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Notations

. N* denotes the set of non-zero natural numbers.

. We denote by P the set of prime numbers.

We denote by p,, the n-th prime number.

We define the degree of an integer a denoted by 2 (a), to be the number of prime

factors of a counting with multiplicity.

. We denote by p (a) the last prime factor of a.

We denote by A a set of primitive integers.

We denote by deg (A) the degree of A, it is defined as the maximum degree of its

terms.

A, = {a:a € A, the prime factors of a are > p,,}.
Al ={a:a€ Ay, pm|a}l.

Al ={a/p, a € A}

liminf (a,) indicate the limit inferior of a,, as n — oc.

n—-—aoo

lim sup (a,,) indicate the limit superior of a,, as n — oc.

n—-auoo

Y n<e indicate the sum of all integers lying in the interval [1, z].

[],<, indecate the product of the primes numbers lying in the interval [2, x].
dA indecate the asymptotic density of A.

dA indecate the upper asymptotic density of A.

dA indecate the lower asymptotic density of A.

0.A indecate the logarithmic density of A.

0.A indecate the upper logarithmic density of A.

dA indecate the lower logarithmic density of A.
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For integers n and m, m | n means "m divides n" and m { n means "m does not

divide n".

|z] denotes the unique integer k such that £ < x < k + 1 (the integer part of real

f = O(g) and f < g the notations of Landau and Vinogradov means that there

exists a constant C' > 0 and a real x( such that for any x > zy, we have
|f(z)] < Cg(w).

f(@)] _
g9 ()

0 (x) represents Tchébichev function defined by 0 (z) = ) logp and 6 (z) = 0 for

f = o(g) means that lim,

p<z
x < 0.

¢ (n) represents Euler’s function counts the integers m < n such that (m, n) =1

7 (z) represents the function counts prime numbers less than or equal x.



Résumé

Une suite A d’entiers strictement positifs est dite primitive si et seulement si aucun

1
a€A aloga’

ou A est une suite primitive différente de {1}, converge. De plus, il a conjecturé que

élément de A ne divise les autres. Erdés a prouvé que la série S (A) = >

Y aea @ < D uep @, ou P représente I'ensemble des nombres premiers. Afin de
prouver cette conjecture, B. Farhi a établi la série de la forme S (A, z) = 4 m.
Le but de cette thése est d’introduire des résultats autour de cette derniére somme et sa

relation avec la conjecture d’Erdos.



Summary

A sequence A of structly positive integers is said to be primitive if no term of A divides
any other. Erdés showed that the series S (A) = >, .4 ngav

sequence different from {1}, is convergent. Moreover, he conjectured that

where A is a primitive

1
acA aloga —

Y acp @ where P denotes the set of prime numbers. To prove this conjecture, B. Farhi

established the series of the form S (A, z) = >, .4 m. The purpose of this thesis

is to introduce results on this last sum and its relation with the Erdds conjecture.
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Introduction

A sequence A of positive integers is said to be primitive if no element of A divides another.
We can see directly that the set of primes P = (p,,),~, is primitive. In the beginning, the
research was focused on the density d of these sequen_ces. In 1934, Bescovitch proved that
for every € > 0 there exists a primitive sequence A, such that the upper asymptotic density
verified d A >% —e¢, see [8]. In the same subject, to check that the lower asymptotic density
equal to zero (dA = 0), Erd6s in [5], proved that if a sequence A is primitive different to
{1} then the series

1
S(A) =)
aeAaloga

is convergent, and its sum is bounded above by an absolute constant C. In 1993, Erdos
and Zhang showed in [6] that C' < 1.84. Years later, Clark was able to find in [2], the best
bounder of C' so far, he proved that C' < e¥ ~ 1.78 where v denoted the Euler constant,
but for A = P, it is well known that S (P) = 1.6366. In 1988, Erdés conjectured if S (P)

is the maximum value of the sum S (.A) by proposing the following

Conjecture 0.1 (Erdés): For any primitive sequence A # {1}, we have:

1 1
Zaloga = Z

acA peEP p IOg p

In their paper [6], Erdés and Zhang showed that this conjecture is equivalent to the

following one which deals with finite sums:

Conjecture 0.2 (Erdés and Zhang): For any primitive sequence A # {1} and any pos-

itive integer n, we have:

1 1
Z aloga = Z

acA,a<n peEP,p<n p 10g p

In 1991, Zhang [16], proved that for each £ > 2, S (N;) < S (N;) = C where N, =

{n:Q(n) =k}, Q(n) is the number of prime factors of n counted with repetition, and in

8



1993, he showed that the conjecture holds for the particular case of homogenous sequences,
see [17].
Recently, in 2017, still for the same objective which is to find a proof of this conjec-

ture,B. Farhi, in [7], established the following analogue sum

1

(A, @) = ;a(loga—i-x)’

where z is a fixed non-negative real number and A is always a primitive sequence different
to {1}.
In this thesis, we study precisely this series and we give some results on its relationship

with the sum .

SPa)=Y —,
(P, 2) pezpp(logwrx)

where P denoted the sequence of prime numbers, more exactly, we study the inequality
S(A, ) > S(P, x). As a remark, if we take x = 0, then we fall in the negation of Erdés
conjecture which is S(A, 0) < S(P, 0).

Our work organized into four chapters. The first is devoted to remind the main
definitions and necessary theorems that we need in next chapters, especially those related
to the density of sets of positive integers.

The second chapter is dedicated to two main theorems around this conjecture. So,
we started by presenting the proof of Erdés conjecture for the homogeneous primitive
sequences by Zhang in [17]. After that, we introduced an improved proof of his principal
theorem in [16] where he proved the conjecture of Erdés for the sequences of degree less
than or equal to 4. Our proof is based on drastically reducing operations, which gives us
hope to raise the degree greater than 4.

In chapter three, we started by introducing improved and more precise results than
that appearing in paper [9] of I. Laib and al, and we finished by generalizing the principal
theorem in the same paper for any degree d.

In the last chapter, by using the primitive sequences of the form
B ={p3ps> . pi*lag,. ., €Ny o+ Fap=d}U{palpn € P, n >k},

and its properties we study the inequality S(A, ) > S(P, x) for the largest values of z,

we also used the multinomial formula.



Chapter 1
Preliminaries

In this chapter we recall some main tools used in number theory, such as Abel’s summation
formula and Stirling’s formula then we introduce the density of a set of positive integers

and its properties. More particularly, density of primitive sequences.

1.1 Abel’s summation formula

be a sequence of complex numbers, define the sum

At) =) a(n)

n<t

Theorem 1.1 [1] Let {a(n)}, -

where A (t) =0 ift < 1. Assumes a continuously differentiable function f on the interval

ly, ] where 0 <y < x, then we have

Otherwise for all n > 1,

a(n)—am-1) = Y al)— > a(l)

= a(n)+ Z a(l) — Z a(l)
= a(n) _
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This implies that

= > A f)—An—1)f(n)
= Y AW - Y A1) f(n)
Since . -
Y An—1)f(n)=> An)f(n+1),
then . o
S amfmy= 3 AW )~ 3 Am)f(n+1).
And since :
ST AM M) = S A@)f(n)+A(K)f (k)
iA(n)f(n+1) = A(m)f(m+1)+ 2 An)f(n+1).
Then
S am)fn) = Y A(n)f(n) £ AGK) ()~ A(m) fm 1) — S A()f(nt1)
= S [AGm) f () — A(n) f (n+ )]+ A(k) £ (k) — A(m) f (m+ 1)
= Y AW )~ fnt 1))+ AR S ()~ A(m) f(m 1),
but
S AW -] = Y A [ -r @
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And forng <n<t<n-+1,

SO IICENT
Hence,
> AW -ser=- > [ awrod
Thus
S ) = = X [T AW @ AR FE) — Am) £ on+ )

Also, we have
A(k) f(k) = A(k)f(k)+ Ak) f(z) = Ak) f (z)
= A(k)(f(k) = f (@) + Ak) [ (z)
= k’/f Ydt+ A (k) f ()

= —A(k /k fr@t)yde+ Ak) f(x).

