
 
 

N° d’ordre : 
 

REPUBLIQUE ALGERIENNE DEMOCRATIQUE & POPULAIRE 
 

MINISTERE DE L’ENSEIGNEMENT SUPERIEUR & DE LA RECHERCHE 
SCIENTIFIQUE 

 
 
 

UNIVERSITE DJILLALI LIABES 
        FACULTE DES SCIENCES EXACTES 

SIDI BEL ABBES 
 

 
 

TH E SE  DE  DO CTO RAT  
 
Présentée par  

SOUNA Fethi 
 
Filière: Mathématiques 
Spécialité: Systèmes dynamiques et biomathématiques 

 
Intitulée 

 
 

 
 
   
   Soutenue le 27/05/2021 
   Devant le jury composé de :  
 
Président :  
      Mr. HELAL Mohamed, Professeur à l’université de Sidi Bel Abbès 

Examinateurs :  

       Mr. CHEKROUN Abdennasser, M.C.A à l’université de Tlemcen 

        Mr. HABIB Habib, M.C.A à l’université de Sidi Bel Abbès 

Directeur de thèse : 
       Mr. LAKMECHE Abdelkader, Professeur à l’université de Sidi Bel Abbès 
 

Année universitaire : 2020-2021 

 

Contributions aux modèles de dynamique des 
populations 



Declaration

I hereby declare that the work contained in this thesis entitled ”Contributions to population dynamics
models ” is my own work under the supervision and direction of Pr. Abdelkader LEKMECHE,
professor at Djillali Liabès University, Department of Mathematics, Sidi Bel Abess for the award of the
degree of Doctor of Philosophy in mathematics. To the best of my knowledge and belief, it contains no
material previously published or written by another person.

Mai, 2021

Fethi SOUNA
Faculty of Exact Sciences

Department of Mathematics
Djillali Liabès University of S.B.A

2



Dedicace

It is with great emotion and immense pleasure that I dedicate this modest work:
To my dear parents Nacira and Omar who supported me throughout my studies, thank you for all

your love and support, and for taking just the right amount of interest in my research.
My dear wife Imene, who encouraged me to go forward to finish my studies and gave me all her love.
My brothers Mohammed el Amine and Zinedine.
To all my family members, young and old.
To my dear friends Yassine Layati, Walid Yebdri, Ahmed Menacer, Soufyane Boukhatem

and Salih Djilali who are an example of loyalty in friendship.

To all those who love me and whom I love...

3



Acknowledgements

Every great experience requires the help and support of loved ones, I would like to take the opportunity
all those who have extended a helping hand whenever I needed. In the first place I would like to express
my deepest gratitude to Almighty God for having given me the courage and strength to carry out this
thesis. Which opened for me the doors of knowledge.

I would like to express my sincere gratitude and thanks to my Ph.D Supervisor, Professor Abdelkader
LAKMECHE, for introducing me the wonderful subject of mathematical ecology with complete freedom
to work. My completion of thesis could not have been accomplished without his extraordinary support
and encouragment . Thank you for your invaluable assistance, guidance, enthusiastic and the interest
which you have showned in this modest thesis. Your useful critiques and judicious advices that you have
given me throughout this work, I took great pleasure to work with you.

I would like to thank in particular Mr. Mohammed HELAL, in his capacity as Director of the
biomathematics Laboratory for having made available to us all the scientific and computer equipment
of the laboratory, for all the efforts made for our doctoral training during the past four years. I thank
you very warmly for having continually encouraged me, for your scientific and human support, for your
kindness and hospitality. I also thank you very warmly for having agreed to chair the jury that will
examine this dissertation.

I would like to express my gratitude to the examiners, Abdennasser Chekroun and Habib Habib
for the honor they have given me in agreeing to evaluate my work. Their comments and suggestions are
very important for the development of my critical mind.

I also express my gratitude to the head of the department and his assistant, Mr. Habib Habib,
who has always been available to us, and has really helped us in all areas through his constructive and
relevant advice. I also extend my thanks to all the members of the biomathematics laboratory and all
the teachers of the Mathematics department in Djillali Liabès University for their sympathy and for
making the work environment so pleasant.

I cannot forget to thank Salih DJILALI for his collaboration, but also for his kindness, his avail-

4



ability, and his help. I was very happy to work with him.
I offer my heartiest gratitude to my teachers at Abou Bakr Belkaid university of Tlemcen, in par-

ticular Pr Sofiane El-Hadi MIRI (My master thesis supervisor), Pr Tarik Mohamed TOUAOULA,
Pr Ali MOUSSAOUI, Pr Boumediene ABDELLAOUI and Pr Sidi Mohamed BOUGUIMA.
You have taught us much. Thank you so much.

I do not have enough words to adequately thank my parents Omar and Nacira for everything they
have done to enable me to be as ambitious as I wanted. Thank you for being proud of me even without
knowing very well about what I have been working on during these years. Without you, I would not be
the person I am today. I am so proud to be your son.

I come now to my beautiful treasure, my wonderful wife imene. I would like to express my deepest
appreciation for your love and constant support. But most of all, thank you for being my best friend. I
owe you everything. You have always been behind me.

In addition, since the opportunity presents itself here, I also thank the other members of my family,
especially my brothers, my cousins and all my friends.

5



Contents

General introduction, ecological motivation and thesis Outline 8

1 The effect of the defensive strategy taken by the prey on predator-prey interaction 14

1.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Analysis of the non-delayed model (τ = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Analysis of the delayed model (τ > 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Stability and direction of the Hopf bifurcation Around E∗2 . . . . . . . . . . . . . . . . . . 26

1.5 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.5.1 Without delay (τ = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.5.2 With delay (τ > 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.7 Concluding and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 Shape effects on herd behavior in predator-prey model with Gompertz growth func-
tion 37

2.1 Presentation of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Mathematical analysis and some preliminary results . . . . . . . . . . . . . . . . . . . . . 39

2.2.1 Boundedness of the solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.2 Equilibrium points and their stability . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.3 Stability analysis of E0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 The impact of the prey herd shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Global asymptotic stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 Hopf bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.7 Discussion for the original model (2.1.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6



2.8 Conclusions and comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Spatiotemporal patterns in a diffusive predator-prey model with protection zone and
predator harvesting 57
3.1 The mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 Existence of a positive solution, a priori bound of solution and some estimations of solution 61
3.3 Existence and uniqueness of positive equilibrium state for system (3.1.3) . . . . . . . . . . 63
3.4 Global stability of the semi trivial equilibrium state E1 . . . . . . . . . . . . . . . . . . . 64
3.5 Bifurcation analysis, Turing instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.1 Hopf bifurcation: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5.2 Turing driven instability: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.5.3 Turing-Hopf bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6 Normal form on the center of manifold for Hopf bifurcation: . . . . . . . . . . . . . . . . . 73
3.7 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Mathematical analysis of a diffusive predator-prey model with herd behavior and
prey escaping 85
4.1 Mathematical modelling of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3 Stability, bifurcation analysis of the non spatial system . . . . . . . . . . . . . . . . . . . . 90
4.4 Stability, Hopf bifurcation for the diffusive system . . . . . . . . . . . . . . . . . . . . . . 94

4.4.1 Characteristic equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4.2 The existence of Hopf bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4.3 Non existence of Turing instability: . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.4 Direction and stability of Hopf bifurcation . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5 Appendix 110

Prospect and directions for future work 118

Bibliography 120

7



General introduction, ecological

motivation and thesis Outline

Ecological motivation

In ecology, an ecosystem is made up of different populations that interact with one another in several
ways Fig.1. A population is a group of individuals of the same species that occupy the same patch
simultaneously. Often, individuals from one population compete for the same resources, as do individuals
from different populations (competition). Some populations live at the expense of others (parasitism).
Certain populations help each other (mutualism, even symbiosis). All these phenomena are part of
the general framework of the struggle for life. Population dynamics is a branch of mathematical ecology
which aims to study these variations between living beings theoretically using simplified models. There are
several interesting questions that can be asked about ecosystems, on the factors that influence the stability
of an ecosystem, on the factors controlling the variability of the abundances of different components of
the ecosystem, and in particular on the interactions between populations and their role to lead or not the
coexistence of species in an ecosystem. To answer these questions, different methodological approaches
exist throughout this last century. The first mathematical models in ecology date from the 1920s, with the
two scientific researchers A.J. Lotka and V. Volterra. These models are based on the representation
of interactions between species through systems of ordinary differential equations. Our main objective
along this thesis is to model and study certain ecological phenomena for living beings in nature through
systems of ordinary differential equations or partial differential equations. The starting point is the
historical model of Lotka and Volterra.
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Figure 1: Schematic representation of interactions in ecosystems [61].

General introduction

The dynamic relationship between predator population and prey population has been considered
as one of the dominant themes in modern applied mathematics due to the universal existence and the
universal importance [12, 68], it is one of the reasons of the big preference by many researchers next to the
huge application in different ecosystems types as aquatic, terrestrial ecosystems. The beginning was with
Malthus 1798 [63] where he proposed a model of one population with an exponential increasing which
called by his name Malthus model. Later on, in 1838, Verhulst [89] offered more realistic model which
is known by the logistic model. The main assumption is to consider that the space that the animals
lives in it has a carrying capacity where the availability of resources is the main factor in determining
this food load of the space, which resolves the problem of the unboundedness of the resources generated
by the bounded space offered by Malthus model [63]. It follows by the pioneering works of Lotka [56]
and Volterra [90], where a system of two equations is considered for predicting the predator–prey
interaction evolution in terms of time.

In terms of modeling, the total dynamics of a predator-prey system can be affected by many factors
such as predator efficiency of their attack, birth, death, mature delay, so on. It is well known that the
functional response is the crucial component to describe the relationship between the prey and the
predator populations. In the last few decades, many functional responses appears for studying and
describing a particular relationship between the species. It is the main reason for having many functional
responses such as Holling I− IV functional response [44, 47, 93, 103], Beddington-DeAngelis functional
response [17], ratio-dependent functional response [97, 78], Crowley-Martin functional response [86, 105],
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Hassell-Varley functional response [45], so on.
Now, we introduce the prototypical predator-prey model with the following structure

∂X
∂t =Xf(X)−g(X,Y ),

∂Y
∂t =−mY +ηg(X,Y ),

(0.0.1)

where X,Y are respectively the populations sizes of the prey and the predator at the time t, f(X) is the
net growth for the prey population in the absence of the predator population, 0< η < 1 is the conversion
rate of prey biomass into predator biomass and m is the natural death rate of the predator which has
been assumed to be constant.

In the real world, the prey population has a fast reproduction comparing with the predator population
(please see [89]). It is wise to choose a reproduction functional f(X) to model the crowding effect of the
prey. The most known one is the logistic form :

f(X) = r(1− X
K

)

where r is the net growth rate of the prey population, k is the carrying capacity of the prey in the
absence of predator. Obviously, the functional g(X,Y ) represents the interaction functional. As we said,
it models the quality of interaction between the prey and the predator.

In nature, an important part of savanna preys lives collectively and proceed in a huge herd [?] from
one place to another, there are many examples of this behavior such as buffalos, elephants, gnus, so on.
For the buffalos example, the weakest elements occupy the interior of the group and the strongest stay
at the border for the purpose of defending the group and reducing the predation risk of the weakest.
For the goal of protecting there own child, the strongest prey defend the group brutally. Due to the
group’s structure, the prey get features in their foraging efficiency and reducing predation risk. Thus,
the herd behavior avoids the disappearance of the animals (for the reason of its big appearance),
which gives better defense mechanism from predation [?]. The first approach in terms of modeling this
phenomenon was introduced and studied by Ajraldi et al. [2]. The main assumption is presume that
the prey population has a regular shape as circle or a square. If we assume that X(t) be the density of
the prey, namely number of individuals per surface unit, and the herd occupying an area S, it follows
that the individuals at the outer of the packs are proportional to the border of the patch, where the herd
is in a length depends on

√
S. Then, they are in number proportional to the square root of the density

i.e. to
√
X, With a constant of proportionality depends on the regularity of the herd. Thus the number

of the captured prey by one predator will be proportional to the number of the prey population on the
boundary of the prey herd, which means that is proportional to the square root of the prey population
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Figure 2: Herd behavior in wild [19].

density i.e.
√
X. Therfore, we leads to a new predator-prey interaction presented in [2], that can be

written as 
∂X
∂t = rX(1− X

K )−α
√
XY,

∂Y
∂t =−mY +ηα

√
XY,

(0.0.2)

we keep the same notation made with the previous system, the term α is the search efficiency of predator
for the prey.

Remark 1. Noticing that any shape of the herd formed by the prey population can be approximated by a
regular form such as circle or a square in 2D.

In share same concept of mathematical modeling in [2], some mathematical results and its ecological
relevant are provided. Another pioneering work appears into the interface in the case of predator-
prey interaction with prey grouping behavior which is presented by Braza [15]. The main result is to
consider the time for a predator to handel with a prey. Holling approximation is used for building a new
functional response. Other works offered to the wide audience for modeling other factors next to the
herd behavior such as herd shape, predator average handling time of the prey on the bounders. We
refer readers to the papers [16, 24, 27, 28, 29, 30, 31, 48, 81, 85, 87, 88, 99, 100, 101, 106], which shows
the big importance of such approximation and its huge significance in the real world.
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Figure 3: The herd structure and the mechanism of interaction between the prey and the predator population.

Thesis Outline

In this thesis, we will propose four new models of population dynamics which describes the interaction
between prey and predator in nature. Our fundamental hypothesis is to suppose that the population of
prey gather together in herds, on the other hand the predator shows a more individualistic behavior.

In Chapter 1, we scrutinize a delayed predator- prey model for the purpose of studying the impact
of the strategy considered by the prey population on the evolution of the studied species. The main
presumption is to assume that there exists two types of the prey with a contradictory behaviors. The
first, has a social behavior and takes the advantage of living in group for defending each others, and the
second one has a solitary behavior. A mathematical approach is used to study this effect, where local
stability and bifurcation analysis are examined. Indeed, it has been proved that the system that we
proposed has a rich dynamics such as Hopf bifurcation in both the absence and the presence of time lags.
Further the stability of the periodic solution generated by the presence of the time lags are discussed
using the normal form on the center of manifold theory. Some numerical simulations are provided for
ensuring the obtained mathematical results.

In Chapter 2, we returned to dimension two and we considered a prey-predator model taking into
account the shape of the herd formed by the prey. some preliminary results have been given including the
boundedness of the solutions, the stability and dynamical behaviours of the equilibria of the model and
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the dynamic behavior near the origin. Then, the effect of the herd shape for the prey population on the
prey and predator equilibrium densities has been analysed. After that, we investigate the global dynamics
of the model where some sufficient conditions are derived to ensure the global asymptotic stability of the
semi-trivial equilibrium point and coexistence equilibrium point. The analysis showed that the system
might undergo Hopf bifurcation in such case a limit cycles appear for the interior equilibrium. Finally,
to illustrate our theoretical results, some numerical simulations are given.

In Chapter 3, we deals with a diffusive predator-prey model subject to the zero flux boundary
conditions with prey social behavior and the quadratic predator harvesting. First, we proved the existence
of a positive solution and its bounders. The existence of the equilibrium states has been discussed. The
global stability of the semi trivial constant equilibrium state is established. Concerning the non trivial
equilibrium state, the local stability, Hopf bifurcation, diffusion driven instability, Turing-Hopf bifurcation
are investigated. The direction and the stability of Hopf bifurcation relying on the system parameters is
derived. Some numerical simulations are used to extend the analytical results and show the existence of
the homogeneous and non homogeneous periodic solutions. Further the effect of the rivalry rate on the
dynamical behavior of the studied species.

In Chapter 4, we consider a new approach of prey escaping from herd in a predator-prey model
with the presence of spatial diffusion. First, the sensitivity of the equilibrium state density with respect
to the escaping rate has been studied. Then, the analysis of the non diffusive system was investigated
where boundedness, local, global stability, Hopf bifurcation are obtained. Besides, for the diffusive
system, we proved the occurrence of Hopf bifurcation and the non existence of diffusion driven instability.
Furthermore, the direction of Hopf bifurcation has been proved using the normal form on the center
manifold. Some numerical simulations have been used to illustrate the obtained results.
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Chapter 1

The effect of the defensive strategy

taken by the prey on predator-prey

interaction

This chapter is taken from publication [83].

In this chapter, we propose a model with two prey and a one predator in the presence of delay. We
suppose that the two prey having two contradictory defensive strategies where, the first prey gathers in
herd and the second shows a solitary behavior. In term of reproducing, we assume that the social
population reproduces in a logistic manner and the individual population follows a Malthusian law of
reproduction, which means that the solitary prey has an advantage in the reproduction on the grouped
prey. We assume in this chapter that the predator consumes both types of prey, following these assump-
tions, we will try to choose the best strategy to defend as well as the prey preferred by the predator,
which gives the efficiency of the herd for the social population.

This chapter is organized as follows: Section 1.1 is devoted to the presentation of the mathematical
model. In Section 1.2 we analyze the stability of the equilibria for the non-delayed system. In Section
1.3, by considering time lags as a bifurcation parameter, we discuss the existence of Hopf bifurcation for
both, the boundary and the interior equilibrium. Section 1.4 is devoted to the analyze the stability and
direction of Hopf bifurcation at the interior equilibrium using normal form on the center manifold theory.
An extensive numerical simulation results have also been conducted to illustrate the theoretical results
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in Section 1.5. A discussion section is provided for discussing and summarizing the obtained results.
At last, a brief concluding remarks are provided in Section 1.6 to close this work, where the biological
significance and importance of the mathematical results are given for the conserving of the ecological
species (partially and completely).

1.1 Model formulation

In nature, there are many problems for living in herds such as the big appearance of the group for the
predator. In this case the predator will be able to pursuit the group, also the sharing of the resources for
the interior prey herd is also a problem. The distribution of the resources between the inner group and
the outer group (on the bounders) for the prey population can be considered also as a problem. In this
case, the outer prey has a big availability of the resources (see [30]). In fact, this two last problems cannot
be found for the prey that exhibits solitary behavior, where this kind of animals searches for food in a
free way, the most common animals that exhibits this behavior is gazelle and giraffe. The inconvenient of
this behavior is losing the safety guaranteed by living in herds, this kind of behavior is the most proffered
to the predator. But in the real world the predator consumes both types of populations. For trying to
resolve the query of which behavior is the most appropriate to the prey surviving, we considers a three
species model with two type of prey. The first has a social behavior which means that the interaction
happens on the outer corridor of the herd. Also to mention that this kind of population reproduces in a
logistic manner for the reason of the crowding (which going to be explained better later), and the other
type of the prey has a solitary behavior reproduce in a Malthusian manner (for the reason of the small
number of them or its natural behavior). In fact, this means that the solitary prey has an advantage in
the reproduction on the grouped prey.

Indeed, models with time delay are more realistic for describing the real life situations. The time
lags occurs in almost every biological (resp. ecological) situation, it is responsible for regular fluctuations
in population density. It describes the time spent for conversion of the prey biomass into the predator
biomass (see for instance [28] ), the time spent in searching and capturing the prey by a predator [27].
It is well understood that many of the processes in both natural and man-made in biology and medicine
involve time lags. More precisely, in [49] it has been mentioned that an animal must take time delay to
digest their food before their further activities takes place. Hence, models of species dynamics without
delays can gives a wrong (or unprecise) mathematical predicting results which is not wise and it is better
to avoid this kind of situations. For the subject of giving a further realistic model as possible, we consider
the presence of the time delay for the prey population that exhibits herd behavior. As it has been
mentioned previously this kind of prey has a difficulty in collecting resources from the environment.
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Consequently, the time lags represents the time spends without any food that leads to the mortality of
this living being. This kind of phenomenon can happens in the dry seasons for the very youngest prey,
where this last has a less capability of adaptation, where the absence of resources is the main reason for
the biggest prey immigrations in our planet. To highlight that the time delay attracts many researchers
for the reason of its huge ecological and biological relevant, where a numerous models appears into the
interface for modeling this kind of interaction. In addition to the previously mentioned examples, we cite
for instance [11, 21, 23, 37, 43, 49, 59, 60, 102, 111].

In both, mathematical and ecological point of view, the delay can generates a surprising results,
where a huge part of the literature papers are devoted to explore this rich dynamics. It has been
confirmed by many scientists that the delay can change the dynamics of solution for a model, it is the
main reason of considering it in this chapter, and the main purpose is for avoiding the misleading of
the results generated by neglecting this fluctuation of time lags and providing the maximal possible
precise mathematical-ecological results. In fact, it is interesting to discuss the effect of this delay on the
evolution of the species for confirming that the time spending by the social prey without any food due to
the crowding, can leads to the mortality. This phenomena can be modeled by the presence of the time
lags in the logistic growth of the crowding prey, for more details of the time delay in logistic growth and
its biological implication, we cite for instance [64]. In literature it has been mentioned that the herd
behavior has a benefit for the population that uses it, but no one has been proved it mathematically.
For the first time, we will give a comparative analysis between the two prey types and compar between
the defensive strategy considered by both type of resources (prey), which is the main motivation of our
chapter. In fact, we will give a preference for the solitary prey population presented by the malthusian
increasing of it (exponential reproduction).

Now, we consider a new model where two types of prey are considered. The density of the first at
time t is denoted by X(t), this population exhibits social behavior and the one which has the time lags.
For the second type of the prey its density at the time t is denoted by Y (t). These two types of the
resources has a contradictory behavior. In fact, these two types of prey are the subject of predation by
one predator, which models the diversity of predator consumption. Based on the big motivation of our
paper and ecological background we set the following model:

d
dtX(t) = r1

(
1− X(t)

K

)
X(t)−α1

√
X(t)Z(t),

d
dtY (t) = r2Y (t)−α2Y (t)Z(t),
d
dtZ(t) =−m̃Z(t) +e

(
α1
√
X(t)Z(t) +α2Y (t)Z(t)

)
,

(1.1.1)

with initial conditions X(0)> 0, Y (0)> 0, Z(0)> 0. In the absence of the predator, we assume that
the first population of prey (with social behavior) follows a logistic growth form, where the growth of the

16



second (with the solitary behavior) is exponential. All the parameters are supposed to be nonnegative
with the following ecological meanings:

X the grouped prey density α1 the hunting rate for the grouped prey

Y the solitary prey density α2 the hunting rate for the solitary prey

Z the predator density e the conversion coefficient

K the carrying capacity of the grouped prey density m̃ the natural predator mortality

r1 the growth rate of the grouped prey

r2 the growth rate of the solitary prey

Now, we introduce the effect of time lags for the system (1.1.1). In a precise way it will be put in
the logistic growth of the grouped prey as it has been highlighted. The prototype model embodying this
phenomenon is due to Hutchinson (1948) (see [64]) where it has been considered that in the absence of
predators, the prey’s growth is affected by population density only after a fixed period of time. Then,
our system of equations (1.1.1) becomes

d
dtX(t) = r1

(
1− X(t−τ)

K

)
X(t)−α1

√
X(t)Z(t),

d
dtY (t) = r2Y (t)−α2Y (t)Z(t),
d
dtZ(t) =−m̃Z(t) +e

(
α1
√
X(t)Z(t) +α2Y (t)Z(t)

)
.

(1.1.2)

For the system (1.1.2) the following conditions are assumed to be hold:

(X(t),Y (t),Z(t)) = (X0(t),Y0(t),Z0(t)), −τ ≤ t≤ 0,

where, X(t),Y (t),Z(t) ∈ C([−τ,0],R3
+), and X(0)> 0, Y (0)> 0, Z(0)> 0.

For the subject of avoiding the heavy computation we will give a series of change of variables. First,
we introduce the following one X = u2, Y = v, Z = w then (1.1.2) becomes:

d
dtu(t) = r1

2

(
1− u2(t−τ)

K

)
u(t)− α1

2 w(t),
d
dtv(t) = r2v(t)−α2v(t)w(t),
d
dtw(t) =−m̃w(t) +e(α1u(t)w(t) +α2v(t)w(t)) .

(1.1.3)

Next, we introduce the transformations

x= u√
K
, tnew = r1

2 told, z = α1

r1
√
K
w, y = v.

For the goal of reducing the number of parameters for the nonlinear system (1.1.3), and after some
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straightforward calculation we reach to the following non-dimensional model.
d
dtx(t) =

(
1−x2(t− τ)

)
x(t)−z(t),

d
dty(t) = y(t)(α−βz(t)) ,
d
dtz(t) = z(t)(−m+γx(t) + δy(t)) ,

(1.1.4)

where,

α= 2r2
r1
, β = 2α2

√
K

α1
, γ = 2e

√
K

r1
, δ = 2eα2

r1
, m= 2 m̃

r1
.

1.2 Analysis of the non-delayed model (τ = 0)

In this section, the qualitative stability of the equilibria is the subject of investigation in the absence of
time lags, where we will use the simplified predator-prey model (1.1.4). As a first step, let us compute
the equilibrium points of (1.1.4) which are the solutions of the following nonlinear system

(
1−x2)x−z = 0,
y (α−βz) = 0,
z (−m+γx+ δy) = 0.

(1.2.1)

After solving the above system, we find the following equilibrium points

(i) The origin E0 := (0,0,0) which represents the extinction of the three population, which is not a
situation that we are seeking for it.

(ii) The axial equilibrium point E1 := (1,0,0) which represent the surviving the grouped prey only
without any presence of the other species.

(iii) The boundary equilibrium point E2 := (x1,0,z1) where

x1 = η, z1 =
(
1−η2)η,

with positivity condition η < 1, where η= m

γ
. This equilibrium models the surviving of the grouped

prey only. If this equilibrium is stable, it means that the grouped prey has a survival advantage
but the solitary prey die out.

(iv) The coexistence equilibrium point E∗ := (x∗,y∗,z∗) where

z∗ = x∗(1− (x∗)2) = ρ, y∗ = γ

δ
(η−x∗), where ρ= α

β
(1.2.2)

and x∗ is the positive root of the following cubic equation

ψ(x) , x3−x+ρ= 0. (1.2.3)
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Obviously, this equation has two change of signes, using Descartes’s rule, we deduce that (1.2.3)
has either two or nor roots. The two roots are denoted by x∗i , i = 1,2. Hence, we obtain the two
equilibria E∗i , i= 1,2. Precisely, since ψ(0) is positive and ψ′(0)< 0, we put

x̄= 1√
3
,

where, x̄ is the solution of ψ′(x) = 0, then, the Eq. (3.2.4) possess two roots if and only if ψ(x̄)< 0,
this implies that

ρ <
2

3
√

3
. (1.2.4)

This last inequality is the existence condition for the interior equilibria E∗i := (x∗i ,y∗i ,z∗i ), i= 1,2.
From (1.2.2), the positivity requires that x∗i < 1, i= 1,2 and x∗i < η, i= 1,2 so, combining the two
conditions gives

x∗i <min{1,η} , i= 1,2, (1.2.5)

and
x∗1 <

1√
3
< x∗2. (1.2.6)

Summarizing the above discussion on the existence conditions of the interior equilibrium, we set the the
following theorem

Theorem 1. ([83]) Assume that (1.2.4) and (1.2.5) holds, then the system (1.1.4) has two equilibria
in the interior of R2

+, which are E∗1 = (x∗1,y∗1 ,y∗1) and E∗2 = (x∗2,y∗2 ,y∗2) with

x∗1 <
1√
3
< x∗2.

