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Abstract

Head pose estimation is one of the most important of research areas in
computer vision. Even if significant progress has been attained, and impressive
number of contributions and techniques have been suggested, the research is still
opened for raising performances. In this context, we present approaches to create
a powerful model to estimate the head orientation.

Modern computer systems accumulate data at an almost unimaginable rate
and from a huge variety of sources. Classical statistical analysis methods cannot
analyse and deal with these enormous amounts of data. Data mining is a
discipline that consists a family of tools that involves the statistics rules and
computer science to handle and analyse this information to become meaningful
and useful.

Time series is one of the most common and a special kind of data in data
mining. The processing and extracting features from time series require reducing
dimensionality through time series representation. Time series data can be
represented and converted to discrete sequence data using an approach known
as a symbolic aggregate approximation (SAX). This representation is a way to
explore hidden information in time series. Thus, it can rely on this information
to find the correlation between data, as well as, it can perform the clustering and
classification tasks.

This thesis leverages data mining technologies to extract head pose
information from face images to build a classification model that infers the
head pose orientation. To reach this purpose, we propose the SAX2FACE
approach, an effortless and efficient alternative solution that relies on a time
series dimensionality reduction method (SAX method) to address the problem of
head pose rotation. We have mapped face images into a one-dimensional vector
as time series using the Peano-Hilbert and Sweep space-filling curves. These
numerical series are then converted to symbolic sequences through symbolic
aggregate approximation (SAX).

Our first objective is to highlight the usefulness of using powerful symbolic
data mining techniques to classify face poses in any database, and thus getting
effective symbolic distances for classification purposes. We have resorted to
classic classifiers such as K-means, KNN, and SVM to classify frontal vs. profile
face poses. Besides, we have tackled the illumination changes problem. While we
have proposed to overcome these problems by processing the input image with
the gradient image and the Local Binary Pattern (LBP) combined with dynamic
morphological quotient image (DMQI-LBP), which are robust descriptors to
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changes in illumination. The results of these experiences have shown that our
approach is robust and allows us to separately classify the poses even in
degraded conditions.

For the second objective, we have suggested combining the expressive power
of deep learning with dimensionality reduction technique with time series
representation of the images for learning the suitable features to estimate the
head pose rotation with a large angles range (in yaw and pitch rotation).

Lately, deep learning has witnessed huge progress and has achieved
exceptional resorted only to for head pose estimation models. However, it is
computationally costly due to the high dimensionality of the parameters and
the features that are calculated in training (the dimension of the weights is
in the order of the billion). The dimension of these parameters progresses
proportionally with the dimension of the input data. Spurred with this obstacle,
we propose a new approach based on the use of dimensionality reduction with
time series. The model emulates the sequence-to-sequence recurrent neural
network that is introduced to deal with Machine Translation (NMT) model.
Sequence-to-Sequence is a deep learning model that the encoder recurrent
neural network encodes and learns the relationship between words of the source
language to present it into a vector, and the decoder decodes it into a sequence of
words in the desired language. Here, the positions of the faces are similar to the
positions of the words in a sentence. Hence, analysing the positions of the faces
by taking into account that the context is useful. This is why we are motivated by
the use of Seq2Seq encoder–decoder in our implementation. We built a classifier
of the head pose called SAX-RED, where the SAX symbolic sequences would be
the input layer of the encoder, and the decoder generates the output sequences
which present the labels of head poses.
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Résumé

L’estimation de la pose de la tête est l’un des domaines de recherche les plus
importants en vision par ordinateur. Bien que des progrès importants ont été
réalisés, et un nombre impressionnant de contributions et de techniques ont été
proposées, la recherche reste ouverte pour améliorer les performances. Dans ce
contexte, nous présentons dans cette thèse des approches qui visent à créer un
modèle puissant pour estimer l’orientation de la tête.

Les systèmes informatiques modernes accumulent des données à un rythme
presque inimaginable et provenant d’une énorme variété de sources. Les
méthodes classiques d’analyse statistique ne peuvent pas analyser et manipuler
ces immenses quantités de données. La fouille de données est une discipline qui
consiste à un ensemble d’outils englobant des règles statistiques et l’informatique
pour traiter et analyser ces informations afin qu’elles deviennent significatives et
utiles.

Les séries chronologiques sont un des types de données les plus courants et
les plus particuliers dans le domaine de la fouille de données. Le traitement et
l’extraction de caractéristiques des séries temporelles nécessitent de réduire la
dimensionnalité à l’aide de méthodes de représentation des séries temporelles.
Les données de séries temporelles peuvent être représentées et converties en
séquences de données discrètes en utilisant une approche connue sous le nom
d’approximation d’agrégats symboliques (SAX). Cette représentation est un
moyen d’explorer les informations cachées dans les séries temporelles. Dont, on
peut se baser sur ces informations pour trouver la corrélation entre les données,
ainsi que d’effectuer des tâches de clustering et de classification.

Cette thèse exploite les avantages de la technologie de fouille de données pour
extraire des informations sur la pose de la tête à partir des images du visage dans
le but de construire un modèle de classification qui infère l’orientation de la pose
de la tête.

Notre premier objectif est de montrer l’utilité d’utiliser les techniques de
fouille de données symboliques pour classer les poses du visage dans n’importe
quel ensemble de données, et donc les distances symboliques efficaces à des
fins de classification. Nous avons utilisé des classificateurs classiques tels que K-
means, KNN, et SVM pour classer les poses du visage de frontale vs de profil.
En outre, nous avons abordé le problème des changements d’illumination, nous
avons proposé pour surmonter ces problèmes d’effectuer un prétraitement à
l’image d’entrée, où nous avons utlisé l’image gradient et l’image traitée avec le
Local Binary Pattern (LBP) combiné avec dynamic morphological quotient image
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(DMQI-LBP), qui sont des descripteurs robustes aux changements d’éclairage.
Les résultats de ces expériences ont montré que notre approche est robuste et
permet de classifier séparément les poses même dans des conditions dégradées.

Pour le deuxième objectif, nous avons suggéré de combiner le privilège de
l’apprentissage profond avec une technique de réduction de dimensionnalité
assurée par la représentation de série chronologique des images pour apprendre
les caractéristiques appropriées pour estimer la rotation de la pose de la tête avec
un large plage d’angles (rotation de pan et tilt).

Récemment, l’apprentissage profond a vécu un considérable progrès et a
atteint des performances exceptionnelles dans le domaine d’estimation de la pose
de la tête. Cependant, ces modèles sont coûteux en calcul en raison de la haute
dimensionnalité des paramètres et des caractéristiques qui sont calculés lors de
l’apprentissage (la dimension des poids est de l’ordre du milliard). La dimension
de ces paramètres se progresse proportionnellement à la dimension des données
d’entrée. Motivés par cet obstacle, nous avons proposé une approche basée sur
l’utilisation de la réduction de dimensionnalité avec les séries temporelles. Notre
modèle émule le modèle Sequence-to-Sequence (Seq2Seq), qui est conçu pour les
modèles de traduction automatique.

Sequence-to-Sequence est un modèle d’apprentissage profond dans lequel
l’encodeur encode et apprend la relation entre les mots de la langue source
pour la présenter en un vecteur et le décodeur la décode en une séquence de
mots dans la langue souhaitée. Ici, les positions des visages sont équivalents aux
positions des mots dans une phrase. Il est donc utile d’analyser les positions des
visages en tenant compte du contexte. Pour cette raison, nous sommes motivés
par l’utilisation d’un encodeur-décodeur Seq-to-Seq dans notre implémentation.
Nous avons construit un classificateur de la pose de la tête appelé SAX-RED,
où les séquences symboliques SAX seraient l’entrée de l’encodeur et le décodeur
génère les séquences de sortie qui présentent les labels des poses de la tête.
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Chapter 1. Introduction

1.1 Context

The identification of people is one of the most important challenges to humans.
Since antiquity, man has been interested in finding the ways and characteristics
to know the other. For example, the ancient Egyptians (3000 BC) used their
palm prints as an identification tool, so Babylonian civilization and ancient
China (700 BC) used the fingerprint of the thumb in the dough used to seal
documents as a signature. This technique still applied by the Chinese and
Japanese until the 19th century, especially when signing commercial contracts.
The search of the invariant’s attributes ensuring the identification of a person by
his physical characteristics was genuinely taken his scientific framework until
the 19th century, with the detailed study on fingerprints and their famous
"innumerable little ridges" presented by Nehemiah Grew in 1684. Two years
later, Marcello Malpighi processed fingerprints under a microscope. The work
of Johann Evangelista Purkinje in 1823 was the most important, where he
determined that the fingerprint is unique and private for each individual. In 1880,
Alphonse Bertillon performed the first scientific method of criminal identification
called "Bertillonage". Since then, scientific research has progressed in a research
area called "Biometrics".

Biometrics is the science concerned with studying the methods and
techniques of identifying and recognizing individuals. Mainly based on the
analysis and measurement of key characteristics of the human body, they
have the particularity of being universal, unique, permanent, measurable, and
which cannot be falsified, lost, or stolen. There is a multitude of biometrics
methods grouped into two categories according to their physical and behavioural
characteristics. Physiological properties can be morphological or biological.
These are mainly fingerprints, the geometry of the hand and finger, the venous
network, the eye (iris and retina), or even the face, for morphological analyses. In
terms of biological analysis, we most often find DNA, blood, saliva, or urine used
in the medical field, for criminal investigations. The most common behavioural
measures are voice recognition, handwritten signatures (pen movement speed,
the pressure exerted, tilt), Keystroke, how to use objects, gait, footsteps, gestures,
etc. . .

Each of these modalities has its advantages and disadvantages. No technique
used can ensure both recognition performance with optimal precision. Thus, the
object of academic or commercial research is to find more efficient biometric
systems with less complex technology. Generally, behavioural data are very
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Chapter 1. Introduction

sensitive to the physical and psychological state of the individual (e.g. emotions,
stress, fatigue, ageing ...) which negatively impacts the performance and
increases the rate of error. On the other hand, it is estimated that physiological
characteristics have the advantage of being more stable in an individual’s life.
In recent years, biometric identification has become increasingly focused on
physiological measurements. For example, according to the International Civil
Aviation Organization (ICAO), facial recognition and fingerprints are the most
frequently used.

1.2 Why facial biometric

The face represents a convenient contactless biometric descriptor. In our daily life,
the human face plays an important and fundamental role, and it seems, generally,
the simplest and most accessible means of identifying human beings. Technically,
facial biometrics are also effective and provide essential information to identify
individuals. Compared to other biological biometric recognition methods such
as fingerprints and iris, the facial recognition approach remains more acceptable
and practically more accessible, and has many advantages:

• Natural: Usually, facial biometric systems are also like humans distinguish
and recognize individuals in communications by comparing the face
features not the fingerprint or iris features.

• Not intrusive: The face analysis is performed without the subject feeling
that their identity has been verified, and it does not require any user
cooperation, unlike fingerprint or iris systems. This invisibility is important
in some uncontrolled environments. Face recognition cameras are already
installed at airports around the world.

• Run in real-time: Facial recognition software immediately recognizes
people. When a face is captured by a camera, the correspondence performs
in real-time and the software verifies and identifies the person.

• Easy to reach: Due to the enormous development of photography
equipment, the difficulty of taking a photo has become less and less.
Nowadays, we can easily use our smartphones to take high-quality photos
for facial analysis.

So, facial biometric systems show good future applications in many areas.
They are not only widely deployed in traditional applications such as video
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surveillance and access control, but they are also rapidly applied in new
fields such as: mobile telephone, automatic payment, bank systems, criminal
investigations, etc

Far from these applications, facial recognition could become a real tool in
other fields such as health. For example, American researchers have designed
the DeepGestalt system capable of detecting a genetic disease for a patient, by
analysing his face [Gurovich et al., 2019].

1.3 Problematic

Some processing steps are required before the recognition of an individual in an
image or video via his/her face. In general terms, the recognition process can be
unrolled in four fundamental stages:

• Detection: it is the process that can identify and locate automatically a face
within an image.

• Face alignment: this is a normalization step, the face detected images are
geometrically normalized, so the lighting can be normalized to compensate
the illumination variations.

• Facial features extraction: from face alignment images, the characteristics
points are extracted. These points provide more pertinent information that
produce biometric signatures called features vectors, which distinguish
one individual from another. These signatures must be discriminatory
and robust. A distinctive vector is discriminate when it takes completely
different values for the faces of two different people. In terms of robustness,
it must be invariable to all possible variations, such as expression, pose and
illumination.

• The comparison step: the last step is classification, intended to classify the
recorded feature vector of the face tested with the most similar images in
the database.

Relatively, facial recognition is a recent biometric tool. The first analysis
was realized in 1964 by Woodrow Bledsoe Team [Bledsoe et al., 1964]. Another
attempt was performed by Takeo Kanade in 1973 through his doctoral thesis at
the University of Kyoto.

In the current state of computer vision, face recognition is taking-off in
giant steps, thanks to advances in algorithms linked to the development of
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artificial intelligence, particularly deep learning network that has enabled the
face recognition tools to become much more efficient.

Over the past twenty years, numerous powerful and efficient face recognition
results have been achieved in a controlled environment. However, these
performances brusquely deteriorated when the face images were captured
in a real scenario. For example, Where there is a change in the pose or different
lighting conditions and a wide intra-class variation, generally, occurs by the
presence of the expressions or occlusions.

In literature, different ways have been used to identify subjects in degraded
illumination environments [Zou et al., 2007, Ochoa-Villegas et al., 2015, Wang
and Deng, 2018], also in the presence of facial expressions [Sandbach et al.,
2012, Corneanu et al., 2016, Li and Deng, 2018]. Furthermore, face recognition
with frontal faces has been the subject of numerous studies and progress over
these last decades. Nevertheless, face recognition in multi-poses remains a higher
challenge and a largely unresolved problem. Consequently, the choice of the
face image in the frontal pose allows considerably to improve the performance
of the face recognition system. In this context, we present capable approaches
to estimate the face orientation and select the frontal pose. These head pose
estimation methods must be able to provide an accurate and robust estimation in
different environments, and therefore necessarily operate independently of the
identity of the person.

1.4 General objective and contributions

The objective of this thesis is to address the problem of head pose orientation.
To yield this purpose, we introduce the use of time series. We propose a
new approach based on the exploitation of the representation of faces as time
series for building a model to classify and estimate poses. The method use
dimensionality reduction through time series representation of the learning
images. This technique reduced the dimension of research space from 2D to 1D
space. We suggest a new face image representation, where we use the Space-
Filling Curves (SFC). The SFC permitted mapping multidimensional points to a
vector while preserving the locality. This representation will be the main tool of
our approaches and allows us to treat the image as a time series.

Once the time series of the image is generated, a symbolic transformation
is effectuated on these series to convert the numerical values into symbolic
sequences of the alphabets. The Symbolic Aggregate approach approximation
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(SAX) [Lin et al., 2007] is used to complete this task. Then, in the final phase
of our approaches, several artificial learning algorithms such as KNN, SVM,
and Recurrent Neural Network (RNN) taken these sequences as data to train
models to build performance classifiers, which allow deciding if the face is in
frontal or profile view even in disadvantageous external conditions. Our main
contributions can be summarized as follows:

1. We convert the face image into one dimension as time series using the
space-filling curve.

2. We represent these time series by Symbolic Aggregate Approximation
(SAX) representation which, ensures the reduction dimensionality.

3. We investigate the resolution of SAX (frame size, alphabet size) in the
classification accuracies.

4. We calculate the pair-wise similarity matrices between images of different
databases using an adapted distance.

5. Several classification methods throughout the generated similarity matrices
were used, and very efficient results were obtained.

6. The symbolic sequences generated by SAX are taken as the input data
of Encoder Recurrent Neural Network (RNN), then the Decoder RNN
provides the labels of head pose.

7. We investigate the use of Bidirectional Long Short term Memory (BLSTM)
and Bidirectional Gated Recurrent Unit (BGRU).

8. The proposed approaches achieve state-of-the-art results on several public
datasets.

1.5 Dissertation structure

This work is organized as follows

• Chapter 2: The background and the state of the art of head pose estimation
methods are presented, concentrated on 2D algorithms. Subsequently, a
discussion for summarizing the advantages and drawbacks of head pose
estimation methods has been discussed.
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• Chapter 3: A brief review of time series data mining is described, and it
brings into light the Symbolic Aggregate approach approximation (SAX).
Moreover, the method appointed for this thesis is broadly exposed. That
explores the time series property and how it can be benefited for it to build
a model that allows classifying the head pose using classic algorithms such
as KNN, SVM. Then, evaluation and analysis of the proposed approach are
performed on different databases.

• Chapter 4: This chapter presents the deep learning model for head pose
estimation. The model is based on the symbolic representation described
in Chapter 3 and the Sequence-to-Sequence (Seq2Seq) model of [Sutskever
et al., 2014]. Firstly, a brief description of the deep learning and recurrent
neural networks is presented. Next, a brief review of the sequence-to-
sequence model and its application to the head-pose estimation problem
is presented. Lastly, we report a comprehensive and experimental analysis
for applying the Seq2Seq models to a head pose estimation task.

Finally, a general conclusion is presented. Furthermore, some perspectives
regarding this work will be discussed.
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2.1 Introduction

In our daily life, there is a camera that acquires very often images of people,
particularly their faces for different purposes, e.g.: personal leisure’s, biometrics
identification or security monitoring. This process is useful in many applications
such as face recognition, human-computer interaction, video surveillance, human
behaviour analysis, and driver assistance system. The performance of such
applications would obviously increases with the best acquisition of images
from the camera. Usually, the human faces can be detected in a stream of
images in different directions and views, which would deteriorate drastically the
robustness of the previous systems, because the rotation of the head can affect
the recognition of some features of the face

In computer vision, the head pose estimation is the discipline that attempts
to resolve the problem of the head’s orientations according to the camera
point of view. It is becoming a long-term trend and an active research
topic. Several approaches have been suggested in the literature by employing
different techniques and ways to achieve strong accuracy and create an efficient
classification model.

2.1.1 What is the head pose estimation

The problem of head pose orientation is illustrated typically through three types
of rotations relative to the frontal face view or a global coordinate system. The
yaw angles, when the head rotates on the Y-axis from 90◦ at -90◦. The pitch where
the target looks up or down (X-axis), and the roll rotation is the inclination from
left to the right relative to the Z-axis as shown in figure 2.1.

Most of the previous research works have given more attention to both yaw
and pitch since the problem of roll rotation is solved easily by using the position
of some feature points such as the centre of the eyes.

2.2 The head pose estimation challenges

The head poses estimation is a complex task due to the wide variety
of physiological parameters, such as position, view angle, and peripheral
acquisition conditions, etc...

A successful system that is capable of performing this task must take into
account the many sources of variation that can affect the face image:
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Figure 2.1 – Example of the different pose variations.

• Geometric Deformations: mainly due to facial expressions variations
(intra-personal variations) and those linked to morphology variations
(inter-personal variations).

• Occlusion: Certain parts of the face can be masked by simple gestures, e.g.:
the person running his hand over his face, adjusting his glasses, or turning
around. Also, he can wear a hat or scarf.

• illumination conditions: the type, position, and orientation of light sources
directly influence the appearance of the face in the image.

• Variations related to the acquisition device: the type of camera and
the focal length between it and the individual, the resolution and the
compression of the image are also sources of variations that will have an
impact on the image.

• Radiometric variations: depend on the properties of the skin (colour,
wrinkles ...), the presence of a beard, or even the colour of the eyes. So,
the radiometric variations correspond to changes in the texture.

2.3 Head pose estimation approaches: state of the art

The objective of the head pose estimation methods is to determine the head
orientation from face images. Generally, the head pose estimation method is
assumed to have the following properties:

• Independent of the person.
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• Robust and powerful.

• Run fast to improve applications in real-time.

In this chapter, we present a panorama of the main state-of-the-art of head pose
estimation methods. Many works have been proposed attempting to tackle the
task of head pose estimation. The classification of existing approaches for head
pose estimation into a single taxonomy is quite a difficult task, as there are many
approaches and the classification can be ambiguous. Murphy Chutorian et al.
[Murphy-Chutorian and Trivedi, 2009] published a survey that presents the most
commonly head pose estimation methods proposed up to 2009. Recently, new
techniques have been developed, and new data have become available such as
methods based on 3D data, methods based on depth images, and methods based
on neural networks and Deep Learning. In some other studies, these methods can
split into two main categories according to the tools used to solve the problem:
appearance-based methods and feature-based methods (as shown in figure 2.2).

Figure 2.2 – Head pose estimation methods.

2.3.1 Feature based methods

These approaches are considered local methods. They mainly used the points of
reference to estimate the head pose. The features are extracted from the face, for
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example, the eyes, mouth, or even nose tips. The correspondence between these
key points and the geometrical model allows the prediction of the head pose
rotation. Therefore, the head pose estimation in these approaches is needed to
recognize the position of the facial key points which are tracked, and then, the
correlation between the next and previous positions admits to estimate the pose.
These approaches contain two methods: flexible models methods and geometric
methods.

2.3.1.1 Flexible models

The flexible models are one of the methods in this category. Initialization and
tracking phases ensure the estimation of the head. In the early step, the flexible
model attempts to fit the face region to build the initial absolute head pose. Then
the face region has to be tracked to get the relative change in head pose. The
most frequently used models are the following ones: Active Shape Model (ASM),
Active Appearance Model (AAM), and Elastic Bunch Graph Matching (EBGM).

The ASM model was proposed by Cootes and Taylor [Cootes et al., 1995]. The
ASM is formed from a set of corresponding characteristic points (landmarks)
collected from the training images. The location of landmarks can be connected
to each other to represent the shape of the face. Enough number of features point
allows covering the whole face shape, and can be constructed contours that seek
the main variations in sets of training data, using principal component analysis
(PCA). Once the ASM model is created, an initial contour is iteratively deformed
until it adapts to the shape of the face fitting (figure 2.3), which determines the
pose of the face tested.

The algorithm of ASM model can be realized in five steps:

1. Labelling the landmark points for the shape of the training set.

2. Extracting grey profile to all landmarks.

3. Aligning training set.

4. Apply the PCA to calculate the statistics on the aligned training set.

5. Repeat steps from step 1 to step 4 until convergence.

Cootes et al. [Cootes et al., 2001; 2015] proposed the combination of a
statistical shape model (ASM) and texture to create the active appearance
model(AAM). The face is split into small areas using triangles whose vertexes are
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(a) (b) (c)
Figure 2.3 – Example ASM model. (a) Initial Pose, (b) After a few iterations, (c) Convergence.

the landmark points. The shape is determined through interesting points that had
manual annotations on the face training images, the pixels surrounded by this
shape describe the texture. Thus, fitting is to adjust the shape statistical model
and appearance of the face to a new image (figure 2.4). Thus, the sufficiently close
correlation between the model and the face being tested allows us to estimate
their pose.

