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 ملخص

 

من المعادلات التفاضلية المندفعة والمعادلات فئات ل حل  ندرس وجود الأطروحة،في هذه 

لمتغيرة ا ةقيالتفاضلية للأنظمة الكسرية ذات الشروط الحدية. تستند نتائجنا إلى نظريات الطر

بدراسة وجود وتعدد الحلول الإيجابية  ونقوم ،ونظريات النقطة الثابتة في فضاءات باناخ المعممة

 .المحدودة المجالات في الكسرية التفاضلية للمعادلات

 

Abstract 

 

In this thesis, we study the existence of solution for  a classes of impulsive 

differential equation and system of fractional differential equations with 

boundary conditions. Our results are based on variational methods 

theorems and fixed point theorems in generalized Banach spaces, and we 

study the existence and multiplicity of positive solutions for fractional 

differential equations on bounded domains. 

 

Résumé 

 

Dans cette thèse, nous étudions l'existence des solution pour une classe 

d'équations différentielles impulsive et système d'équations différentielles 

fractionnaires avec conditions aux limites. Nos résultats sont basés sur des 

théorèmes de la méthode variationnelle et des théorèmes de point fixe dans 

les espaces de Banach généralisés , et on étudie l'existence et la multiplicité 

des solutions positives pour les équations différentielles fractionnaires sur 

des domaines bornés 



Remerciements

Avant toute considération, je remercie Allah le tout puissant qui m’a aidé
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Introduction

The theory of impulsive differential equations goes back to 1960 in a paper
of Milman and Myshkis [59, 60]. After a period of active research, mostly
in Eastern Europe from 1960-1970, culminating with the monograph by Ha-
lanay and Wexler [38].

Several mathematical schools were created, continuing the scientific re-
search on the fundamental and qualitative theory of impulsive differential
equations and their applications in the early eighties and then see for exam-
ple ( [3, 8, 25,63,67]).
In recent years, a great deal of work has been done in the study of the
existence of solutions for impulsive boundary-value problems, by which a
number of chemotherapy, population dynamics, optimal control, ecology, in-
dustrial robotics and physics phenomena are described. Systems of ordi-
nary impulsive boundary value problems have been studied by a number of
authors (see [10, 13, 52, 92]) Various mathematical results (existence, struc-
ture of solutions set, asymptotic behavior,. . .) have been obtained so far
(see [7, 8, 22, 23, 30]), and many authors have studied impulsive differential
equations using a variety of methods , such as fixed point theory, topolog-
ical degree theory (including continuation method and coincidence degree
theory), comparison methods (including upper and lower solutions meth-
ods and monotone iterative method) (see [78, 80–82, 97, 106, 107]). Recently
in [67, 93] the authors studied the existence and multiplicity of solutions of
some class of second order impulsive problems by variational method have
become a powerful tool.

The initiative idea of non-integer order derivatives is quite old and history
of fractional calculus spans on three centuries. Since in the mid twentieth
century, and latter decades the number of papers devoted to fractional cal-
culus increased rapidly. One of the reasons for the significant interest in the
field of fractional calculus is that verity of physical [42], chemical [71] and
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biological [54] phenomena can be described with fractional differential equa-
tions. The field of fractional calculus can be considered as new branch of
applied mathematics. A fair amount of basic mathematical theory related to
the study of fractional calculus attributed to Leibniz, Caputo, Liouville, Rie-
mann, Euler and many others. However, in the past few decades more and
more convincing applications in different fields of engineering and sciences
have been found. It is notable that a larger part of research work is committed
to the existence theory of fractional differential equations(FDEs)(see [66,99]).
Recently, there have been some papers dealing with the existence and multi-
plicity of solution (or positive solution) of nonlinear initial fractional differ-
ential equation by the use of techniques of nonlinear analysis, (see [6, 17, 18,
47,96]).

In this thesis, we study the existence of some classes of impulsive differ-
ential equation and system of fractional differential equations with boundary
conditions. Our results are based on variational methods theorems and fixed
point theorems in generalized Banach spaces. We have arranged this thesis
as follows:

In chapter 1, we introduce notations, definitions, lemmas and critical
point theorems and fixed point theorems which are used throughout this
thesis.

In chapter 2, we present results on the existence results for systems of
the second order impulsive differential equations via variational method


−ü+m2u = f(t, u, v), t 6= tk, k = 1, . . . , p, t ∈ J,
−v̈ +m2v = g(t, u, v), t 6= tk, k = 1, . . . , p, t ∈ J,
u̇(t+k )− u̇(t−k ) = Ik(u(tk)), k = 1, . . . , p,
v̇(t+k )− v̇(t−k ) = Ik(u(tk)), k = 1, . . . , p,
u(0) = u(b) = v(0) = v(b) = 0,

(0.0.1)
where J := [0, b], m 6= 0, f, g : J × R2 → R are two functions, Ik, Ik ∈
C(R,R), k ∈ {1, 2, . . . , n} u̇(t+k ) and u̇(t+k ) denote the right and the left lim-
its respectively of u̇ at tk for 0 ≤ k ≤ p, 0 = t0 < t1, . . . , tk < tp < b, p ∈ N.

We shall provide sufficient conditions ensuring some existence and unique-
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ness results for system (0.0.1) via an application of the Nash-type equilibrium
method in vector Banach spaces.

In chapter 3, we aim to study the following impulsive boundary value
problem with a second-order p-Laplacian on σ(T ) periodic time scales T :


(ϕp(u

∆(t)))∆ = f(σ(t), uσ(t)), ∆− a.e. t ∈ [0, σ(T )]kT, t 6= tj,
ϕp(u

∆(t+j ))− ϕp(u∆(t−j )) = Ij(u(tj)), j = 1, . . . , n
u(0)− u(σ(T )) = u∆(0)− u∆(σ(T )) = 0,

(0.0.2)
where ∆ is the derivative on the time scale T, and σ is the forward jump

operator, 0, T ∈ T with σ(t) ∈ Tk and f(t, x) : [0, σ(T )]kT×R→ R is Lebesgue
integrable in T for each x ∈ R, and continuously ∆-differentiable with re-
spect to x for any ∆ − a.e.t ∈ [0, σ(T )]kT, Ij(u(tj)) ∈ C(R,R), ϕp(u

∆(t+j ))
and ϕp(u

∆(t−j )) denote the right and the left limits respectively of u∆ at tk
for 0 ≤ k ≤ p, 0 = t0 < t1, . . . , tk < tp < T, p ∈ N.

The main tool employed here is the critical point theorem. three exam-
ples are also given to illustrate this work.

In chapter 4, we discuss the existence and multiplicity of positive solu-
tions for system of fractional differential equations with boundary conditions
and advanced arguments:


(ϕp(D

α
0+u(t)))′ + a1(t)f(u(θ1(t)), v(θ2(t))) = 0, 0 < t < 1,

(ϕp̃(D
α
0+v(t)))′ + a2(t)g(u(θ1(t)), v(θ2(t))) = 0, 0 < t < 1,

Dα
0+u(0) = u(0) = u′(0) = 0, Dβ

0+u(1) = γDβ
0+u(η),

Dα
0+v(0) = v(0) = v′(0) = 0, Dβ

0+v(1) = γDβ
0+v(η),

(0.0.3)
where η ∈ (0, 1), γ ∈ (0, 1

ηα−β−1 ), Dα
0+ , D

β
0+ , are the standard Riemann-

Liouville fractional derivatives with α ∈ (2, 3), β ∈ (1, 2) such that α ≥ β+1,
the p-Laplacian operator is defined as ϕp(s) = |s|p−2s, p > 1, and the func-
tions f, g ∈ C(R2,R), ai ∈ L1[0, 1], θi ∈ C([0, 1], [0, 1]) for i = 1, 2.

In the first section, the existence result proved via Leray-Schauder’s fixed
point theorem type in vector Banach space.
In the second section, our goal is to establish positive solutions for the system
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(0.0.3).
In third section, we present the following general existence, multiplicity and
localization result.

key words and phrases: Weak solutions, Sobolev spaces, critical point,
impulses, variational methods, fixed point, energy functional, Nash-type
equilibrium, fractional differential equations, p-Laplacian operator, cone, fixed
point theorem, positive solutions, multiplicity of solutions.
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Chapter 1

Preliminaries

In this chapter, we will introduce some notations and concept, essential to
the development of other chapter. We will recall some critical point theorems
and fixed point theorems for a better presentation of the demonstrations of
the results of the our work .

1.1 Sobolev Spaces

In this section we discus Sobolev spaces. The following elements have been
gathered from several analysis and some specialized books and the most is
in the following bibliography [1,14,19].
Let I = (a, b) be an open interval, possibly unbounded, and let p ∈ R with
1 ≤ p <∞.

Definition 1.1.1. We set

Lp(I) = {f : I → R : f is measurable and |f |p ∈ L1(I)},

equipped with the norm

‖f‖Lp =
[ ∫

I

|f(x)|pdµ
]1/p

.

Definition 1.1.2. We set

L∞(I) =
{
f : I → R : f is measurable and ‖f‖L∞ < +∞

}
,

where
‖f‖L∞ = inf{C, |f(x)| ≤ C a.e. on I}.

10



1.1 Sobolev Spaces

Notation 1.1.1. Let 1 ≤ p ≤ ∞: we denote by p′ the conjugate exponent,

1

p
+

1

p′
= 1.

Theorem 1.1.1. Assume that f ∈ Lp and g ∈ Lp′ with 1 ≤ p ≤ ∞. Then∫
|fg| ≤ ‖f‖Lp‖g‖Lp′ . (1.1.1)

Theorem 1.1.2. Let (fn) be a sequence in Lp and let f ∈ Lp be such that
‖fn − f‖p → 0. Then, there exist a subsequence (fnk) and a function h ∈ Lp
such that:

• fnk(x)→ f(x) a.e. on I,

• |fnk(x)| ≤ h(x) ∀k, a.e. on I.

Definition 1.1.3. A function f ∈ L1(I) is said to be weakly differentiable if
there exists g ∈ L1(I) such that:∫

I

φ(s)g(s)ds = −
∫
I

f(s)φ′(s)ds, ∀φ ∈ C∞0 (I),

where C∞0 (I) is the space of smooth functions with compact support.

Remark 1.1.1. There are functions which are weakly differentiable, but not
differentiable in the classical sense.

Example 1.1.1. The absolute value function u : R→ R+, u(t) = |t|, which
is not differentiable at t = 0 has a weak derivative v : R → R known as the
sign function, and given by

v(t) =


1 if t > 0;
0 if t = 0;
−1 if t < 0.

Definition 1.1.4. The Sobolev space W 1,p(I) is defined by

W 1,p(I) =
{
u ∈ Lp(I), ∃g ∈ Lp(I) such that

∫
I

uϕ′ = −
∫
I

gϕ ∀ϕ ∈ C1
0(I)

}
.

We set
H1(I) = W 1,2(I).
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Preliminaries

Notation 1.1.2. The space W 1,p is equipped with the norm

‖u‖W 1,p = ‖u‖Lp + ‖u′‖Lp ,

or sometimes, if 1 ≤ p ≤ ∞, with the equivalent norm (‖u‖Lp+‖u′‖Lp)1/p.The
space H1 is equipped with the scalar product

(u, v)H1 = (u, v)L2 + (u′, v′)L2 =

∫ b

a

(uv + u′v′)

and with the associated norm

‖u‖H1 =
(
‖u‖2

L2 + ‖u′‖2
L2

)1/2

. (1.1.2)

Proposition 1.1.3. The space W 1,p is a Banach space for 1 ≤ p ≤ ∞. It is
reflexive and separable for 1 ≤ p ≤ ∞. The space H1 is a separable Hilbert
space.

Theorem 1.1.4. There exists a constant C (depending only on |I| ≤ ∞)
such that

‖u‖L∞(I) ≤ C‖u‖W 1,p(I) ∀u ∈ W 1,p(I), ∀1 ≤ p ≤ ∞. (1.1.3)

In other words, W 1,p(I) ⊂ L∞(I) with continuous injection for all 1 ≤ p ≤
∞.
Further, if I is bounded then

the injection W 1,p(I) ⊂ C(I)is compact for all 1 < p ≤ ∞, (1.1.4)

the injection W 1,p(I) ⊂ Lq(I)is compact for all 1 ≤ q <∞. (1.1.5)

Definition 1.1.5. Given 1 ≤ p ≤ ∞, denote by W 1,p
0 (I) the closure of C1

c (I)
in W 1,p(I). Set

H1
0 (I) = W 1,2

0 (I).

The space W 1,p
0 (I) is equipped with the norm of W 1,p(I), and the space H1

0 is
equipped with the scalar product of H1.
The space W 1,p

0 is a separable Banach space. Moreover, it is reflexive for
p > 1. The space H1

0 is a separable Hilbert space.

Remark 1.1.2. When I = R we know that C1
c (R) is dense in W 1,p(R) ( by

theorem 8.7 see [14] ) and therefore W 1,p
0 (R) = W 1,p(R).
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1.1 Sobolev Spaces

Theorem 1.1.5. Let u ∈ W 1,p(I). Then u ∈ W 1,p
0 (I) if and only if u = 0

on ∂I.

Proposition 1.1.6. Suppose I is a bounded interval. Then there exists a
constant C (depending on |I| <∞) such that

‖u‖W 1,p(I) ≤ C‖u′‖Lp(I) ∀u ∈ W 1,p
0 (I). (1.1.6)

In other words, on W 1,p
0 , the quantity ‖u′‖Lp(I) is a norm equivalent to the

W 1,p norm.

The dual space of W 1,p
0 (I), (1 ≤ p <∞) is denoted by W−1,p′(I) and the

dual space of H1
0 (I) is denoted by H−1(I).

We identify L2 and its dual, but we do not identify H1
0 and its dual.We have

the inclusions
H1

0 ⊂ L2 ⊂ H−1,

where these injections are continuous and dense (i.e., they have dense ranges).
If I is a bounded interval we have

W 1,p
0 ⊂ L2 ⊂ W−1,p′ for all 1 ≤ p <∞,

with continuous injections (and dense injections when 1 ≤ p <∞).
If I is unbounded we have only

W 1,p
0 ⊂ L2 ⊂ W−1,p′ for all 1 ≤ p ≤ 2,

with continuous injections,then we may write

C∞0 (I) ⊂ H1
0 (I) ⊂ H1(I) ⊂ L2(I) ⊂ H−1(I).

We define the following isometry operator

L : H−1(I)→ H1
0 (I), h 7→ Lh := uh

where uh is the unique element of H1
0 (I) guaranteed by Riesz’s representation

theorem, satisfying the identity

〈uh, v〉H1
0 (I) = 〈h, v〉, v ∈ H1

0 (I). (1.1.7)

Here, by 〈h, v〉 we mean the value at v of the functional h from (1.1.2), one
has

‖uh‖2
H1

0 (I) = 〈uh, uh〉H1
0 (I) = 〈h, uh〉 ≤ ‖h‖H−1(I)‖uh‖H1

0 (I)
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Preliminaries

whence

‖uh‖H1
0 (I) ≤ ‖h‖H−1(I).

On the other hand,

‖h‖H−1(I) = sup
v 6=0

|〈h, v〉|
‖v‖H1

0 (I)

= sup
v 6=0

|〈uh, v〉H1
0 (I)|

‖v‖H1
0 (I)

≤ sup
v 6=0

‖uh‖H1
0 (I)‖v‖H1

0 (I)

‖v‖H1
0 (I)

.

These two inequalities show that L is an isometry between H−1(I) and H1
0 (I).

Lemma 1.1.7. [27] There exists c > 0 such that, if u ∈ H1,p
per(I,R), 1 <

p <∞, then

‖u‖∞ ≤ c‖u‖H1,p
per
.

Moreover, if
∫ b

0
u(t)dt = 0, then

‖u‖∞ ≤ c‖u′‖Lp ,

where

H1,p
per(I,R) = {u ∈ H1,p(I,R) : u(0) = u(b), u′(0) = u′(b)}.

Lemma 1.1.8. [27] If u ∈ H1,p
per(I,R) (p ∈ (1,∞)) and

∫ b
0
u(t)dt = 0, then

‖u‖∞ ≤ b
1
p′ ‖u′‖Lp , with

1

p
+

1

p′
= 1.

1.2 Generalized Banach space

In this part, we consider the notation and definition of generalized Banach
space ,and we introduce definitions, lemmas and theorems concerning to ma-
trice convergent (see [108,109]).
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1.2 Generalized Banach space

1.2.1 Some definitions

Definition 1.2.1. Let E be a vector space metric on IK = R or IC. A map
‖ · ‖ : E → Rn+ is called an norm on E if it satisfies the following properties
:

• ‖x‖ = 0 then x = (0, · · · , 0),

• ‖λx‖ = |λ|‖x‖ for x ∈ E, λ ∈ IK,

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for every x, y ∈ E.

Remark 1.2.1. The pair (E, ‖ · ‖) is called a generalized normed space. If
the generalized metric generated by ‖ · ‖ (i.e d(x; y) = ‖x − y‖) is complete
then the space (E, ‖ · ‖) is called a generalized Banach space, where

‖x− y‖ =

 ‖x− y‖1
...

‖x− y‖n

 .

Definition 1.2.2. Let E be a nonempty set and let ‖ · ‖ : E → Rn+ be a
norm on E. Then, the pair (E, ‖ · ‖) is called a generalized normed space.
If moreover, (E, ‖ · ‖) has the property that any Cauchy sequence from X is
convergent in norm, then we say that (E, ‖ ·‖) is a generalized Banach space.

Let C(I,R)× C(I,R) be endowed with the vector norm ‖ · ‖ defined by
‖v‖∞ = (‖u1‖∞; ‖u2‖∞) for v = (u1, u2). It is clear that (C(I,R)×C(I,R), ‖·
‖∞) is a generalized Banach space.

Definition 1.2.3. Let (E, ‖ · ‖) be a generalized Banach space. A subset
A ⊂ E is called open if, for any x ∈ A, there exists r := (r1, . . . , rm) ∈ Rm+ ,
such that B(x0, x) ⊂ A, where

B(x0, r) = {x ∈ E : ‖x− x0‖ < r},

denote the the open ball centered in x0 with radius r, and

B(x0, r) = {x ∈ E : ‖x− x0‖ ≤ r},

the closed ball centered at x0 with radius r.
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Preliminaries

Definition 1.2.4. [36] Let X be a real Banach space. A nonempty closed
convex set P ⊂ X is called cone if

1) If x ∈ P, λ ≥ 0 then λx ∈ P,

2) if x ∈ P,−x ∈ P then x = 0.

Definition 1.2.5. Let (E, ‖ · ‖) be a generalized Banach space a sequence
(xn) in E is called the Cauchy sequence, if for each ε > 0 there exist N ∈ N
such that for any n,m ≥ N : ‖xn − xm‖ < ε.

Definition 1.2.6. An generalized Banach space (E, ‖ · ‖) is called complete
if each Cauchy sequence in E converges to a limit in E.

Definition 1.2.7. Let (E, ‖ · ‖) be a generalized Banach space, we say that
a subset F ⊂ E is a closed if (xn) ⊂ F and xn → x imply x ∈ F.

Let I = [a, b] be an interval of R. Let (E, ‖.‖) be a real Banach space.

Definition 1.2.8. A map f : I ×E → E is said to be L1− Carathéodory if:

1. t→ f(., y) is measurable for all y ∈ E,

2. y → f(t, .) is continuous for almost each t ∈ [a, b],

3. for each r > 0, there exists hr ∈ L1([a, b];R+) such that

|f(t, y)| ≤ hr(t) for all |y| ≤ r for almost each t ∈ [a, b].

Definition 1.2.9. A subset A of a real Banach space E is called uniformly
bounded in E if and only if:

∃M > 0, ∀f ∈ A, ‖f‖∞ ≤M.

Definition 1.2.10. Let f be a differentiable function defined from X in R.
A point u ∈ X is said to be critical point f if and only if Df(u) = 0, where
Df is the differentiable of f.

Definition 1.2.11. Let C be a convex subspace of real vector space V ,and
F a mapping of C into R. F is said to be convex if, for every u and v in C,
we have:

F (λu+ (1− λ)v) ≤ λF (u) + (1− λ)F (v) ∀λ ∈ [0, 1].
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Definition 1.2.12. Let real vector space V , we recall that a function F :
V → R is said to be lower semi-continuous on V (l.s.c.), if it satisfies the
two equivalent conditions :

∀a ∈ R {u ∈ V |F (u) ≤ a} is closed,

∀u ∈ V limF (u) ≥ F (u).

Definition 1.2.13. A functional E : D ⊂ X → R defined on an unbounded
set D, is said to be coercive if E(u)→ +∞ as |u| → ∞.

Definition 1.2.14. A functional E : D ⊂ X → R defined on an unbounded
set D, is said to be anti-coercive if E(u)→ −∞ as |u| → ∞.

Definition 1.2.15. Let E be a Banach space. A subset A of E is equicon-
tinuous on I if

∀ε > 0,∃δε > 0,∀x, y ∈ I; |x− y| < δ ⇒ |f(x)− f(y)| < ε,

for all f ∈ A.

Definition 1.2.16. Let E be a Banach space and Ω ⊂ E. The operator
T : Ω → E is called completely continuous if T is continuous and if for all
bounded subset B of Ω, T (B) is relatively compact on E.

Lemma 1.2.1. Let B be a subset of E = C([a, b],Rn), B is relatively compact
if :

1. B is equicontinuous on [a, b];

2. B is uniformly bounded in E.

Definition 1.2.17. Let F be a Banach space. The mapping f : E → F is
called compact if :

1. f is continuous in E;

2. f(E)is relatively compact in F .
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1.2.2 Matrix convergent

In this section, we introduce definitions, lemmas and theorems concerning to
matrice convergent.

Definition 1.2.18. A square matrix M of real numbers is said to be con-
vergent to zero if and only if its spectral radius ρ(M) is strictly less than
1.

Lemma 1.2.2. Let M ∈ Mn,n(R+), and I denote the identity matrix in
Mn,n(R+). The following statements are equivalent:

• M is a matrix convergent to zero.

