
 

 

N° d’ordre : 
 

REPUBLIQUE ALGERIENNE DEMOCRATIQUE & POPULAIRE 

 

MINISTERE DE L’ENSEIGNEMENT SUPERIEUR & DE LA RECHERCHE 

SCIENTIFIQUE 
 

 

 

UNIVERSITE DJILLALI LIABES 

        FACULTE DES SCIENCES EXACTES 

SIDI BEL ABBES 
 
 

 

                              THESE DE DOCTORAT 
EN SCIENCES 

Présentée par  

                                          Noureddine  BAHRI  
 
Spécialité : Mathématiques     
Option : Equations  aux  dérivée partielles 

  

Intitulée  
 

« …………………………………………………………………… » 
 
 

 
 
   Soutenue le : 18 /01/2022 
   Devant le jury composé de : 
 
  Président :           Ali  HAKEM                          Pr. Univ. Djillali Liabes SBA   

Examinateurs :    MOKHTAR I Mokhtar  M. C. A. Univ. Ibn Khaldoun  
                                                                  Tiaret                            
                        Mohamed KAINANE MEZADEK     M.C.A.  Univ.   
                                                            Benbouali  Chlef 

                                    Nadia MEZOUAR     M.C.A.  Univ. M. Stambouli      
                                                                   Mascara 
Directeur de thèse :Mama ABDELLI            Pr. Univ. Djillali Liabes SBA 
Co-Directeur de thèse :  Abbes BENAISSA       Pr. Univ. Djillali Liabes SBA 
         

 

 Existence  globale, stabilité et explosion en temps 
fini des solutions de certaines équations d’évolution 
non linéaire avec retard  

Année universitaire : 2021/2022 



Acknowledgment
First of all, I would like thank our God fo rhis conciliation to me to achieve this point oth-
erwise, I can not. I am deeply indebted to my supervisor, the adviser of this thesis, Prof.
Mama ABDELLI, who gave permanent support and encouraged me by his help and gold
advices and encouragements about the choice of my diploma theme.

I would like to thank the co-supervisor, Professor Abbas BENAISSA, who accepted me
as a member with him in the laboratory of the University of Djilali Liabis in Sidi Bel Abbas,
and he helped me a lot in his scientific orientations and administration.

Special thanks go to Mr.Prof. Ali HAKEM from University of Sidi Bel Abbès to have
accepted to preside the jury. I would also like to thank the members of jury Mr.Prof.
MOKHTARI Mokhtar M. C. A. Univ. Ibn Khaldoun Tiaret, Mohamed KAINANEMEZADEK
M.C.A. Univ. Ben bouali Chlef, Nadia MEZOUAR M.C.A. Univ. M. Stambouli Mascara
to have accepted inspect the contents of my thesis, and also for there advices, remarks and
orientations.

I would like to say thanks to mathematical division of university Djilali Liabes of Sidi
Bel Abbès for their good treatment and for informing us of all that is new.



Contents

General introduction 6

1 Preliminary and Main Results 14
1 Generals Information on Analysis Functional . . . . . . . . . . . . . . . . . . 14
2 Functional Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Some inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Weak convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Weak, Weak star and strong convergence . . . . . . . . . . . . . . . . 23
4.2 Aubin Lions Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Faedo-Galerkin’s approximations . . . . . . . . . . . . . . . . . . . . . . . . 25
6 Lax-Milgram Corollary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7 Theory of Semi Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8 Integral Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

8.1 A result of exponential decay . . . . . . . . . . . . . . . . . . . . . . 29
8.2 A result of polynomial decay . . . . . . . . . . . . . . . . . . . . . . . 30
8.3 New integral inequalities of P. Martinez . . . . . . . . . . . . . . . . . 31

2 Well-posedness and general energy decay of solutions for transmission
problems with weakly nonlinear dissipative therms 33
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3 Well-posedness of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4 Asymptotic behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Well-posedness and decay estimates for a Petrovsky-Petrovsky system 47
1 Introduction and statement of main results . . . . . . . . . . . . . . . . . . . 47
2 Some technical lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Exponential stability of a transmission problem with history and delay 62
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3 Well-posedness of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4 Exponential stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2



5 Blow-up of result in a nonlinear higher-order equation with delay and
source term 77
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3 Blow-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Bibliography 85

3



Etude de l’existence globale et de stabilisation de certains systèmes
hyperboliques

La présente thèse est consacrée à l’étude du bien-posé, du comportement asymptotique et
de l’explosion en temps fini des solutions pour certaines équations d’évolution non linéaires.
Ce travail se compose de cinq chapitres, sera consacré à l’étude du bien-posé, le com-
portement asymptotique et l’explosion en temps fini de la solution de certaines équations
d’évolution avec un terme d’amortissement non linéaires, un terme de retard et un terme
de source. Dans le chapitre 1, nous rappelons quelques notions utilisées dans cette thèse.
Dans le chapitre 2, nous considèrons un problème de transmission onde-onde soumis à un
terme d’amortissement non linéaire dans la première équation. Nous prouvons, sous cer-
taines hypothèses appropriées, que ce système est bien posé dans des espaces de Sobolev
par la méthode de Faedo-Galerkin. De plus, la stabilité générale est donnée en utilisant une
combinaison des certaines propriétés des fonctions convexes avec la fonction de Lyapunov.
Dans le chapitre 3, nous considèrons un système constitué de deux équations de Petrovsky
couplées soumis à une dissipation non-linéaire forte et de forme générale pour chaque équa-
tion. Sous des conditions sur les termes de dissipation, nous prouvons l’existence et l’unicité
d’une solution globale en se basant sur les approximations de Faedo-Galarkin. Et nous util-
isons la méthode des multiplicateur pour trouver une stabilité générale. Dans le chapitre 4,
nous considèrons un problème de transmission onde-onde soumis à un terme de Viscoélas-
tique en présence d’un terme de retard pour une seul équation, nous montrons l’existence et
l’unicité d’une solution globale faible et forte dans des espaces de Sobolev par la théorie des
semi-groupes, ainsi que la stabilité uniforme (exponentielle) du système par la méthode de
Lyapunov. Dans le chapitre 5, nous considèrons une équation d’onde d’ordre supérieur avec
un amortissement non-linéaire, un terme de retard et un terme de source, nous montrons
que la solution explose en temps fini où l’énergie initiale est suffisamment négative. Pour
cela nous utilisons la méthode de concavité de H. Levine et nous donnons une estimation du
temps d’explosion.

Mots clés:
Bien posé, système couplé, problème de transmission, décroissance exponentiel, décroissance
générale, méthode de Faedo-Galerkin, théories de semi-groupe, la méthode de Lyapunov,
terme viscoélastique, terme de retard, explosion en temps fini.
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Study of the global existence and stabilization of some hyperbolic systems

The present thesis is devoted to the study of well-posedness and asymptotic behaviour in
time of solution of some hyperbolic systems. This work consists of five chapters, will be
devoted to the study of the well-posedness and asymptotic behaviour of some evolution
equations with nonlinear dissipative terms, delay and other nonlinear terms. Inthis thesis is
composed of 5 chapters including:
In chapter 1, we recall of some notions used in this thesis. In chapter 2, we consider the
transmission problems with a nonlinear damping in the first equation. We prove, under some
appropriate assumptions, that this system is well-posed using the Faedo-Galerkin schem.
Furthermore, the general stability is given by using a combination of the some properties
of convex functions with an appropriate Lyapunov functional. In chapter 3, we consider
a coupled Petrovsky system with a nonlinear strong damping. We prove well-posedness
by using Faedo-Galerkin method and establish an general decay result by introducing a
multiplied method. In chapter 4, we consider a transmission problem with history and delay
in the first equation. We prove well-posedness by using the semigroup theory and establish
an exponential decay result by introducing a suitable Lyaponov functional.
In chapter 5, we consider a nonlinear higher-order equation with delay and source term the
non-positive initial energy, it is proved that the solution blows up in the finite time.

Keywords Well-posedness, Coupled system, transmission problems, Exponential decay, gen-
eral decay, Galerkin method, semigroup theory, Lyapunov method, Viscoelastic term, Delay term,
blow-up.
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General Introduction

In any case, if we are looking for a mathematical notion, we are often confused with an approximate
science. Indeed, questions and problems evolve following the system of mathematicians knowledge
and the formulation of this notion can take a long time before to have his final state.
Partial differential systems of the second order have been studied by several authors, including :
V. Komornik [32], P. A. Raviart, J. M. Thomas [66] that they treated the order two linear wave
equation with the initial conditions and the boundary conditions, and they give a result of existence
of a solution.
S. Guesmia [24] who is presented some problems with the bounds for the nonlinear partial dif-
ferential equations. For each problem he is interested in the existence and the uniqueness of the
solution.
J. L. Lions [45] who studied two partial differential equations, the first one studied in our memory
and the second defined by

∂2u

∂t2
−∆u+ |u|ρ u = f,

∂2u

∂t2
−∆u+

∣∣∣u′∣∣∣ρ u′ = f. (1)

This work aims to study the existence, stability of the solutions of a nonlinear partial hyperbolic
derivative systems.
For the sake of stability, we have serial methods of proof, including the following:
1) Strong stabilization : E(t) −→ 0 as t −→∞.
2) Logarithm stabilization : E(t) ≤ c (lnt)−δ c, δ > 0.
3) Polynomial stabilization :E(t) ≤ ct−δt/c, δ > 0.
4) Uniform stabilization : E(t) ≤ ce−δt/c, δ > 0.
More precisely we are interested in uniform and polynomial stability, and for the existence we are
interested in method of Galerkin and dissipative (see [8]).
This works has been carried out exactly by many of the authors, for example (see [72], [70], [58],
[18],[9], [14], [29] ).
To carry out this work, we organized our research in forth important parts :
• In the chapter 1 :
We devoted to functional analysis reminders, we will evoke some reminders on the functional spaces,
we are interested in the Hilbert space, distribution, theory of semi-group and the Galerkin method
which contains three stages and also study the theorem of uniqueness.
• In the chapter 2 :
well-posedness and general energy decay of solution for transmission problems with
weakly nonlinear dissipative
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We study a nonlinear transmission problem{
utt (x, t)− auxx (x, t) + µg (ut (x, t)) = 0, (x, t) ∈ Ω× R+

vtt (x, t)− bvxx (x, t) = 0, (x, t) ∈ [L1, L2]× R+ (0.1)

where 0 < L1 < L2 < L3, Ω = ]0, L1[ ∪ ]L2, L3[, a, b, µ are positives constants. This system is
supplemented with the following boundary and transmission conditions:

u (0, t) = u (L3, t) = 0,
u (Li, t) = v (Li, t) , i = 1, 2,
aux (Li, t) = bvx (Li, t) , i = 1, 2,

(0.2)

and initial conditions
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , x ∈ ]L1, L2[ . (0.3)

Historical reminders:
When g(ut(x, t)) = ut(x, t) system (0.1)-(0.3) has been investigated in [9], for Ω = [0, L1], the
authors showed the well-posedness and exponential stability of the total energy.
Ma and Oquendo [51] considered transmission problem involving two Euler-Bernoulli equations
modeling the vibrations of a composite beam. By using just one boundary damping term in the
boundary, they showed the global existence and decay property of the solution.
Main results of the chapter 2. We assume that the function g : R → R is a non-decreasing
function of the class C (R) such that there exist ε, c2 > 0 and a convex and increasing function
G : R+ → R+ of the class C1 (R+) ∩ C2 (]0,+∞[) satisfying

G(0) = 0 and G is linear on [0, ε] or
G′(0) = 0 and G′′ > 0 on ]0, ε] such that
|g(s)| ≤ c2|s| if |s| > ε
s2 + g2(s) ≤ G−1(sg(s)) if |s| ≤ ε
|g′(s)| ≤ τ.

(0.4)

We use the Faedo-Galerkin method combined with the energy estimate method to prove the exis-
tence of global solutions and we use the Lyapunov method to study the decay of the energy.

Theorem 0.1 Suppose that
(
u0, v0) ∈ H2(Ω) × H2(L1, L2) ∩ H1

0 (Ω) × H1
0 (L1, L2),

(
u1, v1) ∈

H1
0 (Ω) × H1

0 (L1, L2) and that assumption (0.4) holds. Then (0.1)-(0.3) admits a unique global
solution

(u, v) ∈ L∞(0, T,H2(Ω)×H2(L1, L2) ∩H1
0 (Ω)×H1

0 (L1, L2)),
(ut, vt) ∈ L∞(0, T,H1

0 (Ω)×H1
0 (L1, L2)),

(utt, vtt) ∈ L∞(0, T, L2(Ω)× L2(L1, L2)).

The energies of first and second order associated with system (0.1)-(0.3) are defined as follows:

E1(t) = 1
2

∫
Ω
u2
t (x, t) dx+ a

2

∫
Ω
u2
x(x, t) dx,

E2(t) = 1
2

∫ L2

L1
v2
t (x, t) dx+ b

2

∫ L2

L1
v2
x(x, t) dx.

The total energy is defined as
E (t) = E1 (t) + E2 (t) .
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Theorem 0.2 Let (u, v) be the solution of (0.1)- (0.3). Assume that (0.4) holds and
b

a
<
L3 + L1 − L2
2 (L2 − L1)

Then there exist positive constants k1, k2, k3 and ε0 such that the solution of the problem (0.1)-
(0.3) satisfies

E(t) ≤ k3G
−1
1 (k1t+ k2) , ∀ t ∈ R+,

where
G1(t) =

∫ 1

t

1
sG
′
2(ε0s)

ds, G2(t) = tG′(ε0t),

with G1 is strictly decreasing and convex on ]0, 1], and lim
t−→0

G1(t) = +∞.

• In the chapter 3 :
well-posedness and estimates for a Petrovsky-Petrovsky system with a nonlinear dis-
sipative term
Let us consider the following problem:

utt + αv + ∆2u− g(∆ut(x, t)) = 0, in Ω× R+,
vtt + αu+ ∆2v − g(∆vt(x, t)) = 0, in Ω× R+,
u = ∆u = v = ∆v = 0 on Γ× R+,
(u(0, x), v(0, x)) = (u0(x), v0(x)) in Ω,
(ut(0, x), vt(0, x)) = (u1(x), v1(x)) in Ω,

(0.5)

where α satisfy the following condition
α ≤ 1

2Cs
, (0.6)

where Cs > 0 depending only on the geometry of Ω is the constant such that

‖∇z‖2 ≤ Cs‖∇∆z‖2.

Introduce three real Hilbert spaces H, V and W by setting

H = H1
0 (Ω) , V =

{
z ∈ H3 (Ω) : z = ∆z = 0 on Γ

}
and

W =
{
z ∈ H5 (Ω) : z = ∆z = ∆2z = 0 on Γ

}
.

Historical reminders:
Komornik [70] studied the following nonlinear Petrovsky system with a strong damping

utt(x, t) + ∆2u(x, t)− g(∆ut) = 0, x ∈ Ω× [0,+∞[,
u(0, t) = ∆u = 0, x ∈ Γ× [0,∞[,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω× [0,+∞[.

He used semigroup approach for sitting the well possedness and he studied the strong stability of
this system by introducing a multiplier method combined with a nonlinear integral inequalities.
Recently, M. Bahlil et al. [3], studied the system

u1
tt + a(x)u2 + ∆2u1 − g(u1

t (x, t)) = f1(u1, u2), in Ω× R+,

u2
tt + a(x)u1 −∆u2 − g(u2

t (x, t)) = f2(u1, u2), in Ω× R+,

∂νu
1 = u1 = u2 = 0, on Γ× R+,

(0.7)
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for g do not necessarily having a polynomial growth near the origin, by using Faedo-Galerkin
method to prove the existence and uniqueness of solution and established energy decay results
depending on g. A. Guesmia [23] studied the system (0.7) with a nonlinear damping g(uit). He
used semigroup approach for sitting the well possedness and he showed the uniform exponential
and polynomial decay of solution by introducing a multiplier method combined with a nonlinear
integral inequalities given by Martinez [51].
Main results of the chapter 3. Assume that g(s) satisfy the following hypotheses, the function
g : R −→ R is a non-decreasing continuous function such that there exist constants ε, c1, c2, τ > 0
and a convex increasing function G : R+ −→ R+ of class C1(R+) ∩ C2(R∗+) satisfying G linear on
[0, ε] or ( G′(0) = 0 and G′′ > 0 on ]0, ε], such that

c1 |s| ≤ |g(s)| ≤ c2 |s| , if |s| > ε, (0.8)

|s|2 + |g(s)|2 ≤ G−1(sg(s)), if |s| ≤ ε, (0.9)

|g′(s)| ≤ τ. (0.10)

Now we define the energy associated to the solution of the system (0.5) by

E (t) := 1
2 ‖∇ut‖

2 + 1
2 ‖∇vt‖

2 + 1
2 ‖∇∆u‖2 + 1

2 ‖∇∆v‖2 + 2α
∫
Ω

∇u.∇v dx.

We use the Faedo-Galerkin method combined with the energy estimate method to prove the exis-
tence of global solutions and we use some properties of convex functions to study the decay of the
energy.

Theorem 0.3 Let (u0, v0) ∈ W and (u1, v1) ∈ V arbitrarily, assume that (0.6) and (0.8)-(0.10)
hold. Then the problem (0.5) has a unique weak solution satisfying

(u, v) ∈ L∞(R+;W ),

(ut, vt) ∈ L∞(R+;V )

and
(utt, vtt) ∈ L∞(R+;H) ∩ L2(0, T,H2

0 (Ω)).

Theorem 0.4 Let (u0, v0) ∈ W and (u1, v1) ∈ V arbitrarily, assume that (0.6) and (0.8)-(0.10)
hold. Then the global solutions of the problem (0.5) have the following asymptotic property

E(t) ≤ ψ−1
(
h(t) + ψ(E(0))

)
, ∀t ≥ 0,

where ψ(t) =
∫ 1

t

1
ωΨ(s) ds for t > 0, h(t) = 0 for 0 ≤ t ≤ E(0)

ωΨ(E(0)) and

h−1(t) = t+ ψ(t+ ψ(E(0)))
Ψ(ψ−1(t+ ψ(E(0)))) , ∀t ≥

E(0)
Ψ(E(0)) ,

ϕ(t) =
{
t if G is linear on [0, ε]
tG′(ε0t) if G′(0) = 0 and G′′ > 0 on ]0, ε],

where ω and ε are positive constants.
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• In the chapter 4 :
Exponential stability of a transmission problem with history and delay

utt(x, t)− auxx(x, t) +
∫ ∞

0
g(s)uxx(x, t− s)ds

+µut(x, t− τ) = 0, (x, t) ∈ Ω× (0,+∞),
vtt(x, t)− bvxx(x, t) = 0, (x, t) ∈ (L1, L2)× (0,+∞).

(0.11)

Under the boundary and transmission conditions

u(0, t) = u(L3, t) = 0,
u(Li, t) = v(Li, t), i = 1, 2,
aux(Li, t)−

∫ ∞
0

g(s)ux(Li, t− s)ds = bvx(Li, t), i = 1, 2,
(0.12)

and the initial conditions

u(x,−t) = u0(x, t), ut(x, 0) = u1(x), x ∈ Ω,
ut(x, t− τ) = f0(x, t− τ), x ∈ Ω, t ∈ (0, τ),
v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ (L1, L2),

(0.13)

where 0 < L1 < L2 < L3 ,Ω =]0, L1[
⋃

]L2, L3[, a, µ, b are positive constants,u0 is given history, and
τ > 0 is the delay.
In certain cases also it is proved by the dissipative method.
Transmission problems ([53], [55]) arise in several applications of physics and biology. We note
that problem (0.11)-(0.13) is related to the wave propagation over a body which consists of two
different type of materials: the elastic part and the viscoelastic part that has the past history and
time delay effect.
Historical reminders:
In [72] the authors examined a system of wave equations with a linear boundary damping term
with a delay:

utt(x, t)− auxx(x, t) +
∫ ∞

0
g(s)uxx(x, t− s)ds

+µ1ut(x, t) + µ2ut(x, t− τ) = 0, (x, t) ∈ Ω× (0,+∞),
vtt(x, t)− bvxx(x, t) = 0, (x, t) ∈ (L1, L2)× (0,+∞),

(0.14)

and under the assumption
µ2 ≤ µ1 (0.15)

they proved that the solution is exponentially stable. On the contrary, if (0.15) does not hold, they
found a sequence of delays for which the corresponding solution of (0.14) will be unstable.
In [58], authors considered the equation

utt(x, t)−∆u(x, t)− µ1∆ut(x, t)− µ2∆ut(x, t− τ) = 0,

and under the assumption
|µ2| ≤ µ1,

they proved the well-posedness and the exponential decay of energy.
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We assume that the function g : R+ −→ R+ is of class C1 satisfying:

g(0) > 0, a−
∫ ∞

0
g(t)dt = a− g0 = l > 0. (0.16)

There exists a positive constant δ,

g′(s) ≤ −δg(s) ∀s ∈ R+. (0.17)

Let V := (u, v, ϕ, ψ, z, ηt)T , then V satisfies the problem{
Vt = (A + B)V (t), t > 0,
V (0) = V0,

where V0 := (u0(·, 0), v0, u1, v1, f0(·,−τ), η0)T . The operator A and B are linear and defined by

A (u, v, ϕ, ψ, z, w) = lϕψuxx +
∫ +∞

0
g(s)wxx(s)ds− µϕ− µz(., 1)bvxx −

1
τ
zρ − ws + ϕ

and
B(u, v, ϕ, ψ, z, ηt)T = µ(0, 0, ϕ, 0, 0, 0)T ,

where

X∗ =
{

(u, v) ∈ H1(Ω)×H1(L1, L2) : u(0, t) = u(L3, t) = 0, u(Li, t) = v(Li, t),
lux(Li, t) +

∫∞
0 g(s)ηtx(Li, s)ds = bvx(Li, t), i = 1, 2

}
and L2

g(R+, H
1(Ω)) denotes the Hilbert space of H1-valued functions on R+.

The domain of A is

D(A ) =
{

(u, v, ϕ, ψ, z, w)T ∈H : (u, v) ∈ {(H2(Ω)×H2(L1, L2)) ∩X∗}, ϕ ∈ H1(Ω),
ψ ∈ H1(L1, L2), w ∈ L2

g

(
R+, H

2(Ω) ∩H1(Ω)
)
, ws ∈

(
R+, H

1(Ω)
)
,

zρ ∈ L2((0, 1), L2(Ω)), w(x, 0) = 0, z(x, 0) = ϕ(x)
}
.

Where L2
g (Ω) =

{
u : Ω −→ Rmeasurable/

∫
Ω
g |f (x)|2 < +∞

}
with respect to the inner product

〈u, v〉L2
g

=
∫
Rn
gu.v dx

and D(B) = H .
Using a semigroup theorem, we prove the existence and uniqueness of global solution under suitable
assumptions on the weight of damping and the weight of distributed delay. Also we establish the
exponential stability of the solution by introducing a suitable Lyapunov function.
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Main results of the chapter 4.

Theorem 0.5 Assume that (0.16) and (0.17) hold. Let V0 ∈ H , then there exists a unique weak
solution V ∈ C (R+,H ) of problem (0.11)-(0.13). Moreover, if V0 ∈ D(A ), then

V ∈ C (R+, D(A )) ∩ C1 (R+,H ) .

Theorem 0.6 Let (u, v) be the solution of (0.11)-(0.13). Assume that (0.16) and (0.17) hold, and
that

a >
8(L2 − L1)
L1 + L3 − L2

l, b >
8(L2 − L1)
L1 + L3 − L2

l,

then there exist two constants γ1, γ2 > 0 such that,

E(t) ≤ γ2e
−γ1t, ∀t ∈ R+.

• In the chapter 5 :
Blow-up of result in a nonlinear higher-order equation with delay and source term
In this chapter we are concerned with the following initial boundary value problem .

utt(x, t) + Au(x, t) + µ1|ut(x, t)|m−2ut(x, t)
+µ2|z(x, 1, t)|m−2z(x, 1, t) = b|u(x, t)|p−2u(x, t), in Ω×]0,+∞[,
Dαu(x, t) = 0, |α| ≤ k − 1, on ∂Ω× [0,+∞[,
u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,
ut(x, t− τ) = f0(x, t− τ), in Ω×]0, τ [,

(0.18)

where A = (−∆)k, k ≥ 1, p > 1 are real numbers, Ω is a bounded domain in Rn, n ∈ N∗, with
a smooth boundary ∂Ω, ∆ is the Laplace operator in Rn, α = (α1, α2, ..., αn), |α| = Σn

i=1αi,

Dα = ∂|α|

∂α1x1∂α2x2...∂αnxn
, x = (x1, x2, ..., xn), µ1 and µ2 are positive real numbers, τ > 0 is a

time delay, and the initial data (u0, u1, f0) are in a suitable function space.
Main results of the chapter 5.