The algorithm of the AAM model can be performed by pursuing these steps:

1. Labelling the landmark points and extracting the shape model of the
training set.

2. Warping or mapping the landmark points into the mean shape.

3. Vectorizing the warped images.

4. Performing the PCA on the shape-normalized of training images.

5. Repeat steps from step 1 to step 4 until convergence.

Constrained local models (CLMs) are an improved version of two previous
models. The CLM model combines the performance of approaches based on
feature detection, the flexibility of the AAM model, and the constraints of the
ASM model bring a deformable model created from the local textures which are
found around specific feature positions such as the eyes and mouth. Similar to
the AAM model in the learning phase, the CLM builds as a shape and texture
model from landmark points, and the texture is sampled into patches around
these points [Cristinacce and Cootes, 2008], as shown in figure 2.5. To increase
the accuracy of the traditional CLM technique and decreasing the computational
cost Rajamanoharan et al. [Rajamanoharan and Cootes, 2015] suggested a multi-
view Constrained Local Model (MV-CLM) combined with a global shape model
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Figure 2.4 – Example of AAM model.

and different response maps per pose to determine the optimal pose-specific
CLM, while Kim et al. proposed Holistically Constrained Local Model (HCLM)
to detect the facial landmark and estimate the head orientation.

Figure 2.5 – Example of CLM model [Cristinacce and Cootes, 2008].

Elastic Bunch Graph Matching (EBGM), is one method among the techniques
used for the construction of flexible models. EBGM uses Gabor wavelet
convolution to represent the landmark points(fiducial points), such as each
fiducial point is represented with Gabor jet, which is - jet- all wavelet convolution
values in this point. Then, the model jet is arranged in a structure named "Bunch
graph". So, the landmark points in this model are characterized by their locations
and the Gabor jet elicited from these locations. Therefore, the face is described
with the nodes and edges connected with these nodes (figure 2.6). Thus, the pose
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of the new face image is achieved by the most correlated face graph [Wiskott
et al., 2014, Elagin et al., 1998].

Figure 2.6 – Example of EBGM model.

2.3.1.2 Geometric models

Geometric methods consider the head shape and the position of the facial
features as principal tools to estimate the head pose, from these landmark points,
a geometric model is constructed to allow the determination of the pose of human
faces. These landmark locations can use directives as it is the case in [Wang
and Sung, 2007] where the authors used the six points: two outer eye corners,
two inner eye corners, and two mouth corners that include the use of vanishing
points to estimate the head pose as shown in figure 2.7. In our work [Mekami and

Figure 2.7 – Example of geometric model [Wang and Sung, 2007].

Benabderrahmane, 2010] we used the two eyes centres and the mouth position
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to estimate the pose from the isosceles triangles formed by these key points.
Cylindrical and elliptical face models are other ways to estimate the head pose
geometrically. From the three facial points: the right facial edge, the left facial
edge, and the face centre. A cylindrical model is constructed and the rotation
around the face centre axis permits the prediction of the head pose [Narayanan
et al., 2014; 2016]. The geometric model established by Riener et al. [Riener and
Sippl, 2014] is based on location and dimension information for the left and the
right eyes, nose, mouth, even the mouth corners, and the face as a whole. As the
yaw features are relatively related to facial symmetry, this allowed the authors
to extract six features: the horizontal distances (ayaw – byaw and ayaw : byaw), the
diagonal distances (c–d and c:d), and the angles (α – β and α : β) as shown in
figure 2.8-a. As well as the difference of the horizontal distances between the left
eye and the face centre and between the right eye and the face centre (pyaw – qyaw)
and the horizontal distance between the nose and the face centre (ryaw)as shown
in figure 2.8-b. Further, the head movement in the left or right is deduced from
the difference in the two eyes’ sizes (figure 2.8-c). Another feature was the nose’s
horizontal distance from the facial-symmetry line [xyaw]. Meanwhile, the features

Figure 2.8 – The geometric facial features for yaw rotation (cross lines indicate a feature location;
rectangles describe dimensional features) [Riener and Sippl, 2014].

used to estimate the pitch rotation are: the sum of and the difference between the
distances from the eye line to the nose and from the nose to the mouth line [apitch

+ bpitch and apitch + bpitch](figure 2.9-a). So ppitch, qpitch, and rpitch identify the
distances from the eye line, nose, and mouth line to the vertical face centre(figure
2.9-b). Another feature was the distance between the vertical face centre and the
centre between the eye and mouth lines xpitch (figure 2.9-c), while figure 2.9-d
indicates the dimensions of the four facial parts which are used.

Marcialis et al. [Marcialis et al., 2014] introduced the concept of "Golden Ratio"
to carry out a geometrical model to estimate the head pose. Golden Ratio is the
proportionality constant adopted by Leonardo da Vinci in the "Vitruvian man’s".

17



Chapter 2. Head pose estimation methods: State of the art

Figure 2.9 – The geometric facial features for pitch rotation [Riener and Sippl, 2014].

The head orientation is yield thanks to the ratio between distances of eyes and
nose, pursuant to the specific assumption of the Golden Area as illustrated in
figure 2.10 . Similarly, Hatem et al. [Hatem et al., 2015] built a model from the
relative position of eyes and mouth corners, so that the nose coordinates were
the origin of the coordinate system.

Figure 2.10 – The geometric facial models proposed by Marcialis et al.[Marcialis et al., 2014]. (a)
frontal head pose, (b) Yaw angle computation, (c) Pitch angle computation.

2.3.2 The appearance-based approaches

Unlike the previously mentioned methods, the whole face is the principal
mean used in the appearance-based approaches to extract features that permit
the estimation of the head pose. Consequently, the head pose estimation task
required a critical step to represent the face image with feature vectors. In this
step, it is necessary to emphasize that feature vectors extracted from a face image
can handle pose variation avoiding all other variations irrelevant to pose, e.g.,
identity, expression, and lighting. These approaches reduced or transformed the
problem of head estimation to pattern classification. A model is trained with a
learning database and during the execution, it is used to find the best matching
between the query image and the training images.
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Appearance-based methods can be classified into different categories
according to the technology used to determine the pose: the template-based
methods, classification-based methods, and the dimensionality reduction
methods, which can be split into two sub-types: regression methods and
manifold embedding methods.

2.3.2.1 The template-based methods

The template-based methods or the methods by comparison with prototypes are
one of the oldest approaches, which are relatively very simple and intuitive.
These approaches effectuate through the direct comparison of a new image with
a set of examples of database images labeled with their pose and the most
similar template that determines the pose of the tested image. Various metrics
were used to measure this similarity criterion,Mean Squared Error (MSE) [Niyogi
and Freeman, 1996], Normalized cross-correlation (NCC) [Beymer, 1994], as well
mutual information [Goudelis et al., 2008] and Normalized co-occurrence mutual
information [Qing et al., 2010].

Input image

Figure 2.11 – Estimation of the face pose by The template-based method.

These direct approaches suffer from numerous limitations, the main is that the
similarity between different poses for the same person can obviously be higher
than the similarity between two face images of different people in the same pose,
which leads to a poor pose estimate of the head.

2.3.2.2 The classification-based methods

In the classification-based methods, the head pose is acquired from groups or
classes where the training images are grouped into a limited number of classes
labelled with discrete poses, which are obtained via supervised algorithms. Most
of the techniques proposed in these methods can jointly address the problems of
face detection and estimation of the pose.
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The classification methods are performed in two stages, features extraction,
then these features are used to learn a model for estimating the head poses
using well known supervised algorithms as shown in figure 2.12. Therefore, to
achieve a high classification accuracy, the techniques reported in these methods
are attempting either to extract the suitable features that represented the face
orientation or a powerful algorithm of classification. The work of Rowley et al.

Figure 2.12 – Illustration of the classification method.

[Rowley et al., 1998] is among the earlier essays proposed in these methods,
where they used multi-layer perceptron to classifier the face pose. The first layer
is a “router” network that tackles each input image to determine its orientation
and then transmits this information to a single detector to support or discard the
decision. However, the reliability of these methods depends on the performance
of the pose estimator. Furthermore, this technique cannot extend to out-of-plane
(yaw, pitch) rotations of the face where it was only tested for the roll (in-plane)
rotation. Huang et al. [Huang et al., 1998] implemented support vector machines
(SVM) with three classes to discriminate the frontal view vs the left and right
view. The classifier of Viola-Jones [Viola and Jones, 2004] is the leading model
used in multi-view face detection and it serves as a foundation for a modern
detector. The Viola-Jones model is based on three main ideas that make it possible
to build a successful milt-view face detector: the integral image, classifier learning
with AdaBoost, and the attentional cascade structure. The integral image is used
for the fast computation of Haar-like features and utilizing the AdaBoost to train
cascaded classifiers.

A naive Bayesian classifier is used to estimate the head pose in five
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orientations corresponding to frontal view, left half-profile, right half-profile,
left profile, right profile [Zhang et al., 2006]. Chen et al. [Chen and Lien, 2009]
developed a statistical system capable of detecting and estimating the face pose
that is composed of five modules, where the Eigenfaces were chosen as the
face features, and the Gaussian mixture model(GMM) was used to classify the
pose into seven yaw poses(0, ±30◦, ±60◦, and ±90◦). The authors in [Ma et al.,
2008] exploited the facial symmetry which is vanished with the yaw rotation,
and introduced a new descriptor called GFour to represent this asymmetry. The
input image is convoluted with multiple 1D Gabor filters which provide the
advantage of mitigating the influence of illumination and noise, then they used
the Fourier transformation to extract the facial asymmetry, the nearest centroid
classifier (NC) is employed to determine the head pose categories. Further, Ma et
al. [Ma et al., 2014; 2015] proposed a set of novel descriptors named covariance
descriptor of Gabor filters (CovGa) and fisher vector of local descriptors (VoD),
which are improved by combining them with a metric learning method named:
Keep It Simple and Straightforward Metric Learning (KISSME). So they have
produced other descriptors K-CovGa and K-VoD. These descriptors extracted
the asymmetry features of the head. The nearest centroid classifier (NC) was
used to classify the yaw pose. Furthermore, the biologically inspired features
(BIF) and the combination of the BIF with the local binary pattern (LBP) feature
produced the local biologically inspired features (LBIF) are other new feature
descriptors presented also by Ma et al. in [Ma et al., 2013]. However, all these
features proposed by Ma el al. [Ma et al., 2008; 2013; 2014; 2015] are focused
to represent only the yaw angle variation. Alternatively, an image abstraction
is proposed by Han et al. [Han et al., 2014] to represent the variations of face
orientation. They created binary images with the most important features of the
face, then utilized local directional quaternary patterns (LDQP) to achieve better
representation discriminative for head pose estimation. Subsequently, a multi-
class SVM classifier is learned to interpret the orientation of the head. Random
Forest (RF) is used by Huang et al. [Huang et al., 2010], as an ensemble learning
framework to classify the head pose based on features extracted from Gabor
Filtre. kang et al. [Kang et al., 2017] suggested multi-block local binary pattern
(MB-LBP) feature, and training the RF algorithm to obtain head pose estimation.
Liu et al. [Liu et al., 2016] introduced an improved version of the RF. They
combined multiple texture descriptions, i.e., Gabor feature-based PCA, LBPH,
Sobel with two geometric features to extract the face orientation representation,
that is distinguished by the RF classifier reinforced through the use of Dirichlet-
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tree distribution. While, Zhao et al. [Zhao et al., 2019] proposed the multi-
feature fusion, where the second-order HOG and UP-LBP features are extracted
separately for the face image, then fuse the two features to form the final
image features. Thereafter, in the construction stage of Random Forest, the CART
algorithm is introduced and trained independently, and all the decision trees are
constructed by weighted combination to participate in the final decision of the
Random Forest algorithm. Afterward, the improved random forest is learned to
determine the head pose. Dictionary-Learning and a classifier based on sparse
representation are exploited in [Zhang et al., 2013, Liao et al., 2016]. However,
Zhang et al. [Zhang et al., 2013] employed this technique to determine only the
facial left and right orientation (i.e. yaw pose). While Liao et al. [Liao et al.,
2016] have developed a model based on this technology to recognize the facial
up and down orientation(i.e. pitch pose) too. Even, they built a dictionary of face
occlusion that permits to solve the estimation problem when a face is occluded.
Another initiative to detect and estimate the face pose was conducted by Yoon et
al. [Yoon and Kim, 2019]. The author constructed a model with four successively
blocks: background rejector, pose classifier, pose-specific face detectors, and face
validator as shown in figure 2.13. The first module facilitates the removal of the
background. The face pose is estimated in the second module earlier than the
detection of a face that is performed in the next module. The final module has
the role to decide, and valid is that the input image is a face or non face.

Figure 2.13 – The structure of multi-view face detector proposed in [Yoon and Kim, 2019].
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2.3.2.3 Regression Methods

Contrary to classification methods, the regression methods attempt to find
the relationship between the feature vectors and the pose variation to predict
the continuous head pose angle. Regression methods are categorized under
the umbrella of Dimensionality Reduction methods that mapping the face
representation feature from high dimensional into low dimensional, denoted
the head pose rotation. The figure 2.14 illustrates an example of the regression
method.

Figure 2.14 – Illustration of the regression method.

Numerous regression models have been employed in the literature. A
regression via the neural network named GRNN (Generalized Regression Neural
Network) to achieve the linkage between the input features and the output head
rotation angle that is presented in the work of Bailly ([Bailly and Milgram,
2009]). They pioneered the Fuzzy Functional Criterion (FFC) to extract features.
Thereby, the boosted tree algorithm uses this criterion to select the efficient
feature that is taken as the input of a neural network. Random regression
forests are widely used to express the variation of the head rotation angle.
Among the first published researches, that exploited the random forest as a
regression for head pose estimation task, the paper of Fanelli et al. [Fanelli

23



Chapter 2. Head pose estimation methods: State of the art

et al., 2011]. The authors constructed the tree predictors in random forests using
the depth information as feature vectors. Since it is used as a regression tool
to determine the continuous head pose, many methods have been proposed to
improve and optimize the construction of tree forests. As suggestion of Zhu et
al. [Zhu et al., 2013] who proposed some improvements to Random Regression
Forests for estimating the head pose in 2D face images using Linear discriminant
analysis (LDA) to reduce the dimension of the features that were extracted with
Gabor filters and weighted accordingly to the eigenvalues associated with their
corresponding LDA axes to generate tree predictors in the forests. Whereas, Ying
et al. [Ying and Wang, 2013] proposed the dynamic random regression forests
(DRRF), which introduced some actions that allow dynamically building the tree
forest, aimed to avoid the redundant tree in RF that enhances the learning quality,
the boosting strategy for data induction is used. With this strategy, the samples
for building the next tree are the data with a large prediction error of the previous
tree. Further, the author embedded a stem operator into the conventional tree-
shaped to ensure the division’s continuity of the nodes and thus growing the
possibility of optimal data separation. Lately, Hara et al. [Hara and Chellappa,
2017] performed the Adaptive K-clusters Regression Forest (AKRF) to upgrade
the RF. They optimized the RF using the k-means clustering to each node and
Bayesian information criterion(BIC) to determine adaptively the number of child
nodes. On the other hand, Haj et al. [Al Haj et al., 2012] used Partial Least Squares
(PLS) regression model to learn a mapping from HOG features to the head pose
estimation. While, Fenzi et al. [Fenzi et al., 2013] learned a set of local feature
generative models using radial basis function (RBF) networks and formulates the
head pose as a Maximum A Posterior (MAP) inference task. Li et al. [Li et al.,
2014] extracted face features using block energy maps (BEM) and the head pose
is estimated using support vector regression and Gaussian processes regression
respectively.

In contrast to the traditional regression that leads from a high dimensional to
low dimensional to yield the regression to interpret the head pose, Drouard et al.
[Drouard et al., 2015; 2017b;a] suggested the use of the inverse regression through
a Gaussian mixture model. In other words, unlike learning and formulating
the regression from the face representation (i.e. high dimensional) to head
pose (i.e. low-dimensional), the authors used GLLiM (Gaussian Locally Linear
Mapping) to learn and predict the pose parameters from the head pose. Thereby,
the problem turns out from a low dimensional to a high problem. The HOG
features and a Gaussian locally-linear mapping model are used in [Drouard et al.,
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2015], as well as, an extension of this work that associated the partially latent
variables in their mixture of the linear regression approach reported in [Drouard
et al., 2017b]. Furthermore, they combined a Gaussian mixture of linear inverse-
regression model into a dynamic Bayesian model to predict pose parameters
[Drouard et al., 2017a]. Beyond two-stage Cumulative Attribute (CA) regression
is carried out in a regression model rather than a single layer regression
architecture. The features extracted are mapped to Cumulative Attribute space
(Attribute Learning) that provides the first regressor. Then the output of this
stage is mapped to a two-dimensional output space (i.e. head yaw and pitch
angles) in the second regressor using the Partial Least Squares (PLS) regression
[Chen et al., 2019].

2.3.2.4 Manifold embedding methods

Manifold embedding methods provide the ability to map the facial features that
represent the continuous variation in the head pose in a high-dimensional into a
low-dimension space. The underlying idea behind these methods is to generate a
dimensionality reduced features space from the high dimensional feature vector
extracted from all training images set, where each feature point is connected
with the closest neighbours to create a manifold embedding, depending on two
parameters necessary: the number of nearest neighbours as well as the number
of dimensions to which the high-dimensional space should be reduced. The head
pose estimation of a new example that is not in the training set is a huge problem
in these methods because there is no direct way to map an image onto the
manifold. For this reason, a supervised or unsupervised learning models is used
to embed the features of a new image to predict the orientation of the head. The
major challenge of these methods is to know how to choose the dimensionality
reduction space that efficiently recovers face pose while ignoring other changes
in the image. An example of the manifold embedding method is illustrated in
figure 2.15

Principal Components Analysis (PCA) [Srinivasan and Boyer, 2002] and
the nonlinear kernel KPCA [Chen et al., 2003], locally linear embedding
(LLE) [Roweis and Saul, 2000], Laplacian eigenmaps (LE) [Belkin and Niyogi,
2003], Locally Embedded Analysis (LEA) [Fu and Huang, 2006] and isometric
feature mapping (Isomap) [Raytchev et al., 2004, Tenenbaum et al., 2000] have
been used as classical techniques of dimension reduction. The interested
reader can refer to [Wang et al., 2017] which presented a discussion and
comparison of classical manifold learning algorithms as well as several
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Figure 2.15 – Illustration of the manifold embedding models.

extensions of these manifold learning algorithms developed for head pose
estimation or the taxonomy presented [BenAbdelkader, 2010] for a taxonomy
of such techniques. Generally, these methods either treat the problem as a
complex nonlinear embedding process, or by using linear approximations of
nonlinear techniques using unsupervised or supervised algorithms to construct
a simplified system. Balasubramanian et al. [Balasubramanian et al., 2007]
enhanced these manifold embedding techniques by using a Biased Manifold
Embedding (BME) framework. BME uses a Generalized Regression Neural
Network (GRNN) to learn the complex nonlinear mapping from the high-
dimensional feature space to the low-dimensional embedded space. Another
extension of the classical algorithm, Wang et al. [Wang et al., 2008] used Isometric
feature mapping (Isomap) to increase the level of oversight of traditional methods
by the implementation of a Fisher Local Discriminant Analysis. BenAbdelkader
[BenAbdelkader, 2010] combined the Neighbourhood Preserving Embedding
(NPE) and Locality Preserving Projection (LPE) which are deemed linearized
versions of LLE and Laplacian Eigenmaps (LE) respectively. Huang et al. in
[Huang et al., 2011b] proposed Supervised Local Subspace Learning (SL2) that
builds local linear models from a sparse and non-uniformly sampled training
set. SL2 learns a mixture of local tangent spaces that are robust to under-sampled
regions for continuous head pose estimation so that it can be robust to overfitting
and to noise. Foytik and Asari [Foytik and Asari, 2013] employed two layers for
head pose estimation. They applied linear discriminant analysis (LDA) in the
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first layer to localize the given observation to a determined region of the pose
manifold and establish coarsely pose estimation. Canonical correlation analysis
(CCA) allows producing a linear transform for fine pose estimation in the second
layer. Peng et al. in [Peng et al., 2014; 2015] proposed multiple manifolds as well,
where Homeomorphic Manifold Analysis (HMA) is used to construct a separate
manifold and learns the mapping from the low-dimensional uniform geometry
representation to each instance manifold (the high-dimensional feature space) as
shown in figure 2.16. After that, the mapping coefficients matrices are arranged
as a tensor and perform decomposition along the instance direction to separate
the pose-related/unrelated factors. The pose of the testing image is achieved
by parameterizing it in the instance parametric space and search the domain of
uniform geometry representation corresponding.

Figure 2.16 – Illustration of the training and learning procedure of approach proposed in [Peng
et al., 2015].

Synchronized submanifold embedding (SSE) is combined with random
regression forests to estimate the head pose in [Zhu et al., 2014]. SSE and random
regression forest methods are used to map the nonlinear data into linearly
separable low-dimensional data. Interpolation techniques are used as well to
identify the missing range of pose values. Liu et al. [Liu et al., 2014] introduced
supervised locality discriminant manifold learning (SLDML) to decrease the
effects of the unrelated pose. The SLDML approach is executed in two phases:
the graph embedding stage, and the regression stage. The manifold learning
and the regression are incorporated with a learned discriminant manifold-based
projection function yield by discriminatively Laplacian regularized least squares
to learn a low dimensional space represented the continuous head pose angles.
The Supervised Neighbourhood-based Fisher Discriminant Analysis (SNFDA)
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algorithm is proposed in [Wang and Song, 2012; 2014]. The authors presented
a framework that permits to keep the input data with similar pose angles
close together, although the input images with dissimilar pose angles have been
very far apart. This framework incorporates the pose angle information into
three stages of manifold learning. Before, the supervised neighbourhood-based
Fisher Discriminant Analysis (FDA) was used to constrain the projection learning
the inter-point distance for neighbourhood construction is redefined as well as
graph weight. A similar approach was adopted in [Wang et al., 2015] where
supervised Laplacian regularization is combined with sparse regression into
manifold learning to determine the head orientation. Recently, an unsupervised
pose estimation method for face images based on clustered locally linear
manifolds using discriminant analysis was reported by Hari et al. in [Hari
and Sankaran, 2017]. The authors carried out a multilayer nonlinear manifolds
framework to abstract discriminant functions. In the first layer, the clustering
process performed on the entire data set to obtain the pose-dependent classes
for training, with the aim to supply the discriminant features. The benefit of this
step is to divide the manifold into small regions of focus, where the manifold can
assumed to be linear now. In the second layer, unsupervised smaller classes are
yield from another clustering approach that is proceeding on these local regions
of interest. Then, these classes are used to extract a second set of discriminant
features that can be used to obtain the ultimate pose estimation model. More
recent, Diaz et al. [Diaz-Chito et al., 2018] proposed a continuous head pose
estimation system based on manifold learning-based methods. The histogram of
Oriented Gradients (HOG) is extracted from the image as a preliminary feature
extraction step. Subsequently, the HOG features mapping onto a feature manifold
using Generalized Discriminative Common Vectors (GDCV). Then a continuous
regression composed of spline fitting and multivariate local regression is learned
to build the final head pose estimation model, while Derkach et al. [Derkach
et al., 2018; 2019] estimated the head pose by using multi-linear or tensor
decomposition to split the pose variation factors into separate sub-spaces and
demonstrated that each angle orientation (i.e. pitch, yaw, and roll) has its own
structure. Thus, cosine functions enable to model variation factors from a unique
shared parameter per angle.
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2.4 Discussion

We mentioned in the previous section several aspects of the various techniques
and methods published to overcome the head orientation problems. In this
section, we will provide the most advantages and disadvantages of each method,
as illustrated in Table 3.1. As well as some suggested approaches in order to
proliferate the performance.

