# REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE 



UNIVERSITE DJILLALI LIABES<br>FACULTE DES SCIENCES EXACTES<br>SIDI BEL ABBES

## THESE DE DOCTORAT EN SCIENCES

## Spécialité:Mathématiques

Option: Algèbre et applications
Intitulée

```
Théorie des nombres: Sur les suites primitives
```

Présentée par: M. Rezzoug Nadir Soutenue le: ../../.... Jury

| Mr. Mokeddem Soufiane | Prof. Université de Sidi Bel Abbès | Président |
| :--- | :--- | :--- |
| Mr. Noui Lemnouar | Prof. Université de Batna | Examinateur |
| Mr. Mechik Rachid | M.C.A. Université USTHB Alger | Examinateur |
| Mr. Habib Habib | M.C.A. Université de Sidi Bel Abbès | Examinateur |
| Mr. Benaissa Abbès | Prof. Université de Sidi Bel Abbès | Co-Encadreur |
| Mme. Guenda Kenza | Prof. Université USTHB Alger | Directeur de thèse |

## ACKNOWLEDGEMENTS

Praise be to Allah for providing me with strength, courage and patience to accomplish this work.
I express my most distinguished thanks to my thesis director, Mrs. Kenza GUENDA, Professor at Houari Boumedienne University of Science and Technology, Algiers, for her availability and constant presence, she offered me, in terms of time and effort, throughout the years of supervision of my work, with a lot of patience, generosity, advice, competence and know-how.
I would like to thank my co-thesis director, Mr. Abbes BENAISSA, Professor at Djillali Liabes University of Sidi Bel Abbes, for his helps, guidance and advice.
Many thanks goes to Mr. Soufiane MOKEDDEM, Professor at Djillali Liabes University of Sidi Bel Abbes, for his honorable acceptance to be the chairperson of the viva examination Jury.
I would like to thank the thesis examiners, namely, Mr. Lemnouar NOUI, Professor at the University of Batna, Mr. Rachid MECHIK, MCA at Houari Boumedienne University of Science and Technology, Algiers, and Mr. Habib HABIB, MCA at Djillali Liabes University of Sidi Bel Abbes, who honored me to be part of my work examination, through their valuable remarks and duidance.

## Dedicaces

To my dear parents.
To all my family.

## Notations

1. $\mathbb{N}^{*}$ denotes the set of non-zero natural numbers.
2. We denote by $\mathcal{P}$ the set of prime numbers.
3. We denote by $p_{n}$ the n -th prime number.
4. We define the degree of an integer $a$ denoted by $\Omega(a)$, to be the number of prime factors of $a$ counting with multiplicity.
5. We denote by $p(a)$ the last prime factor of $a$.
6. We denote by $\mathcal{A}$ a set of primitive integers.
7. We denote by $\operatorname{deg}(\mathcal{A})$ the degree of $\mathcal{A}$, it is defined as the maximum degree of its terms.
8. $\mathcal{A}_{m}=\left\{a: a \in \mathcal{A}\right.$, the prime factors of $a$ are $\left.\geq p_{m}\right\}$.
9. $\mathcal{A}_{m}^{\prime}=\left\{a: a \in \mathcal{A}_{m}, p_{m} \mid a\right\}$.
10. $\mathcal{A}_{m}^{\prime \prime}=\left\{a / p_{m}: a \in \mathcal{A}_{m}^{\prime}\right\}$.
11. $\liminf _{n \longrightarrow \infty}\left(a_{n}\right)$ indicate the limit inferior of $a_{n}$ as $n \rightarrow \infty$.
12. $\limsup _{n \longrightarrow \infty}\left(a_{n}\right)$ indicate the limit superior of $a_{n}$ as $n \rightarrow \infty$.
13. $\sum_{n \leq x}$ indicate the sum of all integers lying in the interval $[1, x]$.
14. $\prod_{p \leq x}$ indecate the product of the primes numbers lying in the interval $[2, x]$.
15. $d \mathcal{A}$ indecate the asymptotic density of $\mathcal{A}$.
16. $\bar{d} \mathcal{A}$ indecate the upper asymptotic density of $\mathcal{A}$.
17. $\underline{d} \mathcal{A}$ indecate the lower asymptotic density of $\mathcal{A}$.
18. $\delta \mathcal{A}$ indecate the logarithmic density of $\mathcal{A}$.
19. $\bar{\delta} \mathcal{A}$ indecate the upper logarithmic density of $\mathcal{A}$.
20. $\underline{\delta} \mathcal{A}$ indecate the lower logarithmic density of $\mathcal{A}$.
21. For integers $n$ and $m, m \mid n$ means " $m$ divides $n$ " and $m \nmid n$ means " $m$ does not divide $n "$.
22. $\lfloor x\rfloor$ denotes the unique integer $k$ such that $k \leq x<k+1$ (the integer part of real $x)$.
23. $f=\mathcal{O}(g)$ and $f \ll g$ the notations of Landau and Vinogradov means that there exists a constant $C>0$ and a real $x_{0}$ such that for any $x \geq x_{0}$, we have

$$
|f(x)| \leq C g(x)
$$

24. $f=o(g)$ means that $\lim _{x \rightarrow+\infty} \frac{|f(x)|}{g(x)}=0$.
25. $\theta(x)$ represents Tchébichev function defined by $\theta(x)=\sum_{p \leq x} \log p$ and $\theta(x)=0$ for $x<0$.
26. $\varphi(n)$ represents Euler's function counts the integers $m \leq n$ such that $(m, n)=1$

$$
\varphi(n)=\sum_{m \leq n,(m, n)=1} 1 .
$$

27. $\pi(x)$ represents the function counts prime numbers less than or equal $x$.

## Résumé

Une suite $\mathcal{A}$ d'entiers strictement positifs est dite primitive si et seulement si aucun élément de $\mathcal{A}$ ne divise les autres. Erdős a prouvé que la série $S(\mathcal{A})=\sum_{a \in \mathcal{A}} \frac{1}{a \log a}$, où $\mathcal{A}$ est une suite primitive différente de $\{1\}$, converge. De plus, il a conjecturé que $\sum_{a \in \mathcal{A}} \frac{1}{a \log a} \leq \sum_{a \in \mathcal{P}} \frac{1}{p \log p}$, où $\mathcal{P}$ représente l'ensemble des nombres premiers. Afin de prouver cette conjecture, B. Farhi a établi la série de la forme $S(\mathcal{A}, x)=\sum_{a \in \mathcal{A}} \frac{1}{a(\log a+x)}$. Le but de cette thèse est d'introduire des résultats autour de cette dernière somme et sa relation avec la conjecture d'Erdős.

## Summary

A sequence $\mathcal{A}$ of structly positive integers is said to be primitive if no term of $\mathcal{A}$ divides any other. Erdős showed that the series $S(\mathcal{A})=\sum_{a \in \mathcal{A}} \frac{1}{a \log a}$, where $\mathcal{A}$ is a primitive sequence different from $\{1\}$, is convergent. Moreover, he conjectured that $\sum_{a \in \mathcal{A}} \frac{1}{a \log a} \leq$ $\sum_{a \in \mathcal{P}} \frac{1}{p \log p}$ where $\mathcal{P}$ denotes the set of prime numbers. To prove this conjecture, B. Farhi established the series of the form $S(\mathcal{A}, x)=\sum_{a \in \mathcal{A}} \frac{1}{a(\log a+x)}$. The purpose of this thesis is to introduce results on this last sum and its relation with the Erdős conjecture.

## Contents

Introduction ..... 8
1 Preliminaries ..... 10
1.1 Abel's summation formula ..... 10
1.2 Stirling's formula ..... 14
1.3 Density ..... 15
1.4 Set of multiples ..... 20
1.5 Primitive sequences ..... 22
2 Erdős's conjecture for particular cases ..... 26
2.1 Erdős's conjecture for the homogeneous primitive sequences ..... 26
2.2 Erdős's conjecture for primitive sequences of degree less than or equal four ..... 31
3 Principal results on the sum $S(\mathcal{A}, x)$ and its relationship with Erdős's conjecture ..... 39
3.1 Some results on primitive sequences of the form $\mathcal{B}_{d}^{k}$ ..... 39
3.2 Generalized result on $S\left(\mathcal{B}_{2}^{k}, x\right)$ concerning primitive sequences of the form $\mathcal{B}_{d}^{k}$ ..... 43
4 Study the $\operatorname{sum} S(\mathcal{A}, x)$ for largest values of $x$ ..... 50
4.1 Study of $S(\mathcal{A}, x)$ for largest values of $x$ ..... 53
Conclusion ..... 60
Bibliography ..... 61

## Introduction

A sequence $\mathcal{A}$ of positive integers is said to be primitive if no element of $\mathcal{A}$ divides another. We can see directly that the set of primes $\mathcal{P}=\left(p_{n}\right)_{n \geq 1}$ is primitive. In the beginning, the research was focused on the density $d$ of these sequences. In 1934, Bescovitch proved that for every $\epsilon>0$ there exists a primitive sequence $\mathcal{A}$, such that the upper asymptotic density verified $\bar{d} \mathcal{A}>\frac{1}{2}-\epsilon$, see [8]. In the same subject, to check that the lower asymptotic density equal to zero $(\underline{d} \mathcal{A}=0)$, Erdős in [5], proved that if a sequence $\mathcal{A}$ is primitive different to $\{1\}$ then the series

$$
S(\mathcal{A})=\sum_{a \in \mathcal{A}} \frac{1}{a \log a}
$$

is convergent, and its sum is bounded above by an absolute constant $C$. In 1993, Erdős and Zhang showed in [6] that $C \leq 1.84$. Years later, Clark was able to find in [2], the best bounder of $C$ so far, he proved that $C \leq e^{\gamma} \simeq 1.78$ where $\gamma$ denoted the Euler constant, but for $\mathcal{A}=\mathcal{P}$, it is well known that $S(\mathcal{P})=1.6366$. In 1988, Erdős conjectured if $S(\mathcal{P})$ is the maximum value of the sum $S(\mathcal{A})$ by proposing the following

Conjecture 0.1 (Erdős): For any primitive sequence $\mathcal{A} \neq\{1\}$, we have:

$$
\sum_{a \in \mathcal{A}} \frac{1}{a \log a} \leq \sum_{p \in \mathcal{P}} \frac{1}{p \log p}
$$

In their paper [6], Erdős and Zhang showed that this conjecture is equivalent to the following one which deals with finite sums:

Conjecture 0.2 (Erdős and Zhang): For any primitive sequence $\mathcal{A} \neq\{1\}$ and any positive integer $n$, we have:

$$
\sum_{a \in \mathcal{A}, a \leq n} \frac{1}{a \log a} \leq \sum_{p \in \mathcal{P}, p \leq n} \frac{1}{p \log p} .
$$

In 1991, Zhang [16], proved that for each $k \geq 2, S\left(\mathbb{N}_{k}\right)<S\left(\mathbb{N}_{1}\right)=C$ where $\mathbb{N}_{k}=$ $\{n: \Omega(n)=k\}, \Omega(n)$ is the number of prime factors of $n$ counted with repetition, and in

1993, he showed that the conjecture holds for the particular case of homogenous sequences, see [17].

Recently, in 2017, still for the same objective which is to find a proof of this conjecture,B. Farhi, in [7], established the following analogue sum

$$
S(\mathcal{A}, x)=\sum_{a \in \mathcal{A}} \frac{1}{a(\log a+x)}
$$

where $x$ is a fixed non-negative real number and $\mathcal{A}$ is always a primitive sequence different to $\{1\}$.

In this thesis, we study precisely this series and we give some results on its relationship with the sum

$$
S(\mathcal{P}, x)=\sum_{p \in \mathcal{P}} \frac{1}{p(\log p+x)}
$$

where $\mathcal{P}$ denoted the sequence of prime numbers, more exactly, we study the inequality $S(\mathcal{A}, x) \geq S(\mathcal{P}, x)$. As a remark, if we take $x=0$, then we fall in the negation of Erdős conjecture which is $S(\mathcal{A}, 0) \leq S(\mathcal{P}, 0)$.

Our work organized into four chapters. The first is devoted to remind the main definitions and necessary theorems that we need in next chapters, especially those related to the density of sets of positive integers.

The second chapter is dedicated to two main theorems around this conjecture. So, we started by presenting the proof of Erdős conjecture for the homogeneous primitive sequences by Zhang in [17]. After that, we introduced an improved proof of his principal theorem in [16] where he proved the conjecture of Erdős for the sequences of degree less than or equal to 4 . Our proof is based on drastically reducing operations, which gives us hope to raise the degree greater than 4 .

In chapter three, we started by introducing improved and more precise results than that appearing in paper [9] of I. Laib and al, and we finished by generalizing the principal theorem in the same paper for any degree $d$.

In the last chapter, by using the primitive sequences of the form

$$
\mathcal{B}_{d}^{k}=\left\{p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}} \mid \alpha_{1}, \ldots, \alpha_{k} \in \mathbb{N}, \alpha_{1}+\ldots+\alpha_{k}=d\right\} \cup\left\{p_{n} \mid p_{n} \in \mathcal{P}, n>k\right\}
$$

and its properties we study the inequality $S(\mathcal{A}, x) \geq S(\mathcal{P}, x)$ for the largest values of $x$, we also used the multinomial formula.

## Chapter 1

## Preliminaries

In this chapter we recall some main tools used in number theory, such as Abel's summation formula and Stirling's formula then we introduce the density of a set of positive integers and its properties. More particularly, density of primitive sequences.

### 1.1 Abel's summation formula

Theorem 1.1 [1] Let $\{a(n)\}_{n \in \mathbb{N}^{*}}$ be a sequence of complex numbers, define the sum

$$
A(t)=\sum_{n \leq t} a(n)
$$

where $A(t)=0$ if $t<1$. Assumes a continuously differentiable function $f$ on the interval [ $y, x]$ where $0<y<x$, then we have

$$
\sum_{y<n \leq x} a(n) f(n)=A(t) f(t)-A(y) f(y)-\int_{y}^{x} A(t) f^{\prime}(t) d t
$$

Proof. Let be $m=\lfloor y\rfloor$ and $k=\lfloor x\rfloor$ then $A(y)=A(m), A(k)=A(x)$ and

$$
\sum_{y<n \leq x} a(n) f(n)=\sum_{n=m+1}^{k} a(n) f(n)
$$

Otherwise for all $n \geq 1$,

$$
\begin{aligned}
a(n)-a(n-1) & =\sum_{l \leq n} a(l)-\sum_{l \leq n-1} a(l) \\
& =a(n)+\sum_{l \leq n-1} a(l)-\sum_{l \leq n-1} a(l) \\
& =a(n) .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\sum_{y<n \leq x} a(n) f(n) & =\sum_{n=m+1}^{k}(A(n)-A(n-1)) f(n) \\
& =\sum_{n=m+1}^{k} A(n) f(n)-A(n-1) f(n) \\
& =\sum_{n=m+1}^{k} A(n) f(n)-\sum_{n=m+1}^{k} A(n-1) f(n) .
\end{aligned}
$$

Since

$$
\sum_{n=m+1}^{k} A(n-1) f(n)=\sum_{n=m}^{k-1} A(n) f(n+1),
$$

then

$$
\sum_{y<n \leq x} a(n) f(n)=\sum_{n=m+1}^{k} A(n) f(n)-\sum_{n=m}^{k-1} A(n) f(n+1) .
$$

And since

$$
\begin{aligned}
\sum_{n=m+1}^{k} A(n) f(n) & =\sum_{n=m+1}^{k-1} A(n) f(n)+A(k) f(k), \\
\sum_{n=m}^{k-1} A(n) f(n+1) & =A(m) f(m+1)+\sum_{n=m+1}^{k-1} A(n) f(n+1) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\sum_{y<n \leq x} a(n) f(n) & =\sum_{n=m+1}^{k-1} A(n) f(n)+A(k) f(k)-A(m) f(m+1)-\sum_{n=m+1}^{k-1} A(n) f(n+1) \\
& =\sum_{n=m+1}^{k-1}[A(n) f(n)-A(n) f(n+1)]+A(k) f(k)-A(m) f(m+1) \\
& =\sum_{n=m+1}^{k-1} A(n)[f(n)-f(n+1)]+A(k) f(k)-A(m) f(m+1),
\end{aligned}
$$

but

$$
\begin{aligned}
\sum_{n=m+1}^{k-1} A(n)[f(n)-f(n+1)] & =\sum_{n=m+1}^{k-1} A(n) \int_{n}^{n+1}-f^{\prime}(t) d t \\
& =-\sum_{n=m+1}^{k-1} A(n) \int_{n}^{n+1} f^{\prime}(t) d t
\end{aligned}
$$

And for $n_{0} \leq n \leq t<n+1$,

$$
\begin{aligned}
A(t) & =\sum_{l \leq t} a(l)=a\left(n_{0}\right)+\ldots+a(n) \\
& =\sum_{n_{0}}^{n} a(l)=A(n)
\end{aligned}
$$

