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Abstract

In this Thesis, we shall establish conditions for the existence, uniqueness of so-
lutions and Ulam stability for various classes of initial and boundary value problems for
nonlinear implicit fractional differential equations with and without impulses involving
the Caputo’s exponential type fractional derivative. In our study, we shall consider the
Both cases of abstract and scalar. To prove the existence and uniqueness of solutions, we
use some standard fixed point theorems. Several enlightening examples are also presented.
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Résumé

Dans cette these, nous allons étudier 1'existence, 'unicité des solutions et la sta-
bilité d’Ulam de diverses classes de problemes a valeur initiale et de problemes aux limites
pour les équations différentielles implicites non linéaires avec et sans impulsions en util-
isant la dérivée fractionnaire de type exponentielle au sens de Caputo. Dans notre étude,
Les deux cas abstrait et scalaire seront considérés. Pour prouver I'existence et 1'unicité
des solutions, nous utilisons certains théoremes classiques du point fixe. Afin d’illustrer
nos résultats plusieurs exemples seront présentés.

Mots clés et phrases :

Probleme & valeur initiale, probleme aux limites, la dérivée fractionnaire de type expe-
nentielle au sens de Caputo, équations différentielles implicites, 'intégrale fractionnaire
de type exponentielle, impulsions non-instantanées, impulsions instantanées, existence,
unicité, point fixe, stabilité d’Ulam, les conditions non-locales, espace de Banach, mesure
de non-compacité.
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Introduction

Fractional calculus is a generalization of ordinary differentiation and integration for
arbitrary non-integer order. Its history goes back to time when Marquis de L’Hopital
(1661-1704) asked a question to Gottfried Wilhelm Leibniz (1646-1716), what happen to
the ordinary derivative ‘g;—f ifn= % In 30 September 1695, Leibniz replied that ”...This
is an apparent paradox from which, one day, useful consequences will be drawn. ...” Next,
many researchers have further contributed to development of this area and we can mention
the studies of L. Euler (1730), J.L. Lagrange (1772), P.S. Laplace (1812), J.B.J. Fourier
(1822), N.H. Abel (1823), J. Liouville (1832), B. Riemann (1847), H.L. Greer (1859), H.
Holmgren (1865), A.K. Grunwald (1867), A.V. Letnikov (1868), N.Ya. Sonin (1869), H.
Laurent (1884), P.A. Nekrassov (1888), A. Krug (1890), J. Hadamard (1892), O. Heavi-
side (1892), S. Pincherle (1902), G.H. Hardy and J.E. Littlewood (1917), H. Weyl (1919),
P. Lévy (1923), A. Marchaud (1927), H.T. Davis (1924), A. Zygmund (1935), E.R. Love
(1938), A. Erdélyi (1939), H. Kober (1940), D.V. Widder (1941), M. Riesz (1949) and W.
Feller (1952).

The concept of fractional calculus represents a powerful tool in applied mathe-
matics to study a myriad of problems from different fields of science and engineering, with
many break-through results found in control theory of dynamical systems, chaotic dynam-
ics, mathematical physics, finance, biophysics, fractals, optics and signal processing, fluid
flow, viscoelasticity, polymer science, rheology, physics, chemistry, biology, astrophysics,
cosmology, thermodynamics, mechanics, electrochemistry, porous media, electromagnetic
and bioengineering. For more details about the theory of fractional calculus, fractional
differential equations and there applications, we refer to the reader the monographs of
Abbas et al. [7], Baleanu et al. [19, 20, 21], Deithelm [45], Feckan et al. [48], Hermann
[59], Hilfer [61], Kilbas et al. [65], Kiryakova [66], Miller and Ross [80], Petras [87], Pod-
lubny [89], Sahoo et al. [93], Samko et al. [96], Tarasov [99], Zhou et al. [107] and the
papers of Abbas et al. [4, 5], Agarwal et al. [11], Benchohra et al. [28, 29], Diethelm and
Freed [46], Gaul et al. [50], Glockle et al. [52], Metzler et al. [79], Mainardi [73], Oldham
et al. [85], Salim et al. [94], Zhou et al. [106] and the reference therein.

In the past seventy years, Ulam type stability problems have been taken up by
a large number of mathematicians and the study of this area has grown to be one of the
most important subjects in the mathematical analysis area, since it is quite useful in many
applications such as numerical analysis, optimization, biology and economics, where find-
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2 INTRODUCTION

ing the exact solution is quite difficult. The stability of functional equations was originally
raised by Ulam in 1940 in a talk given at Wisconsin University. The problem posed by
Ulam was the following: “Under what conditions does there exist an additive mapping
near an approximately additive mapping? ”(for more details see [101]). The first answer
to the question of Ulam was given by Hyers in 1941 in the case of Banach spaces (see [62]):
Let Ei, E5 be two real Banach spaces and ¢ > 0. Then for every mapping f : £y — E»
satisfying

Iz +y) = flz) = fy)l <e forallz,yc Ey

there exists a unique additive mapping ¢ : £y — FEs with the property

I f(z) —g(x)|| <e forall z € Ej.

Thereafter, this type of stability is called the Ulam-Hyers stability. In 1978, Ras-
sias [90] provided a remarkable generalization of the Ulam-Hyers stability of mappings
by considering variables. The stability properties of all kinds of equations have attracted
the attention of many mathematicians. For more details, one can see the monographs of
Cadariu [43], Hyers [63] and Jung [64]. For Ulam stability of ordinary differential equa-
tions (see, [91, 92]). However, Ulam stability of fractional differential equations have been
taken up by a large number of researchers, see for instance [5, 6, 31, 33, 68, 71, 94, 103]
and the references therein.

The theory of impulsive differential equations was initiated in the 1960s by Vi-
tali Davidovich Milman (1939) and Anatolii Dmitrievich Myshkis (1920-2009) [81]. This
theory is an important branch of differential equations due to their application in char-
acterizing many problems in biology, medicine, physique, engineering, etc. The reason
for this applicability arises from the fact that impulsive differential problems describe the
dynamics of processes in which sudden at certain moments change their state rapidly,
discontinuous jumps occur. In the literature their are two popular types of impulses:

e Instantaneous impulses whose the duration of changes is relatively short and
negligible. In the monographs of Benchohra et al. [30], Lakshmikantham et al. [69] and
Samoilenko et al. [97] the authors study many classes of impulsive differential equations.
This type know many contributions in fractional differential equations such as the mono-
graphs of Abbas et al. [8, 9], Ahmad et al. [13] and the papers of Benchohra et al.
25, 32, 37, 39], Ahmad et al. [15], Chang et al. [44], Henderson et al. [54, 58], Malti et
al. [75], Wang et al. [102], Zhang et al. [105] and the references therein.

e Non-instantaneous impulses whose the impulsive action starts at some points
and remain active on a finite time interval. In 2013, this class of impulses was initiated by
Hernéndez and O’Regan [60], followed by other works as in [49, 86, 88, 98]. Recently, frac-
tional differential equations with not-instantaneous impulses have also been discussed, see
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for instance the monograph of Agarwal et al. [12] and the papers of Abbas et al. [1, 2, 3],
Anguraj and Kanjanadevi [17], Benchohra et al. [36, 38], Gautam and Dabas [51], Kumar
et al. [67], Li and Xu.[70], Salim et al. [95] and the references therein.

As a motivation, this last kind of impulses is observed in pharmacotherapy. For
example, one consider the hemodynamical equilibrium of a person. In the case of a decom-
pensation (for example, high or low levels of glucose) one can prescribe some intravenous
drugs (insulin). Since the introduction of the drugs in the bloodstream and the consequent
absorption for the body are gradual and continuous processes, we can interpret the situa-
tion as an impulsive action which starts abruptly and stays active on a finite time interval.

In the last decades, the initial and boundary value problems for implicit differential
equations involving the fractional derivative have been analyzed by many authors like in
(24, 25, 26, 31, 32, 33, 34, 35, 68, 95] and the references therein.

The measure of noncompactness is one of the fundamental tools in the theory of
nonlinear analysis was initiated by the pioneering articles of Alvarez [16], Monch [82] and
the book of Bana’s and Goebel [22]. Recently, in [8, 23, 27, 34, 37| the authors applied the
measure of noncompactness to some classes of fractional differential equations in Banach
spaces.

The nonlocal conditions were initiated by Byszewski [42] when he proved the
existence and uniqueness of mild and classical solutions of nonlocal Cauchy problems.
As remarked by Byszewski [40, 41], the nonlocal condition can be more useful than
the standard initial condition to describe some physical phenomena. Also, the frac-
tional differential equations with nonlocal conditions have been discussed; see for instance
[10, 14, 47, 57, 72, 83, 84] and the references therein.

After the above brief description of the main topics of this book, we now outline
the contents of this book in more details.

Chapter 1 is devoted to the notations, definitions and some preliminary notions
which are useful belong this thesis. In section 1.1, we give some notations and introduce
the exponential fractional calculus. The definition of Kuratowski measure of noncom-
pactness and their properties are presented in section 1.2. Section 1.3 consists some fixed
point theorems which are used throughout this thesis.

Chapter 2 is devoted to the results obtained by Malti et al. [74]. In this chap-
ter, we shall be concerned with a class of boundary value problem for nonlinear implicit
fractional differential equations involving Caputo’s exponential type fractional derivative
given by:

eDiw(t) = f (t,y(t), ¢DJw(t)), for each, t € J:=10,b],b>0, 0 < p <1,
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c1w(0) 4 cow(b) = 0,

where ¢D¢ is the Caputo’s exponential type fractional derivative, f : J x Ex E — FE'is a
given function and c;, ¢y, are real constants with ¢; 4+ ¢ # 0, and 0 € E, where (E, | -||)
is a real Banach space. Section 2.2 deals with the existence of solutions. We present
two results, the first one is based on Darbo’s fixed point theorem and the second one is
based on Monch'’s fixed point theorem. The Ulam-Hyers stability and Ulam-Hyers-Rasias
stability are introduced and studied in section 2.3. In section 2.4, we give an example to
show the applicability of results obtained in previous sections.

Chapter 3 is devoted to the results obtained by Malti et al. [75]. In this chapter,
we shall be concerned with a class of impulsive boundary value problem for nonlinear
implicit fractional differential equations involving Caputo’s exponential type fractional
derivative given by:

Diw(t)=f(t,w(t), :Djw(t)), foreachte ,CJ, k=0,1,...,m,

Aw|i—y, = I, (w (t,;)) , k=1,...,m,

aw(a) + cow(b) = c3,

where a =1y < t; < ... <ty <ty = b, (DS, denote the Caputo’s exponential type frac-
tional derivative of order o, 0 < a < 1, f : JXIRXIR — IR is a given function and ¢y, ¢, c3
are real constants with ¢; + co # 0, Ji, = (tg, ter1], K =1,2,...,m, Jo = [a,t1], J = [a, b],
Aw|iey, =@ () —w@ (&), = () = lim @(ty + h), and @ (t;) = hli}%lf @ (tx + h) repre-
sent the right and left limits of w(t) at ¢ = t;, respectively. In section 3.2, we investigates
two existence results, the first one is based on Banach’s contraction principle and the
second one is based on Schaefer’s fixed point theorem. As application, two illustrative
examples are given in section 3.3.

Chapter 4 is devoted to the results obtained by Malti et al. [76]. In this chapter,
we shall be concerned with a class of impulsive boundary value problem for nonlinear
implicit fractional differential equations in Banach space involving Caputo’s exponential
type fractional derivative given by:

Diy(t) = f(t,yt), cDiy(t)), foreachte J, CJ, k=0,1,...,m,

Ay’t:tkzlk (y (t];)), kzl,...,m,
ayla) + coy(b) = o,

where a = 1) <1y < ... <ty <ty =0, cD; denote the Caputo’s exponential type frac-
tional derivatives of order o, 0 < a« < 1, (E, ||-||) is a real Banach space, f : JX EXE — E
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is a given function, ¢, co are real constants with ¢; + ¢y # 0, and o € E| Ji = (tg, tht1],
k=1,2,....m, Jo=[a,ta], J = [a,b], Ayliey, =y (&) =y (&), y (&) = ilzii%y(tk + h)
and y (t;) = hlirgl_ y(tx + h) represent the right and left limits of y(¢) at t = ¢;. In section
4.2, we investigate the existence of solutions, we present two results, the first one is based

on Darbo’s fixed point theorem and the second one is based on Monch’s fixed point the-
orem. As application, two illustrative examples are given in section 4.3.

Chapter 5 is devoted to the results obtained by Malti et al. [77]. In this chapter,
we shall be concerned with a class of initial value problem for nonlinear implicit fractional
differential equations with non-instantaneous impulses involving Caputo’s exponential
type fractional derivative. The arguments of results are based on Banach’s contraction
principle and Schaefer’s fixed point theorem. Several examples are includes to show the
applicability of our results. Section 5.2 is concerned with the existence, uniqueness of
solutions and Ulam-Hyers-Rassias stability for the following problem:

2D?ky(t) = f(t7y(t)7 2D?ky(t))a for each ¢ € Jk g J) k= 07 17 sy MM

y(t) = gr(t,y(t)), foreachte J, CJ, k=1,2,...,m,

where D%, denote the Caputo’s exponential type fractional derivatives of order o € (0, 1],
deIR, J=ab], a=1ty=s0 <t <8 < e <t < S < b :b,i,’C:: (tk, sk,
Je = (skytea], E=1,2,...om, Joy:=[a,t1] f: T XxIRXxIR =R and g, : J' x IR = IR

are a given functions such that J = kﬁo [$k, trt1], and T = kﬁl [tk, Sk] -

In section 5.3, we indicate and extend some generalizations to the nonlocal conditions
for the results obtained in the last section with the following problem:

Doyt)=f(t,x(t), cDgy(t)), foreachte Jy CJ, k=0,1,...,m,

y(t) = gr(t,y(t)), foreachte J, CJ, k=1,2,...,m,

where o, ¢D%, f, gk, 0, J, Jo, Ji, Ji,, k=1,...,m are defined as in section 5.2 and
h: PC(J,IR) — IR is a continuous functions.

Chapter 6 is devoted to the results obtained by Malti et al. [78]. In this chap-
ter, we shall be concerned with a class of initial value problem for nonlinear implicit
fractional differential equations with non-instantaneous impulses involving Caputo’s ex-
ponential type fractional derivative in Banach Spaces. The arguments of results are based
on Darbo’s and Monch’s fixed point theorem combined with the technique of measure of
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noncompactness. Several examples are includes to show the applicability of our results.
Section 6.2 is concerned with the existence, uniqueness of solutions and Ulam-Hyers-
Rassias stability for the following problem:

2D?ky(t) = f(t7y(t)7 2D?ky(t))a for each ¢ € Jk g J7 k= 07 17 sy MM

y(t) = gr(t,y(t)), foreachte J, CJ k=1,2,...,m,

where D, denote the Caputo’s exponential type fractional derivatives of order o € (0, 1],
J =la,b], a =ty = s < t1 < 5 < .. <ty < Sy < bty =0, (E]]) is a
real Banach space, § € E, J;, := (t, sk, Jx = (Sk,tes1], & = 1,2,...,m, Jy = [a, 1]

f:IXxExE — Eand g, : J xE — E are a given functions such that J = lﬁo [Sky thr1]

71—
and J k!1 [k, k| -

In section 6.3, we indicate and extend some generalizations to the nonlocal conditions
for the results obtained in the last section with the following problem:

Dex(t)=f(tx(t), Dy x(t), foreachte Jy CJ, k=0,1,...,m,

y(t) = gr(t,y(t)), foreachte JJ, CJ, k=1,2,...,m,

y(a) +h(y) =9,

where o, (D%, f, gr, 0, J, Jo, Ji, Jy,, k= 1,...,m are defined as in section 6.2 and
h: PC(J,FE)— E is a continuous functions.

Finally we close our thesis with a conclusion and some perspectives.



Chapter 1

Preliminaries

In this chapter, we introduce notations, definitions, lemmas, properties and fixed
point theorems that will be used in the remainder of this thesis.

1.1 Notations and Definitions

Let J := [a, b] such that a < b and (E, ||-||) be a real Banach space. By C := C(J, E),
we denote the Banach space of all continuous functions y from J into £ with the supremum
norm

[Ylloo = sup [[y(®)]]-
ted

A function y : J — F is said to be Bochner integrable if and only if ||y(t)|| is Lebesgue
integrable. For more details of the Bochner integral, see [104]. By L'(J, E), we denote
the Banach space of functions y : J — F which are Bochner integrable with the norm

b
Iyl = / ly(s)llds.

As usual, AC(J) denote the space of absolutely continuous function from J into E. We
denote by AC?(J) the space defined by

ACI(J) = {y L J = E: D" 'y(t) € AC(J), °D = %} ,

where n = [a] + 1 and [«] is the integer part of . In particular, if 0 < o < 1, then n =1
and ACL(J) := AC.(J).

In ([65] p.99, Section 2.5) Kilbas et al. present the definitions and some properties of
the fractional integrals and fractional derivatives of a function f with respect to another
function ¢. Let J := [a,b], (—oo0 < a < b < 00) be a finite interval of the real line IR and
a > 0. Also, let 1(t) be an increasing and positive monotone function on (a, b), having a
continuous derivative ¢'(t) on (a,b).
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The fractional integrals of a function f with respect to another function + on [a, b] are
defined by

(12 1)(t) = ﬁ / ((t) — (5))* " (5) f(s)ds for ¢ > a. (1.1)
If a =0 and b = oo, then
1 ' -1,/
IO = Fo / (5(t) — $(5))° ¢ (5) f(s)ds for > 0. (1.2)

It is well know that if ¢ (¢) = ¢ then all results in (1.1)-(1.2) are reduced to the
Riemann—Liouville fractional integrals, and if ¢ (t) = In(t) then the above formulas (1.1)-
(1.2) are reduced to the Hadamard fractional integrals. In the case when 9 (t) = e’ we
have new kind of fractional calculus which is based on exponential fractional integrals
defined as following.

Definition 1.1 (/84, 100]) The exponential type fractional integral of order o > 0 of a
function h € L*(J, E) is defined by

(“I3h)(t) == ﬁ/@ (e' — es)a_l h(s)e®ds, for each t € J,

where I'(.) is the (Euler’s) Gamma function defined by
L) = / tte7tdt, € >0.
0

Lemma 1.2 (/84, 100] Semigroup property.) Let « >0 and > 0. Then, for all t € J,

I (CIZh) () = IJCITR)(t) = “IgR(1).

Definition 1.3 (/84, 100]) Let o« > 0 and h € AC?(J). The exponential derivatives of
Riemann-Liouville type of order o is defined by

1

(°DSh)(t) == Tn—a) <6_t%)n /:(et - es)”_o‘_lh(s)ﬁ, for each t € J,

where n = o] + 1 and [a] is the integer part of a. In particular, if « = 0, then

(“D{yh)(t) := h(t).
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Definition 1.4 (/84, 100]) Let o > 0 and h € AC?(J). The Caputo’s exponential type
fractional derivatives of order « is defined by

(6DSR)(t) = 1 /t (e" — es)nfafl e‘si ' h(s)ﬁ for each t € J,
cre T T(n—a) ), ds es’ ’
where n = o] + 1 and [a] is the integer part of . In particular, if & = 0, then

(ED{yh) (t) := h(t),

Properties 1.5 (/84, 100]) If o, 3 > 0, then

I (5 + 1) (et . ea)a+ﬂ
['(a+F+1)

rp+1)
rg—-—a+1)

1. °1% (et — )’ = , forae tel

2. ¢D (el — )’ = (e" = ea)ﬁfa, for a.e. t € J.

Lemma 1.6 (/84, 100]) Let « > 0 and n = [a] + 1. Then

n—1 eDkf

DLft) = Dy | f (" —eM)*| (1),

k=0

where ¢D = et —

dt’
Theorem 1.7 ([84, 100]) If 0 < 8 < o and 1 < p < oo, then for h € L’ (J) we have
“DICISh)(E) = “IePh(t) and EDI(ISh)(E) = “Ioh(t).
In addition,
“DR(ISh)() = h(t) and DE(ITR)(E) = h(t)

Theorem 1.8 [84, 100] Let « > 0 and n = [a] + 1 and h € AC?(J). Then we have the
following formulas
a)a k

1. I3 (Dgh)(t) = 235553———

ey e ),

2. CI2(EDIR)() = h(t) ~ 3 %SD’%(@).

k=0
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Lemma 1.9 Let o > 0, and h € AC?(J). Then the differential equation
cD2h(t) =0
has a solutions
h(t) = no +m(e® —e) +ma(e® —e*)? + ...+ nu_1(ef —e)" 1,
n€R,i=0,1,2,...,n—1, n=[a]+ 1.
Lemma 1.10 Let a > 0, and h € AC?(J). Then
12 (SD3R) (£) = h{t) + 1 + (" — €) + (e — €2 .. gy (e” — ety

for somen; €IR,i=0,1,2,...,n—1 and n = [a] + 1.

1.2 Measure of Noncompactness.

Now, we define the Kuratowski measure of noncompactness and give its basic properties.

Definition 1.11 (/22]) Let X be a Banach space and Qx be the bounded subsets of X.
The Kuratowski measure of noncompactness is the map p: Qx — [0,00) defined by

u(B) =inf{e >0: B C 'QBi and diam(B;) < €}; here B € Qx,

where
diam(B;) = sup{||z —y|| : z,y € B;}.

Properties 1.12 (/22]) Let By and Bz be two bounded sets of the Banach space X. The
Kuratowski measure of noncompactness satisfies the following properties:

(i) u(B)) =0 <= B is compact ( By is relatively compact).
(ii) p(B1) = p(Bi).

(iii) p is equal to zero on every one element-set.

(iv) Bi C By = p(Bi) < p(Ba).

(v) u(B1U By) = max{u(B1), i(B2)} -

(vi) p(Bi+ By) < pu(B1) + pu(Bz).

(vii) pu(ABy) = |Mwu(B2), where X € IR.

(viii) p(conv Bs) = pu(Bsy).
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1.3 Some Fixed Point Theorems

Theorem 1.13 (/55]) (Banach’s fized point theorem). Let C' be a non-empty closed subset
of a Banach space X, then any contraction mapping F' of C' into itself has a unique fixed
point.

Theorem 1.14 (/55]) (Schaefer’s fizved point theorem) Let X be a Banach space, and
F: X — X completely continuous operator. If the set

e={ye X :y=AFy, for some X € (0,1)}
1s bounded, then F has fized point.