Now focusing on studying the local behavior of the equilibria. The Jacobian matrix associated to
system (1.1.4) at an arbitrary equilibrium denoted by (x,y,z) in the absence of time delay (which means
that τ = 0) is accorded as follows

J(x,y,z) =


1−3x2−λ 0 −1

0 α−βz−λ −βy
γz δz −m+γx+ δy−λ

 . (1.2.7)

Evaluating the Jacobian matrix at the extinction equilibrium E0, we get the eigenvalues 1,α,−m, so that
this equilibrium is unstable, which shows that the three population never goes to extinction. At E1 we
get instead −2,α,−m+γ which is also unstable.

Now focusing on determining the local stability of E2. As it has been mentioned previously, the sta-
bility of this equilibrium can determine a huge biological significant and alow us to confirm the advantage
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of using herd behavior on solitary behavior as a defensive strategy. For the mathematical analysis, it is
easy to see that the Jacobian matrix (1.2.7) evaluated at E2 has one eigenvalue that it can be computed
explicitly which is given as λ1 = α−βη

(
1−η2). The other two are the roots of the quadratic equation,

ϕ(λ) = λ2−
(
1−3η2)λ+m

(
1−η2)= 0,

coming from a 2×2 minor J̃ of (1.2.7), where

J̃ =


1−3η2−λ −1

0 α−βz−λ
γη(1−η2) −m+γη−λ

 . (1.2.8)

The local stability of E2 impose the following conditions

tr(J̃) =
(
1−3η2)< 0, det(J̃) =m

(
1−η2)> 0.

which leads to
1√
3
< η < 1. (1.2.9)

Then, we must combine (1.2.9) with the negativity of the first eigenvalue of the Jacobian matrix λ1.
Thus, the local stability of E2 holds if

1√
3
< η < 1, and ρ < η

(
1−η2) . (1.2.10)

Finally, we focus on the coexistence equilibrium E∗i , i= 1,2. The characteristic equation of the Jacobian
matrix evaluated at E∗i , i= 1,2 can be expressed as the following cubic equation

PE∗
i
(λ) = λ3 +A1λ

2 +A2λ+A3 = 0, i= 1,2, (1.2.11)

where,

A1 = 3x∗i −1, A2 = α

(
γ

β
+m−γx∗i

)
, A3 = α(m−γx∗1,2)(3x∗i −1), i= 1,2. (1.2.12)

Now, by applying the Routh–Hurwitz criterion, see p. 67 of [6], the stability of E∗i , i= 1,2 is guaranteed
if

A1 > 0, A1A2−A3 > 0, A3 > 0.

From (1.2.6) we conclude that the first equilibrium E∗1 is always unstable, and the second equilibrium
E∗2 is always locally asymptotically stable, when it exists.
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Equilibrium point Feasibility conditions Stability conditions
E0 = (0,0,0) — Always unstable
E1 = (1,0,0) — Always unstable

E2 = (η,0,η(1−η2)) η < 1 1√
3
< η < 1 and ρ < η(1−η2)

E∗i = (x∗i ,y∗i ,z∗i ) , i= 1,2 ρ <
2

3
√

3
and from (1.2.6), we obtain

where, x∗i , i= 1,2 is solutions of x∗i <min{1,η} , ı = 1,2 E∗1 is unstable
x3−x+ρ= 0, with

y∗i = 1
δ

(m−γx∗i ), i= 1,2 and z∗i = ρ, i= 1,2 and E∗2 is stable

Table 1.1: Dynamical behavior of the system (1.1.4) around the equilibrium points for τ = 0.

1.3 Analysis of the delayed model (τ > 0)

In this section, we will study the effect of the time delay on the stability of the equilibriums and shows the
importance of considering it in the model construction. Indeed, we will analyze the model system (1.1.4)
in the presence of time lags. We already know that time lags will not affect the number of the equilibria
of the system (??). So, all the equilibria will exist and will be the same as in the case of the absence of
time delay. For studying the local stability of equilibria we compute the Jacobian matrix evaluated at an
arbitrary equilibrium denoted by (x,y,z) for the delayed system (2.2.2), where

J(x,y,z) =


1−x2−2x2e−λτ −λ 0 −1

0 α−βz−λ −βy
γz δz −m+γx+ δy−λ

 . (1.3.1)

Now, computing the characteristic equation of (1.3.1) at (x,y,z), we obtain

λ3 +m1λ
2 +m2λ+m3 +e−λτ (m4λ

2 +m5λ+m6) = 0, (1.3.2)

where

m1 =−1−α+m−γx− δy+βz+x2

m2 = α−αm−m+γ(1 + δ)x+ δ(1 +α)y+ (γ+βm+β)z−βγxz+ (m−α)x2−γx3

−δx2y+βx2z,

m3 = αm−αγx−αδy−βmz+βγxz−αyz−αmx2 +αγx3 +αδx2y+βmx2z+βyz2−βγx3z,

m4 = 2x2,

m5 = 2(α−m)x2−2βx2z+ 2γx3 + 2δx2y,

m6 =−2αmx2 + 2αδx2y+ 2βmx2z+ 2γx3−2βγx3z.
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Because the equilibrium points E0, E1 and E∗1 in absence of the time lags, we can deduce that these
equilibria stays unstable in the presence of time delay. Now we place our main attention to examine
the effect of the time delay on the linear stability of E2 and the interior equilibrium E∗2 for the delayed
system (1.1.4). For insuring the stability of equilibrium point, all the eigenvalues of the characteristic
equation (1.3.2) must have negative real part. Now, we put our interest on seeking for the influence of
the time lags on the stability of the equilibria. In the absence of the delay the characteristic equation
(1.3.2) turns into

λ3 + (m1 +m4)λ2 + (m2 +m5)λ+m3 +m6 = 0. (1.3.3)

By standard Routh–Hurwitz criterion (see [9]), all roots of Eq. (1.3.2) will have negative real parts if the
following hypothesis hold

(H1) :m1 +m4 > 0, m3 +m6 > 0, (m1 +m4)(m2 +m5)> (m3 +m6). (1.3.4)

If we assume that λ= 0 to be a solution of (1.3.2) lead to, m3 +m6 = 0, which is contradictory with the
second condition given in (H1). Therefore, we can claim that λ= 0 cannot be a solution of (1.3.2). Now,
for some τ > 0 if we consider λ= iω, ω > 0 to be a solution of (1.3.2), we get

−iω3−m1ω
2 + im2ω+m3 + (cosωτ − isinωτ)(−m4ω

2 + im5ω+m6) = 0. (1.3.5)

separating the real and imaginary parts, we obtain the following transcendental equations

m3−m1ω
2 + (m6−−m4ω

2)cosωτ +m5ω sinωτ = 0, (1.3.6)

m2ω−ω3 +m5ω cosωτ − (m6−m4ω
2)sinωτ = 0. (1.3.7)

Squaring and adding (1.3.6) and (1.3.7), and by putting ω2 = v, we define a polynomial

Φ(v) , v3 +pv2 + qv+ r = 0, (1.3.8)

where,

p=m2
1−m2

4−2m2, q =m2
2−m2

5 + 2m4m6−2m1m3, r =m2
3−m2

6.

Lemma 1. Putting ∆ = p2− 3q then, for the the polynomial Eq. (1.3.8), we get the following affir-
mations.

(H2) If r < 0, then, Eq. (1.3.8) has at least one positive root.

(H3) If r ≥ 0 and ∆≤ 0, then, Eq. (1.3.8) has no positive roots.

22



(H4) If r ≥ 0 and ∆> 0, then, Eq. (1.3.8) has at least one positive root if and only if v∗1 = −p+
√

∆
3 > 0

and Φ(v∗1)≤ 0.

Proof. Since lim
t→+∞

Φ(v) = +∞, the Eq. (1.3.8) has at least one positive root if r < 0. From Eq. (1.3.8),
we obtain

Φ′(v) = 3v2 + 2pv+ q.

clearly, if ∆≤ 0 then, Φ′(v)≥ 0 which means that Φ(v) is monotonously increasing for x≥ 0. Therefore,
for r > 0 and ∆ ≤ 0, Eq. (1.3.8) has no positive root for x ∈ [0,+∞). For r ≥ 0 and ∆ > 0, (1.3.8) has
two real roots

v∗1 = −p+
√

∆
3 , v∗2 = −p−

√
∆

3 .

From Φ′′(v∗1) = 2
√

∆ > 0 and Φ′′(v∗2) = −2
√

∆ < 0, we conclude that v∗1 and v∗2 are the local minimum
and the local maximum of Φ(v), respectively. So if p(v∗1)≤ 0 and from lim

t→+∞
Φ(v) = +∞, Φ(0) = r ≥ 0,

we know that the sufficiency is true which means that Eq. (1.3.8) has positive roots v0 ∈ [0,v∗1 ]. This
completes the proof of Lemma Lemma 1.

Now, we may assume that Eq. (1.3.8) has at least one positive real root ω0 = √v0, that is, the
characteristic equation (1.3.2) has a pair of imaginary roots of the form ±ω0. From (1.3.6) and (1.3.7),
we have

cosω0τ = −(m5ω
2
0(m2−ω2

0) + (m3−m1ω
2
0)(m6−m4ω

2
0))

(m6−m4ω2
0)2 + (m5ω2

0)2 . (1.3.9)

Now, τk corresponding to the positive value of ω0 is expressed as follows:

τk = 1
ω0

arccos
(
−(m5ω

2
0(m2−ω2

0) + (m3−m1ω
2
0)(m6−m4ω

2
0))

(m6−m4ω2
0)2 + (m5ω2

0)2 + 2kπ
)
, where k = 0,1,2...

(1.3.10)

Lemma 2. ([83]) Assume that Φ′(v0) = 3v2
0 + 2pv0 + q 6= 0 and the conditions in (H1) are satisfied.

lets λ(τ) = a(τ)± iω(τ) be the root of Eq. (1.3.2) with, a(τk) = 0 and ω(τk) = ω0 for k = 0,1,2..., where
τk defined in (1.3.10). Then, ±iω0 is a simple roots and the sign of a′(τk) is coincident with the sign of
Φ′(v0) where v0 = ω2

0.

Proof. Letting λ= λ(τ) be the root of Eq. (1.3.2). Substituting λ(τ) into Eq. (1.3.2) and differentiating
both sides of Eq. (1.3.2) with respect to the time lags τ , we get

dλ

dτ
= λ(m4λ

2 +m5λ+m6)e−λτ

3λ2 + 2m1λ+m2 + (−τ(m4λ2 +m5λ+m6) + 2m4λ+m5)e−λτ
.

Then (
dλ

dτ

)−1
= (3λ2 + 2m1λ+m2)eλτ

λ(m4λ2 +m5λ+m6) + (2m4λ+m5)
λ(m4λ2 +m5λ+m6) −

τ

λ
.
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From (1.3.6)-(1.3.8), we arrive at

a′(τk)−1 = Re

[
(3λ2 + 2m1λ+m2)eλτ

λ(m4λ2 +m5λ+m6)

]
+Re

[
(2m4λ+m5)

λ(m4λ2 +m5λ+m6)

]
= 1

Π
[
3ω6

0 + 2(m2
1−m2

4−2m2)ω4
0 + (m2

2−m2
5 + 2m4m5 + 2m1m3)ω2

0
]

= 1
Π(3ω6

0 + 2pω4
0 + qω2

0)

= v0
Π Φ′(v0),

where, Π =m2
5ω

2
0 +m2

6. Notice that Π> 0 and v0 > 0, which means that

sign
[
a′(τk)

]
= sign

[
Φ′(v0)

]
.

The proof of Lemma 2 is completed.

Thus, from (1.3.10) and Lemma Lemma 2, we can state the following theorem

Theorem 2. ([83]) If Φ′(v0) 6= 0, then system (1.1.4) undergoes Hopf bifurcation at E2 and E∗2 for
τ = τk, where, k = 0,1,2....

At the equilibrium point E2 Eq. (1.3.2) turn into

λ3 +A1λ
2 +A2λ+A3 +e−λτ (A4λ

2 +A5λ+A6) = 0, (1.3.11)

where
p=A2

1−A2
4−2A2, q =A2

2−A2
5 + 2A4A6−2A1A3, r =A2

3−A2
6.

The expression of τk, k = 0,1,2, ... for E2 is expressed by

τE2 = 1
ω0

arccos
(
−(A5ω

2
0(A2−ω2

0) + (A3−A1ω
2
0)(A6−A4ω

2
0))

(A6−A4ω2
0)2 + (A5ω2

0)2

)
(1.3.12)

and
A1 =−1 +α+η(1−η2) +η2,

A2 = α−αm+ δm+ (1−η2)(βη3−βγη2 +η(γ+β+βm)) + (m−α)η2−γη3,

A3 = αγη3−αmη2 + (1−η2)(−βγη4 +βmη3 +βγη2−βmη),
A4 = 2η2,

A5 = 2(α−m)η2−2βη3(1−η2) + 2γη3,

A6 =−2αmη2 + 2βmη3(1−η2) + 2γη3−2βγη4(1−η2),
with η = m

γ

From previous calculations, we have the following aspects on the stability of the equilibrium E2
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Theorem 3. ([83]) Suppose that (H1) is satisfied, then we conclude that

(1)- If r ≥ 0 and ∆ ≤ 0, all roots of Eq. (1.3.2) have negative real parts for all τ > 0 and hence the
equilibrium point E2 of system (1.1.4) is asymptotically stable for all τ > 0.

(2)- If either r < 0 or r ≥ 0, ∆> 0, v∗1 > 0 and Φ(v∗1)≤ 0 hold, then Φ(v) has at least one positive root
and E2 is is asymptotically stable for all τ ∈ [0, τE2).

(3)- If all conditions as stated in (2) and Φ′(v0) 6= 0 holds, the sytem (1.1.4) undergoes a Hopf bifurcation
at the equilibrium point E2 for τ = τE2 .

Similarly at equilibrium point E∗2 , the Eq. (1.3.2) turns into

λ3 +B1λ
2 +B2λ+A3 +e−λτ (B4λ

2 +B5λ+B6) = 0, (1.3.13)

where
p=B2

1 −B2
4 −2B2, q =B2

2 −B2
5 + 2B4B6−2B1B3, r =B2

3 −B2
6 .

τE∗
2

= 1
ω0

arccos
(
−B5ω

2
0(B2−ω2

0) + (B3−B1ω
2
0)(B6−B4ω

2
0))

(B6−B4ω2
0)2 + (B5ω2

0)2

)
(1.3.14)

and
B1 =−1 +m−γη+x∗2,

B2 =m+γη(1 +α) +α
γ

β
+ (m−α−γη)(x∗2)2 +γ(δ−α)x∗2,

B3 =−αγ(η−x∗2)−αρy∗2 +βρ(z∗2)2 +αγ(η−x∗2)((x∗2)2−1),
B4 = 2(x∗2)2,

B5 = 2(γη−m)(x∗2)2,

B6 = 2αγ (η−x∗2),

with η = m

γ
, ρ= α

β
.

Then, for the interior equilibrium E∗2 , we set the following results

Theorem 4. ([83]) Suppose that H1 is satisfied, then we get

(1)- If ∆ ≤ 0, all roots of Eq. (1.3.2) have negative real parts for all τ > 0 and hence the equilibrium
point E2 of system (1.1.4) is asymptotically stable for all τ > 0.

(2)- If ∆> 0, v∗1 > 0 and Φ(v∗1)≤ 0 hold, then Φ(v) has at least a positive root and E∗2 is asymptotically
stable for all τ ∈ [0, τE∗

2
) .

(3)- If all conditions as stated in (2) and Φ′(v0) 6= 0 hold, (1.1.4) undergoes a Hopf bifurcation at the
equilibrium point E2 for τ = τE∗

2
.
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1.4 Stability and direction of the Hopf bifurcation Around E∗2

In this section, we investigation the direction and the stability of the periodic solutions bifurcating from a
stable equilibrium E∗2 . Following the ideas developed by Hassard in [43], we derive the explicit formula
to determine the properties of the Hopf bifurcation at the critical value τk by using normal form on the
center of manifold theory and center manifold reduction. Without loss of generality, we denote any one
of the critical values τk, k = 0,1,2... by τ∗ at which the system (1.1.4) undergoes a Hopf bifurcation
at E∗2 . We translate the interior equilibrium E∗2 into the origin by the translation u1(t) = x(t)− x∗2,
u2(t) = y(t)−y∗2 , u3(t) = z(t)− z∗2 and normalizing the delay τ by the time scaling t−→ t

τ , then system
(1.1.4) is transformed into:

u̇1 = τa11u1 + τa12u1(t−1) + τa13u3 + τa14u
2
1(t−1) + τa15u1u1(t−1) + τa16u

2
1u1(t−1),

u̇2 = τa21u3 + τa22u2u3,

u̇2 = τa31u1 + τa32u2 + τa33u3 + τa34u1u3 + τa35u2u3.

(1.4.1)

where, a11 = 1−(x∗2)2, a12 = 2(x∗2)2, a13 =−1, a14 =−x∗2, a15 =−2x∗2, a16 =−1, a21 =−βy∗2 , a22 =
−β, a31 = γρ, a32 = δρ, a33 = γx∗2 +δy∗2−m, a34 = γ, a35 = δ. Let τ = τ∗+µ where µ ∈R, then
µ= 0 is a Hopf bifurcation value of the system (1.4.1). For simplification of notations, we rewrite (1.4.1)
in C = C([−1,0],R3

+) as
u′(t) = Lµ(ut) +F (µ,ut). (1.4.2)

where, u(t) = (u1(t),u2(t),u3(t))T ∈ R3, ut(θ) ∈ C is defined by ut(θ) = u(θ+ t) and Lµ : C −→ R3,
F : R×C −→ R3 are given, respectively, by

Lµφ= (τ∗+µ)A1φ(0) + (τ∗+µ)A2φ(−1),

where A1 and A2 are defined as follows:

A1 =


a11 0 a13

0 0 a21

a31 a32 a33

 , A2 =


a12 0 0
0 0 0
0 0 0

 (1.4.3)

and

F (µ,φ) = (τ∗+µ)


F1

F2

F3

 , (1.4.4)

with,
F1 = a14φ

2
1(−1) +a15φ1(0)φ1(−1) +a16φ1(0)2φ1(−1),

F2 = a22φ2(0)φ3(0),
F3 = a34φ1(0)φ3(0) +a35φ2(0)φ3(0),
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φ(θ) = (φ1(θ),φ2(θ),φ3(θ))T ∈C([−1,0],R). From the discussion in Sec.1.3, we know that system (1.1.4)
undergoes Hopf bifurcation at E∗2 for µ= 0, and the associated characteristic equation of system (1.1.4)
with µ= 0 has a pair of simple imaginary roots ±iω0. By the Riesz representation theorem [46, 72], there
exists a function ϕ(θ,µ) of bounded variation for θ ∈ [−1,0], such that

Lµφ=
∫ 0

−1
dϕ(θ,µ)φ(θ), ∀φ ∈ C.

In fact, we can choose

ϕ(θ,µ) =


A1, θ = 0,
A2, θ ∈ [−1,0),
A1ξ(τ∗+µ), θ ∈ [−τ∗,−1),

(1.4.5)

where ξ is the Dirac function. For φ ∈ C([−1,0],R3
+), we set

B(µ)φ=


dφ(θ)
dθ

, θ ∈ [−1,0),∫ 0

−1
dϕ(θ,µ)φ(θ), θ = 0

(1.4.6)

and

R(µ)φ=

 0, θ ∈ [−1,0),
F (µ,φ), θ = 0.

(1.4.7)

Then the system (1.4.1) can be rewritten as

u′t =B(µ)ut+R(µ)ut. (1.4.8)

For ψ ∈ C′([−1,0],R3
+), define:

B∗ψ(s) =


dψ(s)
ds

, s ∈ [−1,0),∫ 0

−1
dϕT (−t,0)ψ(−t), s= 0

(1.4.9)

and bilinear inner product is given by

〈ψ(s),φ(θ)〉= ψ
T (0)φ(0)−

∫ 0

−1

∫ θ

ν=0
ψ(ν−θ)dϕ(θ)φ(θ)dν. (1.4.10)

We know that B∗ and B = B(0) are adjoint operators. By the discussion in Sec.1.4, we know that iω0

are eigenvalues of B(0), which are eigenvalues of B∗. Suppose that q(θ) = q(0)eiω0θ is an eigenvector of
B(0) corresponding to the eigenvalue iω0. Then, B(0) = iω0q(θ). For θ = 0, we obtain[

iω0I−
∫ 0

−1
dϕ(θ)eiω0θ

]
q(0) = 0,
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which yields to q(0) = (1,a,b)T , where

ε1 = a21
iω0

, (1.4.11)

π1 = a31
−a32−a33 + iω0

. (1.4.12)

Similarly, it can be verified that qs = D(1,a∗, b∗)eiω0s is the eigenvector of B∗ corresponding to −iω0,
where

ε2 =−a21
iω0

, (1.4.13)

π2 = −a31
a32 +a33 + iω0

. (1.4.14)

By (1.4.10), we get

〈q∗(s), q(θ)〉 = D(1,ε2,π2)(1,ε1,π1)T −
∫ 0

−1

∫ θ

ν=0
(1,ε2,π2)e−iω0(ν−θ)dϕ(θ)(1,ε1,π1)T eiω0νdν,

= 1 +ε1ε2 +π1π2−
∫ 0

−1
(1,ε2,π2)θeiω0θdϕ(θ)(1,ε1,π1)T dν,

= 1 +ε1ε2 +π1π2 + τ∗a12e
−iω0τ

∗
.

We can choose

D = 1
1 +ε1ε2 +π1π2 + τ∗a12e−iω0τ∗ ,

so that, 〈q∗(s), q(θ)〉 = 1, 〈q∗(s), q(θ)〉 = 0. Following the algorithms developed in [43] and using a
computation process similar to that in [65, 71], we obtain the coefficients that are crucial in determining
the nature of the periodic solutions:

g20 = 2D(H11 +ε2H31 +π2H21),
g11 =D(H12 +ε2H22 +π2H32),
g02 = 2D(H13 +ε2H23 +π2H33),
g21 = 2D(H14 +ε2H24 +π2H34),
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where,

H11 = a16e
−iω0τ

∗ +a15e
−2iω0τ

∗
,

H12 = 2a15 +a16e
−iω0τ

∗ +a16e
iω0τ

∗
,

H13 = a16e
iω0τ

∗ +a15e
2iω0τ

∗
,

H14 = 2a17 +a17e
−2iω0τ

∗ +a16e
−iω0τ

∗
N

(1)
11 (0) +a16N

(1)
11 (−1) + 2a15e

−iω0τ
∗
N

(1)
11 (−1) + 1

2a16e
iω0τ

∗
N

(1)
20 (0),

+a16N
(1)
20 (−1)
2 +a15e

iω0τ
∗
N

(1)
20 (−1),

H21 = a22ε1,

H22 = a22ε1 +a22ε1,

H23 = a22ε1,

H24 = a22N
(2)
11 (0) + a22N

(2)
20 (0)
2 +a22N

(2)
11 (0)ε1 + a22N

(2)
20 (0)ε1
2 ,

H31 = a33π1 +a34π
2
1 ,

H32 = a33π1 +a33π1 + 2a34π1π1,

H33 = a33π1 +a34π1
2,

H34 = a33N
(3)
11 (0) + a33N

(3)
20 (0)
2 +a33N

(3)
11 (0)π1 + 2a34N

(3)
11 (0)π1 + a33N

(3)
20 (0)π1
2 +a34N

(3)
20 (0)π1

N20(θ) = ig20
ω0τ∗

q(0)eiω0τ
∗θ + ig20q(0)

3ω0τ∗
e−iω0τ

∗θ +V1e
2iω0τ

∗θ,

N11(θ) = −ig11
ω0τ∗

q(0)eiω0τ
∗θ + ig11q(0)

3ω0τ∗
e−iω0τ

∗θ +V2,

where V1 and V2 are both three-dimensional vectors, and can be determined by:
2iω0−a11−a12e

−2iω0τ
∗ −a13 −a14

−a21 2iω0 0
−a31 0 2iω0−a32

V1 =−2


H11

H21

H31


and 

a11 +a12 a13 a14

a21 0 0
a31 0 a32

V2 =−2


H12

H22

H32

 .
Then g21 can be expressed entirely by the system parameters. In fact, each gij can be determined by the
parameters. Thus we can compute the following crucial quantities:

C1(0) = i

2iω0τ∗

(
g11g20−2|g11|2−

|g02|2

3

)
+ g21

2 ,

µ2 =− Re{C1(0)}
Re{λ′(τ∗)} ,
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β2 =Re{C1(0)} ,

T2 =−Im{C1(0)}+µ2Im{λ′(τ∗)}
τ∗ω0

,

which determines the nature and the stability of the periodic solutions at the critical value τ∗,i.e, µ2

determines the direction of Hopf-bifurcation. By the results of Hassard et al. [43], we have the following
theorem.

Theorem 5. ([83]) If µ2 > 0 (respectively µ2 < 0), then the Hopf bifurcation is supercritical (respec-
tively, subcritical) in this case the bifurcating periodic solutions exists for τ > τ∗ (respectively, τ < τ∗), β2

determines the stability of bifurcating periodic solutions: the bifurcating periodic solutions are orbitally
asymptotically stable (respectively, unstable) if β2 < 0 (respectively, β2 > 0), T2 determines the period
of the bifurcating periodic solutions: the period increases (respectively, decreases) if T2 < 0 (respectively,
T2 > 0).

1.5 Numerical simulations

For confirming the obtained mathematical results, we split our section into two subsections. The first is
for verifying the dynamics presented in the absence of time lags, and the second for ensuring the results
in the presence of the time delay.