Hence,

$$
\sum_{n=m+1}^{k-1} A(n)[f(n)-f(n+1)]=-\sum_{n=m+1}^{k-1} \int_{n}^{n+1} A(t) f^{\prime}(t) d t
$$

Thus,

$$
\begin{aligned}
\sum_{y<n \leq x} a(n) f(n) & =-\sum_{n=m+1}^{k-1} \int_{n}^{n+1} A(t) f^{\prime}(t) d t+A(k) f(k)-A(m) f(m+1) \\
& =-\int_{m+1}^{k} A(t) f^{\prime}(t) d t+A(k) f(k)-A(m) f(m+1)
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
A(k) f(k) & =A(k) f(k)+A(k) f(x)-A(k) f(x) \\
& =A(k)(f(k)-f(x))+A(k) f(x) \\
& =A(k) \int_{x}^{k} f^{\prime}(t) d t+A(k) f(x) \\
& =-A(k) \int_{k}^{x} f^{\prime}(t) d t+A(k) f(x) .
\end{aligned}
$$

For $k \leq t \leq x$, we have $A(k)=A(t)$, then $A(k) f(k)=-\int_{k}^{x} A(t) f^{\prime}(t) d t+A(x) f(x)$. On the other hand,

$$
\begin{aligned}
-A(m) f(m+1) & =-A(m) f(m+1)+A(m) f(y)-A(m) f(y) \\
& =-A(m)(f(m+1)-f(y))-A(m) f(y) \\
& =-A(m)(f(m+1)-f(y))-A(y) f(y) \\
& =-A(m) \int_{y}^{m+1} f^{\prime}(t) d t-A(y) f(y) .
\end{aligned}
$$

But, for $y \leq t<m+1$ we have $A(m)=A(y)$, then

$$
-A(m) f(m+1)=-\int_{y}^{m+1} A(t) f^{\prime}(t) d t-A(y) f(y)
$$

So,

$$
\begin{aligned}
\sum_{y<n \leq x} a(n) f(n)= & -\int_{m+1}^{k} A(t) f^{\prime}(t) d t-\int_{k}^{x} A(t) f^{\prime}(t) d t+A(x) f(x) \\
& -\int_{y}^{m+1} A(t) f^{\prime}(t) d t-A(y) f(y) \\
= & A(x) f(x)-A(y) f(y)-\int_{y}^{m+1} A(t) f^{\prime}(t) d t \\
& -\int_{m+1}^{k} A(t) f^{\prime}(t) d t-\int_{k}^{x} A(t) f^{\prime}(t) d t \\
= & A(x) f(x)-A(y) f(y)-\int_{y}^{x} A(t) f^{\prime}(t) d t .
\end{aligned}
$$

Which ends the proof.

## Example: Writing $\pi(x)$ in terms of $\theta(x)$

Theorem 1.2 [1] For $x \geq 2$, we have

$$
\pi(x)=\frac{\theta(x)}{\log x}+\int_{2}^{x} \frac{\theta(t)}{t \log ^{2} t} d t
$$

Proof. We consider the caracteristique function of prime numbers $a(n)$,

$$
a(n)=\left\{\begin{array}{l}
1 \text { if } n=p \\
0 \text { if } n \neq p .
\end{array}\right.
$$

Applied Abel's summation formula with $b(n)=a(n) \log n, n \in \mathbb{N}^{*}$ and the function $f: x \mapsto \frac{1}{\log x}$ for $x>1, y=\frac{3}{2}$.
So,

$$
A(n)=\sum_{n \leq x} b(n)=\sum_{p \leq x} \log p=\theta(x)
$$

and $f^{\prime}(x)=-\frac{1}{x^{2} \log x}$.
Therefore,

$$
\begin{aligned}
\pi(x) & =\sum_{n \leq x} b(n) f(n) \\
& =A(x) f(x)-A\left(\frac{3}{2}\right) f\left(\frac{3}{2}\right)-\int_{\frac{3}{2}}^{x} A(t) f^{\prime}(t) d t \\
& =\frac{\theta(x)}{\log x}-\frac{\theta\left(\frac{3}{2}\right)}{\log \frac{3}{2}}-\int_{\frac{3}{2}}^{x}-\frac{\theta(t)}{t \log ^{2} t} d t .
\end{aligned}
$$

Since for $x<2$ we have $\theta(t)=0$, then

$$
\pi(x)=\frac{\theta(x)}{\log x}+\int_{2}^{x} \frac{\theta(t)}{t \log ^{2} t} d t .
$$

And the proof is finished.

### 1.2 Stirling's formula

Stirling's formula is one of the important formulas most used in the remaining three chapters, especially in approximations that contain $n$ !.

Theorem 1.3 [13] For $n \in \mathbb{N}^{*}$ we have

$$
n!=\sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n} e^{r_{n}} .
$$

where $r_{n}$ satisfies $\frac{1}{12 n+1}<r_{n}<\frac{1}{12 n}$.
Proof. Let

$$
S_{n}=\log (n!)=\log (1)+\log (2)+\ldots+\log (n)=\sum_{p=1}^{n-1} \log (p+1),
$$

and we put

$$
\log (p+1)=A_{p}+B_{p}-\epsilon_{p},
$$

where

$$
\begin{aligned}
A_{p} & =\int_{p}^{p+1}(\log x) d x \\
B_{p} & =\frac{1}{2}[\log (p+1)-\log p] \\
\epsilon_{p} & =\int_{p}^{p+1}(\log x) d x-\frac{1}{2}[\log (p+1)-\log p] .
\end{aligned}
$$

So,

$$
S_{n}=\sum_{p=1}^{n-1}\left(A_{p}+B_{p}-\epsilon_{p}\right)=\int_{1}^{n}(\log x) d x+\frac{1}{2} \log n-\sum_{p=1}^{n-1} \epsilon_{p} .
$$

Therefore

$$
S_{n}=\left(n+\frac{1}{2}\right) \log n-n+1-\sum_{p=1}^{n-1} \epsilon_{p},
$$

where

$$
\epsilon_{p}=\frac{2 p+1}{2} \log \left(\frac{p+1}{p}\right)-1 .
$$

Using the well known series

$$
\log \frac{1+x}{1-x}=2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots\right) \text { for }|x|<1
$$

setting $x=(2 p+1)^{-1}$, then $\frac{1+x}{1-x}=\frac{p+1}{p}$ and

$$
\epsilon_{p}=\frac{1}{3(2 p+1)^{2}}+\frac{1}{5(2 p+1)^{4}}+\frac{1}{7(2 p+1)^{6}}+\ldots
$$

then we can bound $\epsilon_{p}$ as follow:

$$
\begin{aligned}
\epsilon_{p} & <\frac{1}{3(2 p+1)^{2}}\left(1+\frac{1}{(2 p+1)^{2}}+\frac{1}{(2 p+1)^{4}}+\ldots\right)=\frac{1}{12}\left(\frac{1}{p}-\frac{1}{p+1}\right) \\
\epsilon_{p} & >\frac{1}{3(2 p+1)^{2}}\left(1+\frac{1}{3(2 p+1)^{2}}+\frac{1}{\left[3(2 p+1)^{2}\right]^{2}}+\ldots\right)>\frac{1}{12}\left(\frac{1}{p+\frac{1}{12}}-\frac{1}{p+1+\frac{1}{12}}\right)
\end{aligned}
$$

Now, define

$$
R=\sum_{p=1}^{\infty} \epsilon_{p}, r_{n}=\sum_{p=n}^{\infty} \epsilon_{p}
$$

then

$$
\frac{1}{13}<R<\frac{1}{12}
$$

So, we can write $S_{n}$ on the form

$$
S_{n}=\left(n+\frac{1}{2}\right) \log n-n+1-R+r_{n}
$$

or, setting $C=e^{1-R}$, as

$$
n!=C \cdot n^{n+\frac{1}{2}} e^{-n} e^{r_{n}}
$$

where

$$
\frac{1}{12 n+1}<r_{n}<\frac{1}{12 n} .
$$

The constant $C$, known from the double inequality $\frac{1}{13}<R<\frac{1}{12}$ to lie between $e^{\frac{11}{12}}$ and $e^{\frac{12}{13}}$, may be shown by one of the usual methods to have the value $\sqrt{2 \pi}$. This completes the proof.

### 1.3 Density

The density help us to study the manner in which a subset $\mathcal{A} \subset \mathbb{N}$ is distributed among the naturel numbers. Study of the density of primitive sequences led Erdős to lay down his conjecture: for any primitive sequence $\mathcal{A} \neq\{1\}$ we have

$$
\sum_{a \in \mathcal{A}} \frac{1}{a \log a} \leq \sum_{a \in \mathcal{P}} \frac{1}{p \log p}
$$

where $\mathcal{P}$ denotes the sequence of prime numbers.

## Asymptotic density

Definition 1.1 [8] Let $\mathcal{A}=\left\{a_{i}\right\}_{i \geq 1}$ be a sequence of positive integers. For $n \in \mathbb{N}$, we define

$$
\mathcal{A}(n)=\operatorname{card}\{\mathcal{A} \cap[0, n]\},
$$

if the limit of $\frac{\mathcal{A}(n)}{n}$ exists, then $\mathcal{A}$ is said to possess asymptotic density which defined by

$$
d \mathcal{A}=\lim _{n \rightarrow \infty} \frac{\mathcal{A}(n)}{n}
$$

Remark 1.1 If the sequence $\mathcal{A}$ is finite then $d \mathcal{A}=0$.
Definition 1.2 [8] The lower asymptotic density of a sequence of positive integers $\mathcal{A}$ is defined by

$$
\underline{d} \mathcal{A}=\liminf _{n \rightarrow \infty} \frac{\mathcal{A}(n)}{n}
$$

Definition 1.3 [8] The upper asymptotic density of a sequence of positive integers $\mathcal{A}$ is defined by

$$
\bar{d} \mathcal{A}=\limsup _{n \rightarrow \infty} \frac{\mathcal{A}(n)}{n} .
$$

Example 1.1 Let $\mathcal{A}$ be an arithmetic progression,

$$
\mathcal{A}=\{s k+r, \quad k \geq 0,0 \leq r<s\},
$$

where $s$ and $r$ are fixed positives integers.
We have

$$
\mathcal{A}(n)=\operatorname{card}\{\mathcal{A} \cap[0, n]\}
$$

then $\mathcal{A}(n)=k$, where $k$ satisfies the inequalities

$$
s k+r \leq n<s k+r+s
$$

Therefore,

$$
\frac{n-s-r}{s}<k \leq \frac{n-r}{s}
$$

so,

$$
\frac{n-s-r}{s n}<\frac{\mathcal{A}(n)}{n} \leq \frac{n-r}{s n}
$$

hence

$$
\lim _{n \rightarrow \infty} \frac{n-s-r}{s n}<\lim _{n \rightarrow \infty} \frac{\mathcal{A}(n)}{n} \leq \lim _{n \rightarrow \infty} \frac{n-r}{s n} .
$$

Thus

$$
d \mathcal{A}=\lim _{n \rightarrow \infty} \frac{\mathcal{A}(n)}{n}=\frac{1}{s} .
$$

Theorem 1.4 Let $\mathcal{A}$ be a sequence of positive integers, then

1) $\underline{d} \mathcal{A} \leq \bar{d} \mathcal{A}$,
2) if $\underline{d} \mathcal{A}=\bar{d} \mathcal{A}=l$ then $d \mathcal{A}$ exists and equal to $l$.

Proof. 1) Let $\mathcal{A}$ be a sequence of positive integers, then we have

$$
\inf \left\{\frac{\mathcal{A}(n)}{n}, \frac{\mathcal{A}(n+1)}{n+1}, \ldots\right\} \leq \frac{\mathcal{A}(n)}{n} \leq \sup \left\{\frac{\mathcal{A}(n)}{n}, \frac{\mathcal{A}(n+1)}{n+1}, \ldots\right\}
$$

then,

$$
\lim _{n \rightarrow \infty} \inf _{k \geq n} \frac{\mathcal{A}(k)}{k} \leq \lim _{n \rightarrow \infty} \frac{\mathcal{A}(n)}{n} \leq \lim _{n \rightarrow \infty} \sup _{k \geq n} \frac{\mathcal{A}(k)}{k},
$$

therefore,

$$
\lim _{n \rightarrow \infty} \inf _{k \geq n} \frac{\mathcal{A}(k)}{k} \leq \lim _{n \rightarrow \infty} \sup _{k \geq n} \frac{\mathcal{A}(k)}{k},
$$

so,

$$
\underline{d} \mathcal{A} \leq \bar{d} \mathcal{A} .
$$

2) If $\underline{d} \mathcal{A}=\bar{d} \mathcal{A}=l$, then for given $\epsilon>0$ there exists $n_{0}$ such that, $\forall n \geq n_{0}$,

$$
l-\epsilon<\inf _{k \geq n} \frac{\mathcal{A}(k)}{k}<l+\epsilon
$$

and

$$
l-\epsilon<\sup _{k \geq n} \frac{\mathcal{A}(k)}{k}<l+\epsilon
$$

then

$$
l-\epsilon<\frac{\mathcal{A}(n)}{n}<l+\epsilon .
$$

Thus $d \mathcal{A}=l$.

## Logarithmic density

Definition 1.4 [8] Let $\mathcal{A}=\left\{a_{i}, i=1,2, \ldots\right\}$ be a sequence of positive integers, if the limit of the series $\frac{1}{\log n} \sum_{a_{i} \leq n} \frac{1}{a_{i}}$ exists, then $\mathcal{A}$ possess logarithmic density which defined by

$$
\delta \mathcal{A}=\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{a_{i} \leq n} \frac{1}{a_{i}} .
$$

Definition 1.5 [8] The lower logarithmic density of a sequence of positive integers $\mathcal{A}$ is defined by

$$
\underline{\delta} \mathcal{A}=\liminf _{n \rightarrow \infty} \frac{1}{\log n} \sum_{a_{i} \leq n} \frac{1}{a_{i}} .
$$

Definition 1.6 [8] The upper logarithmic density of a sequence of positive integers $\mathcal{A}$ is defined by

$$
\bar{\delta} \mathcal{A}=\limsup _{n \rightarrow \infty} \frac{1}{\log n} \sum_{a_{i} \leq n} \frac{1}{a_{i}} .
$$

Corollay 1.1 If a sequence $\mathcal{A}$ consists of a finite number of positive integers then

$$
\delta \mathcal{A}=0
$$

Theorem 1.5 [8] For any sequence of positive integers $\mathcal{A}$, we have

$$
0 \leq \underline{d} \mathcal{A} \leq \underline{\delta} \mathcal{A} \leq \bar{\delta} \mathcal{A} \leq \bar{d} \mathcal{A} \leq 1 .
$$

Theorem 1.6 Let $\mathcal{A}=\left\{a_{i}\right\}_{i \geq 1}$ be an infinite sequence of positive integers. If the series $\sum_{i=1}^{\infty} \frac{1}{a_{i}}$ converges then $\delta \mathcal{A}=0$.

Proof. Let $\left\{a_{i}, a_{i}, \ldots\right\}$ be an infinite sequence of positive integers and let $S=\sum_{i=1}^{\infty} \frac{1}{a_{i}}$. Since

$$
S=\sum_{i=1}^{\infty} \frac{1}{a_{i}}<\infty,
$$

we have

$$
\sum_{a_{i} \leq n} \frac{1}{a_{i}} \leq \sum_{i=1}^{\infty} \frac{1}{a_{i}}
$$

then,

$$
0 \leq \frac{1}{\log n} \sum_{a_{i} \leq n} \frac{1}{a_{i}} \leq \frac{1}{\log n} S .
$$

Therefore

$$
0 \leq \lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{a_{i} \leq n} \frac{1}{a_{i}} \leq \lim _{n \rightarrow \infty} \frac{1}{\log n} S
$$

So,

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{a_{i} \leq n} \frac{1}{a_{i}}=0
$$

This ends the proof.
Example 1.2 Let

$$
\mathcal{A}=\left\{k^{3}, \quad k \geq 1\right\} .
$$

Then,

$$
\begin{aligned}
\delta \mathcal{A} & =\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{a_{k} \leq n} \frac{1}{a_{k}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k^{3} \leq n} \frac{1}{k^{3}} .
\end{aligned}
$$

It is known that the series $\sum_{k^{3} \leq n} \frac{1}{k^{3}}$ converges.
Hence,

$$
\delta \mathcal{A}=0
$$

Lemma 1.1

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k}=1
$$

Proof. For $n$ be a positive integer we have,

$$
\int_{1}^{n} \frac{1}{x} d x=\log n
$$

We may then consider the sums $\sum_{k=2}^{n} \frac{1}{k}$ and $\sum_{k=1}^{n-1} \frac{1}{k}$ as being lower and upper Riemann sums respectively, of the function $x \mapsto \frac{1}{x}$ where $x \in[1, n]$.
Hence,

$$
\sum_{k=2}^{n} \frac{1}{k} \leq \int_{1}^{n} \frac{1}{x} d x \leq \sum_{k=1}^{n-1} \frac{1}{k}
$$

then

$$
\sum_{k=2}^{n} \frac{1}{k} \leq \log n \leq \sum_{k=1}^{n-1} \frac{1}{k}
$$

which implies

$$
\frac{1}{\log n} \sum_{k=2}^{n} \frac{1}{k} \leq 1 \leq \frac{1}{\log n} \sum_{k=1}^{n-1} \frac{1}{k},
$$

so,

$$
\frac{1}{\log n} \sum_{k=2}^{n} \frac{1}{k}+\frac{1}{\log n}-\frac{1}{\log n} \leq 1 \leq \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k}
$$

therefore

$$
\frac{1}{\log n}\left(\sum_{k=2}^{n} \frac{1}{k}+1\right)-\frac{1}{\log n} \leq 1 \leq \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k}
$$

so,

$$
\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k}-\frac{1}{\log n} \leq 1 \leq \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k},
$$

Thus,

$$
-\frac{1}{\log n} \leq 1-\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \leq 0
$$

Since $\frac{1}{\log n}>0$, then we can write

$$
-\frac{1}{\log n} \leq 1-\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \leq 0<\frac{1}{\log n}
$$

So,

$$
\left|1-\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k}\right|<\frac{1}{\log n}
$$

then $\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k}=1$.