• The eigenvalues of M are in open disc, i.e., |µ| < 1, for every µ ∈ C
with det(M − µI) = 0.

• Mn → 0 as n→∞.

• The matrix I−M is nonsingular and (I−M)−1 = I+M+. . .+Mn+. . . .

• The matrix I −M is nonsingular and (I −M)−1 has nonnegative ele-
ments.

Some examples of matrices convergent to zero, A ∈ Mn,n(R), which also
satisfies the property (I − A)−1|I − A| ≤ I are:

1. A =

(
a 0
0 b

)
where a, b ∈ R+ and max(a, b) < 1,

2. A =

(
a −c
0 b

)
where a, b, c ∈ R+ and a+ b < 1, c < 1,

3. A =

(
a −a
b −b

)
where a, b ∈ R+ and |a− b| < 1, a > 1, b > 0.

Lemma 1.2.3. If A ∈Mn×n(R+) is a matrix with ρ(A) < 1, then
ρ(A + B) < 1 for every matrix B ∈ Mn×n(R+) whose elements are small
enough.
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1.2.3 Fixed point results

Fixed point theory plays a major role in many of our existence principles,
therefore we shall state the fixed point theorems in generalized Banach spaces.

Theorem 1.2.4. [31, 102] Let X be a generalized Banach space and let N :
X → X be a completely continuous operator. Then, either

(i) the equation N(x) = x has a at least one solution, or

(ii) the set M = {x ∈ X| µN(x) = x, µ ∈ (0, 1)} is unbounded.

Theorem 1.2.5. [75] Let (X, ‖·‖) be a normed space, P1, P2 ⊂ X two cones;
P := P1 × P2, r, R ∈ R2

+, Pr,R := {u ∈ Pi : ri ≤ ‖ui‖ ≤ Ri} with 0 < r < R,
and let N : Pr,R → P,N = (N1, N2) a compact map. Assume that for each
i ∈ {1, 2}, one of the following conditions is satisfied in Pr,R :

1. Ni(ui) ⊀ ui if ‖ui‖ = ri, and Ni(ui) � ui if ‖ui‖ = Ri,

2. Ni(ui) � ui if ‖ui‖ = ri, and Ni(ui) ⊀ ui if ‖ui‖ = Ri.

Then N has a fixed point u in P with ri ≤ ‖ui‖ ≤ Ri for i ∈ {1, 2},
where �, namely u � v if and only if v − u ∈ P. We shall say that u ≺ v if
v − u ∈ P \ {0}.

Remark 1.2.2. [75] In Theorem (1.2.5) four cases are possible for u ∈ Pr,R :
(c1) : N1(u) ⊀ u1 if ‖u1‖ = r1, and N1(u) � u1 if ‖u1‖ = R1,

N2(u) ⊀ u2 if ‖u2‖ = r2, and N2(u) � u2 if ‖u2‖ = R2.
(c2) : N1(u) ⊀ u1 if ‖u1‖ = r1, and N1(u) � u1 if ‖u1‖ = R1,

N2(u) � u2 if ‖u2‖ = r2, and N2(u) ⊀ u2 if ‖u2‖ = R2.
(c3) : N1(u) � u1 if ‖u1‖ = r1, and N1(u) ⊀ u1 if ‖u1‖ = R1,

N2(u) ⊀ u2 if ‖u2‖ = r2, and N2(u) � u2 if ‖u2‖ = R2.
(c4) N1(u) � u1 if ‖u1‖ = r1, and N1(u) ⊀ u1 if ‖u1‖ = R1,

N2(u) � u2 if ‖u2‖ = r2, and N2(u) ⊀ u2 if ‖u2‖ = R2.

Theorem 1.2.6. [76] Let (X, ‖ ·‖) be a Banach space, P1, P2 ⊂ X two cones
and P := P1 × P2 the corresponding cone of X2 = X ×X, and let αi, βi > 0
we denote:

Uαi = {u ∈ Pi : ‖u‖ < αi}, and Vβi = {u ∈ Pi : ‖u‖ < βi},

with αi 6= βi, ri = min{αi, βi} and Ri = max{αi, βi} for i = 1, 2. Assume
that N : W1 ×W2 → P,N = (N1, N2), is a compact map (where Wi =
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Uαi ∪ Vβi for i = 1, 2) and there exist hi ∈ Pi \ {0}, i = 1, 2, such that for
each i ∈ {1, 2} the following condition is satisfied in W1 ×W2 :

λui 6= Niu for ‖ui‖ = αi and λ ≥ 1, (1.2.1)

ui 6= Niu+ µhi for ‖ui‖ = βi and µ ≥ 0. (1.2.2)

Then

1. N has at least one fixed point u = (u1, u2) in P such that ui ∈ Uαi \Vβi
for i = 1, 2 if αi > βi for i = 1, 2,

2. N has at least two fixed points located in (Uα1 \ Vβ1)× Uα2 and (Uα1 \
Vβ1)× (Vβ2 \ Uα2) if β1 < α1 and β2 > α2,

3. N has at least two fixed points located in Uα1 × (Uα2 \ Vβ2) and (Vβ1 \
Uα1)× (Uα2 \ Vβ2) if β1 > α1 and β2 < α2,

4. N has at least four (three non-trivial) fixed points in Uα1 × Uα2 , Uα1 ×
(Vβ2 \ Uα2), (Vβ1 \ Uα1) × Uα2 , and (Vβ1 \ Uα1) × (Vβ2 \ Uα2) if αi < βi
for i = 1, 2.

Remark 1.2.3. [76] Our previous results can be easily generalized to systems
of n operator equations.

1.3 Elements of calculus on time scales

A time scale is an arbitrary nonempty closed subset of real numbers. The
study of dynamic equations on time scales is a fairly new subject, and research
in this area is rapidly growing. The theory of dynamic equations unifies the
theories of differential equations and difference equations. We suppose that
the reader is familiar with the basic concepts concerning the calculus on
time scales for dynamic equations. Otherwise one can find in Bohner and
Peterson books [11,12,48] most of the material needed to read this work. We
start by giving some definitions necessary for our work. All the definitions,
theorem, notations, and basic results that are used in this section can be
found in [11,12].
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1.3.1 Description of time scales

Definition 1.3.1. A time scale is an arbitrary nonempty closed subset of the
set of real numbers R is denoted by T.

Example 1.3.1. The reals R, the integers Z, the positive integers N, and the
nonnegative integers N0 are a time scales. The most common time scales are
T = R for continuous calculus, T = Z for discrete calculus, and T = qN0 =
{qn : n ∈ N0}, where q > 1, for quantum calculus.

Example 1.3.2. The rational numbers Q, the irrational numbers R\Q, the
complex numbers C, and the open interval (0, 1), are not time scales.

We Assume throughout that a time scale T has the topology that it
inherits from the real numbers with the standard topology.

Definition 1.3.2.

• If T has a right-scattered minimum m, we define Tk = T−{m}; otherwise,
we set Tk = T.
• If T has a left-scattered maximum M, we define Tk = T− {M}; otherwise,
we set Tk = T.

Definition 1.3.3. The forward jump operator σ(t) : T→ T and the backward
jump operator ρ(t) : T→ T are given by

σ(t) = inf
s∈T
{s > t},

ρ(t) = sup
s∈T
{s < t}.

The graininess function µ(t) : T → [0,∞) is given by µ(t) = σ(t) − t. A
point t ∈ T is called right-dense if t < supT and σ(t) = t, right-scattered if
σ(t) > t, left-dense if t > inf T and ρ(t) = t, and left-scattered if ρ(t) < t.

Here it is assumed that inf ∅ = supT (i.e., σ(t) = t if T contains the
maximal element t) and sup ∅ = inf T (i.e., ρ(t) = t if T contains the minimal
element t).
Points that are right-scattered and left-scattered at the same time are called
isolated. Points that are right-dense and left-dense at the same time are
called dense.
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Example 1.3.3. 1. If T = R, σ(t) = t, ρ(t) = t and µ(t) = 0 for all
t ∈ T. Hence every point t ∈ R is dense.

2. If T = hZ (h 6= 0), σ(t) = t+h, ρ(t) = t−h and µ(t) = h for all t ∈ T.
Hence if h > 0 every point t ∈ Z is isolated.

3. If T = qN0 = {qn : n ∈ N0}, (h 6= 0), σ(t) = qt, ρ(t) = 1
q

and µ(t) =

q(t− 1) for all t ∈ T. Hence if q > 1 every point t ∈ qN0 is isolated.

4. If T = { 1
n

: n ∈ N}
⋃
{0}, σ(t) = t

1−t , ρ(t) = t
t+1

and µ(t) = t2

1−t for all
t ∈ T− {1}.

5. If T = N2 = {n2 : n ∈ N0}, σ(t) = (
√
t + 1)2, ρ(t) = (

√
t − 1)2 and

µ(t) = 2
√
t+ 1 for all t ∈ T.

Definition 1.3.4. If f : T→ R we define the function fσ : T→ R by

fσ(t) = f(σ(t)) for all t ∈ T,

i.e., fσ = f ◦ σ.

The notion of periodic time scales is introduced in Kaufmann and Raffoul
[46].

Definition 1.3.5. Suppose that T1 is a positive number. If for any t ∈ T,
t+ T1 ∈ T, holds then T is called a T1 periodic time scale and T1 is a period.

Definition 1.3.6. Suppose that T is a T1 periodic time scale, and u : T→ R
is a function. If for any t ∈ T, t+T1 ∈ T holds and satisfies u(t+T1) = u(t),
then u is called a periodic function and T1 is a period of u. The smallest
period of a periodic function is called the fundamental period of the function.

Remark 1.3.1. The definition of periodic functions implies that if u is a
periodic function with the period T1 then u(t) = u(t + mT1) holds for all t,
mT1 + t ∈ T and any integer m.

1.3.2 Differentiation on time scales

The theory of dynamic equations at time scales was introduced in 1988 by
Stefan Hilger in his doctoral dissertation where he defined the ∆-derivated
as follows (see [41]).
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Definition 1.3.7. Let g : T → R is a function and t ∈ Tk. Define g∆(t) to
be the number (when it exists) with the property that given any ε > 0, there
is a neighborhood U of t (i.e. U = (t− δ, t+ δ)∩T for some δ > 0) such that

|(gσ(t)− g(s))− g∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|, for all s ∈ U.

We call g∆(t) the delta derivative or Hilger derivative of g at t.

The real number g∇(t) is called nabla derivative of g at the point t ∈ Tk if
for any ε > 0, there is a neighborhood U ⊂ T of t such that

|g(ρ(t))− g(s)− g∇(t)(ρ(t)− s)| ≤ ε|ρ(t)− s|,

for all s ∈ U.

Remark 1.3.2.

• If T = R, we can easy show that g∆(t) = g′(t) = g∇(t).

• If T = Z, then g∆(t) = g(t+ 1)− g(t) and g∇(t) = g(t)− g(t− 1).

Example 1.3.4. 1. If g : T → R is defined by g(t) = a for all t ∈ T,
where a ∈ R is constant, then g∆(t) = 0. This is clear because for any
ε > 0,

|(gσ(t)− g(s))− 0(σ(t)− s)| = |a− a| = 0 ≤ ε|σ(t)− s|, for all s ∈ U.

2. If g : T → R is defined by g(t) = t for all t ∈ T, then g∆(t) = 1. This
is clear because for any ε > 0,

|(gσ(t)− g(s))− 1(σ(t)− s)| = 0 ≤ ε|σ(t)− s|, for all s ∈ U.

Theorem 1.3.1. Assume f : T → R is a function and let t ∈ Tk. Then we
have the following:

• If f is differentiable at t, then f is continuous at t.

• If f is continuous at t and t is right-scattered, then f is differentiable
at t with

f∆(t) =
f(σ(t))− f(t)

µ(t)
.
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• If t is right-dense, then f is differentiable at t with

f∆(t) = lim
s→t

f(t)− f(s)

t− s
.

• If f is differentiable at t, then

f(σ(t)) = µ(t)f∆(t) + f(t).

Example 1.3.5. 1. If T = R, then f∆(t) = f ′(t) for all t ∈ R.

2. If T = hZ, then f∆(t) = f(t+h)−f(t)
h

= ∆f for all t ∈ T.

3. If T = qN0 and f(t) = t2, then f∆(t) = qt+ t for all t ∈ T.

4. If T = qN0 (q > 1) and f(t) = log(t), then f∆(t) = log(q)
t(q−1)

for all t ∈ T.

Theorem 1.3.2. Assume f, g : T→ R are differentiable at t ∈ T. Then

1. The sum f + g : T→ R is differentiable at t with

(f + g)∆ = f∆(t) + g∆(t).

2. For any constant a, af : T→ R is differentiable at t with

(af)∆(t) = af∆(t).

3. The product fg : T→ R is differentiable at t with

(fg)∆(t) = f∆(t)g(σ(t)) + f(t)g∆(t)

= f∆(t)g(t) + f(σ(t))g∆(t).

4. If f(t)f(σ(t)) 6= 0, then 1
f

is differentiable at t with

(
1

f
)∆(t) = − f∆(t)

f(t)f(σ(t))
.

5. If g(t)g(σ(t)) 6= 0, then f
g

is differentiable at t with

(
f

g
)∆(t) =

f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
.
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Example 1.3.6. 1. Let a ∈ R and m ∈ N, f : T → R defined by f(t) =
(t− a)m we have

f∆(t) =
m−1∑
k=0

(σ(t)− a)k(t− a)m−k−1.

2. Let a ∈ R and m ∈ N, g : T−{a} → R defined by g(t) = 1
(t−a)m

provided

(t− a)(σ(t)− a) 6= 0 we have

gf∆(t) =
m−1∑
k=0

1

(σ(t)− a)m−k(t− a)k+1
.

Theorem 1.3.3. Suppose f : T → R is differentiable at t0 ∈ T\{maxT}.
If f∆(t0) > 0, then f is right-increasing. If f∆(t0) < 0, then f is right-
decreasing.

1.3.3 Integration on time scales

Definition 1.3.8. A function f : T → R is called regulated provided its
right-sided limits exist (finite) at all right-dense points in T and its left-sided
limits exist (finite) at all left-dense points in T.

Definition 1.3.9. A function f : T→ R is called rd-continuous provided it is
continuous at every right-dense point t ∈ T and its left-sided limits exist, and
is finite at every left-dense point t ∈ T. The set of rd-continuous functions
f : T→ R will be denoted by

Crd = Crd(T) = Crd(T,R).

The set of functions f : T → R that are differentiable and whose derivative
is rd-continuous is denoted by

C1
rd = Cr1

d(T) = C1
rd(T,R).

Theorem 1.3.4. Let f be regulated. Then there exists a function F which
is pre-differentiable with region of differentiation D such that

F∆(t) = f(t) holds for all t ∈ D.
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Definition 1.3.10. Assume f : T→ R is a regulated function. Any function
F is called a pre-antiderivative of f. We define the indefinite integral of a
regulated function f by ∫

f∆(t)∆t = F (t) + c,

where c is an arbitrary constant and F is a pre-antiderivative of f. For all
a, b ∈ T, the Cauchy integral is defined by∫ b

a

f(t)∆t = F (b)− F (a).

A function F : T→ R is called an antiderivative of f : T→ R provided

F∆(t) = f(t) holds for all t ∈ T.

Lemma 1.3.5. [16] A function f : [a, b]T → R is absolutely continuous
on [a, b]T if and only if f is ∆-differentiable almost everywhere on [a, b)T,
f∆ ∈ L1

∆([a, b)T,R) and

f(t) = f(a) +

∫
[a,b)T

f∆(s)∆s, ∀t ∈ [a, b]T.

Lemma 1.3.6. [2] Let f and g : [a, b]T → R are absolutely continuous
functions on [a, b]T, then fg is absolutely continuous on [a, b]T and we have∫

[a,b)T

(f∆g + fσg∆)(t)∆t = f(b)g(b)− f(a)g(a) =

∫
[a,b)T

(fg∆ + f∆gσ)(t)∆t.

Theorem 1.3.7. If a, b, c ∈ T, α ∈ R, and f, g ∈ Crd, then

•
∫ b

a

[f(r) + g(r)]∆r =

∫ b

a

f(r)∆r +

∫ b

a

g(r)∆r,

•
∫ b

a

[αf(r)]∆r = α

∫ b

a

f(r)∆r,

•
∫ b

a

f(r)∆r = −
∫ a

b

f(r)∆r,

•
∫ b

a

f(r)∆r =

∫ c

a

f(r)∆r +

∫ b

c

f(r)∆r,
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•
∫ b

a

f(σ(r))g∆(r)∆r = (fg)(b)− (fg)(a) +

∫ b

a

f∆(r)g(r)∆r,

•
∫ b

a

f(r)g∆(r)∆r = (fg)(b)− (fg)(a) +

∫ b

a

f∆(r)g(σ(r))∆r,

•
∫ a

a

f(r)∆r = 0,

• if f(t) ≥ 0 for all a ≤ t < b, then

∫ b

a

f(r)∆r ≥ 0,

• if f(t) ≤ g(t) on [a, b) then,
∣∣∣ ∫ b

a

f(r)∆r
∣∣∣ ≤ ∫ b

a

g(r)∆r.

Definition 1.3.11. Infinite integrals are defined as∫ ∞
a

f(r)∆r = lim
t→∞

∫ t

a

f(r)∆r.

Theorem 1.3.8. If f : T→ R is an arbitrary function and t ∈ T, then∫ σ(t)

t

f(r)∆r = µ(t)f(t).

1.3.4 Sobolev’s spaces on time scales

In this section, we define the Sobolev’s spaces on time scales and study their
important properties (see [2, 37]).

Definition 1.3.12. Let E ⊂ T be a ∆-measurable set and let p ∈ R =
[−∞,+∞] be such that p ≥ 1 and let f : E → R be a ∆-measurable function.

Say that f belongs to Lp∆(E,R) provided that either

∫
E

|f(t)|p∆t < +∞ if

p ∈ R, or there exists a constant C ∈ R such that |f | ≤ C ∆-a.e. on E if
p = +∞.

Lemma 1.3.9. Let p ∈ R be such that p ≥ 1. Then the set Lp∆([a, b)T,R) is
a Banach space together with the norm defined for f ∈ Lp∆([a, b)T,R) as
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‖f‖Lp∆([a,b)T,R) =


(∫

[a,b)T

|f(t)|p∆t
) 1
p
, p ∈ R;

inf{C ∈ R : |f | ≤ C ∆− a.e. on [a, b)T}, p = +∞.
(1.3.1)

Moreover, L2
∆([a, b)T,R) is a Hilbert space together with the inner product

given for every (f, g) ∈ Lp∆([a, b)T,R)× Lp∆([a, b)T,R)by :

< f, g >L2
∆([a,b)T,R)=

∫
[a,b)T

f(t)g(t)∆t.

Proposition 1.3.10. Suppose p ∈ R and p ≥ 1. Let p′ ∈ R be such that
1
p

+ 1
p′

= 1. Then , if f ∈ Lp∆([a, b)T,R) and gf ∈ Lp
′

∆([a, b)T,R), then

f.g ∈ L1
∆([a, b)T,R) and

‖f.g‖L1
∆([a,b)T,R) ≤ ‖f‖p∆([a,b)T,R).‖g‖p′

∆ ([a,b)T,R)
.

For p ∈ R, p ≥ 1, with the norm ‖f‖Lp∆([a,b)T,R) =
(∫

[a,b)T

|f(t)|p∆t
) 1
p
.

Definition 1.3.13. Let p ∈ R be such that p > 1. and u : [0, σ(t)]T → R.
We say that u ∈ W 1,p

∆,T ([0, σ(t)]T,R) if and only if u ∈ Lp∆([0, σ(t))T,R) and
there exists g ∈ Lp∆(([0, σ(T ))T,R) such that∫

[0,σ(T ))T

u(s)ϕ(s)∆s = −
∫

[0,σ(T ))T

g(s)ϕσ(s)∆s

for ∀ϕ ∈ C1
0,rd([0, σ(t))kT,R). where

C1
0,rd([0, σ(t)]kT,R) = {u : [0, σ(t)]T → R|u ∈ C1

rd([0, σ(t)]kT,R), u(0) = u(σ(T )) = 0}.

W 1,p
∆ ([0, σ(T ))T,R) is a Banach space which is equivalent to the following

functional space

ACT([0, σ(T )]T,R) = {u : [0, σ(T )]T → R|u is absolutely continuous and

u∆ ∈ Lp∆(([0, σ(T ))T,R)}.
Thus

W 1,p
∆ ([0, σ(T )]T,R) = ACT([0, σ(T )]T,R),

is a reflexive Banach with the norm

‖u‖ = ‖u‖W 1,p
∆,T

=
(∫

[0,σ(T ))T

|u|p∆t+
∫

[0,σ(T ))T

|u∆|p∆t
) 1
p
, u ∈ W 1,p

∆ ([0, σ(T )]T,R).
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1.4 Theorems of variational method

Proposition 1.3.11. [2] Let p ∈ R be such that p ≥ 1, and J equipped with
the Lebesgue ∆− measure. Then, the following statements are true:

1. If p > 1, then the immersion W 1,p
∆ (J) ↪→ C(J) is compact.

2. If p = 1, then the immersion W 1,p
∆ (J) ↪→ C(J) is compact if and only

if every point of J is isolated.

Corollary 1.3.12. Let p ∈ R be such that p > 1, and J equipped with the
Lebesgue ∆− measure, let {xm}m∈N ⊂ W 1,p

∆ (J), and let x ∈ W 1,p
∆ (J). If

{xm}m∈N converges weakly in W 1,p
∆ (J) to x, then {xm}m∈N converges strongly

in C(J) to x.

Lemma 1.3.13. There exists a constant c ≥ 0 such that, if u ∈ W 1,p
∆ ([0, σ(T )]T,R)

and
∫
t∈[0,σ(T ))T

u(t)∆t = 0, then

‖u‖∞ ≤ c‖u∆‖Lp∆ .

