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Notations

1. N� denotes the set of non-zero natural numbers.

2. We denote by P the set of prime numbers.

3. We denote by pn the n-th prime number.

4. We de�ne the degree of an integer a denoted by 
 (a), to be the number of prime

factors of a counting with multiplicity.

5. We denote by p (a) the last prime factor of a.

6. We denote by A a set of primitive integers.

7. We denote by deg (A) the degree of A, it is de�ned as the maximum degree of its

terms.

8. Am = fa : a 2 A, the prime factors of a are � pmg.

9. A0m = fa : a 2 Am; pm j ag.

10. A00m = fa=pm : a 2 A0mg.

11. lim inf
n�!1

(an) indicate the limit inferior of an as n!1.

12. lim sup
n�!1

(an) indicate the limit superior of an as n!1.

13.
P

n�x indicate the sum of all integers lying in the interval [1, x].

14.
Q
p�x indecate the product of the primes numbers lying in the interval [2, x].

15. dA indecate the asymptotic density of A.

16. dA indecate the upper asymptotic density of A.

17. dA indecate the lower asymptotic density of A.

18. �A indecate the logarithmic density of A.

19. �A indecate the upper logarithmic density of A.

20. �A indecate the lower logarithmic density of A.
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21. For integers n and m, m j n means "m divides n" and m - n means "m does not

divide n".

22. bxc denotes the unique integer k such that k � x < k + 1 (the integer part of real
x).

23. f = O(g) and f � g the notations of Landau and Vinogradov means that there

exists a constant C > 0 and a real x0 such that for any x � x0, we have

jf(x)j � Cg(x).

24. f = o(g) means that limx!+1
jf(x)j
g (x)

= 0.

25. � (x) represents Tchébichev function de�ned by � (x) =
P
p�x
log p and � (x) = 0 for

x < 0.

26. ' (n) represents Euler�s function counts the integers m � n such that (m, n) = 1

' (n) =
P

m�n, (m;n)=1
1.

27. � (x) represents the function counts prime numbers less than or equal x.
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Résumé

Une suite A d�entiers strictement positifs est dite primitive si et seulement si aucun

élément de A ne divise les autres. Erd½os a prouvé que la série S (A) =
P

a2A
1

a log a
,

où A est une suite primitive di¤érente de f1g, converge. De plus, il a conjecturé queP
a2A

1
a log a

�
P

a2P
1

p log p
, où P représente l�ensemble des nombres premiers. A�n de

prouver cette conjecture, B. Farhi a établi la série de la forme S (A, x) =
P

a2A
1

a(log a+x)
.

Le but de cette thèse est d�introduire des résultats autour de cette dernière somme et sa

relation avec la conjecture d�Erd½os.
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Summary

A sequence A of structly positive integers is said to be primitive if no term of A divides
any other. Erd½os showed that the series S (A) =

P
a2A

1
a log a

, where A is a primitive

sequence di¤erent from f1g, is convergent. Moreover, he conjectured that
P

a2A
1

a log a
�P

a2P
1

p log p
where P denotes the set of prime numbers. To prove this conjecture, B. Farhi

established the series of the form S (A, x) =
P

a2A
1

a(log a+x)
. The purpose of this thesis

is to introduce results on this last sum and its relation with the Erd½os conjecture.
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Introduction

A sequenceA of positive integers is said to be primitive if no element of A divides another.
We can see directly that the set of primes P = (pn)n�1 is primitive. In the beginning, the
research was focused on the density d of these sequences. In 1934, Bescovitch proved that

for every � > 0 there exists a primitive sequenceA, such that the upper asymptotic density
veri�ed dA >1

2
��, see [8]. In the same subject, to check that the lower asymptotic density

equal to zero (dA = 0), Erd½os in [5], proved that if a sequence A is primitive di¤erent to
f1g then the series

S (A) =
X
a2A

1

a log a

is convergent, and its sum is bounded above by an absolute constant C. In 1993, Erd½os

and Zhang showed in [6] that C � 1:84. Years later, Clark was able to �nd in [2], the best
bounder of C so far, he proved that C � e ' 1:78 where  denoted the Euler constant,
but for A = P, it is well known that S (P) = 1:6366. In 1988, Erd½os conjectured if S (P)
is the maximum value of the sum S (A) by proposing the following

Conjecture 0.1 (Erd½os): For any primitive sequence A 6= f1g, we have:X
a2A

1

a log a
�
X
p2P

1

p log p
.

In their paper [6], Erd½os and Zhang showed that this conjecture is equivalent to the

following one which deals with �nite sums:

Conjecture 0.2 (Erd½os and Zhang): For any primitive sequence A 6= f1g and any pos-
itive integer n, we have: X

a2A,a�n

1

a log a
�

X
p2P,p�n

1

p log p
.

In 1991, Zhang [16], proved that for each k � 2, S (Nk) < S (N1) = C where Nk =
fn : 
 (n) = kg, 
 (n) is the number of prime factors of n counted with repetition, and in

8
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1993, he showed that the conjecture holds for the particular case of homogenous sequences,

see [17].

Recently, in 2017, still for the same objective which is to �nd a proof of this conjec-

ture,B. Farhi, in [7], established the following analogue sum

S(A, x) =
X
a2A

1

a (log a+ x)
,

where x is a �xed non-negative real number and A is always a primitive sequence di¤erent
to f1g.
In this thesis, we study precisely this series and we give some results on its relationship

with the sum

S (P, x) =
X
p2P

1

p (log p+ x)
,

where P denoted the sequence of prime numbers, more exactly, we study the inequality

S(A, x) � S(P, x). As a remark, if we take x = 0, then we fall in the negation of Erd½os
conjecture which is S(A, 0) � S(P, 0).
Our work organized into four chapters. The �rst is devoted to remind the main

de�nitions and necessary theorems that we need in next chapters, especially those related

to the density of sets of positive integers.

The second chapter is dedicated to two main theorems around this conjecture. So,

we started by presenting the proof of Erd½os conjecture for the homogeneous primitive

sequences by Zhang in [17]. After that, we introduced an improved proof of his principal

theorem in [16] where he proved the conjecture of Erd½os for the sequences of degree less

than or equal to 4. Our proof is based on drastically reducing operations, which gives us

hope to raise the degree greater than 4.

In chapter three, we started by introducing improved and more precise results than

that appearing in paper [9] of I. Laib and al, and we �nished by generalizing the principal

theorem in the same paper for any degree d.

In the last chapter, by using the primitive sequences of the form

Bkd = fp�11 p�22 : : : p
�k
k j�1, : : : ,�k 2 N, �1 + : : :+ �k = dg [ fpn jpn 2 P, n > kg ,

and its properties we study the inequality S(A, x) � S(P, x) for the largest values of x,
we also used the multinomial formula.



Chapter 1

Preliminaries

In this chapter we recall some main tools used in number theory, such as Abel�s summation

formula and Stirling�s formula then we introduce the density of a set of positive integers

and its properties. More particularly, density of primitive sequences.

1.1 Abel�s summation formula

Theorem 1.1 [1] Let fa (n)gn2N� be a sequence of complex numbers, de�ne the sum

A (t) =
X
n�t

a (n)

where A (t) = 0 if t < 1. Assumes a continuously di¤erentiable function f on the interval

[y, x] where 0 < y < x, then we haveX
y<n�x

a (n) f (n) = A (t) f (t)� A (y) f (y)�
Z x

y

A (t) f
0
(t) dt.

Proof. Let be m = byc and k = bxc then A (y) = A (m), A (k) = A (x) and

X
y<n�x

a (n) f (n) =

kX
n=m+1

a (n) f (n) .

Otherwise for all n � 1,

a (n)� a (n� 1) =
X
l�n

a (l)�
X
l�n�1

a (l)

= a (n) +
X
l�n�1

a (l)�
X
l�n�1

a (l)

= a (n) .

10
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This implies that

X
y<n�x

a (n) f (n) =
kX

n=m+1

(A (n)� A (n� 1)) f (n)

=
kX

n=m+1

A (n) f (n)� A (n� 1) f (n)

=

kX
n=m+1

A (n) f (n)�
kX

n=m+1

A (n� 1) f (n) .

Since
kX

n=m+1

A (n� 1) f (n) =
k�1X
n=m

A (n) f (n+ 1) ,

then X
y<n�x

a (n) f (n) =
kX

n=m+1

A (n) f (n)�
k�1X
n=m

A (n) f (n+ 1) .

And since

kX
n=m+1

A (n) f (n) =
k�1X

n=m+1

A (n) f (n) + A (k) f (k) ,

k�1X
n=m

A (n) f (n+ 1) = A (m) f (m+ 1) +
k�1X

n=m+1

A (n) f (n+ 1) .

Then

X
y<n�x

a (n) f (n) =

k�1X
n=m+1

A (n) f (n) + A (k) f (k)� A (m) f (m+ 1)�
k�1X

n=m+1

A (n) f (n+ 1)

=

k�1X
n=m+1

[A (n) f (n)� A (n) f (n+ 1)] + A (k) f (k)� A (m) f (m+ 1)

=

k�1X
n=m+1

A (n) [f (n)� f (n+ 1)] + A (k) f (k)� A (m) f (m+ 1) ,

but

k�1X
n=m+1

A (n) [f (n)� f (n+ 1)] =
k�1X

n=m+1

A (n)

Z n+1

n

�f 0 (t) dt

= �
k�1X

n=m+1

A (n)

Z n+1

n

f 0 (t) dt.
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And for n0 � n � t < n+ 1,

A (t) =
X
l�t

a (l) = a (n0) + ...+ a (n)

=
nX
n0

a (l) = A (n) .

