∈ C(J,R) of the following
inequality

|cDu(t)

0+ z(t) + f(t, z(t), I
u(t)

0+ z(t))| ≤ ε, t ∈ J, (1.6)

there exists a solution x ∈ C(J,R) of boundary value problem with

|z(t)− x(t)| ≤ cfε, t ∈ J.
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Theorem 1.6 ([14, 51]). The Hadamard fractional boundary value problem of variable
order is Ulam-Hyers-Rassias stable with respect to ϑ ∈ C(J,X) if there exists a real
number cf > 0, such that for each ε > 0 and for each solution z ∈ C(J,X) of the
inequality

‖HDu(t)

1+ z(t) + f(t, z(t))‖ ≤ εϑ(t), t ∈ J, (1.7)

there exists a solution x ∈ C(J,X) of Hadamard fractional boundary value problem of
variable order with

‖z(t)− x(t)‖ ≤ cfεϑ(t), t ∈ J.



Chapitre 2

A Study on the Solutions of a
Multiterm Fractional Boundary
Value Problem of Variable Order

2.1 Introduction and motivations

In [13], Bai et al. studied the existence of solutions for the following nonlinear
fractional differential equations of constant order{

cDα
a+x(t) = f(t, x(t), Iαa+x(t)), t ∈ [a, b], α ∈]0, 1],

x(a) = xa,

where cDα
a+ and Iαa+ stand for the Caputo-Hadamard derivative and Hadamard integral

operators, respectively, f : [a, b]× R× R −→ R, xa ∈ R, and 0 < a < b <∞.
In this chapter we deal with the existence of solutions for multiterm boundary value

problem for the nonlinear fractional differential equation of variable order in the format{
D
u(t)

0+ x(t) + f(t, x(t), I
u(t)

0+ x(t)) = 0, t ∈ J := [0, T ],
x(0) = 0, x(T ) = 0,

(2.1)

where 0 < T < +∞, 1 < u(t) ≤ 2, f : J × R × R → R is a continuous function

and D
u(t)

0+ , I
u(t)

0+ are the Riemann-Liouville fractional derivative and Riemann-Liouville
fractional integral of variable-order u(t).
This chapter is divided into the following sections : two important results are as follows :
one is relied on Schauder fixed-point theorem, and the other one is relied on the Banach
contraction principle, which are provided in Section 2.2. In Section 2.3, a numerical
example is provided to validate and apply our theoretical results.

Z. Bouazza, S. Etemad, M. S. Souid, S. Rezapour, F. Matinez and M. K. A. Kaabar, A Study
on the Solutions of a Multiterm fractional boundary value problem of Variable Order, Journal of
Function Spaces, 2021(2021), 1-9.

25
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2.2 Existence of solutions

All our original main results in this chapter are discussed in this section. Some
assumptions are presented as follows :

(H1) Let n ∈ N be an integer and the finite sequence of points {Tk}nk=0 be given such
that 0 = T0 < Tk < Tn = T , k = 1, ..., n− 1.
Denote Jk := (Tk−1, Tk], k = 1, 2, ..., n. Then P =

⋃n
k=1 Jk is a partition of the

interval J .
Let u(t) : J → (1, 2] be a piecewise constant function with respect to P as
follows :

u(t) =
n∑
i=1

uiIi(t) =



u1, if t ∈ J1,
u2, if t ∈ J2,
.
.
.

un, if t ∈ Jn,
where 1 < ui ≤ 2 are constants and Ii is an indicator of the interval Ji, i = 1, 2, ..., n :

Ii(t) =

{
1, for t ∈ Ji,
0, for elsewhere.

(H2) Let tδf : J × R × R → R be a continuous function (0 < δ < 1). There exist
constants cj > 0, j = 1, 2, 3 and 0 < γ < 1, 0 < η < 1, such that

tδ|f(t, y, z)| ≤ c1 + c2|y|γ + c3|z|η,

for any y, z ∈ R and t ∈ J.
(H3) There exist constants K, L > 0, 0 < δ < 1, such that

tδ|f(t, y1, z1)− f(t, y2, z2)| ≤ K|y1 − y2|+ L|z1 − z2|,

for any y1, y2, z1, z2 ∈ R and t ∈ J .

To get our original results, let us first perform an essential analysis to our proposed
BVP(2.1).
By (1.2), the equation of the BVP(2.1) can be written as

d2

dt2

∫ t

0

(t− s)1−u(s)

Γ(2− u(s))
x(s)ds+ f(t, x(t), I

u(t)

0+ x(t)) = 0, t ∈ J. (2.2)

According to (H1), equation (2.2) on the interval Ji, i = 1, 2, ..., n can be written as

d2

dt2

(∫ T1

0

(t− s)1−u1

Γ(2− u1)
x(s)ds+ ...+

∫ t

Ti−1

(t− s)1−ui

Γ(2− ui)
x(s)ds

)
+ f(t, x(t), Iui0+x(t)) = 0,

(2.3)
for t ∈ Ji. Let us now define the solution to the BVP (2.1), which is essential in this
chapter.
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Definition 2.1 . BVP (2.1) has a solution, if there are functions xi, i = 1, 2, ..., n, so
that xi ∈ C([0, Ti],R) fulfilling equation (2.3) and xi(0) = 0 = xi(Ti).

From our previous analysis above, BVP (2.1) can be expressed as equation (2.2),
which can be written on the interval Ji, i ∈ {1, 2, ..., n} as (2.3).
For 0 ≤ t ≤ Ti−1, by taking x(t) ≡ 0, then (2.3) is written as follows :

Dui
T+
i−1

x(t) + f(t, x(t), Iui
T+
i−1

x(t)) = 0, t ∈ Ji.

Let us consider the following boundary value problem :{
Dui
T+
i−1

x(t) + f(t, x(t), Iui
T+
i−1

x(t)) = 0, t ∈ Ji,
x(Ti−1) = 0, x(Ti) = 0.

(2.4)

For the existence of solutions for the problem (2.4), an auxiliary lemma is needed
as follows :

Lemma 2.1 The function x ∈ Ei is a solution of problem (2.4) if and only if x satisfies
the integral equation as follows :

x(t) =

∫ Ti

Ti−1

Gi(t, s)f(s, x(s), Iui
T+
i−1

x(s))ds, (2.5)

where Gi(t, s) is Green’s function defined by :

Gi(t, s) =



1
Γ(ui)

[
(Ti − Ti−1)1−ui(t− Ti−1)ui−1(Ti − s)ui−1 − (t− s)ui−1

]
,

Ti−1 ≤ s ≤ t ≤ Ti,

1
Γ(ui)

(Ti − Ti−1)1−ui(t− Ti−1)ui−1(Ti − s)ui−1,

Ti−1 ≤ t ≤ s ≤ Ti,

where i = 1, 2, ..., n.

Proof. Let x ∈ Ei be a solution of the BVP (2.4). Now, let us apply the operator
Iui
T+
i−1

to both sides of the equation of the supposed BVP (2.4).

By Lemma 1.2, we obtain

x(t) = w1(t−Ti−1)ui−1+w2(t−Ti−1)ui−2− 1

Γ(ui)

∫ t

Ti−1

(t−s)ui−1f(s, x(s), Iui
T+
i−1

x(s))ds, t ∈ Ji.

By x(Ti−1) = 0, we obtain w2 = 0.
Let x(t) satisfies x(Ti) = 0. Thus, we get w1 = (Ti−Ti−1)1−uiIui

T+
i−1

f(Ti, x(Ti), I
ui
T+
i−1

x(Ti)).

Then, we have

x(t) = (Ti−Ti−1)1−ui(t−Ti−1)ui−1Iui
T+
i−1

f(Ti, x(Ti), I
ui
T+
i−1

x(Ti))−IuiT+
i−1

f(t, x(t), Iui
T+
i−1

x(t)), t ∈ Ji,
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by the continuity of Green’s function which implies that

x(t) =

∫ Ti

Ti−1

Gi(t, s)f(s, x(s), Iui
T+
i−1

x(s))ds.

Conversely, let x ∈ Ei be a solution of integral equation (2.5) ; then, by the continuity
of function tδf and Lemma 1.3, we can easily get that x is the solution of BVP (2.4).
The following Proposition will be needed :

Proposition 2.1 ([68]). Let 0 < δ < 1 and assume that tδf : J × R × R → R is
continuous, u(t) : J → (1, 2] satisfies (H1). Then, Green’s function of BVP (2.4)
satisfies the following properties :

(1) Gi(t, s) ≥ 0 for all Ti−1 ≤ t, s ≤ Ti,

(2) max
t∈Ji

Gi(t, s) = Gi(s, s), s ∈ Ji,

(3) Gi(s, s) has unique maximum given by

max
s∈Ji

Gi(s, s) =
1

Γ(ui)

(Ti − Ti−1

4

)ui−1

,

where i = 1, 2, ..., n.

The first existence result is relied on Theorem 1.3.

Theorem 2.1 Suppose that (H1)-(H3) hold ; then, the BVP(2.1) possesses at least one
solution in Ei.

Proof. Problem (2.4) can be transformed into a fixed point problem. Let us construct
the following operator

W : Ei → Ei,

formulated by :

Wx(t) =

∫ Ti

Ti−1

Gi(t, s)f(s, x(s), Iui
T+
i−1

x(s))ds, t ∈ Ji. (2.6)

It follows from the properties of fractional integrals and from the continuity of function
tδf that the operator W : Ei → Ei defined in (2.6) is well-defined.
We consider the set

BRi = {x ∈ Ei, ‖x‖Ei ≤ Ri},

where

Ri = max
{ 3c1

Γ(ui)

(Ti − Ti−1

4

)ui−1(T 1−δ
i − T 1−δ

i−1

1− δ

)
,
( 3c2

Γ(ui)

(Ti − Ti−1

4

)ui−1(T 1−δ
i − T 1−δ

i−1

1− δ

)) 1
1−γ

,

( 3c3

Γ(ui)

(Ti − Ti−1

4

)ui−1(T 1−δ
i − T 1−δ

i−1

1− δ

)((Ti − Ti−1)ui

Γ(ui + 1)

)η) 1
1−η
}
.
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Clearly, BRi is nonempty, convex, bounded, and closed.
Now, we prove in the following three steps that W satisfies the hypotheses of Theorem
1.3.

Step 1 : W (BRi) ⊆ (BRi).
For x ∈ BRi , by Proposition 2.1 and (H2), we get

|Wx(t)| =
∣∣∣ ∫ Ti

Ti−1

Gi(t, s)f(s, x(s), Iui
T+
i−1

x(s))ds
∣∣∣

≤
∫ Ti

Ti−1

Gi(t, s)
∣∣∣f(s, x(s), Iui

T+
i−1

x(s))ds
∣∣∣

≤
∫ Ti

Ti−1

Gi(t, s)s
−δ(c1 + c2|x(s)|γ + c3|IuiT+

i−1

x(s)|η)ds

≤ 1

Γ(ui)

(Ti − Ti−1

4

)ui−1
∫ Ti

Ti−1

s−δ
(
c1 + c2|x(s)|γ + c3

((Ti − Ti−1)ui

Γ(ui + 1)

)η
|x(s)|η

)
ds

≤ 1

Γ(ui)

(Ti − Ti−1

4

)ui−1(T 1−δ
i − T 1−δ

i−1

1− δ

)(
c1 + c2R

γ
i + c3

((Ti − Ti−1)ui

Γ(ui + 1)

)η
Rη
i

)
≤ Ri

3
+
Ri

3
+
Ri

3
= Ri.

Which means that W (BRi) ⊆ BRi .
Step 2 : W is continuous.

We presume that the sequence (xn) converges to x in Ei. We vertify that

‖(Wxn)− (Wx)‖Ei → 0, n→∞.

Indeed, for t ∈ Ji, by Proposition 2.1 and (H3), we obtain
|(Wxn)(t)− (Wx)(t)|

≤
∫ Ti

Ti−1

Gi(t, s)
∣∣∣f(s, xn(s), Iui

T+
i−1

xn(s))− f(s, x(s), Iui
T+
i−1

x(s))
∣∣∣ds

≤ 1

Γ(ui)

(Ti − Ti−1

4

)ui−1
∫ Ti

Ti−1

∣∣∣f(s, xn(s), Iui
T+
i−1

xn(s))− f(s, x(s), Iui
T+
i−1

x(s))
∣∣∣ds

≤ 1

Γ(ui)

(Ti − Ti−1

4

)ui−1
∫ Ti

Ti−1

s−δ
(
K|xn(s)− x(s)|+ LIui

T+
i−1

|xn(s)− x(s)|
)
ds

≤ 1

Γ(ui)

(Ti − Ti−1

4

)ui−1[
K‖xn − x‖Ei

∫ Ti

Ti−1

s−δds+ L‖Iui
T+
i−1

(xn − x)‖Ei
∫ Ti

Ti−1

s−δds
]

≤ (Ti
1−δ − Ti−1

1−δ)(Ti − Ti−1)ui−1

4ui−1(1− δ)Γ(ui)

(
K +

L(Ti − Ti−1)ui

Γ(ui + 1)

)
‖xn − x‖Ei ,

so
‖(Wxn)− (Wx)‖Ei → 0 as n→∞.
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Consequently, W is a continuous operator on Ei.

Step 3 : W is compact.
Now, we will prove that W (BRi) is relatively compact, meaning that W is compact.
Clearly, W (BRi) is uniformly bounded because by Step 1, we have

W (BRi) = {W (x) : x ∈ BRi} ⊂ BRi .

