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Résumé

Dans cette thèse, nous étudions l’existence globale et le comportement asymptotique de
solutions de léquation des ondes dégénérée avec un contrôle frontière de type fractionnaire ou
dissipation frontière dynamique de type dérivé fractionnaire. Les outils utilisés sont méthode
d’analyse spectrale, semigroupe, C0 -semigroupe, le théorème de Borichev et Tomilov, théorème
de Hille-Yosida et le théorème de Rouché.

Premièrement, nous nous intressons à létude de la stabilisation d’équation d’onde unidimen-
sionnelle faiblement dégénérée utt − (xγux)x = 0 with x ∈ (0, 1) and γ ∈ [0, 1), contrôlée par un
feedback fractionnaire au bord agissant x = 0. Stabilisation forte, uniforme et non uniforme
sont obtenus avec une estimation explicite de la décroissance de l’énergie dans des espaces appro-
priés. Les résultats sont obtenus à travers une estimation de la résolvante du générateur associé
au semigroupe. On utilise une méthode spectrale, nous établissons la vitesse de dcroissance
polynomial optimal de l’énergie du systme.

Ensuite, nous considérons une équation d’onde dégénérée avec une condition de contrôle
frontière de type dérivé fractionnaire. Nous montrons que le problème n’est pas uniformément
stable par une méthode spectrale et nous étudions la stabilité polynomiale l’aide de la théorie
des opérateurs linéaires basée sur le semigroupe.

Enfin, nous nous intressons létude de lexistence globale des solutions déquations unidimen-
sionnelles faiblement dégénérée utt− (xγux)x = 0 avec x ∈ (0, 1) et γ ∈ [0, 1), avec une condition
de contrle frontière dynamique de type dérivé fractionnaire.

Mots Clés:

Équation d’onde dégénérée, dissipation frontière dynamique de type dérivé fractionnaire, la
vitesse de décroissance optimal, fonctions de Bessel, contrôle aux limites fractionnaires, stabilité
polynomiale, , stabilité polynomiale, C0 -semigroupe.
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Abstract

In this, thesis we study the global existence and asymptotic behavior in time of solutions
to degenerate wave equation with fractional boundary control or Dynamic boundary dissipation
of fractional derivative type. However, using a spectrum method, semigroup, C0-semigroup,
Borichev and Tomilov , Hille-Yosida and Rouché’s theorems.

First, we consider a degenerate wave equation with a boundary control condition of fractional
derivative type. We show that the problem is not uniformly stale by a spectrum method and we
study the polynomial stability using the semigroup theory of linear operators.

Next, we are concerned with the study of stabilization of one-dimensional weakly degenerate
wave equation utt−(xγux)x = 0 with x ∈ (0, 1) and γ ∈ [0, 1), controlled by a fractional boundary
feedback acting at x = 0. Strong, uniform, and nonuniform stabilization are obtained with
explicit decay estimates in appropriate spaces. The results are obtained through an estimate on
the resolvent of the generator associated with the semigroup. However, using a spectral method,
we establish the optimal polynomial decay rate of the energy of the system.

Finally, we are concerned with the study of global existence of solutions of one-dimensional
weakly degenerate wave equation utt−(xγux)x = 0 with x ∈ (0, 1) and γ ∈ [0, 1), with a dynamic
boundary control condition of fractional derivative type.

Keywords:

Degenerate wave equation, Dynamic boundary dissipation of fractional derivative type, op-
timal decay rate, Bessel functions, fractional boundary control, Polynomial stability, polynomial
stability, C0-semigroup.
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Introduction

Control theory is the study of the process of controlling the behavior of an operator system
to achieve a certain target. Its application ranges widely from earthquake engineering and
seismology to fluid transfer, cooling water and noise reduction in cavities, vehicles, such as pipe
systems. Acoustics, aeronautics, hydraulics, are also some of the diverse disciplines where control
theory is applied.
Of the most important notions in modern systems and control theory we mention controllability,
stabilizability and observability. Various types of those notions have been introduced for abstract
systems defined on Banach or Hilbert spaces and the relations between them has been extensively
explored by several authors.
The boundary feedback under the consideration in this thesis are of fractional type and are
described by the fractional derivatives

∂α,ηt w(t) =
1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s)dw

ds
(s) ds, η ≥ 0.

The order of our derivatives is between 0 and 1. Very little is known in the literature. In
addition to being nonlocal, fractional derivatives involve singular and non-integrable kernels
(tα, 0 < α < 1). This makes the problem more delicate. It has been shown (see [31]) that,
as ∂t, the fractional derivative ∂αt forces the system to become dissipative and the solution to
approach the equilibrium state. Therefore, when applied on the boundary, we can consider them
as controllers which help to reduce the vibrations.
In the recent years, fractional calculus has been applied successfully in various areas to modify
many existing models of physical processes such as heat conduction, diffusion, viscoelasticity,
wave propagation, electronics etc. Caputo and Mainardi [10] have established the relation be-
tween fractional derivative and theory of viscoelasticity. The generalization of the concept of
derivative and integral to a non-integer order has been subjected to several approaches and some
various alternative definition of fractional derivative appeared in [17, 19].
We study stability of the system using the semigroup theory of linear operators and a result
obtained by Borichev and Tomilov.

This thesis is divided into 3 Chapter.

CHAPTER 1: PRELIMINARIES

In this Chapter, firstly, we present some well known results on Sobolev spaces and some ba-
sic definitions and theorems . Secondly, we recall some results on a C0-semigroup, including
some theorems on strong, exponential and polynomial stability of a C0-semigroup. Next, we
display a brief historical introduction to fractional derivatives and we define the fractional deriva-
tive operator and we present some physical interpretations . After that, we present the Bessel
functions and their basic definitions . Finally, we present an appendix that contains almost all
the secondary calculations used in this Thesis.
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CHAPTER 2: DECAY ESTIMATES FOR A DEGENERATE WAVE
EQUATION WITH A DYNAMIC FRACTIONAL FEEDBACK ACT-
ING ON THE DEGENERATE BOUNDARY

In this Chapter, we are concerned with the system
(P1)
{u tt(x, t)− (xγux(x, t))x = 0 in (0, 1)× (0,+∞),−mutt(0, t) + (xγux)(0, t) = %∂α,ηt u(0, t) in (0,+∞), u(1, t) = 0 in (0,+∞), u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, 1).

where m > 0, γ ∈ [0, 1) and % > 0 .The notation ∂α,ηt stands for the generalized Caputo’s
fractional derivative of order α, (0 < α ≤ 1), with respect to the time variable.It is defined as
follows

∂α,ηt w(t) =


wt for α = 1, η ≥ 0

1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s)dw

ds
(s) ds, for α 6= 1, η ≥ 0.

Where we discuss and establish the existence, the uniqueness of solution, and we prove lack
of exponential stability by spectral analysis by using Bessel functions and we show an optimal
decay rate.

CHAPTER 3: DECAY ESTIMATES FOR A DEGENERATE WAVE
EQUATION WITH TWO BOUNDARY FRACTIONAL FEEDBACKS
IN THE PRESENCE OF DIPLACEMENT:

In this chapter, we are concerned with the dynamic boundary stabilization of fractional type for
degenerate wave equation of the form
(P2){
u tt(x, t)− (xγux(x, t))x + βu = 0 in (0, 1)× (0,+∞), (xγux)(0, t) = %∂α,ηt u(0, t) in (0,+∞), ux(1, t) = −%̃∂α̃,ηt u(1, t) in (0,+∞), u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, 1),

where γ ∈ [0, 1), % > 0, %̃ > 0 and β > 0. The notation ∂α,ηt stands for the generalized Caputo’s
fractional derivative of order α, (0 < α ≤ 1), with respect to the time variable.It is defined as
follows

∂α,ηt w(t) =


wt for α = 1, η ≥ 0

1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s)dw

ds
(s) ds, for α 6= 1, η ≥ 0.

Where Strong, uniform, and nonuniform stabilization are obtained with explicit decay estimates
in appropriate spaces. The results are obtained through an estimate on the resolvent of the
generator associated with the semigroup.



Chapter 1

PRELIMINARIES

1.1 Sobolev spaces

We denote by Ω an open domain in IRn, n ≥ 1, with a smooth boundary Γ = ∂Ω. In general,
some regularity of Ω will be assumed. We will suppose that either

Ω is Lipschitz,

i.e., the boundary Γ is locally the graph of a Lipschitz function, or

Ω is of class Cr, r ≥ 1,

i.e., the boundary Γ is a manifold of dimension n ≥ 1 of class Cr. In both cases we assume that
Ω is totally on one side of Γ. These definitions mean that locally the domain Ω is below the
graph of some function ψ, the boundary Γ is represented by the graph of ψ and its regularity is
determined by that of the function ψ. Moreover, it is necessary to note that a domain with a
continuous boundary is never on both sides of its boundary at any point of this boundary and
that a Lipschitz boundary has almost everywhere a unit normal vector ν.

We will also use the following multi-index notation for partial differential derivatives of a
function:

∂ki u =
∂ku

∂xki
for all k ∈ IN and i = 1, ..., n,

Dαu = ∂α1
1 ∂α2

2 . . . ∂αnn u =
∂α1+...+αnu

∂xα1
1 . . . ∂xαnn

,

α = (α1, α2, . . . , αn) ∈ INn, |α| = α1 + . . .+ αn.

We denote by C(D) (respectively Ck(D), k ∈ IN or k = +∞) the space of real continuous
functions on D (respectively the space of k times continuously differentiable functions on D),
where D plays the role of Ω or its closure Ω. The space of real C∞ functions on Ω with a
compact support in Ω is denoted by C∞0 (Ω) orD(Ω) as in the distributions theory of Schwartz.The
distributions space on Ω is denoted by D′(Ω), i.e., the space of continuous linear form over D(Ω).

For 1 ≤ p ≤ ∞, we call Lp(Ω) the space of measurable functions f on Ω such that

‖f‖Lp(Ω) =
(∫

Ω
|f(x)|pdx

)1/p

< +∞ for p < +∞

7
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‖f‖L∞(Ω) = sup
Ω
|f(x)| < +∞ for p = +∞

The space Lp(Ω) equipped with the norm f −→ ‖f‖Lp is a Banach space: it is reflexive and

separable for 1 < p < ∞ (its dual is L
p
p−1 (Ω)), separable but not reflexive for p = 1 (its dual

is L∞(Ω)), and not separable, not reflexive for p = ∞ (its dual contains strictly L1(Ω)). In
particular the space L2(Ω) is a Hilbert space equipped with the scalar product defined by

(f, g)L2(Ω) =
∫

Ω
f(x)g(x)dx.

We denote by Lploc(Ω) the space of functions which are Lp on any bounded sub-domain of Ω.
Similar space can be defined on any open set other than Ω, in particular, on the cylinder set

Ω× ]a, b[ or on the set Γ× ]a, b[, where a, b ∈ IR and a < b.
Let U be a Banach space, 1 < p < +∞ and −∞ ≤ a < b ≤ +∞, then Lp(a, b;U) is the

space of Lp functions f from (a, b) into U which is a Banach space for the norm

‖f‖Lp(a,b;U) =

(∫ b

a
‖f(x)‖pU dt

)1/p

< +∞ for p < +∞

and for the norm

‖f‖L∞(a,b;U) = sup
t∈(a,b)

‖f(x)‖U < +∞ for p = +∞

Similarly, for a Banach space U, k ∈ IN and −∞ < a < b < +∞, we denote by C([a, b];U)
(respectively Ck([a, b];U)) the space of continuous functions (respectively the space of k times
continuously differentiable functions) f from [a, b] into U , which are Banach spaces, respectively,
for the norms

‖f‖C(a,b;U) = sup
t∈(a,b)

‖f(x)‖U , ‖f‖Ck(a,b;U) =
k∑
i=0

∥∥∥∥∥∂if∂ti
∥∥∥∥∥
C(a,b;U)

1.1.1 Definition of Sobolev Spaces

Now, we will introduce the Sobolev spaces: The Sobolev space W k,p(Ω) is defined to be the
subset of Lp such that function f and its weak derivatives up to some order k have a finite Lp

norm, for given p ≥ 1.

W k,p(Ω) = {f ∈ Lp(Ω);Dαf ∈ Lp(Ω). ∀α; |α| ≤ k} ,

With this definition, the Sobolev spaces admit a natural norm,

f −→ ‖f‖Wk,p(Ω) =

 ∑
|α|≤m

‖Dαf‖pLp(Ω)

1/p

, for p < +∞
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and

f −→ ‖f‖Wk,∞(Ω) =
∑
|α|≤m

‖Dαf‖L∞(Ω) , for p = +∞

Space W k,p(Ω) equipped with the norm ‖ . ‖Wk,p is a Banach space. Moreover is a reflexive space
for 1 < p < ∞ and a separable space for 1 ≤ p < ∞. Sobolev spaces with p = 2 are especially
important because of their connection with Fourier series and because they form a Hilbert space.
A special notation has arisen to cover this case:

W k,2(Ω) = Hk(Ω)

the Hk inner product is defined in terms of the L2 inner product:

(f, g)Hk(Ω) =
∑
|α|≤k

(Dαf,Dαg)L2(Ω) .

The space Hm(Ω) and W k,p(Ω) contain C∞(Ω) and Cm(Ω). The closure of D(Ω) for the Hm(Ω)
norm (respectively Wm,p(Ω) norm) is denoted by Hm

0 (Ω) (respectively W k,p
0 (Ω)).

Now, we introduce a space of functions with values in a space X (a separable Hilbert space).

The space L2(a, b;X) is a Hilbert space for the inner product

(f, g)L2(a,b;X) =
∫ b

a
(f(t), g(t))X dt

We note that L∞(a, b;X) = (L1(a, b;X))′.

Now, we define the Sobolev spaces with values in a Hilbert space X

For k ∈ IN, p ∈ [1,∞], we set:

W k,p(a, b;X) =

{
v ∈ Lp(a, b;X);

∂v

∂xi
∈ Lp(a, b;X). ∀i ≤ k

}
,

The Sobolev space W k,p(a, b;X) is a Banach space with the norm

‖f‖Wk,p(a,b;X) =

 k∑
i=0

∥∥∥∥∥ ∂f∂xi
∥∥∥∥∥
p

Lp(a,b;X)

1/p

, for p < +∞

‖f‖Wk,∞(a,b;X) =
k∑
i=0

∥∥∥∥∥ ∂v∂xi
∥∥∥∥∥
L∞(a,b;X)

, for p = +∞

The spaces W k,2(a, b;X) form a Hilbert space and it is noted Hk(0, T ;X). The Hk(0, T ;X)
inner product is defined by:

(u, v)Hk(a,b;X) =
k∑
i=0

∫ b

a

(
∂u

∂xi
,
∂v

∂xi

)
X

dt .
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Theorem 1.1.1 Let 1 ≤ p ≤ n, then

W 1,p(IRn) ⊂ Lp
∗
(IRn)

where p∗ is given by
1

p∗
=

1

p
− 1

n
(where p = n, p∗ = ∞). Moreover there exists a constant

C = C(p, n) such that
‖u‖Lp∗ ≤ C‖∇u‖

Lp(IRn
)
∀u ∈ W 1,p(IRn).

Corollary 1.1.1 Let 1 ≤ p < n, then

W 1,p(IRn) ⊂ Lq(IRn) ∀q ∈ [p, p∗]

with continuous imbedding.

For the case p = n, we have

W 1,n(IRn) ⊂ Lq(IRn) ∀q ∈ [n,+∞[

Theorem 1.1.2 Let p > n, then

W 1,p(IRn) ⊂ L∞(IRn)

with continuous imbedding.

Corollary 1.1.2 Let Ω a bounded domain in IRn of C1 class with Γ = ∂Ω and 1 ≤ p ≤ ∞. We
have

if 1 ≤ p <∞, then W 1,p(Ω) ⊂ Lp
∗
(Ω) where

1

p∗
=

1

p
− 1

n
.

if p = n, then W 1,p(Ω) ⊂ Lq(Ω),∀q ∈ [p,+∞[.
if p > n, then W 1,p(Ω) ⊂ L∞(Ω)

with continuous imbedding.
Moreover, if p > n, we have: ∀u ∈ W 1,p(Ω),

|u(x)− u(y)| ≤ C|x− y|α‖u‖W 1,p(Ω) a.e x, y ∈ Ω

with α = 1− n

p
> 0 and C is a constant which depend on p, n and Ω. In particular W 1,p(Ω) ⊂

C(Ω).

Corollary 1.1.3 Let Ω a bounded domain in IRn of C1 class with Γ = ∂Ω and 1 ≤ p ≤ ∞. We
have

if p < n, then W 1,p(Ω) ⊂ Lq(Ω)∀q ∈ [1, p∗[ where
1

p∗
=

1

p
− 1

n
.

if p = n, then W 1,p(Ω) ⊂ Lq(Ω),∀q ∈ [p,+∞[.
if p > n, then W 1,p(Ω) ⊂ C(Ω)

with compact imbedding.
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Remark 1.1.1 We remark in particular that

W 1,p(Ω) ⊂ Lq(Ω)

with compact imbedding for 1 ≤ p ≤ ∞ and for p ≤ q < p∗.

Corollary 1.1.4

if
1

p
− m

n
> 0, then Wm,p(IRn) ⊂ Lq(IRn) where

1

q
=

1

p
− m

n
.

if
1

p
− m

n
= 0, then Wm,p(IRn) ⊂ Lq(IRn), ∀q ∈ [p,+∞[.

if
1

p
− m

n
< 0, then Wm,p(IRn) ⊂ L∞(IRn)

with continuous imbedding.

1.2 Weak convergence

Let (E; ‖.‖E) a Banach space and E ′ its dual space, i.e., the Banach space of all continuous
linear forms on E endowed with the norm ‖.‖′E defined by

‖f‖E′ =: sup
x 6=0

|〈f, x〉|
‖x‖

; where 〈f, x〉; denotes the action of f onx, i.e.〈f, x〉 := f(x). In the same way, we can define the
dual space of E ′ that we denote by E ′′. (The Banach space E ′′ is also called the bi-dual space of
E.) An element x of E can be seen as a continuous linear form on E ′ by setting x(f) := 〈x, f〉,
which means that E ⊂ E ′′:

Definition 1.2.1 The Banach space E is said to be reflexive if E = E ′′.

Definition 1.2.2 The Banach space E is said to be separable if there exists a countable subset
D of E which is dense in E, i.e. D = E.

Theorem 1.2.1 (Riesz). If (H; 〈., .〉) is a Hilbert space, 〈., .〉 being a scalar product on H, then
H ′ = H in the following sense: to each f ∈ H ′ there corresponds a unique x ∈ H such that
f = 〈x, .〉 and ‖f‖′H = ‖x‖H

Remark : From this theorem we deduce that H ′′ = H. This means that a Hilbert space is
reflexive.

Proposition 1.2.1 If E is reflexive and if F is a closed vector subspace of E, then F is reflexive.

Corollary 1.2.1 The following two assertions are equivalent: (i) E is reflexive; (ii) E ′ is re-
flexive.



12 CHAPTER 1. PRELIMINARIES

1.2.1 Weak and strong convergence

Definition 1.2.3 (Weak convergence in E). Let x ∈ E and let {xn} ⊂ E. We say that {xn}
weakly converges to x in E, and we write xn ⇀ x in E, if

〈f, xn〉 → 〈f, x〉

for all f ∈ E ′.

Definition 1.2.4 (weak convergence in E ′). Let f ∈ E ′ and let {fn} ⊂ E ′. We say that {fn}
weakly converges to f in E ′, and we write fn ⇀ f in E ′, if

〈fn, x〉 → 〈f, x〉

for all x ∈ E ′′.

Definition 1.2.5 (strong convergence). Let x ∈ E(resp. f ∈ E ′) and let {xn} ⊂ E (resp
{fn} ⊂ E ′). We say that {xn} (resp. {fn}) strongly converges to x (resp. f), and we write
xn → x in E (resp. fn → f in E ′), if

lim
n
‖xn − x‖E = 0; (resp. lim

n
‖fn − f‖′E = 0)

Proposition 1.2.2 Let x ∈ E, let {xn} ⊂ E, let f ∈ E ′ and let {fn} ⊂ E ′.

i. If xn → x in E then xn ⇀ x in E.

ii. If xn ⇀ x in E then {xn} is bounded.

iii. If xn ⇀ x in E then lim inf
n→∞

‖xn‖E ≥ ‖x‖E

iv. If fn → f in E ′ then fn ⇀ f inE ′ (and so fn
∗
⇀ f in E ′).

v. If fn ⇀ f in E ′ then {fn} is bounded.

vi. If fn ⇀ f in E ′ then then lim inf
n→∞

‖fn‖′E ≥ ‖f‖′E

Proposition 1.2.3 (finite dimension). If dimE <∞ then strong, weak and weak star conver-
gence are equivalent.

1.2.2 Bounded and Unbounded linear operators

Let (E, ‖.‖E) and (F, ‖.‖F ) be two Banach spaces over IC, and H will always denote a Hilbert
space equipped with the scalar product < ., . >H and the corresponding norm ‖.‖H . A linear
operator T : E −→ F is a transformation which maps linearly E in F , that is

T (αu+ βv) = αT (u) + βT (v), ∀u, v ∈ E and α, β ∈ IC.
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Definition 1.2.6 A linear operator T : E −→ F is said to be bounded if there exists C ≥ 0
such that

‖Tu‖F ≤ C‖u‖E ∀u ∈ E.

The set of all bounded linear operators from E into F is denoted by L(E,F ). Moreover, the set
of all bounded linear operators from E into E is denoted by L(E).

Definition 1.2.7 A bounded operator T ∈ L(E,F ) is said to be compact if for each sequence
(xn)

n∈IN ∈ E with ‖xn‖E = 1 for each n ∈ IN, the sequence (Txn)
n∈IN has a subsequence which

converges in F .
The set of all compact operators from E into F is denoted by K(E,F ). For simplicity one writes
K(E) = K(E,F ).

Definition 1.2.8 Let T ∈ L(E,F ) we define
• Range of T by

R(T ) = {Tu : u ∈ E} ⊂ F.

• Kernel of T by
ker(T ) = {u ∈ E : Tu = 0} ⊂ E.

Theorem 1.2.2 (Fredholm alternative)
If T ∈ K(E), then
• ker(I − T ) is finite dimension, (I is the identity operator on E) .
• R(I − T ) is closed.
• ker(I − T ) = 0⇔ R(I − T ) = E.

Definition 1.2.9 An unbounded linear operator T from E into F is a pair (T,D(T )), consisting
of a subspace D(T ) ⊂ E (called the domain of T ) and a linear transformation.

T : D(T ) ⊂ E 7→ F.

In the case when E = F then we say (T,D(T )) is an unbounded linear operator on E. If
D(T ) = E then T ∈ L(E,F ).

Definition 1.2.10 Let T : D(T ) ⊂ E 7→ F be an unbounded linear operator.
• The range of T is defined by

R(T ) = {Tu : u ∈ D(T )} ⊂ F.

• The Kernel of T is defined by

ker(T ) = {u ∈ D(T ) : Tu = 0} ⊂ E.

• The graph of T is defined by

G(T ) = {(u, Tu) : u ∈ D(T )} ⊂ E × F.
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Definition 1.2.11 A map T is said to be closed if G(T ) is closed in E × F . The closedness of
an unbounded linear operator T can be characterize as following if un ∈ D(T ) such that un → u
in E and Tun → v in F , then u ∈ D(T ) and Tu = v.