Hence,
k�1X

n=m+1

A (n) [f (n)� f (n+ 1)] = �
k�1X

n=m+1

Z n+1

n

A (t) f 0 (t) dt.

Thus,

X
y<n�x

a (n) f (n) = �
k�1X

n=m+1

Z n+1

n

A (t) f 0 (t) dt+ A (k) f (k)� A (m) f (m+ 1)

= �
Z k

m+1

A (t) f 0 (t) dt+ A (k) f (k)� A (m) f (m+ 1) .

Also, we have

A (k) f (k) = A (k) f (k) + A (k) f (x)� A (k) f (x)
= A (k) (f (k)� f (x)) + A (k) f (x)

= A (k)

Z k

x

f 0 (t) dt+ A (k) f (x)

= �A (k)
Z x

k

f 0 (t) dt+ A (k) f (x) .

For k � t � x, we have A (k) = A (t), then A (k) f (k) = �
R x
k
A (t) f 0 (t) dt+ A (x) f (x).

On the other hand,

�A (m) f (m+ 1) = �A (m) f (m+ 1) + A (m) f (y)� A (m) f (y)
= �A (m) (f (m+ 1)� f (y))� A (m) f (y)
= �A (m) (f (m+ 1)� f (y))� A (y) f (y)

= �A (m)
Z m+1

y

f 0 (t) dt� A (y) f (y) .

But, for y � t < m+ 1 we have A (m) = A (y), then

�A (m) f (m+ 1) = �
Z m+1

y

A (t) f 0 (t) dt� A (y) f (y) .
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So, X
y<n�x

a (n) f (n) = �
Z k

m+1

A (t) f 0 (t) dt�
Z x

k

A (t) f 0 (t) dt+ A (x) f (x)

�
Z m+1

y

A (t) f 0 (t) dt� A (y) f (y)

= A (x) f (x)� A (y) f (y)�
Z m+1

y

A (t) f 0 (t) dt

�
Z k

m+1

A (t) f 0 (t) dt�
Z x

k

A (t) f 0 (t) dt

= A (x) f (x)� A (y) f (y)�
Z x

y

A (t) f 0 (t) dt.

Which ends the proof.

Example: Writing � (x) in terms of � (x)

Theorem 1.2 [1] For x � 2, we have

� (x) =
� (x)

log x
+

Z x

2

� (t)

t log2 t
dt.

Proof. We consider the caracteristique function of prime numbers a (n),

a (n) =

(
1 if n = p,

0 if n 6= p.

Applied Abel�s summation formula with b (n) = a (n) log n, n 2 N� and the function
f : x 7! 1

log x
for x > 1, y = 3

2
.

So,

A (n) =
X
n�x

b (n) =
X
p�x

log p = � (x) ,

and f 0 (x) = � 1
x2 log x

.

Therefore,

� (x) =
X
n�x

b (n) f (n)

= A (x) f (x)� A
�
3

2

�
f

�
3

2

�
�
Z x

3
2

A (t) f 0 (t) dt

=
� (x)

log x
�
�
�
3
2

�
log 3

2

�
Z x

3
2

� � (t)

t log2 t
dt.
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Since for x < 2 we have � (t) = 0, then

� (x) =
� (x)

log x
+

Z x

2

� (t)

t log2 t
dt.

And the proof is �nished.

1.2 Stirling�s formula

Stirling�s formula is one of the important formulas most used in the remaining three

chapters, especially in approximations that contain n!.

Theorem 1.3 [13] For n 2 N� we have

n! =
p
2�nn+

1
2 e�nern.

where rn satis�es 1
12n+1

< rn <
1
12n
.

Proof. Let

Sn = log (n!) = log (1) + log (2) + :::+ log (n) =
n�1P
p=1

log (p+ 1) ,

and we put

log (p+ 1) = Ap +Bp � �p,

where

Ap =

Z p+1

p

(log x) dx,

Bp =
1

2
[log (p+ 1)� log p] ,

�p =

Z p+1

p

(log x) dx� 1
2
[log (p+ 1)� log p] .

So,

Sn =
n�1P
p=1

(Ap +Bp � �p) =
Z n

1

(log x) dx+
1

2
log n�

n�1P
p=1

�p.

Therefore

Sn =

�
n+

1

2

�
log n� n+ 1�

n�1P
p=1

�p,

where

�p =
2p+ 1

2
log

�
p+ 1

p

�
� 1.
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Using the well known series

log
1 + x

1� x = 2
�
x+

x3

3
+
x5

5
+ :::

�
for jxj < 1,

setting x = (2p+ 1)�1, then 1+x
1�x =

p+1
p
and

�p =
1

3 (2p+ 1)2
+

1

5 (2p+ 1)4
+

1

7 (2p+ 1)6
+ :::,

then we can bound �p as follow:

�p <
1

3 (2p+ 1)2

�
1 +

1

(2p+ 1)2
+

1

(2p+ 1)4
+ :::

�
=
1

12
(
1

p
� 1

p+ 1
),

�p >
1

3 (2p+ 1)2

 
1 +

1

3 (2p+ 1)2
+

1�
3 (2p+ 1)2

�2 + :::
!
>
1

12
(

1

p+ 1
12

� 1

p+ 1 + 1
12

).

Now, de�ne

R =
1P
p=1

�p, rn =
1P
p=n

�p,

then
1

13
< R <

1

12
.

So, we can write Sn on the form

Sn =

�
n+

1

2

�
log n� n+ 1�R + rn,

or, setting C = e1�R, as

n! = C:nn+
1
2 e�nern,

where
1

12n+ 1
< rn <

1

12n
.

The constant C, known from the double inequality 1
13
< R < 1

12
to lie between e

11
12 and

e
12
13 , may be shown by one of the usual methods to have the value

p
2�. This completes

the proof.

1.3 Density

The density help us to study the manner in which a subset A � N is distributed among
the naturel numbers. Study of the density of primitive sequences led Erd½os to lay down

his conjecture: for any primitive sequence A 6= f1g we haveX
a2A

1

a log a
�
X
a2P

1

p log p
,

where P denotes the sequence of prime numbers.
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Asymptotic density

De�nition 1.1 [8] Let A = faigi�1 be a sequence of positive integers. For n 2 N, we
de�ne

A (n) = card fA \ [0, n]g ,

if the limit of A(n)
n
exists, then A is said to possess asymptotic density which de�ned by

dA = lim
n!1

A (n)
n

.

Remark 1.1 If the sequence A is �nite then dA = 0.

De�nition 1.2 [8] The lower asymptotic density of a sequence of positive integers A is

de�ned by

dA = lim inf
n!1

A (n)
n

.

De�nition 1.3 [8] The upper asymptotic density of a sequence of positive integers A is

de�ned by

dA = lim sup
n!1

A (n)
n

.

Example 1.1 Let A be an arithmetic progression,

A = fsk + r , k � 0 , 0 � r < sg ,

where s and r are �xed positives integers.

We have

A (n) = card fA \ [0, n]g

then A (n) = k, where k satis�es the inequalities

sk + r � n < sk + r + s.

Therefore,
n� s� r

s
< k � n� r

s

so,
n� s� r
sn

<
A (n)
n

� n� r
sn

hence

lim
n!1

n� s� r
sn

< lim
n!1

A (n)
n

� lim
n!1

n� r
sn

.

Thus

dA = lim
n!1

A (n)
n

=
1

s
.
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Theorem 1.4 Let A be a sequence of positive integers, then

1) dA � dA,
2) if dA = dA = l then dA exists and equal to l.

Proof. 1) Let A be a sequence of positive integers, then we have

inf

�
A (n)
n

,
A (n+ 1)
n+ 1

, ...
�
� A (n)

n
� sup

�
A (n)
n

,
A (n+ 1)
n+ 1

, ...
�
.

then,

lim
n!1

inf
k�n

A (k)
k

� lim
n!1

A (n)
n

� lim
n!1

sup
k�n

A (k)
k

,

therefore,

lim
n!1

inf
k�n

A (k)
k

� lim
n!1

sup
k�n

A (k)
k

,

so,

dA � dA.

2) If dA = dA = l, then for given � > 0 there exists n0 such that, 8n � n0,

l � � < inf
k�n

A (k)
k

< l + �

and

l � � < sup
k�n

A (k)
k

< l + �

then

l � � < A (n)
n

< l + �.

Thus dA = l.

Logarithmic density

De�nition 1.4 [8] Let A = fai, i = 1, 2, :::g be a sequence of positive integers, if the
limit of the series 1

logn

P
ai�n

1
ai
exists, then A possess logarithmic density which de�ned

by

�A = lim
n!1

1

log n

X
ai�n

1

ai
.

De�nition 1.5 [8] The lower logarithmic density of a sequence of positive integers A is

de�ned by

�A = lim inf
n!1

1

log n

X
ai�n

1

ai
.
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De�nition 1.6 [8] The upper logarithmic density of a sequence of positive integers A is

de�ned by

�A = lim sup
n!1

1

log n

X
ai�n

1

ai
.

Corollay 1.1 If a sequence A consists of a �nite number of positive integers then

�A = 0.

Theorem 1.5 [8] For any sequence of positive integers A, we have

0 � dA � �A � �A � dA � 1.

Theorem 1.6 Let A = faigi�1 be an in�nite sequence of positive integers. If the seriesP1
i=1

1
ai
converges then �A = 0.

Proof. Let fai, ai, ...g be an in�nite sequence of positive integers and let S =
P1

i=1
1
ai
.

Since

S =
1X
i=1

1

ai
<1,

we have X
ai�n

1

ai
�

1X
i=1

1

ai
,

then,

0 � 1

log n

X
ai�n

1

ai
� 1

log n
S.