Thus, for each x ∈ BRi , we have ‖W (x)‖Ei ≤ Ri which means that W (BRi) is uniformly
bounded. It remains to prove that W (BRi) is equicontinuous.
For t1, t2 ∈ Ji, t1 < t2 and x ∈ BRi and f ? = sup

s∈Ji
f(s, 0, 0), we have :

|(Wx)(t2)− (Wx)(t1)|

=
∣∣∣ ∫ Ti

Ti−1

Gi(t2, s)f(s, x(s), Iui
T+
i−1

x(s))ds−
∫ Ti

Ti−1

Gi(t1, s)f(s, x(s), Iui
T+
i−1

x(s))ds
∣∣∣

≤
∫ Ti

Ti−1

|(Gi(t2, s)−Gi(t1, s))f(s, x(s), Iui
T+
i−1

x(s))ds|

≤
∫ Ti

Ti−1

|(Gi(t2, s)−Gi(t1, s))||f(s, x(s), Iui
T+
i−1

x(s))− f(s, 0, 0) + f(s, 0, 0)|ds

≤
∫ Ti

Ti−1

|(Gi(t2, s)−Gi(t1, s))||f(s, x(s), Iui
T+
i−1

x(s))− f(s, 0, 0)|ds

+

∫ Ti

Ti−1

|(Gi(t2, s)−Gi(t1, s))||f(s, 0, 0)|ds

≤
∫ Ti

Ti−1

|(Gi(t2, s)−Gi(t1, s))|
[
s−δ
(
K|x(s)|+ L|Iui

T+
i−1

(x(s))|
)]
ds

+f ?
∫ Ti

Ti−1

|(Gi(t2, s)−Gi(t1, s))|ds,

≤
∫ Ti

Ti−1

|(Gi(t2, s)−Gi(t1, s))|
[
s−δ
(
K|x(s)|+ L(Ti − Ti−1)ui

Γ(ui + 1)
|x(s)|

)]
ds

+f ?
∫ Ti

Ti−1

|(Gi(t2, s)−Gi(t1, s))|ds

≤ T−δi−1

(
K +

L(Ti − Ti−1)ui

Γ(ui + 1)

)
Ri

∫ Ti

Ti−1

|(Gi(t2, s)−Gi(t1, s))|ds

+f ?
∫ Ti

Ti−1

|(Gi(t2, s)−Gi(t1, s))|ds,
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by the continuity of Green’s function Gi. Hence |(Wx)(t2)−(Wx)(t1)| → 0 as |t2−t1| →
0. It implies that W (BRi) is equicontinuous.
From Steps 1 to 3 and the Arzela-Ascoli theorem, it can be concluded that W is
completely continuous.
Now, from Theorem 1.3, problem (2.4) possesses at least a solution x̃i in BRi .
We let

xi =

{
0, t ∈ [0, Ti−1],
x̃i, t ∈ Ji,

(2.7)

we know that xi ∈ C([0, Ti],R) defined by (2.7) satisfies the following equation :

d2

dt2

(∫ T1

0

(t− s)1−u1

Γ(2− u1)
xi(s)ds+ ...+

∫ t

Ti−1

(t− s)1−ui

Γ(2− ui)
xi(s)ds

)
+ f(s, x̃i(s), I

ui
0+x̃i(s)) = 0,

for t ∈ Ji, which means that xi is a solution of (2.3) with xi(0) = 0, xi(Ti) = x̃i(Ti) = 0.
In consequence, we figure out that the BVP (2.1) admits at least a solution defined
by :

x(t) =



x1(t), t ∈ J1,

x2(t) =

{
0, t ∈ J1,
x̃2, t ∈ J2,

.

.

.

.

xn(t) =

{
0, t ∈ [0, Tn−1],
x̃n, t ∈ Jn,

(2.8)

and the argument is ended.
Let us discuss our second result which is relied on the Banach contraction principle.

Theorem 2.2 Suppose that (H1) and (H3) hold and if

(Ti
1−δ − Ti−1

1−δ)(Ti − Ti−1)ui−1

4ui−1(1− δ)Γ(ui)

(
K + L

(Ti − Ti−1)ui

Γ(ui + 1)

)
< 1, (2.9)

then the BVP (2.1) has a unique solution in Ei.

Proof. Let us use the Banach contraction principle to show that W defined in (2.6)
has a unique fixed point.
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By Proposition 2.1 and (H3), and for x(t), y(t) ∈ Ei :

|(Wx)(t)− (Wy)(t)|

=
∣∣∣ ∫ Ti

Ti−1

Gi(t, s)f(s, x(s), Iui
T+
i−1

x(s))ds−
∫ Ti

Ti−1

Gi(t, s)f(s, y(s), Iui
T+
i−1

y(s))ds
∣∣∣

≤
∫ Ti

Ti−1

Gi(t, s)
∣∣∣f(s, x(s), Iui

T+
i−1

x(s))− f(s, y(s), Iui
T+
i−1

y(s))
∣∣∣

≤ 1

Γ(ui)

(Ti − Ti−1

4

)ui−1
∫ Ti

Ti−1

∣∣∣f(s, x(s), Iui
T+
i−1

x(s))− f(s, y(s), Iui
T+
i−1

y(s))
∣∣∣

≤ 1

Γ(ui)

(Ti − Ti−1

4

)ui−1
∫ Ti

Ti−1

s−δ
(
K|x(s)− y(s)|+ LIui

T+
i−1

|x(s)− y(s)|
)
ds

≤ 1

Γ(ui)

(Ti − Ti−1

4

)ui−1[
K‖x− y‖Ei

∫ Ti

Ti−1

s−δds+ L
(Ti − Ti−1)ui

Γ(ui + 1)
‖x− y‖Ei

∫ Ti

Ti−1

s−δds
]

≤ (Ti
1−δ − Ti−1

1−δ)(Ti − Ti−1)ui−1

4ui−1(1− δ)Γ(ui)

(
K + L

(Ti − Ti−1)ui

Γ(ui + 1)

)
‖x− y‖Ei .

Consequently by (2.9), the operator W is a contraction.
Thus, by Banach contraction principle, W has a unique fixed point x̃i ∈ Ei, which is a
unique solution of the BVP (2.4). We let

xi =

{
0, t ∈ [0, Ti−1],
x̃i, t ∈ Ji.

(2.10)

By assuming C([0, Ti],R) as the set of all continuous functions from [0, Ti] into R, we
know that xi ∈ C([0, Ti],R) defined by (2.10) satisfies the following equation :

d2

dt2

(∫ T1

0

(t− s)1−u1

Γ(2− u1)
xi(s)ds+ ...+

∫ t

Ti−1

(t− s)1−ui

Γ(2− ui)
xi(s)ds

)
+ f(s, x̃i(s), I

ui
0+x̃i(s)) = 0,

for t ∈ Ji, which means that xi is a unique solution of (2.3) with xi(0) = 0 and
xi(Ti) = x̃i(Ti) = 0. Then,

x(t) =



x1(t), t ∈ J1,

x2(t) =

{
0, t ∈ J1,
x̃2, t ∈ J2,

.

.

.

.

xn(t) =

{
0, t ∈ [0, Tn−1],
x̃n, t ∈ Jn,

(2.11)

is a unique solution of the BVP (2.1).
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2.3 Example

An illustrative numerical example is given in this section to apply and validate all
our theoretical results.

Consider the fractional boundary value problem :{
D
u(t)

0+ x(t) + t−
1
5

1+|x(t)|+|Iu(t)
0+

x(t)|
= 0, t ∈ J := [0, 2],

x(0) = 0, x(2) = 0.
(2.12)

Let

f(t, y, z) =
t−

1
5

1 + |y|+ |z|
, (t, y, z) ∈ [0, 2]× [0,+∞)× [0,+∞);

u(t) =

{
1.7, t ∈ J1 := [0, 1],
1.8, t ∈ J2 :=]1, 2].

(2.13)

We see that u(t) satisfies condition (H1). We have :

t
1
5 |f(t, y1, z1)− f(t, y2, z2)| =

∣∣∣∣∣t 15
(

t−
1
5

1 + |y1|+ |z1|
− t−

1
5

1 + |y2|+ |z2|

)∣∣∣∣∣ ;
=

∣∣∣∣ |y2|+ |z2| − |y1| − |z1|
(1 + |y1|+ |z1|)(1 + |y2|+ |z2|)

∣∣∣∣ ;
≤ |y1 − y2|+ |z1 − z2|.

Thus, (H3) holds with δ = 1
5

and K = L = 1.
By (2.13), the equation of problem (2.12) is divided into two expressions as follows D1.7

0+x(t) + t−
1
5

1+|x(t)|+|I1.7
0+
x(t)| = 0, t ∈ J1,

D1.8
1+x(t) + t−

1
5

1+|x(t)|+|I1.8
1+
x(t)| = 0, t ∈ J2.

For t ∈ J1, the BVP (2.12) is corresponding to the following boundary value problem :{
D1.7

0+x(t) + t−
1
5

1+|x(t)|+|I1.7
0+
x(t)| = 0, t ∈ J1,

x(0) = 0, x(1) = 0.
(2.14)

We shall check that condition (2.9) is satisfied as follows :

(T1
1−δ − T0

1−δ)(T1 − T0)u1−1

4u1−1(1− δ)Γ(u1)

(
K+L

(T1 − T0)u1

Γ(u1 + 1)

)
=

5

41.7Γ(1.7)

(
1+

1

Γ(2.7)

)
' 0.8587 < 1.
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By Theorem 2.2, the BVP(2.14) has a unique solution x̃1 ∈ E1.
For t ∈ J2, problem (2.12) can been written as follows :{

D1.8
1+x(t) + t−

1
5

1+|x(t)|+|I1.8
1+
x(t)| = 0, t ∈ J2,

x(1) = 0, x(2) = 0.
(2.15)

We see that

(T2
1−δ − T1

1−δ)(T2 − T1)u2−1

4u2−1(1− δ)Γ(u2)

(
K+L

(T2 − T1)u2

Γ(u2 + 1)

)
=

5(2
4
5 − 1)

41.8Γ(1.8)

(
1+

1

Γ(2.8)

)
' 0.5237 < 1.

Thus, condition (2.9) is satisfied. Therefore, by Theorem 2.2, the BVP (2.15) has a
unique solution x̃2 ∈ E2.
Then, by Theorem 2.2, the BVP (2.12) has a unique solution defined by :

x(t) =

{
x̃1(t), t ∈ J1,
x2(t), t ∈ J2,

where

x2(t) =

{
0, t ∈ J1,
x̃2(t), t ∈ J2.



Chapitre 3

Multiterm Boundary Value
Problem of Caputo Fractional
Differential Equations of Variable
Order

3.1 Introduction

In this chapter we deal with the existence of solutions and the stability of the
obtained solution in the sense of Ulam-Hyers for the boundary value problem (BVP){

cD
u(t)

0+ x(t) + f(t, x(t), I
u(t)

0+ x(t)) = 0, t ∈ J := [0, T ],
x(0) = 0, x(T ) = 0,

(3.1)

where 1 < u(t) ≤ 2, f : J × R × R → R is a continuous function and cD
u(t)

0+ , I
u(t)

0+ are
the Caputo fractional derivative and integral Riemann-Liouville of variable-order u(t).

In this chapter, we shall look for a solution of (3.1). Further, we study the stability
of the obtained solution of (3.1) in the sense of Ulam-Hyers .

3.2 Existence of solutions

Let us introduce the following assumption :

Z. Bouazza, M. S. Souid and Hatira Günerhan, Multiterm Boundary Value Problem of Caputo
Fractional Differential Equations of Variable Order, Advances in Difference Equations, 2021(2021),
1-17.
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(H1) Let n ∈ N be an integer and the finite sequence of points {Tk}nk=0 be given such
that 0 = T0 < Tk < Tn = T , k = 1, ..., n− 1.
Denote Jk := (Tk−1, Tk], k = 1, 2, ..., n. Then P =

⋃n
k=1 Jk is a partition of the

interval J .
Let u(t) : J → (1, 2] be a piecewise constant function with respect to P as
follows :

u(t) =
n∑
i=1

uiIi(t) =



u1, if t ∈ J1,
u2, if t ∈ J2,
.
.
.

un, if t ∈ Jn,
where 1 < ui ≤ 2 are constants and Ii is an indicator of the interval Ji, i = 1, 2, ..., n :

Ii(t) =

{
1, for t ∈ Ji,
0, for elsewhere.

Then, for any t ∈ Ji, i = 1, 2, ..., n, the left Caputo fractional derivative of variable
order u(t) for function x(t) ∈ C(J,R), defined by (1.3), could be presented as a sum of
left caputo fractional derivatives of constant-orders ui, i = 1, 2, ..., n.

cD
u(t)

0+ x(t) =

∫ T1

0

(t− s)1−u1

Γ(2− u1)
x(2)(s)ds+ ...+

∫ t

Ti−1

(t− s)1−ui

Γ(2− ui)
x(2)(s)ds. (3.2)

Thus, according to (3.2), the equation of the BVP (3.1) can be written for any
t ∈ Ji, i = 1, 2, ..., n in the form∫ T1

0

(t− s)1−u1

Γ(2− u1)
x(2)(s)ds+...+

∫ t

Ti−1

(t− s)1−ui

Γ(2− ui)
x(2)(s)ds+f(t, x(t), Iui0+x(t)) = 0, t ∈ Ji.

(3.3)
In what follows we shall introduce the solution to the BVP (3.1).

