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ABSTRACT

In this thesis, we present some results on existence, uniqueness, and stability of Ulam-
Hyers-Rassias for a class of initial value problem and boundary value problem for dif-
ferential equations with generalized Hilfer-type fractional derivative with and without
impulses (both instantaneous and non-instantaneous), We also discuss the class of initial
value problem for nonlinear fractional Hybrid implicit differential equations with gener-
alized Hilfer and ψ-Hilfer fractional derivative. The methods used are the fixed point
theorems of Krasnoselskii, Dhage and Schaefer and Banach contraction principle. We
also take into account the same problems, albeit in Banach Spaces, with results based on
the fixed point theorems of Darbo and Mönch associated with the technique of measure of
noncompactness. Further, for the justification of our results we provide various examples
every chapter.

Key words and phrases : Generalized Hilfer type fractional derivative, boundary value
problem, existence, measure of noncompactness, fixed point, Banach space, Ulam-Hyers-
Rassias stability, ψ-Hilfer fractional derivative, implicit fractional differential equations,
fractional integral, impulses, instantaneous impulses, Ulam stability, initial value prob-
lem, nonlocal problem, Gronwall lemma, non-instantaneous impulses, hybrid fractional
differential equations, initial value problem, non-instantaneous impulses.
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1

INTRODUCTION

Fractional calculus is a field in mathematical analysis which is a generalization of in-
teger differential calculus that involves real or complex order derivatives and integrals
[10–14, 25, 27, 38, 45–47]. There is a long history of this concept of fractional differential
calculus. One might wonder what meaning could be attributed to the derivative of a frac-
tional order, that is dny

dxn
, where n is a fraction. Indeed, in a correspondence with Leibniz,

L’Hopital considered this very possibility. L’Hopital wrote to Leibniz in 1695 asking,”
What if n be 1

2
? ” The study of the fractional calculus was born from this question.

Leibniz responded to the question, ” d 1
2x will be equal to x

√
dx : x. This is an apparent

paradox from which, one day, useful consequences will be drawn.”

Over the years, many well known mathematicians have assisted in this theory. Thus,
30 September 1695 is the precise date of birth of the ”fractional calculus”! Consequently,
the fractional calculus has its roots in the work of Leibnitz, L’Hopital (1695), Bernoulli
(1697), Euler (1730), and Lagrange (1772). Some years later, Laplace (1812), Fourier
(1822), Abel (1823), Liouville (1832), Riemann (1847), Grünwald (1867), Letnikov (1868),
Nekrasov (1888), Hadamard (1892), Heaviside (1892), Hardy (1915), Weyl (1917), Riesz
(1922), P. Levy(1923), Davis (1924), Kober (1940), Zygmund (1945), Kuttner (1953), J.
L. Lions (1959) , and Liverman (1964) and several more have developed the fundamental
principle of fractional calculus.

Ross held the first fractional calculus conference at the University of New Haven
in June of 1974, and edited its proceedings [88]. Thereafter, Spanier published the first
monograph devoted to ”Fractional Calculus” in 1974 [79]. In recent research in theoretical
physics, mechanics and applied mathematics, the integrals and derivatives of non-integer
order, and the fractional integrodifferential equations have seen numerous applications.
Samko, Kilbas and Marichev’s exceptionally detailed encyclopedic-type monograph was
published in Russian in 1987 and in English in 1993 [96], (for more details see [73]). The
works devoted substantially to fractional differential equations are : the book of Miller
and Ross (1993) [75], of Podlubny (1999) [82], by Kilbas et al. (2006) [70], by Diethelm
(2010) [56], by Ortigueira (2011) [80], by Abbas et al. (2012) [14], and by Baleanu et al.
(2012) [37].

The origins of fixed point theory, as it is very well known, go to the system of successive
approximations (or the iterative method of Picard) used to solve certain differential equa-
tions. Roughly speaking, from the process of successive approximations, Banach obtained
the fixed point theorem. The fixed point theory has been immense and independent of
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the differential equations in the last few decades. But, lately, the outcomes of fixed points
have turned out to be the instruments for the differential equation’s solutions. Recently,
differential fractional order equations have been shown to be an effective instrument for
researching multiple phenomena in diverse fields of science and engineering, such as elec-
trochemistry, electromagnetics, viscoelasticity, economics, etc. It is very popular in the
literature to suggest a solution to fractional differential equations by adding various forms
of fractional derivatives, see e.g. [7–9, 13, 14, 16, 20–22, 25, 27, 31, 38, 40, 50, 68, 69, 113]. In
the other hand, there are more findings concerned with the issues of boundary value for
fractional differential equations [25, 35, 41, 42, 51, 113].

In 1940, Ulam [104,105] raised the following problem of the stability of the functional
equation (of group homomorphisms): ”Under what conditions does it exist an additive
mapping near an approximately additive mapping ?”

Let G1 be a group and let G2 be a metric group with a metric d(·, ·). Given any
ϵ > 0, does there exist a δ > 0 such that if a function h : G1 → G2 satisfies the inequality
d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2

with d(h(x), H(x)) < ϵ for all x ∈ G1?

A partial answer was given by Hyers [65] in 1941, and between 1982 and 1998 Rassias
[86, 87] established the Hyers-Ulam stability of linear and nonlinear mappings. Subse-
quently, many works have been published in order to generalize Hyers results in various
directions, see for example [10, 13, 46, 47, 65, 72, 74, 84, 85, 89, 98, 105].

Many physical phenomena have short-term perturbations at some points caused by ex-
ternal interventions during their evolution. Adequate models for this kind of phenomena
are impulsive differential equations. Two types of impulses are popular in the literature:
instantaneous impulses (whose duration is negligible) and non-instantaneous impulses
(these changes start impulsively and remain active on finite initially given time intervals).
There are mainly two approaches for the interpretation of the solutions of impulsive frac-
tional differential equations: one by keeping the lower bound of the fractional derivative at
the fixed initial time and the other by switching the lower limit of the fractional derivative
at the impulsive points. The statement of the problem depends significantly on the type
of fractional derivative. Fractional derivatives have some properties similar to ordinary
derivatives (such as the derivative of a constant) which lead to similar initial value prob-
lems as well as similar impulsive conditions (instantaneous and non-instantaneous). The
class of problems for fractional differential equations with abrupt and instantaneous im-
pulses is vastly studied, and different topics on the existence and qualitative properties of
solutions are considered, [45,57,106]. In pharmacotherapy, instantaneous impulses cannot
describe the dynamics of certain evolution processes. For example, when one considers the
hemodynamic equilibrium of a person, the introduction of the drugs in the bloodstream
and the consequent absorption for the body are a gradual and continuous process. In the
literature many types of initial value problems and boundary value problems for different
fractional differential equations with instantaneous and non-instantaneous impulses are
studied (see, for example, [1, 3–8, 15, 24, 34, 45, 63, 71, 102, 107, 109]).

The measure of noncompactness which is one of the fundamental tools in the theory
of nonlinear analysis, it was initiated by the pioneering articles of Alvàrez [32], Mönch
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[76] and was developed by Bana’s and Goebel [39] and many researchers in the literature.
The applications of the measure of noncompactness can be seen in the wide range of
applied mathematics: theory of differential equations (see [23,81] and references therein).
Recently, in [13, 32, 33, 39] the authors applied the measure of noncompactness to some
classes of differential equations in Banach spaces.

Nonlocal conditions were initiated by Byszewski [52] when he proved the existence
and uniqueness of mild and classical solutions of nonlocal Cauchy problems. The nonlocal
condition can be more useful than the standard initial condition to describe some physical
phenomena. Fractional differential equations with nonlocal conditions have been discussed
in [19, 26, 77] and references therein.

Hybrid fractional differential equations were also studied by several researchers. By
hybrid differential equation, we mean that the terms in the equation are perturbed either
linearly or quadratically or through the combination of first and second types. Perturba-
tion taking place in form of the sum or difference of terms in an equation is called linear.
On the other hand, if the equation is perturbed through the product or quotient of the
terms in it, then it is called quadratic perturbation. So the study of hybrid differential
equation is more general and covers several dynamic systems as particular cases. This
class of equations involves the fractional derivative of an unknown function hybrid with
the nonlinearity depending on it. Some recent results on hybrid differential equations can
be found in a series of papers (see [28, 36, 55, 64, 112]).

In the following we give an outline of our thesis organization, which consists of seven
chapters defining the contributed work.

Chapter 1: This chapter provides the notation and preliminary results, descriptions,
theorems and other auxiliary results that will be needed for this study. In the first section
we give some notations and definitions of the functional spaces used in this thesis. In
the second section, we give the definitions of the elements from fractional calculus theory,
then we present some necessary lemmata, theorems and properties. In the third section,
we give some properties to the Measure of noncompactness. We finish the chapter in the
last section by giving all the fixed point theorems that are used throughout the thesis.

Chapter 2: This chapter deals with some existence results for the boundary value
problem of the following generalized Hilfer-type fractional differential equation:

(
ρDα,β

a+ u
)
(t) = f

(
t, u(t),

(
ρDα,β

a+ u
)
(t)
)
, t ∈ (a, b],

l
(
ρJ 1−γ

a+ u
)
(a+) +m

(
ρJ 1−γ

a+ u
)
(b) = ϕ,

where ρDα,β
a+ ,

ρ J 1−γ
a+ are the generalized Hilfer-type fractional derivative of order α ∈ (0, 1)

and type β ∈ [0, 1] and generalized fractional integral of order 1 − γ, (γ = α + β − αβ),
respectively, ϕ ∈ E, 0 < a < b < +∞, f : (a, b] × E × E → E is a given function where
(E, ‖ · ‖) is a Banach space and l,m are reals with l +m 6= 0. The results are based on
the fixed point theorems of Darbo and Mönch associated with the technique of measure
of noncompactness. Next, we prove that our problem is generalized Ulam-Hyers-Rassias
stable. An example is included to show the applicability of our results.
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Chapter 3: In this chapter, we give two main results. In the Section 3.2, we establish
existence, uniqueness and Ulam-Hyers-Rassias results to the boundary value problem with
nonlinear implicit generalized Hilfer-type fractional differential equation with impulses:

(
ρDα,β

t+k
u
)
(t) = f

(
t, u(t),

(
ρDα,β

t+k
u
)
(t)
)
; t ∈ Jk, k = 0, . . . ,m,(

ρJ 1−γ
t+k

u
)
(t+k ) =

(
ρJ 1−γ

t+k−1

u
)
(t−k ) + Lk(u(t

−
k )); k = 1, . . . ,m,

c1
(
ρJ 1−γ

a+ u
)
(a+) + c2

(
ρJ 1−γ

t+m
u
)
(b) = c3,

where ρDα,β

t+k
,ρ J 1−γ

t+k
are the generalized Hilfer fractional derivative of order α ∈ (0, 1)

and type β ∈ [0, 1] and generalized fractional integral of order 1 − γ, (γ = α + β − αβ)
respectively, c1, c2, c3 are reals with c1 + c2 6= 0, Jk := (tk, tk+1]; k = 0, . . . ,m, a = t0 <
t1 < . . . < tm < tm+1 = b <∞, u(t+k ) = lim

ϵ→0+
u(tk+ ϵ) and u(t−k ) = lim

ϵ→0−
u(tk+ ϵ) represent

the right and left hand limits of u(t) at t = tk, f : (a, b]× IR× IR → IR is a given function
and Lk : IR → IR; k = 1, . . . ,m are given continuous functions. The results are based on
Banach contraction principle, Krasnoselskii’s and Schaefer’s fixed point theorems.

In Section 3.3, we examine the existence and the Ulam stability of the solutions to
the boundary value problem with nonlinear implicit Generalized Hilfer-type fractional
differential equation with instantaneous impulses:

(
ρDα,β

t+k
u
)
(t) = f

(
t, u(t),

(
ρDα,β

t+k
u
)
(t)
)
; t ∈ Jk, k = 0, · · · ,m,(

ρJ 1−γ
t+k

u
)
(t+k ) =

(
ρJ 1−γ

t+k−1

u
)
(t−k ) +ϖk(u(t

−
k )); k = 1, · · · ,m,

c1
(
ρJ 1−γ

a+ u
)
(a+) + c2

(
ρJ 1−γ

t+m
u
)
(b) = c3,

where ρDα,β

t+k
, ρJ 1−γ

t+k
are the generalized Hilfer fractional derivative of order α ∈ (0, 1) and

type β ∈ [0, 1] and generalized Hilfer fractional integral of order 1− γ, (γ = α + β − αβ)
respectively, c1, c2 are reals with c1 + c2 6= 0, Jk := (tk, tk+1]; k = 0, · · · ,m, a = t0 < t1 <
· · · < tm < tm+1 = b < ∞, u(t+k ) = lim

ϵ→0+
u(tk + ϵ) and u(t−k ) = lim

ϵ→0−
u(tk + ϵ) represent

the right and left hand limits of u(t) at t = tk, c3 ∈ E, f : (a, b]× E × E → E is a given
function and ϖk : E → E; k = 1, · · · ,m are given continuous functions, where (E, ‖ · ‖)
is a Banach space. The results are based on fixed point theorems of Darbo and Mönch
associated with the technique of measure of noncompactness. Examples are included to
show the applicability of our results for each case.