For k <t <, we have A (k) = A(t), then A(k) f(k)=— [ A (t)dt + A(z) f ().
On the other hand,

—A(m) f(m+1) = —A(m)[f(m+1)+A(m)f(y)—A(m) f(y)
= —Am)(f(m+1) = f(y) —Alm)f(y)

(m) (f (m+1) = f(y)) —Ay) f ()

(

/m“ P () dt— Aly) ().

= —A(m

I
|
N

m

)
)
)
)

But, for y <t < m+ 1 we have A(m) = A(y), then

A s == [ AT d - AW 1),
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So,
S alm)f(n) = —/HA@HWﬂﬁ—A{Mﬂf@MﬁhM@fw)

[ aw s wd- a6 1w
— AW -AW W) - [ AOF @
k T !
—/HA(t)f’(t)dt—/k A F(8) dt
- A(ﬂf)f(fv)—A(y)f(y)—/xA(t)f’(t)dt-
Which ends the proof. m

Example: Writing 7 (z) in terms of 0 (z)

Theorem 1.2 [1] For x > 2, we have

(2) 9(‘”)+/x O) 4

- log tlog®t

Proof. We consider the caracteristique function of prime numbers a (n),

1if n =p,
a(n) =
0if n #p.

Applied Abel’s summation formula with b(n) = a(n)logn, n € N* and the function

frxm =foraz>1,y=3.

logx
So,
A(n) =) b(n) =) logp=0(z),
n<z p<x
and f'(v) = — 07
Therefore,

w(z) = Y b(n)f(n)
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Since for # < 2 we have 6 (t) = 0, then

W(x)—@—i—/;ﬂdt

~ logx tlog*t
And the proof is finished. m

1.2 Stirling’s formula

Stirling’s formula is one of the important formulas most used in the remaining three

chapters, especially in approximations that contain n!.
Theorem 1.3 [13] For n € N* we have

1
n! = V2rn"t2e e,

where 1, satisfies Wlﬂ <71, < ﬁ
Proof. Let
S, = log (n!) =log (1) +log (2) + ... +log (n) = niilog (p+1),
=
and we put

log(p+1)=A4,+ B, — ¢,

where
p+1
A, = / (log x) dz,
p
1
By, = 5llog(p+1)—logp],
p+1 1
€ = / (log x) dx—ﬁ[log(p—i-l) — logp].
p
So,
n—1 n 1 n—1
Sy = (Ap—i-Bp—ep):/ (logx)dx+§logn— > €
p=1 1 p=1
Therefore . .
Sp=(n+=)logn—n+1-> ¢,
2 =
where

_2p+11 p+1 ]
=—5 log{—— -1
p
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Using the well known series

logij:i:2 95+%3+%5+ )for lz| < 1,
setting 2 = (2p + 1), then = = %1 and
1 1 1
6p:3(2p+1)2+5(2p—|—1)4 7(2p+1)° 7

then we can bound ¢, as follow:

. 1 <1+ R S ) 1 (1 1 )
E - 9 cee = — —_—,
P 3(2p+1)° 2p+1)72 (2p+1)* 12'p p+1

1 1 1
& > —— |1+ +
T3+ < 32 +1)° [3(2p+ 1)

Now, define
R = Zemrn: Z%v
p=1 p=n
then . )
— < R< —.
13 12

So, we can write S,, on the form

S, = (n
R

, as

1
+§) logn —n+1—R+r,,

or, setting C' = e~

1
_ nt+s —n_r
n!=Cn""2e "™,

where
1

12n +1

<r, < —.
" Ton

The constant C, known from the double inequality 1—13 < R < % to lie between e1

e%, may be shown by one of the usual methods to have the value v/27w. This completes

the proof. m

1.3 Density

1L

2 and

The density help us to study the manner in which a subset A C N is distributed among

the naturel numbers. Study of the density of primitive sequences led Erdos to lay down

his conjecture: for any primitive sequence A # {1} we have

1 1
Zaloga = Z

2
acA a€P p IOg p

where P denotes the sequence of prime numbers.
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Asymptotic density

Definition 1.1 [8] Let A = {ai}i21 be a sequence of positive integers. For n € N, we
define
A(n) =card{AN[0, nl},

if the limit of %”) exists, then A is said to possess asymptotic density which defined by

dA = lim M

n— oo n

Remark 1.1 If the sequence A is finite then dA = 0.

Definition 1.2 [8] The lower asymptotic density of a sequence of positive integers A is
defined by

dA = lim infM.

n—o00 n

Definition 1.3 [8] The upper asymptotic density of a sequence of positive integers A is

defined by
dA = lim supA (n) .

n—oo n

Example 1.1 Let A be an arithmetic progression,
A={sk+r, k>0,0<r<s},

where s and r are fized positives integers.
We have
A(n) = card{AN|0, n]}

then A (n) = k, where k satisfies the inequalities

sk+r<n<sk+r+s.

Therefore,
n—s—r n—r
— < k<
S S
s0,
n—s—r _ A(n) < n—r
sn n sn
hence "
limw< lim (n)g limn_r.
n—oo sn n—oo n n—oo SN
Thus " .
dA = tim A _ 1

n—oo n S
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Theorem 1.4 Let A be a sequence of positive integers, then
1) dA < dA,
2) if dA = dA =1 then dA exists and equal to 1.

Proof. 1) Let A be a sequence of positive integers, then we have

inf{A(n) Aln+1) } _ Aln) <Sup{A(n) Aln+1) }

Y Y

n n+1 n n n+1
then,
k k
lim infM < lim M < lim supA( ),
n—oo k>n n—oo 1N =00 k>n
therefore,
k k
lim inf A (k) < lim sup ﬁ,
n—oo k>n n—00 >y k
S0,
dA < dA.

2) If dA = dA = [, then for given € > 0 there exists ny such that, ¥n > ny,

l—€<ian<k) <l+e
k>n k
and Atk
[ —e < sup ( )<l+e
k>n k
then 1
l—e<ﬂ<l+e.
n
Thus dA=1. =

Logarithmic density

Definition 1.4 [8] Let A={a;, i =1, 2, ...} be a sequence of positive integers, if the
limit of the series @ >

by

a;<n ai exists, then A possess logarithmic density which defined

1 1
0A = 1i —.
A niralo logn QZ: a;

i<n

Definition 1.5 [8] The lower logarithmic density of a sequence of positive integers A is
defined by
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Definition 1.6 [8] The upper logarithmic density of a sequence of positive integers A is
defined by

Corollay 1.1 If a sequence A consists of a finite number of positive integers then
0A = 0.
Theorem 1.5 [8] For any sequence of positive integers A, we have
0<dA<SA<IA<dIA<LL,

Theorem 1.6 Let A = {a,}iZl be an infinite sequence of positive integers. If the series
S L converges then 6. A = 0.

i=1 a;
Proof. Let {a;, a;, ...} be an infinite sequence of positive integers and let S = >"°, ai
Since
= 1
S = — < 00,
we have
1 1
< —
yleyd
a;<n =1
then,
1 1 1
0< > — S
logn = a logn
Therefore .
0 < lim — < lim S
~ n—oo logn az;n a; ~ n—oo logn
So,

This ends the proof. =

Example 1.2 Let

Then,
0A = lim ! Z !
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It is known that the series Y s, & converges.
Hence,

0A=0.

Lemma 1.1

nh_)n;o logn Z E

Proof. For n be a positive integer we have,

"1
/ —dx = logn.
1T

We may then consider the sums ) ;_, % and ZZ;} % as being lower and upper Riemann

sums respectively, of the function x — % where x € [1, n].