Lemma 0.7 Suppose that

2 ≤ p < +∞ (n ≤ 2k) or 2 ≤ p ≤ 2n/(n− 2k) (n > 2k), (0.19)

holds. Then there exists a positive constant C depending on Ω only such that

‖u‖sp ≤ C(‖u‖pp + ‖A
1
2u‖22),

for any u ∈ Hk
0 (Ω) and 2 ≤ s ≤ p.

12



Theorem 0.8 Suppose that m > 1, p > max{2,m} satisfying (0.19), let
u0 ∈ H2k(Ω) ∩Hk

0 (Ω), u1 ∈ Hk
0 (Ω) and f0 ∈ Hk

0 (Ω× (0, 1)). Assume further that

E(0) = 1
2‖u1‖22 + 1

2‖A
1
2u0‖22 −

b

p
‖u0‖pp + ξ

∫
Ω

∫ 1

0
|f0(x,−ρτ |mdρ dx < 0.

Then the solution of (0.18) blow up in finite time, i.e. there exists T0 < +∞ such that

lim
t→T−0

(‖ut‖22 + ‖A
1
2u‖22 + ‖u‖pp) =∞.

13



Chapter 1

Preliminary and Main Results

The objective of these chapters is to provide the basic tools necessary to understand the concepts
that will be manipulated throughout this manuscript. We will present the definitions, as well as
the directly useful properties thereafter.
All assertions in the first chapter are made without evidence (see [13], [37], [44], [71], [20] ).

1 Generals Information on Analysis Functional
Partials Equations System.

Definition 1.1 : A system of partial differential equations is a collection of several unknown
functions.

By example we have some of the partial differential equation linear
n∑
i=1

uxixi = 0 Laplace Equation.

ut +
n∑
i=1

biuxi = 0 Transport Equation.

ut −∆u = 0 Diffusion equation (chaleur).
utt −∆u = 0 Andes equation.
iut + ∆u = 0 Schroodinger equation.
ut + uxxxx = 0 Faisceau equation.

And Non-linear equation

∆u = f(u) Poisson non-linear equation.
div(|∇u|p−2∇u) = 0 P-Laplacian equation.
utt − div a.(∇u) = 0 Andes non-linear equation.
ut −∆u = f(u) Diffusion non linear equation (chaleur).

14



1.2 Functional Spaces

2 Functional Spaces
F Banach Space

Definition 2.1 :
Let (X, d) the metric space, we called the Cauchy sequence of X all sequence (xn)n∈N is elements
of X such that

∀ε > 0, ∃n0 ∈ N /∀n ≥ n0, ∀m ≥ n0, d (xn, xm) < ε.

Definition 2.2 : [60]
Let (X, d) is a space metric, we say that this space is complete if and only if any continuation of
Cauchy is convergent.

Definition 2.3 : [60]
Let E is a vector space on K (R where C). We say that an N application of E in R+ denoted by
||.||E, is a E norm if and only if the following three conditions are met:

1. ∀x ∈ E; ||x||E = 0⇐⇒ x = 0 (Define positive).

2. ∀x ∈ E, ∀λ ∈ K; ||λx||E = |λ| ||x||E (Homogeneity).

3. ∀x, y ∈ E; ||x+ y||E ≤ ||x||E + ||y||E (triangular inequality).

Definition 2.4 : [13]
Let E be a vector space and ||.|| a norm on E, the pair (E, ||.||E) is called normed space.

Proposition 2.5 : [60]
Let (E, ||.||E) a normed space, then the application defined by{

E × E → R+

(x, y)→ ||x− y||

is a distance on E, called distance associated with the norm ||.||.

Definition 2.6 : [60]
Let (E, ||.||E) be a normed space. On dit que (E, ||.||E) is a space of Banach if and only if the metric
space (E, d)) where d is a distance associated with the standard norm ||.|| (i.e d (x, y) = ||x− y||)
is a complete space.

F Hilbert Spaces

Definition 2.7 :[13] Let E be a vector space on K. We say that E has a scalar product if there is
an application

h : E × E → K,
(u, v) → h(u, v)=(u, v) ,

checking the following properties:
For all u, v and w ∈ E and α, β ∈ K,

15



1.2 Functional Spaces

1. (u, v) = (u, v) (Hermitian).

2. (αu+ βv,w) = α (u,w) + β (v, w) ; (u, αv + βw, ) = α (u, v) + β (u,w) . (Sesquilinear).

3. (u, u) ≥ 0 et (u, u) = 0⇐⇒ u = 0 (Define positive).

A space with a dot product is called Prehilbertian.

Definition 2.8 :[13]
A space of Hilbert1. be a vector space H equipped with a inner product (u, v) and is complete
with the norm (u, u)

1
2 (i.e |u| = (u, u)

1
2 ).

F Sobolev Spaces

Definition 2.9 :[13]
Let p ∈ R where 1 ≤ p < +∞, we define the Lebesgue 2 space Lp (Ω) by:

Lp (Ω) =
{
f : Ω −→ R measurable and

∫
Ω
|f (x)|p dx < +∞

}
.

Lp (Ω) is equipped with a norm

‖f‖Lp =
(∫

Ω
|f (x)|p dx

) 1
p

.

Definition 2.10 :[13]
The space L∞(Ω) define by :

L∞(Ω) =
{
u : Ω→ R

∣∣∣∣∣ u is measurable and there is a constant C > 0
such that |u(x)| ≤ C a.e on Ω

}
,

and we denote :
‖u‖∞ = inf{C > 0, |u| ≤ C a.e on Ω}.

Theorem 2.11 : Lp(Ω) is equipped with a norm ‖.‖p is a Banach3space, pour tout 1 ≤ p ≤ ∞.

Remark 2.12 A prime example of a Hilbert space in the case p = 2 is the collection of square
integrable functions on Ω, and consist of all complex-valued measurable functions f that satisfy∫

Ω
|f (x|)2 dx <∞.

1David Hilbert is a German mathematician born on January 23, 1862 ?a Konigsberg in Prussia Eastern
and died on February 14, 1943 in Gottingen, Germany. He is often considered one of the greatest mathemati-
cians of the twentieth century, with the same title as Henri Poincaré. He created or developed a wide range
of fundamental ideas, be it the theory of invariants, the axiomatization of the geometry or the foundations
of the unctional analysis (with the Hilbert spaces).

2Henri Léon Lebesgue (June 28, 1875 in Beauvais - July 26, 1941 in Paris) is a mathematician French.
He is recognized for his integration theory originally published in his dissertation Integral, length, area at
the University of Nancy in 1902.

3Stefan Banach (1892 - 1945)was a Polish mathematician.

16



1.2 Functional Spaces

- The resulting L2 (Ω)-norm of f is defined by

‖f‖L2(Ω) =
(∫

Ω
|f (x)|2 dx

) 1
2
.

-The space L2 (Ω) is naturally equipped with the following inner product

〈f, g〉 =
∫

Ω
f (x) g (x) dx, whenever f, g ∈ L2 (Ω) .

We can consider the following generalization: for all m ∈ N∗ et 1 ≤ r <∞,

Lr(Ω;Rm) =
{
u : Ω −→ Rm measurable such that

∫
Ω
|f |r dx < +∞

}
,

where |.| designates any standard (for example the Euclidean norm) in Rm.

Remark 2.13 : We give an equivalent definition for space Lr(Ω;Rm)

Lr(Ω;Rm) =
{
u = (u1, u2, ..., um)T ; ui ∈ Lr(Ω); ∀i = 1; 2; ...;m

}
.

The space
(
Lr(Ω;Rm), ‖u‖Lr(Ω;Rm)

)
where

‖u‖Lr(Ω;Rm) =
(∫

Ω
|u|r dx

) 1
r

,

is a Banach space. In the case with r = 2 the space L2(Ω;Rm) is equipped with the following inner
product

(u, v)L2(Ω;Rm) =
∫

Ω
(u, v)Rm =

n∑
i=1

∫
Ω
ui(x).vi(x) dx,

is a Hilbert space.

Definition 2.14 : Let V is a Banach space and 1 ≤ p <∞. Denoted by Lp(0, T, V ) the space of
functions measurable, u : ]0, T [→ V such that

∫ t
0 ‖u(t)‖pV dt < +∞.

We denote then the norm on these space by :

‖u‖Lp(0,T,V ) =
(∫ T

0
‖u(t)‖pV dt

) 1
p

. (1.1)

Theorem 2.15 : The space
(
Lp(0, T, V ), ‖u‖Lp(0,T,V )

)
is a Banach space.

Definition 2.16 : Let V is a Banach space, we define L∞(0, T, V ) by:

L∞(0, T, V ) =
{
u : (0, T ) −→ V measurable and ‖u‖L∞(0,T,V ) <∞

}
,

where
‖u‖L∞(0,T,V ) = sup

t∈(0,T )
ess ‖u(t)‖V .
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1.2 Functional Spaces

Definition 2.17 :[63]
We particular p = 2, let E be a Hilbert space, L2 (0, T, E) is the set of functions
f : t ∈ [0, T ] −→ E if it satisfies the following:
(1). t −→ (f (t) , g)E is a measurable function, for all g ∈ E,

(2).
∫ T

0
‖f (t)‖2E dt < +∞,

with the following inner product:

(f, g)L2(0,T,E) =
∫ T

0
(f (t) , g (t))E dt.

Proposition 2.18 :[63]
L2 (0, T, E) is a Hilbert space.

F Distributions Spaces

Definition 2.19 :[68]
The support of a measurable function f : Rn −→ R (or c) is defined to be the set of all points
where f does not vanish.

Suppf = {x ∈ Rn, f (x) 6= 0}.

Definition 2.20 :[37]
Let Ω be a nonempty open set in Rn, n ≥ 1. We denote by D (Ω) (or C∞o (Ω)) the reals-valued
functions, infinitely differentiable in Ω with compact support.
These functions of D (Ω) are called test functions.

Definition 2.21 :[68]
Let Ω be a nonempty open set in Rn, n ≥ 1 . A distribution T on Ω is a map :
T : D (Ω) −→ C such that
(1) (Linearity) For all ϕ,ψ ∈ D (Ω) and all α, β ∈ C,

T (αϕ+ βψ) = αT (ϕ) + βT (ψ) .

(2)(Continuity) If ϕn −→ ϕ in D (Ω), then T (ϕn) −→ T (ϕ).
The set of all distributions is denoted by D′ (Ω).

Definition 2.22 : (Differentiation of Distributions in D′ (Ω)) [71]
If α is a many-indexes and u ∈ D′ (Ω), the formula〈

∂αu

∂xi
, ϕ

〉
= (−1)|α|

〈
u,
∂αϕ

∂xi

〉
∀ϕ ∈ D (Ω) .

Definition 2.23 : We denote by D′(0, T, V ) the distributions space in (0, T ) Who lend his values
in V , and for u ∈ Lp(0, T, V ), we have :

u(ϕ) =
∫ T

0
u(t)ϕ(t) dt, ∀ϕ ∈ D (0, T ) .

The following result on space Lp(0, T, V ) is very useful for the future.
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1.2 Functional Spaces

Lemma 2.24 : Let u ∈ Lp(0, T, V ) and ∂u
∂t ∈ L

p(0, T, V ), (1 ≤ p ≤ ∞), then,
the function u : [0, T ] −→ V is continuous.

Definition 2.25 :[15]
Let Ω be a nonempty open set in Rn, n ≥ 1. We define the Sobolev4 space H1 (Ω) by:

H1 (Ω) =
{
v : Ω ⊂ Rn −→ R, v ∈ L2 (Ω) , ∂v

∂xi
∈ L2 (Ω) , 1 ≤ i ≤ n

}
.

Definition 2.26 :[15]
• The mapping (., .)H1(Ω) : H1 (Ω)×H1 (Ω) −→ R define by:

(u, v)H1(Ω) =
∫

Ω
u (x) v (x) dx+

∫
Ω
∇u (x)∇v (x) dx ∀x ∈ Ω,

define the inner-product in H1 (Ω) .
• H1 (Ω) is a Hilbert space with a norm:

∀v ∈ H1 (Ω) : ‖v‖2H1(Ω) = (v, v)H1(Ω) .

in other words we called

∀v ∈ H1 (Ω) : ‖v‖2H1(Ω) = ‖v‖2L2(Ω) + ‖∇v‖2L2(Ω) ,

or
‖∇v‖2L2(Ω) =

∥∥∥∥ ∂v∂x1

∥∥∥∥2

L2(Ω)
+ ...+

∥∥∥∥ ∂v∂xn
∥∥∥∥2

L2(Ω)
.

Definition 2.27 :[15]
Let Ω be a nonempty open set in Rn, n ≥ 1, we define the Sobolev space H1

0 (Ω) by :

H1
0 (Ω) =

{
v ∈ H1(Ω), such that v|∂Ω = 0

}
.

Definition 2.28 : [37]
Let Ω be a nonempty open set in Rn, n ≥ 1, (n ≥ 1) and m ∈ N. We say that u ∈ Hm(Ω) if
u ∈ L2(Ω) and if all its derivatives in the sense of the distributions, up to the order m are still in
L2(Ω). i.e

Hm(Ω) =
{
u ∈ L2(Ω), ∀ α = (α1, . . . , αn) ∈ Nn where |α| ≤ m, we have Dα(u) ∈ L2(Ω)

}
.

Definition 2.29 :
Let m ∈ N∗ and p ∈ R where 1 ≤ p ≤ ∞. We define the Sobolev space Wm,p(Ω) by :

Wm,p(Ω) = {u ∈ Lp(Ω), ∂αu ∈ Lp(Ω) for all α ∈ Nn such that ∂α = ∂α1
1 ∂α2

2 ...∂αnn } .

4Specialist in differential equations applied to the physical sciences, Sobolev introduces, as early as 1934,
the notion of generalized function and derivative in order to better understand phenomena where the concept
of function proved insufficient in the search for solutions of equations partial derivatives. He is thus at the
origin of the theory of distributions developed by his George Green (July 1793-31 May 1841), a British
physicist. fellow Israel Guelfand and Frenchman Laurent Schwartz.
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1.2 Functional Spaces

Theorem 2.30 :
Wm,p(Ω) equipped with the norm

‖u‖Wm,p(Ω) =
∑
|α|≤m

‖∂αu‖Lp , 1 ≤ p <∞, for all u ∈Wm,p(Ω),

is a Banach space.

Definition 2.31 :
Wm,p

0 (Ω) is the closure of D(Ω) on Wm,p(Ω).

Remark 2.32 :
If p = 2, when we prefer noted Wm,2(Ω) = Hm (Ω) and Wm,2

0 (Ω) = Hm
0 (Ω). We equipped the space

Hm (Ω) by the product inner

(u, v)Hm(Ω) =
∑
|α|≤m

∫
Ω
∂αu ∂αv dx,

and the norm

‖u‖Hm(Ω) =

 ∑
|α|≤m

‖∂αu‖2L2

 1
2

.

Theorem 2.33 :

1. Hm (Ω) is equipped with the following inner product (., .)Hm(Ω) is a Hilbert space.

2. Si p ≥ q, Hp (Ω) ↪→ Hq (Ω) ↪→ H0 (Ω), with continuous injection.

Since D(Ω) is dense in Hm
0 (Ω) , we have the following :

Lemma 2.34 :
D(Ω) ↪→ Hm

0 (Ω) ↪→ L2 (Ω) ↪→ H−m (Ω) ↪→ D′(Ω),

where H−m (Ω) the dual of Hm
0 (Ω) in a low subspace Ω.

The following results are fundamental to the study of partial differential equations.

Theorem 2.35 :
It is assumed that Ω is border ∂Ω is regular. Then,

i . If 1 ≤ p < n, on a W 1,p ⊂ Lq(Ω), for each q ∈ [p, p∗] , where p∗ = np

n− p
.

ii . If p = n on a W 1,p ⊂ Lq(Ω), for each q ∈ [p,∞) .

iii . If p > n on a W 1,p ⊂ L∞(Ω) ∩ C0,α(Ω), où α = p− n
p

.

Remark 2.36 :
for all ϕ ∈ H2(Ω), ∆ϕ ∈ L2(Ω) and for ∂Ω sufficiently smooth, have,

‖ϕ(t)‖H2(Ω) ≤ C ‖∆ϕ(t)‖L2(Ω) . (1.2)
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1.3 Some inequalities

3 Some inequalities
Proposition 3.1 : [20] ( Cauchy5 - Schwarz 6 - Schwarz inequality)
If f, g ∈ L2 (Ω) the Cauchy-Schwarz inequality is:

|f.g|L2(Ω) ≤ ‖f‖L2(Ω) . ‖g‖L2(Ω) .

Definition 3.2 :[13] (Hölder7 inequality)
Let E measurable space, p, q > 0 where: 1

p
+ 1
q

= 1, f ∈ Lp (E) and g ∈ Lq (E)

then the product f.g ∈ L1 (E) and the norm satisfy:

‖f.g‖L1(E) ≤ ‖f‖Lp(E) . ‖g‖Lq(E) .

In other holds, for 0 < p, q < +∞ define by 1
p

+ 1
q

= 1
r
, if f ∈ Lp (E) and g ∈ Lq (E)

then the product f.g ∈ Lr (E) and

‖f.g‖Lr(E) ≤ ‖f‖Lp(E) . ‖g‖Lq(E) .

F Young8 Inequality

Lemma 3.3 : For all a, b ∈ R+, we have

ab ≤ δ2

2 a
2 + 1

2δ2 b
2.

Lemma 3.4 : For all a, b ∈ R+, the following inequality holds

ab ≤ ap

p
+ bq

q
,

where, 1
p + 1

q = 1.

Definition 3.5 :[13]
Let f ∈ Lp (Ω) and g ∈ Lq (Ω) where, p, q > 0 et 1

p
+ 1
q

= 1, then

‖f.g‖L1(E) ≤
1
p
‖f‖pLp(E) .

1
q
‖g‖qLq(E) .

5Baron Cauchy (21st August 1789 in Paris - May 23rd, 1857 in Sceaux (Hauts-de-Seine)) is a French
mathematician. He was one of the most prolific mathematicians, behind Euler, with close to 800 publications.

6Hermann Amandus Schwarz was born on January 25, 1843 in Poland and died on 30 November 1921 in
Berlin. He is a famous mathematician whose work is marked by a strong inter-action between analysis and
geometry.

7Otto Ludwig Hölder (22 December 1859 - 29 august 1937) is a mathematician German born on Stuttgart.
8William Henry Young (London, October 20, 1863 - Lausanne, July 7, 1942) is a English mathematician

from the University of Cambridge and having worked at the University of Li-Verpool and the University of
Lausanne.
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1.3 Some inequalities

We define the convolution product of two functions.

Definition 3.6 :( Convolution )
Let f and g two functions be locally relevant. The convolution product of the functions f and g is
the function :

(f ∗ g) (x) =
∫ +∞

−∞
f(t)g(x− t) dt, ∀x ∈ R.

Theorem 3.7 : Let f ∈ L1(Rn) and g ∈ Lp(Rn) where 1 ≤ p ≤ ∞. Then, for all x ∈ Rn the
function y 7→ f(x− y)g(y) is integrable on Rn and we define

(f ∗ g)(x) =
∫
Rn
f(x− y)g(y) dy.

In other (f ∗ g) ∈ Lp(Rn) and we have :

‖f ∗ g‖p ≤ ‖f‖1‖g‖p.

Theorem 3.8 :[13] ( Poincaré 9 inequity)
Let (a, b) an open of R et u ∈ H1

0 (a, b). Then there exist the constant C (according to b− a ) such
that

‖ u ‖L2(a,b)≤ C ‖ u′ ‖L2(a,b) .

More than one dimension we have ,
Let Ω be an open set of Rn one assumes bound, convex and of border sufficiently regular. Then
there is a constant CΩ > 0 such that :

‖ u ‖L2(Ω)≤ CΩ ‖ ∇u ‖L2(Ω),

for all function u ∈ H1
0 (Ω).

Lemma 3.9 : Let 1 ≤ p ≤ r ≤ q, such that 1
r

= α

p
+ 1− α

q
, and 0 ≤ α ≤ 1. Then

‖u‖Lr ≤ ‖u‖αLp‖u‖1−αLq , ∀u ∈ Lp (Ω) .

Green10 Formula.

Theorem 3.10 :[62]

Let Ω be a nonempty open set in Rn, n ≥ 1. If u and v are in H1 (Ω), they are true∫
Ω
u (x) ∂v

∂xi
(x) dx = −

∫
Ω
v (x) ∂u

∂xi
(x) dx+

∫
∂Ω
u (x) v (x) ηi (x) dx,

where (ηi)1≤i≤n is a normal unite external a ∂Ω.

Corolary 3.11 :[62]
If u, v ∈ H1 (Ω) and if ∆u ∈ L2 (Ω), then:∫

Ω
∆u (x) v (x) dx = −

∫
Ω
∇u (x)∇v (x) dx+

∫
∂Ω

∂u

∂η
(x) v (x) dx.

9Henri Poincaré (April 29, 1854 in Nancy - July 17, 1912 in Paris) is a mathematician, a French physicist
and philosopher. Theoretical of genius, his contributions to many fields of mathematics and physics have
radically altered these two sciences.

10George Green ( July 1793-31 may 1841), Physician Britannic.
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1.4 Weak convergence

4 Weak convergence
4.1 Weak, Weak star and strong convergence
Definition 4.1 :(Weak convergence in E).
Let x ∈ E and let {xn} ⊂ E. We say that {xn} weakly converges to x in E, and we write xn ⇀ x
in E, if

〈f, xn〉 −→ 〈f, x〉 for all x ∈ E′ .

Definition 4.2 :(Weak Convergence in E
′).

Let f ∈ E′ and let {fn} ⊂ E
′. We say that {fn} weakly converges to f in E′, and we write fn ⇀ f

in E′, if
〈fn, xn〉 −→ 〈f, x〉 for all x ∈ E′′.

Definition 4.3 :(Weak star Convergence).
Let f ∈ E′ and let {fn} ⊂ E

′. We say that {fn} weakly star converges to f in E
′, and we write

fn ⇀
∗ f in E′, if

〈fn, xn〉 −→ 〈f, x〉 for all x ∈ E.

Remark 4.4 :
As E ⊂ E′′ we have fn <⇀ f in E

′. When E is reflexive, the last definition are the same, i.e,
weak convergence in E′ and weak star convergence coincide.

Definition 4.5 :(Strong Convergence).
Let x ∈ E (resp. f ∈ E) and let {xn} ⊂ E (resp. {fn} ⊂ E

′. We say that {xn} (resp. {fn}) strong
converge to x (resp. f ), and we write xn → x in E (resp. fn → f in E′), if

lim
n→∞

‖xn − x‖E = 0,
(
resp. lim

n→∞
‖fn − f‖E′ = 0

)
.

Definition 4.6 :(Strong Convergence in Lp with 1 ≤ p <∞).
Let Ω an open supset of Rn. We say that the sequence {xn} of Lp weakly converges to f ∈ Lp (Ω),
if

lim
n

∫
Ω
fn (x) g (x) dx =

∫
Ω
f (x) g (x) dx for all g ∈ Lq, 1

p
+ 1
q

= 1.

Theorem 4.7 (Bolzano- Weierstrass).
If dimE < ∞ and if {xn} ⊂ E is bounded, then there existe x ∈ E and a subsequence {xnk}
strongly converges to x.

Theorem 4.8 (Weak star Compactness, Banach-Alaoglu-Bourbaki).
Assum that E is separable and consider {fn} ⊂ E

′. If {xn} is bounded, then there existe f ∈ E′

and a subsequence {fnk} of {fn}such that {fnk} weakly star converges to f in E′.

Theorem 4.9 (Weak Compactness, Kakutani-Eberlin).
Assum that E is reflexive and consider {xn} ⊂ E. If {xn} is bounded, then there existe x ∈ E and
a subsequence {xnk} of {xn}such that {xnk} weakly star converges to x in E.
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Theorem 4.10 (Weak Compactness in Lp (Ω) with 1 < p <∞).
Given {fn} ⊂ Lp (Ω), If {fn} is bounded, then there exist f ∈ Lp (Ω) and a subsequence {fnk} of
{fn} such that fn ⇀ f in Lp (Ω).

Theorem 4.11 (Weak star Compactness, in L∞ (Ω)).
Given {xn} ⊂ L∞ (Ω) If {fn} is bounded, then there existe f ∈ L∞ (Ω) and a subsequence {fnk} of
{fn} such that fn ⇀ ∗f in L∞ (Ω).

Definition 4.12 :[62]
E is a Banach space, if (fn)n is a sequence of E′, then (fn)n converge to f in the sense of weak
convergence if and only if fn (x) converges to f (x) for all x ∈ E.

Theorem 4.13 : [20](The convergence theory)
Suppose (fn) is a sequence of measurable functions such that fn (x) −→ f (x) as n tends to
infinity. If |fn (x)| ≤ g (x), where g is integrable, then∫

|fn − f | −→ 0 as n −→∞

and consequently ∫
fn −→

∫
f as n −→∞.