### 1.4 Set of multiples

Definition 1.7 Let $g(a)$ represent the greatest prime divisor of the positive integer a, and let $\mathcal{P}_{a}$ represent the set of naturel numbers $n$ such that, the prime divisors of $n$ are greater than $g(a)$.
The set

$$
a \mathcal{P}_{a}=\left\{a x, x \in \mathcal{P}_{a}\right\}
$$

is called the set of higher multiples of $a$.
Lemma 1.2 Let $a$ and $b$ be two positive integers. If $a \ngtr b$ then,

$$
a \mathcal{P}_{a} \bigcap b \mathcal{P}_{b}=\phi
$$

Proof. Let $a$ and $b$ be two positive integers such that $p(a) \leq p(b)$ and $a \mathcal{P}_{a} \bigcap b \mathcal{P}_{b}=\phi$. Then there exists two integers $n_{a}$ and $n_{b}$ with $\left(n_{a}, a\right)=1$ and $\left(n_{b}, b\right)=1$, such that

$$
a n_{a}=b n_{b}
$$

and since $p(a) \leq p(b)$, we have

$$
a \mid b n_{b}
$$

therefore

$$
\left(n_{b}, a\right)=1
$$

So, by Gauss's lemma we have $a \mid b$ which is contradictory with the fact that $a \times b$.
Theorem 1.7 The set $\mathcal{P}_{a}$ possesses asymptotic density and

$$
d \mathcal{P}_{a}=\frac{\varphi(m)}{m},
$$

where $m=p_{1} p_{2} \ldots p_{r}$ and $p_{1}, p_{2}, \ldots, p_{r}$ do not exceed $p(a)$.

Proof. Since $\mathcal{P}_{a}=\{n:(n, m)=1\}$, then there are exactly $\varphi(m)$ elements of $\mathcal{P}_{a}$ in the interval $(0, m]$, but in any intrval $((k-1) m, k m]$ there are exactly $\varphi(m)$ elements of $\mathcal{P}_{a}$, since $\mathcal{P}_{a}(n) \geq \varphi(m)$ for a geven $n$, so there exists an integers $k$ and $t$ such that

$$
\mathcal{P}_{a}(n)=k \varphi(m)+t,
$$

where

$$
0 \leq t<\varphi(m)
$$

and

$$
k m<n \leq(k+1) m,
$$

then

$$
\frac{\mathcal{P}_{a}(n)}{n}=\frac{k \varphi(m)+t}{n},
$$

and

$$
\frac{1}{(k+1) m} \leq \frac{1}{n} \leq \frac{1}{k m}
$$

hence

$$
\frac{k \varphi(m)}{(k+1) m} \leq \frac{k \varphi(m)+t}{(k+1) m} \leq \frac{k \varphi(m)+t}{n} \leq \frac{k \varphi(m)+t}{k m},
$$

since

$$
\frac{k \varphi(m)+t}{k m}<\frac{k \varphi(m)+\varphi(m)}{k m}=\frac{(k+1) \varphi(m)}{k m} .
$$

Then,

$$
\frac{k \varphi(m)}{(k+1) m} \leq \frac{\mathcal{P}_{a}(n)}{n} \leq \frac{(k+1) \varphi(m)}{k m}
$$

by taking the limit as $k \rightarrow \infty$ and since $k m<n \leq(k+1) m$ we get

$$
\lim _{n \rightarrow \infty} \frac{k \varphi(m)}{(k+1) m}=\frac{\varphi(m)}{m},
$$

and

$$
\lim _{n \rightarrow \infty} \frac{(k+1) \varphi(m)}{k m}=(m) .
$$

Then,

$$
\frac{\varphi(m)}{m} \leq \lim _{n \rightarrow \infty} \frac{\mathcal{P}_{a}(n)}{n} \leq \frac{\varphi(m)}{m}
$$

Thus, $\lim _{n \rightarrow \infty} \frac{\mathcal{P}_{a}(n)}{n}$ exists and equal to $\frac{\varphi(m)}{m}$.

### 1.5 Primitive sequences

Definition 1.8 $A$ sequence $\mathcal{A}=\left\{a_{n}\right\}_{n \geq 1}$ of positive integers is said to be primitive if no element of $\mathcal{A}$ divided any others.

## Particular primitive sequences

1) Let $\mathcal{A}$ be a primitive sequence, then the following sets are primitive,

$$
\begin{aligned}
& \mathcal{A}_{m}=\left\{a: a \in \mathcal{A}, \text { the prime factors of } a \text { are } \geq p_{m}\right\}, \\
& \mathcal{A}_{m}^{\prime}=\left\{a: a \in \mathcal{A}_{m}, p_{m} / a\right\} \\
& \mathcal{A}_{m}^{\prime \prime}=\left\{a / p_{m}: a \in \mathcal{A}_{m}^{\prime}\right\}
\end{aligned}
$$

2) The set $\mathbb{N}_{k}=\{n: \Omega(n)=k\}$, where $\Omega(n)$ is the number of prime factors of $n$ counted with repetition.

Definition 1.9 Let $\mathcal{A}$ be a primitive sequence and let $\mathcal{A}_{m}$ be defined above. We call $\mathcal{A}_{m}$ is homogenous if for each $m$ there is some integer $s_{m}$ such that either $\mathcal{A}_{m}=\phi$ or $\Omega(a)=s_{m}$ for any $a \in \mathcal{A}_{m}$.

## Density of primitive sequence

Theorem 1.8 Let $\mathcal{A}$ be an infinite primitive sequence, then for any $n \geq 1$,

$$
\mathcal{A}(2 n) \leq n
$$

Proof. Suppose that $\mathcal{A}$ countained $n+1$ element that do not exted $2 n$. We can write these elements under the form $a_{i}=2^{\alpha_{i}} b_{i}$ where $b_{i}$ is the greatest odd divisor of $a_{i}$ for $i=1,2, \ldots, n+1$ and $\alpha_{i} \geq 0$.
Since $b_{i}$ has at most $n$ different values, then two of the integers $b_{1}, \ldots, b_{n+1}$ must be equals. So, there exists $i$ and $j$ such that

$$
b_{i}=b_{j}, 1 \leq i \leq j \leq n+1,
$$

this implies that

$$
a_{i} \mid a_{j} \text { or } a_{j} \mid a_{i}
$$

which contradictory with the fact that $\mathcal{A}$ is primitive sequence.
Theorem 1.9 If $\mathcal{A}$ is an infinite primitive sequence, then $d \mathcal{A} \leq \frac{1}{2}$.

Proof. From last teorem we have

1) If $n$ is an even integer $(n=2 k)$, then

$$
\frac{\mathcal{A}(2 k)}{2 k} \leq \frac{k}{2 k}=\frac{1}{2},
$$

hence

$$
\underline{d} \mathcal{A} \leq \frac{1}{2}
$$

2) If $n$ is odd $(n=2 k+1)$ then, since $\mathcal{A}(2(k+1)) \leq k+1$, we have

$$
\mathcal{A}(n) \leq \frac{n+1}{2},
$$

so,

$$
\frac{\mathcal{A}(n)}{n} \leq \frac{1}{2}+\frac{1}{2 n} .
$$

Therefore,

$$
\begin{aligned}
\underline{d} \mathcal{A} & =\limsup _{n \rightarrow \infty} \frac{\mathcal{A}(n)}{n} \\
& \leq \limsup _{n \rightarrow \infty} \frac{1}{2}+\frac{1}{2 n} \\
& \leq \limsup _{n \rightarrow \infty} \frac{1}{2}+\limsup _{n \rightarrow \infty} \frac{1}{2 n}=\frac{1}{2} .
\end{aligned}
$$

Which ends the proof.

Lemma 1.3 [8] Let $p$ be a prime number and $x \geq 2$ a real number, then

$$
\log x<\prod_{p \leq x}\left(1-\frac{1}{p}\right)^{-1}<M \log x
$$

where $M$ is a positive constant.
Theorem 1.10 (Erdós). If $A$ is infinite primitive sequence, then the series

$$
\sum_{i=1}^{\infty} \frac{1}{a_{i} \log a_{i}}
$$

converges.
Proof. For $i \geq 1$, we denote by $p\left(a_{k}\right)$ the greatest prime factor of $a_{k} \in \mathcal{A}$, we shall prove that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{a_{k}} \prod_{p \leq p_{k}}\left(1-\frac{1}{p}\right) \leq 1 \tag{4.1}
\end{equation*}
$$

Let $a_{i}, a_{j}$ be integers of $\mathcal{A}$, since for all $i \neq j, a_{i} \nmid a_{j}$ then by lemma 1.2 , we have

$$
a_{i} \mathcal{P}_{a_{i}} \bigcap a_{j} \mathcal{P}_{a_{j}}=\phi,
$$

and for any $n \geq 1$, we have

$$
d a_{n} \mathcal{P}_{a_{n}}=\frac{1}{a_{n}} \prod_{p \leq p\left(a_{n}\right)}\left(1-\frac{1}{p}\right),
$$

then

$$
\sum_{n=1}^{\infty} d a_{n} \mathcal{P}_{a_{n}}=\sum_{n=1}^{\infty} \frac{1}{a_{n}} \prod_{p \leq p\left(a_{n}\right)}\left(1-\frac{1}{p}\right),
$$

since the sets $a_{n} \mathcal{P}_{a_{n}}$ are disjoints then,

$$
\sum_{n=1}^{\infty} d a_{n} \mathcal{P}_{a_{n}}=d\left(\bigcup_{n \geq 1} a_{n} \mathcal{P}_{a_{n}}\right),
$$

then from the lemma 1.3, we have

$$
\log p\left(a_{n}\right) \leq \prod_{p \leq p\left(a_{n}\right)}\left(1-\frac{1}{p}\right)^{-1}<M \log p\left(a_{n}\right)
$$

then

$$
a_{n} \log p\left(a_{n}\right) \leq a_{n} \prod_{p \leq p\left(a_{n}\right)}\left(1-\frac{1}{p}\right)^{-1}<M a_{n} \log p\left(a_{n}\right),
$$

therefore

$$
\frac{1}{M a_{n} \log p\left(a_{n}\right)}<\frac{1}{a_{n}} \prod_{p \leq p\left(a_{n}\right)}\left(1-\frac{1}{p}\right) \leq \frac{1}{a_{n} \log p\left(a_{n}\right)},
$$

hence

$$
\frac{1}{a_{n} \log p\left(a_{n}\right)}<\frac{M}{a_{n}} \prod_{p \leq p\left(a_{n}\right)}\left(1-\frac{1}{p}\right) \leq \frac{M}{a_{n} \log p\left(a_{n}\right)} .
$$

So,

$$
\sum_{n=1}^{\infty} \frac{1}{a_{n} \log p\left(a_{n}\right)}<M \sum_{n=1}^{\infty} \frac{1}{a_{n}} \prod_{p \leq p\left(a_{n}\right)}\left(1-\frac{1}{p}\right) .
$$

Since

$$
\sum_{n=1}^{\infty} \frac{1}{a_{n}} \prod_{p \leq p\left(a_{n}\right)}\left(1-\frac{1}{p}\right) \leq 1,
$$

then, we have

$$
\sum_{n=1}^{\infty} \frac{1}{a_{n} \log p\left(a_{n}\right)}<M \sum_{n=1}^{\infty} \frac{1}{a_{n}} \prod_{p \leq p\left(a_{n}\right)}\left(1-\frac{1}{p}\right) \leq M
$$

In other hand, we have $a_{n} \geq p\left(a_{n}\right)$, then

$$
a_{n} \log a_{n} \geq a_{n} \log p\left(a_{n}\right),
$$

so,

$$
\frac{1}{a_{n} \log a_{n}} \leq \frac{1}{a_{n} \log p\left(a_{n}\right)},
$$

thus,

$$
\sum_{n=1}^{\infty} \frac{1}{a_{n} \log a_{n}} \leq \sum_{n=1}^{\infty} \frac{1}{a_{n} \log p\left(a_{n}\right)} \leq M
$$

This ends the proof

Theorem 1.11 For any primitive sequence $\mathcal{A}$ we have $\underline{d} \mathcal{A}=\delta \mathcal{A}=0$.
Proof. Let $\mathcal{A}=\left\{a_{i}\right\}_{i \geq 1}$ be a primitive sequence. According to theorem 1.5, it suffices to prove $\delta \mathcal{A}=0$. For $i=1,2, \ldots$, we have $a_{i}<n$, then $\log a_{i}<\log n$, therefore

$$
\frac{1}{\log n}<\frac{1}{\log a_{i}}
$$

so,

$$
\frac{1}{\log n} \sum_{1<a_{i} \leq n} \frac{1}{a_{i}} \leq \sum_{1<a_{i} \leq n} \frac{1}{a_{i} \log a_{i}},
$$

and

$$
\frac{1}{\log n} \sum_{a_{i}=N+1}^{n} \frac{1}{a_{i}} \leq \sum_{N<a_{i} \leq n} \frac{1}{a_{i} \log a_{i}} \leq \sum_{i=1}^{\infty} \frac{1}{a_{i} \log a_{i}},
$$

then by the last theorem, the sum $\frac{1}{\log n} \sum_{a_{i}=N+1}^{n} \frac{1}{a_{i}}$ is converges.
But we have

$$
\frac{1}{\log n} \sum_{1<a_{i} \leq n} \frac{1}{a_{i}}=\frac{1}{\log n} \sum_{1<a_{i} \leq N} \frac{1}{a_{i}}+\frac{1}{\log n} \sum_{N<a_{i} \leq n} \frac{1}{a_{i}} .
$$

So by taking $\lim _{n \rightarrow \infty}$ we obtain $\delta \mathcal{A}=0$, and since $0 \leq \underline{d} \mathcal{A} \leq \delta \mathcal{A}=0$, then

$$
\underline{d} \mathcal{A} \leq \delta \mathcal{A}=0 .
$$

This ends the proof.

## Chapter 2

## Erdős's conjecture for particular cases

In this chapter we will present the proof of Erdős's conjecture for homogeneous primitive sequences, and we will also investigate further the case where the primitive sequences have degree less than or equal to four.

### 2.1 Erdős's conjecture for the homogeneous primitive sequences

Throughout this section, we denote by $p(a)$ the last prime factor of $a$ and $\mathcal{A}(p)$ the set of elements $a \in \mathcal{A}$ with $p(a)=p$.