Hence,
n—1
1 1
Zdr < Z
z <[ a3y
k=1
then
n 1 <l _ n—1 1
J— O J—
k' — gn [— k’
k=2 k=1
which implies
1 &1 1 &
1 PSS K’
ogn ogn £
S0,
1 1 1 1
<1< -,
logn k logn logn — = logn p k
therefore
1 "1 1 1 1
1 (ZEH)—I <1<y o
ogn \ & ogn ogn
S0,
1 1 1 1 1
1 E logn =S K’
ogn £ ogn ogn £
Thus,
1 : 1= : : =0
ogn ogn k
Since lo;n > 0, then we can write
1 1 1 1
— <1- - <0<

logn logn &=k logn’
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So,
1
logn’

1 1
1-— E - <
lognkzlk

: 1 n 1 _
then llmn*)oo Togn Zk:l 5 1. m

1.4 Set of multiples

Definition 1.7 Let g (a) represent the greatest prime divisor of the positive integer a,
and let P, represent the set of naturel numbers n such that, the prime divisors of n are
greater than g (a).
The set

aP, = {ax, x € P,}

15 called the set of higher multiples of a.
Lemma 1.2 Let a and b be two positive integers. If a + b then,
aP,(bPy = ¢.

Proof. Let a and b be two positive integers such that p (a) < p(b) and aP, [ bP, = ¢.

Then there exists two integers n, and n;, with (n,, a) = 1 and (n;, b) = 1, such that

ang = bny,
and since p (a) < p (b), we have
a | bny,
therefore
(np, a) = 1.

So, by Gauss’s lemma we have a | b which is contradictory with the fact that a+b. m

Theorem 1.7 The set P, possesses asymptotic density and

d,]Da:M

m

Y

where m = p1ps...p, and p1, Pa,..., pr do not exceed p(a).
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Proof. Since P, = {n: (n, m) = 1}, then there are exactly ¢ (m) elements of P, in the
interval (0, m], but in any intrval ((k — 1) m, km] there are exactly ¢ (m) elements of P,,

since P, (n) > ¢ (m) for a geven n, so there exists an integers k and ¢ such that

where
0<t<p(m)
and
km <n < (k+1)m,
then
Pa(n)  ko(m)+t
n n ’
and
1 1 1
<< —
(k+1)m —n = km
hence
kp (m) kpo(m)+t ke(m)+t _ kp(m)+t
(k+1)m ~— (k+1)m n - km
since
ko(m)+t _ke(m)+e(m)  (E+1)¢(m)
km km km
Then,
Fo(m) _ Puln) _ (k+1D)p(m)
(k+1)m~ n — km ’

by taking the limit as k — oo and since km < n < (k + 1) m we get

. (1) (m)
+1)p(m
1 =
- (m)
Then,
plm) _ o Pal) _ plm)
Thus, lim,,_« P“TE") exists and equal to %. [



22

1.5 Primitive sequences

Definition 1.8 A sequence A = {a,},, of positive integers is said to be primitive if no

element of A divided any others.
Particular primitive sequences
1) Let A be a primitive sequence, then the following sets are primitive,

A, = {a:a€ A, the prime factors of a are > p,,},
A = {a:a€ Ay, pn/al,
Al = {a/pmac A}.

2) The set Ny = {n:Q(n) =k}, where Q(n) is the number of prime factors of n

counted with repetition.

Definition 1.9 Let A be a primitive sequence and let A,,, be defined above. We call A,, is
homogenous if for each m there is some integer s,, such that either A,, = ¢ or Q(a) = s,

for any a € A,,.
Density of primitive sequence

Theorem 1.8 Let A be an infinite primitive sequence, then for anyn > 1,
A(2n) <n.

Proof. Suppose that A countained n + 1 element that do not exted 2n. We can write
these elements under the form a; = 2%b; where b; is the greatest odd divisor of a; for
1=1,2,...,n+1and a; > 0.

Since b; has at most n different values, then two of the integers by, ..., b, .1 must be equals.

So, there exists ¢ and j such that
bi="b;,1<i<j<n+1,

this implies that

a; | aj or a; | a;,

which contradictory with the fact that A is primitive sequence. m

Theorem 1.9 If A is an infinite primitive sequence, then dA < %
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Proof. From last teorem we have
1) If n is an even integer (n = 2k), then

A(2K)
2k

k
< — =
- 2k

57

hence )
dA <-.
dA < 5

2) If n is odd (n = 2k + 1) then, since A (2(k + 1)) < k + 1, we have

’ A(n)

Therefore,

. 1 1
< limsup= + o

n—:aoo 2

. 1. 1 1
< lim sup§ + lim sup—n =35

n—-a_o n—-mao~o 2
Which ends the proof. m
Lemma 1.3 [8] Let p be a prime number and x > 2 a real number, then

1\ 1
10gm<H(1——) < Mlogx,
p

p<z
where M 1s a positive constant.

Theorem 1.10 (Erdés). If A is infinite primitive sequence, then the series
N |
— a; log a;

CONVETGES.

Proof. For i > 1, we denote by p (a) the greatest prime factor of a; € A, we shall prove

that
1

iaikn(l_z_?)Sl'

(4.1)
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Let a;, a; be integers of A, since for all ¢ # j, a; + a; then by lemma 1.2, we have
i Pa; m a;jPo; = 9,
and for any n > 1, we have
1 1
da,ﬂ’an:a— H)(l—;),
then . ©
nz:; da,P,, = Z -

since the sets a,,P,, are disjoints then,

i da,P,, =d (U anPan> ,

then from the lemma 1.3, we have

1\ !
logp (@) < (1——) < Mlogp (an).
P b
p<p(an)
then
!
aplogp(a,) < a, H (1——> < May,logp(ay),
p p
p<p(an)
therefore
1 - 1 <1 1) < 1
M J— )
anlogp(an) ~an o p) = anlogp(an)
hence ) u ) M
oz () < a, 11 (“‘)S log p (an)’
a, log p (a, a, orin) D ap, logp (a,
So,
> 1 =1 1
S e <M I (1))
1 ¢ og p (an) =1 ¢ p<p(an) b
Since

then, we have
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In other hand, we have a,, > p(a,), then
a,loga, > a,logp (a,),
S0,
1 1
< 2
anloga, ~ anlogp(an)

thus,

o0

1 1
— < — < M.
nz::l aploga, — ; a,logp(a,) —

o0

This ends the proof m
Theorem 1.11 For any primitive sequence A we have dA = 0A = 0.

Proof. Let A= {a;},~, be a primitive sequence. According to theorem 1.5, it suffices to

prove 64 = 0. For i =1, 2, ..., we have a; < n, then loga; < logn, therefore

1 < 1
logn ~loga;’

S0,

1
logn Z _< Z

a; lo a;
1<a;<n @i 1<a;<n ° & i

and
n

1 1
logn Z a_,< Z

a;=N-+1 N<a;<n

<
a; log a; — ; a; logal

n

then by the last theorem, the sum 10;71 > ai is converges.
a;=N+1 v

1 1 1 1 1 1
logn Z a;  logn Z ;+10gn Z a;’

1<a;<n 1<a; <N ° N<a;<n "

But we have

So by taking lim,,_., we obtain 6.4 = 0,
and since 0 < dA < 0A = 0, then

This ends the proof. m



Chapter 2

Erdos’s conjecture for particular

cases

In this chapter we will present the proof of Erdos’s conjecture for homogeneous primitive
sequences, and we will also investigate further the case where the primitive sequences

have degree less than or equal to four.

2.1 Erdoés’s conjecture for the homogeneous primit-

ive sequences
Throughout this section, we denote by p (a) the last prime factor of a and A (p) the set
of elements a € A with p (a) = p.
Lemmas
Lemma 2.1 [6,7|we have

Pn > nlogn for n>1,

pn > n(logn+loglogn) forn > 6.

Lemma 2.2 For any integer m > 2, we have

> oD < g
pilog(i—1) " logm

>m
Proof. Note that for each ¢ > 3, we have
| _ log(i/ (i~ 1)
ilogilog (i — 1) logilog (i — 1)

1 1
log(i—1) logi

26
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then from lemma 2.1 we have

If we put h(m) =">

1
i>m p;log(i—1)’

1
him) < Zz’logilog(i— 1)

>m
1 1
log (i —1) logi
1
~ logm’

In the following, we define i (a) = ¢ if the largest prime factor of a is p;.

Lemma 2.3 Form > 2, s > 1, we have

Z ! < h(m) < !

log (i (a) — 1 1 .
(@) 5P Qa)=s 08 (i(a) — 1) ogm

Proof. We proceed by induction on s.

If s = 1, then this is just lemma 2.2. Assume the lemma for s.