Proposition 1.3.14. [89] Let ΩT be an open subset of Tn and |ΩT| < ∞.
Suppose that 1 ≤ p, r <∞ and f ∈ C(ΩT × R,R) satisfies

|f(t, x)| ≤ c(1 + |x|
p
r ). (1.3.2)

Then for any x ∈ Lp∆(ΩT,R), f(·, x) ∈ Lr∆(ΩT × R,R) and the operator

N : Lp∆(ΩT,R)→ Lr∆(ΩT × R,R) : x 7→ f(t, x)

is continuous.

1.4 Theorems of variational method

In this section, we state some theorems which are used to prove our main
results.

Theorem 1.4.1. [74] Let (Xi, | · |i), i = 1, 2 be Hilbert spaces identified to
their duals and let X = X1 × X2. In addition, assume that E1(·, v) and
E2(u, ·) are bounded from below for every u ∈ X1, v ∈ X2, and the following
boundedness condition holds: there are R, a > 0 such that

either E1(u, v) ≥ inf
X1

E1(·, v) + a for |u|1 ≥ R and all v ∈ X2,(1.4.1)
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or E2(u, v) ≥ inf
X2

E2(u, ·) + a for |v|2 ≥ R and all u ∈ X1. (1.4.2)

Then the unique fixed point (u∗, v∗) of (N1, N2) is a Nash-type equilibrium of
the pair of functionals (E1, E2), i.e.,

E1(u∗, v∗) = inf
X1

E1(·, v∗)

E2(u∗, v∗) = inf
X2

E2(u∗, ·).

Definition 1.4.1. Let E be a real Banach space, ϕ ∈ C1(E,R), for any
sequence {un} ⊂ E such that ϕ(un) is bounded and

ϕ′(un)→ 0 as n→∞,

then, {un} is called a Palais Smale sequence (PS sequence, for short). If a
PS sequence of ϕ possesses a convergent subsequence, we say that ϕ satisfies
the PS condition.

Lemma 1.4.2. [79] Let E = V ⊕X, where X is a Banach space and V 6= 0
is finite dimensional vectorial space. Suppose that ϕ ∈ C1(E,R) satisfies the
PS condition, and

1) there are a constant α and a bounded neighborhood D of 0 in V such that
ϕ|∂D ≤ α,

2) there is a constant β > α such that ϕ|X ≥ β.

Then, ϕ possesses a critical value c∗ ≥ β. Moreover, c∗ can be characterized
as

c∗ = inf
h∈Γ

max
u∈D̄

ϕ(h(u)),

where Γ = {h ∈ C(D̄, E)|h = id on ∂D}.

Lemma 1.4.3. [56] If ϕ is weakly lower semi-continuous on a reflexive Ba-
nach space X∗ and has a bounded minimizing sequence, then ϕ has a mini-
mum on X∗.

Lemma 1.4.4. [15] Let E be a Banach space such that

E = X1 ⊕X2,
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1.5 Basic definitions on fractional calculus

where X1, X2 are two subspaces of E and dimX2 = m < ∞. Let ϕ be a
C1 functional on E which satisfies the PS condition. Assume that for some
r > 0 we have

ϕ(u) ≥ 0 for u ∈ X1 and ‖u‖ ≤ r,

and

ϕ(u) ≤ 0 for u ∈ X2 and ‖u‖ ≤ r.

Assume that ϕ is bounded below and inf
E
ϕ < 0. Then, ϕ has at least two

nonzero critical points.

1.5 Basic definitions on fractional calculus

In this chapter, we present some definitions that have an important role in
the theory of fractional calculus see [21,58,112].

1.5.1 Riemann-Liouville Integrals

In this section we give the definitions of Riemann-Liouville fractional inte-
grals.

Definition 1.5.1. The function Γ : (0,∞)→ R, defined by

Γ(x) :=

∫ ∞
0

tx−1e−tdt,

is called Eulers Gamma function (or Eulers integral of the second kind).

Remark 1.5.1. For n ∈ N, we have (n− 1)! = Γ(n).

Definition 1.5.2. Let α ∈ R+. The operator Iαa , defined on L1[a, b] by

Iαa f(x) :=
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt

for a ≤ x ≤ b, is called the Riemann-Liouville fractional integral operator of
order α.
For α = 0, we set I0

a := I, the identity operator.
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The definition for α = 0 is quite convenient for future manipulations. It
is evident that the Riemann-Liouville fractional integral coincides with the
classical definition of Iαa in the case α ∈ N, except for the fact that we have
extended the domain from Riemann integrable functions to Lebesgue inte-
grable functions (which will not lead to any problems in our development).
Moreover, in the case α ≥ 1 it is obvious that the integral Iαa f(x) exists for
every x ∈ [a, b] because the integrand is the product of an integrable function
f and the continuous function (x− .)α−1. In the case 0 < α < 1 though, the
situation is less clear at first sight. However, the following result asserts that
this definition is justified.

Theorem 1.5.1. Let f ∈ L1[a, b] and α > 0. Then, the integral Iαa f(x)
exists for almost every x ∈ [a, b]. Moreover, the function Iαa f itself is also an
element of L1[a, b].

One important property of integer-order integral operators is preserved
by our generalization:

Theorem 1.5.2. Let β, α ≥ 0 and φ ∈ L1[a, b]. Then,

Iβa I
α
a φ = Iβ+α

a φ,

holds almost everywhere on [a, b]. If additionally φ ∈ C[a, b] or β + α ≥ 1,
then the identity holds everywhere on [a, b].

Corollary 1.5.3. Under the assumptions of Theorem 1.5.2,

Iβa I
α
a φ = Iαa I

β
a φ.

Example 1.5.1. Let f(x) = (x− a)β for some β > −1 and α > 0. Then,

Iαa f(x) =
1

Γ(α)

∫ x

a

(t− a)β(x− t)α−1dt,

=
1

Γ(α)
(x− a)α+β

∫ 1

0

sβ(1− s)α−1ds,

Iαa f(x) =
Γ(β + 1)

Γ(α + β + 1)
(x− a)α+β.

Theorem 1.5.4. Let α > 0. Assume that (fk)
∞
k=1 is a uniformly conver-

gent sequence of continuous functions on [a, b]. Then we may interchange the
fractional integral operator and the limit process, i.e.

(Iαa lim
k→∞

fk)(x) = ( lim
k→∞

Iαa fk)(x).
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1.5 Basic definitions on fractional calculus

In particular, the sequence of functions (Iαa fk)
∞
k=1 is uniformly convergent.

Theorem 1.5.5. Let 1 ≤ p <∞ and let (βk)
∞
k=1 be a convergent sequence of

nonnegative numbers with limit β. Then, for every f ∈ Lp[a, b],

lim
k→∞

Iβka f = Iβa f,

where the convergence is in the sense of the Lp[a, b] norm.

1.5.2 Riemann-Liouville Derivatives

Having established these fundamental properties of Riemann-Liouville inte-
gral operators, we now come to the corresponding differential operators.

Definition 1.5.3. Let α ∈ R+ and β = [α] + 1. The operator Dα
a , defined by

Dα
a f(x) = DβIβ−αa f(x)

is called the Riemann-Liouville fractional differential operator of order α.

For α = 0, we set D0
a := I, the identity operator.

Theorem 1.5.6. Assume that α1, α2 ≥ 0. Moreover let φ ∈ L1[a, b] and
f = Iα1+α2

a φ. Then,

Dα1
a D

α2
a f = Dα1+α2

a f.

Note that in order to apply this identity we do not need to know the function
φ explicitly, it is sufficient to know that such a function exists.

Example 1.5.2. Let f(x) = x−1/2, and α1 = α2 = 1/2.

Dα1
0 f(x) = Dα2

0 f(x) = 0,

and hence also

Dα1
0 Dα2

0 f(x) = 0,

but

Dα1+α2
0 f(x) = D1

0f(x) = −(2x3/2)−1.
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Example 1.5.3. Let f(x) = x1/2, α1 = 1/2 and α2 = 3/2.

Dα1
0 f(x) =

√
π/2 and Dα2

0 f(x) = 0,

This implies
Dα1

0 Dα2
0 f(x) = 0,

but
Dα2

0 Dα1
0 f(x) = −x−3/2/4 = D2

0f(x) = Dα1+α2
0 f(x).

In other words, the first of these two examples shows that it is possible
to have

Dα1
a D

α2
a f = Dα2

a D
α1
a f 6= Dα1+α2

a f,

whereas the second one exemplifies the case where

Dα1
a D

α2
a f 6= Dα2

a D
α1
a f = Dα1+α2

a f,

holds.

Theorem 1.5.7. Let α ≥ 0. Then, for every f ∈ L1[a, b],

Dα
a I

α
a f = f, almost everywhere.

Theorem 1.5.8. Let α > 0. Assume that (fk)
∞
k=1 is a uniformly convergent

sequence of continuous functions on [a, b], and that Dα
a fk exists for every k.

Moreover assume that (Dα
a fk)

∞
k=1 converges uniformly on [a + ε, b] for every

ε > 0. Then, for every x ∈ (a, b], we have

( lim
k→∞

Dα
a fk)(x) = (Dα

a lim
k→∞

fk)(x).

Theorem 1.5.9. Let f1 and f2 be two functions defined on [a, b] such that
Dα
a f1 and Dα

a f2 exist almost everywhere. Moreover, let c1, c2 ∈ R. Then,Dα
a (c1f1+

c2f2) exists almost everywhere, and

Dα
a (c1f1 + c2f2) = c1D

α
a f1 + c2D

α
a f2.

Lemma 1.5.10. Let α > 0, α /∈ N, and β = dαe. Assume that f ∈ Cβ[a, b]
and x ∈ [a, b]. Then,

Dα
a f(x) =

1

Γ(−α)

∫ x

a

(x− t)−α−1f(t)dt.
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1.5 Basic definitions on fractional calculus

Definition 1.5.4. For a function h ∈ ACn(J), the Riemann-Liouville frac-
tional order derivative of order α > 0 of h, is defined by

Dα
0+h(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

h(s)

(t− s)α−n+1
ds,

where n = [α] + 1 and [α] denotes the integer part of the real number α.

Remark 1.5.2. [6]

1. If λ > −1

Dα
0+tλ =

Γ(λ+ 1)

Γ(λ− α + 1)
tλ−α,

and
Dα

0+tα−m = 0, m = 1, 2, . . . , n, where n = [α] + 1.

2. Dα
0+Iα0+u(t) = u(t) for all u ∈ C(0, 1) ∩ L1(0, 1).

3. If u ∈ L1(0, 1), α > β > 0, then

Dβ
0+I

α
0+u(t) = Iα−β0+ u(t).

Lemma 1.5.11. [6] If we assume that u ∈ C(0, 1) ∩ L1(0, 1), then the frac-
tional differential equation

Dα
0+u(t) = 0, α > 0,

has u(t) = C1t
α−1 +C2t

α−2 + . . .+Cnt
α−n, Ci ∈ R, i = 1, 2, . . . , n, as unique

solution, where n = [α] + 1.

Lemma 1.5.12. [6] Suppose that u ∈ C(0, 1) ∩ L1(0, 1), such that Dα
0+u ∈

C(0, 1) ∩ L1(0, 1). Then

Iα0+Dα
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + . . .+ Cnt

α−n,

for some Ci ∈ R, i = 1, 2, . . . , n, where n = [α] + 1.

Lemma 1.5.13. [18] If x, y ≥ 0, γ > 0, then

(x+ y)γ ≤ max{2γ−1, 1}(xγ + yγ).

Lemma 1.5.14. [18] Let c > 0, γ > 0. For any x, y ∈ [0, c], we have that

1. If γ > 1, then |xγ − yγ| ≤ γcγ−1|x− y|,

2. if 0 < γ ≤ 1, then |xγ − yγ| ≤ |x− y|γ.
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Chapter 2

Systems of second impulsive
differential equations

In this chapter we study the existence results for systems of second impulsive
differential equations via variational method. More precisely we consider:


−ü+m2u = f(t, u, v), t 6= tk, k = 1, . . . , p, t ∈ J,
−v̈ +m2v = g(t, u, v), t 6= tk, k = 1, . . . , p, t ∈ J,
u̇(t+k )− u̇(t−k ) = Ik(u(tk)), k = 1, . . . , p,
v̇(t+k )− v̇(t−k ) = Ik(u(tk)), k = 1, . . . , p,
u(0) = u(b) = v(0) = v(b) = 0,

(2.0.1)

where J := [0, b], m 6= 0, f, g : J × R2 → R are two functions, Ik, Ik ∈
C(R,R), k ∈ {1, 2, . . . , n}, u̇(t+k ) and u̇(t+k ) denote the right and the left lim-
its respectively of u̇ at tk for 0 ≤ k ≤ p, 0 = t0 < t1 . . . , tk < tp < b, p ∈ N.

We shall provide sufficient conditions ensuring some existence and unique-
ness results for system (2.0.1) via an application of the Nash-type equilibrium
method in vector Banach spaces.
Let (Xi, | · |i), i = 1, 2 be Hilbert spaces identified to their duals and let
X = X1 ×X2. Consider the system{

u = N1(u, v)
v = N2(u, v)

(2.0.2)

where (u, v) ∈ X. Assume that each equation of the system has a variational
form, i.e., that there exist continuous functionals E1, E2 : X −→ R such
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that E1(·, v) is Fréchet differentiable for every v ∈ X2, E2(u, ·) is Fréchet
differentiable for every u ∈ X1, and

E11(u, v) = u−N1(u, v),
E22(u, v) = v −N2(u, v).

(2.0.3)

Here, by E11(u, v), E22(u, v) we mean the Fréchet derivative of E1(·, v) and
E2(u, ·), respectively.

Define Sobolev space

H1
0 (J) = {u ∈ L2(J) : u̇ ∈ L2(J), u(0) = u(b) = 0},

We endow H1
0 (J) with the scalar product

〈u, v〉H1
0 (J) =

∫ b

0

(u̇v̇ +m2uv)dt = m2〈u, v〉L2(J) + 〈u̇, v̇〉L2(J)

and the corresponding equivalent norm

‖u‖H1
0 (J) = (m2‖u‖2

L2(J) + ‖u̇‖2
L2(J))

1/2. (2.0.4)

The advantage of using the norm (2.0.4) on H1
0 (J) is that a Poincaré-type

inequality holds in connection to the embedding H1
0 (J) ⊂ L2(J), namely, the

obvious relation

‖u‖L2(J) ≤
1

m
‖u‖H1

0 (J), u ∈ H1
0 (J) (2.0.5)

A similar Poincaré inequality holds for the inclusion L2(J) ⊂ H−1(J). Indeed,
if h ∈ L2(J), then using (2.0.5) and the above isometry, we obtain

‖h‖2
H−1(J) = ‖uh‖2

H1
0 (J)

= 〈h, uh〉 = 〈h, uh〉L2(J)

≤ ‖h‖L2(J)‖uh‖L2(J) ≤ 1
m
‖uh‖H1

0 (J)‖h‖L2(J)

= 1
m
‖h‖H−1(J)‖h‖L2(J)

which gives

‖h‖H−1(J) ≤
1

m
‖h‖L2(J). (2.0.6)
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Systems of second impulsive differential equations

2.1 Variational formulation of the problem

Lemma 2.1.1. The function E = (E1, E2) : H1
0 (J) ×H1

0 (J) −→ R defined
by

E1(u, v) =

∫ b

0

[
1

2
(u̇2 +m2u2)− F (t, u, v)

]
dt+

p∑
k=1

∫ u(tk)

0

Ik(s)ds,

E2(u, v) =

∫ b

0

[
1

2
(v̇2 +m2v2)−G(t, u, v)

]
dt+

p∑
k=1

∫ v(tk)

0

Ik(s)ds,

where

F (t, u, v) =

∫ u

0

f(t, s, v)ds,

and

G(t, u, v) =

∫ v

0

g(t, u, s)ds,

are the functionals energy of the system (2.0.1).

Proof. Let w ∈ C∞0 (J), then

For t ∈ [0, t1] ∫ t1

0

−üwdt+

∫ t1

0

m2uwdt =

∫ t1

0

wf(t, u, v)dt.

By integration of above equation, we get

(−u̇w)(t1) +

∫ t1

0

u̇ẇdt+

∫ t1

0

m2uwdt =

∫ t1

0

wf(t, u, v)dt.

For t ∈ (t1, t2], we have∫ t2

t1

−üwdt+

∫ t2

t1

m2uwdt =

∫ t2

t1

wf(t, u, v)dt.

By integration of least equation, and using the jump definition of u′(t+1 ), we
obtain

(−u̇w)(t−2 ) + (wu′)(t+1 ) +

∫ t2

t1

u̇ẇdt+

∫ t2

t1

m2uwdt =

∫ t2

t1

wf(t, u, v)dt.
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2.1 Variational formulation of the problem

For t ∈ (tp, b): We continue the same calculus and we find∫ b

tp

−üwdt+

∫ b

tp

m2uwdt =

∫ b

tp

wf(t, u, v)dt.

Then

(−u̇w)(b) + (u̇w)(t+p ) +

∫ b

tp

u̇ẇdt+

∫ b

tp

m2uwdt =

∫ b

tp

wf(t, u, v)dt

(u̇w)(t−p ) + (wIp)(tp) +

∫ b

tp

u̇ẇdt+

∫ b

tp

m2uwdt =

∫ b

tp

wf(t, u, v)dt.

Observe that

u̇(tp)w(t−p ) =

p∑
k=1

w(tk)Ik(u(tk), v(tk))+

∫ tp

0

u̇ẇdt+

∫ tp

0

m2uwdt−
∫ tp

0

wf(t, u, v)dt.

Consequently,

p∑
k=1

w(tk)Ik(u(tk))) +

∫ b

0

u̇ẇdt+

∫ b

0

m2uwdt =

∫ b

0

wf(t, u, v)dt.

For w = u, we obtain

p∑
k=1

u(tk)Ik(u(tk)) +

∫ b

0

u̇2dt+

∫ b

0

m2u2dt =

∫ b

0

uf(t, u, v)dt.

Finally we define the energy functional E = (E1, E2) by:

E1(u, v) =

∫ b

0

[
1

2
(u̇2 +m2u2)− F (t, u, v)

]
dt+

p∑
k=1

∫ u(tk)

0

Ik(s)ds,

E2(u, v) =

∫ b

0

[
1

2
(v̇2 +m2v2)−G(t, u, v)

]
dt+

p∑
k=1

∫ v(tk)

0

Ik(s)ds.

where

F (t, u, v) =

∫ u

0

f(t, s, v)ds, G(t, u, v) =

∫ v

0

g(t, u, s)ds.
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Systems of second impulsive differential equations

Now, we define what we mean by a solution of problem (2.0.1).

Definition 2.1.1. A pair of function (u, v) ∈ H1
0 (J)×H1

0 (J) is said to be a
weak solution of problem (2.0.1) if

p∑
k=1

w(tk)Ik(u(tk)) +

∫ b

0

u̇ẇdt+

∫ b

0

m2uwdt =

∫ b

0

wf(t, u, v)dt,

and

p∑
k=1

w(tk)Ik(u(tk)) +

∫ b

0

u̇2dt+

∫ b

0

m2u2dt =

∫ b

0

wf(t, u, v)dt,

for every w ∈ H1
0 (J).

2.2 Existence result

We assume that the following conditions are satisfied:

(H1) f, g : J × R2 → R are Carathéodory functions.

(H2) f(·, 0, 0), g(·, 0, 0) ∈ L2(J) and there exist mij ∈ R+ (i, j = 1, 2) such
that

|f(t, u, v)− f(t, u, v)| ≤ m11|u− u|+m12|v − v|
|g(t, u, v)− g(t, u, v)| ≤ m21|u− u|+m22|v − v|

for all u, u, v, v ∈ R, a.e. t ∈ J.

(H3) There exist mij ∈ R+(i, j = 1, 2) such that

|Ik(x)−Ik(y)| ≤ mk11|x−y|, |Ik(x)−Ik(y)| ≤ mk22|x−y|, for all x, y ∈ R.

Lemma 2.2.1. Assume that the conditions (H1) and (H2) hold. Then

−
∫ b

0
|F (s, u, v)|ds ≥ −m11

2
‖u‖2

L2(J) −m12‖v‖L2(J)‖u‖L2(J)

−‖f(t, 0, 0)‖L2(J)‖u‖L2(J).
(2.2.1)

Proof. Indeed, from (H2) we have

|f(t, u, v)| ≤ m11|u|+m12|v|+ |f(t, 0, 0)|, (2.2.2)
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2.2 Existence result

whence, since f(·, 0, 0) ∈ L2(J), f(·, u(·), v(·)) ∈ L2(J) whenever (u, v) ∈
L2(R+)× L2(R+). Also (2.2.2) gives

|F (t, u, v)| ≤ m11

2
|u|2 +m12|v||u|+ |f(t, 0, 0)||u|.

Then

−
∫ b

0

|F (s, u, v)|ds ≥ −
∫ b

0

[m11

2
|u(s)|2 +m12|v(s)||u(s)|+ |f(s, 0, 0)||u(s)|

]
ds

≥ −m11

2
‖u‖2

L2(J) −m12‖v‖L2(J)‖u‖L2(J)

−‖f(·, 0, 0)‖L2(J)‖u‖L2(J).

We assume that the spectral radius of matrix

M =
1

m2


m11 +

p∑
k=1

m3mk11

√
btk m12

m21 m22 +

p∑
k=1

m3mk22

√
btk

(2.2.3)

is strictly less than one.

Lemma 2.2.2. The energy E of the problem has a Fréchet derivative.