Theorem 1.15 (/55]/) (Nonlinear Alternative of Leray—Schauder type). Let X be a Ba-
nach space with C C X closed and convex. Assume U is a relatively open subset of C
with 0 € U and N : U — C' is a compact map. Then either,

(i) N has a fized point in U; or
(ii) there is a point u € OU and v € (0,1) with u = v N (u).

Theorem 1.16 (/53]) (Darbo’s fized point theorem). Let X be a Banach space and B
be a bounded, closed, convex and nonempty subset of X. Suppose a continuous mapping
F: B — B is such that for all closed subsets D of B,

u(F (D)) < ku(D), (1.3)
where 0 < k < 1. Then F has a fized point in B.

Remark 1.17 Mappings satisfying the Darbo-condition (1.3) have subsequently been called
k-set contractions.

Theorem 1.18 (/82]) (Ménch’s fized point theorem). Let D be a bounded, closed and
conver subset of a Banach space X such that 0 € D, and let F' be a continuous mapping
of D into itself. If the implication

V =convF(V) or V.= F(V)U{0} = u(V) =0, (1.4)

holds for every subset V' of D, then F' has a fixed point.



12

CHAPTER 1. PRELIMINARIES



Chapter 2

Nonlinear Boundary Implicit
Differential Equations with Caputo’s
Exponential Type Fractional Order
in Banach Spaces

2.1 Introduction

In [26] by means of the Banach contraction principle, Benchohra and Bouriah studied
the existence and Ulam stability of nonlinear fractional boundary value problem involving
Caputos derivative

°Dgy(t) = x(t, y(t), “Dvy(t)), for each, t € J:=[0,7],T >0, 0 < <1,

d1y(0) + doy(T) = ds,

and
‘Dgvy(t) = x(t,y(t), “Dgiy(t)), for each, t € J, 0 < <1,

y(0) +9(y) = y",

where x : JXIRXIR — IR, ¥ : C(J,IR) — IR are a given functions and y*, d;, ds, d3 € IR.
In [24] by means of technique of measure of noncompactness and the fixed point theorems
of Darbo and Monch, the authors studied the existence of nonlinear fractional boundary
value problem involving Caputo’s derivative

‘D, x(t) = x(t,z(t), “Df,x(t)), for each, t € J:=[0,0,b>0, 0 <p <1,

d1z(0) + day(b) = ds,

and
‘Db a(t) = x(t,z(t), “Df,x(t)), for each, t € J,b>0, 0<p<1,

z(0) + J(x) = =",

13
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where x : J X EX E — E, ¥ : C(J,E) — E are a given functions and dy,ds € IR,
ds,z* € E, and (E,| - ||) is a real Banach space.

This chapter is devoted to the results obtained by Malti et al. [74], we establish
the existence of solutions for the following boundary value problem (BVP) of nonlinear
implicit fractional differential equations (NIFDE) with Caputo’s exponential type frac-
tional derivative:

cD§w(t) = f(t,w(t), ¢Dw(t)), for each, t € J:=[0,b],b>0, 0 < o<1, (2.1)
cw(0) + caw(b) = 9, (2.2)

where ¢D¢ is the Caputo’s exponential type fractional derivative, f : J x Ex E — FE is a
given function and c;, ¢y, are real constants with ¢; + ¢ # 0, and 0 € E, where (E, | - ||)
is a real Banach space.

2.2 Existence Results

Let us start by defining what we mean by a solution of the problem (2.1)—(2.2).

Definition 2.1 A function w € AC.(J, E) is said to be a solution of the problem (2.1)-
(2.2) is w satisfied equation (2.1) on J and conditions (2.2).

For the existence of solutions or the problem (2.1) — (2.2), we need the following auxiliary
lemmas:

Lemma 2.2 Let 0 < p < 1 and £ : J — E be a continuous function. Then the linear
fractional boundary value problem

cDiw(t) = &(t), for each, t€ J, 0< o<1, (2.3)
c1w(0) + cow(b) = 9, (2.4)
where ¢y, cg, are real constants with ¢y +co # 0, and 0 € E has a unique solution given by
I )
w(t) = —/ el —e5)eletE(s)ds
0 = fr | = ee
I [ @ /b(eb —e®)etef¢(s)ds — 6| .
(c1+e2) [T(0) Jo

Proof. By integrating the formula (2.3), we get

wlt) = wo + L) /0 (¢! — %) Tere (s)ds. (2.5)
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By (2.5), we get c1w(0) = ¢ywp, and
Co b
cow(b) = cowp + =—— / (e” — e*)etes¢(s)ds.
0

(o)
Then by condition (2.4), we deduce

T (c1 ‘1F C2) {FC(QQ) /Ob(@b —e)eE(s)ds - 5} '

Replacing in (2.5), we get
1

w(t) = m/o (¢! —e®)etete(s)ds —

(c1+ c2) {FEQQ

) /Ob(eb —e®)eletE(s)ds — 5] .

Lemma 2.3 Let a function f(t,u,v): J x Ex E — E be continuous. Then the problem
(2.1)-(2.2) is equivalent to the problem:

w(t) =W+ “I§O(t) (2.6)
where ¥ € C(J, E) satisfies the functional equation:
1 C2 /b b 1 }
V=—"-|0— == e’ —e*)?e*d(s)ds
(c1+c2) [ I'(o) Jo ( ) (5)

and
I(t) = f(t,\ll + 61519(75),19(75)).

Proof. Let w be a solution of (2.6). Then w(0) = ¥ and

= —1 b b_ e\ oS (s)ds
w(b)—\I/+F(Q)/O(€ ) J(s)ds.
So,

cw(0) + cow(d) = ¥+ {cﬂ/ + % /Ob(eb . 65)9—1680(5)@}

b
= (¢; + o e e’ — e te%9(s)ds
= et [ @i

- M[a— = /Ob(eb—es)glesﬁ(s)ds}

(c1+c2) I'(o)
—l—F(Q)/O(e —e®)ee*Y(s)ds
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Then
cw(0) + cow(b) = 6.

On the other hand, we have

Dew(t) = §D§<\I/+ e[§19(t)> 9(t)

= f(tul), Df(®).
Thus, w is a solution of the problem (2.1)-(2.2).
Lemma 2.4 ([56]) If V C C(J, E) is a bounded and equicontinuous set, then

(1) the function t — p(V(t)) is continuous on J, and

pe(V) = sup p(V ().

a<t<b

(11) p (/bw(s)ds twE V) < /b u(V(s))ds,
where 1 1s the Kuratowskir measure of noncompactness and
V(s) ={w(s):weV}, se
The following hypotheses will be used in the sequel:
(K1) The function f:J x E x E — F is continuous.
(K3) There exist constants ¢; > 0 and 0 < ¢ < 1 such that

Il f(t,u,v) — f(t,u,0)]] < l|lu—a| + lllv—"1|, forany u,v,u,v€ E, teJ

Remark 2.5 ([18]) Conditions (Ks) is equivalent to the inequality

M(f(t> By, 32)) < lip(Br) + Lop(Bs),
for any bounded sets By, By C E and for each t € J.
Now, we are in a position to state and prove our existence result for the problem (2.1)-

(2.2) based on Darbo’s fixed point theorem.
Set

P S,
- , 0= 1+ and [ =su t,0,0)]|.
e C(o+1) 1 + cal f = sup|[f(0,0)l
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Theorem 2.6 Assume (K1) and (Ks) holds. If
60 < 1, (2.7)

then BVP (2.1)-(2.2) has at least one solution on J.

Proof. Transform the problem (2.1)-(2.2) into a fixed point problem. Define the operator
A:C(J,E)— C(J,E) by

o 1
Aw)(t) = + /et—esglesﬁsds
@0 = o [ @i
(2.8)
S R /b(eb — M)t (s)ds
(14 2)l'(0) Jo ’
where ¥ € C(J, E) such that
O(t) = f(t,w(t), I(t)).
Claim 1: A is continuous.
Let {u,} be a sequence such that u, — u in C(J, E'). Then, for each t € J :
1 n
1A (un)(t) = Aw)(B)]] < F—/ (e =€) e%[[0n(s) — V(s)llds
() Jo
(2.9)

¢ /b b -1
o e’ —e®)e el ||V, (s) — d(s)lds,
e+ ea|T(0) Jo ( ) |95 (s) — I(s)]]

where 9,9 € C(J, E) such that

and

By condition (K3), we have

[0n(t) = D@D = [1f(t un(t), In(t)) — f (£, u(t), ()]

< Ofjun(t) — w(t)]] + L]|9n(t) — D(2)].
Then
[0() = D@D < Pllun(t) = u(@)l].
Since u,, — u, then we get 9,,(t) — ¥(t) as n — oo for each ¢t € J, and let n > 0 be such
that, for each t € J, we have |9, (t)|] <n and ||9(¢)|| < n, then, we have
(" — e e |9n(s) = I(s)l < (e — e e [[9nls)] + [[9(s)]]

< (et —ef)e et
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For each ¢ € J, the function s — 2n(e’ — e*)¢~'e® is integrable on [0, #], then the Lebesgue
dominated convergence theorem and (2.9) imply that

1A (u,)(t) — A(u)(t)]] — 0 as n — oo,

and hence
A (un) — A(w)]|oo — 0 as n — co.

Consequently, A is continuous.
Let R be a constant such that

0] f -1
R> m+wﬂ+1—&®]b_@ﬂ : (2.10)

and define
Br={ue C(JE):|ullw~ < R}.
It is clear that Bp is a bounded, closed and convex subset of C'(J, E) .
Claim 2: A(Bg) C Bg. Let u € Br we show that Au € Br. We have, for each t € J

9] 1

Aul(t < +
M <

) / (e — e) e [9(s) | ds
(2.11)

|CQ| ’ eb — et gfles s s

T / (& — )21 [9(s)|ds.

’Cl +02|F

By condition (K5), for each ¢t € J, we have that
[ = [1f (¢ u(®),9@))]]
< ’|f<t’u(t)779(t)) - f(t7 07 O)H + Hf(t? 07 O)H

IN

Gllu@)] + L@+ (1 f(£,0,0)]
< URA G||0()] + ?
Then

LR+ f
1— 0,

f
1— 0,

@l <

= M.

— ¢R+
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Thus, (2.10) and (2.11) implies that

9 T\ (1)

@) < |Cl_+02|+(¢>.z%+1_£2)F@H)
7\ (e — 1)
%(M“l—&)m+@ww+n

6] ¢(6b—1)g{ s }
‘01—1-02|jL L(o+1) b .

i (1 —T£2> (Fe(bQ_+11)§ [1 i |01|?|C2|}

IA
=

Then
[Aullo < R.

Thus A(Bgr) C Bg.

Claim 3: A(Bg) is bounded and equicontinuous.
Let 71,5 € J, 1 < 7o, and let u € Bg. Then

A =A@ = 5o [l = e = = e eofsas
+ﬁ / :2@72 e )e et (s)ds
< i | e e =@ - e el s
e G eI
F@L:l) [(@ —1)2 — (™ — 1) + 2(e™ — en)?].

As 11 — Ty, the right-hand side of the above inequality tends to zero.
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Claim 4: The operator A : B — Bpg is a contraction.
Let V C Br and t € J, then we have

pAW)(0) = n({(n)®),y e V})

%{ /Ot(et —e*)e et u(V(s))ds, y € V}.

Then for each s € J, the Remark 2.5 implies that

p({0()yevy) = u({f(s.y(s).9(s).y € V})

IN

tn({u(s).y € V) + n({0(s),y € V}).
Thus,

b
1—

n(0@wevy) < 2on(eyery)

< ¢ /w({y(S),y € V}>'

Then

p(AN®) = =

VAN
O\J
—~ -
Q]
~
|
9]
w
N—
il
—
D
w
—_
=
—~
<
—
»
N~—
N~—
-
QL
\'CIJ
<
m
<
——

IN

qb,uc(V) ! t s Q*les s
I'(o) /o(e )

$e” — 1)

T+ 1) pe(V).

Therefore

$e” —1)°

HelAV) < T(o+1)

fre(V).

So, by (2.7), the operator A is a contraction. As a consequence of Theorem 1.16, we
deduce that A has a fixed point, which is solution to the problem (2.1) — (2.2). This
completes the proof.

Our next existence result is based on Mdnch’s fixed point theorem.

Theorem 2.7 Assume (K1), (K3) and (2.7) holds. Then the BVP (2.1)-(2.2) has at
least one solution on J.
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Proof. Consider the operator A defined in (2.8). We shall show that A satisfies the
assumption of Monch’s fixed point theorem. We know that A : B — Bp is bounded and
continuous, we need to prove that there the implication

V=commA(V) or V=AWV)U{0}= u(V)=0

holds for every equicontinuous subset V of Bg. Now let V' be a subset of Br such that
V' C eonv(A(V) U {0}). V is bounded and equicontinuous and therefore the function
t — v(t) = u(V(t)) is continuous on J. By Lemma 2.4, Remark 2.5 and the properties of
the measure p, we have for each t € J

v(t) < pAV)(6) U{0})

< p(A(V)(®))

< p{(Ay)(t),y €V}

< o [ e enliuts), v e Vs
< % /0 (e — ) et u(s)ds

< 2D,

< 00 [vll,-

Therefore,

vl < 60O |vll-
From (2.7), we get v(t) = 0 for each ¢ € J, and then V(¢) is relatively compact in E.
In view of the Ascoli-Arzela theorem, V is relatively compact in Bgr. Applying now
Theorem 1.18 we conclude that A has a fixed point y € Bpg, which is solution to the
problem (2.1) — (2.2). This completes the proof.

2.3 Ulam Stability

In this section, we are concerned with Ulam-Hyers (U-H) stability and Ulam-Hyers-Rasias
(U-H-R) stability. So, we adopt the definitions in Rus [91] to our problem (2.1)-(2.2).

Definition 2.8 The problem (2.1)-(2.2) is U-H stable if there exists a real number cy > 0
such that for each € > 0 and for each solution w € AC,(J, E) of the inequality

leDie(t) — f(t,@(t), cDfw ()l <€ teJ, (2.12)
there ezists a solution w € AC,(J, E) of equation (2.1) with

|lw(t) —w@)|le < cre, t€J
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Definition 2.9 Equation (2.1) is U-H-R stable with respect to ¢ € C(J,IRy) if there
exists a real number cy > 0 such that for each € > 0 and for each solution w € AC.(J, E)
of the inequality

leDgz(t) — f(t @ (t), cDgw ()]l < ep(t), teJ, (2.13)
there ezists a solution w € AC,(J, E) of problem (2.1)-(2.2) with
leo(t) —w®)lle < crep(t), t € J.

Remark 2.10 A function w € AC.(J, E) is a solution of the inequality (2.12) if and only
if there exists a function g € C(J, E) (which depend on w) such that

(i) lg@)l <e VteJ.
(ii) ¢Dgwo(t) = f(t,@(t), cDgw(t)) +g(t), t € J.

Theorem 2.11 Assume that the assumptions (K1), (K2) and (2.7) hold, then the prob-
lem (2.1)-(2.2) is U-H stable.

Proof. Let ¢ > 0 and @ be a solution of the inequality:
[eDgw(t) — F(t, (1), SDE=)] < e, te . (2.14)
Let us denote by w the unique solution for the following problem
°Diw(t) = f(t,w(t), ¢Dgw(t)), foreach t € J, 0 < o <1,
w(0) =w(0), w(b) =w(b).
By using Lemma 2.3, we have

w(t) = U, + “I80,(1)

1 t
= U, + —/ el —e%)e ey, (s)ds,
Do) Jy 7 W
where 9, € C(J, E) such that
Dos(t) = f(t, Vo + g0 (1), Du(t))

and

w, - m {5 - % /0b<eb e temg (s)ds|

Note that w(0) = w(0) and w(b) = w(b) implies ¥, = V.
Indeed, by (K3), we have, for each t € J

[0=(t) = Do) = [f(t,@(t),0=(t)) = f(t,w(t), D))
< Glw(t) —w@)] + Lf[d=(t) = du(0)]]
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Then
[9-(0) = .(0)] < 6l=(0) — (o)
Thus,
| C2 | ’ b s\o—1 s
o=Vl € s [ = e e o te) — v (o) s
(2| ¢

(mﬁ@—wWImW@—w@WB

| C1 —|—CQ | r
| Ca | ¢ e
Tt I§ Jw(b) — w(0)]]

= 0.

By integration of the formula (2.14), we obtain

L tet—es o=lesy_(s)ds M

[ - 8- 55 [ - erncions| < S
(e’ —1)e
F(o+1)’

where 9, € C(J, E) such that
Vao(t) = f(1, Ve + L5V (1), V(1))

We have, for each t € J

|lw(t) —w®)|| = |w(t)— VY, — ﬁ/o (e' — e®)e1es, (s)ds
= oy —w. - ﬁ /0 (¢! — ) (s)ds

1 t t sye—les s) — s))ds
+ﬁ54@—f> (D(s) — Duls)) d

oo

1 ! t sgfles s)ds
@/o(e _ e)elemg, (s)d

1 ! + sg—les s) — S S
+W/O(e — )2 [0 (s) — Duls)]| ds.

23

(2.15)
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Using (2.15), we obtain

—w 6<€b_1)g 4 tet—es o=1es 1w (s) — w(s)|| ds
@ (t) —w(@)] < + )/O( ) [ (s) — w(s)| ds.

T(o+1)  T(o
Then o |
e(e®—1)° ¢ mw—w|g (e —1)°
- Tle+1) T'(o+1)
So
o —wf, < S@=D7 dllm-wls (-1
b Tty T(o+1)
Thus,
oe’ —1)° e(e? —1)°
o -l [1- SO =] < LOoIF

By (2.7), we obtain

(=12 [ g -t
o -wle < Sy [L-GET0] emere

Therefore, the problem (2.1)-(2.2) is U-H stable. This completes the proof.
Theorem 2.12 Assume (K1), (K3), (2.7) and

(K3) There exists an increasing function ¢ € C(J,IR4) and there exists A, > 0 such that
for each t € J, we have

“Igp(t) < App(t)
are satisfied. Then the problem (2.1)-(2.2) is U-H-R stable with respect to .

Proof. Let @ be a solution of the following inequality
leDiw(t) = f(t, @(t), cDiw ()l < ep(t), t e J. (2.16)
Let us denote by w the unique solution of the problem
°Diw(t) = f(t,w(t), ¢Dgw(t)), foreach t € J, 0 < o <1,

w(0) = @(0), w(b) = w(b).

By using Lemma 2.3, we have
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where 9, € C(J, E) such that
Vo(t) = f(t, U, + “I59,(t),0,(t))

and

v, - ﬁ {5 _ % /Ob<eb _ es)g_lesﬁw(s)ds} |

By integration of the formula (2.16), we obtain
1

Hw(t) Vo~ s /O t(et — ) lesd (s)ds

¢ ’ b e leSp(s)ds
< i et

< edyp(1). (2.17)

We have, for each t € J

Jeo(t) — w(t)]| = Hw(t) v (et — e, (s)ds
= e e [ - ereoa

+ ﬁ /Ot(ef e let (9 (s) — Vo(s)) ds
< [e0 e [ —ereoa

1 ! t S@_les S) — S S
+@/o(e — )l |0 (s) — D (s)]| ds.

Using (2.15) and (2.17), we obtain

loo(t) — w(b)]] < Apip(t) + = / (e — ) e [lan(s) — w(s)]| ds.

I'(0)
Then
lw(t) — w(t)]| < exw(tnw /O(Gt—es)g_lesds
So

6l @ —w s (¢ = 1)°
— < et
I -wlle < erplt) + SETED
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Thus,
(e 1
— 1l— = ALo(t).
o wlle |1 - S| < one)
From the condition (2.7), it follows that
o’ =11
— < edpp(t) |1 — — .
o -wlle < eAplt) [1- 52D
Then, for each t € J
o’ — 1]
I(6) ~wlle < Aerl®) [1- T ] = et

Therefore, the problem (2.1)-(2.2) is U-H-R stable with respect to ¢. This completes the
proof.

Remark 2.13 Our results for the boundary value problem (2.1)-(2.2) remain true for the
following cases:

e [nitial value problem: ¢y = 1,¢co =0 and 0 arbitrary.
e Terminal value problem: ¢y = 0,co = 1 and & arbitrary.
o Anti-periodic problem: ¢ = ¢y # 0 and § = 0.

However, our results are not applicable for the periodic problem, i.e. for ¢ =1, ¢ = —1,
and 6 = 0.

2.4 An Example

In this section, we will give an example to illustrate our main results. Let

E:llz{w:(wl,wg,...,wn,...):Z]wn|<oo}

n=1

be the Banach space with the norm
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Consider the following boundary value problem for the nonlinear implicit fractional
differential equation:

(3 + Jwn(t)] + [*“D3wn (1))

1
¢DEwy(t) = - , for each, t € [0,1], (2.18)
3ett200(1 + |w, (B)] + [cD2wy,(t)])
wn(0) +w,(1) = 1. (2.19)
where J = [0,1],b=1,c1 =co =0 =1, w = (w,way .. Wn,--.), [ = (f1, fo, -y fns--"),
1 1 1 1
Diw = (ngwl, Diws, ..., “Diw,...) and

(34 llul] + 1oll)
t,u,v) = , te€|0,1], u,v e k.
St uv) = gt 1l + oy’ € Y

For any w,v,u,v € E and t € [0, 1], we can show that

(lu = alle + [lv = vllz).

Lf(t u,v) = f(t,4,0)]] <

36200
2
Thus, for {1 = {5 = 30200° we have
(e = 1)° 1] 2! e—1 6 —87
Op=——"-"-11 = X A~ 2.047 x 107°" < 1,
¢ F(o+1) +|)\+,u| 1— 4 T 3200 — 2

Hence, from Theorem 2.6. The boundary value problem (2.18)-(2.19) has at least one
solution on J. Also, from Theorem 2.11, this BVP is U-H stable.
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Chapter 3

Impulsive Boundary Value Problem
for Nonlinear Implicit Caputo’s
Exponential Type Fractional
Differential Equations

3.1 Introduction

This chapter is devoted to the results obtained by Malti et al. [75], we establish
the existence and uniqueness results to the following boundary value problem (BVP) for
nonlinear implicit fractional differential equations (NIFDE) with impulses and Caputo’s
exponential type fractional derivative:

Diw(t)=f(t,w(t), cDjw(t)), foreachte J,CJ, k=0,1,...,m, (3.1)
Aw|i—y, = I (w (t,;)) , k=1,...,m, (3.2)
aw(a) + cow(b) = cs, (3.3)

where a =ty <t < ... <t < tpy = b, (D, denote the Caputo’s exponential type
fractional derivative of order o, 0 < a < 1, f : J X IR XIR — IR is a given function and ¢y,
9, c3 are real constants with ¢; + o # 0, Ji, = (tg, tea], k=1,2,...,m, Jo = [a,t1], J =
[a,b], Aw|iey, =@ (t) — @ (t;), @ (&) = }llli% @ty +h), and @ (&) = hlig{ w(ty + h)

represent the right and left limits of w(t) at ¢ = ¢, respectively.