Chapter 4: This chapter contain three sections. After the introduction section, in
Section 4.2, we present some existence results to the initial value problem with nonlinear
implicit generalized Hilfer-type fractional differential equation with non-instantaneous
impulses:

(
ρDα,β

s+k
u
)
(t) = f

(
t, u(t),

(
ρDα,β

s+k
u
)
(t)
)
; t ∈ Ik, k = 0, . . . ,m,

u(t) = gk(t, u(t)); t ∈ Ĩk, k = 1, . . . ,m,(
ρJ 1−γ

a+ u
)
(a+) = ϕ0,
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where ρDα,β

s+k
, ρJ 1−γ

a+ are the generalized Hilfer fractional derivative of order α ∈ (0, 1)

and type β ∈ [0, 1] and generalized fractional integral of order 1 − γ, (γ = α + β − αβ)
respectively, ϕ0 ∈ IR , Ik := (sk, tk+1]; k = 0, . . . ,m, Ĩk := (tk, sk]; k = 1, . . . ,m, a = t0 =
s0 < t1 ≤ s1 < t2 ≤ s2 < . . . ≤ sm−1 < tm ≤ sm < tm+1 = b < ∞, u(t+k ) = lim

ϵ→0+
u(tk + ϵ)

and u(t−k ) = lim
ϵ→0−

u(tk + ϵ) represent the right and left hand limits of u(t) at t = tk,

f : (a, b] × IR × IR → IR is a given function and gk : Ĩk × IR → IR; k = 1, . . . ,m, are
given continuous functions such that

(
ρJ 1−γ

s+k
gk

)
(t, u(t)) |t=sk = ϕk ∈ IR . The results are

based on Banach contraction principle and Schaefer’s fixed point theorem.
In Subsection 4.2.2, we give a generalization of the previous result to nonlocal impulsive

fractional differential equations. More precisely we present some existence results for the
following nonlocal problem

(
ρDα,β

s+k
u
)
(t) = f

(
t, u(t),

(
ρDα,β

s+k
u
)
(t)
)
; t ∈ Ik, k = 0, . . . ,m,

u(t) = gk(t, u(t)); t ∈ Ĩk, k = 1, . . . ,m,(
ρJ 1−γ

a+ u
)
(a+) + ξ(u) = ϕ0,

where ξ is a continuous function.
In the Section 4.3, we establish some existence results to the initial value problem

of nonlinear implicit generalized Hilfer-type fractional differential equation with non-
instantaneous impulses:

(
ρDα,β

s+k
u
)
(t) = f

(
t, u(t),

(
ρDα,β

s+k
u
)
(t)
)
; t ∈ Ik, k = 0, . . . ,m,

u(t) = gk(t, u(t)); t ∈ Ĩk, k = 1, . . . ,m,(
ρJ 1−γ

a+ u
)
(a+) = ϕ0,

where ρDα,β

s+k
, ρJ 1−γ

a+ are the generalized Hilfer-type fractional derivative of order α ∈ (0, 1)

and type β ∈ [0, 1] and generalized fractional integral of order 1 − γ, (γ = α + β − αβ),
respectively, ρ > 0, ϕ0 ∈ E , Ik := (sk, tk+1]; k = 0, . . . ,m, Ĩk := (tk, sk]; k = 1, . . . ,m,
a = s0 < t1 ≤ s1 < t2 ≤ s2 < . . . ≤ sm−1 < tm ≤ sm < tm+1 = b < ∞, u(t+k ) =
lim
ϵ→0+

u(tk + ϵ) and u(t−k ) = lim
ϵ→0−

u(tk + ϵ) represent the right and left hand limits of u(t)

at t = tk, f : Ik × E × E → E is a given function and gk : Ĩk × E → E; k = 1, . . . ,m are
given continuous functions such that

(
ρJ 1−γ

s+k
gk

)
(t, u(t)) |t=sk = ϕk ∈ E , where (E, ‖·‖) is

a real Banach space. The results are based on fixed point theorems of Darbo and Mönch
associated with the technique of measure of noncompactness. Examples are included to
show the applicability of our results.

Chapter 5: This chapter is devoted to proving some results concerning the existence
of solutions to the boundary value problem with nonlinear implicit Generalized Hilfer-type
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fractional differential equation with non-instantaneous impulses:

(
αDϑ,r

τ+i
x
)
(t) = f

(
t, x(t),

(
αDϑ,r

τ+i
x
)
(t)
)
; t ∈ Ji, i = 0, . . . ,m,

x(t) = ψi(t, x(t)); t ∈ J̃i, i = 1, . . . ,m,

ϕ1

(
αJ 1−ξ

a+ x
)
(a+) + ϕ2

(
αJ 1−ξ

m+ x
)
(b) = ϕ3,

where αDϑ,r

τ+i
,α J 1−ξ

a+ are the generalized Hilfer-type fractional derivative of order ϑ ∈ (0, 1)

and type r ∈ [0, 1] and generalized fractional integral of order 1− ξ, (ξ = ϑ+ r − ϑr) re-
spectively, ϕ1, ϕ2, ϕ3 ∈ IR , ϕ1 6= 0, Ji := (τi, ti+1]; i = 0, . . . ,m, J̃i := (ti, si]; i = 1, . . . ,m,
a = t0 = τ0 < t1 ≤ τ1 < t2 ≤ τ2 < . . . ≤ τm−1 < tm ≤ τm < tm+1 = b < ∞,
x(t+i ) = lim

ϵ→0+
x(ti + ϵ) and x(t−i ) = lim

ϵ→0−
x(ti + ϵ) represent the right and left hand limits

of x(t) at t = ti, f : (a, b] × IR × IR → IR is a given function and ψi : J̃i × IR → IR;
i = 1, . . . ,m are given continuous functions such that

(
αJ 1−ξ

τ+i
ψi

)
(t, x(t)) |t=τi = ci ∈ IR .

The results are based on Banach contraction principle and Krasnoselskii’s fixed point
theorem. Further, for the justification of our results we provide two examples.

Chapter 6: In this chapter, we prove some existence results of the solutions for a class
of initial value problem for nonlinear fractional hybrid implicit differential equations with
Generalized Hilfer and ψ-Hilfer fractional derivatives. The results are based on fixed point
theorems due to Dhage. Further, examples are provided for each section to illustrate our
results. In Section 6.2, we establish existence results to the nonlocal initial value problem
with nonlinear implicit hybrid Generalized Hilfer-type fractional differential equation :

αDϑ,r
a+

(
x(t)−χ(t,x(t))
f(t,x(t))

)
= φ

(
t, x(t), αDϑ,r

a+

(
x(t)−χ(t,x(t))
f(t,x(t))

))
, t ∈ (a, b],(

αJ 1−ξ
a+

(
x(τ)− χ(t, x(t))

f(τ, x(τ))

))
(a+) =

m∑
i=1

ci

(
x(ϵi)− χ(ϵi, x(ϵi))

f(ϵi, x(ϵi))

)
,

where αDϑ,r
a+ ,

α J 1−ξ
a+ are the generalized Hilfer fractional derivative of order ϑ ∈ (0, 1) and

type r ∈ [0, 1] and generalized fractional integral of order 1−ξ, (ξ = ϑ+r−ϑr) respectively,
ci, i = 1, . . . ,m, are real numbers, ϵi, i = 1, . . . ,m, are pre-fixed points satisfying a < ϵ1 ≤
. . . ≤ ϵm < b, f ∈ C([a, b]× IR, IR\{0}), χ ∈ C([a, b]× IR, IR), φ ∈ C([a, b]× IR2, IR) and∑m

i=1 ciΨ̄ξ(ϵi, a) 6= 1, for further details see the definitions in the chapter. Then, in the
Section 6.3, we consider the initial value problem with nonlinear implicit hybrid ψ-Hilfer
type fractional differential equation :

HDϑ,r;ψ
a+

(
x(t)

g(t, x(t))

)
= f

(
t, x(t),HDϑ,r;ψ

a+

(
x(t)

g(t, x(t))

))
, t ∈ (a, b],(

J1−ξ;ψa+

(
x(τ)

g(τ, x(τ))

))
(a+) = x0,

where HDϑ,r;ψ
a+ , J1−ξ;ψa+ are the ψ-Hilfer fractional derivative of order ϑ ∈ (0, 1) and type

r ∈ [0, 1] and ψ-Riemann-Liouville fractional integral of order 1 − ξ, (ξ = ϑ + r − ϑr)
respectively, x0 ∈ IR, g ∈ C([a, b]× IR, IR\{0}) and f ∈ C([a, b]× IR2, IR).

Finally we close our thesis with a conclusion and some perspectives.
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Chapter 1

Preliminaries

In this chapter, we discuss the necessary mathematical tools, notations and concepts
we need in the succeeding chapters. We look at some essential properties of fractional
differential operators. We also review some of the basic properties of measures of non-
compactness and fixed point theorems which are crucial in our results regarding fractional
differential equations.

1.1 Notations and Definitions
Let 0 < a < b and J = (a, b]. Consider the following parameters α, β, γ satisfying

γ = α + β − αβ, 0 < α, β, γ < 1. By C([a, b]) we denote the Banach space of all
continuous functions from J into IR with the norm

‖u‖∞ = sup{|u(t)| : t ∈ [a, b]}.

Consider the space Xp
c (a, b), (c ∈ IR, 1 ≤ p ≤ ∞) of those complex-valued Lebesgue

measurable functions f on [a, b] for which ‖f‖Xp
c
<∞, where the norm is defined by

‖f‖Xp
c
=

(∫ b

a

|tcf(t)|pdt
t

) 1
p

, (1 ≤ p <∞, c ∈ IR).

In particular, when c = 1
p
, the space Xp

c (a, b) coincides with the Lp(a, b) space: Xp
1
p

(a, b) =

Lp(a, b).
Let (E, ‖ · ‖) be a Banach space. By CE([a, b]) we denote the Banach space of all

continuous functions from [a, b] into E with the norm

‖u‖E = sup{‖u(t)‖ : t ∈ [a, b]}.

By L1([a, b]), we denote the space of Bochner–integrable functions f : J −→ E with
the norm

‖f‖1 =
∫ b

a

‖f(t)‖dt.

We consider the weighted spaces of continuous functions

Cγ,ρ(J) =

{
u : J → E :

(
tρ − aρ

ρ

)1−γ

u(t) ∈ CE ([a, b])

}
, 0 ≤ γ < 1,



CHAPTER 1. PRELIMINARIES 8

and

Cn
γ,ρ(J) =

{
u ∈ Cn−1 : u(n) ∈ Cγ,ρ(J)

}
, n ∈ IN,

C0
γ,ρ(J) = Cγ,ρ(J),

with the norms

‖u‖Cγ,ρ = sup
t∈[a,b]

∥∥∥∥∥
(
tρ − aρ

ρ

)1−γ

u(t)

∥∥∥∥∥ ,
and

‖u‖Cnγ,ρ =
n−1∑
k=0

‖u(k)‖∞ + ‖u(n)‖Cγ,ρ .

We define the spaces

Cα,β
γ,ρ (J) =

{
u ∈ Cγ,ρ(J),

ρDα,β
a+ u ∈ Cγ,ρ(J)

}
,

and
Cγ
γ,ρ(J) =

{
u ∈ Cγ,ρ(J),

ρDγ
a+u ∈ Cγ,ρ(J)

}
,

where Dα,β
a+ and Dγ

a+ are factional derivatives defined in the following sections.

1.2 Special Functions of the Fractional Calculus

1.2.1 Gamma Function
Undoubtedly, one of the basic functions of the fractional calculus is Euler’s gamma func-
tion Γ(z), which generalizes the factorial n! and allows n to take also non-integer and even
complex values.

Definition 1.1. ([82]) The gamma function Γ(z) is defined by the integral :

Γ(z) =

∫ +∞

0

tz−1e−tdt,

which converges in the right half of the complex plane Re(z) > 0.
One of the basic properties of the gamma function is that it satisfies the following functional
equation:

Γ(z + 1) = zΓ(z),

so, for positive integer values n, the Gamma function becomes Γ(n) = (n − 1)! and thus
can be seen as an extension of the factorial function to real values.
A useful particular value of the function: Γ(1

2
) =

√
π, is used throughout many examples

in this thesis.
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1.2.2 Mittag-Leffler Function
The exponential function ez plays a very important role in the theory of integer-order dif-
ferential equations. Its one-parameter generalization. The function which is now denoted
by :

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)

Definition 1.2. ([82]) A two-parameter function of the Mittag-Leffler type is defined by
the series expansion :

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0.

It follows from the definition that

E1,1(z) =
∞∑
k=0

zk

Γ(k + 1)
=

∞∑
k=0

zk

k!
= ez.

1.3 Elements From Fractional Calculus Theory
In this section, we recall some definitions of fractional integral and fractional differential
operators that include all we use throughout this thesis. We conclude it by some necessary
lemmata, theorems and properties.

1.3.1 Fractional Integrals
Definition 1.3. (Generalized Fractional Integral [70]) Let α ∈ IR+ and g ∈
L1([a, b]). The generalized fractional integral of order α is defined by

(ρJ α
a+g) (t) =

∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1
g(s)

Γ(α)
ds, t > a, ρ > 0.