Corolary 4.14 :[20]
If (fn)∞n=1 converges to f in L1, then there exists a sub-sequence (fnk)∞k=1 such that

fnk (x) −→ f (x) a.e.

Theorem 4.15 :[13] ( Density theorem)
The space C0 (Ω) is dense in L1 (Ω) that is to say

∀f ∈ L1 (Ω) , ∀ε > 0, ∃f1 ∈ C0 (Ω) such that ‖f − f1‖L1(Ω) < ε.

Definition 4.16 :[13]
Let E is the Banach space and let f ∈ E

′. We designate by ϕf : E −→ R the mapping define
by ϕf (x) = (f, x)E . The weak topology δ

(
E,E

′
)

on E is the thinnest topology on E making
continuous all mappings (ϕf )f∈E′ .

Theorem 4.17 :[13] (Dunford11-Pettis12)
Let Ω be a nonempty open set in Rn, let U ⊂ L1 (Ω) be a subset borne. Then U is compact so her
topology δ

(
L1 (Ω) , L∞ (Ω)

)
if only if we have

∀ε > 0, ∀c > 0 such that
∫
A
|f | < ε,∀f ∈ U,∀A ⊂ Ω where |A| < c.

11Nelson Dunford (1906-1986) is a mathematician American.
12Billy James Pettis (1913-1979) is a mathematician American.
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1.5 Faedo-Galerkin’s approximations

4.2 Aubin Lions Lemma
Lemma 4.18 :
Let X0, X and X1 be three Banach spaces with X0 ⊆ X ⊆ X1. Assum that X0 is compactly embedded
in X and that X is continuously embedded in X1, assum also that X0 and X1 are reflexives spaces.
For 1 < p, q < +∞, let W =

{
u ∈ Lp ([0, t] ;X0) /u′ ∈ Lq ([0, t] ;X1)

}
. Then the embedding of W

into Lp ([0, t] ;X) is also compact.

5 Faedo-Galerkin’s approximations
We consider the Cauchy problem abstract’s for a second order evolution equation in the separable
Hilbert space with the inner product 〈., .〉 and the associated norm ‖.‖ .

(P )
{
utt(t) +A(t)u(t) = f(t), t ∈ [0, T ],
u(x, 0) = u0(x), u′(x, 0) = u1(x),

where u and f are unknown and given function, respectively, mapping the closed interval [0, T ] ⊂ R
into a real separable Hilbert space H. A(t) (0 ≤ t ≤ T ) are linear bounded operators in H acting
in the energy space V ⊂ H.
Assume that 〈A(t)u(t), v(t)〉 = a(t;u(t), v(t)), for all u, v ∈ V ; where a(t; ., .) is a bilinear continuous
in V. The problem (P ) can be formulated as: Found the solution u(t) such that

(P̃ )


u ∈ C([0, T ];V ), ut ∈ C([0, T ];H)
〈utt(t), v〉+ a(t;u(t), v) = 〈f, v〉 in D′(]0, T [)
u0 ∈ V , u1 ∈ H.

This problem can be resolved with the approximation process of Fadeo-Galerkin.
Let V m a sub-space of V with the finite dimension dm, and let

{
wjm

}
one basis of V m such that.

1. V m ⊂ V (dimV m <∞),∀m ∈ N.

2. V m → V such that, there exist a dense subspace ϑ in V and for all υ ∈ ϑ we can get sequence
{um}m∈N ∈ V m and um → u in V.

3. V m ⊂ V m+1 and ∪m∈NV m = V.

We define the solution um of the approximate problem

(Pm)



um(t) =
dm∑
j=1

gj(t)wjm,

um ∈ C([0, T ];V m), umt ∈ C([0, T ];V m), um ∈ L2(0, T ;V m),
〈umtt (t), wjm〉+ a(t;um(t), wjm) = 〈f, wjm〉, 1 ≤ j ≤ dm,

um(0) =
dm∑
j=1

ξj(t)wjm , umt (0) =
dm∑
j=1

ηj(t)wjm,

where
dm∑
j=1

ξj(t)wjm −→ u0 in V asm −→∞,
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1.6 Lax-Milgram Corollary

dm∑
j=1

ηj(t)wjm −→ u1 in V asm −→∞.

By virtue of the theory of ordinary differential equations, the system (Pm) has unique local solution
which is extend to a maximal interval [0, tm[ by Zorn lemma since the non-linear terms have the
suitable regularity. In the next step, we obtain a priori estimates for the solution, so that can be
extended outside [0, tm[ to obtain one solution defined for all t > 0. A priori estimation and
convergence.
Using the following estimation

‖um‖2 + ‖umt ‖2 ≤ C
{
‖um(0)‖2 + ‖umt (0)‖2 +

∫ T

0
‖f(s)‖2ds

}
, 0 ≤ t ≤ T

and the Gronwall lemma we deduce that the solution um of the approximate problem (Pm) converges
to the solution u of the initial problem (P ). The uniqueness proves that u is the solution.

Lemma 5.1 : [11] (Gronwell13Inequality)
Let T > 0, f ∈ L1 (0, T ) , f ≥ 0 a.e and c1, c2 ≥ 0, let ϕ ≥ 0 almost every where such that
f.ϕ ∈ L1 (0, T ) and

ϕ (t) ≤ c1 + c2

∫ T

0
f (s)ϕ (s) ds, a.e t ∈ (0, T ) ,

then
ϕ (t) ≤ c1e

c2
∫ T

0 f(s)ds, a.e t ∈ (0, T ) .

6 Lax-Milgram Corollary
Definition 6.1 :[13]
Let E be a Hilbert space, we called with a : E × E −→ R is form
1. Bilinear if any u ∈ E the mapping

a : E −→ R
v −→ a (u, v) ,

is linear, and any v ∈ E the mapping

a : E −→ R
u −→ a (u, v) ,

is linear.
2. Symmetric if

a (u, v) = a (v, u) , ∀u, v ∈ E.

13Thomas Hakon Gronwall (1877-1932) is a Swedish mathematician
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1.7 Theory of Semi Group

Definition 6.2 :[27]
A bilinear form a : E × E −→ R is said to be
(i) Continuous if there is a constant c > 0 such that

|a (v, u)| ≤ c ‖u‖E ‖v‖E , ∀u, v ∈ E.

(ii) Coercive if there is a constant α > 0 such that

a (v, u) ≥ α ‖v‖2E , ∀v ∈ E.

Corolary 6.3 : [27]
Assum that a (u, v) is a continuous coercive bilinear form on E×E, and L is a linear form continue
on E. Then given any ϕ ∈ E∗, there exists a unique element u ∈ E such that

a (u, v) = L (v) , ∀v ∈ E.

Moreover, if a is symmetric, then u is characterized by the property

u ∈ E and 1
2a (u, u)− 〈ϕ, u〉 = min

v∈E

{1
2a (v, v)− 〈ϕ, v〉

}
.

7 Theory of Semi Group
Semi group we refer the title to [34] and [19] for more details. The semi-group theory has its
origin in the study of the exponential operators. It link the operator A : D (A) ⊂ X −→ X to the
resolution of the differential equation {

ut (t) = Au (t)
u (0) = u0.

Let X the Banach space and T (t)t≥0 a family of linear operators and bounded on X.

Definition 7.1 :[71]
Let X be a Banach space, and suppose that to every t ≥ 0 is associated an operator T (t), in such
away that
i) T (0) = I (operator unite on X),
ii) T (t+ s) = T (t)T (s) , ∀t, s ≥ 0,
iii) lim

t−→0
‖T (t)x− x‖ = 0 for every x ∈ X.

If (i) and (ii) hold, T (t) is called a semi-group (or, more precisely, a one-parameter semi-group).
Such semi-groups have exponential representations, provided that the mapping t 7→ T (t) satisfies
some continuity assumption. The on that is chosen here, namely (iii), is easy to work with.

Definition 7.2 :
A linear operator A define by

D (A) =
{
x ∈ X, lim

t−→0+

T (t)x− x
t

exist

}
and Ax = lim

t−→0+

T (t)x− x
t

,

is infinitesimal generator of a semi group {T (t)}t≥0 , D (A) is a domain of A.
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1.7 Theory of Semi Group

Definition 7.3 :
The semi-group {T (t)}t≥0 is called well continuous if lim

t−→0+
T (t)x = x. The semi group strongly

continuous denoted C0 semi-group.

Definition 7.4 :
The semi-group {T (t)}t≥0 is called uniformity continuous if

lim
t−→0+

||S (t)− Id|| = 0.

Theorem 7.5 :
If A is a infinitesimal generator of a C0 semi-group {T (t)}t≥0, then D (A) is dense in X and A is
a closed linear operator .

Proposition 7.6 :
Let {T (t)}t≥0 a family of C0 semi-group. There exist w ≥ 0 and M ≥ 1 such that
‖T (t)‖ ≤Mewt.
Si ‖T (t)‖ ≤ 1, we called a {T (t)}t≥0 is a semi-group of contraction.

Theorem 7.7 :
Let A is a infinitesimal generator of a C0 semi-group {T (t)}t≥0, then
i) For all x ∈ X t 7−→ T (t)x is continuous function in R+ to X.

ii) For all x ∈ X,
∫ t

0
T (s) ds ∈ D (A) and A

∫ t

0
T (s) ds = T (t)x− x.

iii)For all x ∈ D (A) , T (t)x ∈ D (A) and d

dt
T (t)x = T (t)Ax = AT (t)x.

Theorem 7.8 :[60](Lummer-Phillips, 1961)
Let A : D (A) ⊆ X −→ X is a linear operator such that D (A) = X. Then the following assertions
hold.
(a) If A is dissipative and if it exists λ0 > 0 such that the rank of λ0 −A is subjective then A is a
generates infinitesimal a contraction of semi-group.
(b) If A is a generates infinitesimal a contraction of semi-group then λ0 − A is subjective for all
λ0 > 0 and A is dissipative.

Definition 7.9 :[27]
An unbounded linear operator A : D (A) ⊂ H −→ H is said to be monotone14 if it satisfies

A (v, v) ≥ 0, ∀v ∈ D (A) .

A it is called maximal monotone if, in addition, R (I +A) = H that is to say,

∀f ∈ H,∃u ∈ D (A) such that u+Au = f.

14Some author say that A is accretive or that −A is dissipative
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1.8 Integral Inequalities

Theorem 7.10 :[27](Hille-Yosida)
Let A be a maximal monotone operator. Then given any u0 ∈ D (A) there exists a unique function

u ∈ C1 ([0,+∞[;H) ∩ C ([0,+∞[;D (A)) ,

satisfying 
du

dt
+Au = 0, on [0,+∞[,

u (0) = u0.

Moreover,
|u (t)| ≤ u0 et

∣∣∣∣dudt (t)
∣∣∣∣ = |Au (t)| ≤ |Au0| ∀t ≥ 0.

Remark 7.11 :[13]
The main interest of theorem of Hille-Yosida lies in the fact that we reduce the study of an "evo-
lution problem" to the study of the "stationary equation" u′ + Au = f (assuming we already
know that A is maximal monotone.

8 Integral Inequalities
We will recall some fundamental integral inequalities introduced by A. Haraux, V. Komornik and
P. Martinez to estimate the decay rate of the energy.

8.1 A result of exponential decay
The estimation of the energy decay for some dissipative problems is based on the following lemma:

Lemma 8.1 ([49]) Let E : R+ −→ R+ be a non-increasing function and assume that there is a
constant A > 0 such that

∀t ≥ 0,
∫ +∞

t
E(τ) dτ ≤ 1

A
E(t). (1.3)

Then we have
∀t ≥ 0, E(t) ≤ E(0) e1−At. (1.4)

Proof : The inequality (1.4) is verified for t ≤ 1
A , this follows from the fact that E is a decreasing

function. We prove that (1.4) is verified for t ≥ 1
A . Introduce the function

h : R+ −→ R+, h(t) =
∫ +∞

t
E(τ) dτ.

It is non-increasing and locally absolutely continuous. Differentiating and using (1.3) we find that

∀t ≥ 0, h′(t) +Ah(t) ≤ 0.

Let
T0 = sup{t, h(t) > 0}. (1.5)

For every t < T0, we have
h′(t)
h(t) ≤ −A,
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1.8 Integral Inequalities

thus
h(0) ≤ e−At ≤ 1

A
E(0) e−At, for 0 ≤ t < T0. (1.6)

Since h(t) = 0 if t ≥ T0, this inequality holds in fact for every t ∈ R+. Let ε > 0. As E is positive
and decreasing, we deduce that

∀t ≥ ε, E(t) ≤ 1
ε

∫ t

t−ε
E(τ) dτ ≤ 1

ε
h(t− ε) ≤ 1

Aε
E(0) eεt e−At.

Choosing ε = 1
A , we obtain

∀t ≥ 0, E(t) ≤ E(0) e1−At.

The proof of Lemma 8.1 is now completed.

8.2 A result of polynomial decay
Lemma 8.2 ([49]) Let E : R+ → R+ (R+ = [0,+∞)) be a non-increasing function and assume
that there are two constants q > 0 and A > 0 such that

∀t ≥ 0,
∫ +∞

t
Eq+1(τ) dτ ≤ 1

A
Eq(0)E(t). (1.7)

Then we have:
∀t ≥ 0, E(t) ≤ E(0)

( 1 + q

1 +Aq t

)1/q
. (1.8)

Remark 8.3 It is clear that Lemma 8.1 is similar to Lemma 8.2 in the case of q = 0.

Proof : If E(0) = 0, then E ≡ 0 and there is nothing to prove. Otherwise, replacing the function
E by the function E

E(0) we may assume that E(0) = 1. Introduce the function

h : R+ −→ R+, h(t) =
∫ +∞

t
E(τ) dτ.

It is non-increasing and locally absolutely continuous. Differentiating and using (1.7) we find that

∀t ≥ 0, −h′ ≥ (Ah)1+q,

where
T0 = sup{t, h(t) > 0}.

Integrating in [0, t] we obtain that

∀0 ≤ t < T0, h(t)−q − h(0)−σ ≥ σω1+qt,

hence
0 ≤ t < T0, h(t) ≤

(
h−q(0) + qA1+q t

)−1/q
. (1.9)

Since h(t) = 0 if t ≥ T0, this inequality holds in fact for every t ∈ R+. Since

h(0) ≤ 1
A
E(0)1+q = 1

A
,
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1.8 Integral Inequalities

by (1.7), the right-hand side of (1.9) is less than or equal to:(
h−q(0) + qA1+q t

)−1/q
≤ 1
A

(1 +Aq t)−1/q. (1.10)

From other hand, E being non negative and non-increasing, we deduce from the definition of h and
the above estimate that:

∀s ≥ 0, E
( 1
A

+ (q + 1)s
)q+1

≤ 1
1
A + q + 1

∫ 1
A

+(q+1)s

s
E(τ)q+1 dτ

≤ A

1 +Aqs
h(s) ≤ A

1 +Aqs

1
A

(1 +Aqs)−
1
q ,

hence
∀S ≥ 0, E

( 1
A

+ (q + 1)S
)
≤ 1

(1 +Aq S)1/q .

Choosing t = 1
A

+(1+q)s then the inequality (1.8) follows. Note that letting q → 0 in this theorem
we obtain (1.8).

8.3 New integral inequalities of P. Martinez
The above inequalities are verified only if the energy function is integrable. We will try to resolve
this problem by introducing some weighted integral inequalities, so we can estimate the decay rate
of the energy when it is slow.

Lemma 8.4 ([49]) Let E : R+ → R+ be a non-increasing function and φ : R+ → R+ an increasing
C1 function such that

φ(0) = 0 and φ(t)→ +∞ when t→ +∞. (1.11)

Assume that there exist q ≥ 0 and A > 0 such that∫ +∞

S
E(t)q+1φ′(t) dt ≤ 1

A
E(0)qE(S), 0 ≤ S < +∞, (1.12)

then we have

if q > 0, then E(t) ≤ E(0)
( 1 + q

1 + q Aφ(t)

) 1
q

, ∀t ≥ 0,

if q = 0, then E(t) ≤ E(0) e1−Aφ(t), ∀t ≥ 0.

Proof : This Lemma is a generalization of Lemma 8.4. Let f : R+ → R+ be defined by
f(x) := E(φ−1(x)), (we notice that φ−1 has a meaning by the hypotheses assumed on φ). f is
non-increasing, f(0) = E(0) and if we set x := φ(t) we obtain f is non-increasing, f(0) = E(0) and
if we set x := φ(t) we obtain∫ φ(T )

φ(S)
f(x)q+1 dx =

∫ φ(T )

φ(S)
E
(
φ−1(x)

)q+1
dx =

∫ T

S
E(t)q+1φ′(t) dt

≤ 1
A
E(0)qE(S)

= 1
A
E(0)qf(φ(S)), 0 ≤ S < T < +∞.
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Setting s := φ(S) and letting T → +∞, we deduce that

∀s ≥ 0,
∫ +∞

s
f(x)q+1 dx ≤ 1

A
E(0)qf(s).

Thanks to Lemma 8.4, we deduce the desired results.
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Chapter 2

Well-posedness and general energy
decay of solutions for transmission
problems with weakly nonlinear
dissipative therms

1 Introduction
In this chapter [4], we consider a nonlinear transmission problem{

utt (x, t)− auxx (x, t) + µg (ut (x, t)) = 0, (x, t) ∈ Ω× R+,
vtt (x, t)− bvxx (x, t) = 0, (x, t) ∈ [L1, L2]× R+,

(2.1)

where 0 < L1 < L2 < L3, Ω = ]0, L1[ ∪ ]L2, L3[, a, b, µ are positives constants. This system is
supplemented with the following boundary and transmission conditions:

u (0, t) = u (L3, t) = 0,
u (Li, t) = v (Li, t) , i = 1, 2,
aux (Li, t) = bvx (Li, t) , i = 1, 2,

(2.2)

and initial conditions

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , x ∈ ]L1, L2[ . (2.3)

When g(ut(x, t)) = ut(x, t) system (2.1)-(2.3) has been investigated in [9], for Ω = [0, L1], the
authors showed the well-posedness and exponential stability of the total energy.
Ma and Oquendo [51] considered transmission problem involving two Euler-Bernoulli equations
modeling the vibrations of a composite beam. By using just one boundary damping term in the
boundary, they showed the global existence and decay property of the solution. Marzocchi et al
[52] investigated a 1-D semi-linear transmission problem in classical thermoelasticity and showed
that a combination of the first, second and third energies of the solution decays exponentially to
zero, no matter how small the damping subdomain is. A similar result has sheen shown by Mes-
saoudi and Said-Houari [55], where a transmission problem in thermoelasticity of type III has been
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2.2 Preliminaries

investigated. See also Marzocchi et al [53] for a multidimensional linear thermoelastic transmission
problem.
To obtain global solutions of problem (2.1)-(2.3), we use the Galerkin approximation scheme (see
Lions [45]) together with the energy estimate method.

To prove decay estimates, we use a perturbed energy method and some properties of convex
functions. These arguments of convexity were introduced and developed by Cavalcanti et al. [14],
Lasiecka and Doundykov [35], Lasiecka and Tataru [36], and used by Liu and Zuazua [46] and
Alabau-Boussouira [1].

2 Preliminaries
First we recall and make use the following assumptions on the function g as:
We assume that the function g : R → R is a non-decreasing function of the class C (R) such
that there exist ε, c2, τ0, τ1 > 0 and a convex and increasing function G : R+ → R+ of the class
C1 (R+) ∩ C2 (]0,+∞[) satisfying

G(0) = 0 and G is linear on [0, ε] or
G′(0) = 0 and G′′ > 0 on ]0, ε] such that
|g(s)| ≤ c2|s| if |s| > ε,
s2 + g2(s) ≤ G−1(sg(s)) if |s| ≤ ε,
τ0 ≤ g′(s) ≤ τ1,

(2.4)

∀s ∈ R : sg (s) > 0.

We first state some Lemma which will be needed later.

Lemma 2.1 ( Sobolev-Poincaré’s inequality ) Let q be a number 2 ≤ q ≤ +∞ (n = 1, 2) or
2 ≤ q ≤ 2n/ (n− 2) (n ≥ 3) . Then there is a constant Cs = C ((0, 1) , q) such that

‖u‖q ≤ Cs ‖∇u‖2 , for all u ∈ H1
0 (Ω) .

Remark 2.2 Let us denote by φ∗ the conjugate function of the differentiable convex function φ,
that is to say,

φ∗(s) = sup
t∈R+

(st− φ(t)).

Then φ∗ is the Legendre transform of φ, which is given by (see Arnold [? , p. 61-62])

φ∗(s) = s(φ′)−1(s)− φ
(
(φ′)−1(s)

)
, if s ∈

]
0, φ′(r)

]
,

and φ∗ satisfies the generalized Young inequality

ST ≤ φ∗(S) + φ(T ), if S ∈
]
0, φ′(r)

]
, T ∈ ]0, r] . (2.5)
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2.3 Well-posedness of the problem

3 Well-posedness of the problem
In this section, we prove the existence and the uniqueness of a global solution of system (2.1) -(2.3)
by using the Faedo- Galerkin method.

Theorem 3.1 Suppose that
(
u0, v0) ∈ H2(Ω)×H2(L1, L2) ∩H1

0 (Ω)×H1
0 (L1, L2),(

u1, v1) ∈ H1
0 (Ω)×H1

0 (L1, L2) and that assumption (2.4) holds. Then (2.1)-(2.3) admits a unique
global solution

(u, v) ∈ L∞(0, T,H2(Ω)×H2(L1, L2) ∩H1
0 (Ω)×H1

0 (L1, L2)),

(ut, vt) ∈ L∞(0, T,H1
0 (Ω)×H1

0 (L1, L2)),
(utt, vtt) ∈ L∞(0, T, L2(Ω)× L2(L1, L2)).

Proof :

i) Approximate solutions:
The main idea is to use the Galerkin Method. Let {ϕi, ψi} , i = 1, 2, . . . be a basis of
H2(Ω)×H2(L1, L2) ∩H1

0 (Ω)×H1
0 (L1, L2). Let us consider the Galerkin approximation

(um(t), vm(t)) =
m∑
i=1

him(t)
(
ϕi, ψi

)
,

where um and vm satisfy

(umtt , ϕi) + a(umx , ϕix) + µ(g(umt ), ϕi) + (vmtt , ψi) + b(vmx , ψix)) = 0, (2.6)

where i = 1, 2, . . .. With initial data

(um(0), vm(0)) = (um0 , vm0 )→
(
u0, v0) in H2(Ω)×H2(L1, L2) ∩H1

0 (Ω)×H1
0 (L1, L2),

(umt (0), vmt (0)) = (um1 , vm1 )→
(
u1, v1) in H1

0 (Ω)×H1
0 (L1, L2).

(2.7)
Standard results about ordinary differential equations guarantee that there exists only one
solution of this system on some interval [0, Tm[. The priori estimate that follow imply that
in fact Tm = +∞.

ii) A priori estimate:
The first estimate: Multiplying (2.6) by himt and summing over i, we get

1
2
d

dt

{∫
Ω
|umt |2dx+ a

∫
Ω
|umx |2dx+

∫ L2

L1
|vmt |2dx+ b

∫ L2

L1
|vmx |2dx

}
+µ

∫
Ω
umt g(umt ) dx = 0.

Integrating in [0, t], t < tm and using (2.7), we have∫
Ω
|umt |2 dx+ a

∫
Ω
|umx |2 dx+

∫ L2

L1
|vmt |2 dx+ b

∫ L2

L1
|vmx |2 dx

+2
∫ t

0

∫
Ω
umt (s)g(umt (s)) dx ds

≤
∫

Ω
|um1 |2 dx+ a

∫
Ω
|um0 |2 dx+

∫ L2

L1
|vm1 |2 dx+ b

∫ L2

L1
|vm0 |2 dx

≤ C1.

(2.8)

35



2.3 Well-posedness of the problem

For some C1 independent of m.
Thus we deduce that.

(um, vm) is bounded in L∞(0, T,H1
0 (Ω)×H1

0 (L1, L2)), (2.9)

(umt , vmt ) is bounded in L∞(0, T, L2(Ω)× L2(L1, L2)), (2.10)

umt g(umt ) is bounded in L1(Ω× (0, T )). (2.11)

The second estimate: First, we estimate umtt (0) and vmtt (0) taking t = 0 in (2.6) , we obtain

(umtt (0), ϕi)− a(umxx(0), ϕi) + µ(g(umt (0)), ϕi) = 0,

and
(vmtt (0), ψi)− b(vmxx(0), ψi) = 0,

multiplying by himtt and summing over i from 1 to m,

(umtt (0), umtt (0))− a(umxx(0), umtt (0)) + µ(g(umt (0)), umtt (0)) = 0,

and
(vmtt (0), vmtt (0))− b(vmxx(0), vmtt (0)) = 0.