29
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3.2 Existence Results

The following notations which are useful on this chapter. Consider the set of function
PC(J,IR) = {w :J >R, weC(J,IR), k=0,...,m and there exist
(tf) and w(tp), k= 1,...,m with w(t) = w(tk)}.
This set is the Banach space with the norm

[l =, max {suplw(t)]}.

k=0,1,....m teJy
Now, we defining what we mean by a solution of the problem (3.1)-(3.3).

Definition 3.1 A function w € PC (J,IR) N (UZT:O AC, (Jy, IR)> is said a solution of

(3.1)-(3.3) if w satisfies the equation (D% w(t) = f(t,w(t), (D% w(t)), on Jy and the
conditions

Awli—y, = I (w (t,;)) , fork=1,...,m

aw(a) + cow(b) = c3,

To prove the existence of solutions to (3.1)-(3.3), we need the following auxiliary lemmas.

Lemma 3.2 Let0 < a <1 andlet ¢ : J — IR be continuous. A function w is a solution
of the integral equation

CQZ[ +CQZ/ — a “p((;))esds
(

i=1
5)

b b e a_“p(s)ess—c} tet—e ot e’ds, 1 a
+c2/tm(e ) e 3+/a( ) s, ift e ]

/

—1

c1+ co

CQZIi 22/1 — a 1?52))68d8

=1 i=1 -

R ngg o]+ Sile

—1¢(8) 3 ¢ osa-19(8) oo
\ +Z/ F(oz)e ds+/tk (e —e) F(a)e ds, if t € (i, trps1),
(3.4)

where k= 1,...,m, if and only if, @ is a solution of the fractional BVP

Dy w(t) =e(t), te (3.5)
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A=y, = I (w (t;)) , fork=1,....,m,
aw(a) + cew(b) = cs.
Proof: Assume that w satisfies (3.5)-(3.7). If t € [a, t;], then
Daw(t) = ¢(t).
By Lemma 1.10, we get

D) =m+ “Ipt) =+ = [ (e =) p(s)eds.
F(a) a

If t € (t1,ts], then by Lemma 1.10 we get

+ 1 ! t sye—l s
w(t) = w(tl)—i—m/tl (e =€) p(s)eds

I ae
= Aw|t:t1 +w (tl_) + m /tl (et _ 68) 1 g0(5)65d8

= L (@ (t7)) + {770 + ﬁ /a 1 (e — es)a_l o(s)e’ds

1 ' t sya—1 s
+m /t1 (e" =€) p(s)e’ds

= n+ I (w (tf)) b / ! (etl — eS)a—l p(s)e’ds

If t € (to,t3], then by Lemma 1.10 we get

w(t) = w(t3)+ ﬁ/t (e — 65)%1 o(s)e*ds

= L(w(ty)) + {770—1-11 (w (tl))—l—%)/al (e" —¢) _1g0(s)esds
! § ) N (s)etds | + —— tet—esa_l s)e’ds
i, o) e g [t
= ot [ (@ () + b (@ ()] + |5 [ (=) elseras
1
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Repeating the process in this ways, the solution w(t) for t € (¢, tx41] where k = 1,...,m,
can be written as

=0 = m+ L= )+ [ () elerds

1 ! t sya—l s
—|—m /tk (e — €)™ p(s)e’ds.

It clear that

@ (a) = o
and . .
— 1 b t: syo—1 s
w(b) = 770+Z[i(w(ti))+m2/t (e —e*)" p(s)e’ds

Hence, by applying the boundary conditions ¢;w(a) + cow(b) = c3, we get

c3 = 1l +e) + e ZL‘ (w (t;)) + FE?}) Z/t (e — es)a_l w(s)e’ds

=1
+ @ /b (eb — es) - o(s)e’ds
I'(a) Ji,,
Then
_ -1 - - C2 — b ti sya—1 s
o= T CQZZIII(w(tZ))—l— (a>izl/til(e —e*)" p(s)e’ds
42 /b (e’ — es)w1 p(s)e*ds — ¢ 1
I'(a) J; ’
Thus, if t € (tx, tgs1], where k =1,...,m, then
— —1 S — C2 < i t; sya—1 s
w(t) = P 02211 (W(tl))+r(a)izl/t;1 (e —e) o(s)e’ds
b
e /tm () s - 03] 31 (= )

1 & t . Sl . t ) et )
+mzzl/t,1<e —6) @(S)Gds—i—m/tk (6—6) QD(S)@dS.

Conversely, assume that w satisfies the impulsive fractional integral equation (3.4).
If t € [a,t1] then c;ww(a) + cow(b) = ¢3 and using the fact that ¢D? is the left inverse of
¢ we get

°Diw(t) = p(t), foreacht € [a,ty].
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If t € (t,tr41), where k =1,...,m. Then, by using the fact that {Df C' = 0, where C is
a constant and ¢ Dy is the left inverse of “Ij;, we get
cDiw(t) =¢(t), foreacht € (tx,trs1].
Also, we can easily show that
Aw|imy, =1 (w (), k=1,....,m.
Now, we pass to state and proof our first existence result for the problem (3.1)-(3.3)
based on the Banach contraction principle.
The following hypotheses will be used in the sequel:
(H1) The function f: J x IR x IR — IR is continuous.
(H2) There exist constants k; > 0 and 0 < ky < 1 such that
|f(t, 1, w1) — f(t, w2, wa)| < ky|wy — wa| + ka|wi — wal,
for any wy, wy, wr,ws € IR and t € J.
(H3) There exists a constant £ > 0 such that
(1) — Lip(w@2)| < Emr — @2,

for each wy,wy € IR and £ =1,2,...,m.

Set ( ) ( , )a
k1 |ea] y(m+1) (e’ —e®
7 1—k'2’ ta ’C1+Cg| * an H2 F(Oz—Fl)
Theorem 3.3 Assume that (H1)-(H3) are satisfied. If
p1 (m& + p2) < 1, (3.8)

then the boundary value problem (5.1)-(5.3) has a unique solution on J.
Proof. Transform the problem (3.1)-(3.3) into a fixed point problem, consider the
operator © : PC(J,IR) — PC(J,IR), defined by

m

C2 Zfi (w (t7)) + F(z) ;/tl (e" — es)a*1 o(s)e’ds

=1

C2 ’ b a-1 _
+F(a) /tm (e —e) o(s)e ds—cia} + Z 1, (w(tk))

a<tp<t

—1

c1 + ¢

O(w)(t) =

1 ty . sa—1 s 1 ! ¢ sya—1 s
+W Z/t (e —¢°) go(s)eds—l—m/t (e" =€) p(s)e’ds,
a<ltp<t“ k-1 k
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where ¢ € C(J,IR) satisfies

It clear that, the fact of finding solutions for problem (3.1)-(3.3) is to find the fixed points
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p(t) = [t @ (t), (1)),

of the operator ©. Now, for wy, wy € PC(J,IR) and for each ¢t € J, we have

©(@1)(t) — O(w2)(1)]

1 ’ b syl s
W/tm (¢" = ¢)* " elpa(s) — wals)|ds

+ 3 (@1 (7)) = I (=2 (1)) |

a<tp<t

_;_L Z /k (et’“—es)aile‘g’@l(s)—%(s)’ds

F(CO a<tp<t th—1

1 ' t sya—1l s
+m /tk (e —e ) e*lp1(s) — wa(s)|ds,

where @1, o € C(J,IR) are such that

and

By (H2) we have

|P1(5) = pa(s)]

Then

01(s) = @a(s)] <7 |@1(s) — @a(s)]-

e1(t) = f(t,mi(t), p1()),

pa(t) = f(t, @a(t), a(t)).

= [t @), pr(t) = [t @a(t), p2(t))]

< Kilwi(t) — wa(t)] + kalpr(t) — pa2(t)]-

(3.10)
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Hence, for each t € J,

|02| -

1 + ca ;g‘wl (t6) = @2 (t)]

2 [ ) e ) = )] ds
+Z§]wl (t7) — =2 ()]

[ =) e ) — )l ds

—l—ﬁ / (e = es)a_l e’ |w1(s) — wa(s)|ds

tg

©(@1)(t) = O(w)(t)] <

|ca ym (b —e®)® (e —e?)”
= + + w — @
ym (e’ — e®) 7 (et — e7)"
+ m§ + F(Of T 1) + (O[ n 1) ||w1 wZHPC

v(m+1) (et —e)”
['a+1)

(e e

[0(m1) = O(@a)l . < pa(m€+ p2) |l — @2,

By (3.8), the operator O is a contraction. Hence, by Banach’s contraction principle, we
deduce that © has a unique fixed point which is a unique solution of (3.1)-(3.3). This
completes the proof.

] loo1 = sl

Thus,

The second existence result is based on Schaefer’s fixed point theorem.
Set

f=sup|f(t,0,0)| and f:kmax |11 (0)].

teJ =1,....m

Theorem 3.4 Assume that (H1)-(H3) and (3.8) are satisfied. Then the problem (3.1)-
(3.3) has at least one solution on J.

Proof. We shall use Schaefer’s fixed point theorem to prove that O, defined by (3.9), has
at least one fixed point on J. The proof will be given in several steps.
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Step 1: O is continuous.
Let {v,} be a sequence such that v,, — v in PC(J,IR). Then, for each t € J

O(u)(H) —O)(1)] < 2

c1 + co

}j/‘ eon(s) — p(s)]ds

1 b
+F@yéxe—e) lpu(s) = o(s)lds

Z’] (v (67)) = 1 (v (1))

(3.11)
©Y (o ()~ £ (o ()
1 b t sye—l s
g 5 e st

+f%yl(4—€f4§WA®—w®W&

where ¢, p € C(J, E) such that

pn(t) = [ (t;on(t), n(t))

and

By (H2), we have
lon(t) =@ = |f (£ on(t), on(t)) — f (&, 0(t), 0 (1))]
< ko) = o))+ ka2 en(t) — @(t)] -

Then
[pn(t) — @) < 7 |oa(t) —o(t)] .

Since v, — v then we get p,(t) — ¢(t) as n — oo for each t € J. And let § > 0 be such
that, for each t € J, we have |¢,(t)| < 6 and |p(t)| < d. Then, we have

(e" = e*) 2 leslpon(s) — o(s)| (e" = e*)* e llen(s)] + o(s)]]
< 25(et —ef)olet

IA
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and
(e —e”) lelpn(s) —p(s)] < (e =€) e[lpn(s)] + lp(s)]]

< 25(ett —ef) et
For each ¢ € J, the functions s — 26(e’ —e*)*'e® and s — 25(e'* —e*)*~'e® are integrable
on [a,t]. Then, the Lebesgue dominated convergence theorem and (3.11) imply that
|O(v,)(t) — ©(v)(t)] = 0 as n — 0.
Thus,
19(u,) — O(u)||,. — 0asn— oco.

Consequently, © is continuous.

Step 2 : © maps bounded sets into bounded sets in PC(J,IR).
Indeed, it is enough to show that for any & > 0, there exists a positive constant ¢ such
that for any v € B;, with By = {v € PC(J,1R) : |[v|| .. < 6}, we have |©(v)]|,. < {. We
have that, for each t € J,

m

- 1 h t; sya—l s
S EEN gy 2 [ ) e et

i=1 i=1

o < 2

ler + cof

e [ @ et + L2 Y ()

+L Z /k (et’“—es)a7165|gp(s)|ds

F(a) a<tp<t” k-1

¢
—i—L/ (et — es)a_l e’ |o(s)| ds,

F(O‘) th
(3.12)
where ¢ € C(J,IR) such that
p(t) = f (t,v(t), (1))
By (H2), we have for each t € J
e = [f & 0(), o(t) = f(¢0,0) + [ (£,0,0)|
< |F (@), @) = f (£,0,0)] + [ (£,0,0)]
< kol + ks ()] + T
Thus, N
f
@ < ol + 1= = (3.13)
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Analogously, by using (H3), we obtain

L) < €l + 1. (3.14)

From this and using (3.12), for any v € By, we have

" ~ Fo\ (@ —en)e
O()1)] < ool m(€|v|+l>+m(’7|v\+1_k2> Mo +1)

+ ('y!vl + T / ) (e@_fal)) \cl|j—3‘c2] +m (f\v| +f)
(e"—en)” o (@ —e)”
+m< vl k2> Tla+ 1) (”“'ﬂ—/@) T(a+ 1)

|c2] > I (m+1) (e —e*)”
<\cl+cz|“) m(““'”)*(”'”'ﬂ—@) Mot 1) ]
|cs]
’Cl+02|

()
|Cl +02|

|cs]
|Cl +CQ|

B < f ’03|
I [m (55+1) (5+k1> M] e

=/,

m<55+7)+ <75+ / ) (m41) (¢ —e )a]

1— ko F(Oé-i-l)

which implies that [|©(v)[| ,, < £

Step 3 : © maps bounded sets into equicontinuous sets of PC(J,IR).
Let 7,72 € J, 71 < T3, Bs be a bounded set of PC(J,IR) as in Step 2, and let v € Bs.
Then we have

1 " T2 syo—1 T1 sya—17 s
©()(12) = O(v)(m)| < m/a [[(e™ =€) —(em =)™ ] e o(s)| ds

1 = o s _
m/T |(e™ — %) | (s |d8+7-1<tzk:<.,-2‘1k (v (t:))]
IO

7‘1<tk<7'2

(s)]ds
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Hence

‘@(’U)(Tg) — @(’U)(Tl)| < <’y |1)| + (1 _fk:2)> 1 [(67'1 _ ea)a — (672 _ 6a)oz

+2(e™ — )] + (r2 — 71) [(g o] + T)
f (eb o 6a)o‘
* (””'* (1-@)) Tatl)

< f 1 1 a\o T a\o
(WH(l—k:Q))F(mﬂ)“6 —e) e =)

IA

+2(e7 =)+ (=) [(€F+1)

. F (=)
* (WH (1—/<:2)> T(a+1)

As 71 — Ty, the right-hand side of the above inequality tends to zero. As a con-
sequence of the steps 1 to 3 together with the Ascoli-Arzela theorem, we deduce that
©: PC(J,IR) — PC(J,IR) is completely continuous.

Step 4: A priori bounds. Now it remain to show that the set

e={v e PC(J,IR):v=XO(v), for some A € (0,1)}

is bounded. Let v € €, then v = AO(v) for some 0 < A < 1. Thus, for each ¢t € J we have

v(t) = 61_-:\02 2 ZL- (v(t)) + % Z /t_ (ef — es)a_l ©(s)eds
s /tm (6 — &) (s)esds — 03} Y L)

a<tp<t

A " a—1 A ! t sya—1 s
+T Z / (etk o es) gp(s)est‘i‘ m/tk (e —e ) gp(s)e ds.

) a<tp<tYte—1
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By using (3.13) and (3.14), for each ¢t € J, we obtain

m(’S'”'*f)*m(”'”'H—f@) Tlat1)
f > (eb—e“)a

+<7|“|+1—k2 Tla+ 1)
F o\ (@=e)” f
m<7|”|+1—k2> Tla+1) <7|”|+1—k2

— <|Cllf|@\ +1> m<§|v|—|—f> + <7|v|+ - f ) (m + 1) (6b_€a)a]

ks
|cs]
ler + ¢
|ca ) v(m+1) (b — e“)a
+1 +
<‘Cl+02‘ mg F(Oz+1) ‘U’

+< o +1) (mhf<m+1>(eb—ea)"‘>+ sl

‘Cl“l_CQ’ (1—k2)F(04+1) |Cl+62"

|ca
ler + e

@) <

|cs)
ler + cof

IN

IA

7 J?,U2 |C3‘
I )
p (M€ + p2) |v| + (m + i + o 1 cal

Thus,

~ fMQ |C3’
1-— + < I+ .
[1— pq (M€ + po)] HUHPC S (m ket - le1 + ¢

By using the condition (3.8), it follows that
7 f 2 |c3]
< 1
HUHPC - [m (m * ky - le1 + ¢
This shows that the set ¢ is bounded. As a consequence of Schaefer’s fixed point theorem,

we deduce that © has at least one fixed point which is solution of (3.1)-(3.3). This
completes the proof.

-1

= M.

[1 — p1 (m& + p2)

The final existence result for (3.1)-(3.3) is based on Nonlinear alternative of Leray-
Schauder type.

Theorem 3.5 Assume that (H1)-(H3) and (3.8) are satisfied. Then the problem (3.1)-
(5.3) has at least one solution on J.
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Proof. We shall show that the operator © : PC(J,IR) — PC(J,IR) defined by (3.9) is
continuous and completely continuous. Obviously according to the steps 1 to 3 in the
proof of Theorem 3.4, we conclude that f is continuous and completely continuous. Now
we show that there exists an open set U C PC(J,IR) with v # p© (v), for p € (0,1) and
v € JU. Let v e PC(J,IR) and v = pO (v) for some 0 < p < 1. Thus for each ¢t € J, we
have that

m

Ca Z[i (v(t)) + F(Zz) ;/ti_l (e" — e“)’)a_1 o(s)e*ds

=1

v(t) =

c1+ ¢y

+T(ZZ¥) /tm (" =€) p(s)e’ds — 03} +p Z I (v (t )

a<ltp<t

+L Z /k (etk _ es)a—l (p(S)est + %/t (et . es)a—l @(S)esds,

F(a) a<tp<t”te—1

As in Theorem 3.4, we obtain
7 J?Mz |cs]
< 1
HUHPC - [Ml (m * ky - le1 + ¢

Hence, for U = {v € PC(J,IR) : ||v||,.. < M+1}, thereis nov € AU such that v = pO(v),
for p € (0,1). As a consequence of Leray-Schauder’s theorem, we deduce that © has a
fixed point v in U which is a solution of problem (3.1)-(3.3). This completes the proof.

-1

= M.

[1 — 1 (M€ + p2)

Remark 3.6 Our results for the boundary value problem (3.1)-(3.3) remain true for the
following cases:

o [nitial value problem: ¢y =1, co =0 and c3 arbitrary.
o Terminal value problem: c; =0, co = 1 and c3 arbitrary.
e Anti-periodic problem: ¢y = co # 0 and c3 = 0.

However, our results are not applicable for the periodic problem, i.e. for ¢y =1, cg = —1,
and c3 = 0.

3.3 Examples

In this section, we will give two examples to illustrate our main results.
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Example 1. Consider the following impulsive boundary value problem for nonlinear
implicit fractional differential equation:

1 e Vi Isint
D2 w(t) = T , foreachte JyUJy, (3.15)
7(2+1) (V3+Iw(t)] + |:D5 = (1))
=G
= 2, (3.16)
@(0) + w(m) = 13, (3.17)

WhereJoz[O,E],le(E W],mzl,a:%,a:(),b:ﬂ,01202:1,03:13,

i ) e Vitisint
, T, W) =
T2 +1) (V3+ || +|w|)
and ]
w
I = —
(=) 19 + ||

Now, for each ¢ € [0, 7] and for any wy, w9, wy,ws € IR, we can show that

1
‘f(tawlawl)_f(taw27w2)| < ﬁ(|wl_w2’+IW1—WQ|)
and )
|Il(w1)_ll(w2)| < Elwl—wﬂ.

1 1

21e3 19
|2 ki (m+1) (e —e?)®

+pa) = +1) [me+
p1 (M + pua) <|C1 + ol mé (1—k)T(a+1)

1 2y — -t
_ 3y ver=laf (3
2119 21e3 21¢3 2
311 n 44/e™ — 1
2119 ' (213 —1) /7
0.1168003443
1.

A

Hence, all of assumptions (H1)-(H3) and the condition (3.8) are satisfied. As a con-
sequence of Theorem 3.3 the impulsive problem (3.15)-(3.17) has a unique solution on
0, 7]
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Example 2. Consider the following impulsive boundary value problem for nonlinear

implicit fractional differential equation:

eV (24 [ao )| +

D (1))

1
D2 w(t) = T , foreachte JyU.Jy,
17912 +1) (1+ | (t)] + [:Dz = (1))
5 ’w 2" ‘
Awl|,_1 = G
20 + ‘w %1
@(0) = —= (1),

WhereJoz[O ] Jp = (—, },mzl,a:l,azO,b:1,01262:1703:O,

e VO 2+ |@] + |w])

¢ for each ¢ € Jy U Jj,
ftww) = 9@+ ) (At o+ o) 0~
and 5| ‘
(v
L(w) = — =1
(@) 20 + ||

Now, for each ¢ € [0, 1] and for any @, w2, w;,ws € IR, we can show that

1

17964 (|1 — @] + w1 — wal)

|f (t, @1, wi) — f(t,@2,w)| <

and .
[fi(@1) = Li(@s)| < 7 lon — ol

1 1
Thus, for /ﬁ:kgzmandﬁzzwe have that
|co ki (m+1) (e —e?)®
= 1
i (& + ji2) <|cl+c2|+ M A ) Tl 1)
— -1
= 3 l+£ 1_L I 3
2|4 179¢4 179¢4 2
3 1+ 4v/e — 1
204 (179et — 1) /7

§+ 44/e — 1
8  (179¢* —1)/7

0.3753057

Q

< 1

(3.18)

(3.19)

(3.20)
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Hence, all of assumptions (H1), (H2), (H3) and the condition (3.8) are satisfied. As a
consequence of Theorem 3.4 or Theorem 3.5 the problem (3.18)-(3.20) has at least one
solution on [0, 1] .



Chapter 4

Impulsive Abstract Nonlinear
Implicit Caputo’s Exponential Type
Fractional Differential Equations

4.1 Introduction

This chapter is devoted to the results obtained by Malti et al. [76], we establish the
existence results of solutions for a class of impulsive boundary value problem (BVP) of
the following nonlinear implicit fractional differential equations (NIFD) involving Ca-
puto’s exponential type fractional derivative:

Diy(t) = f(t,yt), cDiy(t)), foreachte J, CJ, k=0,1,...,m, (4.1)
Ayli—t, = I (y (t;)) , k=1,...,m, (4.2)
cry(a) + c2y(b) = o, (4.3)

where a =ty < t; < ... <ty <ty = b, (Dp, denote the Caputo’s exponential type
fractional derivatives of order ar, 0 < aw < 1, (£, ||-||) is a real Banach space, f : JXEXE —
E is a given function, ¢y, ¢o are real constants with ¢; +¢o # 0, and 0 € E, Ji = (ty, tit1],
k=1,2,....m, Jo=[a,t:], J = [a,b], Ayliey, =y (&) =y (&), y (&) = }lliil%y(tk + h)

and y (t,;) = hlgél— y(ty + h) represent the right and left limits of y(t) at t = t;.