Definition 1.2.12 Let T : D(T ) ⊂ E 7→ F be a closed unbounded linear operator.
• The resolvent set of T is defined by

ρ(T ) = {λ ∈ IC : λI − T is bijective fromD(T ) ontoF}.

• The resolvent of T is defined by

R(λ, T ) = {(λI − T )−1 : λ ∈ ρ(T )}

• The spectrum set of T is the complement of the resolvent set in IC , denoted by

σ(T ) = IC/ρ(T )

Definition 1.2.13 Let T : D(T ) ⊂ E 7→ F be a closed unbounded linear operator. we can split
the spectrum σ(T ) of T into three disjoint sets, given by
• The punctual spectrum of T is define by

σp(T ) = {λ ∈ IC : ker(λI − T ) 6= {0}}

in this case λ is called an eigenvalue of T .
• The continuous spectrum of T is define by

σc(T ) = {λ ∈ IC : ker (λI − T ) = 0, R(λI − T ) = F and (λI − T )−1 is not bounded }.

• The residual spectrum of T is define by

σr(T ) = {λ ∈ IC : ker (λI − T ) = 0, and R(λI − T ) is not dense in F}

Definition 1.2.14 Let T : D(T ) ⊂ E −→ F be a closed unbounded linear operator and let λ be
an eigevalue of A. non-zero element e ∈ E is called a generalized eigenvector of T associated
with the eigenvalue value λ, if there exists n ∈ IN∗ such that

(λI − T )ne = 0 and (λI − T )n−1e 6= 0.

if n = 1, then e is called an eigenvector.

Definition 1.2.15 Let T : D(T ) ⊂ E −→ F be a closed unbounded linear operator. We say
that T has compact resolvent, if there exist λ0 ∈ ρ(T ) such that (λ0I − T )−1 is compact.

Theorem 1.2.3 Let (T,D(T )) be a closed unbounded linear operator on H then the space
(D(T ), ‖.‖D(T )) where ‖u‖D(T ) = ‖Tu‖H + ‖u‖H ∀u ∈ D(T ) is Banach space .

Theorem 1.2.4 Let (T,D(T )) be a closed unbounded linear operator on H then, ρ(T ) is an
open set of IC.
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1.3 Semigroups, Existence and uniqueness of solution

The vast majority of the evolution equations can be reduced to the form{
Ut(t) = AU(t), t > 0,
U(0) = U0,

(1.1)

where A is the infinitesimal generator of a C0-semigroup S(t) over a Hilbert space H. Lets
start by basic definitions and theorems.
Let (X, ‖.‖X) be a Banach space, and H be a Hilbert space equipped with the inner product
< ., . >H and the induced norm ‖.‖H .

Definition 1.3.1 Let X be a Banach space and let I : X → X its identity operator.

1. A one parameter family (S(t))t≥0, of bounded linear operators from X into X is a semigroup
of bounded linear operators on X if

(i) S(0) = I;

(ii) S(t+ s) = S(t)S(s) for every s, t ≥ 0.

2. A semigroup of bounded linear operators, (S(t))t≥0, is uniformly continuous if

lim
t→0
‖S(t)− I‖ = 0.

3. A semigroup (S(t))t≥0 of bounded linear operators on X is a strongly continuous semigroup
of bounded linear operators or a C0-semigroup if

lim
t→0

S(t)x = x

4. The linear operator A defined by

Ax = lim
t→0

S(t)x− x
t

, ∀x ∈ D(A)

where

D(A) =
{
x ∈ X; lim

t→0

S(t)x− x
t

exists
}

is the infinitesimal generator of the semigroup (S(t))t≥0.

Some properties of semigroup and its generator operator A are given in the following theorems:

Theorem 1.3.1 (Pazy) Let A be the infinitesimal generator of a C0- semigroup of contractions
(S(t))t≥0. Then, the resolvent (λI −A)−1 of A contains the open right half-plane, i.e., ρ(A) ⊂
{λ : R(λ) > 0} and for such λ we have

‖(λI −A)−1‖L(H) ≤
1

R(λ)
.
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Theorem 1.3.2 (Kato) Let A be a closed operator in a Banach space X such that the resolvent
(I −A)−1 of A exists and is compact. Then the spectrum σ(A) of A consists entirely of isolated
eigenvalues with finite multiplicities.

Theorem 1.3.3 (Pazy) Let (S(t))t≥0 be a C0-semigroup on a Hilbert space H. Then there
exist two constants ω ≥ 0 and M ≥ 1 such that

‖S(t)‖L(H) ≤Meωt, ∀t ≥ 0.

If ω = 0, the semigroup (S(t))t≥0 is called uniformly bounded and if moreover M = 1, then
it is called a C0-semigroup of contractions. For the existence of solution of problem (1.1), we
typically use the following Lumer-Phillips and Hille-Yosida theorems :

Theorem 1.3.4 (Lumer-Phillips) Let A be a linear operator with dense domain D(A) in a
Hilbert space H. If

(i) A is dissipative, i.e., < R(< Ax, x >H) ≤ 0, ∀x ∈ D(A)
and if

(ii) there exists a λ0 > 0 such that the range R(λ0I −A) = H,
then A generates a C0-semigroup of contractions on H.

Theorem 1.3.5 (Hille-Yosida) Let A be a linear operator on a Banach space X and let ω ∈
IR, M ≥ 1 be two constants. Then the following properties are equivalent

(i) A generates a C0-semigroup (S(t))t≥0, satisfying

‖S(t)‖L(H) ≤Meωt, ∀t ≥ 0.

(ii) A is closed, densely defined, and for every λ > ω one has λ ∈ ρ(A) and

‖(λ− ω)n(λ−A)−n‖ ≤M, ∀n ∈ IN.

(iii) A is closed, densely defined, and for every λ ∈ IC with R > ω, one has λ ∈ ρ(A) and

‖(λ−A)−n‖ ≤ M

(R(λ)− ω)n
, ∀n ∈ IN.

Consequently, A is maximal dissipative operator on a Hilbert space H if and only if it generates
a C0-semigroup of contractions (S(t))t≥0 on H. Thus, the existence of solution is justified by
the following corollary which follows from Lumer-Phillips theorem.

Corollary 1.3.1 Let H be a Hilbert space and let A be a linear operator defined from D(A) ⊂ H
into H. If A is maximal dissipative operator then the initial value problem (1.1) has a unique
solution U(t) = SA(t)U0 such that U ∈ C([0,+1), H), for each initial datum U0 ∈ H. Moreover,
if U0 ∈ D(A), then

U ∈ C([0,+1), D(A)) ∩ C1([0,+1), H).

Finally, we also recall the following theorem concerning a perturbations by a bounded linear
operators
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Theorem 1.3.6 Let X be a Banach space and let A be the infinitesimal generator of a C0-
semigroup (S(t))t≥0 on X, satisfying ‖SA(t)‖L(H) ≤Meωt for all t ≥ 0. If B is a bounded linear
operator on X , then the operator A+ B becomes the infinitesimal generator of a C0-semigroup
(SA+B(t))t≥0 on X, satisfying ‖SA+B(t)‖L(H) ≤Me(ω+M‖B‖)t for all t ≥ 0 .

1.4 Stability of semigroup

In this section we start by introducing some definition about strong, exponential and polynomial
stability of a C0-semigroup. Then we collect some results about the stability of C0-semigroup.
Let (X, ‖.‖X) be a Banach space, and H be a Hilbert space equipped with the inner product
< ., . >H and the induced norm ‖.‖H .

Definition 1.4.1 Assume that A is the generator of a strongly continuous semigroup of con-
tractions (S(t))t≥0 on X. We say that the C0-semigroup (S(t))t≥0 is

1. Strongly stable if
lim
t→+∞

‖S(t)u‖X = 0, ∀u ∈ X.

2. Uniformly stable if
lim
t→+∞

‖S(t)‖L(X) = 0.

3. Exponentially stable if there exist two positive constants M and ε such that

‖S(t)u‖X ≤Me−εt‖u‖X , ∀t > 0, ∀u ∈ X.

4. Polynomially stable if there exist two positive constants C and α such that

‖S(t)u‖X ≤ Ct−α‖u‖X , ∀t > 0, ∀u ∈ X.

Proposition 1.4.1 Assume that A is the generator of a strongly continuous semigroup of con-
tractions (S(t))t≥0 on X. The following statements are equivalent

• (S(t))t≥0 is uniformly stable.

• (S(t))t≥0 is exponentially stable.

First, we look for the necessary conditions of strong stability of a C0-semigroup. The result was
obtained by Arendt and Batty.

Theorem 1.4.1 (Arendt and Batty) Assume that A is the generator of a strongly continuous
semigroup of contractions (S(t))t≥0 on a reflexive Banach space X. If

(i) A has no pure imaginary eigenvalues.

(ii) σ(A) ∩ iIR is countable.
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Then S(t) is strongly stable.

Remark 1.4.1 If the resolvent (I − T )−1 of T is compact, then σ(T ) = σp(T ). Thus, the state
of Theorem (...) lessens to σp(A) ∩ iIR = ∅. Next, when the C0-semigroup is strongly stable,
we look for the necessary and sufficient conditions of exponential stability of a C0-semigroup. In
fact, exponential stability results are obtained using different methods like: multipliers method,
frequency domain approach, Riesz basis approach, Fourier analysis or a combination of them .

Theorem 1.4.2 (Huang-Pruss)Assume that A is the generator of a strongly continuous semi-
group of contractions (S(t))t≥0 on H. S(t) is uniformly stable if and only if

1. iIR ⊂ ρ(A).

2. sup
β∈IR ‖(iβI −A)−1‖L(H) < +∞.

The second one, is a classical method based on the spectrum analysis of the operator A

In the case when the C0-semigroup is not exponentially stable we look for a polynomial one. In
general, polynomial stability results also are obtained using different methods like : multipliers
method, frequency domain approach, Riesz basis approach, Fourier analysis or a combination of
them .

Theorem 1.4.3 (Batty , A.Borichev and Y.Tomilov, Z. Liu and B. Rao.)Assume that A is the
generator of a strongly continuous semigroup of contractions (S(t))t≥0 on H. If iIR ⊂ ρ(A),
then for a fixed l > 0 the following conditions are equivalent

1. lim|λ|→+∞ sup 1
λl
‖(λI −A)−1‖L(H) < +∞.

2. ‖S(t)U0‖H ≤ C
tl−1‖U0‖D(A) ∀t > 0, U0 ∈ D(A), for some C > 0.

1.5 Lax-Milgrame Theorem:

Let H be a Hilbert space equipped with the inner product (., .)H and the induced norm ‖.‖H .

Definition 1.5.1 A bilinear form
a : H ×H → IR

is said to be

• (i) continuous if there is a constant C such that

|a(u, v)| ≤ C‖u‖‖v‖, ∀u, v ∈ H

• (ii) coercive if there is a constant α > 0 such that

|a(u, u)| ≥ α‖u‖2, ∀u ∈ H

Theorem 1.5.1 (Lax-Milgrame Theorem) Assume that a(., .) is a continuous coercive bi-
linear form on H. Then, given any L ∈ L(H, IC), there exists a unique element u ∈ H such
that

a(u, v) = L(v), ∀v ∈ H
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1.6 Fractional Derivative Control

In this part, we introduce the necessary elements for the good understanding of this manuscript.
It includes a brief reminder of the basic elements of the theory of fractional computation. The
concept of fractional computation is a generalization of ordinary derivation and integration to
an arbitrary order. Derivatives of non-integer order are now widely applied in many domains,
for example in economics, electronics, mechanics, biology, probability and viscoelasticity. A
particular interest for fractional derivation is related to the mechanical modeling of gums and
rubbers. In short, all kinds of materials that preserve the memory of previous deformations in
particular viscoelastic. Indeed, the fractional derivation is introduced naturally.
The fractional calculus is an important developing field in both pure and applied mathematics.
Many real world problems have been investigated within the fractional derivatives, particularly
Caputo fractional derivative is extensively and successfully used in many branches of sciences
and engineering.

1.6.1 Some history of fractional calculus:

In a letter dated September 30th, 1695 LHospital wrote to Leibniz asking him about the
meaning of dny/dxn if n = 1/2, that is ”what if n is fractional?”. Leibnizs response: An
apparent paradox, from which one day useful consequences will be drawn.
In 1819 S. F. Lacroix [100] was the first to mention in some two pages a derivative of arbitrary
order.Thus for y = xa, a ∈ IR+, he showed that

d1/2y

dx1/2
=

Γ(a+ 1)

Γ(1 + 1/2)
xa−1/2.

In particular he had (d/dx)1/2x = 2
√
x/π.

In 1822 J. B. J. Fourier derived an integral representation for f(x),

f(x) =
1

2π

∫
IR
f(α)dα

∫
IR

cos p(x− α)dp,

obtained (formally) the derivative version

dν

dxν
f(x) =

1

2π

∫
IR
f(α)dα

∫
IR
pν cos[p(x− α) +

νπ

2
]dp

where ”the number v will be regarded as any quantity whatever, positive ornegative”.
In 1823 Abel resolved the integral equation arising from the brachistochrone problem, namely

1

Γ(α)

∫ x

0

g(u)

(x− u)1−αdu = f(x), 0 < α < 1

with the solution

g(x) =
1

Γ(1− α)

d

dx

∫ x

0

f(u)

(x− u)α
du
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Abel never solved the problem by fractional calculus but, in 1832 Liouville [103], did solve this
integral equation.
Perhaps the first serious attempt to give a logical definition of a fractional derivative is due to
Liouville; he published nine papers on the subject between 1832 and 1837, the last in the field
in 1855. They grew out of Liouville’s early work on electromagnetism. There is further work of
George Peacock (1833), D. F. Gregory (1841), Augustus de Morgan (1842), P. Kelland (1846),
William Center (1848). Especially basic is Riemann’s student paper of 1847 [139].
After the participation of Riemann and the work of Cayley in 1880 see [127], among the math-
ematicians spearheading research in the broad area of fractional calculus until 1941 were S.F.
Lacroix, J.B.J. Fourier, N.H. Abel, J. Liouville, A. De Morgan, B. Riemann, Hj. Holmgren,
K. Griinwald, A.V. Letnikov, N.Ya. Sonine, J. Hadamard, G.H. Hardy, H. Weyl, M. Riesz,
H.T. Davis, A. Marchaud, J.E. Littlewood, E.L. Post, E.R. Love, B.Sz.-Nagy, A. Erdelyi and H.
Kober.
Fractional calculus has developed especially intensively since 1974 when the first international
conference in the field took place.It was organized by Bertram Ross [144].
Samko et al in their encyclopedic volume [153, p. xxxvi] state and we cite: ”We pay tribute to
investigators of recent decades by citing the names of mathematicians who have made a valuable
scientific contribution to fractional calculus development from 1941 until the present [1990].
These are M.A. Al- Bassam, L.S. Bosanquet, P.L. Butzer, M.M. Dzherbashyan, A. Erdelyi, T.M.
Flett, Ch. Fox, S.G. Gindikin, S.L. Kalla, LA. Kipriyanov, H. Kober, P.I. Lizorkin, E.R. Love,
A.C. McBride, M. Mikolas, S.M. Nikol’skii, K. Nishimoto, LI. Ogievetskii, R.O. O’Neil, T.J.
Osier, S. Owa, B. Ross, M. Saigo, I.N. Sneddon, H.M. Srivastava, A.F. Timan, U. Westphal, A.
Zygmund and others”. To this list must of course be added the names of the authors of Samko
et al [153] and many other mathematicians, particularly those of the younger generation. Books
especially devoted to fractional calculus include K.B. Oldham and J. Spanier [133], S.G. Samko,
A.A. Kilbas and O.I. Marichev [153], V.S. Kiryakova [91], K.S. Miller and B. Ross [121], B.
Rubin [147]. Books containing a chapter or sections dealing with certain aspects of fractional
calculus include H.T. Davis [37], A. Zygmund [181], M.M.Dzherbashyan [45], I.N. Sneddon [159],
P.L. Butzer and R.J. Nessel [25], P.L. Butzer and W. Trebels [28], G.O. Okikiolu [132], S. Fenyo
and H.W. Stolle [55], H.M. Srivastava and H.L. Manocha [162], R. Gorenfio and S. Vessella [65].

1.6.2 Various approaches of fractional derivatives

There exists a many mathematical definitions of fractional order integration and derivation.
These definitions do not always lead to identical results but are equivalent for a wide large of
functions. We introduce the fractional integration operator as well as the two most definitions
of fractional derivatives, used, namely that Riemann-Liouville, Caputo and Hadamard.

From the classical fractional calculus, we recall

Definition 1.6.1 The left Riemann-Liouville fractional integral of order α > 0 starting from a
has the following form

(aI
αf)(n) =

1

Γ(α)

∫ x

a
(x− t)α−1f(t)dt.
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Definition 1.6.2 The right Riemann-Liouville fractional integral of order α > 0 ending at b > a
is defined by

(Iαb f)(n) =
1

Γ(α)

∫ b

x
(x− t)α−1f(t)dt.

Definition 1.6.3 The left Riemann-Liouville fractional derivative of order α > 0 starting at a
is given below

(aD
αf)(x) = (

d

dx
)n(aIn−αf)(x), n = [α] + 1.

Definition 1.6.4 The right Riemann-Liouville fractional derivative of order α > 0 ending at b
becomes

(Dα
b f)(x) = (− d

dx
)n(In−αb f)(x).

Definition 1.6.5 The left Caputo fractional of order α > 0 starting from a has the following
form

(aD
αf)(x) = (aIn−αf (n))(x), n = [α] + 1.

Definition 1.6.6 The right Caputo fractional derivative of order α > 0 ending at b becomes

(Dα
b f)(x) = (In−αb (−1)nf (n))(x).

The Hadamard type fractional integrals and derivatives were introduced in [15] as:

Definition 1.6.7 The left Hadamard fractional integral of order α > 0 starting from a has the
following form

(aI
αf)(x) =

1

Γ(α)

∫ x

a
(lnx− ln t)α−1f(t)dt

Definition 1.6.8 The right Hadamard fractional integral of order α > 0 ending at b > a is
defined by

(Iαb f)(x) =
1

Γ(α)

∫ b

x
(ln t− lnx)α−1f(t)dt

Definition 1.6.9 The left Hadamard fractional derivative of order α > 0 starting at a is given
below

(aD
αf)(x) = (x

d

dx
)n(aIn−αf)(x), n = [α] + 1.

Definition 1.6.10 The right Hadamard fractional derivative of order α > 0 ending at b becomes

(Dα
b f)(x) = (−x d

dx
)n(In−αb f)(x).

Definition 1.6.11 The fractional derivative of order α, 0 < α < 1, in sense of Caputo, is
defined by

Dαf(t) =
1

Γ(1− α)

∫ t

0
(t− s)−α df

ds
(s)ds.
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Definition 1.6.12 The fractional integral of order α, 0 < α < 1, in sense Riemann-Liouville,
is defined by

Iαf(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds.

Remark 1.6.1 From the above definitions, clearly

Dαf = Iα−1Df, 0 < α < 1.

Lemma 1.6.1
IαDαf(t) = f(t)− f(0), 0 < α < 1.

Lemma 1.6.2 If
Dβf(0) = 0.

then
DαDβf = Dα+βf, 0 < α < 1, 0 < β < 1.

Now, we give the definitions of the generalized Caputo’s fractional derivative and the gener-
alized fractional integral. These exponentially modified fractional integro-differential operators
were first proposed in [].

Definition 1.6.13 The generalized Caputo’s fractional derivative is given by

Dα,ηf(t) =
1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s) df

ds
(s) ds, 0 < α < 1, η ≥ 0.

Remark 1.6.2 The operators Dα and Dα,η differ just by their kernels.

Definition 1.6.14 The generalized fractional integral is given by

Iα,ηf(t) =
1

Γ(α)

∫ t

0
(t− s)α−1e−η(t−s)f(s) ds, 0 < α < 1, η ≥ 0.

Remark 1.6.3 We have

Dα,ηf = I1−α,ηDf, 0 < α < 1, η ≥ 0.

1.7 Bessel functions

We will discuss a class of functions known as Bessel functions. These are named after the German
mathematician and astronomer Friedrich Bessel. Bessel functions occur in many other physical
problems, usually in a cylindrical geometry.

Definition 1.7.1 Bessel’s equation can be written in the form

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = 0,(1.2)

with ν real and positive. note that (1.2) has a regular singular point at x = 0.



1.7. BESSEL FUNCTIONS 23

1.7.1 The Gamma Function and Pockhammer Symbol:

Definition 1.7.2 The gamma function is defined by

Γ(x) =
∫ ∞

0
e−qqx−1dq, for x > 0.(1.3)

Note that the integration is over the dummy variable q and x is treated as constant during the
integration

Definition 1.7.3 The pockhammer symbol is a simple way of writing down long products. It
is defined as

(α)r = α(α + 1)(α + 2)...(α + r − 1)

So that, for example, (α)1 = α and (α)2 = α(α + 1).
Note that (1)n = n!

The relationship between the gamma function and the pockhammer symbol is

Γ(x)(x)n = Γ(x+ n)

1.7.2 Series solutions of Bessel’s Equation:

b.Fundamental solutions of Bessel’s equation when ν /∈ IN:
We can now proceed to consider a Frobenius solution,

y(x) =
∞∑
m=0

amx
m+c

Where we have used the Pockhammer symbol to simplify the expression. So we have

y(x) = a0x
±ν

∞∑
m=0

(−1)m
x2m

22m(1± ν)mm!

With a suitable choice of a0 we can write this as

y(x) = A
x±ν

2±νΓ(1± ν)

∞∑
m=0

(−1)m
(x

2

4
)m

(1± ν)mm!
= AJ±ν(x).

These are the Bessel functions of order ±ν. The general solution of Bessel’s equation (1.2), is
therefore

y(x) = AJ+ν(x) +BJ−ν(x),
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for arbitrary constants A and B, with the first of the two series converges for all values of x and
defines the so-called Bessel function of order ν and of the first kind which is denoted by Jν

Jν(x) =
xν

2νΓ(1 + ν)

∞∑
m=0

(−1)m
(x

2

4
)m

(1 + ν)mm!
=

∞∑
m=0

(−1)m

m!Γ(m+ ν + 1)
(
x

2
)2m+ν =

∞∑
m=0

c+
ν,mx

2m+ν , x ≥ 0.

(1.4)
The second series converges for all positive values of x and is evidently J−ν

J−ν(x) =
x−ν

2−νΓ(1− ν)

∞∑
m=0

(−1)m
(x

2

4
)m

(1− ν)mm!
=

∞∑
m=0

(−1)m

m!Γ(m− ν + 1)
(
x

2
)2m−ν =

∞∑
m=0

c−ν,mx
2m−ν , x > 0.

(1.5)
c.Fundamental solutions of Bessel’s equation when ν = n ∈ IN:
Assume that ν = n ∈ IN. When looking for solutions of ( 1.2 )of the form of series of ascending
powers of x, one sees that Jn and J−n are still solutions of (1.2), where Jn is still by (1.5) and
J−n is given by ( 1.5 ); when ν = n ∈ IN, J−n can be written .

Jn(x) =
∑
m≥n

(−1)m

m!Γ(m− n+ 1)
(
x

2
)−n+2m.(1.6)

However now J−n(x) = (−1)nJn(y), hence Jn and J−n are linearly dependent. The determination
of a fundamental system of solutions in this case requires further investigation. In this purpose,
one introduces the Bessel’s functions of order ν and of the second kind: among the several
definitions of Bessel’s functions of second order, we recall here the definition by Weber. The
Bessel’s functions of order ν and of second kind are denoted by Yν and defined by{

∀ν /∈ IN, Yν(y) := Jν(x)cos(νπ)−J−ν(x)
sin(νπ)

,

∀n ∈ IN, Yn(y) := limν→n Yν(x),

For any ν ∈ IR+ , the two functions Jν and Yν always are linearly independent. In particular, in
the case ν = n ∈ IN, the pair ( Jn, Yn ) forms a fundamental system of solutions of the Bessels
equation for functions of order n.