1.5.1 Without delay (τ = 0)

For α= 0.09, β= 9.45, γ= 0.81, δ= 9.45, m= 0.7, we obtain ρ= 0.0952,η= 0.8642, E2 = (0.8642,0.0000,0.2188),
E∗2 = (0.9952,−0.0112,0.0952) and E∗1 = (0.0095,−0.0733,0.0952) the two interior equilibriums does not
exists, ρ= 0.0952<η(1−η2) = 0.2188 according to the Tab 1.1 it follows that E2 is locally asymptotically
stable. (see Fig.1.1)

At first we consider he values α= 3.1, β = 10.5, γ = 0.81, δ = 0.9, m= 0.7, we get ρ= 0.2952> η(1−
η2) = 0.2188, η= 0.8642 then, E2 = (0.8642,0.0000,0.2188) is unstable. The first interior equilibrium E∗1 =
(0.3317,0.4795,0.2952) is unstable where the second E∗2 = (0.7920,0.0650,0.2952) is locally asymptotically
stable. (see Fig.2.1)

1.5.2 With delay (τ > 0)

We take the following values α= 0.43, β= 19.1, γ= 0.7, δ= 7.6, m= 0.75, τ = 0.71, we get ρ= 0.0149, η=
0.5556, τE2 = 0.734711. Since, τ < τE2 , according to Theorem 3 E2 is locally asymptotically stable (see
Fig.1.3 and the system (1.1.4) undergoes a Hopf bifurcation at E2 for τ = τE2 = 0.734711. (see Fig.1.4).
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Figure 1.1: trajectory and phase portrait of the solution of the system (1.1.4), with α= 0.09, β = 9.45, γ =
0.81, δ = 9.45, m = 0.7. (a) time series behavior of (x(t),y(t),z(t)). (b) phase space behavior of the system

(1.1.4) showing that E2 is locally asymptotically stable for x(0) = 0.5, y(0) = 0.09 and z(0) = 0.5.

Finally, we take α = 3.5, β = 20.1962, γ = 0.81, δ = 4.0392, m = 3.5, τ = 0.924, implies that ρ =
0.1733, η = 8.7500, τE∗

2
= 0.920973. τ > τE∗

2
, according to Theorem 4 E∗2 is locally asymptotically

stable (see Fig.1.5) and the system (1.1.4) undergoes a Hopf bifurcation at τE∗
2

= 0.921973 as depicted
in Fig.1.6. Further, from the above process, we can determine the stability and direction of periodic
solutions bifurcating from the positive equilibrium at the critical point τk. For instance, for τ = τE∗

2
=

0.921973, C1(0) =−0.565364+3.15609i. From Section 1.4, it follows that µ2 > 0 and β2 < 0. Therefore,
the bifurcation takes place when τ crosses τE∗

2
to the right τ > τE∗

2
, and the corresponding periodic orbits

are asymptotically stable.

1.6 Discussion

We provided in this research a new approximation of predator-prey interaction where one-predator and
two-prey intermingling is considered. The first prey is assumed to have a social behavior and the other
have a solitary behavior. In the absence of the predator, it has been presumed that the first population
of prey reproduces in a logistic manner, and the growth of the second is assume to be in a Malthusian
manner. In the absence of time lags, and from the linear stability analysis of the equilibrium points, it is
concluded that for 1/

√
3< η < 1 and ρ < η(1−η2), the social prey with the predator will survive and the

second population of prey will extinct this result appears clearly from Fig.1.1 and Fig.1.3. In this case,
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Figure 1.2: The local stability of E∗2 , with α= 3.1, β = 10.5, γ = 0.81, δ = 0.9, m= 0.7. (a) time series
behavior of (x(t),y(t),z(t)). (b) phase space behavior of the system (1.1.4) showing that is locally asymptotically

stable where E∗1 and E2 are unstable. Here x(0) = 0.46, y(0) = 0.01 and z(0) = 0.5.
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Figure 1.3: Numerical simulation of the system (1.1.4), with α = 0.43, β = 19.1, γ = 0.7, δ = 7.6, m =
0.75, τ = 0.71, implies τE2 = 0.734711, τ < τE2 . Then E2 is locally asymptotically stable. Here the initial value

is (0.44,0.03,0.04)

the solitary population can not resist even though its growth is Malthusian (exponential) and goes to
extinction. Therefore, it can be concluded that the predator prefers the individual prey and finds some

32



0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

 t

 x
(
t
)

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

 t

 y
(
t
)

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

 t

 z
(
t
)

Figure 1.4: The existence of periodic solutions of the system (1.1.4), with α= 0.43, β = 19.1, γ = 0.7, δ =
7.6, m= 0.75, τ = 0.83, implies τE2 = 0.734711, τ > τE2 . E2 loses its stability and a Hopf-bifurcation occurs.
(a) time series behavior of (x(t),y(t),z(t)), (b) phase space behavior of the system (1.1.4). Here the initial value

is (0.2,0.1,0.2).
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Figure 1.5: The local stability of E∗2 , with α= 3.1, β = 10.5, γ = 0.81, δ = 9.45, m= 0.9, τ = 0.89, implies
ρ = 0.2952, η = 1.1111, τE∗

2
= 0.921973. τ < τE∗

2
. Then E∗2 is locally asymptotically stable. (a) time series

behavior of (x(t),y(t),z(t)), (b) phase space behavior of the system (1.1.4). Here the initial value is (0.5,0.01,0.5).
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Figure 1.6: Numerical simulation of the system (1.1.4), with α = 3.5, β = 20.1962, γ = 0.81, δ =
4.0392, m = 3.5, τ = 0.924, implies ρ = 0.1733, η = 8.7500, τE∗

2
= 0.920973. τ > τE∗

2
. Then E∗2 loses its

stability and a Hopf bifurcation occurs. (a) time series behavior of (x(t),y(t),z(t)), (b) phase space behavior of
the system (1.1.4). Here the initial value is (0.1,0.01,0.05).

difficulty with the organized prey that lives in herds. The most interesting situation for ecologists is to
conserve all species. For our model, if the equilibrium E∗2 exists then it is stable, where in this case we can
avoid extinction for each species this condition is ρ < 2/3

√
3 and x∗2 <min{1,η}. This consequence can

be seen clearly from Fig.2.1 and Fig.1.5, for the biological meaning, we can highlight that the solitary
exists but in small densities which agrees with the real life situation. In fact, if we consider the species
that is in the danger of prey extinction we can see that the most part of them have a solitary behavior
which can claims the big help that the group provides for the surviving of this species (prey). It has
been mentioned at Section 1.1 that the delay can give a very good precision. Avoiding using the time
lags can lead to losing the ecological precision of the ecological results. In fact, Section 1.3 is devoted
to study the misleading that can be obtained by neglecting the time lags, where a stable equilibrium in
the absence of the time delay can becomes unstable, even can lead to a Hopf bifurcation. A suitable
condition are provided in Theorem 4, where Fig.1.4 and Fig. Fig.1.6. For the stability of the periodic
solution generated by the presence of Hopf bifurcation on a stable equilibrium E∗2 where section Section
1.4 is offered to show this result. In the next section we will give ecological version of our study using
the affirmation used in this section and other claims which are going to be helpful in the real world.
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1.7 Concluding and remarks

In this chapter, we dealt with a comparative analysis between two contradictory defensive strategies for
two type of prey. The first prey population has a social behavior. This behavior has huge benefits for
this type of animals, where the predator don’t dare to attack a prey on a moving herd directly. But it
uses other methods to hunt the prey such as creating panicking on the herd by pursuing it for long time
or attacking this moving pack from different angles. The purpose of these attacks is to divide the herd
which means that the bond between the herd members is very dangerous for the predator population.
In the real world, there are many predators dies for the reason of prey herd and the best example that
we can consider is the buffalos, where it defends for each other brutally. Also to mention that this
behavior has also other negative points such as the big feasibility, where in Africa, the predators can
see the predators from miles away mostly for the prey that immigrates with a very large numbers such
as gnus and buffaloes. Also in the prey herd peregrination the predator follows its prey, which makes
a confusion what if the social behavior of the prey is the best strategy for the prey surviving. On the
other hand, the prey with the solitary behavior has the advantage of hiding it self from a predator, and
it is capable to move without being seen by predator. In general, these type of prey has a big capacity of
adaptation, where the solitary behavior (small number or the big space between two solitary prey) can
help in obtaining the resources very quickly at the opposite with the grouped prey (the inside prey may
suffers for getting enough food mostly in the drey season). But getting enough resources is not always
an issue, avoiding predation and safety is also very important for these kind of animals. This remarks
make a confusion for detecting the best strategy is better for the prey population can considers.

Based on this remarks we built a model considers the intermingling of two types of preys and one
predator and for the purpose of selecting the best behavior that the prey can considers. Indeed, after
our mathematical analysis it is shown that the surviving of the grouped prey only without the solitary
prey and the predator is not possible (which means that E1 is always unstable). The same remark can
be obtained from the extinction of the three species. This result mean that the grouped prey cannot be
extinct which gives an advantage of the grouped prey on the solitary prey. Further, it has been proved
that the solitary-prey-free equilibrium can be stable. This result has a huge ecological implication, for
the right conditions (the condition of the stability of the solitary-prey-free equilibrium E2) the grouping
behavior is much more appropriate for the prey surviving, which confirms partially with the known idea
of the advantage of using herd behavior on the solitary behavior. Furthermore, it is also proved that there
exists two interior equilibriums, the first is unstable (E∗1 ), and the other is stable where ever exists. For
subject of conserving all the species it better to provide the right condition for avoiding any extinction
(the existence condition of the interior equilibrium E∗2 ). Also, to mention that we considered the time
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spent without any food for the grouped prey (time delay) where we proved that neglecting this parameter
can leads to unbalance between the mathematical predicting and the results on the real world, where
we proved that the time delay can destabilize a stable equilibrium. By putting all together we offered
a model that allows us to compar between two contradictory behaviors for the prey population where a
very good anticipating results provided which agrees with the real world situation. To close, the prey
social behavior is very important for the surviving of the species of it gender, in fact the most numerous
population in earth are the one that exhibits this behavior we mention as example buffalos, gnu, giant
honeybees, ants for the terrestrial prey animals, and sardine and tuna for the aquatic animals which
shows its importance for the ecological diversity of our planet.
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Chapter 2

Shape effects on herd behavior in

predator-prey model with Gompertz

growth function

In this chapter, we are interested in the analysis of a predator-prey model with herd behavior and
the Gompertz growth function for the prey population. In this model we introduce a new functional
response [14] which generalizes the interaction between the prey and the predator in the differents herd
shapes formed by the prey (in 2D and 3D herd shapes). The aim of this chapter is to see the critical
impact on the densities of two species when the shape of herd behavior changes.

The present chapter is organized as follows: Section 2.1 is devoted to the formulation of the math-
ematical model. In Section 2.2, we perform some basic analysis for the model (2.2.2), including the
boundedness of the solution, the local stability analysis of constant steady states. Moreover, we analyze
the behaviors of the model system near the origin. Section 2.3, the effect of the rate of herd shape
on the interior equilibrium has been investigated. In Section 2.4, we obtain the global asymptotical
stability of the boundary equilibrium and the interior equilibrium. The existance of Hopf bifurcation
will be shown in Section 2.5. To illustrate the effectiveness of our theoretical results, some numerical
simulations are provided in Section 2.6. In next Section we return to the original model to project the
results obtained on the simplified model and give some remarks. Finally, conclusions and comments are
given in the last Section to close this chapter.
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2.1 Presentation of the model

Recently, in [14] Venturino et al. introduce a new functional response which generalizes the interaction
between the prey and the predator in both cases 2D and 3D herd shapes with a new parameter α which
represents the exponent of the prey population in the interaction term with the predators. The model
introduced by [14] can be written as the following forme


dX(τ)
dτ = rX(τ)

(
1− X(τ)

k

)
−aX(τ)αY (τ),

dY (τ)
dτ =−mY (τ) +ηaX(τ)αY (τ).

(2.1.1)

We denote by X and Y the densities of the prey and the predator, respectively. The variable τ

represents time, r is the intrinsic growth rate. k is the environment carrying capacity for the prey.
m represents the natural mortality rate for the predators. a stands for the predation rate of the prey
population. η is the conversion rate of the prey density to a predator density.

The new parameter 0 < α < 1 represents the rate of the herd shape formed by the prey, we can
easily remark that the model is widely general enough to accommodate even the case in which the prey
can gather in shapes possessing a fractal geometry. For the particular case α = 1, we don’t have a
herd behavior and the predator can be interact with any individual of the prey population (the classical
model of Lotka and Volterra). In 2D space with herd behavior we obtain α= 1/2 where the authors [2]
have obtained significant results by using the Poincaré-Bendixson theorem and a technical based on the
decomposition of the phase plan into regions. Moreover, for the case of 3D herd shape [14], when the
prey makes a regular shape such as a cube, the quantity of the captured prey by one predator will be
proportional to X2/3, which gives a better explaining the value of α. We can conclude that the model
(2.1.1) generalizes any form of interaction between the predator and the population of prey grouped in
herds in 2D and 3D.

Moreover, the mathematician Benjamin Gompertz established for the first time the function of
Gompertz in 1850, this function can be translated into Gompertz differential equation dy

dx = ry ln(k/y))
[36, 92], as an alternative approach, it has been proven to be a simple example to produce asymmetrical
types of S-shaped curves [94], instead of the logistic function y = k

1−ea−rx , (corresponding to Logistic
differential equation dy

dx = ry(1− y
k ). Subsequently, several models have been established for biological

growth by using Gompertz function. The Gompertz model is widely used to describe the evolution of
a species with very rapid growth in a very short time interval as the growth of the number of bacteria
[13, 51, 112], the growth of birds and animals, especially poultry [69].

Motivated by works cited above, we consider a predator–prey model (2.1.1) with Gompertz growth
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as following


dX(τ)
dτ = rX(τ) ln

(
k

X(τ)

)
−aX(τ)αY (τ),

dY (τ)
dτ =−mY (τ) +ηaX(τ)αY (τ).

(2.1.2)

2.2 Mathematical analysis and some preliminary results

Put

u := 1
k
X, v := a

rk1−αY, t := rτ. (2.2.1)

Then, we obtain


du
dt = f(u,v),

dv
dt = g(u,v),

(2.2.2)

where

f(u,v) =


u ln

(
1
u

)
−uαv, if u 6= 0,

0 if u= 0

and

g(u,v) =−δv+βuαv,

with

β = a
ηkα

r
, δ = m

r
. (2.2.3)

2.2.1 Boundedness of the solution

In the following theorem we show that solutions of system (2.2.2) are bounded.

Theorem 6. All solutions of the system (2.2.2) that start in R2
+ are bounded.
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Proof. Let (u(t),v(t)) be any solution of the system (2.2.2), we put w(t) = βu(t) +v(t), then

dw

dt
+ δw = βu

(
ln
(

1
u

)
+ δ

)
= ψ(u). (2.2.4)

The function ψ(u) reaches the maximum value βe1−δ > 0 at u= e1−δ, so we leads to

dw

dt
+ δw = βu

(
ln
(

1
u

)
+ δ

)
= ψ(u)≤ βe1−δ. (2.2.5)

Applying the theory of differential inequality [9], we obtain

0≤ w(t)≤ βe1−δ

δ
(1−e−δt) +w(0)e−δt ≤ βe1−δ

δ
+w(0), ∀t≥ 0. (2.2.6)

This completes the proof of Theorem 6.

2.2.2 Equilibrium points and their stability

In this subsection, we find the possible equilibia of (2.2.2). We see that this system has three nonnegative
equilibria:

(i) the trivial equilibrium point E0 := (0,0),

(ii) the boundary equilibrium point E1 := (1,0),

(ii) the interior equilibrium point E∗ := (u∗,v∗), exists if and only if u∗ < 1 (i.e. β > δ), where

u∗ =
(
δ

β

) 1
α
, v∗ = (u∗)1−α ln

(
1
u∗

)
. (2.2.7)

Now, we study the local stability analysis of the system (2.2.2). The variational matrix for (2.2.2) is

J(u,v) =


ln
(

1
u

)
−1−αuα−1v −uα

βαuα−1v βuα−1− δ

 . (2.2.8)

The eigenvalues of the variational matrix evaluated at the boundary equilibrium point E1 are λ1 =−1
and λ2 = β− δ. Hence, E1 is locally asymptotically stable if β < δ and unstable if β > δ.
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Condition E1 E∗ Bifurcation
0< β < δ Asymptotically stable Infeasible
βe−α/1−α < δ < β unstable Asymptotically stable
δ = δH = βe−α/1−α unstable Hopf

Table 2.1: Dynamical behavior of the system (2.2.2) around E1 and E∗.

Next, we investigate the coexistence equilibrium E∗. The Jacobian evaluated at E∗ is given by

J(E∗) =


(1−α)

[
ln
(

1
u∗

)
− 1

1−α

]
−(u∗)α

βα(u∗)α−1v∗ 0

 . (2.2.9)

The characteristic equation of J(E∗) is given by λ2−Tλ+D = 0, where

T = tr(J(E∗)) = (1−α)
[
ln
(

1
u∗

)
− 1

1−α

]
= (1−α)

[(
1
α

)
ln
(
β

δ

)
− 1

1−α

]
and

D = det(J(E∗)) = βα(u∗)2α−1v∗ = βα(u∗)α ln
(

1
u∗

)
> 0.

As D > 0, the real parts of the eigenvalues have the same sign and therfore the local stability of E∗

depends only on the sign of T = tr(J(E∗)). That is, E∗ is locally asymptotically stable for T < 0 and
unstable for T > 0. Put CH = e−1/1−α, then, the interior equilibrium E∗ is locally asymptotically stable
for u∗ > CH i.e βe−α/1−α < δ < β, and unstable when βe−α/1−α > δ. By the Poincare-Andronov-Hopf
bifurcation theorem [43], we know that (2.2.2) undergoes Hopf bifurcation at E∗ for u∗ = CH . Then
u∗ = CH i.e δ = δH = βe−α/1−α is the Hopf bifurcation critical value.

2.2.3 Stability analysis of E0

Here, we investigate the linear stability of E0. Due to the singularity of matrix J(u,v), the stability of
E0 cannot be determined by simply evaluating (2.2.8) at u= 0 and v = 0, since u1−αv is indeterminate.
Basically, system (2.2.2) is not linearizable at E0 because of the terms of the α power of prey, where
α ∈ (0,1). In [2] for the particular case α = 1/2 with logistic growth for prey, the authors remove the
singularity by rescaling the variable

√
u = x, the eigenvalues of such transformed system being 1/2 and
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−δ, we may conclude that, the trivial equilibrium E0 has an unstable manifold. After analyzing the local
stability near the origin of our proposed model, the system behavior shows a mixed stability of the steady
state at the origin given by the following novel theorem

Theorem 7. Suppose that 0< α < 1, let u0 = u(0)≥ 0 and v0 = v(0)≥ 0 be the initial conditions for
the system (2.2.2) and let E be the part of the system’s phase plane in the interior of the positive quadrant
of the (u,v) plane defined by

D0 =
{

(u,v) : u > e−1,v > ṽ(u)
}
, where

ṽ(u) = δ+ 1−α
1−α u1−α.

(2.2.10)

Then, for any (u0,v0) ∈D0 there exists some suitable time t∗ for which the prey population goes to
extinction. Thus the system’s trajectory reaches the axis v at a finite time.

Proof. From the first equation of system (2.2.2). Since u and v are non-negative, we have

dv

dt
=−δv+βuαv ≥−δv. (2.2.11)

Applying the comparison principle for ordinary differential equations [40], and let ṽ be the solution
of the following initial value problem


dṽ
dt =−δṽ,

ṽ(0) = v0.

(2.2.12)

Then, we obtain

v(t)≥ ṽ(t) = v0e
−δt, for all t > 0. (2.2.13)

Consider the second equation, from u > e−1 and (2.2.13) , we get

du

dt
= u ln

(
1
u

)
uα−v (2.2.14)

≤ u−uαv (2.2.15)

≤ u−uαv0e
−δt. (2.2.16)
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Similary, by the comparison principle [40], if ũ is the solution of the initial value problem


dũ
dt = ũ− ũαv0e

−δt,

ũ(0) = u0.

(2.2.17)

It follows that

u(t)≤ ũ(t), for all t > 0. (2.2.18)

In order to solve (2.2.17), we define a new variable w(t) as follows

ũ= w(t)et, with w(0) = ũ(0) = u0. (2.2.19)

Substituting (2.2.19) into (2.2.17). We lead to the following equation for w:

d

dt
w(t) =−w(t)αv0e

−λt. (2.2.20)

where λ= δ+ 1−α.
Solving the above equations, we obtain,

w(t)1−α = w(0)1−α− v0(1−α)
λ

(1−e−λt). (2.2.21)

Obviously, the right-hand side of Eq.(2.2.21) monotonously decreases as function of t. In addition,
we know that w(0)> 0, this implies that for some t̃, w(t̃) = 0 if and only if

w(0)1−α <
v0(1−α)

λ
. (2.2.22)

Now, we come back to the relation (2.2.19) between w and ũ, It is obvious to see that w(t̃) = 0 which
implies that ũ(t̃) = 0. Note that w(0) = u0 and from (2.2.22) we lead to w(t̃) = 0 for any u0 and v0

satisfying the following condition

v0 >
λ

1−αu
1−α
0 = δ+ 1−α

1−α u1−α
0 . (2.2.23)

From (2.2.21), we obtain the explicit expression of t̃ as follows

t̃=− 1
δ+ 1−α ln

[
1− δ+ 1−α

v0(1−α)u
1−α
0

]
. (2.2.24)

Finally, we know from (2.2.18) that ũ is an upper bound for u(t) then, if ũ(t̃) = 0 we obtain 0≤ u(t̃)≤ 0,
which means that u(t) becomes zero for some t∗ ≤ t̃. Inequality (2.2.23) gives a sufficient condition for
the prey species extinction. This completes the proof of Theorem 7.
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Figure 2.1: The phase plane of (2.2.2) with parameters α = 2/3, β = 0.5, δ = 0.6. The thick red curve is
the separatrix v = 2.8u1/3, it shows the boundary of the extinction domain D0. Please see (2.2.10). For any
initial conditions above this curve, the trajectories (shown in black color with v0 > 2.8u1/3

0 ) hit the vertical axis,
which means species extinction. For initial conditions below the curve, the trajectories (shown in blue color with
v0 < 2.8u1/3

0 ) approach an attractor in the interior of the phase plane (either the stable coexistence steady state
or the stable limit cycle, depending on equation parameters).

Note that inequality (2.2.23) gives only a sufficient condition of prey extinction but not a necessary
one. Therefore, the actual extinction domain in the (u,v) phase plane is somewhat larger than the
domain D0 defined by (2.2.10); the extinction may happen as well for some v0 < ṽ(u0). Now we define
the separatrix curve separating the two different trajectories as fllows :

(Γ) : v = δ+ 1−α
1−α u1−α, (2.2.25)

From (2.2.25) and Fig.2.1, the singular dynamics of model (2.2.2) near the origin is given in the
following lemma

Lemma 3.

(i) For any initial value (u0,v0) such that, v0 = δ+ 1−α
1−α u1−α

0 the orbit of model (2.2.2) goes into the
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origin equilibrium along the parabola v = δ+ 1−α
1−α u1−α, see Fig.2.1.

(ii) For any initial value (u0,v0) such that, v0 >
δ+ 1−α

1−α u1−α
0 the orbit of model (2.2.2) terminates at

u= 0 and some positive value of v, after which v decreases to zero, see Fig.2.1.

(iii) For any initial value (u0,v0) such that, v0 <
δ+ 1−α

1−α u1−α
0 the orbit of model (2.2.2) gives saddle

behavior, see Fig.2.1.

Lemma 3, together with Theorem 7 lead to the following theorem for the stability of the trivial
equilibrium E0,

Theorem 8. The equilibrium point E0 is globally asymptotically stable in the domain D0 and unstable
below the separatrix Γ (please see Fig.2.1).

Lemma 4. Below the separatrix Γ, E0 has the same behavior as a saddle point (please see Fig.2.1).

2.3 The impact of the prey herd shape

The form of the herd for the prey plays an effective role in maintaining the cohesion and toughness of the
herd against predators. In this section, we will study the impact of prey herd shape on the equilibrium
densities of both the prey and the predator populations. Let’s start with the prey population, the
differentiation of the density equilibrium of the prey population with respect to α gives

du∗

dα
= 1
α2 ln

(
β

α

)
e
−

1
α

ln

(
β

α

)
> 0.

Obviously, the prey equilibrium density is monotonously increases as α increases because β > δ (The
feasibility condition of E∗), means that prey herd shape has a positive effect on the prey equilibrium
density Fig.2.2. This result give the importance of the social behavior for the prey population, see
Fig.2.2.

Now focusing on studying the impact of the defense mechanism on the predator density equilibrium
state. Noticing that

v∗(α) = (u∗)1−α ln
(

1
u∗

)
with u∗ =

(
δ

β

) 1
α
. (2.3.1)
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Figure 2.2: The effect of the prey herd shape on the prey density equilibrium state for the values β = 1.1, δ = 1
where α ∈ [0.01,0.99].

After differentiating the equilibrium state of the predatory density (2.3.1) with respect to α, we obtain

dv∗

dα
= 1
α2 ln

(
β

δ

)(
β

δ

)α−1
α

[
−1 + 1

α
ln
(
β

δ

)]
. (2.3.2)

Lemma 5. Assume that β > δ, then we have

(i) If 0 < δ < βe−1, the predator equilibrium density is monotonously increases for α ∈ (0,1) (see
Fig.2.3).

(ii) If δ > βe−1, the predator equilibrium density is monotonously increases for α ∈
]
0, ln

(
β

δ

)[
and

monotonously decreases for α ∈
]
ln
(
β

δ

)
,1
[

(see Fig.2.3).

Proof. It is not dffcult to verify Lemme 5. From (2.3.2) , we know that dv
∗

dα
= 0 for α= ln

(
β

δ

)
where,

dv∗

dα
< 0 for α > ln

(
β

δ

)
and dv∗

dα
> 0 for α < ln

(
β

δ

)
. Then, if we take 0< δ < βe−1 we deduce that the

predator equilibrium density is monotonously increases over the interval (0,1) which completes the

rst part of the proof. On the other hand if δ > βe−1 means that the function v∗ is monotonously
increases for α ∈

]
0, ln

(
β

δ

)[
and monotonously decreases for α ∈

]
ln
(
β

δ

)
,1
[
. The proof is completed.
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Figure 2.3: The effect of the prey herd shape on the predator density equilibrium state. Left: the values
β = 3, δ = 1, then δ < βe−1 = 1.1036. Right: the values β = 1.3, δ = 1, then δ > βe−1 = 0.4782. Here α∈ [0.1;0.99].

clearly the prey herd shape has a remarkable influence on the predator equilibrium density, this
importance can be seen when the shape of the herd changes. Obviously the predator prefers the form
where there exists more prey on the border. From Lemme 5 we also see that the predator mortality rate
plays an important role in the predator density, if it is less than βe−1 the prey herd shape has a positive
impact on the predator density equilibrium for any forms of herds (α ∈ (0,1)). But if δ > βe−1, the

herd shape has a positive impact on the predator density equilibrium for α ∈
]
0, ln

(
β

δ

)[
and a negative

impact for α ∈
]
ln
(
β

δ

)
,1
[
.