## Lemmas

Lemma 2.1 [6,7] we have

$$
\begin{aligned}
& p_{n}>n \log n \text { for } n \geq 1 \\
& p_{n}>n(\log n+\log \log n) \text { for } n \geq 6
\end{aligned}
$$

Lemma 2.2 For any integer $m \geq 2$, we have

$$
\sum_{i>m} \frac{1}{p_{i} \log (i-1)}<\frac{1}{\log m}
$$

Proof. Note that for each $i \geq 3$, we have

$$
\begin{aligned}
\frac{1}{i \log i \log (i-1)} & <\frac{\log (i /(i-1))}{\log i \log (i-1)} \\
& =\frac{1}{\log (i-1)}-\frac{1}{\log i}
\end{aligned}
$$

If we put $h(m)=\sum_{i>m} \frac{1}{p_{i} \log (i-1)}$, then from lemma 2.1 we have

$$
\begin{aligned}
h(m) & <\sum_{i>m} \frac{1}{i \log i \log (i-1)} \\
& <\frac{1}{\log (i-1)}-\frac{1}{\log i} \\
& =\frac{1}{\log m} .
\end{aligned}
$$

In the following, we define $i(a)=i$ if the largest prime factor of $a$ is $p_{i}$.
Lemma 2.3 For $m \geq 2, s \geq 1$, we have

$$
\sum_{p(a)>p_{m}, \Omega(a)=s} \frac{1}{a \log (i(a)-1)} \leq h(m)<\frac{1}{\log m} .
$$

Proof. We proceed by induction on $s$.
If $s=1$, then this is just lemma 2.2. Assume the lemma for $s$.
For the $s+1$ case, by lemma 2.2, we have

$$
\begin{aligned}
& \sum_{p(a)>p_{m}, \Omega(a)=s} \frac{1}{a \log (i(a)-1)} \\
= & \sum_{p(b)>p_{m}, \Omega(a)=s} \frac{1}{b} \sum_{j \geq i(b)} \frac{1}{p_{j} \log (j-1)} \\
< & \sum_{p(b)>p_{m}, \Omega(b)=s} \frac{1}{b \log (i(b)-1)} \leq h(m)<\frac{1}{\log m} .
\end{aligned}
$$

The proof is finished.
Lemma 2.4 For $i \geq 2$ and $B \geq 2$, we have

$$
\begin{aligned}
\sum_{j>i} \frac{1}{p_{j} \log \left(B p_{j}\right)} & <\frac{\log \left(1+\frac{\log B}{\log i}\right)}{\log B} \\
& \leq \min \left\{\frac{1}{\log i}, \frac{1}{e \log i}+\frac{1}{e \log B}\right\}
\end{aligned}
$$

where $e=2.718 \ldots$ is the base of the natural logarithms.
Proof. By lemma 2.1, we have,

$$
\begin{aligned}
\sum_{j>i} \frac{1}{p_{j} \log \left(B p_{j}\right)} & <\int_{i}^{\infty} \frac{d x}{x \log x \log (B x)} \\
& =\frac{\log (1+\log B / \log i)}{\log B} \\
& \leq \min \left\{\frac{1}{\log i}, \frac{1}{e \log i}, \frac{1}{e \log B}\right\}
\end{aligned}
$$

then

$$
\sum_{j>i} \frac{1}{p_{j} \log \left(B p_{j}\right)} \leq \min \left\{\frac{1}{\log i}, \frac{1}{e \log i}, \frac{1}{e \log B}\right\}
$$

Observing that the inequality

$$
\frac{\log (1+\log B / \log i)}{\log B} \leq \min \left\{\frac{1}{\log i}, \frac{1}{e \log i}, \frac{1}{e \log B}\right\}
$$

follows from $\log (1+x)<x$ and

$$
\log x=1+\log \left(1+\frac{(x-e)}{e}\right) \leq \frac{x}{e}
$$

for all $x>0$.

Lemma 2.5 For $m \geq 2, B \geq 2, s \geq 2$, we have

$$
\sum_{p(u)>p_{m}, \Omega(u)=s} \frac{1}{u \log (B u)}<\left(e^{-1}+\ldots+e^{1-s}\right) h(m)+e^{1-s} \sum_{j>m} \frac{1}{p_{j} \log \left(B p_{j}\right)} .
$$

Proof. We proceed by induction on $s$.
If $s=2$, then by lemma 2.4 , we have

$$
\begin{aligned}
\sum_{p(u)>p_{m}, \Omega(u)=s} \frac{1}{u \log (B u)} & =\sum_{j>m} \frac{1}{p_{j}} \sum_{k \geq j} \frac{1}{p_{k} \log \left(B p_{j} p_{k}\right)} \\
& <e^{-1} h(m)+e^{-1} \sum_{j>m} \frac{1}{p_{j} \log \left(B p_{j}\right)} .
\end{aligned}
$$

For the $s+1$ case, by lemma 2.3, lemma 2.4 and using $s$ case, we have,

$$
\begin{aligned}
\sum_{p(u)>p_{m}, \Omega(u)=s+1} \frac{1}{u \log (B u)}= & \sum_{p(u)>p_{m}, \Omega(u)=s} \frac{1}{b} \sum_{j \geq i(b)} \frac{1}{p_{j} \log \left(B b p_{j}\right)} \\
< & \sum_{p(u)>p_{m}, \Omega(u)=s} \frac{e^{-1}}{b}\left(\frac{1}{\log (i(b)-1)}+\frac{1}{\log (B b)}\right) \\
& \left(e^{-1}+\ldots+e^{-s}\right) h(m)+e^{-s} \sum_{j>m} \frac{1}{p_{j} \log \left(B p_{j}\right)} .
\end{aligned}
$$

And the proof is finishes.
Lemma 2.6 Let $a, m$ and $s$ an integers such that $m \geq 5$ and $s \geq 2$ then, we have

$$
\sum_{\Omega(a)=s-1, p(a)>p_{m+1}} \frac{1}{a \log \left(a p_{m+1}\right)}<\frac{1}{\log p_{m+1}} .
$$

Proof. Put

$$
w(s, m)=\sum_{\Omega(a)=s-1, p(a)>p_{m+1}} \frac{1}{a \log \left(a p_{m+1}\right)},
$$

then by lemma 2.2, lemma 2.4 and lemma 2.5 , we have

$$
w(s, m)<W(s, m)
$$

where

$$
W(s, m)=\frac{e^{-1}+\ldots+e^{1-S}}{\log m}+\frac{e^{1-S}}{\log p_{m+1}} .
$$

Using lemma 2.1, we obtain

$$
\begin{aligned}
\frac{\log p_{m+1}}{\log m} & \leq \frac{\log (m+1)+\log (\log (m+1)+\log \log (m+1))}{\log m} \\
& \leq \frac{\log 6+\log (\log 6+\log \log 6)}{\log 5}=1.65 \ldots<e-1 .
\end{aligned}
$$

So, for $m \geq 5$ and $s \geq 2$,

$$
W(s, m)-W(s+1, m)=e^{-S}\left(\frac{e-1}{\log p_{m+1}}-\frac{1}{\log m}\right)>0
$$

Therefore,

$$
\begin{aligned}
w(s, m) & <W(s, m) \leq W(2, m)=\frac{1}{e \log m}+\frac{1}{e \log p_{m+1}} \\
& <\frac{e-1}{e \log p_{m+1}}+\frac{1}{e \log p_{m+1}} \\
& =\frac{1}{\log p_{m+1}}
\end{aligned}
$$

so, $w(s, m)<\frac{1}{\log p_{m+1}}$.
Lemma 2.7 For any integer $m \leq 4$, we have

$$
w(2, m)=\sum_{\Omega(a)=1, p(a)>p_{m+1}} \frac{1}{a \log \left(a p_{m+1}\right)}<\frac{1}{\log p_{m+1}} .
$$

Proof. If $0 \leq m \leq 4$ then by lemma 2.4, we have

$$
w(2, m)<w(m)
$$

where

$$
w(m)=\frac{1}{p_{m+1} \log p_{m+1}^{2}}+\frac{1}{p_{m+2} \log \left(p_{m+1} p_{m+2}\right)}+\frac{1}{\log p_{m+1}} \log \left(1+\frac{\log p_{m+1}}{\log (m+2)}\right)
$$

and

$$
w(0)=\frac{1}{2 \log 4}+\frac{1}{3 \log 6}+\frac{1}{5 \log 10}+\frac{1}{\log 2} \log \left(1+\frac{\log 2}{\log 3}\right) .
$$

By calculation we have

| $m$ | $w(m)$ | $p_{m+1}$ | $1 / \log p_{m+1}$ |
| :--- | :--- | :--- | :--- |
| 4 | 0.388 | 11 | 0.417 |
| 3 | 0.464 | 7 | 0.513 |
| 2 | 0.581 | 5 | 0.621 |
| 1 | 0.856 | 3 | 0.910 |
| 0 |  |  |  |

Thus, $w(2, m)<w(m)<\frac{1}{\log p_{m+1}}$ for $0 \leq m \leq 4$.
Lemma 2.8 Let $s$ and $m$ an integers such that $s \geq 3,2 \leq m \leq 4$, then

$$
w(s, m)=\sum_{\Omega(a)=s-1, p(a)>p_{m+1}} \frac{1}{a \log \left(a p_{m+1}\right)}<\frac{1}{\log p_{m+1}} .
$$

Proof. Let $m$ be fixed integer, put

$$
\gamma_{s}=\left(e^{-1}+\ldots+e^{2-S}\right) h(m)+e^{2-S} w(m)
$$

where $w(m)$ is the upper bound of $w(s, m)$, defined in the proof of lemma 2.7. Then by lemma 2.5 we have for $s \geq 3$ that

$$
w(s, m)=\left(e^{-1}+\ldots+e^{2-S}\right) h(m)+e^{2-S} w(2, m)<\gamma_{s} .
$$

If $h(m)<(e-1) w(m)$ and $m \leq 4$, then by lemma 2.2 we have

$$
h(4)=\sum_{i=5}^{10} \frac{1}{p_{i} \log (i-1)}+h(10)<0.6442
$$

but $h(10)<\frac{1}{\log 10}$, thus

$$
\frac{h(4)}{w(4)}<1.7<e-1
$$

so that the case $m=4$ is verified.
For $m=2$, since

$$
h(2)=\frac{1}{5 \log 2}+h(3)<1.063
$$

we use the upper bound $H=1.063$ for $h(2)$, we see that

$$
\frac{H}{w(2)}>e-1
$$

However, we then have

$$
\gamma_{s}<\left(e^{-1}+\ldots+e^{2-S}\right) H+e^{2-s} \frac{H}{e-1}=\frac{H}{e-1}<0.62<\frac{1}{\log 5}
$$

so, the case $m=2$ is also done.
Lemma 2.9 [16] We have for $s \geq 3$ and $0 \leq m \leq 4$

$$
\begin{aligned}
w(s, 1) & <\frac{1}{\log p_{2}}, \\
w(s, 0) & <\frac{1}{\log 2} \\
w(s, m) & <\frac{1}{\log p_{m+1}}
\end{aligned}
$$

## Erdős's conjecture and homogeneous primitive sequences

A primitive sequence $\mathcal{A}$ is called homogeneous if $\Omega(a)=c$ (constant) for all $a \in \mathcal{A}$.
Theorem 2.1 Let $\mathcal{A}$ be a primitive sequence such that $\mathcal{A}(p)$ is homogeneous, then for $n>1$ the inequality

$$
\sum_{a \in \mathcal{A}, a \leq n} \frac{1}{a \log a} \leq \sum_{p \text { prime, } p \leq n} \frac{1}{p \log p}
$$

is true.

Proof. According to the lemma 2.7, we have for a given prime $p$, if $\mathcal{B}=\mathcal{B}(p)$ is homogeneous and nonempty, then

$$
\sum_{b \in \mathcal{B}} \frac{1}{a \log a} \leq \frac{1}{p \log p},
$$

and this implies the theorem.

### 2.2 Erdős's conjecture for primitive sequences of degree less than or equal four

## Lemmas

Lemma 2.10 Let $n>1$ be an interger, if we put

$$
F(n)=\log n+\log \log n-1
$$

then we have

$$
\begin{align*}
& p_{n} \geq n F(n) \text { for } n \geq 2,[2]  \tag{2.1}\\
& p_{n} \geq n(\log (n F(n))-\alpha) \text { for } n \geq 3  \tag{2.2}\\
& p_{n} \leq n(F(n)+\beta) \text { for } n \geq 95 \tag{2.3}
\end{align*}
$$

where $\alpha=1.127$ and $\beta=0.305$.
Proof. Let $g$ be the function defined on $\mathbb{N}$ by

$$
n \mapsto g(n)=\frac{p_{n}}{n}-\log (n F(n)) \text { for } n \geq 3
$$

then, according to (2.1) we have $g(n) \geq h(n)$ where

$$
h(n)=-1-\log \left(1+\frac{\log \log n-1}{\log n}\right)
$$

the stady of the real function $x \mapsto h(x)(x \geq 3)$ gives us

$$
h(x) \geq h(\exp (\exp 2))>-\alpha
$$

then $g(n)>-\alpha$, which is equivalent to

$$
p_{n} \geq n(\log (n F(n))-\alpha) \text { for } n \geq 3
$$

A computer caculation shows that for $95 \leq n<7022$ we have

$$
p_{n} \leq n(F(n)+\beta),
$$

and on other hand, we have

$$
p_{n} \leq n(\log n+\log \log n-0.9385) \text { for } n \geq 7022
$$

therefore the inequality (2.3) is verified for $n \geq 95$. This completes the proof.
Lemma 2.11 For $m \geq 1$ and $j \in\{1,2,3\}$, we have

$$
\sum_{i \geq \max (m, j-1)} \frac{1}{p_{i}\left(k_{j}+\log p_{i}\right)}<\frac{1}{k_{j-1}+\log p_{m}}
$$

where $k_{0}=0.023, k_{1}=0.3157, k_{2}=0.901$ and $k_{3}=2.079$.

Proof. Put $N=95, C=0.0713$,

$$
\begin{gathered}
u_{1}=0.09435, u_{2}=0.387, u_{3}=0.9723 \\
v_{1}=0, \quad v_{2}=0, \quad v_{3}=-0.0074 .
\end{gathered}
$$

It is clear that for $m \geq N$ and $j \in\{1,2,3\}$ we have

$$
\max (m, j-1)=m,
$$

and

$$
\begin{align*}
& C \geq-\log (F(m))+\log \left(1+\frac{1}{m}\right)+\log (F(m+1)+\beta) \\
& C \leq u_{j}-k_{j-1} \tag{2.4}
\end{align*}
$$

and

$$
v_{j}=\alpha-k_{j}+2 u_{j}-1
$$

Put

$$
h_{j}(m)=\sum_{i \geq \max (m, j-1)} \frac{1}{p_{i}\left(k_{j}+\log p_{i}\right)}
$$

By (2.1) et (2.2) we have, for $m \geq N$ and $j \in\{1,2,3\}$,

$$
p_{i}\left(k_{j}+\log p_{i}\right)>i(\log (i F(i))-\alpha)\left(k_{j}+\log (i F(i))\right),
$$

Since the function

$$
x \mapsto \log (x F(x))
$$

increases for $x>N$, we have

$$
h_{j}(m+1)<\int_{m}^{\infty} \frac{d t}{t(\log (t F(t))-\alpha)\left(\log (t F(t))+k_{j}\right)},
$$

using the change of variable $x=\log t$ give us

$$
h_{j}(m+1)<\int_{\log m}^{\infty} \frac{d x}{(L(x)-\alpha)\left(L(x)+k_{j}\right)},
$$

where

$$
L(x)=\log \left(e^{x} F\left(e^{x}\right)\right),
$$

then we have $1=\frac{1}{L^{\prime}(x)} \times L^{\prime}(x)$ for $x>1$, and since

$$
L^{\prime}(x)=\frac{1}{x} \frac{x \log x+x^{2}+1}{x+\log x-1}>0,
$$

we also have,

$$
\frac{1}{L^{\prime}(x)}=1-\frac{1+x}{x \log x+x^{2}+1} .
$$

But on other hand, for $x>\log N$,
$(1+x)(L(x)-1)-\left(x \log x+x^{2}+1\right)=\log (x+\log x-1)+x \log \left(1+\frac{\log x-1}{x}\right)-2>0$,
so,

$$
\frac{1}{L^{\prime}(x)}<1-\frac{1}{L(x)-1}
$$

then

$$
\frac{1}{L^{\prime}(x)}<\left(1-\frac{1}{L(x)-1}\right) \text { for } x>\log N
$$

so,

$$
\begin{aligned}
h_{j}(m+1) & <\int_{\log m}^{\infty} \frac{\frac{1}{L^{\prime}(x)} L^{\prime}(x) d x}{(L(x)-\alpha)\left(L(x)+k_{j}\right)} \\
& <\int_{\log m}^{\infty} \frac{\left(1-\frac{1}{L(x)-1}\right) L^{\prime}(x) d x}{(L(x)-\alpha)\left(L(x)+k_{j}\right)} .
\end{aligned}
$$

By setting $y=L(x)$ and $y_{m}=L(\log m)$, we obtain

$$
h_{j}(m+1)<\int_{y_{m}}^{\infty} \frac{(y-2) d y}{(y-1)(y-\alpha)\left(y+k_{j}\right)} .
$$

Now, for $j \in\{1,2,3\}$ we put

$$
g_{j}(m)=\frac{1}{\log p_{m}+k_{j-1}},
$$

then according to (2.3) and (2.4) we have

$$
\begin{aligned}
g_{j}(m+1) & \geq \frac{1}{k_{j-1}+\log ((m+1)(F(m+1)+\beta))} \\
& >\frac{1}{\log (m F(m))+u_{j}} \\
& =\int_{y_{m}}^{\infty} \frac{d y}{\left(y+u_{j}\right)^{2}} .
\end{aligned}
$$

For $j \in\{1,2,3\}$, we put

$$
\Delta_{j}=(y-2)\left(y+u_{j}\right)^{2}-(y-1)(y-\alpha)\left(y+k_{j}\right)
$$

then, for $y>y_{m}$ and $j \in\{1,2,3\}$

$$
\Delta_{j}=v_{j} y^{2}+\left(u_{j}^{2}-4 u_{j}-\alpha+k_{j}+\alpha k_{j}\right) y-\left(2 u_{j}^{2}+\alpha k_{j}\right)<0
$$