Definition 1.4. (ψ-Riemann-Liouville Fractional Integral [70]).
Let (a, b) (−∞ ≤ a < b ≤ ∞) be a finite or infinite interval of the real line IR, ϑ > 0,
c ∈ IR and h ∈ Xp

c (a, b). Also let ψ(t) be an increasing and positive monotone function
on (a, b], having a continuous derivative ψ′(t) on (a, b). The left and right-sided fractional
integrals of a function h of order ϑ with respect to another function ψ on J are defined by(

Jϑ;ψa+ h
)
(t) =

∫ t

a

ψ′(τ) (ψ(t)− ψ(τ))ϑ−1 h(τ)

Γ(ϑ)
dτ,

and (
Jϑ;ψb− h

)
(t) =

∫ b

t

ψ′(τ) (ψ(τ)− ψ(t))ϑ−1 h(τ)

Γ(ϑ)
dτ,
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1.3.2 Fractional Derivatives
Definition 1.5. (Generalized Fractional Derivative [70]) Let α ∈ IR+\N and ρ > 0.
The generalized fractional derivative ρDα

a+ of order α is defined by

(ρDα
a+g) (t) = δnρ (

ρJ n−α
a+ g)(t)

=

(
t1−ρ

d

dt

)n ∫ t

a

sρ−1

(
tρ − sρ

ρ

)n−α−1
g(s)

Γ(n− α)
ds, t > a, ρ > 0,

where n = [α] + 1 and δnρ =

(
t1−ρ

d

dt

)n
.

Definition 1.6. (Generalized Hilfer type Fractional Derivative [78]) Let order α
and type β satisfy n− 1 < α < n and 0 ≤ β ≤ 1, with n ∈ N. The generalized Hilfer type
fractional derivative to t, with ρ > 0 of a function g, is defined by(

ρDα,β
a+ g

)
(t) =

(
ρJ β(n−α)

a+

(
tρ−1 d

dt

)n
ρJ (1−β)(n−α)

a+ g

)
(t)

=
(
ρJ β(n−α)

a+ δnρ
ρJ (1−β)(n−α)

a+ g
)
(t).

In this manuscript we consider the case n = 1 only, because 0 < α < 1.

Definition 1.7. (ψ-Riemann-Liouville fractional derivative [70]).
Let ψ′(t) 6= 0 (−∞ ≤ a < t < b ≤ ∞), ϑ > 0 and n ∈ IN. The Riemann-Liouville
derivatives of a function h of order ϑ with respect to another function ψ on [a, b] are
defined by (

Dϑ;ψ
a+ h

)
(t) = δn(Jn−ϑ;ψa+ h)(t)

= δn
∫ t

a

ψ′(τ) (ψ(t)− ψ(τ))n−ϑ−1 h(τ)

Γ(n− ϑ)
dτ,

and (
Dϑ;ψ
b− h

)
(t) = (−1)nδn(Jn−ϑ;ψa+ h)(t)

= (−1)nδn
∫ b

t

ψ′(τ) (ψ(τ)− ψ(t))n−ϑ−1 h(τ)

Γ(n− ϑ)
dτ,

where n = [ϑ] + 1 and δn =

(
1

ψ′(t)

d

dt

)n
.

Definition 1.8. (ψ-Hilfer Fractional Derivative[100]) Let order ϑ and type r satisfy
n− 1 < ϑ < n and 0 ≤ r ≤ 1, with n ∈ N, let h, ψ ∈ Cn([a, b], IR) be two functions such
that ψ is increasing and ψ′(t) 6= 0. The ψ-Hilfer fractional derivatives to t of a function
h, are defined by(

HDϑ,r;ψ
a+ h

)
(t) =

(
Jr(n−ϑ);ψa+

(
1

ψ′(t)

d

dt

)n
J(1−r)(n−ϑ);ψa+ h

)
(t)

and (
HDϑ,r;ψ

b− h
)
(t) =

(
Jr(n−ϑ);ψb−

(
− 1

ψ′(t)

d

dt

)n
J(1−r)(n−ϑ);ψb− h

)
(t).

In this thesis we consider the case n = 1 only, because 0 < ϑ < 1.



CHAPTER 1. PRELIMINARIES 11

1.3.3 Necessary Lemma, Theorems and Properties
Theorem 1.9. ([70]) Let α > 0, β > 0, 1 ≤ p ≤ ∞, 0 < a < b < ∞. Then, for
g ∈ L1([a, b]) we have (

ρJ α
a+

ρJ β
a+g
)
(t) =

(
ρJ α+β

a+ g
)
(t).

Lemma 1.10. ([30]) Let t > a. Then, for α ≥ 0 and β > 0, we have[
ρJ α

a+

(
sρ − aρ

ρ

)β−1
]
(t) =

Γ(β)

Γ(α + β)

(
tρ − aρ

ρ

)α+β−1

,[
ρDα

a+

(
sρ − aρ

ρ

)α−1
]
(t) = 0, 0 < α < 1.

Property 1.11. ([78]) The operator ρDα,β
a+ can be written as

ρDα,β
a+ = ρJ β(1−α)

a+ δρ
ρJ 1−γ

a+ = ρJ β(1−α)
a+

ρDγ
a+ , γ = α + β − αβ.

Lemma 1.12. ([70, 78]) Let α > 0, and 0 ≤ γ < 1. Then, ρJ α
a+ is bounded from Cγ,ρ(J)

into Cγ,ρ(J). Since ρDα,β
a+ u = ρJ β(1−α)

a+
ρDγ

a+u, it follows that

Cγ
1−γ,ρ(J) ⊂ Cα,β

1−γ,ρ(J) ⊂ C1−γ,ρ(J).

Lemma 1.13. ([78]) Let 0 < a < b <∞, α > 0, 0 ≤ γ < 1 and u ∈ Cγ,ρ(J). If α > 1− γ,
then ρJ α

a+u is continuous on J and

(ρJ α
a+u) (a) = lim

t→a+
(ρJ α

a+u) (t) = 0.

Lemma 1.14. ([78]) Let α > 0, 0 ≤ γ < 1 and g ∈ Cγ,ρ(J). Then,

(ρDα
a+

ρJ α
a+g) (t) = g(t), for all t ∈ J.

Lemma 1.15. ([78]) Let 0 < α < 1, 0 ≤ γ < 1. If g ∈ Cγ,ρ(J) and ρJ 1−α
a+ g ∈ C1

γ,ρ(J),
then

(ρJ α
a+

ρDα
a+g) (t) = g(t)−

(
ρJ 1−α

a+ g
)
(a)

Γ(α)

(
tρ − aρ

ρ

)α−1

, for all t ∈ J.

Lemma 1.16. ([78]) Let 0 < α < 1, 0 ≤ β ≤ 1 and γ = α+ β − αβ. If u ∈ Cγ
γ,ρ(J), then

ρJ γ
a+

ρDγ
a+u = ρJ α

a+
ρDα,β

a+ u,

and
ρDγ

a+
ρJ α

a+u = ρDβ(1−α)
a+ u.

Property 1.17. ([78]) The fractional derivative ρDα,β
a+ interpolate the following fractional

derivatives: Hilfer (ρ → 1), generalized Hilfer (ρ → 0+), generalized (β = 0), Caputo–
type (β = 1), Riemann–Liouville (β = 0, ρ → 1), Hadamard (β = 0, ρ → 0+), Caputo
(β = 1, ρ → 1), Caputo–Hadamard (β = 1, ρ → 0+), Liouville (β = 0, ρ → 1, a = 0) and
Weyl (β = 0, ρ→ 1, a = −∞).
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Property 1.18. ([100]) The operator HDϑ,r;ψ
a+ can be written as

HDϑ,r;ψ
a+ = Jr(1−ϑ);ψa+ Dξ;ψ

a+ , ξ = ϑ+ r − ϑr.

Lemma 1.19. ([70, 100]) Let ϑ > 0, r > 0, 0 < a < b < ∞. Then, for h ∈ Xp
c (a, b) the

semigroup property is valid, i.e.(
Jϑ;ψa+ Jr;ψa+ h

)
(t) =

(
Jϑ+r;ψa+ h

)
(t).

Lemma 1.20. (Gronwall’s lemma [29]) Let u and w be two integrable functions and ζ
a continuous function, with domain [a, b]. Assume that

• u and w are nonnegative;

• ζ is nonnegative and nondecreasing.

If

u(t) ≤ w(t) + ζ(t)

∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1

u(s)ds, t ∈ [a, b],

then
u(t) ≤ w(t) +

∫ t

a

∞∑
τ=1

(ζ(t)Γ(α))τ

Γ(τα)
sρ−1

(
tρ − sρ

ρ

)τα−1

w(s)ds, t ∈ [a, b],

In addition, if w is nondecreasing, then

u(t) ≤ w(t)Eα

[
ζ(t)Γ(α)

(
tρ − aρ

ρ

)α]
, t ∈ [a, b].

Lemma 1.21. (Theorem 4.1, ([78])). Let f be a function such that f ∈ Cγ,ρ(J). Then
u ∈ Cγ

γ,ρ(J) is a solution of the differential equation:(
ρDα,β

a+ u
)
(t) = f(t), for each , t ∈ J, 0 < α < 1, 0 ≤ β ≤ 1,

if and only if u satisfies the following Volterra integral equation:

u(t) =

(
ρJ 1−γ

a+ u
)
(a+)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1f(s)ds,

where γ = α + β − αβ.

1.4 Kuratowski Measure of Noncompactness
Now let us recall some fundamental facts of the notion of measure of noncompactness.
Let ΩX be the class of all bounded subsets of a metric space X.

Definition 1.22. ([39]) A function µ : ΩX → [0,∞) is said to be a measure of noncom-
pactness on X if the following conditions are verified for all B,B1, B2 ∈ ΩX .

(a) Regularity, i.e., µ(B) = 0 if and only if B is precompact,

(b) invariance under closure, i.e., µ(B) = µ(B),
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(c) semi-additivity, i.e., µ(B1 ∪ B2) = max{µ(B1), µ(B2)}.

Definition 1.23. ([39]) let X be a Banach space. The Kuratowski measure of noncom-
pactness is the map µ : ΩX −→ [0,∞) defined by

µ(M) = inf{ϵ > 0 :M ⊂
m⋃
j=1

Mj, diam(Mj) ≤ ϵ},

where M ∈ ΩX .
The map µ satisfies the following Properties :

• µ(M) = 0 ⇔M is compact (M is relatively compact).

• µ(M) = µ(M).

• M1 ⊂M2 ⇒ µ(M1) ≤ µ(M2).

• µ(M1 +M2) ≤ µ(B1) + µ(B2).

• µ(cM) = |c|µ(M), c ∈ IR.

• µ(convM) = µ(M).

1.5 Some Fixed Point Theorems
Theorem 1.24. (Mönch’s fixed point Theorem [76]). Let D be closed, bounded and
convex subset of a Banach space X such that 0 ∈ D, and let T be a continuous mapping
of D into itself. If the implication

V = convT (V ), or V = T (V ) ∪ {0} ⇒ µ(V ) = 0, (1.1)

holds for every subset V of D, then T has a fixed point.

Theorem 1.25. (Darbo’s fixed point Theorem [58]). Let D be a non-empty, closed,
bounded and convex subset of a Banach space X, and let T be a continuous mapping of
D into itself such that for any non-empty subset C of D,

µ(T (C)) ≤ kµ(C), (1.2)

where 0 ≤ k < 1, and µ is the Kuratowski measure of noncompactness. Then T has a
fixed point in D.

Theorem 1.26. (Banach’s fixed point theorem [59]). Let D be a non-empty closed
subset of a Banach space E, then any contraction mapping N of D into itself has a unique
fixed point.

Theorem 1.27. (Schaefer’s fixed point theorem [59]). Let E be a Banach space and
N : E → E be a completely continuous operator. If the set

D = {u ∈ E : u = λNu, for some λ ∈ (0, 1)}

is bounded, then N has a fixed point.
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Theorem 1.28. (Krasnoselskii’s fixed point theorem [59]). Let D be a closed, convex,
and nonempty subset of a Banach space E, and A,B the operators such that

1) Ax+By ∈ D for all x, y ∈ D;

2) A is compact and continuous;

3) B is a contraction mapping.

Then there exists z ∈ D such that z = Az +Bz.

Theorem 1.29. (Schauder fixed point theorem [59]) Let X be a Banach space, D be a
bounded closed convex subset of X and T : D → D be a compact and continuous map.
Then T has at least one fixed point in D.

Theorem 1.30. (Dhage fixed point theorem [53]) Let Ω be a closed, convex, bounded
and nonempty subset of a Banach algebra (X, ‖ · ‖), and let T1 : E → E and T2 : Ω → E
be two operators such that

1) T1 is Lipschitzian with Lipschitz constant λ,

2) T2 is completely continuous,

3) y = T1yT2z ⇒ y ∈ Ω for all z ∈ Ω,

4) λM < 1, where M = ‖B(Ω)‖ = sup{‖B(z)‖ : z ∈ Ω}.

Then the operator equation T1yT2y = y has a solution in Ω.

Theorem 1.31. (Dhage fixed point theorem with three operators [54]) Let B be a closed,
convex, bounded and nonempty subset of a Banach algebra (X, ‖·‖), and let P ,R : X → X
and Q : B → X be three operators such that

1) P and R are Lipschitzian with Lipschitz constants η1 and η2, respectively,

2) Q is compact and continuous,

3) x = PxQy +Rx⇒ x ∈ B for all y ∈ B

4) η1β + η2 < 1, where β = ‖Q(B)‖ = sup{‖Q(y)‖ : y ∈ B}.