Using Hölder’s inequality and (2.7), yield

( ∫
Ω
|umtt (0|2 dx

) 1
2 +

( ∫ L2

L1
|vmtt (0)|2 dx

) 1
2

≤ a
( ∫

Ω
|umxx(0)|2 dx

) 1
2 + µ

( ∫
Ω
g2(um1 ) dx

) 1
2 + b(

∫ L2

L1
|vmxx(0)|2 dx

) 1
2

≤ C2,

(2.12)

where C2 is a positive constant independent of m.
The third estimate: Now, differentiating (2.6) with respect to t

(umttt, ϕi)− a(umtxx, ϕi) + µ(umtt g′(umt ), ϕi) + (vmttt, ψi)− b(vmtxx, ψi) = 0.

Multiplying by hmitt and summing over i from 1 to m implies

1
2
d

dt

[ ∫
Ω
|umtt |2 dx+ a

∫
Ω
|umxt|2 dx+

∫ L2

L1
|vmtt |2 dx+ b

∫ L2

L1
|vmxt|2 dx

]
+ µ

∫
Ω

(umtt )2g′(umt ) dx = 0.

Integrating it over (0, t), using (2.7),(2.4) and (2.12) and we get∫
Ω
|umtt (t)|2 dx+ a

∫
Ω
|umxt(t)|2 dx+

∫ L2

L1
|vmtt (t)|2 dx

+b
∫ L2

L1
|vmxt(t)|2 dx+ 2µ

∫ t

0

∫
Ω

(umtt (s))2g′(umt (s)) dx dt

=
∫

Ω
|umtt (0)|2 dx+ a

∫
Ω
|umxt(0)|2 dx+

∫ L2

L1
|vmtt (0)|2 dx+ b

∫ L2

L1
|vmxt(0)|2 dx

≤ C3,
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2.3 Well-posedness of the problem

where C3 is a positive constant independent of m. Therefore, we conclude that

(umt , vmt ) is bounded in L∞(0, T,H1
0 (Ω)×H1

0 (L1, L2)),
(umtt , vmtt ) is bounded in L∞(0, T, L2(Ω)× L2(L1, L2)), (2.13)

we deduce that

(umt , vmt ) is bounded in L2(0, T,H1
0 (Ω)×H1

0 (L1, L2)).

Applying Rellich compactenes theorem given in [45], we deduce that

(umt , vmt ) is bounded in L2(0, T, L2(Ω)× L2(L1, L2)). (2.14)

The fourth estimate: Replacing ϕi and ψi by (−umxx )and (−vmxx) in (2.6), multiplying the
result by himt , summing over i from 1 to m, implies

1
2
d

dt

[ ∫
Ω
|umtx|2 dx+ a

∫
Ω
|umxx|2 dx+

∫ L2

L1
|vmtx|2 dx+ b

∫ L2

L1
|vmxx|2 dx

]
+µ

∫
Ω

(umtx)2g′(umt ) dx = 0.

Integrating it over (0, t) and using (2.7), we have∫
Ω
|umtx(t)|2 dx+ a

∫
Ω
|umxx(t)|2 dx+

∫ L2

L1
|vmtx(t)|2 dx

+b
∫ L2

L1
|vmxx(t)|2 dx+ µ

∫ t

0

∫
Ω

(umtx(s))2g′(umt (s)) dx ds

=
∫

Ω
|umtx(0)|2 dx+ a

∫
Ω
|umxx(0)|2 dx+

∫ L2

L1
|vmtx(0)|2 dx+ b

∫ L2

L1
|vmxx(0)|2 dx

≤ C4,

where C4 is a positive constant independent of m. we conclude that

(um, vm) is bounded in L∞(0, T,H2(Ω)×H2(L1, L2)),
(umt , vmt ) is bounded in L∞(0, T,H1

0 (Ω)×H1
0 (L1, L2)). (2.15)

ii) Passage to the limite:
Applying Dunford-Petti’s theorem, we conclude from (2.9), (2.11) and (2.15), after replacing
the sequences {um, vm} by subsequence if necessary, that

(um, vm) ⇀ (u, v) , weak-star in L∞(0, T ;H2(Ω)×H2(L1, L2)∩H1
0 (Ω)×H1

0 (L1, L2)), (2.16)

(umt , vmt ) ⇀ (ut, vt) , weak-star in L∞(0, T ;H1
0 (Ω)×H1

0 (L1, L2)), (2.17)

(umtt , vmtt ) ⇀ (umtt , vmtt ) , weak-star in L∞(0, T ;L2(Ω)× L2(L1, L2)), (2.18)

g(umt ) ⇀ χ, weak-star in L2(Q), (2.19)

where Q = (0, T ) × Ω. It follows at once from (2.16) and (2.18), that for each fixed w1 ∈
L2([0, T ]× L2(Ω))∫ T

0

∫
Ω

(
umtt (x, t)− aumxx(x, t)

)
w1 dx dt −→

∫ T

0

∫
Ω

(
utt(x, t)− auxx(x, t)

)
w1 dx dt (2.20)
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2.3 Well-posedness of the problem

and w2 ∈ L2([0, T ]× L2(L1, L2))∫ T

0

∫ L2

L1

(
vmtt (x, t)− bvmxx(x, t)

)
w2 dx dt −→

∫ T

0

∫ L2

L1

(
vtt(x, t)− bvxx(x, t)

)
w2 dx dt. (2.21)

As (2.14), (2.17) and the injection of H1
0 in L2 is compact, we have

umt −→ ut, strong in L2(Q). (2.22)

Therefore,
umt −→ ut, almost everywhere in Q. (2.23)

It remains to show that, ∫
Q
g(umt ) v dx dt −→

∫
Q
g(ut) v dx dt,

Lemma 3.2 For each T > 0, g(ut) ∈ L1(Q), ‖g(ut)‖L1(Q) ≤ K, where K is a constant
independent of t and g(umt )→ g(ut) in L1(Q).

Proof : We claim that
g(ut) ∈ L1(Q).

Indeed, since g is continuous, we deduce from (2.23)

g(umt ) −→ g(ut) almost everywhere in Q. (2.24)

umt g(umt ) −→ utg(ut) almost everywhere in Q.

Hence, by (2.10) and Fatou’s Lemma, we have∫
Q
ut(x, t)g(ut(x, t)) dx dt ≤ K1, for T > 0. (2.25)

Now, we can estimate
∫
Q |g(ut(x, t))| dx dt. By Cauchy-Schwarz inequality, we have∫ T

0

∫
Ω
|g(ut(x, t))| dx dt ≤ c|Q|1/2

( ∫ T

0

∫
Ω
|g(ut(x, t))|2 dx dt

)1/2
.

Using (2.4) and (2.25), we obtain∫ T

0

∫
Ω
|g(ut(x, t))|2 dx dt ≤

∫ T

0

∫
|ut|>ε

utg(ut) dx dt+
∫ T

0

∫
|ut|≤ε

G−1(utg(ut)) dx dt

≤ c
∫ T

0

∫
Ω
utg(ut) dx dt+ cG−1

( ∫
Q
utg(ut) dx dt

)
≤ c

∫ T

0

∫
Ω
utg(ut) dx dt+ c′G∗(1) + c′′

∫ T

0

∫
Ω
utg(ut) dx dt

≤ cK1 + c′G∗(1), for T > 0.

Then, ∫
Q
|g(ut(x, t))| dx d ≤ K, for T > 0.
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2.3 Well-posedness of the problem

Let B ⊂ Ω× [0, T ] and set

B1 =
{

(x, t) ∈ B : |g(umt (x, t))| ≤ 1√
|B|

}
, B2 = B\B1,

where |B| is the measure of B. If M(r) = inf{|s| : s ∈ R and |g(s)| ≥ r}∫
B
|g(umt )| dx dt ≤ c

√
|B|+

(
M
( 1√
|B|

))−1 ∫
B2
|umt g(umt )| dx dt.

By applying (2.10) we deduce that

sup
m

∫
B
g(umt ) dx dt −→ 0, when |E| −→ 0.

From Vitali’s convergence theorem we deduce that

g(umt )→ g(ut) in L1(Q).

This completes the proof.
Then (2.19) implies that

g(umt ) ⇀ g(ut), weak-star in L2(Q).

We deduce, for all w1 ∈ L2
(
[0, T ]× L2(Ω)

)
, that

∫ T

0

∫
Ω
g(umt )w1 dx dt −→

∫ T

0

∫
Ω
g(ut)w1 dx dt.

Finally we have shown that, for all w1 ∈ L2
(
[0, T ]× L2(Ω)

)
:

∫ T

0

∫
Ω

(
utt(x, t)− auxx(x, t)− µg(ut)

)
w1 dx dt = 0.

iv) Proof of uniqueness:
Let u1, u2 be two solutions of (2.1)1 and v1, v2 be two solutions of (2.1)2 with the same initial
data. Let us denote it is straightforward to see that z = u1 − u2 and w = v1 − v2 satisfies∫

Ω
z2
t (x, t) dx+ a

∫
Ω
z2
x(x, t) dx+

∫ L2

L1
w2
t (x, t) dx

+b
∫ L2

L1
w2
x(x, t) dx+ µ

∫ t

0

∫
Ω

(g(u′1t(s)− g(u′2t(s))wt dx ds = 0.
(2.26)

Using the monotonicity of g hence we conclude that∫
Ω
z2
t (x, t) dx+ a

∫
Ω
z2
x(x, t) dx+

∫ L2

L1
w2
t (x, t) dx+ b

∫ L2

L1
w2
x(x, t) dx ≤ 0, (2.27)

which implies z = 0 and w = 0. This finishes the proof of Theorem (3.1).
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2.4 Asymptotic behavior

4 Asymptotic behavior
In this section, we state and prove our stability result for the energy of the solution of system
(2.1)-(2.3), using the multiplier technique.
The energies of first and second order associated with system (2.1)-(2.3) are defined as follows:

E1(t) = 1
2

∫
Ω
u2
t (x, t) dx+ a

2

∫
Ω
u2
x(x, t) dx, (2.28)

E2(t) = 1
2

∫ L2

L1
v2
t (x, t) dx+ b

2

∫ L2

L1
v2
x(x, t) dx. (2.29)

The total energy is defined as
E (t) = E1 (t) + E2 (t) . (2.30)

Our decay result reads as follows.

Theorem 4.1 Let (u, v) be the solution of (2.1)- (2.3). Assume that (2.4) holds and

b

a
<
L3 + L1 − L2
2 (L2 − L1) . (2.31)

Then there exist positive constants k1, k2, k3 and ε0 such that the solution of the problem (2.1)-
(2.3) satisfies

E(t) ≤ k3G
−1
1 (k1t+ k2) , ∀ t ∈ R+, (2.32)

where
G1(t) =

∫ 1

t

1
sG
′
2(ε0s)

ds, G2(t) = tG′(ε0t), (2.33)

with G1 is strictly decreasing and convex on ]0, 1], and lim
t−→0

G1(t) = +∞.

For the proof of theorem 4.1 we use the following Lemmas.

Lemma 4.2 The total energy E(t) satisfies

E
′(t) = −µ

∫
Ω
ut(x, t)g(ut(x, t)) dx ≤ 0. (2.34)

Proof : Multiplying equation (2.1) by ut and integrating in Ω, we have∫
Ω
ut (x, t)utt(x, t) dx− a

∫
Ω
ut(x, t)uxx(x, t) dx = −µ

∫
Ω
ut(x, t)g(ut(x, t)) dx,

which integrated by parts leads to

1
2
d

dt

∫
Ω

[u2
t (x, t) + au2

x(x, t)] dx = −µ
∫

Ω
ut(x, t)g(ut(x, t)) dx

−a (ux (L1, t)ut (L1, t)− ux (0, t)ut (0, t))
−a (ux (L3, t)ut (L3, t)− ux (L2, t)ut (L2, t)) .

(2.35)

Multiplying equation (2.1) by vt and performing an integration in (L1, L2), we get∫ L2

L1
vt(x, t)vtt(x, t) dx− b

∫ L2

L1
vt(x, t)vxx(x, t) dx = 0.
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2.4 Asymptotic behavior

After integrating by parts we arrive at

1
2
d

dt

∫ L2

L1
[v2
t (x, t) + bv2

x(x, t)] dx = −b (vt (L2, t) vx (L2, t)− vt (L1, t) vx (L1, t)) . (2.36)

Adding (2.35) with (2.36) and using the transmission conditions (2.2) we conclude

d

dt
E(t) = −µ

∫
Ω
ut(x, t)g(ut(x, t)) dx.

Lemma 4.3 Let (u, v) be the solution of (2.1)-(2.3). Then the functional

J (t) =
∫

Ω
u (x, t)ut (x, t) dx+

∫ L2

L1
v (x, t) vt (x, t) dx,

satisfies, for any δ > 0, the estimate

d

dt
J (t) ≤

∫
Ω
u2
t (x, t) dx+

∫ L2

L1
v2
t (x, t) dx− (a− δCs)

∫
Ω
u2
x(x, t) dx

+b
∫ L2

L1
v2
x(x, t) dx+ C(δ)µ2

∫
Ω
g2(ut(x, t)) dx.

(2.37)

Proof : Taking the derivative of J (t) with respect to t and using (2.1) we find that

d

dt
J(t) =

∫
Ω
u2
t (x, t) dx+

∫ L2

L1
v2
t (x, t) dx− a

∫
Ω
u2
x(x, t)dx

−b
∫ L2

L1
v2
x (x, t) dx− µ

∫
Ω
u (x, t) g (ut (x, t)) dx+ [auux]∂Ω + [bvvx]L2

L1
.

(2.38)

Using the boundary conditions (2.2) we have

[auux]∂Ω + [bvvx]L2
L1

= a {u (L1, t)ux (L1, t)− u (0, t)ux (0, t)}
+a {u (L3, t)ux (L3, t)− u (L2, t)ux (L2, t)}
+b {v (L2, t) vx (L2, t)− v (L1, t) vx (L1, t)}

= 0.

Applying Young’s and Poincaré’s inequalities, we have

µ

∫
Ω
u (x, t) g (ut (x, t)) dx ≤ δCs

∫
Ω
u2
x (x, t) dx+ C(δ)µ2

∫
Ω
g2 (ut (x, t)) dx,

where δ is a positive constant. We arrive at

d

dt
J (t) ≤

∫
Ω
u2
t (x, t) dx+

∫ L2

L1
v2
t (x, t) dx− (a− δCs)

∫
Ω
u2
x (x, t) dx

−b
∫ L2

L1
v2
x (x, t) dx+ C(δ)µ2

∫
Ω
g2 (ut (x, t)) dx

≤
∫

Ω
u2
t (x, t) dx+

∫ L2

L1
v2
t (x, t) dx− (a− δCs)

∫
Ω
u2
x (x, t) dx

+b
∫ L2

L1
v2
x (x, t) dx+ C(δ)µ2

∫
Ω
g2 (ut (x, t)) dx.
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The proof of Lemma 4.3 is now completed.
Now, inspired by [52], we introduce the functional

q(x) =


x− L1

2 x ∈ [0, L1],
x− L2+L3

2 , x ∈ [L2, L3]
L2−L3−L1
2(L2−L1) (x− L1) + L1

2 , x ∈ [L1, L2].
(2.39)

Lemma 4.4 Let u be the solution of ( 2.1 ). Then the functional

J1(t) = −
∫

Ω
q(x)ux(x, t)ut(x, t) dx,

satisfies, the estimate

d

dt
J1(t) ≤ 1

2

∫
Ω
u2
t (x, t) dx+

(
a

2 + δ1

)∫
Ω
u2
x(x, t) dx

+C(δ1)µ2
∫

Ω
g2 (ut(x, t)) dx−

a

4
[
(L3 − L2)u2

x (L2, t) + L1u
2
x (L1, t)

]
.

(2.40)

Proof : Taking the derivative of J1(x) with respect to t and using (2.1), we obtain

d

dt
J1(t) = −

∫
Ω
q(x)uxt(x, t)ut(x, t) dx− a

∫
Ω
q(x)ux(x, t)uxx(x, t) dx

+µ
∫

Ω
q(x)ux(x, t)g(ut(x, t)) dx.

Integrating by parts, we have

−
∫

Ω
q(x)uxt(x, t)ut(x, t) dx = −1

2
[
q(x)u2

t (x, t)
]
∂Ω

+ 1
2

∫
Ω
qx(x)u2

t (x, t) dx. (2.41)

On the other hand, then

−a
∫

Ω
q(x)ux(x, t)uxx(x, t) dx = −a2

[
q(x)u2

x(x, t)
]
∂Ω

+ a

2

∫
Ω
qx(x)u2

x(x, t) dx. (2.42)

By using the boundary conditions (2.2) we have

1
2
[
q(x)u2

t (x, t)
]
∂Ω

= L1
4 u2

t (L1, t) + L3 − L2
2 u2

t (L2, t) ≥ 0. (2.43)

Also, we have

−a2
[
q(x)u2

x(x, t)
]
∂Ω

= −aL1
4 [u2

x(L1, t)− u2
x(0, t)]− a(L2 − L3)

4 [u2
x(L3, t)− u2

x(L2, t)]

= −aL1
4 u2

x(L1, t)−
a(L3 − L2)

4 u2
x(L2, t),

(2.44)

using the Young inequality as, we obtain

µ

∫
Ω
q(x)ux(x, t)g(ut(x, t)) dx ≤ δ1

∫
Ω
u2
x(x, t) dx+ C(δ1)µ2

∫
Ω
g2(ut(x, t)) dx. (2.45)

Thus (2.40) follows from (2.41)-(2.45).
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Lemma 4.5 Let v be the solution of (2.1 ). Then the functional

J2(t) = −
∫ L2

L1
q(x)vx(x, t)vt(x, t) dx,

satisfies, the estimate

d

dt
J2 (t) ≤ L2 − L3 − L1

4 (L2 − L1)

(∫ L2

L1
v2
t (x, t) dx+

∫ L2

L1
bv2
x (x, t) dx

)
+ b

4
[
(L3 − L2) v2

x (L2, t) + L1v
2
x (L1, t)

]
.

(2.46)

Proof : By the same method, taking the derivative of J2 with respect to t and using
( 2.1), we obtain

d

dt
J2(t) = −

∫ L2

L1
q(x)vxt(x, t)vt(x, t) dx−

∫ L2

L1
q(x)vx(x, t)vtt(x, t) dx

−
∫ L2

L1
q(x)vxt(x, t)vt(x, t) dx− b

∫ L2

L1
q(x)vx(x, t)vxx(x, t) dx.

(2.47)

Integrating by parts, we have

−
∫ L2

L1
q(x)vxt(x, t)vt(x, t) dx = −1

2
[
q(x)v2

t (x, t)
]L2

L1
+ 1

2

∫ L2

L1
qx(x)v2

t (x, t) dx

= −L2 − L3
4 v2

t (L2, t) + L1
4 v2

t (L1, t)

+L2 − L3 − L1
4 (L2 − L1)

∫ L2

L1
v2
t (x, t) dx,

(2.48)

and

−b
∫ L2

L1
q(x)vx(x, t)vxx(x, t) dx = − b2

[
q(x)v2

x(x, t)
]L2

L1
+ b

2

∫ L2

L1
qx(x)v2

x (x, t) dx

= −bL2 − L3
4 v2

x (L2, t) + b
L1
4 v2

x (L1, t)

+bL2 − L3 − L1
4 (L2 − L1)

∫ L2

L1
v2
x (x, t) dx.

(2.49)

Estimate (2.46) follows by substituting (2.48) and (2.49) into (2.47).
Next, we define a Lyapunov functional L and show that it is equivalent to the energy functional

E.

Lemma 4.6 For N sufficiently large, the functional defined by

L(t) := NE(t) + γJ(t) + γ1J1(t) + γ2J2(t), (2.50)

where N, γ, γ1 and γ2 are positive real numbers to be chosen appropriately later, satisfies

β1E(t) ≤ L(t) ≤ β2E(t), ∀ β1, β2 > 0. (2.51)
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Proof : Let L(t) = γJ(t) + γ1J1(t) + γ2J2(t)

|L(t)| ≤ γ

∫
Ω
|u (x, t)ut (x, t) | dx+ γ

∫ L2

L1
|v (x, t) vt (x, t) | dx

+γ1

∫
Ω
|q(x)ux(x, t)ut(x, t)| dx+ γ2

∫ L2

L1
|q(x)vx(x, t)vt(x, t)| dx.

Exploiting Young’s, Poincaré inequalities and (2.30), we obtain

|L(t)| ≤ Cs
2

∫
Ω
u2
x (x, t) dx+ 1

2

∫
Ω
u2
t (x, t) dx+ Cs

2

∫ L2

L1
v2
x (x, t) dx+ 1

2

∫ L2

L1
v2
t (x, t) | dx

+c1
2

∫
Ω
u2
x(x, t) + c1

2

∫
Ω
u2
t (x, t) dx+ c2

2

∫ L2

L1
v2
x(x, t) + c2

2

∫ L2

L1
v2
t (x, t) dx

≤ cE(t).

Consequently, |L(t)−NE(t)| ≤ cE(t), which yields

(N − c)E(t) ≤ L(t) ≤ (N + c)E(t).

Choosing N large enough, we obtain estimate (2.51).

Lemma 4.7 Let (u, v) be a solution of (2.1)-(2.3). Then L(t) satisfies the following estimate,
along the solution and for some positive constants m, c > 0

d

dt
L(t) ≤ −mE(t) + c

∫
Ω

[u2
t (x, t) + g2(ut(x, t))] dx. (2.52)

Proof : Taking the derivative of (2.50) with respect to t and making use of (2.34), (2.37),
(2.40) and (2.46), we obtain

d

dt
L(t) ≤ (γ + γ1

2 )
∫

Ω
u2
t (x, t) dx−

[
γ(a− δCs)− γ1

(a
2 + δ1

)] ∫
Ω
u2
x(x, t) dx

+
[
γ2
L2 − L3 − L1

4 (L2 − L1) + γ

] ∫ L2

L1

v2
t (x, t) dx+ b

[
γ2
L2 − L3 − L1

4 (L2 − L1) + γ

] ∫ L2

L1

v2
x (x, t) dx

−a4

[
γ1 − γ2

b

a

] [
(L3 − L2) v2

x (L2, t) + L1v
2
x (L1, t)

]
+µ2 [γC(δ) + γ1C(δ1)]

∫
Ω
g2(ut(x, t)) dx.

(2.53)

At this point, we choose our constants in (2.53), carefully, such that all the coefficients in (2.53) will be
negative. Indeed, under the assumption (2.31), we can always find γ, γ1 and γ2 such that

γ2
L2 − L3 − L1

4 (L2 − L1) + γ < 0, γ1 > γ2
b

a
, γ >

γ1

2 ,

we may δ and δ1 small enough such that γδCs + γ1δ1 < a(γ − γ1
2 ).

Then
d

dt
L(t) ≤ −mE(t) + c

∫
Ω

[u2
t (x, t) + g2(ut(x, t))] dx.

This completes the proof.
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Proof : of Theorem 4.1. As in Komornik [30], we consider the following partition of Ω,

Ω1 = {x ∈ Ω : |ut| > ε}, Ω2 = {x ∈ Ω : |ut| ≤ ε}.

Case 1. G is linear on [0, ε], then we deduce that

L′(t) ≤ −mE(t) + c

∫
Ω
ut(x, t)g(ut(x, t)) dx ≤ −mE(t)− cE′(t).

Consequently, we arrive at
(L(t) + cE(t))′ ≤ −mE(t).

Recalling that
L(t) + cE(t) ∼ E(t),

we obtain
E(t) ≤ c′e−c′′t.

Case 2. G is nonlinear on [0, ε] In this case, we define

I (t) = 1
|Ω1|

∫
Ω1
ut (x, t) g (ut (x, t)) dx,

and exploit Jensen’s inequality and the concavity of G−1 to obtain

G−1 (I (t)) ≥ c
∫

Ω1
G−1(utg(ut)) dx,

by using this inequality and (2.4) , we obtain∫
Ω1

[u2
t (x, t) + g2(ut(x, t)]dx ≤

∫
Ω1
G−1(utg(ut)) dx

≤ cG−1(I(t)),
(2.54)

using (2.52) and (2.54), we have

L′(t) ≤ −mE(t) + cG−1(I(t)). (2.55)

We define F0 by
F0(t) = H ′

(E(t)
E(0)

)
L(t) + c0E(t).