2.4 Global asymptotic stability

From Section 2.2, we know that system (2.2.2) always has the equilibria E0 and E1 for all parameter
values. Further (2.2.2) has a unique coexistence equilibrium E∗ = (u∗,v∗) if β > δ, where

u∗ =
(
δ

β

) 1
α
, v∗ = (u∗)1−α ln

(
1
u∗

)
.

Now, we study the global asymptotic stability of the equilibrium points E1 and E∗.

Theorem 9. Assume that β < δ, then the predator-extinction equilibrium point E1 of system (2.2.2)
is globally asymptotically stable.

47



Proof. From Sec.2.2, we khow that the boundary equilibrium E1 is locally asymptotically stable if β < δ.
The eigenvalues of the jacobian matrix evaluated at this equilibrium are λ1 =−1 and λ2 = β− δ.

Since u′ < u ln
(

1
u

)
< u(1−u), we have lim

t→+∞
supu(x)≤ 1.

So, for any ε > 0 there exist Tε > 0 such that

u(t)≤ 1 + ε, for t > Tε.

From the second equation of (2.2.2), we have

v′ = v(−δ+βuα).

And by choosing 0< ε <
(
δ
β

) 1
α −1, we can obtain

v′ ≤ v(−δ+β(1 + ε)α), t > Tε.

Applying a comparaison theorem on differential inequalities, we obtain

v(t)≤ v(0)e(−δ+β(1+ε)α)t (2.4.1)

with

−δ+β(1 + ε)α < 0, for t > T. (2.4.2)

Now, from (2.4.1) and (2.4.2), for t→ +∞ we get v(t)→ 0 and for a sufficiently large time the first
equation of system (2.2.2) becomes

u′ ≤ u ln
(

1
u

)
,

thus, we get u(t)≤ 1
1−eu0−t

−→ 1 for t−→+∞. This completes the proof of Theorem 9

In the following, we try to show the global stability of the interior equilibrium E∗. But before
announcing the theorem we must claim that system (2.2.2) has no nontrivial periodic orbits in R2

+,
clearly when u∗ > 1, we can affirm that model (2.2.2) has no nontrivial periodic orbits due to the fact
that when u∗ > 1 model (2.2.2) has no positive equilibrium. Therfore, we must assume CH < u∗ < 1 in
the rest of this section. So, we have the following theorem

Theorem 10. The system (2.2.2) has no nontrivial periodic orbits in R2
+ when CH < u∗ < 1.
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Proof. Suppose that CH < u∗ < 1 and there exists Λ(t) = (u(t),v(t)) called the nontrivial periodic orbits
of (2.2.2) with period T > 0 in R2

+. Then, we have

∫ T

0

(
ln
(

1
u

)
−uα−1v

)
dt=

∫ T

0

u′(t)
u(t) dt= ln(u(T ))− ln(u(0)) = 0, (2.4.3)

∫ T

0
(−δ+βuα) dt=

∫ T

0

v′(t)
v(t) dt= ln(v(T ))− ln(v(0)) = 0, (2.4.4)

and

tr(JΛ) = ln
(

1
u

)
−1−αuα−1v+βuα−1− δ

= u′

u
+ v′

v
−1 + (1−α)

(
(ln
(

1
u

)
− u
′

u

)
= α

u′

u
+ v′

v
+ tr(JE∗) + (1−α)

(
ln
(

1
u

)
− ln

(
1
u∗

))
.

Then, we obtain

∫ T

0
tr(JΛ)dt= tr(JE∗)T + (1−α)

∫ T

0

(
ln
(

1
u

)
− ln

(
1
u∗

))
dt. (2.4.5)

Setting

ψ1(u) =
ln
(

1
u

)
− ln

(
1
u∗

)
(u∗)α−uα , (2.4.6)

then, we have

ψ′1(u) =

1
u

[
uα− (u∗)α−αuα

(
ln
(

1
u

)
− ln

(
1
u∗

))]
((u∗)α−uα)2 . (2.4.7)

It is easy to prove that ψ′1(u)> 0 for u 6= u∗. Defining the functional

ψ2(u) = uα− (u∗)α−αuα
(

ln
(

1
u

)
− ln

(
1
u∗

))
, (2.4.8)

with

ψ′2(u) = α2uα−1 (ln(u)− ln(u∗)) , (2.4.9)

which implies that ψ2(u)>minψ2(u) =ψ2(u∗) = 0 for u 6= u∗. Then, we lead to the conclusion ψ′1(u)> 0.
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It follows from the Green’s theorem and

(
ln
(

1
u

)
− ln

(
1
u∗

))
= ((u∗)α−uα)ψ1(u) =− v

′

βv
ψ1(u), (2.4.10)

that

∫ T

0

(
ln
(

1
u

)
− ln

(
1
u∗

))
dt=− 1

β

∫ T

0

v′

βv
ψ1(u) =− 1

β

∫ ∫
Ω

ψ′1(u)
v

dudv < 0, over Ω, (2.4.11)

where Ω is the bounded region enclosed by Λ. From the condition CH < u∗ < 1 we know that T =
tr(J(Ec))< 0 and using (2.4.5) and (2.4.11), lead to

∫ T

0
tr(JΛ)dt < 0, (2.4.12)

The divergency criterion [40] affirms that all the periodic solutions are orbitally stable, which is
contradictory with the stability of E∗. Therefore, we conclude that (2.2.2) has no nontrivial periodic
orbits in R2

+ for CH < u∗ < 1. Which completes the proof.

Since E∗ is the only equilibrium locally asymptotically stable for CH <u∗ < 1 then, the system (2.2.2)
has no closed orbits in R2

+ .Hence, the interior equilibrium point E∗ must be globally asymptotically
stable.

In summary we have the following theorem

Theorem 11. Below the separatrix Γ, the interior equilibrium point E∗ of the model system (2.2.2)
is globally asymptotically stable when CH < u∗ < 1. see Fig.2.5.

2.5 Hopf bifurcation

In this section, we show the critical case of tr(J(E∗)) = 0 in which the system (2.2.2) undergoes a Hopf
bifurcation at the equilibrium E∗. The coexistence equilibrium state E∗ is globally asymptotically stable
if βe−α/1−α < δ < β, while, the coexistence equilibrium state E∗ is unstable if βe−α/1−α > δ. Hopf
bifurcation is characterised by the stability change of an equilibrium point with small amplitude limit
cycle behaviour around the equilibrium point, as some parameter µ (called bifurcation parameter) of the
system passes through a critical value µ∗. By choosing the parameter δ as the bifurcation parameter, we
have the following result

Theorem 12. The system (2.2.2) undergoes Hopf bifurcation with respect to the parameter δ around
the coexistence equilibrium point E∗ = (u∗,v∗) if δ = δH = βe−α/1−α.
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Proof. We know that, if T = tr(J(E∗)) = 0, then both the eigenvalues will be purely imaginary provided
D = det(J(E∗)) > 0. Therefore, from the implicit function theorem a Hopf bifurcation occurs where
a periodic orbit is created as the stability of the equilibrium point E∗ changes. Using the above two
conditions it is found that the critical value of the Hopf bifurcation parameter is δH = βe−α/1−α. The
critical δH value depends on the parameter α where 0< α < 1.

It is clear that the given conditions [6]

(i) T = tr(J(E∗)) = 0,

(ii) D = det(J(E∗))> 0 and

(iii) d

δ
tr(J(E∗)) 6= 0 at δ = δH = βe−α/1−α

implie the occurrence of Hopf bifurcation for system (2.2.2) around E∗.
where d

dδ
tr(J(E∗))|δ=δH =− 1−α

αβe−α/1−α
< 0 is the transversality condition, the proof is complete.

2.6 Numerical results

In this section, some numerical simulations are provided to illustrate the theoretical findings which are
established in the previous section of this work. In the following, we take the parameters of system (2.2.2)
as given in Tab. 2.2.

Case α β δ Figure
1 2/3 0.7 2 Fig. 2.4
2 2/3 0.23 0.1 Fig. 2.5
3 2/9 0.127 0.05 Fig. 2.6

Table 2.2: Parameter values used in the simulations of system (2.2.2).

Case 1 in Tab. 2.2. For this set of parameter values, α = 2/3 β = 0.7 δ = 2 where the interior
equilibrium is infeasable (v̄ =−2.6618< 0). It follows from Theorem 9 that the boundary equilibrium
E1 = (1,0) of the system is globally asymptotically stable. The simulation results can be seen in Fig.2.4
with different initial values.

Case 2 in Tab. 2.2. For this set of parameter values, α = 2/3 β = 0.23 δ = 0.1, we have ū =
0.2838>CH = 0.0498. So, from Theorem 10, we khow that system (2.2.2) has no limit cycle. Therfore,
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Figure 2.4: Global asymptotic stability of the predator-extinction equilibrium point E1 for different initial values
with parameter values given as Case 1 in Tab. 2.2.

by Theorem 11 the interior equilibrium E∗ = (0.2838,0.4703) is globally asymptotically stable. The
corresponding phase plane plots of the system are depicted in Fig.2.5 with different initial values. Clearly
it is a stable spiral converging to the equilibrium.

Case 3 in Table 2.2. We choose the parameters of the system (2.2.2) as α= 2/9 β = 0.127 δ= 0.05
with the initial condition (u(0),v(0)) = (0.1,0.1) then the interior equilibrium E∗ = (0.2470,0.4725) and
CH = 0.2765 > ū = 0.2470, by Theorem 12 there exists a limit cycle near the interior equilibrium
E∗ = (0.2470,0.4725). Fig.2.6 shows the graphical presentation of the prey–predator system with the
specified values of the parameters.

2.7 Discussion for the original model (2.1.2)

After doing the qualitative study of the model (2.2.2), it is necessary to project the results obtained on
(2.1.2) to have a more general idea of the asymptotic behavior on our proposed model.

From previous Sections, we know that the boundary equilibrium states E1 of (2.2.2) is globally
asymptotically stable if and only if β < δ where the interior equilibium E∗ doest not exixst. For the
original model (2.1.2), this result remains valid when the boundary equilibrium becomes P1 = (K,0), is
globaly asymptotically stable for m> aηKα(using (2.2.3). Clearly, this result is logically obvious, when
the mortality rate m is greater than a certain value aηKα we have predator extinction.
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Figure 2.5: Global asymptotic stability of the interior equilibrium point E∗ with parameter values given as Case
2 in Tab. 2.2 and (u0,v0) = (0.2,0.02).
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Figure 2.6: Phase plane of the system (2.2.2) for α = 2/9 β = 0.127 and δ = 0.1 the positive interior equilib-
rium point E∗ of system (2.2.2) looses its stability and a Hopf-bifurcation occurs. Here the initial condition is

(u(0),v(0)) = (0.1,0.1).

From Theorem 11 we know that the interior equilibrium E∗ is globally asymptotically stable for
CH < u∗ < 1 where CH = e−1/1−α and for the original model (2.1.2) we have the following theorem

53



Theorem 13. Assume that aηKαe−α/1−α <m< aηKα, then the interior equilibrium P ∗ = (X∗,Y ∗)
is globally asymptotically stable where,

X∗ =K

(
m

aηKα

) 1
α
, Y ∗ = r

K2−2α

a
(X∗)1−α ln( 1

KX∗
).

From Section 2.4, the system (2.2.2) undergoes Hopf befurcation at the coexistence equilibrium
for u∗ = CH , then for the original system (2.1.2), the occurrence of Hopf befurcation arising when the
parameter m crosses the critical value aeKα please see Fig.2.7.

Now, we put

m= aηKα = f1(α), m= aηKαe−α/1−α = f2(α).

Then, we have the qualitative behavior of the model (2.1.2) in the m−α parameter plane for a =
0.5,η = 0.4,K = 10 and r = 0.1. It is observed from Fig.2.7 that the predator will extinct when the
mortality rate m is greater than the curve with the equation f1(α). When the parameter m becomes
between the two curves f1(α) and f2(α), the boundary equilibrium E1 loses their stability when the
interior becomes globally asymptotically stable. In the region where the parameter m is less than the
curve f2(α)(the green region), we known that the two equilibria points become unstable and the system
transits to an oscillatory regime.

2.8 Conclusions and comments

The prey-predator systems have been studied extensively in theoretical ecology. However, only a little
attention has been paid on one of the most realistic phenomenon that many species of preys exhibits a herd
behavior against unexpected attacks of predator. In this paper, a new approximation of herd behavior
with Gompertz growth function have been investigated. Depending on the physiological characteristics
of the prey and the environmental characteristics, the herd shape changes from one species to another,
whereas this change has a direct influence on the interaction between the two species. Clearly, more prey
on the herd boundary implies a good solidarity of the group, therefore the prey population keeps as many
individuals as possible over time which means that the herd shape have a positively influences on the prey
population if the parameter α increases, this is easily seen in Fig.2.2. For predator from the study in the
Section 2.3, it can be seen that the predator mortality rate along with the prey herd shape both affect
the predator level for the interior equilibrium Fig.2.3. It is obvious that whatever the physiology of a
species of predator they prefer a form of prey where there is more chance for hunting, this is incarnated
when the border of the herd possesses the large amount of prey among the density total. In the real world,
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Figure 2.7: Qualitative behaviour of the model (2.1.2) in the m−α phase plane is presented. Results are
presented for parameter α ∈ [0,0.9] and mortality rate m with a = 0.5,η = 0.4,K = 10 and r = 0.1. It shows
that parameter space is divided into three regions (oscillatory coexistence region, stable coexistence region and

predator extinction region).

several prey population reproduces in a quick way in a small time interval in the nature, a very good
example on that, the zebra and buffalo in the savana, the evolution of the prey population is influenced
by the initial density all of this explains the reason for injecting Gompetz’s growth into the model from
a modeling point of view. From the analysis of the model (2.2.2) in the Section 2.2, we can ensure
that. The model we have considered is biologically well behaved, as it is bounded and remains infeasible
range forever. From Theorem 10 and boundedness of the solutions, we khow that the system (2.2.2),
for u∗ ≥ 1 has no positive equilibrium point and the boundary equilibrium point E1 is a local attractor;
for CH < u∗ < 1 the unique positive equilibrium point is a local attractor and boundary equilibrium
point is unstable. Finally for CH > u∗ the limit cycle is a local attractor and the positive equilibrium
and boundary equilibrium are unstable. Fanally for CH > u∗ the limit cycle is a local attractor and the
positive equilibrium and boundary equilibrium are unstable. In Section 2.2, from Theorem 7, we khow
that the inequality (2.2.23) gives the condition for the prey species extinction which prove the existence
of the extinction domain D0. See Fig.2.1. Thus we conclude that the positive invariant set of model
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(2.2.2) is divided into two parts by a separatrix in which can be defined as v =
δ+ 1 −α

1 −α
u1−α near the origin

equilibrium, with one part as the extinction domain in which orbits terminate at positive vertical axis
and then decrease to zero along the vertical axis, and the other part as the attraction domain of the
corresponding attractor (boundary equilibrium point, positive equilibrium point or limit cycle) in which
orbits converge to the attractor. Based on these result we obtained the global dynamics of the model
(2.2.2) as well as the original model (2.1.2). It is necessary to make clear that model (2.2.2) represents
a transition to the qualitative study of model (2.1.2) (a kind of auxiliary model). One can see that the
dynamics of the predator prey model with prey herd shape is more plentiful than the traditional models
and makes much more sense ecologically. The standard models usually predict the origin equilibrium
point is a saddle point, i.e. the prey species will recover no matter how small it is relative to the predator
species. In contrast, for model (2.2.2) as well the origin model (2.1.2) solution behavior near the origin
equilibrium is singular. If the prey population is suitably smaller than the predator population in wild,
then the prey species first goes extinct, causing the predator species to follow suit (see Fig.2.1). This
makes perfect ecological sense. The result in the present chapter may help us to better understanding
the interaction of predator with prey in a real ecosystem, and could help ecologists find the right factors
to insure the continuation of living for species in nature.
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Chapter 3

Spatiotemporal patterns in a

diffusive predator-prey model with

protection zone and predator

harvesting

This chapter is taken from publication [82].

We always stay in the same topic as the two previous chapters, namely a predator-prey model, with
protection zone (herd behavior) for the prey population and in the presence of predator harvesting.
Except that in this chapter we take into account the spatial distribution of two species to represent the
diffusion in nature subject to the zero flux boundary conditions. The main objective of this chapter is to
study the impact of predator harvesting on the two densities of populations.

We organize this chapter in the following form : in Section 3.1 we propose a diffusive predator-prey
model with protection zone and quadratic predator harvesting. Section 3.2, the existence of a
positive solution and some priori estimates for the system are proved. Section 3.3, is devoted to study
the existence of the equilibrium states for the system (3.1.3). Section 3.4, the global stability of the semi
trivial equilibrium state (1,0) has been successfully established under a suitable condition on the model
parameters. Section 3.5, the spatiotemporal dynamics of the system (3.1.3) near the unique non trivial
equilibrium state (u∗,v∗) is investigated, where the existence of Hopf bifurcation is discussed. On
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the other hand, the presence of Turing driven instability, Turing-Hopf bifurcation have been also
discussed. For the stability of the homogeneous and nonhomogeneous periodic solutions generated
by the presence of Hopf bifurcation are studied using the normal form on the center of manifold.
The obtained results were checked using numerical simulations. A discussion Section ends this chapter.

3.1 The mathematical model

The herd behavior for the prey population can affect the availability of the prey to the predator, and
using the fact that the most part of the predator population put their focus on hunting the weakest
one (the weakest prey located in inside of the pack) which can make perturbation on the predator
population, where will push the predator to fight with each other for a small quantity of resources, this
behavior is known by harvesting. Also, it can be seen on the competition between the predators for the
hunting zones of for reproduction. The most famous predator that can exhibit this behavior is the lions,
where the solitary males enter into hunting zone of other lions and fight their leader for the exclusivity
of reproduction. The harvest has a strong influence on the dynamic evolution of a population, this
phenomenon is common in the fields of forestry, fishing and wildlife management. It is well know that
these predators in a huge decreasing due to the human intervention and disappearance of many zones of
living for these living being. The interest of this paper is to study the effect of the herd behavior and the
predator harvesting in the existence of the considered species. During the few last years, several forms of
harvest have been proposed and studied, mainly consisting of constant harvest [57, 107, 109], proportional
harvesting [52] and nonlinear harvesting [39, 105]. Here, we deals with a model with quadratic harvesting
which can be modeled by (β̃γV 2). This case of predator has been widely investigated, we cite for instance
the papers [1, 3, 4, 5, 96, 97]. Based on the best knowledge there is no results on its effect on the interaction
predator-prey in the presence of herd behavior where in this case the predator has two difficulties, the
hunting from the herd, which is dangerous and protecting the zone of hunting from a predator of it gender.
Further, in [79], it has been given a comparative analysis between the linear mortality and quadratic one,
where two models have been investigated, but in the real world, the predator can exhibits the two types
of mortality, where the previous example (lions example) is the simplest one that can hold the types of
mortality. The harvesting can hold for the smaller lions and the bigger males, and the natural mortality
can insured for the females, where it has been noticed that in the savanna, the males never attacks their
females (also in [100] it has been considered that the predator exhibits quadratic mortality only). Based
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on the above discussion we formulate the following system


∂U
∂τ = rU(1− U

K )−a
√
UV,

∂V
∂τ = β̃V (−m̃+a

√
U −γV ),

(3.1.1)

where, U,V denote the prey and predator population, respectively, at any time t. a is the search
effeciency of predator for the prey, r represents the intrinsic growth rate of the prey populations, K is
the carrying capacity of the prey in the absence of predator. the term β̃m̃ is the natual death rate of the
predator and the new parameter β̃γ which represents the harvesting rate for the predator population.

Besides, the predator and the prey are in different spatial locations, there exist many reasons for
moving such as search for resources, currents and turbulent diffusion. The movement of the prey and
predator can be modeled by the presence of spatial diffusion on the system (3.1.1). The ecological
reaction diffusion systems becomes the one of the most dominant themes in mathematical biology we
give as example the papers [74, 103, 75, 76, 77, 79, 98]. We assume that the two considered populations
are always in movement thus each one of those populations will follow a trajectory (patch). The length
of this path we denoted by x. This point of view is a strong simplification of the general case, where
it has been used widely we cite for instance the papers [78, 84, 85]. Besides, we will assume that the
two populations are in isolated patches, which can be elaborated using the zero flux boundary condition.
Naturally, the presence of spatial diffusion leads to the following predator-prey model



∂U
∂τ = rU(1− U

K )−a
√
UV +d1∆U, x ∈ Ω, τ > 0,

∂V
∂τ = β̃V (−m̃+a

√
U −γV ) +d2∆V, x ∈ Ω, τ > 0,

∂U
∂~n = ∂V

∂~n = 0, x ∈ ∂Ω, τ > 0,

U(x,0) = U0(x)≥ 0, V (x,0) = V0(x)≥ 0, x ∈ Ω,

(3.1.2)

where Ω is a bounded domain in Rn,n≥ 1 with a smooth boundary, d1 and d2 are the diffusion rates for
the prey and the predator. The vector ~n represents the unit outward unit normal vector of the boundary
∂Ω. The homogeneous zero flux boundary conditions describes isolated patches of the two populations.
For reducing the number of parameters we set the following change of variables

u= U

k
, v = a

r
√
k
V, t= rτ, β = aβ̃

√
k

r
, c= γ

r

a
, η = m̃

a
√
k
.
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Figure 3.1: The manner in which the population of prey diffuse from a point (A) to another point (B).

Then the system (3.1.2) becomes



∂u
∂t = u(1−u)−

√
uv+d1∆u, x ∈ Ω, t > 0,

∂v
∂t = βv(−η+

√
u− cv) +d2∆v, x ∈ Ω, t > 0,

∂u
∂−→n = ∂v

∂−→n = 0, x ∈ ∂Ω, t > 0,

u(x,0) = u0(x)≥ 0, v(x,0) = v0(x)≥ 0, x ∈ Ω,

(3.1.3)

The most interesting about the presence of predator harvesting and the spatial diffusion on predator
prey model with herd behavior is its effect on the existence of species (more precisely the harvesting).
For the reason of the novelty of the prey herd behavior it is interesting to study the effect of the variable
c on the spatiotemporal behavior of solution of the system (3.1.3). In wild world, the predator harvesting
affect hugely on the existence of species, where for the small competition between the predators (which
means that the predator are compatible) this can affect negatively the prey population and positively the
predator, and the opposite for the bigger competitions.
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3.2 Existence of a positive solution, a priori bound of solution

and some estimations of solution

In this section, we study the existence and uniqueness of positive solution of the system (3.1.3). Further,
a priori bound of solution is given. The following theorem summarizes the obtained results

Theorem 14. ([82]) Assume that u0(x)≥ 0, v0(x)≥ 0 and Ω ∈ Rm with a smooth boundary bounded
domain in Rm, then

(i) The system (3.1.3) has a unique solution (u(x,t),v(x,t)) satisfying
0< u(x,t)≤ u∗(t), 0< v(x,t)≤ v∗(t) for t > 0, x ∈ Ω.
where (u∗(t),v∗(t)) is the unique solution of the ordinary differential equation

ut = u(1−u),
vt = βv(−η+

√
u− cv),

u(0) = u∗0 = sup
x∈Ω

u0(x) , v(0) = v∗0 = sup
x∈Ω

v0(x).
(3.2.1)

(ii) Moreover, we have lim
t→+∞

supu(x,t)≤ 1, lim
t→+∞

sup
∫

Ω
v(x,t)dx≤ 1 +βη

η
|Ω|.

Proof. (i) We put h(u,v) = u(1−u)−
√
uv, k(u,v) = βv(−η+

√
u− cv), then, we have hu = −

√
u ≤

0, ku =−βv ≥ 0 for (u,v) ∈R2
+ and from [70] we can conclude that the functionals h and k are a mixed

quasi monotone functionals in R. Now we let,
(u1,v1) = (0,0) satisfying  ∂u1

∂t −d1∆u1−h(u1,v1) = 0≤ 0,
∂v1
∂t −d2∆v1−k(u1,v1) = 0≤ 0,

(3.2.2)

and (u2,v2) = (u∗(t),v∗(t)) satisfying the system ∂u2
∂t −d1∆u2−h(u2,v2) = 0≥ 0,
∂v2
∂t −d2∆v2−k(u2,v2) = 0≥ 0,

(3.2.3)

where 0≤ u0(x)≤ u∗0, 0≤ v0(x)≤ v∗0 . (u1(x,t),v1(x,t)) and (u2(x,t),v2(x,t)) called the lower and
the upper solution of the system (3.1.3), according to the Theorem 8.3.1 in [70], the system (3.1.3) has
a unique global solution (u(x,t),v(x,t)) satisfying the condition

0≤ u(x,t)≤ u∗(t), 0≤ v(x,t)≤ v∗(t) for t > 0 and x ∈ Ω.
The strong maximum principle implies that u(x,t)> 0 , v(x,t)> 0 for t > 0 and x ∈ Ω.

(ii) Now, lets prove the second part of the Theorem 14, we know that u(x,t)≤ u∗(t) and v(x,t)≤ v∗(t)
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for all t > 0 where u∗(t) is the unique solution of the equation
du

dt
= u(1−u), u(0) = u∗0 > 0.

It is easy to verify that u∗(t)→ 1 as t→+∞. So, for any ε > 0 there exist δ0 > 0 such that
u(x,t)≤ 1 +ε, for t > δ0, x ∈ Ω, which leads to lim

t→+∞
supu(x,t)≤ 1.

Now let
σ(t) =

∫
Ω
u(x,t)dx, θ(t) =

∫
Ω
v(x,t)dx, (3.2.4)

and
w(t) = βσ(t) +θ(t). (3.2.5)

Then we have
dσ

dt
=
∫

Ω
d1∆udx+

∫
Ω

[u(1−u)−
√
uv]dx,

dθ

dt
=
∫

Ω
d2∆vdx+

∫
Ω

[βv(−η+
√
u− cv)]dx.