Definition 3.1 . BVP (3.1) has a solution, if there are functions xi, i = 1, 2, ..., n, so
that xi ∈ C([0, Ti],R) fulfilling equation (3.3) and xi(0) = 0 = xi(Ti).

Let the function x ∈ C(J,R) be such that x(t) ≡ 0 on t ∈ [0, Ti−1] and it solves
integral equation (3.3). Then (3.3) is reduced to

cDui
T+
i−1

x(t) + f(t, x(t), Iui
T+
i−1

x(t)) = 0, t ∈ Ji.

We shall deal with following BVP{
cDui

T+
i−1

x(t) + f(t, x(t), Iui
T+
i−1

x(t)) = 0, t ∈ Ji,
x(Ti−1) = 0, x(Ti) = 0.

(3.4)

For the existence of solutions for the BVP(3.4), an auxiliary lemma is needed as
follows :
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Lemma 3.1 Let i ∈ {1, 2, ..., n} be a natural number, f ∈ C(Ji ×R×R,R) and there
exists a number δ ∈ (0, 1) such that tδf ∈ C(Ji × R× R,R).
Then, the function x ∈ Ei is a solution of BVP (3.4) if and only if x solves the integral
equation

x(t) =

∫ Ti

Ti−1

Gi(t, s)f(s, x(s), Iui
T+
i−1

x(s))ds, (3.5)

where Gi(t, s) is the Green’s function defined by :

Gi(t, s) =



1
Γ(ui)

[
(Ti − Ti−1)−1(t− Ti−1)(Ti − s)ui−1 − (t− s)ui−1

]
,

Ti−1 ≤ s ≤ t ≤ Ti,

1
Γ(ui)

(Ti − Ti−1)−1(t− Ti−1)(Ti − s)ui−1,

Ti−1 ≤ t ≤ s ≤ Ti,

where i = 1, 2, ..., n.

Proof. We presume that x ∈ Ei is solution of BVP (3.4). Employing the operator
Iui
T+
i−1

to both sides of (3.4) and regarding Lemma 1.6, we find

x(t) = ω1 + ω2(t− Ti−1)− Iui
T+
i−1

f(t, x(t), Iui
T+
i−1

x(t)), t ∈ Ji.

By x(Ti−1) = 0, we get ω1 = 0.

Let x(t) satisfy x(Ti) = 0. So, we observe that

ω2 = (Ti − Ti−1)−1Iui
T+
i−1

f(Ti, x(Ti), I
ui
T+
i−1

x(Ti)).

Then, we find

x(t) = (Ti − Ti−1)−1(t− Ti−1)Iui
T+
i−1

f(Ti, x(Ti), I
ui
T+
i−1

x(Ti))− IuiT+
i−1

f(t, x(t), Iui
T+
i−1

x(t)), t ∈ Ji,

by the continuity of the Green’s function which implies that

x(t) =

∫ Ti

Ti−1

Gi(t, s)f(s, x(s), Iui
T+
i−1

x(s))ds.

Conversely, let x ∈ Ei be solution of integral equation (3.5).
Regarding the continuity of function tδf and Lemma 1.7, we deduce that x is the
solution of BVP (3.4).
The following Proposition will be needed.
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Proposition 3.1 Let 0 < δ < 1 and assume that tδf : J × R × R → R is continuous
function, u(t) : J → (1, 2] satisfies (H1), then the Green functions of BVP (3.4) satisfy
the following properties :

(1) Gi(t, s) ≥ 0 for all Ti−1 ≤ t, s ≤ Ti,

(2) max
t∈Ji

Gi(t, s) = Gi(s, s), s ∈ Ji,

(3) Gi(s, s) has one unique maximum given by :

max
s∈Ji

Gi(s, s) =
1

Γ(ui + 1)

[
(Ti − Ti−1)(1− 1

ui
)
]ui−1

,

where i = 1, 2, ..., n.

Proof. Let ϕ(t, s) = (Ti − Ti−1)−1(t− Ti−1)(Ti − s)ui−1 − (t− s)ui−1.
We see that

ϕt(t, s) = (Ti − Ti−1)−1(Ti − s)ui−1 − (ui − 1)(t− s)ui−2,

≤ (Ti − Ti−1)−1(Ti − Ti−1)ui−1 − (Ti − Ti−1)ui−2,

= 0,

which means that ϕ(t, s) is nonincreasing with respect to t, so ϕ(t, s) ≥ ϕ(Ti, s) = 0,
for Ti−1 ≤ s ≤ t ≤ Ti.
Thus, together this with the expression of Gi(t, s), we have Gi(t, s) ≥ 0, for any Ti−1 ≤
t, s ≤ Ti, i = ˙1, ..., n.

Since ϕ(t, s) is nonincreasing with respect to t, then ϕ(t, s) ≤ ϕ(s, s) for Ti−1 ≤ s ≤
t ≤ Ti.
On the other hand, for Ti−1 ≤ t ≤ s ≤ Ti, we get

(Ti − Ti−1)−1(t− Ti−1)(Ti − s)ui−1 ≤ (Ti − Ti−1)−1(s− Ti−1)(Ti − s)ui−1.

These assure that max
t∈[Ti−1,Ti]

Gi(t, s) = Gi(s, s), s ∈ [Ti−1, Ti], i = ˙1, ..., n.

Further, we verify (3) of Proposition 3.1. Clearly, the maximum points of Gi(s, s)
are not Ti−1 and Ti, i = ˙1, ..., n.

For s ∈ [Ti−1, Ti], i = ˙1, ..., n, we have

dGi(s, s)

ds
=

1

Γ(ui)
(Ti − Ti−1)−1

[
(Ti − s)ui−1 − (s− Ti−1)(ui − 1)(Ti − s)ui−2

]
,

=
1

Γ(ui)
(Ti − Ti−1)−1(Ti − s)ui−2

[
(Ti − s)− (s− Ti−1)(ui − 1)

]
,

=
1

Γ(ui)
(Ti − Ti−1)−1(Ti − s)ui−2

[
Ti + (ui − 1)Ti−1 − uis

]
,
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which indicates that the maximum points of Gi(s, s) is s = Ti+(ui−1)Ti−1

ui
, i = ˙1, ..., n.

Hence, for i = ˙1, ..., n,

max
s∈[Ti−1,Ti]

Gi(s, s) = Gi

(Ti + (ui − 1)Ti−1

ui
,
Ti + (ui − 1)Ti−1

ui

)
=

1

Γ(ui + 1)

[
(Ti−Ti−1)(1− 1

ui
)
]ui−1

.

We will prove the existence results for the BVP(3.4). First result is based on Theorem
1.3.

Theorem 3.1 Let the conditions of Lemma 3.1 be satisfied and there exist constants
K, L > 0, such that,
tδ|f(t, y1, z1)−f(t, y2, z2)| ≤ K|y1−y2|+L|z1− z2|, for any yi, zi ∈ R, i = 1, 2, t ∈ Ji.
and the inequality

(T 1−δ
i − T 1−δ

i−1 )
(

(Ti − Ti−1)(1− 1

ui
)
)ui−1

(1− δ)Γ(ui + 1)
(K + L

(Ti − Ti−1)ui

Γ(ui + 1)
) < 1, (3.6)

holds.
Then, BVP (3.4) possesses at least one solution in Ei.

Proof. We construct the operator

W : Ei → Ei

as follow :

Wx(t) =

∫ Ti

Ti−1

Gi(t, s)f(s, x(s), Iui
T+
i−1

x(s))ds, t ∈ Ji. (3.7)

It follows from the properties of fractional integrals and from the continuity of function
tδf that the operator W : Ei → Ei defined in (3.7) is well defined.
Let

Ri ≥

f ?

Γ(ui + 1)
(Ti − Ti−1)ui(1− 1

ui
)ui−1

1−
(T 1−δ

i − T 1−δ
i−1 )

(
(Ti − Ti−1)(1− 1

ui
)
)ui−1

(1− δ)Γ(ui + 1)
(K + L

(Ti − Ti−1)ui

Γ(ui + 1)
)

,

with
f ? = sup

t∈Ji
|f(t, 0, 0)|.

We consider the set
BRi = {x ∈ Ei, ‖x‖Ei ≤ Ri}.

Clearly BRi is nonempty, closed, convex and bounded.
Now, we demonstrate that W satisfies the assumption of the Theorem 1.3. We shall

prove it in three steps.
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Step 1 : W (BRi) ⊆ (BRi).

For x ∈ BRi , by Proposition 3.1, we have

|Wx(t)| =
∣∣∣ ∫ Ti

Ti−1

Gi(t, s)f
(
s, x(s), Iui

T+
i−1

x(s)
)
ds
∣∣∣

≤
∫ Ti

Ti−1

Gi(t, s)
∣∣∣f(s, x(s), Iui

T+
i−1

x(s)
)∣∣∣ds

≤ 1
Γ(ui+1)

(
(Ti − Ti−1)(1− 1

ui
)
)ui−1

∫ Ti

Ti−1

∣∣∣f(s, x(s), Iui
T+
i−1

x(s)
)
− f(s, 0, 0)

∣∣∣ds
+ 1

Γ(ui+1)

(
(Ti − Ti−1)(1− 1

ui
)
)ui−1

∫ Ti

Ti−1

|f(s, 0, 0)|ds

≤ 1
Γ(ui+1)

(
(Ti − Ti−1)(1− 1

ui
)
)ui−1

∫ Ti

Ti−1

s−δ(K|x(s)|+ L|Iui
T+
i−1

x(s)|)ds

+
f ?

Γ(ui + 1)
(Ti − Ti−1)ui(1− 1

ui
)ui−1

≤
(T 1−δ

i − T 1−δ
i−1 )

(
(Ti − Ti−1)(1− 1

ui
)
)ui−1

(1− δ)Γ(ui + 1)
(K + L

(Ti − Ti−1)ui

Γ(ui + 1)
)Ri

+
f ?

Γ(ui + 1)
(Ti − Ti−1)ui(1− 1

ui
)ui−1

≤ Ri,

which means that W (BRi) ⊆ BRi .
Step 2 : W is continuous.
We presume that the sequence (xn) converges to x in Ei and t ∈ Ji. Then,

|(Wxn)(t)− (Wx)(t)|

≤
∫ Ti

Ti−1

Gi(t, s)|f(s, xn(s), Iui
T+
i−1

xn(s))− f(s, x(s), Iui
T+
i−1

x(s))|ds

≤ 1

Γ(ui + 1)

(
(Ti − Ti−1)(1− 1

ui
)
)ui−1

∫ Ti

Ti−1

s−δ(K|xn(s)− x(s)|+ LIui
T+
i−1

|xn(s)− x(s))|)ds

≤ K
Γ(ui+1)

(
(Ti − Ti−1)(1− 1

ui
)
)ui−1

‖xn − x‖Ei
∫ Ti
Ti−1

s−δds

+ L
Γ(ui+1)

(
(Ti − Ti−1)(1− 1

ui
)
)ui−1

‖Iui
T+
i−1

(xn − x)‖Ei
∫ Ti
Ti−1

s−δds

≤
K(Ti

1−δ−Ti−1
1−δ)

(
(Ti−Ti−1)(1− 1

ui
)

)ui−1

(1−δ)Γ(ui+1)
‖xn − x‖Ei +

L(Ti−Ti−1)2ui−1(1− 1
ui

)ui−1(Ti
1−δ−Ti−1

1−δ)

(1−δ)
(

Γ(ui+1)

)2 ‖xn − x‖Ei

≤
(Ti

1−δ−Ti−1
1−δ)

(
(Ti−Ti−1)(1− 1

ui
)

)ui−1

(1−δ)Γ(ui+1)

(
K + L (Ti−Ti−1)ui

Γ(ui+1)

)
‖xn − x‖Ei .

i.e., we obtain
‖(Wxn)− (Wx)‖Ei → 0 as n→∞.
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Then, the operator W is a continuous on Ei.

Step 3 : W is compact.
Now, we will show that W (BRi) is relatively compact, meaning that W is compact.
Clearly W (BRi) is uniformly bounded because by Step 1, we have W (BRi) = {W (x) :
x ∈ BRi} ⊂ W (BRi) thus for each x ∈ BRi we have ‖W (x)‖Ei ≤ Ri which means that
W (BRi) is bounded. It remains to indicate that W (BRi) is equicontinuous.
For t1, t2 ∈ Ji, t1 < t2 and x ∈ BRi , we have

|(Wx)(t2)− (Wx)(t1)|

=
∣∣∣ ∫ Ti

Ti−1

Gi(t2, s)f(s, x(s), Iui
T+
i−1

x(s))ds−
∫ Ti

Ti−1

Gi(t1, s)f(s, x(s), Iui
T+
i−1

x(s))ds
∣∣∣

≤
∫ Ti

Ti−1

|Gi(t2, s)−Gi(t1, s)||f(s, x(s), Iui
T+
i−1

x(s))|ds

≤
∫ Ti

Ti−1

|Gi(t2, s)−Gi(t1, s)||f(s, x(s), Iui
T+
i−1

x(s))− f(s, 0, 0)|ds

+

∫ Ti

Ti−1

|Gi(t2, s)−Gi(t1, s)||f(s, 0, 0)|ds

≤
∫ Ti

Ti−1

|Gi(t2, s)−Gi(t1, s)|
[
s−δ
(
K|x(s)|+ L|Iui

T+
i−1

x(s)|
)]
ds

+ f ?
∫ Ti

Ti−1

|Gi(t2, s)−Gi(t1, s)|ds

≤
(
K‖x‖Ei + L‖Iui

T+
i−1

x‖Ei
)∫ Ti

Ti−1

s−δ|Gi(t2, s)−Gi(t1, s)|ds

+ f ?
∫ Ti

Ti−1

|Gi(t2, s)−Gi(t1, s)|ds

≤ T−δi−1

(
K + L

(Ti − Ti−1)ui

Γ(ui + 1)

)
‖x‖Ei

∫ Ti

Ti−1

|Gi(t2, s)−Gi(t1, s)|ds

+ f ?
∫ Ti

Ti−1

|Gi(t2, s)−Gi(t1, s)|ds,

by the continuity of the Green’s function Gi. Hence ‖(Wx)(t2) − (Wx)(t1)‖Ei → 0 as
|t2 − t1| → 0. It implies that W (BRi) is equicontinuous.
Therefore, all conditions of Theorem 1.3 are fulfilled and thus, there exists x̃i ∈ BRi ,
such that Wx̃i = x̃i, which is a solution of the BVP (3.4). Since BRi ⊂ Ei, the step of
Theorem 3.1 is proved.