1.7.3 Differential and Recurrence Relations Between Bessel func-
tions:

It is often useful to find relationships between Bessel functions with different indices. We will
derive two such relationships. We start with (1.5),we multiply by xν and differentiate to obtain

d

dx
{xνJν(x)} = xνJν−1(x)(1.7)

and consequently
d

dx
{x−νJν(x)} = −x−νJν+1(x)(1.8)
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We can use these relationships to derive recurrence relations between the Bessel functions. We
expand the differentials in each expression to give the equations

J ′ν(x) +
ν

x
Jν(x) = Jν−1(x),(1.9)

where we have divided through by xν , and

J ′ν(x)− ν

x
Jν(x) = −Jν+1(x),(1.10)

where this time we have multiplied by xν . By adding these expressions we find that

J ′ν(x) =
1

2
{Jν−1(x)− Jν+1(x)},(1.11)

and by subtracting then
2ν

x
Jν(x) = Jν−1(x) + Jν+1(x),(1.12)

which is a pure recurrence relationship. These results can also be used when integrating Bessel
functions.

1.7.4 Inhomogeneous Terms in Bessel’s Equation:

The Inhomogeneous version of Bessel’s equation

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = f(x),(1.13)

and the solution can be written as

y(x) = AJν(x) +BJ−ν(x) +
2ν

sinνπ

∫ x

0

f(s)

s

(
Jν(s)J−ν(x)− Jν(x)Y−ν(s)

)
ds.(1.14)

1.8 Appendix

Theorem 1.8.1 Let µ be the function:

µ(ξ) = |ξ|
2α−d

2 , ξ ∈ IRd and 0 < α < 1.(1.15)

Then the relationship between the ‘input’ U and the ‘output’ O of the system

∂tω(ξ, t) + (|ξ|2 + η)ω(ξ, t)− U(t)µ(ξ) = 0, ξ ∈ IRd, t ∈ IR+ and η ≥ 0(1.16)

ω(ξ, 0) = 0,(1.17)

O(t) =
2 sin(απ)Γ(d

2
+ 1)

dπ
d
2

+1

∫
IRd µ(ξ)ω(ξ, t)dξ,(1.18)

is given by
O = I1−α,ηU = Dα,ηU.(1.19)
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Proof Step 1. Take η = 0, the from equation (1.16) and (1.17),we have

ω(ξ, t) =
∫ t

0
µ(ξ)e−|ξ|

2(t−τ)U(τ)dτ(1.20)

Then from equations (1.18) and (1.20), we get

O(t) = δ
∫
IRd |ξ|2α−d[

∫ t

0
µ(ξ)e−|ξ|

2(t−τ)U(τ)dτ ]dξ(1.21)

where δ =
2 sin(απ)Γ( d

2
+1)

dπ
d
2+1

. Next, using the spherical coordinates defined by,



ξ1 = ρsin(φ1)sin(φ2)...sin(φd−3)sin(φd−2)sin(φd−1),
ξ2 = ρsin(φ1)sin(φ2)...sin(φd−3)sin(φd−2)cos(φd−1),
ξ3 = ρsin(φ1)sin(φ2)...sin(φd−3)cos(φd−2),
ξ4 = ρsin(φ1)sin(φ2)...cos(φd−3),
.
.
.
ξd−1 = ρsin(φ1)cos(φ2),
ξd = ρcos(φ1).

(1.22)

where,ρ = |ξ| =
√∑d

i=1 |ξi|2, φj ∈ [0, π] if 1 ≤ j ≤ d − 2 and φd−2 ∈ [0, 2π]. The jacobian J is
defined by

J = ρd−1
d−2∏
j=1

sind−1−j(φj)(1.23)

Since the integrating is a function which depends only on |ξ| = ρ, thus we can integrate on all
the angles and the calculation reduces that of a simple integral on the positive real axis. Then,
from equations (1.21)-(1.23) we get

O(t) = δ
∫ +∞

0
ρ2α−1

d−2∏
j=1

(
∫ π

0
sind−1−j(φj)dφj)

∫ 2π

0
dφd−1[

∫ t

0
e−ρ

2(t−τ)U(τ)dτ ]dρ(1.24)

By induction, it easy to see that

d−2∏
j=1

(
∫ π

0
sind−1−j(φj)dφj)

∫ 2π

0
dφd−1 =

dΠ
d
2

Γ(d
2

+ 1)
(1.25)

Inserting equation (1.25) in equation (1.24), we get

O(t) =
sin(απ)

π

∫ t

0
2[
∫ +∞

0
ρ2α−1e−ρ

2(t−τ)dρ]U(τ)dτ.(1.26)

Thus,

O(t) =
sin(απ)

π

∫ t

0
[(t− τ)−αΓ(α)]U(τ)dτ.(1.27)



1.8. APPENDIX 27

Using the fact that sin(απ)
π

= 1
Γ(α)Γ(1−α)

in equation, we obtain

O(t) =
∫ t

0

(t− τ)−α

Γ(1− α)
U(τ)dτ.(1.28)

It follows that, from equation (1.28) we have

O = I1−αU(1.29)

Step 1. By simply effecting the following change of function

ω(ξ, t) := e−ηtϕ(ξ, t)

in equations (1.16) and (1.18), we directly obtain

∂tω(ξ, t) + (|ξ|2 + η)ω(ξ, t)− U(t)µ(ξ) = 0, ξ ∈ IRN , t ∈ IR+ and η ≥ 0,(1.30)

ω(ξ, 0) = 0,(1.31)

O(t) = δe−ηt
∫
IRd µ(ξ)ω(ξ, t)dξ(1.32)

Hence, from Step 1, (1.30)-(1.32) yield the desired result

O(t) = e−ηt
∫ t

0

(t− τ)−α

Γ(1− α)
eητU(τ)dτ

The proof has been completed.

Lemma 1.8.1 If λ ∈ D = {λ ∈ IC : Reλ+ η > 0} ∪ {λ ∈ IC : Imλ 6= 0} then

F1(λ) =
∫ +∞

−∞

µ2(ξ)

λ+ η + ξ2
dξ =

π

sinαπ
(λ+ η)α−1

and

F2(λ) =
∫ +∞

−∞

µ2(ξ)

(λ+ η + ξ2)2
dξ = (1− α)

π

sinαπ
(λ+ η)α−2.

Proof Let us set

fλ(ξ) =
µ2(ξ)

λ+ η + ξ2
.

We have ∣∣∣∣∣ µ2(ξ)

λ+ η + ξ2

∣∣∣∣∣ ≤ µ2(ξ)

Reλ+ η + ξ2
.

Then the function fλ is integrable. Moreover

∣∣∣∣∣ µ2(ξ)

λ+ η + ξ2

∣∣∣∣∣ ≤


µ2(ξ)

η0 + η + ξ2
for all Reλ ≥ η0 > −η

µ2(ξ)

η̃0 + ξ2
for all |Imλ| ≥ η̃0 > 0
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From theorem 1.16.1 in [?], the function

fλ : D → IC is holomorphe.

For a real number λ > −η, we have∫ +∞

−∞

µ2(ξ)

λ+ η + ξ2
dξ =

∫ +∞

−∞

|ξ|2α−1

λ+ η + ξ2
dξ =

∫ +∞

0

xα−1

λ+ η + x
dx ( with ξ2 = x)

= (λ+ η)α−1
∫ +∞

1
y−1(y − 1)α−1 dy ( with y = x/(λ+ η) + 1)

= (λ+ η)α−1
∫ 1

0
z−α(1− z)α−1 dz ( with z = 1/y)

= (λ+ η)α−1B(1− α, α) = (λ+ η)α−1Γ(1− α)Γ(α) = (λ+ η)α−1 π

sin πα
.

Both holomorphic functions fλ and λ 7→ (λ + η)α−1 π

sinπα
coincide on the half line ] −∞,−η[,

hence on D following the principle of isolated zeroes.
2



Chapter 2

DECAY ESTIMATES FOR A
DEGENERATE WAVE EQUATION
WITH A DYNAMIC FRACTIONAL
FEEDBACK ACTING ON THE
DEGENERATE BOUNDARY

abstract: We consider a one-dimensional weakly degenerate wave equation with a dynamic nonlocal

boundary feedback of fractional type acting at a degenerate point. First We show well-posedness by

using the semigroup theory. Next, we show that our system is not uniformly stable by spectral analysis.

Hence, we look for a polynomial decay rate for a smooth initial data by using a result due Borichev

and Tomilov which reduces the problem of estimating the rate of energy decay to finding a growth

bound for the resolvent of the generator associated with the semigroup. This analysis proves that the

degeneracy affect the energy decay rates.

2.1 Introduction

We are concerned with the dynamic boundary stabilization of fractional type for degenerate
wave equation of the form

(P )


utt(x, t)− (xγux(x, t))x = 0 in (0, 1)× (0,+∞),
−mutt(0, t) + (xγux)(0, t) = %∂α,ηt u(0, t) in (0,+∞),
u(1, t) = 0 in (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, 1),

where (x, t) ∈ (0, 1) × (0,+∞), γ ∈ [0, 1),m > 0 and % > 0. The notation ∂α,ηt stands for the
generalized Caputo’s fractional derivative of order α, (0 < α ≤ 1), with respect to the time

29



30 DEGENERATE WAVE EQUATION WITH A DYNAMIC FRACTIONAL FEEDBACK

variable (see [19]). It is defined as follows

∂α,ηt w(t) =


wt(t) for α = 1, η ≥ 0,

1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s)dw

ds
(s) ds, for 0 < α < 1, η ≥ 0.

The problem (P ) describes the motion of a pinched vibration cable with tip mass m > 0 (see
[39] and [28]). The situations where the coefficients are variables arise in engineering problems
that generally use non-homogeneous materials such as smart materials.

The bibliography of works concerning the stabilization of nondegenerate non-homogeneous
wave equation with different types of dampings is truly long (see e.g. [17], [20], [16] and the
references therein). D’Andrea-Novel and al. in [20] studied the wave equation with one feedback
depending only on the boundary velocities and the boundary displacement i.e, they considered
the following problem

utt(x, t)− (a(x)ux)x = 0, 0 < x < 1, t > 0,
(aux)(0, t) = 0, t > 0
(aux)(1, t) = −ku(1, t)− ut(1, t), t > 0 k > 0,

where a(x) = a1x + a0. They have established aymptotics stabilization. Chentouf and al. in
[16] considered the following modelization of a flexible torque arm controlled by two feedbacks
depending only on the boundary velocities:

utt(x, t)− (a(x)ux)x + αut(x, t) + βy(x, t) = 0, 0 < x < 1, t > 0,
(a(x)ux)(0) = k1ut(0, t), t > 0,
(a(x)ux)(1) = −k2ut(1, t), t > 0,

where {
α ≥ 0, β > 0, k1, k2 ≥ 0, k1 + k2 6= 0,
a ∈ W 1,∞(0, 1), a(x) ≥ a0 for all x ∈ [0, 1].

They establish the exponential decay of the solutions.
Let us mention here that the case γ = 0 and α = 1 in (P ) corresponds to a classical boundary

damping and it has been extensively studied by many authors (see, for instance, [34], [26], and
references therein). It has been proved, in particular that solutions exist globally with an optimal
decay rate that is E(t) ∼ c/t by using Riesz basis property of the generalized eigenvector of the
system.

Recently in [9], Benaissa and Benkhedda considered the stabilization for the following wave
equation with dynamic boundary feedback of fractional derivative type (CF ):

(PF )


utt(x, t)− uxx(x, t) = 0 in (0, 1)× (0,+∞)
u(0, t) = 0 in (0,+∞)
mutt(1, t) + ux(1, t) = −%∂α,ηt u(1, t) in (0,+∞)
u(x, 0) = u0(x), ut(x, 0) = u1(x) in (0, 1)

They proved that the decay of the energy is not exponential but polynomial that is E(t) ≤
C1/t(2−α).
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Very recently in [18], Cheheb and al. considered the stabilization for the following wave
equation with a general dynamic boundary feedback of diffusive type (CF ):

(P )



utt(x, t)− uxx(x, t) = 0 in (0, 1)× (0,+∞),
u(0, t) = 0 in (0,+∞),

mutt(1, t) + ux(1, t) = −ζ
∫ +∞

−∞
ν(ξ)ϕ(ξ, t) dξ in (0,+∞),

∂tϕ(ξ, t) + (ξ2 + η)ϕ(ξ, t)− ut(1, t)ν(ξ) = 0 in (−∞,∞)× (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) in (0, 1),
ϕ(ξ, 0) = ϕ0 in (−∞,∞).

They proved that the decay of the energy is not exponential. Moreover, they obtained a precise
and optimal energy decay estimate for a general feedback of diffusive type, from which the usual
feedback of fractional derivative type is a special case.

Very recently in [8], Benaissa and Aichi studied the degenerate wave equation of the type

utt(x, t)− (a(x)ux(x, t))x = 0 in (0, 1)× (0,+∞),(2.1)

where the coefficient a is a positive function on ]0, 1] but vanishes at zero. The degeneracy of
(2.1) at x = 0 is measured by the parameter µa defined by

µa = sup
0<x≤1

x|a′(x)|
a(x)

(2.2)

and the initial conditions are

u(x, 0) = u0(x), ut(x, 0) = u1(x),(2.3)

followed by the boundary conditions

(P1)


{
u(0, t) = 0 if 0 ≤ µa < 1
(aux)(0, t) = 0 if 1 ≤ µa < 2

in (0,+∞),

ux(1, t) + %∂α,ηt u(1, t) + βu(1, t) = 0 in (0,+∞).

They proved an optimal polynomial decay rate. It is proved that the presence of feedback of
fractional time derivative type and located at a nondegenerate point x = 1 has no effect on the
stabilisation results in [8].

Here we want to focus on the following remarks:

• The method based on the theory of Riesz basis property of the generalized eigenvector of
the system does not seem to be work in the presence of a fractional feedback.

• The frequency method based on multiplier techniques used in [8] and the enegy method
based on multiplier techniques used in [31] do not seem to be work in the case of a feedback
located at a degenerate point x = 0.
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In this chapter, we explain the influence of the relation between the tip mass term, the degen-
erate coefficient and the fractional feedback on decay estimates. We prove a sharp polynomial
decay rate depending on parameters γ, α. To the best of our knowledge, there is no result con-
cerning the stabilization of a degenerate wave equation with the presence of a dynamic fractional
feedback acting on the degenerate boundary.

This chapter is organized as follows. In section 2, we give preliminaries results and we
reformulate the system (P ) into an augmented system by coupling the degenerate wave equation
with a suitable diffusion equation and we show the well-posedness of our problem by semigroup
theory. In section 3, we prove lack of exponential stability by spectral analysis and by using
Bessel functions. In the last section, we prove an optimal decay rate. Our approach is based
on a result due to Borichev and Tomilov, which reduces the problem of estimating the rate of
energy decay to finding a growth bound for the resolvent of the semigroup generator using an
explicit representation of the resolvent by the help of Bessel functions.

2.2 Preliminary results

Now, we introduce the following weighted Sobolev spaces:

H1
0,γ(0, 1) =

{
u is locally absolutely continuous in (0, 1] : xγ/2ux ∈ L2(0, 1)/ u(1) = 0

}
,

H1
γ(0, 1) =

{
u is locally absolutely continuous in (0, 1] : xγ/2ux ∈ L2(0, 1)

}
.

We remark that H1
γ(0, 1) is a Hilbert space with the scalar product

(u, v)H1
γ(0,1) =

∫ 1

0
(uv + xγu′(x)v′(x)) dx, ∀u, v ∈ H1

γ(0, 1).

Let us also set

|u|H1
0,γ(0,1) =

(∫ 1

0
xγ|u′(x)|2 dx

)1/2

∀u ∈ H1
γ(0, 1).

Actually, | · |H1
0,γ(0,1) is an equivalent norm on the closed subspace H1

0,γ(0, 1) to the norm of

H1
γ(0, 1). This fact is a simple consequence of the following version of Poincaré’s inequality.

Proposition 2.2.1 There is a positive constant C∗ = C(γ) such that

‖u‖L2(Ω) ≤ C∗|u|H1
0,γ(0,1) ∀u ∈ H1

0,γ(0, 1).(2.4)

Proof. Let u ∈ H1
0,γ(0, 1). For any x ∈]0, 1] we have that

|u(x)| =
∣∣∣∣∫ 1

x
u′(s) ds

∣∣∣∣ ≤ |u|H1
0,γ(0,1)

{∫ 1

0

1

xγ
dx
}1/2

.

Therefore ∫ 1

0
|u(x)|2 dx ≤ 1

1− γ
|u|2H1

0,γ(0,1).
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Next, we define

H2
γ(0, 1) = {u ∈ H1

γ(0, 1) : xγu′ ∈ H1(0, 1)},

where H1(0, 1) denotes the classical Sobolev space. In this section we reformulate (P ) into an
augmented system. For that, we need the following proposition.

Remark 2.2.1 Notice that if u ∈ H2
γ(0, 1), γ ∈ [1, 2),we have (xγux)(0) ≡ 0. Indeed, if

xγux(x)→ L when x→ 0, then xγ|ux(x)|2 ∼ L/xγ and therefore L = 0 otherwise u 6∈ H1
γ(0, 1).

Proposition 2.2.2 (see [37]) Let ν be the function:

ν(ξ) = |ξ|(2α−1)/2, −∞ < ξ < +∞, 0 < α < 1.(2.5)

Then the relationship between the ‘input’ U and the ‘output’ O of the system

∂tϕ(ξ, t) + (ξ2 + η)ϕ(ξ, t)− U(t)ν(ξ) = 0, −∞ < ξ < +∞, η ≥ 0, t > 0,(2.6)

ϕ(ξ, 0) = 0,(2.7)

O(t) = (π)−1 sin(απ)
∫ +∞

−∞
ν(ξ)ϕ(ξ, t) dξ(2.8)

is given by

O = I1−α,ηU.(2.9)

where

[Iα,ηf ](t) =
1

Γ(α)

∫ t

0
(t− τ)α−1e−η(t−τ)f(τ) dτ.

Lemma 2.2.1 (see [1]) If λ ∈ Dη = IC\]−∞,−η] then

F (λ) =
∫ +∞

−∞

ν2(ξ)

λ+ η + ξ2
dξ =

π

sinαπ
(λ+ η)α−1.

Using now Proposition 2.2.2 and relation (2.9), system (P ) may be recast into the following
augmented system

(P ′)



utt(x, t)− (xγux(x, t))x = 0,
ϕt(ξ, t) + (ξ2 + η)ϕ(ξ, t)− ut(0, t)ν(ξ) = 0, −∞ < ξ < +∞, t > 0,

−mutt(0, t) + (xγux)(0, t) = ζ
∫ +∞

−∞
ν(ξ)ϕ(ξ, t) dξ,

u(1, t) = 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x),

where ζ = %(π)−1 sin(απ). Thus, we shall consider problem (P ′) instead of (P ).
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2.3 Well-posedness

In this section, we will use the semigroup approach to study the well-posedness of system (P ′).
To define the semigroup associated with (P ′), we consider the right-end boundary condition

ut(0, t) = θ(t), t > 0,

where θ solve the equation

−mθt(t) + (xγux)(0, t)− ζ
∫ +∞

−∞
ν(ξ)ϕ(ξ, t) dξ = 0.(2.10)

with the initial condition
θ(0) = u1(0) = θ0.(2.11)

Considering U := (u, ut, ϕ, θ)
T and U0 = (u0, u1, 0, θ0)T , system (P ′) can be written in the

following abstract framework
∂tU = PU, U(0) = U0,(2.12)

where the operator P is given by

P


u
v
ϕ
θ

 =


v

(xγux)x
−(ξ2 + η)ϕ+ v(0)ν(ξ)

1

m
(xγux)(0)− ζ

m

∫ +∞

−∞
ν(ξ)ϕ(ξ) dξ

 .(2.13)

This operator will be defined in an appropriate subspace of the Hilbert space

H = H1
0,γ(0, 1)× L2(0, 1)× L2(−∞,+∞)× IC,

endowed with the inner product

〈
u
v
ϕ
θ

 ,

ũ
ṽ
ϕ̃
θ̃


〉
H

=
∫ 1

0
xγuxũxdx+

∫ 1

0
vṽdx+ ζ

∫ +∞

−∞
ϕϕ̃ dξ +mθθ̃.

We choose the domain for the operator P as

D(P) =


(u, v, ϕ, θ) in H : u ∈ H2

γ(0, 1) ∩H1
0,γ(0, 1), v ∈ H1

0,γ(0, 1), θ ∈ IC,
−(ξ2 + η)ϕ+ v(0)ν(ξ) ∈ L2(−∞,+∞), v(0) = θ,
|ξ|ϕ ∈ L2(−∞,+∞)

 .(2.14)

Our main result is giving by the following theorem.

Theorem 2.3.1 The operator P defined by (2.13) and (2.14), generates a C0-semigroup of con-
tractions etP in the Hilbert space H.
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Proof. To prove this result we shall use the Lumer-Phillips theorem. Since for every U =
(u, v, ϕ, θ) ∈ D(P) we have

<〈PU,U〉H = −ζ
∫ +∞

−∞
(ξ2 + η)|ϕ(ξ)|2 dξ.(2.15)

then the operator P is dissipative.
Let λ > 0. we prove that the operator (λI − P) is a surjection. Let F = (f1, f2, f3, f4) ∈ H,

the vector U = (u, v, ϕ, θ) ∈ D(P) is a solution of the system λI − PU = F if its components
satisfy 

λu− v = f1,
λv − (xγux)x = f2,
λϕ+ (ξ2 + η)ϕ− v(0)ν(ξ) = f3.

λθ − 1
m

(xγux)(0) + ζ
m

∫ +∞

−∞
ν(ξ)ϕ(ξ) dξ = f4.

(2.16)

Suppose u is found with the appropriate regularity. Then, (2.16)1 and (2.16)3 yield

v = λu− f1 ∈ H1
0,γ(0, 1),(2.17)

ϕ(ξ) =
f3(ξ)

ξ2 + η + λ
+
λu(0)ν(ξ)

ξ2 + η + λ
− f1(0)ν(ξ)

ξ2 + η + λ
.(2.18)

By using (2.16) and (2.17) it can easily be shown that u satisfies

λ2u− (xγux)x = f2 + λf1.(2.19)

Solving equation (2.19) is equivalent to finding u ∈ H2
γ(0, 1) ∩H1

0,γ(0, 1) such that

∫ 1

0
(λ2uw − (xγux)xw) dx =

∫ 1

0
(f2 + λf1)w dx,(2.20)

for all w ∈ H1
0,γ(0, 1). By using (2.20), the boundary condition (2.16)4, the fact that θ = v(0)

and (2.18), the function u satisfying the following equation
∫ 1

0
(λ2uw + xγuxwx) dx+ λ(mλ+ ζ̃)u(0)w(0)

=
∫ 1

0
(f2 + λf1)w dx− ζ

∫ +∞

−∞

ν(ξ)

ξ2 + η + λ
f3(ξ) dξw(0) + (mλ+ ζ̃)f1(0)w(0)−mf4w(0).