As it is known, no approach or system performs with perfect efficiency, and
there are drawbacks that decrease the performance, so all methods proposed in
this field of research attempt to compensate and minimize these limitations. For
example, the first researches introduced to determine the head orientation were
the methods using the templates [Beymer, 1994] which seek to classify a test
face image by matching it with other labelled annotated images. That is based
on the assumption that the faces of a discrete pose are almost similar, which
is not necessarily exact in all cases. Whereas the similarity between different
poses for the same person can be more than two face images of different people
in the same pose. To carry out this matching, it is necessary to compare the
query pose with all images in the database, which makes the process more time-
consuming. However, due to the serious limitations of these methods, they are
almost abandoned.

Afterward, classification methods [Huang et al., 1998] have been developed
to reduce the computational time. On the contrary to the appearance template
method, the training images in classification methods are grouped into classes
with corresponding labels of the head angle. Thus, the test face image is
correlated with the features of each class to deduct the head pose. These methods
are quite simple to implement, and they are not affected by the identity, and
they considered more accurate than the appearance template method. In fact,
this technique is usually limited. Moreover, it is required to train large samples
to achieve powerful classification accuracy, which is hard and computationally
expensive. However, a common solution to compensate for this problem has been
developed based on deep learning networks, which will be detailed later.
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Table 2.1 – Comparison of various head pose estimation methods.

Method Advantage Disadvantage
Flexible
Models

• Invariant to head localization
error

• Invariant to the appearance of a
human face

• less inter-subject variation

• Computationally expensive

• Sensitive to occlusions

• One model is unable to present all
head precisely

• Unsuitable performance with low
resolution images

Geometric
Method

• Simple and fast

• A good accuracy with few
information

• Error in the location of the features
decreases the accuracy significantly

• Sensitive to occlusions

• Weak precision with low resolution
Template
Methods

• Database can be expanded
easily

• Insensitive to resolution

• No negative training samples
and facial landmarks are
required

• Computationally expensive for big
databases

• Pairwise similarity does not
significant necessarily the pose
similarity

Classification
Methods

• The same classifier can be
simultaneously detected and
estimated the head pose

• Independent to resolution

• Appearance variations do not
affect the training algorithms

• Robust to large face pose
changes.

• Computationally expensive.

• The number of classes limited by the
number of detectors

• Required negative images to learning
(images with no heads)

Regression
Methods

• High accuracy and fast

• The cropped labelled faces are
only required to training

• Insensitive to zoom

• Dimensionality Reduction

• Difficult to develop an exact function
for robust head pose estimation

• The complexity of the non-linear and
linear mappings that connect the
facial images and pose labels

Manifold
Embedding
Methods

• A good precision

• Embedding can be achieved
through a simple matrix
multiplication

• Dimensionality Reduction

• The heterogeneity of the training
data

• Limited of representational capacity
for nonlinear techniques

• Hard to find the optimal dimensions
that represent the continuous
variation in head pose

Deep
Neural
Networks

• Very powerful accuracy

• Features extraction automatically

• Reduction of dimensionality

• Hard training

• Computationally expensive

• Difficult to choose the hyper-
parameters (filters size, batch size,
the number of epochs...) that allow
to avoid the over-fitting status
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The geometric method [Gee and Cipolla, 1994] is one of the first attempts
that has been proposed to accelerate the head pose estimation process. The head
orientation is inferred by assuming fixed geometric relationships between the
key-points and comparing the position of these points with an average model
acquired through anthropometric measurements. Although these methods are
simple and run fast, the accuracy is correlated with the quality and quantity of
the geometric cues inferred from the image. Therefore, the major drawback of
the features-based approaches is the necessitated of high precision in facial key-
point detection. It is hard to estimate head poses from images with occluded face
regions.

However, the recent advent of depth cameras and 3D acquisition systems
have led to enriching the geometric information and supply the head shape more
distinctively. As well as, it allows the development of large annotated databases
[Fanelli et al., 2011, Koestinger et al., 2011, Ariz et al., 2016, Lüsi et al., 2016].

Typically, depth (2.5D) and 3D data provide less sensitivity to light changes,
noise, and partial occlusions, which help to improve the weakness in using
RGB image only. The use of these alternatives modalities to carry out geometric
models has significantly progressed. For example, Gurbuz et al. [Gurbuz et al.,
2012] extracted a face plane and the eye positions in 3D and uses this information
to develop the head pose matrix uniquely, and defining the orientation and the
position of a face and used it to estimate head pose. Rely on the visibility of
the nose region, which is least occluded by accessories and confirmed to be
greatly discriminant in all poses from profile to frontal. Cai et al. [Cai et al.,
2012] suggested an automatic method using the 3D nose tip location, and it is
normal to estimate head pose. Further, Li et al. [Li et al., 2018b] used the nose
tip and the nose bridge to estimate the face pose. To determine these notables
features, the authors relied on the salient crest lines that were closely connected
with the 3D facial skeletons of convex regions. Li and Pedrycz [Li and Pedrycz,
2014] benefited from the bilateral symmetry of the human face to construct a
central profile-based 3D face pose estimation model. The central-profile is the
resulting curve from the intersection between the symmetry plane and the 3D
face surface. That starts from the forehead centre, goes down through the nose
ridge, nose tip, mouth centre, and ends at a chin.

Baltrušaitis et al. [Baltrušaitis et al., 2012] combined depth information
alongside the intensity to enhance the Constrained Local Model. The
employment of depth data helps to detect the facial features when an intensity
signal is not available, or the lighting conditions are insufficient. Moreover,
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Ackland et al. [Ackland et al., 2019] have developed the 2.5D Constrained Local
Model (2.5D CLM) for head pose estimation, which is combined a deformable 3D
shape point model with 2D texture information to provide a direct assessment
of the pose parameters.

The use of the 3D Morphable Model (3DMM) is another way to exploit the
3D data pioneered by Vetter et al. [Blanz and Vetter, 1999]. A 3DMM is defined
as a dense statistical model of 3D face geometry and texture information that
is transformed into a vector space representation. It is a direct extension of the
2D Active Appearance Model (AAM) that allows for more efficient modelling in
the presence of pose and illumination variations. The first version of 3D faces
representation is relied upon Principal Component Analysis (PCA) to describe
face shape and texture variations. The 3DMM can be fit to 2D image data, or
depth, or 3D face data to adapt the model to the subject similar to AAMs. Egger et
al. [Egger et al., 2020] provided a detailed survey of 3D Morphable Face Models.

To date, the Basel Face Model (BFM) [Paysan et al., 2009] is the publicly
accessible variant of the morphable model, and that is the most widely used
representation for 3D face shape. The BFM has various applications such as face
recognition, face analysis, and 3D face reconstruction [Kittler et al., 2016], thus
the 3D head pose estimation. Among the published papers based on the BFM
model to estimate the head orientation, there was an approach proposed by [Cai
et al., 2015b] which employs the shape model of the Basel face model and five
landmarks on the 2D face image (left and right eye centres, nose tip, and left and
right mouth corners). The fitting of the shape is preformed according to Laplace
distribution to be able to pick up the shape variation across different persons.
They implement a particle swarm (PSO) optimization algorithm to minimize the
fitting error between the five feature points on the 2D input image and 3D shape
model. While Meyer et al. [Meyer et al., 2015] fitted a morphable face model
to the measured depth data to affect the head pose estimation. To register the
reference model to the input data, they combine the iterative closest point (ICP)
and PSO to avoid local minima due to the poor initialization from ICP, and to
speed-up the convergence rate of the PSO algorithm.

Usually, 3 MMD models represent only the frontal face region, which
decreases the performance with extreme head poses. Spurred by this lack, Yu et
al.[Yu et al., 2017; 2018] extended this model with an online 3D reconstruction of
the full head that can be suitable to deal with large head pose variations. Instead
of modelling the complete 3D head, Ghiass et al.[Shoja Ghiass et al., 2018] based
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on the subject’s face to infer the head pose through a fitting process with a 3D
morphable model and depth data only rather than the 2D image.

Besides, other alternative approaches associated the usefulness of the high-
resolution RGB image with the 3D information. These techniques use a
predefined 3D facial model to fit a single RGB or depth face image. Usually,
these methods localize the facial landmarks using the RGB image as the first step.
Then these key points are combined with 3D features. Finally, the head pose is
estimated by minimizing the re-projection error from the 3D-2D correspondences
[Li et al., 2018a, Barros et al., 2018, Madrigal and Lerasle, 2020, Yuan et al., 2020].

A recent approach suggested by Barra et al. [Barra et al., 2020] proceeded
from a web-shaped model to develop a feature vector to infer the head pose.
Each detected facial landmark is associated with a specific face sector within the
model. The orientation of the input image is performed through the reference
vector that is more correlated to the pose feature vector. The reference vector is
extracted from the reference prototypes, which are built from the 3D model of a
standard synthetic head that is automatically rotated along all three axes.

Although the introduction of 3D data to tackle the head pose orientation issue
allows yielding a model with high accuracy, the application of these data remains
suffering from some limitations. It is still tougher to label 3D facial landmarks
on 2D images or 3D face scans. The lack of a 3D facial database with a multitude
of 3D annotations compared to the highly available 2D database [Wu and Ji,
2019]. Further, the 3DMM fitting algorithms require accurate initialization of
certain parameters and are sensitive to outliers and partial face occlusion. As
well as, the fitting procedure is computationally expensive. Moreover, the depth
image has some handicaps, such a lot of noise at the edge. Also, it is hard to
attain invariant features because the depth information depends only on distance.
Furthermore, 3D scans and RGB-D sensor technology are not widely used in real-
life applications such as a webcam or video surveillance.

The purpose it is still always focusing on the improving of the performance of
such a head pose estimation model, suggested dimensionality reduction methods
have received considerable attention in this domain. These approaches attempt to
overcome certain drawbacks of the other techniques, mainly the time-consuming
ones. Relying on the assumption that a high-dimensional feature space can be
presented with few dimensions that describe the pose changes. The objective
of these methods is to reduce the search space. Either by a regression model
as a function, which determines the relationship between the appearance of a
face and its poses. Or by using an alternative strategy to model the continuous
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variation of the head pose, based on manifold embedding techniques. Indeed,
these methods are fast and achieve high accuracy. However, this approach is not
enough accurate to predict head pose on a large database. They have somehow
been limited by some problems. Due to the complexity of the linear/non-linear
mappings that relates to the facial images and pose labels, it is difficult to learn
an exact function for robust head pose estimation. Further, not all variations that
may appear in the face are due to the pose variation only.

Nevertheless, a multitude of ways has been developed to surmount these
issues. Usually, these methods leverage the robustness of two approaches or
more to construct a model that can run with them jointly. For example, The
integration of the strengths of manifold embedding methods and regression
methods have been suggested. The manifold-based approaches lead to building
discriminative sub-spaces. That maximized the distance between classes of poses
with very different angles while minimizing the distance between the samples
with the very close poses, intending to reach an effective regression later. Wang
et al. [Wang et al., 2015] proposed a Supervised Sparse Manifold Regression
(SSMR) method that combines the supervised graph Laplacian regularization
and the sparse regression into manifold learning. The supervised Laplacian
regularization allows manifold learning to maintain the preservation of local
geometry structure to yield more discriminative projection embedding, while
the sparse regression can create a projection mapping matrix to perform a
sparse representation of the high-dimensional features to improve the feature
extraction capacity. As well as Diaz-Chito et al. [Diaz-Chito et al., 2016] used
various geometric features combined with two manifold embedding methods
and linear regression to predict head pose orientation. To remove the samples
that do not represent the pose variations, the authors relied on a small set of
geometric features computed from just three representative facial key-points.
While in [Diaz-Chito et al., 2018], they proposed to combine manifold learning
alongside regression methods. The Generalized Discriminative Common Vectors
(GDCV) technique grants the projection of the features onto a feature manifold
space. The features that discriminate the pose orientations are extracted using the
Histogram of Oriented Gradient (HOG) descriptor. Afterward, the head pose is
inferred from a continuous regression composed of split fitting and multivariate
local regression.

As the classification methods are robust to large head pose changes, and
the regression methods are sensitive to a small change of head pose, the
incorporation of classification and regression methods has been used to enhance
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the head pose estimation because performing the regression technique solely
to handle large head angle rotation raises the model complexity. Liu et al. [Liu
et al., 2017] combined random forest classification and regression into a multi-
level structured hybrid forest (MSHF) system. Wang et al. [Wang et al., 2019b]
proposed a cascaded structure for face pose estimation, which can perform
classification and regression concurrently. First, they trained the model to classify
the input image into four categories defined by the authors to narrow down
the estimation range. Next, they employed a regression method on the output
of this classifier to determine the final head angle rotation. In the same way,
Huang et al. [Huang et al., 2020] carried out a model that combined classification
and regression, but in this case, they tackled the methods separately into two
subtasks. The first stage is a binned classification subtask with the optimal pose
partition. The second stage achieves average top-k regression based on the former
prediction.

Another work from Tan et al. [Tan et al., 2018] used the geometric method
and the regression together on RGB-D data to upgrade the head pose estimation.
Luo et al. [Luo et al., 2019] utilized a random forest classification and regression
independently and a 3D model on the depth image. Whilst, Abate et al.
[Abate et al., 2020] applied a regression algorithm that is applied to the Web-
Shaped Model (WSM) algorithm [Barra et al., 2020], to determine the head pose
estimation.

Despite all these works, the problem of research of the optimal dimension,
which reliably considers only variations from pose and ignoring the others, is
still always open.

In light of the above, the most common lack of both feature based
methods and appearance-based methods is feature extraction. Deep neural
network methods can overcome the challenges of feature extraction, which can
automatically extract more discriminative features for face pose estimation.

In a recent advance, deep neural networks have been widely investigated
for head pose estimation, and more eminently, a deep convolutional networks
(CNNs). CNNs can be a perfect tool for processing multidimensional data.
They are particularly suited to image processing. The Tasks-Constrained Deep
Convolutional Network(TCDCN) [Zhang et al., 2016; 2014], is one of the first
works on the problem of head pose estimation using CNN. The authors learned
multi-task architecture where the facial landmark detection is the principal
task, whereas the head pose is considered as an auxiliary task. Venturelli et al.
[Venturelli et al., 2017] used Siamese CNN to improve the loss function of neural
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networks which has been fed by depth images. Patacchiola et al. [Patacchiola
and Cangelosi, 2017] trained different CNN models in a wild environment.
Ruiz et al. [Ruiz et al., 2018] proposed to learn multi-loss deep network on
synthetic data to predict intrinsic Euler angles from image intensities by using
joint binned pose classification and regression. Lathuiliere et al. [Lathuiliere et al.,
2017], suggested a hybrid model based on CNN and Gaussian mixture. Borghi
et al. [Borghi et al., 2017] are considered as the pioneers who used the recurrent
network to estimate the head pose. They have created a system that consists
of 5 convolutional layers and 3 max-pooling layers followed by 2 LSTM (Long
Short Term Memory) in which, the depth images are the input data and the
continuous 3D Euler head angles are the output. Xia et al.[Xia et al., 2019] feed the
facial landmark and landmark heatmap into a CNN to enhance the performance
of the head pose estimator. Gupta et al.[Gupta et al., 2019] take the five facial
key points: left ear, right ear, left eye, right eye, and nose, and input them into
a convolutional neural network to regress the head pose. While Xu et al. [Xu
et al., 2019] built soft labels using a Gaussian distribution function from entire
images, then feed them into a convolutional neural network which combines
the Kullback–Leibler divergence loss and Jeffrey’s divergence loss as optimizers.
Hsu et al. [Hsu et al., 2018] suggested to estimate the head pose a CNN model
combined with multi-regression loss function to avoid the ambiguity problem in
Euler angles. Vo et al. [Vo et al., 2019] proposed a method called SAE-XGB, SAE
for Stacked Autoencoder, and XGB for Extreme Gradient Boosting. To reduce the
dimensionality of feature vectors, the authors have stacked multi-fully connected
hidden layers with different hidden units to build a Stacked Autoencoder (SAE).
The autoencoder is an unsupervised learning neural network used to encode the
global features extracted from the Histogram of Oriented. Then, a supervised
learning model named XGB classifies the output of this autoencoder in two
classes, pitch and yaw angle. To improve the performance and deep metric
learning, a convolutional neural network is trained to learn head features under
the joint supervision of classification and regression loss [Wang et al., 2019a,
Dai et al., 2020, Sun and Lu, 2020]. Based on convolutional neural networks and
geometric projection, Gao et al. [Gao et al., 2020] proposed a method to infer
the face pose as well as the more frontal face of the input images. This method
performs in two stages. At the first stage, the face images are classified into five
categories through the CNN model. Secondly, geometric projection is applied to
reach the offset angles and scores of the face in the three directions of roll, yaw,
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and pitch. Finally, the final score of face poses yields by combining the decisions
of the two previous stages. The higher score defines the more frontal face pose.

According to panoramic of state of the art, we can mention that the feature-
based approaches are speedy and present excellent performance, particularly
in frontal images or small angles. The difference in the appearance of human
faces is not affected. These methods are still sensitive to partial occlusions that
obscured some landmarks, and they are not efficient for certain degenerative
angles. Furthermore, these facial points are non-uniform for all human faces.
Therefore, only one model has been unable to represent all the heads precisely.
Contrariwise, the appearance-based approaches are quite efficient and relatively
simply implemented. Since these approaches have used the full image of
the head, these methods are less sensitive to partial occlusions and extreme
angular views. They have attracted more and more attention, especially the
dimensionality reduction methods that achieved high accuracy. However, the
problem of facial features extraction without other changes in the image is still a
hot topic and an open research problem.

Besides, thanks to the successful results that have been achieved relying
on deep neural networks. In the recent years, the majority of contributions to
estimate the head pose have been based on machine learning approaches through
deep neural architectures. Nevertheless, the computational cost of deep learning
is very expensive due to the high dimensionality of the parameters and the
features that are calculated in training (the dimension of the weights is in the
order of billion). The dimension of these parameters increases linearly with the
dimension of the input data.

2.5 Conclusion

In this chapter, we first presented the set of head pose estimation methods that
are mainly used or that have led to significant progress in the field. The first
category depends basically on local information of the facial region, which is
known as feature-based methods. The second category is based essentially on
the global characteristics of the face, which is named appearance-based methods.
Subsequently, we have discussed the strengths and weaknesses of each approach,
as well as the proposed state-of-the-art attempts to overcome the limitations.
However, further research is involved to reach the state-of-the-art performances.

In the next chapter, we will present our attempt to address these limitations,
and we will expose our approach based on the use of dimensionality reduction
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through time series. The method is robust and fast, we narrow down the solution
space from the 2D to 1D space thanks to the space-filling curve and time series
representation.
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3.1 Introduction

The face is the most commonly used biometric parameter for human recognition.
Although great progress has been achieved in face detection, it is still hard to
estimate its poses. Head pose estimation has emerged as an important field in
computer vision.

Usually, the head pose estimation problem can be handled in two main
steps: feature extraction and classification model creation. Various techniques
and descriptors have been used to extract a representation that can discriminate
the poses of the face in an image, such as scale-invariant feature transform (SIFT)
[Alioua et al., 2016], histograms of oriented gradients (HOG) [Wang et al., 2013a],
speeded up robust features (SURF) [Bay et al., 2008], and the Haar-like features
[Jones and Viola, 2003]. Then supervised algorithms used these features to learn
a model for estimating the head poses such as support vector machine (SVM),
and neural networks (NN).

Despite a lot of existing methods that have provided acceptable classification
results, they are often complex to implement and computationally costly.
Frequently, the complexity arises from the way that is used to extract features.
Starting from these bottlenecks, we propose SAX2FACE in this thesis, a simple
and efficient alternative solution that suggests a method to extract the features.
SAX2FACE relies on the usefulness of extracting knowledge through time series
and used a time series dimensionality reduction method (SAX) to address the
problem of facial pose estimation. Thus, the head pose estimation becomes a
time series classification task.

This chapter revolves around five sections. First, we briefly introduce the
underlying concepts of the time series data mining and their representations,
then providing sufficient knowledge background about symbolic aggregate
approximation (SAX). Next, we show how to represent the face image as
times series, while the use of space-filling curves allows us to yield this aim.
Subsequently, we convert the face image time series to symbolic sequences using
the SAX technique to build classifiers models that classify these time series, thus
the face pose is inferred. Finally, we evaluate the efficiency of the methods under
diverse protocols on several databases.
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3.2 Time Series Data Mining

The technological advance achieved in the last decades leads to collect and tackle
a huge bulk of data in many fields of business and science. The fast progressing
computing power and the lessening costs of high volume data storage released
the collection of enormous amounts of data.

Classical statistical analysis methods can’t analyse these enormous amounts
of data. Data mining is the discipline that encloses both the statistics rules and
computer science to handle and analyse this information to become meaningful
and useful. In other words, it is the result of the hybridization of statistics,
computer science, artificial intelligence, and machine learning, to explore hidden
and relevant information previously unknown through this data and provide
important information as it is new, valid, and useful to the expert user.

One of the most common and a special kind of data in data mining, which
presents a great interest to researchers in this field, and a lot of endeavours
are put into understanding and analysing it, known as Time Series. Time
series are sequences of numerical values collected nearly everywhere and every
day and typically organized in non-random orders. Time series is the data
model that can commonly be omnipresent in various fields, such as medicine
e.g., electrocardiogram (ECG), finance (daily fluctuations of the stock market),
multimedia, meteorology (variation in temperature daily, monthly or yearly),
Bioinformatics, pattern recognition, text mining, computer vision, and others.

The high dimensionality is a major challenge that hampers the analysis of
time series. Dealing with the time series in the original format is very costly
in terms of both processing and storage. To overcome this obstacle, one can
put the focus on finding the best representation, that can transform the original
data to another reduced space. Therefore, the high-level representation requires
the reduction of dimensionality with the preservation of the fundamental
information of the original database.

3.2.1 Time Series Representation Methods

The leading motivation spurred to represent a time series than using the original
values is to provide a concise display and clear notion that emphasizes the main
features. Further, benefits can speed up the processing time, so that if a time
series X of original length n to m� n is represented in reducing dimensionality,
the computational complexity can be reduced from O(n) to O(m). Undoubtedly,
the selection of a suitable time series representation is related to the way that
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has the utmost preservation of local and global information of the original
time series. In another meaning, the representation should allow minimizing
modelling error(Lower Bounding), i.e. when two-time series are transformed into
a new space, the distance between them should be less than or equal to the
distance in the original space, i.e. DLB(Q′, S′) ≤ D(Q, S) as illustrated in figure
3.1.

Figure 3.1 – Illustration example of the lower bounding property.