The second result is based on the Banach contraction principle.

Theorem 3.2 Let the conditions of Theorem 3.1 be satisfied. Then, BVP (3.4) has a
unique solution in Ei.
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Proof. We shall use the Banach contraction principle to prove that W be defined in
(3.7) has a unique fixed point.
For x(t), y(t) ∈ Ei, by Proposition 3.1, we obtain that

|(Wx)(t)− (Wy)(t)|

=
∣∣∣ ∫ Ti

Ti−1

Gi(t, s)f(s, x(s), Iui
T+
i−1

x(s))−
∫ Ti

Ti−1

Gi(t, s)f(s, y(s), Iui
T+
i−1

y(s))ds
∣∣∣

≤
∫ Ti

Ti−1

Gi(t, s)
∣∣∣f(s, x(s), Iui

T+
i−1

x(s))− f(s, y(s), Iui
T+
i−1

y(s))
∣∣∣ds

≤ 1

Γ(ui + 1)

(
(Ti − Ti−1)(1− 1

ui
)
)ui−1

∫ Ti

Ti−1

s−δ
(
K|x(s)− y(s)|+ LIui

T+
i−1

|x(s)− y(s))|
)
ds

≤ K

Γ(ui + 1)

(
(Ti − Ti−1)(1− 1

ui
)
)ui−1

‖x− y‖Ei
∫ Ti

Ti−1

s−δds

+
L(Ti − Ti−1)2ui−1(1− 1

ui
)ui−1(

Γ(ui + 1)
)2 ‖x− y‖Ei

∫ Ti

Ti−1

s−δds

≤ 1

Γ(ui + 1)

(
(Ti − Ti−1)(1− 1

ui
)
)ui−1(

K +
L(Ti − Ti−1)ui

Γ(ui + 1)

)
‖x− y‖Ei

∫ Ti

Ti−1

s−δds

≤
(T 1−δ

i − T 1−δ
i−1 )

(
(Ti − Ti−1)(1− 1

ui
)
)ui−1

(1− δ)Γ(ui + 1)

(
K +

L(Ti − Ti−1)ui

Γ(ui + 1)

)
‖x− y‖Ei .

Consequently by (3.6), the operator W is a contraction.
Hence, by Banach’s contraction principal, W has a unique fixed point x̃i ∈ Ei, which
is a unique solution of the problem (3.4).

Now, we will prove the existence result for BVP (3.1).
Introduce the following assumption :

(H2) Let f ∈ C(J × R × R,R) and there exists a number δ ∈ (0, 1) and constants
K, L > 0, such that,

tδ|f(t, y1, z1)−f(t, y2, z2)| ≤ K|y1−y2|+L|z1−z2|, for any y1, y2, z1, z2 ∈ R and t ∈ J.

Theorem 3.3 Let the conditions (H1), (H2) and inequality (3.6) be satisfied for all
i ∈ {1, 2, ..., n}. Then, the problem (3.1) possesses at least one solution in C(J,R).

Proof. For any i ∈ {1, 2, ..., n} according to Theorem 3.1 the BVP(3.4) possesses
at least one solution x̃i ∈ Ei.
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For any i ∈ {1, 2, ..., n} we define the function

xi =

{
0, t ∈ [0, Ti−1],
x̃i, t ∈ Ji.

Thus, the function xi ∈ C([0, Ti],R) solves the integral equation (3.3) for t ∈ Ji with
xi(0) = 0, xi(Ti) = x̃i(Ti) = 0.

Then, the function

x(t) =



x1(t), t ∈ J1,

x2(t) =

{
0, t ∈ J1,
x̃2, t ∈ J2,

.

.

.

.

xn(t) =

{
0, t ∈ [0, Tn−1],
x̃n, t ∈ Jn,

(3.8)

is a solution of the BVP (3.1) in C(J,R).

3.3 Ulam-Hyers stability

Theorem 3.4 Let the conditions (H1), (H2) and the inequality (3.6) be satisfied.
Then, BVP (3.1) is Ulam-Hyers stable.

Proof. Let ε > 0 an arbitrary number and the function z(t) from C(J,R) satisfy the
following inequality

|cDu(t)

0+ z(t) + f(t, z(t), I
u(t)

0+ z(t))| ≤ ε, t ∈ J. (3.9)

For any i ∈ {1, 2, ..., n} we define the functions z1(t) ≡ z(t), t ∈ [0, T1] and for i =
2, 3, ..., n :

zi(t) =

{
0, t ∈ [0, Ti−1],
z(t), t ∈ Ji.

For any i ∈ {1, 2, ..., n} according to equality (3.2), for t ∈ Ji we get

cD
u(t)

0+ zi(t) =

∫ t

Ti−1

(t− s)1−ui

Γ(2− ui)
z(2)(s)ds.
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Taking Iui
T+
i−1

of both sides of the inequality (3.9), we obtain

∣∣∣zi(t) +

∫ Ti

Ti−1

Gi(t, s)f(s, zi(s), I
ui
T+
i−1

zi(s))ds
∣∣∣

≤ ε

∫ t

Ti−1

(t− s)ui−1

Γ(ui)
ds

≤ ε
(Ti − Ti−1)ui

Γ(ui + 1)
.

According to Theorem 3.3, BVP(3.1) has a solution x ∈ C(J,R) defined by x(t) = xi(t)
for t ∈ Ji, i = 1, 2, ..., n, where

xi =

{
0, t ∈ [0, Ti−1],
x̃i, t ∈ Ji,

(3.10)

and x̃i ∈ Ei is a solution of (3.4).
According to Lemma 3.1 the integral equation

x̃i(t) =

∫ Ti

Ti−1

Gi(t, s)f(s, x̃i(s), I
ui
T+
i−1

x̃i(s))ds, (3.11)

holds.
Let t ∈ Ji, i = 1, 2, ..., n. Then by equation (3.10) and (3.11) we get

|z(t)− x(t)| = |z(t)− xi(t)| = |zi(t)− x̃i(t)|
=

∣∣∣zi(t)− ∫ TiTi−1
Gi(t, s)f(s, x̃i(s), I

ui
T+
i−1

x̃i(s))ds
∣∣∣

≤
∣∣∣zi(t)− ∫ TiTi−1

Gi(t, s)f(s, zi(s), I
ui
T+
i−1

zi(s))ds
∣∣∣

+
∣∣∣ ∫ TiTi−1

Gi(t, s)f(s, zi(s), I
ui
T+
i−1

zi(s))ds−
∫ t
Ti−1

Gi(t, s)f(s, x̃i(s), I
ui
T+
i−1

x̃i)ds
∣∣∣

≤
∣∣∣zi(t) +

∫ Ti
Ti−1

Gi(t, s)f(s, zi(s), I
ui
T+
i−1

zi(s))ds
∣∣∣

+
∣∣∣ ∫ TiTi−1

Gi(t, s)f(s, zi(s), I
ui
T+
i−1

zi(s))ds−
∫ t
Ti−1

Gi(t, s)f(s, x̃i(s), I
ui
T+
i−1

x̃i)ds
∣∣∣ds

≤ ε (Ti−Ti−1)ui

Γ(ui+1)

+ 1
Γ(ui+1)

(
(Ti − Ti−1)(1− 1

ui
)
)ui−1 ∫ Ti

Ti−1
|f(s, zi(s), I

ui
T+
i−1

zi(s))ds− f(s, x̃i(s), I
ui
T+
i−1

x̃i)|ds

≤ ε (Ti−Ti−1)ui

Γ(ui+1)
+ 1

Γ(ui+1)

(
(Ti − Ti−1)(1− 1

ui
)
)ui−1 ∫ Ti

Ti−1
s−δ(K|zi(s)− x̃i(s)|

+ LIui
T+
i−1

|zi(s)− x̃i(s)|)ds
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≤ ε (Ti−Ti−1)ui

Γ(ui+1)
+ 1

Γ(ui+1)

(
(Ti − Ti−1)(1− 1

ui
)
)ui−1

(K‖zi − x̃i‖Ei + L‖Iui
T+
i−1

(zi − x̃i)‖Ei)
∫ Ti
Ti−1

s−δds

≤ ε (Ti−Ti−1)ui

Γ(ui+1)
+

(Ti
1−δ−Ti−1

1−δ)

(
(Ti−Ti−1)(1− 1

ui
)

)ui−1

(1−δ)Γ(ui+1)
(K‖zi − x̃i‖Ei + L (Ti−Ti−1)ui

Γ(ui+1)
‖zi − x̃i‖Ei)

≤ ε (Ti−Ti−1)ui

Γ(ui+1)
+

(Ti
1−δ−Ti−1

1−δ)

(
(Ti−Ti−1)(1− 1

ui
)

)ui−1

(1−δ)Γ(ui+1)
(K + L (Ti−Ti−1)ui

Γ(ui+1)
)‖zi − x̃i‖Ei

≤ ε (Ti−Ti−1)ui

Γ(ui+1)
+ µ‖z − x‖,

where

µ = max
i=1,2,...,n

(Ti
1−δ − Ti−1

1−δ)
(

(Ti − Ti−1)(1− 1
ui

)
)ui−1

(1− δ)Γ(ui + 1)
(K + L

(Ti − Ti−1)ui

Γ(ui + 1)
).

Then,

‖z − x‖(1− µ) ≤ (Ti − Ti−1)ui

Γ(ui + 1)
ε.

We obtain, for each t ∈ Ji

|z(t)− x(t)| ≤ ‖z − x‖ ≤ (Ti − Ti−1)ui

(1− µ)Γ(ui + 1)
ε := cfε.

Therefore, by Theorem 1.5, the BVP(3.1) is Ulam-Hyers stable.

3.4 Example

Let us consider the following fractional boundary value problem,{
cD

u(t)

0+ x(t) + t−
1
2

4et(1+|x(t)|+|Iu(t)
0+

x(t)|)
= 0, t ∈ J := [0, 2],

x(0) = 0, x(2) = 0.
(3.12)

Let

f(t, y, z) =
t−

1
2

4et(1 + y + z)
, (t, y, z) ∈ [0, 2]× [0,+∞)× [0,+∞).

u(t) =

{
7
5
, t ∈ J1 := [0, 1],

3
2
, t ∈ J2 :=]1, 2].

(3.13)
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Then, we have

t
1
2 |f(t, y1, z1)− f(t, y2, z2)| =

∣∣∣∣ 1

4et

(
1

1 + y1 + z1

− 1

1 + y2 + z2

)∣∣∣∣
≤ (|y1 − y2|+ |z1 − z2|)

4et(1 + y1 + z1)(1 + y2 + z2)

≤ 1

4et
(|y1 − y2|+ |z1 − z2|)

≤ 1

4
|y1 − y2|+

1

4
|z1 − z2|.

Hence the condition (H2) holds with δ = 1
2

and K = L = 1
4
.

By (3.13), according to (3.4) we consider two auxiliary boundary value problem for
Caputo fractional differential equations of constant order cD

7
5

0+x(t) + t−
1
2

4et(1+|x(t)|+|I
7
5
0+
x(t)|)

= 0, t ∈ J1,

x(0) = 0, x(1) = 0.
(3.14)

and  cD
3
2

1+x(t) + t−
1
2

4et(1+|x(t)|+|I
3
2
1+
x(t)|)

= 0, t ∈ J2,

x(1) = 0, x(2) = 0.
(3.15)

Next, we prove that the condition (3.6) is fulfilled for i = 1. Indeed,

(T 1−δ
1 − T 1−δ

0 )
(

(T1 − T0)(1− 1
u1

)
)u1−1

(1− δ)Γ(u1 + 1)
(K+L

(T1 − T0)u1

Γ(u1 + 1)
) =

(1− 5
7
)
2
5

1
2
Γ(12

5
)

(
1

4
+

1

4Γ(12
5

)
) ' 0.4402 < 1.

Accordingly the condition (3.6) is achieved. By Theorem 3.1, the problem (3.14)
has a solution x̃1 ∈ E1.
We prove that the condition (3.6) is fulfilled for i = 2. Indeed,

(T 1−δ
2 − T 1−δ

1 )
(

(T2 − T1)(1− 1
u2

)
)u2−1

(1− δ)Γ(u2 + 1)
(K+L

(T2 − T1)u2

Γ(u2 + 1)
) =

(2
1
2 − 1)(1− 2

3
)
1
2

1
2
Γ(5

2
)

(
1

4
+

1

4Γ(5
2
)
)

' 0.1576 < 1.

