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Chapter 1

Introduction

The interpretation of a continuous time stochastic process as a random element
in a function space has been proved to be useful in limit theory and in statistical
inference for stochastic processes. Especially useful is the prediction of a contin-
uous time random process,for knowing its values up to the present arises naturally
in many applications.

1.1 Stochastics process:

1.1.1 Notations:
Definition 1.1.1 • A real stochastic process XT = (Xt, t ∈ T ) is a random vari-
ables family defined on the same space of probability (Ω,A,P) with value in
(E,BE).
•(Ω,A,P) is said a base space, where Ω is a no empty set, A is a σ−algeba

of subsets of Ω and P is a probability measure on A .
•T is a set of time.
• for all ω fixed on Ω, the application:
t −→ Xt(ω) is the realization of the process on the point ω.
• For t ∈ T , ω 7−→ Xt(ω) is a form of the process at the moment t.
The process (Xt, t ∈ T ) can be consider like a random variableXT with value

in (ET , BET ):
XT : (Ω,A,P) −→ (ET , BET )

ω 7−→ (Xt(ω))t∈T

where BET is a Borel algebra of ET .
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Remark 1.1.1 • If E = R : Xt is a random variables.
• If E = Rp; p > 1 : Xt is a random vectors.
• If E = space : Xt is a random elements.

1.1.2 Distribution of the Process:
The distribution L(XT ) of processXT = (Xt, t ∈ T ) is a probability PXT onBET

defined by:

PXT (S) = P(X−1
T (S)) for S ∈ BET

1.1.3 Stationarity:
1) The process (Xt, t ∈ Z) is strictaly stationary if, for all a finite part {t1, ..., tn} of T

and all s > 0 : L (Xt1+s, ..., Xtn+s) = L (Xt1 , ..., Xtn).

2) A real process XT where all the moments IE(X2
t ) exists , is lowly stationary

,or stationary of second order on Z if it’s covariance on Z× Z defined by:

C(s, t) = IE (Xs − IE(Xs)) (Xt − IE(Xt))

depend only at the difference s− t of its arguments

1.2 Ergodicity
The strong mixing property used by Rosenblatt have an increasing interest in
inference statistical and limit theorems for a large class of process.

For vectorial or reals autoregressives process, Markov chains and lineary pro-
cess, many results are known (strong mixing, absolute regularity). For example
K.C.Chanda [19] and C.S.Whithers [64] witch has establish this properties; un-

der some specifics assumptions; for the lineary process Yn =
+∞∑
j=0

gjen−j with

(gj)j∈N a real sequence and (en, n ∈ Z) a sequence of a reals random variables
i.i.d. In an other hand, V.V.Corodetskii [34] has establish the same property;
under an others assumptions for the same class of process. D.Pham and T.Tram
[53] has obtained the same results for lineary process, with values on Rp. B.Atherya
and G.Pantula [4] has obtained a sufficient conditions of a low mixing property
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for a real autoregressive process of first order and has establish the strong mixing
property for Markov chains with values on mesurable space. A.Mokkadem [48]
has obtain a sufficient conditions for recurrence and geometric mixed of Markov
chains with values on finite and separabale topological space with σ−finite and
finite measure on any compact.

In the case of polynomials autoregressives process, he suppose that the dimen-
sion’s space is finite. As applications; he obtain the geometric strong mixing for
vectorials process ARMA.

In general, ergodic property and Harris recurrence are establish to deduce the
mixing properties for the studie’s process. R.L.Tweedie [63] has obtain a suf-
ficients conditions for geometric ergodicity of irreductibl Markov chains. This
points use the notion of small sets descript on [52], as well as , in many cases of
finite dimension, as a compacts sets.

For the autoregressives pocess with values on Hilbert spaces and Banach spaces
of infinite dimension; the mixe property known an interest on estimation problems
and limit theorems [14], [49], [50]. D.Bosq (1995) obtain a result on strong mix-
ing of a Gaussian, hilbertian autoregressives process of first order.

1.2.1 Mixing process
Let (Xt, t ∈ Z) a strictly stationary process defined on (Ω,A,P)

Let be T the transformation "translating at left" defined on the set of an infinite
sequences by:

T (., ., ., X0, ., ., .) = (., ., ., X1, ., ., .)

T−1 is the inverse transformation of T .

Definition 1.2.1 We say that the sequence (Xt, t ∈ Z) verify the mixing
assumption in sens (1) if:

lim
j−→∞

P
(
B ∩ T−j(A)

)
= P(B).P(A) (1.1)

For all evenements A et B.

Remark 1.2.1 The mixing condition is a form of an asymptotic independence. In
other way, we have the following assumption :

lim
n→∞

1

n

n−1∑
j=0

P
(
B ∩ T−j(A)

)
= P(B).P(A) (1.2)
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is a sufficient and necessary condition for ergodicity of the process (Xt, t ∈ Z).

We deduce that all mixing process in sens (1) is ergodic.

1.2.2 A strong mixing process
A property of mixing is a very important notion on statistics of process.

A strictly stationary process Xn, n ∈ Z is said α−mixing (strongly mixing)
( respectively φ−mixing (weakly mixing) or β−mixing (absolutely regular)) if:

α(m) = sup
A∈FT−∞,B∈F

+∞
T+h

|P(A ∩B)− P(A)P(B)| −→
h−→+∞

0

φ(m) = sup
A∈FT−∞,B∈F

+∞
T+h

|P(A|B)− P(A)P(B)| −→
h−→+∞

0

β(m) = sup
A∈F+∞

T+h

IE|P
(
A|F T

−∞
)
− P(A)| −→

h−→+∞
0

where F n
h is the σ− field generated by the random variables (Xi, h ≤ i ≤ n).

It is know that α(h) ≤ β(h) ≤ φ(h).
These properties have an increasing interest in the limit theorem and in sta-

tistical inference for processes.
An assumptions of regularitie were establish by Kolmogorov et Rosanov, on

spectral density of a guaussian stationary process to be strong mixing.

Theorem 1.2.1 If the spectral density f(λ) of a gaussian stationary process is
continuous and positive strictly for −π ≤ λ ≤ +π; then; the process is strong
mixing.

Then; we can say that ; a gaussian stationary autoregressive process is strong
mixing.

1.2.3 lineary process
If (Zt, t ∈ Z) is a sequence of an independent random variables , with the same
law , with zero-mean and with variance σ2, then the sequence (Zt, t ∈ Z) is mixe
in sens (1). Then the lineary process:

Xt =
∞∑
j=1

ajZt−j, where
∞∑
j=1

a2
j <∞
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is mixe in sens (1) and consequently ergodic .
An autoregressive having the Wold decomposition is consequently ergodic (ie:

If all the roots of polynomial equation are with module strictly inferior to 1, then
Xt is writing as follow:

Xt =
∞∑
r=0

δtεt−r, t ∈ Z

We call this decomposition a Wold representation of a reguliar process.

1.2.4 The mixe of a lineary process

Let a lineary process Yt =
∞∑
k=0

gkZt−k,

where the sequence (Zj, j ∈ Z) is constituting of random variables and with
density fj(x).

Gorodetski has done somme assumptions wich under its a lineary process is
strong mixing. With the following notations:

Si(δ) =
∞∑
j=i

|gj|δ

β(k) =
∞∑
i=k

(Si(δ))

1

1 + δ , δ < 2

β(k) =
∞∑
i=k

max
{

(Si(δ))
1/1+δ,

√
Si(2)|LogSi(2)|

}
, δ ≥ 2

fi(x) is the density of the random variable Zi, we have the following theorem:
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Theorem 1.2.2 If

(i)

+∞∫
−∞

|fi(x)− fi(x+ α)| dx ≤ c1|α|.

(ii) IE(|Zδ
i |) ≤ c2 <∞ for one δ > 0;

We suppose that E(Zi) = 0 if δ ≥ 1,
and V ar(Zi) = 1 if δ ≥ 2.

(iii) g(z) =
∞∑
k=0

gkz
k 6= 0 for |z| < 1.

(iv) β(0) <∞

Then (Yt, t ∈ Z) satisfy the property of strong mixing.

Remark 1.2.2 The strong mixing is little than the mixing in sens (1).

The general framework presented in this thesis is to try to apply some limit
theorems to a certain process models ; especially to the linear autorogressive pro-
cess. We have divided the work into 4 parts. The second part is a reminder of
autoregressive process of order d (AR(d)). The third part is devoted to the estima-
tion of the parameters of this type of process.

In the fourth chapter we demonstrate a new application of the probability
inequality for LNQD sequences and we obtain a result of this application by
demonstrating the complete convergence for conditionally lineary negative quad-
rant dependent random variables sequence application to AR(1) model generated
by LNQD errors , the body of which is constituted by published article titled
New exponential probability inequality and complete convergence for condi-
tionally lineary negative quadrant dependent random . It is well know that,
the concept of complete convergence of a sequence of random variables was intro-
duced by (Hsu and Robins, 1947) as follows. A sequence (Xn, n ≥ 1) of random
variables converges completely to the constant C if

∞∑
n=1

P (|Xn − C| > ε) <∞ for all ε > 0

By Borel-Cantelli lemma, this implies Xn −→ C almost surely (a.s), and the
converse implication is true if (Xn, n ≥ 1) are independent. Complete conver-
gence for the sequence of random variables plays a central role in the area of
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limit theorems in probability theory and mathematical statistics. Conditions of
independence and identical distribution of random variables are basic in historic
results due to Bernoulli, Borel and Kolmogorov. Since then, serious attempts have
been made to relax these strong conditions.

The fifth chapter is devoted to the study of the complete convergence for
weighted sums of WOD random variables with application to the statistics model,
the body of which is constituted by the article in preparation titled Probability
inequalities and complete convergence for weighted sums of WOD random
variables with application to first order autoregressive process model.

And the sixth one, we will give; under suitable conditions;the almost com-
plete convergence (a.co) rate of the M-estimator with regression function kernel
weights when the observations are independent and identically distributed. For ex-
ampe, the concentration hypothesis (H1) is less restrictive than the strict positivity
of the explanatory variables density X which is usually assumed in most of the
previous works in the finite-dimensional case see ([18]) and ([41]) . Moreover, it
is checked for a great class of continuous time processes see ([11]) for a gaussian
measure and ([45]) for a general gaussian process. Remarks that the functional
character of our model is well exploited in this work. Indeed, hypothesis (H2)
is a regularity condition which characterizes the functional space. Finally, in this
work, we consider a family of ψ−functions indexed by x, in order to cover most
of the M-estimate classes see ([18]) for some examples of ψx. It is also worth
noting that we keep the same conditions on the function ψx (assumption (H3))
as were given by ([18]) in the multivariante case. Furthermore, the boundedness
assumption on ψ is made only for the simplicity of the proof. It can be dropped
while using truncation methods as to those used in ([41].)
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Chapter 2

Generality on the autoregressive
process

2.1 Generalities on the autoregressive process:

2.1.1 Definitions and generals results:
At the following we consider that XT = (Xt, t ∈ Z) is a real process with zero-
mean.

Definition 2.1.1 i) We call the process (εt, t ∈ Z) a low white noise if:

IE(εt) = 0 and IE(εtεs) = δstσ
2

where δst is the kronecher symbol and σ2 > 0.

ii) The process (εt, t ∈ Z) is said a strong white noise if the random variables
are zero-means, independents with the same distribution and with variance
σ2 > 0.

Definition 2.1.2 The process (Xt, t ∈ Z) is an autoregressive of order k if it verify
for k > 0:

Xt = a1Xt−1 + a2Xt−2 + ...+ akXt−k + εt

ak 6= 0
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where a1, ..., ak are reals numbers ,the random variables (εt, t ∈ Z) constitute
a low white noise such that:

IE(εtXs) = 0 for s < t (2.1)

the condition (2.1) imply the uniquency of the decomposition in (2.1).

Definition 2.1.3 Let consider the set of reals sequences and on this set we will de-
fine the delay operatorsB, and the advance operators F (we conserve the English
symbols B for Backward and F for Farward).

a) The delay operator B:
It is define by:

Bzt = zt−1 ∀t

• The linearity is evident:

B(αyt + βzt) = αyt−1 + βzt−1 = αByt + βBzt

•We put B0zt = 1.zt (identity operator)
•The operator (αB) is define by :(αB)zt = αBzt = αzt−1.
•The operator Bn is defined by: B(Bn−1zt) = zt−n
•The sum of the operators is defined by:
(α1B

n1+....+αpB
np)zt = (α1B

n1zt+...+αpB
npzt) = α1zt−n1+...+αpzt−np

b) The advance operator F :
It is defined by :

Fzt = zt+1 ∀t

Remark 2.1.1 All definitions of B can be applied at F .

Definition 2.1.4 We call polynomial equation associated at AR(k), the equation:

P (z) = zk −
k∑
i=1

aiB
izk = 0 (2.2)

Theorem 2.1.1 One condition is necessary and sufficient for existence of an au-
toregressive process stationary low verify (2.1):

is that the roots of polynomial equation associated P (z) = 0 are with module
strictly inferior to 1

11



Proof:
For k = 2:
Xt = a1Xt−1 + a2Xt−2 + εt

we put:
(

Xt

Xt−1

)
= X̃t;

(
a1 a2

1 0

)
= A;

(
εt
0

)
= ε̃t

(2.1.1) ⇐⇒ X̃t = AX̃t−1 + ε̃t; (X̃t, t ∈ R) is an AR(1) on R2. wich call
Markovian representation.