To achieve these goals and properties, the time-series data mining community
developed many representations and techniques that can address these
requirements properties. These representations methods transform and reduce
time series either into a smaller number of numeric coefficients or into a
discretized or symbolic representation, and can be grouped into three main
categories: data-adaptive, non-data-adaptive, or model-based.

3.2.1.1 Non-data-adaptive

Dimension reduction methods are considered as non-data-adaptive
representation when the time series transform into a different space, and the
selection of a subset of the coefficients is independent of the data set. The
transformation parameters are fixed a priori and remain the same for all time
series regardless of their nature. One of the first works on this subject was
carried out by Agrawal et al. [Agrawal et al., 1993], who pioneered the use
of a discrete Fourier transform (DFT) to compress the time series. Agrawal
et al.[Agrawal et al., 1993] decomposed the time series into sinusoidal waves
through the Fourier coefficients. They showed that the first few waves are
enough to represent the time series and can drop the rest without any impact on
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the reconstruction error. As well as the Discrete Wavelet Transform (DWT) [Chan
and Fu, 1999], transforms the time series into a frequency domain, and take into
account the local and global shape to provide the final representation of time
series, where the DWT processes the series at different scales and resolutions
of a mother wavelet function. The Piecewise Aggregate Approximation (PAA)
[Keogh et al., 2001], is a completely different approach that proposed to generate
time series representation by dividing the time series into w equi-length windows
and calculating mean value of the subsequences in the corresponding windows
(Details of this method will be presented in the sub-section 3.3.2).

3.2.1.2 Data-adaptive

Unlike the previously mentioned methods, the transform parameters in the data-
adaptive techniques, are not fixed a priori but are chosen depending on the
available data. However, all non-data-adaptive approaches can be transformed
into data-adaptive ways by adding data-sensitive proceeding schemes. As
an example, Chakrabarti et al. [Chakrabarti et al., 2002], proposed Adaptive
Piecewise Constant Approximation (APCA) as an adaptive version of PAA.
Another simple representation is the Singular Value Decomposition (SVD) [Korn
et al., 1997], which carries out the final time series representation from the linear
combination of the basic shapes that best represent the original data through a
global transformation of the entire database, and rotates the axes to maximize
variance over the first few dimensions. There are different manners to reduce
the dimensionality of time series that transforms it into symbolic sequences, the
most popular one of them is the method introduced by Lin et al. [Lin et al.,
2007], called Symbolic Aggregate Approximation (SAX).The underlying logic of
SAX will describe in section 3.3.

3.2.1.3 Model-based

Another group of representations of time series are methods based on a model.
These methods depend on the assumption that the time series have been
produced by a certain model. Dimensionality reduction is achieved by fitting
the model to the data to infer the parameters that generate the time series.There
are several approaches using parametric temporal models such as statistical
modelling via feature extraction [Nanopoulos et al., 2001], or the ARMA and
ARIMA models[Kalpakis et al., 2001]. More sophisticated approaches include
Markov Chains or Hidden Markov Models (HMM) [Panuccio et al., 2002].
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More time series representations are described in the published works such
as [Fu, 2011, Kleist, 2015, Wang et al., 2013b].

3.2.2 Distance and Similarity Measures

One of the most important reasons for dimensionality reduction methods of the
time series is to simplify and expedite the similarity measures task. Similarity
measures are the backbone and the bottleneck of time series data mining, as
well as, it is fundamental to manipulate and compare the time series. Indeed,
the similarity measure means measuring the distance between time series, which
permits identifying the similarity (or dissimilarity) of two-time series, thus being
used for any search, clustering, or classification process.

The most common methods for numeric time series similarity computation
are Euclidean distance and Dynamic Time Warping (DTW)[Ratanamahatana and
Keogh, 2004]. Euclidean distance is the most widely used measure to estimate
the distance between two time series x and y.

Deuclide(x, y) =

√
n

∑
i=1

(xi − yi)2 (3.1)

Despite Euclidean distance presents several properties, in addition to its
simplicity, and its efficiency in many cases, but Euclidean distance has the
drawbacks that make it unsuitable to use for some applications. Therefore, it is
used only to compare two-time series of the same length. Further, it is also highly
sensitive to time distortions, such as shifting, uniform amplitude scaling, uniform
time scaling, uniform bi-scaling, time warping, and non-uniform amplitude
scaling.

Figure 3.2 – Representation of Euclidean Distance between two Time Series.

Meanwhile, the DTW allows overcoming the limitations of Euclidean distance
by seeking the best alignment between two time series x and y of length N and
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K respectively. The optimal alignment is achieved by calculating the shortest
warping path in the matrix W of dimension N × K containing the distance
between each point, such that: D(i, j) = (xi − yj)

2. The path that minimizes the
warping cost DTW(x, y) between x and y, is defined as follows

DTW(i, j) = D(xi, yj) + min


DTW(i, j− 1) repeat xi

DTW(i− 1, j) repeat yj

DTW(i− 1, j− 1) repeat neithe

(3.2)

Figure 3.3 – Representation of DTW distance between two time series and its optimal warping
path. (a) DTW distance, (b) Warping path.

Concerning the discrete or symbolic time series, other ways have been used.
Among the well-known edit-based distances in time series field, we can cite: the
edit-distance, also known as the Levenshtein distance [Ristad and Yianilos, 1998],
and the Longest Common Subsequence (LCSS) [Das et al., 1997].

The Edit distance measured the similarity between two strings S and T,
by determining the minimum number of operations’ insertion, deletion, and
substitution required to convert one string into another. So the distance is
obtained by the following formula:

Edit(i, j) = min


Edit(i− 1, j− 1) if si = tj copy
Edit(i− 1, j) + 1 if si 6= tj substitute
Edit(i− 1, j) + 1 insert
Edit(i, j− 1) + 1 delete

(3.3)
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The LCSS seeks to find a common subsequence of all the sequences that
is of maximal length. A subsequence is a sequence that appears in the same
relative order but not required to occupy consecutive positions within the original
sequences. The optimal matching between two strings S and T can be expressed
by enumerating these cases:

LCSS(i, j) = max


LCSS(i− 1, j− 1) + 1 only if si = tj

LCSS(i− 1, j) otherwise (no match on si)
LCSS(i, j− 1) otherwise (no match on ti)

(3.4)

A more suitable distance measure for discrete time series is the MINDIST
function, which was especially pioneered for SAX, and we will give more detail
in sub-section 3.3.4

3.3 Symbolic Aggregate Approximation (SAX)

As we have mentioned earlier, the analysis of time series requires the reduction
of dimensionality by transforming the input data into a lower-dimensional
representation. One of the prominent used techniques is the Symbolic Aggregate
approXimation (SAX).

SAX is a symbolic representation of time series which transforms a numerical
series into a symbolic sequence, that performs dimensionality reduction with
a minimum modelling error (Lower Bounding), as well as, it can significantly
reduce computational complexity. This method runs in three steps:

1. Normalization

2. Window-based averaging

3. Value-based discretization

3.3.1 Normalization

Time series typically need to be normalized. Normalization is a rescaling of the
data from the original to zero mean and standard deviation of 1, to keep away
from comparing time series with different offsets and amplitudes.

Let T be a time series of size n such that T = (t1, t2, ..., tn), each element of T
is with:

si =
ti − µ

σ
(3.5)
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Figure 3.4 – Illustration of SAX procedure.

where µ is the mean value of all elements in T, and σ is the standard deviation.

µ =
1
n

n

∑
i=1

ti , and σ =

√
1
n

n

∑
i=1
|ti − µ|2 (3.6)

And S = (s1, s2, ..., sn) denoted the normalized series S.

3.3.2 Window-based averaging

The main idea of SAX is to use a PAA (Piecewise Aggregate Approximation)
[Keogh et al., 2001] representation as an intermediate step between the raw data
and the generated symbolic sequence. This step used to divide the time series of
length n into w windows of equal size (frame is also known as codeword (w))
and the average time-series value over successive and equally-spaced windows is
computed, and a vector of these values becomes the data-reduced representation.
The sum of these averages is based on the transformation series PAA.

As a reminder, the PAA coefficients are derived by slicing the normalized
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time series into w equidistant frame. The PAA converts the sequence S of size
n into a new sequence, of size w with w � n, and it is denoted by S̄, such as
S̄ = (s̄1, ..., s̄w), such that the ith element of S̄ is calculated using the following
equation:

s̄i =
w
n

w
n i

∑
j=w

n (i−1)+1
sj (3.7)

The result of this approximation can be illustrated in figure 3.5.

Figure 3.5 – Example of the PAA representation to approximate a time series. The original time
series T (in black) has a size n = 128 and the PAA approximation has a size w = 8 (in rad)
[Flocon-Cholet, 2016].

3.3.3 Value-based discretization

The last step is to convert the sequence PAA (S̄) into a series of symbols,
belonging to an alphabet A of size "a" (a is an alphabet size also known as a
codebook), such that A = {α1, ..., αa}. To do this, it is necessary to define the
(a − 1) breakpoints that divide the space of values, where each specific region
will be associated with this a symbol αi.

The SAX developers have shown that time series that are normalized follow
a Normal distribution (Gaussian distribution). The normalized distribution can
easily choose areas of equal size on the Gaussian curve, which defines the
breakpoints [Lin et al., 2007]. Lin et al.[Lin et al., 2007] used a lookup table to
determine breakpoints that divide a Gaussian distribution in an arbitrary number

48



Chapter 3. Representation of the time series for head pose estimation

of equiprobable regions (the number of breakpoints βi is related to the size of the
alphabet "a", where number (breakpoints) = alphabet size - 1. Breakpoints are a sorted
list of numbers B = {β1, ..., βa−1}, such that the area under an N(0,1) Gaussian
curve from βi − βi−1 = 1/a.

The subdivision of the normal distribution is illustrated in figure 3.6. In this
figure, we can see the breakpoints defined for an alphabet of size 3, 4, 5, and 6

symbols.

Figure 3.6 – The breakpoints are defined so that each symbol has the same probability of
occurrence. We illustrate here the cases where there are 3, 4, 5, and 6 symbols (from left to right)
[Flocon-Cholet, 2016].

A lookup table that contains the breakpoints is shown in Table 3.1.

Table 3.1 – Lookup table that contains statistical breakpoints [Lin et al., 2007].

a 3 4 5 6

β1 -0,43 -0,67 -0,84 -0,97

β2 0,43 0 -0,25 -0,43

β3 - 0,67 0,25 0

β4 - - 0,84 0,43

β5 - - - 0,97

Hereafter, the PAA representation is symbolized into a sequence of discrete
strings. The interval between two successive breakpoints is assigned to a symbol
of the alphabet, and each segment of the PAA within this interval is discretized
by this symbol. So all PAA coefficients that are below the lowest breakpoint are
encoded by the symbol "a", then all PAA coefficients that are above or equal the
lowest breakpoint and lower than the second smallest breakpoint are encoded by
the symbol "b", the following symbol is "c" and so on, i.e. α1 = "a", α2 = "b", α3 =

"c", etc. . .
Figure 3.7 presents an example of SAX symbolization. The time series T of
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length n = 128 is converted into a SAX sequence Ĉ, of size w = 8 with alphabet
of size a = 5 such that Ĉ = "d", "b", "a", "b", "e", "e", "c", "b".

Figure 3.7 – Example of SAX representation of a time series with the number of segments w
equal to 8, and the size of alphabetic symbols a is 5. The orange dashed lines represent breakpoints
[Flocon-Cholet, 2016].

3.3.4 SAX distance function

Measuring the similarity is an important task of the time series data mining.
One of the most positive aspects of SAX is that it represents lower bounding for
Euclidean distance. To measure the similarity we use the following formula:

MINDIST(Q̂, Ĉ) ≡
√

n
w

√
w

∑
i=1

dist(q̂i − ĉi)2 (3.8)

Where Q̂ and Ĉ are the symbolic representation of numerical time series Q
and C respectively. The dist function is implemented using the lookup table for
the particular set of breakpoints as illustrated in Table 3.2 [Lin et al., 2007]. The
distance dist(r,c), between two SAX symbol values r and c is calculated by the
following expression:

dist(r,c) =

{
0 if |r− c| ≤ 1
βmax(r,c)−1 − βmin(r,c) otherwise

(3.9)

Thus, the distance between any successive symbols of the alphabet is zero.

Table 3.2 – A lookup table used by the MINDIST function for an alphabet size a = 4.

a b c d

a 0 0 0,67 1,34

b 0 0 0 0,67

c 0,67 0 0 0

d 1,34 0,67 0 0
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3.4 The face image Time series

As reported above, the basic concept of our approach is to use time series
to estimate the pose of the face in an input image. To reach this goal, it is
required to represent the face image in a mapped one-dimensional vector. So
that dimensionality is reduced and consequently, the complexity of the learning
steps becomes weak.

An image is a multidimensional representation in which each dimension
represents a height, width, depth, or level of resolution. A 2D face image is
a two-dimensional function, f (x, y) (equation 3.10), where x and y are spatial
coordinates, and the amplitude of f at any pair of coordinates (x, y) is called the
intensity of that image at that point. An image can be represented as a matrix
(M×N), such that the elements of this matrix are the pixels. The number of points
or pixels increase rapidly with the image resolution (each pixel represents one of
the colour or greyscale information).

f (x, y) =


f (0, 0) f (0, 1) · · · f (0, N − 1)
f (1, 0) f (1, 1) · · · f (1, N − 1)

...
... . . . ...

f (M− 1, 0) f (M− 1, 1) · · · f (M− 1, N − 1)

 (3.10)

To convert an image from a multidimensional representation into a one-
dimensional representation to generate the face image time series, we used the
space-filling curve to scan and intelligently traverse the image. Afterward, the
SAX symbolization technique is applied to each time series, which encodes the
numeric vectors into a string sequence as shown in figure 3.8.

3.4.1 Space-Filling Curve SFC

In Scientific Computing, space-filling curves (SFCs) are interesting and useful
tools to improve certain properties of data structures or algorithms, or even to
carry out dimension reduction, or for fast optimization of complex problems.
The SFCs are encountered in various areas of computer science, particularly if
it is important to linearize multidimensional data, such as compression, pattern
recognition, or texture analysis etc. . . .

Space-filling curves (SFCs) are a manner of mapping the higher-dimensional
problems to a one-dimensional problem. They are special types of curves that
can cover and pass through all the points in space once and only once in a
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Figure 3.8 – Example of conversion of an image 8×8 into a SAX sequence.

particular order. Thus, we can consider it as an orderliness of these points on
a line while preserving the locality, i.e. the close points are closely ordered on
the line. Numerous well-known curves can completely cover an area and order
points (see figure 3.9).

Figure 3.9 – Some examples of two-dimensional space-filling curves.

SFCs generate and affect to each point a unique identifier, using the
coordinates of this point. This identifier characterizes the position of the point
in a one-dimensional space. Each space-filling curve uses a strategy to determine
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a visiting order of the points of the multidimensional space. The space-filling
curve thus requires a linear order of the points. This linearization allows a one-
dimensional indexing structure to index the objects: they are indexed by their
identifier. Figure 3.10 illustrates an example of a one-dimensional indexing of a
2D space

Figure 3.10 – Examples of conversion of a 2D space into a 1D.

The locality preserving and continuity are principal criteria for selecting the
most suitable space-filling curve. The Peano-Hilbert curve is a diacritical among
the space-filling curves, which is characterized by its simplicity, neighbourhood
preservation, and continuity (figure 3.12).

The Peano-Hilbert curve is a recursive function that operates on the S area,
which is constructed via an iterative process to fill the square [0, 1]2. It is defined
by the following algorithm:

1. Divide the initial square (image matrix) into four squares congruent and
connected the centre of each point in a clockwise direction without return
back to the first point as in figure 3.11-a.

2. Each square is divided again to form four groups of four squares. Similarly,
it connects the central points so that the latter group 1 is connected with
the first point in group 2, and so on as in figure 3.11-b.

3. Repeat this process until we reach infinity covering the original with a
square curve.

An image of resolution M × M (2D) can be represented as a square of M2

area. Thus, the scanned image by SFC curve can be regarded as a curve in one
dimension space with a length equal to the square of M.
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Figure 3.11 – Example of the Peano–Hilbert’s construction curve: (a) the unit interval to unit
square mapping; (b,c) the second and third-order curves [Bauman, 2006].

Although the construction of the Peano Hilbert curve is difficult relative to
the Scan and Sweep curves (figure3.9), but it presents the best conservation of
the locality of pixels. Where the image pixels are ordered in such a way that
the locality of these pixels will be quasi sequentially, which is less true to the
other curves. This property permits to keep the order of the information given
by pixels. Therefore, it allows preserving the similarity and the dissimilarity
between the original images.

Note that in this thesis, to generate the face image time series, we used two
space-filling curves: Sweep-curve and Peano-Hilbert curve. The Sweep-curve is
constructed in a simple way where the image is scanned row by row from left to
right starting from the top left as figure 3.12 shows.

Figure 3.12 – Examples of conversion of an image into a 1D.

It is worth pointing out that before transforming any face image into a
vector representation using a space-filling curve as we mentioned above, we
have effected some modifications, or rather, we preprocessed each face image.
We performed some filters to enhance the image quality in an attempt to benefit
from all the information in the input image. Especially, the captured images are
not always acquired in controlled illumination environments.
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3.4.2 Image filtering

As in the real cases, the images are with different illumination, so, for the sake of
smooth workflow, it is required to preprocess the face images first to increase
visual quality in an image and to obtain the necessary information from an
image, then we map them afterward into 1D.

Hence, we use different categories of images during the learning of the model
with three categories of images. Firstly, we use the images of the database as
they are without processing. Secondly, we apply a gradient filter on images.
Then, we use the LBP transformation of the image quotient filtered by a dynamic
morphological filter (DMQI− LBP). All these categories of images are mapped
into one-dimension with the sweep curve. Meanwhile, the face images scanned
with Peano-Hilbert curve are filtered by Gaussian or Laplacian filter. So, each
face image has six representations into one-dimension space, which are:

1. Time series generated through mapping the Sweep curve over the face
image without processing.

2. Time series generated through mapping the Peano-Hilbert curve over the
face image without processing.

3. Time series generated through mapping the Sweep curve over the face
image was performed with the gradient filter.

4. Time series generated through mapping the Sweep curve over the face
image that was processed with the (DMQI− LBP) operator.

5. Time series generated through mapping the Peano-Hilbert curve over the
face image that was performed with the Gaussian filter.

6. Time series generated through mapping the Peano-Hilbert curve over the
face image that was performed with the Laplacian filter.

3.4.2.1 Gradient filter

The gradient of an image measures the changes in the intensity of the same point
in the original image in the horizontal and vertical directions. Mathematically,
the gradient of a function of two variables is a vector in two dimensions. The
modulus of the vector is the magnitude of the gradient which tells us how quickly
the image is changing, while the direction of the vector tells us the direction in
which the image is changing most rapidly. The gradient at an image location is
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computed by combining the partial derivative of the image in x direction and the
y direction. We can write this as:

∇ f (x, y) =
(

∂ f
∂x

,
∂ f
∂y

)
(3.11)

and the magnitude of the gradient is:

|∇ f (x, y)| =
[(

∂ f
∂x

)2

+

(
∂ f
∂y

)2
]1/2

(3.12)

The gradient operator is not very sensitive to illumination changes as well as
invariant under image rotation. These properties are important, and motivate
us to use the gradient filter to improve the image quality in low illumination,
therefore allow us to increase the classification rate.

Because the gradient acts as a high-pass filter which renders it sensitive to
noise, the image gradient is filtered by Gaussian filter with Unsharp contrast
enhancement filter which sharpened edges of the elements without increasing
noise or blemish.

Figure 3.13 – Example the gradient of the original image in low and natural illumination.

Figure 3.13 shows that the gradient of the original image (figure 3.13-f,-h) in
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low lighting (figure 3.13-b,-d) is almost the same as the image in natural lighting
(figure 3.13-a,-c).

3.4.2.2 Gaussian filter

Gaussian filters are a class of linear smoothing filters with the weights chosen
according to the shape of a Gaussian function. Gaussian filter is a low pass filter
that is widely used for smoothing and noise removal. The Gaussian function for
calculating the transformation in each pixel of an image I(i, j) is given as:

G(x, y) =
1

2πσ2 e
−
(

x2+y2

2σ2

)
(3.13)

where (x, y) denotes the Cartesian coordinates of the image which show the
dimensions of the window. And σ is the standard deviation of the Gaussian
distribution, that determines the filter response. The image smoothing effect will
be higher if σ has a large value.

Convolution of the image I(i, j) by a kernel H(x, y), yields a new image
I′(i′, j′) which is defined as:

I′(i′, j′) = ∑
(x,y)∈RH

I(i− x, j− y)× H(x, y) (3.14)

where H(x, y) = G(x, y).
The Gaussian filter is isotropic if the kernel windows size is large enough for

a sufficient approximation (at least 5× 5).

3.4.2.3 Unsharp Masking

Unsharp masking (USM) is an old method of image sharpening, which was
introduced by Schreiber [Schreiber, 1970] in 1970 for the purpose of improving
the quality of wire photo pictures for newspapers. The USM is one of the most
ubiquitous techniques for edge sharpening. The process of unsharp masking
emphasizes the high-frequency components of an image, i.e. the edge regions
where there is an explicit change in image intensity. So the first step in the USM
filter is to subtract a blurred (low-pass filtered) version of the image from the
original to generate the mask.

let f̄ (x, y) indicates to the blurred image, the unsharp mask can be expressed
as:

gmask(x, y) = f (x, y)− f̄ (x, y) (3.15)
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Subsequently, the mask is added again to the original weighted by the factor
λ, which controls the amount of sharpening. Thus, the sharpened image is
expressed in equation form as follows

g(x, y) = f (x, y) + λ ∗ gmask(x, y) (3.16)

For λ = 1, we have unsharp masking. For λ > 1 the process is referred to as
high boost filter.

3.4.2.4 Laplacian filter

The Laplacian of an image strengthens regions of rapid intensity change and
attempts to deemphasize regions with slowly varying. Therefore, the edges on
images and the contrast of edges can be noticed more clearly. The Laplacian filter
is also a derivative operator as the gradient operator, which can be accomplished
by combining of the second derivatives in the horizontal and vertical directions.
The Laplacian of an image f (x, y) denoted ∇2 f (x, y), is defined as:

∇2 f (x, y) =
(

∂2 f
∂x2 ,

∂2 f
∂y2

)
(3.17)

We can see the Laplace filter effect on the image in the figure 3.14. We mention
that the original images in natural illumination are showed in figures 3.14-a,-c,
and which are in low illumination are showed in figures 3.14-b,-d.

3.4.2.5 DMIQ-LBP image

The DMIQ-LBP image is obtained after the application of Dynamic
Morphological Quotient Image [Wang et al., 2007], combined with Local binary
pattern (LBP) [Huang et al., 2011a], as shown in figure 3.15. We noted that figures
3.15-a,-c show the original images in natural illumination, while figures 3.15-b,-d
are in low illumination.