Thus, the condition (3.6) is satisfied.
According to Theorem 3.1, the BVP (3.15) possesses a solution x̃2 ∈ E2.
Then, by Theorem 3.3, the BVP (3.12) has a solution

x(t) =

{
x̃1(t), t ∈ J1,
x2(t), t ∈ J2,

where

x2(t) =

{
0, t ∈ J1,
x̃2(t), t ∈ J2.

According to Theorem 3.4, BVP(3.12) is Ulam-Hyers stable.



Chapitre 4

Darbo Fixed Point Criterion on
Solutions of a Hadamard Nonlinear
Variable Order Problem and
Ulam-Hyers-Rassias Stability

4.1 Introduction

In this chapter, we investigate the existence of solutions for the nonlinear Hada-
mard fractional boundary value problem of variable order as follows :{

HD
u(t)

1+ x(t) + f(t, x(t)) = 0, t ∈ J := [1, T ],
x(1) = x(T ) = 0,

(4.1)

where 1 < T < +∞, 1 < u(t) ≤ 2, f : J × X → X is a continuous function (X is a

Banach space) and HD
u(t)

1+ specifies the Hadamard derivative of variable order u(t).
For the first time, as the novelty of this chapter, we here consider a fractional boun-
dary value problem in the variable order Hadamard settings and establish the existence
specifications of solutions to mentioned system on the generalized subintervals by com-
bining the existing notions in relation to the Kuratowski measure of noncompactness in
the context of Darbo fixed point criterion. The piece-wise constant functions will play a
vital role in our study for converting the Hadamard fractional boundary value problem
of variable order (4.1) to the standard Hadamard fractional boundary value problem.
Lastly, another criterion of the behavior of solutions like the Ulam-Hyers-Rassias sta-

S. Rezapour, Z. Bouazza, M. S. Souid, S. Etemad and M. K. A. Kaabar, Darbo Fixed Point
Criterion on Solutions of a Hadamard Nonlinear Variable Order Problem and Ulam-Hyers-Rassias
Stability, (submitted).
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bility is analyzed and a numerical illustrative example will complete the consistency of
our findings.

4.2 Existence criterion of solutions

Let us introduce the following assumptions :

(H1) Let n ∈ N be an integer and the finite sequence of points {Tk}nk=0 be given such
that 1 = T0 < Tk < Tn = T , k = 1, ..., n− 1.
Denote Jk := (Tk−1, Tk], k = 1, 2, ..., n. Then P =

⋃n
k=1 Jk is a partition of the

interval J .
Let u(t) : J → (1, 2] be a piecewise constant function with respect to P as
follows :

u(t) =
n∑
i=1

uiIi(t) =



u1, if t ∈ J1,
u2, if t ∈ J2,
.
.
.

un, if t ∈ Jn,
where 1 < ui ≤ 2 are constants and Ii is an indicator of the interval Ji, i = 1, 2, ..., n :

Ii(t) =

{
1, for t ∈ Ji,
0, for elsewhere.

(H2) Let (ln t)δf : J ×X → X be continuous, (0 < δ < 1), and there exists a K > 0,
such that (ln t)δ‖f(t, y1)− f(t, y2)‖ ≤ K‖y1− y2‖, for any y1, y2 ∈ X and t ∈ J .

Further, for a supposed set U of all mappings u : J → X, define

U(t) = {u(t), u ∈ U}, t ∈ J,

and
U(J) = {U(t) : u ∈ U, t ∈ J}.

Let us now establish the existence of solution for the Hadamard fractional boundary
value problem of variable order (4.1) via KMNC and Darbo’s criterion (Theorem 1.4).

Then, for any t ∈ Ji, i = 1, 2, ..., n, the left Hadamard fractional derivative of
variable order u(t) for function x(t) ∈ C(J,X), could be presented as a sum of left
Hadamard fractional derivatives of constant-orders ui, i = 1, 2, ..., n.

HD
u(t)

1+ x(t) = (t
d

dt
)2
( 1

Γ(2− u1)

∫ T1

1

(ln
t

s
)1−u1 x(s)

s
ds+ . . .

+
1

Γ(2− ui)

∫ t

Ti−1

(ln
t

s
)1−ui x(s)

s
ds
)
ds. (4.2)

Thus, according to (4.2), the equation of the Hadamard fractional boundary value
problem of variable order (4.1) can be written for any t ∈ Ji, i = 1, 2, ..., n in the form
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(t
d

dt
)2
( 1

Γ(2− u1)

∫ T1

1

(ln
t

s
)1−u1 x(s)

s
ds+ . . .

+
1

Γ(2− ui)

∫ t

Ti−1

(ln
t

s
)1−ui x(s)

s
ds
)

+ f(t, x(t)) = 0. (4.3)

Definition 4.1 . The Hadamard fractional boundary value problem of variable order
(4.1) has a solution, if there are functions xi, i = 1, 2, ..., n, so that xi ∈ C([1, Ti], X)
fulfilling equation (4.3) and xi(1) = 0 = xi(Ti).

Let the function x ∈ C(J,X) be such that x(t) ≡ 0 on t ∈ [1, Ti−1] and it solves
integral equation (4.3). Then (4.3) is reduced to

HDui
T+
i−1

x(t) + f(t, x(t)) = 0, t ∈ Ji.

In this case, we follow our study by considering the standard Hadamard constant-
order fractional boundary value problem as follows :{

HDui
T+
i−1

x(t) + f(t, x(t)) = 0, t ∈ Ji,

x(Ti−1) = 0, x(Ti) = 0.
(4.4)

The fundamental part of our analysis regarding solutions of the Hadamard constant-
order fractional boundary value problem (4.4) is discussed below.

Lemma 4.1 A function x ∈ Ei is a solution of the Hadamard constant-order fractional
boundary value problem (4.4) if and only if x fulfills the integral equation

x(t) =

∫ Ti

Ti−1

1

s
Gi(t, s)f(s, x(s))ds, t ∈ Ji, (4.5)

where Gi(t, s) stands for the Green function formulated by :

Gi(t, s) =
1

Γ(ui)



(
ln Ti

Ti−1

)1−ui[(
ln t

Ti−1

)(
ln Ti

s

)]ui−1

−
(

ln t
s

)ui−1

,

Ti−1 ≤ s ≤ t ≤ Ti,(
ln Ti

Ti−1

)1−ui[(
ln t

Ti−1

)(
ln Ti

s

)]ui−1

,

Ti−1 ≤ t ≤ s ≤ Ti,

(4.6)

where i ∈ {1, 2, ..., n}.
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Proof. Suppose that x ∈ Ei satisfies the Hadamard constant-order fractional boundary
value problem (4.4). Let us employ the operator HIui

T+
i−1

on both sides (4.4) and using

Lemma 1.8, we get :

x(t) = ω1(ln
t

Ti−1

)ui−1 + ω2(ln
t

Ti−1

)ui−2 −H Iui
T+
i−1

f(t, x(t)), t ∈ Ji, i ∈ {1, 2, ..., n}.

From definition of f along with x(Ti−1) = 0, we get ω2 = 0.
Suppose that x satisfies x(Ti) = 0. Hence,

ω1 = (ln
Ti
Ti−1

)1−ui HIui
T+
i−1

f(Ti, x(Ti)).

Thus,

x(t) = (ln
Ti
Ti−1

)1−ui(ln
t

Ti−1

)ui−1 HIui
T+
i−1

f(Ti, x(Ti))−H IuiT+
i−1

f(t, x(t)), t ∈ Ji.

Then, the solution of the Hadamard constant-order fractional boundary value problem
(4.4) is given by

x(t) = (ln
Ti
Ti−1

)1−ui(ln
t

Ti−1

)ui−1 1

Γ(ui)

∫ Ti

Ti−1

(ln
Ti
s

)ui−1f(s, x(s))

s
ds

− 1

Γ(ui)

∫ t

Ti−1

(ln
t

s
)ui−1f(s, x(s))

s
ds

=
1

Γ(ui)

[ ∫ t

Ti−1

[
(ln

Ti
Ti−1

)1−ui(ln
t

Ti−1

)ui−1(ln
Ti
s

)ui−1 − (ln
t

s
)ui−1

]f(s, x(s))

s
ds

+

∫ Ti

t

(ln
Ti
Ti−1

)1−ui(ln
t

Ti−1

)ui−1(ln
Ti
s

)ui−1f(s, x(s))

s
ds
]
,

and the continuity property of the Green function gives

x(t) =

∫ Ti

Ti−1

1

s
Gi(t, s)f(s, x(s))ds, t ∈ Ji.

Conversely, let x ∈ Ei be a solution of integral equation (4.5). Because of the continuity
of (ln t)δf and by Lemma 1.9, it is simply verified that x is the solution of Hadamard
constant-order fractional boundary value problem (4.4).

Proposition 4.1 Let 0 < δ < 1 and assume that (ln t)δf : J ×X → X is continuous,
u(t) : J → (1, 2] satisfies (H1). Then, Green’s function given by (4.6) satisfies the
following properties :

(1) Gi(t, s) ≥ 0 for all Ti−1 ≤ t, s ≤ Ti,
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(2) max
t∈Ji

Gi(t, s) = Gi(s, s), s ∈ Ji,

(3) Gi(s, s) has one unique maximum given by

max
s∈Ji

Gi(s, s) =
1

Γ(ui)

( lnTi − lnTi−1

4

)ui−1

,

where i = 1, 2, ..., n.

Proof. Let ϕ(t, s) =
(

ln Ti
Ti−1

)1−ui[(
ln t

Ti−1

)(
ln Ti

s

)]ui−1

−
(

ln t
s

)ui−1

.

We see that

ϕt(t, s) =
(ui − 1

t

)(
ln

Ti
Ti−1

)1−ui(
ln
Ti
s

)ui−1(
ln

t

Ti−1

)ui−2

−
(ui − 1

t

)(
ln
t

s

)ui−2

≤
(ui − 1

t

)(
ln
Ti
s

)1−ui(
ln
Ti
s

)ui−1(
ln
t

s

)ui−2

−
(ui − 1

t

)(
ln
t

s

)ui−2

= 0,

which means that ϕ(t, s) is nonincreasing with respect to t, so ϕ(t, s) ≥ ϕ(Ti, s) = 0,
for Ti−1 ≤ s ≤ t ≤ Ti.
Thus, Gi(t, s) ≥ 0 for any Ti−1 ≤ t, s ≤ Ti, i = ˙1, ..., n.
Since ϕ(t, s) is nonincreasing with respect to t, then ϕ(t, s) ≤ ϕ(s, s) for Ti−1 ≤ s ≤
t ≤ Ti.
On the other hand, for Ti−1 ≤ t ≤ s ≤ Ti, we get(

ln
( Ti
Ti−1

))1−ui(
ln
( t

Ti−1

)
ln
(Ti
s

))ui−1

≤
(

ln
( Ti
Ti−1

))1−ui(
ln
( s

Ti−1

)
ln
(Ti
s

))ui−1

.

These confirm that max
t∈[Ti−1,Ti]

Gi(t, s) = Gi(s, s), s ∈ [Ti−1, Ti], i = ˙1, ..., n.

Further, we verify (3) of Proposition 4.1. Clearly, the maximum points of Gi(s, s) are
not Ti−1 and Ti, i = 1, ..., n.
For s ∈ [Ti−1, Ti], i = ˙1, ..., n, we have

dGi(s, s)

ds
=

(ui − 1

s

)(
ln

Ti
Ti−1

)1−ui(
ln

s

Ti−1

)ui−2(
ln
Ti
s

)ui−2[(
ln
Ti
s

)
−
(

ln
s

Ti−1

)]
,

=
(ui − 1

s

)(
ln

Ti
Ti−1

)1−ui(
ln

s

Ti−1

)ui−2(
ln
Ti
s

)ui−2[
ln(TiTi−1)− ln(s2)

]
,

which indicates that the maximum points of Gi(s, s) is s =
√
TiTi−1, i = ˙1, ..., n.

Hence, for i = ˙1, ..., n,

max
s∈[Ti−1,Ti]

Gi(s, s) = Gi

(√
TiTi−1,

√
TiTi−1

)
=

1

Γ(ui)

(1

4
ln
Ti
T i−1

)ui−1

=
1

Γ(ui)

( lnTi − lnTi−1

4

)ui−1

.
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The existence of solutions for the Hadamard constant-order fractional boundary
value problem (4.4) in this chapter depends on the hypotheses of Theorem 1.4 which
we investigate them in this position.

Theorem 4.1 Suppose that both (H1) and (H2) hold, and

K
(

(lnTi)
1−δ − (lnTi−1)1−δ

)(
lnTi − lnTi−1

)ui−1

4ui−1(1− δ)Γ(ui)
< 1. (4.7)

Then, the Hadamard constant-order fractional boundary value problem (4.4) possesses
at least one solution on Ei.

Proof. We construct the operator

W : Ei → Ei

as follow

Wx(t) =

∫ Ti

Ti−1

1

s
Gi(t, s)f(s, x(s))ds, t ∈ Ji. (4.8)

It follows from the properties of fractional integrals and from the continuity of func-
tion (ln t)δf that the operator W : Ei → Ei defined in (4.8) is well defined.

Let

Ri ≥

f ?(lnTi − lnTi−1)ui

4ui−1Γ(ui)

1−
K
(

(lnTi)
1−δ − (lnTi−1)1−δ

)(
lnTi − lnTi−1

)ui−1

4ui−1(1− δ)Γ(ui)

,

with

f ? = sup
t∈Ji
‖f(t, 0)‖.

Let us consider the following set :

BRi = {x ∈ Ei, ‖x‖Ei ≤ Ri}.