(3.2.6)

Now, making use of the boundary conditions
dw

dt
= β

dσ

dt
+ dθ

dt

= β

∫
Ω
u(1−u)dx−βηθ(t)− cβ

∫
Ω
v2 dx

= β

∫
Ω
u(1−u)dx−βη(βσ(t) +θ(t)) +ηβ2σ(t)− cβ

∫
Ω
v2 dx

≤ −βηw+β(mβ+ 1)σ.

From lim
t→+∞

supu(x,t) ≤ 1 we have lim
t→+∞

supσ(t) ≤ |Ω|. Thus, for sufficiently small ε > 0, there exists
T0 > 0 such that

dw

dt
≤−ηβw+β(ηβ+ 1)(1 +ε) |Ω| , t > T0, (3.2.7)

we consider the equation
dw

dt
=−ηβw+β(ηβ+ 1)(1 +ε) |Ω| , (3.2.8)

By a straightforward calculation, we obtain

lim
t→+∞

w(t) = ηβ+ 1
η

(1 +ε) |Ω| . (3.2.9)

Using the comparison principle and (3.2.7) we can obtain for T1 > T0∫
Ω
v(x,t)dx= θ(t)<w(t)≤ ηβ+ 1

η
(1 +ε) |Ω|+ε, t > T1, (3.2.10)

which leads to
lim

t→+∞
sup

∫
Ω
v(x,t)dx≤ 1 +βη

η
|Ω| . (3.2.11)

This completes the proof of Theorem 14.

62



3.3 Existence and uniqueness of positive equilibrium state for

system (3.1.3)

In this section, we shall prove the existence and uniqueness of the positive equilibrium state for system
(3.1.3).

Obviously the investigated system has two boundary equilibria state E0 = (0,0), E1 = (1,0). Now we
focus on proving the existence of positive equilibrium state E∗. Then we have the following result.

Theorem 15. ([82]) Assume that 0 < η < 1. The system (3.1.3) has a unique positive equilibrium
state E∗ = (u∗,v∗) with 0 < u∗ < 1. Further when η ≥ 1 the positive homogeneous steady state does not
exists.

Proof. It is easy to verify that the positive equilibrium state E∗ is the solution of the following system u(1−u)−u 1
2 v = 0,

−η+u
1
2 − cv = 0,

(3.3.1)

from the first equation of the system (3.3.1) we have

v = u
1
2 (1−u) (3.3.2)

in the first quadrant of the u− v-phase plane. since v∗ > 0, we have 0< u∗ < 1. By replacing (3.3.2) in
(3.3.1) the positive equilibrium state is the solution of the equation of the variable u

Φ(u) = 0, (3.3.3)

where Φ(u) =−η+ (1− c)u 1
2 + cu

3
2 for u ∈ (0,1).

Now, we put x= u
1
2 , thus, (3.3.3) becomes

Φ(x) =−η+ (1− c)x+ cx3 = 0, (3.3.4)

and we have

Φ(0) =−η, Φ(1) = 1−η.

Clearly, if 0≤ η < 1 and for any value of the parameter c the equation (3.3.4) has always a unique change
of sign, then it is clear from Descarte’s rule of sign that the above equation possesses a unique positive
root u∗ ∈ (0,1) then, we conclude that the system (3.1.3) has a unique positive equilibrium states. Which
completes the proof.
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In the next of this paper, we confine system (3.1.3) to the spatial domain Ω = (0,Lπ) with L ∈ R+.
This assumption has been put due to biological meaning. If we assume that the prey and the predator
are in movement, then each one of the considered populations will follow a trajectory, the length of this
trajectory will be considered as our variable x, and Lπ can be considered as the maximal distance can
be attained by a prey or predator, ∆u becomes the one dimensional Laplace operator ∆u= uxx.

Defining the real-valued Sobolev space subject to the homogeneous Neumann boundary condition as
follows

X =
{
U = (u,v)T ∈H2(0,Lπ)×H2(0,Lπ) : (ux,vx)|x=0,Lπ = 0

}
. (3.3.5)

For U1 = (u1,v1)T ,U2 = (u2,v2)T ∈X, defining the usual inner product

< U1,U2 >=
Lπ∫
0

(u1u2 +v1v2)dx.

Then the complexification of X is

XC =X⊕ iX = {U1 + iU2 : U1,U2 ∈X} ,

with the complex-valued inner product defined by

< U1,U2 >=
Lπ∫
0

(u1u2 +v1v2)dx, Ui = (ui,vi)T ∈XC, i= 1,2.

3.4 Global stability of the semi trivial equilibrium state E1

In this section, we analyze the global stability of the semi trivial equilibrium state E1 = (1,0) where the
positive equilibrium state does not exists (means that η > 1), We have the following theorem

Theorem 16. ([82]) For η > 1,the semi-trivial equilibrium state E1 = (1,0) of the system (3.1.3) is
globally asymptotically stable.

Proof. Letting

f(u,v) = u(1−u)−
√
uv, g(u,v) = βv(−m+

√
u− cv). (3.4.1)

Defining the Jacobian matrix of the system (3.1.3) in the absence of diffusion as follows

J |(u,v) =

 A(u,v) B(u,v)
C(u,v) D(u,v)

 , (3.4.2)
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Figure 3.2: Graph of null-cline curves associated with model (3.1.3) shows the existence of the interior equilib-
rium (u∗,v∗). Here,we set the parameter values as η = 0.2, c= 2,.

with the domain DL =XC, where

A(u,v) = 1−2u− v

2
√
u
, B(u,v) =−

√
u, C(u,v) = β

v

2
√
u
, D(u,v) = β(−η+

√
u−2cv). (3.4.3)

The linearized operator of the steady state system of (3.1.3) evaluated at the semi trivial equilibrium
state E1 = (1,0) is given by

Ut = (D∆ +J |(1,0))U, (3.4.4)

where D = diag(d1,d2),and

J |(1,0) =

 −1 −1
0 β(−m+ 1)

 . (3.4.5)

It is well know that the eigenvalue problem

−ϕ′′ = λϕ, x ∈ (0,Lπ); ϕ′(0) = ϕ′(Lπ) = 0, (3.4.6)

has eigenvalue λn =
(n
L

)2
(n= 0,1,2, ...), with the corresponding eigenfunction ϕn(x) = cos

(n
L
x
)

in the
Sobolev space X. In terms of the boundary condition

ux(0, t) = ux(Lπ,t) = vx(0, t) = vx(Lπ,t) = 0. (3.4.7)

Setting

U =
+∞∑
n=0

 an

bn

cos
(nπ
L
x
)
eλnt, (3.4.8)
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and then substituting it into (3.4.4). Then from a straightforward calculates , the eigenvalue of the matrix
−
(n
L

)2
D+J |(1,0) are:

λ1 =−1−
(n
L

)2
d1 < 0, λ2 = β(−η+ 1)−

(n
L

)2
d2, (3.4.9)

for η > 1 λ2 < 0 for any n≥ 0 which means that the equilibrium states E1 is locally asymptotically stable.
Now, it is remain to prove the global attraction of the boundary equilibrium when m > 1, we use the
result of Theorem 2.1, page 188 in [70]. From Theorem 14 we proved that (u∗(t),v∗(t)) and (0,0) are
the upper and the lower solution of the system (2.1.2), respectively, we know that lim

t→+∞
supu(x,t) ≤ 1

and u∗(t)→ 1, so for an ε > 0 there exist Tε > 0 such that

u∗(t)≤ 1 +ε, t > Tε. (3.4.10)

and there exist M > 0 for which v(x,t)<M (using the estimations in Theorem 2.1 in [70], then for ε
sufficiently small there exists T1 > T such that u(x,t)> ε. Further we define the constant upper and the
lower solution of the system (3.1.3) as

(u1,v1) = (1 +ε,M), (u2,v2) = (ε,0), (3.4.11)

such that ∂u1
∂t −d1∆u1−h(u1,v1) = ε(1 +ε) +

√
1 +εM ≥ 0,

∂v1
∂t −d2∆v1−k(u1,v1) =−Mβ(−η+

√
1 +ε− cM)≥−Mβ(−η+

√
ε− cM)≥ 0,

 ∂u2
∂t −d1∆u2−h(u2,v2) =−ε(1−ε)≤ 0,
∂v2
∂t −d2∆v2−k(u2,v2) = 0≤ 0,

where ε and M are positive constants and ε is sufficiently small. We define also the monotone sequences
for coupled parabolic equation defined in [70] by (u(k),v(k)) and (u(k),v(k)) for k = 1,2, ... as follows

u(k) = u(k−1) + 1
c1
F (u(k−1),v(k−1)),

v(k) = v(k−1) + 1
c2
G(u(k−1),v(k−1)),

(3.4.12)

and 
u(k) = u(k−1) + 1

c1
F (u(k−1),v(k−1)),

v(k) = v(k−1) + 1
c2
G(u(k−1),v(k−1)),

(3.4.13)

where u(0) = 1 +ε, v(0)) =M and u(0) = ε, v(0) = 0.
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Using lemma 2.1 (page 199) of [70] we have u(k)→ u, u(k)→ u

v(k)→ v, v(k)→ v,
(3.4.14)

verifying
ε≤ u(k) ≤ u(k+1) ≤ u≤ u≤ u(k+1) ≤ u(k) ≤ 1 +ε,

0≤ v(k) ≤ v(k+1) ≤ v ≤ v ≤ v(k+1) ≤ v(k) ≤M,
(3.4.15)

which means that (u(k),v(k)) is increasing and (u(k),v(k)) is decreasing. From (3.4.12), (3.4.13) and [70]
u,v and u,v verify

F (u,v) = 0, F (u,v) = 0,
G(u,v) = 0, G(u,v) = 0,

(3.4.16)

with
F (u,v) = u(1−u)−

√
uv = 0, F (u,v) = u(1−u)−√uv = 0,

G(u,v) = βv(−m+
√
u− cv) = 0, G(u,v) = βv(−m+√u− cv) = 0,

(3.4.17)

Since, v(0) = 0 then u(k) = 0, k = 0,1, ..., leads to v(k) = 0, therefore we have v = 0 and from F (u,v) = 0
we obtain u= 1 and it follows that v = 0 and u= 1, then from Theorem 2.2 (page 189) of Pao [70] and
the arbitrary largeness of M we have

(u,v)→ (1,0) as t→+∞

which leads to the global attraction of the semi trivial equilibrium state E1. Combining this result
with the local stability of (1,0), we can deduce that the semi trivial equilibrium state E1 is globally
asymptotically stable. Which completes the proof.

3.5 Bifurcation analysis, Turing instability

In this context, we shall analyze the dynamics of the system (3.1.3) near the non trivial equilibrium
state E∗, the existence of Hopf bifurcation, and Turing instability at the non trivial equilibrium state
E∗. Throughout the rest part of this paper, we assume that 0< η < 1 and we choose β as a bifurcation
parameter. Obviously u∗ is independent on the parameter β, then system (3.1.3) can be rewritten in the
following forme

∂U

∂t
=D∆U +J(β)U +H(U), (3.5.1)

where

J |(u∗,v∗) =

 A(β) B(β)
C(β) D(β)

 , D∆ = diag

(
d1

∂2

∂x2 ,d2
∂2

∂y2

)
, (3.5.2)
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H(U) =

 u(1−u)−
√
uv−A(β)u−B(β)v

βv(−m+
√
u− cv)−C(β)u−D(β)v

 . (3.5.3)

and

A(β) = 1−2u∗− v∗

2
√
u∗
, B(β) =−

√
u∗, C(β) = β

v∗

2
√
u∗
, D(β) =−βv∗. (3.5.4)

Using Eq. (3.1.1), we obtain

A(β) = 1
2 −

3
2u
∗, B(β) =−

√
u∗, C(β) = 1

2β(1−u∗), D(β) =−βc
√
u∗(1−u∗). (3.5.5)

The linearized system of system (3.5.1) at E∗ is given by

∂U

∂t
=
(
D∆ +J |(u∗,v∗)

)
U, (3.5.6)

it is easy to prove that the solution of (3.5.6) is a nontrivial solution of a linear problem (3.5.6) if and
only if there is a n ∈ N for which λ satisfies

det
(
λI−

(n
L

)2
D−J |(u∗,v∗)

)
= 0 (3.5.7)

where I is 2×2 identity matrix, and D = diag(d1,d1). From a straightforward computation, we obtain
the characteristic equation of (3.5.1) as follows

λ2−Tn(β)λ+Dn(β) = 0, (3.5.8)

with

Tn(β) = 1
2(1−3u∗)−βc

√
u∗(1−u∗)− (d1 +d2)

(n
L

)2
, (3.5.9)

Dn(β) = d1d2
(n
L

)4
+
(n
L

)2
[
d1βc

√
u∗(1−u∗)− 1

2d2(1−3u∗)
]

+ 1
2β
√
u∗(1−u∗)(1− c(1−3u∗)).

(3.5.10)

3.5.1 Hopf bifurcation:

In this subsection, we show the existence of time-periodic orbits with a careful Hopf bifurcation and give
the eventual Hopf bifurcation points. For having Hopf bifurcation it is necessary to put the condition
0 < u∗ < (3)−1. From [43], it is known that Tn(β) = 0, Dn(β) > 0 and ∂

∂β
λ(β)|β=βH 6= 0 are necessary

conditions for Hopf bifurcation to occur. First, we shall prove the non existence of Hopf bifurcation for
some value of the model parameters. The following theorem illustrate the obtained results.
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Lemma 6. ([82]) If 3−1 < u∗ < 1, the system (3.1.3) has no Hopf bifurcation and the non trivial
constant steady state E∗ is always stable for any value of β (with diffusion and without diffusion).

Proof. It is easy to check that for 3−1 < u∗ < 1 we have, Tn(β)< 0 for any value of β and consequently
there is no Hopf bifurcation. So, the non trivial constant steady state E∗ is always stable for any value
of β The proof is completed.

Now, discussing the positivity of D0(β) then we resume the obtained results in the following lemma

Lemma 7. ([82]) Under the condition 0< η < 1 we have

(i): For 0< u∗ <
1
3

(
1− 1

c

)
then D0(β)< 0 with c > 1.

(ii): For 1
3

(
1− 1

c

)
< u∗ < 1 then D0(β)> 0.

Proof. Recalling that from (3.5.10) we have

D0(β) = 1
2β
√
u∗(1−u∗)(1− c(1−3u∗)). (3.5.11)

Obviously the positivity of D0(β) depends only on 1− c(1−3u∗). So the results obtained in Lemme 7
can be easily deduced. Which completes the proof.

For the existence of the eventual Hopf bifurcation we draw the following lemma.

Lemma 8. ([82]) Putting

N
∗

=
[

(1−3u∗)L2

2(d1 +d2)

]
. (3.5.12)

where [.] stands for the integer part function. The system (3.1.3) undergo Hopf bifurcation at β = βn(0≤
n≤N∗) where βn is decreasing sequence in n (n= 0,1, ...,N∗) and

βn =
(1−3u∗)−2(d1 +d2)

(n
L

)2

2c
√
u∗(1−u∗)

.

Proof. Noticing that Hopf bifurcation occurs if and only if Tn(β) = 0, Solving this equation in β we obtain

βn =
(1−3u∗)−2(d1 +d2)

(n
L

)2

2c
√
u∗(1−u∗)

. (3.5.13)

Next, we prove that βn is a decreasing sequence. So, a straight forward calculation gives

βn+1−βn = −(d1 +d2)(2n+ 1)
cL2
√
u∗(1−u∗)

< 0. (3.5.14)
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Thus, βn is strictly decreasing sequence. For the ecological meaning of βn, we must choose some value
of the positive integer n such that βn ≥ 0 which means that

1
2(1−3u∗)> (d1 +d2)

(n
L

)2
, (3.5.15)

which leads to n <N∗ where N∗ is defined in (3.5.12) and the bifurcation points are β0,β1, ...,βN .

Let λ(β) = α(β)± iω(β) be the solution of the characteristic equation (3.5.8) satisfying

α(βn) = 0, ω(βn) =
√
D(βn),

then, we have the following transversality condition

α′(βn) =−c
√
u∗(1−u∗)< 0. (3.5.16)

Combining the transversality condition with Lemme 8 then, the bifurcation points and their order is
given by the following theorem

Theorem 17. If there exist N1 (1 ≤ N1 ≤ N∗) a critical values denoted by j0, ..., jN1 such that
j0 = 0< j1 < ... < jN1 <N∗ and Djξ(β(jξ))> 0, ξ = 0...N1 we have the following estimation:

βjN1 < ... < βjξ < βjξ−1 < ... < βj1 < βj0. (3.5.17)

Now discussing the dynamics introduced by the presence of Hopf bifurcation, which is given by the
following theorem.

Theorem 18. ([82]) Assume that 0< η < 1 then we have the following results

(i) If (3)−1 <u∗ < 1 holds then the non trivial equilibrium state E∗ = (u∗,v∗) is always stable for any
value of β.

(ii) If 1
3

(
1− 1

c

)
< u∗ < (3)−1 holds then we have

1. for n = 0 the non trivial equilibrium state E∗ = (u∗,v∗) is asymptotically stable for β > β0 and
unstable for β < β0.

2. The system (3.1.3) undergoes Hopf bifurcation near the interior equilibrium E∗ = (u∗,v∗) when
β = βn,(n < N1). A family of homogenous periodic solutions occurs for n = 0, and a family of
nonhomogeneous periodic solution occurs for n= 1,2, ...,N1.
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3.5.2 Turing driven instability:

In this subsection, the main objective is to discuss the existence/nonexistence of the diffusion-driven
instability and give a sufficient condition for Turing driven instability. Turing concluded that the reaction-
diffusion model may exhibit spatial patterns under the following two conditions:

(i) The equilibrium is linearly stable in the absence of diffusion (D0(β)> 0 and T0(β)< 0);
(ii) The equilibrium state becomes linearly unstable in the presence of diffusion(Dn(β)< 0 for some

value of n).
Such as instability called by diffusion-driven instability. To discuss the Turing instability, we must

assume that D0(β)> 0, and T0(β)< 0 which is ensured if

1
3

(
1− 1

c

)
< u∗ < (3)−1, and β > β0.

Then, we rewrite the system (3.5.10) as the following form:

D

((n
l

)2
)

= d1d2

((n
l

)2
)2

+
(n
l

)2
[
d1βc

√
u∗(1−u∗)− 1

2d2(1−3u∗)
]

+ 1
2β(1−u∗)(1− c(1−3u∗)).

(3.5.18)
Now discussing the non existence of diffusion driven instability, the following lemma illustrate the obtained
results

Lemma 9. ([82]) Assume that
d2 ≤

d1β

β0
(3.5.19)

then the system (3.1.3) has no diffusion driven instability

It is easy to see that under the condition (3.5.19) we have D
((n

l

)2
)
> 0 then we can not have Turing

driven instability. Now assuming that d2 >
d1β
β0

then the minimum of the functional D
((n

l

)2
)

occurs
when (n

l

)2
=
(n
l

)2

cr
, (3.5.20)

where (n
l

)2

cr
=
−d1βc

√
u∗(1−u∗) + 1

2d2(1−3u∗)

2d1d2
, (3.5.21)

Remark 2. When (
√

3)−1 < u∗ < 1, we have
(n
l

)2

cr
< 0 for any value of β, but when 0< u∗ < (

√
3)−1

we obtain
(n
l

)2

cr
> 0 for β < β∗ with

β∗ = d2(1−3u∗)
2d1c
√
u∗(1−u∗)

. (3.5.22)
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We know that the sufficient condition for Turing instability is that D(
(n
l

)2

cr
)< 0, which is equivalent

to

d1βc
√
u∗(1−u∗)> 2

√
d1d2

√
1
2β(1−u∗)(1− c(1−3u∗)) + 1

2d2(1−3u∗) for u∗ < (
√

3)−1. (3.5.23)

which is a sufficient condition for the occurrence of Turing driven instability.

3.5.3 Turing-Hopf bifurcation

In this subsection, our main focus is on studying the existence of Turing-Hopf bifurcation, and deduc-
ing the spatiotemporal dynamics near this point. This type of bifurcation can be obtained using two
bifurcation parameters and occurs if there exists two integers nH 6= nT such that the system undergoes
Hopf bifurcation for n = nH (means that TnH (βTH ,d2TH) = 0 and DnH (βTH ,d2TH) > 0) and Turing
bifurcation n= nT (means that DnT (βTH ,d2TH) = 0 and TnT (βTH ,d2TH) 6= 0). Now, we assume that
c−1
3c < u∗ < 1

3 (for having T0(β,d2) = 0 and D0 > 0) and taking β,d2 as bifurcation parameters. If we
choose nH = 0, then T0(β) = 0 equivalent to

β = βH(d2) = 1−3u∗

2c
√
u∗(1−u∗) = βTH , (3.5.24)

where, βTH represents the line of Hopf bifurcation in d2−β plan. On the other hand, we look for the
existence of a positive integer nT 6= 0 such that DnT (β,d2) = 0. Solving Dn = 0 in β we obtain

β = βT (d2,n) =
1
2 ( nL )2(1−3u∗)−d1( nL )4

d1( nL )2
c
√
u∗(1−u∗)+ 1

2
√
u∗(1−u∗)(1−c(1−3u∗))

d2, (3.5.25)

For simplicity we put
A1 = 1

2L2 (1−3u∗)> 0,
A2 = d1c

√
u∗(1−u∗)
L2 > 0,

A3 = 1
2
√
u∗(1−u∗)(1− c(1−3u∗))> 0,

then (3.5.25) becomes

β = βT (d2,n) =
n2A1−

d1
L4 n

4

n2A2+A3
d2, (3.5.26)

Obviously, for having the intersection between Hopf bifurcation line defined by (3.5.24) and Turing

bifurcation defined by (3.5.26) in d2 − β plan we must have
n2A1−

d1
L4 n

4

n2A2+A3
> 0. Defining the following

functional
f(x) =

x2A1−
d1
L4 x

4

x2A2+A3
, for x ∈ [1,n∗],

where n∗ = max{n ∈ N−{0}/A1− d1
l4 n

2 > 0}. Now setting

x̃=

√
−3d1A3+

√
9d2

1A
2
3+8l4A1A2A3d1

2d1A2
, (3.5.27)
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then we have

f ′(x) =

 > 0, for x < x̃,

< 0, for x > x̃,

In order to chose the maximum positive value of the functional f , we put

nT =


1, if x̃≤ 1,
[x̃], if f([x̃] + 1)≤ f([x̃]),1≤ x̃≤ n∗,
[x̃] + 1, if f([x̃])≤ f([x̃] + 1),1≤ x̃≤ n∗,
n∗, if x̃≥ n∗.

Obviously, we proved that nT verify
f(nT ) = max

1≤n≤n∗
f(n).

Thus, the line of Hopf bifurcation H0 intersects Turing bifurcation curve TnT at the point

(d2TH ,βTH) =
(

1−3u∗

2c
√
u∗(1−u∗)f(nT ) ,

1−3u∗

2c
√
u∗(1−u∗)

)
,

which called the Turing-Hopf bifurcation point. Now, we will focus on verifying the transversality con-
dition. Fixing d2, and taking β as parameter we denote by λ(β) the roots of the characteristic equation.
we have

dRe(λ(β))
dβ

∣∣∣
H0

= dRe(λ(β))
dβ

∣∣∣
TnT

=−c
√
u∗(1−u∗)< 0,

then we have the following results

Theorem 19. ([82]) Assume that 0<η < 1 and 1
3−

1
3c <u

∗ < 1
3 then we have (i) The Hopf bifurcation

curve H0 intersects with Turing bifurcation curve TnT at d2−β plan and the Turing-Hopf bifurcation
occurs a the intersection point

(d2TH ,βTH) =
(

1−3u∗

2c
√
u∗(1−u∗)f(nT ) ,

1−3u∗

2c
√
u∗(1−u∗)

)
.

(ii) for (d2,β) = (d2TH ,βTH) the characteristic equation (3.5.8) has a pair of purely imaginary roots for
n= 0 and a simple zero root for n= nT .

3.6 Normal form on the center of manifold for Hopf bifurcation:

In this context, we shall study the direction and stability of Hopf bifurcation by using the normal form of
Hopf bifurcation on the center manifold. From Theorem 18, we know that the system (3.1.3) undergoes
Hopf bifurcation near the interior equilibrium state E∗ = (u∗,v∗) when the parameter β across the curve
d2 = d2H(β,n). Thanks to the paper [43] we will compute the normal form on the center manifold
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associated to the Hopf bifurcation and we mainly focus on the existence of spatially homogeneous and
nonhomogeneous periodic solutions bifurcating from the Hopf bifurcation of the reaction-diffusion system
at the interior equilibrium state E∗ = (u∗,v∗). To continue our discussion into the frame work of the
Hopf bifurcation theorem, we translate (3.1.3) into the following system by the transition ũ = u− u∗

and ṽ = v− v∗ and µ = u∗ and v∗ = v∗µ = √µ(1−µ). For convenience, we drop the tilde. Thus, the
reaction-diffusion system (3.1.3) becomes

∂u
∂t = (u+u∗)(1− (u+u∗))−

√
u+u∗(v+v∗) +d1∆u,

∂v
∂t = β(v+v∗)(−m+

√
u+u∗− c(v+v∗)) +d2∆v,

(3.6.1)

for x ∈ Ω=(0, lπ) and t ∈ (0,∞). We rewrite system (3.6.1) as

U̇(t) = LU +F (U,µ), for any U = (u,v)T ∈X, (3.6.2)

such that

L=D∆ +J(µ) =

 A(µ) +d1
∂2

∂x2 B(µ)
C(µ) d2

∂2

∂x2 +D(µ)

 ,
and

F (U,µ) =

 F1(U,µ)
F2(U,µ)

 ,
=

 (u+u∗)(1−u−u∗)−
√
u+u∗(v+v∗)−a11(µ)u−a12(µ)v

β(v+v∗)(−m+
√
u+u∗− c(v+v∗)−a21(µ)u−a22(µ)v


and

A(µ) = 1
2 −

3
2µ, B(µ) =−√µ, C(µ) = 1

2β(1−µ), D(µ) =−βc√µ(1−µ). (3.6.3)

Let < ., . > be the complex-valued L2 inner product on Hilbert space XC, defined by

< U1,U2 >=
lπ∫

0

(u1u2 +v1v2)dx, Uj = (uj ,vji)T ∈XC, j = 1,2.