So, for $y>y_{m}$ and $j \in\{1,2,3\}$ we have

$$
\frac{(y-2)}{(y-1)(y-\alpha)\left(y+k_{j}\right)}<\frac{1}{\left(y+u_{j}\right)^{2}},
$$

thus

$$
h_{j}(m+1)<\frac{d t}{\log m+\log (\log m+\log \log m-1)+u_{j}},
$$

according to (2.3) and (2.4) we have

$$
\begin{aligned}
& \log p_{m+1}+k_{j-1}-\log m-\log (\log m+\log \log m-1)-u_{j} \\
= & \log \left(1+\frac{1}{m}\right)+\log \left(\frac{\log (m+1)+\log \log (m+1)-0.7}{\log m+\log \log m-1}\right)-u_{j}+k_{j-1} \\
\leq & C--u_{j}+k_{j-1} \leq 0
\end{aligned}
$$

then

$$
g_{j}(m+1) \geq \frac{1}{\log m+\log (\log m+\log \log m-1)+u_{j}}
$$

Thus, for $m \geq N$ and $j \in\{1,2,3\}$ we have $h_{j}(m+1)<g_{j}(m+1)$ i.e.

$$
h_{j}(m)<g_{j}(m) \text { for } m \geq N+1 .
$$

And for $1 \leq m \leq N$, a computer calculation gives

$$
\begin{aligned}
h_{j}(m) & =\sum_{i \geq m}^{N} \frac{1}{p_{i}\left(k_{j}+\log p_{i}\right)}+h_{j}(N+1) \\
& <\sum_{i \geq m}^{N} \frac{1}{p_{i}\left(k_{j}+\log p_{i}\right)}+\frac{1}{\log N+\log (\log N+\log \log N-1)+u_{j}} \\
& <g_{j}(m) .
\end{aligned}
$$

Which ends the proof.
Lemma 2.12 Let $m \geq 1$ be fixed and let $B=B_{m}$ be primitive sequence with $\operatorname{deg}(B) \leq 3$. For $1 \leq t \leq 4-\operatorname{deg}(B)$, we have

$$
\begin{align*}
& \sum_{b \in B} \frac{1}{b\left(t \log p_{m}+\log b\right)}<\frac{1}{k_{t-1}+\log p_{m}} \text { where } p_{1}^{4-t} \notin B_{1},  \tag{2.5}\\
& \sum_{b \in B} \frac{1}{b\left(t \log p_{m}+\log b\right)}<\frac{1}{k_{0}+\log p_{m}} \text { where } p_{1}^{3} \notin B_{1} . \tag{2.6}
\end{align*}
$$

Proof. For $m \geq 1$ and $1 \leq t \leq 4-\operatorname{deg}(B)$, put

$$
g_{t}(B)=\sum_{b \in B} \frac{1}{b\left(t \log p_{m}+\log b\right)} \text { where }\left(g_{t}(\phi)=0\right) .
$$

By induction on $\operatorname{deg}(B)$, if $\operatorname{deg}(B)=1$ and $1 \leq t \leq 3$ we have $t \log p_{m} \geq t \log 2>k_{t}$ and $p_{1} \notin B_{1}$ when $t=3$, so by lemma 2.11 we get

$$
\begin{aligned}
g_{t}(B) & =\sum_{b \in B} \frac{1}{b\left(t \log p_{m}+\log b\right)} \\
& <\sum_{i \geq \max (m, t-1)} \frac{1}{p_{i}\left(k_{t}+\log p_{i}\right)} \\
& <\frac{1}{k_{t-1}+\log p_{m}}
\end{aligned}
$$

If $\operatorname{deg}(B)=s>1$ and $1 \leq t \leq 4-s$, we know that $B=\bigcup_{i \geq m} B_{i}^{\prime}$ is disjoint, so

$$
g_{t}(B)=\sum_{i \geq m} g_{t}\left(B_{i}^{\prime}\right) \text { where } p_{1}^{4-t} \notin B_{1}^{\prime} .
$$

We distinguish the folowing two cases:

1) If $\operatorname{deg}\left(B_{i}^{\prime}\right) \leq 1$ then

$$
\begin{equation*}
g_{t}\left(B_{i}^{\prime}\right)<\frac{1}{p_{i}\left(k_{t}+\log p_{i}\right)} . \tag{2.7}
\end{equation*}
$$

2) If $\operatorname{deg}\left(B_{i}^{\prime}\right)>1$ then

$$
\begin{aligned}
g_{t}\left(B_{i}^{\prime}\right) & =\sum_{b \in B_{i}^{\prime \prime}} \frac{1}{p_{i} b\left((t+1) \log p_{i}+\log b\right)} \\
& =\frac{1}{p_{i}} g_{t}\left(B_{i}^{\prime \prime}\right) \text { where } p_{1}^{3-t} \notin B_{1}^{\prime \prime},
\end{aligned}
$$

and since

$$
\operatorname{deg}\left(B_{i}^{\prime \prime}\right)<s \text { and } t+1 \leq 4-\operatorname{deg}\left(B_{i}^{\prime \prime}\right)
$$

we have

$$
g_{t+1}\left(B_{i}^{\prime \prime}\right)<\frac{1}{k_{t}+\log p_{i}} \text { where } p_{1}^{4-(t+1)} \notin B_{1}^{\prime \prime}
$$

thus

$$
\begin{equation*}
g_{t}\left(B_{i}^{\prime}\right) \leq \frac{1}{p_{i}\left(k_{t}+\log p_{i}\right)} . \tag{2.8}
\end{equation*}
$$

So, from (2.7) et (2.8) and lemma 2.11 we obtain

$$
g_{t}(B)<\frac{1}{k_{t-1}+\log p_{m}} \text { where } p_{1}^{4-t} \notin B_{1}
$$

then for $t=1$ we get the inequality (2.6), and the proof is finished.

## Theorem of Zhang

Theorem 2.2 For any primitive sequence $\mathcal{A}$ whose the number of the prime factors of its terms counted with multiplicity is at most 4, we have

$$
\sum_{a \in \mathcal{A}, a \leq n} \frac{1}{a \log a} \leq \sum_{a \in \mathcal{P}, a \leq n} \frac{1}{p \log p} \text { for } n>1
$$

Proof. Let $n$ be fixed and $A=\{a: a \in \mathcal{A}, a \leq n\}$ a subsequence of $\mathcal{A}$ with $\operatorname{deg}(\mathcal{A}) \leq 4$. Put $\pi(n)=m$, the number of primes $\leq n$ then $A=\bigcup_{1 \leq i \leq m} A_{i}^{\prime}$ is disjoint and

$$
f(A)=\sum_{1 \leq i \leq m} f\left(A_{i}^{\prime}\right)
$$

Let $1 \leq i \leq m$, we distinguish the following two cases:
$1^{\text {st }}$ case: we suppose that $p_{1}^{4} \notin A$, i.e. , $p_{1}^{3} \notin A_{1}^{\prime \prime}$.
If $\operatorname{deg}\left(A_{i}^{\prime}\right) \leq 1$ then

$$
f\left(A_{i}^{\prime}\right) \leq \frac{1}{p_{i} \log p_{i}}
$$

and if $\operatorname{deg}\left(A_{i}^{\prime}\right)>1$ then

$$
f\left(A_{i}^{\prime}\right)=\frac{1}{p_{i}} \sum_{b \in A_{i}^{\prime \prime}} \frac{1}{b\left(\log p_{i}+\log b\right)} \text { where } p_{1}^{3} \notin A_{1}^{\prime \prime},
$$

and

$$
\operatorname{deg}\left(A_{i}^{\prime \prime}\right) \leq \operatorname{deg}\left(A_{i}^{\prime}\right)-1 \leq 3 .
$$

So, according to (2.6) we get

$$
\sum_{b \in A_{i}^{\prime \prime}} \frac{1}{b\left(\log p_{i}+\log b\right)}<\frac{1}{k_{0}+\log p_{i}}<\frac{1}{\log p_{i}} \text { where } p_{1}^{3} \notin A_{1}^{\prime \prime}
$$

therefore

$$
\begin{equation*}
f\left(A_{i}^{\prime}\right) \leq \frac{1}{p_{i} \log p_{i}} \text { for } 1 \leq i \leq m \tag{2.9}
\end{equation*}
$$

$2^{\text {nd }}$ case: if $p_{1}^{4} \in A$, since $A$ is a primitive sequence then $p_{1} \notin A_{1}^{\prime}$, so,

$$
\operatorname{deg}\left(A_{1}^{\prime}-\left\{p_{1}^{4}\right\}\right) \neq 1,
$$

i.e.,

$$
f\left(A_{1}^{\prime}-\left\{p_{1}^{4}\right\}\right)<\frac{1}{p_{1}\left(k_{0}+\log p_{1}\right)}
$$

thus

$$
\begin{aligned}
f\left(A_{1}^{\prime}\right) & =f\left(\left\{p_{1}^{4}\right\}\right)+f\left(A_{1}^{\prime}-\left\{p_{1}^{4}\right\}\right) \\
& =\frac{1}{p_{1}^{4} \log p_{1}^{4}}+\frac{1}{p_{1}\left(k_{0}+\log p_{1}\right)} \\
& <\frac{1}{p_{1} \log p_{1}},
\end{aligned}
$$

and from (2.9), we have

$$
f\left(A_{i}^{\prime}\right) \leq \frac{1}{p_{i} \log p_{i}} \text { for } 2 \leq i \leq m
$$

then

$$
\begin{equation*}
f\left(A_{i}^{\prime}\right) \leq \frac{1}{p_{i} \log p_{i}} \text { for } 1 \leq i \leq m \tag{2.10}
\end{equation*}
$$

thus, by (2.9) and (2.10) we get

$$
f(A)=\sum_{1 \leq i \leq m} f\left(A_{i}^{\prime}\right) \leq \sum_{1 \leq i \leq m} \frac{1}{p_{i} \log p_{i}}
$$

This completes the proof.

## Chapter 3

## Principal results on the $\operatorname{sum} S(\mathcal{A}, x)$ and its relationship with Erdős's conjecture

In this chapter, we discuss the results obtained in [7], In particular, we improuved the value of $x$ such that $S(\mathcal{A}, x) \geq S(\mathcal{P}, x)$. The authors in this paper studies only the case where primitive sequence have degree $d=2$, we gives a generalization of this result for any degree $d$.

### 3.1 Some results on primitive sequences of the form $\mathcal{B}_{d}^{k}$

## Lemmas

Lemma 3.1 [15] For any real $x>1$, we have

$$
\sum_{p \in \mathcal{P}, p \leq x} \frac{1}{p}>\log \log x
$$

Lemma 3.2 For any integer $n>1$, we have

$$
2.5 n^{n} e^{-n} \sqrt{n}<n!\leq n^{n-1}
$$

Proof. For $n=2$, the inequality is verifed. For $n>2$, we can use the inequality

$$
n^{n} e^{-n} \sqrt{2 \pi n} e^{\frac{1}{12 n+1}}<n!\leq n^{n} e^{-n} \sqrt{2 \pi n} e^{\frac{1}{12 n}} .
$$

See[13].

Lemma 3.3 Let the real number $\epsilon>1$ and the integer $n>1$, then we have

$$
\inf _{n>1, \epsilon>1}\left(\frac{n n!e^{\epsilon n}}{\epsilon^{n-1} n^{n-1}-n!}\right)=4 e^{3} .
$$

Proof. For $n \geq 2$, we define for $\epsilon>1$ the sequence $t_{n}(\epsilon)$ by

$$
t_{n}(\epsilon)=\frac{n n!e^{\epsilon n}}{\epsilon^{n-1} n^{n-1}-n!}
$$

According to lemma 3.2 , for $n \geq 2, \epsilon>1$

$$
\frac{\epsilon^{n-1} n^{n-1}-n!}{n n!}<\frac{\epsilon^{n-1} e^{n}-2.5 n \sqrt{n}}{2.5 n^{2} \sqrt{n}}
$$

then

$$
t_{n}(\epsilon)>\frac{2.5 n^{2} \sqrt{n} e^{\epsilon n}}{\epsilon^{n-1} e^{n}-2.5 n \sqrt{n}}
$$

Since, for $\epsilon>1$ the real function

$$
x \mapsto f_{\epsilon}(x)=\frac{2.5 x^{2} \sqrt{x} e^{\epsilon x}}{e^{x+(x-1) \log \epsilon}-2.5 x \sqrt{x}},
$$

is increases on $[4, \infty)$, then for $n \geq 4$, we have

$$
t_{n}(\epsilon)>f_{\epsilon}(x) \geq f_{\epsilon}(4)
$$

and since $t_{3}(\epsilon)<f_{\epsilon}(4)$ for $\epsilon>1$, we have

$$
\begin{aligned}
\inf _{n>1, \epsilon>1}\left(\frac{n n!e^{\epsilon n}}{\epsilon^{n-1} n^{n-1}-n!}\right) & =\inf _{n>1, \epsilon>1}\left\{t_{3}(\epsilon), t_{2}(\epsilon)\right\} \\
& =t_{2}\left(\frac{3}{2}\right)=4 e^{3} .
\end{aligned}
$$

The proof is achieved.
Lemma 3.4 For any integer $k \geq 1$ and any integer $d \geq 2$, we define

$$
\mathcal{A}_{d}^{k}=\left\{p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}: \alpha_{1}, \ldots, \alpha_{k} \in \mathbb{N}, \alpha_{1}+\ldots+\alpha_{k}=d\right\}
$$

then we have the disjoint union

$$
\mathcal{A}_{d}^{k+1}=\mathcal{A}_{d}^{k} \bigcup\left\{a p_{k+1}: a \in \mathcal{A}_{d-1}^{k+1}\right\} .
$$

Proof. Let $y \in \mathcal{A}_{d}^{k+1}$ such that $p_{k+1} \mid y$. Then, $y=a p_{k+1}$ where $a \in \mathcal{A}_{d-1}^{k+1}$, and

$$
\mathcal{A}_{d}^{k+1}=\left\{y \in \mathcal{A}_{d}^{k+1} \mid p_{k+1} \nmid y\right\} \bigcup\left\{y \in \mathcal{A}_{d}^{k+1}\left|p_{k+1}\right| y\right\},
$$

therefore

$$
\mathcal{A}_{d}^{k+1}=\mathcal{A}_{d}^{k} \bigcup\left\{a p_{k+1} \mid a \in \mathcal{A}_{d-1}^{k+1}\right\},
$$

which is disjoint union.

Lemma 3.5 Let $k_{0}=13674662$, then for any real number $x>0$ and for any $k \geq k_{0}$ the sequence $S\left(\mathcal{B}_{2}^{k}, x\right)$ is strictly increases.

Proof. For any integers $k \geq 1, d \geq 2$, the multinomial formula give us

$$
\begin{equation*}
\sum_{a \in \mathcal{A}_{d}^{k}} \frac{1}{a} \geq \frac{1}{d!}\left(\sum_{n=1}^{k} \frac{1}{p_{n}}\right)^{d} \tag{3.1}
\end{equation*}
$$

According to lemma 3.4, we have

$$
\begin{aligned}
\mathcal{B}_{2}^{k+1} & =\mathcal{A}_{2}^{k+1} \bigcup \mathcal{A}^{k+1} \\
& =\mathcal{A}_{2}^{k} \bigcup\left\{a p_{k+1} \mid a \in \mathcal{A}_{1}^{k+1}\right\} \bigcup \mathcal{A}^{k+1}
\end{aligned}
$$

then

$$
S\left(\mathcal{B}_{2}^{k+1}, x\right)=S\left(\mathcal{B}_{2}^{k}, x\right)+E
$$

where

$$
E=\frac{1}{p_{k+1}}\left(S\left(\mathcal{A}_{1}^{k+1}, \log p_{k+1}+x\right)-\frac{1}{\log p_{k+1}+x}\right) .
$$

Since $p_{k+1}$ is the largest element in $\mathcal{A}_{1}^{k+1}$, we have

$$
\begin{aligned}
S\left(\mathcal{A}_{1}^{k+1}, \log p_{k+1}+x\right) & =\sum_{a \in \mathcal{A}_{1}^{k+1}} \frac{1}{a\left(\log a+\log p_{k+1}+x\right)} \\
& \geq \frac{1}{2 \log p_{k+1}+x} \sum_{a \in \mathcal{A}_{1}^{k+1}} \frac{1}{a}
\end{aligned}
$$

and according to (3.1) and lemma 3.1 we obtain for $k \geq k_{0}$,

$$
\begin{aligned}
\sum_{a \in \mathcal{A}_{1}^{k+1}} \frac{1}{a} & \geq \sum_{n=1}^{k+1} \frac{1}{p_{n}} \\
& \geq \log \log p_{k+1}>2
\end{aligned}
$$

therefore

$$
\begin{aligned}
S\left(\mathcal{A}_{1}^{k+1}, \log p_{k+1}+x\right)-\frac{1}{\log p_{k+1}+x} & >\frac{2}{2 \log p_{k+1}+x}-\frac{1}{\log p_{k+1}+x} \\
& =\frac{x}{\left(2 \log p_{k+1}+x\right)\left(\log p_{k+1}+x\right)} \\
& >0
\end{aligned}
$$

then

$$
S\left(\mathcal{B}_{2}^{k+1}, x\right)-S\left(\mathcal{B}_{2}^{k+1}, x\right)>0 .
$$

This ends the proof.