4.2 Existence Results

The following notations which are useful on this chapter. Consider the set of function

PC(J,E) = {y:J—>E, ye C(Jy, E), k=0,...,m and there exist
y(th) and y(t;), k= 1,...,m with y(t,) = y(tk)}

45
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This set is the Banach space with the norm

[yl =, max { sup [y }.
Tty mo\tedy
Lemma 4.1 ([56]) If V. C PC(J,E) is a bounded and equicontinuous set, then
(i) the function t — u(V(t)) is continuous on J, and

pre(V) = max Lsuppu(v(e)}.

k:O,l ..... m te Jk

(i) 1 ( / ys)ds y € v) </ (v (s))ds,

where 1 1s the Kuratowski measure of noncompactness and

Vi(s)=A{y(s) :yeV}, se
Now, we define what we mean by a solution of the problem (4.1)-(4.3).

Definition 4.2 A function y € PC (J,E) N <Ukmzo AC, (Jy, )) is said a solution of

(4.1)-(4.3) if y satisfies the equation $D% y(t) = f(t,y(t), DX y(t)), on Jp and the
conditions

Ayli= tk—lk(y( )), fork=1,...,m,
ay(a) + cy(b) =

( c
To Prove the existence of solutions to (4.1)-(4.3), we need the following auxiliary lemmas.

Lemma 4.3 Let 0 < a <1 and let ¢ : J — E be continuous. A function y is a solution
of the integral equation

m

ti_ e a 1 (s
CQZI tl +CQZ/ (e Mo

i=1

+cg/tm (eb—e )a ! 1108)) Sds—a} —i—/at (et—e )a ! w(jé))esds, if t € la,tq],

—~e%ds

01+Cz

m m

Iz ti a 1 410(8) sd
. 02; +C2ZZI/ (e F(oz)e S
’ 1 p(s) :
49 /tm (eb—e )a F(a e’ds — a} —i—ZL
k t; t
! t; syae—1 SO(S> s / t sya—1 (,0(8) s .
i —ed — d t tr, t
\ +;/t“ (e" —¢€°) F(a)e s+ 5 (e" —¢) F(a)e s, if t € (tg, try1l,

(4.4)
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where k= 1,...,m, if and only if y is a solution of the fractional BVP

Diy(t) =), te,

Ayli—t, = I (y (t,;)) , fork=1,...,m,

cay(a) + cy(b) = o.
Proof: Assume that y satisfies (4.5)-(4.7). If ¢t € [a, 1], then

cDyy(t) = ().

By Lemma 1.10, we get

t
y(t) =no+ “IZp(t) =no+ F_/ (et — es)a_l (s)eds.

If t € (t1,t], then by Lemma 1.10 we get

y(t) = vy (tf) + ﬁ/t (et — es)a_l o(s)e’ds

= Ay|t=t1 +vy (t;) + ﬁ/ (et _ es)a—l (p(S)est

t1

= Li(y(ty)) + {770 + ﬁ/g 1 (e — es)a_l p(s)e’ds

t
+L/ (e" = es)o‘f1 ©(s)e*ds
r t

1

= B () gy =) s

t
—l—i/ (e' — es)a_l o(s)e’ds.
r t

47

(4.5)

(4.6)

(4.7)
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If t € (tq,t3], then by Lemma 1.10 we get

y(t) =

y(t3) + ﬁ /t (e — es)afl p(s)e*ds
Aylier, +y (t7) + ﬁ/t (e" = es)a_l o(s)e’ds
Ly(5)) + [no Ly () + ﬁ / = ) e

L ’ ) p(s)ef 5_ 1 tet—esa_l s)e’ds
Ty, T ] g o) e

w0 ) + B D]+ [ [ =) el

L ’ o) o(s)ef s_ 1 tet—esafl s)e’ds
fia f, T ] s ) e

Repeating the process in this ways, the solution y(t) for t € (g, tg41] where k =1,...,m,
can be written as

y(t) = 770—1—2] —i——Z/ e —¢°) (s)esds

It clear that

and

1 ! t sya—l1 s
—l—m /tk (e — €)™ p(s)e’ds.

Hence, by applying the boundary conditions c;y(a) + coy(b) = o, we get

g =

m

Mo(c1 + c2) + ¢z ZI ; 02 Z/ el —¢°) “Lo(s)etds
ti—1

i=1

C2 ’ b sya—1 s
+F(04) /tm (" —¢°)"  p(s)e’ds.
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Then

_I_
r1
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L
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QU
Va)
|
q
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Thus, if t € (tg, tgy1], where k =1,... m, then

m

CQZ]i (y (tz_>) + F(i) Z/tl 1 (eti — 65)06—1 ¢(s)esds

=1 i=1 -

+F§Zz) / (eb — es)ail o(s)e’ds — U} + Z I; (y (ti_))

tm

1 Je ot . St . 1 to el )
—i—mizl/t“(e —e) @(S)Gds—km/tk (e—e) o(s)e’ds.

—1

1+ ¢

y(t) =

Conversely, assume that y satisfies the impulsive fractional integral equation (4.4).
If t € [a,t1] then c1y(a) 4 coy(b) = o and using the fact that ¢D? is the left inverse of “12,
we get

°Dy(t) = p(t), for eacht € [a,ty].

If t € (ty, tpya1], where & =1,...,m. Then, by using the fact that Dy C' = 0, where C' is
a constant and ¢ Dy is the left inverse of “Ij;, we get

cDiy(t) = ¢(t), for each t € (ty,tps1].
Also, we can easily show that

Ayli—r, = I (y (t;)) , k=1,...,m.

Now, we pass to state and proof our first existence result for the problem (4.1)-(4.3)
based on concept of measure of noncompactness and Darbo’s fixed point theorem.

The following hypotheses will be used in the sequel:
(H1) The function f:J x E x E — F is continuous.
(H2) There exist constants k; > 0 and 0 < ks < 1 such that

Wt yr,21) — f(ty2, 20) || < kullyn — wel| + K2 |21 — 22,

for any vy, ys, 21, 22 € E and for each t € J.
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(H3) There exists a constant £ > 0 such that

1k(yr) = Le(w2)ll < € llyr — w2l

for each y1,y2o € K and k=1,2,...,m.
Remark 4.4 [18] Conditions (H2) and (H3) are respectively equivalent to the inequalities

p(f (¢, Bi, Ba)) < kip (Bi) + kopi (Bz)
and
1 (Ix (Ba)) < §u(Ba),

for any bounded sets By, By C E, for eacht € J, k =1,...,m and p s a Kuratowsk:
measure of noncompactness in E.

Set ( ) (e e
k1 |cal vy(m+1) (e’ —e®
7 1—k'2’ c |Cl+62’+ o P F(O&—}—l)
Theorem 4.5 Assume that (H1)-(H3) are satisfied. If
e(m&+p) <1, (4.9)

then the impulsive boundary value problem (4.1)-(4.3) has at least one solution on J.

Proof. Transform the problem (4.1)-(4.3) into a fixed point problem, consider the
operator F': PC (J,E) — PC (J, E), defined by

PO = o [ L) + 5 2 [ (=) etoes
—i—%/ (@b _ eS)G*I o(s)e’ds — 0} + Z I, (y (t,:))
) tm t a<tp<t <4'10)
), 2 / (=) p(s)etds)

1 /t t a—1
+=— e — e’ ©(s)e’ds,

@ J, )
where ¢ € C(J, E) such that

p(t) = f(t,y(t), o(1)).

It clear that, the fact of finding solutions for problem (4.1)-(4.3) is to find the fixed points
of the operator equation F(y) = y. Now, we shall use Darbo’s fixed point theorem to
prove that F', defined by (4.10), has at least one fixed point on J. The proof will be given
in several steps.
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Step 1: F is continuous.
Let {u,} be a sequence such that u, — y in PC(J, E). Then, for each t € J

1P ) () — F)@)] < —<

ler + cof

ZHI un (7)) = 1 (u (7)) |

1 m t; " a1 g
o)y / ()T e lenls) — (o)l ds

1 ’ b sye—l s
i / (" =€) e llouls) = (s) | ds

+ 2 e (un (8)) = I (u (1)) |

a<tp<t

O [ ) e e — el ds

(o) a<tp<t”th—1

(4.11)

1 ! t syoe—1 ¢
e / (¢ — ) e ou(s) — ols)]] ds,

where ¢, p € C(J, E) such that

pn(t) = f (8 un(t), on(t))

and
p(t) = f(tu(t), 1))
By (H2), we have

len(®) =@l = [Lf (£ un(t), @n(t)) — f (£, u(t), (£))]]

<k llun(t) = u(@)]| + k2 [[on(t) — @) -
Then
[on(t) =@ < v flua(t) —u@)] -

Since u,, — u, then we get ¢, (t) — ¢(t) as n — oo for each t € J. And let 6 > 0 be such
that, for each ¢ € J, we have ||, (t)|| < d and ||¢(t)|| < J. Then, we have

(e" =€) e flon(s) —(s) < (" =€) e [lon(s)]l + llp(s)]l]
< 25(ef —ef)elet
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and
(e —e*)*te lon(s) —@(s)| < (e —e*)*te* [[lpnls) ]| + [l (s)]]

20(etr — es)oles.

IN

For each t € J, the functions s — 2d(e! —e®)*~le® and s — 24(e'* —e*)*Le® are integrable
on [a,t]. Then, by Lebesgue dominated convergence theorem, (4.11) imply that

| F'(vn)(t) — F(v)(®)|| = 0 as n — oo.

Thus,

| F(uy) — F(u)]],. — 0asn— oo.

Consequently, F' is continuous.

Let f =sup | f (,0,0)||, I =  max |1 (0)]| and consider the ball Br = {y € PC (J, F) :
teJ =1,..., m
Iyl .. < R} , such that

7 f |cs)
eml + —ep +
k1 p le1 + ¢

—1
R > 1—5p—5m§] .

Step 2: F maps Bg into itself.
For any y € By and each t € J, we have

m

- 1 & t; sya—1 s
S+ g 2 [ =) e letoas

=1

IFw@) <

ler + cof

LMyt e s ]
toe | @ elelas] + 2 S @l

a<tp<t

L > / (e — )" e [l (s)]| ds

I(a) a<tp<t” k-1

1 /t t a—1
+— e —e’ e’ ||le(s)|| ds,
fay ) (@) e e
(4.12)
where ¢ € C(J, E) such that

p(t) = f(ty(t), o)) .
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By (H2), we have for each t € J
le@I = 1If (& y(), o) = £ (£,0,0) + f (£,0,0)]
< f @ y(0), () = f (80,01 + £ (2,0,0)]]

Thus,

< Ryl + ko el +

IN

le@Il <

R

R+ ke |o(0)] + f-

f
—ky

= M.

Analogous to the recent calculus and by using (H3), we obtain

()l < ER+1:=N.

From this and using the formula (4.12), it follows that

IE@) @] <

<

|Cl +Cg|

<7R+ ! >(eb_ea)a

_|_

|C2|

m({R—i—f)—i—m(yR—l—

f

les

1 — ke

['(a+1)

‘Cl +02|

+m<7R+ ! >(eb_€a)a

(

€

1 — ko

|ca +1>
|Cl +CQ|

el
|Cl +02’

m(§R+T>+pR+

eméR + eml + epR +

R.

['a+1)

f

BT

!
k15p+

m<§R+f>+ (’yR-i-

]|
|1 + ¢

s
|Cl —|—C2|

Which implies ||[Fy| . < R. Therefore, F': Bgr — Bk.

+ (’yRJr

f

)y
1— ks F(Oé + 1)

—l—m(fR—l—f)

!

1 — ks

=
['(a+1)

(m+1) (et —e)”

1 — ko

)

I'a+1)

I — |

93
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Step 3: F(Bg) is bounded.

This is clear since from the previous step we know that F/(Bg) C Bg and Bp is bounded.
Thus, for each v € Bg, we have ||F(y)||, < R. Then, F(Bg) is bounded.

e <
Step 4: F(Bg) is equicontinuous.
Let 71,79 € J, such that 7 < 75 and let y € Bg. Then.
]' o T s\&x— T s\&x— S
1E(y)(72) = Fly)(m)l| < m/ [[(e™ —e) ™" = (e — )" ] | llin(s)ll ds

i | e —erellelas ¥ n @)

t T1 <Tk<T2

1 tk tr sya—1l s
i, 2l - efieas
Hence
IF()(r2) = F)(m)ll < ¢ (oi\/i 0 [(e™ — ") — (e —e")" +2(e™ —€™)7]
+ (o —7) | N+ Ta ) (" —e”)

As 71 — 7, the right-hand side of the above inequality tends to zero.

Before the next step, by using (4.8) in the proof of Lemma 4.3. For each t € J and

k=1,...,m, we can write the operator F' as
1 b t a—1
FO)® = mt Y L)+ O [ ey ptoeds
a<tp<t a<tp<t k-1

1 ! t sya—l s
—l—m /tk (e — €)™ p(s)e’ds,

where ¢ € C(J, E) such that

o(t) = f(t,y(t), ¢(t)).
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Step 5: The operator F : B — Bpg is a strict set contraction.
Let V C Bg. For each t € J, we have

p(EV) (@) = n((Fy) @), yeV)

< pm)+ Y {nI(y(t))), yeVv}

a<ltp<t

1
*mz{

i {/t: (e — &) etu(p(s)) ds, y € V} .

/k (e — es)afl e’ (p(s))ds, y e V}

te—1

By the Remark 4.4 and the Properties 1.12, for each s € J, we get

p{e(s), yeV}l) = u({f(s,y(s),0(s), yeV})

< kip({y(s), e VH+hk({e(s), yeV}).

Thus,
p{e(s), yeV}l) < vyu{y(s), yeV}). (4.13)

Also, for eacht € Jand k=1,...,m, we get

p({( (), veV)) < enly), yev)). (4.14)

Hence,

p(EFWV)@) < m&u({y(t), yeVy)

IN

Therefore,
oo (FV) < (m&+p) pipe (V).

Since € > 1. So, from (4.9), it clear that (m + p) < 1, which implies that the operator F'
is a A-set contraction, where

A= (mé+p).
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As a consequence of steps 1 to 5 together with Theorem 1.16, we deduce that the operator
I has at least one fixed point in Bgr. This shows that the impulsive boundary value
problem (4.1)-(4.3) has at least one solution on J. This completes the proof.

The second existence result for the impulsive boundary value problem (4.1)-(4.3) is
based on the concept of measure of noncompactness and Monch’s fixed point theorem.

Theorem 4.6 Assume that (H1)-(H3) and the condition (4.9) hold. Then the impulsive
boundary value problem (4.1)-(4.3) has at least one solution on J.

Proof. Consider the operator F' as defined in (4.10). We shall show that F' satisfies the
assumption of Monch’s fixed point theorem. We know that F' : B — Bp is bounded and
continuous, we need to prove that the implication

V =cmoF(V), or V=FV)U{0}= u(V)=0

holds for every subset V' of Bg.

Now let V' be a subset of Bg such that V' C conv(F (V) U {0}). Then V' is bounded and
equicontinuous and therefore the function t — v(t) = p(V'(¢)) is continuous on J.

By using the Remark 4.4, Lemma 4.1 and Properties 1.12, for each t € J, we have

u(t) = u(V(1)
= p(F(V)u{0})

< p((FV) (1)
< ply@)+ Y {n(t))), yevy
—i—ﬁ Z {/tk (e —es)a_l e’ (p(s))ds, y € V}

+ﬁ {/t: (e —e) " eulp(s)) ds, y € V} :

By using (4.13) and (4.14), we obtain that

o(t) < mEu({y(), yeVy)
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Then ( ) ,
v(t) < méu(t)+ %/ﬂ (" — es)a_l e*v(s)ds,
v (m+1) (eb — ea)a
< lm§+ NCES) ]||U||Pc~
Therefore,

[ollpe < (mE+p) [0l pe-

Since € > 1. So, from (4.9), it clear that (m& + p) < 1. Which implies that v(¢) = 0, for
each t € J. Hence, V(1) is relatively compact in E. In view of the Ascoli-Arzela theorem,
V' is relatively compact in Bg. Therefore, by applying Theorem 1.18, we deduce that the
operator F' has at least one fixed point in Bg. This shows that the impulsive boundary
value problem (4.1)-(4.3) has at least one solution on J. This completes the proof.

Remark 4.7 Our results for the boundary value problem (4.1)-(4.3) remain true for the
following cases:

e [nitial value problem: ¢y =1, co = 0 and c3 arbitrary.
e Terminal value problem: ¢; =0, co = 1 and c3 arbitrary.
o Anti-periodic problem: ¢ = co # 0 and c3 = 0.

However, our results are not applicable for the periodic problem, i.e. for ¢ =1, co = —1,
and c3 = 0.
4.3 Examples

In this section, we will give two examples to illustrate our main results. Let

E:llz {y:(ylay27ayn7)2|yn| <OO}
n=1

be the Banach space with the norm

ylle =" lyal.
n=1

Example 1. Consider the following impulsive boundary value problem for nonlinear
implicit fractional differential equation:

e VitHgint

1
eDiyn(t) = , foreachte JyU.J, (4.15)

13 (4 + 1) (1 + lya ()] +

Diyn(t))
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Unlsy
Al _M, (4.16)
89 + |yn
29n(0) + yn(m) = 283, (4.17)
where Jo = [0,5], Ji= (5,71, m=1,a=3,a=0,b=m, 01—2 02—1 o = 283,
1

o
Yy = <y17y27~-;yn7---)7f: <f17f27"'7fn7"‘)72Dt§ky: ( DtkyletkyQJ'” Dtkyn7> )
e VitHsint

[ty z) =
BE+ DA+ 9l + 120,
and Wl
Yl
Ly) = —Ye
' 89 + [yl

Now, for each ¢ € [0, 7] and for any vy, ys, 21, 20 € E, we can show that

lf(t,y1,21) — f(t,y2722)’|g < ([ — y2HE + |21 — Z2HE>

b
13€5
and 1

[11(y1) — Lyl < @Ilyl—yzHE-

1
T3e8 and £ = 39 we have that

e(mé+p) = ( =] +1)

le1 + ¢

sfa e ey
511 4ver -1
N 5{@+(13e5—1)\/ﬁ}

0.02790439619

’ThllS7 for kl = k’z

ki (m+1) (e —e?)®
(1—ko)T(a+1)

mé +

Q

Hence, from Theorem 4.5. The impulsive nonlinear fractional boundary value problem
(4.15)-(4.17) has at least one solution on [0, 7].

Example 2. Consider the following impulsive boundary value problem for nonlinear
implicit fractional differential equation:

eI (24 y()] +

1
- L)
c tkyn() gDiyn(t)D

= , foreachte JyU.J;, (4.18)
181 (15 + 1) (1 ¥ lya(®)] +
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10 ya(3)
Agnls = 1 (4.19)
20 + |yn(} )]
where Jy = [0,%],J1:(§1,1],m:1,04:% a=0,b=1,¢i=c=1,0=0,y =

1

1 1 1 1
(y17y27"'7yn7"‘)7 f - (f17f27"'7fn7"')7 th2ky = <§Dt2ky17§Dt2ky27‘"72Dt2kyn7'”> )

e VO 2+ llyllp + lI2lle)

[ty z) =
181 (65 + 1) (1+ |yl + 121 )
and 10 [y
)
[1<Z/) = £
20 + [yl

Now, for each t € [0, 1] and for any y1,ys, 21, 22 € F, we can show that

1

Igigg'(uyl'—'y2HE'+’H21'—’22HE)

||f<t7y1721) _f(tay%ZQ)HE S

and 1
Hi(yr) = Le)lly = 5 llve—vellp

Thus, for ]{71 = ]{?2 =

1
and &£ = 5 we have that

181e5
s = (o) e SRR
e GO
_ 3 [1_+ 4e—1 }
212 (1816 — 1) VII

~ 0.7500607693

< 1.

Hence, from Theorem 4.6. The impulsive nonlinear fractional boundary value problem
(4.18)-(4.20) has at least one solution on [0, 1].
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Chapter 5

Initial Value Problem for Nonlinear
Implicit Caputo’s Exponential Type
Fractional Differential Equations
with Non-Instantaneous Impulses

5.1 Introduction

This chapter is devoted to the results obtained by Malti et al. [77], we establish first
the existence of solutions and Ulam-Hyers-Rassias (U-H-R) stability for a class of initial
value problem (IVP) for nonlinear implicit Caputo’s exponential type fractional differen-
tial equations with non-instantaneous impulses. At the end, we give some generalization
of our results to the nonlocal cases.

5.2 Existence and Stability Results for the IVP

In this section, we study the existence, uniqueness of solutions and Ulam-Hyers-
Rassias (U-H-R) stability for a class of initial value problem (IVP) for the following
nonlinear implicit Caputo’s exponential type fractional differential equations with non-
instantaneous impulses:

cD2y(t) = f (ty(t), (DS y(t)), foreachte Jy CJ, k=0,1,...,m, (5.1)
y(t) = gr(t,y(t)), foreachte J, CJ, k=1,2,...,m, (5.2)
y(a) =, (5.3)

where D, denote the Caputo’s exponential type fractional derivatives of order o € (0, 1],
deIR, J=ab], a=1ty=s0 <t <8 < v <t < S < b1 = b,J_,i,:: (tk, sk,
Je = (sk,tea], k=1,2,....m, Jo:=[a,t1], f: T XxIRxIR =R and g, : ' xR = IR
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are a given functions such that J = k@ﬂ [$k, thi1], and J' = kngl [tk, sk] . Here, the impulses

start abruptly at the points ¢x, £ = 1,...,m and their action continues on the intervals
Ji, k= 1,...,m. The function y takes an impulses at t;, k = 1,...,m and it follows
different rules in two consecutive intervals J; and J;. At the point s;, k = 1,...,m,
the function y is continuous. The intervals J;, k = 1,...,m are called intervals of
non-instantaneous impulses for the problem (5.1)-(5.3) and the functions g (¢, (t)),
k = 1,...,m are called non-instantaneous impulsive functions for the problem (5.1)-
(5.3). Also, the problem (5.1)-(5.3) can be reduced to an impulsive fractional differential
equations when tp = si, k=1,...,m.