Clearly, BRi is nonempty, convex, bounded, and closed.
We shall show that W satisfies Theorem 1.4 in four steps.
Step 1 : W (BRi) ⊆ (BRi).
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For x ∈ BRi , by Proposition 4.1 and (H2), we get

‖Wx(t)‖ =
∥∥∥∫ Ti

Ti−1

1

s
Gi(t, s)f(s, x(s))ds

∥∥∥
≤

∫ Ti

Ti−1

1

s
Gi(t, s)‖f(s, x(s))‖ds

≤ 1

Γ(ui)

( lnTi − lnTi−1

4

)ui−1
∫ Ti

Ti−1

1

s
‖f(s, x(s))‖ds

≤ 1

Γ(ui)

( lnTi − lnTi−1

4

)ui−1
∫ Ti

Ti−1

1

s

∥∥∥f(s, x(s))− f(s, 0)
∥∥∥ds

+
1

Γ(ui)

( lnTi − lnTi−1

4

)ui−1
∫ Ti

Ti−1

1

s
‖f(s, 0)‖ds

≤ 1

Γ(ui)

( lnTi − lnTi−1

4

)ui−1
∫ Ti

Ti−1

1

s
(ln s)−δ(K‖x(s)‖)ds

+
f ?
(

lnTi − lnTi−1

)ui
4ui−1Γ(ui)

≤ K

Γ(ui)

( lnTi − lnTi−1

4

)ui−1

‖x‖Ei
∫ Ti

Ti−1

1

s
(ln s)−δds

+
f ?
(

lnTi − lnTi−1

)ui
4ui−1Γ(ui)

≤ K

Γ(ui)

( lnTi − lnTi−1

4

)ui−1

Ri

((lnTi)
1−δ − (lnTi−1)1−δ

1− δ

)

+
f ?
(

lnTi − lnTi−1

)ui
4ui−1Γ(ui)

≤
K
(

(lnTi)
1−δ − (lnTi−1)1−δ

)(
lnTi − lnTi−1

)ui−1

4ui−1(1− δ)Γ(ui)
Ri

+
f ?
(

lnTi − lnTi−1

)ui
4ui−1Γ(ui)

≤ Ri,
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which means that W (BRi) ⊆ BRi .
Step 2 : W is continuous.
We presume that the sequence (xn) converges to x in Ei and t ∈ Ji. Then,

‖(Wxn)(t)− (Wx)(t)‖ ≤
∫ Ti

Ti−1

1

s
Gi(t, s)

∥∥∥f(s, xn(s))− f(s, x(s))
∥∥∥ds

≤ 1

Γ(ui)

( lnTi − lnTi−1

4

)ui−1
∫ Ti

Ti−1

1

s

∥∥∥f(s, xn(s))− f(s, x(s))
∥∥∥ds

≤ 1

Γ(ui)

( lnTi − lnTi−1

4

)ui−1
∫ Ti

Ti−1

1

s
(ln s)−δ(K‖xn(s)− x(s)‖)ds

≤ 1

Γ(ui)

( lnTi − lnTi−1

4

)ui−1

(K‖xn − x‖Ei)
∫ Ti

Ti−1

1

s
(ln s)−δds

≤
K
(

(lnTi)
1−δ − (lnTi−1)1−δ

)(
lnTi − lnTi−1

)ui−1

4ui−1(1− δ)Γ(ui)
‖xn − x‖Ei ,

i.e., we get

‖(Wxn)− (Wx)‖Ei → 0 as n→∞.

Then, the operator W is a continuous on Ei.
Step 3 : W (BRi) is bounded and equicontinous.
From Step 1, W (BRi) = {W (x) : x ∈ BRi} ⊂ BRi , thus for each x ∈ BRi , we get
‖W (x)‖Ei ≤ Ri, in other ways, it means that W (BRi) is bounded. It remains to check
the equicontinuity of W (BRi).
Now, ∀ t1 < t2 ∈ Ji, t1 < t2 and x ∈ BRi , we write

‖(Wx)(t2) − (Wx)(t1)‖ =
∥∥∥∫ Ti

Ti−1

1

s
Gi(t2, s)f(s, x(s))ds−

∫ Ti

Ti−1

1

s
Gi(t1, s)f(s, x(s))ds

∥∥∥
≤

∫ Ti

Ti−1

1

s

∥∥∥(Gi(t2, s)−Gi(t1, s)
)
f(s, x(s))

∥∥∥ds
≤

∫ Ti

Ti−1

1

s

∥∥∥Gi(t2, s)−Gi(t1, s)
∥∥∥‖f(s, x(s))‖ds
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≤
∫ Ti

Ti−1

1

s

∥∥∥Gi(t2, s)−Gi(t1, s)
∥∥∥(∥∥∥f(s, x(s))− f(s, 0)

∥∥∥+ ‖f(s, 0)‖
)
ds

≤
∫ Ti

Ti−1

1

s

∥∥∥Gi(t2, s)−Gi(t1, s)
∥∥∥[(ln s)−δ(K‖x(s)‖) + f ?

]
ds

≤
∫ Ti

Ti−1

∥∥∥Gi(t2, s)−Gi(t1, s)
∥∥∥[1

s
(ln s)−δ

(
K‖x‖Ei

)
+

1

s
f ?
]
ds

≤ K(lnTi−1)−δ

Ti−1

‖x‖EiRi

∫ Ti

Ti−1

∥∥∥Gi(t2, s)−Gi(t1, s)
∥∥∥ds

+
f ?

Ti−1

∫ Ti

Ti−1

∥∥∥Gi(t2, s)−Gi(t1, s)
∥∥∥ds,

by the continuity of Green’s function Gi. Hence, ‖(Wx)(t2)− (Wx)(t1)‖Ei → 0 as
|t2 − t1| → 0. It implies that W (BRi) is equicontinuous.

Remark 4.1 ([11]). Note that the inequality

µ
(

(ln t)δ‖f(t, B1)‖
)
≤ Kµ(B1),

is equivalent to (H2) for each B1 ⊂ X and t ∈ J , where B1 is bounded.

Step 4 : W is k-set contraction.
For U ∈ BRi , t ∈ Ji, we get,

µ(W (U)(t)) = µ((Wx)(t), x ∈ U)

≤
{∫ Ti

Ti−1

1

s
Gi(t, s)µf(s, x(s))ds, x ∈ U

}
.

Remark 4.1 indicates that

µ(W (U)(t)) ≤
{∫ Ti

Ti−1

1

s
Gi(t, s)[Kµ({x(s), x ∈ U})]

}

≤
{ 1

Γ(ui)

( lnTi − lnTi−1

4

)ui−1[
Kµ̂(U)

∫ Ti

Ti−1

1

s
(ln s)−δds

]
, x ∈ U

}

≤
K
(

(lnTi
1−δ)− (lnTi−1

1−δ)
)

(lnTi − lnTi−1)ui−1

4ui−1(1− δ)Γ(ui)
µ̂(U).
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Therefore,

µ̂(WU) ≤
K
(

(lnTi
1−δ)− (lnTi−1

1−δ)
)

(lnTi − lnTi−1)ui−1

4ui−1(1− δ)Γ(ui)
µ̂(U).

Consequently by (4.7), we deduce that W is a k-set contraction.
Therefore, all conditions of Theorem 1.4 are fulfilled and thus, the Hadamard constant-
order fractional boundary value problem (4.4) has at least solution x̃i ∈ BRi . Since
BRi ⊂ Ei, the step of Theorem 4.1 is proved.
Now, we will prove the existence result for the Hadamard fractional boundary value
problem of variable order (4.1).

Theorem 4.2 Let the conditions (H1), (H2) and inequality (4.7) be satisfied for all
i ∈ {1, 2, ..., n}. Then, the Hadamard fractional boundary value problem of variable
order (4.1) possesses at least one solution in C(J,X).

Proof. According to Theorem 4.1, the Hadamard constant-order fractional boun-
dary value problem (4.4) possesses at least one solution x̃i ∈ Ei, i ∈ {1, 2, ..., n}.
For any i ∈ {1, 2, ..., n}, we define the function

xi =

{
0, t ∈ [1, Ti−1],
x̃i, t ∈ Ji.

Thus, the function xi ∈ C([1, Ti], X) solves the integral equation (4.3) for t ∈ Ji with
xi(1) = 0, xi(Ti) = x̃i(Ti) = 0.

Then, the function

x(t) =



x1(t), t ∈ J1,

x2(t) =

{
0, t ∈ J1,
x̃2, t ∈ J2,

.

.

.

.

xn(t) =

{
0, t ∈ [1, Tn−1],
x̃n, t ∈ Jn,

gives the solution for the Hadamard fractional boundary value problem of variable
order (4.1).

4.3 Ulam-Hyers-Rassias stability

Theorem 4.3 Assume (H1), (H2), (4.7), and
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(H3) The function ϑ ∈ C(J,X) is increasing and there exists λϑ > 0 such that, for
each t ∈ Ji, we have

HIui
Ti−1

+ϑ(t) ≤ λϑ(t)ϑ(t),

then, the Hadamard fractional boundary value problem of variable order (4.1) is Ulam-
Hyers-Rassias stable with respect to ϑ.

Proof. Let ε > 0 be an arbitrary number and the function z(t) from C(J,X) satisfy
the following inequality

‖HDu(t)

1+ z(t) + f(t, z(t))‖ ≤ εϑ(t), t ∈ J. (4.9)

For any i ∈ {1, 2, ..., n} we define the functions z1(t) ≡ z(t), t ∈ [1, T1] and for
i = 2, 3, ..., n :

zi(t) =

{
0, t ∈ [1, Ti−1],
z(t), t ∈ Ji.

For any i ∈ {1, 2, ..., n} according to equality (4.2) for t ∈ Ji, we obtain

HD
u(t)

1+ zi(t) =
1

Γ(2− u(t))
(t
d

dt
)2

∫ t

Ti−1

(ln
t

s
)1−ui z(s)

s
ds.

Taking HIui
T+
i−1

on both sides (4.9), we get

∥∥∥z(t) +

∫ Ti

Ti−1

1

s
Gi(t, s)f(s, z(s))ds

∥∥∥ ≤ ε

Γ(ui)

∫ t

Ti−1

1

s
(ln

t

s
)ui−1ϑ(s)ds

≤ ελϑ(t)ϑ(t).

According to Theorem 4.1, the Hadamard fractional boundary value problem of variable
order (4.1) has a solution x ∈ C(J,X) defined by x(t) = xi(t) for t ∈ Ji, i = 1, 2, ..., n
where

xi =

{
0, t ∈ [1, Ti−1],

x̃i, t ∈ Ji,
(4.10)

and x̃i ∈ Ei is a solution of the Hadamard constant-order fractional boundary value
problem (4.4). According to Lemma 4.1, the integral equation

x̃i(t) = −(Ti − Ti−1)−1(t− Ti−1)

Γ(ui)

∫ Ti

Ti−1

(Ti − s)ui−1f(s, x̃i(s))ds

+
1

Γ(ui)

∫ t

Ti−1

(t− s)ui−1f(s, x̃i(s))ds, t ∈ Ji. (4.11)
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holds.
Let t ∈ Ji, where i ∈ {1, 2, ..., n}. Then, by Eq (4.10) and (4.11), we get

‖z(t)− x(t)‖ = ‖z(t)− xi(t)‖ = ‖zi(t)− x̃i(t)‖

= ‖zi(t)−
∫ Ti

Ti−1

1

s
Gi(t, s)f(s, x̃i(s))ds‖

≤
∥∥∥zi(t)− ∫ Ti

Ti−1

1

s
Gi(t, s)f(s, zi(s))ds

∥∥∥+

∫ Ti

Ti−1

1

s
Gi(t, s)

∥∥∥f(s, zi(s))− f(s, x̃i(s))
∥∥∥ds

≤
∥∥∥zi(t) +

∫ Ti

Ti−1

1

s
Gi(t, s)f(s, zi(s))ds

∥∥∥+

∫ Ti

Ti−1

1

s
Gi(t, s)

∥∥∥f(s, zi(s))− f(s, x̃i(s))
∥∥∥ds

≤ λϑ(t)εϑ(t) +
1

Γ(ui)

( lnTi − lnTi−1

4

)ui−1
∫ Ti

Ti−1

(ln s)−δ
K‖zi(s)− x̃i(s)‖

s
ds

≤ λϑ(t)εϑ(t) +
K

Γ(ui)

( lnTi − lnTi−1

4

)ui−1

‖zi − x̃i‖Ei
∫ Ti

Ti−1

1

s
(ln s)−δds

≤ λϑ(t)εϑ(t) +
K
(

(lnTi)
1−δ − (lnTi−1)1−δ

)(
lnTi − lnTi−1

)ui−1

(1− β)4ui−1Γ(ui)
‖zi − x̃i‖Ei

≤ λϑ(t)εϑ(t) + µ‖z − x‖,

where

µ = max
i=1,2,...,n

K
(

(lnTi)
1−δ − (lnTi−1)1−δ

)(
lnTi − lnTi−1

)ui−1

(1− δ)4ui−1Γ(ui)
.

Then
‖z − x‖(1− µ) ≤ λϑ(t)εϑ(t),

and so by assuming cf :=
λϑ(t)
(1−µ)

,

‖z(t)− x(t)‖ ≤
λϑ(t)ϑ(t)

(1− µ)
ε := cfεϑ(t).

Then, by Theorem 1.6, the Hadamard fractional boundary value problem of variable
order (4.1) is Ulam-Hyers-Rassias stable with respect to ϑ.