(2.21)

where ζ̃ = ζ
∫ +∞

−∞

ν2(ξ)

ξ2 + η + λ
dξ. Problem (2.21) is of the form

B(u,w) = L(w), ∀w ∈ H1
0,γ(0, 1),(2.22)

where B : [H1
0,γ(0, 1)×H1

0,γ(0, 1)]→ IC is the the sesquilinear form defined by

B(u,w) =
∫ 1

0
(λ2uw + xγuxwx) dx+ λ(mλ+ ζ̃)u(0) w(0)
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and L : H1
0,γ(0, 1)→ IC is the antilinear form given by

L(w) =
∫ 1

0
(f2 + λf1)w dx− ζ

∫ +∞

−∞

ν(ξ)

ξ2 + η + λ
f3(ξ) dξw(0) + (mλ+ ζ̃)f1(0)w(0)−mf4w(0).

It is easy to verify that B is continuous and coercive, and L is continuous. Therefore, using
the Lax-Milgram Theorem, we conclude that (2.22) has a unique solution u ∈ H1

0,γ(0, 1). By
classical regularity arguments, we conclude that the solution u of (2.22) belongs into H2

γ(0, 1).
Therefore, the operator λI − P is surjective for any λ > 0.

2

As a consequence of Theorem 2.3.1, the system (P ′) is well-posed in the energy space H and
we have the following proposition.

Proposition 2.3.1 For (u0, u1, 0, θ0) ∈ H, the problem (P ′) admits a unique weak solution

(u, ut, ϕ, θ) ∈ C0(IR+,H).

and for (u0, u1, 0, θ0) ∈ D(P), the problem (P ′) admits a unique strong solution

(u, ut, ϕ, θ) ∈ C0(IR+, D(P)) ∩ C1(IR+,H).

Moreover, from the density D(P) in H the energy of (u(t), ϕ(t)) at time t ≥ 0 by

E(t) =
1

2

∫ 1

0
(|ut|2 + xγ|ux|2)dx+

m

2
|ut(0, t)|2 +

ζ

2

∫ +∞

−∞
|ϕ(ξ, t)|2 dξ(2.23)

decays as follow

E ′(t) = −ζ
∫ +∞

−∞
(ξ2 + η)|ϕ(ξ, t)|2 dξ ≤ 0.(2.24)

Proof of Proposition 2.3.1. Noting that the regularity of the solution of the problem (P ′) is
consequence of the semigroup properties. We have just to prove (2.24).

Multiplying the first equation in (P ′) by ut, integrating over (0, 1) and using integration by
parts, we get ∫ 1

0
utt(x, t)utdx−

∫ 1

0
(xγux(x, t))xutdx = 0.

Then
d

dt

(
1

2

∫ 1

0
|ut(x, t)|2dx

)
+

1

2

d

dt

∫ 1

0
xγ|ux(x, t)|2 dx−<

[
(xγux)(x, t)ut

]1

0
= 0.

Then

1

2

d

dt

∫ 1

0

(
|ut(x, t)|2 + xγ|ux(x, t)|2

)
dx+

m

2
|ut(0, t)|2 + ζ<ut(0, t)

∫ +∞

−∞
ν(ξ)ϕ(ξ, t) dξ = 0.(2.25)

Multiplying the second equation in (P ′) by ζϕ and integrating over (−∞,+∞), to obtain:

ζ
∫ +∞

−∞
ϕt(ξ, t)ϕ(ξ, t)dξ + ζ

∫ +∞

−∞
(ξ2 + η)|ϕ(ξ, t)|2dξ − ζut(0, t)

∫ +∞

−∞
ν(ξ)ϕ(ξ, t)dξ = 0.
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Hence

ζ

2

d

dt

∫ +∞

−∞
|ϕ(ξ, t)|2dξ + ζ

∫ +∞

−∞
(ξ2 + η)|ϕ(ξ, t)|2dξ − ζ<ut(0, t)

∫ +∞

−∞
ν(ξ)ϕ(ξ, t)dξ = 0.(2.26)

From (2.23), (2.25) and (2.26) we get

E ′(t) = −ζ
∫ +∞

−∞
(ξ2 + η)|ϕ(ξ, t)|2 dξ ≤ 0.

This completes the proof of the lemma.

Remark 2.3.1 • We can easily extend the global existence result for a general function a(x)
instead of xγ with 0 < µa < 1 (see (2.2)).

• In the case α = 1, we take %ut(0, t) instead of %∂α,ηt u(0, t). We do not need to introduce a
diffusive representation technique to bring the problem back into the semigroup theory. Indeed
the operator P takes the form

P̃

uv
θ

 =


v

(xγux)x
1

m
(xγux)(0)− %

m
θ

 .(2.27)

with domain

D(P̃) =
{

(u, v, θ) in H : u ∈ H2
γ(0, 1) ∩H1

0,γ(0, 1), v ∈ H1
0,γ(0, 1), θ ∈ IC,

v(0) = θ,

}
.(2.28)

where

H = H1
0,γ(0, 1)× L2(0, 1)× IC,

with the inner product

〈uv
θ

 ,
 ũṽ
θ̃

〉
H

=
∫ 1

0
xγuxũxdx+

∫ 1

0
vṽdx+mθθ̃.

The well-posedness result follows exactly as in the case 0 < α < 1. Moreover, the energy function
is defined as

Ẽ(t) =
1

2

∫ 1

0
(|ut|2 + xγ|ux|2)dx+

m

2
|u(0, t)|2(2.29)

and decays as follows

Ẽ ′(t) = −%|ut(0, t)|2 ≤ 0.

2
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2.4 Strong stability and lack of exponential stability

2.4.1 Strong Stability

We need the following Theorem to prove strong stability of solutions.

Theorem 2.4.1 ([35]) Let P be the generator of a uniformly bounded C0-semigroup {S(t)}t≥0

on a Hilbert space X . If:

(i) P does not have eigenvalues on iIR.

(ii) The intersection of the spectrum σ(P) with iIR is at most a countable set,

then the semigroup {S(t)}t≥0 is asymptotically stable, i.e, ‖S(t)z‖X → 0 as t → ∞ for any
z ∈ X .

Our main result is the following theorem:

Theorem 2.4.2 The C0-semigroup etP is strongly stable in H; i.e., for all U0 ∈ H, the solution
of (2.12) satisfies

lim
t→∞
‖etPU0‖H = 0.

For the proof of Theorem 2.4.2, we need the following two lemmas.

Lemma 2.4.1 P does not have eigenvalues on iIR.

Proof.
We make a distinction between iλ = 0 and iλ 6= 0.
Step 1. Solving for PU = 0 leads to the system

v = 0,
(xγux)x = 0,
(ξ2 + η)ϕ− v(0)ν(ξ) = 0.

− 1
m

(xγux)(0) + ζ
m

∫ +∞

−∞
ν(ξ)ϕ(ξ) dξ = 0.

(2.30)

Then v = 0, ϕ = 0, (xγux)(0) = 0 and

(xγux)(x) = c.

As (xγux)(0) = 0, we have (xγux)(x) = 0. Hence

ux(x) = 0 for x ∈ (0, 1).

As u(1) = 0, then u = 0. we have U = 0. Hence, iλ = 0 is not an eigenvalue of P .
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Step 2. Let λ ∈ IR − {0}. We prove that iλ is not an eigenvalue of P by proving that the
unique solution U ∈ D(P) of the equation

PU = iλU(2.31)

is U = 0. Let U = (u, v, ϕ, θ)T . The equation (2.31) means that

iλu− v = 0,
iλv − (xγux)x = 0,
iλϕ+ (ξ2 + η)ϕ− v(0)ν(ξ) = 0.

iλθ − 1
m

(xγux)(0) + ζ
m

∫ +∞

−∞
ν(ξ)ϕ(ξ) dξ = 0.

(2.32)

Using (2.15) and (2.31), we find
ϕ ≡ 0,(2.33)

then, using the third equation in (2.32), we deduce that

v(0) = 0.(2.34)

Therefore, from the first and last equation in (2.32), we find

u(0) = 0 and (xγux)(0) = 0.(2.35)

Thus, by eliminating v, the system (2.32) implies that
λ2u+ (xγux)x = 0 on (0, 1),
u(0) = u(1) = 0,
(xγux)(0) = 0.

(2.36)

The solution of the equation (2.36) is given by

u(x) = C1Φ+(x) + C2Φ−(x),

where Φ+ and Φ− are defined by

Φ+(x) = x
1−γ
2 Jνγ

(
2

2− γ
λx

2−γ
2

)
, Φ−(x) = x

1−γ
2 J−νγ

(
2

2− γ
λx

2−γ
2

)
.(2.37)

From boundary conditions (2.36)2 and (2.36)3, we deduce that

u ≡ 0.

Therefore U = 0. Consequently, P does not have purely imaginary eigenvalues.

Lemma 2.4.2
If λ 6= 0, the operator iλI − P is surjective.
If λ = 0 and η 6= 0, the operator iλI − P is surjective.
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Proof.
Case 1: λ 6= 0. Let F = (f1, f2, f3, f4)T ∈ H be given, and let U = (u, v, ϕ, θ)T ∈ D(P) be such
that

(iλI − P)U = F.(2.38)

Equivalently, we have 

iλu− v = f1,
iλv − (xγux)x = f2,
iλϕ+ (ξ2 + η)ϕ− v(0)ν(ξ) = f3.

iλθ − 1
m

(xγux)(0) + ζ
m

∫ +∞

−∞
ν(ξ)ϕ(ξ) dξ = f4

(2.39)

with boundary conditions. Then we deduce from these equations a weak formulation (similar
computation as in Theorem 2.3.1):

B(u,w) = l(w), ∀w ∈ H1
0,γ(0, 1),(2.40)

where
B(u,w) = B1(u,w) + B2(u,w)

with

(∗)


B1(u,w) =

∫ 1

0
xγuxwx dx+ iλ%(iλ+ η)α−1u(0)w(0),

B2(u,w) = −
∫ 1

0
λ2uw dx−mλ2u(0)w(0),

and

l(w) =
∫ 1

0
(f2+iλf1)w dx−ζ

∫ +∞

−∞

ν(ξ)

ξ2 + η + iλ
f3(ξ) dξw(0)+(miλ+%(iλ+η)α−1)f1(0)w(0)−mf4w(0).

Let (H1
0,γ(0, 1))′ be the dual space of H1

0,γ(0, 1). Let us define the following operators

(∗∗) B : H1
0,γ(0, 1)→ (H1

0,γ(0, 1))′

u 7→ Bu
Bi : H1

0,γ(0, 1)→ (H1
0,γ(0, 1))′ i ∈ {1, 2}

u 7→ Biu

such that

(∗ ∗ ∗) (Bu)w = B(u,w), ∀w ∈ H1
0,γ(0, 1),

(Biu)w = Bi(u,w), ∀w ∈ H1
0,γ(0, 1), i ∈ {1, 2}.

We need to prove that the operator B is an isomorphism. For this aim, we divide the proof into
three steps:
Step 1. In this step, we want to prove that the operator B1 is an isomorphism. For this aim,
it is easy to see that B1 is sesquilinear, continuous form on H1

0,γ(0, 1). Furthermore

<B1(u, u) = ‖xγ/2ux‖2
2 + %λ< (i(iλ+ η)α−1) |u(0)|2

≥ ‖xγ/2ux‖2
2,
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where we have used the fact that

%λ<
(
i(iλ+ η)α−1

)
= ζλ2

∫ +∞

−∞

µ(ξ)2

λ2 + (η + ξ2)2
dξ > 0.

Thus B1 is coercive. Then, from (∗∗) and Lax-Milgram theorem, the operator B1 is an isomor-
phism.
Step 2. In this step, we want to prove that the operator B2 is compact. For this aim, from (∗)
and (∗ ∗ ∗), we have

|B2(u,w)| ≤ c‖u‖L2(0,1)‖w‖L2(0,1) + c′|u|H1
0,γ(0,1)|w|H1

0,γ(0,1),

and consequently, using the compact embedding from H1
0,γ(0, 1) to L2(0, 1) we deduce that B2 is

a compact operator. Therefore, from the above steps, we obtain that the operator B = B1 +B2

is a Fredholm operator of index zero. Now, following Fredholm alternative, we still need to prove
that the operator B is injective to obtain that the operator B is an isomorphism.
Step 3. Let u ∈ ker(B), then

B(u,w) = 0 ∀w ∈ H1
0,γ(0, 1).(2.41)

In particular for w = u, it follows that

λ2‖u‖2
L2(0,1) +mλ2|u(0)|2 − i%λ(iλ+ η)α−1|u(0)|2 = ‖xγ/2ux‖2

L2(0,1).

Hence, we have

u(0) = 0.(2.42)

From (2.41), we obtain

(xγ/2ux)(0) = 0(2.43)

and then 
−λ2u− (xγux)x = 0,
u(0) = (xγ/2ux)(0) = 0,
u(1) = 0.

(2.44)

Then, according to Lemma 2.4.1, we deduce that u = 0 and consequently Ker(B) = {0}. Fi-
nally, from Step 3 and Fredholm alternative, we deduce that the operator B is isomorphism. It
is easy to see that the operator l is a antilinear and continuous form on H1

0,γ(0, 1). Consequently,
(2.40) admits a unique solution u ∈ H1

0,γ(0, 1). By using the classical elliptic regularity, we
deduce that U ∈ D(P) is a unique solution of (2.38). Hence iλ−P is surjective for all λ ∈ IR∗.

Case 2: λ = 0 and η 6= 0. Using Lax-Milgram Lemma, we obtain the result.
Taking account of Lemmas 2.4.1, 2.4.2 and from Theorem 2.4.1 The C0-semigroup etP is

strongly stable in H.
2
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2.4.2 Lack of exponential stability

This section will be devoted to the study of the lack of exponential decay of solutions associated
with the system (2.12). In order to state and prove our stability results, we need some lemmas.

Theorem 2.4.3 ([42]) Let S(t) be a C0-semigroup of contractions on Hilbert space X with
generator P. Then S(t) is exponentially stable if and only if

ρ(P) ⊇ {iβ : β ∈ IR} ≡ iIR

and

lim
|β|→∞

‖(iβI − P)−1‖L(X ) <∞.

Our main result is the following.

Theorem 2.4.4 The semigroup generated by the operator P is not exponentially stable.

Proof. We will examine two cases.
•Case 1 η = 0: We shall show that iλ = 0 is not in the resolvent set of the operator P . Indeed,
noting that F = (sin(x−1), 0, 0, 0)T ∈ H, and suppose that there exists U = (u, v, ϕ, θ)T ∈ D(P)

such that −PU = F . We get ϕ(ξ) = |ξ| 2α−5
2 sin 1. But, then ϕ 6∈ L2(−∞,+∞), since α ∈]0, 1[.

So (u, v, ϕ, θ)T 6∈ D(P) and the operator P is not invertible.
• Case 2 η 6= 0:

We aim to show that an infinite number of eigenvalues of P approach the imaginary axis
which prevents the system (P ) from being exponentially stable. Indeed we first compute the
characteristic equation that gives the eigenvalues of P . Let λ be an eigenvalue of P with
associated eigenvector U = (u, v, ϕ, θ)T . Then PU = λU is equivalent to

λu− v = 0,
λv − (xγux)x = 0,
λϕ+ (ξ2 + η)ϕ− v(0)ν(ξ) = 0,

λθ − 1
m

(xγux)(0) + ζ
m

∫ +∞

−∞
ν(ξ)ϕ(ξ) dξ = 0.

(2.45)

It is well-known that Bessel functions play an important role in this type of problem. From
(2.45)1 − (2.45)2 for such λ, we find

λ2u− (xγux)x = 0.(2.46)

Using the boundary conditions and (2.45)3, we deduce that
λ2u− (xγux)x = 0,
(xγux)(0)− (mλ2 + %λ(λ+ η)α−1)u(0) = 0,
u(1) = 0.

(2.47)
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Assume that u is a solution of (2.47) associated to eigenvalue −λ2, then one easily checks that
the function

u(x) = x
1−γ
2 Ψ

(
2

2− γ
iλx

2−γ
2

)
is a solution of the following problem:

y2Ψ′′(y) + yΨ′(y) + (y2 − (
γ − 1

2− γ
)2)Ψ(y) = 0.(2.48)

We have

u(x) = c+Φ+ + c−Φ−,(2.49)

where Φ+ and Φ− are defined by

Φ+(x) := x
1−γ
2 Jνγ

(
2

2− γ
iλx

2−γ
2

)

and

Φ−(x) := x
1−γ
2 J−νγ

(
2

2− γ
iλx

2−γ
2

)
,

where

Jν(y) =
∞∑
m=0

(−1)m

m!Γ(m+ ν + 1)

(
y

2

)2m+ν

=
∞∑
m=0

c+
ν,my

2m+ν ,(2.50)

J−ν(y) =
∞∑
m=0

(−1)m

m!Γ(m− ν + 1)

(
y

2

)2m−ν
=

∞∑
m=0

c−ν,my
2m−ν(2.51)

νγ =
1− γ
2− γ

and Jνγ and J−νγ are Bessel functions of the first kind of order νγ and −νγ. As νγ 6∈ IN, so
Jνγ and J−νγ are linearly independent and therefore the pair (Jνγ , J−νγ ) (classical result) forms
a fundamental system of solutions (2.48).

Then, using the series expansion of Jνα and J−να , one obtains

Φ+(x) =
∞∑
m=0

c̃+
νγ ,mx

1−γ+(2−γ)m, Φ−(x) =
∞∑
m=0

c̃−νγ ,mx
(2−γ)m,

with

c̃+
νγ ,m = c+

νγ ,m

(
2

2− γ
iλ

)2m+νγ

, c̃−νγ ,m = c−νγ ,m

(
2

2− γ
iλ

)2m−νγ

.

Next one easily verifies that Φ+,Φ− ∈ H1
γ(0, 1): indeed,

Φ+(x) ∼0 c̃
+
νγ ,0x

1−γ, xγ/2Φ′+(x) ∼0 (1− γ)c̃+
νγ ,0x

−γ/2,

Φ−(x) ∼0 c̃
−
νγ ,0, xγ/2Φ′−(x) ∼0 (2− γ)c̃−νγ ,0x

1−γ/2,
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where we have used the following relation

xJ ′µ(x) = µJµ(x)− xJµ+1(x).(2.52)

Hence, given c+ and c−, u(x) = c+Φ+(x) + c−Φ−(x) ∈ H1
γ(0, 1) with the following boundary

conditions {
(xγux)(0)− (mλ2 + %λ(λ+ η)α−1)u(0) = 0,
u(1) = 0.

Then

M(λ)C(λ) =

(
(1− γ)c̃+

νγ ,0 −(mλ2 + %λ(λ+ η)α−1)c̃−νγ ,0

Jνγ
(

2
2−γ iλ

)
J−νγ

(
2

2−γ iλ
) )(

c+

c−

)
=
(

0
0

)
.(2.53)

Hence, a non-trivial solution u exists if and only if the determinant of M(λ) vanishes. Set
f(λ) = detM(λ). Thus the characteristic equation is f(λ) = 0.

Our purpose in the sequel is to prove, thanks to Rouché’s Theorem, that there is a subse-
quence of eigenvalues for which their real part tends to 0.

Since P is dissipative, we study the asymptotic behavior of the large eigenvalues λ of P in
the strip −α0 ≤ <(λ) ≤ 0, for some α0 > 0 large enough and for such λ, we remark that Φ+,Φ−
remains bounded.

Lemma 2.4.3 There exists N ∈ IN sufficiently large and a sequence (λk)k∈Z∗,|k|≥N of simple
roots of detM (that are also simple eigenvalues of P) and satisfying the following asymptotic
behavior:

λk = −2− γ
2

i
(
k +

νγ
2

+
3

4

)
π − i1− γ

m

(
2

2− γ

)
c+
νγ ,0

c−νγ ,0

sin νγπ

(kπ)2−2νγ

+i
1− γ
m

(
2

2− γ

)
c+
νγ ,0

c−νγ ,0

(2− 2νγ)(
νγ
2

+ 3
4
)

π2−2νγk3−2νγ
sin νγπ

−
(

1− γ
m

)2
(
c+
νγ ,0

c−νγ ,0

)2
8

(2− γ)3

sin νγ cos νγ
(πk)4−4νγ

i

−i
(

2

2− γ

)3−α
%(1− γ)

m2

c+
νγ ,0

c−νγ ,0

sin νγπ sin(1− α)π
2

π4−α−2νγ

1

k4−α−2νγ

−
(

2

2− γ

)3−α
%(1− γ)

m2

c+
νγ ,0

c−νγ ,0

sin νγπ cos(1− α)π
2

π4−α−2νγ

1

k4−α−2νγ
+ o

(
1

kω

)

(2.54)

λk = λ−k if k ≤ −N,

where ω = max{4−α− 2νγ, 4− 4νγ}. Moreover for all |k| ≥ N , the eigenvalues λk are simple.

Proof. We look at the roots of f(λ). From (2.53), we have

f(λ) = (1− γ)c̃+
νγ ,0J−νγ

(
2

2− γ
iλ

)
+ (mλ2 + %λ(λ+ η)α−1))c̃−νγ ,0Jνγ

(
2

2− γ
iλ

)
= 0.
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We will use the following classical asymptotic development (see [32] p. 122, (5.11.6)): for all
δ > 0, the following development holds when |argz| ≤ π − δ:

Jµ(z) =
(

2

πz

)1/2

cos
(
z − µπ

2
− π

4

)(
1 +O(

1

|z|2
)

)
−
(

2

πz

)1/2

sin
(
z − µπ

2
− π

4

)
O

(
1

|z|2

)
.(2.55)

We divide the proof into five steps:
Step 1. First, using the asymptotic expansion, we get

1

(λ+ η)1−α =
1

λ1−α (1 +O(λ−1))(2.56)

Next, using (2.55) and (2.56), we get

f(λ) = m
(

2

πz̃

)1/2

λ2−νγc−νγ ,0

(
2

2− γ
i

)−νγ e−i(z̃−νγ π2−π4 )

2
f̃(λ),(2.57)

where

z̃ =
2

2− γ
iλ

and

f̃(λ) = (e2i(z̃−νγ π2−
π
4

) + 1) +
1− γ
m

c+
νγ ,0

c−νγ ,0

(
2

2− γ
i

)2νγ e2i(z̃−π
4

) + e−iνγπ

λ2−2νγ

+
%

m

e2i(z̃−νγ π2−
π
4

) + 1

λ2−α +O
(

1

λ2

)
= f0(λ) + f1(λ)

λ2−2νγ + f2(λ)
λ2−α

+O
(

1
λ2

)
,

(2.58)

where
f0(λ) = e2i(z̃−νγ π2−

π
4

) + 1,(2.59)

f1(λ) =
1− γ
m

c+
νγ ,0

c−νγ ,0

(
2

2− γ
i

)2νγ

(e2i(z̃−π
4

) + e−iνγπ),(2.60)

f2(λ) =
%

m
(e2i(z̃−νγ π2−

π
4

) + 1).(2.61)

Note that f0, f1 and f2 remain bounded in the strip −α0 ≤ <(λ) ≤ 0.
Step 2. We look at the roots of f0. From (2.59), f0 has one family of roots that we denote λ0

k.

f0(λ) = 0⇔ e2i(z̃−νγ π2−
π
4

) + 1 = 0

Hence

2i

(
2

2− γ
iλ− νγ

π

2
− π

4

)
= i(2k + 1)π, k ∈ Z,

i.e.,

λ0
k = −2− γ

2
i
(
k +

νγ
2

+
3

4

)
π, k ∈ Z.
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Now with the help of Rouché’s Theorem and the asymptotic Equation (2.58), we will show that
the roots of f̃ are close to those of f0. Let us start with the first family. Changing in (2.58) the
unknown λ by u = 2iz then (2.58) becomes

f̃(u) = (eu + 1) +O
(

1

u$

)
= f0(u) +O

(
1

u$

)
,

where $ = max{2 − 2νγ, 2 − α}. The roots of f0 are uk = −2− γ
2

i
(
k +

νγ
2

+
3

4

)
π, k ∈ Z,

and setting u = uk + reit, t ∈ [0, 2π], we can easily check that there exists a constant C > 0
independent of k such that |eu + 1| ≥ Cr for r small enough. This allows to apply Rouché’s
Theorem. Consequently, there exists a subsequence of roots of f̃ which tends to the roots uk
of f0. Equivalently, it means that there exists N ∈ IN and a subsequence {λk}|k|≥N of roots of

f(λ), such that λk = λ0
k + o(1) which tends to the roots −2− γ

2
i
(
k +

νγ
2

+
3

4

)
π of f0. Finally

for |k| ≥ N, λk is simple since λ0
k is.