For the s + 1 case, by lemma 2.2, we have

1
Z alog (i (a) — 1)

p(a)>pm, Q(a)=s

_ le 1

pilog (j —1)
p(b)>pm, Qa)=s  j>i(b) pjlog (] )
! 1
< Z X <h (m) < )
p(b)>pm7 Q(b):s blog (Z (b) - 1) logm

The proof is finished. =

Lemma 2.4 Fori > 2 and B > 2, we have

s 1 i)
p; log (Bp;) log B

j>i
< ) 1 1 N 1
min
- logi’ elogi elogB |’

where e = 2.718... is the base of the natural logarithms.

Proof. By lemma 2.1, we have,

 p;log (Bp;) i wlogxlog (Br)

i
log (1 + log B/ log i)
log B
< min{ Lo }
- logi’ elogi’ elogB |’




28

then

Z 1 < { 1 1 1 }
————— < min - - )
=P log (Bp,) logi’ elogi’ elog B
Observing that the inequality

log (1 + log B/ log i) , 1 1 1
< min -, -
log B logi” elogi” elog B

follows from log (1 4+ z) < x and

logx:1+log(1+(x_e)) < -,
e

forallz >0. m

Lemma 2.5 Form > 2, B > 2, s > 2, we have

Z m < (6_1+...+el—5)h(m)+61—sz 1

() >pm, QAu)=s - pilog (Bp;)
Proof. We proceed by induction on s.
If s = 2, then by lemma 2.4, we have
1 _
p<u>>p§9<u>s ulog (Bu) ;pa ,gpk log Bpjpk
1 _1 1
< e h(m)+e ; m

For the s + 1 case, by lemma 2.3, lemma 2.4 and using s case, we have,

1 1 1
Z ulog (Bu) - Z b Z p; log (Bbp;)

b
p(w)>pm, Qu)=s+1 p(W)>pm, Qu)=s  j>i(b)

o1 1 1
< ) b (log () —1) ' log (Bb))

p(u)>pm, Q(u)=s
1

(e'+..+e®)h(m)+e* Z m

j>m

And the proof is finishes. m

Lemma 2.6 Let a, m and s an integers such that m > 5 and s > 2 then, we have

Z 1 - 1

Q(a)=s—1, p(a)>pm+1 alog (ap"”rl) log prms1




29

Proof. Put

w (s, m) = Z !

1 b
a)ms T, 108 (apm+1)

then by lemma 2.2, lemma 2.4 and lemma 2.5, we have
w (s, m) < W (s, m),

where
el .. el 8 el=S

w = .
(s, m) logm 10g pim+1

Using lemma 2.1, we obtain

logpmi1 _ log(m + 1) +log (log (m + 1) + loglog (m + 1))

logm  — logm
1 log (1 log 1
< 0g 6 + log (log 6 + log log 6) =1.65..<e—1.
log 5
So, for m > 5 and s > 2,
—1 1
W(s,m)—Wi(s+1,m)=e" - — > 0.
logpms1 logm
Therefore,
(s,m) < W(s,m)<W(2m)=—+ 1
s, m m) =
wis, m T ’ elogm  elog ppmii
e—1 1
<
c1og Pt | €10g pus
B 1
log pr1’

1
log pm+41°

so, w (s, m) <

Lemma 2.7 For any integer m < 4, we have

w (2, m)= Z ! !

1 < 1 :
Q(a)=1, p(a)>pm+1 alog (apm1) 0g Pm+1

Proof. If 0 < m < 4 then by lemma 2.4, we have

w (2, m) <w(m)

wm) = + +
(m) Pm+1108DP2 01 Pm+210g (Pms1Pms2) 108 Pmat

1 1 1 ] log pr+1
log (m + 2)

).
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and

(0) = s b o e og (14 1222
v ~ 2log4  3log6 5logl0  log2 ©8 log3 /"

By calculation we have

w(m) pmir 1/10gPmia
0.388 11 0.417
0.464 7 0.513
0.581 5 0.621
0.856 3 0.910

SH

Thus, w (2, m)<w(m)<ﬁf0r0§m§4. [

Lemma 2.8 Let s and m an integers such that s > 3, 2 < m < 4, then

B 1 1

wls, m) = > < .
st e ops, 1108 (@Pmr1) 108 P

Proof. Let m be fixed integer, put

Vo= (e + .+ ) h(m) + e Fw(m),

where w (m) is the upper bound of w (s, m), defined in the proof of lemma 2.7. Then by

lemma 2.5 we have for s > 3 that
w(s,m)= (e +..+e ) h(m)+ e w(2, m) <,

If h(m) < (e —1)w (m) and m < 4, then by lemma 2.2 we have
10

1
h(4)= —— + h(10) < 0.6442,
@) 5 pilog (i — 1) (10)

but % (10) < 55, thus

0g 107
% <l7<e-—1,
so that the case m = 4 is verified.
For m = 2, since
h(2) = 51§g2 +h(3) < 1.063,

we use the upper bound H = 1.063 for h (2), we see that

m>€—1.
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However, we then have

H H
-1 2—S 2—s
< H —=——<062< —
Vo< (€A ) H e e—1 e—1 log5’

so, the case m = 2 is also done. m

Lemma 2.9 [16] We have for s >3 and 0 < m <4

1
w(s, 1) < ,
log pa
0) < ——
'UJ(S, ) 10g2?
1
w(s, m) < ———.
log P41

Erdos’s conjecture and homogeneous primitive sequences
A primitive sequence A is called homogeneous if 2 (a) = ¢ (constant) for all a € A.

Theorem 2.1 Let A be a primitive sequence such that A (p) is homogeneous, then for

1 1
Z (JLlogaS Z

lo
a€A, a<n p prime, p<n plogp

n > 1 the inequality

18 true.

Proof. According to the lemma 2.7, we have for a given prime p, if B = B (p) is homo-

Z 1 < 1

pyr aloga — plogp

geneous and nonempty, then

and this implies the theorem. m

2.2 Erdos’s conjecture for primitive sequences of de-

gree less than or equal four

Lemmas
Lemma 2.10 Let n > 1 be an interger, if we put

F(n) =logn +loglogn —1,
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then we have

pn > nF(n) forn>2, [2] (2.1)
pn > n(log(nF(n)) —a) forn >3, (2.2)
pn < n(F(n)+p) forn>95, (2.3)

where o = 1.127 and = 0.305.
Proof. Let g be the function defined on N by
n—g(n)= Dn —log (nF' (n)) forn >3
n

then, according to (2.1) we have g (n) > h(n) where

loglogn — 1)

= 1-1log(1
h(n) og( + logn

the stady of the real function z — h(x) (z > 3) gives us
h(z) > h(exp (exp2)) > —a,

then g (n) > —a, which is equivalent to

pn > n (log (nF (n)) —«) for n > 3.
A computer caculation shows that for 95 < n < 7022 we have

pn < n(F(n)+5),
and on other hand, we have
pn < n(logn + loglogn — 0.9385) for n > 7022,

therefore the inequality (2.3) is verified for n > 95. This completes the proof. =

Lemma 2.11 Form > 1 and j € {1, 2, 3}, we have

1 1
<
Z pi(kj +1logp;)  kj—1 4 logpn,

i>max(m, j—1)

where kg = 0.023, k1 = 0.3157, ky = 0.901 and k3 = 2.079.
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Proof. Put N =95, C' = 0.0713,

uy = 0.09435, uy = 0.387, uz = 0.9723
vy =0, vy =0, v3 = —0.0074.