Condition N:
Let be (Xt)t∈Z a low stationary process verify 2.1.1 we have:

X̃tX̃
′
t =

(
AX̃t−1 + ε̃t

)(
AX̃t−1 + ε̃t

)′
where X̃ ′t =t (X̃t)

Let be: Γ the covariance matrix of X̃t (ie: Γ = IE
(
X̃tX̃

′
t

)
)

D the covariance matrix of ε̃t
(
ie : D = IE

(
ε̃tε̃
′
t

))
.

IE
(
X̃tX̃

′
t

)
= IE

[(
AX̃t−1 + ε̃t

)(
X̃
′
t−1A

′
+ ε̃

′
t

)]
= IE

[(
AX̃t−1X̃

′
t−1A

′
)

+
(
AX̃t−1ε̃

′
t

)
+
(
ε̃tX̃

′
t−1A

′
)

+
(
ε̃tε̃
′
t

)]
= IE

(
AX̃t−1X̃

′
t−1A

′
)

+ IE
(
AX̃t−1ε̃

′
t

)
+ IE

(
A
′
ε̃tX̃

′
t−1

)
+ IE

(
ε̃tε̃
′
t

)
= AIE

(
X̃t−1X̃

′
t−1

)
A
′
+ AIE

(
X̃t−1ε̃

′
t

)
+ A

′ IE
(
ε̃tX̃

′
t−1

)
+ IE

(
ε̃tε̃
′
t

)
= AΓA

′
+D

.

then:
Γ = AΓA

′
+D (2.3)

Now we search the roots of P (z):

A− λI =
a1 − λ a2

1 −λ = −λ(a1 − λ)− a2 = λ2 − a1λ− a2 = P (λ)

The roots of P (z) are exactaly the eigenvalues of A
Let v an eigen vector of A associated at the eigenvalue λ : Av = λv

12



vDv
′
= v(Γ− AΓA

′
)v
′

= vΓv
′ − vAΓA

′
v
′

= vΓv
′ − vAΓ(vA)

′

= vΓv
′ − λvΓ(λv)

′

= vΓv
′ − λvΓλv

′

= vΓv
′ − λ2vΓv

′

= (1− λ2)(vΓv
′
)

.

Then vDv′ = (1−λ2)(vΓv
′
). But the matrix D and Γ are defined positives in

case no degenerate, where:

1− λ2 > 0 =⇒ λ2 < 1 =⇒ |λ| < 1

Then the roots of P (z) verify |z| < 1.
Condition S:
The roots of P (z) verify |z| < 1.
Let X̃t = AX̃t−1 + ε̃t
where X̃t = (Xt, Xt−1)

′
, ε̃t = (εt, 0)

′

X̃t = AX̃t−1 + ε̃t

= A
(
AX̃t−2 + ε̃t−1

)
+ ε̃t

= A2X̃t−2 + Aε̃t−1 + ε̃t

= A2
(
AX̃t−3 + ε̃t−2 + Aε̃t−1

)
+ ε̃t

= A3X̃t−3 + A2X̃t−2Aε̃t−1 + ε̃t

= ......

= ......

= AsX̃t−s +
s−1∑
i=0

Aiε̃t−i

13



Then; X̃t −
s−1∑
i=0

Aiε̃t−i = AsX̃t−s

(
X̃t −

s−1∑
i=0

Aiε̃t−i

)(
X̃t −

s−1∑
i=0

Aiε̃t−i

)′
=

(
AsX̃t

)(
AsX̃t−s

)′
= AsX̃t−sX̃

′

t−sA
s
′

wich implies that:

IE

(
X̃t −

s−1∑
i=0

Aiε̃t−i

)(
X̃t −

s−1∑
i=0

Aiε̃t−i

)′
= AsIE

(
X̃t−sX̃

′
t−s

)
As
′

= AsΓAs
′

The elements of Γ are finites because of IE(X2
t ) <∞.

And we have the following result of linear algebra :
If

|λ| < 1 =⇒ As −→
s−→∞

0

where λ is the eigenvalue of A.
Then we obtain:

IE

(
X̃t −

s−1∑
i=0

Aiε̃t−i

)(
X̃t −

s−1∑
i=0

Aiε̃t−i

)′
−→
s−→∞

0.

And we have:

X̃t =
s−1∑
i=0

Aiε̃t−i in quadratic mean.

2

2.1.2 Banach space valued autoregressive process of first order.
Let (Xn, n ∈ Z) be a strictly stationnary autoregressive process of order one with
valued on banach space B defined by:

Xn = ρXn−1 + εn (2.4)

where ρ is a linear borned operator defined on B.
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The process (Xn, n ∈ Z) is an homogenuous Markov chain with transition
probability given by:

∀A ∈ B, P(x,A) = P (X1 ∈ A/X0 = x) = P (ε1 + ρx ∈ A)

We have the following definitions:

(1) if we design µ the invariante measure of the process (Xn), a set A ∈ B with
measure µ(A) > 0 is a small set , if forall C ∈ B with measure µ(C) > 0,

they exist an integar i0 wich is inf
x∈A

i0∑
i=1

Pi (x,C) > 0.

(2) A Markov process with transition P is geometricly ergodic if they exist
ξ, 0 ≤ ξ ≤ 1, such that ∀x ∈ B, ξ−n||Pn (x, .) − µ (.) || −→

n−→∞
0 where

||.|| is the invariante norm.

We denote by λ is a σ− finite measure on (B,B)

We impose the following assumptions:

(H1) : ||ρ|| < 1.

(H2) : the probability law Pε1 is absolutely continuous with respect to a σ−finite
measure λ on B,B with density f and the set of positivity of f defined by
E = {f > 0} is an open set such that the origin 0 ∈ E.

(H3) : the measure λ is such that for allA ∈ B with λ(A) > 0 they exists an open
subset U ∈ A satisfying λ(U) > 0.

•(H1) is sufficient condition for the strict stationarity of (Xn;n ∈ Z).
•(H2) is a technical assumption and permits to the measure Pε1 , to charge

the open sets of the origin 0. It is satisfied if we take Pε1 = PW the Wiener
measure on B = C[0,1] the space of all continuous functions on [0, 1] and the
reference measure λ is translate of PW by an element of the reproducing space of
the covariance function of the Wiener process.
•(H3) is an assumption of the nonatomicity of the measure λ. The Gaussian

measures on B satisfy this condition as well as some Radon’s measures. This is
true in the finite dimensional case.

We will produce the technic of Mokkadem [48]. Let be consider the follow-
ing representation of the process (Xn) : Xn = φ (Xn−1, εn) ;n ∈ Z Where the
transformation φ is defined by φ : B× B −→ B and φ(x, y) = ρx+ y.
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Remark 2.1.2 On the space of the trajectory {ω ∈ Ω/ε1(ω) = 0}, one property
is important it’s such that : If φ(t, 0) = t, then t = 0.

we put φ1(x, e1) = φ(x, e1), then for j > 1 : φj : B× Bj −→ B such that:

φj (x, e1, e2, ....., ej) = φ
(
φj−1 (x, e1, e2, ...., ej−1) , ej

)
= ρjx+ ρj−1e1 + ρj−2e2 + ....+ ej

Under (H1), we haveXn =
+∞∑
i=0

ρiεn−1 p.s and onL2
B and with the precedent

notation Xn+1 = φj+1 (Xn−j, εn−j+1, εn−j+2, ....., εn+1)
We put Dj = φj (0, Ej) where Ej = E × E × .....× E(j times ) and a set E

is define in (H2)

We have the following result:

Theorem 2.1.2 Under the assumptions (H1), (H2) and (H3) the process (Xn, n ∈ Z)
defined by (2.4) is absolutely regular geometrically.

We need the following lemmas to proof this theorem.

Lemma 2.1.1 Under (H1), (H2), the sequence (Dj)j∈N∗ is an increasent sequence
of an open’s sets and we have:

∀n ∈ Z, Xn ∈ ∪
j∈N∗

Dj∈N∗ a.s

Lemma 2.1.2 Let j ∈ N∗ and y0 ∈ Dj . Under (H1), (H2), they exist M0 neigh-
borhood of 0 on B such that for all t ∈ M0, there is an open neighborhood of y0

in φj (t, Ej) .

Lemma 2.1.3 Under (H2) and for all j ∈ N∗, they exist y0 on Dj such that forall
an open neighborhood V of y0 on Dj we have λ(V ) > 0.

Lemma 2.1.4 Under (H1), (H2) and (H3) we have:

∀n ∈ Z, P
(
Xn ∈ ∪

j∈N∗
Dj

)
> 0

Lemma 2.1.5 Under (H1), (H2), (H3) we have:

∀n ∈ Z, P
(
Xn ∈ ∪

j∈N∗
Dj

)
= 1
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Lemma 2.1.6 Under (H1), (H2), (H3) and for all a borelian setA on B in ∪
j∈N∗

Dj

such that λ(A) > 0, if K is a compact set on B in ∪
j∈N∗

Dj , then they exist

(j, l) ∈ N∗2 such that for all r ≥ l:

∀z ∈ K, Pj+r(z, A) > 0

Lemma 2.1.7 Under (H1), (H2), (H3) the chain (Xn, n ∈ Z) defined by (2.4) is
λ−irredictibl and aperiodic

Lemma 2.1.8 Under (H1), (H2), (H3) the chain (Xn, n ∈ Z) defined by (2.4) is
Harris reccurent.

Lemma 2.1.9 Under (H1), (H2), (H3) the chain (Xn, n ∈ Z) defined by (2.4) is
geometricly ergodic

Now we can use the results of E.Nummelin. P. Tuominen [52], and Y.A.
Davydov [27] to say that the process (Xn) defined by (2.4) is geometricly abso-
lutly regular. 2

2.1.3 Banach space valued autoregressive process of superior
order

To study the mixing property of the autoregressive process of a superior order
defined by (2.1) we use the following Markovienne representation on the product
space Bp, p ∈ N∗:

Yn = AYn−1 + Ãεn (2.5)

Where Yn = (Xn, ......, Xn−p+1)
′
, Ã = (I, 0, ......., 0)

′
and A is the matrix

operator from Bp to it’s self defined by:
ρ1 ρ2 . . . ρp−1 ρp
I 0 . . . 0 0
0 I 0 . . . 0
. . . . . . .
0 . . . 0 I 0


I is the identity operator of B
Now we we have to put the following assymtion:
(H1)

′
: ∃j0 ≥ 1 such that ||Aj0 || < 1.

17



Remark 2.1.3 In general the norm of A is higher than 1, but we can found a
degree ofA with norm inferior than 1 ([14], ch.3.2 or [49], ch.9).

We conserve the assumptions (H2), (H3). With a similar study of ARB(1), we
can deduce that (Yn) defined by (2.5), is geometricly, absolutly regular. For what;
(Xn) defined by (2.1) is geometricy absolutly regular.

Theorem 2.1.3 Under (H1)
′
, (H2), (H3). The process (Xn) defined by (2.4) is

geometricly absolutly regular.

2.2 Autoregressive process in Hilbert space
Let H be a separable Hilbert space with norm ||.|| and scalar product < ., . > and
Borel σ−algebra BH .

Definition 2.2.1 A sequence ε = (εn, n ∈ Z) of H− random variables is said to
be an H− white noise (WN) if

1) 0 < IE||εn||2 = σ2 <∞, IE(εn) = 0

2) εn is orthogonal to εm; n,m ∈ Z;n 6= m;

IE (< εn, x >< εm, y >) x, y ∈ H

ε is said to be an H− strong white noise (SWN) if it satisfies 1) and

2
′
) (εn) is a sequence of i.i.d. H−random variables

An SWN is a WN and the converse fails.

Example 2.2.1 Let H = L2
(
[0, 1],B[0,1], λ

)
, where λ is the Lebesgue measure,

consider a measurable bilateral Wiener process W , and put

εn(t) = Wn+1 −Wn, 0 ≤ t ≤ 1, n ∈ Z

(εn) defines a sequence of H−random variables. Since increments of W are
independent stationary, ε is a strong white noise.
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Definition 2.2.2 • An H−valued second order process X = (Xn, n ∈ Z) is a
Markov process in the wide sence if

πG
k
n−1(Xn) = πG

1
n−1(Xn), n ∈ Z, k ≥ 2

where πG
k
n−1(k ≥ 1) is the orthogonal projector over the hermetically closed sub

space of L2
H (Ω,A,P) generated by Xn−1, ..., Xn−k

• An H−valued process X = (Xn, n ∈ Z) is a Markov process in the strict
sense if

PAkn−1(Xn ∈ A) = A1
n−1(Xn ∈ A), A ∈ BH , n ∈ Z, k ≥ 2

where PAkn−1 , (k ≥ 1) denotes conditional probability with respect to the σ−algebra
Akn−1 = σ (Xn−1, ..., Xn−k)

Definition 2.2.3 A sequenceXn = (Xn, n ∈ Z) ofH−random variables is called
an autoregressive hilbertian process of order 1 (ARH(1)) associated with (µ, ε, ρ)
if it is statinary and such that

Xn − µ = ρ (Xn−1 − µ) + εn, n ∈ Z (2.6)

where µ ∈ H, ρ is a bounded linear operator and ε = (εn, n ∈ Z) is an
H−white noise.

Existence of such a process is ensured by the following conditions
(c0) There exists an integer j0 ≥ 1 such that ||ρj0||L < 1.
and
(c1) There exist a > 0 and 0 < b < 1 such that ||ρj||L ≤ abj, j ≥ 0.