Then the operator equation PxQx+Rx = x has a solution in B.
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Chapter 2

Boundary Value Problem for Differential Equations

with Generalized Hilfer-Type Fractional Derivative
1

2.1 Introduction and Motivations

This chapter deals with some existence and Ulam-Hyers-Rassias stability results for
a class of boundary value problem for differential equations with generalized Hilfer type
fractional derivative in Banach spaces. The results are based on the fixed point the-
orems of Darbo and Mönch associated with the technique of measure of noncompact-
ness. An example is included to show the applicability of our results. The findings
obtained in this chapter are studied and presented as a consequence of the following pa-
pers [7, 13, 14, 25, 25, 41, 42, 113], which are focused on linear and nonlinear initial and
boundary value problems for fractional differential equations involving different kinds of
fractional derivatives. As for the stability of Ulam, we are motivated by the monographs
of Abbas et al. [7, 13], and the papers [10, 46, 47], in it, considerable attention has been
given to the study of the Ulam-Hyers and Ulam-Hyers-Rassias stability of various classes
of functional equations.

In this chapter we establish existence and Ulam stability results for the boundary
value problem of the following generalized Hilfer type fractional differential equation:(

ρDα,β
a+ u

)
(t) = f

(
t, u(t),

(
ρDα,β

a+ u
)
(t)
)
, for each , t ∈ J, (2.1)

l
(
ρJ 1−γ

a+ u
)
(a+) +m

(
ρJ 1−γ

a+ u
)
(b) = ϕ, (2.2)

where ρDα,β
a+ ,

ρ J 1−γ
a+ are the generalized Hilfer type fractional derivative of order α ∈ (0, 1)

and type β ∈ [0, 1] and generalized fractional integral of order 1−γ, (γ = α+β−αβ), re-
spectively, ϕ ∈ E, f : J×E×E → E is a given function and l,m are reals with l+m 6= 0.

2.2 Existence Results
We consider the following linear fractional differential equation(

ρDα,β
a+ u

)
(t) = ψ(t), t ∈ J, (2.3)

1. A. Salim, M. Benchohra and J. E. Lazreg, Boundary Value Problem for Differential
Equations with Generalized Hilfer Type Fractional Derivative. (submitted).
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where 0 < α < 1, 0 ≤ β ≤ 1, ρ > 0, with the boundary condition

l
(
ρJ 1−γ

a+ u
)
(a+) +m

(
ρJ 1−γ

a+ u
)
(b) = ϕ, (2.4)

where γ = α+ β−αβ, ϕ ∈ E and l,m ∈ IR with l+m 6= 0. The following theorem shows
that the problem (2.3)–(2.4) has a unique solution given by

u(t) =
1

(l +m)Γ(γ)

(
tρ − aρ

ρ

)γ−1
[
ϕ− m

Γ(1− γ + α)

∫ b

a

(
bρ − sρ

ρ

)α−γ
sρ−1ψ(s)ds

]

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1ψ(s)ds. (2.5)

Theorem 2.1. Let γ = α+ β − αβ, where 0 < α < 1 and 0 ≤ β ≤ 1. If ψ : J → E is a
function such that ψ(·) ∈ Cγ,ρ(J), then u ∈ Cγ

γ,ρ(J) satisfies the problem (2.3)–(2.4) if
and only if it satisfies (2.5).

Proof: By Lemma 1.21, the solution of (2.3) can be written as

u(t) =

(
ρJ 1−γ

a+ u
)
(a+)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1ψ(s)ds. (2.6)

Applying ρJ 1−γ
a+ on both sides of (2.6), using Lemma 1.10 and taking t = b, we obtain

(
ρJ 1−γ

a+ u
)
(b) =

(
ρJ 1−γ

a+ u
)
(a+) +

1

Γ(1− γ + α)

∫ b

a

(
bρ − sρ

ρ

)α−γ
sρ−1ψ(s)ds, (2.7)

multiplying both sides of (2.7) by m, we get

m
(
ρJ 1−γ

a+ u
)
(b) = m

(
ρJ 1−γ

a+ u
)
(a+) +

m

Γ(1− γ + α)

∫ b

a

(
bρ − sρ

ρ

)α−γ
sρ−1ψ(s)ds.

Using condition (2.4), we obtain

m
(
ρJ 1−γ

a+ u
)
(b) = ϕ− l

(
ρJ 1−γ

a+ u
)
(a+).

Thus

ϕ− l
(
ρJ 1−γ

a+ u
)
(a+) = m

(
ρJ 1−γ

a+ u
)
(a+) +

m

Γ(1− γ + α)

∫ b

a

(
bρ − sρ

ρ

)α−γ
sρ−1ψ(s)ds,

which implies that

(
ρJ 1−γ

a+ u
)
(a+) =

ϕ

l +m
− m

(l +m)Γ(1− γ + α)

∫ b

a

(
bρ − sρ

ρ

)α−γ
sρ−1ψ(s)ds. (2.8)

Substituting (2.8) into (2.6), we obtain (2.5).
Reciprocally, applying ρJ 1−γ

a+ on both sides of (2.5), using Lemma 1.10 and Theorem
1.9, we get(

ρJ 1−γ
a+ u

)
(t) =

ϕ

l +m
− m

(l +m)

(
ρJ 1−γ+α

a+ ψ
)
(b) +

(
ρJ 1−γ+α

a+ ψ
)
(t). (2.9)



CHAPTER 2. BOUNDARY VALUE PROBLEM FOR DIFFERENTIAL EQUATIONS WITH
GENERALIZED HILFER-TYPE FRACTIONAL DERIVATIVE 17

Next, taking the limit t → a+ of (2.9) and using Lemma 1.13, with 1− γ < 1− γ + α,
we obtain (

ρJ 1−γ
a+ u

)
(a+) =

ϕ

l +m
− m

(l +m)

(
ρJ 1−γ+α

a+ ψ
)
(b). (2.10)

Now, taking t = b in (2.9), we get

(
ρJ 1−γ

a+ u
)
(b) =

ϕ

l +m
− m

(l +m)

(
ρJ 1−γ+α

a+ ψ
)
(b) +

(
ρJ 1−γ+α

a+ ψ
)
(b). (2.11)

From (2.10) and (2.11), we find that

l
(
ρJ 1−γ

a+ u
)
(a+) +m

(
ρJ 1−γ

a+ u
)
(b)

=
l.ϕ

l +m
− lm

l +m

(
ρJ 1−γ+α

a+ ψ
)
(b) +

m.ϕ

l +m
− m2

l +m

(
ρJ 1−γ+α

a+ ψ
)
(b) +m

(
ρJ 1−γ+α

a+ ψ
)
(b)

= ϕ+

(
m− lm

l +m
− m2

l +m

)(
ρJ 1−γ+α

a+ ψ
)
(b) = ϕ,

which shows that the boundary condition l
(
ρJ 1−γ

a+ u
)
(a+) + m

(
ρJ 1−γ

a+ u
)
(b) = ϕ, is

satisfied. Next, apply operator ρDγ
a+ on both sides of (2.5). Then, from Lemma 1.10 and

Lemma 1.16 we obtain
(ρDγ

a+u)(t) =
(
ρDβ(1−α)

a+ ψ
)
(t). (2.12)

Since u ∈ Cγ
γ,ρ(J) and by definition of Cγ

γ,ρ(J), we have ρDγ
a+u ∈ Cγ,ρ(J), then (2.12)

implies that

(ρDγ
a+u)(t) =

(
δρ

ρJ 1−β(1−α)
a+ ψ

)
(t) =

(
ρDβ(1−α)

a+ ψ
)
(t) ∈ Cγ,ρ(J). (2.13)

As ψ(·) ∈ Cγ,ρ(J) and from Lemma 1.12, it follows that(
ρJ 1−β(1−α)

a+ ψ
)
∈ Cγ,ρ(J). (2.14)

From (2.13), (2.14) and by the Definition of the space Cn
γ,ρ(J), we obtain(

ρJ 1−β(1−α)
a+ ψ

)
∈ C1

γ,ρ(J).

Applying operator ρJ β(1−α)
a+ to both sides of (2.12) and using Lemma 1.15, Lemma 1.13

and Property 1.11, we have(
ρDα,β

a+ u
)
(t) = ρJ β(1−α)

a+

(
ρDγ

a+u
)
(t) = ψ(t)

+

(
ρJ 1−β(1−α)

a+ ψ(t)
)
(a)

Γ(β(1− α))

(
tρ − aρ

ρ

)β(1−α)−1

= ψ(t),

that is, (2.3) holds. This completes the proof. �
As a consequence of Theorem 2.1, we have the following result
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Lemma 2.2. Let γ = α+β−αβ where 0 < α < 1 and 0 ≤ β ≤ 1, let f : J ×E×E → E
be a function such that f(·, u(·), v(·)) ∈ Cγ,ρ(J) for any u, v ∈ Cγ,ρ(J). If u ∈ Cγ

γ,ρ(J),
then u satisfies the problem (2.1)− (2.2) if and only if u is the fixed point of the operator
Ψ : Cγ,ρ(J) → Cγ,ρ(J) defined by

Ψu(t) =
1

(l +m)Γ(γ)

(
tρ − aρ

ρ

)γ−1
[
ϕ− m

Γ(1− γ + α)

∫ b

a

(
bρ − sρ

ρ

)α−γ
sρ−1h(s)ds

]

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1h(s)ds, (2.15)

where h : J → E be a function satisfying the functional equation

h(t) = f(t, u(t), h(t)).

Clearly, h ∈ Cγ,ρ(J). Also, by Lemma 1.12, Ψu ∈ Cγ,ρ(J).

Lemma 2.3. ([61]) Let D ⊂ Cγ,ρ(J) be a bounded and equicontinuous set, then

(i) the function t→ µ

((
tρ − aρ

ρ

)1−γ

D(t)

)
is continuous on [a, b], and

µCγ,ρ(D) = sup
t∈[a,b]

µ

((
tρ − aρ

ρ

)1−γ

D(t)

)
.

(ii) µ
({∫ b

a
u(s)ds : u ∈ D

})
≤
∫ b

a

µ(D(s))ds, where

D(t) = {u(t) : u ∈ D}, t ∈ J.

The following hypotheses will be used in the sequel :

(Ax1) The function t 7→ f(t, u, v) is measurable and continuous on J for each u, v ∈ E,
and the functions u 7→ f(t, u, v) and v 7→ f(t, u, v) are continuous on E for a.e.
t ∈ J.

(Ax2) There exists a continuous function p : [a, b] −→ [0,∞) such that

‖f(t, u, v)‖ ≤ p(t), for a.e. t ∈ J and for each u, v ∈ E.

(Ax3) For each bounded set B ⊂ E and for each t ∈ J , we have

µ(f(t, B, (ρDα,β
a+ B))) ≤

(
tρ − aρ

ρ

)1−γ

p(t)µ(B),

where ρDα,β
a+ B = {ρDα,β

a+ w : w ∈ B}.

Set p∗ = sup
t∈[a,b]

p(t).

We are now in a position to state and prove our existence result for the problem (2.1)-(2.2)
based on Theorem 1.24.
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Theorem 2.4. Assume (Ax1) – (Ax3) hold. If

ℓ :=
p∗

Γ(α + 1)

(
bρ − aρ

ρ

)1−γ+α

< 1, (2.16)

then the problem (2.1)-(2.2) has at least one solution define on J .

Proof: Consider the operator Ψ : Cγ,ρ(J) → Cγ,ρ(J) defined in (2.15).
For any u ∈ Cγ,ρ(J), and each t ∈ J we have∥∥∥∥∥

(
tρ − aρ

ρ

)1−γ

(Ψu)(t)

∥∥∥∥∥
≤ ‖ϕ‖

|l +m|Γ(γ)
+

|m|
|l +m|Γ(γ)Γ(1− γ + α)

∫ b

a

(
bρ − sρ

ρ

)α−γ
sρ−1‖h(s)‖ds

+
1

Γ(α)

(
tρ − aρ

ρ

)1−γ ∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1‖h(s)‖ds

≤ ‖ϕ‖
|l +m|Γ(γ)

+
|m|p∗

|l +m|Γ(γ)
(
ρJ 1−γ+α

a+ (1)
)
(b) + p∗

(
tρ − aρ

ρ

)1−γ

(ρJ α
a+(1)) (t).

By Lemma 1.10, we have∥∥∥∥∥
(
tρ − aρ

ρ

)1−γ

(Ψu)(t)

∥∥∥∥∥
≤ ‖ϕ‖

|l +m|Γ(γ)
+

|m|p∗

|l +m|Γ(γ)Γ(α− γ)

(
bρ − aρ

ρ

)1−γ+α

+
p∗

Γ(α + 1)

(
tρ − aρ

ρ

)1−γ+α

.

Hence, for any u ∈ Cγ,ρ(J), and each t ∈ J we get
‖(Ψu)‖Cγ,ρ

≤ ‖ϕ‖
|l +m|Γ(γ)

+
|m|p∗

|l +m|Γ(γ)Γ(α− γ)

(
bρ − aρ

ρ

)1−γ+α

+
p∗

Γ(α + 1)

(
tρ − aρ

ρ

)1−γ+α

:= R.

This proves that Ψ transforms the ball BR := B(0, R) = {w ∈ Cγ,ρ : ‖w‖Cγ,ρ ≤ R} into
itself . We shall show that the operator Ψ : BR → BR satisfies all the assumptions of
Theorem 1.24. The proof will be given in several steps.