Then, we see easily that, for a1, a2 > 0

a1F0(t) ≤ E(t) ≤ a2F0(t). (2.56)

By recalling that E′ ≤ 0, G′ > 0, G′′ > 0 on (0; ε] and making use of (2.30) and (2.55), we obtain

F ′0(t) = E′(t)
E(0)G

′′
(E(t)
E(0)

)
L(t) +G′

(E(t)
E(0)

)
L′(t) + c0E

′(t)

≤ −mE(t)G′
(E(t)
E(0)

)
+ cG′

(E(t)
E(0)

)
G−1(I(t)) + c0E

′(t).
(2.57)
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Let G∗ be the convex conjugate of G in the sense of Young

G∗(s) = s(G′)−1(s)−G[(G′)−1(s)],

and G satisfies the generalized Young’s inequality

AB ≤ G∗(A) +G(B),

with A = G′
(
E(t)
E(0)

)
and B = G−1(I(t))

F ′0(t) ≤ −mE(t)G′
(E(t)
E(0)

)
+ cG∗

(
G′
(E(t)
E(0)

))
+ cI(t) + c0E

′(t)

≤ −mE(t)G′
(E(t)
E(0)

)
+ c

E(t)
E(0)G

′
(E(t)
E(0)

)
− cE′(t) + c0E

′(t).
(2.58)

Choosing c0 > c, we obtain

F ′0(t) ≤ −k E(t)
E(0)G

′
(E(t)
E(0)

)
= −kG1

(E(t)
E(0)

)
, (2.59)

where G2(t) = tG′(t). Since
G′2(t) = G′(t) + tG′′(t),

and G is convex on (0, ε] we find that G′2(t) > 0 and G2(t) > 0 on (0, 1]. By setting F (t) = a1F0(t)
E(0)

(a1 is given in (2.56)), we easily see that, by (2.56), we have

F (t) ∼ E(t). (2.60)

Using (2.59), we arrive at F ′(t) ≤ −k1G2(F (t)).
By recalling (2.33), we deduce G2(t) = −1/G′1(t).

F ′(t) ≤ k

G′1(F (t)) which gives [G1(F (t))]′ = F ′(t)G′1(t) ≤ k1.

A simple integration leads to
G1(F (t)) ≤ k1t+G1(F (0)).

Consequently,
F (t) ≤ G−1

1 (k1t+ k2). (2.61)

Using (2.60) and (2.61) we obtain (2.32). The proof is complete.
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Chapter 3

Well-posedness and decay estimates
for a Petrovsky-Petrovsky system

1 Introduction and statement of main results
Let us consider the following problem:

utt + αv + ∆2u− g(∆ut(x, t)) = 0, in Ω× R+,
vtt + αu+ ∆2v − g(∆vt(x, t)) = 0, in Ω× R+,
u = ∆u = v = ∆v = 0, on Γ× R+,
(u(0, x), v(0, x)) = (u0(x), v0(x)), in Ω,
(ut(0, x), vt(0, x)) = (u1(x), v1(x)), in Ω.

(3.1)

The problem of stabilization of weakly coupled systems has also been studied by several authors.
Under certain conditions imposed on the subset where the damping term is effective, Kapitonov [31]
showed uniform stabilization of the solutions of a pair of hyperbolic systems coupled in velocities.
In [2], the authors developed an approach to prove that, for α ∈ R+ with α small enough,{

utt −∆u+ αv + ut = 0, in Ω× R+,
vtt −∆v + αu = 0, in Ω× R+,

(3.2)

is not exponentially stable and the asymptotic behavior of solutions is at least of polynomial
type 1

tm with decay rate m depending on the smoothness of initial data.
In [10], Beniani consider the Petrovsky-Petrovsky system, that is,

utt + φ(x)
(

∆2u−
∫ t

−∞
µ(t− s)∆2u(s)ds

)
+ αv = 0, Rn × R+

vtt + φ(x)∆2v + αu = 0, Rn × R+

u = v = ∆u = ∆v = 0, Γ× R+

(u0, v0) ∈ D2,2(Rn), (u1, v1) ∈ L2
g(Rn),

(3.3)

the authors proved, under suitable conditions, that the system is polynomial stable. Komornik [70]
considered the problem 

utt + ∆2u− g(∆ut(s)) = 0, Ω× R+,
u = ∆u = 0, Γ× R+,
u(0) = u0, u′(0) = u1, Ω.

(3.4)
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3.1 Introduction and statement of main results

and used semi-group to obtain the well posedness and also showed the both exponential and
polynomial decay of energy by introducing a multiplier method combined with a nonlinear integral
inequalities given by Martinez [49].

The paper is organized as follows. In Section 1, we prove the global existence and uniqueness
of solutions of (3.1). In Section 3, we prove the stability results.

The plan of this paper is as follows. In section 1, we present some notations and assumptions
needed for our work, and then establish the well-posedness and the stability result of our problem.
In section 2, we use the Faedo-Galerkin to prove the global existence and uniqueness of solutions
(3.1). In the last section, we prove the stability result by the multiplier method and some properties
of convex functions. These arguments of convexity were introduced and developed by Lasiecka et
al. [36] and Alabau-Boussouira, [1].

First, assume that α and g(s) satisfy the following hypotheses
(A1) α satisfy the following condition

α ≤ 1
2Cs

, (3.5)

where Cs > 0 depending only on the geometry of Ω is the constant such that

‖∇z‖2 ≤ Cs‖∇∆z‖2.

(A2) The function g : R −→ R is a non-decreasing continuous function such that there exist
constants ε, c1, c2, τ > 0 and a convex increasing function G : R+ −→ R+ of class C1(R+)∩C2(R∗+)
satisfying G linear on [0, ε] or ( G′(0) = 0 and G′′ > 0 on ]0, ε], such that

c1 |s| ≤ |g(s)| ≤ c2 |s| , if |s| > ε, (3.6)

|s|2 + |g(s)|2 ≤ G−1(sg(s)), if |s| ≤ ε, (3.7)

|g′(s)| ≤ τ. (3.8)

Introduce three real Hilbert spaces H, V and W by setting

H = H1
0 (Ω) , ‖z‖2H =

∫
Ω

|∇z|2 dx,

V =
{
z ∈ H3 (Ω) : z = ∆z = 0 on Γ

}
, ‖z‖2V =

∫
Ω

|∇∆z|2 dx,

and
W =

{
z ∈ H5 (Ω) : z = ∆z = ∆2z = 0 on Γ

}
, ‖z‖2W =

∫
Ω

∣∣∣∇∆2z
∣∣∣2 dx.

Identifying H with its dual H′we have

W ⊂ V ⊂ H = H
′ ⊂ V ′ ⊂W ′

,

with dense and compact imbedding. Now we define the energy associated to the solution of the
system (3.1) by
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3.1 Introduction and statement of main results

E (t) := 1
2 ‖∇ut‖

2 + 1
2 ‖∇vt‖

2 + 1
2 ‖∇∆u‖2 + 1

2 ‖∇∆v‖2 + 2α
∫
Ω

∇u.∇v dx. (3.9)

2α
∫
Ω

∇u.∇v dx ≥ −αCs
∫
Ω

(|∇∆u|2 + |∇∆v|2) dx.

Hence

E (t) ≥ 1
2 ‖∇ut‖

2 + 1
2 ‖∇vt‖

2 +
(1

2 − αCs
)
‖∇∆u‖2 +

(1
2 − αCs

)
‖∇∆v‖2

≥ 0.
(3.10)

Note that E is the natural energy for system (3.1), given the structure of the damping term.
The energy E is a non-increasing function of the time variable t and we have for almost every t ≥ 0,

E
′ (t) = −

∫
Ω

(∆utg(∆ut) + ∆vtg(∆vt)) dx ≤ 0. (3.11)

Theorem 1.1 Let (u0, v0) ∈ W and (u1, v1) ∈ V arbitrarily, assume that (3.5)-(3.8) hold. Then
the problem (3.1) has a unique weak solution satisfying

(u, v) ∈ L∞(R+;W ),

(ut, vt) ∈ L∞(R+;V )

and
(utt, vtt) ∈ L∞(R+;H) ∩ L2(0, T,H2

0 (Ω)).

Theorem 1.2 Let (u0, v0) ∈ W and (u1, v1) ∈ V arbitrarily, assume that (3.5)-(3.8) hold. Then
the global solutions of the problem (3.1) have the following asymptotic property

E(t) ≤ ψ−1
(
h(t) + ψ(E(0))

)
, ∀t ≥ 0, (3.12)

where ψ(t) =
∫ 1

t

1
ωΨ(s) ds for t > 0, h(t) = 0 for 0 ≤ t ≤ E(0)

ωΨ(E(0)) and

h−1(t) = t+ ψ(t+ ψ(E(0)))
Ψ(ψ−1(t+ ψ(E(0)))) , ∀t ≥

E(0)
Ψ(E(0)) ,

ϕ(t) =
{
t if G is linear on [0, ε]
tG′(ε0t) if G′(0) = 0 and G′′ > 0 on ]0, ε], (3.13)

where ω and ε are positive constants.
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3.2 Some technical lemmas

2 Some technical lemmas
Lemma 2.1 For all u ∈ H1

0 (Ω) ∩H2(Ω), we have

‖∇u‖ ≤ c ‖∆u‖H−1(Ω) ≤ c‖∆u‖, (3.14)

where H−1 (Ω) =
(
H1

0 (Ω)
)′
.

Remark 2.2 Let us denote by φ∗ the conjugate function of the differentiable convex function φ,
i.e.,

φ∗ = sup
s∈R+

(st− φ(t)).

Then φ∗ is the Legendre transform of φ, which is given by (see Arnold [? , p. 61-62])

φ∗(s) = s(φ′)−1(s)− φ
(
(φ′)−1(s)

)
, if s ∈

]
0, φ′(r)

]
,

and φ∗ satisfies the generalized Young inequality

ST ≤ φ∗(S) + φ(T ), if S ∈
]
0, φ′(r)

]
, T ∈ ]0, r] . (3.15)

Lemma 2.3 [7] Let E : R+ −→ R+ be a non-increasing function and ψ : R+ −→ R+ be a convex
and increasing function such that ψ(0) = 0 assume that

T∫
S

ψ(E(t)) ≤ E(S), 0 ≤ S < T. (3.16)

Then E satisfies the following estimate:

E (t) ≤ ψ−1 (h(t) + ψ(E(0))) , ∀t ≥ 0. (3.17)

Where ψ(t) =
∫ 1
t

1
ψ(s)ds for t > 0, h(t) = 0 for 0 ≤ t ≤ E(0)

ψ(E(0)) and

h−1(t) = t+ ψ−1(t+ ψ(E(0))
ψ (ψ−1(t+ ψ(E(0))) , ∀t ≥ E(0)

ψ(E(0)) .

Proof : of theorem 1.1

i) Approximate solutions: We will use the Faedo-Galerkin method to prove the existence of a
global solution.
Let T > 0 be fixed and let {wj}, j ∈ N be a basis of H, V and W , i.e. the space generated
by Bk = {w1, w2, . . . , wk} is dense in H, V and W .
We construct approximate solutions (uk, vk), k = 1, 2, 3, . . ., in the form

uk(t, x) =
k∑
j=1

cjk(t)wj(x), vk(t, x) =
k∑
i=0

hjk(t)wj(x),

where cjk and hjk is determined by the ordinary differential equations.
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For any w in Bk, (uk(t), vk(t)) satisfies the approximate equation satisfies the approximate
equation 

∫
Ω

(uktt(t) + αvk + ∆2uk − g(∆ukt ))w dx = 0,∫
Ω

(vktt(t) + αuk + ∆2vk − g(∆vkt ))w dx = 0,
(3.18)

with initial conditions

uk(0) = uk0 =
k∑
j=1
〈u0, wj〉wj → u0, in W as k → +∞, (3.19)

vk(0) = vk0 =
k∑
j=1
〈v0, wj〉wj → v0, in W as k → +∞, (3.20)

ukt (0) = uk1 =
k∑
j=1
〈u1, wj〉wj → u1, in V as k → +∞, (3.21)

vkt (0) = vk1 =
k∑
j=1
〈v1, wj〉wj → v1, in V as k → +∞, (3.22)

−∆2uk0 − αvk0 + g(∆uk1) −→ −∆2u0 − αv0 + g(∆u1), in H as k → +∞, (3.23)

−∆2vk0 − αuk0 + g(∆vk1 ) −→ −∆2v0 − αu0 + g(∆v1), in H as k → +∞. (3.24)

The standard theory of ODE guarantees that the system (3.18)-(3.24) has an unique solution
in [0, tk), with 0 < tk < T , by Zorn lemma since the nonlinear terms in (3.18) are locally
Lipschitz continuous. Note that (uk(t), vk(t)) the class C2.
In the next step, we obtain a priori estimates for the solution of the system (3.18)-(3.24), so
that it can be extended outside [0, tk) to obtain one solution defined for all T > 0, using a
standard compactness argument for the limiting procedure.

ii) A priori estimates:
The first estimate: Setting w = −2∆ukt in the first equation and w = −2∆vkt in the second
equation in (3.18), add the resulting equations, we have

d

dt

[
‖∇ukt (t)‖2 + ‖∇vkt (t)‖2 + ‖∇∆uk(t)‖2 + ‖∇∆vk(t)‖2 + 2α

∫
Ω
∇uk∇vk dx

]
+2
∫

Ω
∆ukt g(∆ukt ) dx+ 2

∫
Ω

∆vkt g(∆vkt ) dx = 0.

Integrating it over (0, t) and using Hölder’s inequality, we get

‖∇ukt (t)‖2 + ‖∇vkt (t)‖2 + ‖∇∆uk(t)‖2 + ‖∇∆vk(t)‖2 + 2α
∫

Ω
∇uk∇vk dx

+2
∫ t

0

∫
Ω

∆ukt (s)g(∆ukt (s)) dx ds+ 2
∫ t

0

∫
Ω

∆vkt (s)g(∆vkt (s)) dx ds

≤ ‖∇uk1(t)‖2 + ‖∇vk1 (t)‖2 + ‖∇∆uk0(t)‖2 + ‖∇∆vk0 (t)‖2 + 2α
∫

Ω
∇uk0∇vk0 dx

≤ ‖∇uk1(t)‖2 + ‖∇vk1 (t)‖2 + ‖∇∆uk0(t)‖2 + ‖∇∆vk0 (t)‖2 + α‖∇uk0‖2 + α‖∇vk0‖2,
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using (3.19)-(3.22), we obtain

‖∇ukt (t)‖2 + ‖∇vkt (t)‖2 + (1− 2αCs)‖∇∆uk(t)‖2 + (1− 2αCs)‖∇∆vk(t)‖2

+2
∫ t

0

∫
Ω

∆ukt (s)g(∆ukt (s)) dx ds+ 2
∫ t

0

∫
Ω

∆vkt (s)g(∆vkt (s)) dx ds
≤ C1

(3.25)

and C1 is a positive constant depending only on ‖u0‖V , ‖v0‖V , ‖u1‖H and ‖v1‖H.
This estimate imply that the solution (uk, vk) exists globally in [0,+∞). Estimate (3.25)
yields that (

uk, vk
)

are bounded in L∞(0, T ;V ), (3.26)(
ukt , v

k
t

)
are bounded in L∞(0, T ;H), (3.27)(

∆ukt g(∆ukt ),∆vkt g(∆vkt )
)

are bounded in L1(Ω× (0, T )). (3.28)

We show that (
g(∆ukt ), g(∆vkt )

)
are bounded in L2(Ω× (0, T )). (3.29)

As in Komornik [30], we consider the following partition of Ω,

Ω1 = {x ∈ Ω : |∆ukt | > ε}, Ω2 = {x ∈ Ω : |∆ukt | ≤ ε}.

Using (3.6) and (3.28), we have∫ T

0

∫
Ω1
|g(∆ukt (s))|2 dx ds ≤ c2

∫ T

0

∫
Ω1

∆ukt (s)g(∆ukt (s)) dx ds
≤ C,

exploit Jensen’s inequality and the concavity of G−1, we obtain∫
Ω2
|g(∆ukt (t))|2 dx ≤

∫
Ω2
G−1(∆ukt (t)g(∆ukt (t))) dx ds

≤ G−1
( 1
|Ω2|

∫
Ω2

∆ukt (t)g(∆ukt (t)) dx
)
,

using Remark 2.2, we have∫ T

0

∫
Ω2
|g(∆ukt (s))|2 dx dt ≤ G∗(1) + 1

|Ω2|

∫ T

0

∫
Ω2

∆ukt (s)g(∆ukt (s)) dx dt
≤ C.

The second estimate.
First, we estimate ‖uktt(0)‖ and ‖vktt(0)‖. Differentiating (3.18) with respect to x, setting
w = ∇uktt(t) in the first equation and w = ∇vktt(t) in the second equation in (3.18), add the
resulting equations and choosing t = 0, we obtain that

‖∇uktt(0)‖2 +
(
∇uktt(0),∇∆2uk0 −∇

(
g(∆uk1)

)
+ α∇vk0

)
= 0.

and
‖∇vktt(0)‖2 +

(
∇vktt(0),∇∆2vk0 −∇

(
g(∆vk1 )

)
+ α∇uk0

)
= 0.
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Using Cauchy-Schwarz inequality, we have

‖∇uktt(0)‖ ≤
( ∫

Ω
|∇(∆2uk0 + g(∆uk1) + αvk0 )|2 dx

) 1
2

and
‖∇vktt(0)‖ ≤

( ∫
Ω
|∇(∆2vk0 + g(∆vk1 ) + αuk0)|2 dx

) 1
2 .

By (3.23) and (3.24) yields (
uktt(0), vktt(0)

)
are bounded in H. (3.30)

The Third estimate.
Differentiating (3.18) with respect to t, we get

∫
Ω

(ukttt(t) + αvkt + ∆2ukt −∆uttg′(∆ut))w dx = 0,∫
Ω

(vkttt(t) + αukt + ∆2vkt −∆vttg′(∆vt))w dx = 0,
(3.31)

taking w = −2∆uktt in the first equation and w = −2∆vktt in the second equation in (3.31),
add the resulting equations and applying the Green formula, we have

d

dt

[
‖∇uktt‖2 + ‖∇∆ukt ‖2 + ‖∇vktt‖2 + ‖∇∆vkt ‖2 + 2α

∫
Ω
∇ukt .∇vkt dx

]
+2
∫

Ω
|∆uktt|2g′(∆ukt ) dx+ 2

∫
Ω
|∆vktt|2g′(∆vkt ) dx = 0.

Integrating the last equality over (0, t) and using Hölder’s inequality, we get

‖∇uktt(t)‖2 + ‖∇vktt(t)‖2 + ‖∇∆ukt (t)‖2 + ‖∇∆vkt (t)‖2 + 2α
∫

Ω
∇ukt∇vkt dx

+2
∫ t

0

∫
Ω
|∆uktt(s)|2g′(∆ukt (s)) dx ds+ 2

∫ t

0

∫
Ω
|∆vktt(s)|2g′(∆vkt (s)) dx ds

≤ ‖∇uktt(0)‖2 + ‖∇vktt(0)‖2 + ‖∇∆uk0(t)‖2 + ‖∇∆vk0 (t)‖2 + 2α
∫

Ω
∇uk1∇vk1 dx

≤ ‖∇uktt(0)‖2 + ‖∇vktt(0)‖2 + ‖∇∆uk1(t)‖2 + ‖∇∆vk1 (t)‖2 + α‖∇uk1‖2 + α‖∇vk1‖2,

(3.32)

using (3.21), (3.22) and (3.30), we have

‖∇uktt(t)‖2 + ‖∇vktt(t)‖2 + (1− 2αCs)‖∇∆ukt (t)‖2 + (1− 2αCs)‖∇∆vkt (t)‖2

+c
∫ t

0

∫
Ω
|∆uktt(s)|2 dx ds+ c′

∫ t

0

∫
Ω
|∆vktt(s)|2 dx ds

≤ C2,

for all t ∈ R+, therefore, we conclude that(
ukt , v

k
t

)
are bounded in L∞(0, T ;V ) (3.33)

and (
uktt, v

k
tt

)
are bounded in L∞(0, T ;H) ∩ L2(0, T,H2

0 (Ω)), (3.34)
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we deduce that (
ukt , v

k
t

)
are bounded in L2(0, T ;V ). (3.35)

Applying Rellich compactenes theorem given in [45], we deduce that

(
ukt , v

k
t

)
are precompact in L2(0, T ;L2(Ω)). (3.36)

The fourth estimate.
Differentiating (3.18) with respect to x, taking w = ∇∆2ukt in the first equation and w =
∇∆2vkt in the second equation in (3.18), add the resulting equations, we obtain that

‖∇∆2uk‖2 =
∫

Ω
∇∆2uk(−∇uktt − α∇vk +∇∆ukt g′(∆ukt )) dx

and
‖∇∆2vk‖2 =

∫
Ω
∇∆2vk(−∇vktt − α∇uk +∇∆vkt g′(∆vkt )) dx.

Using Cauchy-Schwarz inequality, we have

‖∇∆2uk‖ ≤ 2
( ∫

Ω
{|∇uktt|2 + α2|∇vk|2 + |∇∆ukt g′(∆ukt )|2} dx

) 1
2

and
‖∇∆2vk‖ ≤ 2

( ∫
Ω
{|∇vktt|2 + α2|∇uk|2 + |∇∆vkt g′(∆vkt )|2} dx

) 1
2 .

Using (3.8), (3.33) and (3.34), we obtain

‖∇∆2uk‖+ ‖∇∆2vk‖ ≤ C3,

for some C3 independent of k, then(
uk, vk

)
are bounded in L∞(0, T ;W ). (3.37)

iii) Passage to the limit. Applying Dunford-Petit theorem we conclude from (3.26), (3.29), (3.33),
(3.34) and (3.37) that there exists a subsequence um of uk and a functions {u, v} such that

(um, vm) ⇀ (u, v) weak-star in L∞(0, T ;W ), (3.38)

(umt , vmt ) ⇀ (ut, vt) , weak-star in L∞(0, T ;V ), (3.39)

(umtt , vmtt ) ⇀ (utt, vtt) , weak-star in L∞(0, T ;H) ∩ L2(0, T,H2
0 (Ω)), (3.40)

(umt , vmt ) −→ (ut, vt) , almost everywhere in A, (3.41)

(g(∆(umt ), g(∆vmt )) ⇀ (φ1, φ2) , weak-star in L2(A), (3.42)

where A = Ω × [0, T ]. It follows at once from (3.38) and (3.40), that for each fixed w ∈
L2([0, T ]× L2(Ω)),∫ T

0

∫
Ω

( (
umtt + ∆2um + αvm

)
(x, t)

)
w dxdt −→

∫ T

0

∫
Ω

( (
utt + ∆2u+ αv

)
(x, t)

)
w dxdt
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and∫ T

0

∫
Ω

( (
vmtt + ∆2um + αum

)
(x, t)

)
w dxdt −→

∫ T

0

∫
Ω

( (
vtt + ∆2v + αu

)
(x, t)

)
w dxdt.

As (umt , vmt ) are bounded in L∞(0, T ;V ) and the injection of V in H is compact, we have

(umt , vmt ) −→ (ut, vt) , strong in L2(0, T ;H). (3.43)

It remains to show that∫ T

0

∫
Ω
g(∆umt ) w dxdt −→

∫ T

0

∫
Ω
g(∆ut) w dxdt

and ∫ T

0

∫
Ω
g(∆vmt ) w dxdt −→

∫ T

0

∫
Ω
g(∆vt) w dxdt.

Lemma 2.4 For each T > 0, (g(∆ut), g(∆vt)) ∈ L1(A), ‖g(∆ut)‖L1(A) ≤ K
and ‖g(∆vt)‖L1(A) ≤ K, where K is a constant independent of t and

(g(∆(umt ), g(∆vmt ))→ (g(∆ut), g(∆vt)) , in L1(A).

Proof : We claim that
(g(∆ut), g(∆vt)) ∈ L1(A).

Indeed, since g is continuous, we deduce from (3.41)

(g(∆(umt ), g(∆vmt )) −→ (g(∆ut), g(∆vt)) almost everywhere in A. (3.44)

(∆umt g(∆umt ),∆vmt g(∆vmt ) ,−→ (∆utg(∆ut),∆vtg(∆vt)) almost everywhere in A.

Hence, by (3.28) and Fatou’s Lemma, we have∫ T

0

∫
Ω

∆ut(x, t)g(∆ut(x, t)) dx dt ≤ K1, for , T > 0 (3.45)

and ∫ T

0

∫
Ω

∆vt(x, t)g(∆vt(x, t)) dx dt ≤ K1, for , T > 0. (3.46)

Now, we can estimate
∫ T

0

∫
Ω
|g(∆ut(x, t))| dx dt. By Cauchy-Schwarz inequality, we have

∫ T

0

∫
Ω
|g(∆ut(x, t))| dx dt ≤ c|A|1/2

( ∫ T

0

∫
Ω
|g(∆ut(x, t))|2 dx dt

)1/2
.