Step 3. From Step 2, we can write

λk = −2− γ
2

i
(
k +

νγ
2

+
3

4

)
π + εk.(2.62)

Using (2.62), we get

e2i(( 2
2−γ iλk)−νγ π2−

π
4

) = −e−
4

2−γ εk

= −1 + 4
2−γ εk +O(ε2

k).
(2.63)

Substituting (2.63) into (2.58), using that f̃(λk) = 0, we get:

f̃(λk) =
4

2− γ
εk +

1− γ
m

c+
νγ ,0

c−νγ ,0

(
2

2− γ

)2
2i sin νγπ

(kπ)2−2νγ
+ o(εk) + o

(
1

k2−2νγ

)
= 0(2.64)

and hence

εk = −1− γ
m

(
2

2− γ

)
c+
νγ ,0

c−νγ ,0
i

sin νγπ

(kπ)2−2νγ
.

Step 4. From Step 3, we can write

λk = −2− γ
2

i
(
k +

νγ
2

+
3

4

)
π − i1− γ

m

(
2

2− γ

)
c+
νγ ,0

c−νγ ,0

sin νγπ

(kπ)2−2νγ
+ εk.(2.65)

Using (2.62), we get

e2i(( 2
2−γ iλk)−νγ π2−

π
4

) = −e−
4

2−γ εk+ 4c
2−γ

1

k2−2νγ

= −1 + 4
2−γ εk −

4c
2−γ

1
k2−2νγ +O(ε2

k),
(2.66)

where

c =
1− γ
m

(
2

2− γ

)
c+
νγ ,0

c−νγ ,0

sin νγπ

π2−2νγ
i.
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Substituting (2.66) into (2.58), using that f̃(λk) = 0, we get:

f̃(λk) = 4
2−γ εk − i

1− γ
m

(
8

(2− γ)2

)
c+
νγ ,0

c−νγ ,0

(2− 2νγ)(
νγ
2

+ 3
4
)

π2−2νγk3−2νγ
sin νγπ

+o(εk) + o
(

1
k3−2νγ

)
= 0

(2.67)

and hence

εk = i
1− γ
m

(
2

2− γ

)
c+
νγ ,0

c−νγ ,0

(2− 2νγ)(
νγ
2

+ 3
4
)

π2−2νγk3−2νγ
sin νγπ.

Step 5. From Step 4, we can write

λk = −2− γ
2

i
(
k +

νγ
2

+
3

4

)
π − i1− γ

m

(
2

2− γ

)
c+
νγ ,0

c−νγ ,0

sin νγπ

(kπ)2−2νγ

+i
1− γ
m

(
2

2− γ

)
c+
νγ ,0

c−νγ ,0

(2− 2νγ)(
νγ
2

+ 3
4
)

π2−2νγk3−2νγ
sin νγπ + εk.

(2.68)

Using (2.62), we get

e2i(( 2
2−γ iλk)−νγ π2−

π
4

) = −e−
4

2−γ εk+ 4c
2−γ

1

k2−2νγ
− 4c̃

2−γ
1

k3−2νγ

= −1 + 4
2−γ εk −

4c
2−γ

1
k2−2νγ + 4c̃

2−γ
1

k3−2νγ − 1
2
( 4c

2−γ )2 1
k4−4νγ +O(ε2

k),
(2.69)

where

c =
1− γ
m

(
2

2− γ

)
c+
νγ ,0

c−νγ ,0

sin νγπ

π2−2νγ
i,

c̃ = i
1− γ
m

(
2

2− γ

)
c+
νγ ,0

c−νγ ,0

(2− 2νγ)(
νγ
2

+ 3
4
)

π2−2νγk3−2νγ
sin νγπ.

Substituting (2.69) into (2.58), using that f̃(λk) = 0, we get:

f̃(λk) = 4
2−γ εk −

4c
2−γ

1
k2−2νγ + 4c̃

2−γ
1

k3−2νγ

−1
2
( 4c

2−γ )2 1
k4−4νγ − 2i

˜̃c
δ2−2νγ

sin νγπ

k2−2νγ

+2i(2− 2νγ)(
νγ
2

+ 3
4
)

˜̃c
δ2−2νγ

sin νγπ

k3−2νγ
−

˜̃cc
δ2−2νγ

4

2− γ
eiνγπ

k4−4νγ
− %

m

4

2− γ
c

δ2−α
1

k4−α−2νγ

+o(εk) + o
(

1
kω

)
= 4

2−γ εk +
(

1− γ
m

)2
(
c+
νγ ,0

c−νγ ,0

)2
32

(2− γ)4

sin νγ cos νγ
(πk)4−4νγ

i− %

m

4

2− γ
c

δ2−α
1

k4−α−2νγ

+o(εk) + o
(

1
kω

)
= 0,

(2.70)
where ω = max{4− α− 2νγ, 4− 4νγ} and

δ = −2− γ
2

iπ, ˜̃c =
1− γ
m

c+
νγ ,0

c−νγ ,0

(
2

2− γ
i

)2νγ
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and hence

εk = −
(

1− γ
m

)2
(
c+
νγ ,0

c−νγ ,0

)2
8

(2− γ)3

sin νγ cos νγ
(πk)4−4νγ

i

−i
(

2

2− γ

)3−α
%(1− γ)

m2

c+
νγ ,0

c−νγ ,0

sin νγπ sin(1− α)π
2

π4−α−2νγ

1

k4−α−2νγ

−
(

2

2− γ

)3−α
%(1− γ)

m2

c+
νγ ,0

c−νγ ,0

sin νγπ cos(1− α)π
2

π4−α−2νγ

1

k4−α−2νγ
+ o

(
1

kω

)
.

As (2.54) shows that the eigenvalues λk of P approach the imaginary axis as k goes to infinity,
clearly system (2.12) is not uniformly stable. From (2.54), we have

|k|4−α−2νγ<λk ≈ −
(

2

2− γ

)3−α
%(1− γ)

m2

c+
νγ ,0

c−νγ ,0

sin νγπ cos(1− α)π
2

π4−α−2νγ
.

The operator P has a non exponential decaying branche of eigenvalues. Thus the proof is
complete.

2.5 Polynomial Stability (for η 6= 0)

To state and prove our stability results, we need some results from semigroup theory.

Theorem 2.5.1 ([10]) Let S(t) be a bounded C0-semigroup on a Hilbert space X with generator
P. If

iIR ⊂ ρ(P) and lim
|β|→∞

1

βl
‖(iβI − P)−1‖L(X ) <∞

for some l, then there exist c such that

‖ePtU0‖2 ≤ c

t
2
l

‖U0‖2
D(A).

Our main result is the following.

Theorem 2.5.2 The semigroup SP(t)t≥0 is polynomially stable and

E(t) = ‖SP(t)U0‖2
H ≤

1

t
2

(4−α−2νγ )

‖U0‖2
D(P).

Proof. We will need to study the resolvent equation (iλ− P)U = F , for λ ∈ IR, namely

iλu− v = f1,
iλv − (xγux)x = f2,
iλϕ+ (ξ2 + η)ϕ− v(0)ν(ξ) = f3.

iλθ − 1
m

(xγux)(0) + ζ
m

∫ +∞

−∞
ν(ξ)ϕ(ξ) dξ = f4.

(2.71)
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where F = (f1, f2, f3, f4)T ∈ H. From (2.71)1 and (2.71)2, we have

λ2u+ (xγux)x = −(f2 + iλf1)(2.72)

with 

λ2u− (xγux)x = 0,
−(xγux)(0) + (−mλ2 + i%λ(iλ+ η)α−1)u(0)

= mf4 − ζ
∫ +∞

−∞

ν(ξ)f3(ξ)

iλ+ η + ξ2
dξ + (miλ+ %(iλ+ η)α−1)f1(0),

u(1) = 0.

(2.73)

Assume that Φ is a solution of (2.72), then one easily checks that the function Ψ defined by

Φ(x) = x
1−γ
2 Ψ

(
2

2− γ
λx

2−γ
2

)
(2.74)

is solution of the following inhomogeneous Bessel equation:

y2Ψ′′(y) + yΨ′(y) +

y2 −
(
γ − 1

2− γ

)2
Ψ(y) =

−( 2
2−γ )2(2−γ

2
1
λ
y)

3−γ
2−γ

(
f2

(
(2−γ

2
1
λ
y)

2
2−γ
)

+ iλf1

(
(2−γ

2
1
λ
y)

2
2−γ
))
.

(2.75)

The general solution of (2.75) is easily seen to be

Ψ(y) = AJνγ (y) +BJ−νγ (y)− π

2 sin νγπ

∫ y

0

f(s)

s

(
Jνγ (s)J−νγ (y)− Jνγ (y)J−νγ (s)

)
ds,

where A and B are constants free to be determined later and

f(s) = −(
2

2− γ
)2(

2− γ
2

1

λ
s)

3−γ
2−γ

(
f2

(
(
2− γ

2

1

λ
s)

2
2−γ

)
+ iλf1

(
(
2− γ

2

1

λ
s)

2
2−γ

))
.

Thus,

u(x) = Ax
1−γ
2 Jνγ

(
2

2−γλx
2−γ
2

)
+Bx

1−γ
2 J−νγ

(
2

2−γλx
2−γ
2

)
+

π

2 sin νγπ

(
2

2− γ

)
x

1−γ
2

∫ x

0
s

1−γ
2 (f2(s) + iλf1(s))

(
Jνγ

(
2

2− γ
λs

2−γ
2

)
J−νγ

(
2

2− γ
λx

2−γ
2

)
−Jνγ

(
2

2−γλx
2−γ
2

)
J−νγ

(
2

2−γλs
2−γ
2

))
ds.

Therefore,

u(x) = AΦ+(x) +BΦ−(x)

+
π

2 sin νγπ

(
2

2− γ

)∫ x

0
(f2(s) + iλf1(s))(Φ+(s)Φ−(x)− Φ+(x)Φ−(s)) ds,

(2.76)

where Φ+ and Φ− are defined by

Φ+(x) = x
1−γ
2 Jνγ

(
2

2− γ
λx

2−γ
2

)
, Φ−(x) = x

1−γ
2 J−νγ

(
2

2− γ
λx

2−γ
2

)
.(2.77)
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We thus have

ux(x) = AΦ′+(x) +BΦ′−(x)

+
π

2 sin νγπ

(
2

2− γ

)∫ x

0
(f2(s) + iλf1(s))(Φ+(s)Φ′−(x)− Φ′+(x)Φ−(s)) ds.

(2.78)

It remains to determine the constants A and B. Using (2.73)2, (2.78) and (2.76), we conclude
that

(1− γ)c̃+
νγ ,0A− (−mλ2 + %iλ(iλ+ η)α−1)c̃−νγ ,0B

= −mf4 + ζ
∫ +∞

−∞

ν(ξ)f3(ξ)

iλ+ η + ξ2
dξ − (miλ+ %(iλ+ η)α−1)f1(0),

(2.79)

AΦ+(1) +BΦ−(1) = − π

2 sin νγπ
(

2

2− γ
)
∫ 1

0
(f2(s) + iλf1(s))(Φ+(s)Φ−(1)− Φ+(1)Φ−(s)) ds,(2.80)

where

c̃+
νγ ,m = c+

νγ ,m

(
2

2− γ
λ

)2m+νγ

, c̃−νγ ,m = c−νγ ,m

(
2

2− γ
λ

)2m−νγ

and

Φ+(1) = Jνγ

(
2

2− γ
λ

)
, Φ−(1) = J−νγ

(
2

2− γ
λ

)
.

We write equations (2.79) and (2.80) in matrix form as(
r11 r12

r21 r22

)(
A
B

)
=
(
C
C̃

)
,(2.81)

where
r11 = (1− γ)c̃+

νγ ,0,

r12 = (mλ2 − %iλ(iλ+ η)α−1)c̃−νγ ,0,

r21 = Jνγ
(

2
2−γλ

)
,

r22 = J−νγ
(

2
2−γλ

)
,

C = −mf4 + ζ
∫ +∞

−∞

ν(ξ)f3(ξ)

iλ+ η + ξ2
dξ − (miλ+ %(iλ+ η)α−1)f1(0),

C̃ = − π

2 sin νγπ
(

2

2− γ
)
∫ 1

0
(f2(s) + iλf1(s))(Φ+(s)Φ−(1)− Φ+(1)Φ−(s)) ds.

Let the determinant of the linear system given in (2.81) be denoted by D. Then Note that

D = (1− γ)c̃+
νγ ,0J−νγ

(
2

2−γλ
)
− (mλ2 − %iλ(iλ+ η)α−1)c̃−νγ ,0Jνγ

(
2

2−γλ
)

= (1− γ)c+
νγ ,0

(
2

2−γ

)νγ
λνγ

[(
2− γ
πλ

)1/2

cos
(

2
2−γλ+ νγ

π
2
− π

4

)
+O(

1

λ5/2
)

]

−(mλ2 − %iλ(iλ+ η)α−1)c−νγ ,0
(

2
2−γ

)−νγ
λ−νγ

[(
2− γ
πλ

)1/2

cos
(

2
2−γλ− νγ

π
2
− π

4

)
+O(

1

λ5/2
)

]

= −mc−νγ ,0
(

2
2−γ

)−νγ (2− γ
π

)1/2

λ2−νγ− 1
2 cos

(
2

2−γλ− νγ
π
2
− π

4

)
+(1− γ)c+

νγ ,0

(
2

2−γ

)νγ (2− γ
π

)1/2

λνγ−
1
2 cos

(
2

2−γλ+ νγ
π
2
− π

4

)
+%iαc−νγ ,0

(
2

2−γ

)−νγ (2− γ
π

)1/2

λα−νγ−
1
2 cos

(
2

2−γλ− νγ
π
2
− π

4

)
+O(

1

λ3/2+νγ−α
).
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As D 6= 0 for all λ 6= 0, then A and B are uniquely determined by (2.81).
Now, it is easy to prove that

|D| ≥ c|λ|−5/2+νγ+α for large λ.(2.82)

In the following lemma we will prove some technical inequalities which will be useful for
showing the optimal polynomial decay of the solution.

Lemma 2.5.1
(I) for all λ ∈ IR− {0} large, we have

‖Φ+‖L2(0,1), ‖Φ−‖L2(0,1) ≤
c√
|λ|
.(2.83)

(II) ∥∥∥∥∥x− 1
2Jνγ

(
2

2− γ
λx

2−γ
2

)∥∥∥∥∥
L2(0,1)

,

∥∥∥∥∥x− 1
2J−νγ

(
2

2− γ
λx

2−γ
2

)∥∥∥∥∥
L2(0,1)

≤ c
√
|λ|.(2.84)

(III) There exists a constant C > 0 such that, for all f1 ∈ H1
0,γ(0, 1), f2 ∈ L2(0, 1) and λ ∈

IR− {0},∣∣∣∣∫ 1

0
(f2(s) + iλf1(s))(Φ+(s)Φ−(1)− Φ+(1)Φ−(s)) ds

∣∣∣∣ ≤ 1

|λ|
(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1)

)
.(2.85)

Proof. Suppose that λ 6= 0. It is enough to consider λ > 0. We will use the following results
(see [23]).

Lemma 2.5.2 If a 6= b are complex numbers and <ϑ > −1, we have

(a2 − b2)
∫ x

0
tJϑ(at)Jϑ(bt) dt = x

(
Jϑ(ax)

d

dx
(Jϑ(bx))− Jϑ(bx)

d

dx
(Jϑ(ax))

)
,

2a2
∫ x

0
t(Jϑ(at))2 dt = (a2x2 − ϑ2) (Jϑ(ax))2 +

(
x
d

dx
(Jϑ(ax))

)2

,

(2.86)

d

dx
(xϑJϑ(x)) = xϑJϑ−1(x),

d

dx
(x−ϑJϑ(x)) = −x−ϑJϑ+1(x).

(2.87)

(I)

‖Φ+‖2
L2(0,1) =

∫ 1

0
x1−γ

(
Jνγ

(
2

2− γ
λx

2−γ
2

))2

dx.(2.88)

Let z = 2
2−γλs

2−γ
2 in equation (2.88), we get

‖Φ+‖2
L2(0,1) =

2− γ
2λ2

∫ 2
2−γ λ

0
z
(
Jνγ (z)

)2
dz

=
2− γ
4λ2

( 2λ

2− γ

)2

− ν2
γ

(Jνγ
(

2λ

2− γ

))2

+

(
2λ

2− γ
J ′νγ

(
2λ

2− γ

))2
 .
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Using (2.86), (2.52) and (2.55), we deduce

‖Φ+‖L2(0,1) ≤
c√
λ
.

Similarly, we prove that

‖Φ−‖L2(0,1) ≤
c√
λ
.

(II) ∥∥∥∥∥x− 1
2Jνγ

(
2

2− γ
λx

2−γ
2

)∥∥∥∥∥
2

L2(0,1)

=
∫ 1

0
x−1

(
Jνγ

(
2

2− γ
λx

2−γ
2

))2

dx

=
2

2− γ

∫ 2
2−γ λ

0
z−1

(
Jνγ (z)

)2
dz

Now, using (2.52), we have

I =
∫ 2

2−γ λ

0
z−1

(
Jνγ (z)

)2
dz =

1

νγ

∫ 2
2−γ λ

0
Jνγ (z)(J ′νγ (z)− Jνγ+1(z)) dz

=
1

2νγ

(
Jνγ

(
2λ

2− γ

))2

− 1

νγ

∫ 2
2−γ λ

0
Jνγ (z)Jνγ+1(z) dz

≤ 1

2νγ

(
Jνγ

(
2λ

2− γ

))2

+
ε

2
I +

1

2εν2
γ

∫ 2
2−γ λ

0
z(Jνγ+1(z))2 dz.

for every ε > 0. Choosing ε small enough and using (2.86) and (2.55), we obtain

I ≤ c(Jνγ (
2λ

2−γ ))2 + c′
∫ 2

2−γ λ

0
z(Jνγ+1(z))2 dz.

≤ cλ.

Hence ∥∥∥∥∥x− 1
2Jνγ

(
2

2− γ
λx

2−γ
2

)∥∥∥∥∥
L2(0,1)

≤ c
√
λ.

Similarly, we prove that

∥∥∥∥∥x− 1
2J−νγ

(
2

2− γ
λx

2−γ
2

)∥∥∥∥∥
L2(0,1)

≤ c
√
λ.
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(III) Let f1 ∈ H1
0,γ(0, 1) and f2 ∈ L2(0, 1). First we estimate I =

∫ 1

0
f1(s)Φ+(s) ds. We have

I =
1

λ

(
2− γ

2λ

) 1
2−γ

∫ 2
2−γ λ

0
f1

(2− γ
2λ

z
) 2

2−γ

 z 1
2−γ Jνγ (z) dz

= −1

λ

(
2− γ

2λ

) 1
2−γ

∫ 2
2−γ λ

0
f1

(2− γ
2λ

z
) 2

2−γ

 d

dz

(
z

1
2−γ J− 1

2−γ
(z)
)
dz

=
1

λ

(
2− γ

2λ

) 1
2−γ

c−1
2−γ ,0

f1(0) +
∫ 2

2−γ λ

0

d

dz

f1

(2− γ
2λ

z
) 2

2−γ

 z 1
2−γ J− 1

2−γ
(z) dz


=

1

λ

(
2− γ

2λ

) 1
2−γ

c−1
2−γ ,0

f1(0) +
1

λ

2

2− λ

(
2− γ

2λ

) 3
2−γ

∫ 2
2−γ λ

0
f ′1

(2− γ
2λ

z
) 2

2−γ

 z γ+1
2−γ J− 1

2−γ
(z) dz

=
1

λ

(
2− γ

2λ

) 1
2−γ

c−1
2−γ ,0

f1(0) +
1

λ

∫ 1

0
f ′1(s)s

1
2J− 1

2−γ

(
2

2− γ
λs

2−γ
2

)
ds.

Using (2.86) and the fact that |f1(0)| ≤ ‖f1‖L∞(0,1) ≤ 1√
1−γ‖f1‖H1

0,γ(0,1), we deduce that

|I| ≤ 1

λ

(
2− γ

2λ

) 1
2−γ

c−1
2−γ ,0
|f1(0)|+ 1

λ

(
2− γ
2λ2

)1/2

‖f1‖H1
0,γ(0,1)

(∫ 2
2−γ λ

0
z(J− 1

2−γ
(z))2 dz

)1/2

≤ c
1

|λ|
3−γ
2−γ
‖f1‖H1

0,γ(0,1) + c′
1

|λ| 32
‖f1‖H1

0,γ(0,1) ≤ c
1

|λ| 32
‖f1‖H1

0,γ(0,1).

Then ∣∣∣∣iλ ∫ 1

0
f1(s)Φ+(s)Φ−(1) ds

∣∣∣∣ ≤ 1

|λ|
‖f1‖H1

0,γ(0,1).

Also, we have∣∣∣∣∫ 1

0
f2(s)Φ+(s)Φ−(1) ds

∣∣∣∣ ≤ |Φ−(1)|‖f2‖L2(0,1)‖Φ+(s)‖L2(0,1) ≤ c
1

|λ|
‖f2‖L2(0,1).

In the same way, we can check that∣∣∣∣∫ 1

0
f1(s)Φ−(s) ds

∣∣∣∣ ≤ c
1

|λ| 32
‖f1‖H1

0,γ(0,1)

and ∣∣∣∣∫ 1

0
f2(s)Φ−(s)Φ+(1) ds

∣∣∣∣ ≤ c
1

|λ|
‖f2‖L2(0,1).

Consequently, we get (2.85). Thus, the proof of the Lemma (2.5.1) is complete.
2

Now, inverting the matrix in (2.81) we obtain
A =

1

D
(Cr22 − C̃r12)

B =
1

D
(−Cr21 + C̃r11)
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Considering only the dominant terms of λ, the following is obtained:

|D||A| ≤ c1|λ|
1
2 + c2|λ|1−νγ ≤ c3|λ|1−νγ ,

|D||B| ≤ c1|λ|
1
2 + c2|λ|νγ−1 ≤ c|λ| 12 .