Therefore

0 � lim
n!1

1

log n

X
ai�n

1

ai
� lim

n!1

1

log n
S.

So,

lim
n!1

1

log n

X
ai�n

1

ai
= 0.

This ends the proof.

Example 1.2 Let
A =

�
k3, k � 1

	
.

Then,

�A = lim
n!1

1

log n

X
ak�n

1

ak

= lim
n!1

1

log n

X
k3�n

1

k3
.
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It is known that the series
P

k3�n
1
k3
converges.

Hence,

�A = 0.

Lemma 1.1

lim
n!1

1

log n

nX
k=1

1

k
= 1.

Proof. For n be a positive integer we have,Z n

1

1

x
dx = log n.

We may then consider the sums
Pn

k=2
1
k
and

Pn�1
k=1

1
k
as being lower and upper Riemann

sums respectively, of the function x 7! 1
x
where x 2 [1, n].

Hence,
nX
k=2

1

k
�
Z n

1

1

x
dx �

n�1X
k=1

1

k
,

then
nX
k=2

1

k
� log n �

n�1X
k=1

1

k
,

which implies
1

log n

nX
k=2

1

k
� 1 � 1

log n

n�1X
k=1

1

k
,

so,
1

log n

nX
k=2

1

k
+

1

log n
� 1

log n
� 1 � 1

log n

nX
k=1

1

k
,

therefore
1

log n

 
nX
k=2

1

k
+ 1

!
� 1

log n
� 1 � 1

log n

nX
k=1

1

k
,

so,
1

log n

nX
k=1

1

k
� 1

log n
� 1 � 1

log n

nX
k=1

1

k
,

Thus,

� 1

log n
� 1� 1

log n

nX
k=1

1

k
� 0.

Since 1
logn

> 0, then we can write

� 1

log n
� 1� 1

log n

nX
k=1

1

k
� 0 < 1

log n
.
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So, �����1� 1

log n

nX
k=1

1

k

����� < 1

log n
,

then limn!1
1

logn

Pn
k=1

1
k
= 1.

1.4 Set of multiples

De�nition 1.7 Let g (a) represent the greatest prime divisor of the positive integer a,
and let Pa represent the set of naturel numbers n such that, the prime divisors of n are
greater than g (a).

The set

aPa = fax, x 2 Pag

is called the set of higher multiples of a.

Lemma 1.2 Let a and b be two positive integers. If a . b then,

aPa
T
bPb = �.

Proof. Let a and b be two positive integers such that p (a) � p (b) and aPa
T
bPb = �.

Then there exists two integers na and nb with (na, a) = 1 and (nb, b) = 1, such that

ana = bnb,

and since p (a) � p (b), we have
a j bnb,

therefore

(nb, a) = 1.

So, by Gauss�s lemma we have a j b which is contradictory with the fact that a . b.

Theorem 1.7 The set Pa possesses asymptotic density and

dPa =
' (m)

m
,

where m = p1p2:::pr and p1, p2,:::, pr do not exceed p (a).
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Proof. Since Pa = fn : (n, m) = 1g, then there are exactly ' (m) elements of Pa in the
interval (0, m], but in any intrval ((k � 1)m, km] there are exactly ' (m) elements of Pa,
since Pa (n) � ' (m) for a geven n, so there exists an integers k and t such that

Pa (n) = k' (m) + t,

where

0 � t < ' (m)

and

km < n � (k + 1)m,

then
Pa (n)
n

=
k' (m) + t

n
,

and
1

(k + 1)m
� 1

n
� 1

km

hence
k' (m)

(k + 1)m
� k' (m) + t

(k + 1)m
� k' (m) + t

n
� k' (m) + t

km
,

since
k' (m) + t

km
<
k' (m) + ' (m)

km
=
(k + 1)' (m)

km
.

Then,
k' (m)

(k + 1)m
� Pa (n)

n
� (k + 1)' (m)

km
,

by taking the limit as k !1 and since km < n � (k + 1)m we get

lim
n!1

k' (m)

(k + 1)m
=
' (m)

m
,

and

lim
n!1

(k + 1)' (m)

km
= (m) .

Then,
' (m)

m
� lim

n!1

Pa (n)
n

� ' (m)

m
.

Thus, limn!1
Pa(n)
n

exists and equal to '(m)
m
.
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1.5 Primitive sequences

De�nition 1.8 A sequence A = fangn�1 of positive integers is said to be primitive if no
element of A divided any others.

Particular primitive sequences

1) Let A be a primitive sequence, then the following sets are primitive,

Am = fa : a 2 A, the prime factors of a are � pmg ,
A0m = fa : a 2 Am, pm=ag ,
A00m = fa=pm : a 2 A0mg .

2) The set Nk = fn : 
 (n) = kg, where 
 (n) is the number of prime factors of n
counted with repetition.

De�nition 1.9 Let A be a primitive sequence and let Am be de�ned above. We call Am is
homogenous if for each m there is some integer sm such that either Am = � or 
 (a) = sm
for any a 2 Am.

Density of primitive sequence

Theorem 1.8 Let A be an in�nite primitive sequence, then for any n � 1,

A (2n) � n.

Proof. Suppose that A countained n + 1 element that do not exted 2n. We can write

these elements under the form ai = 2�ibi where bi is the greatest odd divisor of ai for

i = 1, 2, :::, n+ 1 and �i � 0.
Since bi has at most n di¤erent values, then two of the integers b1, :::, bn+1 must be equals.

So, there exists i and j such that

bi = bj, 1 � i � j � n+ 1,

this implies that

ai j aj or aj j ai,

which contradictory with the fact that A is primitive sequence.

Theorem 1.9 If A is an in�nite primitive sequence, then dA � 1
2
.
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Proof. From last teorem we have

1) If n is an even integer (n = 2k), then

A (2k)
2k

� k

2k
=
1

2
,

hence

dA �1
2
.

2) If n is odd (n = 2k + 1) then, since A (2 (k + 1)) � k + 1, we have

A (n) � n+ 1

2
,

so,
A (n)
n

� 1

2
+
1

2n
.

Therefore,

dA = lim sup
n�!1

A (n)
n

� lim sup
n�!1

1

2
+
1

2n

� lim sup
n�!1

1

2
+ lim sup

n�!1

1

2n
=
1

2
.

Which ends the proof.

Lemma 1.3 [8] Let p be a prime number and x � 2 a real number, then

log x <
Y
p�x

�
1� 1

p

��1
< M log x,

where M is a positive constant.

Theorem 1.10 (Erd½os). If A is in�nite primitive sequence, then the series

1X
i=1

1

ai log ai

converges.

Proof. For i � 1, we denote by p (ak) the greatest prime factor of ak 2 A, we shall prove
that

1X
k=1

1

ak

Y
p�pk

�
1� 1

p

�
� 1. (4.1)
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Let ai, aj be integers of A, since for all i 6= j, ai . aj then by lemma 1.2, we have

aiPai
\
ajPaj = �,

and for any n � 1, we have

danPan =
1

an

Y
p�p(an)

�
1� 1

p

�
,

then
1X
n=1

danPan =
1X
n=1

1

an

Y
p�p(an)

�
1� 1

p

�
,

since the sets anPan are disjoints then,

1X
n=1

danPan = d
 [
n�1

anPan

!
,

then from the lemma 1.3, we have

log p (an) �
Y

p�p(an)

�
1� 1

p

��1
< M log p (an) ,

then

an log p (an) � an
Y

p�p(an)

�
1� 1

p

��1
< Man log p (an) ,

therefore
1

Man log p (an)
<
1

an

Y
p�p(an)

�
1� 1

p

�
� 1

an log p (an)
,

hence
1

an log p (an)
<
M

an

Y
p�p(an)

�
1� 1

p

�
� M

an log p (an)
.

So,
1X
n=1

1

an log p (an)
< M

1X
n=1

1

an

Y
p�p(an)

�
1� 1

p

�
.

Since
1X
n=1

1

an

Y
p�p(an)

�
1� 1

p

�
� 1,

then, we have
1X
n=1

1

an log p (an)
< M

1X
n=1

1

an

Y
p�p(an)

�
1� 1

p

�
�M .
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In other hand, we have an � p (an), then

an log an � an log p (an) ,

so,
1

an log an
� 1

an log p (an)
,

thus,
1X
n=1

1

an log an
�

1X
n=1

1

an log p (an)
�M .

This ends the proof

Theorem 1.11 For any primitive sequence A we have dA = �A = 0.

Proof. Let A = faigi�1 be a primitive sequence. According to theorem 1.5, it su¢ ces to

prove �A = 0. For i = 1, 2, :::, we have ai < n, then log ai < log n, therefore

1

log n
<

1

log ai
,

so,
1

log n

X
1<ai�n

1

ai
�

X
1<ai�n

1

ai log ai
,

and
1

log n

nX
ai=N+1

1

ai
�

X
N<ai�n

1

ai log ai
�

1X
i=1

1

ai log ai
,

then by the last theorem, the sum 1
logn

nP
ai=N+1

1
ai
is converges.

But we have
1

log n

X
1<ai�n

1

ai
=

1

log n

X
1<ai�N

1

ai
+

1

log n

X
N<ai�n

1

ai
.

So by taking limn!1 we obtain �A = 0,
and since 0 � dA � �A = 0, then

dA � �A = 0.

This ends the proof.



Chapter 2

Erd½os�s conjecture for particular
cases

In this chapter we will present the proof of Erd½os�s conjecture for homogeneous primitive

sequences, and we will also investigate further the case where the primitive sequences

have degree less than or equal to four.