It is clear that for m > N and j € {1, 2, 3} we have

max (m, j — 1) =m,

and
1
C > —log(F (m))+log (14—%) +log (F(m+1)+0),
C < Uj—kjfl,
and
vj:a—k‘j—i-Zuj—l.
Put

1
hy (m) B Z pi(kj + logpi)

i>max(m, j—1)

By (2.1) et (2.2) we have, for m > N and j € {1, 2, 3},
pi(k; +logp;) > i(log (iF (i) — a) (kj + log (iF (4))),

Since the function
x +— log (xF (x))

increases for x > N, we have

o dt
hi(m +1) </m t (log (¢F () — ) (log (¢F (1)) + k;)’

using the change of variable x = logt give us

> dx
iy (m 1) < /m C@ o) L@+ h)

where
L (2) = log (¢"F (7)),

1

L' (x)

then we have 1 = x L' (x) for x > 1, and since

B lzlogz + 22 +1
oz z+logr—1

L' (x) >0,

(2.4)
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we also have,
1 1+2z

L'(z) = wxlogr+a2+1
But on other hand, for x > log NV,

(14 2)(L(z)—1)— (zlogz +2° + 1) =log (z + logz — 1) +zlog(1+

S0,

GRS

then
1

1
1l————— ) f log N
o <( L(x)—l) or x > log N,

S0,

00 I/ (x) dz

L' ()
hylm 1)< /m VCEDIAC,

)
o0 (1—# L' (z)dx
= /m (L () — ) (L () + k)

By setting y = L (z) and y,, = L (logm), we obtain

m = (y—2)dy
i ( “></ym TENEDIEL)

Now, for j € {1, 2, 3} we put

() =
- (m) = _—
9 log pm + kj—1
then according to (2.3) and (2.4) we have
(m+1) > !
% = ko +log ((m+ 1) (F (m+ 1) + 5))
1
>
log (mF (m)) + u;
_ / T dy
Ym (y + u])2

For j € {1, 2, 3}, we put

Aj=y-2)y+u)’—(y—1)(y—a)ly+k),

then, for y > y,, and j € {1,2,3}

logx — 1

Ay = v + (62— duy — a + k; + aky) y — (2u2 + aky) <0.

)—2>0,
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So, for y > y,, and j € {1, 2, 3} we have

(y—2) P
W-—Dy—a)ly+k)  (y+u)?

thus
dt

logm + log (logm + loglogm — 1) + u;’

according to (2.3) and (2.4) we have

log pim+1 + kj_1 —logm —log (logm + loglogm — 1) — u;

1 log (m + 1) 4+ loglog (m + 1) — 0.7
= log 1+— +10g g( ) & g< ) —Uj+/€j_1
m logm + loglogm — 1

S C——Uj+]€j_1§0,

then

1
; 1) > .
g; (m + )_logm+log(logm+loglogm—1)+uj

Thus, for m > N and j € {1, 2, 3} we have h; (m+1) < g; (m+1) ie.

h; (m) < g; (m) for m > N + 1.

And for 1 < m < N, a computer calculation gives

N
1
h; - S i h(N+1
_ al 1 . 1
= pi(k; +logp;)  log N +log (log N +loglog N — 1) + u;
< gj(m).

Which ends the proof. m

Lemma 2.12 Let m > 1 be fized and let B = B,, be primitive sequence with deg (B) < 3.
For1<t<4—deg(B), we have

1 1

wh it ¢ B 2.5

bEZBb(tlogpmHogb) = e tlogp, ¢ 5, (2:)
1 1

where p} ¢ By. (2.6)

< -
,,EZB b(tlog py, + log b) ko + log pm
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Proof. For m > 1 and 1 <t <4 — deg(B), put

1
0 (B) = 3 o oy Mhere (0:(6) = 0).

By induction on deg (B), if deg (B) = 1 and 1 < ¢t < 3 we have tlogp,, > tlog2 > k; and
p1 ¢ By when ¢t = 3, so by lemma 2.11 we get

1
B pumm
9: (B) bGZB b(tlog p,,, + log )

1
< e —
Z )pi(kt + log p;)

i>max(m, t—1

1
kt—l + IOg Pm .
If deg(B) =s>1and 1 <t <4 —s, we know that B = J,.,, B; is disjoint, so
gt (B) = th (B]) where pi~* ¢ B!.
>m

We distinguish the folowing two cases:

1) If deg (B;) <1 then
1

BY< ———— . 2.7
9 (B) pi(ke + log p;) 27
2) If deg (B!) > 1 then
1
B =
9 () b%; pib((t + 1) log p; + log b)
1
= ;gt (B!') where p3~ ¢ B,
and since
deg (B/) < sandt+1<4—deg(B/),
we have
A—(t41
Jt+1 (BZH) < ]{ZtTngz where Y2 (t+1) ¢ Bi’,
thus .
BY< ———— | 2.8
9 (By) < pi (ki + log p;) (28)
So, from (2.7) et (2.8) and lemma 2.11 we obtain
1
g+ (B) where p‘ll_t ¢ By,

< _—
ki1 +log pm
then for ¢ = 1 we get the inequality (2.6), and the proof is finished. =
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Theorem of Zhang

Theorem 2.2 For any primitive sequence A whose the number of the prime factors of

its terms counted with multiplicity is at most 4, we have

1 1
< 1.
Z aloga — Z plogp Jorn >

acA,a<n a€P,aln

Proof. Let n be fixed and A = {a: a € A, a <n} a subsequence of A with deg (A) < 4.

Put 7 (n) = m, the number of primes < n then A =J,_,,, A4; is disjoint and
FA) = > f(A4).
1<i<m

Let 1 < i < m, we distinguish the following two cases:
1% case: we suppose that p ¢ A, i.e. , p? ¢ Af.
If deg (A}) <1 then

1
f4) < :
(49 pilog pi
and if deg (A}) > 1 then
f(A) = 1 Z ! where p} ¢ A}
Yopi Ay b(log p; + log b) ! b

K3

and
deg (A7) < deg (4] —1 < 3.

So, according to (2.6) we get

1 1 1
< < h 3¢ A
b§, Wlogp +1ogh) ~ ot logpi ~ logp, eI E A
therefore
f(A) < forl1 <i<m. 2.9
(4 pilogp; (29)
274 case: if pt € A, since A is a primitive sequence then p; ¢ A, so,

deg (A7 — {pi}) #1,

ie.,
1

p1 (ko +logpr)’

f(A = {pi}) <
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thus
f4) =
<
and from (2.9), we have
F(4) <
then
f(4) <

thus, by (2.9) and (2.10) we get

Fa =Y frays ¥

1<i<m

This completes the proof. m

F({p1}) + 1 (A1
1

pilogpt
1

p1logp’

— {pi})
1

+
p1 (ko + logpy)

for 2 <i<m,
pi log p;

for 1 <i <m, (2.10)

pilog p;

1

i logp;’




Chapter 3

Principal results on the sum S(A, z)
and its relationship with Erdos’s

conjecture

In this chapter, we discuss the results obtained in [7], In particular, we improuved the
value of x such that S (A, ) > S (P, z). The authors in this paper studies only the case
where primitive sequence have degree d = 2, we gives a generalization of this result for

any degree d.

3.1 Some results on primitive sequences of the form
B;
Lemmas

Lemma 3.1 [15] For any real x > 1, we have
1
Z — > loglogx.
pEP, px

Lemma 3.2 For any integer n > 1, we have
2.5n"e "/n < n! < n" 1

Proof. For n = 2, the inequality is verifed. For n > 2, we can use the inequality

1

heT™ 2mnetn .

17 —
n"e 2mne2ntt < pl < nplte"

See[13]. m

39
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Lemma 3.3 Let the real number € > 1 and the integer n > 1, then we have

) nnle™
inf — ) =4,
n>1, e>1 \ n—Ipn—1 _ nl

Proof. For n > 2, we define for ¢ > 1 the sequence t, (¢) by

B nnle™
tn(€) = en—lpn=1 —pl’
According to lemma 3.2, for n > 2, ¢ > 1

n—1,,n—1

" Inpnl —pl - e"le" — 2.5n/n
nn! 2.5n2/n "’

25 2 en
b () > —2omvne™
en~len — 2.5n\/n

Since, for € > 1 the real function

then

2.52%\/re

v fo(x) = er+(z—1)loge _ 9 5x\/—

is increases on [4, c0), then for n > 4, we have

tn(€) > fe () = fc(4),

and since t3 (¢) < f. (4) for € > 1, we have

N e . M CICHAT)

n>1, e>1 \ et~ Ipn—1 — nl n>1, e>1

The proof is achieved. m

Lemma 3.4 For any integer k > 1 and any integer d > 2, we define

Ar =0 p? ot e, €N ap L o = d)
then we have the disjoint union

A2+1 -Ad U {apk+1 ac Ak+1

k+1

Proof. Let y € AX™ such that pj.1 | y. Then, y = apj1 where a € A5*1 and

At = Ly € A [ praryyU{y € AS™ [ [}

therefore
ASH {apkﬂ la € .Ak“

which is disjoint union. m
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Lemma 3.5 Let kg = 13674662, then for any real number x > 0 and for any k > ko the

sequence S(BY, ) is strictly increases.