5.2.1 Existence of Solutions

The following notations which are useful on this chapter. Consider the set of functions

PC(J,IR) = {y:J—>]R, yeC(Jo,IR) andy e C(JLUJ,IR), k=1,2,....,m

and there exist y(t; ), y(t)) for every k =1,...,m with y(¢;) = y(tx) }

This set is the Banach space with the norm

|yl pe = max q sup [y(t)], sup [|y(t)]
tekL:JlJ,'c tekL:JOJk

Now, we define what we mean by a solution of the IVP (5.1)-(5.3).
i

Definition 5.1 A functiony € PC (J,IR)N ( U AC. (Ji, IR > s said a solution of (5.1)-

(5.3) if y satisfies the condition y(a) = 6, the equatzons cDeyt) = f(t,yt), eDsy(t)) on
Je, k=0,1,....m and y(t) = gx(t,y(t)) on J, k = 1,2,...,
To Prove the existence of solutions of the IVP (5.1)-(5.3), we need the following auxiliary

lemma.

Lemma 5.2 Let o € (0,1] and let p : J — IR be continuous. A function y is a solution
of the fractional integral equation

( 1 ' t s\o—1l s ;
o+ m/a (e" =€) e’p(s)ds, if t € la,t]
y(t) = ge(t, y(t)), ift € Jj, = (tr, sil (5.4)

t
(s, y(sk)) + —a/ (e =€) eps)ds, ift € Sy = (k. tag).
Sk
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if and only if y is a solution of the fractional IVP with non-instantaneous impulses

Doyt)=¢(t), foreachteJ,CJ, k=0,1,...,m,

y(t) = gi(t,y(t)), foreachte J,CJ, k=1,2,...,m,
y(a) = 4.
Proof. Assume that y satisfies (5.5)-(5.7). If ¢t € [a, 1], then

Day(t) = ().
By Lemma 1.10, we get
y(t) =mno + “ITp(t).
Since y (a) = d, then 1y = § and

1 ! t sya—1l ¢
y(t):(S—i-m/a (e — €)™ e*p(s)ds.

Ift € J| := (t1, 1], we have
y(t) = gi(t, y(t)).
If t € Jy := (s1, 13, then by Lemma 1.10 we get

y(t) = y(sl)+ﬁ / (¢ — ) eoip(s)ds

S1

1 ' t syo—1 s
m/ (e —€*)" " ep(s)ds.

S1

= qi(s1) +

If t € J := (g, s2], we have
y(t) = g2(t,y (1))
If t € Jy := (s2,1t3], then by Lemma 1.10 we get

y(t) = y(&y@)ﬂﬁ / (¢ — ) eop(s)ds

1 ' t sye—l s
= (s vl82) + gy / (¢ — &) e*o(s)ds.

If t € Ji, := (tg, sx), we have
y(t) = gi(t,y(1)).
If t € Jy := (Sk, tgy1], then by Lemma 1.10 we get
) = y(sp y(se))+ L /t (e" = es)a_l e*p(s)ds

Sk

1 ! t sye—1
= gk(Skay(Sk))er/ (e —e*)"  ep(s)ds.

Sk
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By the same ways, for every non-zero integer k& < m, the solution y(-) can be written as

gt y(t)), if t € Jy, = (tk, si]

y(t) = 1 t . a1 '
9k (Sk,y(sk)) + —/ (e =€) e*p(s)ds, ift e Jp= (g, tpt1)-
La) Js,
Conversely, assume that y satisfies the equation (5.4). If ¢ € [a,t;] then y(a) = ¢ and
using the fact that ¢D2 is the left inverse of I we get
°Dy(t) = p(t), for each t € [a,ty].

If t € (s, tg41], where k = 1,...,m. Then, by using the fact that (D C' = 0, where C' is
a constant and {Dg is the left inverse of °I¢ , we get

DS y(t) = p(t), foreach t € (s, 1]
Obviously, it easy to see that
y(t) = ge(t,y(t)), foreacht e (tg,sr], k=1,2,...,m.
The following hypotheses will be used in the sequel:
(H1) The function f: J x IR x IR — IR is continuous.

(H2) There exist constants k; > 0 and 0 < ko < 1 such that
|f(ta Y1, Zl)_f(t) Y2, Z2)| < k1|y1—y2|+k2|21—22| fort € kL:JOJk and Y1, Y2, 21, 22 € IR.
(H3) The function gy : J’ x IR — IR is continuous and there exist constants &, > 0,
k=1,...,m such that
lgk(t, y1) — gr(t92)| < &klyn —y2| forte J,, k=1,...,m and y;,y;, € IR.

(H4) There exist the functions p,q, ¢ € C (7, IR+) such that

Fyl <p®+a®lyl+ @@l forte UJandyzeR.

(H5) The function g, is continuous and there exist p,, € C (7, IR+) such that
lgk (t,9)] < pg, (1) (Jyl +1) forte J,, k=1,...,mand y € IR.

Now, we pass to state and proof our first existence result for the problem (5.1)-(5.3)
based on Banach’s fixed point theorem.
Set

kq B (eb—ea)a
1—1{?2’ p=

v = §:= max {&} and p; = max { SUp Pg, (t)} < 1.

F(()é“f—].)? k=1,...m k=1,..om | tefty,si
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Theorem 5.3 Assume that (H1)-(H3) are satisfied. If
E+p <1, (5.8)
then the IVP (5.1)-(5.3) has a unique solution on J.

Proof. Transform the problem (5.1)-(5.3) into a fixed point problem, consider the oper-
ator Z: PC (J,IR) — PC (J,IR) defined by

( 1 ' t sye—l s .
(5—1-@/(1 (e — €)™ e*p(s)ds, if t € [a, 4]
E(y)(t) _ gk(tv y(t)), ift e ‘]l/c = (ts, Sk] (5.9)
1 b a—1 .
gk (Sk, vy (s1)) + m/ (e" =€) e*p(s)ds, ifte Jy= sk, bl

where ¢ € C(J,IR) such that

o(t) = f(ty(t), o(t)).

It is clear that, the fact of finding solutions for problem (5.1)-(5.3) is to find fixed points
of the operator =. Let y;,y2 € PC (J,IR) for each t € Ji, we have

Z(y1) (1) = E(y2) O] < [gnskr 91 (s8)) = gr(sn, y2 (s))]

treg [ =)l ) = ol ds

where @1, 0o € O(J,IR), such that

pr(t) = f 6y (), 01 (1) and @y (t) = f (£ y2(t), ¢2(t)).
By (H2), we have

o1 () =2 (D] = [f (2 (8) 01 (1) = f (£, 92 (1) , 02 (1))

< Kulyn () =y ()] |+ k2 @1 () — w2 ()] -

Then
o1 (t) =2 (D] <7 |11 (1) — 92 (1)
By (H3), we have

‘gk(ska W (Sk)) - gk(5k>y2 (Sk))’ < & \?h (Sk) — Y2 (Sk)\ <¢ ’yl (Sk) — Y2 (3k)| .
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Hence, for each t € J,,

Z(w1) (1) = E(y2) (O] < &y (sk) = ya ()]

Y ! t sya—l s
+M/ (¢ =)™ ey (8) — 3 (1) ds
< <§+%> ly1 — well,. -

1Z2(y1) = Z@W)ll,.. < E+0)llyr — w2l -

Analogous to the recent calculus, for each ¢ € [a, 1], we get

Z(y1)(t) = ZE(2) )] < ply(t) —y2(t)].

Thus,

Then
12(y1) = ZW2)l .. < vellyr — el -

Also, for each t € J, we obtain

2(y) (@) —E(w) (O] < Eln(t) —1a(D)].

[1]

Then
1Z2(y1) = Z@)ll,. < Ellvi—wel,.-

Therefore, it easy to see that for each t € J, we have

Ew) () =) < (€+70) [1(t) —ya(D)]-

Then
12(y1) = Z@W)ll .. < E+0)llyr — w2l -
From (5.8) it follows that the operator = is a contraction. Hence, by Banach’s contraction

principle, we deduce that = has a unique fixed point which is a unique solution of the
fractional IVP (5.1)-(5.3) on J. This completes the proof.

The second existence result is based on Schaefer’s fixed point theorem.
Set

pr=supp(t), qf =supq (t), ¢; =supqe () < 1.
teJ teJ teJ

Theorem 5.4 Assume that (H1) and (H4)-(H5) hold. If

. qp
P, + "
g 1—Q2

<1, (5.10)

then the problem (5.1)-(5.3) has at least one solution on J.
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Proof. We shall use Schaefer’s fixed point theorem to prove that = defined by (5.9) has
at least one fixed point on J. The proof will be given in several steps.

Step 1: = is continuous.
Let {v,} be a sequence such that v, — v in PC(J,IR).
Case 1. For each t € Ji, we obtain

E) () —Z@) O] < g5 00 (55)) — gl v (50))]
+ﬁ / (¢ — )7 ¢ [gn (s) — o (3)] ds.

Sk

where ¢, ¢ € C(J,IR), such that

on () = f(ton (), () and @ (t) = f(t,0(t), ¢ ().

Case 2. For each t € J}, we have

Z(va) () =2 () (O] < gt v () — gu(t, v (2))]-
Case 3. For each t € [a,t], we get
—_ —_ 1 ! t sya—1l s
2 (va) (1) =E(v) (B)] < m/g (" —e)" e lpn(s) — @ (s)|ds,

where ¢, € C(J,IR), such that

o (8) = f(Lon (1), 0n (1) and @ (t) = f (8,0 (1), ¢ (1))

Since v,, — v asn — oo and f, g, are continuous, then by Lebesgue dominated convergence
theorem, we have

lon (1) — @ (t)] > 00 as n— o0 and |gg(t,v, (1)) — gr(t,v ()] — 00 as n — oo,

which leads to ||= (v,) (t) — = (v) (1) ]|

be —7 00 s M — 00, Therefore = is continuous.

Step 2 : = maps bounded sets into bounded sets in PC (J,IR).
Indeed, it is enough to show that for any ¢ > 0 there exists a positive constant ¢ such
that for any v € B, = {v € PC (J,IR) : ||v]|,. < 0}, we have ||Z(v)],. < L.
Case 1. For each t € [a, t1], we have

SOl < B+ py [ =) e el as

where ¢ € C(J,IR) such that
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By using (H4), we get
e = [f(tv(E),e(t))

< p®)+a @) vE)]+aq@)le)
< p)+a(t) o+ q(t)|ed)]
< prHgio+asle(t)].
Then f g
p Y
t — =M.
] < T
Thus,
M (e — )"
= < —_— =,
IZ),e < 16+ =

Case 2. For each t € J}, we have

E@)®)] < gty @))]

By (H5), we know that

lgx(t,y ()] < pg, (1) (ly(B)[ + 1)

Thus,
IE(@)O,., < pylo+1):= 1o

Case 3. Similarly to the recent calculus for each t € Ji, we get

M (e — )"

Tat1) .

[E@®I,, < pyle+1)+

Now, if £ = max {/1, {5, ¢3} , then we have

=], < L

This shows that = maps bounded sets into bounded sets in PC (J,IR).

—_
—

Step 3 : = maps bounded sets into equicontinuous sets of PC' (J,IR).
Case 1. For 7,72 € [a,t1], 1 < 72 and v € B,, we have

E()(m) — Z()(m)| < ﬁ / Tl — et = (e — &)Y | o(s)] ds
+ﬁ /T2 ‘(67—2 — es)a_l es‘ lo(s)| ds
M

Tlar @il [(e™ —eM)* — (e —e")* +2(e™ —e™)7].
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Case 2. For 1,7 € Ji, 1 < 75 and v € B,, we obtain

[Z(0)(72) = Z@) (M) < gk(72,y (12)) = gk (71,9 (1)) -

Case 3. For 71,79 € Ji,, 1 < 12 and v € B,, we get

EW)(r) - E@)(m)| < ﬁ / Tl = et = (e — )Y & o(s)] ds
+ﬁ / (e — &)™ e | o(s)]| ds
Tlas D (O]é\/:_ 0 [(e™ —e®)* — (e — )" +2(e™ —e™)7].

As 11 — 7o, the right-hand side of the above inequality tends to zero. As a consequence of
the steps 1 to 3 together with the Ascoli-Arzela theorem, we deduce that = is completely
continuous.

Step 4: A priori bounds. We will show that the set
e={ue PC(J,IR): u= A=(v), for some A € (0,1)}

is bounded. Let u € ¢, then u = AZ(u) for some 0 < A < 1.
Case 1. For each t € [a, t1], we have

A

u(t) = 5/\+m/a (e" —e*)" ep(s)ds.

Taking the absolute values of both sides and using 0 < A\ < 1, we get

1 t a—
u @] < 18+ i [ (- ) e el ds

By (H4), we have

|f (& u(t), ()]
p(t)+aqu(t) lu ()] + g2 (1) ()

P ai fu ()] + g ()]

o ()]

IN

IA

IA

1—QQ
Pt lull
l—q

This implies that

pio) < o+ (CEE ),

1 —q5
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Thus, . .
(1= 122 bl < 101+ {22
From the condition (5.10), it easy to see that quq* < 1. So,
)
e < i 22 -]
pe = 1—g5 1—g;

Case 2. For each t € J}, we have

By (H5), we obtain
u@®)] < pg () (Ju(®)+1)

IN

p;( ||u||PC + 1)
From the condition (5.10), it follows that

= CQ.

Case 3. Analogous for each t € Ji, we get

* * -1
p*p aip
()] [" 1—g5 I 1-q

* * -1
pp q.p
< * 1-— = = (5.
el < [pﬁl—qa‘“ (py+1—QS)] @

Hence, [Jul| . < ¢ with ¢ = max {1, (s, (3} . Therefore, the set € is bounded. Finally, as
a consequence of Schaefer’s fixed point theorem, we deduce that = has at least one fixed
point which is solution of the IVP (5.1)-(5.3) on J. This completes the proof.

Then

5.2.2 Ulam—Hyers—Rassias Stability

In this subsection, we study U-H-R stability of the IVP (5.1)-(5.3). For this, we
introduce the concepts of U-H-R stability for the problem (5.1)-(5.3). Let x € PC(J,IR),
€>0,w>0,and ¢ € C(J,IR) be a nondecreasing function on every Ji, k =0,1,...,m.
We consider the following inequalities:

{ cDe x(t) — f(t,x(t), D2a(t)| < e (t), te€Jp, k=0,1,....m

(5.11)
lz(t) —ge(t,z (1) <ew, telJ,, k=1,2,....,m.
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Definition 5.5 The problem (5.1)-(5.3) is U-H-R stable with respect to (1, w) if there
exists a real number vy, > 0 such that for each € > 0 and for each solution x € PC (J,IR)
of the inequality (5.11) there exists a solution y € PC (J,IR) of the problem (5.1)-(5.3)

with

lz @) =y O, < evpy @) +w) foraltel

Remark 5.6 A function x € PC (J,1IR) is a solution of the inequality (5.11) if and only
if there is ® € ]ﬁOC (Ji, IR) and a sequence Oy, k =1,2...,m (which depend on x) such

that

(1) 12 (O] <ep(t),

forte Ji, k=0,....,m and |P| < ew, fork=1,...,m;

(i) ¢Dgx(t) = f(t,x(t), eDgx (1) +®(t), forte Jp, k=0,...,m;

(iii) x (t) = gr(t,x (t)) + P, forte J, k=1,...,m.

Now, we need the following assumption in the sequel:

(H6) There exists ¢ € C (J,IR;) which is nondecreasing on every Ji, k =

and 3y, > 0 such that

I (t) < Byt (t), foreachte Jp, k=0,1,...

Theorem 5.7 Assume that (H1)-(H3), (H6) and (5.8) are satisfied. Then the IVP (5.1)-

(5.3) is U-H-R stable with respect to (¢, w).

Proof. Let x € PC (J,IR) be a solution of the inequality (5.11). Denote by y the unique

solution of the non-instantaneous impulsive Cauchy problem

Dy () = fty (@), eDGy (), tey, k=0,1,...

y(t)=grt,y(t), teJ, k=1....m

y(a) =z (a) =4.

From Lemma 5.2, we know that

( 1 ¢ sya—1 g .
o+ m/ﬂ (e" =€) epy(s)ds, if t € [a,ti]

\ F(O‘> Sk
where ¢, € C(J,IR) such that
py(t) = f(ty(t), py(t)).

0,1,...

,m

1 ! a— .
r(sk, y (sk)) + —/ (e' —¢) ' e‘py(s)ds, ifte Jy, k=1,...,m,
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Since z is a solution of the inequality (5.11) and from Remark 5.6, we have

cDgx(t)=f(t,x(t), (DGx(t)+®(), t€Jy, k=0,1,....m
(5.12)
(t) =gtz () + P, teJ, k=1,...,m.

Clearly, the solution of (5.12) is given by

( 1

§+ m/@ (e" =€) e*pu(s)ds

1 ¢ sya—1 ¢ .
+m/a (e =€) e'D(s)ds, ift€ [a,ti]

:C(t):< gk(t,x(t))—i-q)k, iftGJ,/g,kzl,...,m

1 ' t sye—1
g (sk, x (sx)) + m /Sk (e =€) e*pu(s)ds

1 ¢ t a—1
+— e —e° e®(s)ds, ifteJ,, k=1,...,m,
|t f, e e :

where ¢, € C(J,IR) such that

pa(t) = [t x(t), pu(t)).

Now, by using (H2), (H3), (H6) and the previous computations, we shall find vy,.
Case 1. For each t € [a, 1], we have

lz(t) —y(t) = ’ﬁ/ (e" = es)a_l e’py(s)ds + ﬁ/ (e' — es)a_1 e*®(s)ds

1 ! t syoe—1 ¢
—m/a (e" =€) e*py(s)ds

1 ! t sye—1l s
SW/Q (¢ = ¢)" " ¢ |0 (s) — iy ()] ds

1 ! t sya—1l s
—l—m/a (e — €)™ e |D(s)|ds

i ! t sye—1 € ! t sya—1 s
gm/a (e" —¢) e[x(s)—y(s)|ds+m/a (e — €)™ e*Y(t)ds

y (eb _ ea)o‘

< Tlaxl) |z =yl . +eBpb(t).
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Then,
[z =yl < volle—yll,.+ebu@).
From (5.8), it clear that vp < 1. So,

Iz —yll,., < Byt () (5.13)

L—p

Case 2. For each t € (t, sx], we have
[z (1) =y (O] = lgk(t, (@) + P — gr(t,y (1))]
|96(t, 2 (£) — gty ()] + ||

< Glr () —y ()] + ew.

IN

A

Then,
|z —yll,. < Ellz—yll,. +ew.

From (5.8), it clear that £ < 1. So,

le () =y Ol,, <

1—¢

(5.14)

Case 3. For each t € (sg, tx41], we have

2~y @O = |gn(sm(s0)) + ﬁ / (¢ — ) e, (s)ds
i | =) s — s (s0)
—ﬁ/s (e" = es)%l e’py(s)ds
< gr(sk, @ (sk)) — gr(sky (s))| + ﬁ /s: (e = Gs)ail e’ |®(s)|ds
—i—ﬁ/ (et — 6$)a_1 e’ |pz(s) — @y(s)| ds
< Ella =yl + Bt () + Vﬁ‘za‘ff)) Iz =yl .-
Then,

le=yll,. < E+ro)llz—yll,,+ebutd(t).
From (5.8), we get
Byt (1)

TG (5.15)

Iz =yl <
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Finally, From (5.13), (5.14) and (5.15), we have

€w N Byt (1)
1-=¢ 1=(§+p)

lz—yll,., < for t € J.

Consequently,
||z — y||PC < evpy [ (t) +w], forteJ,

with

1% ':max{ 1 Bw }
T 11— (E+p) )’

which implies that the IVP (5.1)-(5.3) is U-H-R stable with respect to (¢, w) . This com-
pletes the proof.

5.2.3 Examples

In this subsection, we will give two examples to illustrate the above results.
Example 1. Consider the following initial value problem :

P
6Dsky( )= ¢ , foreachte JyUJi, (5.16)
18162 (1 -+ y(0)] + ¢ y(1)|)
e ly(®)]
t) = f hte J] 1
y (t) B 1) (|y(t)|+1 , foreacht e Jj, (5.17)
y (1) = 769, (5.18)

Wherea—% :[,\/_} Ji = \/5,\/§],J1:(\/§,2],J:[1,2],7:[1,\/§]U[\/§,2},
T~ (V23] 0= 769

Set
e~ Vti+24 .
t = f t 9 E ]1:{ ]R‘7
and

—¢2
€ Y] =
ty) = for (t "% IR.
91 (t,y) 13<t2_1)(’y|+1), or (t,y) € J' X

1
Now, for t € kaJk and y1, Yo, 21, 22 € IR, we can show that

< (g — gl + |2 — =)
1815 W1 Y

|f (t, g1, 21) — f (¢, 92, 22)
Also,

1
13e2

lgr (t, 1) — o1 (t,y2)] < ly1 —yo|, forte J and yi,y € IR.
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1
and £ = T362" we have that

k1 (eb — e“)a

(1— k) T(a+1)

1 ez —e 1 3\17*
— 1— (2
3 T 18led K 18165) <2>}
1 n 2v/e? —e
13¢2 ' (1815 — 1) /&

ThU_S, for k’l = ]{32 = W

E+yp = &+

~ 0.01050119152
< 1

Hence, all of assumptions (H1)-(H3) and the condition (5.8) are satisfied. As a conse-
quence of Theorem 5.3, the initial value problem (5.16)-(5.18) has a unique solution on
[1,2]. On the other hand, with the choice of w =1 and

el — e, iftE[l,\/ﬂ
¥ (t) =14 0, if t € (V2,V3]

et —eV3, ifte (\/§,2} .
We find that

and

er? ¢() :% et—e\/g(et—e‘/g)

de
3\/_
4e
Thus, (H6) is satisfied with §, = v Therefore, from Theorem 5.7, the IVP (5.16)-
™
(5.18) is U-H-R stable with respect to (¢, w).

b (1)

Example 2. Consider the following initial value problem :

Dy (t)

D5 y(t)

e ™ 3ly@)]
C 2cos(t) +
mEsD |20 T -

eDSky() ,forte Jy, k=0,...,9,

(5.19)
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t 1
y(t):%, forte J, k=1,...,9, (5.20)

43 + e

y (0) = 563, (5.21)

I
=)
[a

where a = %7 tk L S = % + %7 Jl; = (tkask]a Jk = (8k7tk+1]7 k= 17 "797 JO

2"y LT
J=[0,7],TJ = i [k trta], T = = [tr, s], 6 = 563.