Then, we define the adjoint operator of the operator L∗ as

L∗ =D∆ +J(µ) =

 A(µ) +d1
∂2

∂x2 C(µ)
B(µ) d2

∂2

∂x2 +D(µ)

 ,
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then L∗n(µ) = −n2D+J∗(µ) where J∗(µ) is the adjoint matrix of J(µ). After computation, we obtain
the eigenfunctions of Ln(µ) and L∗n(µ) corresponding to the eigenvalue iω̂ and −iω̂ on XC as follows

q =
(
an
bn

)
cos(n

l
x) and q∗ =

(
a∗n
b∗n

)
cos(n

l
x)

satisfying < q∗, q >= 1 and < q∗, q̄ >= 0 and also L∗n(µ)q∗ =−iω̂q∗, where

(
an
bn

)
=
( 1
iω−(A−d1(nl )2

C

)
n= 0,1, ..N1 and µ= 0.

And for µ= 0 we have(
a∗n
b∗n

)
=

 ( 1
lπ

BC
BC+(iω̂+A)2 ,

1
lπ
−B(iω̂+A)
BC+(iω̂+A)2 )T if n= 0

( 2
lπ

BC
BC+(iω̂+A−d1(nl )2)2 ,

2
lπ

−BC
BC+(iω̂+A−d1(nl )2)2 )T if n 6= 0

.

We decompose X =XC⊕XS with the center subspace XC := {zq+ z̄q̄ : z ∈ C} and the stable subspace
XS := {U ∈X :< q∗,U >= 0}. For any U = (u,v) ∈X, there exists z ∈ C and W = (w1,w2) ∈XS such
that 

u

v

= zq+ z̄q̄+


w1

w2

=

 u= anz cos(nx) + ānz̄ cos(nx) +w1

v = bnz cos(nx) + b̄nz̄ cos(nx) +w2
. (3.6.4)

Now we will follow the work in [43] so we have
dz

dt
= iω̂z+< q∗,Fn(U)>,

dW

dt
= L(µ)w+H(z, z̄,W ),

(3.6.5)

where  H(z, z̄,w) = Fn(U)−< q∗,Fn(U)> q−< q̄∗,Fn(U)> q̄,

Fn(U) = 1
2QUU + 1

6CUUU +o(|U |4).
(3.6.6)

where QUU and CUUU represent the second and the third order of the studied system (3.1.3), where

Qqq =

 Cn

Dn

cos2(nl x),

Qq̄q̄ = Q̄qq,

Qqq̄ =

 En

Fn

cos2(nl x),

Qqq̄ =

 Gn

Hn

cos2(nl x),

(3.6.7)
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and 

Cn = F1uua
2
n+ 2F1uvanbn+F1vvb

2
n,

Dn = F2uua
2
n+ 2F2uvanbn+F2vvb

2
n,

En = F1uuanān+F1uv(anb̄n+ ānbn) +F1vvbnb̄n,

Fn = F2uuanān+F2uv(anb̄n+ ānbn) +F2vvbnb̄n,

Gn = F1uuua
2
nān+F1uuv(a2

nb̄n+ 2anānbn) +F1uvv(ānb2n+ 2anbnb̄n) +F1vvvb
2
nb̄n,

Hn = F2uuua
2
nān+F2uuv(a2

nb̄n+ 2anānbn) +F2uvv(ānb2n+ 2anbnb̄n) +F2PPP b
2
nb̄n.

(3.6.8)

The normal form of system (3.1.3) restricted to the center manifold is given by

dz

dt
= iω̂z+< q∗,Fn(U)>= iω̂z+

∑
2≤i+j≤3

gij
i!j!z

izj +o(|z|4), (3.6.9)

where 
g20 =< q∗,Qqq >,

g11 =< q∗,Qqq̄ >,

g02 =< q∗,Qq̄q̄ >,

g21 = 2< q∗,QW11q >+< q∗,QW20q̄ >+< q∗,Cqqq̄ > .

(3.6.10)

For the spatially homogeneous Hopf bifurcation, that is, n= 0, we have
g20 = lπ(ā∗0C0 + b̄∗0D0),
g11 = lπ(ā∗0E0 + b̄∗0F0),
g02 = lπ(ā∗0C̄0 + b̄∗0D̄0),
g21 = 2< q∗,Qw11q >+< q∗,Qw20q̄ >+< q∗,Cqqq̄ >,

where
< q∗,Qw11q >= lπ[ā∗0(F1uuw

(1)
11 a0 +F1uv(w(1)

11 b0 +w
(2)
11 a0) +F1vvw

(2)
11 b0)

+b̄∗0(F2uuw
(1)
11 a0 +F2uv(w(1)

11 b0 +w
(2)
11 a0) +F2vvw

(2)
11 b0)].

< q∗,Qw20q̄ >= lπ[ā∗0(F1uuw
(1)
20 ā0 +F1uv(w(1)

20 b̄0 +w
(2)
20 ā0) +F1vvw

(2)
20 b̄0)

+b̄∗0(F2uuw
(1)
20 ā0 +F2uv(w(1)

20 b̄0 +w
(2)
20 ā0) +F2vvw

(2)
20 b̄0).

< q∗,Cqqq̄ >= lπ(ā∗0g0 + b̄∗0h0),

and

w11 =−[L0(µ)]−1H11 =
(
w

(1)
11

w
(2)
11

)
=
( −H

(2)
11
C

−−H
(1)
11 C+H(2)

11 A
BC

)
.

w20 = [2iω̂diag(1,1)−L0(µ)]−1H20 =
(
w

(1)
20

w
(2)
20

)
=
( H

(1)
20 2iω̂+H(2)

20 B
(2iω̂−A)2iω̂−BC

−H
(1)
20 C+H(2)

20 (2iω̂−A)
(2iω̂−A)2iω̂−BC

)
,
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where

H11 =Qqq̄−< q∗,Qqq̄ > q−< q̄∗,Qqq̄ > q̄ =
(H(1)

11
H

(2)
11

)
,

=
(
E0− lπa0(ā∗0E0 + b̄∗0F0)− lπā0(a∗0E0 + b∗0F0)
F0− lπb0(ā∗0E0 + b̄∗0F0)− lπb̄0(a∗0E0 + b∗0F0)

)
.

H20 =Qqq−< q∗,Qqq > q−< q̄∗,Qqq > q̄ =
(H(1)

20
H

(2)
20

)
,

=
(
C0−πa0(ā∗0C0 + b̄∗0D0)−πā0(a∗0C0 + b∗0D0)
D0−πb0(ā∗0C0 + b̄∗0D0)−πb̄0(a∗0C0 + b∗0D0)

)
.

After some straightforward calculation and manipulation we obtain

< q∗,Qqq̄ >=< q∗,Qqq >=< q̄∗,Qqq >=< q̄∗,Qq̄q̄ >= 0,

then we obtain
g20 = g11 = g02 = 0,
g21 = 2< q∗,Qw11q >+< q∗,Qw20q̄ >+< q∗,Cqqq̄ >,

where

w11 =−1
2 [Ln(µ)]−1[cos 2n

l x+ 1]
(
En
Fn

)
,

= w11n cos 2n
l x+w11n,

and

w20 =−1
2 [2iω̂diag(1,1)−Ln(µ)]−1[cos 2n

l x+ 1]
(
Cn
Dn

)
,

= w20n cos 2n
l x+w20n,

with
< q∗,Qw11q >= 3lπ

4 [ā∗n(F1uuw
(1)
11nan+F1uv(w(1)

11nbn+w
(2)
11 an) +F1vvw

(2)
11nbn)

+b̄∗n(F2uuw
(1)
11nan+F2uv(w(1)

11nbn+w
(2)
11nan) +F2vvw

(2)
11nbn)],

and
< q∗,Qw20q̄ >= 3lπ

4 [ā∗0(F1uuw
(1)
20nā0 +F1uv(w(1)

20nb̄0 +w
(2)
20 ā0) +F1vvw

(2)
20nb̄0)

+b̄∗0(F2uuw
(1)
20nā0 +F2uv(w(1)

20nb̄0 +w
(2)
20 ā0) +F2vvw

(2)
20nb̄0),

< q∗,Cqqq̄ >= 3lπ
8 (ā∗0G0 + b̄∗0H0),

where

w20n = 1
2 [2iω̂diag(1,1)−Ln(µ)]−1

(
Cn
Dn

)
=
(
w

(1)
20n

w
(2)
20n

)
,

= 1
2D̃nω̂

(
Cn(2iω̂+d2(nl )2) +DnB

Dn(2iω̂−A+d1(nl )2) +EnC

)
,

77



such that

D̃nω̂ = det(2iω̂diag(1,1)−Ln(µ))

= (2iω̂+d2(n
l

)2)(2iω̂−A+d1(n
l

)2)−BC,

and

w11n = −1
2 [Ln(µ)]−1

(
En
Fn

)
=
(
w

(1)
11n

w
(2)
11n

)
= − 1

2Dn

(
−End2(nl )2 +fnB

fn(A−d1(nl )2)−EnC

)
,

where Dn is defined in (3.5.10). Using the results in [43] the direction and stability of Hopf bifurcation
can be determined by the following values

µ2 =−Re(c1(0))
β′(0) ,

v2 = 2Re(c1(0)),

with
c1(0) = i

2ω̂
(
g20g11−2g11ḡ11− 1

3g02ḡ02
)

+ g21
2 , (3.6.11)

which can be completely determined by the parameters of system (3.1.3) evaluated at the bifurcation
point. The direction of Hopf bifurcation is determined by µ2 where the Hopf bifurcation is supercritical
(resp subcritical) if µ2 > 0 (resp µ2 < 0). Further, the bifurcating periodic solutions exists for µ> 0 (resp
µ< 0) and the stability of the periodic solutions determined byv2, where the bifurcating periodic solution
are asymptotically stable (resp unstable) if v2 < 0 (resp v2 > 0).

3.7 Discussion and conclusion

In this paper, the dynamical behavior of a diffusive predator-prey model (3.1.3) with protection zone
and quadratic predator harvesting subject to the zero flux boundary conditions has been investigated.
First, we showed the existence of a positive solution and it bounders. Then, we discussed the existence
of the equilibrium states and the effects of the predator harvesting on the prey density equilibrium, by
figure 3.3 where it has been noticed that the predator harvesting affect positively the density equilibrium
of the prey (means the value of u∗ increases when c increases). In the next section we proved the global
stability of the semi trivial equilibrium state (1,0) in the case η > 1 it has been justified using a numerical
simulation figure Fig.3.7 where it has been noticed that for multi value of the initial conditions we have
(u(t,x),v(x,t))→ (1,0) as t→+∞.
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By choosing β as bifurcation parameter, we studied the existence of Hopf bifurcation by analyzing
the characteristic equation, where we obtained that for u∗ > (3)−1 we cannot have Hopf bifurcation,
its means that the interior equilibrium state is locally stable. This result has been carried out using
numerical simulation figure Fig.3.8 (A)-(D) where for figures (A)-(B) we used c = 1 which means that
u∗ = 0.36 > (3)−1 (see figure 3.3), and c = 1.5 which means that u∗ = 0.52 > 1

3 (see figure Fig.3.3 for
figures (C)-(D). Besides, for (E)-(F) in figure Fig.3.8 we took c= 0.5, means that u∗ = 0.13< (3)−1 and
the critical value of Hopf bifurcation β0 = 1.9449 leads to deduce that the interior equilibrium state is
always unstable. In this figure we used β = 0.56 < β0 using Theorem 18 we have the existence of a
homogeneous periodic solutions. On the other hand, we have β1 = 0.4782, and for β < β1 we have the
existence of a non homogeneous periodic solutions, and we took a multi value of the parameter β for
justify this result. In figure Fig.3.9 we used β = 0.33 for (A)-(B), and β = 0.31 for (C)-(D), β = 0.28 for
(E)-(F), and β = 0.24 for (E)-(F).

On the other hand, we give also a sufficient condition for having Turing driven instability and justified
using a numerical simulation (Fig.3.4). For the existence of Turing-Hopf bifurcation a two parameters
β and d2 has been used for proving the possibility of having the intersection between Hopf bifurcation
curve H0 defined by β = β0 at the d2−β plan and Turing bifurcation curve defined by β = βT (d2,nT ).
The most interesting about calculation the Turing-Hopf bifurcation point is to determine the regions
of stability an instability of the interior equilibrium state, where the regions D3,D4 are the instability
regions, and D1 is the stable region, D2 is Turing driven instability region.

For the biological meaning of the obtained results, the harvesting affect positively the prey population
and negatively the predator population, where in the real world the increased harvesting (competition)
will give the opportunity for the prey to escape which means it will survive and reproduce. Also the
predator harvesting plays an important component in the evolution of species in the presence of herd
behavior where it can be seen clearly in Fig.3.5 and figure Fig.3.7 where a small change in the value
of predator harvesting rate can lead to huge change in population patterns. In other word, the presence
of the predator harvesting is a very important component in model construction and give an important
behavior on a mathematical point of view.
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Figure 3.7: The global stability of the semi trivial equilibrium state of the system (3.1.3) for a fixed value
η = 1.2> 1; β = 0.5; c= 0.5; d1 = 0.1; d2 = 0.2 and different initial conditions.
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Figure 3.8: The sensibility of the system (3.1.3) with respect to c for a fixed value η = 0.2 < 1; d1 = 0.08;
d2 = 0.15; β = 0.56 with a multi values of c. (u∗,v∗) = (0.36,0.384) β = 0.5; c = 0.5; d1 = 0.1; d2 = 0.2 and

different initial conditions.
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Figure 3.9: Existence of the non-homogeneous periodic solutions for system (3.1.3) with a fixed value η= 0.235<
1; d1 = 0.075; d2 = 0.17 with a multi values of β and different initial conditions where (u∗,v∗) = (0.4136,0.7412) .
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Chapter 4

Mathematical analysis of a diffusive

predator-prey model with herd

behavior and prey escaping

This chapter is taken from publication [81].

In this chapter, we deals with a new approach of a predator-prey model with social behavior prey
escaping. For any species of prey, it is almost impossible to preserve the regrouping of the herd during
the attacks by the predators, that obliges some prey to escape from the herd due to the panic. Here, we
propose and study a new system which describing the escape of the prey from their herd.

The rest of the paper is organized as follows. In Section 4.2, we focus on studying the effect of
the escaping rate on the positive equilibrium state (u∗,v∗). In the next section the existence of a priori
bound of the solution, the global stability of the semi trivial equilibrium (k,0), and the occurrence of
Hopf bifurcation for the system (4.1.1) have been proved. In Section 4.4 the analysis of the diffusive
system has been successfully studied where the local stability and the occurrence of Hopf bifurcation
have been shown. Furthermore, the stability of the homogeneous and nonhomogeneous periodic
solutions have been established using the normal form on the center of manifold. An extend numerical
simulations have been carried out to insure the theoretical results. A discussion Section ends the chapter.
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4.1 Mathematical modelling of the model

In the real world, during the predator hunting of the prey, it is almost impossible for the prey population
to keep the pack all together, due to the panic of some of them. The attack of the predator will push the
prey pack to split into two groups. The first will stay in the group, and the second will leave the pack and
go in any direction. In the present paper, we will consider that there is a constant proportional density
of the prey population denoted by 0 < P < 1 which will abandon the prey pack during the hunting for
the reason of panic, which can be called also by escaping rate, and the other 1−P stays in the pack. For
modeling this behavior, there are two ways for the predator to consume the prey. The first, is to hunt on
the boundary of the prey pack which means

√
(1−P )u (is the density of the prey on the outer bound of

the pack) or hunt the escaping prey which means Pu. According to the above discussion, we propose
the following model  du

dt = ru(1− u
k )−a1

√
(1−P )uv−a2Puv,

dv
dt =−mv+ea1

√
(1−P )uv+ea2Puv,

(4.1.1)

where u,v represent the social prey and predator population, respectively, at any time. a1 and a2 stands
for the maximum values at which per capita reduction rate of the prey population in pack and solitary prey
can attained, respectively. For a1 = a2 represents the non selective hunting of the prey by a predator,
and for a1 6= a2 shows the predator preference of one prey on another (if a1 > a2 shows the predator
preference of the solitary prey on the prey in the pack).

Remark 3. It is easy to see that for P = 0 (there is no escaping), the system (4.1.1) becomes the
system (0.0.2). Besides, if P = 1 (all the prey escape, which means that there is no herd behavior)
then the system (4.1.1) becomes the classical model of Lotka and volterra which has mentioned in the
introduction. Furthermore, we proved the existence of a new functional response which describes the
interaction predator-prey in the presence of herd behavior and prey escaping from the herd. The
proposed functional response is h(u,v) = a1

√
(1−P )uv+a2Puv.

As mentioned in chapter.3, the prey and the predator are always in movement, which can be modeled
by the presence of self-dispersal. The spatial diffusion has been widely studied in literature, see
[54, 77, 78, 84, 85, 100, 101, 104, 106, 108]. In the considered chapter, the study of the system (4.1.1)
and the effect of the spatial diffusion on the system (4.1.1) has been investigated. The system (4.1.1)
becomes in the presence of spatial diffusion:

ut−duxx = ru(1− u
k )−a1

√
(1−P )uv−a2Puv,

vt− d̃vxx =−mv+ea1
√

(1−P )uv+ea2Puv,

ux(0, t) = ux(lπ, t) = vx(0, t) = vx(lπ, t) = 0 ∀t≥ 0,
u(x,0) = φ(x)≥ 0 v(x,0) = ψ(x)≥ 0 x ∈ (0, lπ),

(4.1.2)
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Figure 4.1: The manner in which the individual escaping from the herd when the pack of the prey moving from
point (A) to point (B).

where x is the location of the prey or the predator at the time t, and lπ is the domain size, d, d̃ are
the diffusion rates for the prey and the predator, respectively. The homogeneous Neumann boundary
conditions represents that the prey and the predator move with a distance between 0 and lπ. For more
examples see [26, 27, 58, 73].
It is easy to check that the homogeneous steady states of the system (4.1.2) are (0,0), (k,0) and (u∗,v∗)
where


u∗ =

ea1
√

(1−P )+
√(

ea1
√

(1−P )
)2

+4mea2P

2ea2P

2

,

v∗ = r
√
u∗

a1
√

(1−P )+a2P
√
u∗

(
1− u

∗

k

)
> 0.

exists if and only if k > u∗. (4.1.3)

4.2 Sensitivity analysis

In this section, we will study the impact of the prey escaping on the equilibrium densities of both the
prey and the predator populations. First, we differentiate the density equilibrium of the prey population
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Figure 4.3: The effect of the prey escaping on the predator density equilibrium state for the values
(i) (Left hand figure) the values a1 = 1.9; a2 = 0.1; e= 0.0044; m= 2.01; r = 0.2, k = 10000< 2m

ea2
= 91364.

(ii) (Right hand figure) the values a1 = 1; a2 = 2.1; e= 0.44; m= 1.01; r = 0.2, k = 8000> 2m
ea2

= 2.1861.

with respect to P we obtain

du∗

dP
=

ea1
√

(1−P )+
√(

ea1
√

(1−P )
)2

+4mea2P

2ea2P

( a1(P−2)
a2P 2√1−P −

4ma2P+ea2
1(1−P )+ea2

1√
ea2P 2

√
ea2

1+P (4ma2−ea2
1)

)
< 0. (4.2.1)

Obviously, the prey equilibrium density is decreasing with respect to the escaping rate, means that
the prey escaping has a negative effect on the prey equilibrium density. Which shows the importance
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a2 = 2.1; e= 0.44; m= 1.01; r = 0.2.

of the social behavior for the prey population. Fig.4.2 shows the effect of the variable P on the prey
density equilibrium state.

Now focusing on studying the impact of the escaping rate P on the predator density equilibrium state.
The predator density equilibrium can be written as follows

v∗ = eru∗

m (1− u∗

k ). (4.2.2)

By a differentiation of the predator density equilibrium state (4.2.2) with respect to the escaping rate
P we obtain

dv∗

dP = er
m
du∗

dP (1− 2u∗

k ),

= 2er
km

du∗

dP (k2 −u
∗).

(4.2.3)

In order to study the positivity of k2 −u
∗ we draw the following lemma

Lemma 10. ([81])

(i) If k ≤ 2m
ea2

then k
2 −u

∗ < 0 for any 0< P < 1.

(ii) if k > 2m
ea2

then there exists 0< Pcr < 1 such that k
2 −u

∗ < 0 for 0< P < Pcr and k
2 −u

∗ > 0 for
Pcr < P < 1.
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stable for k = 2< u∗ = 3.5871.

Proof. (i) It is not difficult to verify that limP→0+ u∗(P ) = +∞ and limP→1u
∗(P ) = m

ea2
and using the

fact that du∗

dP < 0 then for k
2 ≤

m
ea2

= minp∈]0,1]u
∗(P ) we deduce that k

2 −u
∗ < 0 which completes the

first part of the proof.
(ii) for k

2 >
m
ea2

= minp∈]0,1]u
∗(P ) then the curve of the functional u∗(P ), 0<P < 1 intersect the line

k
2 at 0< Pcr < 1 then we have k

2 −u
∗ < 0 for 0< P < Pcr and k

2 −u
∗ > 0 for Pcr < P < 1. The proof is

completed.

Using Lemme 10 together with the fact that du∗

dP < 0, we draw the following results
(i)If k ≤ 2m

ea2
then dv∗

dP > 0 and based on the ecological meaning we deduce that the prey escaping has
a positive impact on the predator density equilibrium.

(ii)If k > 2m
ea2

then there exists 0< Pcr < 1 such that

dv∗

dP
=

 > 0 for 0< P < Pcr,

< 0 for Pcr < P < 1,

which means that the prey escaping has a positive impact on the predator density equilibrium for
P < Pcr and a negative impact for Pcr < P < 1 (see Fig.4.3).

4.3 Stability, bifurcation analysis of the non spatial system

This section is devoted to study the solution behavior for the model (4.1.1) where a priori bound of
solution, global stability of the boundary equilibrium (k,0) has been investigated. Further, the existence
of Hopf bifurcation has been shown.
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In order to show the existence of the bounds of the system (4.1.1) we set the following theorem

Theorem 20. ([81]) Let (u(t),v(t)) be the solution of the system (4.1.1) then

limsup
t→+∞

u(t)≤ k,

limsup
t→+∞

v(t)≤ m+ r

m
ek.

Proof. Obviously, for the system (4.1.1) the positive invariant set is the first quadrant R2
+, since u = 0,

v = 0 are its solutions. From the first equation of the system (4.1.1) we have

u′(t)≤ ru(t)(1− u(t)
k

).

Let ũ(t) be the solution of the following initial value problem
dũ(t)
dt

= rũ(t)(1− u(t)
k

),

ũ(0) = u(0),
(4.3.1)

using the standard comparison principle, we have u(t)≤ ũ(t) for all t ∈ [0,+∞). Thus

limsup
t→+∞

u(t)≤ limsup
t→+∞

ũ(t) = k.

Now we put

w(t) = eu(t) +v(t).

then
ẇ(t) = eu̇(t) + v̇(t),
=−mv(t) + ru(t)(1− u(t)

k ),
=−m(eu(t) +v(t)) +emu(t) + ru(t)(1− u(t)

k ),

leads to
dw(t)
dt
≤−mw(t) +eu(t)(m+ r).

From limsup
t→+∞

u(t)≤ k we can deduce that there exists T > 0 such that for t > T, u(t)< k. Then for t > T

we have
dw(t)
dt
≤−mw(t) +ek(m+ r), (4.3.2)

by a similar argument we have

limsup
t→+∞

v(t)≤ m+ r

m
ek,

which completes the proof.
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Now, focusing on proving the global stability of the semi trivial equilibrium state (k,0). The following
theorem summarize the obtained results

Theorem 21. ([81]) Assume that k < u∗ then the semi trivial equilibrium is globally asymptotically
stable.

Proof. The eigenvalues of Jacobian matrix of the system(4.1.1) on (k,0) are λ1 = −r < 0,λ2 = −m+
eb1
√
k+eb2k < 0(for k < u∗) which means that (k,0) is locally asymptotically stable, it remain to prove

that (k,0) is globally attractive. From Theorem (4.1.1) we have limsup
t→+∞

u(t)≤ k. We know that from the

second equation that
vt = v(−m+ea1

√
(1−P )u+ea2Pu).

It is well known that there exists T > 0 such that for t > T , there exists ε > 0 such that u(t) ≤ k+ ε.

Choosing 0< ε < u∗−k. Thus, we can obtain

vt ≤ v(−m+ea1
√

(1−P )(k+ε) +ea2P (k+ε)),

where
−m+ea1

√
(1−P )(k+ε) +ea2P (k+ε)< 0 ,

which leads to
v(t)≤ v(0)exp[(−m+eb1

√
k+ε+ea2P (k+ε))t].

Putting t→ +∞ we obtain that v(t)→ 0 for t→ +∞. By replacing this result in the first equation we
obtain u(t)→ k for t→+∞. The proof is completed.

Now, let us prove the existence of Hopf bifurcation. Firstly, we consider the carrying capacity k as
bifurcation parameter. we calculate the Jacobian matrix of the system (4.1.1) at the positive equilibrium
(u∗,v∗) and it is given by

J(u∗,v∗) =

 a11(k) a12

a21(k) 0

 ,
where

a11(k) = r(1− 2u∗

k
)− v∗

2
√
u∗

(a1
√

1−P + 2a2P
√
u∗),

= ra1
√

1−P
2(a1
√

1−P+a2P
√
u∗) −

ru∗

k

(
2a1
√

1−P+a2P
√
u∗

2a1
√

1−P+a2P
√
u∗)

)
,

a21(k) = ev∗
(
a1
√

1−P
2
√
u∗

+a2P

)
,

= re
2

(
1 + a2P

√
u∗

a1
√

(1−P )+a2P
√
u∗

)
(1− u

∗

k
)> 0,

a12 =−
(
a1
√

1−P
√
u∗+a2Pu

∗)=−me < 0.

(4.3.3)
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The characteristic equation is given by

λ2−T0(k)λ+D0 = 0, (4.3.4)

where

T0(k) = ra1
√

1−P
2(a1
√

1−P +a2P
√
u∗)
− ru

∗

k

(
2a1
√

1−P +a2P
√
u∗

2(a1
√

1−P +a2P
√
u∗)

)
,

D0(k) = rm
2

(
1 + a2P

√
u∗

a1
√

(1−P )+a2P
√
u∗

)
(1− u

∗

k
)> 0.

(4.3.5)

Obviously, D0(k)> 0 which means that the system (4.1.1) undergoes a Hopf bifurcation if T0(k) = 0 and
it is equivalent to

k = k∗ = u∗(2a1
√

1−P +a2P
√
u∗)

a1
√

1−P
. (4.3.6)

Remark 4. It is easy to verify that k∗ > u∗ which means that this bifurcation point exists.