Hence, using (2.82), we deduce that

|A| ≤ c|λ|
7
2
−α−2νγ(2.89)

|B| ≤ c|λ|3−α−νγ .(2.90)

Also, we have∥∥∥∥∫ x

0
f2(s)Φ±(x)Φ∓(s) ds

∥∥∥∥
L2(0,1)

≤ ‖f2‖L2(0,1)‖Φ±‖L2(0,1)‖Φ∓‖L2(0,1) ≤
c

|λ|
,∥∥∥∥iλ ∫ x

0
f1(s)Φ±(x)Φ∓(s) ds

∥∥∥∥
L2(0,1)

≤ ‖f1‖L2(0,1)‖Φ±‖L2(0,1)‖Φ∓‖L2(0,1) ≤ c.
(2.91)

Then, from (2.76), (2.89), (2.90) and (2.91), we get

‖u‖L2(0,1) ≤ c|λ|3−α−2νγ
(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1) + ‖f3‖L2(−∞,+∞)

)
,

consequently, from (2.71)2 and (2.76), we get

‖v‖L2(0,1) ≤ c|λ|4−α−2νγ
(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1) + ‖f3‖L2(−∞,+∞)

)
.

Using (2.77) and (2.52), we obtainx
γ/2Φ′+(x) = (1−γ

2
+ 2−γ

2
νγ)x

−1/2Jνγ
(

2
2−γλx

2−γ
2

)
− λx 1−γ

2 J1+νγ

(
2

2−γλx
2−γ
2

)
,

xγ/2Φ′−(x) = (1−γ
2
− 2−γ

2
νγ)x

−1/2J−νγ
(

2
2−γλx

2−γ
2

)
− λx

1−γ
2 J1−νγ

(
2

2−γλx
2−γ
2

)
.

Then from (2.78), (2.83) and (2.84), we can get

‖xγ/2ux‖L2(0,1) ≤ c|λ|4−α−2νγ
(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1) + ‖f3‖L2(−∞,+∞)

)
.

Moreover from (2.15), we have

‖ϕ‖2
L2(−∞,∞) ≤

1

η

∫ +∞

−∞
(ξ2 + η)|ϕ(ξ)|2 dξ ≤ c‖U‖H‖F‖H.

Thus, we conclude that

‖(iλI − P)−1‖H ≤ c|λ|4−α−2νγ as |λ| → ∞.

The conclusion then follows by applying Theorem 2.5.1.
Besides, we prove that the decay rate is optimal. Indeed, the decay rate is consistent with

the asymptotic expansion of eigenvalues.
2
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Remark 2.5.1 We can extend the results of this chapter to more general measure density (see
[18]) instead of (2.5). Indeed, let us suppose that ν is an even nonnegative measurable function
such that ∫ ∞

−∞

ν(ξ)2

1 + ξ2
dξ <∞.(2.92)

We easily obtain the following Theorem.

Theorem 2.5.3 Let

Λ(λ) =
|λ|3−2νγ

(<S(iλ))
,

where S(iλ) =
∫+∞
−∞

ν(ξ)2

iλ+η+ξ2
dξ. Then the semigroup SP(t)t≥0 associated to (P ′) satisfies the

following decay estimate

‖ePtU0‖ ≤ C
1

Λ−1(t)
‖U0‖D(P), t→∞,

where Λ−1 is any asymptotic inverse of Λ.

Open problem

It seems to be interesting to study a qualitatve propreties of (P ) with a(x) instead of xγ (see
(2.2)) with 0 < µa < 1.
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Chapter 3

DECAY ESTIMATES FOR A
DEGENERATE WAVE EQUATION
WITH TWO BOUNDARY
FRACTIONAL FEEDBACKS IN THE
PRESENCE OF DIPLACEMENT

3.1 Introduction

In this chapter, we are concerned with the boundary stabilization of fractional type for degenerate
wave equation of the form

(P )


utt(x, t)− (xγux(x, t))x + βu = 0 in (0, 1)× (0,+∞),
(xγux)(0, t) = %∂α,ηt u(0, t) in (0,+∞),
ux(1, t) = −%̃∂α̃,ηt u(1, t) in (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, 1),

where γ ∈ [0, 1), % > 0, %̃ > 0 and β > 0. The notation ∂α,ηt stands for the generalized Caputo’s
fractional derivative of order α, (0 < α ≤ 1), with respect to the time variable (see [19]). It is
defined as follows

∂α,ηt w(t) =


wt(t) for α = 1, η ≥ 0,

1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s)dw

ds
(s) ds, for 0 < α < 1, η ≥ 0.

The degenerate wave equation (P ) (i.e γ 6= 0) can describe the vibration problem of an elastic
string. In a neighborhood of an endpoint x = 0 of this string, the elastic is sufficiently small or
the linear density is large enough.

The bibliography of works concerning the stabilization of nondegenerate wave equation with
different types of dampings is truly long (see e.g. [17], [20], [16] and the references therein).

57
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In [20], for a(x) = a1x + a0 : the authors have established aymptotics stabilization with the
following boundary damping{

(aux)(0, t) = 0,
(aux)(1, t) = −ku(1, t)− ut(1, t), k > 0.

In [16], the authors considered the following modelization of a flexible torque arm controlled by
two feedbacks depending only on the boundary velocities:

utt(x, t)− (a(x)ux)x + αut(x, t) + βy(x, t) = 0, 0 < x < 1, t > 0,
(a(x)ux)(0) = k1ut(0, t), t > 0,
(a(x)ux)(1) = −k2ut(1, t), t > 0,

where {
α ≥ 0, β > 0, k1, k2 ≥ 0, k1 + k2 6= 0,
a ∈ W 1,∞(0, 1), a(x) ≥ a0 for all x ∈ [0, 1].

They proved the exponential decay of the solutions.
On the contrary, when the coefficient a(x) is degenerate very little is known in the literature,

even though many problems that are relevant for applications are described by hyperbolic equa-
tions degenerating at the boundary of the space domain (see [27], [?] and [?]). In [27], for any
0 < γ < 1, the null controllability of the following degenerate wave equation was considered:

(PC)


utt(x, t)− (xγux(x, t))x = 0 on (0, 1)× (0, T ),
u(0, t) = θ(t), u(1, t) = 0 on (0, T ),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, 1),

where θ(t) is the control variable and it acts on the degenerate boundary. Recently, in [?] (see also
[?]), the authors studied the null controllability problems of one-dimensional degenerate wave
equations as in [27] but the control acts on the nondegenerate boundary. They proved that any
initial value in state space is controllable. Also, an explicit expression for the controllability time
is given.

Very recently, Alabau et al. [?] studied the degenerate wave equation of the type

utt(x, t)− (a(x)ux(x, t))x = 0 in (0, 1)× (0,+∞),(3.1)

where the coefficient a is a positive function on ]0, 1] but vanishes at zero. The degeneracy of
(3.1) at x = 0 is measured by the parameter µa defined by

µa = sup
0<x≤1

x|a′(x)|
a(x)

(3.2)

and the initial conditions are

u(x, 0) = u0(x), ut(x, 0) = u1(x),(3.3)

followed by the boundary conditions

(P1)


{
u(0, t) = 0 if 0 ≤ µa < 1
(aux)(0, t) = 0 if 1 ≤ µa < 2

in (0,+∞),

ux(1, t) + ut(1, t) + βu(1, t) = 0 in (0,+∞),
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they obtained exponential stability of the solutions.

Here we want to focus on the following ramarks:

• System (3.1), (3.3) and (P1) under study is different from one studied on [?]. Indeed, the
control is located at x = 0.

• The fractional velocity feedbacks considered here provide a weaker damping than the ve-
locity feedbacks (see [37]).

• The explicit representation of the resolvant gives us a sharp polynomial decay rate, how-
ever in [?], stabilization is done under the classical energy method based on multiplier
techniques (see [31]). Unfortunately, this method does not seem to be applicable in the
case of damping acting at x = 0.

In this chapter, we explain the influence of the relation between the degenerate coefficient
and the fractional feedback on decay estimates.

This chapter is organized as follows. In section 2, we give preliminaries results and we
reformulate the system (P ) into an augmented system by coupling the degenerate wave equation
with a suitable diffusion equation and we show the well-posedness of our problem by semigroup
theory. In section 3, we prove lack of exponential stability by spectral analysis by using Bessel
functions. In the last section, we prove an optimal decay rate. The proof heavily relies on Bessel
equations and Borichev-Tomilov Theorem.

3.2 Preliminaries results

Now, we introduce, as in [12] or [?], the following weighted Sobolev spaces:

H1
0,γ(0, 1) =

{
u is locally absolutely continuous in (0, 1] : xγ/2ux ∈ L2(0, 1)/ u(1) = 0

}
H1
γ(0, 1) =

{
u is locally absolutely continuous in (0, 1] : xγ/2ux ∈ L2(0, 1)

}
.

We remark that H1
γ(0, 1) is a Hilbert space with the scalar product

(u, v)H1
γ(0,1) =

∫ 1

0
(uv + xγu′(x)v′(x)) dx, ∀u, v ∈ H1

γ(0, 1).

Let us also set

|u|H1
0,γ(0,1) =

(∫ 1

0
xγ|u′(x)|2 dx

)1/2

∀u ∈ H1
γ(0, 1).

Actually, | · |H1
0,γ(0,1) is an equivalent norm on the closed subspace H1

0,γ(0, 1) to the norm of

H1
γ(0, 1). This fact is a simple consequence of the following version of Poincaré’s inequality.

Proposition 3.2.1 There is a positive constant C∗ = C(γ) such that

‖u‖2
L2(Ω) ≤ C∗|u|21,γ ∀u ∈ H1

0,γ(0, 1).(3.4)
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Proof. Let u ∈ H1
0,γ(0, 1). For any x ∈]0, 1] we have that

|u(x)| =
∣∣∣∣∫ 1

x
u′(s) ds

∣∣∣∣ ≤ |u|1,γ {∫ 1

0

1

xγ
ds
}1/2

.

Therefore ∫ 1

0
|u(x)|2 dx ≤ 1

1− γ
|u|21,γ.

Next, we define
H2
γ(0, 1) = {u ∈ H1

γ(0, 1) : xγu′ ∈ H1(0, 1)},

where H1(0, 1) denotes the classical Sobolev space.

Remark 3.2.1 Notice that if u ∈ H2
γ(0, 1), γ ∈ [1, 2),we have (xγux)x=0 ≡ 0 since 1/xγ is

not integrable over neighbourhoods of 0. Hence the problem is not well-posed in terms of the
semigroups in the Hilbert space.

3.2.1 Augmented model

In this section we reformulate (P ) into an augmented system. For that, we need the following
proposition.

Proposition 3.2.2 (see [37]) Let µ be the function:

µ(ξ) = |ξ|(2α−1)/2, −∞ < ξ < +∞, 0 < α < 1.(3.5)

Then the relationship between the ‘input’ U and the ‘output’ O of the system

∂tφ(ξ, t) + (ξ2 + η)φ(ξ, t)− U(t)µ(ξ) = 0, −∞ < ξ < +∞, η ≥ 0, t > 0,(3.6)

φ(ξ, 0) = 0,(3.7)

O(t) = (π)−1 sin(απ)
∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ(3.8)

is given by
O = I1−α,ηU.(3.9)

where

[Iα,ηf ](t) =
1

Γ(α)

∫ t

0
(t− τ)α−1e−η(t−τ)f(τ) dτ

Lemma 3.2.1 (see [1]) If λ ∈ Dη = IC\]−∞,−η] then

F (λ) =
∫ +∞

−∞

µ2(ξ)

λ+ η + ξ2
dξ =

π

sinαπ
(λ+ η)α−1.
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Using now Proposition 3.2.2 and relation (3.9), system (P ) may be recast into the following
augmented system

(P ′2)



utt(x, t)− (xγux(x, t))x + βu = 0,
φt(ξ, t) + (ξ2 + η)φ(ξ, t)− ut(0, t)µ(ξ) = 0, −∞ < ξ < +∞, t > 0,
φ̃t(ξ, t) + (ξ2 + η)φ̃(ξ, t)− ut(1, t)µ̃(ξ) = 0, −∞ < ξ < +∞, t > 0,

(xγux)(0, t) = ζ
∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ,

ux(1, t) = −ζ̃
∫ +∞

−∞
µ̃(ξ)φ̃(ξ, t) dξ,

φ(ξ, 0) = φ̃(ξ, 0) = 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x),

where ζ = %(π)−1 sin(απ) and ζ̃ = %̃(π)−1 sin(α̃π). For a solution (u, φ, φ̃) of (P ′), we define the
energy

E(t) =
1

2

∫ 1

0
(|ut|2 + xγ|ux|2)dx+ β|u|2 +

ζ

2

∫ +∞

−∞
|φ(ξ, t)|2 dξ +

ζ̃

2

∫ +∞

−∞
|φ̃(ξ, t)|2 dξ(3.10)

Lemma 3.2.2 Let (u, φ, φ̃) be a regular solution of the problem (P ′). Then, the energy functional
defined by (3.10) satisfies

E ′(t) = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2 dξ − ζ̃

∫ +∞

−∞
(ξ2 + η)|φ̃(ξ, t)|2 dξ ≤ 0.(3.11)

3.3 Well-posedness

In this section, we are interested in showing that system (P ′) is well posed in the sens of
semigroups.

We introduce the Hilbert space H = H1
0,γ(0, 1)×L2(0, 1)×L2(−∞,+∞) with inner product

〈
u
v
φ1

φ2

 ,

ũ
ṽ
φ̃1

φ̃2


〉
H

=
∫ 1

0
xγuxũxdx+

∫ 1

0
vṽdx+ ζ

∫ +∞

−∞
φ1φ̃1 + ζ̃

∫ +∞

−∞
φ2φ̃2 dξ.

If we put U = (u, ut, φ, φ̃)T it is clear that (P ′) can be written as

U ′ = AU, U(0) = U0,(3.12)

where U0 = (u0, u1, 0, 0)T and A : D(A) ⊂ H → H is defined by

A


u
v
φ
φ̃

 =


v

(xγux)x − βu
−(ξ2 + η)φ+ v(0)µ(ξ)
−(ξ2 + η)φ̃+ v(1)µ̃(ξ)

 ,(3.13)
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with domain

D(A) =



(u, v, φ, φ̃) in H : u ∈ H2
γ(0, 1) ∩H1

0,γ(0, 1), v ∈ H1
0,γ(0, 1),

−(ξ2 + η)φ+ v(0)µ(ξ) ∈ L2(−∞,+∞),
−(ξ2 + η)φ̃+ v(1)µ̃(ξ) ∈ L2(−∞,+∞),

(xγux)(0)− ζ
∫ +∞

−∞
µ(ξ)φ(ξ) dξ = 0,

ux(1) + ζ̃
∫ +∞

−∞
µ̃(ξ)φ̃(ξ) dξ = 0,

|ξ|φ ∈ L2(−∞,+∞)
, |ξ̃|φ̃ ∈ L2(−∞,+∞)



.(3.14)

The well-posedness of problem (P ′) is ensured by the following theorem.

Theorem 3.3.1 (Existence and uniqueness)

(1) If U0 ∈ D(A), then system (3.12) has a unique strong solution

U ∈ C0(IR+, D(A)) ∩ C1(IR+,H).

(2) If U0 ∈ H, then system (3.12) has a unique weak solution

U ∈ C0(IR+,H).

Proof of Theorem 3.3.1. We show that A is monotone maximal. First, it is easy to see that
we have

<〈AU,U〉H = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ)|2 dξ − ζ̃

∫ +∞

−∞
(ξ2 + η)|φ̃(ξ)|2 dξ.(3.15)

For the maximality, let F = (f1, f2, f3, f4)T ∈ H and look
for U = (u, v, φ, φ̃)T ∈ D(A) satisfying λU −AU = F for λ > 0, that is,

λu− v = f1,
λv − (xγux)x + βu = f2,
λφ+ (ξ2 + η)φ− v(0)µ(ξ) = f3,
λφ̃+ (ξ2 + η)φ̃− v(1)µ(ξ) = f4.

(3.16)

Suppose u is found with the appropriate regularity. Then, (3.16)1, (3.16)3 and (3.16)4 yield

v = λu− f1 ∈ H1
0,γ(0, 1),(3.17)

φ =
f3(ξ) + µ(ξ)v(0)

ξ2 + η + λ
.(3.18)

φ̃ =
f4(ξ) + µ(ξ)v(1)

ξ2 + η + λ
.(3.19)
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By using (3.16) and (3.17) it can easily be shown that u satisfies

λ2u− (xγux)x + βu = f2 + λf1.(3.20)

Solving equation (3.20) is equivalent to finding u ∈ H2
γ(0, 1) ∩H1

0,γ(0, 1) such that∫ 1

0
(λ2uw − (xγux)xw + βuw) dx =

∫ 1

0
(f2 + λf1)w dx,(3.21)

for all w ∈ H1
0,γ(0, 1). By using (3.21), the boundary condition (3.14)3 and (3.18) the function u

satisfying the following equation∫ 1

0
(λ2uw + (xγux)wx + βuw) dx+ ζ2v(0)w(0) + ζ1v(1)w(1)

=
∫ 1

0
(f2 + λf1)w dx− ζ̃

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξw(0)− ζ

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f4(ξ) dξw(1)

(3.22)

where ζ1 = ζ
∫ +∞

−∞

µ2(ξ)

ξ2 + η + λ
dξ, ζ2 = ζ̃

∫ +∞

−∞

µ2(ξ)

ξ2 + η + λ
dξ. Using again (3.17), we deduce that

v(0) = λu(0)− f1(0),(3.23)

v(1) = λu(1)− f1(1).(3.24)

Inserting (3.23) into (3.22), we get∫ 1

0
(λ2uw + xγuxwx + βuw) dx+ λζ2u(0)w(0) + λζ1u(1)w(1)

=
∫ 1

0
(f2 + λf1)w dx− ζ

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f4(ξ) dξw(1)− ζ̃

∫ +∞

−∞
µ(ξ)

ξ2 + η + λ
f3(ξ) dξw(0) + ζ2f1(0)w(0) + ζ1f1(1)w(1).

(3.25)

Problem (3.43) is of the form
B(u,w) = L(w),(3.26)

where B : [H1
0,γ(0, 1)×H1

0,γ(0, 1)]→ IC is the bilinear form defined by

B(u,w) =
∫ 1

0
(λ2uw + xγuxwx + βuw) dx+ λζ2u(0)w(0) + λζ1u(1)w(1)

and L : H1
0,γ(0, 1)→ IC is the linear functional given by

L(w) =
∫ 1

0
(f2 + λf1)w dx− ζ

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f4(ξ) dξw(1)− ζ̃

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξw(0)

+ζ2f1(0)w(0) + ζ1f1(1)w(1).

It is easy to verify that B is continuous and coercive, and L is continuous. Consequently, by
the Lax-Milgram Lemma, system (3.26) has a unique solution u ∈ H1

0,γ(0, 1). By the regularity
theory for the linear elliptic equations, it follows that u ∈ H2

γ(0, 1). Therefore, the operator
λI −A is surjective for any λ > 0.

2
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3.4 Strong stability of the system

We use a general criteria of Arendt-Batty and Lyubich-Vu (see [?] or [35]), following which a
C0-semigroup of contractions etA in a Banach space is strongly stable, if A has no pure imaginary
eigenvalues and σ(A) ∩ iIR contains only a countable number of elements. Our main result is
the following theorem.

Theorem 3.4.1 The C0-semigroup etA is strongly stable in H; i.e, for all U0 ∈ H, the solution
of (3.12) satisfies

lim
t→∞
‖etAU0‖H = 0.

For the proof of Theorem 3.4.1, we need the following two lemmas.

Lemma 3.4.1 A does not have eigenvalues on iIR.

Proof
e make a distinction between iλ = 0 and iλ 6= 0.
Step 1. Solving for AU = 0 leads to the system

v = 0,
(xγux)x − βu = 0,
−(ξ2 + η)φ+ v(0)µ(ξ) = 0.
−(ξ2 + η)φ̃+ v(1)µ(ξ) = 0.

(3.27)

Then v = 0, φ = 0, φ̃ = 0, (xγux)(0) = (xγux)(1) = 0. Multiplying the second equation in (25)
by u , using Green formula,and the boundary conditions, we get∫ 1

0
(xγ|ux|2)dx+

∫ 1

0
(β|u|2)dx = 0(3.28)

then u = 0. We have U = 0. Hence, iλ = 0 is not an eigenvalue of A.

Step 2.Let λ ∈ IR−{0}. We prove that iλ is not an eigenvalue of A by proving that the unique
solution U ∈ D(A) of the equation

AU = iλU(3.29)

is U = 0. Let U = (u, v, φ, φ̃)T . The equation (27) means that
iλu− v = 0,
iλv − (xγux)x + βu = 0,
iλφ+ (ξ2 + η)φ− v(0)µ(ξ) = 0,
iλφ̃+ (ξ2 + η)φ̃− v(1)µ(ξ) = 0

(3.30)

Using (3.15) and (3.29), we find
φ ≡ 0, φ̃ ≡ 0(3.31)
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then, using the third and four equations in (3.30), we deduce that

v(0) = 0, v(1) = 0.(3.32)

Therefore, from the first and last equation in (3.30), we find

u(0) = 0 and (xγux)(0) = βu(0) = 0,
u(1) = 0 and (xγux)(1) = βu(1) = 0

(3.33)

Thus, by eliminating v, the system (3.30) implies that
λ2u+ (xγux)x − βu = 0 on (0, 1),
u(0) = u(1) = 0,
(xγux)(0) = (xγux)(1) = 0.

(3.34)

The solution of the equation (3.34) is given by

u(x) = C1Φ+(x) + C2Φ−(x).

where Φ+ and Φ− are defined by

Φ+(x) = x
1−γ
2 Jνγ

(
2

2− γ

√
λ2 − βx

2−γ
2

)
, Φ−(x) = x

1−γ
2 J−νγ

(
2

2− γ

√
λ2 − βx

2−γ
2

)
.(3.35)

From boundary conditions (3.34)2 and (3.34)3, we deduce that

u ≡ 0.

Therefore U = 0. Consequently, P does not have purely imaginary eigenvalues.
2

Lemma 3.4.2
If λ 6= 0, the operator iλI −A is surjective.
If λ = 0 and η 6= 0, the operator iλI −A is surjective.

Proof.
Case 1: λ 6= 0. Let F = (f1, f2, f3, f4)T ∈ H be given, and let U = (u, v, φ, φ̃)T ∈ D(A) be such
that

(iλI −A)U = F.(3.36)

Equivalently, we have 
iλu− v = f1,
iλv − (xγux)x = f2,
iλφ+ (ξ2 + η)φ− µ(ξ)v(0) = f3

iλφ̃+ (ξ2 + η)φ̃− µ̃(ξ)v(1) = f4

(3.37)

together with the conditions (3.52).
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Inserting (3.37)1 into (3.37)2, we get

−λ2u− (xγux)x + βu = f2 + λf1.(3.38)

Solving system (3.38) is equivalent to finding u ∈ H2
γ ∩H1

0,γ(0, 1) such that

∫ 1

0
(−λ2uw − (xγux)xw + βuw) dx =

∫ 1

0
(f2 + iλf1)w dx,(3.39)

for all w ∈ H1
0,γ(0, 1). By using (3.37)3 and (3.37)1 the function u satisfies the following system∫ 1

0
(−λ2uw + (xγux)wx + βuw) dx+ ζ2v(0)w(0) + ζ1v(1)w(1)

=
∫ 1

0
(f2 + iλf1)w dx− ζ̃

∫ +∞

−∞

µ(ξ)

ξ2 + η + iλ
f3(ξ) dξw(0)− ζ

∫ +∞

−∞

µ̃(ξ)

ξ2 + η + iλ
f4(ξ) dξw(1)

(3.40)
Using again (3.17), we deduce that

v(0) = iλu(0)− f1(0),(3.41)

v(1) = iλu(1)− f1(1).(3.42)

Inserting (3.41) into (3.22), we get∫ 1

0
(−λ2uw + xγuxwx + βuw) dx+ iλζ2u(0)w(0) + iλζ1u(1)w(1)

=
∫ 1

0
(f2 + iλf1)w dx− ζ

∫ +∞

−∞

µ̃(ξ)

ξ2 + η + iλ
f4(ξ) dξw(1)

−ζ̃
∫ +∞

−∞

µ(ξ)

ξ2 + η + iλ
f3(ξ) dξw(0) + ζ2f1(0)w(0) + ζ1f1(1)w(1).