Step 1: Ψ : BR → BR is continuous.
Let {un}n∈IN be a sequence such that un −→ u in BR . Then, for each t ∈ J , we have∥∥∥∥∥

(
tρ − aρ

ρ

)1−γ

(Ψun)(t)−
(
tρ − aρ

ρ

)1−γ

(Ψu)(t)

∥∥∥∥∥
≤ |m|

|l +m|Γ(γ)Γ(1− γ + α)

∫ b

a

(
bρ − sρ

ρ

)α−γ
sρ−1‖hn(s)− h(s)‖ds

+
1

Γ(α)

(
tρ − aρ

ρ

)1−γ ∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1‖hn(s)− h(s)‖ds,

(2.17)
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where hn, h ∈ Cγ,ρ(J) be such that

hn(t) = f(t, un(t), hn(t)) , h(t) = f(t, u(t), h(t)).

Since un −→ u as n −→ ∞ and f is continuous, then by the Lebesgue dominated
convergence theorem, equation (2.17) implies

‖Ψun −Ψu‖Cγ,ρ −→ 0 as n −→ ∞.
Step 2: Ψ(BR) is bounded and equicontinuous.
Since Ψ(BR) ⊂ BR and BR is bounded, then Ψ(BR) is bounded.
Next, let t1, t2 ∈ (a, b] such that a < t1 < t2 ≤ b and let u ∈ BR. Thus we have

∥∥∥∥∥
(
tρ2 − aρ

ρ

)1−γ

(Ψu)(t2)−
(
tρ1 − aρ

ρ

)1−γ

(Ψu)(t1)

∥∥∥∥∥
≤

∥∥∥∥∥ 1

Γ(α)

(
tρ2 − aρ

ρ

)1−γ ∫ t2

a

(
tρ2 − sρ

ρ

)α−1

sρ−1h(s)ds

− 1

Γ(α)

(
tρ1 − aρ

ρ

)1−γ ∫ t1

a

(
tρ1 − sρ

ρ

)α−1

sρ−1h(s)ds

∥∥∥∥∥ ,
then, ∥∥∥∥∥

(
tρ2 − aρ

ρ

)1−γ

(Ψu)(t2)−
(
tρ1 − aρ

ρ

)1−γ

(Ψu)(t1)

∥∥∥∥∥
≤ 1

Γ(α)

(
tρ2 − aρ

ρ

)1−γ ∫ t2

t1

(
tρ2 − sρ

ρ

)α−1

sρ−1‖h(s)‖ds

+

∫ t1

a

∣∣∣∣∣
(
tρ2 − aρ

ρ

)1−γ (
tρ2 − sρ

ρ

)α−1

−
(
tρ1 − aρ

ρ

)1−γ (
tρ1 − sρ

ρ

)α−1
∣∣∣∣∣ sρ−1‖h(s)‖

Γ(α)
ds

≤ p∗
(
bρ − aρ

ρ

)1−γ (
ρJ α

t+1
(1)
)
(t2)

+
p∗

Γ(α)

∫ t1

a

∣∣∣∣∣
(
tρ2 − aρ

ρ

)1−γ (
tρ2 − sρ

ρ

)α−1

−
(
tρ1 − aρ

ρ

)1−γ (
tρ1 − sρ

ρ

)α−1
∣∣∣∣∣ sρ−1ds.

By Lemma 1.10, we have∥∥∥∥∥
(
tρ2 − aρ

ρ

)1−γ

(Ψu)(t2)−
(
tρ1 − aρ

ρ

)1−γ

(Ψu)(t1)

∥∥∥∥∥
≤ p∗

Γ(α + 1)

(
bρ − aρ

ρ

)1−γ (
tρ2 − tρ1
ρ

)α
+

p∗

Γ(α)

∫ t1

a

∣∣∣∣∣
(
tρ2 − aρ

ρ

)1−γ (
tρ2 − sρ

ρ

)α−1

−
(
tρ1 − aρ

ρ

)1−γ (
tρ1 − sρ

ρ

)α−1
∣∣∣∣∣ sρ−1ds.

As t1 −→ t2, the right side of the above inequality tends to zero. Hence, Ψ(BR) is
bounded and equicontinuous.
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Step 3: The implication (1.1) of Theorem 1.24 holds.
Now let D be an equicontinuous subset of BR such that D ⊂ Ψ(D)∪ {0}, therefore the
function t −→ d(t) = µ(D(t)) is continuous on J . By (Ax3) and the properties of the
measure µ, for each t ∈ J , we have(

tρ − aρ

ρ

)1−γ

d(t) ≤ µ

((
tρ − aρ

ρ

)1−γ

(ΨD)(t) ∪ {0}

)

≤ µ

((
tρ − aρ

ρ

)1−γ

(ΨD)(t)

)
≤

(
bρ − aρ

ρ

)1−γ

×
∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1p(s)µ(D(s))

Γ(α)

(
sρ − aρ

ρ

)1−γ

ds

≤ p∗
(
bρ − aρ

ρ

)1−γ

‖d‖Cγ,ρ
(
ρJ α

a+(1)
)
(t)

≤ p∗

Γ(α + 1)

(
bρ − aρ

ρ

)1−γ+α

‖d‖Cγ,ρ .

Thus
‖d‖Cγ,ρ ≤ ℓ‖d‖Cγ,ρ .

From (2.16), we get ‖d‖Cγ,ρ = 0, that is d(t) = µ(D(t)) = 0, for each t ∈ J , and then
D(t) is relatively compact in E. In view of the Ascoli-Arzela Theorem, D is relatively
compact in BR. Applying now Theorem 1.24, we conclude that Ψ has a fixed point,
which is solution of the problem (2.1)-(2.2). �

Our next existence result for the problem (2.1)-(2.2) is based on Darbo fixed point
Theorem 1.25.

Theorem 2.5. Assume that the hypotheses (Ax1) – (Ax3) and the condition (2.16)
hold. Then the problem (2.1)-(2.2) has a solution define on J .

Proof: Consider the operator Ψ defined in (2.15). We know that Ψ : BR −→ BR is
bounded and continuous and that Ψ(BR) is equicontinuous, we need to prove that the
operator Ψ is a ℓ-contraction.
Let D ⊂ BR and t ∈ J . Then we have

µ

((
tρ − aρ

ρ

)1−γ

(ΨD)(t)

)
= µ

((
tρ − aρ

ρ

)1−γ

(Ψu)(t) : u ∈ D

)
≤
(
bρ − aρ

ρ

)1−γ {∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1p(s)µ(D(s))

Γ(α)

(
sρ − aρ

ρ

)1−γ

ds : u ∈ D

}
≤ p∗

(
bρ − aρ

ρ

)1−γ

µCγ,ρ(D)
(
ρJ α

a+(1)
)
(t)

≤ p∗

Γ(α + 1)

(
bρ − aρ

ρ

)1−γ+α

µCγ,ρ(D).

Therefore
µCγ,ρ(ΨD) ≤ p∗

Γ(α + 1)

(
bρ − aρ

ρ

)1−γ+α

µCγ,ρ(D).
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So, By (2.16), the operator Ψ is a ℓ-contraction, where

ℓ :=
p∗

Γ(α + 1)

(
bρ − aρ

ρ

)1−γ+α

< 1.

Consequently, from Theorem 1.25 we conclude that Ψ has a fixed point u ∈ BR, which
is a solution to problem (2.1)-(2.2). �

2.3 Ulam-Hyers-Rassias Stability
Now we are concerned with the generalized Ulam-Hyers-Rassias stability of our equation
(2.1). Let ϵ > 0 and ϑ : J −→ [0,∞) be a continuous function. We consider the following
inequalities : ∥∥∥(ρDα,β

a+ u
)
(t)− f

(
t, u(t),

(
ρDα,β

a+ u
)
(t)
)∥∥∥ ≤ ϵ; t ∈ J, (2.18)∥∥∥(ρDα,β

a+ u
)
(t)− f

(
t, u(t),

(
ρDα,β

a+ u
)
(t)
)∥∥∥ ≤ ϑ(t); t ∈ J, (2.19)∥∥∥(ρDα,β

a+ u
)
(t)− f

(
t, u(t),

(
ρDα,β

a+ u
)
(t)
)∥∥∥ ≤ ϵϑ(t); t ∈ J. (2.20)

Definition 2.6. ([46,47]) Equation (2.1) is Ulam-Hyers (U-H) stable if there exists a real
number af > 0 such that for each ϵ > 0 and for each solution u ∈ Cγ,ρ(J) of inequality
(2.18) there exists a solution v ∈ Cγ,ρ(J) of (2.1)−(2.2) with

‖u(t)− v(t)‖ ≤ ϵaf ; t ∈ J.

Definition 2.7. ([46, 47]) Equation (2.1) is generalized Ulam-Hyers (G.U-H) stable if
there exists af : C([0,∞), [0,∞)) with af (0) = 0 such that for each ϵ > 0 and for each
solution u ∈ Cγ,ρ(J) of inequality (2.18) there exists a solution v ∈ Cγ,ρ(J) of (2.1)−(2.2)
with

‖u(t)− v(t)‖ ≤ af (ϵ); t ∈ J.

Definition 2.8. ([46, 47]) Equation (2.1) is Ulam-Hyers-Rassias (U-H-R) stable with
respect to ϑ if there exists a real number af,ϑ > 0 such that for each ϵ > 0 and for each
solution u ∈ Cγ,ρ(J) of inequality (2.20) there exists a solution v ∈ Cγ,ρ(J) of (2.1)−(2.2)
with

‖u(t)− v(t)‖ ≤ ϵaf,ϑϑ(t); t ∈ J.

Definition 2.9. ([46, 47]) Equation (2.1) is generalized Ulam-Hyers-Rassias (G.U-H-R)
stable with respect to ϑ if there exists a real number af,ϑ > 0 such that for each solution
u ∈ Cγ,ρ(J) of inequality (2.19) there exists a solution v ∈ Cγ,ρ(J) of (2.1)−(2.2) with

‖u(t)− v(t)‖ ≤ af,ϑϑ(t); t ∈ J.

Remark 2.10. It is clear that :

1. Definition 2.6 =⇒ Definition 2.7.

2. Definition 2.8 =⇒ Definition 2.9.

3. Definition 2.8 for ϑ(.) = 1 =⇒ Definition 2.6.
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Theorem 2.11. Assume that the hypotheses (Ax1), (Ax2) and the following hypotheses
hold.

(Ax4) There exists λϑ > 0 such that for each t ∈ J , we have

(ρJ α
a+ϑ)(t) ≤ λϑϑ(t).

(Ax5) There exists a continuous function q : [a, b] −→ [0,∞) such that for each t ∈ J ,
we have

p(t) ≤ q(t)ϑ(t).

Then equation (2.1) is G.U-H-R stable.

Proof: Consider the operator Ψ defined in (2.15). Let u be a solution if inequality
(2.19), and let us assume that v is a solution of the problem (2.1)−(2.2). Thus, we have

Ψv(t) =
1

(l +m)Γ(γ)

(
tρ − aρ

ρ

)γ−1
[
ϕ− m

Γ(1− γ + α)

∫ b

a

(
bρ − sρ

ρ

)α−γ
sρ−1g(s)ds

]
+

1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s)ds, t ∈ (a, b],

where g : J → E be a function satisfying

g(t) = f(t, v(t), g(t)).

From inequality (2.19), for each t ∈ (a, b], we have∥∥∥∥u(t) − 1

(l +m)Γ(γ)

(
tρ − aρ

ρ

)γ−1
[
ϕ− m

Γ(1− γ + α)

∫ b

a

(
bρ − sρ

ρ

)α−γ
sρ−1h(s)ds

]
− 1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1h(s)ds

∥∥∥∥ ≤ (ρJ α
a+ϑ)(t).

Set q∗ = sup
t∈[a,b]

q(t).

From hypotheses (Ax4) and (Ax5), for each t ∈ J , we get

‖u(t)− v(t)‖

≤
∥∥∥∥u(t)− 1

(l +m)Γ(γ)

(
tρ − aρ

ρ

)γ−1
[
ϕ− m

Γ(1− γ + α)

∫ b

a

(
bρ − sρ

ρ

)α−γ
sρ−1h(s)ds

]
− 1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1h(s)ds

∥∥∥∥+ 1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1‖h(s)− g(s)‖ds

≤ (ρJ α
a+ϑ)(t) +

1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−12q∗ϑ(s)ds.

≤ λϑϑ(t) + 2q∗(ρJ α
a+ϑ)(t)

≤ [1 + 2q∗]λϑϑ(t)
:= af,ϑϑ(t).

Hence, equation (2.1) is G.U-H-R stable. �
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2.4 An Example
Let

E = l1 =

{
u = (u1, u2, . . . , un, . . .),

∞∑
n=1

|un| <∞

}
be the Banach space with the norm

‖u‖ =
∞∑
n=1

|un|.

Consider the following Boundary value problem fractional differential equation

1D
1
2
,0

1+ un(t) = fn

(
t, un(t),

(
1D

1
2
,0

1+ un

)
(t)
)
, t ∈ (1, e] (2.21)(

1J
1
2

1+un

)
(1+) +

(
1J

1
2

1+un

)
(e) = 0, (2.22)

where
fn

(
t, un(t),

(
1D

1
2
,0

1+ un

)
(t)
)
=
ct2

e2
(sin(t− 1) + un(t)) , t ∈ (1, e].

Let
f = (f1, f2, . . . , fn, . . .), u = (u1, u2, . . . , un, . . .) c =

1

4
Γ

(
1

2

)
,

γ = α = 1
2

, ρ = 1 and β = 0. Clearly, the function f is continuous.
The hypothesis (Ax2) is satisfied with

p(t) =
ct2|sin(t− 1)|

e2
, t ∈ (1, e].