Lemma 2.2.1 (c0) and (c1) are equivalent

Proof:
It is obvious that (c1) yields (c0).
Let us show that (c0) implies (c1)
Clearly it is suffices to prove (c1) for j > j0 and 0 < ||ρj0||L < 1. For such a

j we may write the result of its euclidian division by j0 under the form

j = j0q + r (2.7)

where q ≥ 1 and 0 ≤ r < j0
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Now the properties of ||.||L entail

||ρj||L ≤ ||ρj0||qL||ρ
r||L

and since q = j
j0
− 1 and 0 < ||ρj0||L < 1 it follows that

||ρj||L ≤ abj, j > j0

where a = ||ρj0||−1
L max

0≤r≤j0
||ρr||L and b = ||ρj0||

1
j0
L < 1 2

Theorem 2.2.1 If (c0) holds, then (2.6) has a unique stationary solution given by

Xn = µ+
∞∑
j=0

ρj(εn−j), n ∈ Z (2.8)

where the series converges in L2
H (Ω,A,P) and with probability 1.

Proof:
We may and do assume that µ = 0. Now orthogonality of the εn’s entails

δm
′

m = ||
m
′∑

j=m

ρj (εn−j) ||2L2H(P) =
m
′∑

j=m

||ρj (εn−j) ||2L2H(P)

1 ≤ m ≤ m
′ . On the other hand

||ρj (εn−j) ||L2H(P) = IE < ρj (εn−j) , ρ
j (εn−j) >

≤ σ2||ρj||2L
hence the lemma as above yields

δm
′

m ≤ σ2

m
′∑

j=m

||ρj||2L −→
m,m′−→∞

0

Thus from the Cauchy criterion it follows that the series in (2.8) converge in
L2
H(P).

In fact, since IE

(
∞∑
j=0

||ρj||||εn−j||

)2

<∞, it follows that
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∞∑
j=0

||ρj||||εn−j|| <∞a.s. and the series also converge almost surely.

Let us now consider the stationary process

Yn =
∞∑
j=0

ρj (εn−j) , n ∈ Z

by using boundedness of ρ we see that

Yn − ρ(Yn−1) =
∞∑
j=0

ρj (εn−j)−
∞∑
j=0

ρj+1 (εn−1−j)

= εn, n ∈ Z

which means that (Yn) is a solution of equation (2.6)
Convesely, let (Xn) be a stationary solution of (2.6). A straightforward induc-

tion gives

Xn =
k∑
j=0

ρj (εn−j) + ρk+1 (Xn−k−1) , k ≥ 1 (2.9)

Therefore

IE||Xn −
k∑
j=0

ρj (εn−j)
2 || ≤ ||ρk+1||2LIE||Xn−k−1||2

By stationary, IE||Xn−k−1||2 remains constant and the previously lemma yields
||ρk+1||2L −→

k−→∞
0 a.s. Consequently

Xn =
∞∑
j=0

ρj (εn−j) , n ∈ Z

This poves uniqueness. 2

Example 2.2.2 Consider the Hilbert space H = L2
(
[0, 1],B[0,1], λ

)
and ρ = lk, a Kernel operator associated with with a Kernel K such that∫

[0,1]2

K2 (s, t) dsdt < 1
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Take a white noise (εn)φ given by

εφn(t) =

n+1∫
n

φ (n+ t− s) dW (s), 0 ≤ t ≤ 1, n ∈ Z where φ ∈ H and

1∫
0

φ2(u)du > 0. Conditions in the last theorem are then satisfied and one obtains

the ARH(1) process

Xn =
∞∑
j=0

ljK

(
ε

(φ)
n−j

)
, n ∈ Z.

In order to state a corollary concerning uniqueness of (µ, ε, ρ), let us recall that
the support SZ of distribution of a random variable Z is defined by

SZ = {x : x ∈ H,P (||Z − x|| < α) > 0 ∀α > 0}

Corollary 2.2.1 If X is an ARH(1) associated with (µ, ε, ρ) and (c0) holds, then
(µ, ε) is unique, and ρ is unique over

S = sp ∪
n∈Z

(SXn−µ ∪ Sεn)

Proof:
Uniqueness of (µ, ε) is obvious since IE(Xn) = µ and ε is the innovation of

(Xn − µ)
Now if ρ1 ∈ L satisfies (c0) and

Xn = µ+
∞∑
j=0

ρj1 (εn−j) , n ∈ Z (2.10)

Then (2.6) implies

ρ (Xn−1 − µ) = ρ1 (Xn−1 − µ) , (a.s), n ∈ Z

Which in turn implies ρ1 = ρ over SXn−1−µ, ∀n
On the other hand, (2.8) and (2.10) entail

(ρ− ρ1) (εn−1) =
∞∑
j=0

(
ρj1 − ρj

)
(εn−j)
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Then, from

(ρ− ρ1) (εn−1)
∞∑
j=0

(
ρj1 − ρj

)
(εn−j)

it follows that
(ρ− ρ1) (εn−1) = 0, n ∈ Z

This implies equality of ρ and ρ1 over Sεn−1 ,∀n
Finally, by linearity and continuity of ρ and ρ1, one obtains uniqueness of ρ

over S. 2

2.3 Autoregressive Hilbrtian processes of order p
The Markovian character of the ARH(1) model induces some limits to its eff-
ciency for applications to statistics in continuous time. In this paragraph we intro-
duce the more flexible autoregressive model of order p.

Definition 2.3.1 Let H be a separable Hilbert space.
A sequence X = (Xn, n ∈ Z) of H−random variables is said to be an autore-
gressive hilbertian process of order p (ARH(p)) associated with (µ, ε, ρ1, ..., ρp) if
it is stationary and such that

Xn − µ = ρ1 (Xn−1 − µ) + ....+ ρp (Xn−p − µ) + εn, n ∈ Z (2.11)

where (εn, n ∈ Z) is an H−white noise, µ ∈ H , and ρ1, ...., ρp ∈ L, with ρp 6= 0

2.3.1 Markovian representation of an ARH(p)
Let Hp be the cartesian product of p copies of H .

Hp is a separable Hilbert space if it is equipped with the scalar product

< (x1, ..., xp) , (y1, ..., yp) >p=

p∑
j=1

< xj, yj > (2.12)

with xj, yj ∈ H, j = 1, ..., p
Then we denote by:
• ||.||p the norm in Hp.
• Lp the space of bounded linear operators over Hp.

23



• Sp the space of Hilbert-schmidt operators over Hp. and the corresponding
norms and scalar products by ||.||Sp , < ., . >Sp .
• Y = (Yn, n ∈ Z), where Yn = (Xn, ...., Xn−p+1) , n ∈ Z;
µ
′

= (µ, ..., µ) ∈ Hp; ε′ =
(
ε
′
n, n ∈ Z

)
with ε′n = (εn, 0, ...., 0) and consider

the operator on Hp defined as

ρ
′
=


ρ1 ρ2 . . . ρp−1 ρp
I 0 . . . 0 0
0 I 0 . . . 0
. . . . . . .
0 . . . 0 I 0


where I is the identity operator.

We have the following lemma

Lemma 2.3.1 If X is an ARH(p) associated with (µ, ε, ρ1, ..., ρp), then Y is an
ARHp(1) associated with

(
µ
′
, ε
′
, ρ
′)

The existence and uniqueness of X are gives by the following theorem.

Theorem 2.3.1 Under the assumption

(c
′

0) ||ρ′j0 ||Lp < 1 for some j0 ≥ 1

equation (??) has a unique stationary solution given by

Xn = µ+
∞∑
j=0

(
πρ
′j
)(

ε
′

n−j

)
, n ∈ Z (2.13)

where π is the natural projector of Hp on H defined by

π (x1, ..., xp) = x1, (x1, ..., xp) ∈ Hp

and the series converges in L2
H (Ω,L,P), with probability 1

Now, we will introduce a condition that is directly associated with the operators
ρ1, ..., ρp

Q(z) = zpI − zp−1ρ1 − ...zρp−1 − ρp, z ∈ C

For every z, Q(z) is a bounded linear operator over the complex extension H ′ of
H .

Then we have the following theorem

24



Theorem 2.3.2 Suppose that the following condition holds:

Q(z)notinversible =⇒ |z| < 1 (2.14)

Than (c
′
0) holds. THerefore (??) has a unique stationary solution given by (2.13)

Proof:
Let us consider the operators on Hp defined as

N(z) =


I zI z2I . . . zp−1I
0 I zI . . . zp−2I
. . . . . . .
. . . . . . .
0 . . . . I zI
0 . . . . 0 I


and

M(z) =


0 −I 0 . . . 0
0 0 −I . . . 0
. . . . . . .
. . . . . . .
0 . . . . 0 −I

Q0(z) Q1(z) . . . . Qp−1z


where Q0(z) = I and Qj(z) = zQj−1(z)− ρj, j = 1, ..., p

It’s easy to see that:

M(z)
(
zIp − ρ

′
)
N(z) =


I 0 . . . 0 0
0 I . . . . .
. . . . . . .
. . . . . . .
. . . . . I 0
0 . . . . 0 Q(z)

 (2.15)

where Ip is the identity of Hp.
Now, due to their special form, N(z) and M(z) are inversible for all z.
Then from (2.15) it follows that
E = {z, zI − ρ′ is not inversible } ⊂ {z,Q(z) is not inversible }
and using (2.14) we get

E ⊂ {z, |z| < 1} (2.16)
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E is the so-called spectrum of ρ′ over H ′ . It is a closed set and

rρ′ = sup
z∈E
|z| = lim

j−→∞
||ρ′j||1/jLp (2.17)

Then, from (2.16) and (2.17) we deduce that there exist an integer j1, α ∈]0, 1[
and k > 0 such that

||ρ′j||Lp ≤ kαj, j ≥ j1

Thus (c
′
0) holds and the proof is complete. 2

Note that it is possible to show that rρ′ ≤ ||ρ
′ ||Lp , but rρ′ does not entails

||ρ′||Lp < 1. On the other hand, if H is finite dimensional, (2.14) is equivalent to
" determinant of Q(z) = 0 =⇒ |z| < 1."

Corollary 2.3.1 If
p∑
j=1

||ρj||L < 1, then (2.14) holds

and
Q(z) = 0 =⇒ |z| < 1

Example 2.3.1 Take H =
(
L2[0, 1],B[0,1], λ

)
and ε such that

εφn(t) =

n+1∫
n

φ (n+ t− s) dW (s), 0 ≤ t ≤ 1, n ∈ Z

where W is a Wiener process and φ ∈ H and

1∫
0

φ2(u)du > 0 and let

ρj = lk; j = 1, ..., p be kernel operators associated with kernels K1, ..., Kp

such that
p∑
j=1

 ∫
[0,1]2

K2
j (s, t)dsdt


1/2

< 1

Then from the corollary as above we show that (??) has a unique stationary solu-
tion (Xn) which satisfies

Xn(t) =

1∫
0

(
p∑
j=1

Kj(s, t)Xn−j(s)

)
ds+

n+1∫
n

φ(n+ t− s)dW (s)

0 ≤ t ≤ 1, n ∈ Z

We finally indicate a result concerning projection of an ARH(p) process.
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Theorem 2.3.3 Let (Xn) be an ARH(p) zero-mean process associated with (ρ1, ..., ρp; ε).
Suppose that there exist v ∈ H and α1, ..., αp ∈ R, (αp 6= 0) such that

ρ∗j(v) = αjv, j = 1, ..., p.

and
IE
(
< ε0, v >

2
)
> 0.

Then (< Xn, v >, n ∈ Z) is an AR(p) process that satisfies

< Xn, v >=

p∑
j=1

αj < Xn−j, v > + < εn, v >, n ∈ Z (2.18)
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Chapter 3

Estimation of an autoregressive
parameters

3.1 The autocovariance and autocorrelation func-
tions

Let (Xt, t ∈ Z) be a real stationary process of second order (not degenerate).

Definition 3.1.1 The autocovariace function of the process (Xt, t ∈ Z)
is defined by:

R(h) = cov(Xt, Xt+h) where h ∈ Z.

The autocorrelation function is defined by:

ρ(h) =
R(h)

R(0)
, h ∈ Z

.

Propriete 3.1.1 i) •R(0) = σ2, (ie : R(0) = cov(Xt, Xt)) .

•R(h) < R(0).

•R(h) = R(−h), (ie : R(−h) = cov(Xt, Xt−h) = cov(Xt, Xt+h) = R(h)) .

The function R(h) is positive

(ie: ∀t1, ..., tn ∈ Z , and ∀a1, ...., an :
n∑
r=1

n∑
s=1

arasR(tr − ts) ≥ 0)
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ii) •ρ(0) = 1,

(
ie : ρ(0) =

R(0)

R(0)
= 1

)
.

•|ρ(h)| < 1,

(
ie : |ρ(h)| = |R(h)|

|R(0)|
< 1 car R(h) < R(0)

)
.

•ρ(−h) = ρ(h),

(
ie : ρ(−h) =

R(−h)

R(0)
=
R(h)

R(0)
= ρ(h)

)
.

