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Résumé

La présente these est consacrée a I’étude de 'existence globale, explosion en temps fini et le
comportement asymptotique des solutions de certaines équations d’évolution non linéaires.
Ce travail se compose de quatre chapitres, sera consacré a ’étude du bien-posé, le com-
portement asymptotique et explosion en temps fini de la solution de certaines équations
d’évolution avec un terme d’amortissement non linéaires, un terme de retard et un terme de
source.

Dans le chapitre 1, nous rappelons quelques notions utilisées dans cette these.

Dans le chapitre 2, nous considérons I'équation d’onde non linéaire soumis a un amortisse-
ment, un terme de retard et un terme de source. Nous prouvons que la solution explose
en temps fini si le terme de source domine le terme de dissipatif et le terme de retard
p > max{l + 2,m} sous la condition que I’énergie initiale est négative par la méthode de V.
Georgiev et G. Todorova [8].

Dans le chapitre 3, nous considérons I’équation de Petrovsky avec un fort amortissement non
linéaire et de forme générale. Nous prouvons que ce probleme est bien posé en utilisant la
méthode de compacité et pour la stabilité générale de la solution on introduit une méthode
de Lyapunov.

Dans le chapitre 4, nous considérons un systeme de Petrovsky-onde couplé avec un fort amor-
tissement non linéaire. Nous prouvons que ce systeme est bien posé en utilisant la méthode
de compacité et pour la stabilité de solution on introduit une méthode de multiplicateur,

nous trouvons la stabilité exponentille et polynomiale.

Mots clés : Bien posé, systeme couplé, décroissance générale, décroissance exponentielle,
décroissance polynomiale, méthode Faedo-Galerkin, méthode Lyapunov, méthode multipliée,

terme de source, terme de retard, explosion.



Abstract

The present thesis is devoted to the study of global existence, blow-up in finite time and the
asymptotic behaviour of the solutions for some nonlinear evolution equations.

This work consists of four chapters, will be devoted to the study of the well-posedness,
asymptotic behaviour and blow-up in finite time of the solution of some evolution equations
with nonlinear dissipative terms, delay and source terms.

In chapter 1, we recall of some notions used in this thesis.

In chapter 2, we consider the wave equation with nonlinear source, damping and delay term.
We prove that weak solutions to the systems blow up in finite time whenever the initial en-
ergy is negative and the exponent of the source terms is more dominant than the exponent
of damping terms, we use the method of V. Georgiev and G. Todorova [8].

In chapter 3, we consider the Petrovsky equation with a nonlinear strong damping. We
prove, under some appropriate assumptions, that this system is well-posed using the com-
pactness method. Furthermore, the general stability is given by using a combination of the
some properties of convex functions with an appropriate Lyapunov functional.

In chapter 4, we consider a coupled Petrovsky-wave system with a nonlinear strong damping.
We prove well-posedness by using the compactness method and establish the both exponen-

tial and polynomial decay estimates by introducing a multiplied method.

Keywords : Well-posedness, coupled system, general decay, exponential decay, polynomial
decay, Faedo-Galerkin method, Lyapunov method, multiplied method, source term, delay

term, blow-up.
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General introduction

The subject of this thesis is the study of global existence, blow-up in finite time and the
asymptotic behavior of the solutions of some equations of nonlinear evolution.

The problem of stabilization consists in determining the asymptotic behavior of the energy
by E(t), to study its limits in order to determine if this limit is null or not and if this limit
is null, to give an estimate of the decay rate of the energy to zero, they are several type of
stabilization :

1. strong stabilization : E(t) — 0 as t — 0.

2. logarithm stabilization : E(t) < ¢(Int)™, ¢,0 > 0.

3. polynomial stabilization : E(t) < ct™°, ¢,d > 0.

4. uniform stabilization : E(t) < ce™, ¢,§ > 0.

In 1982, Lyapunov introduced an energy function that he used it to study the stability of
some nonlinear systems without calculate explicitly their solutions. This method is known
today by Lyapunov’s methode and it played an important role in the stability theory of
differential and ordinary equations.

In this work we prove well-posedness of the problem by using the compactness method, we
establish the decay estimate by using the Lyapunov and multiplied method, and we prove
that weak solutions to the systems blow up in finite time by using the method of V. Georgiev
and G. Todorova [8].

This thesis consists of four chapters including :

Chapter 1 : Preliminaries

In this chapter, we reminder of some notions used in this thesis.

Chapter 2 : Blow-up of result in a nonlinear wave equation with delay and source
term

In this chapter we consider the initial boundary value problem for a nonlinear damping and



General introduction

a delay term of the form :

' " — Au(z, t) — Au” 4 pg /|20
+uglu/ (t — 7)™ 2 (t — 7) = blu|P"?u, in Q x [0, +oo],

u(z,t) =0, on JQ x [0, +o0], (0.1)
u(x,O) = Uo(l’), u’(:zc,()) = u1($)7 in Qa
w(x, t —71) = folz,t — 1), in Q x [0, 7],

with initial conditions and Dirichlet boundary conditions. Under appropriate conditions on
111, po, we prove that there are solutions with negative initial energy that blow-up in finite
time if p > max{l + 2, m}.

We suppose that

M and 1 <

2
max{p, m} < 5 if n> 3. (0.2)

n —

We introduce the new variable
2(z, p,t) =u(z,t —p7), x€Q, pe|0,1],t>0.
Therefore, the problem (0.1) is equivalent to

Ju/ (2, )| (2, 1) — Au(z,t) — Au" (2, 1) + py|u (2, 1) |20 (2, 1)

+po|z(x, 1,8) ™ 22(x, 1, ) = blu(z, t)|P2u(z, t), in Q x [0, +o0],

T2 (x, p,t) + g—;(:v,p, t) =0, in Q x [0, 1] x [0, +00],
u(z,t) =0, on 99 x [0, 00],

2(z,0,t) = (1), in  x [0, 00,

u(z,0) = uo(x), v'(z,0)=uw(z), in €,

2(z, p,0) = folx, —p7), in Q x [0, 1].

We define the energy associated to the solution of the system (0.1) by

1 1 b 1 .
B(t) = g I3 + IVl + IV = el + € [ [ 12 p. )" dp e,

l+2

where ¢ is a positive constant such that
H2 H2
T—(m—1)<§{<7(p1 — —),
m ( ) <€ (Ml m)

and po < myy.
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Theorem 0.1 Suppose that m > 1, p > max{l + 2,m} satisfying (0.2), let
(ug,u1) € [Hy(2) N HA(Q)] x HYQ) and fy € CY([—7,0]; L™(Q x [0,1])). Assume further
that

1

EO) =113

1 1 b ! .

lallit3+ 51 9u0ll3 + 519wl = 2 uollz + € [ [ folw, —pr)|™ dpda < 0,
2 2 P QJo

Then the solution of (0.1) blow up in finite time, i.e. there exists Ty < +00 such that

. 1

t£m7(||ull|li§ +[Vull3 + [[V]]3 + [|ullp) = +o0.
0

Chapter 3 : Well-posedness and general energy decay of solutions for a Petrovsky

equation with a nonlinear strong dissipation

In this chapter we consider a nonlinear Petrovsky equation in a bounded domain with a

strong dissipation

u” + Au — g(Au') = 0, in 2 x [0, +o0],
u(z,t) = Au(x,t) =0, on 99 x [0, +o0], (0.3)
u(,0) = uole), w(x,0) = w(z), Q.

We prove the existence and the uniqueness of the solution of this problem using the energy
method combined with the compactness procedure under assumption of g. Furthermore, we
study the asymptotic behaviour of solutions using a perturbed energy method.

Let us introduce three real Hilbert spaces J{, V and W by setting
= HYQ), ull} = [ |VuPds,
Q

and
V={ueBM)|u=Au=00n0Q}, |u]?= / IV Auldz,
Q

W={uec HQ)u=Au=Au=00n00Q}, |ul} = / |VA2u|? d.
Q

We have
WcVcHcV cWw,

with dense and compact imbedings.
We impose the following assumptions on g

g : R — R is a non-decreasing continuous function such that there exist constants ¢, ¢y, ¢s,
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7 > 0 and a convex increasing function G : Ry — Ry of class €'(Ry) N C*(R%) satisfying
G linear on [0,¢] or G'(0) = 0 and G” > 0 on [0, ], such that

als| < g(s)] < eals| if |s] > e, (0.4)
s> + [g(s)]* < G (sg(s)) if |s| <e, (0.5)
g'(s) <.

Theorem 0.2 (well-posedeness and regularity) Assume that (ug,uy) € W x V', then
the solution of the problem (0.3) satisfies

u e L>*0,T;V), u" e L>0,T;H),

and

u € L®0,T; H*(Q)NV),

such that for any T > 0

u'(z,t) + A%u(x,t) — g(Au'(2,t)) =0 in  L>(0,T; L*(Q)),
w(0) =up, uw(0)=wu; in €.

Now we define the energy associated with the solution of the problem (0.3) by the following

formula ) ]
B(t) = 5IVe|P + 5[V Aul

Theorem 0.3 (stabilization) Assume that (0.4) and (0.5) hold. Then there ezist positive
constants ky, ko, k3 and ¢ such that the solution of the problem (0.3) satisfies

E(t) < /{ZgG;l(klt + kg) Vte R+,

where -
Gt:/id,Gt:tG’ ),
1(2) i Gaols) s, Ga(t) (eot)
here Gy is strictly decreasing and convez on |0, 1], with %g% G1(t) = +oc.

Chapter 4 : Stabilization of the Petrovsky-wave nonlinear coupled system with

strong damping
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In this chapter we prove the well-posedness and the stabilization of the nonlinear coupled

system :
uy + A%uy — a(z)Auy — g1 (Auy) = 0, in Q x [0, 4+o00],
Uy — Aty — a(x)Auy — go(Auy) =0, in Q x [0, 4+o0], (0.6)
Auy = uy = ug = 0, on 0 x [0, +o0], '
ui(x,0) = ud(z), u(x,0) = ul(z), in Q,i=1,2.

The existence of global weak solutions for this problem is established by using the compact-
ness method. Meanwhile, under suitable conditions on functions g;(.), ¢ = 1,2 and a(.), we
estimate the energy decay rate by using the multiplier method.

Let us introduce for brevity the Hilbert spaces
H = L*(Q) x L*(),
W= Hy(©Q) x HY(©),
HL(Q) = {u e B¥(Q)|u=Au=00n00}, [ull} ) = /Q IV Auldz,
V = H3(Q) N H*(Q) x H*(Q),
V= (H'(Q) N HX(2)) x (HA(Q) N H*(Q)).
Identifying H with its dual H' , we obtain the diagram
VCcVCcWcH=HcW cV' cV,

with dense and compact imbedings.

We impose the following assumptions on a and g;.

The function a : {2 — R is a nonnegative and bounded such that
a € WhHe(Q),

e (0.7

where ¢ > 0 (depending only on the geometry of ) is the constant satisfies

|Aull < ¢[VAul, Vue HY(Q).
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Assume that ¢g; : R — R, ¢ = 1,2 is nondecreasing continuously differentiable function of
class G, and globally Lipschitz.
Suppose that 3¢; >0, j =1,2,3,4, 37 > 0 such that

Vp>1:csP <lgi(s)| < cols|? if |s| <1, (0.8)
csls| < gi(s)| < cals|, if |s] > 1, (0.9)
VseR:gi(s) <. (0.10)

Theorem 0.4 (global existence) Let (u),ul) € V and (ul,ul) € V arbitrarily. Assume
that (0.7)-(0.10) hold. Then, the system (0.6) has a unique weak solution satisfying

(Ul,’LLg) € LOO(R-H V)> (ullvu,Q) € LOO(R-H V)>

and
(u/1/7 uIQI) € LOO<R+7 W)

We define the energy associated with the solution of the problem (0.6) by the following

formula
1
E(t) = 5 /Q (VU |2+ |Vuh|? 4+ VAU > + |Auy|* d —|—/Qa(x)Au1Au2 dx. (0.11)

Theorem 0.5 (stabilization) Let (ul,u3) € V and (ul,ul) € V. Assume that (0.7)-(0.10)
hold. The energy of the unique solution of system (0.6) given by (0.11) decay estimate :

Et)<Cot™0Y vie>0, if p>1,

and
E{t) < C'E(0)e™™ Vt>0, if p=1.

Here C' is a positive constant only depending on the initial energy E(0), while C' and w are

positive constants, independent of the initial data.

10



Chapter 1

Preliminaries

In this chapter, we remind the most basic concepts, some of which we will use in the following

chapters.

1 Convex functions
Let I be an interval of R and f a real function defined on I.
Definition 1.1 We say that [ is convex over I if and only if
Vu,vo e IVt € [0,1]; f(tu+ (1 —t)v) <tf(u)+ (1 —1t)f(v).
Definition 1.2 We say that f is concave over I if and only if —f is convex.
Proposition 1.3 If f is twice differentiable on I, then f is convex on I if and only if f* > 0.

Theorem 1.4 (Jensen’s inequality) Let (2, A, 1) be a measurable space such that

w(Q) =1 and g a p-integrable function with values in I, f a convex function. Then
f(/ gdu) < / fogdp.
Q Q

2 Normed spaces, Hilbert spaces

Definition 2.1 Let U be a nonempty set. We say that (U, +,.) is a vector space over R if
and only if

1. (U,+) is a commutative group.