An image in certain lighting conditions can be represented by the production
of the illumination L and reflectance R. Such a module can be expressed as
follows:

I(x, y) = L(x, y) ∗ R(x, y) (3.18)

Where I(x,y) is a value of each pixel in an image, L(x,y) is dependent on the
lighting source, while R(x,y) is determined by the characteristics of the surface
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Figure 3.14 – Example of the original image in low and natural illumination over the Laplacian
filter.

of an object. Using equation (3.18), the reflectance can be expressed as the
quotient of the base image and the illumination L [Shashua and Riklin-Raviv,
2001]. The filtering of the illumination will lead to the invariance reflectance. A
convenient filter can reach this aim. Motivated by the low complexity and the
good performance of the morphological quotient image (MQI), the estimation of
the illumination L(x,y) is done by using a morphological close operator, which is
a non-linear operator defined by a dilation followed by an erosion.

R(x, y) =
I(x, y)
L(x, y)

=
I(x, y)

Close(x, y)
(3.19)

The dilatation effect is to expand the image where the pixels of the expanded
image are the sum of the pixels of the original image and the structuring element.
This transformation tends to eliminate dark objects. Contrariwise, erosion is
the effect of shrinking the image while the pixels of the eroded image are the
difference pixels between the original image and the structuring element. Erosion
allows darkening and spreading the edges of the darkest objects. Therefore,
with a suitable size of a structuring element, the close operation can preserve
some particulate patterns while it attenuating others. The close eliminates the
dark areas that are smaller than the structuring element, keeps the edges of the
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Figure 3.15 – Example DMQI-LBP image of the original image in low and natural illumination.

object, and connects the areas of the same light intensity. The way to make the
illumination invariant is to use the close operator, which lead to a smooth version
of the input image, especially for images with low lighting.

The size of the structuring element plays an important role in making a good
morphological filter. Wang et al. [Wang et al., 2007] have indicated that with a
large structuring element, the close operator keeps only the large-scale features,
but poor performance to compensate on local illumination especially in the case
of images under the dark zone. On the other hand, with a small size, it results
in good local illumination normalization, but simultaneously misses large scale
features. To overcome this problem, Zhang et al. [Zhang et al., 2007] proposed
Dynamic Morphological Quotient Image (DMQI) using a structuring element
with dynamic size according to the formula (3.20). DMQI is expressed by the
equation (3.21).

DClose(x, y) =


Closel(x, y), α ∗ Closes(x, y) < Closel(x, y)
Closem(x, y), β ∗ Closes(x, y) < Closel(x, y) < α ∗ Closes(x, y)
Closes(x, y), Closel(x, y) < β ∗ Closes(x, y)

(3.20)

DMQI(x, y) =
I(x, y)
L(x, y)

=
I(x, y)

DClose(x, y)
(3.21)
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Where α and β are the parameters of the feature scales, while α > β > 1.0. l,
m, and s are the optional sizes of templates, while l > m > s > 1 [Zhang et al.,
2007].
In the regions of brow, eye, nose, mouth, or the boundary of changing light
intensity, the greyscale is changing significantly. In this case, the choice of the
close operator with a large size is better to keep the features of these regions. So,
the DMQI image is calculated using the condition α ∗ Closes(x, y) < Closel(x, y),
which shows that pixels of the close operator with a large size is very different
than the pixels of image obtained by the close operator with small size. However,
if the regions are under illumination or in a smooth region, such as cheek and
forehead, the change of grey values in these regions is weak. So, in this case, the
use of the close operator with a small size is sufficient. Thus, the DMQI image is
calculated using the condition Closel(x, y) < β ∗ Closes(x, y) Zhang et al. [2007].

3.5 The used machine learning algorithms

The ultimate goal of our thesis is the classification of the face poses. After the
representation of each face image with time series that are coded with SAX
representation and measure the pairwise similarity matrix between all symbolic
time series, the last step is to classify the sequence (therefore the face image) to
assign each one to an adequate class (frontal or profile view classes).

3.5.1 K-Means Clustering

The k-means is an unsupervised classification algorithm. It is the most popular
type of partition clustering method, which provides clusters of data. The data
are iteratively partitioned into a subset of k groups. These clusters are formed
iteratively to determine the intrinsic group among the unlabelled database. The
k-means split the data according to the similarity, where the similar elements
share the same cluster [Hartigan, 1975].

First, the k-means algorithm selects randomly the k cluster centroids c1, . . . , ck

in the data-points. Each centroid will define a cluster. Then two steps are
executed:

• Classification: each datapoint is assigned to the closed centroid in terms of
similarity, i.e. by measuring the Euclidean distance between each point in
the cluster and the mean of their centroid.
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• Minimization: in this step, centroids are repositioned in a position that
minimizes the sum of the distance of all datapoints assigned to it.

The process is repeated until all the points are assigned to their respective
clusters. In other words, each datapoint is labelled with the name of the closed
cluster.

The figure 3.16 explains the k-means Clustering Algorithm procedure.

Figure 3.16 – Illustration of k-means algorithm.

The K-means algorithm [Ertel, 2018] is described as follows:

Algorithm 1 K-means algorithm
Input: A database of point X = {x1, . . . , xN}

k: Number of desired clusters
Initialization:
Choose randomly k initial centres C = {c1, ...., ck}

repeat
classify instance x1,. . . ,xN to each nearest ci;
Recalculate ci, . . . , ck.

until No change in ci, . . . , ck
return (ci, . . . , ck)

The cluster centroids C for points x1, . . . , xN is calculated by:

C =
1
N

N

∑
i=1

xi (3.22)
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where N is the number of all datapoints.
Thus, the objective of k-Means clustering is to optimize total intra-cluster

variance, or, the squared error function:

J =
N

∑
i=1

k

∑
j=1
||x(j)

i − cj||2 (3.23)

Where J is the objective function of the centroid of the cluster. k is the number
of clusters and N is the number of cases. C is the number of centroids. X is the
given data-point from which we have to determine the Euclidean Distance to the
centroid.

3.5.2 K-Nearest Neighbours (KNN)

The KNN or K-nearest neighbours is one of the topmost supervised machine
learning algorithms. It is non-parametric, in which any assumption for
underlying data distribution is required. As well as, it is lazy learning
classification method. An algorithm is denoted a lazy learning when it classifies
the new observation based on stored, and labelled instances rather than it learns
a discriminative function from the training data [Thirumuruganathan, 2010]. In
other words, the lazy algorithm stores merely the training database, and are all
used to measure similarity with a new instance.

The idea behind the KNN is to label an unlabelled instance with the class of
the closest instances in the training set. Put another way, the KNN computes the
KNN closest nearest class to the query or test point using distance measures such
as Euclidean distance, Hamming distance, Manhattan distance or Minkowski
distance. The label assigned to this query point is the label of the class of the
most votes among those nearest neighbours.

The KNN steps process can be outlined as follows

Algorithm 2 KNN algorithm
Input: X: training data,Y: class labels of X

query x , K Nearest Neighbour
for i = 1 To N do

Compute distance d(Xi, x)
end for

Compute set I containing indices for the k smallest distances d(Xi, x).
return Majority label for {Yi where i ∈ I}

An example of classification using KNN with K = 3 is shown in figure 3.17

63



Chapter 3. Representation of the time series for head pose estimation

In this illustration, the first class is represented by a star and the second by a
triangle. The new instance to be classified is in the form of a square with a
question mark inside.

Figure 3.17 – Illustration of KNN algorithm for K = 3.

The choice of K number of nearest neighbours and distance metric for
computing the nearest distance is impacting essentially on the performance.
Generally, the lowest values of K will lead the system to be sensitive to noise,
while larger values of K reduce the effect of this noise on the classification but
will lead to over-smoothed boundaries [Thirumuruganathan, 2010]. When K = 1,
the algorithm is known as the nearest neighbour algorithm.

3.5.3 Support Vector Machines (SVMs)

Support Vector Machines are one of the most popular and widely used
supervised machine learning algorithms pioneered by Vapnik [Vapnik, 1999].
Their principle is to find a separation that can split the data into classes using a
boundary as most simple as possible, such that the gap or the distance between
the different groups of data and the boundary which separates them is the
maximum. This distance is also known as “margin” and the “support vectors”
are the data closest to the boundary. The boundary can be determined either by
a hyperplane when the data are linearly separable or through a kernel function
when a problem is not linearly separable.

Linear SVMs are the simplest form of this algorithm. It is applicable in the
case where the data are linearly separable. It seeks to find a hyperplane creating
the optimal separation between classes and providing a maximum margin. This
hyperplane is the decision boundary as illustrated in figure (3.18-a).

In the case of binary classification (or two class), the optimal separation
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Figure 3.18 – Illustration of Support Vector Machine.(a) Linearly separable case, (b) Non Linearly
separable case.

hyperplane can be expressed by the following equation:

f (x) = wtx + b (3.24)

where w is the weight vector and b is the threshold value known as the bias.
The SVM learns to find w, b, which allow the function f to has the value 1 for

the nearest data points belonging to the first class, and –1 for the nearest ones of
the second class. While hyperplane will be satisfying the following constraints:

wtx + b > +1
wtx + b 6 −1

(3.25)

The distance between the two hyperplanes of the equation wtx + b = +1 and
wtx + b = −1 is:

2
‖ w ‖ (3.26)

That is also referred to as the margin. Therefore, the optimal hyperplane can be
yield by maximizing the margin, in other words by minimizing the norm of the
separated hyperplane. Thus, the problem becomes an optimization problem that
minimizes the objective function [Awad and Khanna, 2015].

J(w) =
1
2
‖ w ‖2 (3.27)
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subject to the constraint

yi(wtxi + b > +1), i = 1, 2, · · · , N (3.28)

where, yi is the label of input xi and N is the number of training points.
In many cases, we cannot deal with classification problems in which the

decision boundary is not linear. For that, an alternative manner of SVM used
kernel function to separate and cluster the classes. The process to separate the
different classes involved in the classification task, in this case, the process is
performed in two steps. Firstly, the kernel maps the data from the input space
into a higher dimensional referred to as kernel space, where data will be linearly
separable. Next, the SVM algorithm is used to find the optimal hyperplane that
separates the new data vectors. This is an attractive method because the difficulty
related to passing to kernel space is more lessen compared to learning a non-
linear surface.

The kernel function can be used to characterize the distance between two
patterns xi and xj. We can cite some kernel functions:

The linear kernel would be the simplest one, it is just the dot product of the
features.

K(xi, xj) = xt
i xj (3.29)

The polynomial kernel of degree d transforms the data by adding a simple
non-linear transformation of the data.

K(xi, xj) = (xt
i xj + c)d (3.30)

The hyperbolic tangent (sigmoid) uses a sigmoid activation function.

K(xi, xj) = tanh(kxt
i xj + c) (3.31)

Gaussian radial basis function (RBF) is one of the most often used kernels in
practice, that can map an input space into infinite-dimensional space(figure 3.18-
b-).

K(xi, xj) = exp(
‖ xixj ‖2

2σ
) (3.32)

The value of the RBF kernel depends on the Euclidean distance between x and
y. Either x or y will be the centre of the radial basis function and σ will quantify
the spread around the centre and determine the area of influence over the data
space [Murty and Devi, 2011].
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Although SVMs were originally designed for binary classification, they can
handle a multi-class problem. The methods suggested by Weston et al.[Weston
et al., 1999] and Platt et al. [Platt et al., 1999] are among the early extensions
of the SVM binary classification to the multiclass. The conventional manner to
reach this purpose is to decompose multiclass classification into several binary
problems using either the one-versus-all or one-versus-one method.

One-versus-all strategy also known as the one-against-all (OAA), it is the
simplest and earliest decomposition method. This strategy reduced N multiclass
into an N binary classifier [Vapnik, 1998]. Each classifier aims to distinguish the
class of index n from all the others. In other words, the nth classifier is training
while regarding the samples in the nth class as positive examples and all the
remaining as negative examples. To assign an example to the corresponding
class label, the N classifiers are run, and the decision is obtained by applying
the "winner-takes-all" principle. Therefore, the final label selected is the one
associated with the classifier that returned the highest value.

One-versus-one strategy also called one-against-one (OAO), this algorithm
is proposed by Knerr et al.[Knerr et al., 1990], while Friedman [Friedman, 1996]
and Kressel[Kressel, 1999] are the first to adopt it in SVM. The strategy of this
algorithm is to build N(N − 1)/2 binary classifiers to enable the use of the
basic SVM model for N multiclass classification, using all the binary pair-wise
classification of the N classes. Each classifier is trained by taking the examples
of two of the N classes only, and requires evaluation of (N − 1) SVM classifiers.
An example is assigned to the corresponding class through the decision that is
usually obtained by carrying out the majority vote "max-wins voting" (MWV).

3.6 EXPERIMENTAL VALIDATION

In this section we, evaluate the performance of the methods presented in previous
sections. The experiments are executed in Matlab 2015, on a PC with Intel Core
(TM) i5 CPU M 480 @2.67GHz 2.66GHz with 6 GB memory.

We carried out these experiments according to the SAX2FACE algorithm
(algorithm 3). The algorithm of our approach is outlined as follows:

As we described earlier in subsection (3.4.2), we have used two strategies to
map face image into 1D: the sweep curve and the Peano-Hilbert space-filling
curve.

In the first part, we conduct experiments using the first strategy, i.e. we
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Algorithm 3 SAX2FACE algorithm
Input: Training database
Output: A class of a testing database
Step:

1 Scan each input image with space-filling curve.
2 Represent each curve as times series and perform a symbolic

transformation using the SAX method.
3 Compute all pairwise similarities between symbolic sequences.
4 Run a classification to estimate the poses classes.

performed our approach on the time series generated by using the sweep curve,
which we will be detailing in subsection (3.6.2).

In the second part, the Peano-Hilbert curve is employed to generate the face
image time series. We used the same algorithm 3, while the difference between
the followed protocols is the input images and a distance measure metric. The
procedures of this process will be presented in the next subsection (3.6.3).

The experiments are conducted on three publicly available databases for
head-pose estimation, which are reported for each database independently.

3.6.1 The databases

To evaluate the performance of our approach, we tested it on three databases,
namely GTAV database [Tarrés and Rama, 2012], FEI database [Thomaz and
Giraldi, 2010], and FERET database [Phillips et al., 1998].

GTAV database: includes a set of 44 persons with 27 pictures per person
which correspond to different pose views (0◦, ±30 ◦, ±45 ◦, ±60 ◦ and ±90 ◦)
under three different illuminations (environment or natural light, strong light
source from an angle of 45

◦, and finally an almost frontal mid-strong light source
(figure 3.19).

FEI database: contains 2800 images of 100 men and 100 women, each
individual has 14 images in an upright frontal position with profile rotation of
up to about 180 degrees (figure 3.20). It has 400 frontal images in natural light
and 400 images in low lighting. In the FEI database, each person has 12 images
in a different pose with natural light and two images in frontal view with weak
light.

FERET database consists of images that are collected in a semi-controlled
environment, of different age, race, and sex distribution. With poses fa, fb for the
frontal pose, and ql, qr for the left and right respectively quarter pose (±22.5 ◦),
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Figure 3.19 – Example of a face from the GTAV Face database (different poses and illuminations)
[Tarrés and Rama, 2012].

Figure 3.20 – Some examples of face images from the FEI face database in different pose and
illumination [Thomaz and Giraldi, 2010].

hl, hr are the poses mid-left and mid-right respectively (±67.5 ◦), and pl, pr are
profile poses left and right respectively (±90 ◦) as in figure 3.21. The global total
of the used images is around 9180 images.

3.6.2 The Protocol of the First Strategy

In this first strategy, the experiences are carried out with the three face image
time series generated through mapping the Sweep curve over the face image:
without processing, that was performed with the gradient filter, and that was
processed with the (DMQI-LBP) operator.
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Figure 3.21 – Example of a person from the FERET Face database [Phillips et al., 1998].

Note that the input images are cropped manually for each facial image with
different poses, and are resized to size 100 × 100 then converted to greyscale.
Thus, the length of the numerical time series is 10000 (the total number of the
pixels in the image 100× 100 ).

3.6.2.1 Optimal SAX parameters

We recall that at the learning step, we encode each image in a SAX symbolic time
series. The SAX requires two parameters, namely the size of the windows frame
"w", and the length of the alphabet "a", which are the two main parameters that
control the quality of the SAX.

We performed as a first experiment using the GTAV database to find out
the best parameters w and a of SAX, which boost the classification rate. We
have conducted the experiments using the images as they are without any
modification or processing, and we have applied our algorithm to this database.
We calculated the classification rates with different values of w and a.

We classified the poses using the k-means algorithm into three main classes:
class of frontal pose, class of the left view, and a class of the right view that
group poses in quarter profile (left or right) to full profile. As we have interested
in determining the optimal SAX parameters that permit the classification of the
input image into a suitable class, the k-means algorithm can be used for this
purpose. The k-means allows investigating of the structure and the distribution
of the data by grouping the elements into homogeneous subgroups. Further, it is
easy to implement, and it does not require many parameters. It needs only the k
number of clusters that is already known, in our case k=3.

In Table 3.3, we show the F-Score of classification for each frame size
(w=5,6,7,8,9,10,15,20,25, 35, 45,55 and 64) and with different alphabet size (a=5, 6,
7, 8, 64, 128).

F-Score [Sokolova et al., 2006], or F-measure is an alternative to evaluate
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classification accuracy, that combined precision (P) and recall (R) metrics.

F =
2PR

P + R
(3.33)

Where
P =

TP
TP + FP

; R =
TP

TP + FN
(3.34)

• TP or True Positives: the number of data points correctly classified from the
positive class.

• FP or False Positives: the number of data points predicted to be in the
positive class but belonging to the negative class.

• FN or False Negatives: the number of data points predicted to be in the
negative class but belonging to the positive class.

Table 3.3 – F-Score of the classification of face poses on the GTAV database using K-means
algorithm to evaluate the parameter w (frame size).

Frame size Alphabet size Left view % Frontal view % Right view %

5

5 81.76 45.70 87.24

6 82.92 48.02 87.95

7 82.02 47.22 88.55

8 81.15 46.76 88.90

64 86.32 54.11 90.60

128 86.92 54.70 90.60

10

5 81.80 45.22 86.69

6 82.19 46.18 87.40

7 82.17 45.54 87.51

8 81.33 46.30 88.21

64 82.25 48.53 89.14

128 82.25 48.72 89.37

15

5 81.70 44.76 88.16

6 81.84 46.22 88.34

7 81.67 46.52 88.57

8 80.75 46.15 88.91

64 80.31 46.99 89.18

128 80.97 47.45 89.18

Continued on next page
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Table 3.3 – continued from previous page
Frame size Alphabet size Left view % Frontal view % Right view %

20

5 79.70 39.14 85.86

6 80.90 40.08 86.19

7 81.33 41.20 86.28

8 80.39 42.44 87.24

64 80.62 45.53 88.80

128 81.72 46.55 88.87

25

5 79.96 40.94 86.78

6 81.63 42.51 87.10

7 81.74 44.00 87.68

8 80.84 44.01 87.62

64 81.55 46.85 89.09

128 81.55 46.55 89.00

35

5 78.63 40.39 87.70

6 78.62 42.39 87.82

7 78.62 42.39 87.82

8 76.96 42.13 88.44

64 77.92 43.43 88.64

128 77.97 43.59 88.64

45

5 79.57 40.74 88.26

6 77.49 41.35 88.18

7 78.44 41.49 87.89

8 78.68 39.45 87.00

64 77.70 41.92 87.83

128 77.29 41.68 87.83

55

5 78.38 40.00 87.65

6 77.17 41.50 88.29

7 78.44 41.49 87.89

8 76.40 39.15 87.45

64 76.35 39.23 87.02

128 76.44 39.69 86.84

64

5 78.23 40.98 88.31

6 76.27 39.84 87.98

7 78.19 39.28 86.93

8 76.42 39.36 87.75

Continued on next page
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Table 3.3 – continued from previous page
Frame size Alphabet size Left view % Frontal view % Right view %

64 76.01 38.30 86.29

128 76.01 38.30 86.29

We can observe that with SAX, and when maximizing the size of the window,
the classification rate decreases. This is totally normal since the SAX symbolic
encoding is lossless with great values of codeword w.

To ensure the best classification rates, we choose the smallest frame size (w=5,
to avoid loss of information), and applied it at the rest of the evaluations to
represent the time series in the next experiments.

After determining the frame size, we should determine the best alphabet
size. We have fixed w at 5, while the alphabet size a varies in 5,10,15,20,64, and
128. To evaluate the classification rate, we have performed experiments using
K nearest neighbour (KNN) and support vector machine (SVM) with Gaussian
kernel function for each database.

These classification algorithms were repeated with the three categories of
images: without filter (noted OUTPRS in the tables), with Gradient filter (noted
GRAD in the tables), and with DMQ-LBP (noted DMQLBP in the tables).

3.6.2.2 Experiment on the GTAV database

The classification results of the GTAV database are listed in Tables 3.4 and 3.5.
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Table 3.4 – Classification rate of the GTAV database for each approach using KNN algorithm to
determine the best alphabet size.

Frame size Alphabet size Left view% Frontal view % Right view %

5 99.72 97.4 99.43 O
10 99.34 96.32 98.96 U

5 15 99.24 95.88 99.34 T
20 99.62 98.15 99.90 P
64 99.62 98.89 99.53 R
128 99.43 96.63 99.34 S

5 99.81 99.62 99.90

10 100 100 100 G
5 15 100 100 100 R

20 99.91 100 99.91 A
64 100 100 100 D
128 99.91 99.63 100

5 100 100 100 D
10 99.53 98.50 99.15 M

5 15 99.53 99.26 99.71 Q
20 99.71 99.63 99.81 L
64 99.62 99.62 99.72 B
128 99.81 100 99.81 P

Table 3.5 – Classification rate of the GTAV database for each approach using SVM algorithm to
determine the best alphabet size.

Frame size Alphabet size Left view% Frontal view % Right view %

5 99.72 100 99.72 O
10 99.81 100 99.81 U

5 15 99.81 99.63 99.90 T
20 99.25 99.62 99.34 P
64 99.24 99.26 99.43 R
128 99.81 99.81 99.63 S

5 99.90 100 99.90

10 100 100 100 G
5 15 99.90 100 99.90 R

20 99.90 98.89 99.81 A
64 100 100 100 D
128 99.90 100 99.90

5 99.90 100 99.90 D
10 99.81 100 99.81 M

5 15 99.81 100 99.81 Q
20 99.72 99.25 99.90 L
64 99.90 99.26 99.72 B
128 100 100 100 P
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We can resume from Table 3.4 and 3.5:

• Frontal poses have reached a classification rate of 100% (w = 5, a = 10 . . . 64

with gradient, a=5,128 with DMQ-LBP using KNN, and a=5,10 without
processing, a=10,15, 64, 128 with Gradient, a=5,10,15,128 with DMQ-LPB
using SVM)

• For left and right classes, almost all poses have been well classified by the
three approaches.

• The classification with the SVM algorithm allows us to achieve the best
classification rate comparing to the KNN algorithm.

• Using images without processing, all poses in frontal view were classified
correctly (with SVM).

• Using Gradient and DMQ-LBP, all poses were nearly classified successfully
for each alphabet size.