Using (3.6), (3.7) and (3.45), we obtain∫ T

0

∫
Ω
|g(∆ut)|2 dx dt ≤

∫ T

0

∫
|∆ut|>ε

∆utg(∆ut) dx dt+
∫ T

0

∫
|∆ut|≤ε

G−1(∆utg(∆ut)) dx dt

≤ c

∫ T

0

∫
Ω

∆utg(∆ut) dx dt+ cG−1
(∫

A

∆utg(∆ut) dx dt
)

≤ c

∫ T

0

∫
Ω

∆utg(∆ut) dx dt+ c′G∗(1) + c′′
∫

Ω
∆utg(∆ut) dx dt

≤ cK1 + c′G∗(1), for T > 0.
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Then ∫ T

0

∫
A
|g(∆ut(x, t))| dx d ≤ K, for T > 0.

Let B ⊂ Ω× [0, T ] and set

B1 =
{

(x, t) ∈ B : |g(∆umt (x, t))| ≤ 1√
|B|

}
, B2 = B\B1,

where |B| is the measure of E. If M(r) = inf{|s| : s ∈ R and |g(s)| ≥ r}∫
B
|g(∆umt )| dx dt ≤ c

√
|B|+

(
M
( 1√
|B|

))−1 ∫
B2
|∆umt g(∆umt ))| dx dt.

By applying (3.28) we deduce that

sup
k

∫
B
g(∆umt ) dx dt −→ 0, when |B| −→ 0.

From Vitali’s convergence theorem we deduce that

g(∆umt )→ g(∆ut) in L1(A).

Similarly, we have
g(∆vmt )→ g(∆vt) in L1(A).

This completes the proof.
Then (3.42) implies that

{g(∆umt ), g(∆vmt )}⇀ (g(∆ut), g(∆vt)), weak-star in L2([0, T ]× Ω).

We deduce, for all w ∈ L2([0, T ]× L2(Ω), that∫ T

0

∫
Ω
g(∆umt )w dxdt −→

∫ T

0

∫
Ω
g(∆ut)w dxdt

and ∫ T

0

∫
Ω
g(∆vmt )w dxdt −→

∫ T

0

∫
Ω
g(∆vt)w dxdt.

Finally, we have shown that, for all w ∈ L2([0, T ]× L2(Ω))
∫

Ω
(utt(t) + αv + ∆2u− g(∆ut))w dx = 0,∫

Ω
(vtt(t) + αu+ ∆2v − g(∆vt))w dx = 0.

Proof : of theorem 1.2
From now on, S and T denote two real numbers such that 1 ≤ S < T <∞. We write E instead

of E(t).
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Multiplying first equation of (3.1) by −ϕ(E)
E ∆u, where ϕ : R+ → R+ is convex, increasing and

of class C1 on ]0,+∞[ such that ϕ(0) = 0 and we integrate by parts, we have, for all 0 ≤ S ≤ T

0 = −
T∫
S

ϕ(E)
E

∫
Ω

∆u
(
utt + ∆2u+ αv − g(∆ut)

)
dx dt

= −
[ϕ(E)
E

∫
Ω
ut∆u dx

]T
S

+
∫ T

S

(ϕ(E)
E

)′ ∫
Ω
ut∆u dx dt

−2
∫ T

S

ϕ(E)
E

∫
Ω
|∇ut|2 dx dt+

∫ T

S

ϕ(E)
E

∫
Ω

(
|∇ut|2 + |∇∆u|2 + α∇u∇v

)
dx dt

+
T∫
S

ϕ(E)
E

∫
Ω

∆ug(∆ut) dx dt.

Similarly, we have

0 = −
T∫
S

ϕ(E)
E

∫
Ω

∆v
(
vtt + ∆2v + αu− g(∆vt)

)
dx dt

= −
[ϕ(E)
E

∫
Ω
vt∆v dx

]T
S

+
∫ T

S

(ϕ(E)
E

)′ ∫
Ω
vt∆v dx dt

−2
∫ T

S

ϕ(E)
E

∫
Ω
|∇vt|2 dx dt+

∫ T

S

ϕ(E)
E

∫
Ω

(
|∇vt|2 + |∇∆v|2 + α∇u∇v

)
dx dt

+
T∫
S

ϕ(E)
E

∫
Ω

∆vg(∆vt) dx dt.

Taking their sum, we obtain that∫ T

S

ϕ(E)
E

∫
Ω

(
|∇ut|2 + |∇vt|2 + |∇∆u|2 + |∇∆v|2 + 2α∇u∇v) dx dt

=
[ϕ(E)
E

∫
Ω

(ut∆u+ vt∆v) dx
]T
S
−
∫ T

S

(ϕ(E)
E

)′ ∫
Ω

(ut∆u+ vt∆v) dx dt

+2
∫ T

S

ϕ(E)
E

∫
Ω

(|∇ut|2 + |∇vt|2) dx dt

−
T∫
S

ϕ(E)
E

∫
Ω

(∆ug(∆ut) + ∆vg(∆vt)) dx dt.

Using the definition of the energy, we have

2
T∫
S

ϕ(E)dt =

ϕ(E)
E

∫
Ω

(ut∆u+ vt∆v) dx

T
S

−
T∫
S

(
ϕ(E)
E

)′ ∫
Ω

(ut∆u+ vt∆v) dx dt

+2
T∫
S

ϕ(E)
E

∫
Ω

(|∇ut|2 + |∇vt|2) dx dt

+
T∫
S

ϕ(E)
E

∫
Ω

(∆ug(∆ut) + ∆vg(∆vt)) dx dt.

(3.47)
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Now, we estimate the terms of the right-hand side of (3.47) in order to apply the results of Lemma
2.1.
Since E is non-increasing, we have[ϕ(E)

E

∫
Ω

(ut∆u+ vt∆v) dx
]T
S

= ϕ(E(T ))
E(T )

∫
Ω
ut(T )∆u(T ) + vt(T )∆v(T ) dx− ϕ(E(S))

E(S)

∫
Ω
ut(S)∆u(S) + vt(S)∆v(S) dx

≤ Csϕ(E(S)).

In the other hand, we have ϕ is convex, increasing and of class C1 on ]0,+∞[ such that ϕ(0) = 0.
Then we deduce that∫ T

S

(ϕ(E)
E

)′ ∫
Ω

(ut∆u+ vt∆v) dx dt ≤ Cs

∫ T

S

∣∣∣(ϕ(E)
E

)′∣∣∣E dt
≤ Csϕ(E(S)).

Using these estimates, we conclude from (3.47) that∫ T

S
ϕ(E) dt ≤ Cϕ(E(S)) +

∫ T

S

ϕ(E)
E

∫
Ω
|∇ut|2 + |∇vt|2 dx dt

+
∫ T

S

ϕ(E)
E

∫
Ω
|∆u|.|g(∆ut(x, t))|+ |∆v|.|g(∆vt(x, t))| dx dt.

(3.48)

We distinguish two cases
Case 1. G is linear on [0, ε]. By using Sobolev embedding, we have∫ T

S

ϕ(E)
E

∫
Ω1
|∇ut|2 + |∇vt|2 dx dt ≤ Cs

∫ T

S

ϕ(E)
E

∫
Ω
|∆ut|2 + |∆vt|2 dx dt

≤ Cs

∫ T

S

ϕ(E)
E

∫
Ω

∆utg(∆ut) + ∆vtg(∆vt) dx dt

≤ −Cs
∫ T

S

ϕ(E)
E

E′(t) dt

≤ Cϕ(E(S))

and∫ T

S

ϕ(E)
E

∫
Ω2

|∇ut|2 + |∇vt|2 dx dt ≤ Cs

∫ T

S

ϕ(E)
E

∫
Ω
|∆ut|2 + |g(∆ut)|2 + |∆vt|2 + g(∆vt)|2 dx dt

≤ Cs

∫ T

S

ϕ(E)
E

∫
Ω

∆utg(∆ut) + ∆vtg(∆vt) dx dt

≤ Cϕ(E(S)).

Exploiting Young’s and Poincaré’s inequalities, we obtain∫ T

S

ϕ(E)
E

∫
Ω1
|∆u|.|g(∆ut)| dx dt

≤ ε
∫ T

S

ϕ(E)
E

∫
Ω1
|∆u|2 dx dt+ C(ε)

∫ T

S

ϕ(E)
E

∫
Ω1
|g(∆ut)|2 dx dt

≤ εCs
∫ T

S

ϕ(E)
E

∫
Ω
|∇∆u|2 dx dt+ C(ε)

∫ T

S

ϕ(E)
E

∫
Ω

∆utg(∆ut) dx dt

≤ εCs
∫ T

S
ϕ(E) dt+ C(ε)

∫ T

S

ϕ(E)
E

∫
Ω

∆utg(∆ut) dx dt.
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Similarly, we have ∫ T

S

ϕ(E)
E

∫
Ω1
|∆v|.|g(∆vt)| dx dt

≤ εCs
∫ T

S
ϕ(E) dt+ C(ε)

∫ T

S

ϕ(E)
E

∫
Ω

∆vtg(∆vt) dx dt.

Taking their sum, we obtain that∫ T

S

ϕ(E)
E

∫
Ω1
|∆u|.|g(∆ut)|+ |∆v|.|g(∆vt)| dx dt

≤ εCs
∫ T

S
ϕ(E) dt+ C(ε)

∫ T

S

ϕ(E)
E

∫
Ω

∆utg(∆ut) + ∆vtg(∆vt) dx dt

≤ εCs
∫ T

S
ϕ(E) dt+ C(ε)ϕ(E(S)).

(3.49)

Similarly, we have∫ T

S

ϕ(E)
E

∫
Ω2
|∆u|.|g(∆ut)|+ |∆v|.|g(∆vt)| dx dt

≤ εCs
∫ T

S
ϕ(E) dt+ C(ε)

∫ T

S

ϕ(E)
E

∫
Ω

∆utg(∆ut) + ∆vtg(∆vt) dx dt

≤ εCs
∫ T

S
ϕ(E) dt+ C(ε)ϕ(E(S)).

(3.50)

By these estimates, we find ∫ T

S
ϕ(E(t)) dt ≤ cϕ(E(S)).

Using Lemma 2.2 (cf. Guesmia [25]) for E in the particular case where ϕ(s) = s we deduce from
(3.17) that

E(t) ≤ ce−wt.

Case 2. G′(0) = 0, G′′ > 0 on ]0, ε]∫ T

S

ϕ(E)
E

∫
Ω1
|∇ut|2 dx dt ≤ Cϕ(E(S)),

∫ T

S

ϕ(E)
E

∫
Ω2

|∇ut|2 + |∇vt|2 dx dt ≤ Cs

∫ T

S

ϕ(E)
E

∫
Ω

(|∆ut|2 + |g(∆ut)|2 + |∆vt|2 + |g(∆vt)|2) dx dt

≤ Cs

∫ T

S

ϕ(E)
E

∫
Ω
G−1

(
∆utg(∆ut) + ∆vtg(∆vt)

)
dx dt

≤ Cs

∫ T

S

ϕ(E)
E
|Ω|G−1

( 1
|Ω|

∫
Ω

∆utg(∆ut) + ∆vtg(∆vt)
)
dx dt.

Using remark 2.2, we obtain∫ T

S

ϕ(E)
E

∫
Ω

(|∆ut|2 + |g(∆ut)|2 + |∆vt|2 + |g(∆vt)|2) dx dt

≤ c
∫ T

S
G∗(ϕ(s)

s
) dt+ c

∫ T

S

∫
Ω

∆utg(∆ut) + ∆vtg(∆vt) dx dt.
(3.51)
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Choosing ϕ(s) = sG′(εs) and using remark 2.2, we obtain

G∗(ϕ(s)
s

) = sεG′(εs) = εsG′(εs)−G(εs) ≤ εϕ(s). (3.52)

Making use of (3.51) and (3.52), we have∫ T

S

ϕ(E)
E

∫
Ω

(
|∆ut|2 + |g(∆ut)|2 + |∆vt|2 + |g(∆vt)|2

)
dx dt

≤ cε
∫ T

S
ϕ(E) dt+ cE(S).

∫ T

S

ϕ(E)
E

∫
Ω1
|∆u|.|g(∆ut)| dx dt

≤ ε
∫ T

S

ϕ(E)
E

∫
Ω
|∆u|2 dx dt+ C(ε)

∫ T

S

ϕ(E)
E

∫
Ω
|g(∆ut)|2 dx dt

≤ εCs
∫ T

S

ϕ(E)
E

∫
Ω
|∇∆u|2 dx dt+ C(ε)

∫ T

S

ϕ(E)
E

∫
Ω

∆utg(∆ut) dx dt

≤ εCs
∫ T

S
ϕ(E) dt+ C(ε)

∫ T

S

ϕ(E)
E

∫
Ω

∆utg(∆ut) dx dt.

Similarly, we have ∫ T

S

ϕ(E)
E

∫
Ω1
|∆v|.|g(∆vt)| dx dt

≤ εCs
∫ T

S
ϕ(E) dt+ C(ε)

∫ T

S

ϕ(E)
E

∫
Ω

∆vtg(∆vt) dx dt.

Taking their sum, we obtain that∫ T

S

ϕ(E)
E

∫
Ω1
|∆u|.|g(∆ut)|+ |∆v|.|g(∆vt)| dx dt

≤ εCs
∫ T

S
ϕ(E) dt+ C(ε)

∫ T

S

ϕ(E)
E

∫
Ω

∆utg(∆ut) + ∆vtg(∆vt) dx dt

≤ εCs
∫ T

S
ϕ(E) dt+ C(ε)ϕ(E(S))

∫ T

S

ϕ(E)
E

∫
Ω2
|∆u|.|g(∆ut)| dx dt

≤ ε
∫ T

S

ϕ(E)
E

∫
Ω
|∆u|2 dx dt+ C(ε)

∫ T

S

ϕ(E)
E

∫
Ω
|g(∆(ut)|2 dx dt

≤ εCs
∫ T

S

ϕ(E)
E

∫
Ω
|∇∆u|2 dx dt+ C(ε)

∫ T

S

ϕ(E)
E

∫
Ω

(|∆ut|2 + |g(∆(ut))|2) dx dt

≤ εCs
∫ T

S

ϕ(E)
E

∫
Ω
|∇∆u|2 dx dt+ C(ε)

∫ T

S

ϕ(E)
E
|Ω|G−1

( 1
|Ω|

∫
Ω

∆utg(∆ut)
)
dx dt

≤ εC
∫ T

S
ϕ(E) dt+ C(ε)

∫ T

S

ϕ(E)
E
|Ω|G−1

( 1
|Ω|

∫
Ω

∆utg(∆ut)
)
dx dt.
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Similarly, we have∫ T

S

ϕ(E)
E

∫
Ω2
|∆v|.|g(∆vt)| dx dt

≤ εC
∫ T

S
ϕ(E) dt+ C(ε)

∫ T

S

ϕ(E)
E
|Ω|G−1

( 1
|Ω|

∫
Ω

∆vtg(∆vt)
)
dx dt.

Taking their sum, we obtain that∫ T

S

ϕ(E)
E

∫
Ω2
|∆u|.|g(∆ut)|+ |∆v|.|g(∆vt)| dx dt

≤ εC
∫ T

S
ϕ(E) dt+ C(ε)ϕ(E(S)).

Then, choosing ε > 0 small enough and using (3.48), we obtain in both cases∫ T

S
ϕ(E(t)) dt ≤ c(E(S) + ϕ(E(S)))

≤ c
(
1 + ϕ(E(S))

E(S)

)
E(S)

≤ cE(S), ∀S ≥ 0.

Using Lemma 2.1 in the particular case where Ψ(s) = ωϕ(s) we deduce from (3.17) our estimate
(3.12). The proof of Theorem 1.2 is now complete.
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Chapter 4

Exponential stability of a transmission
problem with history and delay

1 Introduction
In this chapter we study the following transmission system with a past history and a delay term

utt(x, t)− auxx(x, t) +
∫ ∞

0
g(s)uxx(x, t− s)ds

+µut(x, t− τ) = 0, (x, t) ∈ Ω× (0,+∞),
vtt(x, t)− bvxx(x, t) = 0, (x, t) ∈ (L1, L2)× (0,+∞),

(4.1)

Under the boundary and transmission conditions

u(0, t) = u(L3, t) = 0,
u(Li, t) = v(Li, t), i = 1, 2,
aux(Li, t)−

∫ ∞
0

g(s)ux(Li, t− s)ds = bvx(Li, t), i = 1, 2,
(4.2)

and the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
ut(x, t− τ) = f0(x, t− τ), x ∈ Ω, t ∈ (0, τ),
v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ (L1, L2),

(4.3)

where 0 < L1 < L2 < L3 ,Ω =]0, L1[
⋃

]L2, L3[, a, µ, b are positives constants, u0 is given history,
and τ > 0 is the delay.
In certain cases also it is proved by the dissipative method.
Transmission problems ([53], [55]) arise in several applications of physics and biology. We note that
problem (4.1)-(4.2) is related to the wave propagation over a body which consists of two different
type of materials: the elastic part and the viscoelastic part that has the past history and time delay
effect.

For wave equations with various dissipation, many results concerning stabilization of solutions
have been proved. Recently, wave equations with viscoelastic damping have been investigated by
many authors, see [12], [16], [17], [21], [42], [43], [67] and the references therein. It is showed
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4.1 Introduction

that the dissipation produced by the viscoelastic part can produce the decay of the solution. For
example, A. Guesmia [24] studied the equation

utt −Au+
∫ ∞

0
g(t)Au(t− s)ds+ µut(t− τ) = 0, in Ω× (0,∞),

and under the condition:
∃δ > 0, g′(s) ≤ −δg(s) ∀ s ∈ R+,

the authors showed the exponential decay.
Messaoudi [59] investigated the following viscoelastic equation:

utt −∆u+
∫ t

0
g(t)∆u(t− s)ds = 0, in Ω× (0,∞),

in a bounded domain, and established a more general decay result, from which the usual exponential
and polynomial decay rates are only special cases.
In [72] the authors examined a system of wave equations with a linear boundary damping term
with a delay:

utt(x, t)− auxx(x, t) +
∫ ∞

0
g(s)uxx(x, t− s)ds

+µ1ut(x, t) + µ2ut(x, t− τ) = 0, (x, t) ∈ Ω× (0,+∞),
vtt(x, t)− bvxx(x, t) = 0, (x, t) ∈ (L1, L2)× (0,+∞),

(4.4)

and under the assumption
µ2 ≤ µ1 (4.5)

they proved that the solution is exponentially stable. On the contrary, if (4.5) does not hold, they
found a sequence of delays for which the corresponding solution of (4.4) will be unstable.
In [58], authors considered the equation

utt(x, t)−∆u(x, t)− µ1∆ut(x, t)− µ2∆ut(x, t− τ) = 0,

and under the assumption
|µ2| ≤ µ1, (4.6)

they proved the well-posedness and the exponential decay of energy.
Recently, in [73] Yadav and Jiwari considered Burgers’-Fisher equation:

∂u

∂t
− ∂2u

∂x2 + au
∂u

∂x
+ bu(1− u) = 0, (x, t) ∈ (0, T )× Ω,

the authors proved existence and uniqueness of solution. Furthermore, they also presented finite
element analysis and approximation. The paper is organized as follows. The well-posedness of the
problem is analyzed in Section 2 using the semigroup theory. In Section 3, we prove the exponential
decay of the energy when time goes to infinity.
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4.2 Preliminaries

2 Preliminaries
We assume that the function g satisfies the following:
We assume that the function g : R+ −→ R+ is of class C1 satisfying:

g(0) > 0, a−
∫ ∞

0
g(t)dt = a− g0 = l > 0. (4.7)

There exists a positive constant δ,

g′(s) ≤ −δg(s) ∀s ∈ R+, (4.8)

As in [61], we introduce the variable

z(x, ρ, t) = ut(x, t− τρ), (x, ρ, t) ∈ Ω× (0, 1)× (0,∞).

Then
τzt(x, ρ, t) + zρ(x, ρ, t) = 0, (x, ρ, t) ∈ Ω× (0, 1)× (0,∞).

Following the ideal in [18], we set

ηt(x, s) = u(x, t)− u(x, t− s), (x, t, s) ∈ Ω× R+ × R+. (4.9)

Then
ηtt(x, s) + ηts(x, s) = ut(x, t), (x, t, s) ∈ Ω× R+ × R+.

Thus, system (4.1) becomes

utt(x, t)− luxx(x, t)−
∫ ∞

0
g(s)ηtxx(x, s)ds
+µz(x, 1, t) = 0, (x, t) ∈ Ω× (0,+∞),

vtt(x, t)− bvxx(x, t) = 0, (x, t) ∈ (L1, L2)× (0,+∞),
τzt(x, ρ, t) + zρ(x, ρ, t) = 0, (x, ρ, t) ∈ Ω× (0, 1)× (0,+∞),
ηtt(x, s) + ηts(x, s) = ut(x, t), (x, s, t) ∈ Ω× (0,+∞)× (0,+∞),

(4.10)

the boundary and transmission conditions (4.2) become

u(0, t) = u(L3, t) = 0,
u(Li, t) = v(Li, t), i = 1, 2, t ∈ (0,+∞),
lux(Li, t) +

∫ ∞
0

g(s)ηtx(Li, s)ds = bvx(Li, t), i = 1, 2, t ∈ (0,+∞),
(4.11)

and the initial conditions (4.3) become

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ (L1, L2),
z(x, 0, t) = ut(x, t), (x, t) ∈ Ω× (0,+∞),
z(x, ρ, 0) = f0(x,−ρτ), (x, t) ∈ Ω× (0, 1).

(4.12)

It is clear that
ηt(x, 0) = 0, for all x > 0,
ηt(0, s) = ηt(L3, s) = 0, for all s > 0,
η0(x, s) = η0(s), for all s > 0.

(4.13)
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3 Well-posedness of the problem
Let V := (u, v, ϕ, ψ, z, ηt)T , then V satisfies the problem{

Vt = (A + B)V (t), t > 0,
V (0) = V0,

(4.14)

where V0 :=
(
u0(·, 0), v0, u1, v1, f0(·,−τ), η0

)T
. The operator A and B are linear and defined by

A


u
v
ϕ
ψ
z

 =



ϕ
ψ

luxx +
∫+∞

0 g(s)wxx(s)ds− µϕ− µz(., 1)
bvxx
− 1
τ zρ
−ws + ϕ


(4.15)

and B(u, v, ϕ, ψ, z, ηt)T = µ(0, 0, ϕ, 0, 0, 0)T where

X∗ =
{

(u, v) ∈ H1(Ω)×H1(L1, L2) : u(0, t) = u(L3, t) = 0, u(Li, t) = v(Li, t),

lux(Li, t) +
∫ ∞

0
g(s)ηtx(Li, s)ds = bvx(Li, t), i = 1, 2

}
and L2

g(R+, H
1(Ω)) denotes the Hilbert space of H1-valued functions on R+, endowed with the

inner product
(φ, ϑ)L2

g(R+,H1(Ω)) =
∫

Ω

∫ +∞

0
g(s)φx(s)ϑx(s)ds dx.

Let
V = (u, v, ϕ, ψ, z, w)T , V̄ = (ū, v̄, ϕ̄, ψ̄, z̄, w̄)T .

We define the inner product in the energy space H ,

〈V, V̄ 〉H =
∫

Ω
ϕϕ̄dx+

∫ L2

L1
ψψ̄ dx+

∫
Ω
luxūxdx+

∫ L2

L1
bvxv̄x dx

+
∫

Ω

∫ +∞

0
g(s)wx(s)w̄x(s) ds dx+ τµ

∫
Ω

∫ 1

0
zz̄ dρ dx.

The domain of A is

D(A ) =
{

(u, v, ϕ, ψ, z, w)T ∈H : (u, v) ∈ {(H2(Ω)×H2(L1, L2)) ∩X∗}, ϕ ∈ H1(Ω),
ψ ∈ H1(L1, L2), w ∈ L2

g

(
R+, H

2(Ω) ∩H1(Ω)
)
, ws ∈

(
R+, H

1(Ω)
)
, zρ ∈ L2((0, 1), L2(Ω)),

w(x, 0) = 0, z(x, 0) = ϕ(x)
}

and D(B) = H The well-posedness of problem (4.10)-(4.11) is ensured by the following theorem.

Theorem 3.1 Assume that (4.7 and (4.8) hold. Let V0 ∈ H , then there exists a unique weak
solution V ∈ C (R+,H ) of problem (4.14). Moreover, if V0 ∈ D(A ), then

V ∈ C (R+, D(A )) ∩ C1 (R+,H ) .
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4.3 Well-posedness of the problem

Proof : We use the semi group approach. So, first, we prove that the operator A is dissipative.
In fact, for (u, v, ϕ, ψ, z, w)T ∈ D(A ), where ϕ(Li) = ψ(Li), i = 1, 2 , we have

〈A V, V 〉H =
∫

Ω
luxxϕdx+

∫
Ω

( ∫ +∞

0
g(s)wxx(s) ds− µϕ− µz(., 1)

)
ϕdx

+
∫

Ω
luxϕxdx+

∫ L2

L1
bvxψx dx+

∫ L2

L1
bvxxψ dx

+
∫

Ω

∫ +∞

0
g(s)wx(s)(−ws + ϕ)x ds dx

−µ
∫

Ω

∫ 1

0
zzρ(x, ρ) dρ dx.