11



1. 2. Normed spaces, Hilbert spaces

2.VANeERVu,v €U : (ut+v)A=ul+v.\ and A\.(u+v) = Au+ Ao.
3. V)\l,)\g € R,VU eU: ()\1)\2)U = )\1(/\2U)
4. VueU:1lu=u.

Definition 2.2 Let U and V' be vector spaces over R. A function f : U — V is said to be

a linear map if and only if
V)\l, )\2 € R,VU,U eU: f()\lu + )\2.’0) = Alf(U) -+ )\2f('U)

Remark 2.3 Let U and V' be vector spaces over R. We denote by L(U,V) to the set of
linear maps defined from U to V.

Definition 2.4 Let U be a vector space over R. The vector space of linear maps from U to
R is called the dual space, We denote it by E*.

Definition 2.5 Let U be a vector space over R, A normed vector space is a triple (U, R, ||.||),
where ||.|| is a function called the norm, such that ||.|| satisfies the following propreties

1. VueU: |ul >0.

2.VueU:|u|=0<u=0.

3. VAeRVueU: | Aul =|\|u].

4- Vu,v € U luof| < flull + (o]

Definition 2.6 Let U be a vector space over R. U is a Banach space if and only if Uis a

normalized and complete space.

Definition 2.7 Let U be a normalized vector space of norm ||.|| and V' a subset of U. We
say that V' is bounded if and only if

dM eR, ,VueV:|ul| <M.

Definition 2.8 Let U be a normalized vector space of norm ||.||, (u,) a sequence of U and
u an element of U. We say that the sequence (u,) converges to u ( (u,) strongly converges

to u ),and we write 1_131 Uy =u (U, = u ), if and only if

Ve>0,dng e NNVne N:n>ng = |lu, —ul| <e,

i.e. nl_l)riloo |un, — ul] = 0.

12



1. 2. Normed spaces, Hilbert spaces

Proposition 2.9 Let U be a normalized vector space of norm ||.||, (u,) a sequence of U and

u an element of U. We say that u € (u,) if and only if there exists a sub-sequence (uy, ) of

(un) such that EIE Up, = U.

Proposition 2.10 Let U be a normalized vector space of norm ||.| and V' a subset of U. V
is relatively compact if and only if for any sequence (u,) of V there exists an element u of
U such that u € (uy,).

Definition 2.11 Let U,V be two normalized vector spaces and f € L(U, V). We say that f
is compact if and only if for any bounded set U of U, then f(U') is relatively compact.

Definition 2.12 Let U,V be two normalized vector spaces with norms ||.|y and ||.||v

respectively and f € L(U, V). We say that f is continuous if and only if
AM >0,YVueU: | f(u)lv < Ml|uly.

Definition 2.13 Let U,V be two normalized vector spaces with norms ||.||g and ||.||v
respectively, and suppose that U C V. We say that U is compactly embedded in V', and we
write U CC V', if and only if the injection v : U — V is compact and continuous.

Definition 2.14 Let U be a normalized vector space. The space U is a set of the elements

w of U* such that u is continuous. And we define on U’ the following norm

@l ey

[ul[y == sup
U o el

Definition 2.15 (weak convergence). Let U be a normalized vector space and
(un) C U,u € U. We say that (u,) weakly converges to u in U, and we write u,—wu in U if

and only if
ViU : (fiu) = (f u),
e NfelU nl_lgloo](f,u@ — (f,u)| =0.

Where (f,u,) and (f,u) denote the action of f on u, and u, i.e. (f,u,) = f(u,)
and (f,u) = f(u).

Theorem 2.16 ( [42]page 120 ) Let U be a normalized vector space and (u,) C Uyu € U.

If u, — u, then u,— u.

13



1. 3. L? spaces

Definition 2.17 (weak star convergence). Let U be a normalized vector space and
(un) C U ,u € U'. We say that (u,) weakly star converges to u in U , and we write u, — u
in U', if and only if

VeeU: (uy,x) = (u,z).

Theorem 2.18 ( [42] page 125 ) Let U be a normalized vector space and (u,) C U ,u €
U'. If u, — u, then u, — .

Definition 2.19 Let U be a vector space over R. A scalar product (.,.) is a bilinear form
on U x U with values in R (i.e., a map from U x U to R that is linear in both variables),
such that

1. Vue U —{0}: (u,u) > 0.

2. Vu,v e U : (u,v) = (v,u).

Definition 2.20 A Hilbert space is a vector space U equipped with a scalar product such

that U is complete for the norm ||.||, where the norm ||.|| is defined as follows
VueU:|ul| = (u,u)?.

Lemma 2.21 (Cauchy-Schwarz’s inequality). Let U be a Hilbert space supplied with
the norm ||.||, then
Vu,v €U : (u,v) < [lullf|v]].
3 LP spaces
Let 1 < p < oo and €2 be a nonempty set of R", n € N*.
Definition 3.1 We define the space LP(2) by

LP(Q)) = {u : Q — R : wis measurable and / lu(x)|P dz < —l—oo} if 1 <p< oo,
Q

and

LOO(Q)—{u:Q—>R

u 18 measurable and there exists a constant C
such that |u(z)] < C a.e in ) '

Proposition 3.2 Let u: Q — R be a measurable function. We define ||[ul| o) (or ||ullp) by

Jully = ([ )P dr)” if 1<p< o

14



1. 3. L? spaces

and
|u]|oo := Inf{C; |u| < C a.e in Q}.

Then for all 1 <p < oo, |||, is a norm on the space LP(£2).

Remark 3.3 In particularly, L?(Q) equipped with the scalar product

(u,v) = / u(z)v(z) dz,
Q
1s a Hilbert space.

Notation 3.4 We denote by p’' the conjugate exponent,

Theorem 3.5 (Hélder’s inequality). Assume that u € LP(Q) and u € LP () with
1 <p<oo. Thenuv € L*(Q), and

[ lu@yo(a) e < llull |l

Proposition 3.6 Let 1 < p < oo and1l < q < oo. If|Q < +oo and p < q then we have
Li(Q2) C LP(QY), and
11
Vue LUQ) : lull, < Q7 [|ully,

such that |Q)| represents the measure of €.

Definition 3.7 The space L} .(Q2) denotes the measurable functions u such that u € L*(K)

for any compact K included in Q.

Lemma 3.8 (Fatou’s lemma). Let (u,) be a sequence of functions in L*(Q) that satisfy
1. Vn e N u,(z) >0 a.e. on S

2. sup/ up(x) dr < 400.

For glm;lst all x € Q we set u(z) = lim infu,(z) < +oo. Then u € L(Q), and

n—-+4o0o

/Qu(:v) der < lim inf | w,(z)dz.

n——+00 O

Theorem 3.9 Let Q is a bounded open of R™", 1 < p < oo and (u,) C LP(QY), u € LP(Q).

Assume that u,, — u strongly in LP(S). Then there exists a subsequence (un, ) of (u,) such

15



1. 3. L? spaces

that :
1. u,, — u almost every where.
2. 3g € LP(2) such that |u,,| < g almost every where, for all k € N.

Definition 3.10 Assume that € is a bounded open of R™, and let F be a bounded part of
LY(Q). We say that F is uniformly integrable over 2 if and only if

VE>O,E|5>0,Vu63‘,VAgQ:\A]<5:>/A|u]dx<e.

Theorem 3.11 (Vitali’s theorem ). Let Q be an open bounded of R™ such that
Q| < 400, and (u,) a sequence of functions uniformly integrable over Q. If u,, — u pointwise

a.e. on ), then u is integrable on §2, and

lim [ w,(z)dzr = / u(x) dz.

n—+o00 J() 0

Lemma 3.12 (Gronwall’s lemma) Let T > 0, g € L'([0,T]), g > 0 a.e and ¢y, ¢y are
positives constants. Let o € L'([0,T]) ¢ > 0 a.e such that gp € L*([0,T]) and

o(t) < e+ co /Otg(s)go(s)ds a.e in [0, 7).

Then, we have
t
o(t) < crexp [02/ g(s)ds} a.e in [0, 7).
0

Theorem 3.13 Foralll < p < oo, the space LP(Q2) supplied with the norm ||.||, is a Banach

space.

Theorem 3.14
For all 1 < p < 0o we have (LP(Q))* = L7 (Q).

For p = oo we have (L*(Q))* D L'(Q).
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4 Sobolev spaces

Let n € N*, k,k € N, a € N*, 1 < p < oo and © be an open of the normed vector space R”
supplied by the norm Euclidean.

Definition 4.1 We denote by C(Q2) (respectively. C1(Q)) the space of continuous functions

(respectively. continuously differentiable) on Q with real values, for k > 2, we set

ou
k _ k—1 ) k—1 _
ch) ={uec (Q).%eo (Q), i=1,....,n},
it is the space of functions k times continuously differentiable on Q0 with values in R. We
finally denote

= (Q) = kﬂNCk(Q),

it is the space of functions indefinitely differentiable on 2.

Notation 4.2 We introduce the following notations

la] = a1+ as+ ... + ay, |a|is called length of «.

0% = (ail)al (;;)QQ ..... ( 0 )an, 0% is called the mized derivative operator of order c.

Definition 4.3 Let u € C(Q)). The support of u is the subset of R"™ defined by

suppu = {x € Q:u(x) # 0}.

Definition 4.4 The space D(Q) or C§°(R2) designates the set of elements u of C*°(§2) such

that the support of u is compact contained in €.

Definition 4.5 Let u € D'(Q) . The distribution 0®u is called the o™-weak partial deriva-
tive of the distribution u, which is defined by

<aau’ (10> = (_1>|a|<u,aagp>’ pE ®(Q)

Definition 4.6 Let u,v € L} (Q). We say that v is the a'"-weak partial derivative of u,
written

0%u = v,

17



1. 4. Sobolev spaces

provided
Ve D) : / ud%pdr = (—1)‘“'/ vpdr.
Q Q

Definition 4.7 The Sobolev space W*P(Q) consists of all locally summable functions
u: Q — R such that for each multi-index o with |a| < k, 0%u exists in the weak sense and
belongs to LP(S).

Definition 4.8 If u € Wk?(Q), we define its norm by

||u||W’“vP(Q) = Z ||aau||p_

| <k
Theorem 4.9 For any k € N and 1 < p < oo, the Sobolev space W5P(Q) is a Banach space.

Definition 4.10 We denote by WeP(Q) the closure of D(Q) in WHP(Q). We interpret
WP (Q) as comprising those functions u € W5(Q) such that

%u =0 on 0Q forall |af <k —1.

Remark 4.11 1. If p = 2, we usually write W*2(Q) = H¥(Q), and W3 (Q) = HE(Q).
2. H*(Q) is a Hilbert space, and we define the scalar product in H*()) by

(u, V) () = > /8“u8°‘vdaﬁ, u,v € H* ().
Q

|la|<k
3. If k> k', then we have H*(Q) C H"“/(Q) with continuous imbedding.

Notation 4.12 Let Q be an open set of R™. We denote by H'(Q) the dual space of Hy ().
The dual of L*(Q) is identified with L*(Y), but we do not identify H}(Q) with its dual. We
have the inclusions

Hy () C L*(Q) € H(9),

where these injections are continuous and dense.

Theorem 4.13 (Rellich-Kondrachov compactness theorem). Let Q) be an open bounded

of class C*'. Then we have

1. Whr(Q) cc LY(Q) Vq € [1,p*], where ]% = % -1 dif1<p<n
2. WP(Q) cc LYQ) Vg € [1,+o0], if p=n.
3. Wir(Q) cc C(Q), if p>n.
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Theorem 4.14 (integration by parts). Let Q be a bounded open of class C%', u and v
two functions of H'(Q). Then uwv € WH(Q), and we have
O(uv) Ju v

Vi<i<n: =
=0 (91:2 v@xi +u(91:z

in the sense of distribution,

o0

/Qu(x)g; (x)dx = — /Q v(x) g;i (x)dx + | u(z)v(x)n(z)do,

where n;(x) is the n'™ component of the unit vector of the outward normal n(x) at a point

x,x € 02 and do is the Lebesque measure over the compact 0S2.

Theorem 4.15 (Green’s formula). Let Q be an open of class C*' and u € H*(Q),
v e HY Q). Then

ou

/QAu(x)v(x) de = — /Q Vu(z)Vo(z) de + U(x)%(x) do,

)
0*u(zx)
0x?

(2

where Au(z) =) and Vu(zr) = (au(a:) dul) .. du(z) ) If v € H?(Q), then we
i=1

Oxr1 ' Oxzo ) Oxp

have
/Q (@) Do(z) dr = /Q Au(z)o(z) de + ag{u(x)g;(x)—v(m)gzw)}da.

5 C¥0,T;U) spaces, LP(0,T:U) spaces
Let 1 < p < oo and U be a real Banach space supplied with the norm ||.|.

Definition 5.1 Letw: [0,T] — U be a function. We say that u is continuous on [0,T], and
we write uw € C(0,T;U) if and only if

Vo €[0,77]: thi],% lu(t) — u(ty)]] = 0.
And we define the norm on C(0,T;U) by

lullcoru) = Jax. [l

Definition 5.2 Let u: [0, 7] — U be a function. We say that u is differentiable on [0,T] if
and only if
1
Vito € [0,7]: lim —{u(to + h) — u(ty)} exists in U.
h—0 h
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1. 5. C*(0,T;U) spaces, LP(0,T;U) spaces

And if the function t — %u(t) € U is continuous, then we will say that uw € C1(0,T;U).