Theorem 3.1.1 Autocovariance of a process AR(k) verify the equations:

k∑
i=1

aiR(h− i) = R(h), k = 1, 2,

k∑
i=1

aiR(i) + σ2
ε = R(0)

At the same way, we establish for the autocorelation:

ρ(h)−
k∑
i=1

aiρ(h− i) = 0⇐⇒ ρ(h) =
k∑
i=1

aiρ(h− i) (3.1)

⇐⇒


ρ(1)
ρ(2)
..
..
ρ(k)

 =


1 ρ(1) ρ(2) . . ρ(k − 1)
ρ(1) 1 ρ(1) . . ρ(k − 2)
. . . . . .
. . . . . .

ρ(k − 1) . . . ρ(1) 1




a1

a2

.

.
ak

 (∗)

Remark 3.1.1 From the system (∗) we can obtain the ai function of ρ(1), . . . , ρ(k)
(the matrix is defined positive)

3.2 Function of partial autocorelation
Definition 3.2.1 (Xt, t ∈ Z) is a stationary process of second order , we call the
function of partial autocorelation the function:

r(h) =
cov(Xt −X∗t , Xt−h −X∗t−h)

V ar(Xt −X∗t )
, h > 1

whereX∗t ( resp X∗t−h) is the regression affine ofXt( resp Xt−h) onXt−1, ..., Xt−h+1.
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Remark 3.2.1 r(h) can be seen like the coefficient of correlation of Xt, Xt−h
when we have supprime the influence of Xt−1, ..., Xt−h+1 on Xt and Xt−h.

The sequence of partial autocorrelation of a process AR(k) has an importante
propriete :

Propriete 3.2.1 If (Xt, t ∈ Z) is an AR(k), then:

r(k) = ak and r(p) = 0 for p > k.

where ak is the last coefficient of autoregressive AR(k).

Remark 3.2.2 1) From the system (5), we can see that r(k)( or ak) is function
of ρ(1), ..., ρ(k), and we can proof that ρ(k), is function of r(1), ..., r(k).

From this we can show that knowing ρ(k) is equivalent at knowing r(k).

2) This propriete of the sequence (r(h), h ≥ 2) will be used to identify an
observed autoregressive .

3.3 Built the sequence of the partial autocorrelation
Soit (Xt, t ∈ Z) a real process zero-mean stationary of second order. We suppose
that:

R(0) = σ2 = 1 and the sequence (ρ(h), h ≥ 1) is defined positive.(
ie :

n∑
i=1

n∑
j=1

δiδj (ρ(ti − tj)) > 0

)
.

For all reals not all equal to zero, and t1, ..., tn ∈ Z and with
ρ(h) = IE (XtXt+h) for all t and h in Z. In this case we have: ρ(h) = R(h).
If we project Xt on the vectorial space constituting by

{Xt−1, ..., Xt−l, l ≥ 1} we have: Xt =
l∑

i=1

ai(l)Xt−j + εt

where the random variable εt are zero-mean and orthogonals at Xt−1, ..., Xt−l
Then; the sequence of partial autocorrelation (r(h), h ≥ 1) is determines by

the rezolution of the following sequence of matrix equations:

Rla
(l) = ρ(l) for l ≥ 1 (3.2)

where:
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The vector:
(
a(l)
)′

=
(
a

(l)
1 , a

(l)
2 , ..., a

(l)
k

)
The matrix: Rl = (ρ(|i− j|)) , i, j = 1, ..., l
The vector: ρ(l) =

(
ρ(1), ..., ρ(l)

)
And the sequence (r(h), h ≥ 1) is defined by:

r(l) = al(l) for l ≥ 1 (3.3)

The resolution of the last equation is taking as following:

(D.1) r(1) = a1(1) = ρ(1)

(D.2) σ2(1) = 1− r2(1)

(D.3) ρ(l + 1) = al+1(l + 1) =

ρ(l + 1)−
l∑

j=1

aj(l)ρ(l + 1− j)

σ2(l)
(D)

où : σ2(l) = 1−
l∑

j=1

aj(l)ρ(j)

(D.4) aj(l + 1) = aj(l)− r(l + 1)al+1−j(l) (j = 1, 2, ..., l)

(D.5) σ2(l + 1) = σ2(l)(1− r2(l + 1))

With the conditions: σ2(l) 6= 0 and |r2(l) < 1|

3.4 Partial autocorrelation of an autoregressive pro-
cess

Let (Xt, t ∈ Z) a gaussian process stationary, zero-mean, having for function of
covariance, and partial correlation respectively, R(h), r(h)

Theorem 3.4.1 The covariance function R(h) of process (Xt, t ∈ Z) is defined

positive (ie:∃c1, ..., cn such that :
n∑
i=1

n∑
j=1

cicjR(i− j) > 0 with

the minimum ci 6= 0) If and only if:

|r(h)| < 1 for all h > 1
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Theorem 3.4.2 If (Xt, t ∈ Z) is an autoregressive process, then its covariance
function is defined positive.

From the two last theorems , we deduce the following corollary:

Corollary 3.4.1 The sequence of partial autocorrelation (r(h), h ≥ 1) of an au-
toregressive process is such that:

|r(h)| < 1 for all h ≥ 1

From the following theorem, we can gate informations about σ2(l) which was
introduce in Durbin rezolution .

Theorem 3.4.3 If (Xt, t ∈ Z) is an autoregressive process with an associated
white noise (εt)t∈Z , then σ2(l) is such that:

σ2(l) ≥ σ2
ε for l ≥ 1

σ2(l) −→ σ2
ε when l −→∞

And exactaly if (Xt, t ∈ Z) is an autoregressive process of order k0 we obtain:

σ2(l) = σ2
ε for l ≥ k0

where σ2
ε = V ar(εt) > 0

3.5 Estimation of autocovariance operators for ARH(1)

3.6 Construct of estimators
Let be (Xt, t ∈ Z) a gaussian, stationary and zero-mean autoregressive process of
order k wich verify:

Xt = a1Xt−1 + a2Xt−2 + ...+ akXt−k + εt

where the parameters of estimate are:a1, ..., ak and σ2. with a knowing order
k.

The (εt, t ∈ Z) constitute a sequence of random variable wich are indepen-
dents and with the same law N (0, σ2

ε).
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Remark 3.6.1 The frequentaly used estimators are the estimators of moindres
carrés and the maximum likelihood.

The first estimators are obtains by regression of Xt on Xt−1, ..., Xt−k
for t = 1, ..., N . wich recall to minimise the quantity:

Q(a1, ..., ak) =
N∑
t=1

(Xt − a1Xt−1 − ...− akXt−k)
2

For the second estimators , we obtain the maximum likelihood estmators of the
logarithm under normality assumption of (εt)

L(a1, ..., ak) = (−N−k)Log(σε
√

2π)− 1

2σ2
ε

N∑
t=1

(Xt − a1Xt−1 − ...− akXt−k)
2

Then we have: to maximise L(a1, ..., ak) we must minimise its second term
wich is Q(a1, ..., ak)

And the two estimators are similars and its done by the equations of Yule-
Walker:

R̂(1, 1) . . . R̂(1, k)
. . . . .
. . . . .
. . . . .

R̂(k, 1) . . . R̂(k, k)




â1(k)
.
.
.

âk(k)

 =


R̂(0, 1)

.

.

.

R̂(0, k)


where: R̂(i, j) =

1

N

N∑
t=1

Xt−iXt−j with i, j = 0, 1, ..., k

The â1(k), ..., âk(k) are the estimators of a1, ..., ak.
The approched maximum likelihood estimator of σ2

ε is:

σ̂2
ε(k) =

1

N

N∑
t=1

(Xt − â1(k)Xt−1 − ...− âk(k)Xt−k)
2

.

3.6.1 Convergence and limit law of estimators
(a) Probability Convergence:
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Theorem 3.6.1 Under assumption (εt) are independents, zero-mean, with a same
law and such that:

IE(ε4t ) <∞, then the random vector:
(
√
N(â1(k)− a1), ...,

√
N(âk(k)− ak))→L N (0, σ2

εR
−1
k )

where Rk is a covariance matrix of Xt.

Its evident that from the last theorem we can obtain:
âi(k) −→ ai in probability for i = 1, 2, ..., k
We can see that from the following theorem wich is establish by Anderson

we obtain the same result but under low assumptions on (εt).

Theorem 3.6.2 If the εt are independents with IE(εt) = 0 and IE(ε2t ) = σ2
ε > 0.

If the εt are with the same law, verify:
IE(|εt|2+ε) < m with t = 1, 2, ..., ε > 0 and m > 0, then we have:

âi(k)→P ai for i = 1, ..., k

σ̂2
ε (k)→P σ

2
ε when N −→∞

Remark 3.6.2 The first theorem is the principal result of Mann et Wald wich
hade establish the first results on the convergence and the limits law of estimators(
des moindres carrés) .

This results are used principly for built tests and confiance intervals for the pa-
rameters to estimate in case of a big size.

(b)convergence presque sure:
Hannan et Rissanen have establish the convergence presque sure of maxi-

mum likelihood estimators. Under some regularity assumption on the space of
parameter and on the function of likelihood , we have:

âi(k) −→ ai p.s for i = 1, ..., k σ̂2
ε (k) −→ σ2

ε p.s when N −→∞.

3.7 Estimate of autocorrelation and partial autocor-
relation

3.7.1 The empirical autocorrelation
A natural estimator of autocorrelation ρ(h) is:
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ρ̂(h) =

N−k∑
t=0

(Xt −XN)(Xt+h −XN)

N∑
t=0

(Xt −XN)2

h ≥ 0

with XN =
1

N

N∑
t=1

Xt.

Theorem 3.7.1 If (Xt, t ∈ Z) has the representation:

Xt =
+∞∑
j=−∞

ψjεt−j

where
∑
j

|ψj| < ∞ and the random variables (εt)t∈Z are zero-mean, inde-

pendents, with variance σ2 and admette a moments of order 6 (with IE(ε6t ) = τσ6)
Under this assumptions, for h and q fixed, we have:

(1)

Ncov(ρ̂(h), ρ̂(q)) −→
+∞∑
j=−∞

[ρ(j)ρ(j − h+ q) + ρ(j + q)ρ(j − h)

− 2ρ(q)ρ(j)ρ(j − h)− 2ρ(h)ρ(j − q)ρ(j) + 2ρ(h)ρ(q)ρ2(j)]

= φh,q.

(2)
(√

N(ρ̂(1)− ρ(1)), ...,
√
N(ρ̂(k)− ρ(k))

)
→L N (0,

∑
),∀k fixed and

where the covariance matrix
∑

has the indix term (h, q) the quantity φh,q

Corollary 3.7.1 Under the same assumptions of the last theorem, we have:
For h ≥ q > 0:

IE(ρ̂(h)) = − N − h
N(N − 1)

+0(N−2)
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3.7.2 Empirical partial autocorrelation
To estimate the sequence of partial autocorrelation (r(l), l ≥ 2) of the autoregres-
sive of order k, we must use that r(l) is a function of ρ(l).

Estimate ρ(l) by ρ̂(l), and using the built of sequence (r(l), l ≥ 2) seen in
section I-5, we obtain an estimator r̂(l) of r(l) from the equation as bellow:

r̂(l) = âl(l) for l ≥ 1 (3.4)

where the estimator âl(l) is obtained from the system (7) using ρ̂(i), i = 1, ....
From the Durbin rezolution we can obtain the sequence r̂(l), l ≥ 1:

r̂(1) = â1(1) = ρ̂(1)

r̂(l + 1) =

ρ̂(l + 1)−
l∑

j=1

âj(l)ρ̂(l + 1− j)

σ̂2(l)

where:

σ̂2(l) = 1−
l∑

j=1

âj(l)ρ̂(l)

and we have also:

σ̂2(1) = 1− r̂2(1)

σ̂2(l + 1) = σ̂2(l)(1− r̂2(l + 1))

in each time that we have: σ̂2(l) 6= 0 and |r̂2(l)| < 1.

Remark 3.7.1 If the process (Xt, t ∈ Z) is an autoregressive of order k, we have:

r̂(k) = âk(k) = âk

where âk is an estimator of the last coefficient ak of the autoregressive and

σ̂2
ε (k) = σ̂2

ε where σ̂2
ε = 1 −

k∑
j=1

âj(l)ρ̂(j) is the estimator of σ2
ε defined by the

equation of Yule-Walker putting σ2
x = 1.
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Chapter 4

New exponential probability
inequality and complete convergence
for conditionally linearly negative
quadrant dependent random
variables sequence, application to
AR(1) model generated by F-LNQD
errors

Abstract. The exponential probability inequalities have been important tools in
probability and statistics. In this paper, We prove a new tail probability inequality
for the distributions of sums of conditionally linearly negative quadrant dependent
(F-LNQD, in short) random variables, and obtain a result dealing with condition-
ally complete convergence of first-order autoregressive processes with identically
distributed (F-LNQD) innovations.

4.1 Introduction
The exponential inequality plays an important role in various proofs of limit theo-
rems. In particular, it provides a measure of the complete convergence for partial
sums.
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Firstly, we will recall the definitions of conditionally negative quadrant dependent,
conditionally negatively associated, and conditionally linearly negative quadrant
dependent sequence.
Let (Ω,A,P) be a probability space, and all random variables in this paper are de-
fined on it unless otherwise mentioned. Let F be a sub-algebra of A, two random
variables ζ1 and ζ2 are said to be conditionally negative quadrant dependent given
F(F-NQD, in short) if, for all ε1, ε2 ∈ R

PF(ζ1 ≤ ε1, ζ2 ≤ ε2) ≤ PF(ζ1 ≤ ε1)PF(ζ2 ≤ ε2). (4.1)

One of the many possible multivariate generalizations of conditionally neg-
ative quadrant dependence is conditionally negatively association introduced by
Yuan et al.[68] .
A finite collection of random variables ζ1, ζ2, ..., ζn is said to be conditionally
negatively associated (F-NA, in short) if for every pair of disjoint subsets A,B of
{1, 2, ..., n}

CovF(f(ζi : i ∈ A), g(ζj : j ∈ B)) ≤ 0,

whenever f and g are coordinatewise nondecreasing such that this covariance ex-
ists. An infinite sequence {ζn, n ≥ 1} is F-NA if every finite subcollection is
F-NA.
We now propose another multivariate generalization of conditionally negative
quadrant dependence called conditionally linearly negative quadrant dependence,
which is weaker than F-NA property.