2.1 Erd½os�s conjecture for the homogeneous primit-

ive sequences

Throughout this section, we denote by p (a) the last prime factor of a and A (p) the set
of elements a 2 A with p (a) = p.

Lemmas

Lemma 2.1 [6,7]we have

pn > n log n for n � 1,
pn > n (log n+ log log n) for n � 6.

Lemma 2.2 For any integer m � 2, we haveX
i>m

1

pi log (i� 1)
<

1

logm
.

Proof. Note that for each i � 3, we have
1

i log i log (i� 1) <
log (i= (i� 1))
log i log (i� 1)

=
1

log (i� 1) �
1

log i
.

26
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If we put h (m) =
P

i>m
1

pi log(i�1) , then from lemma 2.1 we have

h (m) <
X
i>m

1

i log i log (i� 1)

<
1

log (i� 1) �
1

log i

=
1

logm
.

In the following, we de�ne i (a) = i if the largest prime factor of a is pi.

Lemma 2.3 For m � 2, s � 1, we haveX
p(a)>pm, 
(a)=s

1

a log (i (a)� 1) � h (m) <
1

logm
.

Proof. We proceed by induction on s.
If s = 1, then this is just lemma 2.2. Assume the lemma for s.

For the s+ 1 case, by lemma 2.2, we haveX
p(a)>pm, 
(a)=s

1

a log (i (a)� 1)

=
X

p(b)>pm, 
(a)=s

1

b

X
j�i(b)

1

pj log (j � 1)

<
X

p(b)>pm, 
(b)=s

1

b log (i (b)� 1) � h (m) <
1

logm
.

The proof is �nished.

Lemma 2.4 For i � 2 and B � 2, we have

X
j>i

1

pj log (Bpj)
<

log
�
1 + logB

log i

�
logB

� min

�
1

log i
;
1

e log i
+

1

e logB

�
,

where e = 2:718::: is the base of the natural logarithms.

Proof. By lemma 2.1, we have,X
j>i

1

pj log (Bpj)
<

Z 1

i

dx

x log x log (Bx)

=
log (1 + logB= log i)

logB

� min

�
1

log i
,

1

e log i
,

1

e logB

�
,
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then X
j>i

1

pj log (Bpj)
� min

�
1

log i
,

1

e log i
,

1

e logB

�
.

Observing that the inequality

log (1 + logB= log i)

logB
� min

�
1

log i
,

1

e log i
,

1

e logB

�
,

follows from log (1 + x) < x and

log x = 1 + log

�
1 +

(x� e)
e

�
� x

e
,

for all x > 0.

Lemma 2.5 For m � 2, B � 2, s � 2, we haveX
p(u)>pm, 
(u)=s

1

u log (Bu)
<
�
e�1 + :::+ e1�s

�
h (m) + e1�s

X
j>m

1

pj log (Bpj)
.

Proof. We proceed by induction on s.
If s = 2, then by lemma 2.4, we haveX

p(u)>pm, 
(u)=s

1

u log (Bu)
=

X
j>m

1

pj

X
k�j

1

pk log (Bpjpk)

< e�1h (m) + e�1
X
j>m

1

pj log (Bpj)
.

For the s+ 1 case, by lemma 2.3, lemma 2.4 and using s case, we have,X
p(u)>pm, 
(u)=s+1

1

u log (Bu)
=

X
p(u)>pm, 
(u)=s

1

b

X
j�i(b)

1

pj log (Bbpj)

<
X

p(u)>pm, 
(u)=s

e�1

b

�
1

log (i (b)� 1) +
1

log (Bb)

�
�
e�1 + :::+ e�s

�
h (m) + e�s

X
j>m

1

pj log (Bpj)
.

And the proof is �nishes.

Lemma 2.6 Let a, m and s an integers such that m � 5 and s � 2 then, we haveX

(a)=s�1, p(a)>pm+1

1

a log (apm+1)
<

1

log pm+1
.
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Proof. Put
w (s, m) =

X

(a)=s�1, p(a)>pm+1

1

a log (apm+1)
,

then by lemma 2.2, lemma 2.4 and lemma 2.5, we have

w (s, m) < W (s, m) ,

where

W (s, m) =
e�1 + :::+ e1�S

logm
+

e1�S

log pm+1
.

Using lemma 2.1, we obtain

log pm+1
logm

� log (m+ 1) + log (log (m+ 1) + log log (m+ 1))

logm

� log 6 + log (log 6 + log log 6)

log 5
= 1:65::: < e� 1.

So, for m � 5 and s � 2,

W (s, m)�W (s+ 1, m) = e�S
�

e� 1
log pm+1

� 1

logm

�
> 0.

Therefore,

w (s, m) < W (s, m) � W (2, m) =
1

e logm
+

1

e log pm+1

<
e� 1

e log pm+1
+

1

e log pm+1

=
1

log pm+1
,

so, w (s, m) < 1
log pm+1

.

Lemma 2.7 For any integer m � 4, we have

w (2, m) =
X


(a)=1, p(a)>pm+1

1

a log (apm+1)
<

1

log pm+1
.

Proof. If 0 � m � 4 then by lemma 2.4, we have

w (2, m) < w (m)

where

w (m) =
1

pm+1 log p2m+1
+

1

pm+2 log (pm+1pm+2)
+

1

log pm+1
log

�
1 +

log pm+1
log (m+ 2)

�
,
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and

w (0) =
1

2 log 4
+

1

3 log 6
+

1

5 log 10
+

1

log 2
log

�
1 +

log 2

log 3

�
.

By calculation we have
m w (m) pm+1 1= log pm+1

4 0:388 11 0:417

3 0:464 7 0:513

2 0:581 5 0:621

1 0:856 3 0:910

0

Thus, w (2, m) < w (m) < 1
log pm+1

for 0 � m � 4.

Lemma 2.8 Let s and m an integers such that s � 3, 2 � m � 4, then

w (s, m) =
X


(a)=s�1, p(a)>pm+1

1

a log (apm+1)
<

1

log pm+1
.

Proof. Let m be �xed integer, put

s =
�
e�1 + :::+ e2�S

�
h (m) + e2�Sw (m) ,

where w (m) is the upper bound of w (s, m), de�ned in the proof of lemma 2.7. Then by

lemma 2.5 we have for s � 3 that

w (s, m) =
�
e�1 + :::+ e2�S

�
h (m) + e2�Sw (2, m) < s.

If h (m) < (e� 1)w (m) and m � 4, then by lemma 2.2 we have

h (4) =

10X
i=5

1

pi log (i� 1)
+ h (10) < 0:6442,

but h (10) < 1
log 10

, thus
h (4)

w (4)
< 1:7 < e� 1,

so that the case m = 4 is veri�ed.

For m = 2, since

h (2) =
1

5 log 2
+ h (3) < 1:063,

we use the upper bound H = 1:063 for h (2), we see that

H

w (2)
> e� 1.
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However, we then have

s <
�
e�1 + :::+ e2�S

�
H + e2�s

H

e� 1 =
H

e� 1 < 0:62 <
1

log 5
,

so, the case m = 2 is also done.

Lemma 2.9 [16]We have for s � 3 and 0 � m � 4

w (s, 1) <
1

log p2
,

w (s, 0) <
1

log 2
,

w (s, m) <
1

log pm+1
.

Erd½os�s conjecture and homogeneous primitive sequences

A primitive sequence A is called homogeneous if 
 (a) = c (constant) for all a 2 A.

Theorem 2.1 Let A be a primitive sequence such that A (p) is homogeneous, then for
n > 1 the inequality X

a2A, a�n

1

a log a
�

X
p prime, p�n

1

p log p

is true.

Proof. According to the lemma 2.7, we have for a given prime p, if B = B (p) is homo-
geneous and nonempty, then X

b2B

1

a log a
� 1

p log p
,

and this implies the theorem.

2.2 Erd½os�s conjecture for primitive sequences of de-

gree less than or equal four

Lemmas

Lemma 2.10 Let n > 1 be an interger, if we put

F (n) = log n+ log log n� 1,
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then we have

pn � nF (n) for n � 2, [2] (2.1)

pn � n (log (nF (n))� �) for n � 3, (2.2)

pn � n (F (n) + �) for n � 95, (2.3)

where � = 1:127 and � = 0:305.

Proof. Let g be the function de�ned on N by

n 7! g (n) =
pn
n
� log (nF (n)) for n � 3

then, according to (2:1) we have g (n) � h (n) where

h (n) = �1� log
�
1 +

log log n� 1
log n

�
.

the stady of the real function x 7! h (x) (x � 3) gives us

h (x) � h (exp (exp 2)) > ��,

then g (n) > ��, which is equivalent to

pn � n (log (nF (n))� �) for n � 3.

A computer caculation shows that for 95 � n < 7022 we have

pn � n (F (n) + �) ,

and on other hand, we have

pn � n (log n+ log log n� 0:9385) for n � 7022,

therefore the inequality (2:3) is veri�ed for n � 95. This completes the proof.

Lemma 2.11 For m � 1 and j 2 f1, 2, 3g, we haveX
i�max(m, j�1)

1

pi(kj + log pi)
<

1

kj�1 + log pm

where k0 = 0:023, k1 = 0:3157, k2 = 0:901 and k3 = 2:079:
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Proof. Put N = 95, C = 0:0713,

u1 = 0:09435, u2 = 0:387, u3 = 0:9723

v1 = 0, v2 = 0, v3 = �0:0074.

It is clear that for m � N and j 2 f1, 2, 3g we have

max (m, j � 1) = m,

and

C � � log (F (m)) + log
�
1 +

1

m

�
+ log (F (m+ 1) + �) ,

C � uj � kj�1, (2.4)

and

vj = �� kj + 2uj � 1.