3.6.2.3 Experiment on the FEI database

In Tables 3.6 and 3.7 we illustrate similar results using KNN and SVM on the FEI
database.

• The frontal poses were classified with a rate between 97% and 98%.The
results obtained with gradient and DMQ-LBP images are powerful than
the images without processing. The classification rate of 98.24% is yield for
a = 15 using KNN, while a classification rate of 98.45% using SVM for the
gradient images. The best classification rate are achieved with DMQ-LBP
for both KNN and SVM, where we have reached a classification rate nearly
99% (98.81% using KNN for a = 20, and 98.91% using SVM for a = 10).

• We can notice that nearly all the poses from left or right have been classified
with the appropriate label for the three types of images (without processing,
gradient or DMQ-LBP).

• The best classification rate for all views are achieved with DMQ-LBP using
SVM for a = 10).

It is worth pointing out that the frontal poses in the FEI database were captured
in different illuminations, certain frontal pose images are in a dark light as shown
in figure 3.20 and figure 3.22.
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Figure 3.22 – Example of the input images in FEI database with low lighting.
Table 3.6 – Classification rate of the FEI database for each approach using KNN algorithm to
determine the best alphabet size.

Frame size Alphabet size Left view% Frontal view % Right view %

5 98,44 97.99 98.56 O
10 98.32 97.91 98.55 U

5 15 98.19 97.60 98.26 T
20 98.31 97.96 98.62 P
64 98.26 97.67 98.22 R
128 97.70 97.36 98.12 S

5 98.32 97.74 98.31

10 98.31 97.92 98.56 G
5 15 98.94 98.24 98.45 R

20 98.01 97.61 98.44 A
64 98.56 97.91 98.32 D
128 98.31 97.99 98.31

5 98.25 98.04 98.81 D
10 98.11 97.68 98.23 M

5 15 98.00 98.08 98.93 Q
20 98.81 98.81 98.38 L
64 98.05 97.92 98.81 B
128 98.69 98.28 98.75 P

3.6.2.4 Experiment on the FERET database

The results shown in Tables 3.8 and 3.9 indicate the classification accuracy
achieved in the FERET database. As shown in figure 3.21, the face images are
acquired at a different distance relative to the camera.
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Table 3.7 – Classification rate of the FEI database for each approach using SVM algorithm to
determine the best alphabet size.

Frame size Alphabet size Left view% Frontal view % Right view %

5 98.38 97.83 98.37 O
10 97.46 97.19 98.37 U

5 15 98.70 97.80 98.00 T
20 97.71 97.01 97.88 P
64 98.38 97.73 98.38 R
128 97.89 97.31 98.13 S

5 97.94 97.83 98.68

10 97.53 97.35 98.43 G
5 15 98.38 98.21 98.93 R

20 97.33 96.85 98.01 A
64 97.20 97.11 98.38 D
128 98.39 98.45 99.06

5 98.75 97.83 97.75 D
10 98.82 98.91 99.31 M

5 15 98.76 98.66 98.75 Q
20 98.75 98.79 98.81 L
64 98.57 97.66 97.93 B
128 98.88 98.33 99.12 P

Table 3.8 – Classification rate of the FERT database for each approach using KNN algorithm to
determine the best alphabet size.

Frame size Alphabet size Left view% Frontal view % Right view %

5 99.39 98.87 99.41 O
10 98.33 97.15 98.38 U

5 15 98.41 97.29 98.28 T
20 98.71 97.63 98.50 P
64 98.71 97.46 98.52 R
128 98.72 97.29 98.52 S

5 86.83 90.59 90.40

10 86.86 91.00 90.20 G
5 15 86.86 91.00 90.20 R

20 86.12 90.78 89.60 A
64 87.73 91.74 90.38 D
128 86.43 91.75 89.91

5 99.39 98.89 99.19 D
10 99.24 98.87 99.26 M

5 15 99.16 98.70 99.23 Q
20 99.36 98.83 99.38 L
64 99.30 98.76 99.17 B
128 99.19 98.74 99.35 P
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For the FERET database, we can see that the frontal poses have attained a
classification rate of 98.87% using KNN for alphabet size a = 5 with the images
without processing, and 98.89% with images processed by DMQ-LBP. And a
classification rate of close to 100% using SVM, where we have achieved 99.15%
for a = 5 with the images without processing, and 99.42%, 99.28% and 99.41%
for alphabet size a = 5, 10, 64 respectively with images processed by DMQ-LBP.

Table 3.9 – Classification rate of the FERT database for each approach using SVM algorithm to
determine the best alphabet size.

Frame size Alphabet size Left view% Frontal view % Right view %

5 99.42 99.15 99.46 O
10 99.13 98.61 99.18 U

5 15 99.36 98.85 99.22 T
20 99.21 98.48 99.00 P
64 99.22 98.85 99.38 R
128 99.16 98.24 98.76 S

5 84.21 89.12 92.74

10 75.61 87.38 86.04 G
5 15 81.74 87.37 91.13 R

20 81.71 87.40 91.16 A
64 77.44 87.37 87.46 D
128 82.38 87.69 91.69

5 99.38 99.42 99.48 D
10 99.35 99.28 99.34 M

5 15 99.33 98.89 99.28 Q
20 99.27 98.98 99.11 L
64 99.36 99.41 99.46 B
128 99.16 98.87 99.25 P

It can be deduced from these results on all database, that if the images are
under a natural environment, it is sufficient to apply SAX on time series of images
with any treatment (FERT case), even in the case of images with different lighting
(GTAV case). In the case where the images are in weak or dark light (FEI case), it
is preferable to use the images processed using the second processing (Gradient
filter), or the third processing (DMQ-LBP) with a high alphabet size. Therefore,
the conditions under which the images were taken are used to determine the
necessary parameters to use the SAX encoding process.
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3.6.3 The Protocol of the Second Strategy

In this subsection, we present the experiment results that are realized using
the Peano-Hilbert curve technique. We proceeded in the same way as the
first protocol, where we supported the same algorithm described previously
(algorithm 3), whereas we changed the types of input images and the way to
transform these images into time series. Further, we used another method to
measure the similarity between the SAX sequences, by computing the similarity
with MINDIST introduced by SAX and the edit distance, respectively. We also
used three categories of face images, where the input images in the experiences
are sampled using with and without pre-processing, where we used a Gaussian
and Laplace filters as shown in figure 3.23. In these experiences the images
are mapped to one dimension using the Peano-Hilbert curve. Since the Peano-
Hilbert technique requires a resolution of 2n × 2n, the input images are resized
to 128× 128, so the length of each time series N is 16384 (the total number of the
pixels in image 128× 128 ).

Figure 3.23 – Example of the input images in the experiments after applying filters.

After the similarity measure is calculated by the distance introduced by the
SAX (MIDIST), we apply the KNN and SVM algorithms to classify and estimate
the pose. Similar to the first protocol, the poses are split into three main classes:
class of frontal pose, class of the left views, and a class of the right views.

Results are shown in Table 3.10 and Table 3.11.
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Table 3.10 – Results of KNN classification rate with MIDIST.

without Gaussian Laplacian
preprocessing% filter% filter%

Left 98.57 97.95 98.62

FEI Database Frontal 98.20 97.70 98.00

Right 98.75 98.62 98.25

Left 99.34 99.34 99.18

GTAV Database Frontal 97.44 97.36 99.25

Right 99.44 99.44 99.91

Left 96.36 98.82 99.32

FERET Database Frontal 96.66 97.82 98.93

Right 96.80 98.67 99.44

Table 3.11 – Results of SVM classification rate with MIDIST.

without Gaussian Laplacian
preprocessing% filter% filter%

Left 97.63 95.49 96.33

FEI Database Frontal 97.22 95.64 96.27

Right 98.26 97.52 98.00

Left 99.06 98.88 99.43

GTAV Database Frontal 97.78 99.25 95.71

Right 98.50 98.68 99.05

Left 94.48 98.40 98.12

FERET Database Frontal 91.63 99.00 99.15

Right 92.74 98.95 98.94

In the second experiment, we measure the similarity with the edit distance
(equation 3.3) for the three bases, also with and without filtering pretreatment.
Results are illustrated in Table 3.12 and Table 3.13.
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Table 3.12 – Results of KNN classification rate with Edit distance.

without Gaussian Laplacian
preprocessing% filter% filter%

Left 98.08 98.37 97.88

FEI Database Frontal 97.35 97.54 97.44

Right 98.00 97.95 98.31

Left 99.91 100 100

GTAV Database Frontal 98.88 100 99.26

Right 99.81 100 99.81

Left 98.33 98.33 99.03

FERET Database Frontal 96.83 96.88 98.04

Right 98.14 98.18 99.10

Table 3.13 – Results of SVM classification rate with Edit distance.

without Gaussian Laplacian
preprocessing% filter% filter%

Left 96.16 96.20 96.46

FEI Database Frontal 95.90 95.00 95.54

Right 97.74 96.52 96.50

Left 98.87 100 99.43

GTAV Database Frontal 96.24 100 98.53

Right 98.31 100 99.11

Left 98.40 98.20 98.11

FERET Database Frontal 99.10 99.01 99.20

Right 98.95 98.95 99.00

We can summarize from the Table 3.10, 3.11, 3.12, and 3.13:

• FEI database:

– The highest classification rates are obtained using the KNN for both
MINDIST and the Edit distance.

– The results for all poses are almost similar with the images without
processing and Laplace filter.

– MINDIST measure proved better classification rates than the Edit
distance for KNN and SVM.

– The left and the right views are mostly classified with the correct class
compared to the frontal poses.

• GTAV database:
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– We can note that the results achieved using the Edit distance are better
than MINDIST for both KNN and SVM.

– The most poses have been correctly classified, especially when we used
preprocessed images.

• FERET database:

– The frontal poses have reached the best classification rate using SVM
for both the Edit distance and MINDIST.

– Mostly for all views, the best results were obtained when using the
Laplace filter with rates the range of 98% and 99%.

Overall, in the Edit and MINDIST-based that are used with both KNN and
SVM classifications, the best results were obtained using the Laplace filter with
rates exceeding 98%, and the classifications rate that are achieved using Edit
distance are better than what were achieved by MINDIST in the most cases.

However, we should notice that even without preprocessing filters
application, results still extremely important. Moreover, we should put into
consideration that the FEI database contains images with low lighting (figure
3.22), and GTAV database contains images with different lighting.

3.6.4 Processing Time of SAX representation

Firstly, we compare the computational time in terms of feature extraction, for
our proposed method based on SAX representation, and Histogram of oriented
gradients (HOG). HOG feature is widely used to estimate the head orientation
[Diaz-Chito et al., 2018, Alioua et al., 2016, Wang et al., 2013a, Vo et al., 2019,
Saeed et al., 2015]. To extract the feature using HOG, the image is split into cells
or small regions, and the orientation gradients are calculated for each pixel in the
cell. Then, a 1D histogram of the orientation feature is formed from each cell.

In Table 3.14, we compare the feature extraction speed. We provide the time
required to create the SAX, and HOG with different sizes of HOG cells. The size
of the face image has been normalized to 100×100. The SAX representation is
performed with frame size w = 5, and alphabet size a = 5.

It seems that the SAX takes a long time to generate a feature vector than
the HOG vectors but, this is the time needed to map the image to a numeric
vector and to convert this vector to SAX sequence, while the generation of the
HOG vector is not enough. The use of HOG vector is required feature reduction
methods before using the final feature vector in classification or regression task
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to predict the head orientation[Diaz-Chito et al., 2018, Vo et al., 2019]. Therefore,
using HOG necessitates additional time compared to the SAX representation due
to the high dimension of the feature vector (Table 3.14). And often, the HOG
vector is combined with other descriptors to provide en excellent feature vector
representation. [Alioua et al., 2016, Saeed et al., 2015].

Table 3.14 – The computational time to generate the SAX and the HOG vector.

SAX 5,5 HOG 2x2 HOG 4x4 HOG 5x5 HOG 8x8 HOG 9x9

Time (s) 0.0969 0.0185 0.0153 0.0151 0.0149 0.0142

Length of
feature Vector 2000 86436 20736 12996 4356 3600

Secondly, we compare the computational time consumed to calculate MIDIST
and Edit distance. Obviously from Table 3.15, we notice that the Edit distance is
more time-consuming than MIDIST.

Table 3.15 – The computational time to measure the similarity of two time series.

w=45 w=10 w=5

Time(s) MIDIST 0.0710 0.1619 0.2986

Edit distance 0.0426 0.6405 2.3206

Although the Edit distance provides good results on the major case, it
consumes excessive execution time, which increases with the number of images
in the database.

Thus, using SAX representation allows us to decrease the time of feature
extraction, as well as the time-consuming to measure the similarity.

3.6.5 Peano-Hilbert vs Sweep techniques

In this section, we compare the classification rate of head pose in terms of the
way to generate the face time series. We have carried out the experiment using
Peano-Hilbert and Sweep to map the face images, which are resized to 128× 128
on the three database. Then, we have converted each face time series to SAX
sequences with frame size w = 45, and alphabet size a = 5.

In Table 3.16, we report the classification rates reached using KNN, and SVM.
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Table 3.16 – The KNN and SVM Classification rate using Peano-Hilbert and Sweep techniques.

KNN SVM
Peano-Hilbert Sweep Peano-Hilbert Sweep

Left 98.61 94.02 96.33 91.40

FEI Database Frontal 98.00 93.44 96.27 89.90

Right 98.25 93.69 98.00 92.31

Left 99.18 96.71 99.43 95,21

GTAV Database Frontal 99.25 91.80 95.71 86.96

Right 99.91 96.84 99.05 93.84

Left 99.32 94.53 98.12 94.82

FERET Database Frontal 98.93 89.31 99.15 90.70

Right 99.44 95.187 98.94 94.11

It is clear to see that using the Peano-Hilbert curve to generate the face time
series is much better than using the Sweep curve. On all databases, the frontal
view is extremely labelled with the correct pose for both KNN and SVM using the
Peano-Hilbert curve. While the frontal pose did not exceed a 93% when we used
the Sweep curve. The same note for the left and the right views, where almost
all poses have been well classified in the case of face time series create by the
Peano-Hilbert curve, and in the case of Sweep curve the high classification rate
did not exceed a 96%. We can conclude from all these results that our proposed
method still very competitive in terms of high classification rate and low time
computation even when the acquisition conditions (lighting, resolution) are not
controlled. As well as, the Peano-Hilbert technique preforms better than Sweep
curve.

3.7 Conclusion

Aiming to estimate the head orientation, we have presented a new approach
in this chapter. The proposed method is simple, easy to implement, robust,
accurate, and computationally efficient. The method presents another way to
extract the facial features by representing a face image as time series. The
matrix representation of the face image is mapped into a 1D vector of a time
series using two kinds of space-filling curves, while each position in the time
series would represent the intensity of the corresponding pixel in the input 2D
image. Besides, each time series is encoded with SAX symbolic representation
to convert the numerical series to a symbolic sequence. Several classification
methods throughout the generated big data sets of similarity matrices were used
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to create classifiers of frontal vs. profile faces’ poses. As well, we investigated the
influence of SAX parameters (frame size w, alphabet size a) on the classification
rates of facial poses. The experimental results have shown that our approach is
robust and allows us to separately classify the poses even in degraded conditions.

In this chapter, we have classified the facial pose in heavily three-class only
(frontal, left/right views) using simple classifiers (KNN, SVM). Therefore, we will
seek in the next chapter to improve the performance of the classification task. We
will suggest performing a deep learning model to classify the head pose in a
large range of angles instead of three classes.
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4.1 Introduction

In the previous chapter, we have dealt with the problem of head pose
classification as a problem of time series classification, as well as, we have shown
the usefulness of SAX representation in performing the head pose estimation
model. However, we used classical algorithms to select the frontal pose among
the other poses. In the same context of this chapter, we cast the head orientation
problem into a natural language processing problem. Inspired by the advances
in machine translation, we introduced a novel technique called SAX Recurrent
Encoder-Decoder (SAX-RED) as shown in figure 4.1, which is based on sequence-
to-sequence neural network (Seq2Seq) [Sutskever et al., 2014]. The model takes
the SAX sequence as an input of the encoder which learns the representation of
this sequence, and from this representation, the decoder generates the outputs
which describe the head pose in different views (yaw, pitch).

The fact that the key insight of the Seq2Seq model is the encoder-decoder,
which is a recurrent neural network, we start this chapter with an overview of
neural networks and deep learning architecture, especially the recurrent neural
network. Subsequently, we provide a general idea for understanding the concept
of Sequence-to-Sequence model, and how it works. As well as how it can leverage
and use this model to build a model to estimate the head pose orientation.

Figure 4.1 – An overview of SAX-RED for face pose estimation.
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4.2 Neural Networks and Deep Learning

Neural networks are a type of machine learning that mimic the behaviour of
the human brain, and allow computer programs to recognize patterns and solve
common problems in the areas of artificial intelligence (AI), machine learning,
and deep learning (figure 4.2).

Figure 4.2 – Illustration comparing a biological neuron to an artificial neuron.

Neural networks arose in the 1940s, but figuring out how to train them
has been a mystery for 20 years. The first step towards neural networks took
place in 1943 when McCulloch and Pitts [McCulloch and Pitts, 1943] developed
a mathematical model of a neuron that imitates the human brain called an
MCP model. It is regarded as the first foundation of an advanced future of
artificial neural networks. In 1958, there was the second event that is considered
as the birth of scalable network models which is susceptible to learning
Rosenblatt’s innovation [Rosenblatt, 1957]. He has created the first operational
model of a learning network: the Perceptron that demonstrates its ability to solve
classification problems. This model was the first to perform pattern recognition.
Three years later, Bernard Widrow and Marcian Hoff [Widrow and Hoff, 1960]
developed both the ADALINE (ADAptive LINear) and MADALINE (Multiple
ADAptive LINear Elements) models. MADALINE was the first neural network
to be applied to a real-world problem.

Progress on neural network research roughly halted for a decade, until the
1980s. This interruption was directly due to the work of Minsky and Papert
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[Minsky and Papert, 1969] published in 1969. The authors highlighted the
intrinsic limits of perception, which related to linear separability and associated
representation problems. In other words, the perceptron cannot deal with non-
linearly-separable data sets. Or that they relate to the complexity of algorithms.
Despite the emergence of the backpropagation concept by P.Werbos [Werbos,
1974] in 1974, the research in the field of artificial neural networks has remained
drops sharply.

After a period of oblivion, neural networks are receiving a lot of attention
again from the 1980s to the current day. Hopfield [Hopfield, 1982] presented an
addressable memory neural network in 1982, which is an example of recurrent
neural networks. Twelve years after the suggestion of backpropagation to learn
the weighted in neural networks, David Rumelhart et al.[Rumelhart et al., 1986]
reinvented it. They have used backpropagation for training Multilayer Perceptron
(MLP). This model has been able to overcome the limitation of the old neural
networks that can solve the nonlinear problems. In 1989, LeCun et al.[LeCun
et al., 1989] trained a Convolutional Neural Network with the backpropagation
algorithm to learn handwritten digits. Further, LeCun et al.[LeCun et al.,
1998] combined the Stochastic Gradient Descent algorithm (SGD) with the
backpropagation to build LeNet-5 architecture. LeNet-5, which consists of 7

layers, was learned for classifying hand-written numbers on checks. These works
are regarded as emanating the era of Convolutional Neural Networks. Until 2006,
this field was known as the Artificial Neural Network, which was renamed deep
learning when Hinton et al.[Hinton et al., 2006] have been learned Deep Belief
Networks using a greedy layer-wise unsupervised strategy. And from that time
until now, research projects are continuing.

The major contributions in artificial neural networks area are presented in
Table 4.1.
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Table 4.1 – Important events in the history of artificial neural networks.

Contributor Contribution Year

McCulloch & Pitts [McCulloch and Pitts, 1943] MCP model 1943

Hebb [Hebb, 1949] Hebbian learning rule 1949

Rosenblatt [Rosenblatt, 1957] Perceptron model 1958

Widrow [Widrow and Hoff, 1960] ADALINE/MADALINE models 1959

Werbos [Werbos, 1974] Backpropagation 1974

Ackley [Ackley et al., 1985] Boltzmann Machine 1985

Smolensky [Smolensky, 1986] Restricted Boltzmann Machine (RBM) 1986

Jordan [Jordan, 1997] Recurrent Neural Network 1986

Rumelhart [Rumelhart et al., 1986] Multilayer Perceptron (MLP) 1986

Hochreiter [Hochreiter and Schmidhuber, 1997] LSTM 1997

LeCun [LeCun et al., 1998] LeNet-5 1989

Hinton [Hinton et al., 2006] Deep Belief Network (DBN) 2006

Bengio [Bengio et al., 2006] Deep Autoencoder based networks 2006

Salakhutdinov & Hinton Deep Boltzmann machines 2009

Krizhevsky [Krizhevsky et al., 2012] AlexNet 2012

Bengio [Bengio et al., 2013] Deep Transfer Learning (DTL) 2013

Fukushima [Fukushima, 2013] Feedforward Neural Networks (D-FFNN) 2013

Szegedy [Szegedy et al., 2015] GoogLeNet 2014

Simonyan [Simonyan and Zisserman, 2014] VGGNet 2014

Goodfellow [Goodfellow et al., 2014] Generative Adversarial Networks (GAN) 2014

He et al. [He et al., 2015] Residual Network (ResNet) 2015

Huang [Huang et al., 2017] Dense Convolutional Network (DenseNet) 2016

Arjovsky [Arjovsky et al., 2017] Wasserstein GAN (WGAN) 2017

He [He et al., 2017] Mask R-CNN 2017

SMA Eslami [Eslami et al., 2018] Generative Query Network (GQN) 2018

Deep learning or hierarchical learning is a new technology introduced
in machine learning research, which achieved great success in several fields
such as pattern and speech recognition, computer vision, autonomous driving,
image classification, natural language processing, and machine translation. Deep
learning models are built by successive layers (neural network layers), where
the number of these layers determines the depth of the model, which means
the word “deep” in deep learning. Unlike shallow learning where the model
cares to learn one or two layers only to represent the data, deep learning has the
ability to provide a representation of data automatically using multiple layers
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and learn hierarchically the abstractions of data. The features are extracted in
each level (layer), from the low level (input data) to the high level (output), and
the information in each level is combined to create a useful representation as
shown in figure 4.3.

Figure 4.3 – Illustration of the deep neural network model.

Various types of neural networks with very different properties have been
developed. The most popular types of deep neural networks are known as
Convolutional Neural Networks (CNNs) [Gu et al., 2018], and Recurrent neural
networks (RNNs) [Salehinejad et al., 2017] .Due to our approach that relies
mainly on the Seq2Seq model, we will provide more details on the RNNs in
this thesis.

4.3 Recurrent Neural Networks (RNNs)

RNN is one of the most popular deep neural networks that widely used to deal
with the ordinal or temporal problems according to its internal memory, such as
time series, speech recognition, image captioning, signal processing, or natural
language processing (NLP). The architecture of a simple RNN is composed of
three layers, which are input, recurrent hidden, and output layers, as presented
in figure 4.4. The basic idea behind the RNN is the feedback connection between
hidden units over time that provides a recurrence mechanism. This means that
the output of recurrent neural networks depends on the previous elements within
the sequence. In other words, the current input is the output of the prior time.
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Figure 4.4 – Example of a simple RNN.