Proof. Direct computation shows that the derivative of E at any u, after the
direction w ∈ H1

0 (R), is given by

(E ′1(u, v), w) = lim
λ→0

(E1(u+ λw, v)− E1(u, v))λ−1

(E ′1(u, v), w) = lim
λ→0

[ ∫ b

0

[
1

2
((u̇+ λẇ)2 +m2(u+ λw)2)− F (t, u+ λw, v)

]
dt

+

p∑
k=1

∫ u(tk)+λw(tk)

0

Ik(s)ds−
∫ b

0

[
1

2
(u̇2 +m2u2)− F (t, u, v)

]
dt

−
p∑

k=1

∫ u(tk)

0

Ik(s)ds
]
λ−1

=

∫ b

0

[u̇ẇ +m2u2w2 − f(t, u, v)w]dt+

p∑
k=1

w(tk)Ik(u(tk))

= 〈u,w〉H1
0 (J) − 〈f(., u, v), w〉L2(J) +

p∑
k=1

w(tk)Ik(u(tk)).
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Hence, the Fréchet derivative of E1 at any u ∈ H1
0 (J) is given by

E11(u, v) = u− Lf(·, u, v) +

p∑
k=1

Ik(u(tk))

= u−N1(u, v)

and

E22(u, v) = v − Lg(·, u, v) +

p∑
k=1

Ik(v(tk))

= v −N2(u, v)

where N1, N2 : H1
0 (J)×H1

0 (J)→ H1
0 (J) are defined by

N1(u, v) = Lf(·, u, v)−
p∑

k=1

Ik(u(tk)),

and

N2(u, v) = Lg(·, u, v)−
p∑

k=1

Ik(v(tk)).

This shows that the weak solutions of (2.0.1) are the critical points of the
functional E.

Theorem 2.2.3. Assume that the conditions (H1), (H2) and (H3) hold. In
addition, assume that there exist two functions g̃, g̃1 : J × R → R such that
g̃(t, ·), g̃1(t, ·) are coercive and satisfied

g̃1(t, y) ≤ G(t, x, y) ≤ g̃(t, y), for all x, y ∈ R, a.e. t ∈ J, (2.2.4)

and
Ik(x) ≥ 0, Ik(y) ≥ 0, for all x, y ∈ R. (2.2.5)

Then the system (2.0.1) has a unique solution (u∗, v∗) ∈ H1
0 (J)×H1

0 (J) which
is a Nash-type equilibrium of the pair of functionals (E1, E2) associated to the
system, i.e.,

E1(u∗, v∗) = inf
H1

0 (J)
E1(., v∗)

E2(u∗, v∗) = inf
H1

0 (J)
E2(u∗, ·).
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Proof. We shall apply Theorem 1.4.1. First using the Lipschitz conditions
(H2) we can obtain that E1(·, v), E2(u, .) are bounded for each u, v ∈ H1

0 (J)

E1(u, v) =

∫ b

0

[
1

2
(u̇2 +m2u2)− F (t, u, v)

]
dt+

p∑
k=1

∫ u(tk)

0

Ik(s)ds

=
1

2
‖u‖2

H1
0 (J) −

∫ b

0

F (s, u, v)ds+

p∑
k=1

∫ u(tk)

0

Ik(s)ds.

Using the inequality (2.2.1) and (2.2.5), we obtain

E1(u, v) ≥ 1

2
‖u‖2

H1
0 (J) −

m11

2
‖u‖2

L2(J) −m12‖v‖L2(J)‖u‖L2(J)

−‖f(·, 0, 0)‖L2(J)‖u‖L2(J).

By Poincaré inequality, we get

E1(u, v) ≥ 1

2
‖u‖2

H1
0 (J) −

m11

2m2
‖u‖2

H1
0 (J) −

m12

m
‖v‖L2(J)‖u‖H1

0 (J)

− 1

m
‖f(·, 0, 0)‖L2(J)‖u‖H1

0 (J)

≥ 1

2

(
1− m11

2m2

)
‖u‖2

H1
0 (J) −

m12

m
‖v‖L2(J)‖u‖H1

0 (J)

− 1

m
‖f(·, 0, 0)‖L2(J)‖u‖H1

0 (J).

Similarly, we can get

E2(u, v) ≥ 1

2

(
1− m22

2m2

)
‖v‖2

H1
0 (J) −

m12

m
‖u‖L2(J)‖v‖H1

0 (J)

− 1

m
‖g(·, 0, 0)‖L2(J)‖v‖H1

0 (J).

Consequently, the functionals E1(·, v) and E2(u, ·) are bounded from be-
low for each u, v ∈ H1

0 (J). In addition, we use the inequality from (2.2.4) to
obtain

E2(u, v) =
1

2
‖v‖2

H1
0 (J) −

∫ b

0

G(t, u(t), v(t))dt+

p∑
k=1

∫ v(tk)

0

Ik(s)ds

≥ 1

2
‖v‖2

H1
0 (J) −

∫ b

0

g̃(t, v(t))dt
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we use the inequality from (2.2.5) to obtain

E2(u, v) ≥ φ(v), for all, v ∈ H1
0 (J) (2.2.6)

where

φ(v) =
1

2
‖v‖2

H1
0 (J) −

∫ b

0

g̃(t, v(t))dt.

Since g is coercive function, φ is bounded from below and thus E2(u, ·) is
bounded from below uniformly with respect to u. Next,

E2(u, v) =
1

2
‖v‖2

H1
0 (J) −

∫ b

0

G(t, u(t), v(t))dt+

p∑
k=1

∫ v(tk)

0

Ik(s)ds

≤ 1

2
‖v‖2

H1
0 (J) −

∫ b

0

g̃1(t, v(t))dt+

p∑
k=1

∫ v(tk)

0

Ik(s)ds.

Then

E2(u, v) ≤ φ1(v), for all v ∈ H1
0 (J), (2.2.7)

where

φ1(v) =
1

2
‖v‖2

H1
0 (J) −

∫ b

0

g̃1(t, v(t))dt+

p∑
k=1

∫ v(tk)

0

Ik(s)ds.

From (2.2.6) and (2.2.7)

φ(v) ≤ E2(u, v) ≤ φ1(v), for all u, v ∈ H1
0 (J). (2.2.8)

Since φ is coercive, for each λ > 0, there is Rλ such that

φ(v) ≥ λ for ‖v‖H1
0 (J) ≥ Rλ. (2.2.9)

Let a > 0 and λ = infv∈H1
0 (J) φ1(v) + a for ‖v‖H1

0 (J) ≥ Rλ and any u ∈ H1
0 (J)

we have
E2(u, v) ≥ φ(v) ≥ inf

v∈H1
0 (J)

φ1(v) + a. (2.2.10)

From the first inequality of (2.2.8), we have

inf
v∈H1

0 (J)
E2(u, v) + a ≤ inf

v∈H1
0 (J)

φ1(v) + a = λ. (2.2.11)
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2.2 Existence result

But (2.2.9) and (2.2.11), imply that

E2(u, v) ≥ inf
v∈H1

0 (J)
E2(u, v) + a ‖v‖H1

0 (J) ≥ Rλ ∀u ∈ H1
0 (J).

This shows that E2 satisfies the condition (1.4.2). Finally we prove that
N = (N1, N2) is a Perov contraction. Indeed, for any u, v, u, v ∈ H1

0 (J),
using the fact that L is an isometry between H−1(J) and H1

0 (J), the relations
(2.0.5), (2.0.6) and the Lipschitz condition (H3), we obtain

‖N1(u, v)−N1(u, v)‖H1
0 (J) ≤ ‖Lf(·, u, v)− Lf(·, u, v)‖H1

0 (J)

+

p∑
k=1

‖Ik(u(tk))− Ik(u(tk))‖H1
0 (J)

≤ ‖f(·, u, v)− f(·, u, v)‖H−1(J)

+

p∑
k=1

‖Ik(u(tk))− Ik(u(tk))‖H1
0 (J)

≤ 1

m
‖f(·, u, v)− f(·, u, v)‖L2(J)

+

p∑
k=1

‖Ik(u(tk))− Ik(u(tk))‖H1
0 (J).

For each k ∈ {1, . . . , p} we have

‖Ik(u(tk))− Ik(u(tk))‖H1
0 (J) ≤ m

(∫ b

0

|Ik(u(tk))− Ik(u(tk))|2dt
) 1

2

= m
√
b|Ik(u(tk))− Ik(u(tk))|

≤ mmk11

√
b|u(tk)− u(tk)|

≤ mmk11

√
b

∫ tk

0

|u′(t)− u′(t)|dt

≤ mmk11

√
btk

(∫ tk

0

|u′(t)− u′(t)|2dt
) 1

2

.

Hence

‖Ik(u(tk))− Ik(u(tk))‖H1
0 (J) ≤ mmk11

√
btk‖u− u‖H1

0 (J) k = 1, . . . , p.
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Systems of second impulsive differential equations

Then

‖N1(u, v)−N1(u, v)‖H1
0 (J) ≤

m11

m
‖u− u‖L2(J) +

m12

m
‖v − v‖L2(J)

+

p∑
k=1

mmk11

√
btk‖u− u‖H1

0 (J).

Therefore

‖N1(u, v)−N1(u, v)‖H1
0 (J) ≤

1

m2

(
m11 +

p∑
k=0

m3mk11

√
btk

)
‖u− u‖H1

0 (J)

+
m12

m2
‖v − v‖H1

0 (J).

Similar for N2 we have

‖N2(u, v)−N2(u, v)‖H1
0 (J) ≤

1

m2

(
m22 +

p∑
k=0

m3mk22

√
btk

)
‖v − v‖H1

0 (J)

+
m21

m2
‖u− u‖H1

0 (J).

Hence, N is a Perov contraction with the Lipschitz matrix M given by (2.2.3).
Therefore, Theorem 1.4.1 can be applied.

Remark 2.2.1. Notice that the theory for systems of two equations can easily
be extended to the general case of n−dimensional systems.

2.3 Example

We conclude this chapter with an illustrative example.

Example 2.3.1. Consider the following system
−ü+m2u = f(t, u, v), t ∈ [0, b]
−v̈ +m2v = g(t, u, v), t ∈ [0, b]
u̇(t+1 )− u̇(t−1 ) = 1

a1
|u(t1)|, a1 > 0, t1 6= 0, t1 ∈ (0, b)

v̇(t+1 )− v̇(t−1 ) = 1
a2
|v(t1)|, a2 > 0

u(0) = u(b) = v(0) = v(b) = 0,

(2.3.1)
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2.3 Example

where m 6= 0; αi, βi ∈ C([0, b],R+), σi ∈ L2([0, b],R+)(i = 1, 2) and

f(t, u, v) = α1(t) cosu(t) + β1(t) sinu(t) sin v(t) + σ1(t),

g(t, u, v) = α2(t) sin v(t) + β2(t) cosu(t) sin v(t) + σ2(t).

In this case,

F (t, x, y) = α1(t) sinx+ β1(t)(1− cosx) sin y + σ1(t)x,

G(t, x, y) = α2(t)(1− cos y) + β2(1− cosy)cosx+ σ2(t)y.

If the spectral radius of the matrix

M =
1

m2

[
‖α1‖∞ + ‖β1‖∞ + m3

√
bt1

a1
‖β1‖∞

‖β2‖∞ ‖α2‖∞ + ‖β2‖∞ + m3
√
bt1

a2

]

is less than one, where then the system (2.3.2) has a unique solution, which
is a Nash-type equilibrium of the corresponding pair of energy functionals.
In particular, the result holds for the following system on [0, 1]

−ü+ u = 2
15

cosu(t) + 1
5

sinu(t) sin v(t) + σ1(t)
−v̈ + v = 1

6
sin v(t) + 1

6
cosu(t) sin v(t) + σ2(t)

u̇(t+1 )− u̇(t−1 ) = |u(t1)|, t1 = 1
9

v̇(t+1 )− v̇(t−1 ) = |v(t1)|, t1 = 1
9

u(0) = u(1) = v(0) = v(1) = 0,

(2.3.2)

where σi ∈ L2([0, 1],R+)(i = 1, 2).In this case, the matrix M is

M =

[
2
3

1
5

1
6

2
3

]
(2.3.3)

and one can easily see that its spectral radius is less than one.
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Chapter 3

Impulsive p-Laplacian
boundary value problem

In this chapter, we aim to study the following boundary impulsive value
problem with a second-order p-Laplacian on σ(T ) periodic time scales T :

(ϕp(u
∆(t)))∆ = f(σ(t), uσ(t)), ∆− a.e. t ∈ [0, σ(T )]kT, t 6= tj,

ϕp(u
∆(t+j ))− ϕp(u∆(t−j )) = Ij(u(tj)), j = 1, . . . , n

u(0) = u(σ(T )) = u∆(σ(T )) = u∆(0) = 0,
(3.0.1)

where ϕp(u
∆(t)) = |u∆(t)|p−2u∆(t), and ∆ is the derivative on the time

scale T, and σ is the forward jump operator, 0, T ∈ T with σ(t) ∈ Tk and
f(t, x) : [0, σ(T )]kT × R→ R is Lebesgue integrable in T for each x ∈ R, and
continuously ∆-differentiable with respect to x for any ∆−a.e.t ∈ [0, σ(T )]kT,
Ij(u(tj)) ∈ C(R,R), ϕp(u

∆(t+j )) and ϕp(u
∆(t−j )) denote the right and the left

limits respectively of u∆ at tk for 0 ≤ k ≤ p, 0 = t0 < t1, . . . , tk < tp <
T, p ∈ N.
It is notable that in our study the function f is not required to be periodic
in t.
Throughout this Chapter, we make the following assumption:

(H0) There exist two functions a ∈ C(R+,R+) and b ∈ L1([0, σ(t)]T,R+)
such that ∣∣∣∣∫ x

0

f(t, s)ds

∣∣∣∣ ≤ a(|x|)b(t), |f(t, x)| ≤ a(|x|)b(t)
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3.1 Variational formulation of the problem

for all x ∈ R and ∆− a.e.t ∈ [0, σ(T )]T.

In the cases where T = R or T = Z the problem (3.0.1) take the following
forms:

(ϕp(u
′(t)))′ = f(t, u(t)), t ∈ [0, T ], t 6= tj, (3.0.2)

and

∆(ϕp(∆u(k))) = f(k + 1, u(k + 1)), k ∈ {0, 1, 2, . . . , N}, (3.0.3)

where N ∈ Z+ and ∆ denotes the difference operator defined by

∆u(k) = u(k + 1)− u(k), k ∈ {1, 2, . . . , N}.

Also in this work, we consider the following impulsive problem with the
mixed derivatives on time scales of the form:

(ϕp(u
∆(t)))∇ = f(t, u(t)), ∆− a.e. t ∈ [0, T ]T, t 6= tj,

ϕp(u
∆(tj

+))− ϕp(u∆(tj
−)) = Ij(u(tj)), j = 1, . . . , n,

u(0) = u(σ(T )) = u∆(σ(T )) = u∆(0) = 0,
(3.0.4)

3.1 Variational formulation of the problem

In this section, we defined the functionals energy of the problem (3.0.1).
We consider the following Banach spaces

W̃ 1,p
∆,T ([0, σ(T )]T,R) = {u ∈ W 1,p

∆,T ([0, σ(T ))T,R) : ū = 0},

and

W 1,p
∆,T ([0, σ(T )]T,R) = W̃ 1,p

∆,T ([0, σ(T )]T,R)⊕ R,

with

ũ = u− ū,

where

ū =
1

σ(T )

∫
[0,σ(T ))T

u(t)∆t.
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Proposition 3.1.1. [79] Assume that f satisfies the condition (H0), the
sequence

{un} ⊂ W 1,p
∆,T ([0, σ(T )]T,R)

satisfies ϕ′(un)→ 0 and {un} is bounded in W 1,p
∆,T ([0, σ(T )]T,R). Then,{un}

has a convergent subsequence in W 1,p
∆,T ([0, σ(T )]T,R)

Lemma 3.1.2. The functionals energy of the problem (3.0.1) is the function
ψ : W 1,p

∆,T ([0, σ(T )]T,R)→ R defined by:

ψ(u) =
1

p

∫ σ(T )

0

|u∆(s)|p∆t+

∫ σ(T )

0

F (σ(t), uσ(t))∆t+
n∑
k=1

∫ u(tk)

0

Ik(t)∆t

(3.1.1)
where

F (t, ξ) =

∫ ξ

0

f(t, s)ds. (3.1.2)

Proof. Let v ∈ W 1,p
∆,T ([0, σ(T )]T,R), then

For t ∈ [0, t1]∫ t1

0

v(s)(ϕp(u
∆(s)))∆∆s =

∫ t1

0

f(σ(s), uσ(s))v(s)∆s.

We use the integration by part, we get

v(t1)ϕp(u
∆(t1))−v(0)ϕp(u

∆(0))−
∫ t1

0

v∆(s)ϕp(u
∆(s))∆s =

∫ t1

0

f(σ(s), uσ(s))v(s)∆s.

This implies that

v(t1)ϕp(u
∆(t1)) = v(0)ϕp(u

∆(0))+

∫ t1

0

v∆(s)ϕp(u
∆(s))∆s+

∫ t1

0

f(σ(s), uσ(s))v(s)∆s.

For t ∈ (t1, t2], we have∫ t2

t1

v(s)(ϕp(u
∆(s)))∆∆s =

∫ t2

t1

f(σ(s), uσ(s))v(s)∆s.

By integration of least equation, and using the jump condition of u∆(t+1 ), we
obtain
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v(t2)ϕp(u
∆(t2)) = v(t1)I1(u(t1)) + v(0)ϕp(u

∆(0)) +

∫ t2

0

v∆(s)ϕp(u
∆(s))∆s

+

∫ t2

0

f(σ(s), uσ(s))v(s)∆s.

For t ∈ (tn, σ(T )] : We continue the same calculus and we find∫ σ(T )

tn

v(s)(ϕp(u
∆(s)))∆∆s =

∫ σ(T )

tn

f(σ(s), uσ(s))v(s)∆s.

By integration by part,we get

∫ σ(T )

tn

f(σ(s), uσ(s))v(s)∆s = v(σ(T ))ϕp(u
∆(σ(T ))− v(tn)ϕp(u

∆(tn)

−
∫ σ(T )

tn

v∆(s)ϕp(u
∆(s))∆s

= v(σ(T ))ϕp(u
∆(σ(T ))− v(tn)(ϕp(t

−
n ) + v(tn)(In(u(tn)))

−
∫ σ(T )

tn

v∆(s)ϕp(u
∆(s))∆s.

Observe that

v(tn)ϕp(t
−
n ) =

∑
0<tk<tn

v(tk)Ik(u(tk))+

∫ tn

0

v∆(s)ϕp(u
∆(s))∆s−

∫ tn

0

f(σ(s), uσ(s))v(s)∆s.

Consequently,

v(σ(T ))ϕp(u
∆(σ(T ))− v(t1)I1(u(t1))− v(t2)I2(u(t2))− . . .− v(tn)In(u(tn))

−
∫ tn

0

v∆(s)ϕp(u
∆(s))∆s−

∫ tn

0

f(σ(s), uσ(s))v(s)∆s−
∫ σ(T )

tn

v∆(s)ϕp(u
∆(s))∆s

=

∫ σ(T )

tn

f(σ(s), uσ(s))v(s)∆s.

Then∫ σ(T )

0

|u∆(s)|p−2u∆(s)v∆(s)∆s+

∫ σ(T )

0

f(σ(s), uσ(s))v(s)∆s+
n∑
k=1

v(tk)Ik(u(tk)) = 0,
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for v = u∫ σ(T )

0

|u∆(s)|p∆s+

∫ σ(T )

0

f(σ(s), uσ(s))u(s)∆s+
n∑
k=1

u(tk)Ik(u(tk)) = 0.

Then∫ σ(T )

0

|u∆(s)|p∆t+

∫ σ(T )

0

F (σ(t), uσ(t))∆t+
n∑
k=1

u(tk)Ik(u(tk)) = 0.

Finally we define the energy functional ψ by:

ψ(u) =
1

p

∫ σ(T )

0

|u∆(s)|p∆t+

∫ σ(T )

0

F (σ(t), uσ(t))∆t+
n∑
k=1

u(tk)Ik(u(tk))

i.e

ψ(u) =
1

p

∫ σ(T )

0

|u∆(s)|p∆t+

∫ σ(T )

0

F (σ(t), uσ(t))∆t+
n∑
k=1

∫ u(tk)

0

Ik(t)∆t

where

F (t, ξ) =

∫ ξ

0

f(t, s)ds.

Now, we define what we mean by a solution of problem (3.0.1).

Definition 3.1.1. A critical points u ∈ W 1,p
∆,T ([0, σ(T )]T,R) of the functional

ψ defined by (3.1.1) is said to be a weak solution of Problem (3.0.1) if

−
∫ σ(T )

0

|u∆(t)|p−2u∆(t)w∆∆t−
∫ σ(T )

0

f(σ(t), uσ(t))wσ∆t−
N∑
k=1

wkIk(tk) = 0,

for every w ∈ W 1,p
∆,T ([0, σ(T )]T,R).

Proposition 3.1.3. The functional ψ ∈ C1(W 1,p
∆,T ([0, σ(T ))T,R),R).
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3.1 Variational formulation of the problem

Proof. Firstly, we show the existence of the Gâteaux derivative.
Direct computation shows that the derivative of ψ at any u, after the direction
v ∈ W 1,p

∆,T ([0, σ(T ))T,R) and ε ∈ R (0 < |ε| < 1), is given by

ψ(u+ εv)− ψ(u)

ε
=

∫
[0,σ(T ))T

1

εp
[|u∆ + εv∆|p − |u∆|p]∆t

+

∫
[0,σ(T ))T

F (σ(t), uσ + εvσ)− F (σ(t), uσ)

ε
∆t

+
1

ε

n∑
k=1

∫ u(tk)+εv(tk)

0

Ik(t)∆t−
n∑
k=1

∫ u(tk)

0

Ik(t)∆t.

where F is defined as formula (3.1.2).
For u ∈ R, it follows from the mean value theorem that there exists ρ1 ∈ (0, 1)
such that

||u∆+εv∆|p−|u∆|p|
|ε| = p[|u∆ + ερ1v

∆|p−2|u∆ + ερ1v
∆|]|v∆|

≤ Cp[|u∆|+ |v∆|]p−1|v∆|,
(3.1.3)

where C is a positive constant,|u∆| and |v∆| ∈ Lp∆,T ([0, σ(T )]T, we use
Hölder inequality on time scales we find∫

[0,σ(T )]T

[|u∆|+|v∆|]p−1|v∆|∆t ≤
[ ∫

[0,σ(T )]T

[|u∆|+|v∆|]p∆t
] p−1

p
[ ∫

[0,σ(T )]T

[|v∆|]p∆t
] 1
p

which implies

[|u∆|+ |v∆|]p−1|v∆| ∈ L1
∆,T ([0, σ(T )]T,R).