4.4 Example

Consider the Hadamard fractional boundary value problem of variable order :
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
HD

u(t)

1+ x(t) + 1
(1+ln t)

(
1 + ‖xn(t)‖

1+‖xn(t)‖

)
= 0, t ∈ J = [1, e] ,

x(1) = 0, x(e) = 0.

(4.12)

Let

E = l1 = {x = (x1, x2, ..., xn, ...),
∞∑
n=1

|xn| <∞},

E is a Banach space with the norm ‖x‖ =
∞∑
n=1

|xn|,

and

f(t, x) =
1

(1 + ln t)

(
1 +

‖x‖
1 + ‖x‖

)
, t ∈ [1, e], x ∈ E,

u(t) =

{
1.2, t ∈ J1 := [1, 2],
1.6, t ∈ J2 :=]2, e].

(4.13)

Then, we get

(ln t)
1
4 |f(t, x)− f(t, y)| =

(ln t)
1
4

(1 + ln t)

∣∣∣∣ ‖x‖1 + ‖x‖
− ‖y‖

1 + ‖y‖

∣∣∣∣
≤ 1

2
‖x− y‖.

(H2) holds with δ = 1
4

and K = 1
2
.

From (4.13), the Hadamard fractional boundary value problem of variable order (4.12)
is classified into the following :

HD1.2
1+x(t) + 1

(1+ln t)

(
1 + ‖xn(t)‖

1+‖xn(t)‖

)
= 0, t ∈ J1,

HD1.6
2+x(t) + 1

(1+ln t)

(
1 + ‖xn(t)‖

1+‖xn(t)‖

)
= 0, t ∈ J2.

For t ∈ J1, the Hadamard fractional boundary value problem of variable order (4.12)
is equivalent to the Hadamard constant-order fractional boundary value problem

HD1.2
1+x(t) + 1

(1+ln t)

(
1 + ‖xn(t)‖

1+‖xn(t)‖

)
= 0, t ∈ J1,

x(1) = 0, x(2) = 0.

(4.14)

Let us now show that the condition (4.7) is satisfied. Clearly, the following value is
obtained

K
(

(lnT1)1−δ − (lnT0)1−δ
)(

lnT1 − lnT0

)u1−1

4u1−1(1− δ)Γ(u1)
=

1
2
(ln 2)

3
4 (ln 2)0.2

(40.2)3
4
Γ(1.2)

' 0.1941 < 1.
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On the other hand, let ϑ(t) = (ln t)
1
2 . In this case,

HIu11+ϑ(t) =
1

Γ(1.2)

∫ 2

1

(ln
t

s
)1.2−1 (ln t)

1
2

s
ds

≤ (ln t)
1
2

Γ(1.2)

∫ 2

1

(ln
2

s
)0.2ds

s

≤ (ln 2)1.2

Γ(2.2)
(ln t)

1
2 := λϑ(t)ϑ(t).

As a result, (H3) is fulfilled with ϑ(t) =
√

(ln t) and λϑ(t) =
(ln 2)1.2

Γ(2.2)
∈ R.

Theorem (4.1) guarantees the existence of a solution for the Hadamard constant-order
fractional boundary value problem (4.14) x̃1 ∈ E1.
For t ∈ J2, the Hadamard fractional boundary value problem of variable order (4.12)
can be written as the following constant-order fractional boundary value problem, i.e.,

HD1.6
2+x(t) + 1

(1+ln t)

(
1 + ‖xn(t)‖

1+‖xn(t)‖

)
= 0, t ∈ J2,

x(2) = 0, x(e) = 0.

(4.15)

We see that

K
(

(lnT2)1−δ − (lnT1)1−δ
)(

lnT2 − lnT1

)u2−1

4u2−1(1− δ)Γ(u2)
=

1
2

(
1− (ln 2)

3
4

)
(1− ln 2)0.6

(40.6)3
4
Γ(1.6)

' 0.0191 < 1.

Accordingly the condition (4.7) is achieved on the subinterval J2. Further,

HIu12+ϑ(t) =
1

Γ(1.6)

∫ e

2

(ln
t

s
)1.6−1 (ln t)

1
2

s
ds

≤ (ln t)
1
2

Γ(1.6)

∫ e

2

(ln
e

s
)0.6ds

s

≤
(ln e

2
)1.6

Γ(2.6)
(ln t)

1
2 := λϑ(t)ϑ(t).

As a result, (H3) is also valid with ϑ(t) =
√

(ln t) and λϑ(t) =
(ln e

2
)1.6

Γ(2.6)
∈ R.

On account of Theorem (4.1), the Hadamard constant-order fractional boundary value
problem (4.15) possesses a solution x̃2 ∈ E2.
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Thus, by Theorem (4.2), the Hadamard fractional boundary value problem of variable
order (4.12) has a solution

x(t) =

{
x̃1(t), t ∈ J1,
x2(t), t ∈ J2,

where

x2(t) =

{
0, t ∈ J1,
x̃2(t), t ∈ J2.

From Theorem 4.3, the Hadamard fractional boundary value problem of variable order
given by (4.12) is Ulam-Hyers-Rassias stable with respect to ϑ.



Chapitre 5

Mawhin Continuation Technique
for a Nonlinear Boundary Value
Problem of Variable Order at
Resonance via Piece-wise Constant
Functions

5.1 Introduction and motivations

The objective of this chapter is the study the existence of solutions to the boun-
dary value problem of fractional differential equations involving Caputo derivative of
variable order, by applying the degree of coincidence of Mawhin.

The Mawhin theory permits the use of an approach of topological degree type to
problems which can be written as an abstract operator equation of the form Lx = Nx,
where L is a linear noninvertible operator and N is a nonlinear operator acting on a
given Banach space.

In 1972, Mawhin has developed a method to solve this equation in his famous paper.
Topological degree and boundary value problems for nonlinear differential equations
[40], he assumed that L is a Fredholm operator of index zero. Hence he has developed a
new theory of topological degree known as the degree of coincidence for (L, N), that is
also known as Mawhin’s coincidence degree theory in honor of him. A boundary value

S. Rezapour, M. S. Souid, S. Etemad, Z. Bouazza, S. K. Ntouyas, S. Asawasamrit and J. Ta-
riboon, Mawhin Continuation Technique for a Nonlinear BVP of Variable Order at Resonance via
Piece-wise Constant Functions, Fractal and Fractional, 5(2021), 216-230.

62
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problem is said to be at resonance if the corresponding linear homogenous problem has
nontrivial solution, otherwise it’s said to be at resonance. Many authors studied ordi-
nary boundary value problems at resonance using Mawhin coincidence degree theory,
we can cite Feng and Webb[20], Guezane-Lakoud and Frioui [22], Mawhin and Ward
[45], Infante [29], and the references therein.

In particular, Benchohra et al. [10] studied the following nonlinear implicit diffe-
rential equation of fractional constant order α at resonance{

cDα
0+y(t) = f(t, y(t),cDα

0+y(t)), t ∈ [0, T ], , T > 0, α ∈]0, 1],
y(0) = y(T ),

where cDu
0+ is the Caputo fractional derivative of constant order α, and f is a given

continuous function.

In this chapter we will study the boundary value problem (BVP) for the Caputo
fractional differential equation of variable order{

cD
u(t)

a+ y(t) = f(t, y(t)), t ∈ J,
y(a) = y(T ),

(5.1)

where J = [a, T ], 0 ≤ a < T < ∞, u(t) : J → (0, 1] is the variable order of the

fractional derivatives, f : J ×R→ R is a continuous function and cD
u(t)

a+ is the Caputo
fractional derivative of variable-order u(t).

In Section 5.2, based on coincidence degree theory, a partition of the given interval
J is applied, and by defining the relevant piece-wise constant functions, the existence
results are derived for an equivalent constant-order BVP at resonance and accordingly,
for the given BVP of Caputo variable order (5.1). This proof is completed in some steps.
In Section 5.3, we give an example to illustrate the theoretical existence theorems.

5.2 Existence of solutions

Let us introduce the following assumptions :

(H1) Let n ∈ N be an integer and the finite sequence of points {Tk}nk=0 be given such
that a = T0 < Tk < Tn = T , k = 1, ..., n− 1.
Denote Jk := (Tk−1, Tk], k = 1, 2, ..., n. Then P =

⋃n
k=1 Jk is a partition of the

interval J .
Let u(t) : J → (0, 1] be a piecewise constant function with respect to P as
follows :

u(t) =
n∑
i=1

uiIi(t) =



u1, if t ∈ J1,
u2, if t ∈ J2,
.
.
.

un, if t ∈ Jn,
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where 0 < ui ≤ 1 are constants and Ii is an indicator of the interval Ji, i = 1, 2, ..., n :

Ii(t) =

{
1, for t ∈ Ji,
0, for elsewhere.

(H2) Let f ∈ C(Ji × R,R) and there exists a number δ ∈ (0, 1) such that tδf ∈
C(Ji × R,R) and there exists a constant K with 0 < K < min

{
1,

T δi−1Γ(ui+1)

(Ti−Ti−1)ui

}
,

such that
tδ|f(t, y1)− f(t, y2)| ≤ K|y1 − y2|, for any y1, y2 ∈ R and t ∈ Ji.

The left Caputo fractional derivative of variable order u(t) for y(t) ∈ C(J,R),
defined as (1.3), can be formulated as a sum of the left Caputo fractional derivative
operators of constant orders uk ∈ R which takes the form

cD
u(t)

a+ y(t) =
i−1∑
k=1

∫ Tk

Tk−1

(t− s)−uk
Γ(1− uk)

y′(s)ds+

∫ t

Ti−1

(t− s)−ui
Γ(1− ui)

y′(s)ds. (5.2)

Thus, the equation of the Caputo fractional differential equation of variable order (5.1)
can be reformulated for each t ∈ Ji, i = 1, 2, ..., n in the following structure

i−1∑
k=1

∫ Tk

Tk−1

(t− s)−uk
Γ(1− uk)

y′(s)ds+

∫ t

Ti−1

(t− s)−ui
Γ(1− ui)

y′(s)ds = f(t, y(t)). (5.3)

Let the function ỹ ∈ Ei be so that ỹ(t) ≡ 0 on t ∈ [a, Ti−1] and it satisfied the above
integral equation (5.3). In such a situation, (5.3) is converted to the standard constant
order fractional differential equation as

cDui
T+
i−1

ỹ(t) = f(t, ỹ(t)), t ∈ Ji.

In accordance with above equation for each i = 1, 2, ..., n, we have the auxillary fractio-
nal boundary value problem (FBVP) equipped with Caputo constant order operator{

cDui
T+
i−1

y(t) = f(t, y(t)), t ∈ Ji,

y(Ti−1) = y(Ti).
(5.4)

A resonance problem is a boundary problem in which the corresponding homogeneous
BVP has a non–trivial solution. Hence, we consider the homogeneous version of the
given equivalent constant order FBVP (5.4) by{

cDui
T+
i−1

y(t) = 0, t ∈ Ji,

y(Ti−1) = y(Ti).
(5.5)

The homogeneous constant order FBVP (5.5) has nontrivial solution y(t) = c which
converts the equivalent constant order FBVP (5.4) to a resonance fractional boundary
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value problem.
Let X = {y ∈ Ei :y(t) = Iui

T+
i−1

v(t) : v ∈ Ei,t ∈ Ji} with the norm

‖y‖X = ‖y‖Ei .

Let L : Dom(L) ⊆ X → Ei an N : X → Ei are defined as

L[y(t)] := cDui
T+
i−1

y(t), (5.6)

and
N [y(t)] := f(t, y(t)), t ∈ Ji, (5.7)

where
Dom(L) = {y ∈ X : cDui

T+
i−1

y ∈ Ei and y(Ti−1) = y(Ti)}.

Then the equivalent constant order resonance FBVP (5.4) can be reformulated by the
equation Ly = Ny.

Theorem 5.1 If the condition (H2) holds, then the equivalent constant order resonance
FBVP (5.4) has at least one solution.

Proof. The proof will be followed in a sequence of steps.
Step 1 : We show that

ker(L) = {c : c ∈ R},

and

img(L) =
{
y ∈ Ei :

∫ Ti

Ti−1

(Ti − s)ui−1y(s)ds = 0
}
.

Let L defined by (5.6) be such that for t ∈ Ji and by Lemma 1.5, the equation L[y(t)] =
cDui

T+
i−1

y(t) = 0 has the solution y(t) = c, c ∈ R. Then

ker(L) = {y(t) = c : c ∈ R}.

On the other hand, for v ∈ img(L), there exists y ∈ Dom(L) such that v = Ly ∈ Ei.
By Lemma 1.6, for any t ∈ Ji, we have

y(t) = y(Ti−1) +
1

Γ(ui)

∫ t

Ti−1

(t− s)ui−1v(s)ds.

Since y ∈ Dom(L), v satisfies

1

Γ(ui)

∫ Ti

Ti−1

(Ti − s)ui−1v(s)ds = 0.
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Also, assume that v ∈ Ei satisfies∫ Ti

Ti−1

(Ti − s)ui−1v(s)ds = 0.

Let y(t) = Iui
T+
i−1

v(t). Then v(t) = cDui
T+
i−1

y(t) and so y ∈ Dom(L). Hence, v ∈ img(L),
so

img(L) =
{
y ∈ Ei :

∫ Ti

Ti−1

(Ti − s)ui−1y(s)ds = 0
}
.

Step 2 : L is a Fredholm operator of index zero.
The linear continuous projector operators P : X → X and Q : Ei → Ei can be
considered by the following forms

Py = y(Ti−1), Qv =
ui

(Ti − Ti−1)ui

∫ Ti

Ti−1

(Ti − s)ui−1v(s)ds.