The input layer receives a sequence of vectors xt = (x1, x2, ..., xN) and processes
them one at a time. At each time step t, the recurrent neural network is based
on the input vector xt and previous hidden state ht−1 to update its memory and
produces a hidden state ht as in equation 4.1.

ht = f (Wihxt + Whhht−1 + bh) (4.1)

where f is the hidden layer activation function, Wih is the weight matrix from the
input-to-hidden, Whh is the matrix of recurrent weights between the hidden layer
and itself, and bh is the bias vector of the hidden units. These weight matrices are
known as parameters of RNN, which are calculated and optimized to obtain a
powerful model.

The output layer is computed as:

Ot = g(Whoht + bo) (4.2)

where g is the activation functions, Who is the weight matrix from the hidden-to-
output, and bo is the bias vector in the output layer.

Recall that f and g are activation functions applied to hidden and output
layers, respectively. The activation functions are one of an imperative component
of a deep neural network that can control the output of a deep learning model,
its accuracy, and the computational efficiency of training a model. Moreover,
they have a considerable impact on the neural network’s ability to converge
and the convergence speed. They play the role of a gate between the input
feeding the current neuron and its output going to the next layer, where they
take a decision, whether a neuron should be activated or not. In other words, the
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activation functions turn the neuron output as a classifier, that classifies incoming
information as useful or less-useful depending on a rule or threshold.

The original and more granular activation function used for RNN modules
are: Sigmoid, TanH (Hyperbolic Tangent), and ReLU (Rectified Linear Unit).

4.3.0.1 The sigmoid function

The sigmoid is a nonlinear function, its curve is S-shaped (figure 4.5). It is
mathematically defined by equation

σ(x) =
1

1 + e−x (4.3)

The sigmoid transforms and normalizes the output of each neuron between the
range 0 and 1. More to the point, this function returns a value :

• y → 1 if the input to a sigmoid function is a positive large number (e−x →
0),

• y→ 0 if the input to a sigmoid function is a negative large number (e−x →
∞),

• y→ 1
2 if the input to a sigmoid function is 0 (e−x = 1)

Figure 4.5 – The Sigmoid function.

4.3.0.2 The Tanh function

The tanh function is similar to the sigmoid function. The only difference is that
it is symmetric around the origin. Mathematically, tanh is a shifted version of the
sigmoid function. The tanh activation function is expressed as

tanh (x) =
ex − e−x

ex + e−x (4.4)
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In this case, the function returns a value :

Figure 4.6 – The Tanh function.

• y → 1 if the input to a sigmoid function is a positive large number (e−x →
0),

• y → −1 if the input to a sigmoid function is a negative large number
(ex → 0),

• y→ 0 if the input to a sigmoid function is 0 (e−x = 1)

Thus, the tanh activation functions can output values between -1 and +1.

4.3.0.3 The ReLu function

The rectified linear unit (ReLu) is one of the key elements that has revolutionized
deep learning. The use of the ReLu non-linearity in the hidden layers can
significantly speed up the training time. In essence, the function returns 0 if
it receives a negative input, and will output the input directly if it receives a
positive value. The function is defined as:

f (x) = max(0, x) (4.5)

Figure 4.7 – The ReLu function.
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4.3.0.4 The Softmax function

The so f tmax function is useful for neural networks, which is widely used in
multiple classifications. Whereas it can normalize an input value into a vector of
values that sum to 1. Whatever the value of the input is positive, negative or zero,
the so f tmax transforms them into values in the range (0,1).

The so f tmax function is defined as:

f (xi) =
exi

∑j exj
(4.6)

The soft function is emphasizing to the large values in the input and drops the
smaller ones, that is why it is called by this name. The property that the sum
of all the values equals 1 makes it a great function to formulate the probability
distribution.

4.3.1 Training recurrent neural networks

The purpose of learning a neural network is usually to address supervised
learning problems i.e. problems seeking to find a function y = f (x), that can
present the relationship between a given labelled database (Y; X) (frequently
known as "training set"), and generalize the results to unlabelled data (referred
to as the "test set").

In fact, the role of training of RNN is to provide an approximated function
ŷ = f (x), and to minimize the loss function definer by the difference between
the RNN output "ŷ" and the desired output "y". In RNN, the loss function is
computing for each time step, while the total error was simply the sum of the
losses across all time steps (equation 4.7).

Generally, The training of RNN is regarded as a challenging task due to the
difficulty to initialize the weights in the network, and the complexity of selecting
the optimization algorithm that ensures minimal training loss. In other words,
the most straightforward manner to training RNN is to determine the optimal
parameters i.e. weights matrices and biases, that can decrease this loss function.

L(ŷ, y) =
T

∑
t=1
Lt(ŷt, yt) (4.7)

Where ŷt and yt are the predicted output and the desired label at timestamp t
respectively.

Typically, the training of RNNs requires the reiteration of two steps, the
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forward pass, and the backward pass. The forward pass is described in equations
(4.1), (4.2). As we have mentioned above, at the time "t", the vector of the input
data "xt" is multiplied by the input weight matrix Wih, then connects the input
layer to the hidden layer and added to the weight hidden unit of the previous
step "t− 1" define with zt, as shown in equation (4.8). bt is the bias vector at time
step t.

Then this result is transformed by the hidden layer activation function f () to
produce the hidden state ht (equation (4.9))

In the same manner, the hidden state ht produced is multiplied by the weight
Who which connects this layer to the output layer which define vt (equation 4.10),
and the output of neural network Ot is obtained from the output of activation
function g() as shown in equation (4.11). Then, the output of neural network Ot

is compared to the desired target and calculates the error between them.

zt = Wihxt + Whhht−1 + bt (4.8)

ht = f (zt) = f (Wihxt + Whhht−1 + bt) (4.9)

vt = Whoht + bo (4.10)

Ot = g(vt) = g(W0hht + bo) (4.11)

The backward phase is executed after the forward phase. This phase
is accomplished using Backpropagation-through-time (BPTT) [Werbos, 1990,
Sutskever, 2013], which is the application of the backpropagation training
algorithm to learn the sequence data. The ultimate goal of the BPTT algorithm is
to adjust the weights to minimize the error (loss function) of the network outputs.
Mathematically, BPTT calculates the partial derivatives of the loss function Lwith
respect to the synaptic weights.

Basically, BPTT propagated backward in time the gradient descent algorithm
to compute the weight change of each layer from the output towards the
input layer based on the chain rule. Subsequently, the gradient is used by an
optimization algorithm to update each parameter in the RNN (typically the
weights). Therefore, the gradient of the RNN parameters is computes for each
layer from the last layer to the input layer i.e. t = T to t = 1.

The error eT at the output layer i.e. at t = T is:

∂L
∂vT

=
∂L

∂g(vT)

∂g(vT)

∂vT
= eT (4.12)
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and for each time steps t is:

∂L
∂vt

=
∂L

∂g(vt)

∂g(vt)

∂vt
= et (4.13)

It is worth pointing out that, the loss function LT at time step t is impacted
only by the output layer at this current time step. While computing the gradient
at the hidden layer, an intermediate-term is added. This term presents the
recurrence of the hidden layer. In other words, the change in the hidden layer
at the time step t affects the loss function at the actual time step and the loss at
the next step.

At the final time step T, the error from the hidden layer δT, affects only the
final step:

δT =
∂L
∂zT

=
∂L

∂ f (zT)

∂ f (zT)

∂zT

=
∂L
∂vT

∂vT

∂ f (zT)

∂ f (zT)

∂zT

=⇒ δT = WT
hoeT � f ′(zT) (4.14)

Where WT
ho =

∂vT
∂ f (zT)

, f ′(zT) =
∂ f (zT)

∂zT
, and ”� ” is the element wise multiplication

operator.
Thus, the error in the hidden layer δt, at the time step t is computed as follows:

δt =
∂L
∂zt

=
∂L
∂vt

∂vt

∂zt
+

∂L
∂zt+1

∂zt+1

∂zt
(4.15)

= WT
hoet � f ′(zt) + WT

hhδt+1 � f ′(zt)

=⇒ δt = (WT
hoet + WT

hhδt+1)� f ′(zt) (4.16)

It can notice from equation (4.15), that to calculate the error of the hidden layer
at time step t, it is required to identify the error at time step t + 1 previously.
Consequently, it is necessary to know the error at time step t + 2 to calculate the
error at time step t + 1 and so forth. For this reason, it should be commenced
from the last time step T, and proceed backward through time to calculate the
previous time steps.

To minimize the loss function L, the derivation of the error should be
calculated with respect to all the weight matrices across the time.
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dWho = ∑
t

∂L
∂Who

= ∑
t

∂L
∂vt

∂vt

∂Who

dWih = ∑
t

∂L
∂Wih

= ∑
t

∂L
∂zt

∂zt

∂Wih

dWhh = ∑
t

∂L
∂Whh

= ∑
t

∂L
∂zt

∂zt

∂Whh
(4.17)

By applying the formulas from equations (4.12), (4.13), (4.15) in equation (4.16),
the gradient of the loss function with respect to the network’s parameters can be
written as follows:

dWho = ∑
t

ethT
t

dWih = ∑
t

δtxT
t

dWhh = ∑
t

δthT
t−1 (4.18)

An important step to learn an RNN is the update of weights via an optimization
algorithm. The mini-batch Stochastic Gradient Descent (SGD) [Ruder, 2016] is
often used to carry out this step. It is the preferred way to optimize neural
networks’ parameters.The parameters are updated at each optimization iteration,
according to equation (4.19).

θt+1 = θt − η
Bt+B

∑
i=Bt

∂Lt

∂θ
(4.19)

Where θ = {Whh, Wih, Who, bh, bi, bo}, η is the learning rate and B is the size of
the mini-batch. The training database is split into small batch sizes and performs
updates on each of these batches rather than computing the gradient for the
whole database. This algorithm is computationally efficient and fast. In our
model, we used RMSprop [Hinton, 2012] which is one common variation of
Stochastic Gradient Descent (SGD).

Despite RNN is exhibiting a higher ability to model the sequence data, it
suffers from some problems. For long periods of time, RNN could be incapable
to learn causal relationships between very long sequences. Moreover, during the
BPTT process, RNN may be vulnerable to gradients issues which are known as
vanishing, or exploding gradients. These phenomena occur when the gradients
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rapidly converge to zero (vanishing gradients), or diverge rapidly to infinity
(exploding gradients) because RNN is unrolled backward through time.

4.3.2 Long short-term memory (LSTM)

Hochreiter and Schmidhuber [Hochreiter and Schmidhuber, 1997] introduced
a new neural for the RNN family called Long Short Term Memory (LSTM),
which designed a special memory cell, thereby avoiding the vanishing gradient
problem. The LSTM architecture consists of a set of multiplicative gates, the Input
(I), Output(O), and Forget(F) gates as illustrated in figure 4.8.

Figure 4.8 – Example of LSTM memory cell.

These gates control the circulation of the information that traverses the LSTM
cell. They have the ability to keep, add, or remove information to the cell state,
represented with vectors ht, (short term state) and Ct (long term state). The forget
gate dropped a part of memory, which is derived from the previous long term
state Ct−1, short term state ht−1 and the input data xt. Then it adds to a new
memory selected by the input gate to update the long term state Ct using the
following equations:

Ct = ft � Ct−1 + it.� C̃t (4.20)

ft = σ(W f xt + U f ht−1 + b f ) (4.21)

it = σ(Wixt + Uiht−1 + bi) (4.22)

C̃t = tanh(Wcxt + Ucht−1 + bi) (4.23)

For the short term state ”h”, the "C" state is copied and run through "tanh" and
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multiply it by the output of the sigmoid gate, following these equations:

ot = σ(Woxt + Uoht−1 + bo) (4.24)

yt = ht = ot � tanh(Ct) (4.25)

where σ is the logistic sigmoid function, and ”i, f , o” and C̃ are respectively the
input gate, forget gate, output gate, and cell activation vectors.

4.3.3 Gated Recurrent Units (GRU)

Gated Recurrent Units is another model of RNNs, introduced by Cho et al. [Cho
et al., 2014] in 2014, to address the vanishing gradient problem. The GRU can
be considered as a simplified version of LSTM which reduces the gates into two
rather than three. Conceptually, a GRU combines the input and forget gates into
one "update gate" and even it has a "reset gate" (figure 4.9). As the LSTM, the gates
in GRU regulate the flow of information into this cell following these equations:

zt = σ(Wzxt + Uzht−1 + bz) (4.26)

rt = σ(Wrxt + Urht−1 + br) (4.27)

h̃t = tanh(Whxt + Uh(rt � ht−1) + bh) (4.28)

ht = (1− zt)� h̃t−1 + zt � ht (4.29)

Figure 4.9 – Example of GRU memory cell.

100



Chapter 4. Neural networks and deep learning for head pose estimation

4.3.4 Bidirectional RNNs (Bi-RNN)

Schuster et al. [Schuster and Paliwal, 1997] suggested a new type of RNNs
intending to introduce a new structure to be bidirectional for processing data in a
recurrent neural network. However, when this invention is applied to a sequence
not only the information can go through the natural temporal sequences, but
even further information can transform knowledge to previous time steps. The
Bi-RNN functions as two RNNs, one handles the sequence from the first time
step to the end in a forward direction in part, and the other for the backward
direction in another part. The Bi-RNN is formulated as following:

ht
F = σ(WFxt + UFht−1

F + bF) (4.30)

ht
B = σ(WBxt + UBht−1

F + bB) (4.31)

yt = σ(Woh f + WohB + bo) (4.32)

Where WF, UF are Weights matrix in a forward direction and WB, UB are Weights
matrix in a backward direction.
In addition to that, the combination of Bi-RNN with LSTM makes Bi-LSTM, and
it can be possible to combine Bi-RNN with GRU to get Bi-GRU.

4.4 Sequence-to-Sequence model

Although the deep learning models are composed of CNN structure or RNN
showed promising results for the problem in which their output is in a fixed-size
either it is one or multi-classes, one or multi-values. However, these models are
absolutely powerless to deal with the problem that has sequences data in variable
size at the input and output, this issue spurred Sutskever et al. [Sutskever et al.,
2014, Cho et al., 2014] to pioneer the sequence-to-sequence model. Sequence-
to-Sequence is a deep learning model that takes sequence data as an input
and generates another sequence at the output. It is the dominant architecture
for many Natural Language Processing (NLP) models, such as neural machine
translation, text summarization, speech recognition, Chatbots models, etc. In late
2016, Google used such a model in their Google Translate service [Wu et al.,
2016].

To understand the process of such a sequence-to-sequence model, we provide
an example of a neural machine translation model. This model is training to
translate a source sentence "Je suis étudiant" into the target sentence "I am a
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student". As shown in figure 4.10, the core of the sequence-to-sequence model is
the encoder and decoder used together in tandem to create a translation model.

Figure 4.10 – Illustration of neural machine translation model.

The encoder is an RNN model that takes source sentences as input which
learns to map a variable-length sequence into a fixed vector as a representation of
this sentence. Then this representation is used to decode it into another variable-
length sequence by the decoder.

Since the deep learning model can’t deal with the sequence of the word
directly, it requires converting this sentence into numeric form. For this reason, it
is necessary to effect a pre-process to data before feeding the source sentence in
the encoder and the target sentence in the decoder. The first step is tokenization.
Tokenization is the task that segments the sentence into lists of words or
vocabulary to generate a word index dictionary in which the word is the key
and the corresponding integer is the value.In other words, the sentence is
tokenized by assigning each unique word to an integer value. Moreover, it adds
the < EOS > token at the last of each sentence to identify its end. Besides, it
indicates to the decoder to start the decoding process, the start of sequence such
as < Go > or < SOS > token is inserted at the start of the target sentence.

In practice, the neural machine translation model is learning to translate
numerous sentences (e.g. using a mini-batch training approach). Certainly, the
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length of sentences can vary. The filling way allows the sentences to be a fixed
length. This action helps to promote the RNN (LSTM or GRU) execution because
it expects the input instances to have the same length. While the short input
sentences are appended with a < Pad > token for the sake of the same length of
the longest sentence in the source sentence. Similarly, the short target sentences
are filled till becoming in the same length as the longest target sentence.

Subsequently, the embedding layers map each token to a fixed-length
embedding vector for both the input and target sentences. Consequently, these
embedding layers permit creating a dictionary where the word token is the key
and the corresponding vector is the value. Further, They can learn the difference
and relationship between the words.

For example, if we have these two sentences as input:

• "Je suis étudiant",

• "J’ai vu un chat sur tapis"

And the target sentences:

• I am a student

• I saw a cat on a mat

Assume that they are tokenized as sequences:

Source Sentence

Sentence 1
Word Je suis étudiant Pad Pad Pad Pad Pad EOS
Token 70 189 68 00 00 00 00 00 99

Sentence 2
Word Je ai vu un chat sur un tapis EOS
Token 70 15 115 90 62 78 90 180 99

Target Sentence

Sentence 1
Word Go I am a student Pad Pad Pad EOS
Token 01 45 115 80 162 00 00 00 99

Sentence 2
Word Go I saw a cat on a mat EOS
Token 01 45 158 80 50 120 80 156 99

Table 4.2 – Example of sentences tokenization.

In this example, the longest length of the source sentence is 8, and the longest
length of the target sentence is 7, so the short sentences are appended with
< Pad > token that coded with zero. The < EOS > added at the end of the
sentences. As well as, the < Go > token is inserted at the outset of the target
sentences. An integer is assigned to each word. Therefore, the sentences are
converted to vectors as follows:
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Figure 4.11 – Example of vector embedding representation.

• The Source sentence

– S1 = [70, 189, 68, 0, 0, 0, 0, 0, 99],

– S2 = [70, 15, 115, 90, 62, 78, 90, 180, 99].

• The Target sentence

– S1 = [1, 45, 115, 80, 162, 0, 0, 99]

– S2 = [1, 45, 158, 80, 50, 120, 80, 156, 99]

After that, the mode seeks to retrieve the corresponding word embedding
representations for both the source and the target. The embedded words are
represented as an array, where the line number is the token of words and
the number column is corresponding to the size of the embedding word or
vocabulary ”V”, which usually corresponds to the most frequent words for each
language. The embedding weights, one set per language, are usually learned
during the training, while it can use "word2vec" [Le and Mikolov, 2014], or "Glove"
[Pennington et al., 2014] embedding techniques to produce word vectors.

Once the data preparation is accomplished, the word embeddings are fed into
the main network which is composed of two RNNs, an encoder for the source
language and a decoder for the target language.

Due to RNN design requires at each time step two inputs, so in the case of the
encoder, each word in the source is taken as input, which is inputting separately,
and the hidden states of the previous time-step. Wherefore at timestep = 0, a zero
vector is used as an initial hidden state since there is a lack of prior information.
The hidden state is updated relying upon the information that comes from the
inputted words. This process is repeated until the end of the sentence marked
by the < EOS > symbol. The hidden state at the final step is usually referred
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to as the context vector. While at this last step, the meaning of the whole input
sentence is summarized in the hidden vector.

When the end of the source sentence is reached, the < GO > symbol is sent
to the decoder to indicate the inception of the decoding process to predict the
output sentence item by item. Moreover, the decoder receives the context vector
as the initial hidden state. The decoder used the < GO > as input at timestep = 1
to update the hidden states and predict the output. The decoder provides a
probability distribution over all the words in the output vocabulary which is
inferred from a softmax activation layer. In this fashion, the word with the
highest probability should be selected as the first word in the predicted output
sentence. Then, this output will be the input of the decoder in the next step.
And so on, until we reach the end of the sentence i.e. the decoder outputs the
< EOS > token. Thus, the decoder produces the predicted translated sentence
which is compared to the target sentence by computing the loss function. The
Cross-entropy loss is communally used since the translation task is regarded as
a classification problem.

4.5 Sequence-to-Sequence architecture for head pose

estimation

As long as the result of SAX is a symbolic sequence and since the recurrent
neural networks (RNNs) are designed specifically for sequential data processing,
we propose to learn a model based on RNNs architecture in order to classify the
head poses. We performed a sequence-to-sequence model which is similar to the
language translation introduced by Sutskever et al. [Sutskever et al., 2014].

The overall outline for training is illustrated in figure 4.12. In our model, the
encoder recurrent neural network encodes and learns the relationship between
the symbolic sequence to present it into a vector and the decoder decodes it into a
sequence of words in the desired language. We had taken the symbolic sequences
of SAX as an input of the encoder, which are all at the same length. While the
output sequences are words of different vocabulary and length. All the words of
the output sequences are tokenized and used as an index to present their location
in vocabulary. We append a word < Pad > to the short sequence. Moreover, we
add the word < Go >, which prompts the decoder to start the decoding process,
and word < Eos > (end-of-sentence), which signals the end of the process. Also,
the token < Unk > is inserted to symbolize the unknown words in the output
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Figure 4.12 – The proposed Encoder-Decoder training model for head pose estimation.

vocabulary. We notice that the SAX symbolic sequences are more lengthy than
the words of output sequences. Here the SAX symbol is treated as words of
a first language and the labels of head poses are presented as translation into
another language. To insert these words into both the encoder and the decoder,
the embedding layer is used to transform each word into a vector representation.
These embedding layers can learn the difference and relationship between the
words. As well, the embedding weights are learned jointly with the recurrent
neural network layers (Encode-decoder) during the training phase.

For the recurrent neural network in our model, we have used firstly a Bi-
LSTM for both the encoder and the decoder, Then a Bi-GRU also in the encoder
and decoder.

4.6 EXPERIMENTAL VALIDATION

In order to evaluate the robustness of our approach, we realized experiments on
three databases, FERET [Phillips et al., 1998], CAS-PEAL[Gao et al., 2008], and
Pointing’04 database [Gourier et al., 2004].

The experiments are executed in Python using the TensorFlow Library [Abadi
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et al., 2016], on a PC with Intel Core i7-6500U CPU @2.50GHz×4 with 8 GB
memory.

The experiences are run with a Bi-LSTM Encoder-Decoder and the model
with Bi-GRU with 32 hidden units. The training step is effectuated with the
batch size that equals to 32, the Root Mean Square Propagation (RMSProp) is
applied as an optimizer and the learning rate is selected as 0.005. As reported
above, the input sequences of our model are the sequences generated using
SAX. To create the SAX symbolic sequences, the input face images are resized
to size 128× 128 and scanned by the Peano-Hilbert curve to generate the time
series which are transformed into SAX symbolic representation. We applied
three resolutions -(w,a)- of SAX (16,8), (16,16), (16,32). So, the length of a SAX
sequence is 1024 (128*128/16), which corresponds to the time steps of the RNN
encoder. Once these sequences are generated, we fed them into our model. The
output sequences have different lengths in each database, so we need some
preprocessing before inputting it into the decoder. We have followed the plan
for training our model as illustrated in figure 4.12.