(4.16)

For the last term of the right side of (4.16), we obtain

µ

∫
Ω

∫ 1

0
zzρ(x, ρ) dρ dx = µ

∫
Ω

∫ 1

0

1
2
∂

∂ρ
z2(x, ρ) dρ dx

= µ

2

∫
Ω

(z2(x, 1)− z2(x, 0)) dx.

Noticing that z(x, 0, t) = ϕ(x, t), w(x, 0) = 0 and ϕ(Li) = ψ(Li), i = 1, 2, we obtain

〈A V, V 〉H =
[
luxϕ+

∫ +∞

0
g(s)wx(s) dsϕ

]
∂Ω

+ [bvxψ]L2
L1

+
∫

Ω
(−µϕ− µz(., 1))ϕdx− 1

2

∫
Ω

[
g(s)|wx(x, s)|2

]+∞
0

dx

+1
2

∫
Ω

∫ +∞

0
g′(s)|wx(x, s)|2 ds dx− µ

2

∫
Ω

(z2(x, 1)− ϕ2(x) dx,

where we have used that

[luxϕ+
∫ +∞

0
g(s)wx(s) dsϕ]∂Ω

=
(
lux(L1, t) +

∫ +∞

0
g(s)wx(L1, s) ds

)
ϕ(L1, t)

−
(
lux(L2, t) +

∫ +∞

0
g(s)wx(L2, s) ds

)
ϕ(L2, t)

= −[bvxψ]L2
L1
.

Using Young’s inequality, we have

〈A V, V 〉H ≤
1
2

∫
Ω

∫ +∞

0
g′(s)|wx(x, s)|2 ds dx.

Consequently, taking (4.8) into account, we conclude that

〈A V, V 〉H ≤ 0,

that is, A is dissipative. Next, we prove that −A is maximal. Actually, let
F = (f1, f2, f3, f4, f5, f6)T ∈H , we prove that there exists V = (u, v, ϕ, ψ, z, w)T ∈ D(A ) satisfy-
ing

(λI −A )V = F, (4.17)
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4.3 Well-posedness of the problem

which is equivalent to

λu− ϕ = f1,
λv − ψ = f2,

λϕ− luxx −
∫ ∞

0
g(s)wxx(s)ds+ µϕ+ µz(., t) = f3,

λψ − bvxx = f4,
λz + 1

τ zρ = f5,
λw + ws − ϕ = f6.

(4.18)

Assume that with the suitable regularity we have found u and v, then

ϕ = λu− f1,
ψ = λv − f2.

(4.19)

So we have ϕ ∈ H1(Ω) and ψ ∈ H1(L1, L2). Moreover, we can find z with

z(x, 0) = ϕ(x), for x ∈ Ω.

Using the equation in (4.18), we obtain

z(x, ρ) = ϕ(x)e−λρτ + τe−λρτ
∫ ρ

0
f5(x, σ)eλστdσ.

From (4.19), we obtain

z(x, ρ) = λue−λρτ − f1e
−λρτ + τe−λρτ

∫ ρ

0
f5(x, σ)eλστdσ. (4.20)

It is easy to see that the last equation in (4.18) with w(x, 0) = 0 has a unique solution

w(x, s) =
( ∫ s

0
eλy(f6(x, y) + ϕ(x)) dy

)
e−λs

=
( ∫ s

0
eλy(f6(x, y) + λu(x)− f1(x)) dy

)
e−λs.

(4.21)

By using (4.18)-(4.21), the functions u and v satisfy(
λ2 + µλ+ µλe−λτ

)
u− l̃uxx = f̃ ,

λ2v − bvxx = f4 + λf2,
(4.22)

where
l̃ = l + λ

∫ ∞
0

g(s)e−λs
( ∫ s

0
eλydy

)
ds

and
f̃ =

∫ ∞
0

g(s)e−λs
( ∫ s

0
eλy(f6(x, y)− f1(x, y))xxdy

)
ds

−µτe−λτ
∫ 1

0
f5(x, σ)eλστ dσ +

(
λ+ µ+ µe−λτ

)
f1 + f3.
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4.4 Exponential stability

We just need to prove that (4.22) has a solution (u, v) ∈ X∗ and replace in (4.19), (4.20) and (4.21)
to get V = (u, v, ϕ, ψ, z, w)T ∈ D(A ) satisfying (4.17).
Consequently, problem (4.22) is equivalent to the problem

Φ((u, v), (ω1, ω2)) = l(ω1, ω2), (4.23)

where the bilinear form Φ : (X∗, X∗)→ R and the linear form l : X∗ → R are defined by

Φ((u, v), (ω1, ω2)) =
∫

Ω
[
(
λ2 + µλ+ µλe−λτ

)
uω1 + l̃ux(ω)x]dx− [l̃uxω1]∂Ω

+
∫ L2

L1

(
λ2vω2 + bvx(ω2)x

)
dx− [bvxω2]L2

L1

and
l(ω1, ω2) =

∫
Ω
f̃ω1dx+

∫ L2

L1
(f4 + λf2)ω2 dx.

Using the properties of the space X∗, it is easy to see that Φ is continuous and coercive, and l is con-
tinuous. Applying the Lax1- Milligram 2 theorem, we infer that for all (ω1, ω2) ∈ X∗, problem (4.23)
has a unique solution (u, v) ∈ X∗. It follows from (4.22) that (u, v) ∈

{(
H2(Ω)×H2(L1, L2)

)
∩X∗

}
.

Thence, the operator λI −A is surjective for any λ > 0. That mean A is maximal monotone op-
erator. Then, using Lummer-Phillips theorem [65], we deduce that A is an infinitesimal generator
of a linear C0-semi group on H .
On the other hand, it is clear that the linear operator B is Lipschitz continuous. Finally, also A +B
is an infinitesimal generator of a linear C0-semi group on H . Consequently (4.14) is well-posed in
the sense of Theorem 3.1(see [65]).

4 Exponential stability
In this section, we consider a decay result of problem (4.1)-(4.3). In fact using the energy method
to produce a suitable Lyapunov functional

Theorem 4.1 Let (u, v) be the solution of (4.1)-(4.3). Assume that (4.7)-(4.8 hold, and that

a >
8(L2 − L1)
L1 + L3 − L2

l, b >
8(L2 − L1)
L1 + L3 − L2

l, (4.24)

then there exist two constants γ1, γ2 > 0 such that,

E(t) ≤ γ2e
−γ1t, ∀t ∈ R+. (4.25)

For the proof of Theorem 4.1, we need some lemmas.
For a solution of (4.1)-(4.3), we define the energy

E(t) = 1
2

∫
Ω

[u2
t (x, t) + lu2

x(x, t)] dx+ 1
2

∫ L2

L1
[v2
t (x, t) + bv2

x(x, t)] dx

+1
2

∫
Ω

∫ ∞
0

g(s)|ηtx(x, s)|2 ds dx+ τµ

2

∫
Ω

∫ 1

0
z2(x, ρ, t) dρ dx.

(4.26)

1Peter Lax is a mathematician Hungarian born on 1926 in Budapest. the 2005 Abel prize was awarded
to him.

2R. James Milgram is a mathematician American born on 1939. He is currently a professor in Stanford
University
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Lemma 4.2 Let (u, v, η, z) be the solution of (4.10) and (4.11). Then we have the inequality

d

dt
E(t) ≤ µ

∫
Ω
u2
t (x, t) dx+ 1

2

∫
Ω

∫ ∞
0

g′(s)|ηtx(x, s)|2 ds dx. (4.27)

Proof : We have
d
dtE(t) =

∫
Ω

(
ututt + luxuxt +

∫ ∞
0

g(s)ηtx(x, s)ηtxt ds
)
dx

+
∫ L2

L1
(vtvtt + bvxvxt) dx+ τ |µ|

∫
Ω

∫ 1

0
zt(x, ρ, t)z(x, ρ, t) dρ dx

=
[(
lux +

∫ ∞
0

g(s)ηtx(x, s) ds
)
ut
]
∂Ω
− [bvxvt]L2

L1

−
∫

Ω

∫ ∞
0

g(s)ηtx(x, s)ηtxs(x, s)dsdx

−µ
∫

Ω
utz(x, 1, t)dx+ µ

2

∫
Ω
u2
t (x, t)dx−

µ

2

∫
Ω
z2(x, 1, t) dx

= 1
2

∫
Ω

∫ ∞
0

g′(s)|ηtx(x, s)|2 ds dx− µ
∫

Ω
utz(x, 1, t) dx+ µ

2

∫
Ω
u2
t (x, t) dx

−µ2

∫
Ω
z2(x, 1, t) dx,

(4.28)

where we have used that[(
lux +

∫ ∞
0

g(s)ηtx(x, s) ds
)
ut
]
∂Ω

=
(
lux(L1, t) +

∫ ∞
0

g(s)ηtx(L1, s) ds
)
ut(L1, t)

−
(
lux(L2, t) +

∫ ∞
0

g(s)ηtx(L2, s) ds
)
ut(L2, t)

= −[bvxvt]L2
L1
,

[1
2

∫
Ω
g(s)|ηtx(x, s)|2dx

]∞
0

= 0,

and
τµ

2
d

dt

∫
Ω

∫ 1

0
z2(x, ρ, t) dρ dx = − µ

2τ

∫
Ω

(z2(x, 1)− z2(x, 0)) dx. (4.29)

Young’s inequality gives us
d

dt
E(t) ≤ µ

∫
Ω
u2
t (x, t) dx+ 1

2

∫
Ω

∫ ∞
0

g′(s)|ηtx(x, s)|2 ds dx.

Lemma 4.3 Let (u, ut, v, vt) be the solution of (4.1)-(4.3). Then the functional

D(t) =
∫

Ω
uut dx+

∫ L2

L1
vvt dx,

satisfies, for any ε > 0, the estimate

d

dt
D(t) ≤

∫
Ω
u2
t dx+

∫ L2

L1
v2
t dx+ (Lε+ ε− l)

∫
Ω
u2
x dx−

∫ L2

L1
bv2
x dx

+g0
4ε

∫
Ω

∫ ∞
0

g(s)|ηtx(x, s)|2 ds dx+ µ2

4ε

∫
Ω
z2(x, 1, t) dx.

(4.30)
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Proof : Taking the derivative of D(t) with respect to t and using (4.10), we have

d

dt
D(t) =

∫
Ω
u2
tdx− l

∫
Ω
u2
x dx− µ

∫
Ω
z(x, 1, t)u dx+ [bvxv]L2

L1
+
∫ L2

L1
v2
t dx

+
[(
lux +

∫ ∞
0

g(s)ηtx(x, s) ds
)
u
]
∂Ω

−
∫

Ω
ux(x, t)

∫ ∞
0

g(s)ηtx(x, s) ds dx−
∫ L2

L1
bv2
x dx

=
∫

Ω
u2
tdx− l

∫
Ω
u2
x dx− µ

∫
Ω
z(x, 1, t)udx+

∫ L2

L1
v2
t dx

−
∫ L2

L1
bv2
x dx−

∫
Ω
ux(x, t)

∫ ∞
0

g(s)ηtx(x, s) ds dx,

(4.31)

where we used that[(
lux +

∫ ∞
0

g(s)ηtx(x, s) ds
)
u
]
∂Ω

=
(
lux(L1, t) +

∫ ∞
0

g(s)ηtx(L1, s) ds
)
u(L1, t)

−
(
lux(L2, t) +

∫ ∞
0

g(s)ηtx(L2, s) ds
)
u(L2, t)

= −[bvxvt]L2
L1
.

By the boundary conditions (4.2), we have

u2(x, t) =
( ∫ x

0
ux(x, t)dx

)2

≤ L1

∫ L1

0
u2
x(x, t) dx, x ∈ [0, L1],

u2(x, t) ≤ (L3 − L2)
∫ L3

L2
u2
x(x, t) dx, x ∈ [L2, L3],

which implies ∫
Ω
u2(x, t) dx ≤ L

∫
Ω
u2
x dx, x ∈ Ω, (4.32)

where L = max{L1, L3 − L2}. By making use of Young’s inequality and (4.32), for any ε > 0, we
obtain

µ

∫
Ω
z(x, 1, t)u dx ≤ µ2

4ε

∫
Ω
z2(x, 1, t) dx+ Lε

∫
Ω
u2
x dx. (4.33)

Young’s and Hölder’s inequalities and (A2) imply that∫
Ω
ux(x, t)

∫ ∞
0

g(s)ηtx(x, s) ds dx ≤ ε
∫

Ω
u2
x(x, t)dx+ g0

4ε

∫
Ω

∫ ∞
0

g(s)|ηtx(x, s)|2 ds dx. (4.34)

Inserting the estimates (4.33) and (4.34) into (4.31), then (4.30) is fulfilled.
Next, enlightened by [52], we introduce the functional

q(x) =


x− L1

2 , x ∈ [0, L1],
L1
2 −

L1+L3−L2
2(L2−L1) (x− L1), x ∈ (L1, L2),

x− L2+L3
2 , x ∈ [L2, L3].
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It is easy to see that q(x) is bounded: |q(x)| ≤M , where M = max{L1
2 ,

L3−L2
2 }.

We define the functionals

F1(t) = −
∫

Ω
q(x)ut

(
lux +

∫ ∞
0

g(s)ηtx(x, s) ds
)
dx, F2(t) = −

∫ L2

L1
q(x)vxvt dx,

then we have the following results.

Lemma 4.4 The functional F1(t) and F2(t) satisfy

d

dt
F1(t) ≤

( l + g0
2 + ε1M

2
) ∫

Ω
u2
t dx+

(
l2 + l2ε1

) ∫
Ω
u2
x dx

+M2µ2

4ε1

∫
Ω
z2(x, 1, t) dx+ (g0 + g0ε1)

∫
Ω

∫ ∞
0

g(s)|ηtx(x, s)|2 ds dx

−g(0)
4ε1

∫
Ω

∫ ∞
0

g′(s)|ηtx(x, s)|2 ds dx−
[ l + g0

2 q(x)u2
t

]
∂Ω

−
[q(x)

2
(
lux(x, t) +

∫ ∞
0

g(s)ηtx(x, s)ds
)2]

∂Ω

(4.35)

and
d

dt
F2(t) ≤ −L1 + L3 − L2

4(L2 − L1)
( ∫ L2

L1
v2
t dx+

∫ L2

L1
bv2
xdx

)
+ L1

4 v2
t (L1)

+L3 − L2
4 v2

t (L2) + b

4
(
(L3 − L2)v2

x(L2, t) + L1v
2
x(L1, t)

)
.

(4.36)

Proof : Taking the derivative of F1(t) with respect to t and using (4.10), we obtain

d

dt
F1(t) = −

∫
Ω
q(x)utt

(
lux +

∫ ∞
0

g(s)ηtx(x, s)ds
)
dx

−
∫

Ω
q(x)ut

(
luxt +

∫ ∞
0

g(s)ηtxt(x, s)ds
)
dx

= −
∫

Ω
q(x)

(
luxx +

∫ ∞
0

g(s)ηtxx(x, s) ds
)(
lux +

∫ ∞
0

g(s)ηtx(x, s)ds
)
dx

+µ
∫

Ω
q(x)z(x, 1, t)

(
lux +

∫ ∞
0

g(s)ηtx(x, s)ds
)
dx

−
∫

Ω
q(x)ut

(
luxt +

∫ ∞
0

g(s)ηtxt(x, s) ds
)
dx.

(4.37)

We pay attention to

−
∫

Ω
q(x)

(
luxx +

∫ ∞
0

g(s)ηtxx(x, s) ds
)(
lux +

∫ ∞
0

g(s)ηtx(x, s) ds
)
dx

= 1
2

∫
Ω
q′(x)

(
lux +

∫ ∞
0

g(s)ηtx(x, s) ds
)2
dx

−
[q(x)

2
(
lux +

∫ ∞
0

g(s)ηtx(x, s) ds
)2]

∂Ω
.

(4.38)
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4.4 Exponential stability

The last term in (4.37) can be treated as follows

−
∫

Ω
q(x)ut

(
luxt +

∫ ∞
0

g(s)ηtxt(x, s) ds
)
dx

= −l
∫

Ω
q(x)utuxt dx−

∫
Ω
q(x)ut

∫ ∞
0

g(s)ηtxt(x, s) ds dx

=
[
− l

2q(x)u2
t

]
∂Ω

+ l

2

∫
Ω
q′(x)u2

t dx−
∫

Ω
q(x)ut

∫ ∞
0

g(s)
(
ut − ηts

)
x
ds dx

=
[
− l

2q(x)u2
t

]
∂Ω

+ l

2

∫
Ω
q′(x)u2

t dx− g0

∫
Ω
q(x)ututx dx

+
∫

Ω
q(x)ut

∫ ∞
0

g(s)ηtsx(x, s) ds dx

=
[
− l + g0

2 q(x)u2
t

]
∂Ω

+ l + g0
2

∫
Ω
q′(x)u2

t dx−
∫

Ω
q(x)ut

∫ ∞
0

g′(s)ηtx ds dx,

(4.39)

where we used that
−
[ ∫

Ω
q(x)utg(s)ηtx(x, s) dx

]∞
0

= 0.

Inserting (4.38) and (4.39) in (4.37), we arrive at

d
dtF1(t) = −

[
q(x)

2

(
lux +

∫ ∞
0

g(s)ηtx(x, s) ds
)2]

∂Ω
−
[ l + g0

2 q(x)u2
t

]
∂Ω

+1
2

∫
Ω
q′(x)

(
lux +

∫ ∞
0

g(s)ηtx(x, s) ds
)2
dx

+µ
∫

Ω
q(x)z(x, 1, t)

(
lux +

∫ ∞
0

g(s)ηtx(x, s) ds
)
dx

+ l + g0
2

∫
Ω
q′(x)u2

t dx−
∫

Ω
q(x)ut

∫ ∞
0

g′(s)ηtx ds dx.

(4.40)

Using Malinowski and Cauchy-Schwarz inequalities, we have

1
2

∫
Ω

(
lux +

∫ ∞
0

g(s)ηtx(x, s)ds
)2
dx ≤ l2

∫
Ω
u2
x dx+ g0

∫
Ω

∫ ∞
0

g(s)|ηtx(x, s)|2 ds dx. (4.41)

Young’s inequality gives us that for any ε1 > 0,∣∣∣µ∫
Ω
q(x)z(x, 1, t)

(
lux +

∫ ∞
0

g(s)ηtx(x, s)ds
)

dx
∣∣∣ ≤ M2µ2

4ε1

∫
Ω
z2(x, 1, t) dx+ l2ε1

∫
Ω
u2
x(x, t) dx

+g0ε1

∫
Ω

∫ ∞
0

g(s)|ηtx(x, s)|2 ds dx.
(4.42)

It is clear that∣∣∣∣∫
Ω
q(x)ut

∫ ∞
0

g′(s)ηtx dsdx
∣∣∣∣ ≤ ε1M

2
∫

Ω
u2
t dx−

g(0)
4ε1

∫
Ω

∫ ∞
0

g′(s)|ηtx(x, s)|2 ds dx. (4.43)

Inserting (4.41)-(4.43) into (4.40), we obtain (4.35).
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4.4 Exponential stability

By the same method, taking the derivative of F1(t) with respect to t, we obtain
d

dt
F2(t) = −

∫ L2

L1
q(x)vxtvt dx−

∫ L2

L1
q(x)vxvtt dx

=
[
− 1

2q(x)v2
t

]L2

L1
+ 1

2

∫ L2

L1
q′(x)v2

t dx+ 1
2

∫ L2

L1
bq′(x)v2

x dx

+
[
− b

2q(x)v2
x

]L2

L1

≤ −L1 + L3 − L2
4(L2 − L1)

( ∫ L2

L1
v2
t dx+

∫ L2

L1
bv2
x dx

)
+ L1

4 v2
t (L1)

+L3 − L2
4 v2

t (L2) + b

4
(
(L3 − L2)v2

x(L2, t) + L1v
2
x(L1, t)

)
.

Thus, the proof of Lemma 4.4 is complete.
We define the functional

F3(t) = τ

∫
Ω

∫ 1

0
e−τρz2(x, ρ, t) dρ dx,

then we have the following estimate.

Lemma 4.5 The functional F3(t) satisfies
d

dt
F3(t) ≤ −c2

( ∫
Ω
z2(x, 1, t) dx+ τ

∫
Ω

∫ 1

0
z2(x, ρ, t) dρ dx

)
+
∫

Ω
u2
t (x, t) dx.

Proof :
d

dt
F3(t) = 2τ

∫ 1

0

∫
Ω
e−τρzt(x, ρ, t)z(x, ρ, t) dρ dx

= −2
∫ 1

0

∫
Ω
e−τρzρ(x, ρ, t)z(x, ρ, t) dρ dx

= −
∫ 1

0

∫
Ω
e−τρ

∂

∂ρ

(
z2(x, ρ, t)

)
dρ dx

= −τ
∫ 1

0

∫
Ω
e−τρz2(x, ρ, t)dρdx+

∫
Ω
u2
t (x, t)dx− e−τ

∫
Ω
z2(x, 1, t) dx

≤ −e−τ
(
τ

∫ 1

0

∫
Ω
z2(x, ρ, t) dρ dx+

∫
Ω
z2(x, 1, t)dx

)
+
∫

Ω
u2
t (x, t) dx.

We define the functional

F4(t) = −
∫

Ω
ut

∫ ∞
0

g(s)(u(t)− u(t− s)) ds dx,

then we have the following estimate.

Lemma 4.6 The functional F4(t) satisfies
d

dt
F4(t) ≤ −(g0 − δ2)

∫
Ω
u2
t dx+ δ2l

2
∫

Ω
u2
x dx+ δ2µ

∫
Ω
z2(x, 1, t) dx

+
(
g0 + g0

4δ2
+ µg0L

2

2δ2

) ∫
Ω

∫ ∞
0

g(s)|ηtx(x, s)|2 ds dx

−g(0)L2

δ2

∫
Ω

∫ ∞
0

g′(s)|ηtx(x, s)|2 ds dx.

(4.44)
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4.4 Exponential stability

Proof : Taking the derivative of F4(t) with respect to t and using (4.10), we have

d

dt
F4(t) = −

∫
Ω

(
luxx +

∫ ∞
0

g(s)ηtxx(x, s) ds− µz(x, 1, t)
)

×
∫ ∞

0
g(s)(u(t)− u(t− s)) ds dx−

∫
Ω
ut

∫ ∞
0

g(s)(ut(t)− ut(t− s)) ds dx

=
∫

Ω
lux

∫ ∞
0

g(s)(ux(t)− ux(t− s)) ds dx− g0

∫
Ω
u2
tdx

+
∫

Ω
ut

∫ ∞
0

g(s)ηts(s) ds dx+
∫

Ω

( ∫ ∞
0

g(s)(ux(t)− ux(t− s)) dxs
)2

dx

+
∫

Ω
µz(x, 1, t)

∫ ∞
0

g(s)(u(t)− u(t− s)) ds dx.

(4.45)

Using Young’s inequality and (4.32), we obtain for any δ2 > 0,∫
Ω
lux

∫ ∞
0

g(s)(ux(t)− ux(t− s)) ds dx ≤ δ2l2
∫

Ω
u2
x dx+ g0

4δ2

∫
Ω

∫ ∞
0

g(s)|ηtx(x, s)|2ds dx, (4.46)

∫
Ω
µz(x, 1, t)

∫ ∞
0

g(s)(u(t)−u(t−s)) ds dx ≤ δ2µ

∫
Ω
z2(x, 1, t) dx+µg0L

4δ2

∫
Ω

∫ ∞
0

g(s)|ηtx(x, s)|2 ds dx.