A simple computation shows that the conditions of Theorem 2.4 are satisfied. Hence the
problem (2.21)–(2.22) has at least one solution defined on [1, e].

Also, hypothesis (Ax4) and (Ax5) are satisfied with ϑ(t) = e2, q(t) = p(t)

e2
and λϑ =

4√
π

.

Indeed, for each t ∈ (1, e], we get

(ρJ α
a+ϑ)(t) ≤ 4e2√

π
= λϑϑ(t).

Consequently, Theorem 2.11 implies that equation (2.21) is G.U-H-R stable.
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Chapter 3

Existence and Ulam Stability for Impulsive

Generalized Hilfer-Type Fractional Differential

Equations

3.1 Introduction and Motivations

The aim of this chapter is to firstly prove some existence, uniqueness and Ulam-
Hyers-Rassias stability results for a class of boundary value problem for nonlinear implicit
fractional differential equations with impulses and generalized Hilfer Fractional derivative.
The results are based on Banach contraction principle, Krasnoselskii’s and Schaefer’s fixed
point theorems. Secondly, the aim is to study some results concerning the existence of so-
lutions for a class of boundary value problem for nonlinear implicit fractional differential
equations with instantaneous impulses and generalized Hilfer fractional derivative in Ba-
nach spaces. The results are based on fixed point theorems of Darbo and Mönch associated
with the technique of measure of noncompactness. Examples are included to show the
applicability of our results for each Section. We have given and proved the results in this
chapter taking into account the numerous books and articles focused on linear and non-
linear initial and boundary value problems for fractional differential equations involving
different kinds of fractional derivatives [7–9,13,14,25,27,38,41,42,113]. For the stability
of Ulam, we have taken into consideration the articles [10,12,13,46,47,72,74,85,89,98]. In
the literature, it is very common to propose a solution for fractional differential equations
by involving different kinds of fractional derivatives, see e.g. [16, 20–22, 31, 68, 69]. The
aim of the present chapter is to underline the importance of the theory of impulsive differ-
ential equations is quite important. Further, with the help of these observations, we aim
to understand several phenomena that are not clarified by the non-impulsive equations.
(see [42, 45, 48, 60, 97]).

The outcome of our study in this chapter is the continuation of the problem raised
recently in [62], in it, Harikrishnan et al. investigated existence theory and different kinds
of stability in the sense of Ulam, for the following boundary value problem with nonlinear
generalized Hilfer type fractional differential equation with impulses:

(
ρDα,βu

)
(t) = f(t, u(t)); t ∈ I := I\{t1, . . . , tm}, I := [0, b],

∆ρJ 1−γu(t)
∣∣
t=tk = Lk(u(t

−
k )); k = 1, . . . ,m,

ρJ 1−γu(0) = u0,

where ρDα,β,ρ J 1−γ are the generalized Hilfer fractional derivative of order α ∈ (0, 1) and
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type β ∈ [0, 1] and generalized fractional integral of order 1 − γ, (γ = α + β − αβ)
respectively, 0 = t0 < t1 < . . . < tm < tm+1 = b < ∞, u(t+k ) = lim

ϵ→0+
u(tk + ϵ)

and u(t−k ) = lim
ϵ→0−

u(tk + ϵ) represent the right and left hand limits of u(t) at t = tk,
∆ρJ 1−γu(t)

∣∣
t=tk =

ρJ 1−γu(t+k )− ρJ 1−γu(t−k ) , f : I × IR → IR is a given function and
Lk : IR → IR; k = 1, . . . ,m are given continuous functions.

3.2 Boundary Value Problem for Nonlinear Gener-
alized Hilfer-Type Fractional Differential Equa-
tions with Impulses1

In this section we establish the existence and uniqueness results to the boundary value
problem with nonlinear implicit generalized Hilfer-type fractional differential equation
with impulses:(

ρDα,β

t+k
u
)
(t) = f

(
t, u(t),

(
ρDα,β

t+k
u
)
(t)
)
; t ∈ Jk, k = 0, . . . ,m, (3.1)(

ρJ 1−γ
t+k

u
)
(t+k ) =

(
ρJ 1−γ

t+k−1

u
)
(t−k ) + Lk(u(t

−
k )); k = 1, . . . ,m, (3.2)

c1
(
ρJ 1−γ

a+ u
)
(a+) + c2

(
ρJ 1−γ

t+m
u
)
(b) = c3, (3.3)

where ρDα,β

t+k
,ρ J 1−γ

t+k
are the generalized Hilfer fractional derivative of order α ∈ (0, 1) and

type β ∈ [0, 1] and generalized fractional integral of order 1− γ, (γ = α+ β−αβ) respec-
tively, c1, c2, c3 are reals with c1 + c2 6= 0, Jk := (tk, tk+1]; k = 0, . . . ,m, a = t0 < t1 <
. . . < tm < tm+1 = b <∞, u(t+k ) = lim

ϵ→0+
u(tk + ϵ) and u(t−k ) = lim

ϵ→0−
u(tk + ϵ) represent the

right and left hand limits of u(t) at t = tk, f : J × IR × IR → IR is a given function and
Lk : IR → IR; k = 1, . . . ,m are given continuous functions.

3.2.1 Existence Results
We consider the weighted spaces of continuous functions

Cγ,ρ(J) =

{
u : J → IR :

(
tρ − aρ

ρ

)1−γ

u(t) ∈ C([a, b])

}
, 0 ≤ γ < 1,

and

Cn
γ,ρ(J) =

{
u ∈ Cn−1(J) : u(n) ∈ Cγ,ρ(J)

}
, n ∈ IN,

C0
γ,ρ(J) = Cγ,ρ(J),

with the norms

‖u‖Cγ,ρ = sup
t∈[a,b]

∣∣∣∣∣
(
tρ − aρ

ρ

)1−γ

u(t)

∣∣∣∣∣ ,
1. A. Salim, M. Benchohra, J. E. Lazreg and G. N’Guérékata, Boundary Value
Problem for Nonlinear Implicit Generalized Hilfer Type Fractional Differential
Equations with impulses. Abstract and Applied Analysis. 2021 (2021), 17pp.
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and

‖u‖Cnγ,ρ =
n−1∑
k=0

‖u(k)‖∞ + ‖u(n)‖Cγ,ρ .

Consider the weighted Banach space

PCγ,ρ(J) =

{
u : J → IR :

(
tρ − tρk
ρ

)1−γ

u(t) ∈ Cγ,ρ(Jk); k = 0, . . . ,m, and there exist

u(t−k ) and
(
ρJ 1−γ

t+k
u
)
(t+k ); k = 0, . . . ,m,with u(t−k ) = u(tk)

}
, 0 ≤ γ < 1.

and

PCn
γ,ρ(J) =

{
u ∈ PCn−1 : u(n) ∈ PCγ,ρ(J)

}
, n ∈ IN,

PC0
γ,ρ(J) = PCγ,ρ(J),

with the norm

‖u‖PCγ,ρ = max
k=0,...,m

{
sup

t∈[tk,tk+1]

∣∣∣∣∣
(
tρ − tρk
ρ

)1−γ

u(t)

∣∣∣∣∣
}
.

We define the space

PCγ
γ,ρ(J) =

{
u ∈ PCγ,ρ(J),

ρDγ

t+k
u ∈ PCγ,ρ(J)

}
, k = 0, . . . ,m.

We consider the following linear fractional differential equation(
ρDα,β

t+k
u
)
(t) = ψ(t), t ∈ Jk, k = 0, . . . ,m, (3.4)

where 0 < α < 1, 0 ≤ β ≤ 1, ρ > 0, with the conditions(
ρJ 1−γ

t+k
u
)
(t+k ) =

(
ρJ 1−γ

t+k−1

u
)
(t−k ) + Lk(u(t

−
k )); k = 1, . . . ,m, (3.5)

and
c1
(
ρJ 1−γ

a+ u
)
(a+) + c2

(
ρJ 1−γ

t+m
u
)
(b) = c3, (3.6)

where γ = α + β − αβ, c1, c2, c3 ∈ IR with

c1 + c2 6= 0, ξ1 =
c2

c1 + c2
, ξ2 =

c3
c1 + c2

and

p∗ = sup
{(

tρk − tρk−1

ρ

)γ−1

: k = 1, . . . ,m

}
,

such that ψ : J → IR be a function satisfying the functional equation

ψ(t) = f(t, u(t), ψ(t)).

The following theorem shows that the problem (3.4)–(3.6) has a unique solution given
by
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u(t) =



1

Γ(γ)

(
tρ − aρ

ρ

)γ−1
[
ξ2 − ξ1

m∑
i=1

Li(u(t
−
i ))− ξ1

m∑
i=1

(
ρJ 1−γ+α

(ti−1)+
ψ
)
(ti)

−ξ1
(
ρJ 1−γ+α

t+m
ψ
)
(b)

]
+

1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1ψ(s)ds if t ∈ J0,

1

Γ(γ)

(
tρ − tρk
ρ

)γ−1
[
ξ2 − ξ1

m∑
i=1

Li(u(t
−
i ))− ξ1

m∑
i=1

(
ρJ 1−γ+α

(ti−1)+
ψ
)
(ti)

−ξ1
(
ρJ 1−γ+α

t+m
ψ
)
(b) +

k∑
i=1

Li(u(t
−
i )) +

k∑
i=1

(
ρJ 1−γ+α

(ti−1)+
ψ
)
(ti)

]
+
(
ρJ α

t+k
ψ
)
(t) if t ∈ Jk, k = 1, . . . ,m.

(3.7)

Theorem 3.1. Let γ = α+β−αβ, where 0 < α < 1 and 0 ≤ β ≤ 1. If ψ : J → IR is a
function such that ψ(·) ∈ PCγ,ρ(J), then u ∈ PCγ

γ,ρ(J) satisfies the problem (3.4)–(3.6)
if and only if it satisfies (3.7).

Proof: Assume u satisfies (3.4)–(3.6). If t ∈ J0, then(
ρDα,β

a+ u
)
(t) = ψ(t),

Lemma 1.21 implies we have the solution can be written as

u(t) =

(
ρJ 1−γ

a+ u
)
(a+)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1ψ(s)ds. (3.8)

If t ∈ J1, then Lemma 1.21 implies

u(t) =

(
ρJ 1−γ

t+1
u
)
(t+1 )

Γ(γ)

(
tρ − tρ1
ρ

)γ−1

+
1

Γ(α)

∫ t

t1

(
tρ − sρ

ρ

)α−1

sρ−1ψ(s)ds

=

(
ρJ 1−γ

a+ u
)
(t−1 ) + L1(u(t

−
1 ))

Γ(γ)

(
tρ − tρ1
ρ

)γ−1

+
(
ρJ α

t+1
ψ
)
(t)

=
(tρ − tρ1)

γ−1

Γ(γ)ργ−1

[ (
ρJ 1−γ

a+ u
)
(a+) + L1(u(t

−
1 )) +

(
ρJ 1−γ+α

a+ ψ
)
(t1)

]
+
(
ρJ α

t+1
ψ
)
(t).

If t ∈ J2, then Lemma 1.21 implies

u(t) =

(
ρJ 1−γ

t+2
u
)
(t+2 )

Γ(γ)

(
tρ − tρ2
ρ

)γ−1

+
1

Γ(α)

∫ t

t2

(
tρ − sρ

ρ

)α−1

sρ−1ψ(s)ds

=

(
ρJ 1−γ

t+1
u
)
(t−2 ) + L2(u(t

−
2 ))

Γ(γ)

(
tρ − tρ2
ρ

)γ−1

+
(
ρJ α

t+2
ψ
)
(t)

=
1

Γ(γ)

(
tρ − tρ2
ρ

)γ−1
[ (

ρJ 1−γ
a+ u

)
(a+) + L1(u(t

−
1 )) + L2(u(t

−
2 ))

+
(
ρJ 1−γ+α

a+ ψ
)
(t1) +

(
ρJ 1−γ+α

t+1
ψ
)
(t2)

]
+
(
ρJ α

t+2
ψ
)
(t).
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Repeating the process in this way, the solution u(t) for t ∈ Jk, k = 1, . . . ,m, can be
written as

u(t) =
1

Γ(γ)

(
tρ − tρk
ρ

)γ−1
[ (

ρJ 1−γ
a+ u

)
(a+) +

k∑
i=1

Li(u(t
−
i )) +

k∑
i=1

(
ρJ 1−γ+α

(ti−1)+
ψ
)
(ti)

]
+
(
ρJ α

t+k
ψ
)
(t).

(3.9)

Applying ρJ 1−γ
t+m

on both sides of (3.9), using Lemma 1.10 and taking t = b, we obtain

(
ρJ 1−γ

t+m
u
)
(b) =

(
ρJ 1−γ

a+ u
)
(a+) +

m∑
i=1

Li(u(t
−
i )) +

m∑
i=1

(
ρJ 1−γ+α

(ti−1)+
ψ
)
(ti)

+
(
ρJ 1−γ+α

(tm)+ ψ
)
(b).

(3.10)

Multiplying both sides of (3.10) by c2 and using condition (3.6), we obtain

c3 − c1
(
ρJ 1−γ

a+ u
)
(a+) = c2

(
ρJ 1−γ

a+ u
)
(a+) + c2

m∑
i=1

Li(u(t
−
i )) + c2

m∑
i=1

(
ρJ 1−γ+α

(ti−1)+
ψ
)
(ti)

+c2

(
ρJ 1−γ+α

(tm)+ ψ
)
(b),

which implies that

(
ρJ 1−γ

a+ u
)
(a+) = ξ2 − ξ1

m∑
i=1

Li(u(t
−
i ))− ξ1

m∑
i=1

(
ρJ 1−γ+α

(ti−1)+
ψ
)
(ti)

−ξ1
(
ρJ 1−γ+α

(tm)+ ψ
)
(b).