Given u ∈ R, by the mean value theorem, there exists ρ2 ∈ (0, 1) such that

1
|ε| |F (σ(t), uσ + εvσ)− F (σ(t), uσ)| = 1

|ε| |
∂F
∂ξ
|(σ(t),uσ+ρ2εvσ) |εvσ|

= |f(σ(t), uσ + ρ2εv
σ)||vσ|. (3.1.4)

Note that

|f(σ(t), uσ + ρ2εv
σ)||vσ| ∈ L1

∆,T ([0, σ(T ))T,R).

53



Impulsive p-Laplacian boundary value problem

Therefore, for u ∈ R, the mean value theorem indicates that there exists
ρ3 ∈ (0, 1) such that

n∑
k=1

∫ uk+εvk

0

Ik(t)∆t−
n∑
k=1

∫ uk

0

Ik(t)∆t

ε
= 1

ε

( n∑
k=1

∂

∫ x

0

Ik(s)ds

∂x

∣∣∣
uk+ερ3vk

)
|εvk|

=
n∑
k=1

Ik(uk + ερ3vk)|vk|

=
n∑
k=1

vkIk(uk) ∈ C(R,R) for ε→ 0,

(3.1.5)

〈ψ′(u), v〉 = lim
ε→0

1

ε
[ψ(u+ εv)− ψ(u)]

By formulas (3.1.3),(3.1.4),(3.1.5) and the Lebesgues dominated convergence
theorem on time scales, we derive that

〈ψ′(u), v〉 =

∫ σ(T )

0

(
p|u∆|p−2u∆v∆ + f(σ(t), uσ)vσ

)
∆t+

n∑
k=1

vkIk(uk)

(3.1.6)
Secondly, we consider the continuity of the Gâteaux derivative.

Assume that the sequence {un} ⊂ W 1,p
∆,T ([0, σ(T ))T,R) satisfies un → u as

n→∞ in W 1,p
∆,T ([0, σ(T )]T,R). By proposition (1.3.11) tells us that

W 1,p
∆,T ([0, σ(T ))T),R ↪→ C([0, σ(T ))T,R) is compact.

Then, un → u as n→∞ in Lq1∆,T ([0, σ(T ))T,R).

Let f(x) = p|x∆|p−2x∆. From proposition (1.3.14) we get

‖|u∆
n |p−2u∆

n − |u∆|p−2u∆‖Lq1∆
→ 0 as n→∞

where q1 = p
p−1

. Using (H0) and Lebesgue dominated convergence theorem
on time scales yields∫

[0,σ(T ))T

|f(σ(t), uσn)− f(σ(t), uσ)|∆t→ 0 as n→∞.
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By continuity of I

N∑
k=1

|Ikn(u(tkn))− Ik(u(tk))| → 0 as n→∞.

For an arbitrary v ∈ W 1,p
∆,T ([0, σ(T )]T,R), there holds

〈ψ′(un)− ψ′(u), v〉 =

∫
[0,σ(T ))T

(
(|u∆

n |p−2u∆
n − |u∆|p−2u∆)v∆

)
∆t

+

∫
[0,σ(T ))T

(
f(σ(t), uσn)− f(σ(t), uσ)vσ

)
∆t

+
n∑
k=1

(
Ikn(u(tkn))− Ik(u(tk))

)
vk.

Using the Hölder inequality on time scales again gives:

|〈ψ′(un)− ψ(u), v〉| ≤
∫

[0,σ(T ))T

∣∣∣|u∆
n |p−2u∆

n − |u∆|p−2u∆)
∣∣∣v∆∆t

+

∫
[0,σ(T ))T

∣∣∣(f(σ(t), uσn)− f(σ(t), uσ), vσ)
∣∣∣∆t

+
n∑
k=1

∣∣∣Ikn(u(tkn))− Ik(u(tk))
∣∣∣|vk|

≤
(∫

[0,σ(T ))T

∣∣∣|u∆
n |p−2u∆

n − |u∆|p−2u∆
∣∣∣ p
p−1

∆t
) p−1

p

×
(∫

[0,σ(T ))T

|v∆|p∆t
) 1
p

+

∫
[0,σ(T ))T

|(f(σ(t), uσn)

− f(σ(t), uσ), vσ)|∆t+
n∑
k=1

∣∣∣Ikn(u(tkn))− Ik(u(tk))
∣∣∣|vk|

≤
∥∥∥|u∆

n |p−2u∆
n − |u∆|p−2u∆

∥∥∥
L
q1
∆

‖v‖

+ ‖vσ‖
∫

[0,σ(T ))T

|f(σ(t), uσn)− f(σ(t), uσ)|∆t

+
n∑
k=1

∣∣∣Ikn(u(tkn))− Ik(u(tk))
∣∣∣|v|.
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Hence, we have,

‖ψ′(un)− ψ(u)‖ ≤
∥∥∥|u∆

n |p−2u∆
n − |u∆|p−2u∆)

∥∥∥
L
q1
∆

+
‖vσ‖
‖v‖

∫
[0,σ(T ))T

|f(σ(t), uσn)− f(σ(t), uσ)|∆t

+
|v|
‖v‖

n∑
k=1

∣∣∣Ikn(u(tkn))− Ik(u(tk))
∣∣∣→ 0 as n→∞.

which implies ψ′(un)→ ψ(u)as n→∞

3.2 Main results

In this section, we state and prove our results on the existence of periodic
solution of equation (3.0.1) on time scales.

Theorem 3.2.1. Suppose that the condition (H0) and that the following
condition holds:

(H1) let {un} ⊂ W 1,p
∆,T ([0, σ(T )]T,R) such that ‖un‖ → ∞ and |un|σ(T )

1
p

‖un‖ → 1,
and there holds

lim
n→∞

inf

∫
[0,σ(T ))T

f(σ(t), uσn)
uσn
|uσn|

∆t+
n∑
k=1

Ik(unk)
unk
|unk|

< 0,

(H2) the inequalities lim inf |x|→∞

∫ x

0

f(t, s)ds

|x|p−1 > − 1
pRp

holds uniformly for

∆− a.e. t ∈ [0, σ(T ))T, where

Rp = sup{‖u‖p
Lp∆

∣∣∣‖u∆‖p
Lp∆

= 1},

(H3) the inequalities lim infx→∞

∫ x

0

Ik(t)∆t

|x∆|p−1 > − 1
kp

where

kp = sup{‖u‖p∞
∣∣∣‖u∆‖p

Lp∆
}.

56



3.2 Main results

Then, the boundary value problem (3.0.1) has at least one periodic solution
in W 1,p

∆,T ([0, σ(T )]T,R).

Proof. We shall apply Lemma (1.4.2). The proof will be given in several
steps.

Step 1 To show that ψ satisfies the PS condition.
Assume that there exist a sequence {un} ⊂ W 1,p

∆,T ([0, σ(T )]T,R) and a
constant c such that

ψ′(un)→ 0, ψ(un) ≤ c, n = 1, 2, . . . (3.2.1)

We show that {un} is bounded in W 1,p
∆,T ([0, σ(T )]T,R).

Suppose to the contrary there exists a subsequence of {un} (still de-
noted by {un}) which is unbounded. That is,

‖un‖ → ∞ as n→∞. (3.2.2)

Let vn = un
‖un‖ , then {vn} is bounded in W 1,p

∆,T ([0, σ(T )]T,R). It follows

from Proposition (1.3.11) that W 1,p
∆,T ([0, σ(T )]T,R) ↪→ C([0, σ(T )]T,R)

is compact. Hence, there exist a point v0 ∈ W 1,p
∆,T ([0, σ(T )]T,R) and a

subsequence of {vn} such that

vn ⇀ v0 in W
1,p
∆,T ([0, σ(T )]T,R),

and
vn → v0 strongly in Lq∆([0, σ(T ))T,R). (3.2.3)

In addition, there exists a function ω ∈ Lq∆([0, σ(T ))T,R) such that
|vn| ≤ ω for ∆− a.e t ∈ [0, σ(T )]T.
By (H2), there exist constants 0 < ε0 <

1
pRp

and M > 0 such that∫ uσ(t)

0

f(σ(t), s)ds > (− 1

pRp

+ ε0) min
t∈[0,σ(T ))T

|uσ(t)|p−1

≥ − 1

pRp

|u(t)|p−1 + ε0|u(t)|p−1,

for all uσ ∈ R with |uσ| > M and ∆− a.e t ∈ [0, σ(T )]T.
Let aM = max|u|≤M a(|u|). It follows from (H0) that∫ uσ(t)

0

f(σ(t), s)ds ≥ −aMb(σ(t)) (3.2.4)
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holds for all uσ ∈ R with |uσ| > M and ∆− a.e t ∈ [0, σ(T )]T. Hence,
we deduce that∫ uσ(t)

0

f(σ(t), s)ds > − 1

pRp

|u(t)|p−1 + ε0|u(t)|p−1 − aMb(σ(t)) (3.2.5)

for all uσ ∈ R and ∆− a.e t ∈ [0, σ(T ))T.
By (H3), there exist constants 0 < ε1 <

1
kp

such that∫ x

0

Ik(t)∆t > (− 1

kp
+ ε1) min

t
|x(t)|p−1,

∫ x

0

Ik(t)∆t > −
|x|p−1

kp
+ ε1|x|p−1, (3.2.6)

It follows from(3.2.1),(3.2.5),and (3.2.6) that

c

‖un‖p
≥ ψ(un)

‖un‖p

=
1

p

∫
[0,σ(T ))T

|(un)∆|p

‖un‖p
∆t+

1

‖un‖p

∫ σ(T )

0

∫ uσ(t)

0

f(σ(s), uσ(s))u(s)∆s

+
1

‖un‖p
n∑
k=1

∫ unk

0

Ikn(t)∆t

>
1

p

∫ σ(T )

0

|(vn)∆|p∆t+
1

‖un‖p

∫ σT

0

[
− 1

pRp

|un|p−1 + ε0|un|p−1

− aMb(σ(t))
]
∆t+

1

‖un‖p
n∑
k=1

[
− |unk|

p−1

kp
+ ε1|unk|p−1

]
>

1

p

∫ σ(T )

0

|(vn)∆|p∆t+
1

‖un‖p

∫ σT

0

[
− 1

pRp

|un|p−1 − aMb(σ(t))
]
∆t

− 1

‖un‖p
n∑
k=1

|unk|p−1

kp

>
1

p

∫ σ(T )

0

|(vn)∆|p∆t− 1

pRp‖un‖

∫ σT

0

|vn|p−1 − 1

‖un‖p

∫ σ(T )

0

aMb(σ(t))∆t

−
n∑
k=1

|vnk|p−1

kp‖un‖
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c

‖un‖p
>

1

p
[1−

∫
[0,σ(T ))T

|vn|p∆t]−
1

pRp‖un‖

∫
[0,σ(T ))T

|vn|p−1

− 1

‖un‖p

∫
[0,σ(T ))T

aMb(σ(t))∆t−
n∑
k=1

|vnk|p−1

kp‖un‖
.

Using this inequality together with (3.2.2) and (3.2.3) gives

0 ≥ 1

p
[1−

∫
[0,σ(T ))T

|v0|p∆t],

then ∫
[0,σ(T ))T

|v0|p∆t ≥ 1. (3.2.7)

The weakly lower semi-continuity of the norm means that

[ ∫
[0,σ(T ))T

|v0|p∆t+

∫
[0,σ(T ))T

|(v0)∆|p∆t
] 1
p

= ‖v0‖ ≤ lim inf ‖vn‖ = 1,

that is
‖v0‖ ≤ 1. (3.2.8)

From (3.2.7) and (3.2.8), we deduce that∫
[0,σ(T ))T

|(v0)∆|p∆t = 0,

that is
|v0| ≡ constant.

Then, we obtain ∫
[0,σ(T ))T

|v0|p∆t = 1,

which gives

|v0|p =
1

σ(T )
.

Thus, we have (by definition of u)

|un|p

‖un‖p
=

∣∣∣ 1

σ(T )

∫
[0,σ(T ))T

un
‖un‖

∆t
∣∣∣p
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|un|p

‖un‖p
=

∣∣∣ 1

σ(T )

∫
[0,σ(T ))T

|vn|∆t
∣∣∣p −→ ∣∣∣ 1

σ(T )

∫
[0,σ(T ))T

|v0|∆t
∣∣∣p

=
1

σ(T )
,

which implies that

|un|σ(T )
1
p

‖un‖
→ 1.

It follows from (H1) that

lim
n→∞

inf

∫
[0,σ(T ))T

f(σ(t), uσn)
|un|
|un|

∆t+
n∑
k=1

Ik(unk)
unk
|unk|

< 0.

However, by (3.1.6) and (3.2.1), we obtain∫
[0,σ(T ))T

f(σ(t), uσn)
uσn
|uσn|

∆t+
n∑
k=1

Ik(unk)
unk
|unk|

= 〈ψ′(un),
un
|un|
〉 → 0 as n→∞,

which yields a contradiction.
Consequently, {un} is bounded in W 1,p

∆,T ([0, σ(T )]T,R). It follows from

Proposition (3.1.1) that {un} has a convergent subsequence inW 1,p
∆,T ([0, σ(T )]T,R).

Namely, ψ satisfies the PS condition.
Since

W 1,p
∆,T ([0, σ(T )]T,R) = R⊕ W̃ 1,p

∆,T ([0, σ(T ))T,R).

Step 2 We prove that ψ is anti-coercive on R. That is,

ψ(x)→ −∞ as |x| → ∞ for x ∈ R, (3.2.9)

which implies that the condition (I1) of Lemma (1.4.2) is fulfilled.
In order to prove (3.2.9), we need to show that there exist δ1 > 0 and
ρ1 > 0 such that∫

[0,σ(T ))T

f(σ(t), x)x∆t ≤ −δ1|x| for all x ∈ R with |x| ≥ ρ1. (3.2.10)

Otherwise, there is a sequence {xn} ⊂ R with |xn| → ∞ such that∫
[0,σ(T ))T

f(σ(t), xn)
xn
|xn|

∆t > − 1

n
for n ≥ 1.
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This contradicts with (H1) because of the fact |xn|σ(T )
1
p

|xn| → 1. So the

inequality (3.2.10) is true.From (H0), we have

|
∫

[0,σ(T ))T

[

∫ ρ1
|x|

0

f(σ(t), sx)xds]∆t| ≤
∫

[0,σ(T ))T

[

∫ ρ1
|x|

0

|f(σ(t), sx)||x|ds]∆t

≤
∫

[0,σ(T ))T

[

∫ ρ1
|x|

0

a(|sx|)b(σ(t))|x|ds]∆t

≤
∫

[0,σ(T ))T

[

∫ ρ1
|x|

0

aρ1b(σ(t))|x|ds]∆t

=

∫
[0,σ(T ))T

ρ1aρ1b(σ(t))∆t,

where aρ1 = max|x|≤ρ1 a(|x|).

According to (3.2.10), we obtain∫
[0,σ(T ))T

[

∫ 1

ρ1
|x|

f(σ(t), sx)xds]∆t =

∫ 1

ρ1
|x|

1

s
[

∫
[0,σ(T ))T

f(σ(t), sx)sx∆t]ds|

≤ −δ1|x|(1−
ρ1

|x|
)

= −δ1|x|+ δ1ρ1.

We need to show that there exist δ2 > 0 and ρ2 > 0 such that

n∑
k=1

xkIk(xk) ≤ −δ2|x| for all x ∈ R with |x| ≥ ρ2 and for k = 1, · · · , n.

(3.2.11)

For an arbitrary x ∈ R with |x| > min{ρ1, ρ2} there holds

ψ(x) =
1

p

∫
[0,σ(T ))T

|x∆|p∆t+

∫
[0,σ(T ))T

F (σ(t), x)∆t+
n∑
k=1

xkIk(xk)

=

∫
[0,σ(T ))T

[

∫ 1

0

f(σ(t), sx)xds]∆t+
n∑
k=1

xkIk(xk)
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ψ(x) =

∫
[0,σ(T ))T

(

∫ ρ1
|x|

0

f(σ(t), sx)xds+

∫ 1

ρ1
|x|

f(σ(t), sx)xds)∆t

+
n∑
k=1

xkIk(xk)

ψ(x) ≤ −δ1|x|+ δ1ρ1 +

∫
[0,σ(T ))T

ρ1aρ1b(σ(t))∆t− δ2|x| −→ −∞

as |x| → ∞,

which implies that ψ is anti-coercive on R.

Step 3 We show that ψ is coercive in W̃ 1,p
∆,T ([0, σ(T )]T,R). That is,

ψ(u)→ +∞ as ‖u‖ → ∞ in W̃ 1,p
∆,T ([0, σ(T )]T,R).

which implies that the condition (I2) of Lemma (1.4.2) is satisfied.
By the definition of Rp, we have

‖u‖p
Lp∆
≤ Rp‖u∆‖p

Lp∆
for all u ⊂ W̃ 1,p

∆,T ([0, σ(T )]T,R). (3.2.12)

It follows from the Hölder inequality, inequality (3.2.5), (3.2.6) and
Lemma (1.3.13) that

ψ(u) =
1

p

∫
[0,σ(T ))T

|u∆|p∆t+

∫ σ(T )

0

∫ uσ(t)

0

f(σ, s)ds∆t+
n∑
k=1

ukIk(uk)

>
1

p

∫ σT

0

|u∆|p∆t+

∫ σT

0

(
− 1

pRp

|u|p−1 + ε0|u|p−1 − aMb(σ(t))
)

∆t

+
n∑
k=1

[
− |uk|

p−1

kp
+ ε1|uk|p−1

]
>

1

p
‖u∆‖p

Lp∆
− 1

pRp

(σ(T ))
1
p

(∫ σ(T )

0

|u|p∆t
) p−1

p −
∫ σ(T )

0

aMb(σ(t)))∆t

−
n∑
k=1

|uk|p−1

kp

>
1

p
‖u∆‖p

Lp∆
− 1

pRp

(σ(T ))
1
p‖u‖p−1

Lp∆
−
∫ σ(T )

0

aMb(σ(t)))∆t−
n∑
k=1

‖u‖p−1
∞
kp
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>
1

p
‖u∆‖p

Lp∆
− 1

pRp

(σ(T ))
1
pRp‖u∆‖p−1

Lp∆
−
∫ σ(T )

0

aMb(σ(t)))∆t

−
n∑
k=1

Kp−1‖u∆‖p−1
Lp∆

kp
,

for u ∈ W̃ 1,p
∆,T ([0, σ(T )]T,R).Hence, ψ is coercive on W̃ 1,p

∆,T ([0, σ(T )]T,R).
Up to here, we see that all conditions of Lemma (1.4.2) are fulfilled.
Consequently, the boundary value problem (3.0.1) has at least one pe-
riodic solution in W 1,p

∆,T ([0, σ(T )]T,R).

Theorem 3.2.2. Suppose that the condition (H0) and the following condi-
tions are satisfied:

(H4) the inequalities lim inf |x|→∞

∫ x

0

f(t, s)ds

|x|p > 0 holds uniformly for ∆ −
a.e. t ∈ [0, σ(T ))T,

(H5) the inequalities lim inf |x|→∞

∫ x

0

I(s)ds

|x| > 0 for all x ∈ R,

(H6) let {un} ⊂ W 1,p
∆,T ([0, σ(T )]T,R) such that ‖un‖ → ∞ and |un|σ(T )

1
p

‖un‖ → 1,
and

lim
n→∞

∫
[0,σ(T ))T

∫ un(t)

0

f(t, s)∆s∆t+
N∑
k=1

∫ unk

0

Ikn(s)ds = +∞.

Then, the boundary value problem (3.0.1) has at least one periodic solution
in W 1,p

∆,T ([0, σ(T )]T,R).

Proof. Firstly, we prove that ψ is coercive in W 1,p
∆,T ([0, σ(T )])T,R) namely,

ψ(u)→ +∞ as ‖u‖ → ∞ for u ∈ W 1,p
∆,T ([0, σ(T )]T,R).

If not, there exist a sequence {un} ⊂ W 1,p
∆,T ([0, σ(T )]T,R) and a constant c

such that
‖un‖ → ∞, ψ(un) ≤ c, n = 1, 2, . . . (3.2.13)
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Let vn = un
‖un‖ , then {vn} is bounded in W 1,p

∆,T ([0, σ(T )]T,R). Since

W 1,p
∆,T ([0, σ(T )]T,R) ↪→ Lp∆([0, σ(T ))T,R) is compact,

there exist a point v0 ∈ W 1,p
∆,T ([0, σ(T )]T,R) and a subsequence of {vn} such

that
vn ⇀ v0 in W 1,p

∆,T ([0, σ(T )]T,R),

and
vn → v0 strongly in Lp∆([0, σ(T ))T,R). (3.2.14)

From (H4), for any ε0 > 0 there exists a constant M > 0 such that∫ uσ(t)

0

f(σ(t), s)ds > −ε0
2

min
t∈[0,σ(T )]T

|uσ(t)|p ≥ −ε0
2
|u(t)|p, (3.2.15)

for all uσ ∈ R with |uσ| > M and ∆− a.e t ∈ [0, σ(T )]T. From (3.2.4) and
(3.2.15), it gives∫ uσ(t)

0

f(σ(t), s)ds > −ε0
2
|u(t)|p − aMb(σ(t)). (3.2.16)

From (H5), for any ε1 > 0 such that∫ x

0

I(s)ds > −ε1x, (3.2.17)

for all uσ ∈ R and ∆− a.e t ∈ [0, σ(T )]T. In view of (3.2.13), (3.2.16) and
(3.2.17) we have

c

‖un‖p
≥ ψ(un)

‖un‖p

=
1

2

∫
[0,σ(T ))T

|u∆
n |p

‖un‖p
∆t+

1

‖un‖p

∫
[0,σ(T ))T

∫ uσn(t)

0

f(σ(t), s)ds∆t

+
1

‖un‖p
n∑
k=1

∫ unk

0

Ik(s)ds

>
1

2

∫
[0,σ(T ))T

|(vn)∆|p∆t− 1

‖un‖p

∫
[0,σ(T ))T

[ε0
2
|un|p + aMb(σ(t))

]
∆t

−
n∑
k=1

ε1|unk|
‖un‖p
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c

‖un‖p
≥ 1

2

∫
[0,σ(T ))T

|(vn)∆|p∆t− ε0
2

∫
[0,σ(T ))T

|vn|p∆t−
aM
‖un‖p

∫
[0,σ(T ))T

b(σ(t))∆t

−
n∑
k=1

ε1|vnk|
‖un‖p−1

=
1

2
− 1

2
(1 + ε0)

∫
[0,σ(T ))T

|vn|p∆t−
aM
‖un‖p

∫
[0,σ(T ))T

b(σ(t))∆t−
n∑
k=1

ε1vnk
‖un‖p−1

.