Letting λ(k) = β(k)± ω(k) be the roots of the characteristic equation (4.3.4) satisfying β(k∗) =
0,ω(k∗) =

√
D0(k∗). Then we have

β′(k∗) = 1
2T
′
0(k∗) = 1

2
ru∗

k∗2

(
2a1
√

1−P +a2P
√
u∗

2(a1
√

1−P +a2P
√
u∗)

)
> 0,

which together with the fact that the characteristic equation (4.3.4) has a pair of purely imaginary roots
±i
√
D0(k∗) at k∗, implies that the system (4.1.1) undergoes Hopf bifurcation at k = k∗.

Thus, we deduce that the interior equilibrium (u∗,v∗) is locally asymptotically stable for k < k∗ and
instable for k > k∗ and the system (4.1.1) undergoes Hopf bifurcation at k = k∗.

4.4 Stability, Hopf bifurcation for the diffusive system

In this section, the stability of the positive equilibrium (u∗,v∗) has been studied. Further, the existence
of the Hopf bifurcation for the system (4.1.2), non existence of diffusion driven instability has been
successfully proved. Throughout the rest part of the paper, the condition k > u∗ has been assumed to be
verified.

4.4.1 Characteristic equation

Consider the following problem  −ψ′′ = κψ x ∈ (0, lπ),
ψ′(0) = ψlπ(0) = 0

(4.4.1)

94



the eigenvalue of the problem (4.4.1) are κn =
(n
l

)2
, n= 0,1,2, ..., and the corresponding eigenfunction

are

ψn(x) =


√

1
π , n= 0,√

2
π cos nl x, n= 1,2,3, ...,

and {ψn(x)}∞1 describes the orthogonal basis of L2(0, lπ). Now letting

χ=
{
U = (u,v)T ∈W 2,2(0, lπ)�ux = vx = 0 at x= 0, lπ

}
. (4.4.2)

The space χ is Banach space, and Ω = L2(0, lπ)×L2(0, lπ) is Hilbert space with the inner product

(U1,U2) =
lπ∫

0

(u1u2 + v1v2)dx, where U1 = (u1,v1)T and U2 = (u2,v2)T . Defining the following mapping

F : (0,∞)×χ→ Ω by

F (k,U) =

 duxx+ ru(1− u
k )−a1

√
(1−P )uv−a2Puv

d̃vxx−my+ea1
√

(1−P )uv+ea2Puv

 ,
where U = (u,v)T . Then for any (u,v)T ∈ χ,

U = (u,v)T is solution of (4.1.2) ⇔ F (k,U) = 0.

At the homogeneous steady state (u∗,v∗) the Frechet derivative of F (k,U) for U is given as follows

L(k) = diag(d∆, d̃∆) +J(u∗,v∗), (4.4.3)

=

 d∆u+ ra1
√

1−P
2(a1
√

1−P+a2P
√
u∗) −

ru∗

k

(
2a1
√

1−P+a2P
√
u∗

2(a1
√

1−P+a2P
√
u∗)

)
−me

re
2

(
1 + a2P

√
u∗

a1
√

(1−P )+a2P
√
u∗

)
(1− u

∗

k
) d̃∆

 . (4.4.4)

Letting u=
∑∞
n=0 anψn and v =

∑∞
n=0 bnψn. Then the characteristic equation becomes

∞∑
n=0

(diag(−dκn,−d̃κn) +J(E∗))

 an

bn

ψn = 0. (4.4.5)

Letting
∣∣diag(−dκn,−d̃κn) +J(E∗)

∣∣= 0, n=0,1,2,..., we obtain

λ2−Tn(k)λ+Dn(k) = 0, (4.4.6)

with

Tn(k) = ra1
√

1−P
2(a1
√

1−P+a2P
√
u∗) −

ru∗

k

(
2a1
√

1−P+a2P
√
u∗

2(a1
√

1−P+a2P
√
u∗)

)
− (d+ d̃)(n

l
)2,

Dn(k) = dd̃(n
l

)4− d̃(n
l

)2
[

ra1
√

1−P
2(a1
√

1−P+a2P
√
u∗) −

ru∗

k

(
2a1
√

1−P+a2P
√
u∗

2(a1
√

1−P+a2P
√
u∗)

)]
+ rm

2

(
1 + a2P

√
u∗

a1
√

(1−P )+a2P
√
u∗

)
(1− u

∗

k
).

(4.4.7)
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4.4.2 The existence of Hopf bifurcation

Recall that a Hopf bifurcation occurs if and only if Tn(k) = 0 and Dn(k) > 0. Obviously D0(k) > 0
and lim

n→+∞
Dn(k) = +∞. The critical value of the bifurcation parameter k must be the solution of the

following equation of the variable k

ra1
√

1−P
2(a1
√

1−P+a2P
√
u∗) −

ru∗

k

(
2a1
√

1−P+a2P
√
u∗

2(a1
√

1−P+a2P
√
u∗)

)
− (d+ d̃)(n

l
)2 = 0, (4.4.8)

which is equivalent to
k = k(n),

where
k(n) = ru∗(2a1

√
1−P +a2P

√
u∗)

rb1−2(d+ d̃)(n
l

)2(a1
√

1−P +a2P
√
u∗)

. (4.4.9)

Then we have the following results:

Lemma 11. ([81]) Putting

N1 = max{n ∈ N/ ra1
√

1−P −2(d+ d̃)(n
l

)2(a1
√

1−P +a2P
√
u∗)> 0}. (4.4.10)

Hopf bifurcation occurs for the system (4.1.2) at k = k(n) and for n ≤ N1 (where k(n) is defined in
(4.4.9)) and k(n) verifies the following estimation

u∗ < k(0)< k(1)< .. < k(n)< k(n+ 1)< ... < k(N1). (4.4.11)

Proof. Hopf bifurcation occurs if and only if Tn(k) = 0, which equivalent to

T0(k) = (d+ d̃)(n
l

)2, (4.4.12)

and it is easy to see that lim
k→u∗

T0(k) =−r < 0, and

T ′0(k) = r

2k2

(
2a1
√

1−P +a2P
√
u∗

a1
√

1−P +a2P
√
u∗

)
> 0, (4.4.13)

and
lim

k→+∞
T0(k) = ra1

√
1−P

2(a1
√

1−P +a2P
√
u∗)

> 0. (4.4.14)

From (4.4.12) and (4.4.13), T0(k) is strictly increasing with respect to the carrying capacity k and the
solution of the equation T0(k) = 0 is

k = k∗ > u∗, (4.4.15)
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Figure 4.8: The existence and the order of Hopf bifurcation points the solution of the equation (4.4.12) where
a= 3.5; P = 0.7; l = 5; e= 0.5; m= 0.5; r = 2.2; d= 0.02; d̃= 0.1 which means u∗ = 1.3005; N1 = 6.

where k∗ is defined by (4.3.6). The equation (4.4.12) possesses a solution if and only if the constant
integer n verifies

(d+ d̃)(n
l

)2 <
ra1
√

1−P
2(a1
√

1−P +a2P
√
u∗)

, (4.4.16)

which equivalent to n <N1.
The function (d+ d̃)(n

l
)2 is strictly increasing with respect to n, which leads to the estimation obtained

in (4.4.11) (see Fig.4.8). The proof is completed.

Now we put λ(k) = β(k)± iω(k) as the solution of the characteristic equation with β(k(n)) = 0 and
ω(k(n)) =

√
D(k(n)), then

β′(k(n)) = r

2k2(n)

(
2a1
√

1−P +a2P
√
u∗

2(a1
√

1−P +a2P
√
u∗)

)
> 0. (4.4.17)

Under the result (4.4.17) the bifurcation points and their order is given by the following theorem

Theorem 22. ([81]) If there exists N∗ ≤ N1 a critical value such that i0 = 0 < i1 < ... < iN∗ ≤ N1

and Diξ(k(iξ))> 0, ξ = 0...N∗ we have the following estimation:

u∗ < k(0)< k(1)< .. < k(n)< k(n+ 1)< ... < k(iN∗). (4.4.18)
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In order to the above analysis we have the following theorem

Theorem 23. ([81]) Assume that k > u∗ holds, then we have the following results
(i) If n= 0 the equilibrium (u∗,v∗) is asymptotically stable for 0< k < k∗ := k(0) and unstable for k > k∗

.
(ii) The system (4.1.2) has a Hopf bifurcation near (u∗,v∗) for k = k(n) where a spatially homogenous
periodic solution appears for n=0, and spatially nonhomogeneous periodic solution for n= 1,2, ..., iN∗ .

Remark 5. For Theorem 22 we have Tn = 0 for k = kn,n = 0,1, ..., iN∗ and it is well known that
D0 > 0 for k > u∗. Thus there exist an integer denoted by N∗ such that Dn > 0 for n = 0,1, ...,N∗.
Taking iN∗ =min{N1,N

∗}. Thus we have:

(i) Tn < 0 for n= 0,1, ..., iN∗ .

(ii) Dn > 0 for n= 0,1, ..., iN∗ .

(iii) The transversality condition (4.4.17).

Thus the system undergoes Hopf bifurcation at k = k(n) for n= 0,1, ..., iN∗ .

4.4.3 Non existence of Turing instability:

In this subsection, our main focus is on proving that the system (4.1.2) can not undergo diffusion driven
instability. Note that Turing driven instability occurs when the equilibrium point is linearly stable in the
absence of spatial diffusion and in the presence of this last becomes unstable, which means that we will
assume that u∗ < k < k∗.

Lemma 12. ([81]) The system (4.1.2) has no Turing instability at (u∗,v∗).

Proof. Obviously D0(k)> 0, then for having the existence of Turing instability we must prove Dn(k)< 0
which can be rewritten as follows

Dn(k) =D((n
l

)2) = dd̃((n
l

)2)2− d̃(n
l

)2
[

ra1
√

1−P
2(a1
√

1−P+a2P
√
u∗) −

ru∗

k

(
2a1
√

1−P+a2P
√
u∗

2(a1
√

1−P+a2P
√
u∗)

)]
+D0(k).

(4.4.19)

Thus, using the fact that u∗ < k < k∗, we obtain that

ra1
√

1−P
2(a1
√

1−P+a2P
√
u∗) −

ru∗

k

(
2a1
√

1−P+a2P
√
u∗

2(a1
√

1−P+a2P
√
u∗)

)
< 0,

which means Dn(k) > 0 for any integer n the we deduce the non existence of Turing driven instability.
The proof is completed.
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4.4.4 Direction and stability of Hopf bifurcation

In this section our aim is to study the stability of the homogeneous and the non homogeneous periodic
solution using the normal form on the center manifold at the Hopf bifurcation points. Before that we will

make a change of variable by putting ũ= u−u∗ and ṽ = v−v∗ where v∗ = v∗µ = r
√
u∗

a1
√

1−P +a2P
√
u∗

(1−

u∗

k̃+µ
) and µ= k−k(n) where µ= 0 is equivalent to and k = k(n), n= 1,2, ..., iN∗ and dropping tilde for

convenience, the system (4.1.2) becomes:

 ut−duxx = r(u+u∗)(1− (u+u∗)
k(n)+µ )−a1

√
(1−P )(u+u∗)v−a2P (u+u∗)(v+v∗),

vt− d̃vxx =−my+ea1
√

(1−P )(u+u∗)(v+v∗) +ea2P (u+u∗)(v+v∗),
x ∈ [0, lπ]; t > 0

(4.4.20)
and it is equivalent to

U̇(t) = LU +F (U,µ), (4.4.21)

where

L=D∆ +J(E∗) =

 a11(µ) +d ∂2

∂x2 a12

a21(µ) d̃ ∂2

∂x2

 ,
and

F (U,R∗) =

 F1(U,µ)
F2(U,µ)

 ,
=

 r(u+u∗)(1− (u+u∗)
k(n)+µ )−a1

√
(1−P )(u+u∗)v−a2P (u+u∗)(v+v∗)−a11(µ)u−a12v

−my+ea1
√

(1−P )(u+u∗)(v+v∗) +ea2(u+u∗)(v+v∗)−a21(µ)u

 ,
where a11(µ),a12 and a21(µ) are defined in (4.3.3). Now we define the following complex space of χ

by the decomposition:
χC = χ⊕ iχ,

and the inner product

< U1,U2 >=
π∫

0

ū1u2 + v̄1v2dx where U1 = (u1,v1)T ,U2 = (u2,v2)T ∈ χC.

The adjoint operator L∗ is given by

L∗ =D∆ +J∗(µ) =

 a11(µ) +d ∂2

∂x2 a21(µ)
a12 d̃ ∂2

∂x2

 .
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Then L∗n(µ) =−n2D+J∗(µ) where J∗(µ) is the adjoint matrix of J(µ). Now we define the eigenfunction
of the Ln(µ) and L∗n(µ) corresponding the eigenvalue iω and −iω by

q =
(
an
bn

)
cos(n

l
x) and q∗ =

(
a∗n
b∗n

)
cos(n

l
x),

such that < q∗, q >= 1 and < q∗, q̄ >= 0 and also L∗n(µ)q∗ =−iωq∗. Where(
an
bn

)
=
( 1
iω−(a11−d(nl )2

a21

)
n= 0,1, ..iN∗ and µ= 0.

And for µ= 0 we have(
a∗n
b∗n

)
=

 ( 1
lπ

a21a12
a21a12+(iω+a11)2 ,

1
lπ

−a12(iω+a11)
a21a12+(iω+a11)2 )T if n= 0 ,

( 2
lπ

a21a12
a21a12+(iω+a11−d(nl )2)2 ,

2
lπ

−a21a12
a21a12+(iω+a11−d(nl )2)2 )T if n 6= 0,

.

and use the decomposition of our space
χ= χC⊕χs,

where χC := {zq+ z̄q̄/z ∈C} and χs := {U ∈ χ/< q∗,U >= 0} for any U = (R,P )T ∈ χ there exists z ∈C
(u ∈ χC means there exist z ∈ C such that u= zq+ z̄q̄) and w = (w1,w2)T ∈ χs such that

U = zq+ z̄q̄+w =

 R= anz cos(nx) + ānz̄ cos(nx) +w1,

P = bnz cos(nx) + b̄nz̄ cos(nx) +w1.
(4.4.22)

Now, we will follow the steps given in [43] so we have
dz

dt
= iωz+< q∗,Fn(U)>,

dw

dt
= L(µ)w+H(z, z̄,w),

(4.4.23)

where  H(z, z̄,w) = Fn(U)−< q∗,Fn(U)> q−< q̄∗,Fn(U)> q̄,

Fn(U) = 1
2QUU + 1

6CUUU +o(|U |4),
(4.4.24)

where QUU and CUUU are the second and the third order of the system (4.4.7) then we have

Qqq =

 cn

dn

cos2(nl x),

Qq̄q̄ = Q̄qq,

Qqq̄ =

 en

fn

cos2(nl x),

Qqq̄ =

 gn

hn

cos2(nl x),

(4.4.25)
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where the partial derivative evaluated at origin

cn = F1RRa
2
n+ 2F1RP anbn+F1PP b

2
n,

dn = F2RRa
2
n+ 2F2RP anbn+F2PP b

2
n,

en = F1RRanān+F1RP (anb̄n+ ānbn) +F1PP bnb̄n,

fn = F2RRanān+F2RP (anb̄n+ ānbn) +F2PP bnb̄n,

gn = F1RRRa
2
nān+F1RRP (a2

nb̄n+ 2anānbn) +F1RPP (ānb2n+ 2anbnb̄n) +F1PPP b
2
nb̄n,

hn = F2RRRa
2
nān+F2RRP (a2

nb̄n+ 2anānbn) +F2RPP (ānb2n+ 2anbnb̄n) +F2PPP b
2
nb̄n.

(4.4.26)

Then, the reaction-diffusion system restricted to the center of manifold is given by

dz

dt
= iωz+< q∗,Fn(U)>= iωz+

∑
2≤i+j≤3

gij
i!j!z

izj +o(|z|4), (4.4.27)

where 
g20 =< q∗,Qqq >,

g11 =< q∗,Qqq̄ >,

g02 =< q∗,Qq̄q̄ >,

g21 = 2< q∗,Qw11q >+< q∗,Qw20q̄ >+< q∗,Cqqq̄ > .

(4.4.28)

Then we have two cases:

(i) If n= 0 (for the spatially homogenous Hopf bifurcation)
g20 = lπ(ā∗0c0 + b̄∗0d0),
g11 = lπ(ā∗0e0 + b̄∗0f0),
g02 = lπ(ā∗0c̄0 + b̄∗0d̄0),
g21 = 2< q∗,Qw11q >+< q∗,Qw20q̄ >+< q∗,Cqqq̄ > .

where
< q∗,Qw11q >= lπ[ā∗0(F1RRw

(1)
11 a0 +F1RP (w(1)

11 b0 +w
(2)
11 a0) +F1PPw

(2)
11 b0)

+b̄∗0(F2RRw
(1)
11 a0 +F2RP (w(1)

11 b0 +w
(2)
11 a0) +F2PPw

(2)
11 b0)].

< q∗,Qw20q̄ >= lπ[ā∗0(F1RRw
(1)
20 ā0 +F1RP (w(1)

20 b̄0 +w
(2)
20 ā0) +F1PPw

(2)
20 b̄0)

+b̄∗0(F2RRw
(1)
20 ā0 +F2RP (w(1)

20 b̄0 +w
(2)
20 ā0) +F2PPw

(2)
20 b̄0).

< q∗,Cqqq̄ >= lπ(ā∗0g0 + b̄∗0h0).

And

w11 =−[L0(µ)]−1H11 =
(
w

(1)
11

w
(2)
11

)
=
( −H

(2)
11
a21

−−H
(1)
11 a21+H(2)

11 a11
a21a12

)
.
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w20 = [2iωdiag(1,1)−L0(µ)]−1H20 =
(
w

(1)
20

w
(2)
20

)
=
( H

(1)
20 2iω+H(2)

20 a12
(2iω−a11)2iω−a21a12

−H
(1)
20 a21+H(2)

20 (2iω−a11)
(2iω−a11)2iω−a21a12

)
.

where
H11 =Qqq̄−< q∗,Qqq̄ > q−< q̄∗,Qqq̄ > q̄ =

(H(1)
11

H
(2)
11

)
,

=
(
e0− lπa0(ā∗0e0 + b̄∗0f0)− lπā0(a∗0e0 + b∗0f0)
f0− lπb0(ā∗0e0 + b̄∗0f0)− lπb̄0(a∗0e0 + b∗0f0)

)
.

H20 =Qqq−< q∗,Qqq > q−< q̄∗,Qqq > q̄ =
(H(1)

20
H

(2)
20

)
,

=
(
c0−πa0(ā∗0c0 + b̄∗0d0)−πā0(a∗0c0 + b∗0d0)
d0−πb0(ā∗0c0 + b̄∗0d0)−πb̄0(a∗0c0 + b∗0d0)

)
.

(ii) If n= 1,2, ..., iN∗ (for the spatially inhomogeneous Hopf bifurcation)
Not that

lπ∫
0

cos3 n

l
xdx= 0.

By straight forward calculation we have

< q∗,Qqq̄ >=< q∗,Qqq >=< q̄∗,Qqq >=< q̄∗,Qq̄q̄ >= 0.

Then we have
g20 = g11 = g02 = 0,
g21 = 2< q∗,Qw11q >+< q∗,Qw20q̄ >+< q∗,Cqqq̄ > .

(4.4.29)

where
w11 =−1

2 [Ln(µ)]−1[cos 2n
l x+ 1]

(
en
fn

)
,

= w11n cos 2n
l x+w11n.

and
w20 =−1

2 [2iωdiag(1,1)−Ln(µ)]−1[cos 2n
l x+ 1]

(
cn
dn

)
,

= w20n cos 2n
l x+w20n.

Note that
lπ∫

0

cos 2n
l
xcos2 n

l
xdx= π

4 and
lπ∫

0

cos2 n

l
xdx= π

2 then we have

< q∗,Qw11q >= 3lπ
4 [ā∗n(F1RRw

(1)
11nan+F1RP (w(1)

11nbn+w
(2)
11 an) +F1PPw

(2)
11nbn)

+b̄∗n(F2RRw
(1)
11nan+F2RP (w(1)

11nbn+w
(2)
11nan) +F2PPw

(2)
11nbn)],

(4.4.30)

< q∗,Qw20q̄ >= 3lπ
4 [ā∗0(F1RRw

(1)
20nā0 +F1RP (w(1)

20nb̄0 +w
(2)
20 ā0) +F1PPw

(2)
20nb̄0)

+b̄∗0(F2RRw
(1)
20nā0 +F2RP (w(1)

20nb̄0 +w
(2)
20 ā0) +F2PPw

(2)
20nb̄0),

(4.4.31)
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< q∗,Cqqq̄ >= 3lπ
8 (ā∗0g0 + b̄∗0h0), (4.4.32)

where

w20n = 1
2 [2iωdiag(1,1)−Ln(µ)]−1

(
cn
dn

)
=
(
w

(1)
20n

w
(2)
20n

)
,

= 1
2D̃nω

(
cn(2iω+ d̃(nl )2) +dna12

dn(2iω−a11 +d(nl )2) +ena21

)
.

Such that
D̃nω = det(2iωdiag(1,1)−Ln(µ)),
= (2iω+ d̃(nl )2)(2iω−a11 +d(nl )2)−a12a21,

and

w11n =−1
2 [Ln(µ)]−1

(
en
fn

)
=
(
w

(1)
11n

w
(2)
11n

)
,

=− 1
2Dn

(
−end̃(nl )2 +fna12

fn(a11−d(nl )2)−ena21

)
,

where Dn is defined in (4.4.7). Using the results in Hassard [43] the direction and stability of Hopf
bifurcation can be determined by the following values

µ2 =−Re(c1(0))
β′(0) ,

v2 = 2Re(c1(0)),

with
c1(0) = i

2ω
(
g20g11−2g11ḡ11− 1

3g02ḡ02
)

+ g21
2 . (4.4.33)

The direction of Hopf bifurcation is determined by µ2 where the Hopf bifurcation is supercritical (resp.
subcritical) if µ2 > 0 (resp. µ2 < 0). Further, the bifurcating periodic solutions exists for µ > 0 (resp.
µ< 0) and the stability of the periodic solutions determined by v2, where the bifurcating periodic solution
are asymptotically stable (resp. unstable) if v2 < 0 (resp. v2 > 0)

4.5 Numerical simulation

In this section we shall discuss the relationship between the theoretical results and the graphical repre-
sentation, which is given in the following form

Fig.4.2: Represents the negative effect of the prey escaping rate P on the prey density equilibrium,
which has been shown in (4.2.1). This result shows that the escaping never serves the prey population.

Fig.4.3: represents the impact of the prey escaping rate P on the predator density equilibrium
obtained in Section 4.2 where it varies between a positive and negative impact which depends only on
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Figure 4.9: Numerical simulation of the system (4.1.2) when the equilibrium (u∗,v∗) = (5.1494,1.6639) is locally
asymptotically stable for k = 32 and d= 0.02; d̃= 0.01; a1 = 0.5; a2 = 0.7; P = 0.5; l= 1 e= 0.5; m= 0.5; r = 1.2

with the initial condition u(0,x) = u∗+ 0.06cosx and v(0,x) = v∗+ 0.06cosx.

two critical values kcr := 2m
ea2

and Pcr. This results shows that the prey escaping can serve (or not) the
predator population.

Fig.4.4: Shows the impact of both the prey escaping rate and the carrying capacity of the environment
for the prey population on the predator density equilibrium, which generalizes the obtained figure in
Fig.4.3. This results can be seen easily from Section 4.2. Means that both the carrying capacity of
the environment for the prey population and the prey escaping from the pack affect hugely the predator
population density equilibrium.

Fig.4.5: Shows the global stability of the semi trivial equilibrium (k,0) for u∗ > 2 for multi values

104



distance x

ti
m

e
 t

Prey density u(x,t)

 

 

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

4.75

4.8

4.85

4.9

4.95

5

5.05

5.1

5.15

5.2

5.25

(C)

distance x

ti
m

e
 t

Predator density v(x,t)

 

 

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

1.3

1.4

1.5

1.6

1.7

1.8

1.9
(D)

Figure 4.10: Numerical simulation of the system (4.1.2) when the equilibrium (u∗,v∗) = (5.1494,1.6827) is
unstable and the existence of a homogeneous periodic solution for the values k = 34 and d = 0.02; d̃ = 0.01;
a1 = 0.5; a2 = 0.7; P = 0.5; l = 1 e= 0.5; m= 0.5; r = 1.2 with the initial condition u(0,x) = u∗−0.1 + 0.03cosx

and v(0,x) = v∗−0.06 +0.35cosx.

of the initial conditions. This result has been used to illustrate the results of Theorem 21, also shows
that the predator population extinct for the smaller capacities of the environment for the prey.

Fig.4.6: Represents the local stability of the interior equilibrium (u∗,v∗) for k < k∗ determined by
studying quality of solution of the characteristic equation (4.3.4).

Fig.4.7: represents that the interior equilibrium is unstable for k > k∗ and the existence of a stable
periodic orbit. This result has been obtained due to the qualitative analysis of the characteristic equation
(4.3.4).
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Figure 4.11: Numerical simulation of the system (4.1.2) when the equilibrium state (u∗,v∗) = (5.1494,1.6912)
is unstable and the existence of a non homogeneous periodic solution for the values k = 44 and d= 0.02; d̃= 0.01;
a1 = 0.5; a2 = 0.7;P = 0.5; l = 1 e= 0.5; m= 0.5; r = 1.2 with the initial data u(0,x) = u∗−0.015+0.06cosx and

v(0,x) = v∗−0.2 +0.06cos0.04x.

Fig.4.8: Shows the existence and the order of Hopf bifurcation points which insures the obtained
results in Theorem 22. Further, shows the maximal value of the integer n in which the system undergoes
Hopf bifurcation (in this case we have N1 = 6). Also, means that we have seven Hopf bifurcation points.