More generally, for k € N —{0,1} we can define

k

CH0,T;U) = {u:[0,T] = U; suth that w € C*1(0,T;U) and gtk c C(0,T;U)}.

And we define the norm on C*(0,T;U) by

HU||C’“(07T;U) = 0<t<T H otm H

Definition 5.3 The space LP(0,T;U) consists of all measurable functions u : [0,T] — U
with
T
ooy = ([ lut)lrde)” < oo,

for1 <p< oo, and

||| oo 0,0y := ess sup |lu(t)| < 4o0.
0<t<T

Theorem 5.4 The space LP(0,T;U) supplied with the norm ||.|| vy is a Banach space
for any 1 < p < oo.

Corollary 5.5 If U is a Hilbert space supplied with the scalar product (,) then L*(0,T;U)
1s a Hilbert space supplied with the scalar product

T
((u, v)) :/ (u(t), v(t))dt, u,v € U.
0
Definition 5.6 The vector space D' (0, T;U) (or L(D([0,T];U)) is defined as follows
D(0,T;U) = {u: D[0,T] — U, linear and continuous}.

Definition 5.7 If u € L*(0,T;U), it corresponds to a distribution denoted u on [0,T] with

values in U, by

(e = [ ult)p(t)at, ¢ € D7)

Lemma 5.8 Ifu € LP(0,T;U) and ?; € LP(0,T;U), thenu € C(0,T;U).
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6 Existence methods

6.1 Faedo-Galerkin’s approximations

We consider the Cauchy problem abstract’s for a second order evolution equation in the

separable Hilbert space with the inner product (.,.) and the associated norm ||.|| .

{u”(t) At = £(8), tel0,T],

(,0) = ug(z), u'(z,0) = u(z), (1.1)

where u and f are unknown and given function, respectively, mapping the closed interval
[0,7] C R into a real separable Hilbert space H. A(t) (0 < t < T ) are linear bounded
operators in H acting in the energy space V C H.

Assume that (A(t)u(t),v(t)) = a(t;u(t),v(t)), for all u,v € V; where a(t;.,.) is a bilinear

continuous in V. The problem (1.1) can be formulated as : found the solution u(t) such that

we C([0,T);V),« € C([0,T]; H),
(u'(t),v) +a(t;u(t), v) = (f,v) in D'(]0,T]),
Ug € vV , Uy € H.

this problem can be resolved with the approximation process of Fadeo-Galerkin.

Let V,,, a sub-space of V with the finite dimension d,,, and let {wj,} one basis of V,,
such that .

1. V,, C V(dimV,, < 00),¥m € N.

2. V,, = V such that, there exist a dense subspace ¥ in V' and for all v € ¥ we can get

sequence {Up, }men € Vi, and u,, — u in V.
3. Vm C Vm+1 and UmENVm =V.

We define the solution u,, of the approximate problem

dm
um<t> - Zgj(t)wjma

=1
U € C([0,T]; Vin),ul, € C([0,T]; Vi), tm € L*(0,T; V),
(U (8), wim) + a(t; um(t), wjm) = (f, wjm), 1< j < dm,

U (0) = D& (O 0,(0) = Y- 1Bty

(1.2)
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1. 6. Existence methods

where

dm
> &) wim — up in V as m —» oo,
j=1

dm
> () wim — ug in 'V as m —s oo.
7j=1

By virtue of the theory of ordinary differential equations, the system (1.2) has unique local
solution which is extend to a maximal interval [0,%,,[ by Zorn lemma since the non-linear
terms have the suitable regularity. In the next step, we obtain a priori estimates for the
solution, so that can be extended outside [0, ,,,[ to obtain one solution defined for all ¢ > 0.
The method is based on the three steps :

e Choose certain basis of functions in an appropriate Sobolev space, and solve the ap-
proximate problems in any finite dimensional space spanned by finite basis functions.
This often turns out to be an initial value problem for nonlinear ordinary differen-
tial equations. By the well-known local existence theorem for ordinary differential

equations, local existence of solution to the approximate problem follows.

e Obtain the compactness estimates for the solution of the approximate problem. It also

turns out that the solution to the approximate problem globally exists.

e Further use of the obtained compactness estimates allows one to choose a subsequence
of solutions of the approximate problem obtained in the second step, converging to a
solution of the original problem; uniqueness of solution for the original problem has to
be proved separately, but the compactness estimates obtained in the second step are

still very useful for this purpose.

By the Gronwall’s lemma we deduce that the solution w,, of the approximate problem (1.2)
converges to the solution u of the initial problem (1.1). The uniqueness proves that w is the

solution.
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7 Integral inequalities

We will recall some fundamental integral inequalities introduced by A. Haraux, V. Komornik

and P. Martinez to estimate the decay rate of the energy.

7.1 A result of exponential decay

The estimation of the energy decay for some dissipative problems is based on the following

lemma :

Lemma 7.1 ([33]) Let E : R, — R, be a non-increasing function and assume that there
is a constant A > 0 such that

Vi >0, /;OO E(r)dr < = E(t). (1.3)

Then we have

Vt>0,  E(t) < E(0)e' ™ (1.4)

Proof. The inequality (1.4) is verified for ¢t < %, this follows from the fact that E is a

decreasing function. We prove that (1.4) is verified for ¢ > . Introduce the function
+oo
h Ry —R,, h{t)= / E(r)dr.
t

It is non-increasing and locally absolutely continuous. Differentiating and using (1.3) we
find that
V>0, Rh(t)+ Ah(t) <0

Let

Ty = sup{t, h(t) > 0}.

For every t < Tp, we have

thus
E(0)e ™, for 0<t<Ty.
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1. 7. Integral inequalities

Since h(t) = 0 if ¢ > Tp, this inequality holds in fact for every t € R,. Let ¢ > 0. As E is

positive and decreasing, we deduce that
Lt 1 et —At
Vi>e, E()< f/ E(r)dr <= h(t —¢) < = E(0) et A,
t €
Choosing € = %, we obtain
Vt>0,  E(t)<E(0)e .

The proof of the lemma 7.1 is now completed.

7.2 A result of polynomial decay

Lemma 7.2 ([33]) Let E : Ry — R, be a non-increasing function and assume that there
are two constants ¢ > 0 and A > 0 such that

+00
Vi >0, / E™(r) dr < L BI0)E(). (1.5)
t A
Then we have : -
q 11/q
> .
Vit >0, E(t)_E(O)[HAqt] (1.6)

Remark 7.3 It is clear that the lemma 7.1 is similar to the lemma 7.2 in the case of ¢ = 0.
Proof. If £(0) = 0, then £ = 0 and there is nothing to prove. Otherwise, replacing the

function E by the function —— we may assume that F(0) = 1. Introduce the function

E(0)
hiR, —R,,  h(t)= /:OO E(r) dr.

It is non-increasing and locally absolutely continuous. Differentiating and using (1.5) we
find that
Vt>0, —h > (Ah)',

where
Ty = sup{t, h(t) > 0}.

Integrating in [0, ¢] we obtain that
VO <t<Tyh(t)?—h0)7 > ow T,
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1. 7. Integral inequalities

hence
0<t<Ty h(t)<(h 90)+qAl*7t)~Ya, (1.7)

Since h(t) = 0 if ¢t > Tp, this inequality holds in fact for every t € R, . Since

1 1
< 7 1+q —
h(0) < B0 = 1

by (1.5), the right-hand side of (1.7) is less than or equal to :
1
(h=9(0) + gAFa )~V < S0+ Aqt)~Va.

From other hand, E being nonnegative and non-increasing, we deduce from the definition of

h and the above estimate that :
1 g+1 1 S+(g+D)s
Vs>0, F|— 1 <7/ E(r)d
5> [A~|—(q+ )s} _%—l—q—l—l i (1) T

A
— 14 Ags

h(s)

hence
1

VSZO7 E|: m.

;+(q+1)8} <

1
Choosing t = i (14 q)s then the inequality (1.6) follows. Note that letting ¢ — 0 in this

lemma we obtain (1.6).

7.3 New integral inequalities of P. Martinez

The above inequalities are verified only if the energy function is integrable. We will try to
resolve this problem by introducing some weighted integral inequalities, so we can estimate

the decay rate of the energy when it is slow.

Lemma 7.4 ([33]) Let E : R, — R, be a non-increasing function and ¢ : R, — R, an

increasing C* function such that

#(0)=0 and ¢(t) = +oo when t— +oo.
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1. 7. Integral inequalities

Assume that there exist ¢ > 0 and A > 0 such that
+o00 1
/ B(t)™'¢/() dt < — E(O)'E(S), 0= 5 < +oc.
s

Then we have
14¢ }
1+ qAop(t)

if =0, then E(t) < E(0)e!=4® vt >0.

if q>0, then E(t) < E(0)] VE>0,

Proof.

This lemma is a generalization of the lemma 7.1. Let f : R, — R, be defined by

f(x) :== E(¢~(x)), (we notice that ¢! has a meaning by the hypotheses assumed on ¢). f
is non-increasing,

f(0) = E(0) and if we set = := ¢(t) we obtain f is non-increasing, f(0) = E(0) and if we set
x := ¢(t) we obtain

#(T) il (PO 1yowatt g [T g+
L, f@tdr= [ B @) de = [ B0 (1) di

< — E(0)1E(S)

0)7f(¢(S5), 0<85<T < +oo.

= ]

Setting s := ¢(5) and letting 7" — 400, we deduce that
+o0 1
Vs > 0, / fla)™ de < < E(0)'f(s).

Thanks to the lemma 7.4, we deduce the desired results.
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Chapter 2

Blow-up of result in a nonlinear wave

equation with delay and source term

1 Introduction

In this chapter we are concerned with the following initial boundary value problem .

1"

' ' — Au— Au” + g a2

+polu (t — 7)™ 2 (t — 7) = blufP~2u, in Q x [0, +00],

u(z,t) =0, on 09 x [0, +o0], (2.1)
U(JJ,O) = UO<(L'), ’U,/((L',O) - ul(l'), in 2,
u' (vt —7) = folx,t —7), in Q x [0,7],

where (2 is a bounded domain in R", n € N*, with a smooth boundary 0 , [ > 0, puq, po
and b are positive real numbers, 7 > 0 is a time varying delay, and the initial data (ug, u1, fo)
are in a suitable function space.

When [ = 0 this type of problem without delay (i.e., pg = 0),
u — Au+u |u |2 = ufulP?,

has been extensively studied by many mathematicians. It is well known that in the further
absence of the damping mechanism wug|u;[™ 2, the source term wu|u[P~2 causes finite-time
blow-up of solutions with negative initial energy (see [5], [14]). In contrast, in the absence
of the source term, the damping term assures global existence for arbitrary initial data (see

[11], [16]). The interaction between the damping and source terms was first considered by
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2. 1. Introduction

Levine [23] and [24] for linear damping (m = 2). Levine showed that solutions with negative
initial energy blow up in finite time. Georgiev and Todorova [8] extended Levine’s result
to nonlinear damping (m > 2). In their work, the authors introduced a new method and
determined relations between m and p for which there is global existence and other relations
between m and p for which there is finite-time blow-up. Specifically, blow up in finite time
if p > m and the initial energy is sufficiently negative. Messaoudi [35] extended the blow-up
result of [8] to solutions with only negative initial energy. For related results, we refer the
reader to Levine and Serrin [26], Levine and Ro Park [25] , Vitillaro [41], Yang [43] and
Messaoudi and Said-Houari [37].

In the same direction, Cavalcanti et al [7] have also studied the following system
/ " " t
lu' |'u — Au— Au —I—/ gt —7)A(T)dr —yAu =10, in Q x [0,+o0], I > 0.
0

They proved a global existence result for v > 0 and an exponential decay for v > 0.
Related to our work, we also mention the work of Wei J. Liu [30] in which he used the
multiplier techniques to establish an exponential decay result in the higher dimensional
thermo-viscoelasticity. The same method was also used in [31] to prove, under appropriate
conditions on the coupling parameters and relaxation function, a partial exact controllability
result for a linear thermo-viscoelastic model. These last results generalize earlier ones [29)]
established for thermo-elasticity.

In [40] Shun-Tang Wu studied a wave equation with a delay term in internal feedback

"

/ " t ! !
lu ‘v — Au— Au +/ g(t — s)Au(s)ds + pyu + pou (z,t — 1) = 0.
0
They proved the local existence result by the compactness method and established the decay
result by suitable Lyapunov functionals. Hao and Wei [12] studied a quasilinear viscoelastic

problem with strong damping and source term
! 11 t I
lu |'v — Au +/ g(t — s)Au(s)ds — Au = |uP~?u.
0

They obtained a blow up result for the solution with negative initial energy and some positive
initial energy if p > [ + 2, and they proved a global existence result for any initial data if
p<l+2.

In this chapter we use some techniques from [13] to show that blow-up for suitably chosen

initial data, any classical solution blows up in finite time.
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2 Preliminaries

In this section, we present some materials needed for our main results.