Put

hj (m) =
X

i�max(m, j�1)

1

pi(kj + log pi)

By (2:1) et (2:2) we have, for m � N and j 2 f1, 2, 3g,

pi(kj + log pi) > i (log (iF (i))� �) (kj + log (iF (i))) ,

Since the function

x 7! log (xF (x))

increases for x > N , we have

hj (m+ 1) <

Z 1

m

dt

t (log (tF (t))� �) (log (tF (t)) + kj)
,

using the change of variable x = log t give us

hj (m+ 1) <

Z 1

logm

dx

(L (x)� �) (L (x) + kj)
,

where

L (x) = log (exF (ex)) ,

then we have 1 = 1

L0(x)
� L0 (x) for x > 1, and since

L0 (x) =
1

x

x log x+ x2 + 1

x+ log x� 1 > 0,
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we also have,
1

L0 (x)
= 1� 1 + x

x log x+ x2 + 1
.

But on other hand, for x > logN ,

(1 + x) (L (x)� 1)�
�
x log x+ x2 + 1

�
= log (x+ log x� 1)+x log(1+ log x� 1

x
)�2 > 0,

so,
1

L0 (x)
< 1� 1

L (x)� 1
then

1

L0(x)
<

�
1� 1

L (x)� 1

�
for x > logN ,

so,

hj (m+ 1) <

Z 1

logm

1
L0(x)L

0 (x) dx

(L (x)� �) (L (x) + kj)

<

Z 1

logm

�
1� 1

L(x)�1

�
L0 (x) dx

(L (x)� �) (L (x) + kj)
.

By setting y = L (x) and ym = L (logm), we obtain

hj (m+ 1) <

Z 1

ym

(y � 2) dy
(y � 1) (y � �) (y + kj)

.

Now, for j 2 f1, 2, 3g we put

gj (m) =
1

log pm + kj�1
,

then according to (2:3) and (2:4) we have

gj (m+ 1) � 1

kj�1 + log ((m+ 1) (F (m+ 1) + �))

>
1

log (mF (m)) + uj

=

Z 1

ym

dy

(y + uj)
2 .

For j 2 f1, 2, 3g, we put

�j = (y � 2) (y + uj)2 � (y � 1) (y � �) (y + kj) ,

then, for y > ym and j 2 f1; 2; 3g

�j = vjy
2 +

�
u2j � 4uj � �+ kj + �kj

�
y �

�
2u2j + �kj

�
< 0.
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So, for y > ym and j 2 f1, 2, 3g we have

(y � 2)
(y � 1) (y � �) (y + kj)

<
1

(y + uj)
2 ,

thus

hj (m+ 1) <
dt

logm+ log (logm+ log logm� 1) + uj
,

according to (2:3) and (2:4) we have

log pm+1 + kj�1 � logm� log (logm+ log logm� 1)� uj

= log

�
1 +

1

m

�
+ log

�
log (m+ 1) + log log (m+ 1)� 0:7

logm+ log logm� 1

�
� uj + kj�1

� C ��uj + kj�1 � 0,

then

gj (m+ 1) �
1

logm+ log (logm+ log logm� 1) + uj
.

Thus, for m � N and j 2 f1, 2, 3g we have hj (m+ 1) < gj (m+ 1) i.e.

hj (m) < gj (m) for m � N + 1.

And for 1 � m � N , a computer calculation gives

hj (m) =
NX
i�m

1

pi(kj + log pi)
+ hj (N + 1)

<

NX
i�m

1

pi(kj + log pi)
+

1

logN + log (logN + log logN � 1) + uj
< gj (m) .

Which ends the proof.

Lemma 2.12 Let m � 1 be �xed and let B = Bm be primitive sequence with deg (B) � 3.
For 1 � t � 4� deg (B), we haveX

b2B

1

b(t log pm + log b)
<

1

kt�1 + log pm
where p4�t1 =2 B1, (2.5)

X
b2B

1

b(t log pm + log b)
<

1

k0 + log pm
where p31 =2 B1. (2.6)
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Proof. For m � 1 and 1 � t � 4� deg (B), put

gt (B) =
X
b2B

1

b(t log pm + log b)
where (gt (�) = 0) .

By induction on deg (B), if deg (B) = 1 and 1 � t � 3 we have t log pm � t log 2 > kt and
p1 =2 B1 when t = 3, so by lemma 2.11 we get

gt (B) =
X
b2B

1

b(t log pm + log b)

<
X

i�max(m, t�1)

1

pi(kt + log pi)

<
1

kt�1 + log pm
.

If deg (B) = s > 1 and 1 � t � 4� s, we know that B =
S
i�mB

0
i is disjoint, so

gt (B) =
X
i�m

gt (B
0
i) where p

4�t
1 =2 B01.

We distinguish the folowing two cases:

1) If deg (B0i) � 1 then
gt (B

0
i) <

1

pi(kt + log pi)
. (2.7)

2) If deg (B0i) > 1 then

gt (B
0
i) =

X
b2B00i

1

pib((t+ 1) log pi + log b)

=
1

pi
gt (B

00
i ) where p

3�t
1 =2 B001 ,

and since

deg (B00i ) < s and t+ 1 � 4� deg (B00i ) ,

we have

gt+1 (B
00
i ) <

1

kt + log pi
where p4�(t+1)1 =2 B001 ,

thus

gt (B
0
i) �

1

pi (kt + log pi)
. (2.8)

So, from (2:7) et (2:8) and lemma 2.11 we obtain

gt (B) <
1

kt�1 + log pm
where p4�t1 =2 B1,

then for t = 1 we get the inequality (2:6), and the proof is �nished.



37

Theorem of Zhang

Theorem 2.2 For any primitive sequence A whose the number of the prime factors of

its terms counted with multiplicity is at most 4, we haveX
a2A;a�n

1

a log a
�

X
a2P;a�n

1

p log p
for n > 1.

Proof. Let n be �xed and A = fa : a 2 A; a � ng a subsequence of A with deg (A) � 4.
Put � (n) = m, the number of primes � n then A =

S
1�i�mA

0
i is disjoint and

f (A) =
X
1�i�m

f (A0i) .

Let 1 � i � m, we distinguish the following two cases:
1st case: we suppose that p41 =2 A, i.e. , p31 =2 A001.
If deg (A0i) � 1 then

f (A0i) �
1

pi log pi
,

and if deg (A0i) > 1 then

f (A0i) =
1

pi

X
b2A00i

1

b(log pi + log b)
where p31 =2 A001,

and

deg (A00i ) � deg (A0i)� 1 � 3.

So, according to (2:6) we getX
b2A00i

1

b(log pi + log b)
<

1

k0 + log pi
<

1

log pi
where p31 =2 A001,

therefore

f (A0i) �
1

pi log pi
for 1 � i � m. (2.9)

2nd case: if p41 2 A, since A is a primitive sequence then p1 =2 A01, so,

deg
�
A01 �

�
p41
	�
6= 1,

i.e.,

f
�
A01 �

�
p41
	�
<

1

p1 (k0 + log p1)
,
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thus

f (A01) = f
��
p41
	�
+ f

�
A01 �

�
p41
	�

=
1

p41 log p
4
1

+
1

p1 (k0 + log p1)

<
1

p1 log p1
,

and from (2:9), we have

f (A0i) �
1

pi log pi
for 2 � i � m,

then

f (A0i) �
1

pi log pi
for 1 � i � m, (2.10)

thus, by (2:9) and (2:10) we get

f (A) =
X
1�i�m

f (A0i) �
X
1�i�m

1

pi log pi
.

This completes the proof.



Chapter 3

Principal results on the sum S(A, x)
and its relationship with Erd½os�s
conjecture

In this chapter, we discuss the results obtained in [7], In particular, we improuved the

value of x such that S (A, x) � S (P, x). The authors in this paper studies only the case
where primitive sequence have degree d = 2, we gives a generalization of this result for

any degree d.

3.1 Some results on primitive sequences of the form

Bkd
Lemmas

Lemma 3.1 [15] For any real x > 1, we haveX
p2P, p�x

1

p
> log log x.

Lemma 3.2 For any integer n > 1, we have

2:5nne�n
p
n < n! � nn�1.

Proof. For n = 2, the inequality is verifed. For n > 2, we can use the inequality

nne�n
p
2�ne

1
12n+1 < n! � nne�n

p
2�ne

1
12n .

See[13].

39
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Lemma 3.3 Let the real number � > 1 and the integer n > 1, then we have

inf
n>1; �>1

�
nn!e�n

�n�1nn�1 � n!

�
= 4e3.

Proof. For n � 2, we de�ne for � > 1 the sequence tn (�) by

tn (�) =
nn!e�n

�n�1nn�1 � n! .

According to lemma 3.2, for n � 2, � > 1
�n�1nn�1 � n!

nn!
<
�n�1en � 2:5n

p
n

2:5n2
p
n

,

then

tn (�) >
2:5n2

p
ne�n

�n�1en � 2:5n
p
n
.

Since, for � > 1 the real function

x 7! f� (x) =
2:5x2

p
xe�x

ex+(x�1) log � � 2:5x
p
x
,

is increases on [4, 1), then for n � 4, we have

tn (�) > f� (x) � f� (4) ,

and since t3 (�) < f� (4) for � > 1, we have

inf
n>1, �>1

�
nn!e�n

�n�1nn�1 � n!

�
= inf

n>1, �>1
ft3 (�) , t2 (�)g

= t2

�
3

2

�
= 4e3.

The proof is achieved.

Lemma 3.4 For any integer k � 1 and any integer d � 2, we de�ne

Akd = fp�11 p�22 : : : p
�k
k : �1, : : : ,�k 2 N, �1 + : : :+ �k = dg

then we have the disjoint union

Ak+1d = Akd
S�

ap
k+1
: a 2 Ak+1d�1

	
.