Now lets investigate with the graphical representation of solutions of the system (4.1.2), the following
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Figure 4.12: Numerical simulation of the effect of the prey escaping rate P on the Hopf bifurcation value shown
in (4.3.6), the values e= 0.44; m= 1.01; r = 0.2; k = 8000 are used, where for (A) we take a1 = 1; a2 = 2.1; and

for (B) we take a1 = 2.5 and a2 = 2.1.

numerical schema is used



un+1
i = uni −∆t d

∆x2 (2uni −uni−1−uni+1) +f(uni ,vni ), i= 1,2, ...,M,n= 1,2, ...,N,

vn+1
i = vni −∆t d̃

∆x2 (2vni −vni−1−vni+1) +g(uni ,vni ), i= 1,2, ...,M,n= 1,2, ...,N,

un1 = un0 ,v
n
1 = vn0 ,u

n
M = unM−1,v

n
M = vnM−1,n= 1,2, ...,N,

u0
i = φi,v

0
i = ψi, i= 1,2, ...,M,

(4.5.1)

where ∆x= 0.005 and ∆t= 0.05 and φi = φ(i×∆x), ψi = ψ(i×∆x), M = lπ
∆x , N = T

∆t and

f(uni ,vni ) = runi (1− u
n
i

k
)−a1

√
(1−P )uni v

n
i −a2Pu

n
i v
n
i ,

g(uni ,vni ) =−mvni +ea1

√
(1−P )uni v

n
i +ea2Pu

n
i v
n
i .

Fig.4.9: Represents the local stability of the interior equilibrium state (u∗,v∗) for k = 32 < k(0) =
33.4344 this result has been obtained in Theorem 23, where (C) and (D) represents the projection of
the surfaces (A) and (B) on the plan t-x, respectively.

Fig.4.10: Represents the existence of a homogeneous periodic orbits for k = 34 > k(0) = 33.4344
(means that n=0) shown in Theorem 23, where (C) and (D) represents the projection of the surfaces
(A) and (B) on the plan t-x, respectively.
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Fig.4.11: Represents the existence of a non homogeneous periodic orbits for k > k(1) = 43.3963
(means that n=1) shown in Theorem 23, where (C) and (D) represents the projection of the surfaces
(A) and (B) on the plan t-x, respectively.

Now shall we discuss the direction of Hopf bifurcation using a numerical simulation. Taking the
following values d= 0.02; d̃= 0.01; a1 = 0.5; a2 = 0.7; P = 0.5; l = 1; e= 0.5; m= 0.5; r = 1.5. Thus we
have:

(i) The set of all bifurcation points is Λ = {k(0),k(1),k(2)} where k(0) = 22.1027, k(1) = 25.4397,
k(2) = 46.5027.

(ii) For k = k(1) we have a11 = 0.0324, a21 = 0.1280, a12 =−1 and ω = 0.3576, a1 = 1, b1 =−0.0012+
2.7939i, a∗1 = −0.1677− 0.0051i, b∗1 = 0.1677 + 0.0051i. Thus by a straight forward calculation, and by
replacing those results in (4.4.29) (see also (4.4.30), (4.4.31), (4.4.32)) we obtained that Re{c1(0)} ≈
−0.8205< 0. Then the the periodic solutions are stables at k = k(1).

4.6 Discussion

In this paper, a study of a new approach of escaping prey from a pack with a predator-prey interaction
in the presence of spatial diffusion and subject to the homogeneous Neumann boundary conditions. The
impact of the prey escaping on the positive equilibrium state (u∗,v∗) has been successfully studied in the
second section, where the negative effect on the prey density equilibrium has been obtained (see Fig.4.2).
This results shows that this specific behavior of the prey population has always a negative impact on the
evolution of the prey density. On the other hand, the effect of the variable P on the predator density
equilibrium has been divided between a positive and negative effect, where it depends on two parameters
the carrying capacity of the space of the prey k and a critical value of the prey escaping rate denoted by
Pcr. Also those results were justified using numerical simulations (Fig.4.3). Because of the dependence of
the predator density equilibrium (see Lemme 10) on two parameters P and k we presented the Fig.4.4
which shows the effect of those two parameters on the density equilibrium of the predator. Besides,
in Fig.4.12 the impact of the variable P on the value of the Hopf bifurcation shown in (4.3.6 which
prove the huge sensitivity of the Hopf bifurcation value to the escaping prey rate. Mathematically, this
sensitivity can lead to a huge variation in the solution behavioral of the considered systems (4.1.1) and
(4.1.2).

In section 3, our main focus has been on the study of the non spatial system (4.1.1). Firstly, the
existence of the upper bound of solution has been successfully established. This upper bound has been
used to prove the global stability of the semi trivial equilibrium state (k,0) in the absence of the interior
equilibrium state (u∗,v∗) (which means if k < u∗) the result has been also justified by a numerical
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simulation (Fig.4.5). Besides, the local stability of the positive equilibrium state (u∗,v∗) has been also
determined, where a critical value of the carrying capacity of the space for the prey denoted by k∗ such
that for k < k∗ the interior equilibrium is locally stable and unstable for k > k∗. Further, we obtained
that the system (4.1.1) undergoes a Hopf bifurcation at k = k∗. This result has been checked out using
numerical simulations (Fig.4.6 and Fig.4.7).

In the next section, the analysis of the diffusive system has been investigated. The characteristic
equation has been calculated for the interior equilibrium state (u∗,v∗). By analyzing the characteristic
equation, it has been proved that the diffusive system undergoes a Hopf bifurcation at multi value
k = k(n) (where n < N1) and the sequence k(n) is increasing in n (see Fig.4.8). Note that for n = 0 a
homogeneous periodic solution appears (see Fig.4.10) and non homogeneous periodic solution appears for
n= 1,2, ..., jN∗ (see Fig.4.11) (which appears when the interior equilibrium state (u∗,v∗) is unstable).For
determining the stability of the periodic solution the normal form on the center manifold theory has been
used (see [18]). An important quantity denoted by v2 shows the stability of the homogeneous and non
homogeneous periodic solutions has been determined, where for v2 < 0 the periodic solutions are unstable
and stable for v2 > 0.

Based on the biological meaning of those results, the main remark is the escaping rate never serves
the prey population. In the real world, the objective of the attack of the predator on the prey pack is to
divide this herd, where the main focus will be on hunting the escaping prey. This behavior can be seen
widely in the real world, where the most hunted prey are the youngest ones. In other word, the prey
must stay organized, and the pack is the easiest and effective way for prey to survive in the wild. Besides,
the global stability of the semi trivial equilibrium (k,0) for k < u∗ means that for the smaller species
the predator cannot satisfies it need (the prey is no more available to the predator), which leads to the
extinction of the predator population. On the other hand, after the analysis of the system there exists a
critical value of the carrying capacity of the space for the prey population such that for the small spaces
(means that the carrying capacity is lower then this critical value) we can conserve the two populations
at a constant density in the long term, and for large spaces (means that the carrying capacity is bigger
then this critical value) we conserve the two population but with a periodic patterns.
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Chapter 5

Appendix

We present in this appendix some necessary notions as well as the mathematical tools that we used
for the good understanding of previous chapters.

All of the following concepts are adapted from [6, 33, 42, 43, 70, 91]

Theorem 24. (Existence and uniqueness of solution [42]) let I be an open interval of R and let

x : I −→ R : t−→ x(t) (5.0.1)

be a real-valued differentiable function of a real variable t. We will use the notation ẋ to denote the
derivative dx/dt, and refer to t as time or independent variable. Also let

f : R−→ R : x−→ f(x) (5.0.2)

be a given real-valued, where x is an unknow function of t and f is a given function of x. Eq. (5.0.2) is
called a scalar autonomous differential equation because the function f does not depend on t.

We say that a function x is a solution of Eq. (5.0.2) on the interval I if ẋ(t) = f(x(t)) for all t ∈ I.
We will often be interested in a specific solution of Eq. (5.0.2) which at some initiale time t0 ∈ I has the
value x0. Thus we will study x satisfying

ẋ= f(x), x(t0) = x0. (5.0.3)

(i) If f ∈ C0(R,R), then, for any x0 ∈ R, there is an interval(possible infinite) Ix0 = (αx0 ,βx0) con-
taining t0 = 0 and a solution φ(t,x0) of the initial-value problem (5.0.3), defined for all t ∈ Ix0 ,
satisfying the initial condition φ(0,x0) = x0. Also if αx0 is finite, then

lim
t→α

x+
0

φ(t,x0) = +∞, (5.0.4)
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or, if βx0 is finite, then

lim
t→β

x−
0

φ(t,x0) = +∞, (5.0.5)

(ii) If, in addition, f ∈ C1(R,R), then φ(t,x0) is unique in Ix0 and φ(t,x0) is continuous in (t,x0

toghere with its first partial derivatives that is φ(t,x0) is a C1 function.

A planar autonomous system

let I be an open interval of the real line R and

xi : I −→ R; t−→ xi(t) fori= 1,2 (5.0.6)

be two C1 functions of a real variable t.Also, let

fi : R2 −→ R; (x1,x2)−→ fi(x1,x2) i= 1,2 (5.0.7)

be two given real-valued functions in two variables. We obtain a pair of simultaneous differential equations
of the form  ẋ1 = f1(x1,x2),

ẋ2 = f2(x1,x2).
(5.0.8)

Before announcing the definitions, wi will be convenient to use boldface letters to denote vectors
quantities. For instance, if we let X = (x1,x2), Ẋ = (ẋ1, ẋ2), and f = (f1,f2), then Eq. (5.0.8) can be
written as

Ẋ = f(X). (5.0.9)

Definition 1. (Stability of an equilibrium [42]) An equilibrium point X̄ of a planar autonomous
system Ẋ = f(X) is said to be stable if, for any given ε > 0, there is a δ > 0 (depending only in ε)
such that, for every X0 for which

∥∥X0− X̄
∥∥< δ, the solution φ(t,X0) of Ẋ = f(X) through X0 at t= 0

satisfies the enequality
∥∥φ(t,X0)− X̄

∥∥< ε for all t≥ 0. The equilibrium X̄ is said to be unstable if it is
not stable, that is, there is an η > 0 such that, for any δ > 0, there is an X0 with

∥∥X0− X̄
∥∥ < δ and

tX0 > 0 such that
∥∥φ(tX0 ,X0)− X̄

∥∥= η.

Definition 2. (Asymptotic stability [42]) An equilibrium point X̄ is said to be symptotically
stable if it is stable in addition, there is an r > 0 such that

∥∥φ(t,X0)− X̄
∥∥−→ 0 as t−→+∞ for all X0

satisfying
∥∥X0− X̄

∥∥< r
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Now, let

Df(X) =


∂f1
∂x1

(X) ∂f1
∂x2

(X)

∂f2
∂x1

(X) ∂f2
∂x2

(X)

 (5.0.10)

be the Jacobian matrix of f at the point X.

Definition 3. If X̄ is an equilibrium point of Ẋ = f(X), then the linear differential equation

Ẋ =Df(X̄)X

is called the linear variationel equation or the linearization of the vector field f at the equilirium point X̄.

Theorem 25. ([42]) Let f be a C1 function. If all the eigenvalues of the Jacobian matrix Df(X̄) have
negative real parts, then the equilibrium point X̄ of the differential equation Ẋ = f(X) is symptotically
stable.

Theorem 26. (Poincaré-Bendixson [91]) Let M be a positively invariant region for the vector
field containing a finite number of fixed points. Let p ∈M, and consider ω(p). Then one of the following
possibilities holds.

(i) ω(p) is a fixed point;

(ii) ω(p) is a closed orbit;

(iii) ω(p) consists of a finite number of fixed points p1, ...,pn and orbits γ with ω(γ) = pi.

(Note: ω(γ) is the ω-limit set of every point on γ.) defined as

ω(p) = ∪t≥0{x1(s,p),x2(s,p),s≥ t}

Theorem 27. (Poincaré-Andronov-Hopf Bifurcation [91]) We consider the normal form asso-
ciated with the differential system (5.0.8) rt = dµr+ar3

θt = w+ cµ+ br3
(5.0.11)

whre, a,b,c,d,w are constant parameters. For µ sufficiently small we have the following cases
case 1: d> 0,a > 0. In this case the origin is an unstable fixed point for µ > 0 and an asymptotically
stable fixed point for µ < 0, with an unstable periodic orbit for µ < 0 (note: the reader should realize that
if the origin is stable for µ < 0, then the periodic orbit should be unstable).
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case 2: d> 0,a < 0. In this case the origin is an asymptotically stable fixed point for µ < 0 and an
unstable fixed point for µ > 0, with an asymptotically stable periodic orbit for µ > 0.
case 3: d< 0,a > 0. In this case the origin is an unstable fixed point for µ < 0 and an asymptotically
stable fixed point for µ > 0, with an unstable periodic orbit for µ > 0.
case 4: d< 0,a < 0. In this case the origin is an asymptotically stable fixed point for µ < 0 and an
unstable fixed point for µ > 0, with an asymptotically stable periodic orbit for µ < 0.
With, d= d

dµ
(Reλ(µ))|µ=0, and µ is the critical value of bifurcation.

An n-dimensional autonomous system

Now, we will consider dynamics systems in dimension greater than two. The general form of an n-
dimensional system is as follows:

ẋi = fi(x1,x2, ...,xn), (5.0.12)

with, i ∈ [1,n]. If (x∗1,x∗2, ...x∗n) is an equilibrium point for (5.0.12), then, we have

fi(x∗1,x∗2, ...x∗n) = 0, for i ∈ [1,n].

the linear system associated with (5.0.12) near the equilibrium point is written in the following form

ẋi =
n∑
j=1

aijxj , (5.0.13)

where, i ∈ [1,n] and A = [aij ]1≤i≤n,1≤j≤n is a square matrix of dimension n with constant coefficients.
We assume that detA 6= 0, which implies that the origin is the only equilibrium for system (5.0.13). The
matrix A has n eigenvalues which are solutions of the characteristic equation det(A−λI) = 0, which is a
polynomial of degree n that we write in the following form:

PA(λ) = λn+a1λ
n−1 +a2λ

n−2 + ...+an−1λ+an = 0 (5.0.14)

Theorem 28. (Routh-Hurwitz stability criterion [6]) Let the characteristic equation defined in
(5.0.14) and the linear system (5.0.13). We consider the following n determinants:

H1 = a1

H2 =

∣∣∣∣∣∣ a1 a3

1 a2

∣∣∣∣∣∣ ,

H3 =

∣∣∣∣∣∣∣∣
a1 a3 a5

1 a2 a4

0 a1 a3

∣∣∣∣∣∣∣∣ ,

113



Hk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 . . .

1 a2 a4 . . .

0 a1 a3 . . .

0 1 a2 . . .

. . . . . .

0 0 . . . ak

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

such as, k ∈ [1,n]. In the case of n dimension, all aj with j > n are taken equal to zeros. We have the
following result:

The equilibrium point (x∗1,x∗2, ...x∗n) is asymptotically stable ⇐⇒ ∀k ∈ [1,n], Hk > 0.

The spatial diffusion system

We consider the following system:
uit −∆ui = fi(U),

∂ui
∂~n = 0 (t > 0, x ∈ ∂Ω),
ui(0,x) = ηi(0,x),

i= 1,2, (5.0.15)

with fi : R2→ R; (i= 1,2) and U = (u1,u2)T .

Definition 4. (quasi-monotone [70]) Let fi(i= 1,2) be two Lipschitzian functions.∣∣fi(U)−fi(U ′)
∣∣≤ ki(∣∣u−u′∣∣+ ∣∣v−v′∣∣), i= 1,2,

where, U = (u,v)T ,U ′ = (u′,v′)T and let χ ⊂ R2 such that f1v ≤ 0 and f2u ≥ 0 in χ, so fi are a mixed
quasi-monotone functional in χ.

Theorem 29. ([70]) Let ĉ = (ĉ1, ĉ2)T , c̃ = (c̃1, c̃2)T be two constant vectors in R2 such that c̃1 ≤ ĉ1,
and c̃2 ≤ ĉ2 which satisfies the condition fi(ĉ)≤ 0, fi(c̃)≥ 0 then, the system (5.0.15) has a unique global
solution U(t,x), satisfyings ĉ≤ U(t,x)≤ c̃, ∀t > 0,x ∈ χ for any ĉ≤ ηi(t,x)≤ c̃, i= 1,2.

Definition 5. (Lower and upper solution [70]) We say that Û is a lower solution (resp Ũ is a
upper solution) of problem (5.0.15) if
∀x ∈ χ, Ût−d∆Û ≤ f(Û) (resp Ũt−d∆Ũ ≥ f(Ũ)).

Lemma 13. ([70]) Let {C(n)},{C(n)} be two sequences satisfies

Ci
(n) = Ci

(n−1) + 1
ki
fi(Ci

(n−1)
,Ci

(n−1)), i= 1,2, n ∈ N∗ (5.0.16)

114



and
Ci

(n) = Ci
(n−1) + 1

ki
fi(Ci(n−1),Ci

(n−1)), i= 1,2, n ∈ N∗, (5.0.17)

with C(0) = C̃,C(0) = Ĉ. So, the sequences satisfies the following monotone property.

Ĉi ≤ Ci(n) ≤ Ci(n+1) ≤ Ci
(n+1) ≤ Ci

(n) ≤ C̃i, i= 1,2, n ∈ N∗.

Theorem 30. ([70]) Assume that the condition of Theorem 2.2 [70] is hold and let C,C are a limits
of(5.0.16) and (5.0.17), so, for any initial function ηi(0,x) ∈ (Ĉi, C̃i), the solution U(t,x) satisfy Ci ≤
ui(t,x)≤ Ci , i= 1,2,
If we have C∗ = C = C then, C∗ is the unique solution of the system (5.0.15) in (Ĉi, C̃i) and

lim
t→+∞

U(t,x) = C∗.

Now, we write the system (5.0.15) in the following form

d

dt
U = d∆U +L(U) +f(U) t > 0, (5.0.18)

with Dom(∆)⊂ χ, L(C,χ)) i.e. L :C→ χ is a bounded linear operator and f :R2→R2 is a Ck(k≥ 2)
function such that, f(0) = 0 and D(f(0)) = 0 and under the following assumptions

(H1): d∆ generate a C0 semi group {T (t)}t≥0 in χ with |T (t)| ≤Mewt (for some M ≥ 1,w ∈ R);
(H2): The eigenfunctions {µn}∞n=1 of d∆ corresponding to the eigenvalues {fn}∞n=1 form an or-

thonormal basis in χ, and for all x ∈ Dom(∆), there exists a unique expression x =
∑∞
n=1xn with

∆x=
∑∞
n=1µnxn where xn = Pnx and Pn : χ−→ χn = {αfn, α ∈ C} is a projection operator;

(H3): L :C −→ χ defined by Lϕ=
0∫
−a

dη(s)ds, ϕ ∈C, for a function η : [−a,0]−→B(χ,χ) of bounded

variation, and L satisfies L(Pnϕ) ∈ χn for all n ≥ 1 and ϕ ∈ C, where Pnϕ ∈ C is given by (Pnϕ)(s) =
Pnϕ(s) for all s ∈ [−a,0]. Moreover, L

(∑∞
n=1Pnϕ

)
=
∑∞
n=1L(Pnϕ) if

∑∞
n=1Pnϕ ∈ C.

Definition 6. (forme normale [33]) The system
¯̇z =Bz̄+

∑
j≥2

1
j!g

1
j (z̄, ȳ),

¯̇y =Aȳ+
∑
j≥2

1
j!g

2
j (z̄, ȳ),

(5.0.19)

with gj = (g1
j ,g

2
j )T , j ≥ 2 and  g1

j = f̄1
j (z,y)− [DU1

j (z)Bz−BU1
j (z)],

g2
j = f̄2

j (z,y)− [DU2
j (z)Bz−A1U

2
j (z)],
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is called a normal form, on the center of the manifold associated to Λ if g1
j ,g

2
j are defined by gj = f̄j−MjUj

and 5.0.19 is equivalent to the following normal form

¯̇z =Bz̄+
∑
j≥2

1
j!g

1
j (z̄,0), (5.0.20)

i.e. (5.0.20) is also a Λ normal form, on the center of the manifold associated to Λ with

Λ := {λ ∈ σ(A);Reλ= 0} 6= ∅

.

Theorem 31. ([33]) Assume that (H1)-(H3) are hold and Λ := {λ ∈ σ(A);
Reλ= 0} 6= ∅, then, there is a normal form of variables (z,y) = (z̄, ȳ)+o(|z̄|2) as the normal form is given
by the ordinary differential equation

¯̇z =Bz̄+
∑
j≥2

1
j!g

1
j (z̄,0).

Definition 7. (Turing instability) Consider the system ut = d1uxx+f(u,v),
vt = d2vxx+g(u,v),

t > 0,x ∈ Ω, (5.0.21)

with the initial conditions and the associated Neumann boundary conditions ∂u
∂~n = ∂v

∂~n = 0, ∀t > 0, x ∈ ∂Ω,
u(x,0) = u0(x),v(x,0) = v0(x), x ∈ Ω.

We assume that the sytem (5.0.21) has a steady state denoted by E∗ = (u∗,v∗) i.e. f(u∗,v∗) = 0 and
g(u∗,v∗) = 0 with the associated characteristic equation

λ2−Tnλ+Dn = 0, n ∈ N.

We talk about Turing instability when the steady state E∗ is locally asymptotically stable in the absence
of diffusion i.e. (n= 0, D0 > 0 and T0 < 0), but, in the presence of diffusion and for some values of d1

and d2, there is a frequency (n 6= 0) for which E∗ loses its stability (in other words, diffusion does not
always have a stabilizing effect for the system (5.0.21).

Theorem 32. (Turing-Hopf bifurcation) The Turing-Hopf bifurcation is a particular case of
Hopf bifurcation, is a Hopf bifurcation with two parameters. We consider the characteristic equation
around the equilibrium state E∗

λ2−Tn(β)λ+Dn(β) = 0
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where, β is the critical parameter of the bifurcation. We know that the Hopf bifurcation occurs if Tn(β) = 0
et Dn(β) > 0 and the Turing instability occurs when Dn(β) < 0 for some n where, D0(β) > 0. Then, if
there are two positive reals k∗,d∗1 such that Tn(β∗,d∗1) = 0 and Dn(β∗,d∗1) = 0 for some values of n then,
(β∗,d∗1) is called the critical point of Turing-Hopf bifurcation.

Definition 8. (Invariant Manifold [91]) An invariant set S ∈Rn is said to be a Cr(r≥ 1) invariant
manifold if S has the structure of a Cr differentiable manifold. Similarly, a positively (resp., negatively)
invariant set S ⊂ Rn is said to be a Cr(r ≥ 1) positively (resp., negatively) invariant manifold if S has
the structure of a Cr differentiable manifold.

Definition 9. (Homogeneous periodic solutions (resp non-homogeneous) [43]) We say that
the system (5.0.15) has a periodic homogeneous solution U(x,t) (resp non-homogeneous), if it satisfies the
following conditions: ∃ T > 0, such that U(x,t+T ) = U(x,t) and ∂U

∂x
(x,t) = 0, respectivement U(x,t+

T ) = U(x,t) and ∂U

∂x
(x,t) 6= 0).
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Prospect and Future Directions

For the past century, the ecosystem models becomes one of the most important tools to understand
the interaction between living beings in nature. The predator-prey model is one of the most used model
in ecosystems. It has been considered as the dominant theme in mathematical ecology for a long time.
The big part of the recent works in mathematic ecology are devoted to study the interaction between the
predator and the prey to ensure the conservation of the species and keep the environment equilibrium.
Among the factors which affect on the living beings of an ecosystem is the way in which animals live, in
addition, their behavior and their systematic defense approach to defend themselves against predators.
Through this thesis, we highlighted one of the most important behaviors among prey in the wild, ”the
herd behavior”. We have analyzed a new mathematical models describing the interaction between
prey and predator, the main hypothesis is that the prey has a social behavior which gather together
in herd. The main objective is to analyze the asymptotic behavior, theoretically and numerically of
some differential systems (EDO and EDP) with herd behavior. To our knowledge, such as models have
never been studied in the literature. For our models, we have more particularly interested in studying
the existence, the local stability and the global stability of the equilibrium points. In addition, we have
analyzed the occurrence of certain types of bifurcations such as Hopf bifurcation, Turing-Hopf bifurcation
and Turing driven instability.

The study carried out during this thesis on ordinary differential equation systems (with delay and
without delay) and reaction-diffusion systems allowed us to establish the bases for future developments.
Much remains to be discovered, we are convinced that the study of these models will open up new
interesting perspectives from both a mathematical and an application point of view.

In the real world, birth and death rates, carrying capacity, predation coefficients and other parameters
involved in the systems exhibit a large random fluctuation. For the deterministic models this is negligible,
so, it is interesting to consider the influence of environmental noise for these models by introducing
stochastic noise to reveal the impact of environmental variability on the population dynamics in ecology.

In this context we address the following question: do the results obtained in this thesis remain true
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when we introduce the environmental noise on the two species? We intend to bring back some answers
for these kinds of questions.

This manuscript presents the work carried out in the biomathematics research laboratory, Faculty of
Exact Sciences, Department of Mathematics, University of Djillali Liabès, Sidi Bel Abbes.

Finally, we hope that this thesis can help to further educate students about the interest of this theme.
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Abstract 
 

This thesis is devoted to the mathematical study of certain ecological 

phenomena from the great savanna (in Africa). It focuses on the 

mathematical modeling of various prey-predator models where the prey 

exhibits a social behavior. Our main topic in this thesis is to investigate the 

impact of the social behavior on the relationships between species in nature. 

Key words: Herd behavior; Ecological models; Ordinary differential 

equations with delay and without delay; periodic solutions; Diffusion of 

species; Hopf bifurcation; Turing driven instability; Turing-Hopf bifurcation. 
 

Résumé 
 

Cette thèse est consacrée à l'étude mathématique de certains phénomènes 

écologiques issue de la grande savanna (en Afrique). Elle se porte sur la 

modélisation mathématique de divers modèles proie-prédateur où la 

population de proie présente un comportement social. Notre objectif 

principal dans cette thèse est d'étudier l'impact du comportement social sur 

les relations entre les espèces dans la nature. 

Mots clés: Comportement du troupeau; Modèles écologiques; Equations 

différentielles ordinaires à retard et sans retard; solutions périodiques; La 

diffusion des espèces; La bifurcation de Hopf; L'instabilité du Turing; La 

bifurcation de Turing-Hopf. 

 
 ملخص

 

 تركز .)أفريقيا في(  الكبرى السافانا من معينة بيئية لظواهر الرياضية للدراسة مخصصة الأطروحة هذه
 سلوكًا الفرائس سكان يُظهر أين المفترسة و الفريسة لعدة نماذج الرياضية النمذجة على الأطروحة هذه

 بين العلاقات على الاجتماعي السلوك تأثير دراسة هو الأطروحة هذه في الرئيسي موضوعنا. اجتماعيًا

 .الطبيعة في الأنواع
 وبدون تأخير مع عادية تفاضلية معادلات ، الإيكولوجية النماذج ، القطيعي السلوك : الرئيسية الكلمات

 .هوبف رينجتو بتشع   ، تورينج استقرار عدم ، هوبف بتشع   ، الكائنات إنتشار ، دورية حلول ، تأخير
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