Lemma 2.1 (Sobolev-Poincaré’s inequality). [1] Let q be a number with

2<q¢g<+o00 (n=1,2) or 2<q¢<2n/(n—2) (n >3),
then there exists a constant Cs = Cs(2, q) such that

[ully < Csl[Vaullz,

for any u € H}(Q).
Lemma 2.2 Suppose that

2<p<+4o0 (n=1,2) or 2<p<2n/(n—2)(n>3),
holds. Then there exists a positive constant C depending on €2 only such that

lully < CClully + 1Vull2), (2.2)

for any v € H} () and 2 < s < p.

Proof. If ||ull, < 1, then |lul|5 < [lul]? < C||Vull3, by Sobolev embedding the theorems.
If JJull, > 1 then [Jul[ < {lu]f5.
Together with the two cases, we obtain (2.2).

Lemma 2.3 Let a,b is arbitrary real, then we have
(lal +[6)* < Callal™ + [b]*), (2.3)

where Cp, =1 if0<a <1, and C, =2°7 ' ifa > 1.
a

Proof. We set x = ‘b

, that is to proof
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By taking a derivative of f, we obtain

a(l+z)* 11—zt
(14 z)? '

f'(x) =

If 0 < a <1, then we know f is monotone decreasing on [0, 1] and monotone increasing on
[1, 4+00[, and
lim f(z) =1, lim f(z) =

z—0 T——+00

then, we have

f) < 1.

If @ > 1, then we know f is monotone increasing on [0, 1] and monotone decreasing on
[1,4+00[. So, we have

fla) < f(1) =270

The proof is completed.

Now we introduce, as in Nicaise and Pignotti [39], the new variable
2(z,p,t) = u'(x,t — pr), in Q x [0,1] x [0, 400].

Then, we have

, 0
Tﬂ%m0+83%mﬂ=odnﬁxmﬂbdﬁ+mf

Therefore, the problem (2.1) is equivalent to

' (z, )| (2, 1) — Au(z,t) — Au" (2, 1) + o' (2, 8) 2 (2, 1)

+ug|z(z, 1,8) " 22(x, 1, ) = blu(z, t) [P u(x, t), in Q x [0, +o0],

2 (z,p,t) + g—;(x,p, t) =0, in Q x [0,1] x [0, +o0],
u(z,t) =0, on 9 x [0, 00],

2(2,0,t) = u'(x,1), in 2 x [0, 0o,

u(w,0) = ug(x), u'(z,0) =wu (), in €,

2(x, p,0) = folx, —p1), in Q x [0, 1].

(2.4)

Theorem 2.4 Suppose that m > 1,p > 2, let (ug,u1) € [HY(Q) N H*(Q)] x H}(Q) and
fo € CY([—7,0]; L™(Q x [0,1])) satisfys the compatibility condition

fo(.,O) = Up.
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Assume further that

2(n — 1) 2
< —r < > 3. 2.
max{p, m} < — andl_n_szn_?) (2.5)

Then the problem (2.4) has a unique local solution
u € €([0,T); Hy(Q) N H*(2)),
u' € €([0,T); Hy(2)),
u’ € €(0,7); L*(2),
z € C([0,7); L*([0,1] x ),
for some T > 0.

We define the energy associated to the solution of system (2.4) by

E(t) =

1 1, b ! "
g I+ IVl 5198 = g+ [, [ et p. 0" dpdo, (26)
where ¢ is a positive constant such that

T%m ) <& <T(un— %), (2.7)

and po < my.

Lemma 2.5 Let (u, z) be a solution of the problem (2.4). Then there exists a constant C' > 0
such that

Et) < —c[/Q 2, 1, 0™ da + |l (2, D)7 ] < 0

Proof. Multiplying the first equation in (2.4) by u” and integrating over €2, using integration
by parts, we get
il

1 1 / b /
l 2
gl IS + IVl S 1 = 2 ] +

+u2/§2 |2(x, 1,8)| 22(x, 1, t)u (2, ) dz = 0. (2.8)

31



2. 2. Preliminaries

We multiply the second equation in (2.4) by &|z(x, p,t)|™2z(x, p,t) and integrate the result

over 2 x [0, 1], to obtain
m—2 ! 82 ZL‘ pv m—2
g// ZE pa .I‘ P >| Z(ZL’,p, dpdl’— - // (L’ y Ps )| Z(%,p,t)dpdl’

1
_'_F A;A 6wi;f’)|Z(fu%tﬂm‘22@apiﬁdpdx

// |2(z, p, )™ dp da
§

=—— [ (Jz2(z, 1, t)|™ — |2(2,0,t)|™) du.

T™Tm JQ

Hence
// |z(x, p, t) dpdx——f / |2( :L’,l,t)]mdx+£ /lu ™ d. (2.9)

Combining (2.8) and (2.9), we obtain

B =5 [ w100 e — G - Sl

(2.10)
—,ug/Q|z(x, L) ™ 22(x, 1, )0 (x,t) da,
and using Young’s inequality, we have
— iz /Q |z(2, 1,8)|™ 22(a, 1,t)u/ dr < ug[;deule + TnT;l(;jml /Q |z(x, 1,8)™ d:c}.
Thus, by choosing § =1 = m_e T then
1, me

m—2 ! m 1-my, ' ||m
=2 [ |2, L) Lt do < o e [ Ja(e, 1) do 4+ — () ],
-1
with € = L, we have
m

iz [ ol 10" (e, Lt do < P2 [(m = 1) [ Jae, 10" o+ ).
Hence, we get from (2.10)

E’(t)g—[§—* —1) /\ x,l,t|mdx—[u1—§—ﬁj]|!ul||m

—C[ [ Jetw 1" dw + [ 13],
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where

C:min{f—l:j(m—l),ul—f_—/;;},

which is positive by (2.7). We set
H(t) = —E(t). (2.11)

Corollary 2.6 Let the assumptions of the lemma 2.2 hold. Then we have
!/ / 1 m
lully < €[ = HE) = W15 = 1V 13+ Jully = ¢ [ [l 00" dpdz ] vt e (0,1),

for any u(.,t) € H}(Q) and 2 < s < p.

3 Blow-up

In this section we state and prove our main result.

Theorem 3.1 Suppose that m > 1, p > max{l + 2,m} satisfying (2.5), let
(ug,uy) € [Hy () N HAQ)] x HYQ) and fy € CY([—7,0]; L™(Q x [0,1])). Assume further
that

1

FO=7

1 1 b 1 .

lalli3 + 5190l + SVl = Zluollz + ¢ [ [ 1folw, —pr)I™ dpde < 0.
2 2 P QJo

Then the solution of (2.4) blows up in finite time, i.e. there exists Ty < +00 such that

i ([ 1355 + [ Vull3 + [V |3 + [|ullp) = +oo.

4o

Proof . Assume that there exists some positive constant C' such that for ¢ > 0 the solution
u of (2.4) satisfies
1253 + [Vl + IV |5+ [Jullh < C. (2.12)

Hence,

0 < H(0) < H(t) < ;||u||g. (2.13)

We then define the function

1 ! ! /
G(t):l+1/ lu ]luud:c—i—/VuVudx,
Q Q
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2. 3. Blow-up

we have

/ 1
G'(t) :/u]u \lu"daz—l—i/ |u’|l+2dx—|—/ Vu”Vudx—i—/ V| d
) [+1Ja Q Q

1
= / u(jo/['u” — Au") dx + 7/ /|2 da —I—/ |Vu/|? dx.
Q [+1Ja Q
By using the first equation of (2.4), we arrive at

1
G(8) = g Il + Bllllp + IVa'lls = [Vl

—,ul/ [/ |™ 2 dw — ,ug/ |2(x, 1,8)|™ 22(x, 1, t)udx.
0 Q

By Young’s inequality, we obtain

om (m —1)§m-1

o [ W2l de < [ Sl + Il
Q m
similarly, we have
om m—1)§m1
o [ Jetar 1O (e, L dr < o] ol + T 1, )
Q m
We then define
L(t) = H'™(t) + eG(t),
for € small to be chosen later and
1 1 p—m
0 < a < mi —_— = =, (-
“ mm{l—i—? p’p(m—l)}
By taking a derivative of (2.17) and using (2.14)-(2.16) we obtain
L'(t)y=(1—-a)H'(t)H “(t) +G'(t)
> (1 —a)H'(t)H™"(t)
(m —1)6m1 m
— e + po) ——————([lw 5 + [[2(z, 1, 1)[[;7)
S [ 2 VI + el — SVl — £ + ) a2
[ +1 42 2 P 2 m mo

(2.14)

(2.15)

(2.16)

(2.17)
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2. 3. Blow-up

)2 [0 - a0 — e + ) I )

v ([

[+ 1 (2.18)
, om -
+el|Vau |15 4 bel[ullp — el|Vaull3 — e(m + uz)EIIUIIm.
Of course (2.18) remains valid even if ¢ is time dependent. Therefore by taking ¢ so that

om1 = kH (),

for large k to be specified later, and substituting in (2.18) we arrive at

L(t) > [(1= ) = e + p) k[ H()H'(1

/
S + el V(13 + belfullp

l+1
o (2.19)
i Ha(m—l) t m
o + ) ()l
— || Vull3.
By exploiting (2.13) and the inequality |[ul;: < c|lul|;, we obtain
a(m— m b \a(m-1) ap(m—1)+m
HOm =D () || < c(};) Jufjaptm=tm. (2.20)

inserting (2.20) in (2.19), using (2.6) and (2.11), we get, for 0 < g < 1,

1 o € / /
k}H (OH'(t) + 7 I 15 + el V|3

+2 1 2 1 2 ! md d
—llu Hz+z+§||VU||2+§HVU lo+& | 1=(@p, )™ dp 7]

L(t) > [(1-a) = el + p2)

mC
+bBe|ullp — || Vul3 — ec ( Jufjeromty+m

(,Ul + 112) m

+e(1— B)p| H(t) +

l+2
> (10— ) — el + )™k H ) [ o+ P P

+g[p(12_5> — 1[I Vull3 + g[p“;ﬁ) + 1] Vu'|I3 + bBel|ull} + (1 — B)pH (t)

1-m

1 b\ al(m— k
o= e [ [ law o0 dpde —ec( ) )

g+
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2. 3. Blow-up

Then we use the corollary 2.6, for s = ap(m — 1) + m < p, to deduce that

m—1
mC

) + | - + P )

[+1 [+2
p(1—p)
S+

L(t) = [(1—a) = e(m + p2)

p(1 —p)
9

te] — 1[IVl +¢| L] 10|13 + bBe|ull?
+pe(1— BYH(t) + p=(1 — B) //| 2, p, )™ dp da

1
— kG = H () = W15 — IV 3+ =€ [ [ [a(z 0" dpda],

consequently, we obtain

—1
L(t) > [(1 =) = el + p) k| H () H'(1
+€[l+11 +p(l1+2ﬁ) + Cok T Il i3 + ¢ “2_5) + 14+ Ok |1V |3
e[ P )i+ e b - k=l

regp1 =)+ m=] [ [t p ) dpda

+e[p(1 = B) + Crk ™ | H(1),

(2.21)
where 5
a(m—1
C’lzc<7) ( )HJ1+;L2’
m
1—
p1-5) 0,
2
and we choose k so large that
bs — C1k' ™ > 0.

Finally, we pick € so small so that

m
1—a)—
(1 —a) = el +pa) ==k >0,

and

l+1/ |u1\u1u0dx+€/Vu1Vuodx>0
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2. 3. Blow-up

Therefore (2.21) takes the form

! ! 1 m
L) = Al 1523 + IV ullf + 1703 + [l + H () + € [ /0 2z, p, )" dpda . (2:22)

Consequently, we have

L(t) > L(0), t > 0.
We now estimate the term / lu'|'u'u dz as follows
Q
[l da] < o e

< Cp,lHulHﬁ%Hqu-

Using Young’s inequality and (2.3), then yields

! l / 1% ! M /372
’/ﬂ|u fuda| T < Cl I s+ lull, e ), (2.23)
1 1 [+2)(1 - [+2
for E + @ =1, we take g, = W which gives 1 %a =1 (l++ Do Therefore
(2.23) becomes
1 , 142
| [ wda ™ < O 13 + . (2.24)
Q

Using Cauchy-Schwarz inequality, we obtain

\/Qvu’vudx\ < | Vullo | Vel |-

2(1 —
Similarly, by using Young’s inequality, with the conjugate exponents 2(1 — a) and f;t),
— 2«
we get
1 . 2
]/ V' Vude| ™ < ||V |2 + | Vul| 5. (2.25)
Q
From (2.12) and (2.13), we have
Vu|IF < O i 2.26
W< O < t). :
[Vaully™ < S0 (t) (2.26)
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2. 3. Blow-up

[+2

USing (224)—(226) and the lemma 227 for s = m

‘/ ' | w da
Q

< p gives

= / ﬁ i /
et \/Qvu Vuda| ™ < C[H() + 53+ | Vo3

1
+IVul+ fullp+€ [ [ a0 dpde].

Therefore, we have

1

L () = [H'O(t) + eG(t) |
< CLHE) + /113 + 1V 13+ [[Vull3 (2.27)

2 + € /Q/O1 2z, p,t)" dpdz], t> 0,
Combining (2.22) and (2.27), we arrive at
L'(t) > ALTa(t), t>0, (2.28)
where A is a positive constant depending only on A and C.