Proof. Let y 2 Ak+1d such that pk+1 j y. Then, y = apk+1 where a 2 Ak+1d�1, and

Ak+1d =
�
y 2 Ak+1d j pk+1 . y

	S�
y 2 Ak+1d j pk+1 j y

	
,

therefore

Ak+1d = Akd
S�

apk+1 j a 2 Ak+1d�1
	
,

which is disjoint union.
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Lemma 3.5 Let k0 = 13674662, then for any real number x > 0 and for any k � k0 the
sequence S(Bk2 , x) is strictly increases.

Proof. For any integers k � 1, d � 2, the multinomial formula give us

X
a2Akd

1

a
� 1

d!

 
kX
n=1

1

pn

!d
. (3.1)

According to lemma 3.4, we have

Bk+12 = Ak+12

S
Ak+1

= Ak2
S�

apk+1 j a 2 Ak+11

	S
Ak+1,

then

S(Bk+12 , x) = S(Bk2 , x) + E,

where

E =
1

pk+1

�
S(Ak+11 , log pk+1 + x)�

1

log pk+1 + x

�
.

Since pk+1 is the largest element in Ak+11 , we have

S(Ak+11 , log pk+1 + x) =
X

a2Ak+11

1

a (log a+ log pk+1 + x)

� 1

2 log pk+1 + x

X
a2Ak+11

1

a
.

and according to (3:1) and lemma 3.1 we obtain for k � k0,X
a2Ak+11

1

a
�

k+1X
n=1

1

pn

� log log pk+1 > 2.

therefore

S(Ak+11 , log pk+1 + x)�
1

log pk+1 + x
>

2

2 log pk+1 + x
� 1

log pk+1 + x

=
x

(2 log pk+1 + x) (log pk+1 + x)
> 0.

then

S(Bk+12 , x)� S(Bk+12 , x) > 0.

This ends the proof.
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Improved result over Bkd

Theorem 3.1 Let k0 = 13674662 and x0 = 80:4. Then for any primitive sequence

Bk2 = fp�11 p�22 : : : p
�k
k ; �1, : : : ,�k 2 N, �1 + : : :+ �k = 2, k � k0g

S
fpn 2 P j n > kg ,

we have

S(Bk2 , x) > S(P, x) for x � x0.

Proof. For any natural numbers k � 1 and d � 2, pdk is the greatest element of the

primitive sequence Akd, then log a � d log pk for any a 2 Akd. So, for any x > 0 we haveX
a2Bkd

1

a(log a+ x)
=

X
a2Akd[Ak

1

a(log a+ x)

=
X
a2Akd

1

a(log a+ x)
+
X
a2Ak

1

a(log a+ x)

� 1

d log pk + x

X
a2Akd

1

a
+
X
n>k

1

pn(log pn + x)
.

from (3:1) and lemma 2.1, we have

X
a2Akd

1

a
>
(log log pk)

d�1

d!

kX
n=1

1

pn
,

then

X
a2Bkd

1

a(log a+ x)
� x (log log pk)

d�1

d! (d log pk + x)

kX
n=1

1

xpn
+
X
n>k

1

pn(log pn + x)

>
x (log log pk)

d�1

d! (d log pk + x)

kX
n=1

1

pn(log pn + x)
+
X
n>k

1

pn(log pn + x)
.

To obtain the inequality of theorem, we must choose d, k and x such that

x (log log pk)
d�1

d! (d log pk + x)
> 1,

it is clear that for d � 2 and k > 1, the function

x 7! h (x) =
x (log log pk)

d�1

d! (d log pk + x)
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increases for x > 0.

Let x0 be the smalest value such that the last inequality is verifed, then

(log log pk)
d�1 � d!

dd! log pk
>
1

x0
. (3.2)

Since x0 > 0, we must choose k such that (log log pk)
d�1 � d!x > 0, then according to

lemma 3.2, it must be

log log pk > d,

then there exist � > 1 such that log log pk = �d. Therefore, (3:2) equivalent to

dd!e�d

�d�1dd�1 � d! < x0,

so we must choose d and � such that the number

dd!e�d

�d�1dd�1 � d!

is the smalest possible. According to lemma 3.3, we obtain d = 2; � = 1:481 and x0 > 4e3,

then we must �nd an integer k0 so that log log pk0 be in the neighborhood of 2:962, a

computer calculation give us

(pk0, k0) = (249910007, 13674662) :

Then if we take k0 = 13674662 and d = 2, we obtain Bk02 and x0 = 80:4. So, according to

lemma 3.5 we have

S(Bk2 , x) > S(P, x) for k > k0, x � x0.

The proof is achieved.

3.2 Generalized result on S(Bk2 , x) concerning prim-
itive sequences of the form Bkd

Lemmas

Lemma 3.6 [4] For x � 3275 there exists a prime number p such that

x < p � x
�
1 +

1

2 ln2 x

�
.
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Lemma 3.7 For any integer n > 1, we have

n! � nne1�n
p
n, (3.3)

n! � 2 (n+ 1)n�2 , (3.4)

n! < nn�2 ( n � 5) . (3.5)

Proof. For n = 2, the inequality (3:3) is verifed. For n > 2, it is comes from the

inequality [13]

nne�n
p
2�ne

1
12n+1 < n! < nne�n

p
2�ne

1
12n ,

and we can prove (3:4) and (3:5) by induction.

Lemma 3.8 Let n � 2 be an integer and x be a reel number such that x � n � 1. The
function

x 7! fn (x) =
nn!ex

xn�1 � n!
reaches its minimum in xn where xn 2 ]n� 1, n+ 1], moreover x2 = 2, x3 =

p
7 + 1,

x4 ' 4:298 and xn < n for n � 5.

Proof. Let n � 2 be an integer and let fn be the function de�ned on the interval

I = ]n� 1, +1[ by
fn (x) =

nn!ex

xn�1 � n! ,

f is di¤erentiable on I and

f
0

n (x) =
nn!ex (xn�1 � (n� 1)xn�2 � n!)

(xn�1 � n!)2
.

Put for x > n� 1,
gn (x) = x

n�1 � (n� 1)xn�2 � n!,

then

g
0

n (x) = (n� 1)xn�3 (x� (n� 2)) > 0 on I,

hence gn increases on I. On the other hand, since gn is continuous then by lemma 3.7, we

have

lim
x!n�1

gn (x) = �n! < 0,

gn (n) = nn�2 � n! > 0 for n � 5,
gn (n+ 1) = 2 (n+ 1)n�2 � n! � 0,
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therefore, there exists only one root xn 2 ]n� 1, n+ 1] and for n � 5, xn 2 ]n� 1, n]
such that f

0
n (xn) = 0. Since gn (x) < 0 for x < xn and gn (x) > 0 for x > xn then fn

strictly decreases on ]n� 1, xn] and strictly increases on [xn, +1[, so we have

fn (x) � fn (xn) where xn 2 ]n� 1, n+ 1] .

It is clear that for n = 2, 3, 4 the equality

xn�1 � (n� 1)xn�2 � n! = 0

gives x2 = 2, x3 =
p
7 + 1, x4 ' 4:298.

Lemma 3.9 For any integer d � 2, there exists a prime p such that

ee
xd < p � eed+1, (3.6)

moreover

max
n
p : p 2

i
ee

xd , ee
d+1
ho
> ee

d

,

where (xd)d�2 is the sequence de�ned in lemma 3.8.

Proof. The inequality (3:6) is easy to verify for d = 2, 3, 4. By lemma 3.8, we have, for
d � 5

d� 1 � xd � d , (3.7)

therefore ee
xd
> 3275, then from lemma 3.6 there exists a prime p such that

ee
xd

< p � ee
xd

�
1 +

1

2e2xd

�
.

from (3:7), we get 4 � xd � d, then 1 + 1
2e2xd

< 2 and ee
xd
< ee

d
, thus

ee
xd

�
1 +

1

2e2xd

�
< 2ee

d

< ee
d+1

.

Since

4ee
d

<
�
ee

d
�2
< ee

d+1

,

then according to the Bertrand�s postilate there exists a prime number in
h
2ee

d
, 4ee

d
i
,

thus, the greatest prime number in
h
ee

xd , ee
d+1
i
is greater than ee

d
, which �nishes the

proof.

Lemma 3.10 Let d � 2 and let k0 be the integer such that pk0 � exp (exp d). For any

real number x > 0 the sequence
�
S(Bkd , x)

�
k�k0

is strictly increases.
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Proof. For any integer k � 1 and any integer d � 2, the multinomial formula ensures

that X
a2Akd

1

a
=

X
�1+:::+�k=d

1

p�11 p
�2
2 :::p

�k
k

�
X

�1+:::+�k=d

(1=p1)
�1

(�1)!
:::
(1=pk)

�k

(�k)!

=
1

d!

 
kX
n=1

1

pn

!d
therefore X

a2Akd

1

a
� 1

d!

 
kX
n=1

1

pn

!d
. (3.8)

Put Ak = fpn jpn 2 P, n > kg, then from lemma 3.4 we have

Bk+1d = Ak+1d

S
Ak+1

= Akd
S�

ap
k+1
ja 2 Ak+1d�1

	S
Ak+1

so,

S
�
Bk+1d , x

�
= S

�
Bkd , x

�
+ E

where

E =
1

p
k+1

�
S
�
Ak+1d�1, log pk+1 + x

�
� 1

log p
k+1
+ x

�
.