Set
e 31yl 52| —
t,y,z) = ———— [2cos(t) + , for (t,y,z) e I xIR xR
F9:2) = ey O T T T34 (t9,2) € J
and
+1 —
gk(t7y):L10157 for (t,y)EJIXR.
43 +er
Choosing
2e~" cos (1) 3e~ "
=" 1 = -—
P =) a«l) = ZaEry
Se~ Tt 1
)= —— d t) = ——.
) ) . 2, 3, ) . 1
Hence (H4) and (H5) are satisfied with p* = 7 0T g T o and p, = Bre
Also, we can show that
* * b a a
Y L (¢ —e)
+ = pi+
A I CEE)
1 — —1
_ +3\/e 1 1_3 r 3
43+ e 47 47 2
B 1 n 6ve—1
43+ e 427

~ 0.1275242364
< 1.

Hence, all of assumptions (H1), (H4), (H5) and the condition (5.10) are satisfied. As a
consequence of Theorem 5.4, the IVP (5.19)-(5.21) has at least one solution on [0, 7].
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5.3 Existence and Stability Results for the Nonlocal
IVP

In this section, we present some results of existence, uniqueness of solutions and U-H-R
stability for a class of nonlocal IVP :

Doy (t)=f(t,z(t), (D5 y(t), foreachte JyCJ, k=0,1,....m, (5.22)
y(t) = gr(t,y(t)), foreachte JyCJ, k=1,2,...,m, (5.23)
y(a) +h(y) =0, (5.24)

where o, D, f, gr, 9, J, Jo, Jk, J, k= 1,...,m are defined as in (5.1)-(5.3) and
h: PC (J,IR) — IR is a continuous functions. In [42], Byszewski et al. gives a theorem
about the existence and uniqueness of a solution of a nonlocal Cauchy problem for an
ordinary differential equation. The nonlocal condition (5.24) can be more useful than

the standard initial condition (5.3) to describe some motion of physical phenomena with
better effect.

5.3.1 Existence of Solutions
In this subsection, let us start by defining what we mean by a solution of the problem

(5.22)-(5.24).

Definition 5.8 A function y € PC(J,IR) N <£JO AC’e(Jk,IR)> is said a solution of
(5.22)-(5.24) if y satisfies the condition (5.24), the equations (5.22) and (5.23).

Lemma 5.9 The nonlocal IVP (5.22)-(5.2/) is equivalent to the following integral equa-
tion

§—h(y) + ﬁ/a (e" — es)a_l e*p(s)ds, if t € [a,t]

gr(t,y(1)), ifted, k=1,...,m

1 ¢ a .
Ik (sk,y(s1)) + —a/ (et — es) ! e’p(s)ds, ifteJ,, k=1,...,m,
Sk

\

where p € C(J,IR) such that

o(t) = f(t,y(t), o(t)).

Proof. The proof is taken just with repeating the same process applied in the proof of
Lemma 5.2. We state the following assumption:
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(H7) There exists a constant & > 0 such that

h(y) —h ()| < &llys — val,  for any y1,y, € PC (J,IR).

Theorem 5.10 Assume that (H1)-(H3) and (H7) hold. If
Gétap<l, (5.25)
then the nonlocal problem (5.22)-(5.2/) has a unique solution on .J.

Proof. Transform the problem (5.22)-(5.24) into a fixed point problem, consider the
operator = : PC' (J,IR) — PC (J,IR) as

( §—h(y)+ %Oé)/a (e" = es)Ml e’p(s)ds, if t € [a,t]

~ ty (1)), ifteJ, k=1,....m
:(y)(t): gk( y()) k

1 ! a— :
Gk (Sk,y(sk))ﬁ-ﬁ/ (e' —¢) 1es<p(s)ds, ifte i, k=1,...,m,
Sk

where ¢ € C(J,1IR) such that
p(t) = ft,y(t), ¢(t)).

We can easily show that = is a contraction simply by following the computations as it is
done in the proof of Theorem 5.3.

5.3.2 Ulam—Hyers—Rassias Stability

In this subsection, we present an result in U-H-R stability for the nonlocal IVP (5.22)-
(5.24).

Theorem 5.11 Assume that (H1)-(H3), (H6)-(H7) and (5.25) are satisfied. Then the
nonlocal IVP (5.22)-(5.24) is U-H-R stable with respect to (¢, w) .

Proof. To prove that the problem (5.22)-(5.24) is U-H-R stable with respect to (¢, w),
we follow the computations as it is done in the proof of theorem 5.7.

5.3.3 An Example
Consider the following nonlocal IVP :

) —t
eD2y(t) = ¢ , foreachte JyU.J, (5.26)
22+ ¢t) (1+|y(0)] +

:Diy(t)])
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ly(t) +1 /
TS 2
y<t) 13+ )7 tejla (5 7)
2
15/ |y =3, (5.28)
where a = £, Jo = [0,1], J{ = (1,2], /1 = (2,3], J =[0,3], T = [0,1]U[2,3], T = [1,2],
0 = 3. Set
et _
fty,2) = CEEESEIER for (t,y,2) € J x IR x IR,
_ lyl+1 —
g1 (tay) - (13—‘—6'5)7 for (tay) € J xIR
and ; "
~ 1 y(t
= — ——=—dt, forye PC(|0,3],IR).
0 =15 [ oA forye PO(0.3].R)
Since,

1 _
\f (g, 21) — [ (E 42, 22)] < 23 (Jy1 —y2| + |21 — 22|), for (t,y,2) € T x IR x IR,

1 _
lg1 (t,y1) — g1 (t,92)] < 13+6|y1—yzl, for (t,y) € J' x IR
and {
h(y1) — h(y2)| < R ly1 — |, fory e PC([0,3],IR).
1 1 1
Then for ky = ko = % &= Bre and & = £ we have

kq (eb - ea)a

(1 —ko)T(a+1)

_1+1+63—111F3*1
5 13+4e 23 23 2
L1 +2m

5 13+e 22\/m
0
1

GtHét+ap = §+H&+

4876906265

<

Therefore, all of assumptions (H1), (H2), (H3), (H7) and the condition (5.25) are satisfied.
By Theorem 5.10, we deduce that the nonlocal IVP (5.26)-(5.28) has a unique solution on
0,3]. Also, form Theorem 5.11, it follows that the problem (5.26)-(5.28) is U-H-R stable
with respect to (¢,w).
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Chapter 6

Initial Value Problem for Nonlinear
Implicit Caputo’s Exponential Type
Fractional Differential Equations
with Non-Instantaneous Impulses in
Banach Spaces

6.1 Introduction

In [38], Benchohra and Slimane studied the existence of solutions for the following
fractional initial value problem with non-instantaneous impulses in Banach spaces involv-
ing the Caputo fractional derivative

‘Dry(t) = f(t,y(t)), forae. te (sg,tpr1], k=0,...,m, 0<r <1,

y(t) = gk(t7y(t))> te (tlmsk?]? k= 17 U

y<0) = Yo,

where J = [0,T] 0 = 59 < t; < §1 < ... <ty < Sy < tyy1 = T, D" is the Caputo
fractional derivative , (E,||||) is a real Banach space, yo € E, f : J x E — E and
gk : (tk, sk] X E X E, k=1,...,m are given functions.

This chapter is devoted to the results obtained by Malti et al. [78], at the begin-
ning, we establish the existence of solutions and Ulam-Hyers-Rassias (U-H-R) stability
for a class of initial value problem (IVP) for nonlinear implicit Caputo’s exponential
type fractional differential equations with non-instantaneous impulses in abstract space.
At the end, we give some generalization of our results to the nonlocal cases.

81
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6.2 Existence and Stability Results for the IVP in
Banach Space

In this section, we study the existence of solutions and Ulam-Hyers-Rassias stability
for an initial value problem of nonlinear implicit Caputo’s exponential type fractional
differential equations with non-instantaneous impulses given by

Do yt)=f(tyt), D5 y(t)), foreachte J,CJ, k=0,1,...,m, (6.1)
y(t) = gr(t,y(t)), foreachte J, CJ, k=1,2,...,m, (6.2)

y(a) =9, (6.3)
where J = [a,b], a = tp = 5o < t1 < 51 < ... < by < Sy < by = b, $DS de-
note the Caputo’s exponential type fractional derivatives of order a € (0,1], (E, ||-||) is
a real Banach space, § € E, J|, := (tx, k|, Jx = (sk,tesa], K =1,2,...,m, Jy := [a,t1],
f:IxExE — Eand g, : J xE — E are a given functions such that J = knL—jo [Sky thr1]

and J' = kq [tr, sk] . Here, the impulses start abruptly at the points ¢, k = 1,...,m

and their action continues on the intervals J;, k = 1,...,m. The function y takes an
impulses at tx, £ = 1,...,m and it follows different rules in two consecutive intervals
Jr and J;. At the point si, k = 1,...,m, the function y is continuous. The intervals
Ji, k=1,...,m are called intervals of non-instantaneous impulses for the problem (6.1)-
(6.3) and the functions gy (t,y (t)), k = 1,...,m are called non-instantaneous impulsive
functions for the problem (6.1)-(6.3). Also, the problem (6.1)-(6.3) can be reduced to an
impulsive fractional differential equations when t, = s, k=1,...,m.

6.2.1 Existence of Solutions

The following notations which are useful on this chapter. Consider the following set of
functions

PC(J,E) = {y J—=FE yeC(Jy,E) andye C(JLUJ, E), k=1,2,...m
and there exist y(t;, ), y(t)) for every k =1,...,m with y(¢t;) = y(tx) }

This set is the Banach space equipped with the norm

9]l e = max ¢ sup [ly@)[, sup [[y(@)]
te U Ji te U Jy
k=1 k=0



CHAPTER 6. IVP for NIFDE with Non-Instantaneous Impulses in Banach Space 83

Lemma 6.1 (/56]) If V. C PC(J, E) is a bounded and equicontinuous set, then

(1) the function t — (V' (t)) is continuous on J, and

poe(V) =max § sup p(V (1)), sup u(V (1))
tekL:JIJ,; tekL:JOJk
(ii) w{ [V y(s)ds sy € V] < [7p(V(s))ds,
where 1 1s the Kuratowski measure of noncompactness and
Vis)={y(s):yeV}, se
Now, we define what we mean by a solution of the IVP (6.1)-(6.3).

Definition 6.2 A functiony € PC (J,E)N < U AC, (Jg, E) ) is said a solution of (6.1)-

(6.3) if y satisfies the condition y(a) = 0, the equatzons cDg (t) ft,y(t), eDg y(t)) on
Je, k=0,1,....m and y(t) = g(t,y(t)) on J,, k=1,2,...,m.

\_/

To prove the existence of solutions of the IVP (6.1)-(6.3), we need the following auxiliary
lemma.

Lemma 6.3 Let o € (0,1] and let o : J — E be continuous. A function y is a solution
of the fractional integral equation

( 1 ' t syae—1 :
o+ m/a (e =€) e*p(s)ds, if t € (a,t]

el (50 + s / =) s 1€ = (st

if and only if y is a solution of the fractional IVP with non-instantaneous impulses

Deyt)=w(t), foreachte J,CJ, k=0,1,...,m, (6.5)
y(t) = ge(t,y(t)), foreachte J,CJ, k=1,2,...,m, (6.6)
y(a) = 0. (6.7)

Proof. Assume that y satisfies (6.5)-(6.7). If ¢t € [a, 1], then

cDyy(t) = (1)
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By Lemma 1.10, we get
y(t) =mno + “ITe(t).
Since y (a) = 4§, then 19 = § and

y(t) =0+ ﬁ/@ (e" = es)%1 e*p(s)ds.

If t € Jj := (t1, s1], we have
y(t) = g1(t, y(t)).
If t € J; := (s1,t], then by Lemma 1.10 we get

1 ! t sya—1l ¢
m/ (e — €)™ ep(s)ds

S1

y(t) = y(s1)+

If t € J := (tg, s2], we have
y(t) = g2(t,y (1))
If t € Jy := (s9,t3], then by Lemma 1.10 we get

1 ' t sya—l s
m/ (e" =€) e*p(s)ds

52

y(t) = y(s2,y(s2)) +

1 t a—1
— gmlsyloa)) g [ (=) eels
tw J, )
If t € Ji := (t, sx), we have
y(t) = gi(t, y(t)).
If t € Jy := (Sg, tgy1), then by Lemma 1.10 we get

1 ! t sye—1 ¢
m/ (" =€) e*p(s)ds

Sk

y(t) = y(swylsk) +

1 ' t sye—l s
= gr(sk y(sk)) + () /Sk (e —e*)" " ep(s)ds.

By the same ways, for every non-zero integer k& < m, the solution y(¢) can be written as

y(t) = 1 t t s a—1 s .
gk (sk, y(sk)) + Tia) (e" =€) e*p(s)ds, ifte€ Jy= (sp, trr)-
Sk
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Conversely, assume that y satisfies the equation (6.4). If ¢ € [a,t;] then y(a) = ¢ and
using the fact that ¢D¢ is the left inverse of “I$ we get

°Dy(t) = p(t), for each t € [a,ty].

If t € (s, txy1], where k = 1,...,m. Then, by using the fact that (D C' = 0, where C' is
a constant and £D¢ is the left inverse of °I , we get

DS y(t) = p(t), foreach t € (s, 1]
Obviously, it easy to see that
y(t) = gr(t,y(t)), foreacht € (tg,s], k=1,2,...,m.
The following hypotheses will be used in the sequel:

(Ho1) The function t — f (t,y, z) is measurable on J for each y, z € E, and the functions
y— f(t,y,z) and z — f(t,y, 2) are continuous on F for a.e. t € J.

(Hoz) There exist constants k; > 0 and 0 < ks < 1 such that

||f(t7y1721)_f(t7y27ZQ)H < k1||y1_y2||+k2||21_22”7 fort € kL:JOJk’ Y1, Y2, 21,22 € E.

(Hos) The function g, : J’ x E — E is continuous and there exist constants & > 0,
k=1,...,m such that

i, v1) — ge(t, )| < &kllyr —well, forte Jy, k=1,...,mand y1,y, € E.

Remark 6.4 [18] Conditions of (Hoe) and (Hys) are respectively equivalent to the in-
equalities

p(f(t,By,Bs)) < kip (By) + kopu (By),  for (t, By, Bs) € kgot]k X ExE

and
M(gk(t7B))§£kﬂ<B>7 fOT (t7B>€JI/§><E7k:17”-7m~

Now, we pass to state and proof our first existence result for the problem (6.1)-(6.3)
based on concept of measure of noncompactness and Darbo’s fixed point theorem.

Set

b =)’ f=supllf(¢,0,0)]|, ¢g" a sup ||gx (¢, 0)]]
= y P = 9 := sup sy , § =  max up gk \1, )
1-— k‘g F(O{ + ].) teT k=1,...m tE€[tk,5k]

=l.m  K=l,...
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Theorem 6.5 Assume that (Hyy) — (Hos) are satisfied. If

A1 = max {yp, £} <1, (6.8)
then the IVP (6.1)-(6.3) has a solution defined on .J.

Proof. Transform the problem (6.1)-(6.3) into a fixed point problem, consider the oper-
ator A : PC (J,E) — PC (J, E) defined by

( 1 ! t sya—1 s .
d+ m/a (e =€) e*p(s)ds, if t € [a,t4]

1 ! a— .
9i(Sk: Y (1)) + ﬁ/ (e" —¢) ! e‘p(s)ds, ift e J, = (Sk,tet1),
Sk

(6.9)

where ¢ € C(J, E) such that

p(t) = [t y(t),(t)).

It clear that, the fact of finding solutions for problem (6.1)-(6.3) is to find the fixed points
of the operator equation A(y) = y. Now, we shall use Darbo’s fixed point theorem to
prove that A defined by (6.9) has a fixed point on J. The proof will be given in several
steps.

Step 1: A is continuous.
Let {v,} be a sequence such that v,, — v in PC(J, E).
Case 1. For each t € [a, 1], we obtain

1

[A (vn) (8) = A (0) D) < m/@ (" =€) e fln () — 0 (s)]| ds,

where ¢, € O(J, E), such that
on () = f(ton (1), 00 () and @ (1) = f (80 (t),¢ (1))
Case 2. For each t € J;, we have

[A (vn) (£) = A (o) (O] < [lgu(t, vn (£) — gr(t, v ()]
Case 3. For each t € Ji, we get
IA (va) (£) = A @) (O < [lgw(sk, vn (sk)) — grlsk, v (si))]]
i | e e =l ds

Sk
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where ¢, p € C(J, E), such that
en (1) = f(ton (1), 00 () and @)= f(v(t),p(t)).

Since v, — v as n — oo and f, g, are continuous, then by Lebesgue dominated
convergence theorem, we have

lon (t) =@ ()| = 0asn — oo and ||gr(t,v, () — gr(t,v ()] — 0 as n — oo,

which leads to [|A (v,) (t) — A (v) (t)[|,, — 00 as n — oo. Therefore A is continuous.
Before the next step, we consider the ball Bg = {y € PC'(J,E) : |ly||,. < R} where

I A
1—/{32 g 1_]{32

max , , < R.
L—np 1-&  1—7p

Step 2: Prove that for any y € Bgr, F maps Bg into itself.
Case 1. For each t € [a, t1], we obtain

HA@NM|s|wuf%5/(a_af4awmwm&

where ¢ € C(J, E) such that

p(s) = f(s,9(s), 0(5)).
By (Hpz), we have

le@I =1l y@), (b)) = [ (£,0,0) + f (£,0,0)]
1 (£, u(t), o) = f (£ 0,0)[ + [ (&,0,0)]
Fullyll + k2l + f*

Fullyll e + k2l @1 + f

kiR + ky [|p(t)]] + f*

IN - IN A

VAN

Then

el < AR+ =M
2

Next, we have

Aol < 1o+ (r+ 150 ) s [ -e) eas

* b Ja\¢
< o+ (v L) =)

B r
—|ww+QR+1_b)n




88 CHAPTER 6. IVP for NIFDE with Non-Instantaneous Impulses in Banach Space

Thus,
IFyll,.. < R, foreacht€ [a,t].

Case 2. For each t € Jj, we have
A )OI = gty ()]
= llg(t,y (t)) — gk (,0) + gx (¢, 0)]]
gkt y () — ge (&, 0)|| + llgw (2, 0)
& llyll + 97

Ellyll . +9°
ER+ g

INIA A

IN

Thus,
[Ay]l,. < R, foreacht € J;.

Case 3. For each t € Ji, we have

A O < ooy )] + s [ (=) e o) ds
< o+ %a)/ (e" = es)afl e’ ||e(s)]| ds.

Similarly to the case 1, we get

Aol < o+ (vr+ L)

Thus,
Ayl . < R, foreachte J.

Hence |[Ay| .. < R, for each ¢ € J. This implies that A transforms the ball Bp into itself.

Step 3:A(Bg) is bounded.
Since A (Bg) € Bgr and Bp, is bounded, then A (Bg) is bounded.

Step 4: A(Bg) is equicontinuous.
Case 1. For 7,7 € [a,t1], 11 < 7o and y € Bg, we have

1

[A()(72) = F(o)(m)]| < m/ [[(e™ =)™ = (™ —e)* ] e|| lo(s)| ds

L e - e et s)|| ds

+ﬁ@[;me e (s 1 d
M

I'(a+1)

IN

(e —eM)* — (e —e")* +2(e™ —e™)"].
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Case 2. For 7,75 € J;, 1 < Ty and y € Bg, we obtain

[A)(72) = F)(m)ll < [lgr(72,y (72)) — g7,y (7))]] -
Case 3. For 7,75 € Ji, 71 < 5 and y € Bg, we get
IA@)(m) — Fo)(m)|| < ﬁ / Tl = et = (e — e e ()| ds

Sk

e - e)* et s)|| ds
it [ e = e e a
M T esk @ 67'2 _ esk (67 €T2 _ 67’1 «
[ = = (€ — e 2 (e - ).

As 1 — 7, the right-hand side of the above inequality tends to zero.

Step 5: The operator A : B — Bpr 1s a strict set contraction.
Case 1. For t € [a,t1] and V C Bg, one has

p(A(V) (@) = n({Ay) (), yeV})
< w0+ { [ =) enteenasy ey
By the Remark 6.4, for each s € kgojk’ we have

p{e(s), yeV}) = u({f(s,9(s),¢(s), yeV})

< kip({y(s), ye V) +ka({p(s), yeV}).
Then
p{e(s), yeV}l) < yu{y(s), yeV}).
It follows that

t
wam o) = @y entenayer
(e’
['(a+1)
< 7P ppe (V).
Case 2. For t € J;, and V C Bpg, we have

p(A(V)@) = n({(Ay) @), yeV})
n{g(t,y (1), yeV})
& n({yt), yeVy)
 tpe (V).

tipe (V)

INIA

IN
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Case 3. For t € Ji, and V C Bpg, one has
pA(V)(@) = n({(Ay) (@), yeV})

< w(gk(sk,y(sk))) + ﬁ {/ (et _ GS)a*I e’ (p(s))ds, y e V}

7 t P s))ds
< sl - et s ye v}
’Y(@b—€a>a
< mﬂpc(v)
< 9P e (V).

Thus, for each t € J, we have

Hpe (AV> < )‘1 Hpe (V) :

Hence by (6.8), the operator A is a contraction. As a consequence of steps 1 to 5 together
with Theorem 1.16, we deduce that the operator A has a fixed point which is solution of
the IVP (6.1)-(6.3). This completes the proof.

The following hypotheses will be used in the sequel:

(Hps4) There exists a continuous function p : J — [0,00) such that

p(t)

||f(t,y,Z)H < PRI
L+ [yl + (=]

for a.e. t € k@ng and y,z € E.