A simple integration of (2.28) over [0, t] yields

a 1
Lﬁ(t) > — , t>0.
L 7= (0) — Aat/(1 — «)

Therefore, L(t) blows up in time

Ty < “Ta‘
AaL7-+(0)

Furthermore, we have

i (fl i3+ IVallz + Ve llz + lull}) = +oo.

—4o

This leads to a contradiction with (2.12). Thus, the solution of the problem (2.4) blows up

in finite time. This completes the proof.
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Chapter 3

Well-posedness and general energy

decay of solutions for a Petrovsky
equation with a nonlinear strong

dissipation

1 Introduction

In this chapter, we consider the initial-boundary value problem for the nonlinear Petrovsky
equation
u" 4+ A?u — g(Au') =0, in Q x [0, +o0],
u(z,t) = Au(x,t) =0, on 9 x [0, +o0], (3.1)
u(z,0) = up(z), u(r,0) =ui(z), inQ,
where  is a bounded domain in R, 9 is a smooth boundary, (ug,u;) are the initial data

in a suitable function space and g is real function satisfying some conditions to be specied

later. In [9], Guesmia considered the following problem

u” + A%u 4+ q(x)u+ g(u') = 0, in Q x [0, +o0],
u(z,t) = dyu(x,t) =0, on 9§ x [0, +o0], (3.2)
U<1',0) = ’LL(](.%'), u'(x,()) = ul(‘r)7 in €,

where ¢ is continuous, increasing, satisfying ¢(0) = 0 and ¢ :  — R, is a bounded under
suitable growth conditions on g, decay results for weak, as well as strong, solutions. Precisely,

he showed that the solution decays exponentially if g behaves like a linear function, whereas
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3. 2. Notation and preliminaries

the decay is of a polynomial order otherwise. Also the system composed of the equation
(3.2), with «/|u/|™? — u|u|P~? in the place of g(z)u(x,t) + g(uv'(x,t)) has been treated by
Messaoudi [36], he established an existence result and showed that the solution continues to
exist globally if m > p, however, it blows up in finite time if m < p. Moreover, Komornik [15]
treated the problem (3.1) for g having a polynomial growth near the origin, used semigroup
method to prove the existence and uniqueness of solutions and established energy decay
results depending on g.

In this chapter, we prove the global existence of the weak solutions of the problem (3.1) by
using the compactness method (see Lions [27]). We use some technique from [38] to establish
an explicit and general decay result, depending on g. The proof is based on the multiplier
method and makes use of some properties of convex functions, the general Young inequality
and Jensen’s inequality. These convexity arguments were introduced and developed by
Lasiecka and co-workers ([21],[22]) and used, with appropriate modifications, by Liu and

Zuazua [32], Alabau-Boussouira [2] and others.

2 Notation and preliminaries

We begin by introducing some notation that will be used throughout this work.

Let us introduce three real Hilbert spaces J{, V and W by setting
H=HYQ), |ulf = | |Vuldr,

and
V={uc H*(Q)|u=Au=00n0Q}, |ul} = /Q |V Aul?dz,

W={ueH(Q)|u=Au=Au=00n00Q}, |ul? = /Q VAZul? da.

We have
WcVvVcHcV cWw,

with dense and compact imbedings.

If u € L?(2), we denote by |ul|r2q) = ||ul|.

We impose the following assumptions on g

g : R — R is a non-decreasing continuous function such that there exist constants ¢, ¢y, ca,

7 > 0 and a convex increasing function G : Ry — R, of class C'(Ry) N C*(R%) satisfying
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3. 3. Well-posedeness and regularity

G linear on [0,¢] or G'(0) = 0 and G” > 0 on [0, ], such that

cals| <lg(s)] < eals| if [s] > e, (3.3)
[ + lg () < G (s9(s)) if [s] <e, (3.4)
g(s) < (3.5)

Remark 2.1 Let us denote by ¢* the conjugate function of the differentiable convex function
o, i.e.,
¢"(s) = sup (st — ¢(t)).

teR4

Then ¢* is the Legendre transform of ¢, which is given by (see [3] p.61 — 62)

’ /

¢*(s) = s(¢) 7 (s) — B((¢) 7 (5)) if s €]0,6 (r)],
and ¢* satisfies the generalized Young inequality
ST < ¢*(S) + &(T) if S €)0,¢ ()], T €]0,7]. (3.6)
Lemma 2.2 For all u € HL(Q) N H(Q), we have

IVull < el Aullg-e) < cf Al (3.7)

3 Well-posedeness and regularity

Theorem 3.1 Assume that (ug,uy) € W xV, then the solution of the problem (3.1) satisfies
u' € L=(0,T;V) , u" € L>(0,T;H),

and

we L=0,T; HH(Q) NV),

such that for any T > 0

u’ + A% —g(Au) =0 in  L™(0,T; L*(Q)),

uw(0) = ug, v'(0)=wu; in €.
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3. 3. Well-posedeness and regularity

Proof.

The step 1 : Approximate solutions

We will construct solutions approximated by the Faedo-Galekin. Let T" > 0 be fixed
and let {w;},j € N be a basis of H, V and W, i.e. the space generated by

By = {wy,we, ..., wy} is dense in H, V and W.

We construct approximate solutions uy, £k = 1,2,3, ..., in the form

uy(t) = zcj,k(t)wj(fﬂ),

where ¢jj, is determined by the ordinary differential equations.

For any v in By, u(t) satisfies the approximate equation

/Q (W (1) + A2ug(t) — g(Ady()))v de = 0, (3.8)

with initial conditions

k
uR(0) = up =Y (ug, w;j)w; = ug in Was k = +oo, (3.9)
=1
k
uj,(0) = up =Y (ur,w;)w; — uy  in Vas k — +o0. (3.10)
j=1

The standard theory of ODE guarantees that the system (3.8)-(3.10) has an unique
local solution which is extended to a maximal interval in [0, ¢x) ( with 0 < tx < T ) by
Zorn lemma.

In the next step, we obtain a priori estimates for the solution of the system (3.8)-(3.10),
so that it can be extended outside [0, %) to obtain one solution defined for all 7" > 0,

using a standard compactness argument for the limiting procedure.

The step 2 : A priori estimates
The first estimate : Setting v = — 2Au), in (3.8), we have

d / / /
LIV 4+ Vw2 ] +2 [ Auyg(Aug) da = 0.
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3. 3. Well-posedeness and regularity

Integrating in [0, ¢], ¢ < t; and using (3.9) and (3.10), we obtain

t
IV @)1+ [VAu @) +2 [ [ Auj(s)g(duy(s)) do ds
(3.11)
< o[ Vuk|* + [VA|?) < O,

and Cj is a positive constant depending only on ||ui||y and ||ug||w. Estimate (3.11)
yields that

uy, is bounded in L*(0,7;V), (3.12)
uj, is bounded in L*°(0,T; H), (3.13)
Auj.g(Au},) is bounded in L' (Q x (0,7)). (3.14)

From (3.3), (3.4) and (3.14), it follows that
g(Au}) is bounded in L*(2 x (0,7)). (3.15)

The second estimate : First, we estimate u}/(0). Differentiating (3.8) with respect

to x, taking v = Vuj/(¢) and choosing t = 0, we obtain that
IVug(0)|2 + [ Vuy(0), VA2 — V(g(Aug)) | = 0.

Using Cauchy-Schwarz inequality and (3.5), we have

IVui(0)|| < IVA*UQ|| 4 |V Augg' (Auy,)|
(3.16)
< || VAZWY|| + 7|V Aug||.

By (3.9) and (3.10) yields
uy(0) is bounded in 3. (3.17)
The third estimate : Differentiating (3.8) with respect to t get

/Q(u'k”(t) + A )v dx — /Q Auj g (Au)v dx = 0.
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3. 3. Well-posedeness and regularity

Taking v = — 2Au}, applying the Green formula, we obtain
d 112 /1|12 1m\2 7 /
S IVl + 1V Aw ] + 2 [ (Qup)* () dw =0,
by integrating it over [0,t], we get
t
IV + IV Au @) 2 +2 [ [ (A (5)%9 (Auy(s) do ds
= [Vug ()% + |V Aw .
By (3.10) and (3.17), we deduce that
uy is bounded in L*(0,T; ). (3.18)
The fourth estimate : Setting v = 2A%y}, in (3.8), we have
A2, ! d 2 2 / 2,/
2/QukA uy, dx + %HA ug||* — Z/Qg(Auk)A uy, dr = 0.

Therefore by using the Green’s formula, we have

d

£|\A2uk|]2 = _Q/QA“ZA% dx — 2/Qg’(Au§€)(VAu§C)2 dx

= —i||Au' 1?7 =2 [ ¢(Aup)(VAU))? dx
T k QQ k k :
Integrating it over [0, ¢], we arrive at
t
A% (O + | Au 2 +2 [ [ ¢(Au) (VAw)? dods = A% + | Auf]
By using ¢ > 0, (3.9) and (3.10), we deduce that
1A% ()7 + | A ()1 < € (|A%u0]* + | Aua |1?),

then
A?uy, is bounded in  L>(0,T; L*(Q2)), (3.19)

hence
uy is bounded in  L*°(0,T; H*(2)). (3.20)
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3. 3. Well-posedeness and regularity

From (3.12) and (3.20) we deduce that

uy, is bounded in  L>°(0,7T;V N H*()). (3.21)

The step 3 : Passage to the limit
Applying Dunford-Pettis theorem we conclude from (3.13), (3.15), (3.18) and (3.21),

there is a sub-sequence uy, that we note again uy, which verifies

up — u weak-star in L>(0,T;V N HY(Q)), (3.22)
uy, — v’ weak-star in L>(0,T;V), (3.23)

up — u” weak-star in L*(0,T; H), (3.24)
g(Aul) — ¢ weak-star in L*(A), (3.25)

where A = Q x [0,77]. It follows at once from (3.22) and (3.24), that for each fixed
ve L*0,T; L*(Q))

T
/ / up (z,t) + A%ug(z,t))v de dt —)/ /Q(u”(x,t) + A%u(x, t))vde dt.
0
It remains to show that

T T
/ /g(Au;) vdx dt —>/ /g(Au') vdz dt.
0 Jo 0 Jo

From (3.13) and (3.18) we deduce that u}, is bounded in L?(0,T; H), u} is bounded in
L*(0,T;H), and |[u}] < |[Vu}||, we obtain u} is bounded in L*(0,T}; L2(Q)). Conse-
quently v}, is bounded in H'(A). And the injection of H'(A) in L*(A) is compact
(see [28] Theorem 16. 1, Chap 1), then

uj, — ' strongly in L?(A),

therefore

uj, — u’ almost every where in A. (3.26)
Lemma 3.2 For each T > 0, we have g(Au') € L*'(A),

19(AW) || Lray < K,
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3. 3. Well-posedeness and regularity

where K is a constant independent of t, and

g(Auy) — g(Au) in L'(A).

Proof. We claim that
g(Au') € L'(A).

Indeed, since ¢ is continuous, we deduce from (3.26)
g(Auy) — g(Au') almost every where in A,

Auyg(Auy) — Au'g(Au') almost every where in A.

Hence, by (3.14) and Fatou’s lemma, we have

T
/ / Au'(x,t)g(Av/ (x,t)) dedt < Ky for T > 0. (3.27)
o Jo

T
Now, we can estimate / / |Ag(u'(z,t))] de dt. By Cauchy-Schwarz inequality, we
0 Jo

have . , iy
/0 /Q|Ag(u'(m,t))]dmdt < C\A|l/2{/o /Q|Ag(u'(x,t))|2 dxdt] ?

Using (3.3), (3.4) and (3.27), we obtain

/ ! [ 189 e, )P dwde < [ ' /MI>a Aalg(Aet)d e + | ' /Au/|<a G (A g(A)) dar it
< C/OT/QAu'g(Au’) dz dt + cG™! {/A Au'g(Au') dx dt}
< C/OT/QAu/g(Au/) dx dt + /G*(1) + C"/QAu/g(Au') dx dt

< cK;+dGH(1) for T > 0.

Then .
/ / IAg(d (2, )| dedt < K for T > 0.
0 Q

Let E C Q x [0,7T], and set

By = {(a,) € B+ |g(Auz,1))| <

=l
%\./—’
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3. 3. Well-posedeness and regularity

E2 = E\Eh

where |E| is the measure of F.
If M(r)=inf{|s|: s € R and |g(s)| > r}, then

M

/E lg(Auy)| dxdt < ey/|E| + [\/E}_l/E Auyg(Auy) dx dt.
2

By applying (3.14), we deduce that
s%p/E lg(Auy)|dxdt — 0 when |E| — 0.
From Vitali’s convergence theorem, we deduce that
g(Auy) — g(Av') in L'(A).

This completes the proof.
Then (3.25) implies that

g(Au}) — g(Au') weak-star in L*([0,T] x Q).

We deduce, for all v € L*(0,T; L*(Q2)), that

T T
/ /g(Auz)vdxdt—>/ /g(Au')vdajdt.
0 Jo 0 Jo

Finally we have shown that, for all v € L*(0,T; L*(Q)) :

T
/ / (u"(z,t) + A%u(z,t) — g(Au'))v dw dt = 0.
0o Jo
Therefore, u is a solution for the problem (3.1).