Definition 4.1.1 A finite sequence of random variables {ζn, n ≥ 1} is said to be
conditionally linearly negative quadrant dependent given (F-LNQD, in short) if
for any disjoint subsets A,B ⊂ Z and positive r

′
js,∑

k∈A

rkζk and
∑
j∈B

rjζj are F −NQD.

As mentioned earlier, it can be shown that the concepts of linearly negative quad-
rant dependent and conditional linearly negative quadrant dependent are not equiv-
alent. See, for example, Yuan and Xie [69], where various of counterexamples are
given.

A concrete example where conditional limit theorems are useful is the study of
statistical inference for non-ergodic models as discussed in Bassawa and Prakasa
Rao [5] and Basawa and Scott [6]. For instance, if one wants to estimate the mean
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off-spring for a Galton-Watson branching process, the asymptotic properties of
the maximum likelihood estimator depend on the set of non-extinction.

As it was pointed out earlier, the conditional LNQD property does not imply
the LNQD property and the opposite implication is also not true. Hence one does
have to derive limit theorems under conditioning if there is a need for such results
even through the results and proofs of such results may be analogous to those un-
der the non-conditioning setup. This one of the reasons for developing results for
sequences of F-LNQD random variables in this chapter.
As mentioned earlier, large numbers of results for LNQD random variables have
been achieved. However, nothing is variable for conditional LNQD random vari-
ables. Yuan and Wu [71] extended many results from negative association to
asymptotically negative association, Yuan and Yang [72] extended many results
from association to conditional association, Yuan et al [68] extended many results
from negative association to conditional negative association, and these motivate
our original interest in conditional LNQD.

On the other hand, the concept of complet convergence of a sequence of
random variables was introduced by [37]. Note that complete convergence im-
plies almost sure convergence in view of the Borel-Cantelli lemma. Now we
extend this concept a conditionally converge completely given F to a constant

a if
∞∑
i=1

P(|Xi − a| > ε/F) < ∞ for every ε > 0, and we whrite Xn → a

conditionally completely given F .
The main purpose of this chapter is to establish a new probability inequality

and conditional complete convergence for the F − LNQD
random variables and to extend and improve the results of Wang et al [65].

Throughout the paper, let Sn =
n∑
i=1

Xi for a sequence {Xn, n ≥ 1} of random

variables defined on a probability space (Ω,F ,P). Let F is a sub-σ-algebra ofA,
{Xn, n ≥ 1} will be called F-centered if EFXn = 0

for every n ≥ 1. Denote Bn =
n∑
i=1

EF |Xi|2 for each 1 ≤ i ≤ n.
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4.2 Some lemmas
Lemma 4.2.1 [69] Let random variables X and Y be F-NQD. Then
(i) EF(XY ) ≤ EF(X)EF(Y );
(ii) PF(X > x, Y > y) ≤ PF(X > x)PF(Y > y);
(iii) If f and g are both nondecreasing (or both nonincreasing) functions, then
f(X) and g(Y ) are F-NQD.

Corollary 4.2.1 Let {Xn, n ≥ 1} be a sequence of F-LNQD random variables
and t > 0, then for each n ≥ 1,

EF
[

n∑
i=1

exp(tXi)

]
≤

n∏
i=1

EF(exp(tXi)) (4.2)

Proof. For t > 0, it is easy to see that tXi and t
n∑

j=i+1

Xj are F-NQD by the

definition of F-LNQD, which implies that exp(tXi) and exp(t
n∑

j=i+1

Xj) are also

F-NQD for i = 1, 2, ..., n−1 by Lemma 4.2.1(iii). It follows from Lemma 4.2.1(i)
and induction that

EF
[

n∑
i=1

exp(tXi)

]
= EF

[
exp(tX1) expλ(

n∑
i=2

tXiρ)

]

≤ EF [exp(tX1)]EF
[

expλ(
n∑
i=2

tXiρ)

]

= EF [exp(tX1)]EF
[

exp(tX2) expλ(
n∑
i=3

tXiρ)

]

≤ EF [exp(tX1)]EF [exp(tX2)]EF
[

expλ(
n∑
i=3

tXiρ)

]

≤
n∏
i=1

EF(exp(tXi)).

This completes the proof of the lemma.
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Lemma 4.2.2 [20] For any x ∈ R, we have

exp(x) ≤ 1 + x+
|x|
2

ln(1 + |x|) exp(2|x|).

Lemma 4.2.3 Let {Xn, n ≥ 1} be a sequence ofF-LNQD random variables with
EF(Xn) = 0 for each n ≥ 1. If there exists a sequence of positive numbers
{cn, n ≥ 1} such that |Xi| ≤ ci for each i ≥ 1, then for any t > 0,

EF exp

{
t

n∑
i=1

Xi

}
≤ exp

{
t2

2

n∑
i=1

e2tciEF |Xi|2
}
. (4.3)

Proof. By lemma 4.2.2, for all x ∈ R , exp(x) ≤ 1 +x+ |x|
2

ln(1 + |x|) exp(2|x|).
Thus, by EF(Xi) = 0 and |Xi| ≤ ci for each i ≥ 1, we have

EF exp(tXi) ≤ EF
{

1 + tXi +
t

2
|Xi| ln(1 + |tXi|) exp(2|tXi|)

}
= 1 + tEF(Xi) +

t

2
EF {|Xi| ln(1 + |tXi|) exp(2|tXi|)}

= 1 +
t

2
EF {|Xi| ln(1 + |tXi|) exp(2|tXi|)}

≤ 1 +
t

2
EF {|Xi| ln(1 + |tXi|) exp(2tci)}

= 1 +
t

2
exp(2tci)EF

{
t|Xi|2

}
= 1 +

t2

2
exp(2tci)EF

{
t|Xi|2

}
≤ exp

{
t2

2
exp(2tci)EF

{
|Xi|2

}}
( using 1 + y ≤ exp(y) for all y ∈ R)

(4.4)

for any t > 0. By Lemma 4.2.1 and (4.4), we have can see that

EF exp

{
t

n∑
i=1

Xi

}
≤

n∏
i=1

EF exp {tXi} (4.5)

≤ exp

{
t2

2

n∑
i=1

e2tciEF |Xi|2
}
. (4.6)

The lemma is thus proved.
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Lemma 4.2.4 Let {Xn, n ≥ 1} be a sequence ofF-LNQD random variables with
EF(Xn) = 0 for each n ≥ 1. If there exists a sequence of positive numbers
{cn, n ≥ 1} such that |Xi| ≤ ci for each i ≥ 1, then for any t > 0 and ε > 0

PF(|
n∑
i=1

Xi| ≥ ε) ≤ exp

{
−tε+

t2

2

n∑
i=1

e2tciEF |Xi|2
}
. (4.7)

Proof. By Markov’s inequality and lemma 4.2.3, we can see that

PF(
n∑
i=1

Xi ≥ ε) ≤ exp(−tε)EF exp

{
t

n∑
i=1

Xi

}

≤ exp(tε)
n∏
i=1

EF exp {tXi}

≤ exp

{
−tε+

t2

2

n∑
i=1

e2tciEF |Xi|2
}
. (4.8)

The desired result follows by remplacing Xi by −Xi in (4.8). This completes the
proof of the lemma.

4.3 Main Results and Proofs
Theorem 4.3.1 Let {Xn, n ≥ 1} be a sequence of F-LNQD random variables
with EF(Xi) = 0. If there exists a positive numbers c such that

|Xi| ≤ ci, i ≥ 1, where Bn =
n∑
i=1

EF |Xi|2, then for any ε > 0 and n ≥ 1, then

PF(Sn/Bn ≥ ε) ≤ exp

{
1

q
bq/pe

}
exp

{
−
(
ε2p−1bp

Bp−1
n

) 1
2p−1

εBn

(
1− 1

p− 1

)}
(4.9)

Proof.By Markov’s inequality, we have that for any t > 0,
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PF(Sn/Bn ≥ ε) = PF(etSn ≥ etεBn),

≤ e−tεBnEF
(

n∏
i=1

etXi

)
,

≤ exp

{
−tεBn +

t2

2
e2tmax1≤i≤nciBn

}
.

(4.10)

Let p > 1. It is well known that

uv = inf
b>0

{
1

pb
up +

1

q
bq/pvq

}
foru > 0, v > 0 and

1

p
+

1

q
= 1.

This yields the inequality

t2

2
e2tmax1≤i≤nciBn ≤

1

pb

t2p

2p
Bp
n +

1

q
bq/pe2tqmax1≤i≤n ci . (4.11)

We can thus conclude that for every p > 1, there for all t > 0, such that

PF(Sn/Bn ≥ ε) ≤ exp

{
−tεBn +

1

pb

t2p

2p
Bp
n

}
× exp

{
1

q
bq/pe2tqmax1≤i≤n ci

}
= exp

{
1

q
bq/pe2tqmax1≤i≤n ci

}
exp(Φ(t, n)).

(4.12)

The equation ∂Φ(t,n)
∂t

= 0 has the unique solution

t =

(
ε2p−1bp

Bp−1
n

) 1
2p−1

(4.13)

which minimizes Φ(t, n). Then from 4.12,4.13 and taking
2tqmax1≤i≤n ci ≤ 1 we obtain 4.9.
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Theorem 4.3.2 Let {Xn, n ≥ 1} be a sequence of F-LNQD random variables
with EF(Xi) = 0. If there exists a positive numbers c such that
|Xi| ≤ ci, i ≥ 1, then for any ε > 0 and n ≥ 1,

PF(|Sn| ≥ ε) ≤ 2 exp

{
1

q
bq/pe

}
exp

{
−
(
ε2p−1bp

Bp−1
n

) 1
2p−1

ε

(
1− 1

p− 1

)}
(4.14)

Proof.From conditions EF(Xi) = 0 and |Xi| < ci for each i ≥ 1. By
Markov’s inequality and Lemma 4.2.3, Corollary 4.2.1 with the fact that 1 + x ≤
ex, then

PF(Sn ≥ ε) = e−tεEF(etSn),

≤ e−tε
n∏
i=1

exp

(
t2

2
e2tciEF |Xi|2

)
,

≤ exp

{
−tε+

t2

2
e2tmax1≤i≤n ciBn

}
.

(4.15)

Let p > 1. It is well known that

uv = inf
b>0

{
1

pb
up +

1

q
bq/pvq

}
foru > 0, v > 0 and

1

p
+

1

q
= 1.

This yields the inequality

t2

2
e2tmax1≤i≤n ciBn ≤

1

pb

t2p

2p
Bp
n +

1

q
bq/pe2tqmax1≤i≤n ci . (4.16)

We can thus conclude that for every p > 1, there for all t > 0, such that

PF(|Sn| ≥ ε) ≤ 2 exp

{
−tε+

1

pb

t2p

2p
Bp
n

}
× exp

{
1

q
bq/pe2tqmax1≤i≤n ci

}
= 2 exp

{
1

q
bq/pe2tqmax1≤i≤n ci

}
exp(Φ(t, n)).

(4.17)
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The equation ∂Φ(t,n)
∂t

= 0 has the unique solution

t =

(
ε2p−1bp

Bp
n

) 1
2p−1

(4.18)

which minimizes Φ(t, n). Then from 4.17,4.18 and taking 2tqmax1≤i≤n ci ≤
1 we obtain upper bound for the tail probability as

PF(|Sn| ≥ ε) ≤ 2 exp{1

q
bq/pe} exp

{
−
(
ε2p−1bp

Bp
n

) 1
2p−1

ε

(
1− 1

p− 1

)}
(4.19)

Since {−Xn, n ≥ 1} is also a sequense of F-LNQD random variables it follows
from 4.19 that

PF(Sn ≤ −ε) = PF(−Sn ≥ ε) ≤ exp

{
1

q
bq/pe

}
× exp

{
−
(
ε2p−1bp

Bp
n

) 1
2p−1

ε

(
1− 1

p− 1

)}
(4.20)

From 4.19 and 4.20 we obtain

PF(|Sn| ≥ ε) = PF(Sn ≥ −ε) + PF(Sn ≤ ε) ≤ 2 exp

{
1

q
bq/pe

}
× exp

{
−
(
ε2p−1bp

Bp
n

) 1
2p−1

ε

(
1− 1

p− 1

)}
(4.21)

Theorem 4.3.3 Let {Xn, n ≥ 1} be a sequence of F-LNQD random variables
with mean zero and finite variances. If there exists a positive numbers c such that
|Xi| ≤ ci, i ≥ 1, where cn, n ≥ 1 is a sequence of positive numbers. Then for any
ε > 0 and n ≥ 1,

PF(|Sn−EFSn| ≥ ε) ≤ 2 exp

{
1

q
bq/pe

}
exp

{
−
(
ε2p−1bp

Bp−1
n

) 1
2p−1

εBn

(
1− 1

p− 1

)}
(4.22)
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Proof.By Markov’s inequality and Lemma 4.2.2, we have that for any t > 0,

PF(Sn − EFSn ≥ ε) ≤ e−tεEF [exp(t
n∑
i=1

(Xi − EFXi))],

≤ e−tεEF
n∏
i=1

[
et(Xi−E

FXi)
]
,

≤ exp

{
−tε+

t2

2
e2tmax1≤i≤n ciBn

}
.