(3.11)

Substituting (3.11) into (3.9) and (3.8) we obtain (3.7).
Reciprocally, applying ρJ 1−γ

t+k
on both sides of (3.7) and using Lemma 1.10 and Theorem

1.9, we get

(
ρJ 1−γ

t+k
u
)
(t) =



ξ2 − ξ1

m∑
i=1

Li(u(t
−
i ))− ξ1

m∑
i=1

(
ρJ 1−γ+α

(ti−1)+
ψ
)
(ti)

−ξ1
(
ρJ 1−γ+α

(tm)+ ψ
)
(b) +

(
ρJ 1−γ+α

a+ ψ
)
(t) if t ∈ J0,

ξ2 − ξ1

m∑
i=1

Li(u(t
−
i ))− ξ1

m∑
i=1

(
ρJ 1−γ+α

(ti−1)+
ψ
)
(ti)

−ξ1
(
ρJ 1−γ+α

t+m
ψ
)
(b) +

k∑
i=1

Li(u(t
−
i )) +

k∑
i=1

(
ρJ 1−γ+α

(ti−1)+
ψ
)
(ti)

+
(
ρJ 1−γ+α

t+k
ψ
)
(t) if t ∈ Jk, k = 1, . . . ,m.

(3.12)

Next, taking the limit t→ a+ of (3.12) and using Lemma 1.13, with 1− γ < 1− γ + α,
we obtain(

ρJ 1−γ
a+ u

)
(a+) = ξ2 − ξ1

m∑
i=1

Li(u(t
−
i ))− ξ1

m∑
i=1

(
ρJ 1−γ+α

(ti−1)+
ψ
)
(ti)

−ξ1
(
ρJ 1−γ+α

t+m
ψ
)
(b).

(3.13)
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Now, taking t = b in (3.12), we get

(
ρJ 1−γ

t+m
u
)
(b) = ξ2 + (1− ξ1)

(
m∑
i=1

Li(u(t
−
i )) +

m∑
i=1

(
ρJ 1−γ+α

(ti−1)+
ψ
)
(ti)

+
(
ρJ 1−γ+α

t+m
ψ
)
(b)

)
.

(3.14)

From (3.13) and (3.14), we find that

c1
(
ρJ 1−γ

a+ u
)
(a+) + c2

(
ρJ 1−γ

t+m
u
)
(b) = c3,

which shows that the boundary condition c1
(
ρJ 1−γ

a+ u
)
(a+) + c2

(
ρJ 1−γ

t+m
u
)
(b) = c3, is

satisfied.
Next, apply operator ρDγ

t+k
on both sides of (3.7), where k = 0, . . . ,m. Then, from

Lemma 1.10 and Lemma 1.16 we obtain

(ρDγ

t+k
u)(t) =

(
ρDβ(1−α)

t+k
ψ
)
(t). (3.15)

Since u ∈ Cγ
γ,ρ(Jk) and by definition of Cγ

γ,ρ(Jk), we have ρDγ

t+k
u ∈ Cγ,ρ(Jk), then (3.15)

implies that

(ρDγ

t+k
u)(t) =

(
δρ

ρJ 1−β(1−α)
t+k

ψ
)
(t) =

(
ρDβ(1−α)

t+k
ψ
)
(t) ∈ Cγ,ρ(Jk). (3.16)

As ψ(·) ∈ Cγ,ρ(Jk) and from Lemma 1.12, follows(
ρJ 1−β(1−α)

t+k
ψ
)
∈ Cγ,ρ(Jk). (3.17)

From (3.16), (3.17) and by the definition of the space Cn
γ,ρ(Jk), we obtain(

ρJ 1−β(1−α)
t+k

ψ
)
∈ C1

γ,ρ(Jk).

Applying operator ρJ β(1−α)
t+k

on both sides of (3.15) and using Lemma 1.15, Lemma 1.13
and Property 1.11, we have

(
ρDα,β

t+k
u
)
(t) = ρJ β(1−α)

t+k

(
ρDγ

t+k
u
)
(t) = ψ(t)−

(
ρJ 1−β(1−α)

t+k
ψ
)
(tk)

Γ(β(1− α))

(
tρ − tρk
ρ

)β(1−α)−1

= ψ(t),

that is, (3.4) holds.
Also, we can easily show that(

ρJ 1−γ
t+k

u
)
(t+k ) =

(
ρJ 1−γ

t+k−1

u
)
(t−k ) + Lk(u(t

−
k )); k = 1, . . . ,m.

This completes the proof. �
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As a consequence of Theorem 3.1, we have the following result

Lemma 3.2. Let γ = α+β−αβ where 0 < α < 1 and 0 ≤ β ≤ 1, let f : J×IR×IR → IR
be a function such that f(·, u(·), w(·)) ∈ PCγ,ρ(J) for any u,w ∈ PCγ,ρ(J).
If u ∈ PCγ

γ,ρ(J), then u satisfies the problem (3.1)-(3.3) if and only if u is the fixed point
of the operator Ψ : PCγ,ρ(J) → PCγ,ρ(J) defined by

Ψu(t) =
1

Γ(γ)

(
tρ − tρk
ρ

)γ−1
[
ξ2 − ξ1

m∑
i=1

Li(u(t
−
i ))− ξ1

m∑
i=1

(
ρJ 1−γ+α

(ti−1)+
h
)
(ti)

−ξ1
(
ρJ 1−γ+α

t+m
h
)
(b) +

∑
a<tk<t

Lk(u(t
−
k )) +

∑
a<tk<t

(
ρJ 1−γ+α

(tk−1)+
h
)
(tk)

]
+
(
ρJ α

t+k
h
)
(t) t ∈ Jk, k = 0, . . . ,m,

(3.18)

where h : J → IR be a function satisfying the functional equation

h(t) = f(t, u(t), h(t)).

Assume that the function f : J × IR × IR → IR is continuous and satisfies the
conditions:

(Ax1) The function f : J × IR × IR → IR be such that

f(·, u(·), w(·)) ∈ PCβ(1−α)
γ,ρ (J) for any u,w ∈ PCγ,ρ(J).

(Ax2) There exist constants K > 0 and 0 < M < 1 such that

|f(t, u, w)− f(t, ū, w̄)| ≤ K|u− ū|+M |w − w̄|

for any u,w, ū, w̄ ∈ IR and t ∈ J .

(Ax3) There exists a constant l∗ > 0 such that

|Lk(u)− Lk(ū)| ≤ l∗|u− ū|

for any u, ū ∈ IR and k = 1, . . . ,m.

(Ax4) There exist functions p1, p2, p3 ∈ C([a, b], IR+) with

p∗1 = sup
t∈[a,b]

p1(t), p
∗
2 = sup

t∈[a,b]
p2(t), p

∗
3 = sup

t∈[a,b]
p3(t) < 1

such that

|f(t, u, w)| ≤ p1(t) + p2(t)|u|+ p3(t)|w| for t ∈ J and u,w ∈ IR.

(Ax5) The functions Lk : IR −→ IR are continuous and there exist constants Φ1,Φ2 > 0
such that

|Lk(u)| ≤ Φ1|u|+ Φ2 for each u ∈ IR, k = 1, . . . ,m.

We are now in a position to state and prove our existence result for problem (3.1)-(3.3)
based on Banach’s fixed point.
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Theorem 3.3. Assume (Ax1) – (Ax3) hold. If

L :=

(
|ξ1|+ 1

)(
ml∗p∗

Γ(γ)
+

mK

(1−M)Γ(1 + α)

(
bρ − aρ

ρ

)α)

+
K

(1−M)

(
|ξ1|

Γ(1 + α)
+

Γ(γ)

Γ(γ + α)

)(
bρ − aρ

ρ

)α
< 1,

(3.19)

then the problem (3.1)-(3.3) has a unique solution in PCγ
γ,ρ(J).

Proof: The proof will be given in two steps.
Step 1: We show that the operator Ψ defined in (3.18) has a unique fixed point u∗ in
PCγ,ρ(J). Let u,w ∈ PCγ,ρ(J) and t ∈ J, then we have

|Ψu(t)−Ψw(t)|

≤ (tρ − tρk)
γ−1

Γ(γ)ργ−1

[
|ξ1|

m∑
i=1

|Li(u(t−i ))− Li(w(t
−
i ))|+ |ξ1|

(
ρJ 1−γ+α

t+m
|h(s)− g(s)|

)
(b)

+|ξ1|
m∑
i=1

(
ρJ 1−γ+α

(ti−1)+
|h(s)− g(s)|

)
(ti) +

∑
a<tk<t

|Lk(u(t−k ))− Lk(w(t
−
k ))|

+
∑

a<tk<t

(
ρJ 1−γ+α

(tk−1)+
|h(s)− g(s)|

)
(tk)

]
+
(
ρJ α

t+k
|h(s)− g(s)|

)
(t),

where h, g ∈ PCγ,ρ(J) such that

h(t) = f(t, u(t), h(t)),

g(t) = f(t, w(t), g(t)).

By (Ax2), we have

|h(t)− g(t)| = |f(t, u(t), h(t))− f(t, w(t), g(t))|
≤ K|u(t)− w(t)|+M |h(t)− g(t)|.

Then,
|h(t)− g(t)| ≤ K

1−M
|u(t)− w(t)|.

Therefore, for each t ∈ J

|Ψu(t)−Ψw(t)|

≤ (tρ − tρk)
γ−1

Γ(γ)ργ−1

[
|ξ1|

m∑
i=1

l∗|u(ti)− w(ti)|+
|ξ1|K
1−M

(
ρJ 1−γ+α

t+m
|u(s)− w(s)|

)
(b)

+
|ξ1|K
1−M

m∑
i=1

(
ρJ 1−γ+α

(ti−1)+
|u(s)− w(s)|

)
(ti) +

m∑
i=1

l∗|u(ti)− w(ti)|

+
K

1−M

m∑
i=1

(
ρJ 1−γ+α

(ti−1)+
|u(s)− w(s)|

)
(ti)

]
+

K

1−M

(
ρJ α

t+k
|u(s)− w(s)|

)
(t).
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Thus

|Ψu(t)−Ψw(t)|

≤ (tρ − tρk)
γ−1

Γ(γ)ργ−1

[
|ξ1|ml∗p∗ +

|ξ1|K
1−M

(
ρJ 1−γ+α

t+m

(
sρ − tρm

ρ

)γ−1
)
(b)

+
mK|ξ1|
1−M

(
ρJ 1−γ+α

(tk−1)+

(
sρ − tρk−1

ρ

)γ−1
)
(tk)

+ml∗p∗ +
mK

1−M

(
ρJ 1−γ+α

(tk−1)+

(
sρ − tρk−1

ρ

)γ−1
)
(tk)

]
‖u− w‖PCγ,ρ

+
K

1−M
‖u− w‖PCγ,ρ

(
ρJ α

t+k

(
sρ − tρk
ρ

)γ−1
)
(t).

By Lemma 1.10, we have

|Ψu(t)−Ψw(t)|

≤ 1

Γ(γ)

(
tρ − tρk
ρ

)γ−1

‖u− w‖PCγ,ρ

[
|ξ1|ml∗p∗

+
|ξ1|KΓ(γ)

(1−M)Γ(1 + α)

(
bρ − tρm

ρ

)α
+

mK|ξ1|Γ(γ)
(1−M)Γ(1 + α)

(
tρk − tρk−1

ρ

)α
+ml∗p∗ +

mKΓ(γ)

(1−M)Γ(1 + α)

(
tρk − tρk−1

ρ

)α]
+

KΓ(γ)

(1−M)Γ(γ + α)
‖u− w‖PCγ,ρ

(
tρ − tρk
ρ

)α+γ−1

,

hence ∣∣∣∣∣
(
tρ − tρk
ρ

)1−γ

(Ψu(t)−Ψw(t))

∣∣∣∣∣
≤

[
(|ξ1|+ 1)

(
ml∗p∗

Γ(γ)
+

mK

(1−M)Γ(1 + α)

(
bρ − aρ

ρ

)α)
+

K

(1−M)

(
|ξ1|

Γ(1 + α)
+

Γ(γ)

Γ(γ + α)

)(
bρ − aρ

ρ

)α]
‖u− w‖PCγ,ρ ,

which implies that

‖Ψu−Ψw‖PCγ,ρ

≤

[
(|ξ1|+ 1)

(
ml∗p∗

Γ(γ)
+

mK

(1−M)Γ(1 + α)

(
bρ − aρ

ρ

)α)
+

K

(1−M)

(
|ξ1|

Γ(1 + α)
+

Γ(γ)

Γ(γ + α)

)(
bρ − aρ

ρ

)α]
‖u− w‖PCγ,ρ .