The step 4 : Proof of uniqueness
Let uy,us be two solutions of the problem (3.1) with the same initial data. Let us

denote it is straightforward to see that z = u; — uy satisfies

V2 [PH|[VAz||* 42 /Ot/Q(Aull(x, s)—Au;(x,s))(g(Aull(x, s))—g(Au;(x,s)))dx ds = 0.
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Using the monotonicity of g, we have

2/075/9(Au/1(x,s) — Au;(x, s))(g(Aull(a:,s)) — g(Au;(x, s)))dxds > 0,

we conclude that
IVZ|? +[[VAz|* = 0,

which implies z = 0. This finishes the proof of theorem (3.1).

4 Asymptotic behavior

Now we define the energy associated with the solution of the problem (3.1) by the following
formula ) ]
B() = 5IVe|P + 5[V Aul

Lemma 4.1 Let u be a solution to the problem (3.1). Then E is a non-increasing function.
Proof. Multiplying the first equation in (3.1) by —Au’ and integrating over 2, we get
d [ 1

dtl2

1
/(12 2| / /
dt HVUH<+§HVAUH}—-—A;AuﬂAﬂ)¢r§O. (3.28)

Lemma 4.2 We define the following functional F' by
ﬂ@:me—AAwwu (3.29)
where M > 0 will be determined later. Then there are positive constants Ay, Ay such that
ME() < F(t) < ME(t) VteR,. (3.30)
Proof. Using the obvious estimates
[ < sVl (3.31)

and
|Au|| < ¢4 VAU (3.32)
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By Cauchy-Schwarz’s inequality and (3.31) and (3.32), we obtain
3 c
—/ Auu' dx < éJ’HVAuH2 + §4||Vu'|]2 < max(c3, c5)E(t),
Q

hence
(M — max(c%,ci))E(t) < F(t) < (M+ max(cg,ci))E(t),

choosing M > max(cZ, %), we obtain (3.30), where \; = M — max(c3, ¢3) and
Ao = M + max(c, c3).

Lemma 4.3 We define the following functional L by
L(t) = F(t) + A\E(1),
where X\ will be chosen later. Then there are positive constants piy, s such that
pE(t) < L(t) < pE(t) VteR,. (3.33)

It is aisy to see (3.33) hold from the lemma (4.2) with g3 = Ay + A and gy = Ao + A

Theorem 4.4 Assume that (3.3) and (3.4) hold. Then there are positive constants ky, ko, ks
and g such that the solution of the problem (3.1) satisfies

Et) < k3Gl (kat + ko) VteR,, (3.34)

where

11
Gt:/id,Gt:tG’ ), 3.35
1(t) i Gaols) s, Ga(t) (€ot) (3.35)
here Gy is strictly decreasing and convex on |0, 1], with lim G4 (t) = +oo.

Proof. Let e €]0,¢], we define two sets €y, {25 such that

U ={zeQ:|AY| <&}, Do={zeQ:|AY|>¢e}.
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Differentiating (3.29) with respect to ¢, using (3.7), (3.28), and the first equation of the
problem (3.1), we get

F'(t) :ME’(t)—l—/Q|Vu/]2 dx—/Q\VAuFdx—/ﬂAug(Au’) dx

< 2B(t) + /Q 2V 2 + |Aug(Ad)| dz
(3.36)
< 2E(t) + 2 /Q Vi + |Aug(Ad')| de

< =2E(t) + C’/ AU |2 + |Aug(Au)| dx.
Q
Using Young’s inequality, (3.32) to obtain

/Q |Aug(Au')| da < csd||V Au|? + 05/9 g(A) [ da
1 1 (3.37)
< c0E(t) + C'(;/Q lg(AY)|? da.

By Cauchy-Schwarz’s inequality and (3.32), we have
A A’d</A2d 5/ AP d |
| 1augaa]de < [ [ |auPde]*[ [ lg(au)P de]

< el Vault | Jg(au)Pda]*.
Then, we use Young’s inequality and (3.3), for any ¢ > 0, we have
/Q AW + |Aug(An)| da < /Q 1AW g(AW)| dx + |V Au| 2 [/ﬂ Ad'g(Au)| d |*
< —cE'(t) + 4 B2 (£)(— E'(t))2
(3.38)
< —cE'(t) + ed E(t) + Cs5(—E'(t))
< C4(5E(t) — (C + Cg)E,(Zf)

By (3.36) - (3.38), and the function L = F' + AF satisfies

L’(t)§(—2+005+C4C§)E(t)+()\—cC—C’5C)E’(t)+C/Q |Au’|2dx+C'C'5/Q lg(Au')[? dr,

50



3. 4. Asymptotic behavior

for 6 < m and A > c¢C + CsC', we have
L(t) < —mE(t) + ¢ / A2+ |g(Au')? da, (3.39)
951
where m = 2 — cCd — ¢,C6.

The case 1 : G is linear on [0, ¢], using (3.4) and (3.39), we deduce that

L'(t) < —mE(t) +c A G HAu'g(AY)) dx

< -—mE()+c | Au'g(Au')dx
951

< —mE(t) — cE'(t),

we deduce that
From (3.33), we have

then
L(t) + cE(t) ~ E(t),

we obtain

E(t) < E(0)e™™,

thus, we have
E(t) < E(0)Gy*(mt).

The case 2 : G is nonlinear, we define the following functional I by

1
I(t) = oN] Au'g(Au') de.

| Jon

From Jensen’s inequality and the concavity of G, we conclude that

G HI(t) >c o G (AW g(AY) dz.
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3. 4. Asymptotic behavior

By using this inequality and (3.4), we obtain
/Q |AY|? + [g(AW) [P dx < /Q G A g(AY)) du,
1 1

implies

/Q AP Jg(A)P da < eGH(I(D)) (3.40)

using (3.39) and (3.40), we obtain
L'(t) < —mE(t) + cGH(I(t)). (3.41)

For g < € and ¢g > 0, we define H; by

E(t)
E(0)

Hi(t) = G| 2 | L) + o E ().

Since L(t) is equivalent to E(t) (see (3.33)), there exists positive constants ay, ae, such that
OélHl(t) S E(t) S ang(t) Vte R+. (342)

By recalling that E' < 0, G' > 0, and G" > 0 on ]0, ], making use of (3.41), we obtain
, E'(t) E(t)
H (t) =
(1) €0E(0) E(0)
E(t)
£(0)

|L(t) + G| <o g((é)) |Z'(8) + o E' (1)

E()
E(0)

el { o

< —mE(t)G’[eo } + cG’[so }G_l(I(t)) + coE'(t).
E()

E(0)

Using (3.6) with S = G’ [50 and T = G71(I(t)), and the lemma 4.1 , we deduce that

—mE(t)G [eopd | + cG*[ G [eomd || + cI(t) + o (t)

< —mEM)G [cops | + e B(0)ES G [cofia) | — cE/(t) + o E (8).

Choosing ¢y > ¢ and g small enough, we obtain
) E(t) 1 Et)
Hl(t) § _ka {50 }

Bt
< —kGQ[E((O;].

(3.43)
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3. 5. Examples

Since

!

Golt) = G (20t) + otG (0t),

we find that G54(t) > 0 and Ga(t) > 0 on |0, 1]. By setting

(aq is given in (3.42)) we easily see that, by (3.42), we have
H(t) ~ E(t). (3.44)

Using (3.43), we arrive at
H'(t) < —k Gy (H(1)).

By recalling (3.35), we deduce that Gy(t) = —1/G(t), hence

which gives
(Gi(H(1) = H' ()G (H(t)) = ki,

by integrating over [0, t], we obtain
G1(H(t)) > kit + G1(H(0)),

consequently

H(t) < Gy (kat + k) . (3.45)

Combining (3.44) and (3.45), we obtain (3.34).

5 Examples

Example 5.1 Let g given by g(s) = sP(—1ns)?, where p > 1 and ¢ € R on [0,¢€], and the
function G is defined in the neighborhood of 0 by

pt1

G(s) = es"+ (~ Inv/3)",
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3. 5. Examples

we have .
G'(s) = es"7 (— /o) [ 2 (cm /sy - 2,
thus - .
Gl(t) == */ ds.
¢l S (I el (B (< ys) - 8)
Making the following changement of variable : z = -, we obtain

w»

—2

2 [ ZP
Gt:f/ dz.
1(t) cJ1 (lnz)q—l(%lnz—%) -

We have three cases :
The case 1 : Ifp=1, q=1, we have

@@_imem¢a,

we deduce that

1 c
Grl(t) = e,
then
Bo) < Bt
e

The case 2 : Ifp=1, q¢ <1, we have

L
_E/ z(In 2)1 lnz—f)dz

2
72 /\[

(—Int)'=9 ast — 0,

c(1-q)

we deduce that

1

GTL(t) ~ e 7" ast — +oo,

then

1

E(t) < kge™ k(k1t+ko)T—a

)
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3. 5. Examples

The case 3 : If p > 1, using the lemma 6.1 (i) (see [6]), we obtain in the neighborhood of

0
1

2q+1 ( In t)qt

Gy (t) ~

Applying the lemma 6.2 (see [6]), we obtain in the neighborhood of +00

—2

_ p—l —2q
Gt ~ (Eo ) ()i,

then

B(t) < ky(® 1) (bt + E) e (In(kt 4+ b))t

2
Example 5.2 Let g given by g(s) = e~ """ where 1 < v < 2, and

G(t) = cy/se~TImVe)T,

We have

G'(s) = 5—me VI (L4 a(=In V)T,

ONE

thus
In/5)Y

/f1+7—1n\f) )

Making the following changement of variable : z = %, we obtain
(In 2)7
/f ¢ dz.
2(1+~y(Inz)1)
Using the lemma 6.1 (see [6]), we obtain in the neighborhood of 0

\/Ee(— InVt
(—In v2)20-D’

ds.

Gl(t> ~ C

and applying the lemma 6.2 (see [6]), we obtain in the neighborhood of +o00

-1 1n1ntﬁ 491 ” mmﬁ)

GiHt) ~ exp(— 2[1nt+ {lnt—l—ln%(t) +97
g

Y

then 1
E(t) < ksexp (= 2[In(kut + ko) + [ In(kat + ko) + In (kyt + ko)

).

_ 1 1 _ 1
+2 kit + ko) |7+ 27— Ikt + k) |
Y Y

2=
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Chapter

Stabilization of the Petrovsky-wave
nonlinear coupled system with strong

damping

1 Introduction

In this chapter we investigate the existence and decay properties of solutions for the initial
boundary value problem of system of Petrovsky-wave of the type

uy + A%uy — a(z)Aug — g1 (Auy) = 0, in  x [0, +o0],

Uy — Aty — a(z)Auy — go(Augy) = 0, in  x [0, +o0], (4.1)
Aup = u; = ug =0, on 0 x [0, +o0],

wi(x,0) = ud(z), u;(z,0) = ul(z), in Q,i=1,2,

here € is a bounded domain of R” with regular boundary 9 2.
When a(x) = 0, the Petrovsky equation was treated by Komornik [15], he used semigroup approach
for sitting the well-posedness and he studied the strong stability by introducing a multiplier method

combined with a nonlinear integral inequalities. Recently, Bahlil and Baowei [4], studied the system

ufl + a(z)ug + A%uy — g1 (uf(2,1)) = fi(ug,uz), in Q x [0, +oo],
uhy + a(x)uy — Aug — go(uh(z,t)) = fo(ur,u), in Q x [0, +o0], (4.2)
3Z,U1=U1=U:U2:0, OnaQX[0,+OO[,

for g; (1 = 1,2) do not necessarily having a polynomial growth near the origin, by using compactness

method to prove the existence and uniqueness of solution and established energy decay results
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4. 2. Preliminaries and assumptions

depending on g;. Guesmia [10] consider the problem (4.2) without source terms f; and fo. He deal
with global existence and uniform decay of solutions.

In this chapter, we prove the global existence of weak solutions of the problem (4.1) by using the
compactness method (see Lions [27]). We use some technique from [4] to establish an explicit and
general decay result, depending on g;. The proof is based on the multiplier method and makes use
of some properties of convex functions, the general Young inequality. These convexity arguments
were introduced and developed by Lasiecka and co-workers ([21],[22]) and used, with appropriate

modifications, by Liu and Zuazua [32], Alabau-Boussouira [2] and others.

2 Preliminaries and assumptions
Let us introduce for brevity the Hilbert spaces
H=L*(Q) x L*(Q),
W = Hy() x Hy(%),
H3(Q) ={uec H*(Q)u=Au=00n9Q}, |ul}s, = [ |[VAu|*dz,
V = H3(Q) N H*(Q) x H*(Q),
V = (H*(Q) N HA(Q)) x (HA(Q) N H*(Q)).
Identifying H with its dual H' , we obtain the diagram
VCVCWCH=H cW cV' cV,

with dense and compact imbedings. If u € L?(Q2), we denote by lull z2(q) = [Jul]-
We impose the following assumptions on a and g;.