(4.23)

Let p > 1. It is well known that

uv = inf
b>0

{
1

pb
up +

1

q
bq/pvq

}
foru > 0, v > 0 and

1

p
+

1

q
= 1.

This yields the inequality

t2

2
e2tmax1≤i≤n ciBn ≤

1

pb

t2p

2p
Bp
n +

1

q
bq/pe2tqmax1≤i≤n ci . (4.24)

We can thus conclude that for every p > 1, there for all t > 0, such that

PF(|Sn − EFSn| ≥ ε) ≤ 2 exp

{
−tε+

1

pb

t2p

2p
Bp
n

}
× exp

{
1

q
bq/pe2tqmax1≤i≤n ci

}
= 2 exp

{
1

q
bq/pe2tqmax1≤i≤n ci

}
exp(Φ(t, n)).

(4.25)

The equation ∂Φ(t,n)
∂t

= 0 has the unique solutio

Taking t =
(
ε2p−1bp
Bpn

) 1
2p−1

. Hence it follows from 4.23 that

PF(Sn−EFSn ≥ ε) ≤ exp

{
1

q
bq/pe

}
exp

{
−
(
ε2p−1bp

Bp
n

) 1
2p−1

ε

(
1− 1

p− 1

)}
(4.26)

Let −Sn = Tn =
n∑
i=1

(−Xn). Since {−Xn, n ≥ 1} is also a sequence of

F-LNQD random variables we also have
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PF(Sn − EFSn ≤ −ε) = PF(Tn − EFTn ≥ ε) ≤ exp

{
1

q
bq/pe

}
× exp

{
−
(
ε2p−1bp

Bp
n

) 1
2p−1

ε

(
1− 1

p− 1

)}
(4.27)

by Combining (4.26) and(4.27) we get (4.22)

Corollary 4.3.1 Let {Xn, n ≥ 1} be a sequence of F-LNQD random variables.
Assume that there exists a positive integer n0 such that |Xi| ≤ cn, for each 1 ≤
i ≤ n, n ≥ n0, where {cn, n ≥ 1} is a sequence of positive numbers. Then for
any ε > 0

PF(|Sn−EFSn| ≥ nε) ≤ 2 exp

{
1

q
bq/pe

}
exp

{
−
(
nε2p−1bp

Bp
n

) 1
2p−1

nε

(
1− 1

p− 1

)}
(4.28)

Theorem 4.3.4 Let {Xn, n ≥ 1} be a sequence of F-LNQD random variables
with EF(Xi) = 0. If there exists a positive numbers c such that
|Xi| ≤ ci, i ≥ 1. Then for any r > 0

n−rSn → 0 completely, n→∞. (4.29)

Proof.Let B =
∞∑
n=1

EF(Xn)2 ≤ ∞. For any ε > 0, it follows from Theoreme

4.3.2 we have

∞∑
n=1

PF(|Sn| ≥ nrε) ≤ 2
∞∑
n=1

exp

{
1

q
bq/pe

}
exp

{
−
(
nrε2p−1bp

Bp
n

) 1
2p−1

εnr
(

1− 1

p− 1

)}

≤ 2
∞∑
n=1

exp

{
1

q
bq/pe

}
exp

{
−
(
ε2p−1bp

Bp
n

) 1
2p−1

ε

(
1− 1

p− 1

)}n
2rp
2p−1

≤ 2 exp

{
1

q
bq/pe

} ∞∑
n=1

[exp(−c)]n
2rp
2p−1

.

(4.30)
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where C is positive number not depending on n. (by the inequality e−y ≤ ( a
ey

)a),
choosing a = 2p−1

rp
, since a > 0, y > 0. Then the right-hand side of 4.30 become

∞∑
n=1

PF(|Sn| ≥ nrε) ≤ 2 exp{1

q
bq/pe}

∞∑
n=1

( a
ec

)a( 1

n

)( 2rp
2p−1)

a

≤ 2 exp

{
1

q
bq/pe

}
aa

(ec)a

∞∑
n=1

1

n
2rpa
2p−1

≤ 2 exp

{
1

q
bq/pe

}
aa

(ec)a

∞∑
n=1

1

n2
,

= 2 exp

{
1

q
bq/pe

}
aa

(ec)a
π2

6
,

< ∞
(4.31)

Theorem 4.3.5 Let {Xn, n ≥ 1} be a sequence of F-LNQD random variables.
Assume that there exists a positive integer n0 such that |Xi| ≤ cn, for each 1 ≤
i ≤ n, n ≥ n0, where {cn, n ≥ 1} is a sequence of positive numbers.

∞∑
n=1

PF
(

1

n
|Sn − EFSn| ≥ εn

)
<∞. (4.32)

Theorem 4.3.6 Let {Xn, n ≥ 1} be a sequence of F-LNQD random variables
with EF(Xi) = 0. If there exists a positive numbers c such that
|Xi| ≤ ci, i ≥ 1. Then for any r > 0

n−r(Sn − EFSn)→ 0 completely, n→∞. (4.33)

Proof. For any ε > 0, it follows from Corollary 4.3.1 that
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∞∑
n=1

PF(|Sn − EFSn| ≥ nrε) ≤ 2
∞∑
n=1

exp

{
1

q
bq/pe

}
exp

{
−
(
nrε2p−1bp

Bp
n

) 1
2p−1

εnr
(

1− 1

p− 1

)}

≤ 2
∞∑
n=1

[
exp

{
1

q
bq/pe

}]

×

[
exp

{
−
(
ε2p−1bp

Bp
n

) 1
2p−1

ε

(
1− 1

p− 1

)}]n 2rp
2p−1

(4.34)

After this result we get 4.33.

4.4 Applications to the results to AR(1) model
The basic object of this section is applying the results to first-order autoregressive
processes(AR(1)).

We consider an autoregressive time series of first order AR(1) defined by

Xn+1 = θXn + ζn+1, n = 1, 2, ..., (4.35)

where {ζn, n ≥ 0} is a sequence of identically distributed F-LNQD random vari-
ables with ζ0 = X0 = 0, 0 < EFζ4

k <∞, k = 1, 2, ... and where θ is a parameter
with |θ| < 1. Here, we can rewrite Xn+1 in 4.35 as follows:

Xn+1 = θn+1X0 + θnζ1 + θn−1ζ2 + ...+ ζn+1. (4.36)

The coefficient θ is fitted least squares, giving the estimator

θ̂n =

n∑
j=1

XjXj−1

n∑
j=1

X2
j−1

(4.37)
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It immediately follows from (4.35) and (4.37) that

θ̂n − θ =

n∑
j=1

ζjXj−1

n∑
j=1

X2
j−1

(4.38)

Theorem 4.4.1 Let the conditions of Theorem 4.3.3 be satisfied then for any
(EFζ2

1 )1/2

ρ2
< ξ positive, we have

PF(
√
n|θ̂n − θ| > ρ) ≤ 2 exp

{
−
(

(ρ2ξ2 − EFζ2
1 )n2p−1bp

Bp
n

) 1
2p−1

(ρ2ξ2 − EFζ2
1 )n

(
1− 1

p− 1

)}

× exp

{
1

q
bq/pe

}
+ exp

{
−1

2
n

(K1 − nξ2)2

K2

}
(4.39)

where K1 = EF(X2
i ) <∞, K2 = EF(X4

i ) <∞.

Proof. Firstly, we notice that :

θ̂n − θ =

n∑
j=1

ζjXj−1

n∑
j=1

X2
j−1

.

It follows that

PF(
√
n|θ̂n − θ| > ρ) = PF

|
1√
n

n∑
j=1

ζjXj−1

1
n

n∑
j=1

X2
j−1

| > ρ
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By virtue of the probability properties and Hölder’s inequality, we have for any ξ
positive

PF(
√
n|θ̂n − θ| > ρ) ≤ PF

(
1

n

n∑
j=1

ζ2
j ≥ ρ2ξ2

)
+ PF

(
1

n2

n∑
j=1

X2
j−1 ≤ ξ2

)

= PF
(

n∑
j=1

ζ2
j ≥ (ρ2ξ2)n

)
+ PF

(
n∑
j=1

X2
j−1 ≤ n2ξ2

)
= I1n + I2n.

Next we estimate I1n and I2n.

I1n = PF
(

n∑
j=1

ζ2
j ≥ (ρ2ξ2)n

)

= PF
(

n∑
j=1

(ζ2
j − EFζ2

j + EFζ2
j ) ≥ (ρ2ξ2)n

)

= PF
(

n∑
j=1

(ζ2
j − EFζ2

j ) ≥ (ρ2ξ2 − EFζ2
1 )n

)

≤ PF
(∣∣∣ n∑

j=1

(ζ2
j − EFζ2

j )
∣∣∣ ≥ (ρ2ξ2 − EFζ2

1 )n

)
(4.40)

By using the Theorem 4.3.3 the right hand side of 4.40 become

I1n = PF
(

n∑
j=1

ζ2
j ≥ (ρ2ξ2)n

)

≤ 2 exp

{
−
(

(ρ2ξ2 − EFζ2
1 )n2p−1bp

Bp
n

) 1
2p−1

(ρ2ξ2 − EFζ2
1 )n

(
1− 1

p− 1

)}

× exp

{
1

q
bq/pe

}
(4.41)

We will bound now, the second probability of the right-hand side of the ex-
pression I2n.According to the Markov’s inequality, it follows for any t positive
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I2n = PF
(

1

n2

n∑
i=1

X2
i−1 ≤ ξ2

)

= PF
(
n2ξ2 −

n∑
i=1

X2
i−1 ≥ 0

)
= EF

(
I{nε2−∑n

i=1X
2
i−1≥0}

)
≤ EF

(
exp t

(
n2ξ2 −

n∑
i=1

X2
i−1

))
(t > 0)

≤ etn
2ξ2EF

(
exp−t

n∑
i=1

X2
i−1

)

≤ etn
2ξ2

n∏
i=1

EF
(
exp−tX2

i−1

)
.

Since

I2n ≤ etn
2ξ2

n∏
i=1

EF
(
exp−tX2

i−1

)
.

we first claim that for x ≥ 0

e−x ≤ 1− x+
1

2
x2. (4.42)

To see this let ψ(x) = e−x and φ(x) = 1 − x + 1
2
x2, (ψ′(x) = −e−x) and recall

that for every x

ex ≥ 1 + x ∀x, (4.43)

so that ψ′(x) = −e−x ≤ −1 + x = φ′(x). Since ψ(0) = 1 = φ(0) this implies
ψ(x) ≤ φ(x) for all x ≥ 0 and 4.42 is claimed.
From 4.42 and 4.43 it follows that for t > 0
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etnε
2

n∏
i=1

EF
(
exp(−tX2

i−1)
)
≤ etn

2ξ2
(

1− tK1 +
t2

2
K2

)n
≤ etn

2ξ2
(

exp

(
−tK1 +

t2

2
K2

))n
≤ etn

2ξ2 exp

(
−ntK1 +

t2

2
nK2

)
where K1 = EF(X2

i ) <∞, K2 = EF(X4
i ) <∞.

Hence

I2n = PF
(

n∑
i=1

X2
i−1 ≤ n2ξ2

)
≤ exp

[
t
(
n2ξ2 − nK1

)
+
nt2K2

2

]
. (4.44)

With h(t) = n2ξ2 − nK1 + nt2K2

2
and t > 0, the equation h′(t) = 0 has the

unique solution t = K1−nξ2
K2

which minimize h(t). Hence

PF
(

n∑
i=1

X2
i−1 ≤ n2ξ2

)
≤ exp

{
−1

2
n

(K1 − nξ2)2

K2

}
(4.45)

Then for every ρ > 0, K1 <∞, K2 <∞, and by the assumption

PF(
√
n|θ̂n − θ| > ρ) ≤ 2 exp

{
−
(

(ρ2ξ2 − EFζ2
1 )n2p−1bp

Bp
n

) 1
2p−1

(ρ2ξ − EFζ2
1 )n

(
1− 1

p− 1

)}

× exp

{
1

q
bq/pe

}
+ exp

{
−1

2
n

(K1 − nξ2)2

K2

}
. (4.46)

These complete the proof.