(3.43)

We can rewrite (3.40) as
B(u,w) = l(w), ∀w ∈ H1

0,γ(0, 1),(3.44)

where
B(u,w) = B1(u,w) + B2(u,w)

with
(∗)
B1(u,w) =

∫ 1

0
(xγuxwx + βuw) dx dx+ i%λ(iλ+ η)α−1u(0)w(0) + i%̃λ(iλ+ η)α̃−1u(1)w(1),

B2(u,w) = −
∫ 1

0
λ2uw dx,

and

l(w) =
∫ 1

0
(f2 + iλf1)w dx− ζ

∫ +∞

−∞

µ(ξ)

ξ2 + η + iλ
f3(ξ) dξ w(0)− ζ̃

∫ +∞

−∞

µ̃(ξ)

ξ2 + η + iλ
f4(ξ) dξ w(1)

+%(iλ+ η)α−1f1(0)w(0) + %̃(iλ+ η)α̃−1f1(1)w(1).
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Let (H1
0,γ(0, 1))′ be the dual space of H1

0,γ(0, 1). Let us define the following operators

(∗∗) B : H1
0,γ(0, 1)→ (H1

0,γ(0, 1))′

u 7→ Bu
Bi : H1

0,γ(0, 1)→ (H1
0,γ(0, 1))′ i ∈ {1, 2}

u 7→ Biu

such that

(∗ ∗ ∗) (Bu)w = B(u,w), ∀w ∈ H1
0,γ(0, 1),

(Biu)w = Bi(u,w), ∀w ∈ H1
0,γ(0, 1), i ∈ {1, 2}.

We need to prove that the operator B is an isomorphism. For this aim, we divide the proof into
three steps:
Step 1. In this step, we want to prove that the operator B1 is an isomorphism. For this aim,
it is easy to see that B1 is sesquilinear, continuous form on H1

0,γ(0, 1). Furthermore

<B1(u, u) = ‖xγ/2ux‖2
2 + β‖u‖2

2 + %λ< (i(iλ+ η)α−1) |u(0)|2 + %̃λ<
(
i(iλ+ η)α̃−1

)
|u(1)|2

≥ ‖xγ/2ux‖2
2 + β‖u‖2

2,

where we have used the fact that

%λ<
(
i(iλ+ η)α−1

)
= ζλ2

∫ +∞

−∞

µ(ξ)2

λ2 + (η + ξ2)2
dξ > 0.

Thus B1 is coercive. Then, from (∗∗) and Lax-Milgram theorem, the operator B1 is an isomor-
phism.
Step 2. In this step, we want to prove that the operator B2 is compact. For this aim, from (∗)
and (∗ ∗ ∗), we have

|B2(u,w)| ≤ c‖u‖L2(0,1)‖w‖L2(0,1),

and consequently, using the compact embedding from H1
0,γ(0, 1) to L2(0, 1) (see [2]) we deduce

that B2 is a compact operator. Therefore, from the above steps, we obtain that the operator
B = B1 +B2 is a Fredholm operator of index zero. Now, following Fredholm alternative, we still
need to prove that the operator B is injective to obtain that the operator B is an isomorphism.
Step 3. Let u ∈ ker(B), then

B(u,w) = 0 ∀w ∈ H1
0,γ(0, 1).(3.45)

In particular for w = u, it follows that

λ2‖u‖2
L2(0,1) − i%λ(iλ+ η)α−1|u(0)|2 − i%̃λ(iλ+ η)α̃−1|u(1)|2 = ‖xγ/2ux‖2

L2(0,1) + β‖u‖2
2.

Hence, we have

u(0) = u(1) = 0.(3.46)

From (3.45), we obtain

(xγ/2ux)(0) = 0, ux(1) = 0(3.47)
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and then 
−λ2u− (xγux)x + βu = 0,
u(0) = (xγ/2ux)(0) = 0,
u(1) = 0.

(3.48)

Then, according to Lemma 3.4.1, we deduce that u = 0 and consequently Ker(B) = {0}. Fi-
nally, from Step 3 and Fredholm alternative, we deduce that the operator B is isomorphism. It
is easy to see that the operator l is a antilinear and continuous form on H1

0,γ(0, 1). Consequently,
(3.44) admits a unique solution u ∈ H1

0,γ(0, 1). By using the classical elliptic regularity, we
deduce that U ∈ D(A) is a unique solution of (3.36). Hence iλ−A is surjective for all λ ∈ IR∗.

Case 2: λ = 0 and η 6= 0. Using Lax-Milgram Lemma, we obtain the result.
Taking account of Lemmas 3.4.1, 3.4.2 and from Theorem ?? The C0-semigroup etA is strongly

stable in H.
2

3.5 Spectral analysis and lack of uniform stability

This section will be devoted to the study of the lack of exponential decay of solutions associated
with the system (3.12). To do this, we shall use the following well-known result from semigroup
theory.

Theorem 3.5.1 ([42]-[30]) Let S(t) be a C0-semigroup of contractions on Hilbert space X with
generator A. Then S(t) is exponentially stable if and only if

ρ(A) ⊇ {iβ : β ∈ IR} ≡ iIR(3.49)

and
lim
|β|→∞

‖(iβI −A)−1‖L(X ) <∞.(3.50)

Our main result is the following.

Theorem 3.5.2 The semigroup generated by the operator A is not exponentially stable if η = 0
or α 6= 2νγ.

Proof. We will examine two cases.
•Case 1 η = 0 and α 6= 1: We shall show that iλ = 0 is not in the resolvent set of the operator A.
Indeed, noting that F = (sinx, 0, 0, 0)T ∈ H, and assume that there exists U = (u, v, φ)T ∈ D(A)
such that −AU = F . It follows 

−v = sinx,
−(xγux)x + βu = 0,
ξ2φ− v(0)µ(ξ) = 0.
ξ2φ̃− v(1)µ̃(ξ) = 0.
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We see that φ̃(ξ) = −|ξ| 2α̃−5
2 sin 1. But, then φ̃ 6∈ L2(−∞,+∞), since α̃ ∈]0, 1[. So (u, v, φ, φ̃)T 6∈

D(A). Then the operator −A is not invertible.
• Case 2 η 6= 0 and α 6= 2νγ:

We aim to show that an infinite number of eigenvalues of A approach the imaginary axis
which prevents the system (P ) from being exponentially stable. Indeed we first compute the
characteristic equation that gives the eigenvalues of A. Let λ be an eigenvalue of A with
associated eigenvector U = (u, v, φ)T . Then AU = λU is equivalent to

λu− v = 0,
λv − (xγux)x + βu = 0,
λφ+ (ξ2 + η)φ− v(0)µ(ξ) = 0
φ̃+ (ξ2 + η)φ̃− v(1)µ̃(ξ) = 0

(3.51)

with boundary conditions 
(xγux)(0)− ζ

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = 0.

ux(1) + ζ̃
∫ +∞

−∞
µ̃(ξ)φ̃(ξ) dξ = 0.

(3.52)

Inserting (3.51)1 into (3.51)2 and (3.51)3, we get
λ2u− (xγux)x + βu = 0,
(λ+ ξ2 + η)φ− λu(0)µ(ξ) = 0.
(λ+ ξ2 + η)φ̃− λu(1)µ̃(ξ) = 0.

(3.53)

From the condition (3.52)2, (3.53)2 and Lemma 3.2.1, we obtain that{
(xγux)(0)− %λ(λ+ η)α−1u(0) = 0,
ux(1) + %̃λ(λ+ η)α̃−1u(1) = 0,

(3.54)

Finally, we get the following problem
λ2u− (xγux)x + βu = 0,
(xγux)(0)− %λ(λ+ η)α−1u(0) = 0.
ux(1) + %̃λ(λ+ η)α̃−1u(1) = 0.

(3.55)

It is well-known that Bessel functions play an important role in this type of problem. Assume
that u is a solution of (3.55)1 associated to eigenvalue −(λ2 +β), then one easily checks that the
function

u(x) = x
1−γ
2 Ψ

(
2

2− γ
i
√
λ2 + βx

2−γ
2

)
is a solution of the following problem:

y2Ψ′′(y) + yΨ′(y) + (y2 − (
γ − 1

2− γ
)2)Ψ(y) = 0.(3.56)

We have
u(x) = c+Φ̃+ + c−Φ̃−,(3.57)
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where Φ̃+ and Φ̃− are defined by

Φ̃+(x) := x
1−γ
2 Jνγ

(
2

2− γ
i
√
λ2 + βx

2−γ
2

)

and

Φ̃−(x) := x
1−γ
2 J−νγ

(
2

2− γ
i
√
λ2 + βx

2−γ
2

)
,

where

Jν(y) =
∞∑
m=0

(−1)m

m!Γ(m+ ν + 1)

(
y

2

)2m+ν

=
∞∑
m=0

c+
ν,my

2m+ν ,(3.58)

J−ν(y) =
∞∑
m=0

(−1)m

m!Γ(m− ν + 1)

(
y

2

)2m−ν
=

∞∑
m=0

c−ν,my
2m−ν ,(3.59)

νγ =
1− γ
2− γ

.

Jνγ and J−νγ are Bessel functions of the first kind of order νγ and −νγ. As νγ 6∈ IN, so Jνγ
and J−νγ are linearly independent and therefore the pair (Jνγ , J−νγ ) (classical result) forms a
fundamental system of solutions (3.56).

Then, using the series expansion of Jνα and J−να , one obtains

Φ̃+(x) =
∞∑
m=0

c̃+
νγ ,mx

1−γ+(2−γ)m, Φ̃−(x) =
∞∑
m=0

c̃−νγ ,mx
(2−γ)m

with

c̃+
νγ ,m = c+

νγ ,m

(
2

2− γ
i
√
λ2 + β

)2m+νγ

, c̃−νγ ,m = c−νγ ,m

(
2

2− γ
i
√
λ2 + β

)2m−νγ

.

Next one easily verifies that Φ+,Φ− ∈ H1
0,γ(0, 1): indeed,

Φ̃+(x) ∼0 c̃
+
νγ ,0x

1−γ, xγ/2Φ̃′+(x) ∼0 (1− γ)c̃+
νγ ,0x

−γ/2,

Φ̃−(x) ∼0 c̃
−
νγ ,0, xγ/2Φ̃′−(x) ∼0 (2− γ)c̃−νγ ,0x

1−γ/2,

where we have used the following relation

xJ ′ν(x) = νJν(x)− xJν+1(x).(3.60)

Hence, given c+ and c−, u(x) = c+Φ̃+(x) + c−Φ̃−(x) ∈ H1
γ(0, 1) with the following boundary

condition {
(xγux)(0)− %λ(λ+ η)α−1u(0) = 0,
ux(1) + %̃λ(λ+ η)α̃−1u(1) = 0.

Then

M(λ)C(λ) =
(

0
0

)
,(3.61)
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where

M(λ) =

(
(1− γ)c̃+

νγ ,0 −%λ(λ+ η)α−1c̃−νγ ,0
(1− γ + %̃λ(λ+ η)α̃−1)Jνγ (λ̃)− i

√
λ2 + βJ1+νγ (λ̃) %̃λ(λ+ η)α̃−1J−νγ (λ̃)− i

√
λ2 + βJ1−νγ (λ̃)

)

C(λ) =
(
c+

c−

)
.

Hence, a non-trivial solution u exists if and only if the determinant of M(λ) vanishes. Set
f(λ) = detM(λ) thus the characteristic equation is f(λ) = 0.

Our purpose is to prove, thanks to Rouché’s Theorem, that there is a subsequence of eigen-
values for which their real part tends to 0.

In the sequel, since A is dissipative, we study the asymptotic behavior of the large eigenvalues
λ of A in the strip −α0 ≤ <(λ) ≤ 0, for some α0 > 0 large enough and for such λ, we remark
that Φ+,Φ− remain bounded.

Lemma 3.5.1 There exists N ∈ IN such that

{λk}k∈Z∗,|k|≥N ⊂ σ(A),(3.62)

where
• If γ = 0 and α = 1, then

λk =


ln

√
%− 1

%+ 1
+ ikπ if ρ > 1

ln

√
1− %
%+ 1

+ i
(
k +

1

2

)
π if ρ < 1

 , k ∈ Z.

• If α = 2νγ, then

λk = −i2− γ
4

(
2kπ + θ +

π

2

)
− 2− γ

4
ln

1 + Ã√
1 + Ã2 + 2Ã cos 2νγπ

+O
(

1

k1−α̃

)
, k ∈ Z,

λk = λ−k if k ≤ −N,
where

Ã =
1

1− γ

(
2

2− γ

)−2νγ c−νγ ,0
c+
νγ ,0

and θ is such that 
cos θ =

(1 + Ã) cos νγπ√
1 + Ã2 + 2Ã cos 2νγπ

,

sin θ =
(1− Ã) sin νγπ√

1 + Ã2 + 2Ã cos 2νγπ
.

• If α > 2νγ and α + α̃ > 1 + 2νγ, then

λk = −2− γ
2

i
(
k +

νγ
2

+
1

4

)
π +

α̃

k1−α̃ +
β

k1−α̃ + o
(

1

k1−α̃

)
, k ≥ N, α̃ ∈ iIR, β ∈ IR, β < 0,
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λk = λ−k if k ≤ −N,

where

β = −
(

2− γ
2

)α̃ ρρ̃

π1−α̃ cos(1− α̃)
π

2
.

• If α > 2νγ and α + α̃ < 1 + 2νγ, then

λk = −2− γ
2

i
(
k − νγ

2
+

3

4

)
π +

α̃

k2νγ−α
+

β

k2νγ−α
+ o

(
1

k2νγ−α

)
, k ≥ N, α̃ ∈ iIR, β ∈ IR, β < 0,

λk = λ−k if k ≤ −N,

where

β = − %

1− γ
c−νγ ,0
c+
νγ ,0

(
2− γ

2

)1+α cos(1− α)π
2

sin νγπ

πα−2νγ
.

Moreover for all |k| ≥ N , the eigenvalues λk are simple.
• If α < 2νγ, then

λk = −2− γ
2

i
(
k − νγ

2
+

3

4

)
π +

α̃

k2νγ−α
+

β

k2νγ−α
+ o

(
1

k2νγ−α

)
, k ≥ N, α̃ ∈ iIR, β ∈ IR, β < 0,

λk = λ−k if k ≤ −N,

where

β = − %

1− γ
c−νγ ,0
c+
νγ ,0

(
2− γ

2

)1+α cos(1− α)π
2

sin νγπ

πα−2νγ
.

Moreover for all |k| ≥ N , the eigenvalues λk are simple.

The proof of Lemma 3.5.1 will be given in Appendix A.
Now, setting Ũk = (λ0

k −A)Uk, where Uk is a normalized eigenfunction associated to λk. We
then have

‖(λ0
k −A)−1‖L(H) = sup

U∈H,U 6=0

‖(λ0
k −A)−1U‖H
‖U‖H

≥ ‖(λ0
k −A)−1Ũk‖H
‖Ũk‖H

≥ ‖Uk‖H
‖(λ0

k −A)Uk‖H
.

Hence, by Lemma 3.5.1, we deduce that

‖(λ0
k −A)−1‖L(H) ≥ c

{ |k|α−2νγ if α > 2νγ,
|k|2νγ−α if α < 2νγ.

Thus, (3.50) is not satisfied for α 6= 2νγ. So that, the semigroup etA is not exponentially stable.
Thus the proof is complete.

2
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Proof.
• γ = 0 and α = 1.
System (3.55) becomes 

λ2u− uxx = 0,
ux(0) = %λu(0),
u(1) = 0.

The solution u is given by
u = c1e

λx + c2e
−λx.

Thus, the boundary conditions give

e2λ =
%− 1

%+ 1
.

If % > 1 and if we set λ = x+ iy, then

e2x =
%− 1

%+ 1
and e2iy = 1.

Hence

x =
1

2
ln
%− 1

%+ 1
and y = kπ, k ∈ Z.

Then

λ =
1

2
ln
%− 1

%+ 1
+ ikπ, k ∈ Z.

Now if % < 1, we have

e2x =
1− %
%+ 1

and e2iy = −1.

Hence

x =
1

2
ln

1− %
%+ 1

and y = (k +
1

2
)π, k ∈ Z.

Then

λ =
1

2
ln

1− %
%+ 1

+ i(k +
1

2
)π, k ∈ Z.

• α > 2νγ and α + α̃ > 1 + 2νγ.
Step 1. From (3.61), our aim is to solve the equation

f(λ) = (1− γ)ρ̃c̃+
νγ ,0λ

α̃J−νγ
(

2
2−γ i
√
λ2 + β

)
− (1− γ)ic̃+

νγ ,0λJ1−νγ

(
2

2−γ i
√
λ2 + β

)
+ρρ̃c̃−νγ ,0λ

α+α̃Jνγ
(

2
2−γ i
√
λ2 + β

)
− ic̃−νγ ,0λ1+αJ1+νγ

(
2

2−γ i
√
λ2 + β

)
We will use the following classical development (see [32] p. 122, (5.11.6)): for all δ > 0, the
following development holds when | arg z| < π − δ:

Jν(z) =
(

2

πz

)1/2

cos
(
z − ν π

2
− π

4

)
−

(ν − 1

2
)(ν +

1

2
)

2

sin
(
z − ν π

2
− π

4

)
z

+O

(
1

|z|2

) .(3.63)
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Then

f(λ) = −
(

2

πz̃

)1/2

λ1+α−νγc−νγ ,0

(
2

2− γ
i

)−νγ e−i(z̃−νγ π2−π4 )

2
f̃(λ),(3.64)

where

z̃ =
2

2− γ
i
√
λ2 + β

and

f̃(λ) = (e2i(z̃−νγ π2−
π
4

) − 1)− ρρ̃e
2i(z̃−νγ π2−

π
4

) + 1

λ1−α̃ + o
(

1

λ1−α̃

)
= f0(λ) + f1(λ)

λ1−α̃
+ o

(
1

λ1−α̃

)
,

(3.65)

where
f0(λ) = e2i(z̃−νγ π2−

π
4

) − 1.(3.66)

f1(λ) = −ρρ̃(e2i(z̃−νγ π2−
π
4

) + 1).(3.67)

Note that f0 and f1 remain bounded in the strip −α0 ≤ <(λ) ≤ 0.
Step 2. We look at the roots of f0. From (3.66), f0 has one family of roots that we denote λ0

k.

f0(λ) = 0⇔ e2i(z̃−νγ π2−
π
4

) − 1 = 0

Hence

2i

(
2

2− γ
iλ− νγ

π

2
− π

4

)
= 2ikπ, k ∈ Z,

i.e.,

λ0
k = −2− γ

2
i
(
k +

νγ
2

+
1

4

)
π, k ∈ Z.

We will now use Rouché’s Theorem. Let Bk(λ
0
k, rk) be the ball of centrum λ0

k and radius rk =
1

k(1−α̃)/2
and λ ∈ ∂Bk (i.e λ = λ0

k + rke
iθ, θ ∈ [0, 2π]). Then we successively have:

f0(λ) =
4

2− λ
rke

iθ +O(r2
k).

It follows that there exists a positive constant c such that

∀λ ∈ ∂Bk, |f0(λ)| ≥ crk =
c

k(1−α̃)/2
.

Then we deduce from (3.67) that |f̃(λ)− f0(λ)| = O
(

1
λ(1−α̃)

)
= O

(
1

k(1−α̃)

)
. It follows that, for k

large enough
∀λ ∈ ∂Bk, |f̃(λ)− f0(λ)| < |f0(λ)|,

Then f̃ and f0 have the same number of zeros in Bk. Consequently, there exists a subsequence
of roots of f̃ which tends to the roots λ0

k of f0. Equivalently, it means that there exists N ∈ IN
and a subsequence {λk}|k|≥N of roots of f(λ), such that λk = λ0

k + o(1) which tends to the roots

−2− γ
2

i
(
k +

νγ
2

+
1

4

)
π of f0. Finally for |k| ≥ N, λk is simple since λ0

k is.
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Step 3. From Step 2, we can write

λk = −2− γ
2

i
(
k +

νγ
2

+
1

4

)
π + εk.(3.68)

Using (3.68), we get

e2i( 2
2−γ iλk−νγ

π
2
−π

4 ) = e−
4

2−γ εk

= 1− 4
2−γ εk +O(ε2

k).
(3.69)

Substituting (3.69) into (3.66), using that f̃(λk) = 0, we get:

f̃(λk) = − 4

2− γ
εk − ρρ̃

2

(−2−γ
2
ikπ)1−α̃ + o(εk) + o

(
1

k1−α̃

)
= 0(3.70)

and hence

εk = −
(

2− γ
2

)α̃ ρρ̃

(kπ)1−α̃ (cos(1− α̃)
π

2
+ i sin(1− α̃)

π

2
) + o

(
1

k1−α̃

)
.(3.71)

From (3.71) we have in that case |k|1−α̃<λk ∼ β with

β = −
(

2− γ
2

)α̃ ρρ̃

π1−α̃ cos(1− α̃)
π

2
.

• α > 2νγ and α + α̃ < 1 + 2νγ.
From (3.61), our aim is to solve the equation

f(λ) = (1− γ)c̃+
νγ ,0J−νγ

(
2

2− γ
iλ

)
+ %λ(λ+ η)α−1c̃−νγ ,0Jνγ

(
2

2− γ
iλ

)
= 0

Then

f(λ) = −
(

2

πz̃

)1/2

λ1+α−νγc−νγ ,0

(
2

2− γ
i

)−νγ e−i(z̃−νγ π2−π4 )

2
f̃(λ),(3.72)

where

f̃(λ) = (e2i(z̃−νγ π2−
π
4

) − 1) + (1− γ)

(
2

2− γ
i

)2νγ c+
νγ ,0

c−νγ ,0

e2i(z̃−π
4

) − e−iνγπ

λα−2νγ
+ o

(
1

λα−2νγ

)
= f0(λ) + f1(λ)

λα−2νγ + o
(

1
λα−2νγ

)
.

(3.73)

where
f0(λ) = e2i(z̃−νγ π2−

π
4

) − 1.(3.74)

f1(λ) = (1− γ)

(
2

2− γ
i

)2νγ c+
νγ ,0

c−νγ ,0
(e2i(z̃−π

4
) − e−iνγπ).(3.75)

we can write

λk = −2− γ
2

i
(
k +

νγ
2

+
1

4

)
π + εk.(3.76)
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and substituting into (3.66) and using that f̃(λk) = 0, we get:

f̃(λk) = − 4

2− γ
εk + (1− γ)

(
2

2− γ
i

)2νγ c+
νγ ,0

c−νγ ,0

2i sin νγπ

(−2−γ
2
ikπ)α−2νγ

+ o(εk) + o
(

1

kα−2νγ

)
= 0(3.77)

and hence

εk = −(1− γ)
c+
νγ ,0

c−νγ ,0

(
2− γ

2

)1−α sin νγπ

(kπ)α−2νγ
(sinα

π

2
− i cosα

π

2
) + o

(
1

kα−2νγ

)
.(3.78)

From (3.71) we have in that case |k|α−2νγ<λk ∼ β with

β = −(1− γ)
c+
νγ ,0

c−νγ ,0

(
2− γ

2

)1−α sin νγπ sinαπ
2

πα−2νγ
.