The function a : 2 — R is a nonnegative such that

a € Whe(Q),

lalloc < min {ﬁ, 1},

where ¢ > 0 (depending only on the geometry of ) is the constant satisfies
[Aul| < VAU, Vue HX(9),

IVul < cl|Aull, Yue H(Q).

o7



4. 3. Global existence

Assume that g; : R — R, i = 1,2 is nondecreasing continuously differentiable function of class C',
and globally Lipschitz.
Suppose that I¢; >0, j =1,2,3,4, 37 > 0 such that

Vp>1:ellsl? < |gi(s) < calsl? if |s| <1, (4.4)
csls| < |gi(s)] < eqls|, if |s| >1, (4.5)
VseR:gi(s) <. (4.6)

3 Global existence

Theorem 3.1 Let (u9,u3) € V and (u},ud) € V arbitrarily. Assume that (4.3)-(4.6) hold. Then,

the system (4.1) has a unique weak solution satisfying
(ulaUZ) GLOO(R+>‘7)a (U,DU,Q) € LOO(R+aV)>

and

( 1/7 2) € LOO(R-HW)

Proof.

The step 1 : Approximate solutions

We will construct solutions approximated by the Faedo-Galekin. Let T > 0 be fixed and
denote by Vj, the space generated by {wj 1, w; 2, ..., w; 1, }, where the set {w; , i = 1,2, k € N}
is a basis of V.

We construct approximate solution u;x, k =1,2,3,....., 4 = 1,2 in the form

ulkxt chk wm ), i =1,2,

where ¢j (j = 1,2,..., k) are determined by the following ordinary differential equations

(u/llk + A2uy g — a(z) Aug g — gl(Au/l’k),ij) =0, for all wy; € Vj,
(U/z/k — Aug p — a(x)Auy j, — gg(AU;yk),U)QJ) =0, forall wy; €V, (4.7)
uik(0) = ug’k, u;k(O) = ul{k, in Q,i=1,2,

with initial conditions

k
u1 %(0 Z (W, wy jywy ; —u), in HHQ)NHI(Q) as k — +oo,
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4. 3. Global existence

k
ug 1 (0) = u%k = Z(ug,wgﬁwzj —ud, in HX(Q) N H*(Q) as k — +oo,

j=1
/ k
uLk(O) = u%k = Z(u%, wy j)wr; — u%, in Hg(Q) N HQ(Q) as k — +oo, (4.8)
j=1
, k
uy 1, (0) = u%k = Z(u%,w;ﬁwgd — u%, in HQ(Q) as k — +oo, (4.9)
j=1

—A2u?7k + a(m)Aug,k + gl(Auik) — =A%) 4 a(z)Aud + g1 (Aul), in HY(Q) as k — +oo,
(4.10)
Aug?k + a(m)Au%k + gg(Aué’k) — Aud + a(z)Aud + go(Aul), in H}(Q) as k — +o0,
(4.11)

The step 2 : A priori estimates. We are going to use some a priori estimates to show
that ¢ = oo. Then, we will show that the sequence of solutions to (4.7) converges to a
solution of (4.1) with the claimed smoothness.

Choosing w; ; = — 2Au, ., i = 1,2 in (4.7), we obtain
g 5J l,k’

d / /
@/Q (V) o + |Vt |2 + [V Aug o + | Atig 2 + 2a(2) Ay g Aus, da
(4.12)
+2 [ Aujpgn(Buy ) do+2 [ Ay ga(Auy ) do =0,
and choosing w; j = 2A2u;7k, i =1,21in (4.7), implies
d / I
7 / |Auy p|? + [Aug g [* + [A%u g]* + [VAus i |* + 2a(2)V Auy 1V Aug , da
Q
42 / Va(e)Aug VAU, | do + 2 / Va(z) A,V Au) . dz (4.13)
+2 [ VA (A ) da+2 [ VAU 42 (Auy ) do = 0.
Q
Summing (4.12) and (4.13), we obtain
d / /
G 1AL + (9042 |82 42 + (9 A P da
d / !
+ %/Q | Aty 1 |* + [Vug > + [Aug k] + [V Aug k| do
) (4.14)
+ 2$ / a(z)Auy pAug i, + a(x) VA 1,V Aug j, dz
Q

+2 [ Aujgn(Auy ) do+2 [ Auygn(Ady ) da
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4. 3. Global existence

+ 2/ Va(m)AquVAu/l e dr + 2/ Va(:c)AuLkVAulQ i dx
Q ’ Q '

+2 [ (VAU (Auy ) do +2 | VAU k25 Au ) do = 0.

Using Cauchy-Schwarz’s inequality and Sobolev embedding, we have

9 / a(@)Aus pAuy g dx < 2 / a(a)|| Aus k|| Auy 4| dz
Q Q
< lalls [ 1V Au (o, t) do (4.15)
Q

+c’\|a||oo/g\Au27k(x,t)|2d:c,
and

2/ a(2)VAuy ;V Az de < ||a||oo/ IV Auy i do + ||a||oo/ VAugi?dz.  (4.16)
Q Q Q

By Cauchy-Schwarz’s inequality, Sobolev embedding and the condition (4.4), we get

2/ Va(x)AugjkVAu,Lk dzx < 2/ |Va(m)|]Au2,kHVAu,Lk|dx
Q Q

’ g/l(Au/l,k)
< 2/Q Va()]| Aug 4] [ VA | L1 gy

VT (4.17)

< Valle | 1V 203 267 (A, ) da

+7HVaHOO / \Auz,k|2 dx.
T Q

Similarly, we have

2/ Va(x)AuLkVAullk dxg/ |VAu/2,k|2g/2(Au/2’k) dx—#—”vznoo/ |Auy g |* da
Q Q Q
< [Valle | VAU 42 (Ady) da (4.18)

/
—{-M / |V Auy 1, |? da.
T Q

Reporting (4.15)-(4.18), into (4.14) and integrating over [0, t|, we find
Flt)+2 [ [ Audy(o)on (A (6D dwdt +2 [ [ A (5)ga( ) s
[ [ 1A Pt e o)) dwdt + [ [ 190,60 Bt 5))
<K+C /01t Fu(s)ds, tel0,t),
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4. 3. Global existence

where

Fu(t) = [ 180, (OF + 80 (O + Vs 4 (O + [Tup (0 + A% 4(0) da
+ (1= Cllallc = lall) | [VAuEOF de + (1=l [ |Auza(®) da

(1= lalle) [ |V Auz(0)f da

and (1 is a positive constant depending only on ||al|eo, ||Va| e and 7.
So that, thanks to the monotonicity condition on the function g; and using Gronwall’s lemma,

we conclude that

upy is bounded in  L°(0,T; H*(Q) N HA(R)), (4.19)
usy is bounded in  L°°(0,T; H3 (Q) N H*()), (4.20)
uyy, is bounded in L0, T; H*(Q) N H(2)), (4.21)
Uy is bounded in L0, T; H*(Q) N HY (), (4.22)

Au;kgi(Au;’k), i=1,2 is bounded in L'(A),
and from (4.4), (4.5) we deduce that
gi(Au;-,k), i=1,2 is bounded in  L*(A), (4.23)

where A =Q x (0,7).
We assume first ¢ < T and let 0 < £ < T —t. Set

“f,k(%t) =uik(z,t+§), i=1,2,

Ué =uyp(z, t+ &) —uy iz, t),

and

DY = ugjo(w,t + &) — ugp(z,1).
Then, U, ,f solves the differential equation

/

(U + AUf; — a(2)AD}, — (g1 (A(u] )) — g1(Auy ), wig) =0, Ywrj € Ve, (4.24)

and Di solves

(D})" — ADj, — a() AU — (g2(A(uS,)) — g2(Dug ), way) =0, Vwsj € Vi (4.25)
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4. 3. Global existence

Choosing wy j = —A(U,f)’ in (4.24) and wy; = A(Di)/ in (4.25), and using the fact that g;

is nondecreasing, we find

d ! ’
G LIV @ 0F +19(DF) (@, 0 + VAU (@, ) + [ADf (w,) do

+27/ (2)ADS (2, ) AUS (2, t) de < 0, Vit >0,
integrating in [0, %], to get
/ VWS (O + V(DY) ()2 de + (1 — ¢l[alloc) / VAUS? 4+ |ADS (1) de
< Co [ [VUH) O)F + [V(D) 0) + [VAUE(0)1 + [AD(O) d,

and Cy is a positive constant depending only on ||a|| and ¢
Dividing by &2, and letting ¢ — 0, we find

L IFui 4 OF + 905 k(O + [V 203 () + Ay (0 do
< G [ VU 1O + [V k(O + [V Al 2 + | Au | da
We estimate ||Vu;,k(0)|| Choosing v = —Au;/,k, i=1,2and t =0in (4.7), we obtain that
IVuis0))F = | Fui (07 (=A% 5 — alw)u .+ g1( At )

and
Vs O = | Ty c(O)F(AuS . = aw)ud s + ga(Au )

Using Cauchy-Schwarz’s inequality, we have

1
V6O < [ [ V(=A% — a@yus s + g1 (Aul ) da ],

and

N

Vs (0)] < | /Q V(A — a(w)ul ; + g2(Auj ) de |
By (4.10) and (4.11) yields
(ulk(O),u;,k(O)) is bounded in W. (4.26)
y (4.8), (4.9) and (4.26), we deduce that

L1904 OF + 1905 k(O + [V A k(0 + 8wy (0 do < G, Vit 20,
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4. 3. Global existence

where (5 is a positive constant independent of & € N. Therefore, we conclude that

uyy, is bounded in  L*(0,T; H(Q)), (4.27)
u;k is bounded in  L*°(0,T; H*(Q)), (4.28)
ulllk is bounded in  L*(0,T; Hi(Q)), (4.29)
uyy is bounded in  L*(0,T; H}()). (4.30)

The step 3 : Passage to the limit
Applying Dunford-Pettis and Banach-Alaoglu-Bourbaki theorems, we conclude from
(4.19)-(4.23) and (4.27)-(4.30) that there exists a subsequence {w;,} of {u;x}, i = 1,2 such
that

(U1m, Ugm) — (u1,ug)  weak-star in  L>®(0,T;V), (4.31)

wy ) — (]l weak-star in  L°°(0,T;V),
1,m> *2m 1) %2

" "

Uy, U — (ufy, ul weak-star in  L*>(0,T; W), 4.32
1,my *2m 1, %2

/7

gl(AU

z,m)

— i, i=1,2 weak-star in  L?(A). (4.33)

As (ui,m,u2,m) is bounded in L>(0, T} V) (by (4.19), (4.20)), then (U1,m, u2,m) is bounded
in L2(0,T; 17) and the injection of V in H is compact, we have

(U1 my Ugm) — (u1,uz)  strongly in  L*(0,T; H). (4.34)
In the other hand, using (4.31), (4.32) and (4.34), we have
/ / U1m z,t) + A%up g (2,1) — alz )Aulm(x,t)}w dr dt —
/ / uf (z,t) + A%uy(x,t) — a(m)Auz(ac,t)]w dx dt, as m — 400
and
/ / u2m z,t) — Aug (2, 1) — a(:c)AuLm(x,t)}w dr dt —
/ / uh(x,t) — Aug(z,t) — a(a:)Aul(x,t)}w dzr dt, as m — +oo

for all w € L2(0,T; L%(Q)).

It remains to show the convergence

T ) T
/ / gi(Au; ) wdx dt — / / gi(Au}) wdz dt, as m — +oo, i =1,2.
0 Ja ’ 0 Ja
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From (4.21), (4.22) and (4.29), (4.30), we have (u;k,u;k) is bounded in L*(0,T; W),
(ulk, ugk) is bounded in L*>°(0,7; W) and W C H, then (ulllk, u;k) is bounded in L*>°(0,T; H),
therefore (ullk,ulgk) is bounded in L2(0,7;W) and (ulllk,ugk) is bounded in L2(0,7T; H),
hence (u/lk,u;k) is bounded in (H'(A))?2, and the injection of H'(A) in L?(A) is compact,
we find that

(4 Uz g,) = (u,up) strongly in (L*(A))?,

consequently, we have
(ullm,u;m) — (u},ub)  almost every where in A2, (4.35)
Lemma 3.2 For each T > 0, we have g;(Au}) € L'(A), and
lgi(Aug) L) < K, 0= 1,2,

where K is a constant independent of t, and

gi(Au; ) — gi(Auf), i = 1,2 in L'(A).

Proof. We claim that
gi(Au) € LYA), i=1,2.

Indeed, since g; is continuous, we deduce from (4.35)
gZ(Au;m) — gi(Au}), i=1,2 almost every where in A.

/

Auiymgi(Au;m) — Aulgi(Au}), i =1,2 almost every where in  A.

Hence, by (4.23) and Fatou’s lemma, we have

T
/ / Aul(z,t)gi(Aul(x,t))dedt < Ki,i=1,2 for T > 0.
0 JQ

T
Now, we can estimate / / |9i(Aul(z,t))| dz dt, i = 1,2. By Cauchy-Schwarz’s inequality.
0o Jo

If |Au}| > 1, by using (4.5), we have
T / el [F / 2 1/2
| [ los(auita ol dadt < dAl2[ [ [ lgi@uia, ) dodt]
0 JQ 0 JQ

< el [T ' / 1/2 .
< c|A| [ ; QAuigi(Aui(:r,t))dxdt] < Ko, i=1,2.
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4. 3. Global existence

If |Auf| <1, by using (4.4), we have

T / el [T / 2 1/2
| [ ls@uite opldear < a2 [ [ |(auite, )P do at]
0 JQ 0 JQ

T / ’ 1/2
§C\A|1/2{/0 /QAuigi(Aui)dxdt} /

<Ks, i=1,2 for T>0.