Corollary 4.4.1 The sequence (θ̂n)n∈N is completely converges to the parameter
θ of autoregressive process AR(1) model. Then we have

+∞∑
n=1

PF(
√
n|θ̂n − θ| > ρ) < +∞. (4.47)

Proof. By using Theorem 4.3.6 and EF(X2
i ) < ∞,EF(X4

i ) < ∞ we get the
result of 4.47 immediately.
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Chapter 5

Probability type inequalities and
complete convergence for weighted
partial sums of WOD random
variables

5.1 Introduction
The laws of large numbers for weighted sums of random variables has been stud-
ied in the last decades by many authors such as [21], [23], [59], [60], [?] and [62].
These autors established the almost sure convergence of

n∑
k=1

an,kXk (5.1)

under the traditional assumption of independence and identical distribution (i.i.d)
of the sequence of random variables {Xn, n ≥ 1} and imposing an asymptotic
condition on the triangular array o real numbers {an,k, 1 ≤ k ≤ n, n ≥ 1}.
Among them [22] stands out where the rate of convergence obtained for an,k are
the same order off magnitude as the sums of i.i.d. random variables in the classical
Kolmogorv strong law of large numbers,

max
1≤k≤n

|an,k| = O(
1

n
), n −→∞

we also highlight the [59] where interesting rate of convergence for an,k is consid-
ered admitting finite pth absolute moment for i.i.d. random variables (1 < p < 2)
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wich, as a matter of fact, improved previous results of [61]. In the inal eighties [3]
established te almost sure convergence of

n∑
k=1

an,k (Xk − EXk) (5.2)

For a special tpe of weights, that is when an,k = αk
βn

. The study of the almost sure
convergence of 5.1 for this sort of weights continues until today under weaker
assumptions of the random variables [26], [73]

The importance of the limiting behavior of 5.1 is well illustrated in many sta-
tistical problems such as least-squares estimators, nonparametric regression func-
tion estimators or jackknife estimators among others, which emoldens us to study
this challenging topic.The main purpose of this chapter is to obtain the complete
convergence of the weighted sum 5.2 under weak assumptions on the sequence
of random variables (Xn, n ≥ 1), on the other hand, keeping alive the best results
known to the rate of convergence of 5.1 in the i.i.d. scenario, on the other. More
precisely, we relax the assumption of identical distribution to stochastic doinance
which states that a random sequence (Xn, n ≥ 1) is stocchastically dominated by
a random variable X if there exists a constant C > 0 such that

sup
n≥1

P{|Xn| > t} ≤ CP{|X| > t}

for each t > 0 (any identical distributed random sequence (Xn, n ≥ 1) is of
course; stochastically dominated by X1). In particular, this is the only assumption
on the random sequence that we need to obtain the almost complete convergence
of 5.1 when 0 < p < 1. For 1 ≤ p ≤ 2 some additional condition on the random
sequence shall be required; indeed supposing that (Xn, n ≥ 1) is widely depen-
dent random variables

Definition 5.1.1 It is well know that various dependent random variables (r.v.s)
have been put forward successively. Based on the notion of negatively orthant
dependence structure of r.v. s, Wang et al [66] introduced the notion of widl
orthant dependence structure of r.v.s. By definition (Xi, i ≥ 1) are said to be
widely upper orthant dependent (WUOD) if for each n ≥ 1, there exists a positive
number gu(n) such that, for all xi ∈ R, i = 1, ...., n

P (∩ni=1{Xi > xi}) ≤ gu(n)
n∏
i=1

P(Xi > xi) (5.3)
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they are said to be widely lower orthant dependent (WLOD) if for each n ≥ 1,
there exists a positive number gL(n) such that, for all xi ∈ R, i = 1, ...., n

P (∩ni=1{Xi ≤ xi}) ≤ gL(n)
n∏
i=1

P(Xi ≤ xi) (5.4)

and they are said to be widely orthant dependent (WOD) if they are both WUOD
and WLOD.
WUOD, WLOD and WOD r.v.s are called by joint name widely dependent (WD)
r.v.s, and gU(n), gL(n), n ≥ 1, are called dominating coefficients. Clearly, we
have gU(n) ≥ 1, gL(n) ≥ 1, n ≥ 2, and gU(1) = gL(1) = 1

Further, Wang et al [66] provided some examples of WD r.v.s , which showed
that the WD structure may contain common negatively dependent r.v.s, some pos-
itively dependent r.v.s and some others.For example, when gU(n), gL(n) = M for
all n ≥ 1 and some positive constant M , inequalities 5.3 and 5.4 describe ex-
tended negativel upper and lower orthant dependent (ENUOD and ENLOD) r.v.s,
respectively. Random variables (Xi, i ≥ 1) , are said to be extended negatively
orthant dependent (ENOD), if they are both ENLOD and ENUOD. ENUOD, EN-
LOD and ENOD r.v.s are called collectively END r.v.s (see [43] ). More specially,
if M = 1, then we have correspondingly the notions of NUOD, NLOD, NOD
and ND r.v.s (see [29]). hold for each n ≥ 1 and x1, x,...., xn [43], it will be
established that the rate of convergence considered by [59] for weighted sums of
i.i.d. random variables having finite pth absolute moment (1 ≤ p ≤ 2), it is also
sufficient to ensure the almost complete convergence of 5.2.

Associated to a probability space (Ω,F ,P) , we shall consider the space
Lp(p > 0) of all measurable functions X for which E|X|p < ∞. Moreover, the
function x −→ max{1, logx} will be denoted by Logx.

5.2 Somme Lemmas
Lemma 5.2.1 Let the sequence (Xn, n ≥ 1) of random variables be stochasti-
cally dominated by random variables X . Then, for any p > 0, t > 0

E|Xn|pI{|Xn|≤t} ≤ CE|X|pI{|X|≤t} + CtpP{|X| > t}

and
E|Xn|pI{|Xn|>t} ≤ CE|X|pI{|X|>t}
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Lemma 5.2.2 If (Xn, n ≥ 1) are non-negative random variables stochastically
dominated by a non-negative random variables X such that E(X) < ∞ then
∞∑
n=1

Xp
n

np
<∞ a.s for any p > 1

Lemma 5.2.3 Let {an} be a positive sequence of real numbers and

sn =
n∑
k=1

ak −→∞. Then for any random variable X ≥ 0 a.s.

∞∑
n=1

anP{X ≥ sn} ≤ EX ≤
∞∑
n=0

an+1P{X > sn}

Lemma 5.2.4 If (Xn, n ≥ 1) are random variables stochastically dominated by
a random variable X such that E|X|p <∞ for some 0 < p < 2 then

∞∑
n=1

1

n2/pLog1−2/pn
E[|Xn|2I{|Xn|≤ n1/p

Log1/pn
}

+
n2/p

Log2/pn
I
{|Xn|> n1/p

Log1/pn
}
] <∞

Furthermore, if p > 1 then
∞∑
n=1

1

n1/pLog1−1/pn
E[|Xn|I{|Xn|≤ n1/p

Log1/pn
}

+
n1/p

Log1/pn
I
{|Xn|> n1/p

Log1/pn
}
] <∞

Remark 5.2.1 for the proof of the last Lemmas , we can see [44]

Lemma 5.2.5 [20] for any x ∈ R, and 0 < α ≤ 1, we have:

exp(x) ≤ 1 + x+ |x|1+αexp(2|x|)

5.3 Main results
Theorem 5.3.1 If (Xn, n ≥ 1) is a sequence of widely dependent random vari-
ables stochastically dominated by a random variableX ∈ Lp for some 1 < p < 2,
and {an,k, 1 ≤ k ≤ n, n ≥ 1} is an array of constants satisfying

max
1≤k≤n

|an,k| = O

(
1

n1/pLog1−1/pn

)
n −→∞ (5.5)

then
n∑
k=1

an,k (Xk − EXk) −→ 0
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Proof:
By

n∑
k=1

an,kXk =
n∑
k=1

a+
n,kXk −

n∑
k=1

a−n,kXk

where a+
n,k = max{an,k, 0} ≥ 0 and a−n,k = max{−an,k, 0} ≥ 0

Setting

X ‘
n = XnI{|Xn|≤ n1/p

Log1/pn
} − EXnI{|Xn|≤ n1/p

Log1/pn
}

+
n1/p

Log1/pn
I
{Xn> n1/p

Log1/pn
}
− n1/p

Log1/pn
I
{Xn<− n1/p

Log1/pn
}

and

X“
n = XnI{|Xn|> n1/p

Log1/pn
} − EXnI{|Xn|> n1/p

Log1/pn
}

+
n1/p

Log1/pn
I
{Xn<− n1/p

Log1/pn
}
− n1/p

Log1/pn
I
{Xn> n1/p

Log1/pn
}

we have X ‘
n +X“

n = Xn + EXn. Using the inequality

ex ≤ 1 + x+ |x|1+αe2x for all x ∈ R, and 0 ≤ α ≤ 1

we get, for each t > 0

exp(tan,kX
‘
k) ≤ 1 + tan,kX

‘
k + |tan,kX ‘

k|1+αexp(2tan,kX
‘
k)

≤ 1 + tan,kX
‘
k + C

t1+αX ‘
k

1+α

n(1+α)/pLog(1+α)−((1+α)/p)n
exp(2

Ct

Logn
)

The random variables

XnI{|Xn|> n1/p

Log1/pn
} +

n1/p

Log1/pn
I
{Xn> n1/p

Log1/pn
}
− n1/p

Log1/pn
I
{Xn<− n1/p

Log1/pn
}

widely dependent random variables, hense the sequences {X ‘
n} and

{an,kX ‘
k, 1 ≤ k ≤ n} for every n ≥ 1, are also widely dependent random

variables (WOD) and we obtain
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Eexp

(
t

n∑
k=1

an,kX
‘
k

)
≤ g(n)

n∏
k=1

Eexp
(
tan,kX

‘
k

)
≤ g(n)

n∏
k=1

E

[
1 + tan,kX

‘
k + C

t1+αX ‘
k

1+α

n(1+α)/pLog(1+α)−((1+α)/p)n
+ exp(2

Ct

Logn
)

]

≤ g(n)
n∏
k=1

[1 +
Ctk1/p

n1/pLog1−1/pnLog1/pk
P{|X| > k1/p

Log1/pk
}

+ C
t1+αX ‘

k
1+α

n(1+α)/pLog(1+α)−((1+α)/p)n
+ exp(2

Ct

Logn
)]

≤ g(n)exp[
2Ct

n1/pLog1−1/pn

n∑
k=1

k1/p

Log1/pk
P{|X| > k1/p

Log1/pk
}

+ C
t1+α

n(1+α)/pLog(1+α)−((1+α)/p)n
exp(2

Ct

Logn
)

n∑
k=1

EX ‘
k

1+α
]

For some positive number g(n).Given ε > 0 and putting t = 2Logn/ε we get
from Chebyshev inequality ([46], p159).

P{
n∑
k=1

an,kX
‘
k > ε} ≤ exp(−εt)Eexp

(
t

n∑
k=1

an,kX
‘
k

)

≤ g(n)exp(−εt)exp[ 2Ct

n1/pLog1−1/pn

n∑
k=1

k1/p

Log1/pk
P{|X| > k1/p

Log1/pk
}

+ C
t1+α

n(1+α)/pLog(1+α)−((1+α)/p)n
exp(2

Ct

Logn
)

n∑
k=1

EX ‘
k

1+α
]

≤ g(n)

n2
exp[Logn

4C

εn1/pLog1−1/pn

n∑
k=1

k1/p

Log1/pk
P{|X| > k1/p

Log1/pk
}

+ C
21+αlog1+αn

ε1+αn(1+α)/pLog(1+α)−((1+α)/p)n
exp(2

C

ε
)

n∑
k=1

EX ‘
k

1+α
]

According to lemma 3 we have
∞∑
k=1

1

Logk
P{|X| > k1/p

Log1/pk
} <∞
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So thhat Kronecker’s lemma implies

1

n1/pLog1−1/pn

n∑
k=1

k1/p

Log1/pk
P{|X| > k1/p

Log1/pk
} −→ 0

Again Kronecker’s lemma and lemma 4 give

1

n1+αLog(1+α)−((1+α)/p)n

n∑
k=1

EX ‘2
k −→ 0

So we have

Logn 4C
εn1/pLog1−1/pn

n∑
k=1

k1/p

Log1/pk
P{|X| > k1/p

Log1/pk
}

+C 21+αlog1+αn
n(1+α)/pLog(1+α)−((1+α)/p)n

exp(2C
ε
)

n∑
k=1

EX ‘
k

1−α
Logn

is bounded by δLogn, δ > 0 for n large enough. Hense, choosing 0 < δ < 1
∞∑
n=1

P{
n∑
k=1

an,kX
‘
k > ε} ≤ C

∞∑
n=1

1

n2−δ < ∞ and Borel Cantelli lemma([76],

p,61) give us

lim
n−→∞

sup
n∑
k=1

an,kX
′

k ≤ 0 a.s (5.6)

On the other hand, we have

max
2i≤n≤2i+1

|
n∑
k=1

an,kX
“
k | ≤ C max

2i≤n≤2i+1

1

n1/pLog1−1/pn

n∑
k=1

|X“
k |

≤ C
1

(2i+1)1/p(Log2i+1)1−1/p

2i+1∑
i+1

|X“
k |
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and for any ε > 0 we obtain from lemma4

∞∑
i=1

P{ 1

(2i)1/p(Log2i)1−1/p

∑
k=1

2i|X“
k | > ε ≤ 1

ε

∞∑
i=1

1

(2i)1/p(Log2i)1−1/p

∑
k=1

2iE|X“
k |

=
1

ε

∞∑
k=1

E|X“
k |
∑
{i,i≥k}

1

(2i)1/p(Log2i)1−1/p

≤ 1

ε

∞∑
k=1

E|X“
k |

1

Log1−1/pk

∑
{i,2i≥k}

1

(2i)1/p

≤ C

∞∑
k=1

E|X“
k |

k1/pLog1−1/pk
<∞

And we conclude from Borel-Cantelli lemma that

max
2i−1≤n≤2i

|
n∑
k=1

an,kXk“| −→ 0

and
n∑
k=1

an,kX
“
k −→ 0 (5.7)

from (5.6) and (5.7) we have

lim
n−→∞

sup
n∑
k=1

an,k (Xk − EXk) ≤ 0 a.s

replacing Xk by −Xk we obtain

lim
n−→∞

inf
n∑
k=1

an,k (Xk − EXk) ≤ 0 a.s

wich completing the proof 2

Theorem 5.3.2 Let (Xn, n ≥ 1) be a sequence of widely dependent and identi-
cally distributed L1 random variables.
If {an,k, 1 ≤ k ≤ n, n ≥ 1} is an array of constants satisfying

max
1≤k≤n

|an,k| = O(
1

n
), n −→∞ (5.8)
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then
n∑
k=1

an,k (Xk − EXk) −→ 0

Proof:see [44]
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Chapter 6

On robust non parametric
regression estimation for functional
regressor
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6.1 Introduction
Regression function estimation is the most important tool for addressing nonpara-
metric prediction problems. The goal of this chapter is to study this functional pa-
rameter when the expplanatory variable is a curve by using a robust approach. The
robust method used in this work belongs to the class of M-estimates introduced by
Huber (1964). The literature on this estimation method is quite important when
the data are real (see for instance Robinson(1984)). Collomb and Hardle(1986)
and Boente and Fraiman (1989,1990) for previous results and Laib and Ould-
Said (2000) and Boente and Rodriguez (2006) for recent advances and refer-
ences.For the functional case, this literature is relatively limited; indeed, Cadre
(2001) studied the estimation of the L1 median of a banach space-valued random
variable. Cardot et al. (2004) used this robust approach to study the linear re-
gression model on quantiles with explanatory variable taking values in a Hilbert
space. They established the L2− convergence rate. We refer the reader to Ferraty
and Vieu (2006) for the prediction problem in functional nonparametric statistics
via the regression function, the conditional mode and the conditional quantiles
estimation by the kernel method. The assmptotic normality of these parameters
has been obtained by Masry (2005) and Ezzahrioui and Ould-Said (2008)a.b
respectively.