4.6.1 Experiment on the FERET database

FERET database consists of images that are collected in a semi-controlled
environment, of different age, race, and sex distribution. With 2645 images in
poses "fa", "fb" for the frontal pose, and 726 images in "ql", 722 images in "qr"
for the left and right quarter pose respectively (±22, 5◦),1219 images in "hl",
1278 images in "hr" are the poses mid-left and mid-right respectively (±67, 5◦),
and 1271 images in "pl", 1319 images "pr" are profile poses on left and right
respectively (±90◦). The total number of images in this database is 9180.

Since this database is large enough in terms of the number of training samples
and the pose classes are not complex (7 yaw poses only), we have handled it as a
baseline for fine-tuning the model parameters.

For the FERET, 7 output sequences are corresponding to the 7 yaw pose. Each
pose is presented by a sequence of 4 words. So, the sequences have a maximum
length of size 4. Table 4.3 shows the output sequences used to represent the poses
on this database. All poses sequences have a length of 4, only the sequence which
is represents the frontal pose has a length of size 3. Thus, the input sequence
length is 1024, and the output sequence length is 4.
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Figure 4.13 – Examples of a face from the FERET database [Phillips et al., 1998].

Table 4.3 – The output sequences of FERET database, the angle is equal to 22, 5,◦, 67.5◦ or 90◦

1
er word 2

sd word 3
th word 4

th word
Yaw pose left Angle
Yaw pose frontal
Yaw pose right Angle

The results of our experiences on FERET are shown in Table 4.4.

Table 4.4 – Classification Accuracy(%) with Bidirectional Encode-Decoder in different SAX
Resolution on the FERET database.

Resolution (16,8) (16,16) (16,32)
RNN Bi-LSTM Bi-GRU Bi-LSTM Bi-GRU Bi-LSTM Bi-GRU

150 94.54 95.914 94.585 96.193 94.343 96.210

Epochs 200 93.526 96.022 95.241 96.264 95.366 96.426

300 95.519 96.381 95.519 96.390 95.996 96.667

We noticed from Table 4.4, and figure 4.14 that the accuracy values are
improved greatly when the epochs number is increased, this observation was
checked for different SAX resolutions.

Furthermore, the Encoder-Decoder with Bi-GRU performs well compared to
the Encoder-Decoder that used the Bi-LSTM. Which is seems more clear in figure
4.15, where the accuracy achieved using the Bi-GRU is better for all resolution of
SAX.
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Figure 4.14 – Variation of the accuracy values with epochs number for Bi-LSTM and Bi-GRU
(FERET)

Figure 4.15 – Average accuracy values of each resolution of SAX with Bi-LSTM and Bi-GRU
(FERET)

4.6.2 Experiment on the CAS-PEAL database

CAS-PEA contains images of 1039 individuals, with 21 poses for each person,
7 yaw poses([-45◦, 45◦] with intervals of 15◦ and 3 pitch poses (-30◦, 0◦, and
30◦). Notice that 101 individuals have poses varying in the range [-67◦, 67◦] with
intervals of 22◦.

As we have obtained good results on FERET through the best combination
of parameters that have been mentioned above, we evaluated our model on the
CAS-PEAL database using these same hyper-parameters.

Since it is recommended to use large training samples in deep learning,
besides, a pose estimation model requires specific labels, we have employed all
databases with all poses. Thus, we have organized the poses into 21 classes, plus
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Figure 4.16 – Examples of a face from the CAS-PEAL database [Gao et al., 2008].

12 classes which indicated poses with ±67◦, ±22◦ (8 in pitch and 4 in yaw),
so the total is 33 classes. Therefore, the labels of poses are presented with 33

output sequences, which have been illustrated in Table 4.5. The pitch poses are
presented with 4 words. The yaw poses are characterized by 3 words, except the
frontal pose, which has been denoted with 2 words only. The last word (4th word)
in the output sequence presents the angle that varies according to the angles of
the poses in this database. Thus, the short sequences have been appended with
< Pad > token.

Table 4.5 – The output sequences of CAS-PEAL database.

1
er word 2

sd word 3
th word 4

th word
Pitch up left Angle
Pitch up right Angle
Pitch down left Angle
Pitch down right Angle
Yaw left Angle
Yaw right Angle
Yaw frontal

The results of our experiences on CAS-PEAL database with different SAX
resolution are reported in Table 4.6. As we have shown in figure 4.17 the variation
of accuracy in terms of epoch number, and the influence of the SAX resolution
on the results in figure 4.18.
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Table 4.6 – Classification Accuracy (%) with Bidirectional Encoder-Decoder in different SAX
Resolution on CAS-PEAL.

Resolution (16,8) (16,16) (16,32)
RNN Bi-LSTM Bi-GRU Bi-LSTM Bi-GRU Bi-LSTM Bi-GRU

150 92.346 93.931 91.613 92.481 89.726 89.915

Epochs 200 93.372 93.214 93.36 93.927 88.302 90.926

300 94.715 93.939 94.333 95.328 90.529 91.304

Figure 4.17 – Variation of the accuracy values with epochs number for Bi-LSTM and Bi-GRU
(CAS-PEAL)

Figure 4.18 – Average accuracy values of each resolution of SAX with Bi-LSTM and Bi-GRU
(CAS-PEAL).

Similarly to the FERET database, the classification accuracy in this database
is varied proportionally with the number of epochs. Besides, we can note that
the SAX-RED with the Bi-GRU is powerful than the Bi-LSTM for resolution
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(16,16), and (16,32), and the higher accuracy is reached using Bi-GRU with SAX
resolution (16,16).

In Table 4.7, we compared our results on CAS-PEAL with recent methods
that have been evaluated on this database: KCovGa [Ma et al., 2014], kVoD+NC
[Ma et al., 2015], VRF+LDA Huang et al. [2010], DCNN [Cai et al., 2015a], and
SLRCNN (Soft Label Regularized CNN)[Xu et al., 2019].

Table 4.7 – Head pose estimation comparison of various methods on the CAS-PEAL database.

Method Classes Accuracy (%) Number of Number of
training samples test samples

KCovGa[Ma et al., 2014] 7 94.2 934 466

kVoD+NC[Ma et al., 2015] 7 94.2 934 466

RF+LDA[Huang et al., 2010] 7 97.23 934 466

DCNN[Cai et al., 2015a] 9 98.29 196 950 876

SLRCNN [Xu et al., 2019] 21 99.19 2800 1400

Our approach 33 95.328 17247 4312

It is worth pointing out that Ma et al.[Ma et al., 2014; 2015; 2008] and Huang
et al.[Huang et al., 2010] have used just 200 subjects of the CAS-PEAL database
which were classified into seven yaw poses only. Cai et al. [Cai et al., 2015a] used
only pitch poses which are identified with 0◦ and yaw poses labelled with ±45◦,
±30◦,±15◦,0◦, 8754 images in all. They have estimated 9 poses for each subject
via a deep convolutional neural network.

Ma et al. in [Ma et al., 2014; 2015], proposed two descriptors named
Covariance Descriptor of Gabor filters (CovGa) and fisher Vector of local
Descriptors (VoD), which are improved by combining them with a metric
learning method named Keep It Simple and Straightforward Metric Learning
(KISSME). So they have produced other descriptors K-CovGa and K-VoD. These
descriptors extracted the head pose features. The Nearest Centroid classifier (NC)
was used to classify the yaw pose. The accuracy of these methods is about 94.2%.
Also, Huang et al. [Huang et al., 2010] proposed a classifier with Random Forests
(RF) combined with Linear Discriminative Analysis (LDA) for estimating the
yaw pose only, which achieved an accuracy of 97.32%. A Deep Convolutional
Neural Network (DCNN) at 8 layers proposed by Cai et al. [Cai et al., 2015a]
to classify the head pose with a very large number of training samples which
produced from shift and the scale original images, therefore, there was 196 950

images for training (which is more 11 times larger than our training samples),
the accuracy provided is 98.29% for 9 poses. Xu et al.[Xu et al., 2019] achieved
excellent accuracy of the head rotation of 21 poses.

The best accuracy that we have achieved is 95.33%, which can be considered
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as a powerful one because we estimated 33 poses of the head with fewer training
samples compared with the number of training samples used in [Cai et al.,
2015a].

4.6.3 Experiment on the Prima head-pose database (Pointing’04)

Pointing’04: It is comparatively one of the old head pose databases. However, it
is still used for research related to this field due to its challenging nature and its
great diversity with consecutive poses. It consists of 2790 images for 15 subjects
into 2 sets. Each set of each subject has 93 different poses, 13 yaw poses, 40 images
in pitch up, and 40 images in pitch down. The range of pitch and yaw angles is
in [−90◦, +90◦], whereas the difference between two consecutive poses is 30◦ for
the pitch view, and 15◦ between two adjacent yaw poses as shown in figure 4.19.

Figure 4.19 – Pointing’04 database images of a single subject in all 93 poses [Gourier et al.,
2004].

We have evaluated our method in the same manner on the Pointing’04

database. In the same manner, input sequences are the sequences generated by
SAX from the face images time series. At this time, the poses labels have been
described with a sequence of 5 words as shown in Table 4.8. Five words are used
to discriminate each pitch pose. All yaw poses sequences have a size length of 4,
only the sequence which presented the frontal pose has the length of size 3. The
pitch angle indicated the variation of the pitch pose related to pitch angles in this
database. So, the input sequence length is 1024, and the output sequence length
is 5 (the short sequences have appended with < Pad > token).
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Table 4.8 – The output sequences of Pointing’04 database.

1
er word 2

sd word 3
th word 4

th word 5
th word

Pitch up pitch angle left Angle
Pitch up pitch angle right Angle
Pitch down pitch angle left Angle
Pitch down pitch angle right Angle
Yaw pose left Angle
Yaw pose right Angle
Yaw frontal

As the number of samples in this database is not large enough, we have
applied our method on this database following the similar measurement protocol
that was used in [Gao et al., 2017]. We have tested our approach with 5-fold cross-
validation, and 300 epochs. We have calculated the same measurements values,
the accuracy (ACC), also the Mean Absolute Error (MAE) for pitch, yaw, and
pitch+yaw (estimate pitch and yaw angles together). The Mean Absolute Error
(MAE) is calculated according to this formula:

MAE =
1
N

N

∑
n=1
|Ŷn −Yn| (4.33)

Where Ŷn and Yn are the estimated and real label of N tested images respectively.
Tables 4.9 and 4.10 show the results on Pointing’04. We observe that

the encoder-decoder with Bi-GRU has much higher accuracy than Bi-LSTM
especially for pitch pose. This result can be explained that 86% of the images
in this database (2400 images) are in pitch pose. The figure 4.20 demonstrated
the effect of the SAX resolution on the classification rate.

Table 4.9 – Classification Accuracy(%) with Bi-LSTM Encode-Decoder in different SAX
Resolution on Pointing’04.

Resolution (16,8) (16,16) (16,32)
RNN Bi-LSTM Bi-LSTM Bi-LSTM

Pitch+Yaw 80.88± 0.04 81.63± 0.02 81.92± 0.04 A
Pitch 86.11± 0.04 88.97± 0.02 85.08± 0.04 C
Yaw 50.37± 0.05 37.04± 0.03 63.16± 0.10 C

Pitch+Yaw 1.28± 0.21 1.09± 0.09 1.06± 0.23 M
Pitch 0.86± 0.34 0.50± 0.17 0.80± 0.29 A
Yaw 3.71± 0.67 4.74± 0.5 2.56± 1.29 E
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Table 4.10 – Classification Accuracy(%) and MEA with Bi-GRU Encode-Decoder in different
SAX Resolution on Pointing’04.

Resolution (16,8) (16,16) (16,32)
RNN Bi-GRU Bi-GRU Bi-GRU

Pitch+Yaw 84.76± 0.03 82.91± 0.04 84.37± 0.04 A
Pitch 86.88± 0.02 84.87± 0.04 86.04± 0.03 C
Yaw 71.65± 0.08 71.96± 0.06 73.94± 0.09 C

Pitch+Yaw 0.94± 0.13 1.12± 0.23 0.96± 0.24 M
Pitch 0.77± 0.21 0.98± 0.38 0.82± 0.32 A
Yaw 1.96± 1.22 1.91± 1.17 1.78± 1.36 E

Figure 4.20 – Average accuracy values of each resolution of SAX with Bi-LSTM and Bi-GRU for
Pitch+Yaw poses (Pointing’04).

A comparative study between our approach and the state-of-the-art
techniques is given in Table 4.11 and 4.12, using Pointing’04. We have compared
our results with Multivariate Label Distribution (MLD) [Geng and Xia, 2014],
random forest (RF+LDA) [Huang et al., 2010], Dirichlet-tree distribution
enhanced random forest (D-RF) [Liu et al., 2016], and multi-level structured
hybrid forest (MSHF) [Liu et al., 2017], besides the classifiers have been proposed
by Gao et al [Gao et al., 2017]. Thus, the stack autoencoder model with Extreme
Gradient Boostin (SAE-XGB) [Vo et al., 2019], and SLRCNN [Xu et al., 2019].
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Table 4.11 – Head pose estimation comparison of various methods according to Accuracy on
Pointing’04 database.

Method Accuracy (%)
Pitch Yaw Pitch+Yaw

MLD [Geng and Xia, 2014] 86.24± 0.97 73.30± 1.36 64.27± 1.82
RF+LDA [Huang et al., 2010, Liu et al., 2017] 68.73 78.40 62.23

D-RF [Liu et al., 2016] 86.94 83.52 71.83

MSHF [Liu et al., 2017] 90.7 92.3 84.0
DLDL [Gao et al., 2017] 91.65± 1.13 79.57± 0.57 73.15± 0.72

C-ConvNet [Gao et al., 2017] 73.15± 2.74 62.90± 1.81 42.97± 1.67
ConvNet+LS (KL) [Gao et al., 2017] 72.62± 1.01 62.90± 2.76 41.83± 2.20

ConvNet+LD [Gao et al., 2017] 90.00± 0.77 76.27± 0.82 69.00± 0.89
SLRCNN [Xu et al., 2019] 96.09± 1.21 88.71± 2.27 85.77± 3.06
SAE-XGB [Vo et al., 2019] 68.99± 1.46 57.24± 3.56 -

Our approach 86.04± 0.03 73.94± 0.09 84.37± 0.04

Table 4.12 – Head pose estimation comparison of various methods according to MAE on
Pointing’04 database.

Method MAE
Pitch Yaw Pitch+Yaw

MLD [Geng and Xia, 2014] 2.69± 0.15 4.24± 0.17 6.45± 0.29
DLDL [Gao et al., 2017] 1.69± 0.32 3.167± 0.07 4.64± 0.24

C-ConvNet [Gao et al., 2017] 5.28± 0.65 6.02± 0.44 10.56± 0.74
ConvNet+LS (KL)[Gao et al., 2017] 5.23± 0.39 5.87± 0.53 10.42± 0.66

ConvNet+LD [Gao et al., 2017] 1.94± 0.20 3.68± 0.16 5.34± 0.17
SLRCNN [Xu et al., 2019] 0.76± 0.22 1.74± 0.37 1.25± 0.28

Our approach 0.82± 0.32 1.78± 1.36 0.96± 0.24

The accuracy achieved with MLD [Geng and Xia, 2014]is about 64.27%. In
[Geng and Xia, 2014], the authors suggested using a multivariate label instead
of a single label to describe the head poses. For each face image, MLD is
generated via a discretized bivariate Gaussian distribution to estimate the head
poses in yaw and pitch rotation. The classification accuracy obtained by the
random forest (RF+LDA) [Huang et al., 2010] is 62.23%. Liu et al. [Liu et al.,
2016; 2017] proposed enhanced versions of random forest using Dirichlet-tree
distribution enhanced random forest (D-RF) and multi-level structured hybrid
forest (MSHF). The accuracy increased from 71.83% by D-RF to 84% via MSHF.
Gao et al.[Gao et al., 2017] combined Label Distribution Learning (LDL)[Geng,
2016], with deep Convolutional Neural Networks to learn a model using the
label ambiguity in both feature learning and classifier learning, which allows the
model to overcome the problem of over-fitting. Gao et al. [Gao et al., 2017] have
used different Convolutional Neural Networks (ConvNets) models based on ZF-
Net model [Zeiler and Fergus, 2014]: Classification ConvNets (C-ConvNet) with
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so f tmax as a loss function. They have combined a label smoothing (LS) [Szegedy
et al., 2016] with ConvNet and Kullback-Leibler KL divergence(relative entropy)
applied as a loss function ( ConvNet+LS (KL)), and ConvNet+LD classifier joined
label distribution (LD)[Geng, 2016] with ConvNet. The accuracies achieved by
these models are low. The authors interpreted that the inability to learn these
models because of the few numbers of training samples. However, they have
proposed a Deep Label Distribution Learning DLDL, a framework to surmount
this limitation which enhanced the accuracy to 73.15%. Compared with that, our
approach allows us to reach a powerful accuracy of 84.37%. Furthermore, our
model has the ability to learn with a small number of training samples better
than the DLDL model. We can see that the accuracy achieved by Xu et al. [Xu
et al., 2019] is slightly higher of 1.4% compared to our result but with a standard
deviation of ±3.06, while with our model was only ±0.04 and we can notice that
MAE in our approach is lower for Pitch+Yaw poses.

Finally, we can summarize the results of our approach, based on what is
displayed in the figure 4.21. The figure 4.21 illustrates the accuracy variation
by relevance to the SAX resolution using the Bi-GRU on the three databases.

Figure 4.21 – Average accuracy values of each resolution of SAX with Bi-GRU for all database.

• FERET database: the classification accuracy achieved for the various SAX
resolutions is roughly the same. This can be explained that the pose angles
variation on this database varied only in yaw angles. The FERRET is less
complex than the two other databases.

• CAS-PEAL database: for this database the SAX resolution (16,16) allow us
to reach the best classification accuracy.
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• Pointing 04’ database: we can see that the accuracy (Pitch+Yaw) that have
reached with both SAX resolutions (16,8) and (16,32) is almost equal, but
with resolution (16,32) the result for Yaw pose is better as shown in figure
4.22. A noteworthy, that database has some heavily challenges. The number
of images is not enough to train a deep learning model, as well the images
in yaw pose present only 14% of the total number of images (390 images),
while the number of pitch pose is 86% samples. Moreover, it has a large
angle variation, since there are 93 poses, 40 in pitch up, 40 in pitch down,
and 13 images in yaw pose.

Figure 4.22 – Average accuracy values of each resolution of SAX with Bi-GRU according to
angle rotation on Pointing 04’ database.

As already outlined, we can infer that the effect of SAX resolution on the
performance of head pose estimation relies on the type of data or the samples
images. For databases that have one axis of angle variation, it is enough to choose
smaller values for the alphabet size as the case of the FERET database. While in
the case of databases that have samples with a large range of angles rotation, it
would rather increase the alphabet size to proved more details, which permit to
discrimination of more difference between the poses, as the images of CAS-PEAL
and Pointing 04’ databases.

4.7 Conclusion

In this chapter, we showed the capabilities of encoder-decoder models based
on bidirectional RNN (Bi-LSTM, Bi-GRU) layers for learning the sequence-to-
sequence head pose estimation model.
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In the previous chapter, we have demonstrated the efficiency of exploiting
time series representation to extracted features and build a model to classify
the head pose. Whereas, we have used classic classifiers to determine the
head orientation in three-classes only. While in this chapter, we have suggested
an approach to benefit the dimensionality reduction achieved through SAX
representation, and the privilege of the deep learning model.

The sequence-to-sequence model is heavily designed to handle natural
language processing issues. Due to that, the SAX representation is a string
sequence, and the head pose labels can be described with words sequence, we
have spurred to carry out the SAX-RED model to estimate the head rotation.
Similar to neural machine translation, our model used the encoder to map the
SAX sequence as the sentence of the first language, and the decoder generates
the head pose label as the sentence of the translated language.

In the experimental phase, we have investigated the influence of SAX
resolution, as well as the RNN type. We have implemented two architectures
of encoder-decoder, one with bidirectional LSTM, the other with bidirectional
GRU. We have evaluated these models with different SAX resolutions in a
different database. The experimental results have shown that our model enhances
significantly the detection rates and reaches out high accuracy in yaw and pitch
rotation with a large range of poses, and even with small numbers of training
samples.
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This dissertation has mainly investigated approaches for improving the efficiency
and accuracy of the head pose estimation task. The head pose estimation has
been widely investigated, and several approaches are suggested to overcome
this problem. These approaches can be either local (features-based), relied upon
the position of the principal face features which are simple, run fast, and
yield great accuracy. However, they require high precision of facial key-point
detection which are very sensitive to the acquisition of image conditions, and
more heavily with occluded face regions. The global methods (appearance-
approaches), which used features extracted from the whole face to learn
relationships between the training samples and their labels with regression or
classification algorithms. These techniques have received considerable attention
in this domain, especially dimensionality reduction methods. Dimensionality
reduction methods map a high-dimensional feature space with few dimensions
that describe the pose changes. These methods are highly efficient in terms
of accuracy and implementation speed, but it’s still a challenge to attain low
dimensions that represent the pose variations without other changes in the
image.

Out of the lack of these approaches in this thesis, we presented a new
technique for facial pose classification characterized by its simplicity, robustness,
and computationally economic. The method uses dimensionality reduction
through time-series representation of the learning images.

This thesis provides two major contributions. The first major contribution is
dealing with the head pose estimation as a time-series classification task. We have
successfully developed a new method that ensures dimensionality reduction,
as well as, extracts facial features that discriminate the pose variations. We
have explored the time series representation to extract these features, and carry
out the head pose classifiers model. The face images are mapped to vectors
representation as time series using the space-filling curves. Then, these vectors
are encoded as string sequences via SAX. After that, we calculated the pairwise
similarity matrices between the SAX sequences of the images from different
databases using a different distance metric. The similarity measure was deemed
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as the decision criterion for classifying the poses. To classify the sequences
(therefore the images), we used KNN and SVM classifications to affect each one
to the adequate class (frontal or profile view classes). Thus the obtained results
showed the robustness and efficiency of the proposed approach even in degraded
conditions.

The second major contribution is to cast the head orientation problem into
a natural language processing problem. We present a principled method for
learning Seq2Seq models to predict the head poses. Seq2Seq or encoder-decoder
neural networks are usually used in natural language processing to translate
words in different languages depending on the context of the words in the
sentence. The SAX sequences allow us to use Seq2Seq for performing a similar
model to neural machine translation. While in our model, the encoder reads
the SAX symbolic sequence and encodes it into a fixed-length vector to learn
the relationship between the symbols. Then, the decoder is used for decoding
the preprocessed vectors to predict the sequences representing the labels of the
poses. As a result, our model is more powerful and leads to enhance the detection
rates significantly and reaches out high accuracy in yaw and pitch rotation with
a large range of poses, and even with small numbers of training samples.

In terms of directions for future work, we would be interested in exploring
other symbolic transformation techniques such as vector quantization (VQ), and
subsequently other numerical and/or semantic distance measures. Further, we
would like to evaluate our method in real time using video streams. As well as,
we envisage evaluating the method with the generative adversarial networks for
getting enriched pictures for dealing with occlusion problems.
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