Proof. For any integers k > 1, d > 2, the multinomial formula give us

S (Z i) . (3.1)

aE.A’; n=1 Pn

According to lemma 3.4, we have

BI2€+1 _ Alzc—i-l U Ak:-i-l
= AU {apkﬂ |a € AIfH} ARt

then
S(BE, ) = S(BS, ) + E,
where . )
E= S(AM 1o +x ——).
Dk+1 < (A Bl ) log pry1 + @

Since p41 is the largest element in A¥™!, we have

1

S(AM 1o +x) =
(A BPk+1 + ) Z a(loga +logpyy1 + )

aEA’erl

1 Z 1
2log pri1 + a

eAk+l

and according to (3.1) and lemma 3.1 we obtain for k£ > ko,

k+1
1 1
PR D
aGA’f‘H “ n=1 Pn

> loglogpri1 > 2.

therefore
1 2 1
S(AM 1o + ) — > N
(A7 & Pk+1 ) 10g pri1 + @ 2logpry1 + o logpisr +x
T
~ (2logpry1 + 7) (log pry1 + @)
> 0.

then
S(BY™, x) — S(BST, x) > 0.

This ends the proof. m
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Improved result over B%
Theorem 3.1 Let ky = 13674662 and xo = 80.4. Then for any primitive sequence
={p1"py®...ps o, €N, o+ =2, k> kot U{pn €P | n >k},

we have

S(BE, x) > S(P, ) for x > .

Proof. For any natural numbers £ > 1 and d > 2, pg is the greatest element of the

primitive sequence A%, then loga < dlog py for any a € AE. So, for any x > 0 we have

1 1
Z a(loga + z) - Z a(loga + )

aeBk acAkUAk

1 1
= — + -
Z a(loga + ) agk a(loga + )

acAk

1 1
- — + _—
dlogpy + x a§’3 a ; Pn(logpn + 1)

from (3.1) and lemma 2.1, we have

Zé> loglogpk } Z_

ac Ak
then
1 z (log logp,.C
>
%a(loga—kx) — d!(dlogpk + x) Z an logp + )
ach; n=
Lz (log log;ok,)d*1 zk: 1 N Z 1
d! (dlogpy + x) = pa(logpn + ) <= pa(logpy + )

To obtain the inequality of theorem, we must choose d, k and x such that

z (loglog py)* ™"
d! (dlog pr, + )

> 1,

it is clear that for d > 2 and k£ > 1, the function

z (loglog py) "™
d! (dlogpr + x)

x— h(x)=
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increases for x > 0.
Let xg be the smalest value such that the last inequality is verifed, then
(loglogp)™  —d! 1

- 2
ddlogpe 7o (3:2)

Since xy > 0, we must choose k such that (log logm)d_1 — d!z > 0, then according to
lemma 3.2, it must be

log log pr, > d,
then there exist € > 1 such that loglogpy = ed. Therefore, (3.2) equivalent to

ddec?

cd-1gi1 g = "0

so we must choose d and € such that the number

ddec?
ed—1qd—1 — (!

is the smalest possible. According to lemma 3.3, we obtain d = 2, ¢ = 1.481 and x¢ > 4¢3,
then we must find an integer ko so that loglogpy, be in the neighborhood of 2.962, a

computer calculation give us
(Pry, ko) = (249910007, 13674662) .

Then if we take kg = 13674662 and d = 2, we obtain BSO and z¢ = 80.4. So, according to
lemma 3.5 we have

S(BE, x) > S(P, x) for k > ko, x> .

The proof is achieved. m

3.2 Generalized result on S(B}, z) concerning prim-

itive sequences of the form B

Lemmas

Lemma 3.6 [4] For x > 3275 there exists a prime number p such that

1
r<p<zx|(l4+——]).
b= ( 21n2x)
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Lemma 3.7 For any integer n > 1, we have

n! < n"e'"/n, (3.3)
nl < 2(n+1)"7, (3.4)
nl < n"?% (n>5). (3.5)

Proof. For n = 2, the inequality (3.3) is verifed. For n > 2, it is comes from the
inequality [13]

_ 1 _ 1
n"e "V2mnentl < nl < n"e "V2mnetn,

and we can prove (3.4) and (3.5) by induction. m

Lemma 3.8 Let n > 2 be an integer and x be a reel number such that t > n — 1. The

function
nn!e®
v fnlw) = an—1l —nl
reaches its minimum in x, where x, € In —1, n+ 1|, moreover x5 = 2, x3 = VT + 1,

x4 >~ 4.298 and x, <n forn > 5.

Proof. Let n > 2 be an integer and let f, be the function defined on the interval

I'=|n—1, +o0[ by
nnle®
Jn (x) =

an—t —nl’
f is differentiable on I and

Put for x > n — 1,

then
g;(x) =(n—-1a2"2@—(n-2)>0o0nl,

hence g, increases on I. On the other hand, since g, is continuous then by lemma 3.7, we
have

lim ¢g,(z) = —n!<0,

r—n—1

gn(n) = n"?—n!>0 forn>5,
gn(n+1) = 2(n+1)"?=nl>0,



45

therefore, there exists only one root z,, € |n — 1, n+ 1] and for n > 5, z,, € [n — 1, n]
such that f, (z,) = 0. Since g, (r) < 0 for < x,, and g, (¥) > 0 for 2 > z, then f,

strictly decreases on |n — 1, x,] and strictly increases on [z,, + 00|, so we have
fn(x) > fo(x,) where xz, € Jn — 1, n+1].
It is clear that for n = 2, 3, 4 the equality
2"t —(n—1)2"? —n!=0
gives ro = 2, 13 = VT + 1, 24 ~4.298. m

Lemma 3.9 For any integer d > 2, there exists a prime p such that

eTd 6d+1

e <p<e” (3.6)

moreover
eZd ed+l ed
max{p:pe]e , € [}>e,
where (24) 4, 18 the sequence defined in lemma 3.8.
Proof. The inequality (3.6) is easy to verify for d = 2, 3, 4. By lemma 3.8, we have, for

d>5
d—1<z,<d, (3.7)

therefore e * > 3275, then from lemma 3.6 there exists a prime p such that

exd < exd 1 1
e <p<e + ey | °

from (3.7), we get 4 < 14 < d, then 1+ 3 < 2 and et ! < e thus

2€2xd

e“‘d 1 ed ed+1
e (1+262$d)<2e <e .

Since
d+1

2
4e* < (eed) <e
then according to the Bertrand’s postilate there exists a prime number in [Zeed, 4eed},

thus, the greatest prime number in [eezd, eedH} is greater than eed, which finishes the

proof. m

Lemma 3.10 Let d > 2 and let ko be the integer such that py, > exp (expd). For any

real number x > 0 the sequence (S (B~ x)) is strictly increases.

k>ko
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Proof. For any integer £ > 1 and any integer d > 2, the multinomial formula ensures
that
D I
- o1, Q2 g
G‘GAS a a1+...+ak:d pl p2 pk

(1/p)™ (1/pe)™

(@) 7 (ag)!