Since pd�1k+1 is the greatest element of Ak+1d�1, we have

S
�
Ak+1d�1, log pk+1 + x

�
=

X
a2Ak+1d�1

1

a(log a+ log p
k+1
+ x)

�
X

a2Ak+1d�1

1

a((d� 1) log p
k+1
+ log p

k+1
+ x)

� 1

d log p
k+1
+ x

X
a2Ak+1d�1

1

a
,



47

and by lemma 3.1 we obtainX
a2Ak+1d�1

1

a
� 1

(d� 1)!

 
k+1X
n=1

1

pn

!d�1

� 1

(d� 1)! (log log pk+1)
d�1

� dd�1

(d� 1)!

� dd�1

d!
d for k � k0,

according to lemma 3.7 we have d! � dd�1 thenX
a2Ak+1d�1

1

a
� d for k � k0,

which implies

S
�
Ak+1d�1, log pk+1 + x

�
� 1

log p
k+1
+ x

>
d

d log p
k+1
+ x

� 1

log p
k+1
+ x

=
dx� x�

d log p
k+1
+ x
� �
log p

k+1
+ x
� > 0

thus

S
�
Bk+1d , x

�
� S

�
Bkd , x

�
> 0.

The proof is �nished.

Generalized result on S(Bk2 , x)

Theorem 3.2 Let d � 2 be an integer, x0 = dd!ed+1

(d+1)d�1�d! and let k0 be the greatest integer

such that pk0 � ee
d+1
.Then for any k � k0 and any primitive sequence of the form

Bkd = fp�11 p�22 : : : p
�k
k j�1, : : : ,�k 2 N, �1 + : : :+ �k = dg

S
fpn jpn 2 P, n > kg

we have, for x � x0
S(Bkd , x) > S(P, x):

Proof. For any integer k � 1 and any integer d � 2, we haveX
a2Bkd

1

a(log a+ x)
=

X
a2Akd[Ak

1

a(log a+ x)

=
X
a2Akd

1

a(log a+ x)
+
X
a2Ak

1

a(log a+ x)

� 1

d log pk + x

X
a2Akd

1

a
+
X
n>k

1

pn(log pn + x)
.
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Using (3:8) and lemma 3.1, we get

X
a2Akd

1

a
>
(log log pk)

d�1

d!

kX
n=1

1

pn
,

thereforeX
a2Bkd

1

a(log a+ x)
� (log log pk)

d�1

d!(d log pk + x)

kX
n=1

1

pn
+
X
n>k

1

pn(log pn + x)

>
x (log log pk)

d�1

d!(d log pk + x)

kX
n=1

1

xpn
+
X
n>k

1

pn(log pn + x)

>
x (log log pk)

d�1

d!(d log pk + x)

kX
n=1

1

pn(log pn + x)
+
X
n>k

1

pn(log pn + x)
.

To obtain the inequality required in theorem, we must choose k and x so that

x (log log pk)
d�1

d!(d log pk + x)
> 1. (3.9)

Since for d � 2, k > 1, the function

x 7! hk;d (x) =
x (log log pk)

d�1

d!(d log pk + x)
,

is strictly increases for x > 0, let x0 the smallest value for which the inequality (3:9) is

veri�ed, that is
(log log pk)

d�1 � d!
dd! log pk

>
1

x0
. (3.10)

Since x0 > 0, we need to �nd k such that

(log log pk)
d�1 � d! > 0,

then by lemma 3.9, we just take log log pk > d, and if we put log log pk = z, (3:10) becomes

dd!ez

zd�1 � d! < x0.

Now, we must choose z so that, the number dd!ez

zd�1�d! is the smallest possible.

According to lemma 3.8, the function

x 7! fd (x) =
dd!ex

xd�1 � d!
reaches its minimum xd in

]d� 1, d+ 1] ,
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so we can take z 2 ]xd, d+ 1[ and x0 = dd!ed+1

(d+1)d�1�d! .

From lemma 3.9, there exists a prime number pk such that

xd < log log pk < d+ 1.

Now, we can choose

pk0 = max fpk : log log pk 2 ]xd, d+ 1[g and z = log log pk0 ;

then we obtain, for x � x0
S(Bk0d , x) > S(P, x).

Finally, by lemma 3.9, we have

exp (exp d) � pk0 � exp (exp (d+ 1)) ,

and from lemma 3.10, we get for k � k0 and x � x0,

S(Bkd , x) > S(P, x).

Which ends the proof.

Remark 3.1 If we take d = 2, then we get , for k � 27775592 and x � 80:4

S(Bk2 , x) > S(Bk1 , x).

Since for x is su¢ ciently large, we have S(Bkd , x) > S(P, x), so we can conjecture that:
for any d � 1 there exists k0 such that

S(Bkd+1, x) > S(Bkd , x), k � k0, x > 0:



Chapter 4

Study the sum S(A, x) for largest
values of x

As explained in the introduction, the main objective of this chapter is to study the sum

S(A, x) for largest values of x, in this work we use the primitive sequences of the form

Bkd = fp�11 p�22 : : : p
�k
k j�1, : : : ,�k 2 N, �1 + : : :+ �k = dg

S
fpn jpn 2 P, n > kg .

Lemmas

Lemma 4.1 [4] For k � 463,

pk+1 � pk
�
1 +

1

2 log2 pk

�
.

Lemma 4.2 For any real number x > 0 and any integer k � 2 the following holdsX
n>k

1

pn(log pn + x)
�
(

log(1+ x
log k

)

x
if x 6= 0

1
log k

if x = 0.

Proof. Let x > 0 be a real number and k � 2 be an integer. By lemma 2.1 and since the
function

t 7! dt

t log t(log t+ x)

decreases on [1,+1), we obtain thenX
n>k

1

pn(log pn + x)
�

X
n>k

1

n log n(log n+ log log n+ x)

�
X
n>k

1

n log n(log n+ x)

�
+1Z
k

dt

t log t(log t+ x)
.

50
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Put u = log t, so,

if x 6= 0, we have

+1Z
k

dt

t log t(log t+ x)
=

+1Z
log k

du

u(u+ x)

=
1

x

+1Z
log k

�
1

u
� 1

u+ x

�
du

=
log(1 + x

log k
)

x
,

if x = 0, we have

+1Z
k

dt

t log t(log t+ x)
=

+1Z
log k

du

u2

=
1

log k
.

This ends the proof.

Lemma 4.3 For any integer n 6= 0, we have:

n! � nne1�n
p
n.

Proof. For n = 1, the inequality is veri�ed.
For n � 2, we use the inequality [8]

n! � nne�n
p
2�ne1=12n.

We have

n! � nne�n
p
2�ne1=12n

� nne1�n
p
n
p
2�e1=12n�1,

and since the function x 7!
p
2�e1=12x�1 decreases on [2,+1), then

p
2�e1=12n�1 < 1,

therefore

n! � nne1�n
p
n.

Which ends the proof.
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Lemma 4.4 For any � � 1 and any n > 0, we have

71:383�2n + 20:978

64:975 ln
�
�2n + 2

�
+ 20:978

> �n.

Proof. For any �, we have:

71:383�2n + 20:978

64:975 ln
�
�2n + 2

�
+ 20:978

� �n

=
71:383�2n + 20:978� 64:975�n ln

�
�2n + 2

�
� 20:978�n

64:975 ln
�
�2n + 2

�
+ 20:978

=
1

64:975 ln
�
�2n + 2

�
+ 20:978

�
�n(71:383�n � 64:975 ln

�
�2n + 2

�
� 20:978) + 20:978

�
.

Put wn (�) = 71:383�
n � 64:975 ln

�
�2n + 2

�
� 20:978, then

d

d�
wn (�) =

n

�
�
�2n + 2

� �1:427 7� 102�n � 1:299 5� 102�2n + 71:383:�3n�
=

n�n

�
�
�2n + 2

� �1:427 7� 102 � 1:299 5� 102�n + 71:383:�2n�
and since 1:427 7� 102 � 1:299 5� 102x+ 71:383:x2 > 0, then

d

d�
wn (�) > 0.

Hence the function wn increases for � � 1, therefore

71:383�n � 64:975 ln
�
�2n + 2

�
� 20:978 � �20:977,

so, �
�n(71:383�n � 64:975 ln

�
�2n + 2

�
� 20:978) + 20:978

�
� 6:665 4� 10�4 > 0.

Thus
71:383�2n + 20:978

64:975 ln
�
�2n + 2

�
+ 20:978

� �n > 0,

and the proof is achieved.

Lemma 4.5 Let the sequence (un)n�2 where

un =
nn�1 � n!
nn!

.

(un) increases on [2,1).
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Proof. We have.

un+1 � un =
(n+ 1)n � (n+ 1)!
(n+ 1) (n+ 1)!

� n
n�1 � n!
nn!

=
(n+ 1)n

(n+ 1) (n+ 1)!
� (n+ 1)n

(n+ 1) (n+ 1)!
� n

n�2

n!
+
1

n

=
(n+ 1)n�1

(n+ 1)!
� 1

(n+ 1)
� n

n�2

n!
+
1

n

� (n+ 1)n�2

n!
� n

n�2

n!
+
1

n
� 1

(n+ 1)
� 0.

The proof �nished.

4.1 Study of S(A; x) for largest values of x
Theorem 4.1 Let � � 1 and t > 0, then for any x � 1656�2t

�
log(�2t + 2)

�3=2
, there

exists a primitive sequence A such that

S(A, x) � �tS(P, x):

Proof. Let � � 1 and let t > 0. To prove this theorem, we need the parameters �, c and
� which satisfy :

c� � e� + log 1:008, 0 < � � 5

12
(C1)

� � 1:950 (C2)

those parameters will be chosen later, the real c is chosen to be the smallest possible value

so that; for any x � c�2t
�
log(�2t + 2)

�3=2
, there exists a primitive sequence A 6= f1g such

that X
a2A

1

a(log a+ x)
> �t

X
p2P

1

p(log p+ x)
.