Clearly, img(P ) = ker(L) and P 2 = P . It follows that for any y ∈ X,

y = (y − Py) + Py,

i.e., X = ker(P ) + ker(L). A simple computation shows that ker(P ) ∩ ker(L) = 0.
Therefore, X = ker(P ) ⊕ ker(L). A similar argument shows that for every v ∈ Ei,
Q2v = Qv and v = (v −Q(v)) +Q(v), where (v −Q(v)) ∈ ker(Q) = img(L).

From img(L) = ker(Q) and Q2 = Q, we have

img(L) ∩ img(Q) = 0.

Then, Ei = img(L)⊕ img(Q).
In this case,

dim(ker(L)) = dim img(Q) = codim(img(L)).

The obtained result shows that L is a Fredholm operator of index zero.

Step 3 : L−1
P = (L|Dom(L)∩ker(P ))

−1 (the inverse of L|Dom(L)∩ker(P )).
Clearly, L−1

P : img(L)→ Dom(L) ∩ ker(P ) satisfies

L−1
P (v)(t) = Iui

T+
i−1

v(t).

Let v ∈ img(L). Then
LL−1

P (v) = cDui
T+
i−1

(Iui
T+
i−1

v) = v. (5.8)

Furthermore, for y ∈ Dom(L) ∩ ker(P ), we get

L−1
P (L(y(t))) = Iui

T+
i−1

(cDui
T+
i−1

y(t)) = y(t)− y(Ti−1).



5.2 Existence of solutions 67

Since y ∈ Dom(L) ∩ ker(P ), we know that y(Ti−1) = 0. Thus

L−1
P (L(y(t))) = y(t). (5.9)

Combining (5.8) and (5.9) shows that L−1
P = (L|Dom(L)∩ker(P ))

−1.

Step 4 : On every bounded and open set Ω ⊂ X, N is L-compact.
Define Ω = {y ∈ X : ‖y‖X < M} as a bounded and open set, where M > 0.
The proof of this step will be done in three claims.

Claim 1 : QN is continuous.
This property for QN is derived due to the imposed conditions on the nonlinear func-
tion f and the Lebesgue dominated convergence criterion, immediately.

Claim 2 : QN(Ω) is bounded.
Now, for each y ∈ Ω and for all t ∈ Ji, we have

|QN(y)(t)| ≤ ui
(Ti − Ti−1)ui

∫ Ti

Ti−1

(Ti − s)ui−1|f(s, y(s))|ds

≤ ui
(Ti − Ti−1)ui

∫ Ti

Ti−1

(Ti − s)ui−1|f(s, y(s))− f(s, 0)|ds

+
ui

(Ti − Ti−1)ui

∫ Ti

Ti−1

(Ti − s)ui−1|f(s, 0)|ds

≤ f ∗ +
ui

(Ti − Ti−1)ui

∫ Ti

Ti−1

(Ti − s)ui−1s−δ(K|y(s)|)ds

≤ f ∗ +MKT−δi−1,

by assuming f ∗ = sup
t∈Ji
|f(t, 0)|. Thus,

‖QN(y)‖Ei ≤ f ∗ +MKT−δi−1 := R > 0.

This shows that QN(Ω) ⊆ Ei is bounded.

Claim 3 : L−1
P (I −Q)N : Ω→ X is completely continuous.

By considering the existing hypotheses in relation to Ascoli-Arzelà theorem, it is
necessary that we prove two properties of the boundedness and equi-continuity for
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L−1
P (I −Q)N(Ω) ⊂ X. At first, for each y ∈ Ω and for all t ∈ Ji, we have

L−1
P (I −Q)Ny(t) = L−1

P (Ny(t)−QNy(t))

= Iui
T+
i−1

[
f(t, y(t))− ui

(Ti − Ti−1)ui

∫ Ti

Ti−1

(Ti − s)ui−1f(s, y(s))
]
ds

=
1

Γ(ui)

∫ t

Ti−1

(t− s)ui−1f(s, y(s))ds

− tui

(Ti − Ti−1)uiΓ(ui)

∫ Ti

Ti−1

(Ti − s)ui−1f(s, y(s))ds.

Further, for each y ∈ Ω and for all t ∈ Ji, we get

|L−1
P (I −Q)Ny(t)| ≤ 2

Γ(ui)

∫ Ti

Ti−1

(Ti − s)ui−1|f(s, y(s))− f(s, 0)|ds

+
2

Γ(ui)

∫ Ti

Ti−1

(Ti − s)ui−1|f(s, 0)|ds

≤ [f ∗ +MKT−δi−1]
2(Ti − Ti−1)ui

Γ(ui + 1)
:= B.

So
‖L−1

P (I −Q)Ny‖Ei ≤ B,

which gives the uniform boundedness of L−1
P (I −Q)N(Ω) in X.

To prove the equi-continuity of L−1
P (I−Q)N(Ω), notice that for Ti−1 ≤ t1 ≤ t2 ≤ Ti

and y ∈ Ω, we get

|L−1
P (I −Q)Ny(t2)− L−1

P (I −Q)Ny(t1)| ≤
f ∗ + T−δi−1MK

Γ(ui)

[ ∫ t2

t1

(t2 − s)ui−1ds

+

∫ t1

Ti−1

|(t2 − s)ui−1 − (t1 − s)ui−1|ds
]

+
[T−δi−1MK + f ∗

Γ(ui + 1)

]
(tui2 − t

ui
1 ).

The right-hand side of above inequality tends to zero as t1 → t2. Thus, L−1
P (I−Q)N(Ω)

is equicontinuous in X.
On the basis of the Ascoli-Arzelà theorem, L−1

P (I −Q)N(Ω) is relatively compact.
In accordance with the steps 1 to 3, we can follow that N is L-compact in Ω.

Step 5 : There exists A > 0 (not depending on λ) so that if

L(y)−N(y) = −λ[L(y) +N(−y)], λ ∈ (0, 1], (5.10)
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then ‖y‖X ≤ A.
By the condition (H2) and for each y ∈ X satisfying (5.10), we get

L(y)−N(y) = −λL(y)− λN(−y).

So

 L(y) =
1

1 + λ
N(y)− λ

1 + λ
N(−y). (5.11)

By (5.11), and for all t ∈ Ji, we get

y(t) =
1

1 + λ
L−1
P Ny(t)− λ

1 + λ
L−1
P N(−y(t)),

and so

|y(t)| ≤ 1

(1 + λ)Γ(ui)

∫ t

Ti−1

(t− s)ui−1 |f(s, y(s))− f(s, 0)| ds

+
λ

(1 + λ)Γ(ui)

∫ t

Ti−1

(t− s)ui−1 |f(s,−y(s))− f(s, 0)| ds

+
f ∗(Ti − Ti−1)ui

(1 + λ)Γ(ui + 1)
+
λf ∗(Ti − Ti−1)ui

(1 + λ)Γ(ui + 1)

≤
( 1

1 + λ
+

λ

1 + λ

)T−δi−1(Ti − Ti−1)ui

Γ(ui + 1)
(K‖y‖Ei) +

( 1

1 + λ
+

λ

1 + λ

)f ∗(Ti − Ti−1)ui

Γ(ui + 1)

=
KT−δi−1(Ti − Ti−1)ui

Γ(ui + 1)
‖y‖Ei +

f ∗(Ti − Ti−1)ui

Γ(ui + 1)
.

Hence,

‖y‖Ei ≤
(
f ∗ +KT−δi−1‖y‖Ei

)(Ti − Ti−1)ui

Γ(ui + 1)
, (5.12)

and so

‖y‖X ≤
f ∗

Γ(ui+1)
(Ti−Ti−1)ui

−KT−δi−1

:= A.

Step 6 : There exists a bounded and open set Ω ⊂ X such that

L(y)−N(y) 6= −λ[L(y) +N(−y)],

for all y ∈ ∂Ω and all λ ∈ (0, 1].

By the condition (H2) and Step 5, there exists A > 0 (independent of λ) such that,
if y satisfies

L(y)−N(y) = −λ[L(y) +N(−y)], λ ∈ (0, 1],



5.3 Example 70

then ‖y‖X ≤ A. Thus, if
Ω = {y ∈ X : ‖y‖X < B}, (5.13)

then from the condition (H2), it is immediately obtained that the set Ω introduced by
(5.13), is symmetric, 0 ∈ Ω, and X ∩ Ω = Ω 6= ∅.

Furthermore, it is obtained that

L(y)−N(y) 6= −λ[L(y)−N(−y)],

for all y ∈ ∂Ω = {y ∈ X : ‖y‖X = B} and for all λ ∈ (0, 1], where B > A.
This together with Theorem 1.1 imply that the equivalent constant order resonance
FBVP (5.4) has at least one solution, and this completes the proof.

Now, we complete our deduction on the existence property for solutions of the given
Caputo FBVP of variable order (5.1).

Theorem 5.2 Let the conditions (H1), (H2) be satisfied for all i ∈ {1, 2, ..., n}. Then,
the Caputo FBVP of variable order (5.1) possesses at least one solution in C(J,R).

Proof. For any i ∈ {1, 2, ..., n} according to Theorem (5.1), the equivalent constant
order resonance FBVP (5.4) possesses at least one solution ỹi ∈ Ei.
For any i ∈ {1, 2, ..., n} we define the function

yi =

{
0, t ∈ [a, Ti−1],

ỹi, t ∈ Ji.

Thus, the function yi ∈ C([a, Ti],R) solves the integral equation (5.3) for t ∈ Ji, which
means that yi(a) = 0, yi(Ti) = ỹi(Ti) = 0 and solves (5.3) for t ∈ Ji, i ∈ {1, 2, ..., n}.
Then the function,

y(t) =



y1(t), t ∈ J1,

y2(t) =

{
0, t ∈ J1,
ỹ2, t ∈ J2,

.

.

.

.

yn(t) =

{
0, t ∈ [a, Tn−1],
ỹn, t ∈ Jn,

is a solution of Caputo fractional differential equation of variable order(5.1) in C(J,R).

5.3 Example

Let us consider the following fractional boundary value problem, cD
u(t)

0.5+y(t) =
sin y(t)− (y(t) + 2) cos t

5
√

1 + t
, t ∈ J := [0.5, 2],

y(0.5) = y(2).
(5.14)
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Let

f(t, y) =
sin y − (y + 2) cos t

5
√

1 + t
, (t, y) ∈ [0.5, 2]× [0,+∞),

and

u(t) =


5

7
, t ∈ J1 := [0.5, 1],

2

3
, t ∈ J2 :=]1, 2].

(5.15)

Then, we have

t
1
2 |f(t, y1)− f(t, y2)| =

∣∣∣∣∣∣t
1
2 (sin y1 − (y1 + 2) cos t)

5
√

1 + t
− t

1
2 (sin y2 − (y2 + 2) cos t)

5
√

1 + t

∣∣∣∣∣∣
≤ 1

5

√
t

1 + t

(
| sin y1 − sin y2|+ | cos t||y1 − y2|

)
≤ 2

5
|y1 − y2|.

By (5.15), according to (5.4) we consider two auxiliary for constant order resonance
fractional boundary value problem cD

5
7
0.5+y(t) =

sin y(t)− (y(t) + 2) cos t

5
√

1 + t
, t ∈ J1,

y(0.5) = y(1),

(5.16)

and  cD
2
3
1+y(t) =

sin y(t)− (y(t) + 2) cos t

5
√

1 + t
, t ∈ J2,

y(1) = y(2).

(5.17)

Hence the condition (H2) holds for i = 1 with δ =
1

2
and K =

2

5
, and

0 < K =
2

5
< min

{
1,
T δ0 Γ(u1 + 1)

(T1 − T0)u1

}
= 1.

According to Theorem (5.1), the constant order resonance FBVP (5.16) has a solution
ỹ1 ∈ E1.

Next, the condition (H2) holds for i = 2 with δ =
1

2
and K =

2

5
, and

0 < K =
2

5
< min

{
1,
T δ1 Γ(u2 + 1)

(T2 − T1)u2

}
= Γ(

5

3
) ' 0.9027.
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According to Theorem (5.1), the constant order resonance FBVP (5.17) has a solution
ỹ2 ∈ E2.
Then, by Theorem 5.2, the Caputo FBVP of variable order (5.14) has a solution as

y(t) =

{
ỹ1(t), t ∈ J1,

y2(t), t ∈ J2,

where

y2(t) =

{
0, t ∈ J1,

ỹ2(t), t ∈ J2.



Conclusion and Perspectives

In this work we presented results about the existence and uniqueness of solutions for
some classes of nonlinear boundary value problem involving the Riemann-Liouville,
Caputo and Hadamard fractional differential equations of variable order, which is a
piecewise constant function based on the essential difference about the variable order.
By using the standard fixed point theorems (Banach contraction principle, Schauder’s
fixed point, Darbo’s fixed point theorem), Kuratowski’s measure of noncompactness
and Mawhin’s continuation theorem we established the existence and uniqueness of
solutions and, we study the stability in the sense of Ulam-Hyers-Rassias and in the
sense of Ulam-Hyers to our problems. Therefore, all results in this work show a great
potential to be applied in various applications of multidisciplinary sciences.
The variable order is important and interesting to all researchers. In other words, in
the near future we want to study various classes of implicit nonlinear fractional diffe-
rential equations in the variable order settings via singular and nonsingular operators,
thermostat model,... involving integral conditions or integro-derivative conditions.
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