According to (3.2.13) and (3.2.14), there is

1

2
(1 + ε0)

∫
[0,σ(T ))T

|v0|p∆t ≥
1

2
.

Letting ε0 → 0, we obtain ∫
[0,σ(T ))T

|v0|p∆t ≥ 1.

By the weakly lower semi-continuity of the norm, we get

‖v0‖ ≤ lim inf
n→∞

‖vn‖ = 1.

That is

‖v0‖p =

∫
[0,σ(T ))T

(
|v0|p + |v∆

0 |p
)

∆t ≤ 1.

Using a similar argument to the proof of Theorem (3.2.1), we have |un|σ(T )
1
p

‖un‖ →
1. Then, it follows from (H6) that

lim
n→∞

∫
[0,σ(T ))T

∫ uσn(t)

0

f(σ(t), s)ds∆t+
N∑
k=1

∫ unk

0

Ikn(s)ds = +∞. (3.2.18)

However, combining (3.2.13) with (3.2.18) gives

c ≥ lim
n→∞

ψ(un) ≥ lim
n→∞

∫
[0,σ(T ))T

∫ uσn(t)

0

f(σ(t), s)∆s∆t+
N∑
k=1

∫ unk

0

Ik(s)ds = +∞.

This yields a contradiction.
Since ψ is lower semi-continuous and coercive, we see that ψ is bounded
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below and has a bounded minimizing sequence. From Lemma (1.4.3), we
conclude that ψ has at least a single critical point in W 1,p

∆,T ([0, σ(T )]T,R).
Consequently, the boundary value problem (3.0.1) has at least one single
solution in W 1,p

∆,T ([0, σ(T )]T,R).

Theorem 3.2.3. Suppose that the condition (H0), (H4), (H5) and (H6) hold,
and the following two condition are satisfied:

(H7) there exists a constant δ1 > 0 such that

− 1

2pRp

|x|p ≤
∫ x

0

f(t, s)ds ≤ 0 for all |x| ≤ δ1 and ∆−a.e. t ∈ [0, σ(T )]T,

(H8) there exists a constant δ2 > 0 such that

− 1

2pkp
|x|p ≤

N∑
k=1

∫ x

0

I(s)ds ≤ 0 for all |x| ≤ δ2.

Then, the boundary value problem (3.0.1) has at least one periodic solution
in W 1,p

∆,T ([0, σ(T )]T,R).

Proof. It follows from (H7) and (H8) that u ≡ 0 is a solution of the boundary
value problem (3.0.1). In the following, we show that there exist at least
two nontrivial distinct solutions of the boundary value problem (3.0.1) in
W 1,p

∆,T ([0, σ(T )]T,R) according to Lemma (1.4.4). From the proof of Theorem
(3.2.2), we know that ψ is coercive. Assume that

un ⊂ W 1,p
∆,T ([0, σ(T )]T,R),

such that ψ′(un)→ 0 as n→∞, and ψ(un) is bounded. From the proof
of Theorem (3.2.1), we know that {un} is bounded. By Proposition (3.1.1),
we obtain that {un} has a convergent subsequence in W 1,p

∆,T ([0, σ(T )]T,R).
This implies that ψ satisfies the PS condition.
Since

W 1,p
∆,T ([0, σ(T )]T,R) = R⊕ W̃ 1,p

∆,T ([0, σ(T ))T,R),

according to (H7) and (H8) one has

ψ(u) =

∫
[0,σ(T ))T

∫ uσ(t)

0

f(σ(t), s)ds∆t+
N∑
k=1

∫ uk

0

Ik(s)ds ≤ 0 (3.2.19)
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for u ∈ R with ‖u‖ ≤ min{δ1, δ2}. In view of (H7), (H8) inequality (3.2.12),
and Lemma (1.3.13), we have

ψ(u) =
1

p

∫
[0,σ(T ))T

|u∆|p∆t+

∫
[0,σ(T ))T

∫ uσ(t)

0

f(σ, s)ds∆t+
N∑
k=1

∫ uk

0

Ik(s)ds

>
1

p
‖u∆‖p

Lp∆
− 1

2pRp

∫
[0,σ(T ))T

|uσ|p∆t− 1

2pkp
|u|p

=
1

p
‖u∆‖p

Lp∆
− 1

2p
‖u∆‖p

Lp∆
− 1

2pkp
sup |u|p

=
1

p
‖u∆‖p

Lp∆
− 1

2p
‖u∆‖p

Lp∆
− 1

2pkp
‖u‖p∞

=
1

p
‖u∆‖p

Lp∆
− 1

2p
‖u∆‖p

Lp∆
− 1

2p
‖u∆‖p

Lp∆

= 0

for u ∈ W̃ 1,p
∆,T ([0, σ(T ))T,R) with ‖u‖ ≤ δ

Rp
.

Let r = min{δ, δ
Rp
}. There holds

ψ(u) ≤ 0, u ∈ R with ‖u‖ ≤ r,

and
ψ(u) ≥ 0, u ∈ W̃ 1,p

∆,T ([0, σ(T ))T,R) with ‖u‖ ≤ r.

It follows from the proof of Theorem (3.2.3) that ψ is bounded below.
If infW 1,p

∆,T ([0,σ(T )]T,R) ψ < 0, we observe that all conditions of lemma (1.4.4)

are fulfilled.
Hence, it follows from lemma (1.4.4) that the boundary value problem (3.0.1)
has at least three distinct periodic solutions in W 1,p

∆,T ([0, σ(T )]T,R).
If infW 1,p

∆,T ([0,σ(T )]T,R) ψ ≥ 0, by (3.2.19), we have

ψ(x) = inf
W 1,p

∆,T ([0,σ(T )]T,R)
ψ = 0 for all x ∈ R with ‖x‖ ≤ r,

which implies that all x ∈ R with ‖x‖ ≤ r are minima of ψ. That is, the
boundary value problem (3.0.1) has infinitely many solutions inW 1,p

∆,T ([0, σ(T )]T,R).
Consequently, the boundary value problem (3.0.1) has at least three distinct
solutions in W 1,p

∆,T ([0, σ(T )]T,R+).
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3.3 Examples

Example 3.3.1. Let T = 200,m ∈ Z, and

T = {0, 5 + 200m, 120 + 200m, 190 + 200m} ∪ [190.5 + 200m, 200 + 200m].

Consider the following second-order p-Laplacian boundary value impulsive
problem on time scales T of the form
(
|u∆(t)|3|u∆(t)|

)∆
= −3σ(t)(uσ(t))2,∆− a.e.t ∈ [0, 200]T,

|u∆(t+k )|3|u∆(t+k )− |u∆(t−k )|3|u∆(t−k ) = 1
200
uσ(200), k = 1, . . . , p,

u(0)− u(200) = u∆(0)− u∆(200) = 0.
(3.3.1)

Since

∫ x

0

f(t, s)ds = −tx3, one can check that the condition (H0) and all

conditions of Theorem (3.2.1) are fulfilled. It follows from Theorem (3.2.1)
that the problem (3.3.1) has at least one periodic solution.

Example 3.3.2. Let m ∈ Z, n ∈ N, T = 1, and

T = {0} ∪
{

1

3n
+m

}
∪ [0.4 +m, 1 +m].

Consider the second-order boundary value problem
(|u∆(t)|3|u∆(t)|)∆ = −6(σ(T ) + σ(t))(sgn(uσ))(uσ(t))5, ∆− a.e.t ∈ [0, 1]T
|u∆(t+k )|3|u∆(t+k )| − |u∆(t−k )|3|u∆(t−k )| = 1

a1
uσ(T ), k = 1, . . . , p, a1 > 0

u(0)− u(1) = 0, u∆(0)− u∆(1) = 0.
(3.3.2)

Since

∫ x

0

f(t, s)ds = (σ(t) + t)|x|6, one can see that the condition (H0)

and all conditions of Theorem (3.2.2) are fulfilled. It follows from Theorem
(3.2.2) that the problem (3.3.2) has at least one periodic solution.

Example 3.3.3. Let T = {0, 1, 2, 3} and T = 1. Consider the boundary value
problem

u∆∆(t)− c = 0, ∆− a.e. t ∈ [0, 1]kT, t 6= tk, k = 1, . . . , p, t ∈ J,
u∆(t+k )− u∆(t−k ) = − 1

a2
, k = 1, . . . , p, a2 > 0

u(0)− u(2) = 0, u∆(0)− u∆(2) = 0,
(3.3.3)

where f(t, s) = c 6= 0 does not satisfy hypotheses (H1)− (H5). Here, one can
see that the boundary value problem does not have one periodic solution.
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Chapter 4

p− Laplacian fractional
boundary value problem

In this chapter, we discuses the existence and multiplicity of positive solutions
for system of fractional differential equations with boundary condition and
advanced arguments. The existence result proved via Leary-Schauder’s fixed
point theorem type in vector Banach space. Further, by using new fixed point
theorem order Banach space, we study the multiplicity of positive. Finally,
some example are given to illustrate the result.

4.1 Existence result

This section, is concerned the existence of solutions for the system of frac-
tional boundary value problem with p−laplacian conditions:

(ϕp(D
α
0+u(t)))′ + a1(t)f(u(θ1(t)), v(θ2(t))) = 0, 0 < t < 1,

(ϕp̃(D
α
0+v(t)))′ + a2(t)g(u(θ1(t)), v(θ2(t))) = 0, 0 < t < 1,

Dα
0+u(0) = u(0) = u′(0) = 0,

Dα
0+v(0) = v(0) = v′(0) = 0,

Dβ
0+u(1) = γDβ

0+u(η),

Dβ
0+v(1) = γDβ

0+v(η),

(4.1.1)

where η ∈ (0, 1), γ ∈ (0, 1
ηα−β−1 ), Dα

0+ , D
β
0+ , are the standard Riemann-Liouville

fractional derivatives with α ∈ (2, 3), β ∈ (1, 2) such that α ≥ β + 1, the p-
Laplacian operator is defined as ϕp(s) = |s|p−2s, p > 1, and the functions
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f, g ∈ C(R2,R).

In recent years, many authors studied the existence of solutions for sys-
tems of difference and differential equations with and without fractional
derivative by using the vector version of the fixed point theorem (see [13,
33,34,40,45,65,68,70], the monograph of Graef et al [31], and the references
therein).

For establish the existence and multiple positive solutions of problem
(4.1.1), let us list the following assumptions:

(H1) ai ∈ L1[0, 1] is nonnegative and ai(t) 6≡ 0 on any subinterval of [0, 1],
for i = 1, 2.

(H2) The advanced argument θ ∈ C((0, 1), (0, 1]) and 0 ≤ θ(t) ≤ 1,∀t ∈
(0, 1).

Let R be the set of real numbers and R+ be the set of nonnegative real
numbers. Denote by C([0, 1]) the Banach space of all continuous functions
from [0, 1] into R with the norm

‖u‖ = max{|u(t)| : t ∈ [0, 1]}

Define the cone P in C([0, 1]) as P = {u ∈ C([0, 1]) : u(t) ≥ 0, t ∈ [0, 1]}.
Let q > 1 and q̃ > 1 satisfy the relation 1

p
+ 1

q
= 1, 1

p̃
+ 1

q̃
= 1, where p, p̃ are

given by (4.1.1).
To prove the existence of solutions to (4.1.1), we need the following auxiliary
Lemma.

Lemma 4.1.1. Given h1, h2 ∈ C[0, 1], η ∈ (0, 1), γ ∈ (0, 1
ηα−β−1 ) and α ≥

β+1, the unique solution of the boundary value problem for a coupled system

(ϕp(D
α
0+u(t)))′ + h1(t) = 0, 0 < t < 1, (4.1.2)

(ϕp̃(D
α
0+v(t)))′ + h2(t) = 0, 0 < t < 1, (4.1.3)

Dα
0+u(0) = u(0) = u′(0) = 0, Dβ

0+u(1) = γDβ
0+u(η), (4.1.4)

Dα
0+v(0) = v(0) = v′(0) = 0, Dβ

0+v(1) = γDβ
0+v(η), (4.1.5)
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is (u, v) ∈ C([0, 1],R)× C([0, 1],R) where

u(t) =

∫ 1

0

G1(t, s)ϕq

(∫ s

0

h1(τ)dτ

)
ds

+ γtα−1

1−γηα−β−1

∫ 1

0

G2(η, s)ϕq

(∫ s

0

h1(τ)dτ

)
ds,

(4.1.6)

and

v(t) =

∫ 1

0

G1(t, s)ϕq̃

(∫ s

0

h2(τ)dτ

)
ds

+ γtα−1

1−γηα−β−1

∫ 1

0

G2(η, s)ϕq̃

(∫ s

0

h2(τ)dτ

)
ds,

(4.1.7)

where

G1(t, s) =

{
tα−1(1−s)α−β−1−(t−s)α−1

Γ(α)
0 ≤ s ≤ t ≤ 1,

tα−1(1−s)α−β−1

Γ(α)
0 ≤ t ≤ s ≤ 1,

G2(η, s) =

{
[η(1−s)]α−β−1−(η−s)α−β−1

Γ(α)
0 ≤ s ≤ η ≤ 1,

[η(1−s)]α−β−1

Γ(α)
0 ≤ η ≤ s ≤ 1.

Proof. Integrating the equation (4.1.2) from 0 to t, we have

ϕp (Dα
0+u(t))− ϕp (Dα

0+u(0)) =

∫ t

0

h1(s)ds

and so,

Dα
0+u(t) = −ϕq

(∫ t

0

h1(s)ds

)
.

From Lemma 1.5.12

u(t) = −Iα0+ϕq

(∫ t

0

h1(s)ds

)
+ Atα−1 +Btα−2 + Ctα−3

= − 1

Γ(α)

∫ t

0

(t− s)α−1ϕq

(∫ s

0

h1(τ)dτ

)
ds+ Atα−1 +Btα−2 + Ctα−3.

From (4.2.2), B = C = 0, and so

u(t) = −Iα0+ϕq

(∫ t

0

h1(s)ds

)
+ Atα−1. (4.1.8)
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Now, from Remark 1.5.2

Dβ
0+u(t) = −Iα−β0+ ϕq

(∫ t

0

h1(s)ds

)
+ A

Γ(α)

Γ(α− β)
tα−β−1

= − 1

Γ(α− β)

∫ t

0

(t− s)α−β−1ϕq(

∫ s

0

h1(τ)dτ)ds+ A
Γ(α)

Γ(α− β)
tα−β−1.

Therefore

Dβ
0+u(1) = − 1

Γ(α− β)

∫ 1

0

(1− s)α−β−1ϕq(

∫ s

0

h1(τ)dτ)ds+ A
Γ(α)

Γ(α− β)
,

γDβ
0+u(η) = − γ

Γ(α− β)

∫ η

0

(η − s)α−β−1ϕq(

∫ s

0

h1(τ)dτ)ds+ A
Γ(α)γ

Γ(α− β)

×tα−β−1ηα−β−1,

by boundary condition (4.2.2), we have

A =
1

1− γηα−β−1

∫ 1

0

(1− s)α−β−1

Γ(α)
ϕq

(∫ s

0

h1(τ)dτ

)
ds

− γ

1− γηα−β−1

∫ η

0

(η − s)α−β−1

Γ(α)
ϕq(

∫ s

0

h1(τ)dτ)ds,

and replacing in (4.1.8), we obtain

u(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1ϕq(

∫ s

0

h1(τ)dτ)ds

+
tα−1

1− γηα−β−1

∫ 1

0

(1− s)α−β−1

Γ(α)
ϕq(

∫ s

0

h1(τ)dτ)ds

+
γtα−1

1− γηα−β−1

∫ 1

0

(η − s)α−β−1

Γ(α)
ϕq(

∫ s

0

h1(τ)dτ)ds.

Splitting the second integral in two parts of the form

tα−1 +
k

1− γηα−β−1
=

tα−1

1− γηα−β−1
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we have k = γηα−β−1tα−1, and thus,

u(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1ϕq(

∫ s

0

h1(τ)dτ)ds

+ tα−1

∫ 1

0

(1− s)α−β−1

Γ(α)
ϕq(

∫ s

0

h1(τ)dτ)ds

+
γηα−β−1tα−1

1− γηα−β−1

∫ 1

0

(1− s)α−β−1

Γ(α)
ϕq(

∫ s

0

h1(τ)dτ)ds

=

∫ t

0

tα−1(1− s)α−β−1 − (t− s)α−1

Γ(α)
ϕq(

∫ s

0

h1(τ)dτ)ds

+

∫ 1

t

tα−1(1− s)α−β−1

Γ(α)
ϕq(

∫ s

0

h1(τ)dτ)ds

+
γtα−1

1− γηα−β−1

∫ η

0

[η(1− s)]α−β−1 − (η − s)α−β−1

Γ(α)
× ϕq(

∫ s

0

h1(τ)dτ)ds

=

∫ 1

0

G1(t, s)ϕq(

∫ s

0

h1(τ)dτ)ds

+
γtα−1

1− γηα−β−1
×
∫ 1

0

G2(η, s)ϕq(

∫ s

0

h1(τ)dτ)ds.

This completes the proof.

Lemma 4.1.2. [101] Let ρ ∈ (0, 1) be fixed. The kernel G1(t, s) satisfies the
following properties:

1. G1(t, s) ∈ C([0, 1]× [0, 1]) and G1(t, s) > 0 for all s, t ∈ (0, 1),

2. G1(t, s) ≤ G1(1, s) for all s ∈ (0, 1),

3. minρ≤t≤1G1(t, s) ≥ ρα−1G1(1, s) for all s ∈ [0, 1].

We are now ready to present our main result in this section we give an
existence result based on the non linear alternative of Leray-Schauder type.

Theorem 4.1.3. Assume (H1)-(H2), and that the following condition holds:

(H3) There exist functions p, q, h, p̆, q̆, and h̄ ∈ L1([0, 1],R+) and constants
α1, α2, α3, and α4 ∈ [0, 1) such that

|f(u, v)| ≤ p(t)|u|α1 + q(t)|v|α2 + h(t) for each t ∈ [0, 1] and u, v ∈ R
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p− Laplacian fractional boundary value problem

and

|g(u, v)| ≤ p̆(t)|u|α3 + q̆(t)|v|α4 + h̆(t) for each t ∈ [0, 1] and u, v ∈ R.

If α1p, α2p, α3q, and α4q ∈ [0, 1). Then the system (4.1.1) has at least one
solution.

Proof. Let N be the operator defined

N : C(0, 1)× C(0, 1)→ C(0, 1)× C(0, 1)

defined by
N(u, v) = (N1(u, v), N2(u, v)),

where

N1(u, v)(t) =

∫ 1

0

G1(t, s)ϕq(

∫ s

0

a1(τ)f(u(θ1(τ)), v(θ2(τ)))dτ)ds

+ γtα−1

1−γηα−β−1

∫ 1

0

G2(η, s)ϕq(

∫ s

0

a1(τ)f(u(θ1(τ)), v(θ2(τ)))dτ)ds,

(4.1.9)

and

N2(u, v)(t) =

∫ 1

0

G1(t, s)ϕq̃(

∫ s

0

a2(τ)g(u(θ1(τ)), v(θ2(τ))))dτ)ds

+ γtα−1

1−γηα−β−1

∫ 1

0

G2(η, s)ϕq̃(

∫ s

0

a2(τ)g(u(θ1(τ)), v(θ2(τ)))dτ)ds.

(4.1.10)
We shall use Leray-Schauder fixed point theorem to prove that N has a fixed
point. The proof will be given in several steps.

Step 1 To show that N is continuous let (un, vn) be a sequence such that
(un, vn)→ (u, v) ∈ C[0, 1]× C[0, 1] as n→∞. Then we have

|N1(un, vn)(t)−N1(u, v)(t)| =
∣∣∣∣∫ 1

0

G1(t, s)ϕq(

∫ s

0

a1(τ)f(un(θ1(τ)), vn(θ2(τ)))dτ)ds

+ γtα−1

1−γηα−β−1

∫ 1

0

G2(η, s)ϕq(

∫ s

0

a1(τ)f(un(θ1(τ)), vn(θ2(τ)))dτ)ds

−
[∫ 1

0

G1(t, s)ϕq

(∫ s

0

a1(τ)f(u(θ1(τ)), v(θ2(τ)))dτ

)
ds

+

∫ 1

0

γtα−1G2(η, s)

1− γηα−β−1
ϕq

(∫ s

0

a1(τ)f(u(θ1(τ)), v(θ2(τ)))dτ

)
ds

]∣∣∣∣
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by lemma 4.1.2 and t ∈ [0, 1]

|N1(un, vn)(t)−N1(u, v)(t)| ≤
∫ 1

0

G1(1, s)

(∫ s

0

|a1(τ)f(un(θ1(τ)), vn(θ2(τ)))|q−1

−|a1(τ)f(u(θ1(τ)), v(θ2(τ)))|q−1dτ) ds

+ γ
1−γηα−β−1

∫ 1

0

G2(η, s)

(∫ s

0

|a1(τ)f(un(θ1(τ)), vn(θ2(τ)))dτ |q−1

− |a1(τ)f(u(θ1(τ)), v(θ2(τ)))|q−1dτ) ds.