Let pk be the largest prime satisfying pk � e�x, then according to lemmas 4.1 and 2.1, we
obtain

pk � e�x < pk+1 < 1:008pk, (4.1)

Assume that

d =

�
� + log �2t +

3

2
log log

�
�2t + 2

��
,

then from (C1) and (C2), we have

x � 1

�

�
ed + log 1:008

�
,
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and from lemma 3.1 and (4:1), we obtain

kX
n=1

1

pn
> log log pk

> log log
pk+1
1:008

> log log
e�x

1:008
� d.

So,
kX
n=1

1

pn
� d. (4.2)

Now, we de�ne the following sets of positive integers :

Pk = fpn jpn 2 P, pn > pk g ,
A = Akd

S
Pk.

It is clear that Akd
T
Pk = ? and the sets Akd, Pk and A are primitive sequences. Then,

according to the multinomial formula and (4:2), we haveX
a2Akd

1

a
=

X
�1+:::+�k=d

1

p�11 p
�2
2 :::p

�k
k

�
X

�1+:::+�k=d

(1=p1)
�1

(�1)!
:::
(1=pk)

�k

(�k)!

=
1

d!
(
kX
n=1

1

pn
)d

>
dd�1

d!

kX
n=1

1

pn
.

So, X
a2Akd

1

a
>
dd�1

d!

kX
n=1

1

pn
. (4.3)

Since

x � c�2t
�
log(�2t + 2)

�3=2
then, from (C1) and (C2), we obtain

e�x � 3303 � p464.
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Hence, according to (4:1) we have

p464 � pk � e�x < pk+1 < 1:008pk.

By using lemma 2.1, we get

log pk � �x

� log pk + log 1:008

� log (k (log k + log log k)) + log 1:008.

Now, since the function

t 7! log (t (log t+ log log t)) + log 1:008

log t

decreases on [464,+1), then we have

log (t (log t+ log log t)) + log 1:008

log t
� log (464 (log 464 + log log 464)) + log 1:008

log 464
' 1:339

that is,

�x � 1:339 log k. (4.4)

By using (4:4) and lemma 4.3, we �nd

X
n>k

1

pn(log pn + x)
�
log(1 + x

log k
)

x
<
log(1 + 1:339

�
)

x
,

therefore,
1

x
>

1

log(1 + 1:339
�
)

X
n>k

1

pn(log pn + x)
. (4.5)

On other hand, according to (4:1) and (4:2), we have for x 6= 0

kX
n=1

1

pn(log pn + x)
�

kX
n=1

1

pn(�x+ x)

� 1

(�+ 1) x

kX
n=1

1

pn

� d

(�+ 1) x
,

and from (4:5) we obtain

kX
n=1

1

pn(log pn + x)
� d

(�+ 1) log(1 + 1:339
�
)

X
n>k

1

pn(log pn + x)
.
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Put h (�) = (�+ 1) log(1 + 1:339
�
), then we have

kX
n=1

1

pn(log pn + x)
� d

h (�)

 
+1X
n=1

1

pn(log pn + x)
�

kX
n=1

1

pn(log pn + x)

!
,

therfore, �
1 +

d

h (�)

� kX
n=1

1

pn(log pn + x)
� d

h (�)

+1X
n=1

1

pn(log pn + x)

� d

d+ h (�)

+1X
n=1

1

pn(log pn + x)
.

Thus,
kX
n=1

1

pn(log pn + x)
� d

d+ h (�)

+1X
n=1

1

pn(log pn + x)
. (4.6)

Since pdk is the largest element in Akd, then according to (4:1), we have for any a 2 Akd

log a � d log pk � d�x,

hence, from (4:3), we obtainX
a2A

1

a(log a+ x)
=

X
a2Akd[Pk

1

a(log a+ x)

=
X
a2Akd

1

a(log a+ x)
+
X
a2Pk

1

a(log a+ x)

� 1

(d�x+ x)

X
a2Akd

1

a
+
X
n>k

1

pn(log pn + x)

>
dd�1

d!x(d�+ 1)

kX
n=1

1

pn
+
X
n>k

1

pn(log pn + x)

>
dd�1

d!(d�+ 1)

kX
n=1

1

pn(log pn + x)
+
X
n>k

1

pn(log pn + x)

=

�
dd�1

d!(d�+ 1)
� 1
� kX
n=1

1

pn(log pn + x)
+

+1X
n=1

1

pn(log pn + x)
.

According to (C1), and lemma 4.5, we have, for d � 4,�
dd�1

d!(d�+ 1)
� 1
�
> 0.
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By using this last inequality and (4:6), we obtain�
dd�1

d!(d�+ 1)
� 1
� kX
n=1

1

pn(log pn + x)
�
�

dd�1

d!(d�+ 1)
� 1
�

d

d+ h (�)

+1X
n=1

1

pn(log pn + x)
.

Therefore,

X
a2A

1

a(log a+ x)
>

��
dd�1

d!(d�+ 1)
� 1
�

d

d+ h (�)
+ 1

� +1X
n=1

1

pn(log pn + x)

=
dd + d!(d�+ 1)h (�)

d!(d�+ 1) (d+ h (�))

+1X
n=1

1

pn(log pn + x)
,

by applying lemma 4.3, we get

dd + d!(d�+ 1)h (�)

d!(d�+ 1) (d+ h (�))
>

d!ed�1 + d!
p
d(d�+ 1)h (�)p

dd!(d�+ 1) (d+ h (�))

>
ed�1 +

p
d(d�+ 1)h (�)p

d(d�+ 1) (d+ h (�))
.

So, X
a2A

1

a(log a+ x)
>

 
ed�1 +

p
d(d�+ 1)h (�)p

d(d�+ 1) (d+ h (�))

!
+1X
n=1

1

pn(log pn + x)
. (4.7)

It follows from the expression of d, that

d > � � 1 + log �2t + 3
2
log log(�2t + 2),

then

ed�1 > e��2�2t
�
log(�2t + 2)

�3=2
.

And since

log �2t < log
�
�2t + 2

�
,

log log
�
�2t + 2

�
� log

�
�2t + 2

�
� 1

and � � 1:950, we have
d < (� + 1) log

�
�2t + 2

�
,

then

d�+ 1 < ((� + 1)�+ 1) log
�
�2t + 2

�
,

and

d < (� + 1) log
�
�2t + 2

�
.
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So, the formula (4:7) becomes

X
a2A

1

a(log a+ x)
> j�,� (�)

+1X
n=1

1

pn(log pn + x)
, (4.8)

where

j�,� (�) =
e��2�2t +

p
� + 1((� + 1)�+ 1)h (�)p

� + 1((� + 1)�+ 1)
�
(� + 1) log

�
�2t + 2

�
+ h (�)

� .
Now, we must choose � and � so that, for any � � 1 and any t > 0, j�,� (�) � 1 and
e�+log 1:008

�
be the smallest possible. That is, for any � � 1 and for any t > 0

e��2p
� + 1 (� + 1) ((� + 1)�+ 1)

�
log
�
�2t + 2

�
�2t

.

Since, for any t > 0 the function

� 7!
log
�
�2t + 2

�
�2t

decreases on [1,+1), then

e��2p
� + 1 (� + 1) ((� + 1)�+ 1)

� log 3.

Hence,
e��2 � (� + 1)

3
2 log 3

(� + 1)
5
2 log 3

� �

and
e� + log 1:008

�
�
�
e� + log 1:008

�
(� + 1)

5
2 log 3

e��2 � (� + 1)
3
2 log 3

.

Finally, we will choose � so that the quantity�
e� + log 1:008

�
(� + 1)

5
2 log 3

e��2 � (� + 1)
3
2 log 3

is also the smallest possible. A computer calculation gives � ' 6:264, � ' 0:317 and

c ' 1655:234. By replacing � and � in the formula of j�,� we get

j�,� (�) =
71:094�2t + 19:381

64:659 ln
�
�2t + 2

�
+ 19:381

,

and (4:8) becomes

X
a2A

1

a(log a+ x)
>

71:094�2t + 19:381

64:659 ln
�
�2t + 2

�
+ 19:381

+1X
n=1

1

pn(log pn + x)
.



59

By lemma 4.3, for every � � 1 and every t > 0, we have

71:094�2t + 19:381

64:659 ln
�
�2t + 2

�
+ 19:381

> �t,

which leads to the inequality of theorem. Thus, for � � 1, t > 0 and for any

x � 1656:3�2t
�
log(�2t + 2)

�3=2
,

since

d =

�
6:264 + log �2t +

3

2
log log

�
�2t + 2

��
and k is the greatest integer such that pk � e0:317x, the sequence A is well de�ned. This

ends the proof. This ends the proof.



Conclusion

The content of this thesis is focused on the Erdos�s conjecture, so on the inequalityX
a2A

1

a log a
�
X
a2P

1

p log p

where A is a primitive sequence diferent to f1g and P reprente the set of prime numbers.
We took two paths in our work:

1) In chapter 2, by using a new estimations of n-th prime number, we simpli�ed the

proof of Zhang�s theorem in which he proved the conjecture of Erd½os for the primitive

sequences of degree less or equal four. The �rst perspective is to extend Zhang�s theorem

to sequences of higher degree.

2) In chapitre 3 and 4, we study the inequalityX
p2A

1

a (log a+ x)
�
X
p2P

1

p (log p+ x)

where x is a positive real number, we proved that for x � 80:4 this last inequality is false,
so the second perspective is to improve the value of x.
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