## Improved result over $B_{d}^{k}$

Theorem 3.1 Let $k_{0}=13674662$ and $x_{0}=80.4$. Then for any primitive sequence

$$
\mathcal{B}_{2}^{k}=\left\{p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}} ; \alpha_{1}, \ldots, \alpha_{k} \in \mathbb{N}, \alpha_{1}+\ldots+\alpha_{k}=2, k \geq k_{0}\right\} \bigcup\left\{p_{n} \in \mathcal{P} \mid n>k\right\}
$$

we have

$$
S\left(\mathcal{B}_{2}^{k}, x\right)>S(\mathcal{P}, x) \text { for } x \geq x_{0}
$$

Proof. For any natural numbers $k \geq 1$ and $d \geq 2$, $p_{k}^{d}$ is the greatest element of the primitive sequence $\mathcal{A}_{d}^{k}$, then $\log a \leq d \log p_{k}$ for any $a \in \mathcal{A}_{d}^{k}$. So, for any $x>0$ we have

$$
\begin{aligned}
\sum_{a \in \mathcal{B}_{d}^{k}} \frac{1}{a(\log a+x)} & =\sum_{a \in \mathcal{A}_{d}^{k} \cup \mathcal{A}^{k}} \frac{1}{a(\log a+x)} \\
& =\sum_{a \in \mathcal{A}_{d}^{k}} \frac{1}{a(\log a+x)}+\sum_{a \in \mathcal{A}^{k}} \frac{1}{a(\log a+x)} \\
& \geq \frac{1}{d \log p_{k}+x} \sum_{a \in \mathcal{A}_{d}^{k}} \frac{1}{a}+\sum_{n>k} \frac{1}{p_{n}\left(\log p_{n}+x\right)} .
\end{aligned}
$$

from (3.1) and lemma 2.1, we have

$$
\sum_{a \in \mathcal{A}_{d}^{k}} \frac{1}{a}>\frac{\left(\log \log p_{k}\right)^{d-1}}{d!} \sum_{n=1}^{k} \frac{1}{p_{n}}
$$

then

$$
\begin{aligned}
\sum_{a \in \mathcal{B}_{d}^{k}} \frac{1}{a(\log a+x)} & \geq \frac{x\left(\log \log p_{k}\right)^{d-1}}{d!\left(d \log p_{k}+x\right)} \sum_{n=1}^{k} \frac{1}{x p_{n}}+\sum_{n>k} \frac{1}{p_{n}\left(\log p_{n}+x\right)} \\
& >\frac{x\left(\log \log p_{k}\right)^{d-1}}{d!\left(d \log p_{k}+x\right)} \sum_{n=1}^{k} \frac{1}{p_{n}\left(\log p_{n}+x\right)}+\sum_{n>k} \frac{1}{p_{n}\left(\log p_{n}+x\right)} .
\end{aligned}
$$

To obtain the inequality of theorem, we must choose $d, k$ and $x$ such that

$$
\frac{x\left(\log \log p_{k}\right)^{d-1}}{d!\left(d \log p_{k}+x\right)}>1
$$

it is clear that for $d \geq 2$ and $k>1$, the function

$$
x \mapsto h(x)=\frac{x\left(\log \log p_{k}\right)^{d-1}}{d!\left(d \log p_{k}+x\right)}
$$

increases for $x>0$.
Let $x_{0}$ be the smalest value such that the last inequality is verifed, then

$$
\begin{equation*}
\frac{\left(\log \log p_{k}\right)^{d-1}-d!}{d d!\log p_{k}}>\frac{1}{x_{0}} \tag{3.2}
\end{equation*}
$$

Since $x_{0}>0$, we must choose $k$ such that $\left(\log \log p_{k}\right)^{d-1}-d!x>0$, then according to lemma 3.2, it must be

$$
\log \log p_{k}>d
$$

then there exist $\epsilon>1$ such that $\log \log p_{k}=\epsilon d$. Therefore, (3.2) equivalent to

$$
\frac{d d!e^{\epsilon d}}{\epsilon^{d-1} d^{d-1}-d!}<x_{0}
$$

so we must choose $d$ and $\epsilon$ such that the number

$$
\frac{d d!e^{\epsilon d}}{\epsilon^{d-1} d^{d-1}-d!}
$$

is the smalest possible. According to lemma 3.3, we obtain $d=2, \epsilon=1.481$ and $x_{0}>4 e^{3}$, then we must find an integer $k_{0}$ so that $\log \log p_{k_{0}}$ be in the neighborhood of 2.962, a computer calculation give us

$$
\left(p_{k_{0}}, k_{0}\right)=(249910007,13674662)
$$

Then if we take $k_{0}=13674662$ and $d=2$, we obtain $\mathcal{B}_{2}^{k_{0}}$ and $x_{0}=80.4$. So, according to lemma 3.5 we have

$$
S\left(\mathcal{B}_{2}^{k}, x\right)>S(\mathcal{P}, x) \text { for } k>k_{0}, x \geq x_{0}
$$

The proof is achieved.

### 3.2 Generalized result on $S\left(\mathcal{B}_{2}^{k}, x\right)$ concerning primitive sequences of the form $\mathcal{B}_{d}^{k}$

## Lemmas

Lemma 3.6 [4] For $x \geq 3275$ there exists a prime number p such that

$$
x<p \leq x\left(1+\frac{1}{2 \ln ^{2} x}\right) .
$$

Lemma 3.7 For any integer $n>1$, we have

$$
\begin{align*}
& n!\leq n^{n} e^{1-n} \sqrt{n}  \tag{3.3}\\
& n!\leq 2(n+1)^{n-2}  \tag{3.4}\\
& n!<n^{n-2} \quad(n \geq 5) \tag{3.5}
\end{align*}
$$

Proof. For $n=2$, the inequality (3.3) is verifed. For $n>2$, it is comes from the inequality [13]

$$
n^{n} e^{-n} \sqrt{2 \pi n} e^{\frac{1}{12 n+1}}<n!<n^{n} e^{-n} \sqrt{2 \pi n} e^{\frac{1}{12 n}}
$$

and we can prove (3.4) and (3.5) by induction.
Lemma 3.8 Let $n \geq 2$ be an integer and $x$ be a reel number such that $x \geq n-1$. The function

$$
x \mapsto f_{n}(x)=\frac{n n!e^{x}}{x^{n-1}-n!}
$$

reaches its minimum in $x_{n}$ where $\left.\left.x_{n} \in\right] n-1, n+1\right]$, moreover $x_{2}=2, x_{3}=\sqrt{7}+1$, $x_{4} \simeq 4.298$ and $x_{n}<n$ for $n \geq 5$.

Proof. Let $n \geq 2$ be an integer and let $f_{n}$ be the function defined on the interval $I=] n-1,+\infty[$ by

$$
f_{n}(x)=\frac{n n!e^{x}}{x^{n-1}-n!}
$$

$f$ is differentiable on $I$ and

$$
f_{n}^{\prime}(x)=\frac{n n!e^{x}\left(x^{n-1}-(n-1) x^{n-2}-n!\right)}{\left(x^{n-1}-n!\right)^{2}}
$$

Put for $x>n-1$,

$$
g_{n}(x)=x^{n-1}-(n-1) x^{n-2}-n!,
$$

then

$$
g_{n}^{\prime}(x)=(n-1) x^{n-3}(x-(n-2))>0 \text { on } I,
$$

hence $g_{n}$ increases on $I$. On the other hand, since $g_{n}$ is continuous then by lemma 3.7, we have

$$
\begin{aligned}
\lim _{x \rightarrow n-1} g_{n}(x) & =-n!<0, \\
g_{n}(n) & =n^{n-2}-n!>0 \text { for } n \geq 5, \\
g_{n}(n+1) & =2(n+1)^{n-2}-n!\geq 0,
\end{aligned}
$$

therefore, there exists only one root $\left.\left.x_{n} \in\right] n-1, n+1\right]$ and for $\left.\left.n \geq 5, x_{n} \in\right] n-1, n\right]$ such that $f_{n}^{\prime}\left(x_{n}\right)=0$. Since $g_{n}(x)<0$ for $x<x_{n}$ and $g_{n}(x)>0$ for $x>x_{n}$ then $f_{n}$ strictly decreases on $\left.] n-1, x_{n}\right]$ and strictly increases on $\left[x_{n},+\infty[\right.$, so we have

$$
\left.\left.f_{n}(x) \geq f_{n}\left(x_{n}\right) \text { where } x_{n} \in\right] n-1, n+1\right] .
$$

It is clear that for $n=2,3,4$ the equality

$$
x^{n-1}-(n-1) x^{n-2}-n!=0
$$

gives $x_{2}=2, x_{3}=\sqrt{7}+1, x_{4} \simeq 4.298$.
Lemma 3.9 For any integer $d \geq 2$, there exists a prime $p$ such that

$$
\begin{equation*}
e^{e^{x_{d}}}<p \leq e^{e^{d+1}} \tag{3.6}
\end{equation*}
$$

moreover

$$
\max \{p: p \in] e^{e^{x_{d}}}, e^{e^{d+1}}[ \}>e^{e^{d}}
$$

where $\left(x_{d}\right)_{d \geq 2}$ is the sequence defined in lemma 3.8.
Proof. The inequality (3.6) is easy to verify for $d=2,3,4$. By lemma 3.8, we have, for $d \geq 5$

$$
\begin{equation*}
d-1 \leq x_{d} \leq d \tag{3.7}
\end{equation*}
$$

therefore $e^{e^{x_{d}}}>3275$, then from lemma 3.6 there exists a prime $p$ such that

$$
e^{e^{x_{d}}}<p \leq e^{e^{x_{d}}}\left(1+\frac{1}{2 e^{2 x_{d}}}\right)
$$

from (3.7), we get $4 \leq x_{d} \leq d$, then $1+\frac{1}{2 e^{2 x_{d}}}<2$ and $e^{e^{x_{d}}}<e^{e^{d}}$, thus

$$
e^{e^{x_{d}}}\left(1+\frac{1}{2 e^{2 x_{d}}}\right)<2 e^{e^{d}}<e^{e^{d+1}}
$$

Since

$$
4 e^{e^{d}}<\left(e^{e^{d}}\right)^{2}<e^{e^{d+1}}
$$

then according to the Bertrand's postilate there exists a prime number in $\left[2 e^{e^{d}}, 4 e^{e^{d}}\right]$, thus, the greatest prime number in $\left[e^{e^{x_{d}}}, e^{e^{d+1}}\right]$ is greater than $e^{e^{d}}$, which finishes the proof.

Lemma 3.10 Let $d \geq 2$ and let $k_{0}$ be the integer such that $p_{k_{0}} \geq \exp (\exp d)$. For any real number $x>0$ the sequence $\left(\mathcal{S}\left(\mathcal{B}_{d}^{k}, x\right)\right)_{k \geq k_{0}}$ is strictly increases.

Proof. For any integer $k \geq 1$ and any integer $d \geq 2$, the multinomial formula ensures that

$$
\begin{aligned}
\sum_{a \in \mathcal{A}_{d}^{k}} \frac{1}{a} & =\sum_{\alpha_{1}+\ldots+\alpha_{k}=d} \frac{1}{p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}} \\
& \geq \sum_{\alpha_{1}+\ldots+\alpha_{k}=d} \frac{\left(1 / p_{1}\right)^{\alpha_{1}}}{\left(\alpha_{1}\right)!} \ldots \frac{\left(1 / p_{k}\right)^{\alpha_{k}}}{\left(\alpha_{k}\right)!} \\
& =\frac{1}{d!}\left(\sum_{n=1}^{k} \frac{1}{p_{n}}\right)^{d}
\end{aligned}
$$

therefore

$$
\begin{equation*}
\sum_{a \in \mathcal{A}_{d}^{k}} \frac{1}{a} \geq \frac{1}{d!}\left(\sum_{n=1}^{k} \frac{1}{p_{n}}\right)^{d} . \tag{3.8}
\end{equation*}
$$

Put $\mathcal{A}^{k}=\left\{p_{n} \mid p_{n} \in \mathcal{P}, n>k\right\}$, then from lemma 3.4 we have

$$
\begin{aligned}
\mathcal{B}_{d}^{k+1} & =\mathcal{A}_{d}^{k+1} \cup \mathcal{A}^{k+1} \\
& =\mathcal{A}_{d}^{k} \bigcup\left\{a p_{k+1} \mid a \in \mathcal{A}_{d-1}^{k+1}\right\} \bigcup \mathcal{A}^{k+1}
\end{aligned}
$$

so,

$$
S\left(\mathcal{B}_{d}^{k+1}, x\right)=S\left(\mathcal{B}_{d}^{k}, x\right)+E
$$

where

$$
E=\frac{1}{p_{k+1}}\left(S\left(\mathcal{A}_{d-1}^{k+1}, \log p_{k+1}+x\right)-\frac{1}{\log p_{k+1}+x}\right) .
$$

Since $p_{k+1}^{d-1}$ is the greatest element of $\mathcal{A}_{d-1}^{k+1}$, we have

$$
\begin{aligned}
S\left(\mathcal{A}_{d-1}^{k+1}, \log p_{k+1}+x\right) & =\sum_{a \in \mathcal{A}_{d-1}^{k+1}} \frac{1}{a\left(\log a+\log p_{k+1}+x\right)} \\
& \geq \sum_{a \in \mathcal{A}_{d-1}^{k+1}} \frac{1}{a\left((d-1) \log p_{k+1}+\log p_{k+1}+x\right)} \\
& \geq \frac{1}{d \log p_{k+1}+x} \sum_{a \in \mathcal{A}_{d-1}^{k+1}} \frac{1}{a},
\end{aligned}
$$

and by lemma 3.1 we obtain

$$
\begin{aligned}
\sum_{a \in \mathcal{A}_{d-1}^{k+1}} \frac{1}{a} & \geq \frac{1}{(d-1)!}\left(\sum_{n=1}^{k+1} \frac{1}{p_{n}}\right)^{d-1} \\
& \geq \frac{1}{(d-1)!}\left(\log \log p_{k+1}\right)^{d-1} \\
& \geq \frac{d^{d-1}}{(d-1)!} \\
& \geq \frac{d^{d-1}}{d!} d \text { for } k \geq k_{0},
\end{aligned}
$$

according to lemma 3.7 we have $d!\leq d^{d-1}$ then

$$
\sum_{a \in \mathcal{A}_{d-1}^{k+1}} \frac{1}{a} \geq d \text { for } k \geq k_{0}
$$

which implies

$$
\begin{aligned}
S\left(\mathcal{A}_{d-1}^{k+1}, \log p_{k+1}+x\right)-\frac{1}{\log p_{k+1}+x} & >\frac{d}{d \log p_{k+1}+x}-\frac{1}{\log p_{k+1}+x} \\
& =\frac{d x-x}{\left(d \log p_{k+1}+x\right)\left(\log p_{k+1}+x\right)}>0
\end{aligned}
$$

thus

$$
S\left(B_{d}^{k+1}, x\right)-S\left(B_{d}^{k}, x\right)>0 .
$$

The proof is finished.