We notice that∫
Ω

(∫ ∞
0

g(s)(ux(t)− ux(t− s))ds
)2
dx =

∫
Ω

(∫ ∞
0

√
g(s)

√
g(s)(ux(t)− ux(t− s)) ds

)2
dx

≤
∫

Ω

∫ ∞
0

g(s) ds
(∫ ∞

0
g(s)|ηtx(x, s)|2 ds

)
dx

≤ g0

∫
Ω

∫ ∞
0

g(s)|ηtx(x, s)|2 ds dx

(4.47)

and ∫
Ω
ut

∫ ∞
0

g(s)ηts(s) ds dx = −
∫

Ω
ut

∫ ∞
0

g′(s)ηt(s) ds dx

≤ δ2

∫
Ω
u2
t dx−

g(0)L2

4δ2

∫
Ω

∫ ∞
0

g′(s)|ηtx(x, s)|2 ds dx.
(4.48)

Inserting the estimates (4.46)-(4.48) into (4.45), we obtain (4.44). The proof is complete.
Proof : (of theorem 4.1) We define the Lyapunov functional

L (t) = N1E(t) +N2D(t) + F1(t) +N4F2(t) +N5F3(t) +N6F4(t), (4.49)

where N1, N2, N4, N5 and N6 are positive constants that will be fixed later.
Taking the derivative of (4.49) with respect to t and taking advantage of the above lemmas,

74



4.4 Exponential stability

we have
d

dt
L (t) ≤ −

[
N6(g0 − δ2)−N2 −

( l + g0
2 + ε1M

2
)
−N5 −N1µ

] ∫
Ω
u2
t dx

−
[
N5c2 −

N2µ
2

4ε − M2µ2

4ε1
−N6δ2µ

] ∫
Ω
z2(x, 1, t) dx

−
[
N2(l − Lε− ε)− (l2 + l2ε1)−N6δ2l

2
] ∫

Ω
u2
x dx

−
[b(L1 + L3 − L2)

4(L2 − L1) N4 +N2b
] ∫ L2

L1
v2
x dx

−
[L1 + L3 − L2

4(L2 − L1) N4 −N2
] ∫ L2

L1
v2
t dx

−(b−N4) b4
(
(L3 − L2)v2

x(L2, t) + L1v
2
x(L1, t)

)
−(a−N4)

[L1
4 v2

t (L1, t) + L3 − L2
4 v2

t (L2, t)
]

+c(N2, N6)
∫

Ω

∫ ∞
0

g(s)|ηtx(x, s)|2 ds dx

+
(N1

2 −
g(0)
4ε1
− N6g(0)L

4δ2

) ∫
Ω

∫ ∞
0

g′(s)|ηtx(x, s)|2 ds dx.

(4.50)

At this moment, we wish all coefficients except the last two in (4.50) will be negative. We want to
choose N2 and N4 to ensure that

a−N4 ≥ 0, b−N4 ≥ 0,
L1 + L3 − L2
4(L2 − L1) N4 −N2 > 0.

For this purpose, since 8l(L2 − L1)
L1 + L3 − L2

< min{a, b} we first choose N4 satisfying

8l(L2 − L1)
L1 + L3 − L2

< N4 ≤ min{a, b}.

Once N4 is fixed, we pick N2 satisfying

2l < N2 <
L1 + L3 − L2
4(L2 − L1) N4.

Then we take ε and ε1 small enough, and δ2 <
1

2N6
we have

N2(l − Lε− ε)− 2l2ε1 >
3
2 l

2.

Once ε and ε1 are fixed, we take N5 satisfying

N5 > max
{2N2µ

2

εc2
,
2M2µ2

ε1c2

}
,

and δ2 <
N5c2
8N6µ

such that

N5c2 −
N2µ

2

4ε − M2µ2

4ε1
>

3
8N5c2.
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4.4 Exponential stability

Further, we take δ2 <
g0
2 we choose N6 satisfying

N6 >
2N2
g0

+ l + g0
g0

+ 2ε1M
2

g0
+ 2N5

g0
+ 2N1µ

g0
.

Then we have
N6 > max

{2N2
g0

,
l + g0
g0

+ 2ε1M
2

g0
,
2N5
g0

,
2N1µ

g0

}
.

Then, we pick δ2 satisfying
δ2 < min

{g0
2 ,

N5c2
8N6µ

,
1

2N6

}
,

N5c2 −
N2µ

2

4ε − M2µ2

4ε1
−N6δ2µ ≥ 0.

Once
N2(l − L2ε− ε)− (l2 + l2ε1)−N6δ2l

2 ≥ 0.

Finally, choosing N1 large enough such that the first and the last coefficients in (4.50) is positive.
From the above, we deduce that there exist two positive constants α1 and α2 such that (4.50)

becomes
d

dt
L (t) ≤ −α1E(t) + α2

∫
Ω

∫ ∞
0

g(s)|ηtx(x, s)|2 ds dx

≤ −α1E(t)− α2
δ

∫
Ω

∫ ∞
0

g′(s)|ηtx(x, s)|2 ds dx

≤ −α1E(t)− α3E
′(t).

(4.51)

That is
(L (t) + α3E(t))′ ≤ −α1E(t), (4.52)

where α3 > 0. Denote E(t) = L (t) + α3E(t), then it is easy to see that

E(t) ∼ E(t),

i.e., there exist two positive constants β1, β2 such that

β1 E(t) ≤ E(t) ≤ β2E(t), ∀t ≥ 0. (4.53)

Combining (4.52) and (4.53), we deduce that there exists γ1 > 0 for which the estimate

dE(t)
dt
≤ −γ1E(t), ∀t ≥ 0, (4.54)

since
E(t)(t) ≤ E(0)e−γ1t, ∀t ≥ 0. (4.55)

Consequently, using (4.55) and (4.53), we find

E(t) ≤ 1
β1

E(t) ≤ 1
β1

E(0)e−γ1t, ∀t ≥ 0. (4.56)

Thus, the proof of Theorem 4.1 is complete.
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Chapter 5

Blow-up of result in a nonlinear
higher-order equation with delay and
source term

1 Introduction
In this chapter we are concerned with the following initial boundary value problem

utt(x, t) + Au(x, t) + µ1|ut(x, t)|m−2ut(x, t)
+µ2|z(x, 1, t)|m−2z(x, 1, t) = b|u(x, t)|p−2u(x, t), in Ω×]0,+∞[,
Dαu(x, t) = 0, |α| ≤ k − 1, on ∂Ω× [0,+∞[,
u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,
ut(x, t− τ) = f0(x, t− τ), in Ω×]0, τ [,

(5.1)

where A = (−∆)k, k ≥ 1, p > 1 are real numbers, Ω is a bounded domain in Rn, n ∈ N∗, with
a smooth boundary ∂Ω, ∆ is the Laplace operator in Rn, α = (α1, α2, ..., αn), |α| = Σn

i=1αi,

Dα = ∂|α|

∂α1x1∂α2x2...∂αnxn
, x = (x1, x2, ..., xn), b, µ1 and µ2 are positives real numbers, τ > 0 is

a time delay, and the initial data (u0, u1, f0) are in a suitable function space.
Without delay (i.e., µ2 = 0),

utt −∆u+ ut|ut|m−2 = u|u|p−2,

has been extensively studied by many mathematicians. It is well known that in the further absence
of the damping mechanism ut|ut|m−2, the source term u|u|p−2 causes finite-time blow-up of solutions
with negative initial energy. In contrast, in the absence of the source term, the damping term assures
global existence for arbitrary initial data (see [26], [33]). The interaction between the damping
and source terms was first considered by Levine [40] and [41] for linear damping (m = 2). Levine
showed that solutions with negative initial energy blow up in finite time. Georgiev and Todorova
[22] extended Levine’s result to nonlinear damping (m > 2). In their work, the authors introduced
a new method and determined relations between m and p for which there is global existence and
other relations between m and p for which there is finite-time blow-up. Specifically, blow up in
finite time if p > m and the initial energy is sufficiently negative. Messaoudi [56] extended the
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blow-up result of [22] to solutions with only negative initial energy. For related results, we refer
the reader to Levine and Serrin [38], Levine and Ro Park [39] , Vitillaro [69], Yang [74] and
Messaoudi and Said-Houari [57].
In this paper we use some techniques from [28] to show that blow-up for suitably chosen initial
data, any classical solution blows up in finite time. This paper is organized as follows. In section
2, we establish some preliminary results. Section 3 is devoted to the blow-up result.

2 Preliminary results
In this section, we present some materials needed for our main results.

Lemma 2.1 Let q be a real number with 2 ≤ q < +∞ if n ≤ 2k and 2 ≤ q ≤ 2n
n− 2k if n > 2s.

Then there is a constant C∗ depending on Ω and q such that

‖u‖q ≤ C∗‖A
1
2u‖2, ∀u ∈ Hk

0 (Ω).

Lemma 2.2 Suppose that

2 ≤ p < +∞ (n ≤ 2k) or 2 ≤ p ≤ 2n/(n− 2k) (n > 2k), (5.2)

holds. Then there exists a positive constant C depending on Ω only such that

‖u‖sp ≤ C(‖u‖pp + ‖A
1
2u‖22), (5.3)

for any u ∈ Hk
0 (Ω) and 2 ≤ s ≤ p.

Proof : If ‖u‖p ≤ 1 then ‖u‖sp ≤ ‖u‖2p ≤ C2
∗‖A

1
2u‖22 by Sobolev embedding the theorems. If

‖u‖p > 1 then ‖u‖sp ≤ ‖u‖pp.
Together with the two cases, we obtain (5.3).

Now we introduce, as in Nicaise and Pignotti [64], the new variable

z(x, ρ, t) = ut(x, t− ρτ), x ∈ Ω, ρ ∈ (0, 1), t > 0. (5.4)

Then, we have
τzt(x, ρ, t) + zρ(x, ρ, t) = 0, in Ω× (0, 1)× (0,+∞). (5.5)

Therefore, problem (5.1) is equivalent to

utt(x, t) + Au(x, t) + µ1|ut(x, t)|m−2ut(x, t)
+µ2|z(x, 1, t)|m−2z(x, 1, t) = b|u(x, t)|p−2u(x, t), in Ω×]0,+∞[,
τzt(x, ρ, t) + zρ(x, ρ, t) = 0, in Ω×]0, 1[×]0,+∞[
Dαu(x, t) = 0, |α| ≤ σ − 1, on ∂Ω× [0,+∞[,
z(x, 0, t) = ut(x, t), in Ω× [0,∞[
u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω
z(x, ρ, 0) = f0(x, t− ρτ), in Ω×]0, 1[.

(5.6)
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Theorem 2.3 (Local existence) Suppose that m > 1, p > 2 and k ≥ 1, let u0 ∈ H2k(Ω) ∩Hk
0 (Ω),

u1 ∈ Hk
0 (Ω) and f0 ∈ Hk

0 (Ω× (0, 1)) satisfy the compatibility condition

f0(., 0) = u1.

Assume further that

max{p,m} ≤ 2(n− 1)
n− 2 and l ≤ 2

n− 2 , if n ≥ 3,

and
p satisfies 2 ≤ p < +∞ if n ≤ 2k and 2 ≤ p ≤ 2(n− k)

n− 2k if n > 2k.

Then problem (5.6) has a unique local solution

u ∈ C([0, T );Hk
0 (Ω)),

ut ∈ C([0, T );Hk
0 (Ω)) ∩ Lm((0, T )× Ω),

utt ∈ L2([0, T ); L2(Ω)),

z ∈ C([0, T );L2(Ω× (0, 1))),

for some T > 0.

We define the energy associated to the solution of system (5.6) by

E(t) = 1
2‖ut‖

2
2 + 1

2‖A
1
2u‖22 −

b

p
‖u‖pp + ξ

∫
Ω

∫ 1

0
|z(x, ρ, t)|m dρ dx, (5.7)

where ξ is a positive constant such that

τ
µ2
m

(m− 1) < ξ < τ
(
µ1 −

µ2
m

)
, (5.8)

and µ2 < mµ1.

Lemma 2.4 Let (u,z) be a solution of the problem (5.6). Then, there exists C > 0 such that

E′(t) ≤ −C
[ ∫

Ω
|z(x, 1, t)|m dx+ ‖ut(x, t)‖mm

]
≤ 0. (5.9)

Proof : Multiplying the first equation in (5.6) by ut and integrating over Ω, using integration by
parts, we get

d

dt

(1
2‖ut‖

2
2 + 1

2‖A
1
2u‖22 − b

p
‖u‖pp

)
+ µ1‖ut‖mm

+µ2

∫
Ω
|z(x, 1, t)|m−2z(x, 1, t)ut(x, t) dx = 0.

(5.10)
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We multiply the second equation in (5.6) by ξ|z(x, ρ, t)|m−2z(x, ρ, t) and integrate the result over
Ω× (0, 1), to obtain

ξ

∫
Ω

∫ 1

0
zt(x, ρ, t)|z(x, ρ, t)|m−2z(x, ρ, t) dρ dx

= − ξ
τ

∫
Ω

∫ 1

0
zρ(x, ρ, t)|z(x, ρ, t)|m−2z(x, ρ, t) dρ dx

= − ξ
τ

∫
Ω

∫ 1

0

∂z(x, ρ, t)
∂ρ

|z(x, ρ, t)|m−2z(x, ρ, t) dρ dx

= − ξ

τm

∫
Ω

∫ 1

0

∂

∂ρ
|z(x, ρ, t)|m dρ dx

= − ξ

τm

∫
Ω

(|z(x, 1, t)|m − |z(x, 0, t)|m) dx.

(5.11)

Hence
ξ
d

dt

∫
Ω

∫ 1

0
|z(x, ρ, t)|m dρ dx = − ξ

τ

∫
Ω
|z(x, 1, t)|mdx+ ξ

τ

∫
Ω
|ut(x, t)|m dx. (5.12)

Combining (5.10) and (5.12), we obtain

E′(t) = − ξ
τ

∫
Ω
|z(x, 1, t)|m dx− (µ1 −

ξ

τ
)‖ut(x, t)‖mm − µ2

∫
Ω
|z(x, 1, t)|m−2z(x, 1, t)ut(x, t) dx, (5.13)

and using Young’s inequality, we have

−µ2

∫
Ω
|z(x, 1, t)|m−2z(x, 1, t)ut(x, t) dx ≤ µ2

[ 1
m
δm‖ut(x, t)‖mm + m− 1

m

1
δ

m
m−1

∫
Ω
|z(x, 1, t)|m dx

]
.

Thus, by choosing δ
−

m

m− 1 = mε

m− 1 , then

−µ2

∫
Ω
|z(x, 1, t)|m−2z(x, 1, t)ut(x, t) dx ≤ µ2

[
ε

∫
Ω
|z(x, 1, t)|m dx + 1

m

( mε

m− 1
)1−m

‖ut(x, t)‖mm
]
,

with ε = m− 1
m

, we have

−µ2

∫
Ω
|z(x, 1, t)|m−2z(x, 1, t)ut(x, t) dx ≤

µ2
m

[
(m− 1)

∫
Ω
|z(x, 1, t)|m dx + ‖ut(x, t)‖mm

]
. (5.14)

Hence, we get from (5.13)

E′(t) ≤ −
( ξ
τ
− µ2
m

(m− 1)
) ∫

Ω
|z(x, 1, t)|m dx−

(
µ1 −

ξ

τ
− µ2
m

)
‖ut(x, t)‖mm

≤ −C
( ∫

Ω
|z(x, 1, t)|m dx+ ‖ut(x, t)‖mm

)
,

(5.15)

where
C = min

{ ξ
τ
− µ2
m

(m− 1), µ1 −
ξ

τ
− µ2
m

}
,

which is positive by (5.8). This completes the proof of the Lemma.
We set

H(t) = −E(t). (5.16)

80



5.3 Blow-up

3 Blow-up
In this section we state and prove our main result.

Theorem 3.1 Suppose thatm > 1, p > max{2,m} satisfying (5.2), let u0 ∈ H2k(Ω)∩Hk
0 (Ω), u1 ∈

Hk
0 (Ω) and f0 ∈ Hk

0 (Ω× (0, 1)). Assume further that

E(0) = 1
2‖u1‖22 + 1

2‖A
1
2u0‖22 −

b

p
‖u0‖pp + ξ

∫
Ω

∫ 1

0
|f0(x,−ρτ |m dρ dx < 0.

Then the solution of (5.6) blow up in finite time, i.e. there exists T0 < +∞ such that

lim
t→T−0

(‖ut‖22 + ‖A
1
2u‖22 + ‖u‖pp) =∞.

The proof of Theorem 3.1 relies on the following

Corolary 3.2 Let the assumptions of the Lemma 2.2 hold. Then we have the following

‖u‖sp ≤ C
(
−H(t)−‖ut‖22−‖A

1
2u‖22+‖u‖pp−ξ

∫
Ω

∫ 1

0
|z(x, ρ, t)|m dρ dx

)
, for all t ∈ [0, T ), (5.17)

for any u(., t) ∈ H1
0 (Ω) and 2 ≤ s ≤ p.

Proof : Assume that there exists some positive constant C such that for t > 0 the solution u(t)
of (5.6) satisfies

‖ut‖22 + ‖A
1
2u‖22 + ‖u‖pp ≤ C. (5.18)

Hence,
0 < H(0) < H(t) < b

p
‖u‖pp. (5.19)

We then define the function
G(t) =

∫
Ω
utu dx,

with
G′(t) =

∫
Ω
uuttdx+

∫
Ω
|ut|2dx. (5.20)

By using the equation of (5.6), we arrive at

G′(t) = ‖ut‖22 + b‖u‖pp − ‖A
1
2u‖22 − µ1

∫
Ω
|ut(x, t)|m−2ut(x, t)u(x, t) dx

−µ2

∫
Ω
|z(x, 1, t)|m−2z(x, 1, t)u(x, t) dx.

(5.21)

By Young’s inequality, we obtain

µ1

∫
Ω
|ut(x, t)|m−2ut(x, t)u(x, t) dx ≤ µ1

[δm
m
‖u‖mm + (m− 1)δ

−m
m−1

m
‖ut‖mm

]
, (5.22)

similarly, we have

µ2

∫
Ω
|z(x, 1, t)|m−2z(x, 1, t)u(x, t) dx ≤ µ2

[δm
m
‖u‖mm + (m− 1)δ

−m
m−1

m
‖z(x, 1, t)‖mm

]
. (5.23)
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We then define
L(t) = H1−α(t) + εG(t), (5.24)

for ε small to be chosen later and

0 < α < min
{ 1
l + 2 −

1
p
,
p−m
p(m− 1)

}
.

By taking a derivative of (5.24) and using (5.21) , (5.22) and (5.23) we obtain

L′(t) = (1− α)H ′(t)H−α(t) + εG′(t)

≥ (1− α)H ′(t)H−α(t)− ε(µ1 + µ2)(m− 1)δ
−m
m−1

m
(‖ut‖mm + ‖z(x, 1, t)‖mm)

+ε‖ut‖22 + bε‖u‖pp − ε‖A
1
2u‖22 − ε(µ1 + µ2) δmm ‖u‖

m
m

≥
[
(1− α)H−α(t)− ε(µ1 + µ2)(m− 1)δ

−m
m−1

mC

]
H ′(t) + ε

l + 1‖ut‖
l+2
l+2 + bε‖u‖pp

−ε‖A
1
2u‖22 − ε(µ1 + µ2)δ

m

m
‖u‖mm.

(5.25)

Of course (5.25) remains valid even if δ is time dependent. Therefore by taking δ so that

δ
−m
m−1 = kH−α(t),

for large k to be specified later, and substituting in (5.25) we arrive at

L′(t) ≥
[
(1− α)− ε(µ1 + µ2)m−1

mC k
]
H−α(t)H ′(t) + ε

l+1‖ut‖
l+2
l+2 + bε‖u‖pp

−ε‖A
1
2u‖22 − ε(µ1 + µ2)k

1−m

m
Hα(m−1)(t)‖u‖mm.

(5.26)

By exploiting (5.19) and the inequality ‖u‖mm ≤ c‖u‖mp , we obtain

Hα(m−1)(t) ‖u‖mm ≤ c
( b
p

)α(m−1)
‖u‖αp(m−1)+m

p , (5.27)

inserting (5.27) in (5.26), using (5.7) and (5.16), we get, for 0 < β < 1,

L′(t) ≥
[
(1− α)− ε(µ1 + µ2)m− 1

mC
k
]
H−α(t)H ′(t) + ε‖ut‖22

+bβε‖u‖pp − ε‖A
1
2u‖22 − εc

( b
p

)α(m−1)
(µ1 + µ2)k

1−m

m
‖u‖αp(m−1)+m

p

+ε(1− β)p
[
H(t) + 1

2‖ut‖
2
2 + 1

2‖A
1
2u‖22 + ξ

∫
Ω

∫ 1

0
|z(x, ρ, t)|m dρ dx

]
≥
[
(1− α)− ε(µ1 + µ2)m−1

mC k
]
H−α(t)H ′(t) + ε

(
1 + p(1− β)

2

)
‖ut‖22

+ε
(
p(1−β)

2 − 1
)
‖A 1

2u‖22 + bβε‖u‖pp + ε(1− β)pH(t)

+ε(1− β)pξ
∫

Ω

∫ 1

0
|z(x, ρ, t)|m dρ dx − εc

( b
p

)α(m−1)
(µ1 + µ2)k

1−m

m
‖u‖αp(m−1)+m

p .

(5.28)
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Then we use Corollary 3.2, for s = αp(m− 1) +m ≤ p, to deduce that

L′(t) ≥
[
(1− α)− ε(µ1 + µ2)m−1

mC k
]
H−α(t)H ′(t) + ε

(
1
l+1 + p(1−β)

l+2

)
‖ut‖l+2

l+2

+ε
(
p(1−β)

2 − 1
)
‖A

1
2u‖22 + bβε‖u‖pp

+pε(1− β)H(t) + pε(1− β)ξ
∫

Ω

∫ 1

0
|z(x, ρ, t)|mdρ dx

−εk1−mC1
{
−H(t)− ‖ut‖22 + ‖u‖pp − ξ

∫
Ω

∫ 1

0
|z(x, ρ, t)|m dρ dx

}
.

(5.29)

Consequently, we obtain

L′(t) ≥
[
(1− α)− ε(µ1 + µ2)m−1

mC k
]
H−α(t)H ′(t)

+ε
(
1 + p(1−β)

l+2 + C1k
1−m

)
‖ut‖22

+ε
(
p(1−β)

2 − 1
)
‖A

1
2u‖22 + ε

(
bβ − C1k

1−m
)
‖u‖pp

+εξ
(
p(1− β) + C1k

1−m
) ∫

Ω

∫ 1

0
|z(x, ρ, t)|mdρ dx

+ε
(
p(1− β) + C1k

1−m
)
H(t),

(5.30)

where
C1 = c

( b
p

)α(m−1)µ1 + µ2
m

,

p(1− β)
2 − 1 > 0,

and we choose k so large that
bβ − C1k

1−m > 0.

Finally, we pick ε so small so that

(1− α)− ε(µ1 + µ2)m− 1
mC

k > 0,

and
L(0) = H1−α(0) + ε

∫
Ω
u1u0dx > 0.

Therefore (5.30) takes the form

L′(t) ≥ λ
[
‖ut‖22 + ‖A

1
2u‖22 + ‖u‖pp +H(t) + ξ

∫
Ω

∫ 1

0
|z(x, ρ, t)|mdρdx

]
. (5.31)

Consequently, we have
L(t) ≥ L(0), t ≥ 0.

We now estimate ∣∣∣ ∫
Ω
utudx

∣∣∣ ≤ ‖ut‖2‖u‖2 ≤ C‖ut‖2‖u‖p, (5.32)

which implies ∣∣∣ ∫
Ω
utudx

∣∣∣ 1
1−α ≤ C‖ut‖

1
1−α
2 ‖u‖

1
1−α
p . (5.33)

83



5.3 Blow-up

Using Young’s inequality then yields
∣∣∣ ∫Ω utu dx∣∣∣ 1

1−α ≤ C
[
‖ut‖

β1
1−α
2 + ‖u‖p

β2
1−α

]
, (5.34)

for 1
β1

+ 1
β2

= 1, we take β1 = 2(1− α) which gives β2
1−α = 2

1−2α .
Therefore, (5.34) becomes ∣∣∣ ∫

Ω
utu dx

∣∣∣ 1
1−α ≤ C

[
‖ut‖22 + ‖u‖sp

]
. (5.35)

Using (5.35) and Corollary 3.2, for s = 2
1−2α ≤ p gives

∣∣∣ ∫
Ω
utu dx

∣∣∣ 1
1−α ≤ C

(
H(t) + ‖ut‖l+2

l+2 + ‖A
1
2u‖22 + ‖u‖pp + ξ

∫
Ω

∫ 1

0
|z(x, ρ, t)|mdρ dx

)
. (5.36)

Therefore, we have

L
1

1−α (t) =
(
H1−α(t) + εG(t)

) 1
1−α

≤ C
(
H(t) + ‖ut‖l+2

l+2 + ‖A
1
2u‖22 + ‖u‖pp + ξ

∫
Ω

∫ 1

0
|z(x, ρ, t)|mdρ dx

)
, t > 0.

(5.37)

Combining (5.31) and (5.37), we arrive at

L′(t) ≥ ΛL
1

1−α (t), t > 0, (5.38)

where Λ is a positive constant depending only on λ and C.
A simple integration of (5.38) over (0, t) yields

L
α

1−α (t) ≥ 1
L−

α
1−α (0)− Λαt/(1− α)

, t > 0.

Therefore, L(t) blows up in time
T0 ≤

1− α
ΛαL

α
1−α (0)

.

Furthermore, we have

lim
t→T−0

(‖ut‖l+2
l+2 + ‖∇u‖22 + ‖∇ut‖22 + ‖u‖pp) =∞.

This leads to a contradiction with (5.18). Thus, the solution of problem (5.6) blows up in finite
time. This completes the proof.
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