On the other hand, Since f is continue function combined with the fact that

‖un − u‖ → 0, as n→∞,
then there exists N ≥ 1 such that for all τ ∈ [0, 1] the following estimate

|f(un(θ1(τ)), vn(θ2(τ)))dτ)− f(u(θ1(τ)), v(θ2(τ)))| < ε,

holds for n ≥ N. By the Lebesgue dominated convergence theorem,then

‖N1(un, vn)−N1(u, v)‖ → 0, as n→∞.
Similarly,

‖N2(un, vn)−N2(u, v)‖ → 0, as n→∞.
Consequently, N is continuous.

Step 2 N maps bounded sets into bounded sets in C[0, 1]×C[0, 1], it suffices
to show that for any r > 0 there exists a positive constant vector l = (l1; l2)
such that for each
(u, v) ∈ Br = {(u, v) ∈ C[0, 1]× C[0, 1] : ‖u‖ ≤ r, ‖v‖ ≤ r}, we have

‖N(u, v)‖ ≤ l.

For each t ∈ [0, 1], we have

|N1(u, v)(t)| ≤
∫ 1

0

|G1(t, s)|ϕq
(∫ s

0

|a1(τ)f(u(θ1(τ)), v(θ2(τ)))dτ |
)
ds

+
γtα−1

1− γηα−β−1

∫ 1

0

|G2(η, s)|ϕq
(∫ s

0

|a1(τ)f(u(θ1(τ)), v(θ2(τ)))dτ |
)
ds

≤ max{2q−1, 1}
∫ 1

0

G1(1, s)

∫ s

0

|a1(τ)|q−1|p(τ)|q−1|u(θ1(τ))|α1(q−1)

+ |a1(τ)|q−1|q(τ)|q−1|v(θ2(τ))|α2(q−1) + |a1(τ)|q−1|h(τ)|q−1dτds

+
γmax{2q−1, 1}tα−1

1− γηα−β−1

∫ 1

0

|G2(η, s)|
∫ s

0

|a1(τ)|q−1|p(τ)|q−1|u(θ1(τ))|α1(q−1)

+ |a1(τ)|q−1|q(τ)|q−1|v(θ2(τ))|α2(q−1) + |a1(τ)|q−1|h(τ)|q−1dτds.
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Thus

‖N1(u, v)‖ ≤ max{2q−1, 1}(‖u‖α1(q−1)‖a1‖q−1
L1
‖p‖q−1

L1
+ ‖v‖α2(q−1)‖a1‖q−1

L1
‖q‖q−1

L1

+‖a1‖q−1
L1
‖h‖q−1

L1
)

∫ 1

0

(1− s)α−β−1

Γ(α)
+

γtα−1

1− γηα−β−1
(‖u‖α1(q−1)

‖a1‖q−1
L1
‖p‖q−1

L1
+ ‖v‖α2(q−1)‖a1‖q−1

L1
‖q‖q−1

L1
+ ‖a1‖q−1

L1
‖h‖q−1

L1
)

×
∫ 1

0

ηα−β−1(1− s)α−β−1

Γ(α)

≤ max{2q−1, 1}
(α− β)Γ(α)

(rα1(q−1)‖a1‖q−1
L1
‖p‖q−1

L1
+ rα2(q−1)‖a1‖q−1

L1
‖q‖q−1

L1

+‖a1‖q−1
L1
‖h‖q−1

L1
) +

max{2q−1, 1}ηα−β−1γ

(1− γηα−β−1)(α− β)Γ(α)
(rα1(q−1)‖a1‖q−1

L1
‖p‖q−1

L1

+rα2(q−1)‖a1‖q−1
L1
‖q‖q−1

L1
+ ‖a1‖q−1

L1
‖h‖q−1

L1
).

Hence

‖N1(u, v)‖ ≤ max{2q−1, 1}
(α− β)Γ(α)

(
rα1(q−1)‖a1‖q−1

L1
‖p‖q−1

L1
+ rα2(q−1)‖a1‖q−1

L1
‖q‖q−1

L1

+‖a1‖q−1
L1
‖h‖q−1

L1

)
+

max{2q−1, 1}ηα−β−1γ

(1− γηα−β−1)(α− β)Γ(α)
(rα1(q−1)‖a1‖q−1

L1
‖p‖q−1

L1

+rα2(q−1)‖a1‖q−1
L1
‖q‖q−1

L1
+ ‖a1‖q−1

L1
‖h‖q−1

L1
) := l1.

Similarly, we have

‖N2(u, v)‖ ≤ max{2q̃−1, 1}
(α− β)Γ(α)

(
rα3(q̃−1)‖a2‖q̃−1

L1
‖p̆‖q̃−1

L1
+ rα4(q̃−1)‖a2‖q̃−1

L1
‖q̆‖q̃−1

L1

+‖a2‖q̃−1
L1
‖h̆‖q̃−1

L1

)
+

max{2q̃−1, 1}ηα−β−1γ

(1− γηα−β−1)(α− β)Γ(α)

(
rα3(q̃−1)‖a2‖q̃−1

L1
‖p̆‖q̃−1

L1

+rα4(q̃−1)‖a2‖q̃−1
L1
‖q̆‖q̃−1

L1
+ ‖a2‖q̃−1

L1
‖h̆‖q̃−1

L1

)
:= l2.

Step 3 N maps bounded sets into equicontinuous. Let u ∈ Br, be a bounded
set as in Step 2, t1, t2 ∈ [0, 1] with t1 < t2, from (4.1.6) and lemma 1.5.13 we
have
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|N1(u, v)(t2)−N1(u, v)(t1)| ≤
∫ 1

0

|G1(t2, s)−G1(t1, s)|ϕq(
∫ s

0

|a1(τ)

× f(u(θ1(τ)), v(θ2(τ)))dτ)|ds) +
γ|t2 − t1|α−1

1− γηα−β−1

∫ 1

0

|G2(η, s)|

× ϕq(

∫ s

0

|a1(τ)f(u(θ1(τ)), v(θ2(τ)))dτ)|ds

≤
∫ 1

0

|G1(t2, s)−G1(t1, s)|
∫ s

0

|a1(τ)[p(τ)|u(θ1|α1

+ q(τ)|v(θ2(τ))|α2 + h(τ)dτds]|q−1 +
γ|t2 − t1|α−1

1− γηα−β−1

∫ 1

0

|G2(η, s)|

×
∫ s

0

|a1(τ)[p(τ)|u(θ1|α1 + q(τ)|v(θ2(τ))|α2 + h(τ)dτds]|q−1

≤ max{2q−1, 1}
∫ 1

0

|G1(t2, s)−G1(t1, s)|
∫ s

0

|a1(τ)|q−1|p(τ)|q−1

|u(θ1(τ))|α1(q−1) + |a1(τ)|q−1|q(τ)|q−1|v(θ2(τ))|α2(q−1) + |a1(τ)|q−1

|h(τ)|q−1dτds+ max{2q−1, 1}γ|t2 − t1|
α−1

1− γηα−β−1

∫ 1

0

|G2(η, s)|∫ s

0

|a1(τ)|q−1|p(τ)|q−1u(θ1(τ))|α1(q−1)

+|a1(τ)|q−1|q(τ)|q−1|v(θ2(τ))|α2(q−1) + |a1(τ)|q−1|h(τ)|q−1dτds.

By lemma 1.5.14 we obtain

|N1(u, v)(t2)−N1(u, v)(t1)| ≤ max{2q−1, 1}(rα1(q−1)‖a1‖q−1
L1
‖p‖q−1

L1
+ rα2(q−1)‖a1‖q−1

L1
‖q‖q−1

L1

+‖a1‖q−1
L1
‖h‖q−1

L1
)

∫ 1

0

|G1(t1, s)−G1(t2, s)|ds

+
max{2q−1, 1}γ(α− 1)|t2 − t1|

(1− γηα−β−1)
(rα1(q−1)‖a1‖q−1

L1
‖p‖q−1

L1

+rα2(q−1)‖a1‖q−1
L1
‖q‖q−1

L1
+ ‖a1‖q−1

L1
‖h‖q−1

L1
)

∫ 1

0

|G2(η, s)|ds.

Similarly, we have
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|N2(u, v)(t1)−N2(u, v)(t2)| ≤ max{2q̃−1, 1}(rα3(q−1)‖a2‖q̃−1
L1
‖p̆‖q̃−1

L1
)

∫ 1

0

|G1(t1, s)

−G1(t2, s)|ds+ max{2q̃−1, 1}(rα4(q̃−1)‖a2‖q̃−1
L1
‖q̆‖q̃−1

L1

+‖a2‖q̃−1
L1
‖h̆‖q̃−1

L1
)

∫ 1

0

|G1(t1, s)−G1(t2, s)|ds

+
max{2q̃−1, 1}γ(α− 1)|t2 − t1|

(1− γηα−β−1)
(rα3(q̃−1)‖a2‖q̃−1

L1
‖p̆‖q̃−1

L1

+rα4(q̃−1)‖a2‖q̃−1
L1
‖q̆‖q̃−1

L1
+ ‖a2‖q̃−1

L1
‖h̆‖q̃−1

L1
)

×
∫ 1

0

|G2(η, s)|ds

The continuity of G1 implies that the right-side of the above inequality tends
to zero if t2 → t1. Therefore, by Arzela-Ascoli N is completely continuous.

Step 4 A priori bounds. Now it remains to show that the set

M = {(u, v) ∈ C([0, 1],R)× C([0, 1],R) : (u, v) = λN(u, v) 0 < λ < 1},

is bounded. Let (u, v) ∈ M, then there exists 0 < λ < 1 such that u =
λN1(u, v) and v = λN2(u, v). Thus, for t ∈ [0, 1], we have

|u(t)| ≤
∫ 1

0

|G1(t, s)|ϕq(
∫ s

0

|a1(τ)f(u(θ1(τ)), v(θ2(τ)))dτ)|ds

+
γtα−1

1− γηα−β−1

∫ 1

0

|G2(η, s)|ϕq(
∫ s

0

|a1(τ)f(u(θ1(τ)), v(θ2(τ)))dτ)|ds

≤ max{2q−1, 1}[‖p‖q−1
L1 ‖a1‖q−1

L1 ‖u‖α1(q−1) + ‖q‖q−1
L1 ‖a1‖q−1

L1 ‖v‖α2(q−1)

+‖a1‖q−1
L1 ‖h‖q−1

L1 ]

∫ 1

0

G1(1, s)ds+
γ

1− γηα−β−1
[‖p‖q−1

L1 ‖a1‖q−1
L1 ‖u‖α1(q−1)

+‖q‖q−1
L1 ‖a1‖q−1

L1 ‖v‖α2(q−1) + ‖a1‖q−1
L1 ‖h‖q−1

L1 ]

∫ 1

0

|G2(η, s)|ds

‖u‖ ≤ max{2q−1, 1}[‖p‖q−1
L1 ‖a1‖q−1

L1 ‖u‖α1(q−1) + ‖q‖q−1
L1 ‖a1‖q−1

L1 ‖v‖α2(q−1)

+‖a1‖q−1
L1 ‖h‖q−1

L1 ]

[∫ 1

0

(1− s)α−β−1

Γ(α)
+

γ

1− γηα−β−1

ηα−β−1(1− s)α−β−1

Γ(α)
ds

]
‖u‖ ≤ max{2q−1, 1}[‖p‖q−1

L1 ‖a1‖q−1
L1 ‖u‖α1(q−1) + ‖q‖q−1

L1 ‖a1‖q−1
L1 ‖v‖α2(q−1)

+‖a1‖q−1
L1 ‖h‖q−1

L1 ]
1

(1− γηα−β−1)Γ(α)

∫ 1

0

(1− s)α−β−1ds.
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Hence,

‖u‖ ≤ max{2q−1, 1}
(α− β)(1− γηα−β−1)Γ(α)

[‖p‖q−1
L1 ‖a1‖q−1

L1 ‖u‖α1(q−1) + ‖q‖q−1
L1 ‖a1‖q−1

L1 ‖v‖α2(q−1)

+‖a1‖q−1
L1 ‖h‖q−1

L1 ].

Similarly, we obtain

‖v‖ ≤ max{2q−1, 1}
(α− β)(1− γηα−β−1)Γ(α)

[‖p̆‖q̃−1
L1 ‖a2‖q̃−1

L1 ‖u‖α3(q̃−1) + ‖q̆‖q̃−1
L1 ‖a2‖q̃−1

L1 ‖v‖α4(q̃−1)

+‖a2‖q̃−1
L1 ‖h̆‖q̃−1

L1 ]

Notice that if ε ≤ δ and ‖u‖ > 1, then ‖u‖ε ≤ ‖u‖δ Thus,‖u‖ε ≤ 1 + ‖u‖δ
for all u. We then have

‖u‖+ ‖v‖ ≤ max{2q−1, 1}
(α− β)(1− γηα−β−1)Γ(α)

[‖p‖q−1
L1 ‖a1‖q−1

L1 ‖u‖α1(q−1)

+‖q‖q−1
L1 ‖a1‖q−1

L1 ‖v‖α2(q−1) + ‖a1‖q−1
L1 ‖h‖q−1

L1 ]

+

max{2q−1, 1}ϕq(
∫ 1

0

a1(τ)dτ)

(α− β)(1− γηα−β−1)Γ(α)
[‖p̆‖q̃−1

L1 ‖a2‖q̃−1
L1 ‖u‖α3(q̃−1)

+‖q̆‖q̃−1
L1 ‖a2‖q̃−1

L1 ‖v‖α4(q̃−1) + ‖a2‖q̃−1
L1 ‖h̆‖q̃−1

L1 ]

≤ max{2q−1, 1}
(α− β)(1− γηα−β−1)Γ(α)

(‖p‖q−1
L1 ‖a1‖q−1

L1 + ‖a2‖q̃−1
L1 ‖q̆‖q̃−1

L1 )×

(‖u‖α1(q−1) + ‖v‖α4(q̃−1))

+(‖a2‖q̃−1
L1 ‖p̆‖q̃−1

L1 + ‖a1‖q−1
L1 ‖q‖q−1

L1 )(‖u‖α3(q̃−1) + ‖v‖α2(q−1))

+(‖a1‖q−1
L1 ‖h‖q−1

L1 + ‖a2‖q̃−1
L1 ‖h̆‖q̃−1

L1 )

≤ max{2q−1, 1}
(α− β)(1− γηα−β−1)Γ(α)

(
‖a1‖q−1

L1 ‖p‖q−1
L1 + ‖a2‖q̃−1

L1 ‖q̆‖q̃−1
L1

+‖a2‖q̃−1
L1 ‖p̆‖q̃−1

L1 + ‖a1‖q−1
L1 ‖q‖q−1

L1

)
(‖u‖α? + ‖v‖α?)

+(‖a1‖q−1
L1 ‖h‖q−1

L1 + ‖a2‖q̃−1
L1 ‖h̆‖q̃−1

L1 )

≤ max{2q−1, 1}
(α− β)(1− γηα−β−1)Γ(α)

(‖p‖q−1
L1 ‖a1‖q−1

L1 + ‖q̆‖q̃−1
L1 ‖a2‖q̃−1

L1 + ‖p̆‖q̃−1
L1

+ ‖a1‖q−1
L1 ‖q‖q−1

L1 )(‖u‖+ ‖v‖)α? + (‖a1‖q−1
L1 ‖h‖q−1

L1 + ‖a2‖q̃−1
L1 ‖h̆‖q̃−1

L1 )

where

α? = max{α1(q − 1), α2(q − 1), α3(q̃ − 1), α4(q̃ − 1)}
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If ‖u‖+ ‖v‖ > 1, then

‖u‖+ ‖v‖
(‖u‖+ ‖v‖)α?

≤ max{2q−1, 1}
(α− β)(1− γηα−β−1)Γ(α)

(‖a1‖q−1
L1 ‖p‖q−1

L1 + ‖a2‖q̃−1
L1 ‖q̆‖q̃−1

L1

+‖a2‖q̃−1
L1 ‖p̆‖q̃−1

L1 + ‖a1‖q−1
L1 ‖q‖q−1

L1 )

+
(‖a1‖q−1

L1 ‖h‖q−1
L1 + ‖a2‖q̃−1

L1 ‖h̆‖q̃−1
L1 )

(‖u‖+ ‖v‖)α?
or

(‖u‖+ ‖v‖)1−α? ≤ max{2q−1, 1}
(α− β)(1− γηα−β−1)Γ(α)

(‖a1‖q−1
L1 ‖p‖q−1

L1 + ‖a2‖q̃−1
L1 ‖q̆‖q̃−1

L1

+‖a2‖q̃−1
L1 ‖p̆‖q̃−1

L1 + ‖a1‖q−1
L1 ‖q‖q−1

L1 ) + (‖a1‖q−1
L1 ‖h‖q−1

L1

+‖a2‖q̃−1
L1 ‖h̆‖q̃−1

L1 )

This implies that

‖u‖+‖v‖ ≤ [A(‖a1‖q−1
L1 ‖p‖q−1

L1 +‖a2‖q̃−1
L1 ‖q̆‖q̃−1

L1 +‖a2‖q̃−1
L1 ‖p̆‖q̃−1

L1 +‖a1‖q−1
L1 ‖q‖q−1

L1 )

+(‖a1‖q−1
L1 ‖h‖q−1

L1 + ‖a2‖q̃−1
L1 ‖h̆‖q̃−1

L1 )]1−α?

then
‖u‖+ ‖v‖ ≤ [AB + C]1−α? := M2

where

A =
max{2q−1, 1}

(α− β)(1− γηα−β−1)Γ(α)
,

B = ‖a1‖q−1
L1 ‖p‖q−1

L1 + ‖a2‖q̃−1
L1 ‖q̆‖q̃−1

L1 + ‖a2‖q̃−1
L1 ‖p̆‖q̃−1

L1 + ‖a1‖q−1
L1 ‖q‖q−1

L1

and
C = ‖a1‖q−1

L1 ‖h‖q−1
L1 + ‖a2‖q̃−1

L1 ‖h̆‖q̃−1
L1 .

As a consequence of Theorem 1.2.4, the operator N has a fixed point that
is a solution of system (4.1.1). This completes the proof of the theorem.

Example 4.1.1. Consider the fractional differential equation with advanced
argument for p-Laplacian

ϕ3/2(D
5/2

0+ u(t))′ + t−1/2

4
t

1+t
(|u(θ(t))| 14 + |v(θ(t))| 15 ) = 0, 0 < t < 1

ϕ3/2(D
5/2

0+ v(t))′ + 7t−1/2

2
t2

1+t2
(13 + |v(θ(t))|1/4 + |u(θ(t))| 16 ) = 0, 0 < t < 1

D
5/2

0+ u(0) = u(0) = u′(0) = 0, D
7/6

0+ u(1) = 7
10
D

7/6

0+ u(1
2
),

D
5/2

0+ v(0) = v(0) = v′(0) = 0, D
7/6

0+ v(1) = 7
10
D

7/6

0+ v(1
2
),

(4.1.11)
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4.2 Positive solutions

where α = 3
2
, β = 7

6
, η = 7

10
, p = p̃ = 3

2
, q = q̃ = 3, a1(t) = t−1/2

4
, a2(t) =

7t−1/2

2
, ϕ3

(∫ 1

0

a1(t)dt

)
= 1

4
, ϕ3

(∫ 1

0

a2(t)dt

)
=
√

7
2
, α1p = α3p̃ = 3

8
∈ (0, 1),

α2p = 3
10
∈ (0, 1), α4p̃ = 3

12
∈ (0, 1)

f(u(θ(t)), v(θ(t))) =
t

1 + t
(|u(θ(t))|

1
4 + |v(θ(t))|

1
5 ), θ(t) = tγ, γ ∈ (0, 1)

and

g(u(θ(t)), v(θ(t))) =
t2

1 + t2
(13+|v(θ(t))|1/4+|u(θ(t))|

1
6 ), θ(t) = tγ, γ ∈ (0, 1)

It is clear that, for all (t, u, v) ∈ [0, 1]× R2,{
|f(u, v)| ≤ t(|u| 14 + |v| 15 )

|g(u, v)| ≤ t2(13 + |v|1/4 + |u| 16 ).

Hence all the conditions of Theorem 4.1.3, hold, this implies that the
problem (4.1.11) has at leat one solution.

4.2 Positive solutions

In this section, our goal is to establish positive solutions for the problem to the
system (4.1.1). To this end, we first in this section we assumed the functions
f, g ∈ C(R2,R+) and define the operator on P as N : P × P → P × P be
the completely continuous map N = (N1, N2) given in the proof of theorem
4.1.3. Then (4.1.6) and (4.1.7)are equivalent to the fixed point problem

u = N(u) u ∈ P 2.

If v ∈ P and

ui(t) =

∫ 1

0

G1(t, s)ϕq(

∫ s

0

a1(τ)v(τ)dτ)ds

+
γtα−1

1− γηα−β−1

∫ 1

0

G2(η, s)ϕq(

∫ s

0

a1(τ)v(τ)dτ)ds, i = 1, 2.
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p− Laplacian fractional boundary value problem

and ui(ti) = ‖ui‖, by lemma 4.1.2 imply that, for any t ∈ [ρ, 1],

ui(t) =

∫ 1

0

G1(t, s)ϕq(

∫ s

0

a1(τ)v(τ)dτ)ds

+
γtα−1

1− γηα−β−1

∫ 1

0

G2(η, s)ϕq(

∫ s

0

a1(τ)v(τ)dτ)ds

ui(t) ≥
∫ 1

0

minG1(t, s)ϕq(

∫ s

0

a1(τ)v(τ)dτ)ds

+
γtα−1

1− γηα−β−1

∫ 1

0

G2(η, s)ϕq(

∫ s

0

a1(τ)v(τ)dτ)ds

≥
∫ 1

0

ρα−1G1(1, s)ϕq(

∫ s

0

a1(τ)v(τ)dτ)ds

+
γρα−1

1− γηα−β−1

∫ 1

0

G2(η, s)ϕq(

∫ s

0

a1(τ)v(τ)dτ)ds

≥ ρα−1

[∫ 1

0

G1(1, s)ϕq(

∫ s

0

a1(τ)v(τ)dτ)ds

+
γ

1− γηα−β−1

∫ 1

0

G2(η, s)ϕq(

∫ s

0

a1(τ)v(τ)dτ)ds

]
≥ ρα−1

[∫ 1

0

G1(t, s)ϕq(

∫ s

0

a1(τ)v(τ)dτ)ds

+
γ

1− γηα−β−1

∫ 1

0

G2(η, s)ϕq(

∫ s

0

a1(τ)v(τ)dτ)ds

]
ui(t) ≥ ρα−1‖ui‖.