(]

therefore
RN ANR
>iea(a) 39
acAk n=1

Put A* = {p, |p, € P, n > k}, then from lemma 3.4 we have
B§+1 — AZ—H U Ak—l—l
= AiU{ap, . la € AT UA

S0,

S (Bt 2) =S5 (B, 2) + E

where

1 1
E = S (A logp,  + ——).
pk+1 ( ( d—1 k+1 ) 1ngk+1 4+
Since p{_ ] is the greatest element of A%}, we have
1
S Ak+l, 1 —
(Ady, logp,, + ) Z a(loga +logp, , + x)
aGAI;t}
1
>
z g};ﬂ a((d—1)logp, ., +logp,,, + )
aCAg—1

1 Z 1
dlogp, , + kﬂa’
ac A1
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and by lemma 3.1 we obtain

1 1 B d-1
2 . 2 o (Zp_)

aEAT__} n=1

1 -
> (d—1) (loglog pr1)"™

dd—l
(d—1)!

dd—l
2 Td for k 2 k’o,

>

according to lemma 3.7 we have d! < d?~! then

1
> = >dfork >k,
a

aEAZJ_ri
which implies
1 d 1
S (At logp,,, +3) = > -
( d—1 kt1 ) logp,,, +@ dlogp,,, +z logp,,, +x

B dr — 50
(dlogpk+1 + :C) (logpkﬂ + :U)

thus
S (Bg“, CL’) -5 (Bg, x) > 0.
The proof is finished. m

Generalized result on S(B%, )

ddled+1
(d+1)?1—a!

such that pg, < e . Then for any k > ko and any primitive sequence of the form

Theorem 3.2 Let d > 2 be an integer, xo = and let ko be the greatest integer

Bt = {pps? . pi o, .o €N, g+t ap =d YU pa lpn € P, n >k}
we have, for x > xq

S(BY, x) > S(P, x).

Proof. For any integer £ > 1 and any integer d > 2, we have

1 1
Z a(loga + z) - Z a(loga + x)

acBk acAkUAk

1 1
Y it Y
oy a(loga + ) = a(loga + )

1 1 1
dlogpk +z Z 5 * an(logpn + CU)

aeA’; n>k
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Using (3.8) and lemma 3.1, we get

1k
1 (loglogpk)d ! 1
D I Dees

aGAZ n=1 Pn
therefore
I Il - = DI
a(loga+z) — d(dlogpy + z) “ p, pn(logp, + )
acBk n=1 n>k
1k
z (loglog pp)*™" 1 1
> Yy
d!(dlog py, + x) ; TPn ;k pn(log pn + )

z (log log py,)* 1 1
> + 7 SE——
d!(dlogpy + x) Zl pn(logp, + ) Z pn(log p, + )

n>k

To obtain the inequality required in theorem, we must choose k£ and x so that

z (loglog i)™

d!(dlog px + )

Since for d > 2, k > 1, the function

_ x(loglogpy)™™
d'(dlogpr + )’

x i+ hyq(2)

is strictly increases for x > 0, let z the smallest value for which the inequality (3.9) is
verified, that is

log1 a1

(log log i) > = (3.10)
dd!log py, X

Since xg > 0, we need to find k such that

(loglog pp)" " —d! > 0,

then by lemma 3.9, we just take loglog pr > d, and if we put log log px, = z, (3.10) becomes

ddle*

— < .
zd=1 _ (!

ddle?

Now, we must choose z so that, the number 5~

is the smallest possible.
According to lemma 3.8, the function
ddle”
v falw) = S5
reaches its minimum 2z, in

ld—1,d+1],
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ddled !
(d+1)¢1—a”
From lemma 3.9, there exists a prime number p; such that

so we can take z € |zq, d + 1] and zy =

xq < loglogpr < d—+ 1.
Now, we can choose
Pro = max {py, : loglogpy € |z4, d + 1} and z = loglog py,,

then we obtain, for x > x

S(Bk, x) > S(P, x).

Finally, by lemma 3.9, we have
exp (expd) < pg, < exp (exp (d+1)),
and from lemma 3.10, we get for k > ky and x > xq,
S(B%, x) > S(P, ).
Which ends the proof. m
Remark 3.1 If we take d = 2, then we get , for k > 27775592 and x > 80.4
S(BS, x) > S(BY, ).

Since for x is sufficiently large, we have S(B%, x) > S(P, z), so we can conjecture that:
for any d > 1 there exists ko such that

S(Bj1, ¥) > S(By, x), k> ko, x> 0.



Chapter 4

Study the sum S(A, x) for largest

values of z

As explained in the introduction, the main objective of this chapter is to study the sum

S(A, ) for largest values of z, in this work we use the primitive sequences of the form
Bt ={p¢py> . pi¥lag, . ar €Ny + oo Fap =dJ{palpn € Py n > kY
Lemmas

Lemma 4.1 [4] For k > 463,
< (14 5 )
Pk4+1 = Dk 210g2 o .
Lemma 4.2 For any real number x > 0 and any integer k > 2 the following holds
1 . { w ifz#0

> 1 . o
n>k pn(logpn + ‘T) log k& Zf.CL' =0.

Proof. Let z > 0 be a real number and £ > 2 be an integer. By lemma 2.1 and since the

function

y dt
—
tlogt(logt + z)

decreases on [1, + 00), we obtain then

1

1
— <
et pn(logp, +x) — ;k nlogn(logn + loglogn + z)

1
Z nlogn(logn + z)

n>k
“+oo

/ dt
tlogt(logt + z)
ks

50
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Put v = logt, so,
if  # 0, we have

“+o00o +oo
/ dt B / du
tlogt(logt +z) u(u + )
k log k
S
Sy (CEE
T u utx
log k
_ log(l + lozk>
€T 9
if x =0, we have
+00 +o0
/ dt B du
tlogt(logt + ) u?
k log k
1
-~ logk’

This ends the proof. m
Lemma 4.3 For any integer n # 0, we have:
n! < n"e'"\/n.

Proof. For n = 1, the inequality is verified.

For n > 2, we use the inequality [8]
n! < n"e "V 2mne'/1?",
We have

nte ™ /27m61/12"
nnel—n\/ﬁ /27_‘_61/1271—1’

IN

n!

IN

and since the function x — /27e!/12*~1 decreases on [2, + o), then
fmel/in1 < .

therefore
n! < n"el~"/n.

Which ends the proof. m
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Lemma 4.4 For any A > 1 and any n > 0, we have

71.383)\2" + 20.978 N
64.9751n (A*" + 2) + 20.978

n

Proof. For any A, we have:

71.3830"" +20.978
64.975In (A*" 4 2) 4 20.978
71.383\*" +20.978 — 64.975\" In (A*" + 2) — 20.978)\"

64.975In (A*" 4 2) 4 20.978

1
= A"(71.383\" — 64.9751n (A*" + 2) — 20. 20.978) .
64.975In (>\2”+2)—|—20.978< (71.383\" — 64.975In (A*" +2) — 20.978) + 20.978)

n

Put w, (A) = 71.383\" — 64.9751n (A\*" + 2) — 20.978, then

d n
—w, (N) = —————— (1.4277 x 10°A™ — 1.2995 x 102)\*" + 71.383.\3"
" = Spe ) | )
)\TL
= D (14277 x 102 — 1.2995 x 102\" + 71.383.)2")
A (N +2)

and since 1.4277 x 10?2 — 1.2995 x 10%x + 71.383.22 > 0, then

Hence the function w,, increases for A > 1, therefore
71.383\" — 64.975In (A" + 2) — 20.978 > —20.977,
S0,

(A™(71.383\" — 64.975In (A*" 4 2) — 20.978) + 20.978) > 6.6654 x 10~ > 0.

Thus
71.383)\%" + 20.978

64.975In (A" +2) +20.978

and the proof is achieved. m

n

> 0,

Lemma 4.5 Let the sequence (uy),~, where

(uy,) increases on [2,00).
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Proof. We have.
(n+1)" =+ "' —nl

et = = (n+1)(n+1)! nn!

(n+1)" (n+1)" nn2 N 1
m+1)(n+1)! (n+1)(n+1)! n! n

 (n+ )" 1 21

(n+1)! (n+1) n! n

n"? a2 1
> (n+1)"" n L1_ >0.
n! n! n (n+1)

The proof finished. m

4.1 Study of S(A, x) for largest values of z

Theorem 4.1 Let A > 1 and t > 0, then for any x > 1656\ (log()\% +2))3/2, there

exists a primitive sequence A such that
S(A, x) > N'S(P, z).