## Generalized result on $S\left(B_{2}^{k}, x\right)$

Theorem 3.2 Let $d \geq 2$ be an integer, $x_{0}=\frac{\text { dd! } e^{d+1}}{(d+1)^{d-1}-d!}$ and let $k_{0}$ be the greatest integer such that $p_{k_{0}} \leq e^{e^{d+1}}$. Then for any $k \geq k_{0}$ and any primitive sequence of the form

$$
\mathcal{B}_{d}^{k}=\left\{p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}} \mid \alpha_{1}, \ldots, \alpha_{k} \in \mathbb{N}, \alpha_{1}+\ldots+\alpha_{k}=d\right\} \bigcup\left\{p_{n} \mid p_{n} \in \mathcal{P}, n>k\right\}
$$

we have, for $x \geq x_{0}$

$$
S\left(\mathcal{B}_{d}^{k}, x\right)>S(\mathcal{P}, x) .
$$

Proof. For any integer $k \geq 1$ and any integer $d \geq 2$, we have

$$
\begin{aligned}
\sum_{a \in \mathcal{B}_{d}^{k}} \frac{1}{a(\log a+x)} & =\sum_{a \in \mathcal{A}_{d}^{k} \cup \mathcal{A}^{k}} \frac{1}{a(\log a+x)} \\
& =\sum_{a \in \mathcal{A}_{d}^{k}} \frac{1}{a(\log a+x)}+\sum_{a \in \mathcal{A}^{k}} \frac{1}{a(\log a+x)} \\
& \geq \frac{1}{d \log p_{k}+x} \sum_{a \in \mathcal{A}_{d}^{k}} \frac{1}{a}+\sum_{n>k} \frac{1}{p_{n}\left(\log p_{n}+x\right)} .
\end{aligned}
$$

Using (3.8) and lemma 3.1, we get

$$
\sum_{a \in \mathcal{A}_{d}^{k}} \frac{1}{a}>\frac{\left(\log \log p_{k}\right)^{d-1}}{d!} \sum_{n=1}^{k} \frac{1}{p_{n}},
$$

therefore

$$
\begin{aligned}
\sum_{a \in \mathcal{B}_{d}^{k}} \frac{1}{a(\log a+x)} & \geq \frac{\left(\log \log p_{k}\right)^{d-1}}{d!\left(d \log p_{k}+x\right)} \sum_{n=1}^{k} \frac{1}{p_{n}}+\sum_{n>k} \frac{1}{p_{n}\left(\log p_{n}+x\right)} \\
& >\frac{x\left(\log \log p_{k}\right)^{d-1}}{d!\left(d \log p_{k}+x\right)} \sum_{n=1}^{k} \frac{1}{x p_{n}}+\sum_{n>k} \frac{1}{p_{n}\left(\log p_{n}+x\right)} \\
& >\frac{x\left(\log \log p_{k}\right)^{d-1}}{d!\left(d \log p_{k}+x\right)} \sum_{n=1}^{k} \frac{1}{p_{n}\left(\log p_{n}+x\right)}+\sum_{n>k} \frac{1}{p_{n}\left(\log p_{n}+x\right)} .
\end{aligned}
$$

To obtain the inequality required in theorem, we must choose $k$ and $x$ so that

$$
\begin{equation*}
\frac{x\left(\log \log p_{k}\right)^{d-1}}{d!\left(d \log p_{k}+x\right)}>1 \tag{3.9}
\end{equation*}
$$

Since for $d \geq 2, k>1$, the function

$$
x \mapsto h_{k, d}(x)=\frac{x\left(\log \log p_{k}\right)^{d-1}}{d!\left(d \log p_{k}+x\right)},
$$

is strictly increases for $x>0$, let $x_{0}$ the smallest value for which the inequality (3.9) is verified, that is

$$
\begin{equation*}
\frac{\left(\log \log p_{k}\right)^{d-1}-d!}{d d!\log p_{k}}>\frac{1}{x_{0}} \tag{3.10}
\end{equation*}
$$

Since $x_{0}>0$, we need to find $k$ such that

$$
\left(\log \log p_{k}\right)^{d-1}-d!>0
$$

then by lemma 3.9, we just take $\log \log p_{k}>d$, and if we put $\log \log p_{k}=z$, (3.10) becomes

$$
\frac{d d!e^{z}}{z^{d-1}-d!}<x_{0} .
$$

Now, we must choose $z$ so that, the number $\frac{d d!e^{z}}{z^{d-1}-d!}$ is the smallest possible.
According to lemma 3.8, the function

$$
x \mapsto f_{d}(x)=\frac{d d!e^{x}}{x^{d-1}-d!}
$$

reaches its minimum $x_{d}$ in

$$
] d-1, d+1]
$$

so we can take $z \in] x_{d}, d+1\left[\right.$ and $x_{0}=\frac{d d!!{ }^{d+1}}{(d+1)^{d-1}-d!}$.
From lemma 3.9, there exists a prime number $p_{k}$ such that

$$
x_{d}<\log \log p_{k}<d+1 .
$$

Now, we can choose

$$
p_{k_{0}}=\max \left\{p_{k}: \log \log p_{k} \in\right] x_{d}, d+1[ \} \text { and } z=\log \log p_{k_{0}},
$$

then we obtain, for $x \geq x_{0}$

$$
S\left(\mathcal{B}_{d}^{k_{0}}, x\right)>S(\mathcal{P}, x)
$$

Finally, by lemma 3.9, we have

$$
\exp (\exp d) \leq p_{k_{0}} \leq \exp (\exp (d+1)),
$$

and from lemma 3.10, we get for $k \geq k_{0}$ and $x \geq x_{0}$,

$$
S\left(\mathcal{B}_{d}^{k}, x\right)>S(\mathcal{P}, x)
$$

Which ends the proof.
Remark 3.1 If we take $d=2$, then we get, for $k \geq 27775592$ and $x \geq 80.4$

$$
S\left(\mathcal{B}_{2}^{k}, x\right)>S\left(\mathcal{B}_{1}^{k}, x\right)
$$

Since for $x$ is sufficiently large, we have $S\left(\mathcal{B}_{d}^{k}, x\right)>S(\mathcal{P}, x)$, so we can conjecture that: for any $d \geq 1$ there exists $k_{0}$ such that

$$
S\left(\mathcal{B}_{d+1}^{k}, x\right)>S\left(\mathcal{B}_{d}^{k}, x\right), \quad k \geq k_{0}, x>0
$$

## Chapter 4

## Study the $\operatorname{sum} S(\mathcal{A}, x)$ for largest values of $x$

As explained in the introduction, the main objective of this chapter is to study the sum $S(\mathcal{A}, x)$ for largest values of $x$, in this work we use the primitive sequences of the form

$$
\mathcal{B}_{d}^{k}=\left\{p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}} \mid \alpha_{1}, \ldots, \alpha_{k} \in \mathbb{N}, \alpha_{1}+\ldots+\alpha_{k}=d\right\} \bigcup\left\{p_{n} \mid p_{n} \in \mathcal{P}, n>k\right\} .
$$

## Lemmas

Lemma 4.1 [4] For $k \geq 463$,

$$
p_{k+1} \leq p_{k}\left(1+\frac{1}{2 \log ^{2} p_{k}}\right) .
$$

Lemma 4.2 For any real number $x>0$ and any integer $k \geq 2$ the following holds

$$
\sum_{n>k} \frac{1}{p_{n}\left(\log p_{n}+x\right)} \leq \begin{cases}\frac{\log \left(1+\frac{x}{\log k}\right)}{x} & \text { if } x \neq 0 \\ \frac{1}{\log k} & \text { if } x=0\end{cases}
$$

Proof. Let $x>0$ be a real number and $k \geq 2$ be an integer. By lemma 2.1 and since the function

$$
t \mapsto \frac{d t}{t \log t(\log t+x)}
$$

decreases on $[1,+\infty)$, we obtain then

$$
\begin{aligned}
\sum_{n>k} \frac{1}{p_{n}\left(\log p_{n}+x\right)} & \leq \sum_{n>k} \frac{1}{n \log n(\log n+\log \log n+x)} \\
& \leq \sum_{n>k} \frac{1}{n \log n(\log n+x)} \\
& \leq \int_{k}^{+\infty} \frac{d t}{t \log t(\log t+x)}
\end{aligned}
$$

Put $u=\log t$, so,
if $x \neq 0$, we have

$$
\begin{aligned}
\int_{k}^{+\infty} \frac{d t}{t \log t(\log t+x)} & =\int_{\log k}^{+\infty} \frac{d u}{u(u+x)} \\
& =\frac{1}{x} \int_{\log k}^{+\infty}\left(\frac{1}{u}-\frac{1}{u+x}\right) d u \\
& =\frac{\log \left(1+\frac{x}{\log k}\right)}{x}
\end{aligned}
$$

if $x=0$, we have

$$
\begin{aligned}
\int_{k}^{+\infty} \frac{d t}{t \log t(\log t+x)} & =\int_{\log k}^{+\infty} \frac{d u}{u^{2}} \\
& =\frac{1}{\log k}
\end{aligned}
$$

This ends the proof.
Lemma 4.3 For any integer $n \neq 0$, we have:

$$
n!\leq n^{n} e^{1-n} \sqrt{n}
$$

Proof. For $n=1$, the inequality is verified.
For $n \geq 2$, we use the inequality [8]

$$
n!\leq n^{n} e^{-n} \sqrt{2 \pi n} e^{1 / 12 n}
$$

We have

$$
\begin{aligned}
n! & \leq n^{n} e^{-n} \sqrt{2 \pi n} e^{1 / 12 n} \\
& \leq n^{n} e^{1-n} \sqrt{n} \sqrt{2 \pi} e^{1 / 12 n-1}
\end{aligned}
$$

and since the function $x \mapsto \sqrt{2 \pi} e^{1 / 12 x-1}$ decreases on $[2,+\infty)$, then

$$
\sqrt{2 \pi} e^{1 / 12 n-1}<1
$$

therefore

$$
n!\leq n^{n} e^{1-n} \sqrt{n}
$$

Which ends the proof.

Lemma 4.4 For any $\lambda \geq 1$ and any $n>0$, we have

$$
\frac{71.383 \lambda^{2 n}+20.978}{64.975 \ln \left(\lambda^{2 n}+2\right)+20.978}>\lambda^{n} .
$$

Proof. For any $\lambda$, we have:

$$
\begin{aligned}
& \frac{71.383 \lambda^{2 n}+20.978}{64.975 \ln \left(\lambda^{2 n}+2\right)+20.978}-\lambda^{n} \\
= & \frac{71.383 \lambda^{2 n}+20.978-64.975 \lambda^{n} \ln \left(\lambda^{2 n}+2\right)-20.978 \lambda^{n}}{64.975 \ln \left(\lambda^{2 n}+2\right)+20.978} \\
= & \frac{1}{64.975 \ln \left(\lambda^{2 n}+2\right)+20.978}\left(\lambda^{n}\left(71.383 \lambda^{n}-64.975 \ln \left(\lambda^{2 n}+2\right)-20.978\right)+20.978\right) .
\end{aligned}
$$

Put $w_{n}(\lambda)=71.383 \lambda^{n}-64.975 \ln \left(\lambda^{2 n}+2\right)-20.978$, then

$$
\begin{aligned}
& \frac{d}{d \lambda} w_{n}(\lambda)=\frac{n}{\lambda\left(\lambda^{2 n}+2\right)}\left(1.4277 \times 10^{2} \lambda^{n}-1.2995 \times 10^{2} \lambda^{2 n}+71.383 . \lambda^{3 n}\right) \\
= & \frac{n \lambda^{n}}{\lambda\left(\lambda^{2 n}+2\right)}\left(1.4277 \times 10^{2}-1.2995 \times 10^{2} \lambda^{n}+71.383 . \lambda^{2 n}\right)
\end{aligned}
$$

and since $1.4277 \times 10^{2}-1.2995 \times 10^{2} x+71.383 . x^{2}>0$, then

$$
\frac{d}{d \lambda} w_{n}(\lambda)>0
$$

Hence the function $w_{n}$ increases for $\lambda \geq 1$, therefore

$$
71.383 \lambda^{n}-64.975 \ln \left(\lambda^{2 n}+2\right)-20.978 \geq-20.977
$$

so,

$$
\left(\lambda^{n}\left(71.383 \lambda^{n}-64.975 \ln \left(\lambda^{2 n}+2\right)-20.978\right)+20.978\right) \geq 6.6654 \times 10^{-4}>0
$$

Thus

$$
\frac{71.383 \lambda^{2 n}+20.978}{64.975 \ln \left(\lambda^{2 n}+2\right)+20.978}-\lambda^{n}>0
$$

and the proof is achieved.
Lemma 4.5 Let the sequence $\left(u_{n}\right)_{n \geq 2}$ where

$$
u_{n}=\frac{n^{n-1}-n!}{n n!}
$$

$\left(u_{n}\right)$ increases on $[2, \infty)$.

Proof. We have.

$$
\begin{aligned}
u_{n+1}-u_{n} & =\frac{(n+1)^{n}-(n+1)!}{(n+1)(n+1)!}-\frac{n^{n-1}-n!}{n n!} \\
& =\frac{(n+1)^{n}}{(n+1)(n+1)!}-\frac{(n+1)^{n}}{(n+1)(n+1)!}-\frac{n^{n-2}}{n!}+\frac{1}{n} \\
& =\frac{(n+1)^{n-1}}{(n+1)!}-\frac{1}{(n+1)}-\frac{n^{n-2}}{n!}+\frac{1}{n} \\
& \geq \frac{(n+1)^{n-2}}{n!}-\frac{n^{n-2}}{n!}+\frac{1}{n}-\frac{1}{(n+1)} \geq 0 .
\end{aligned}
$$

The proof finished.

### 4.1 Study of $S(\mathcal{A}, x)$ for largest values of $x$

Theorem 4.1 Let $\lambda \geq 1$ and $t>0$, then for any $x \geq 1656 \lambda^{2 t}\left(\log \left(\lambda^{2 t}+2\right)\right)^{3 / 2}$, there exists a primitive sequence $\mathcal{A}$ such that

$$
S(\mathcal{A}, x) \geq \lambda^{t} S(\mathcal{P}, x)
$$

Proof. Let $\lambda \geq 1$ and let $t>0$. To prove this theorem, we need the parameters $\alpha, c$ and $\beta$ which satisfy :

$$
\begin{gather*}
c \alpha \geq e^{\beta}+\log 1.008,0<\alpha \leq \frac{5}{12}  \tag{C1}\\
\beta \geq 1.950 \tag{C2}
\end{gather*}
$$

those parameters will be chosen later, the real $c$ is chosen to be the smallest possible value so that; for any $x \geq c \lambda^{2 t}\left(\log \left(\lambda^{2 t}+2\right)\right)^{3 / 2}$, there exists a primitive sequence $\mathcal{A} \neq\{1\}$ such that

$$
\sum_{a \in \mathcal{A}} \frac{1}{a(\log a+x)}>\lambda^{t} \sum_{p \in \mathcal{P}} \frac{1}{p(\log p+x)}
$$

Let $p_{k}$ be the largest prime satisfying $p_{k} \leq e^{\alpha x}$, then according to lemmas 4.1 and 2.1, we obtain

$$
\begin{equation*}
p_{k} \leq e^{\alpha x}<p_{k+1}<1.008 p_{k} \tag{4.1}
\end{equation*}
$$

Assume that

$$
d=\left\lfloor\beta+\log \lambda^{2 t}+\frac{3}{2} \log \log \left(\lambda^{2 t}+2\right)\right\rfloor,
$$

then from (C1) and (C2), we have

$$
x \geq \frac{1}{\alpha}\left(e^{d}+\log 1.008\right)
$$

and from lemma 3.1 and (4.1), we obtain

$$
\begin{aligned}
\sum_{n=1}^{k} \frac{1}{p_{n}} & >\log \log p_{k} \\
& >\log \log \frac{p_{k+1}}{1.008} \\
& >\log \log \frac{e^{\alpha x}}{1.008} \\
& \geq d
\end{aligned}
$$

So,

$$
\begin{equation*}
\sum_{n=1}^{k} \frac{1}{p_{n}} \geq d \tag{4.2}
\end{equation*}
$$

Now, we define the following sets of positive integers :

$$
\begin{aligned}
\mathcal{P}^{k} & =\left\{p_{n} \mid p_{n} \in \mathcal{P}, p_{n}>p_{k}\right\} \\
\mathcal{A} & =\mathcal{A}_{d}^{k} \cup \mathcal{P}^{k}
\end{aligned}
$$

It is clear that $\mathcal{A}_{d}^{k} \bigcap \mathcal{P}^{k}=\varnothing$ and the sets $\mathcal{A}_{d}^{k}, \mathcal{P}^{k}$ and $\mathcal{A}$ are primitive sequences. Then, according to the multinomial formula and (4.2), we have

$$
\begin{aligned}
\sum_{a \in \mathcal{A}_{d}^{k}} \frac{1}{a} & =\sum_{\alpha_{1}+\ldots+\alpha_{k}=d} \frac{1}{p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}} \\
& \geq \sum_{\alpha_{1}+\ldots+\alpha_{k}=d} \frac{\left(1 / p_{1}\right)^{\alpha_{1}}}{\left(\alpha_{1}\right)!} \ldots \frac{\left(1 / p_{k}\right)^{\alpha_{k}}}{\left(\alpha_{k}\right)!} \\
& =\frac{1}{d!}\left(\sum_{n=1}^{k} \frac{1}{p_{n}}\right)^{d} \\
& >\frac{d^{d-1}}{d!} \sum_{n=1}^{k} \frac{1}{p_{n}}
\end{aligned}
$$

So,

$$
\begin{equation*}
\sum_{a \in \mathcal{A}_{d}^{k}} \frac{1}{a}>\frac{d^{d-1}}{d!} \sum_{n=1}^{k} \frac{1}{p_{n}} \tag{4.3}
\end{equation*}
$$