Define the cone Pi for i = 1, 2 in P by

Pi =
{
ui ∈ P : ui(t) ≥ ρα−1‖ui‖, for all t ∈ [ρ, 1]

}
,

and the product cone P = P1 × P2, then N(P ) ⊂ P. Before we state our
main result we introduce the following notations: αi, βi > 0 with αi 6= βi we
let ri = min{αi, βi}, Ri = max{αi, βi} i = 1, 2.

γ1 = min{f(u1(θ1(t)), u2(θ1(t))) : ρ ≤ t ≤ 1, ρα−1β1 ≤ u1 ≤ β1, ρ
α−1r2 ≤ u2 ≤ R2},

γ2 = min{g(u1(θ1(t)), u2(θ1(t))) : ρ ≤ t ≤ 1, ρα−1r1 ≤ u1 ≤ R1, ρ
α−1β2 ≤ u2 ≤ β2},

Γ1 = max{f(u1(θ1(t)), u2(θ1(t))) : ρ ≤ t ≤ 1, ρα−1α1 ≤ u1 ≤ α1, ρ
α−1r2 ≤ u2 ≤ R2},
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4.2 Positive solutions

Γ2 = max{g(u1(θ1(t)), u2(θ1(t))) : ρ ≤ t ≤ 1, ρα−1r1 ≤ u1 ≤ R1, ρ
α−1α2 ≤ u2 ≤ α2}.

Also, let

A = min{G1(t, s) : ρ ≤ t ≤ 1, 0 ≤ s ≤ 1},

and

B = max{G1(t, s) : ρ ≤ t ≤ 1, 0 ≤ s ≤ 1}.

Theorem 4.2.1. Assume that there exist αi, βi > 0 with αi 6= βi, i = 1, 2,
such that

BΓq−1
1 ≤ α1 , Aγq−1

1 ≥ β1,

BΓq−1
2 ≤ α2 , Aγq−1

2 ≥ β2.
(4.2.1)

Then (4.1.1) has a positive solution u = (u1, u2) with ri ≤ ‖ui‖ ≤ Ri, i = 1, 2,
where ri = min{αi, βi}, Ri = max{αi, βi}. Moreover, corresponding orbit of
u is included in the rectangle [ρr1, R1]× [ρr2, R2].

Proof. First note that if u ∈ Pr,R, then r1 ≤ ‖u1‖ ≤ R1 and r2 ≤ ‖u2‖ ≤ R2

and by the definition of P,

{ρα−1r1 ≤ u1(t) ≤ R1 and ρα−1r2 ≤ u2(t) ≤ R2},

for all t, showing that the orbit of u for t ∈ [ρ, 1] is included in the rectangle
[ρr1, R1]× [ρr2, R2].
Also, if we know for example that ‖u1‖ = α1, then

ρα−1α1 ≤ u1(t) ≤ α1.

We now prove that for every u ∈ Pr,R and i ∈ {1, 2}, the following
properties holds:

‖ui‖ = αi implies ui ⊀ Ni(u),
‖ui‖ = βi implies ui � Ni(u),

(4.2.2)

guaranteeing the applicability of Theorem 1.2.5. Indeed, if ‖u1‖ = α1 and
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we would have u1 ≺ N1(u), then

u1(t) < N1(u)(t)

≤
∫ 1

0

maxG1(t, s) max |a1(t)f(u(θ1(t)), v(θ2(t)))|q−1dt

+
γtα−1

1− γηα−β−1

∫ 1

0

G2(η, s) max |a1(t)f(u(θ1(t)), v(θ2(t)))|q−1dt

≤ BΓq−1
1 + Γq−1

1

γ

1− γηα−β−1

∫ 1

0

G2(η, s)

≤ BΓq−1
1

≤ α1

for all t. This yields the contradiction α1 < α1.
Now if ‖u1‖ = β1 and u1 � N1(u), then for t ∈ [ρ, 1], we obtain

u1(t) > N1(u)(t)

≥
∫ 1

0

minG1(t, s) min |a1(t)f(u(θ1(t)), v(θ2(t)))|q−1dt

+
γtα−1

1− γηα−β−1

∫ 1

0

G2(η, s) min |a1(t)f(u(θ1(t)), v(θ2(t)))|q−1dt

≥ Aγq−1
1

≥ β1.

Then we deduce that β1 > β1, which is a contradiction. Hence (4.2.2) holds
for i = 1. Similarly, (4.2.2) is true for i = 2. By Theorem 1.2.5, we see that
N has at least one fixed point in P. Therefore, system (4.1.1) has at least
one positive solution.

Example 4.2.1. Consider the fractional differential equation with advanced
argument for p-Laplacian

ϕ3/2(D
5/2

0+ u(t))′ + t−1/2

4
f(u(θ(t)), v(θ(t))) = 0, 0 < t < 1

ϕ3/2(D
5/2

0+ v(t))′ + 7t−1/2

2
g(u(θ(t)), v(θ(t))) = 0, 0 < t < 1

D
5/2

0+ u(0) = u(0) = u′(0) = 0, D
7/6

0+ u(1) = 7
10
D

7/6

0+ u(1
2
),

D
5/2

0+ v(0) = v(0) = v′(0) = 0, D
7/6

0+ v(1) = 7
10
D

7/6

0+ v(1
2
),

(4.2.3)
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4.3 Multiple positive solutions

where f, g ∈ C(R2,R+) are nondecreasing in u and v, θ(t) = tγ, γ ∈ (0, 1).
Assume that

lim
z→∞

f(z, z)

z
= lim

z→∞

g(z, z)

z
= 0 (4.2.4)

and

lim
z→0

f(z, z)

z
= lim

z→0

g(z, z)

z
=∞. (4.2.5)

From the conditions (4.2.4) and (4.2.5), we can prove that there exist α1, α2, β1, β2 >
0,α1 < β1, α2 = β1 and β2 = α1 such that

f(ρα−1β1,ρα−1α1)
ρα−1β1

≥ 1
ρα−1A

,
g(ρα−1α1,ρα−1α1)

ρα−1β2
≥ 1

ρα−1A

(4.2.6)

and
f(α1, β1)

α1

≤ 1

B
,
g(β1, β1)

α2

≤ 1

B
. (4.2.7)

Then, we sets
ri = α1, Ri = β1 for i ∈ {1, 2},

Γ1 = f(α1, β1), Γ2 = g(β1, β1),

and
γ1 = f(ρα−1β1, ρ

α−1α1), γ2 = g(ρα−1α1, ρ
α−1α1).

We concluded that, (4.2.6) and (4.2.7) guarantees (4.2.1). Hence by the-
orem 4.2.1, the problem (4.2.3) has a positive solution.

4.3 Multiple positive solutions

Now we study the existence of multiple positive solutions for the systems of
fractional boundary value problem with p-laplacian boundary conditions

(H4) f, g are positive and increasing, i.e.

0 ≤ u ≤ x, 0 ≤ v ≤ y imply 0 ≤ f(u, v) ≤ f(x, y), 0 ≤ g(u, v) ≤ g(x, y)

We present the following general existence, multiplicity and localization re-
sult.
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p− Laplacian fractional boundary value problem

Theorem 4.3.1. Let the conditions (H1)−(H2)−(H4) hold and assume that
the norm ‖ · ‖ is monotone with respect to each cone Pi(i = 1, 2). Moreover,
suppose that there exist αi, βi > 0, with αi 6= βi, i = 1, 2, such that

‖N1(α1ρ
α−1, R2ρ

α−1)‖ < α1, ‖N2(R1ρ
α−1, α2ρ

α−1)‖ < α2, (4.3.1)

‖N1(β1ρ
α−1, 0)‖ > β1, ‖N2(0, β2ρ

α−1)‖ < β2, (4.3.2)

where Ri = max{αi, βi}(i = 1, 2).
Then problem (4.1.1) has at least

(1) one solution u = (u1, u2) such that βi < ‖ui‖ < αi, for i = 1, 2, if αi > βi
for i = 1, 2;

(2) two solutions (u1, u2) and (v1, v2) such that β1 < ‖u1‖ < α1, β2 < ‖u2‖ <
α2, β1 < ‖v1‖ < α1 and ‖v2‖ < α2 if α1 > β1 and α2 < β2;

(3) two solutions (u1, u2) and (v1, v2) such that α1 < ‖u1‖ < β1, α2 < ‖u2‖ <
β2, ‖v1‖ < α1 and β2 < ‖v2‖ < α2 if α1 < β1 and α2 > β2;

(4) four solutions (u1, u2), (v1, v2), (w1, w2) and (z1, z2) such that βi < ‖ui‖ <
αi, α1 < ‖v1‖ < β1, and ‖v2‖ < α2, ‖w1‖ < α1, α2 < ‖w1‖ < β2, and
‖zi‖ < αi, if αi < βi for i = 1, 2.

Proof. We shall apply Theorem 1.2.6 to the operator N = (N1, N2) defined
as in (4.1.9) and (4.1.10). Let us see that it satisfies conditions (1.2.1)-(1.2.2).
First we prove that

λu1 6= N1(u) for every u ∈ k with ‖u1‖ = α1, ‖u2‖ ≤ R2 and all λ ≥ 1
(4.3.3)

Indeed, if not,

λ‖u1‖ = λα1 = ‖N1(u)‖.

From 0 ≤ u1 ≤ α1ρ
α−1 and 0 ≤ u2 ≤ R2ρ

α−1, by (H1), (H4) it follows that

0 ≤ f(u1, u2) ≤ f(α1ρ
α−1, R2ρ

α−1),

0 ≤ ϕq

(∫ s

0

a1(τ)f(u1, u2)dτ

)
≤ ϕq

(∫ s

0

a1(τ)f(α1ρ
α−1, R2ρ

α−1)dτds

)
,
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4.3 Multiple positive solutions

by lemma (4.1.2) we obtain,

0 ≤ N1(u1, u2) ≤ N1(α1ρ
α−1, R2ρ

α−1)

and the norm of X being monotone,

‖N1(u1, u2)‖ ≤ ‖N1(α1ρ
α−1, R2ρ

α−1)‖.

By assumption (4.1.9),

‖N1(α1ρ
α−1, R2ρ

α−1)‖ < α1,

so we obtain the contradiction

λα1 < α1 for some λ ≥ 1.

Hence (4.3.3) holds.
Now, we prove that
u1 6= N1(u) + µρα−1 for every u ∈ P with ‖u1‖ = β1, ‖u2‖ ≤ R2 and all
µ ≥ 0.
Assume the contrary, i.e.,u1 = N1(u) + µρα−1for some u ∈ P with ‖u1‖ =
β1, ‖u2‖ ≤ R2 and some µ ≥ 0. Then u1 − N1(u) ∈ P1, so 0 ≤ N1(u) ≤ u1,
and the norm of X being monotone

‖N1(u)‖ ≤ ‖u1‖ = β1 (4.3.4)

Also, from the condition (H4), 0 ≤ β1ρ
α−1 ≤ u1 and 0 ≤ u2, so we obtain

0 ≤ f1(β1ρ
α−1, 0) ≤ f(u1, u2)

then by (H1) we obtain

0 ≤ ϕq

(∫ s

0

a1(τ)f1(β1ρ
α−1, 0)dτ

)
≤ ϕq

(∫ s

0

a1(τ)f(u1, u2)dτ

)
and by lemma 4.1.2 we conclude 0 ≤ N1(β1ρ

α−1, 0) ≤ N1(u1, u2). Hence by
monotone of the norm

‖N1(β1ρ
α−1, 0)‖ ≤ ‖N1(u1, u2)‖.

Now, from (4.3.4) we have

‖N1(β1ρ
α−1, 0)‖ ≤ β1

which contradicts the assumption (4.1.10). Therefore, conditions (1.2.1)-
(3.0.4) hold for i = 1. Similarly, they can be verified for i = 2.
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p− Laplacian fractional boundary value problem

Example 4.3.1. Consider the fractional differential equation with advanced
argument for p-Laplacian

ϕ3/2(D
5/2

0+ u(t))′ + t−1/2

4
f(u(θ(t)), v(θ(t))) = 0, 0 < t < 1

ϕ3/2(D
5/2

0+ v(t))′ + 7t−1/2

2
g(u(θ(t)), v(θ(t))) = 0, 0 < t < 1

D
5/2

0+ u(0) = u(0) = u′(0) = 0, D
7/6

0+ u(1) = 7
10
D

7/6

0+ u(1
2
),

D
5/2

0+ v(0) = v(0) = v′(0) = 0, D
7/6

0+ v(1) = 7
10
D

7/6

0+ v(1
2
),

(4.3.5)
where f, g ∈ C(R2,R+) are nondecreasing in u and v, θ(t) = tγ, γ ∈ (0, 1).

Since f, g are positive and increasing, we can easily shows that

f(ρα−1β1, 0)

β1

≥ 1

A
,
f(ρα−1α1, ρ

α−1R2)

α1

<
1

B

g(, 0, ρα−1β2)

β2

≤ 1

A
,
g(ρα−1R1, α2ρ

α−1)

α2

<
1

B
.

Thus conditions (4.1.9) and (4.1.10) hold. Then by Theorem 4.3.1 the prob-
lem (4.3.5) has multiplicity solutions.
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Conclusion and Perspectives

In this thesis, we studied the existence of solutions for boundary value sys-
tems for impulsive differential equation, and boundary impulsive value prob-
lem with a second-order p-Laplacian on time scale by variational methods
theorems .

Also in this work we discussed some existence and multiplicity of solution
for system of fractional differential equations, under various assumptions on
the right hand-side nonlinearity. The main assumptions on the nonlinearity
are the continuity and some Nagumo-Bernstein type growth conditions. We
have used fixed point theory in vector metric spaces with general properties
from functional analysis. We hope this thesis can provide contributions to
the questions of existence, positivity and multiplicity of solutions for frac-
tional differential equations on bounded domains.

We plan to look for the differential inclusions by variational methods
theorems.
We will study the question of stability of this class for problem of fractional
differential equation by Lyapunov method.
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[13] O. Bolojan-Nica, G. Infante, R. Precup, Existence results for systems
with coupled nonlocal initial conditions, Nonlinear Anal., 4 (2014), 231-
242.

[14] H. Brezis, Functional analysis, sobolev spaces and partial differential
equations, Springer-Verlag New York, 2011

[15] H. Brezis, L. Nirenberg, Remarks on finding critical points, Commun.
Pure. Appl. Math. (1991), 44, 939-963.

[16] A. Cabada, DR. Vivero, Criterions for absolutely continuity on time
scales, J. Differ. Equ. Appl., (2005), 11, 1013-1028.

[17] A. Cabada, G. Wang, Positive solutions of nonlinear fractional differen-
tial equations with integral boundary value conditions, J. Math. Anal.
Appl., 389, (2012), 403-411.

[18] G. Chai, Positive solutions for boundary value problems of fractional
differential equation with p-Laplacian, Boundary Value Problems, 2012.

[19] D. G. Costa, An invitation to variational methods in differential equa-
tions, Boston, Birkhäuser 2007.
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2011.

[30] J.R. Graef, J. Henderson and A. Ouahab, Impulsive Differential Inclu-
sions: A Fixed Point Approach De Gruyter Series in Nonlinear Analysis
and Applications, 20. Berlin: de Gruyter, 2013.

[31] J. R. Graef, J. Henderson, and A. Ouahab, Topological Methods for
Differential Equations and Inclusions, Monographs and Research Notes
in Mathematics Series Profile. Boca Raton, FL, CRC Press, 2019.

[32] J.R. Graef, S. Heidarkhani, L. Kong, A critical points approach for
the existence of multiple solutions of a Dirichlet quasilinear system, J.
Math. Anal. Appl., (2012), 388, 1268-1278.

92



BIBLIOGRAPHY

[33] J.R. Graef, H. Kadari, A. Ouahab and A. Oumansour, Existence results
for systems of second-order impulsive differential equations, Acta. Math.
Univ. Comenian. (N.S.), 88, (2019), 51–66.

[34] C. Guendouz, J. E. Lazreg, J. J. Nieto and A. Ouahab, Existence and
compactness results for a system of fractional differential equations, J.
Funct. Spaces (2020), Art. ID 5735140, 12 pp.

[35] D. Guo, Nonlinear functional analysis, Shandong Science and Technol-
ogy Press, 1985.

[36] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones,
Academic Press, San Diego, 1988.

[37] G. Guseinov, Integration on time scales, J. Math. Anal. Appl., (2003),
285, 107-127.

[38] A. Halanay and D. Wexler, Teoria Calitativa a Systeme cu Impulduri,
Editura Republicii Socialiste Romania, Bucharest, 1968.

[39] Z. He, On the existence of positive solutions of p-Laplacian difference
equations, J. Comput. Appl. Math., (2003), 161, 193-201.

[40] J. Henderson, A. Ouahab, and M. Slimani, Existence results of system
of semilinear discrete equations, Int. J. Diff. Equ. 12, (2017), 235-253.

[41] S. Hilger, Analysis on measure chains-a unified approach to continuous
and discrete calculus, Res. Math. (1990), 18, 18-56.

[42] R. Hilfer, Applications of Fractional Calculus in Physics, World Scien-
tific, 2000.

[43] A. Iannizzotto, SA. Tersian, Multiple homoclinic solutions for the dis-
crete p-Laplacian via critical point theory, J. Math. Anal. Appl., (2013),
403, 173-182.

[44] B. S. Jensen, The Dynamic Systems of Basic Economic Growth Models,
Kluwer, Dordrecht, 1994.

[45] H. Kadari, J. J. Nieto, A. Ouahab and A. Oumansour, Implicit first
order impulsive differential systems, Int. J. Difference Equ. 15, (2020),
429–451.

93



BIBLIOGRAPHY

[46] E. R. Kaufmann and Y. N. Raffoul, Periodic solutions for a neutral
nonlinear dynamical equation on a time scale, J. Math. Anal. Appl.,
319(1) (2006), 315-325.

[47] A. A. Kilbas, J. J. Trujillo, Differential equations of fractional order:
methods, results and problems II, Appl. Anal. 81, (2002), 435-493.

[48] V. Lakshmikantham, S. Sivasundaram, B. Kaymakcalan, Dynamic sys-
tems on measure chains, Vol. 370, Mathematics and its applications.
Dordrecht: Kluwer Academic Publishers, 1996.

[49] S. Li, Y-H. Su, Z. Feng, Positive solutions to p-Laplacian multi-point
BVPs on time scales, Dyn. Partial Differ. Equ., (2010), 7, 46-64.

[50] R. Liang, J. Peng and J. Shen, Double positive solutions for a non-
linear four-point boundary value problem with a p-Laplacian operator,
Nonlinear Anal., 68, (2008), 1881-1889.

[51] X. Lin and D. Jiang, Multiple positive solutions of Dirichlet boundary-
value problems for second-order impulsive differential equations, J.
Math. Analysis Applic. 321 (2006) 501514.

[52] L. Liu, L. Hu and Y. Wu, Positive solutions of nonlinear singular two-
point boundary value problems for second-order impulsive differential
equations, App.Math.Comput, 196 (2008), 550-562.

[53] H. Liang, P. Weng, Existence and multiple solutions for a second-order
difference boundary value problem via critical point theory, J. Math.
Anal. Appl., (2007), 326, 511–520.

[54] R. L .Magin, Fractional calculus models of complex dynamics in biolog-
ical tissues, Computers and Mathematics with Applications, 59, (2010),
1586-1593.

[55] A. B. Malinowska and D. F. M. Torres, Towards a combined fractional
mechanics and quantization, Fract. Calc. Appl. Anal. 15 (2012), 407-
417.

[56] J. Mawhin, M. Willem Critical point theory and Hamiltonian systems,
Vol. 74, Applied mathematical sciences. New York (NY): Springer-
Verlag, 1989.

94



BIBLIOGRAPHY

[57] F. Metzler, W. Schick, H. G. Kilian and T. F. Nonnenmacher, Relax-
ation in filled polymers: A fractional calculus approach, J. Chem. Phys.,
103, (1995), 7180-7186.

[58] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and
Fractional Differential Equations, Wiley, New York, 1993.

[59] V. D. Milman and A. A. Myshkis, On the stability of motion in the
presence of impulses, Sib. Math. J., (in Russian), 1960, 233-237.

[60] V. D. Milman and A. A. Myshkis, Randorn impulses in linear dynamical
systems, in ”Approximante Methods for Solving Differential Equations,”
Publishing house of the Academy of Sciences of Ukainian SSR, Kiev, in
Russian, 1963, 64-81.

[61] J. D. Murray, Mathematical Biology, Springer, Berlin, 1989.

[62] S. P. Nasholm and S. Holm, On a fractional Zener elastic wave equation,
Fract. Calc. Appl. Anal., 16 2013, 26-50.

[63] R. Naulin and M. Pinto, Quasi-Diagonalization of Linear Impulsive Sys-
tems and Applications, J. Math. Anal. Appl., 1997, 281-297.

[64] O. Nica, Initial-value problems for first-order differential systems with
general nonlocal conditions, Electron. J. Differential Equations, Vol.
2012 (2012), No. 74, pp. 1–15.

[65] O. Nica and R. Precup, On the nonlocal initial value problem for first
order differential systems, Stud. Univ. Babeş -Bolyai Math., 56 (2011),
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