(Hps) For each bounded set B C E and for each t € k@OJk, we have

u(f (LB cDSB) ) <p(t)u(B).,
where (D B ={¢D%y:y € B}.

k k

(Hos) The function g : J' x E — E is continuous and there exists g, € C ([tg, sx] , IR),
k=1,...,m such that

Jow 1,1 < 1240

———— forae. teJ, k=1,...,m and each y € F.
+ [yl

(Ho7) For each bounded set B C E and for each t € Ji, k= 1,...,m, we have

ﬂ(gk(t7B)> SQk<t>M(B)’ k:L"'7m'
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The second existence result for the IVP (6.1)-(6.3) is based on the concept of measure of
noncompactness and Monch’s fixed point theorem.
Set

p* = supp(t) and q* = max sup gk (t) :
€7 k=1,...m tetr,sn]

Theorem 6.6 Assume that (Hoy) and (Hoy) — (Hor) are satisfied. If
Ay = max{q", p'p} <1, (6.10)
then the IVP (6.1)-(6.3) has at least one solution defined on J.

Proof. We shall use Monch’s fixed point theorem to prove that A defined by (6.9) has at
least one fixed point on J. The proof will be given in several steps.

Step 1: A is continuous.
Let {v,} be a sequence such that v, — v in PC(J, E).
Case 1. For each t € [a, 1], we obtain

[A (vn) (8) = A (o) D) < ﬁ/@t (" = )" e flgn (5) — 0 (s)]| ds,

where ¢, € C(T, E), such that
pn(t) = [ (tvn (), 0n () and @(t) = f(t,v(t), 0 (1))
Case 2. For each ¢ € J|, we have
1A () (1) = A () O < [lgr(tva (1)) = grl(t, v ()]
Case 3. For each ¢ € Jj, we get
1A () (8) = A (@) (O < [lgr(sn, va (s1)) = grlsws v (se))l

1 ' t sya—1 s
+m/5k (¢ — )" ¢ llgn (s) — o ()] ds,

where ¢, € C(J, E), such that
on(t) = f(tv, (), 0, (1) and @ (1) = f(t,v(t), @ ().

Since v, — v as n — oo and f,gr are continuous, then by Lebesgue dominated
convergence theorem, we have

lon (t) —@ ()| > 0asn — o0 and |gr(t,v, (t)) — gr(t,v (1)) — 0 as n — oo,
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which leads to [|A (v,) (¢) — A (v) (¢)]|,,, — 0o as n — oo. Therefore A is continuous.
Before the next step, we consider the ball Br, = {y € PC (J,E): |yl . < Ry} where

Ry > max {[|0|| + p*p, ¢*, o +p*p}.

Step 2: Prove that for any y € Bgr,, A maps Bg, into itself.
Case 1. For each t € [a, t1], we obtain

NGO < 18]+ 7 [ (=) e lloto) s

]' ! t S - S
< H5H—|——F(a)/a (e —e) e’p (s) ds

« ¢

p t s -1 s
< ||5||—|—F(a)/a (e —e*)" " e'ds

x (b a\¥

p* (e’ —e .

< o+ S <ol

Case 2. For each t € J}, we have

AW O = ety (O < @) < g
Case 3. For each t € Ji, we have
1

NGO < lontses ()] + Foo / (¢ — ) e o(s)]] ds
1

t
< o+ —/ el — ) e llp(s)]| ds.
Similarly to the case 1, we get

Ay DI < o+pp.

Hence [[Ay|,.. < Ry, for each ¢ € J. This implies that A transforms the ball Bg, into
itself.

Step 3: A(Bg,) is bounded.
Since A (Bgr,) C Bg, and Bg, is bounded, then A (Bg,) is bounded.

Step 4: A(Bg,) is equicontinuous.
Case 1. For 7,7 € [a,t1], 71 < 7o and y € Bg,, we have

1 " T2 sya—1 Ty sya—17 _s
[A(v)(72) = A)(n)]] < m/a [{(e™ —e)*™ = (e —e)* ] e[ lo(s)ll ds

LM e et s)|| ds
o / le™ — ey || lip(s)ll d
p* T ea « _ eTQ _ ea « eTQ _ 67‘1 «
e e = e 2 (e e,
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Case 2. For 7,7 € J,, 1 < Ty and y € Bg,, we obtain

[A()(72) = Al) ()l < Nlge(72, 5 (72)) — ge(m1,y (1))

Case 3. For 1,79 € Ji, 1 < 12 and y € Bpg,, we get

AW - A < s [

o lip(s)1l ds

[(e-rg o es)a—l o (en o es)a—l]es

L " T )l es s)|| ds
trir [l = ey el ets)la

T1
*

p

[ - e - @ e 2 -y

As 71 — 7y, the right-hand side of the above inequality tends to zero. Hence, A(Bg,)
is equicontinuous.

Step 4: The implication (1.4) holds.
Now let V' be a subset of Bg, such that V C conv(F (V) U {0}). V is bounded and
equicontinuous and therefore the function t — v(t) = p(V (¢)) is continuous on .J.
By using the Lemma 6.1 and Properties 1.12, for each t € J, we have

o) = p(V() < p(A0V)U{0}) < p((AV) ().
Case 1. If t € [a, t;], we obtain

v(t) < w(d)+ ﬁ/ (e — 65)a—1 e’p(s)u(V(s))ds

P t b ) esu(s)ds
< s [ e e

< o ol -

Case 2. If t € J}, we have
o(t) < p(ge( V(1) <a®)pV(E) <qot) <q vl
Case 3. If t € J,, one has

o) < ol () + T / (¢ — &) e*p () 1 (V(s)) ds

*

b t t_ ) etu(s)ds
< m/(e ) (s)d

Sk
< p'p ||U||PC :

Consequently, for each t € .J, we have

[ollpe < Aellvllpe -
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From (6.10), we get ||v||, = 0, that is v(¢) = u(V(t)) = 0, for each t € J, and then V/(¢) is
relatively compact in E. In view of the Ascoli-Arzela theorem, V' is relatively compact in
Bpg,. Applying now Theorem 1.18, we deduce that the operator A has at least one fixed
point in Bg,. This shows that the IVP (6.1)-(6.3) has at least one solution on J. This
completes the proof.

6.2.2 Ulam-Hyers-Rassias Stability

In this subsection, we study U-H-R stability of the IVP (6.1)-(6.3). For this, we
start by introducing the concepts of U-H-R stability for the problem (6.1)-(6.3). Let
x € PC(J,E),e>0,w>0,and ¢ € C(J,IR) be a nondecreasing function on every Jj,

k=0,1,...,m. We consider the following inequalities:
D2 (t) = f(t,x(t), DSz ()| <ew(t), te€p, k=0,1,...,m 6.1)
6.11
|| (t) —gk(t,x(t))H <ew, telJ,, k=12,....m

Definition 6.7 The problem (6.1)-(6.3) is U-H-R stable with respect to (¢,w) if there
exists a real number vy, > 0 such that for each € > 0 and for each solution v € PC (J, E)
of the inequality (6.11) there exists a solution y € PC(J, E) of the problem (6.1)-(6.3)
with

|z (@) —y@)ll,. < evpyp @ () +w) foralltel

Remark 6.8 A function x € PC (J, E) is a solution of the inequality (6.11) if and only
if there is ® € ’ﬁOC (Ji, E) and a sequence g, k = 1,2...,m (which depend on x) such
that B

(1) |2 <ep(t), fortedy, k=0,...,mand ||P| <ew, fork=1,...,m
(i) ¢Dg x(t) = f(t,x(t), eDgx(t)+@(t), forteJp, k=0,...,m;
(iti) ©(t) = gr(t,x (t)) + P, forteJ, k=1,....m
To discuss stability, we need the following additional assumption:

(Hog) Let v € C'(J,IR) be a nondecreasing function on every Ji, k =0, 1,...,m. There
exists B, > 0 such that

I (t) < Byt (t), foreacht e Ji, k=0,...,m

Theorem 6.9 Assume that (Hoy) — (Hos) and (Hog) hold. If
§+yp <1, (6.12)

then IVP (6.1)-(6.3) is U-H-R stable with respect to (¢, w) .
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Proof. Let z € PC (J, E) be a solution of the inequality (6.11). Denote by y the unique

solution of the non-instantaneous impulsive Cauchy problem
cDey(t)=f(t,yt), iDey(t)), t€ e, k=0,1,....m
y@) =ag(t,y@), tef, k=1....m

y(a) =z (a) = 0.

From Lemma 6.3, we know that

1

[(a) Js,

\

where ¢, € C(J, E) such that
py(t) = [t y(t), py(t)).

Since x is a solution of the inequality (6.11) and from Remark 6.8, we have

cDex(t)=f(t,x(t), cDex(t)+®(t), t€, k=0,1,....m
r(t)=gu(t,x(t) + P, te, k=1,...,m.

Clearly, the solution of (6.13) is given by

( 1 ! t sye—1 ¢
(H—m/a (e" =€) e*pu(s)ds
1

+m/a (et — es) T e*D(s)ds, ift € [a,ty]

ge(t,x (t) + P, ifted, k=1,....m

Ir (s, T (%)) + —/ (ef — )" e, (s)ds

Sk

['(«)

\

where ¢, € C(J, F) such that
pa(t) = f(t,2(1), u(t)).

( 1 t sl .
o+ m/ﬂ (e" =€) ey (s)ds, if t € [a,ti]
gr(ty (1)), ifteJ, k=1,...

t
gr(sk, y (sk)) + —/ (e' — es)a_l e‘py(s)ds, ifte Jy, k=1,...

1 t a—
+—/ (e" =€) 1es®(s)ds, ifteJy, k=1,...,m,
Sk

(6.13)
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Now, by using the hypothesis (Hp2), (Hps), (Hos) and the previous computations, we
shall find vy .
Case 1. For each t € [a,t;], we have

[l (t) =y ()]
1

_ HW / e — eyt pals)ds + / (e — ) e (s)ds

—m/a (e — €)™ " epy(s)ds

<v ] (e =) e nls) — () ds + 7/ (e =) e 0 (s) | ds
< s [ ey et v + 5 [ - vt
) el + B 0.
Then,

Iz =yll,. < vollz=yll,, +eBpi(t).

From (6.12), it clear that vp < 1. So

ool < T, (6.14)
Case 2. For each t € (, sx], we have
lz(t) =y (DI = lga(t, 2 () + Pr — gelt, y (1))l
< gtz (1) — gty ()1 + 1|2
< Sz (@) —y @)l + ew.

Then,

le=yll,. < &llz—yl,, +ew
From (6.12), it clear that £ < 1. So

(309

1-¢

e —yll,, < (6.15)
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Case 3. For each t € (s, tx4+1], we have

[l (8) —y @)

—gr(sk, Y (s1)) — ﬁ/ (ef — )" e, (s)ds

< lgr(sk,z (sx)) — gr(sk, v (sx))| +ﬁ/ (e" — &) e [lpuls) — y(s) ds
1 ! t sye—1 s
—l—m/Sk (e —e) e’ ||®(s)|| ds

o (eb . ea)a

< Lz —yl,. +F(a—+1)

[l = yll,., + Bt ().

Then
lz—yll,.. < (E+p)llz—yll,. +eByto(1).

From (6.12), we get

ool < ToE
Finally, From (6.14), (6.15) and (6.16), we have
cw Byt (1)
||x—y||PC < =t 1= (1) for t € J.
Consequently
lz—yll,. < evpyp(t)+w], forteJ
with

Vpyp = max{ ! , B } :
L=¢ 1= (E+)
Which implies that the IVP (6.1)-(6.3) is U-H-R stable with respect to (¢,w).

6.2.3 Examples

In this subsection, we will give two examples to illustrate the above results. Let

E:llz {y:(ylay27ayn’)2|yn| <OO}
n=1

be the Banach space with the norm [|y||g = Y7, [yn].

97

1 ' t sya—1 s 1 ' t s\a—1 s
9k (Sk, T (sk)) + T(a) /Sk (e" =€) e*pu(s)ds + () /Sk (" —e%)" e’ ®(s)ds

(6.16)

Example 1. Consider the following initial value problem for the nonlinear implicit Ca-
puto’s exponential type fractional differential equation with non-instantaneous impulses:

D ya(t) = fu (4 yn(0):£ Dign(t)) ,  for each £ € Jy, k=0,1,

(6.17)
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Yn (1) = g1, (t,yn(t)), for eacht € Jj, (6.18)
yn (1) = 487, (6.19)

where a = 3, 6§ =487, Jy = [1,In(2)], J{ = (In(2),In(3)], J1 = (In(3),In (5)],
J=[Lm),J=[1Ln2)ulnE), n6G)], 7 =M2), nG)], =y Y-,

1 1 1
2D52k (EDSkylw-ngy%'"7§D82kyn7"') 7f: (f17f27"'7fn7"‘)7gl - (91179127"‘)gln7"'

VA (1) tDinlt) =
o (b (0)£ Dt )>_11(2t—1) L+ Jyn(2)) 1+eDskyn()‘ e
and »
.t (0) = 5O e T

1
Now, for t € kL_JOJk and y,v, 2,z € E, we can show that

\/_

1 (8, 2) = (9. 2)p < 10

(ly =9l + 1z ==l

Also,
_ 1 _ _
g1 (t,y) — g1 D)l g < T ly —9llg, forteJjandy,yekE.

Thus, for ky = kg = £ and £ =

we have that
1le

10’

A= max{yp, ¢}

—1
— max ﬁ— Vo —e 1_ﬁ T § ’i
1le 1le 2 10
= Imax —2 ¢ i
B (1le — /7)" 10
~ 0.1074019495
< 1

Hence, all of assumptions (Ho;) — (Hos) and the condition (6.8) are satisfied. As a con-
sequence of Theorem 6.5, the problem (6.17)-(6.19) has a solution on [1,1n (5)]. On the
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other hand, with the choice of w =1 and
el —e, ifte[l,In(2)]
v (t) =< 0, if t € (In(2),In(3)]

et =3, ifte (In(3),ln(5)].

We find that
elléw (t) = %m (e" —e) e[él(g)w (t) % Vel —3 (e = 3)
4\/2—e¢() and 4\/_ b (1)
= 37 - 3\/_

Thus, (Hos) is satisfied with £, = %. In addition, (£ +p) ~ 0.2074019495 < 1.

Therefore, From Theorem 6.9, the IVP (6.17)-(6.19) is U-H-R stable with respect to
(¥, w).

Example 2. Consider the following initial value problem for the nonlinear Caputo’s
exponential type implicit fractional differential equation with non-instantaneous impulses:

Diyn() = fu (£ () Dign () , for t € Ji, k=0,...,9, (6.20)
Un (£) = g, (t,yn(t)), forte J,, k=1,...,9, (6.21)
Yn (0) = 523, (6.22)
Wherea:%,tk:%’r, Sk:%—i—% J,Q:(tk,sk],Jk:(sk,tkﬂ],k:l,..,Q,J = [O,g],
— 9 — 9
J = [0727T] ) \7 = kL:J [Skatk—i-l] j L:J [tk,Sk] 0= 5237 Yy = (yby% sy Yny - ) EDSky -
<2D5§ky1a§DS§ky27"' Skynv' > fl f2""7fn7"‘)’gk:(gk17gk'2?"'7gk?n7"')?

Ve VEFIG o (t)

(12 + 1) (14 [gal®)] + [ D390 ()] ) el

fu (t,yn( )£ D2yt )) =

and
5t
en

Crn ey e
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_ Vre VEHG cos (1) e
Choosin t) = and t) = , k=1,...,9. The hypotheses
1
(Hos4) — (Hor) are satisfied with p* = \/—f and ¢* = 3 Also, we can show that
e e
* (b a\¥
max {¢*, p*p} = max{q : ﬁ}

1 1
— max{g—, Vrver —1 [64F <g>} }
e
1 2ve?™ —1
= maxq —, ————
3e et
~ 0.8468812794
< 1.

Hence, all of assumptions (Hy1), (Hos) — (Hpr) and the condition (6.10) are satisfied. As
a consequence of Theorem 6.6, the IVP (6.20)-(6.22) has at least one solution on [0, 27] .

6.3 Existence and Stability Results for the Nonlocal
IVP in Banach Space

In this section, we present some results of existence of solutions and U-H-R stability for
a class of nonlocal IVP

DY () = f(tr(t), (DL (t)), foreach t€ S C J k=01..m (623
y(t) = gr(t,y(t)), foreachte J,CJ k=12...,m, (6.24)
y(a) +h(y) =9, (6.25)

where o, D, f, gk, 9, J, Jo, Jk, J, k=1,...,m are defined as in (6.1)-(6.3) and
h: PC(J,E) — E is a continuous functions. In [42], Byszewski et al. gives a theorem
about the existence and uniqueness of a solution of a nonlocal Cauchy problem for an
ordinary differential equation. The nonlocal condition (6.25) can be more useful than
the standard initial condition (6.3) to describe some motion of physical phenomena with
better effect.

6.3.1 Existence of Solutions

In this subsection, let us start by defining what we mean by a solution of the problem
(6.23)-(6.25).
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Definition 6.10 A function y € PC (J,E) N (kgo AC, (Jk,E)> is said a solution of

(6.23)-(6.25) if y satisfies the condition y(a) — h(y) = 0, the equations DS y(t) =
fty(t), eDsy(t)) on Jp, k=0,1,....m and y(t) = ge(t,y(t)) on J, k=1,2,...,m.

Lemma 6.11 The nonlocal IVP (6.23)-(6.25) is equivalent to the following integral equa-
tion

§—h(y) + 1 /t (e" — es)(kl e‘p(s)ds, if t € |a,t]

gr(t,y(1)), ifteld, k=1,...,m

1 ! a— :
i (sks y(si)) + —a/ (e" =€) ' e*p(s)ds, ifte Jy, k=1,...,m,
Sk

where ¢ € CO(J, E) such that
p(t) = [t y(t), o(t)).

Proof. The proof is taken just with Repeating the same process applied in the proof of
Lemma 6.3. Now, we state the following assumptions:

(Hog) There exists a constant & > 0 such that

<& lly1 —well, forany y,y € PC(J, E).

7))

(Hip) There exists a nondecreasing function p; € C(J,IR;) such that

[l < 2o wramvepon)

(Hy1) For each bounded set B C PC'(J, E), we have

p(R(B)) < py(t) swpp(B ().

teJ
Remark 6.12 [18] Conditions of (Hog) is equivalent to the inequality

1 (ﬁ (B)) < & supu(B (t)), for any bounded set B C PC (J, E).
teJ
Set

p% = supp; ().
teJ
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Theorem 6.13 Assume that (Hyy) — (Hoz) and (Hog) hold. If
max {& + p, £} <1, (6.26)
then the nonlocal problem (6.23)-(6.25) has a solution defined on J.

Proof. Transform the problem (6.23)-(6.25) into a fixed point problem, consider the
operator A : PC (J,E) — PC (J,E) as

(

§—n(y)+ ﬁ /a (e — es)afl e’p(s)ds, if t € [a, ]

3 gr (t,y (1)), ifteJ, k=1,...,m

I o
gk (S, Y (sx)) + —a/ (e" —¢) ! e‘p(s)ds, ifte g, k=1,...,m,
Sk

where ¢ € C(J, E) such that

o(t) = f(ty(t), o(t)).

We can easily show that A satisfies the assumptions of Darbo’s fixed point theorem. By
following the computations as it is done in the proof of Theorem 6.5.

Theorem 6.14 Assume that (Ho1), (Hos) — (Hor), (Hio) and (Hy1) hold. If
max {¢*, p; +p'p} <1,
then the nonlocal problem (6.23)-(6.25) has at least one solution defined on J.
Proof. The proof is taken just by following the computations as it is done in the proof

of theorem 6.6.

6.3.2 Ulam-Hyers-Rassias Stability

In this subsection, we present an result in U-H-R stability for the nonlocal IVP (6.23)-
(6.25).

Theorem 6.15 Assume that (Hoy) — (Hos), (Hos) and (Hog) hold. If
&Gy +E<l,
then the nonlocal IVP (6.25)-(6.25) is U-H-R stable with respect to (¢, w) .

Proof. To prove that the problem (6.23)-(6.25) is U-H-R stable with respect to (¢, w),
we follow the computations as it is done in the proof of theorem 6.9.
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6.3.3 An Example

Consider the following nonlocal IVP

eDskyn( )= fn (t,yn( )ye Dskyn( )> , foreachte Jy, k=01, (6.27)
Yn (t) = g1, (t,yn(t)), foreach t € Jj, (6.28)
Yo (0) + Ty (y) = 191, (6.29)

JU[2,3], 7 =11,2],
91179127"'7g1n7"')7

Wherea:%vjoz[()?l]wji ( ] J1 = ( 3]7‘]:[0’3]’7:[’

5 = 191 Yy = (ylay%w"ayna"')? f = (flafZ:"';fTh"')) g1 =
eDsky_ ( Dskyhc‘DEIey??"' eDskyTl"")7h: <h17h27"'7hn7"‘>7

—~ =

e (24 ()] + DA (1))

, VteJ,

o (8 90(0): D (1)) =

(3+¢t) (14 gal0)] + [DE3n(0)))
o VTS o
o (o gnlt)) = CRAAG I

3t(1+[ya()])

N ¢

h (yn)zzciyn (Ti)a

i=1
. 1 .
Wlth0<7'1<7'2<...<Tg<3,Cl,CQ,...,Cg>OaHdZCi<g.SlHCQ
__ 1 _ _ 1 _

1f (ty.2) = F 5. 2)p < - (ly —3llp + 2 = Zllg), forte Ui y.7,27€E,

_ 1 _ _
||gl(tay>_g1(t7y)“E S @Hy_yHE? fOI'tE(]{, yayeEa

and

[ 5@, < zl-vle. forvzePc(os).p).
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1 1
Thenfork:lzkrgzél—e,g:@andgﬁ:

max {& +7p, £} = max{ E+(1—/€2)P(0‘+1)7 f}

1+ 2ved — 1 1
= max{ -+ —— —
5 (4e—1)/7 3e?

~ 0.6992895922
< L

Therefore, all of assumptions (Ho1) — (Hos), (Hgg) and the condition (6.26) are satisfied.
By Theorem 6.13, we deduce that the nonlocal IVP (6.27)-(6.29) has a solution defined on
0,3]. Also, form Theorem 6.15, it follows that the problem (6.27)-(6.29) is U-H-R stable
with respect to (¢,w).



Conclusion and Perspective

In this thesis, we have presented some results in the existence, uniqueness of solu-
tions and Ulam stability for an nonlinear implicit fractional differential equations involving
Caputo’s exponential type fractional derivative of order a € (0, 1]. We have discussed Sev-
eral various classes: boundary value problems in Banach spaces, boundary value problems
with instantaneous impulses, abstract boundary value problems with instantaneous im-
pulses, initial value problems with not-instantaneous impulses for the both case of with
and without nonlocal conditions and initial value problems with not-instantaneous im-
pulses in Banach spaces for the both case of with and without nonlocal conditions. Our
approach for the classes of problems in Banach spaces is based on Darbo and Monch fixed
points theorems combined with the technique of measure of noncompactness and for the
remaind classes of problems we have used Banach’s contraction principle and Schaefer’s
fixed point theorem.