Then -
/ / lgi(Au(z,t))|dedt < K,i=1,2 for T > 0.
0 JA

Let E C Q x [0,T] and set
/ 1 )
Br={(@.0) € B los(Mn (@, )] € 1= 1,2},

Ey = E\Ej,

where |E| is the measure of E. If M(r) = inf{|s| : s € R and |g;(s)| > r, i = 1,2}, we have

M _1 ! !/
/ lgi(Au, )| dx dt < cy/|E| + [W} /E Au; 1 9i(Au; ) do dt, i =1, 2.
2

By applying (4.23) we deduce that
sup/|gz m)| dz dt — 0,4 =1,2, when |E| — 0.
From Vitali’s convergence theorem, we deduce that
gi(Auy ) = gi(Aul) in LM(A), i = 1,2,

This completes the proof.
Then (4.33) implies that

gi(Au}), i = 1,2 weak-star in L*([0,T] x Q).

We deduce, for all w € L?(0,T; L*()), that

/ /gZ wdmdt—>/ /ngu Jwdxdt, i =1,2.
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Finally we have shown that, for all w € L?(0,T; L?(f2)):

/ / uf (z,t) + A%uy (x,t) — a(z)Aug(z,t) — g1 (A} (:U,t))}wdac dt =0,

and
/ / uhy(x,t) — Aus(z,t) — a(z)Auy (z,t) — gg(Aué(:U,t))}wdac dt = 0.

Therefore, (u1,us) is a solution for the problem (4.1).

The step 4 : Proof of uniqueness

To prove the uniqueness of the problem (4.1), we need of the following lemma

Lemma 3.3 If (u1,u2) is a solution of the problem (4.1), then we have
/
/a(x)AulAqux > —%||a||oo/ VA + | Aus|? da. (4.36)
Q Q

Proof. Using Cauchy-schwartz’s inequality and Cauchy’s inequality, Sobolev embedding and
the condition (4.3), we get

1 1
/a(fL’)AulAUQdmz —7Ha||oo/ Z|Awf? + ¢ Aus|? da
Q 2 oc
1 ? 2 / 2
zﬂuauoo/ &IV A 2 + | Aug|? dx
2 Q C

/
> ~Sllall | VA + |Ausf da.

Let (u1,us2), (u1,u2) be two solutions of the problem (4.1) with the same initial data. Let us

denote it is straightforward to see that z; = uy — U1, 20 = ue — Uy satisfy

V21112 + IV 23> + [V Az [* + [|Az|* + 2/ z)AzAzy dz +

2 /0 /Q AZ,(g1(A)) — g1(AT)) de dt +2 /0 /Q AZy(g2(Ail) — go(ATy)) dar dit = 0,
from (4.36), we have

V212 + VA2 + (1 ¢ lallo)(IVAZ | + [Aza?)
t , ) |
" 2/0 /Q Az (91(Auy) — g1(Auy)) da di

t ! ! !
+2/ /QAZQ(gQ(AUQ) — o(ATY)) dzdt < 0,
0
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t ’ ’ o
we have g1, g2 are increasing, we conclude that 2/ / Az (g1(Auy) — g1(Auy)) de dt > 0,
0 JQ

t !/ ’ / !/
2/ / Azy(ga(Auy) — g2(Aly)) drdt > 0. And 1 — ¢ ||allco > 0 ( see (4.3), therefore
0 JQ

V2112 + [Vzg|? + [VAz |2 + || Az =0,

which implies z; = 29 = 0. This finishes the proof of theorem (3.1).

4 Energy estimates

In this section, we prove our stability result for the energy of the solution of system (4.1), using

the multiplier technique.

Lemma 4.1 We define the energy associated with the solution of the problem (4.1) by the

following formula
1
E(t) = 5/ |Vuh |2 + | Vuh | 4+ [VAu |* + |Aug|? dx —I—/ a(z)Aui Aus da. (4.37)
Q Q

Then E is a non-increasing function, and it is a nonnegative function.

Proof. Multiplying the first equation in (4.1) by —Au) and the second equation by —Auj, and

integrating over ) and using integration by parts and the monotonicity of g;, i = 1,2, we obtain

1d
3 [/ (V)2 + |Vuh)? + [VAu | + |Aug|? do + 2/ a(x) Auy Aus dx]
Q@ Q
== /Q Aut g1 (Au)) + Auhga(Auy) de < 0.

And using (4.36), we obtain then
1
Et) > 5/Q V|2 + [V + (1 = [lafloo) (VA + [Aus|?) dz > 0.

Theorem 4.2 Let (uf,ud) € V and (ul,ul) € V. Assume that (4.3)-(4.6) hold. The energy of the
unique solution of the system (4.1), given by (4.37) decay estimate :

E(t) <Ct™ 201 vt >0, if p>1,

and
E(t) < C'E(0)e™™" YVt >0, if p=1.

Here C is a positive constant only depending on the initial energy E(0), while C' and w are positive

constants, independent of the initial data.
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Proof. Multiplying the first equation of (4.1) by —E*Auy, we obtain
T
0= / —E“/ Ay (v + Auy — a(z)Aug + g1 (Au))) dz dt
S Q
T T
= —[E“/ uy Auy d;v} —1—,u/ E'E“_l/ Auquy dz dt
Q s s Q

T T

—2/ E“/ |Vu’1|2dxdt—|—/ E“/ (V|2 + |VAuy | de dt
S Q S Q

T T
—|—/ E“/ a(x)Auy Aug dxdt—i—/ E"/ Auy.gy (Au)) dx dt.
S Q S Q

Similarly, we have

T
0 :/ —E”/ Aus(uy + Aug — a(z)Auy + go(Aub)) dz dt
S Q
T T
= —[E“/ u'QAqux} +M/ E'E“_l/ Ausuly dz dt
Q S s Q

T T

—2/ E“/ yvu’2|2dxdt+/ E“/ |Vubh|? + |Aug|? do dt
S Q S Q

T T
—|—/ E“/ a(x)AugAuy dxdt—i—/ E“/ Aug.go(Aub) dx dt.
S Q S Q

Taking their sum, we obtain

T T
/ ErLar < [E“/ uy Auq + uyAus dac}
s Q S
T
—,u/ E’E“_l/ Auguy + Auguby dz dt
g “ (4.38)
T
—|—2/ E”/ VUi |? + [Vub|? da dt
s Q

T
—/ E“/ Auy.gr (Au)) + Aug.go(Aub) dx dt.
S Q

Since F is non-increasing, we find that

[E“ A ! ‘ utl
w1 Auy + us Aug d:z:]s < cEFTH(S),
Q

T
,U‘/ E’E“_l/ Auru) + Auguly dx dt‘ < cEMTL(S).
S Q
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4. 4. Energy estimates

Using these estimates, we conclude from (4.38) that

T T
/ Jolles) dthE““(S)+2/ E"/ V|2 + (Va2 do dit
8 s (4.39)

T
+ /S " /Q | Ay | g1 ()| + | Aua | go(Aub)| da dt.

Now, we estimate the terms of the right-hand side of (4.39).

As in Komornik [15], we consider the following partition of €2,
QO ={zecQ:|Au|>1}, Q ={recQ:|Aul <1}
By using Sobolev embedding and Young’s inequality, we obtain
T T
/ E“/ |Au1\.|g1(Au’1)|d1‘dt—|—/ E"/ Vel 2 da di
S Qt S Qt
- T T
<efs E“/ |Au1\2dxdt+0(5)/ E“/ |gl(Au'1)|2d:cdt+c/ E“/ |Au}|? da dt
o+ S o+ S ot
T cq1 (T
Ssc’/ E“/ |V Ay |2 da dt + {C(s)cz—i——}/ E“/ Aul g1 (AuY) da dt
S Q C1 S Q

T T
<eC / EFTLdt 4+ Cy(e) / EFE' dt
S S

T
< €C/ EFLdt 4+ Cy (e, ) E*TL(9).
s

(4.40)
Similarly, we have
T T
/ E“/ \AuQ].|gg(Au’2)|dxdt+/ E“/ |Vuhy|? da dt
S ot S o+
. (4.41)
< 50/ EFtLdt + Co(e, u) B*TL(S).
S
Summing (4.40) and (4.41), we obtain
T
LB | 1wl ()] + sl ga (M) de dt
T
+/ E“/ |V [+ [Vuh|* da dt (4.42)
S ot

T
<eC / B dt + C(e, ) EPHY(S).
S
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4. 4. Energy estimates

By using Sobolev embedding and Young’s inequality, we obtain

T
[ [ Iunllgn (S| + [V do de
S Q-

T T
§€’c’/ E“/ \VAu1]2dmdt+C’(a’)/ E“/(|Au'1|2+|g1(Au’1)|2)dwdt
ir 0 ) S 0 (4.43)
<&l / B dt + O() / B / (A, g1 (Au,)) P da dt
S S Q
/ T w1 / T I / / p%
<C | EFTAt+C(e,p) | E [ Auyg1(Auy) dm} dt.
S S Q

Similarly, we have

T
[ [ Bunllgp ()| + Vb dodt
5o (4.44)

2

T T _2
SE’C/ Eﬂ+1dt+0(e’,p)/ E“[/ Auyg(Auty) d |77
S S Q

Summing (4.43) and (4.44), we obtain
T
LB [ 1wl ()] + sl ga (A de dt

T
+/ E“/ |Vl |2 + [Vub|? do dt
o . (4.45)
SeoC’/ Jolas dt+C(50,p)/ B ()7 dt
S S
T T p+1
geoc/ Joles) dt+51/ B dt + C(er, p) E(S).
S S

Reporting (4.42) and (4.45) in (4.39), we find

T T
/ EFTLdt < CE(S) + C'E*HH(S) + EOC/ B gt + 51/ B dr,
Q < .

we choose p such that

+1
ug—f:u+L
p—1

Thus we find

Choosing ¢p and 1 small enough, we obtain

/ EFLdt < C'E(S) + C'EF(0)E(S),
Q
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4. 4. Energy estimates

where C’ is a positive constant independent of F(0).

We may thus complete the proof by applying lemmas 7.1 and 7.2.
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Résumé (en Francais) :

La présente thése est consacrée a I'étude de I'existence globale, explosion en temps fini et le comportement
asymptotique des solutions de certaines équations d’évolution non linéaires. Ce travail se compose de
quatre chapitres, sera consacré a I'étude du bien-posé, le comportement asymptotique et explosion en
temps fini de la solution de certaines équations d’évolution avec un terme d’amortissement non linéaires, un
terme de retard et un terme de source. Dans le chapitre 1, nous rappelons quelques notions utilisées dans
cette thése. Dans le chapitre 2, nous considérons I'équation d’'onde non linéaire soumis a un amortissement,
un terme de retard et un terme de source. Nous prouvons que la solution explose en temps fini si le terme de
source domine le terme de dissipatif et le terme de retard p > max{l + 2, m} sous la condition que I'énergie
initiale est négative par la méthode de V. Georgiev et G. Todorova. Dans le chapitre 3, nous considérons
I'équation de Petrovsky avec un fort amortissement non linéaire et de forme générale. Nous prouvons que ce
probléme est bien posé en utilisant la méthode de compacité, et pour la stabilité générale de la solution
introduisant une méthode de Lyapunov. Dans le chapitre 4, nous considérons un systéeme Petrovsky-onde
couplé avec un fort amortissement non linéaire. Nous prouvons la bien posé en utilisant la méthode de
compacité, et pour la stabilité de solution introduisant une méthode de multiplicateur, nous trouvons la
stabilité exponentielle et polynomiale.

Les mots clés : Bien posé, systéme couplé, décroissance générale, décroissance exponentielle, polynomiale
décroissance, méthode Faedo-Galerkin, méthode Lyapunov, méthode multipliée, terme de source, terme de
retard, explosion.

Abstract (en Anglais) :

The present thesis is devoted to the study of global existence, blow-up in finite time and the asymptotic
behaviour of the solutions for some nonlinear evolution equations.. This work consists of four chapters, will be
devoted to the study of the well-posedness, asymptotic behaviour and blow-up in finite time of the solution of
some evolution equations with nonlinear dissipative terms, delay and source terms. In chapter 1, we recall of
some notions used in this thesis. In chapter 2, we consider the wave equation with nonlinear source, damping
and delay term. We prove that weak solutions to the systems blow up in finite time whenever the initial energy
is negative and the exponent of the source terms is more dominant than the exponent of damping terms, we
use the method of V. Georgiev and G. Todorova. In chapter 3, we consider the Petrovsky equation with a
nonlinear strong damping. We prove, under some appropriate assumptions, that this system is well-posed
using the compactness method. Furthermore, the general stability is given by using a combination of the some
properties of convex functions with an appropriate Lyapunov functional. In chapter 4, we consider a coupled
Petrovsky-wave system with a nonlinear strong damping. We prove well-posedness by using the compactness
method, and establish the both exponentialand polynomial decay estimates by introducing a multiplied method.

Keywords : Well-posedness, coupled system, general decay, exponential decay, polynomial decay, Faedo-
Galerkin method, Lyapunov method, multiplied method, source term, delay term, blow-up.
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