Our interest in this chapter is to generalize to infinite dimension, the robust
nonparametric estimation of the regression function developed by Collomb and
Hardle (1986) in the real case. We establish, under suitable conditions, the almost
complete convergence rate of the M-estimator with the regression function kernel
weights when the observations are independent and identicall distributed. This
rate is closely related to the concentration property on small balls of the functional
variables probability measure. Thus, by using recent results in the probability the-
ory of small balls, we can clarify our results for some continuous-time stochastic
processes.
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6.2 The model
Let (X, Y ) be a pair of random variables in F ∗ R , where the space F is dot-
ted with a semi-metric d(., .) (this covers the case of normed spaces of possibly
infinite dimension.) In this work, X can be a functional random variable. For
any x ∈ F , let ψx be a real-valued Borel function satisfying some regularity con-
ditions to be stated below. The nonparametric parameter studied in this work,
denoted y θx, is implicitly defined as a zero with respect to (w.r.t) t of the equation

ψ(t, x) = E (ψ(Y − t)/X = x) = 0 (6.1)

We suppose that, for all x ∈ F , θx exists and is unique (see, for instance, Boente
and Fraiman (1989)). The model θ, called ψx−regression in Laib and Ould-
Said (2000), is a generalization of the classical regression function. Indeed, if
ψx(t) = t we get θx = E(Y/X = x)

Let (X1, Y1), ....., (Xn, Yn) be n independent pairs, identically distributed as
(X, Y ). We then estimate ψ(t, x) by

ψ̃(t, x) =

n∑
i=1

k(h−1
x d(x,Xi))ψx(Yi − t)

n∑
i=1

k(h−1
x d(x,Xi))ψx(Yi − t)

, ∀t ∈ R

where k is a kernel function and hk = hk,n is a sequence of positive real
numbers which decreases to zero as n goes to infinity. A natural estimator of θx is
a zero w.r.t.t of

ψ̃(t, x) = 0 (6.2)

Our main goal is to obtain the rate of the almost complete convergence for θ̂x.

6.3 Main results
In the following x is a fixed point in F , Nx denotes a fixed neighborhood of x,
and we introduce the following assumptions:
(H1) P (X ∈ B(x, h)) = φx(h) > 0∀h > 0and lim

h−→0
φx(h) = 0.

(H2) There exist C1 and b > 0 such that ∀x1, x2 ∈ Nx, ∀t ∈ R

|ψ(t, x1)− ψ(t, x2)| ≤ C1d
b(x1, x2)
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(H3) The function ψx is strictly monotone, bounded, continuously differentiable,
and its derivative is such that |ψ‘

x| > C2, ∀t ∈ R.
(H4) K is a continuous function with support [0, 1] such that
0 < C3 < K(t) < C4 <∞.

(H5) lim
n−→∞

hK = 0 and lim
n−→∞

logn

nφx(hK)
= 0.

Our main result is given in the following theorem.

Theorem 6.3.1 Assume that (H1)−(H5) are satisfied; then θ̂x exists and is unique
a.s. for all sufficientl large n, and we have

θ̂x − θx = O(hbK) +O

(√
logn

nφx(hK)

)
a.co (6.3)

Proof
In what follows, we will denotes by C some strictly positive generic constant and
we put Ki = K

(
d(x,Xi)
hK

)
Under (H3) we have

ψ̂
(
θ̂x, x

)
= ψ̂(θx, x) + (θ̂x − θx)ψ̂‘(ξx,n, x)

for some ξx,n between θ̂x and θx. The condition on the derivative of ψx in (H3)
leads us to write

∃C2 > 0,∀ε0 > 0,P

(
|θ̂x − θx| ≥ ε0

(
hb +

√
logn

nφx(h)

))

≤ P

(
|ψ̂(θx, x)− ψ(θx, x)| ≥ C−1

2 ε0

(
hb +

√
logn

nφx(h)

))
Then, (6.3) is proved as soon as the following result can be checked:

ψ̂
(
θ̂x, x

)
− ψ (θx, x) = O

(
hb +

√
logn

nφx(h)

)
a.co (6.4)

The proof of (6.4) is based on the decomposition
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∀t ∈ R, ψ̂(t, x)− ψ(t, x) =
1

ψ̂D(x)

[(
ψ̂N(t, x)− E[ψ̂N(t, x)]

)
−
(
ψ(t, x)− E[ψ̂N(t, x)]

)]
− ψ(t, x)

ψ̂D(x)

[
ψ̂D(x)− E(ψ̂D(x))

]
(3.5)

where

ψ̂D(x) = 1
nE[K1]

n∑
i=1

Ki and ψ̂N(t, x) = 1
nE[K1]

n∑
i=1

Kiψx(Yi − t)

and with the fact that ψ̂(t, x) = ψN (t,x)
ψD(x)

and E[ψ̂D(x)] = 1.
Finally, the proof of Theorem3.1 is achieved with the following lemmas.

Lemma 6.3.1 Under hypotheses (H1), (H2), (H4) and (H5), we have

ψ̂D(x)− E[ψ̂D(x)] = O

(√
logn

nφx(hK)

)
a.co

Proof:
The proof of this lemma runs along the lines of that of lemma3.1 in Ferraty et
al.(2005).
Let δ̃i = Ki

E[K1]
. From (H1) and (H4) we deduce

|δ̃i| < C
φx(hK)

and E
[
|δ̃i|2

]
< C‘

φx(hK)
.

So we appl the Bernestein exponential inequality to get for all η > 0

P

(
|ψ̂D(x)− E[ψ̂D(x)]| > η

√
logn

nφx(hK)

)
≤ C ‘n−Cη

2

2

This lemma gives straightforwardly the following corollary.

Corollary 6.3.1 Under the hypotheses of Lemma 3.3.1, we have∑
n≥1

P
(
|ψ̂D(x)| ≤ 1/2

)
≤
∑
n≥1

P
(
|ψ̂D(x)− 1| > 1/2

)
<∞

Lemma 6.3.2 Under hypotheses (H1), (H2), (H4) and (H5), we have
for all t ∈ R

ψ(t, x)− E[ψ̂N(t, x)] = O(hbK)
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Proof
The equidistribution of the couples (Xi, Yi) and (H4) imply

ψ(t, x)−E[ψ̂N(t, x)] =
1

E[K1]
E
[
(K1IB(x,hK)(X1))(ψ(t, x)− E[ψx(Y1 − t) X = X1])

]
(6.5)

where I is the indicator function. Conditioning w.r.t. X1 with the Holder hypoth-
esis, and under (H2), we prove that (H2) allows us to write that

K1IB(x,hK)(X1)|ψ(t,X1)− ψ(t, x)| ≤ C1h
b
K

and then

|ψ(t, x)− E[ψ̂N(t, x)]| ≤ C1h
b
K2

Lemma 6.3.3 Under hpotheses (H1), (H3), (H4) and (H5), we have, for all t ∈
R

ψ̂N(t, x)− E[ψ̂N(t, x)] = O

(√
logn

nφx(hK)

)
a.co

Proof:
The proof of this result is similar to the proof of Lemma3.3.1. We put

∆i =
[Kiψx(Yi − t)− E[K1ψx(Y1 − t)]]

E[K1]

Because ψx is bounded, we get |∆i| ≤ C/φx(hK) and E[∆2
i ] ≤ C ‘/φx(hK), for

all i ≤ n. As in lemma 3.3.1. Bernstein’s inequality is used to finish the proof. 2

Lemma 6.3.4 Under hypotheses of Theorem3.1, θ̂ exists and is unique a.s for all
sufficiently large n.

Proof:
We prove this lemma by means of arguments similar to those used for Theorem1
in Collomb and Hardle (1986) .Indeed for all ε > 0, the strict monotonocity of
ψx implies

ψ(θx − ε, x) < ψ(θx, x) < ψ(θx + ε, x)

Lemma 3.3.1, 3.3.2, 3.3.3 and Corollary3.3.1 show that

ψ̂(θx, x)− ψ(θx, x) = O

(
hbK +

√
logn

nφx(hK)

)
a.co
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for all fixed real t. So, for sufficiently large n

ψ̂(θx − ε, x) ≤ 0 ≤ ψ̂(θx + ε, x) a.co

Since ψx and K are continuous functions, then ψ̂(t, x) is continuous function of
t; then there exists a t0 = θ̂x ∈ [θx − ε; θx + ε] such that ψ̂(θ̂x, x) = 0. Finally,
the unicity of θ̂x is a direct consequence of the strict monotonocity of ψx and the
positivity of K 2

Comment:
(1) Remarks on the functional variable: The concentration hypothesis (H1) is less
restrictive than the strict positivity of the explanatory variable’s density X which
is usually assumed in most of the previous works in the finite-dimensional case
(see Collomb and Hardle (1986) and Laib and Ould-Said (2000)). Moreover, it is
checked for a great class of continuous time processes (see for instance Bogachev
(1999) for a Gaussian measure and Li and Shao (2001) for a general Gaussian
process).
(2) Remarks on the nonparametric model: The functional character of our model
is well exploited in this work. Indeed, hypothesis (H2) is a regularity condition
which characterizes the functional space.
(3) Remarks on the robustness properties: In this work, we consider a family of
ψ-functions indexed by x , in order to cover most of the M− estimate classes. It
is also worth noting that we keep the same conditions on the function ψx (assump-
tion (H3)) as were given by Collomb and Hardle (1986) in the multivariate case.
Furthermore, the boundeness assumption on ψx is made for the simplicity of the
proof. It can be dropped while using truncation methods as to those used in Laib
and Ould-Said (2000).
(4) Remarks on the convergence rate: The expression for the convergence rate
(3) is identical to those of Ferraty and Vieu (2006) and Collomb and Hardle
(1986) for the regression model in the functional and the multivariate cases re-
spectively. Thus, by considering the same arguments as Ferraty et al. (2005),
we obtain the almost convergence rate O((logn)−b/2) for the estimator θ̂x for
continuous-time stochastic process having a probability measure which is abso-
lutely continuous with respect to the Wiener measure, under suitable bandwidth
choise (hK −→ η(logn)−1/2) and for the L∞ metric.
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 :الملخص                             

 

 

كانج انخفاوحاث في الاحخمال الأسي أدواث مهمت في الاحخمالاث 

في هذه الأطزوحت ، أثبخنا وجىد حفاوث احخماني جذيذ  .والإحصاءاث

نخىسيعاث انمخغيزاث انعشىائيت انمعخمذة انسهبيت انخطيت ، وحصهنا 

عهى نخيجت حخعامم مع انخقارب انكامم انمشزوط نعمهياث الانحذار 

 . انمىسعت بشكم مخماثمF-LNQDانذاحي من انذرجت الأونى مع ابخكاراث 

 

                                                                                           Abstract : 

   The exponential probability inequalities have been important tools in probability and 

statistics. In this thisis , we prove a new tail probability inequality for the distributions of 

sums of conditionally linearly negative quadrant dependent random variables, and obtain a 

result dealing with conditionally complete convergence of first-order autoregressive 

processes with identically distributed F-LNQD innovations. 

 

                                                                                        Résumé :  

 

Les inégalités de probabilité exponentielles ont été des 

outils importants en probabilité et en statistique. 

Dans cette thèse, nous prouvons une nouvelle inégalité de 

probabilité pour les distributions de variables aléatoires 

dépendantes linéairement négatives, et obtenons un résultat 

traitant de la convergence conditionnellement complète des 

processus autorégressifs du premier ordre avec des innovations 

F-LNQD identiquement distribuées. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 