Since

$$
x \geq c \lambda^{2 t}\left(\log \left(\lambda^{2 t}+2\right)\right)^{3 / 2}
$$

then, from $(C 1)$ and $(C 2)$, we obtain

$$
e^{\alpha x} \geq 3303 \geq p_{464}
$$

Hence, according to (4.1) we have

$$
p_{464} \leq p_{k} \leq e^{\alpha x}<p_{k+1}<1.008 p_{k}
$$

By using lemma 2.1, we get

$$
\begin{aligned}
\log p_{k} & \leq \alpha x \\
& \leq \log p_{k}+\log 1.008 \\
& \leq \log (k(\log k+\log \log k))+\log 1.008
\end{aligned}
$$

Now, since the function

$$
t \mapsto \frac{\log (t(\log t+\log \log t))+\log 1.008}{\log t}
$$

decreases on $[464,+\infty)$, then we have
$\frac{\log (t(\log t+\log \log t))+\log 1.008}{\log t} \leq \frac{\log (464(\log 464+\log \log 464))+\log 1.008}{\log 464} \simeq 1.339$
that is,

$$
\begin{equation*}
\alpha x \leq 1.339 \log k . \tag{4.4}
\end{equation*}
$$

By using (4.4) and lemma 4.3, we find

$$
\sum_{n>k} \frac{1}{p_{n}\left(\log p_{n}+x\right)} \leq \frac{\log \left(1+\frac{x}{\log k}\right)}{x}<\frac{\log \left(1+\frac{1.339}{\alpha}\right)}{x}
$$

therefore,

$$
\begin{equation*}
\frac{1}{x}>\frac{1}{\log \left(1+\frac{1.339}{\alpha}\right)} \sum_{n>k} \frac{1}{p_{n}\left(\log p_{n}+x\right)} . \tag{4.5}
\end{equation*}
$$

On other hand, according to (4.1) and (4.2), we have for $x \neq 0$

$$
\begin{aligned}
\sum_{n=1}^{k} \frac{1}{p_{n}\left(\log p_{n}+x\right)} & \geq \sum_{n=1}^{k} \frac{1}{p_{n}(\alpha x+x)} \\
& \geq \frac{1}{(\alpha+1) x} \sum_{n=1}^{k} \frac{1}{p_{n}} \\
& \geq \frac{d}{(\alpha+1) x}
\end{aligned}
$$

and from (4.5) we obtain

$$
\sum_{n=1}^{k} \frac{1}{p_{n}\left(\log p_{n}+x\right)} \geq \frac{d}{(\alpha+1) \log \left(1+\frac{1.339}{\alpha}\right)} \sum_{n>k} \frac{1}{p_{n}\left(\log p_{n}+x\right)}
$$

Put $h(\alpha)=(\alpha+1) \log \left(1+\frac{1.339}{\alpha}\right)$, then we have

$$
\sum_{n=1}^{k} \frac{1}{p_{n}\left(\log p_{n}+x\right)} \geq \frac{d}{h(\alpha)}\left(\sum_{n=1}^{+\infty} \frac{1}{p_{n}\left(\log p_{n}+x\right)}-\sum_{n=1}^{k} \frac{1}{p_{n}\left(\log p_{n}+x\right)}\right)
$$

therfore,

$$
\begin{aligned}
\left(1+\frac{d}{h(\alpha)}\right) \sum_{n=1}^{k} \frac{1}{p_{n}\left(\log p_{n}+x\right)} & \geq \frac{d}{h(\alpha)} \sum_{n=1}^{+\infty} \frac{1}{p_{n}\left(\log p_{n}+x\right)} \\
& \geq \frac{d}{d+h(\alpha)} \sum_{n=1}^{+\infty} \frac{1}{p_{n}\left(\log p_{n}+x\right)} .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\sum_{n=1}^{k} \frac{1}{p_{n}\left(\log p_{n}+x\right)} \geq \frac{d}{d+h(\alpha)} \sum_{n=1}^{+\infty} \frac{1}{p_{n}\left(\log p_{n}+x\right)} \tag{4.6}
\end{equation*}
$$

Since $p_{k}^{d}$ is the largest element in $\mathcal{A}_{d}^{k}$, then according to (4.1), we have for any $a \in \mathcal{A}_{d}^{k}$

$$
\log a \leq d \log p_{k} \leq d \alpha x
$$

hence, from (4.3), we obtain

$$
\begin{aligned}
\sum_{a \in \mathcal{A}} \frac{1}{a(\log a+x)} & =\sum_{a \in \mathcal{A}_{d}^{k} \cup \mathcal{P}^{k}} \frac{1}{a(\log a+x)} \\
& =\sum_{a \in \mathcal{A}_{d}^{k}} \frac{1}{a(\log a+x)}+\sum_{a \in \mathcal{P}^{k}} \frac{1}{a(\log a+x)} \\
& \geq \frac{1}{(d \alpha x+x)} \sum_{a \in \mathcal{A}_{d}^{k}} \frac{1}{a}+\sum_{n>k} \frac{1}{p_{n}\left(\log p_{n}+x\right)} \\
& >\frac{d^{d-1}}{d!x(d \alpha+1)} \sum_{n=1}^{k} \frac{1}{p_{n}}+\sum_{n>k} \frac{1}{p_{n}\left(\log p_{n}+x\right)} \\
& >\frac{d^{d-1}}{d!(d \alpha+1)} \sum_{n=1}^{k} \frac{1}{p_{n}\left(\log p_{n}+x\right)}+\sum_{n>k} \frac{1}{p_{n}\left(\log p_{n}+x\right)} \\
& =\left(\frac{d^{d-1}}{d!(d \alpha+1)}-1\right) \sum_{n=1}^{k} \frac{1}{p_{n}\left(\log p_{n}+x\right)}+\sum_{n=1}^{+\infty} \frac{1}{p_{n}\left(\log p_{n}+x\right)} .
\end{aligned}
$$

According to (C1), and lemma 4.5, we have, for $d \geq 4$,

$$
\left(\frac{d^{d-1}}{d!(d \alpha+1)}-1\right)>0
$$

By using this last inequality and (4.6), we obtain

$$
\left(\frac{d^{d-1}}{d!(d \alpha+1)}-1\right) \sum_{n=1}^{k} \frac{1}{p_{n}\left(\log p_{n}+x\right)} \geq\left(\frac{d^{d-1}}{d!(d \alpha+1)}-1\right) \frac{d}{d+h(\alpha)} \sum_{n=1}^{+\infty} \frac{1}{p_{n}\left(\log p_{n}+x\right)}
$$

Therefore,

$$
\begin{aligned}
\sum_{a \in \mathcal{A}} \frac{1}{a(\log a+x)} & >\left(\left(\frac{d^{d-1}}{d!(d \alpha+1)}-1\right) \frac{d}{d+h(\alpha)}+1\right) \sum_{n=1}^{+\infty} \frac{1}{p_{n}\left(\log p_{n}+x\right)} \\
& =\frac{d^{d}+d!(d \alpha+1) h(\alpha)}{d!(d \alpha+1)(d+h(\alpha))} \sum_{n=1}^{+\infty} \frac{1}{p_{n}\left(\log p_{n}+x\right)}
\end{aligned}
$$

by applying lemma 4.3 , we get

$$
\begin{aligned}
\frac{d^{d}+d!(d \alpha+1) h(\alpha)}{d!(d \alpha+1)(d+h(\alpha))} & >\frac{d!e^{d-1}+d!\sqrt{d}(d \alpha+1) h(\alpha)}{\sqrt{d} d!(d \alpha+1)(d+h(\alpha))} \\
& >\frac{e^{d-1}+\sqrt{d}(d \alpha+1) h(\alpha)}{\sqrt{d}(d \alpha+1)(d+h(\alpha))}
\end{aligned}
$$

So,

$$
\begin{equation*}
\sum_{a \in \mathcal{A}} \frac{1}{a(\log a+x)}>\left(\frac{e^{d-1}+\sqrt{d}(d \alpha+1) h(\alpha)}{\sqrt{d}(d \alpha+1)(d+h(\alpha))}\right) \sum_{n=1}^{+\infty} \frac{1}{p_{n}\left(\log p_{n}+x\right)} \tag{4.7}
\end{equation*}
$$

It follows from the expression of $d$, that

$$
d>\beta-1+\log \lambda^{2 t}+\frac{3}{2} \log \log \left(\lambda^{2 t}+2\right)
$$

then

$$
e^{d-1}>e^{\beta-2} \lambda^{2 t}\left(\log \left(\lambda^{2 t}+2\right)\right)^{3 / 2}
$$

And since

$$
\begin{aligned}
\log \lambda^{2 t} & <\log \left(\lambda^{2 t}+2\right) \\
\log \log \left(\lambda^{2 t}+2\right) & \leq \log \left(\lambda^{2 t}+2\right)-1
\end{aligned}
$$

and $\beta \geq 1.950$, we have

$$
d<(\beta+1) \log \left(\lambda^{2 t}+2\right)
$$

then

$$
d \alpha+1<((\beta+1) \alpha+1) \log \left(\lambda^{2 t}+2\right)
$$

and

$$
d<(\beta+1) \log \left(\lambda^{2 t}+2\right)
$$

So, the formula (4.7) becomes

$$
\begin{equation*}
\sum_{a \in \mathcal{A}} \frac{1}{a(\log a+x)}>j_{\alpha, \beta}(\lambda) \sum_{n=1}^{+\infty} \frac{1}{p_{n}\left(\log p_{n}+x\right)}, \tag{4.8}
\end{equation*}
$$

where

$$
j_{\alpha, \beta}(\lambda)=\frac{e^{\beta-2} \lambda^{2 t}+\sqrt{\beta+1}((\beta+1) \alpha+1) h(\alpha)}{\sqrt{\beta+1}((\beta+1) \alpha+1)\left((\beta+1) \log \left(\lambda^{2 t}+2\right)+h(\alpha)\right)} .
$$

Now, we must choose $\alpha$ and $\beta$ so that, for any $\lambda \geq 1$ and any $t>0, j_{\alpha, \beta}(\lambda) \geq 1$ and $\frac{e^{\beta}+\log 1.008}{\alpha}$ be the smallest possible. That is, for any $\lambda \geq 1$ and for any $t>0$

$$
\frac{e^{\beta-2}}{\sqrt{\beta+1}(\beta+1)((\beta+1) \alpha+1)} \geq \frac{\log \left(\lambda^{2 t}+2\right)}{\lambda^{2 t}}
$$

Since, for any $t>0$ the function

$$
\lambda \mapsto \frac{\log \left(\lambda^{2 t}+2\right)}{\lambda^{2 t}}
$$

decreases on $[1,+\infty)$, then

$$
\frac{e^{\beta-2}}{\sqrt{\beta+1}(\beta+1)((\beta+1) \alpha+1)} \geq \log 3
$$

Hence,

$$
\frac{e^{\beta-2}-(\beta+1)^{\frac{3}{2}} \log 3}{(\beta+1)^{\frac{5}{2}} \log 3} \geq \alpha
$$

and

$$
\frac{e^{\beta}+\log 1.008}{\alpha} \geq \frac{\left(e^{\beta}+\log 1.008\right)(\beta+1)^{\frac{5}{2}} \log 3}{e^{\beta-2}-(\beta+1)^{\frac{3}{2}} \log 3} .
$$

Finally, we will choose $\beta$ so that the quantity

$$
\frac{\left(e^{\beta}+\log 1.008\right)(\beta+1)^{\frac{5}{2}} \log 3}{e^{\beta-2}-(\beta+1)^{\frac{3}{2}} \log 3}
$$

is also the smallest possible. A computer calculation gives $\beta \simeq 6.264, \alpha \simeq 0.317$ and $c \simeq 1655.234$. By replacing $\alpha$ and $\beta$ in the formula of $j_{\alpha, \beta}$ we get

$$
j_{\alpha, \beta}(\lambda)=\frac{71.094 \lambda^{2 t}+19.381}{64.659 \ln \left(\lambda^{2 t}+2\right)+19.381},
$$

and (4.8) becomes

$$
\sum_{a \in \mathcal{A}} \frac{1}{a(\log a+x)}>\frac{71.094 \lambda^{2 t}+19.381}{64.659 \ln \left(\lambda^{2 t}+2\right)+19.381} \sum_{n=1}^{+\infty} \frac{1}{p_{n}\left(\log p_{n}+x\right)} .
$$

By lemma 4.3 , for every $\lambda \geq 1$ and every $t>0$, we have

$$
\frac{71.094 \lambda^{2 t}+19.381}{64.659 \ln \left(\lambda^{2 t}+2\right)+19.381}>\lambda^{t}
$$

which leads to the inequality of theorem. Thus, for $\lambda \geq 1, t>0$ and for any

$$
x \geq 1656.3 \lambda^{2 t}\left(\log \left(\lambda^{2 t}+2\right)\right)^{3 / 2}
$$

since

$$
d=\left\lfloor 6.264+\log \lambda^{2 t}+\frac{3}{2} \log \log \left(\lambda^{2 t}+2\right)\right\rfloor
$$

and $k$ is the greatest integer such that $p_{k} \leq e^{0.317 x}$, the sequence $\mathcal{A}$ is well defined. This ends the proof. This ends the proof.

## Conclusion

The content of this thesis is focused on the Erdos's conjecture, so on the inequality

$$
\sum_{a \in \mathcal{A}} \frac{1}{a \log a} \leq \sum_{a \in \mathcal{P}} \frac{1}{p \log p}
$$

where $\mathcal{A}$ is a primitive sequence diferent to $\{1\}$ and $\mathcal{P}$ reprente the set of prime numbers. We took two paths in our work:

1) In chapter 2 , by using a new estimations of $n$-th prime number, we simplified the proof of Zhang's theorem in which he proved the conjecture of Erdős for the primitive sequences of degree less or equal four. The first perspective is to extend Zhang's theorem to sequences of higher degree.
2) In chapitre 3 and 4, we study the inequality

$$
\sum_{p \in \mathcal{A}} \frac{1}{a(\log a+x)} \leq \sum_{p \in \mathcal{P}} \frac{1}{p(\log p+x)}
$$

where $x$ is a positive real number, we proved that for $x \geq 80.4$ this last inequality is false, so the second perspective is to improve the value of $x$.

## Bibliography

[1] T.M. Apostol. Introduction to Analytic Number Theory, Springer-Verlag Berlin, 1976.
[2] D.A. Clark. An upper bound of $\sum 1 /\left(a_{i} \log a_{i}\right)$ for primitive sequences, Proc. Amer. Math. Soc, 123 (1995), p. 363-365.
[3] J-M. De Koninck \& F. Luca. Analytic number theory: Exploring the anatomy of integers, Graduate Studies in Mathematics, American Mathematical Society, 134 (2012).
[4] P. Dusart. Autour de la fonction qui compte le nombre de nombres premiers, thèse de doctorat, université de Limoges, 17 (1998).
[5] P. Erdős. Note on sequences of integers no one of which is divisible by any other, J. Lond. Math. Soc, 10 (1935), p. 126-128
[6] P. Erdős \& Z. Zhang. Upper bound of $\sum 1 /\left(a_{i} \log a_{i}\right)$ for primitive sequences, Math. Soc, 117 (1993), p. 891-895.
[7] B. Farhi. Results and conjectures related to a conjecture of Erdős concerning primitive sequences, arXiv: 1709.08708 v 2 [math.NT] 25 Sep 2017.
[8] H. Halberstan, K. F. Roth. Sequences, Springer-Velag New York 1983.
[9] I. Laib, A. Derbal \& R. Mechik. Somme translatée sur des suites primitives et la conjecture d'Erdős, C.R. Acad. Sci. Paris, Ser.I, 357 (2019), p. 413-417.
[10] I. Laib, A. Derbal, R. Mechik \& N. Rezzoug. Note on theorem of Zehnxiag Zhang, Mathematica Montisnigri, Vol L (2021), p. 44-50.
[11] J.-P. Massias \& G. Robin. Bornes effectives pour certaines fonctions concernant les nombres premiers, J. Theori. Nombres Bordeaux, 8 (1996), p. 215-242.
[12] N. Rezzoug, I Laib \& K. Guenda. On a translated sum over primitive sequences relatrd to a conjecture of Erdős, J. NNTDM, 26 (2020), p. 68-73.
[13] H. Robbins. A remark on Stirling's formula. Amer. Math. Mon, 62 (1955), p. 26-29.
[14] G. Robin. Estimation de la fonction de Tchebychef $\theta$ sur le k-ième nombre premier et grandes valeurs de la fonction $\omega(n)$ nombre de diviseurs premiers de $n$, Acta Arith, 52 (1983), p. 367-389.
[15] J.B. Rosser \& L. Schoenfeld. Approximates Formulas for Some Functions of Prime Numbers, Illinois Journal Math, 6 (1962), p. 64-94.
[16] Z. Zhang. On a conjecture of Erdős on the $\operatorname{sum} \sum_{p \leq n} 1 /(p \log p)$, J. Number Theory, 39 (1991), p. 14-17.
[17] Z. Zhang. On a problem of Erdős concerning primitive sequences, Math. Comp, 60 (1993), p. 827-834.