Proof. Let A > 1 and let ¢t > 0. To prove this theorem, we need the parameters «, ¢ and
[ which satisfy :
5
ca> e’ +10g1.008,0 < a < 5 (C1)
£ > 1.950 (C2)
those parameters will be chosen later, the real ¢ is chosen to be the smallest possible value

so that; for any z > eA* (log(A* + 2))3/2, there exists a primitive sequence A # {1} such
that

1 1
— >\ Nz SEE—
Z a(loga + x) ~ Z p(logp + )

acA peEP
Let p;. be the largest prime satisfying p, < e**, then according to lemmas 4.1 and 2.1, we
obtain

pr < €% < Pyt < 1.008py, (4.1)

Assume that 5
d=|B+log \* + 5 log log ()\2t + 2)J ,

then from (C1) and (C2), we have

x> é (e +10g 1.008) ,
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and from lemma 3.1 and (4.1), we obtain

"
Z— > log log px

n=1 1"

Pr+1
1.008

ar

1.008

> loglog

> loglog
> d.

So,
k

> 1 (4.2)

n:lpn

Now, we define the following sets of positive integers :

PE = {pulpn €P, o> i},
A = ALyUPrh.

It is clear that A% (M P* = & and the sets A%, P* and A are primitive sequences. Then,

according to the multinomial formula and (4.2), we have
> o1
a oot s ok
a€A; ¢ art top—d P1 P27 Pr

(1/p)™ (1/pe)™

a+...4ap=d (Oél)‘ (Oék)'

(]

So,
k

1 ddfl
PO DD

aGA’; n=1

1
—. 4.3
Pn (4.3)
Since

x> cA” (log(A* + 2))3/2

then, from (C1) and (C2), we obtain

e™ > 3303 > paga.
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Hence, according to (4.1) we have
Pass < pr < € < praq < 1.008py.

By using lemma 2.1, we get

IN

log py, o

IN

log p. + log 1.008
< log (k (log k + loglog k)) + log 1.008.

Now, since the function

. log (t (logt + loglogt)) + log 1.008
logt

decreases on [464, + 00), then we have

log (t (logt 4+ loglogt)) + log 1.008 < log (464 (log 464 + log log 464)) + log 1.008

~ 1.339
logt - log 464

that is,
ar < 1.339logk. (4.4)

By using (4.4) and lemma 4.3, we find

1 _ log(1 + ﬁ) _ log(1 4 £232)
“ pu(logpn + ) x x

Y

therefore,

1 1 1
. 4.5
7 log(1 + 12) 2 pa(log pn + ) (49

On other hand, according to (4.1) and (4.2), we have for z # 0

k 1 k
- - >
;pn(logpwrﬂf) - ;pn (ax + )

a+1 Z_

d
(a+1)2’

IV

and from (4.5) we obtain

k
D T e (T e D DES
— pn(logpn +x) ~ (a+1)log(1 + 1232) et pn(log p, + )
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Put 7 (@) = (o + 1) log(1 4 £232), then we have

> N2 Y
;pn(logpwrw) ~ h(e) (Z pn(log pn + ) nzpn logpn+:v)>

1

therfore,
k +oo
d 1 d 1
14+ —— _— 2>
< h (a)) ; pn(logp, + ) h(a) ; pn(logp, + )

. d = X 1
~ d+h(a) = pa(logp, + )

Thus,

k d +o0o 1
> . 4.6
an logpn+fv) d+h () ;pn(logpwrfc) (46)

Since p¢ is the largest element in A%, then according to (4.1), we have for any a € A¥
loga < dlogpi. < dax,

hence, from (4.3), we obtain

1 1
; a(loga +x) Z a(loga + z)

ac AkUPK

1 1
D
= a(loga + x) = a(loga + x)

d

v

dozx—i—x Z an logpn—i—x)

aek

- dz(da +1) da—l— Z an logpn—I—x
k

-1 1 1
> +D
d!(da+ 1) Z pn(logp, + ) nz>k pn(logp, + )

n=1

i1 i 1 o2 1
= (—— -1 - 4N
(d!(da +1) > ; pn(logp, + ) ; pn(logp, + )

According to (C1), and lemma 4.5, we have, for d > 4,

dd—l
— -1 0.
(d!(da ) ) ~
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By using this last inequality and (4.6), we obtain

i1 i i1 d 1
) i (s ) e S
d!(da+1 “— py logpn + ) d!(da+1) d+ h(a) <= pu(logp, + )

Therefore,

1 i d - 1
oL () )y
=~ a(loga + ) d!(da+1) d+h(x) “— pp(log p, + )

_d'di(da+1)h(a) X 1
d!(da+ 1) (d + h (@) <= pu(logp, + )’
by applying lemma 4.3, we get
d* + d!(do + 1)k () dle® + dIv/d(da + 1)h ()

d(da+1)(d+h(a) ~  vad(da+1)(d+h(@)
et 4 Vd(do + 1)h (a)
\/E(da +1)(d+ h(a)) '

3 1 _ (¢4 Vd(da + 1)h(a) *i 1 wn
“~ a(loga + x) Vd(da+1) (d+h(a)) ) = pu(logpn + ) ,
It follows from the expression of d, that
d>B—1+Ilog\* + gloglog()\gt +2),
then
ed1 > F2)\2% (log()\mt + 2))3/2 .
And since

log\* < log ()\Qt + 2) ,
log log ()\Qt + 2) < log ()\Qt + 2) -1
and 3 > 1.950, we have
< (B+1)log (N +2),

then
da+1< ((8+1)a+1)log (N +2),

and
< (B+1)log (A" +2).
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So, the formula (4.7) becomes

1 = 1
LSS S5 N 48
aezAa(loga—l—:v) Jaus ( );pn(logpn—l—m) (48)

where

s (V) = 2N+ /BHI((B+ Do+ 1)h () .

© VBFI((B+ Da+1) ((8+1)log (A +2) + h(a))
Now, we must choose a and f so that, for any A > 1 and any ¢ > 0, j,s(\) > 1 and
M be the smallest possible. That is, for any A > 1 and for any ¢ > 0

ef=2 - log (A +2)
VBFIB+1)((B+1Da+1) ~ 22

Since, for any ¢ > 0 the function

log ()\% + 2)

A= A2t
decreases on [1, 4+ 00), then
ef2 1
> log 3.
VB+T(B+1)((B+1)a+1)
Hence,
-2 _ 1 %1
e (B+1)"log3 . |
(B+1)2log3
and

e® +10g 1.008 N (e’ 4+ 1og 1.008) (8 + 1)g log 3
« B eP=2 — (B + 1)% log 3 .
Finally, we will choose 3 so that the quantity

(¢” +1og 1.008) (8 + 1)% log 3
ef=2 — (B + 1)% log 3

is also the smallest possible. A computer calculation gives § ~ 6.264, o ~ 0.317 and

c ~ 1655.234. By replacing o and [ in the formula of j, 3 we get

71.094)\* + 19.381

) — |
Jos V) = G 50T (W + 2) + 10,381
and (4.8) becomes
1 71.094)% +19.381 X 1
> = 2t :
“a(loga+x) = 64.6591n (A* +2) 419.381 = pu(log p, + )
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By lemma 4.3, for every A > 1 and every ¢ > 0, we have

71.0940* +19.381 Y
64.6591In (A +2) + 19.381

Y

which leads to the inequality of theorem. Thus, for A > 1, ¢t > 0 and for any
2t 2t 3/2
x> 1656.30% (log(A\* +2))™",

since

d= {6.264 +log \* + ;10g log (A + 2)J

and k is the greatest integer such that p, < €%3'7®, the sequence A is well defined. This
ends the proof. This ends the proof. m



Conclusion

The content of this thesis is focused on the Erdos’s conjecture, so on the inequality

1 1
Zaloga = Zplogp

acA a€P

where A is a primitive sequence diferent to {1} and P reprente the set of prime numbers.
We took two paths in our work:

1) In chapter 2, by using a new estimations of n-th prime number, we simplified the
proof of Zhang’s theorem in which he proved the conjecture of Erdos for the primitive
sequences of degree less or equal four. The first perspective is to extend Zhang’s theorem
to sequences of higher degree.

2) In chapitre 3 and 4, we study the inequality

1 1
Za(loga+x) SZ

= 2 p(logp + )

where z is a positive real number, we proved that for x > 80.4 this last inequality is false,

so the second perspective is to improve the value of x.
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