• α < 2νγ and α̃ + 2νγ > 1 + α.
step 1.

f(λ) = −
(

2

πz̃

)1/2

(1− γ)λ1+νγc+
νγ ,0

(
2

2− γ
i

)νγ e−i(z̃+νγ π2−π4 )

2
f̃(λ),(3.79)

f̃(λ) = (e2i(z̃+νγ
π
2
−π

4
) − 1)− %̃e

2i(z̃+νγ
π
2
−π

4
) + 1

λ1−α̃ + o
(

1

λ1−α̃

)
= f0(λ) + f1(λ)

λ1−α̃
+ o

(
1

λ1−α̃

)
,

(3.80)

where
f0(λ) = e2i(z̃+νγ

π
2
−π

4
) − 1.(3.81)

f1(λ) = −%̃(e2i(z̃+νγ
π
2
−π

4
) + 1).(3.82)

We look at the roots of f0. From (3.89), f0 has one family of roots that we denote λ0
k.

2i

(
2

2− γ
iλ+ νγ

π

2
− π

4

)
= 2kπi, k ∈ Z,

i.e.,

λ0
k = −2− γ

2
i
(
k − νγ

2
+

1

4

)
π, k ∈ Z.

Step 2. From Step 1, we can write

λk = −2− γ
2

i
(
k − νγ

2
+

1

4

)
π + εk.(3.83)

Using (3.91), we get

e2i( 2
2−γ iλk+νγ

π
2
−π

4 ) = e−
4

2−γ εk

= 1− 4
2−γ εk +O(ε2

k).
(3.84)

Substituting (3.92) into (3.88), using that f̃(λk) = 0, we get:

f̃(λk) = − 4

2− γ
εk −

2%̃

(−2−γ
2
ikπ)1−α̃ + o(εk) + o

(
1

k1−α̃

)
= 0(3.85)
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and hence

εk = −
(

2−γ
2

)α̃ %̃

(kπ)1−α̃ (−i)α̃−1 + o
(

1

k1−α̃

)
= −

(
2−γ

2

)α̃ %̃

(kπ)1−α̃ (cos(1− α̃)
π

2
+ i sin(1− α̃)

π

2
) + o

(
1

k1−α̃

)(3.86)

From (3.94) we have in that case |k|1−α̃<λk ∼ β with

β = −
(

2− γ
2

)α̃ %̃

π1−α̃ cos(1− α̃)
π

2
.

• α < 2νγ and α̃ + 2νγ < 1 + α.
step 1.

f(λ) = −
(

2

πz̃

)1/2

(1− γ)λ1+νγc+
νγ ,0

(
2

2− γ
i

)νγ e−i(z̃+νγ π2−π4 )

2
f̃(λ),(3.87)

f̃(λ) = (e2i(z̃+νγ
π
2
−π

4
) − 1) +

(
2

2− γ
i

)−2νγ 1

1− γ
c−νγ ,0
c+
νγ ,0

e2i(z̃−π
4

) − eiνγπ

λ2νγ−α
+ o

(
1

λ1−α̃

)
= f0(λ) + f1(λ)

λ1−α̃
+ o

(
1

λ1−α̃

)
,

(3.88)

where

f0(λ) = e2i(z̃+νγ
π
2
−π

4
) − 1.(3.89)

f1(λ) = −%̃(e2i(z̃+νγ
π
2
−π

4
) + 1).(3.90)

We look at the roots of f0. From (3.89), f0 has one family of roots that we denote λ0
k.

2i

(
2

2− γ
iλ+ νγ

π

2
− π

4

)
= 2kπi, k ∈ Z,

i.e.,

λ0
k = −2− γ

2
i
(
k − νγ

2
+

1

4

)
π, k ∈ Z.

Step 2. From Step 1, we can write

λk = −2− γ
2

i
(
k − νγ

2
+

1

4

)
π + εk.(3.91)

Using (3.91), we get

e2i( 2
2−γ iλk+νγ

π
2
−π

4 ) = e−
4

2−γ εk

= 1− 4
2−γ εk +O(ε2

k).
(3.92)

Substituting (3.92) into (3.88), using that f̃(λk) = 0, we get:

f̃(λk) = − 4

2− γ
εk −

2%̃

(−2−γ
2
ikπ)1−α̃ + o(εk) + o

(
1

k1−α̃

)
= 0(3.93)
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and hence

εk = −
(

2−γ
2

)α̃ %̃

(kπ)1−α̃ (−i)α̃−1 + o
(

1

k1−α̃

)
= −

(
2−γ

2

)α̃ %̃

(kπ)1−α̃ (cos(1− α̃)
π

2
+ i sin(1− α̃)

π

2
) + o

(
1

k1−α̃

)(3.94)

From (3.94) we have in that case |k|1−α̃<λk ∼ β with

β = −
(

2− γ
2

)α̃ %̃

π1−α̃ cos(1− α̃)
π

2
.

• α = 2νγ.
step 1.

f(λ) = −
(

2

πz̃

)1/2

(1− γ)λ1+νγc+
νγ ,0

(
2

2− γ
i

)νγ e−i(z̃+νγ π2−π4 )

2
f̃(λ),(3.95)

f̃(λ) = (e2i(z̃+νγ
π
2
−π

4
) − 1) +

(
2

2− γ
i

)−2νγ 1

1− γ
c−νγ ,0
c+
νγ ,0

(e2i(z̃−π
4

) − eiνγπ) + o
(

1

λ1−α̃

)
= f0(λ) +O

(
1

λ1−α̃

)
,

(3.96)

We look at the roots of f0. From (3.66), f0 has one family of roots that we denote λ0
k.

f0(λ) = 0⇔ e2iz̃ = i
1 + Ã

eiνγπ + Ãe−iνγπ
,

where

Ã =
1

1− γ

(
2

2− γ

)−2νγ c−νγ ,0
c+
νγ ,0

.

Let us set λ = x+ iy. Then, we have
e−

4
2−γ x =

1 + Ã√
1 + Ã2 + 2Ã cos 2νγπ

,

− 4
2−γy = 2kπ +

π

2
+ θ, k ∈ Z,

where θ is such that 
cos θ =

(1 + Ã) cos νγπ√
1 + Ã2 + 2Ã cos 2νγπ

,

sin θ =
(1− Ã) sin νγπ√

1 + Ã2 + 2Ã cos 2νγπ
.

Hence 
x = −2−γ

4
ln

1 + Ã√
1 + Ã2 + 2Ã cos 2νγπ

,

y = −2−γ
4

(2kπ +
π

2
+ θ), k ∈ Z.

Now with the help of Rouché’s Theorem, we conclude.
Next, by an explicit representation of the resolvent of the generator on the imaginary axis

and the use of Theorem ??, we prove an optimal decay rate. Our main result is the following.



3.5. SPECTRAL ANALYSIS AND LACK OF UNIFORM STABILITY 79

Theorem 3.5.3 If η 6= 0, then the global solution of the problem (P ) has the following energy
decay property

E(t) = ‖SA(t)U0‖2
H ≤



c

t
2

1−α̃
‖U0‖2

D(A) if α > 2νγ and α + α̃ > 1 + 2νγ,

c

t
2

1−α−2νγ

‖U0‖2
D(A) if α > 2νγ and α + α̃ < 1 + 2νγ,

c

t
2

1−α̃
‖U0‖2

D(A) if α < 2νγ and α̃ + 2νγ > 1 + α,

c

t
2

2νγ−α
‖U0‖2

D(A) if α < 2νγ and α̃ + 2νγ < 1 + α,

ce−ωt‖U0‖2
H if α = 2νγ.

Moreover, the rate of energy decay is optimal for general initial data in D(A).

Proof.
Let us consider the resolvent equation

iλu− v = f1,
iλv − (xγux)x + βu = f2,
iλφ+ (ξ2 + η)φ− v(0)µ(ξ) = f3,
iλφ̃+ (ξ2 + η)φ̃− v(1)µ̃(ξ) = f4.

(3.97)

where F = (f1, f2, f3, f4)T ∈ H. From (3.97)1 and (3.97)2, we have

λ2u+ (xγux)x − βu = −(f2 + iλf1)(3.98)

with 
(xγux)(0) = ζ

∫ ∞
−∞

µ(ξ)φ(ξ) dξ,

ux(1) = −ζ̃
∫ ∞
−∞

µ̃(ξ)φ̃(ξ) dξ,
.

(3.99)

The substitution of φ and φ̃ given by (3.97)3 and (3.97)4 into (3.99)1 and (3.99)2 gives us
(xγux)(0) = %(iλ+ η)α−1v(0) + ζ

∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ,

ux(1) = −%̃(iλ+ η)α̃−1v(1)− ζ̃
∫ +∞

−∞

µ̃(ξ)f4(ξ)

iλ+ ξ2 + η
dξ,

(3.100)

Moreover, from (3.97)1, we have {
v(0) = iλu(0)− f1(0),
v(1) = iλu(1)− f1(1),

Then, the condition (3.100) become
(xγux)(0)− %iλ(iλ+ η)α−1u(0) = −%(iλ+ η)α−1f1(0) + ζ

∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ,

ux(1) + %̃iλ(iλ+ η)α̃−1u(1) = %̃(iλ+ η)α̃−1f1(1)− ζ̃
∫ +∞

−∞

µ̃(ξ)f4(ξ)

iλ+ ξ2 + η
dξ,

(3.101)
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Assume that Φ is a solution of (3.98), then one easily checks that the function Ψ defined by

Φ(x) = x
1−γ
2 Ψ

(
2

2− γ

√
λ2 − βx

2−γ
2

)
(3.102)

is solution of the following inhomogeneous Bessel equation:

y2Ψ′′(y) + yΨ′(y) +

y2 −
(
γ − 1

2− γ

)2
Ψ(y) =

−( 2
2−γ )2(2−γ

2
1
λ̃
y)

3−γ
2−γ

(
f2

(
(2−γ

2
1
λ̃
y)

2
2−γ
)

+ iλf1

(
(2−γ

2
1
λ̃
y)

2
2−γ
))
.

(3.103)

where λ̃ =
√
λ2 − β. The solution can be written as

Ψ(y) = AJνγ (y) +BJ−νγ (y)− π

2 sin νγπ

∫ y

0

f(s)

s

(
Jνγ (s)J−νγ (y)− Jνγ (y)J−νγ (s)

)
ds,

where

f(s) = −(
2

2− γ
)2(

2− γ
2

1

λ̃
s)

3−γ
2−γ

(
f2

(
(
2− γ

2

1

λ̃
s)

2
2−γ

)
+ iλf1

(
(
2− γ

2

1

λ̃
s)

2
2−γ

))
Thus,

u(x) = Ax
1−γ
2 Jνγ

(
2

2−γ λ̃x
2−γ
2

)
+Bx

1−γ
2 J−νγ

(
2

2−γ λ̃x
2−γ
2

)
+

π

2 sin νγπ

(
2

2− γ

)
x

1−γ
2

∫ x

0
s

1−γ
2 (f2(s) + iλf1(s))

(
Jνγ

(
2

2− γ
λ̃s

2−γ
2

)
J−νγ

(
2

2− γ
λ̃x

2−γ
2

)
−Jνγ

(
2

2−γ λ̃x
2−γ
2

)
J−νγ

(
2

2−γ λ̃s
2−γ
2

))
ds.

Therefore,

u(x) = AΦ+(x) +BΦ−(x)

+
π

2 sin νγπ

(
2

2− γ

)∫ x

0
(f2(s) + iλf1(s))(Φ+(s)Φ−(x)− Φ+(x)Φ−(s)) ds,

(3.104)

where Φ+ and Φ− are defined by

Φ+(x) = x
1−γ
2 Jνγ

(
2

2− γ
λ̃x

2−γ
2

)
, Φ−(x) = x

1−γ
2 J−νγ

(
2

2− γ
λ̃x

2−γ
2

)
.(3.105)

Then

ux(x) = AΦ′+(x) +BΦ′−(x)

+
π

2 sin νγπ

(
2

2− γ

)∫ x

0
(f2(s) + iλf1(s))(Φ+(s)Φ′−(x)− Φ′+(x)Φ−(s)) ds.

(3.106)

From (3.101), (3.106) and (3.104), we conclude that

(1− γ)c̃+
νγ ,0A− %iλ(iλ+ η)α−1c̃−νγ ,0B = −%(iλ+ η)α−1f1(0) + ζ

∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ(3.107)
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A(Φ′+(1) + %̃iλ(iλ+ η)α̃−1Φ+(1)) +B(Φ′−(1) + %̃iλ(iλ+ η)α̃−1Φ−(1)) =

%̃(iλ+ η)α̃−1f1(0)− ζ̃
∫ +∞

−∞

µ̃(ξ)f4(ξ)

iλ+ ξ2 + η
dξ

−%̃iλ(iλ+ η)α̃−1 π
(2−γ) sin νγπ

∫ 1

0
(f2(s) + iλf1(s))(Φ+(s)Φ−(1)− Φ+(1)Φ−(s)) ds,

− π
(2−γ) sin νγπ

∫ 1

0
(f2(s) + iλf1(s))(Φ+(s)Φ′−(x)− Φ′+(x)Φ−(s)) ds

(3.108)

where

c̃+
νγ ,m = c+

νγ ,m

(
2

2− γ
λ̃

)2m+νγ

, c̃+
νγ ,m = c−νγ ,m

(
2

2− γ
λ̃

)2m−νγ

and

Φ+(1) = Jνγ

(
2

2− γ
λ̃

)
, Φ−(1) = J−νγ

(
2

2− γ
λ̃

)
.

Using (3.107) and (3.108), a linear system in A and B is obtained(
r11 r12

r21 r22

)(
A
B

)
=
(
C
C̃

)
,(3.109)

where
r11 = (1− γ)c̃+

νγ ,0,

r12 = −%iλ(iλ+ η)α−1c̃−νγ ,0,

r21 = Φ′+(1) + %̃iλ(iλ+ η)α̃−1Φ+(1),
r22 = Φ′−(1) + %̃iλ(iλ+ η)α̃−1Φ−(1),

C = −%(iλ+ η)α−1f1(0) + ζ
∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ,

C̃ = %̃(iλ+ η)α̃−1f1(0)− ζ̃
∫ +∞

−∞

µ̃(ξ)f4(ξ)

iλ+ ξ2 + η
dξ

−%̃iλ(iλ+ η)α̃−1 π
(2−γ) sin νγπ

∫ 1

0
(f2(s) + iλf1(s))(Φ+(s)Φ−(1)− Φ+(1)Φ−(s)) ds,

− π
(2−γ) sin νγπ

∫ 1

0
(f2(s) + iλf1(s))(Φ+(s)Φ′−(x)− Φ′+(x)Φ−(s)) ds

Let the determinant of the linear system given in (3.109) be denoted by D. Then

D = (1− γ)c̃+
νγ ,0

[
−λ̃J1−νγ

(
2

2−γ λ̃
)

+ %̃iλ(iλ+ η)α̃−1J−νγ
(

2
2−γ λ̃

)]
+%iλ(iλ+ η)α−1c̃−νγ ,0

[
−λ̃J1+νγ

(
2

2−γ λ̃
)

+ ((1− γ)%̃iλ(iλ+ η)α̃−1)Jνγ
(

2
2−γ λ̃

)]
As D 6= 0 for all λ 6= 0, then A and B are uniquely determined by (3.109).

Now, we consider the case α = 2νγ, then

|D| ≥ c|λ|νγ+1/2 for large λ.(3.110)

Now

A =
1

D
(Cr22 − C̃r12),
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B =
1

D
(−Cr21 + C̃r11).

Considering only the dominant terms of λ, the following is obtained:

|D||A| ≤ c1|λ|α−
1
2 + c2|λ|α+α̃−νγ−1,

|D||B| ≤ c1|λ|α−
1
2 + c2|λ|α̃+νγ−1

Then, we conclude that
|A| ≤ c|λ|νγ−1 + c′|λ|α̃−

3
2 ,

|B| ≤ c|λ|νγ−1 + c′|λ|α̃−
3
2 .

Then
‖u‖L2(0,1) ≤ (c|λ|νγ−

3
2 + c′|λ|α̃−2)

(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1)

)
Using (3.97)1 and (3.104), we get

‖v‖L2(0,1) ≤ (c|λ|νγ−
1
2 + c′|λ|α̃−1)

(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1)

)
.

From (3.105) and (3.60), we havex
γ/2Φ′+(x) = (1−γ

2
+ 2νγ

2−γ )x−1/2Jνγ
(

2
2−γ λ̃

)
− λ̃x 1−γ

2 J1+νγ

(
2

2−γλ
)
,

xγ/2Φ′−(x) = (1−γ
2
− 2νγ

2−γ )x−1/2J−νγ
(

2
2−γ λ̃

)
− λ̃x 1−γ

2 J1−νγ

(
2

2−γ λ̃
)
.

Then from (3.106), we can get

‖xγ/2ux‖L2(0,1) ≤≤ (c|λ|νγ−
1
2 + c′|λ|α̃−1)

(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1)

)
Now, taking inner product of (3.97) with U in H and using (3.15) we get

|Re〈AU,U〉| ≤ ‖U‖H‖F‖H.

This implies that

ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ)|2 dξ ≤ ‖U‖H‖F‖H.(3.111)

Since η > 0, we have

‖φ‖2
L2(−∞,∞) ≤

∫ +∞

−∞
(ξ2 + η)|φ(ξ)|2 dξ ≤ c‖U‖H‖F‖H.

Thus, we conclude that
‖(iλI −A)−1‖H ≤ C.

The conclusion then follows by applying Theorem Theorem 3.5.1. By a similar way, we prove
the other cases.
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الملخص

النوعمنحدوديتحكمباستخدامالمتدھورةالموجةمعادلةلحلولالمقاربوالسلوكالعالميالوجودندرس،الأطروحةھذه في
-C_0ومجموعة،النصفیةوالمجموعة،الطیفيالتحلیلطریقةھيالمستخدمةالأدوات.المشتقالنوعمندینامیكيحدتبدیدأوالكسري

semigroup،ونظریةBorichevوTomilov،ونظریةHille-Yosda،ونظریةRouché. ًمعادلةاستقراربدراسةمھتموننحن،أولا

u_ttضعیفبشكلالمتدھورةالبعدأحادیةالموجة - 〖(x ^ γ u_x)〗 _ x = ∋x مع 0 ∋γو)0،1) فعلردخلالمنفیھامتحكم،)1 ؛ 0]
xعندیعملالذيالحدعندكسري = المساحات في الطاقةلانحلالصریحتقدیر مع منتظموغیروموحدقوياستقرار على الحصولیتم.0

الأمثلالانحلالمعدلنحدد،طیفیةطریقةباستخدام.المجموعةبشبھالمرتبطالمولدلمحللخلال تقدیرمنعلى النتائجالحصولیتم.المناسبة
موحدبشكلمستقرةلیستالمشكلةأنأظھرنا.كسريمشتقنوعمنحدوديتحكمبشرطمتدھورةموجةمعادلةنعتبر،ذلكبعد.النظاملطاقة

مھتمون بدراسةنحن،أخیرًا.المجموعةنصفأساس على الخطیینالمشغلیننظریةباستخدامالحدودمتعددالاستقرارودرسناالطیفیةبالطریقة
u_ttضعیفبشكلالمتدھورةالبعدأحادیةالمعادلاتلحلولالعالميالوجود - 〖(x ^ γ u_x)〗 _ x = ∋x مع 0 ∋γو)0،1)  مع ،)1 ؛ 0]

.كسريمشتقلنوعدینامیكيحدتحكمشرط
فحص ، بیسیل دوال ، الأمثل الانحلال معدل ، الكسري المشتق لنوع للحدود الدینامیكي التبدید ، المنحلة الموجة معادلة : الكلمات المفتاحیة

،الحدودمتعددالاستقرار،الجزئیةالحدود 〖C〗 _0-semigroup
Résumé

Dans cette thèse ,nous étudions l'éxistence globale et le comportement asymptotique de solutions de
l'équation des ondes dégénérée avec un contrôle frontière de type fractionnaire ou dissipation frontière
dynamique de type dérivé fractionnaire . Les outils utilisées sont méthode d'analyse spectrale, semi groupe,
− ࢋ࢙ ,ࢋ࢛࢘ࢍ le théorème de Borichev et Tomilov, théorème de Hille-Yosda et le théorème de Rouché.
Premièrement, nous nous intéressons à l'étude de la stabilisation d'équation d'onde unidimensionnelle
faiblement dégénérée −࢚࢚࢛ ࢞(࢛࢞ࢽ࢞) =  avec ࢞ ∈ (,)ࢽ�࢚ࢋ ∈ [;), controlée par un feedback
fractionnaire au bord agissant à x=0 .
Stabilisation forte, uniforme et non uniforme sont obtenus avec une estimation explicite de la décroissance de
l'énergie dans des espaces appropriés. Les résultats sont obtenus à travers
une estimation de la résolvante du générateur associé au semigroupe. On utilise une méthode spectrale, nous
établissons la vitesse de décroissance polynomial optimal de l'énergie du système.
Ensuite, nous considérons une équation d'onde dégénérée avec une condition de contrôle frontière de type
dérivé fractionnaire. Nous montrons que le problème n'est pas uniformément stable par une méthode
spectrale et nous étudions la stabilité polynomiale à l'aide de la théorie des opérateurs linéaires basée sur le
semigroupe. Enfin, nous nous intéressons à l’étude de l’existence globale des solution d’équations
unidimensionnelles faiblement dégénérée
−࢚࢚࢛ ࢞(࢛࢞ࢽ࢞) =  avec ࢞ ∈ (,)ࢽ�࢚ࢋ ∈ [;), avec une condition de contrôle frontière dynamique de type
dérivé fractionnaire.
Les mots clés :
Equation d'onde dégénérée ,dissipation frontière dynamique de type dérivé fractionnaire , la vitesse de
décroissance optimal , fonctions de Bessel , contrôle aux limites fractionnaires , stabilité polynomiale ,
−� ࢋ࢙ .ࢋ࢛࢘ࢍ

Abstract :
In this thesis, we study the global existence and the asymptotic behavior of solutions of the degenerate wave
equation with a fractional type boundary control or fractional derivative type dynamic boundary dissipation.
The tools used are spectral analysis method, semigroup, C_0-semigroup, Borichev and Tomilov theorem, Hille-
Yosda theorem and Rouché theorem. First, we are interested in the study of the stabilization of weakly

degenerate one-dimensional wave equation u_tt-〖(x^γ u_x)〗_x=0 with x∈(0,1) and γ∈[0;1) , controlled by a
fractional feedback at the boundary acting at x=0. Strong, uniform and non-uniform stabilization are obtained
with an explicit estimate of the energy decay in appropriate spaces. The results are obtained through an
estimate of the resolvent of the generator associated with the semigroup. Using a spectral method, we
establish the optimal polynomial decay rate of the energy of the systemNext, we consider a degenerate wave
equation with a boundary control condition of fractional derivative type. We show that the problem is not
uniformly stable by a spectral method and we study the polynomial stability using the theory of linear
operators based on the semigroup. Finally, we are interested in the study of the global existence of solutions of

weakly degenerate one-dimensional equations u_tt-〖(x^γ u_x)〗_x=0 with x∈(0,1) and γ∈[0;1), with a

dynamic boundary control condition of fractional derivative type.
Keywords : Degenerate wave equation , dynamic boundary dissipation of fractional derivative type , optimal

decay rate , Bessel functions , fractional boundary check , polynomial stability , 〖C〗_0-semigroup