For the prespective, we project to study the case of nonlinear fractional differential
inclusions with and without impulses and the case of hybrid nonlinear coupled system
implicit generalized fractional pantograph equations. Also, We plan to extend our results
with ¢-Caputo fractional derivative.

105



106 CONCLUSION



Bibliography

1]

S. Abbas, M. Benchohra, Uniqueness and Ulam stabilities results for partial fractional
differential equations with not instantaneous impulses, Appl. Math. Comput. 257
(2015), 190-198.

S. Abbas, M. Benchohra, M. A. Darwish, New stability results for partial fractional
differential inclusions with not instantaneous impulses, Frac. Calc. Appl. Anal. 18(1)
(2015), 172-191.

S. Abbas, M. Benchohra, J. Henderson, J. E. Lazreg, Measure of noncompactness
and impulsive Hadamard fractional implicit differential equations in Banach spaces,
Math. Eng. Science Aerospace 8(3) (2017), 1-19.

S. Abbas, M. Benchohra, J.E. Lazreg, G. N’Guérékata, Hilfer and Hadamard func-
tional random fractional differential inclusions, Cubo 19 (2017), 17-38.

S. Abbas, M. Benchohra, J.E. Lazreg, Y. Zhou, A survey on Hadamard and Hilfer
fractional differential equations: analysis and stability, Chaos Solitons Fractals 102
(2017), 47-71.

S. Abbas, M. Benchohra, J.E. Lazreg, A Alsaedi, Y. Zhou, Existence and Ulam
stability for fractional differential equations of Hilfer-Hadamard type, Adv. Difference
Equ. (2017) 14p.

S. Abbas, M. Benchohra, J.R. Graef, J. Henderson, Implicit Fractional Differential
and Integral Equations: Existence and Stability, De Gruyter, Berlin, 2018.

S. Abbas, M. Benchohra, G. M. N’Guérékata, Advanced Fractional Differential and
Integral Equations, Nova Science Publishers, New York, 2015.

S. Abbas, M. Benchohra, G. M. N’Guérékata, Topics in Fractional Differential Equa-
tions, Springer, New York, 2012.

S.A. Abd-Salam, A.M.A. El-Sayed, On the stability of a fractional-order differential
equation with nonlocal initial condition, Electron. J. Qual. Theory Differ. Equat., 29
(2008), 1-8.

107



108 Bibliography

[11] R. P. Agrawal, M. Benchohra, S. Hamani, A survey on existence results for bound-
ary value problems of nonlinear fractional differential equations and inclusions, Acta
Appl. Math. 109 (3) (2010), 973-1033.

[12] R. Agarwal, S. Hristova, D. O'Regan, Non-Instantaneous Impulses in Differential
FEquations, Springer, Cham, 2017.

[13] B. Ahmad, A. Alsaedi, S. K. Ntouyas, J. Tariboon, Hadamard-type Fractional Dif-

ferential Equations, Inclusions and Inequalities. Springer, Cham, 2017.

[14] B. Ahmad, J.R. Graef, Coupled systems of nonlinear fractional differential equations
with nonlocal boundary conditions. Panamer. Math. J., 19 (2009), 29-39.

[15] B. Ahmad, J.J. Nieto, Existence of solutions for impulsive anti-periodic boundary
value problems of fractional order, Taiwanes J. Math. 15 (2011), 981-993.

[16] J. C. Alvarez, Measure of noncompactness and fixed points of nonexpansive condens-

ing mappings in locally convex spaces, Rev. Real. Acad. Cienc. Exact. Fis. Natur.
Madrid 79 (1985), 53-66.

[17] A. Anguraj, S. Kanjanadevi, Non-instantaneous impulsive fractional neutral differ-
ential equations with state-dependent delay, Progr. Fract. Differ. Appl. 3(3) (2017),
207-218.

[18] J. Appell, Implicit Functions, Nonlinear Integral Equations, and the Measure of
Noncompactness of the superposition Operator. J. Math. Anal. Appl. 83 (1981),
251-263.

[19] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus models and
numerical methods, Series on Complexity, Nonlinearity and Chaos, Vol.3, World
Scientific Publishing Co., 2012.

[20] D. Baleanu, Z. B. Guvenc, J. A. Tenreiro Machado, (eds.): New Trends in Nanotech-
nology and Fractional Calculus Applications. Springer, Dordrecht, 2010.

[21] D. Baleanu, J. A. T. Machado, A. C.-J. Luo, Fractional Dynamics and Control,
Springer-Verlag, New York, 2012.

[22] J. Bana$, K. Goebel, Measures of noncompactness in Banach spaces. Marcel Dekker,
New York, 1980.

[23] Banas, J, Zajac, T: A new approach to the theory of functional integral equations of
fractional order, J. Math. Anal. Appl., 375 (2011), 375-387.

[24] M. Benchohra, S. Bouriah, M. A. Darwish, Nonlinear boundary value problem for im-
plicit differential equations of fractional order in Banach spaces. Fized Point Theory
(2017), 457-470.



Bibliography 109

[25]

[26]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

M. Benchohra, S. Bouriah, Existence and stability results for nonlinear implicit frac-
tional differential equations with impulses, Mem. Differ. Equ. Math. Phys. 69 (2016),
15-31.

M. Benchohra, S. Bouriah, Existence and Stability Results for Nonlinear Boundary
Value Problem for Implicit Differential Equations of Fractional Order, Moroccan J.
Pure Appl. Anal.(MJPAA). 1 (1) (2015), 22-37.

M. Benchohra, A. Cabada, D. Seba, An existence result for non-linear fractional
differential equations on Banach spaces, Boundary Value Problems. Volume 2009
(2009), Article ID 628916, 11 pages.

M. Benchohra, J. R. Graef, S. Hamani, Existence result for boundary value problems
with non-linear fractional differential equations, Appl. Anal. 87 (7) (2008), 851-863.

M. Benchohra, S. Hamani, S.K. Ntouyas, Boundary value problems for differential
equations with fractional order, Surv. Math. Appl. 3 (2008), 1-12.

M. Benchohra, J. Henderson, S.K. Ntouyas, Impulsive Differential Equations and
Inclusions, Hindawi Publishing Corporation, vol 2, New York, 2006.

M. Benchohra, J. E. Lazreg, Existence and Ulam stability for nonlinear implicit
fractional differential equations with Hadamard derivative, Stud. Univ. Babes-Bolyai
Math. 62 (2017), 27-38.

M. Benchohra, J. E. Lazreg, Existence results for nonlinear implicit fractional differ-
ential equations with impulse. Commun. Appl. Anal. 19 (2015), 413-426.

M. Benchohra, J. E. Lazreg, On stability for nonlinear implicit fractional differential
equations, Matematiche (Catania) 70 (2015), 49-61.

M. Benchohra, J. E. Lazreg, Existence and uniqueness results for nonlinear implicit
fractional differential equations with boundary conditions. Romanian J. Math. Com-
put. Sc. 4 (1) (2014), 60-72.

M. Benchohra, J. E. Lazreg, Nonlinear fractional implicit differential equations. Com-
mun. Appl. Anal. 17 (2013), 471-482.

M. Benchohra, S. Litimein, Juan J. Nieto, Semilinear fractional differential equations
with infinite delay and non-instantaneous impulses, J. Fized Point Theory Appl.
(2019) 21:21.

M. Benchohra, D. Seba, Impulsive fractional differential equations in Banach spaces,
FElectron. J. Qual. Theory Differ. Equ. Spec. Ed. I8 (2009), 1-14.

M. Benchohra, M. Slimane, Nonlinear fractional differential equations with non-
instantaneous impulses in Banach spaces, J. Math. Appl. 41 (2018), 39-51.



110

[39]

[43]

[44]

[45]

[47]

[48]

[49]

[50]

Bibliography

M. Benchohra, B.A. Slimani, Existence and uniqueness of solutions to impulsive
fractional differential equations, FElectron. J. Differential Equations, Vol. 2009 10
(2009), 1-11.

L. Byszewski, Existence and uniqueness of mild and classical solutions of semilin-
ear functional-differential evolution nonlocal Cauchy problem. Selected problems of
mathematics, 25-33, 50th Anniv. Cracow Univ. Technol. Anniv. Issue, 6, Cracow
Univ. Technol., Krakow, 1995

L. Byszewski, Theorems about existence and uniqueness of solutions of a semilinear
evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162 (1991), 494-505.

L. Byszewski, and V. Lakshmikantham, Theorem about the existence and uniqueness
of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal.
40 (1991), 11-19.

L. Cadariu, Stabilitatea Ulam-Hyers-Bourgin Pentru Ecuatit Functionale, Ed. Univ.
Vest Timigoara, Timigara, 2007.

Y. Chang, A. Anguraj, P. Karthikeyan, Existence results for initial value problems
with integral condition for impulsive fractional differential equations. J. Fract. Calc.
Appl. 2 (2012), 1-10.

K. Diethelm, The Analysis of Fractional Differential Equations. An Application-
oriented Fxposition Using Differential Operators of Caputo Type. Lecture Notes in
Mathematics, Springer-Verlag, Berlin, 2010.

K. Diethelm, A. D. Freed, On the solution of nonlinear fractional order differential
equations used in the modeling of viscoplasticity. In: F. Keil, W. Mackens, H. Voss, J.
Werther, (eds.)Scientific Computing in Chemical Engineering 11, Computational Fluid
Dynamics, Reaction Engineering and Molecular Properties, Springer, Heidelberg, pp.
217-224, 1999.

A. El-Sayed, F. Gaafar, Stability of a nonlinear non-autonomous fractional order

systems with different delays and non-local conditions. Adv. Difference Equations,
47 (1) (2011), 12 pp.

M. Feckan, J.R. Wang, M. Pospisil, Fractional-Order Equations and Inclusions, De
Gruyter, Berlin, 2017.

| M. Feckan, J.R. Wang, Y. Zhou, Periodic solutions for nonlinear evolution equations
with non-instantaneous impulses, Nonauton. Dyn. Syst. 1, (2014), 93-101.

L. Gaul, P. Klein, S. Kempfle, Damping description involving fractional operators,
Mech. Syst. Signal Process., 5 (1991), 81-88.



Bibliography 111

[51]

[52]

G. R. Gautam, J. Dabas, Existence result of fractional functional integro-differential
equation with not instantaneous impulse, Int. J. Adv. Appl. Math. Mech. 1(3) (2014),
11-21.

W. G. Glockle, T. F. Nonnenmacher, A fractional calculus approach of self-similar
protein dynamics, Biophys. J., 68 (1995), 46-53.

K. Goebel, Concise Course on Fized Point Theorems, Yokohama Publishers, Japan,
2002.

J. R. Graef, J. Henderson, A. Ouahab, Impulsive Differential Inclusions. A Fized
Point Approch, De Gruyter, Berlin/Boston, 2013.

A. Granas, J. Dugundji, Fized Point Theory, Springer-Verlag, New York, 2003.

D.J. Guo, V. Lakshmikantham, X. Liu, Nonlinear Integral Equations in Abstract
Spaces, Kluwer Academic Publishers, Dordrecht, 1996.

Z. Guo, M. Liu, Existence and uniqueness of solutions for fractional order integrod-
ifferential equations with nonlocal initial conditions. Panamer. Math. J., 21 (2011),
51-61.

J. Henderson, A. Ouahab, Impulsive differential inclusions with fractional order,
Comput. Math. Appl. 59 (2010), 1191-1226.

R. Hermann, Fractional Calculus: An Introduction For Physicists, World Scientific
Publishing CO. Pte. Ltd. 2011.

E. Hernandez, D. O’Regan, On a new class of abstract impulsive differential equa-
tions, Proc. Amer. Math. Soc. 141, (2013), 1641-1649.

R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore,
2000.

D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci.,
27 (1941), 222-224.

D. H. Hyers, G. Isac, T. M.Rassias, Stability of Functional Equations in Several
Variables, Birkhauser: Boston, 1998.

S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Anal-
ysis; Springer: New York, NY , USA, 2011.

A.A. Kilbas, Hari M. Srivastava, Juan J. Trujillo, Theory and Applications of Frac-
tional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Sci-
ence B.V., Amsterdam, 2006.



112

[66]

[67]

[68]

Bibliography

V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Research
Notes in Mathematics Series, vol. 301. Longman, Copublished in the United States
with Wiley, New York, 1994.

P. Kumar, R. Haloi, D. Bahuguna, D. N. Pandey, Existence of solutions to a new
class of abstract non-instantaneous impulsive fractional integro-differential equations,
Nonlin. Dynam. Syst. Theor. 16 (1) (2016), 73-85.

A. Lachouri, A. Ardjouni, A. Djoudi, Existence and Ulam stability results for nonlin-
ear hybrid implicit Caputo fractional differential equations, Mathematica Moravica,
24 Vol. 24, No. 1 (2020), 109-122.

V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive Differential
FEquations, Worlds Scientific, Singapore-London, 1989.

P. Li, C. J. Xu , Mild solution of fractional order differential equations with not
instantaneous impulses, Open Math. 13 (2015), 436-443.

K. Liu, M. Feckan, J. Wang, Hyers-Ulam Stability and Existence of Solutions to the
Generalized Liouville-Caputo Fractional Differential Equations, Symmetry, 12 (6)
(2020), 955.

Lizhen Chen, Zhenbin Fan, On mild solutions to fractional differential equations with
nonlocal conditions, Electron. J. Qual. Theory Differ. Equ., 53 (2011), 1-13.

F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical
mechanics. In: A. Carpinteri, F. Mainardi, (eds.) Fractals and Fractional Calculus in
Continuum Mechanics, Springer, Wien, pp. 291-348, 1997.

A. I. N. Malti, M. Benchohra, J. E. Lazreg, Nonlinear Boundary Implicit Dif-
ferential Equations with Caputo-Exponential Fractional Order in Banach Spaces.
(submitted).

A. 1. N. Malti, M. Benchohra, J. R. Graef, J.E. Lazreg, Impulsive boundary prob-
lems for nonlinear implicit Caputo-exponential type fractional differential equations,
FElectron. J. Qual. Theory Differ. Equ., 2020 (78) (2020), 1-17.

A. I. N. Malti, M. Benchohra, J. E. Lazreg, Impulsive Abstract Nonlinear Im-
plicit Caputo—Exponential type Fractional Differential Equations. Communications
on Applied Nonlinear Analysis (to appear).

A. I. N. Malti, M. Benchohra, J. E. Lazreg, Existence and Stability for Nonlin-
ear implicit Caputo-Exponential type Fractional Differential Equations with Non-
Instantaneous Impulses. (submitted).

A. 1. N. Malti, J. E. Lazreg, M. Benchohra, G. N'Guérékata, Existence and Stability
for Nonlinear Implicit Caputo-Exponential type Fractional Differential Equations
with Non-Instantaneous Impulses in Banach Spaces. (submitted).



Bibliography 113

[79]

[30]

[31]

[82]

[83]

[84]

F. Metzler, W. Schick, H. G. Kilian, T. F. Nonnenmacher, Relaxation in filled poly-
mers: A fractional calculus approach, J. Chem. Phys., 103 (1995), 7180-7186.

K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential
FEquations, John Wiley, New York, 1993.

V. D. Milman, A. D. Myshkis, On the stability of motion in the presence of impulses,
Sibirsk. Mat. Zh., 1:2 (1960), 233-237.

H. Monch, Boundary value problems for nonlinear ordinary differential equations of
second order in Banach spaces, Nonlinear Anal., 4 (1980), 985-999.

G M. N’Guérékata, A Cauchy problem for some fractional abstract differential equa-
tion with non local conditions, Nonlinear Anal., 70 (5) (2009), 1873-1876.

S.K. Ntouyas, J. Tariboon, C. Sawaddee, Nonlocal initial and boundary value prob-
lems via fractional calculus with exponential singular kernel, J. Nonlinear Sci. Appl.
11 (2018), no. 9, 1015-1030.

K. B. Oldham, J. Spanier, The Fractional Calculus. Academic Press, New York, 1974.

D.N. Pandey, S. Das, N. Sukavanam, Existence of solutions for a second order neutral
differential equation with state dependent delay and not instantaneous impulses,
Intern. J. Nonlinear Sci. 18, 2 (2014), 145-155.

Ivo Petras, Fractional-Order Nonlinear Systems : Modeling, Analysis and Simulation,
Springer Heidelberg Dordrecht London, New York, 2011.

M. Pierri, D. O?Regan, V. Rolnik, Existence of solutions for semi-linear abstract
differential equations with not instantaneous impulses, Appl. Math. Comput. 219
(2013), 6743-6749.

I. Podlubny, Fractional Di?erential Equations, Academic Press, San Diego, 1999.

T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer.
Math. Soc. 72 , (1978), 297-300.

I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space,
Carpathian J. Math., 26 (2010), 103-107.

I. A. Rus, Ulam stability of ordinary differential equations, Stud. Univ. Babes-Bolyai
Math., 4 (2009), 125-133.

P. Sahoo, T. Barman, J. P. Davim, Fractal Analysis in Machining, Springer, New
York, Dordrecht, Heidelberg, London, 2011.

A. Salim, M. Benchohra, E. Karapinar, J. E. Lazreg, Existence and Ulam stability
for impulsive generalized Hilfer-type fractional differential equations, Adv. Difference
Equ. 601 (2020), 1-21.



114 Bibliography

[95] A. Salim, M. Benchohra, J. E. Lazreg, J. Henderson, Nonlinear implicit general-
ized Hilfer-type fractional differential equations with non-instantaneous impulses in
Banach spaces, Adv. Theory Nonlinear Anal. Appl. 4 (2020), 332-348.

[96] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives.
Theory and Applications, Gordon and Breach, Yverdon, 1993.

[97] A.M. Samoilenko, N.A. Perestyuk. Impulsive Differential Equations, World Scientific,
Singapore, 1995.

(98] A. Sood, S. K. Srivastava, On stability of differential systems with noninstantaneous
impulses, Math. Probl. Eng. 2015, (2015), 1-5.

[99] V. E. Tarasov, Fractional dynamics: Application of Fractional Calculus to Dynamics
of Particles, Fields and Media, Springer, Heidelberg, Higher Education press, Beijing,
2010.

[100] J. Tariboon, S.K. Ntouyas, Initial and boundary value problems via exponential
fractional calculus Int. Electron. J. Pure Appl. Math. 12 (2018), no. 1, 1-19.

[101] S. M. Ulam, A collection of Mathematical Problem, Interscience, New York, USA,
1968.

[102] G. Wang, B. Ahmad, L. Zhang, Some existence results for impulsive nonlinear
fractional differential equations with mixed boundary conditions, Comput. Math.

Appl. 62 (2011), 1389-1397.

[103] J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional dif-
ferential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ.,
2011(63) (2011), 1-10.

[104] K. Yosida, Functional Analysis, 6th edn. Springer-Verlag Berlin Heidelberg New
York, 1980.

[105] L. Zhang, G. Wang, Existence of solutions for nonlinear fractional differential equa-

tions with impulses and anti-periodic boundary conditions, Electron. J. Qual. Theory
Differ. Equ. 2011, No. 7, pp. 1-11.

[106] Y. Zhou, , C. Tonescu, J.A.T. Machado, Fractional dynamics and its applications,
Nonlinear Dyn. 80 (2015), 1661-1664.

[107] Y. Zhou, J.-R. Wang, L. Zhang, Basic Theory of Fractional Differential Equations.
Second edition. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.



Udﬂ.d\
sie JSLEAN (e el Calinal (Ulam)adh) pseder L)) 135 Jslall Al g5 a5a s Ayl Un g pd g cha sl 038 3
Lol A usl dsidl Cpilise Gloall Gle s dsae Aball L)) Al Aloalill cValed sgaall e Aglanyl e

Al adaail) C'_vLUk.a e ?MN 3 sd‘,l;l\ :%..33\.3;‘5‘5 APEN) C"_:u}( w I g EJ‘M\ ugﬂ\;l\ ‘_J\ é‘)}a.d\ (:3 Lt o ‘55 .(Caputo))ﬁy‘-ﬁ
Agaga il ALY (e apanll 2 2y LS

- alidal) cilalsl)

S Sl eiiaall A o Adalitl) Yl o 55 €1 At gy AEALD) (o ganll sie Aadl) At (gl Al A
ctUL) eliad cdulal) ‘)gﬂ\ dj‘)ﬂ\ 4?);:“\ (’3«‘&“4 gyl Al ddaasll 65%,3.'1\.3;‘5}\ ‘J};)X\ c:\....\u\ Glanil) c@y\ P Slcauill “;Jﬁ!\
HESY) ae (ule

Résumé

Dans cette thése, nous avons établi des conditions d'existence, d'unicité des solutions et de la stabilité
d'Ulam de diverses classes de problemes a valeur initiale et de problemes aux limites pour les équations
différentielles implicites non linéaires avec et sans impulsions en utilisant la dérivée fractionnaire de type
exponentielle au sens de Caputo. Dans notre étude, Les deux cas abstrait et scalaire ont été considérés. Pour
prouver |'existence et l'unicité des solutions, nous utilisons certains théoremes classiques du point fixe. Afin
d'illustrer nos résultats plusieurs exemples ont été présentés.

Mots clés et phrases :

Probleme a valeur initiale, probleme aux limites, la dérivée fractionnaire de type exponentielle au sens de
Caputo, équations différentielles implicites, l'intégrale fractionnaire de type exponentielle, impulsions non-
instantanées, impulsions instantanées, existence, unicité, point fixe, stabilité d'Ulam, les conditions non-locales,
espace de Banach, mesure de non-compacité.

Abstract

In this Thesis, we shall establish conditions for the existence, uniqueness of solutions and Ulam stability for
various classes of initial and boundary value problems for nonlinear implicit fractional differential equations with
and without impulses involving Caputo’s exponential type fractional derivative. In our study, the Both cases of
abstract and scalar have been considered. To prove the existence and uniqueness of solutions, we use some
standard fixed point theorems. several enlightening examples are also presented.

Key words and phrases:

Initial value problem, boundary value problem, Caputo’s exponential type fractional derivative, implicit
differential equations, exponential type fractional integral, non-instantaneous impulses, instantaneous impulses,
existence, uniqueness, fixed point, Ulam stability, nonlocal conditions, Banach space, measure of
noncompactness.
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