By (3.19), the operator Ψ is a contraction. Hence, by Theorem 1.26, Ψ has a unique
fixed point u∗ ∈ PCγ,ρ(J).
Step 2: We show that such a fixed point u∗ ∈ PCγ,ρ(J) is actually in PCγ

γ,ρ(J).
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Since u∗ is the unique fixed point of operator Ψ in PCγ,ρ(J), then for each t ∈ Jk, with
k = 0, . . . ,m, we have

u∗(t) =
1

Γ(γ)

(
tρ − tρk
ρ

)γ−1
[
ξ2 − ξ1

m∑
i=1

Li(u(t
−
i ))− ξ1

m∑
i=1

(
ρJ 1−γ+α

(ti−1)+
h
)
(ti)

− ξ1

(
ρJ 1−γ+α

t+m
h
)
(b) +

∑
a<tk<t

Lk(u(t
−
k )) +

∑
a<tk<t

(
ρJ 1−γ+α

(tk−1)+
h
)
(tk)

]
+
(
ρJ α

t+k
h
)
(t),

where h ∈ PCγ,ρ(J) such that

h(t) = f(t, u∗(t), h(t)).

Applying ρDγ

t+k
to both sides and by Lemma 1.10 and Lemma 1.16, we have

ρDγ

t+k
u∗(t) =

(
ρDγ

t+k

ρJ α
t+k
f(s, u∗(s), h(s))

)
(t)

=
(
ρDβ(1−α)

t+k
f(s, u∗(s), h(s))

)
(t).

Since γ ≥ α, by (Ax1), the right hand side is in PCγ,ρ(J) and thus ρDγ

t+k
u∗ ∈ PCγ,ρ(J)

which implies that u∗ ∈ PCγ
γ,ρ(J). As a consequence of Steps 1 and 2 together with

Theorem 3.3, we can conclude that the problem (3.1)-(3.3) has a unique solution in
PCγ

γ,ρ(J). �

Our second result is based on Schaefer’s fixed point theorem.

Theorem 3.4. Assume that the hypothesis (Ax1), (Ax4) and (Ax5) hold. If

(|ξ1|+ 1)
(
mΦ1p∗

Γ(γ)
+

mp∗2(b
ρ−aρ)α

(1−p∗3)Γ(1+α)ρα

)
+
(

|ξ1|
Γ(1+α)

+ Γ(γ)
Γ(γ+α)

)(
p∗2(b

ρ−aρ)α

(1−p∗3)ρα

)
< 1, (3.20)

then the problem (3.1)-(3.3) has at least one solution in PCγ
γ,ρ(J).

Proof: We shall use Schaefer’s fixed point theorem to prove in several steps that the
operator Ψ defined in (3.18) has a fixed point.
Step 1: Ψ is continuous.
Let {un} be a sequence such that un → u in PCγ,ρ(J).
Then for each t ∈ J we have,∣∣∣∣ ((Ψun)(t)− (Ψu)(t))

(
tρ − tρk
ρ

)1−γ ∣∣∣∣
≤ 1

Γ(γ)

[
|ξ1|

m∑
i=1

|Li(un(t−i ))− Li(u(t
−
i ))|+ |ξ1|

(
ρJ 1−γ+α

t+m
|hn(s)− h(s)|

)
(b)

+|ξ1|
m∑
i=1

(
ρJ 1−γ+α

(ti−1)+
|hn(s)− h(s)|

)
(ti) +

∑
a<tk<t

|Lk(un(t−k ))− Lk(u(t
−
k ))|

+
∑

a<tk<t

(
ρJ 1−γ+α

(tk−1)+
|hn(s)− h(s)|

)
(tk)

]
+

(
tρ − tρk
ρ

)1−γ (
ρJ α

t+k
|hn(s)− h(s)|

)
(t),
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where hn, h ∈ PCγ,ρ(J) such that

hn(t) = f(t, un(t), hn(t)),

h(t) = f(t, u(t), h(t)).

Since un → u, then we get hn(t) → h(t) as n → ∞ for each t ∈ J , and since f and Lk
are continuous, then we have

‖Ψun −Ψu‖PCγ,ρ → 0 as n→ ∞.

Step 2: We show that Ψ is the mapping of two bounded sets in PCγ,ρ(J).
For η > 0, there exists a positive constant r such that Bη = {u ∈ PCγ,ρ(J) : ‖u‖PCγ,ρ ≤
η}, we have ‖Ψ(u)‖PCγ,ρ ≤ r.
By (Ax4) and from (3.18), We have for each t ∈ Jk, k = 0, . . . ,m,∣∣∣∣∣

(
tρ − tρk
ρ

)1−γ

h(t)

∣∣∣∣∣ =

∣∣∣∣∣
(
tρ − tρk
ρ

)1−γ

f(t, u(t), h(t))

∣∣∣∣∣
≤

(
tρ − tρk
ρ

)1−γ

(p1(t) + p2(t)|u(t)|+ p3(t)|h(t)|) .

Which implies that

‖h‖PCγ,ρ ≤ p∗1

(
bρ − aρ

ρ

)1−γ

+ p∗2η + p∗3‖h‖PCγ,ρ .

Then

‖h‖PCγ,ρ ≤
p∗1

(
bρ − aρ

ρ

)1−γ

+ p∗2η

1− p∗3
:= Λ.

Thus (3.18) implies∣∣∣∣∣
(
tρ − tρk
ρ

)1−γ

(Ψu)(t)

∣∣∣∣∣
≤ 1

Γ(γ)

[
|ξ2|+ |ξ1|

m∑
i=1

|Li(u(t−i ))|+ |ξ1|
m∑
i=1

(
ρJ 1−γ+α

(ti−1)+
|h(s)|

)
(ti)

+|ξ1|
(
ρJ 1−γ+α

t+m
|h(s)|

)
(b) +

∑
a<tk<t

|Lk(u(t−k ))|+
∑

a<tk<t

(
ρJ 1−γ+α

(tk−1)+
|h(s)|

)
(tk)

]

+

(
tρ − tρk
ρ

)1−γ (
ρJ α

t+k
|h(s)|

)
(t).
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Then ∣∣∣∣∣
(
tρ − tρk
ρ

)1−γ

(Ψu)(t)

∣∣∣∣∣
≤ 1

Γ(γ)

[
|ξ2|+ |ξ1|m(Φ1p

∗η + Φ2) + |ξ1|mΛ

(
ρJ 1−γ+α

(tk−1)+

(
sρ−tρk−1

ρ

)γ−1
)
(tk)

+|ξ1|Λ
(
ρJ 1−γ+α

t+m

(
sρ−tρm
ρ

)γ−1
)
(b) +m(Φ1p

∗η + Φ2)

+mΛ

(
ρJ 1−γ+α

(tk−1)+

(
sρ−tρk−1

ρ

)γ−1
)
(tk)

]
+ Λ

(
tρ − tρk
ρ

)1−γ (
ρJ α

t+k

(
sρ−tρk
ρ

)γ−1
)
(t).

By Lemma 1.10, we have

‖Ψu‖PCγ,ρ ≤ (|ξ1|+ 1)

(
m(Φ1p

∗η + Φ2)

Γ(γ)
+

mΛ

Γ(1 + α)

(
bρ − aρ

ρ

)α)

+Λ

(
|ξ1|

Γ(1 + α)
+

Γ(γ)

Γ(γ + α)

)(
bρ − aρ

ρ

)α
+

|ξ2|
Γ(γ)

:= r.

Step 3: Ψ maps bounded sets into equicontinuous sets of PCγ,ρ.
Let ϵ1, ϵ2 ∈ J , ϵ1 < ϵ2, Bη be a bounded set of PCγ,ρ as in Step 2, and let u ∈ Bη. Then∣∣∣∣∣

(
ϵρ1 − tρk
ρ

)1−γ

(Ψu)(ϵ1)−
(
ϵρ2 − tρk
ρ

)1−γ

(Ψu)(ϵ2)

∣∣∣∣∣
≤ 1

Γ(γ)

[ ∑
ϵ1<tk<ϵ2

|Lk(u(t−k ))|+
∑

ϵ1<tk<ϵ2

(
ρJ 1−γ+α

(tk−1)+
|h(s)|

)
(tk)

]
+

ΛΓ(γ)

Γ(γ + α)

∣∣∣∣(ϵρ1 − tρk
ρ

)α
−
(
ϵρ2 − tρk
ρ

)α∣∣∣∣ .
As ϵ1 → ϵ2, the right-hand side of the above inequality tends to zero. From step 1 to
3 with Arzela-Ascoli theorem, we conclude that Ψ : PCγ,ρ → PCγ,ρ is continuous and
completely continuous.
Step 4: A priori bound. Now it remains to show that the set

G = {u ∈ PCγ,ρ : u = λ∗Ψ(u) for some 0 < λ∗ < 1}

is bounded. Let u ∈ G, then u = λ∗Ψ(u) for some 0 < λ∗ < 1.
By (Ax4), we have for each t ∈ J ,∣∣∣∣∣

(
tρ − tρk
ρ

)1−γ

h(t)

∣∣∣∣∣ =

∣∣∣∣∣
(
tρ − tρk
ρ

)1−γ

f(t, u(t), h(t))

∣∣∣∣∣
≤

(
tρ − tρk
ρ

)1−γ

(p1(t) + p2(t)|u(t)|+ p3(t)|h(t)|) ,

which implies that

‖h‖PCγ,ρ ≤ p∗1

(
bρ − aρ

ρ

)1−γ

+ p∗2‖u‖PCγ,ρ + p∗3‖h‖PCγ,ρ ,
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then

‖h‖PCγ,ρ ≤
p∗1

(
bρ − aρ

ρ

)1−γ

+ p∗2‖u‖PCγ,ρ

1− p∗3
.

This implies, by (3.18), (Ax5) and by letting the estimation of Step 2, that for each
t ∈ J we have

‖u‖PCγ,ρ ≤ (|ξ1|+ 1)

m(Φ1p∗∥u∥PCγ,ρ+Φ2)

Γ(γ)
+

mp∗1

(
bρ−aρ
ρ

)1+α−γ
+mp∗2∥u∥PCγ,ρ

(
bρ−aρ
ρ

)α
(1−p∗3)Γ(1+α)


+
p∗1

(
bρ−aρ
ρ

)1+α−γ
+p∗2∥u∥PCγ,ρ

(
bρ−aρ
ρ

)α
(1−p∗3)

(
|ξ1|

Γ(1+α)
+ Γ(γ)

Γ(γ+α)

)
+ |ξ2|

Γ(γ)
,

≤
[
(|ξ1|+ 1)

(
mΦ1p

∗

Γ(γ)
+

mp∗2 (b
ρ − aρ)α

(1− p∗3)Γ(1 + α)ρα

)
+

(
|ξ1|

Γ(1 + α)
+

Γ(γ)

Γ(γ + α)

)(
p∗2 (b

ρ − aρ)α

(1− p∗3)ρ
α

)]
‖u‖PCγ,ρ

+
|ξ2|
Γ(γ)

+ (|ξ1|+ 1)

(
mΦ2

Γ(γ)
+

mp∗1 (b
ρ − aρ)1+α−γ

(1− p∗3)Γ(1 + α)ρ1+α−γ

)

+

(
|ξ1|

Γ(1 + α)
+

Γ(γ)

Γ(γ + α)

)(
p∗1 (b

ρ − aρ)1+α−γ

(1− p∗3)ρ
1+α−γ

)
.

By (3.20), we have

‖u‖PCγ,ρ

≤

|ξ2|
Γ(γ)

+

[
(|ξ1|+1)

(
mΦ2

Γ(γ)
+

mp∗1(b
ρ−aρ)1+α−γ

(1−p∗3)Γ(1+α)ρ1+α−γ

)
+

(
|ξ1|

Γ(1+α)
+

Γ(γ)
Γ(γ+α)

)(
p∗1(b

ρ−aρ)1+α−γ

(1−p∗3)ρ1+α−γ

)]
1−

[
(|ξ1|+1)

(
mΦ1p∗

Γ(γ)
+

mp∗2(b
ρ−aρ)α

(1−p∗3)Γ(1+α)ρα
)
+

(
|ξ1|

Γ(1+α)
+

Γ(γ)
Γ(γ+α)

)(
p∗2(b

ρ−aρ)α

(1−p∗3)ρα
)]

:= R.

As consequence of Theorem 1.27, and using Step 2 of the last result, we deduce that Ψ
has a fixed point which is a solution of the problem (3.1)-(3.3). �

Our third result is based on Krasnoselskii fixed point theorem.

Theorem 3.5. Assume that (Ax1), (Ax4) and (Ax5) hold. If

(|ξ1|+ 1)

(
mΦ1p

∗

Γ(γ)
+

mp∗2 (b
ρ − aρ)α

(1− p∗3)Γ(1 + α)ρα

)
+

p∗2|ξ1| (bρ − aρ)α

(1− p∗3)Γ(1 + α)ρα
< 1, (3.21)

then the problem (3.1)-(3.3) has at least one solution in PCγ
γ,ρ(J).

Proof: Consider the set

Bη = {u ∈ PCγ,ρ(J) : ||u||PCγ,ρ ≤ η},

where

η ≥
(|ξ1|+1)

(
mΦ2

Γ(γ)
+

mΛ
Γ(1+α)

(
bρ−aρ
ρ

)α)
+Λ

(
|ξ1|

Γ(1+α)
+

Γ(γ)
Γ(γ+α)

)(
bρ−aρ
ρ

)α
+

|ξ2|
Γ(γ)

1−(|ξ1|+1)
mΦ1p∗

Γ(γ)

.
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We define the operators Q1 and Q2 on Bη by

Q1u(t) =
1

Γ(γ)

(
tρ − tρk
ρ

)γ−1
[
ξ2 − ξ1

m∑
i=1

Li(u(t
−
i ))− ξ1

m∑
i=1

(
ρJ 1−γ+α

(ti−1)+
h
)
(ti)

−ξ1
(
ρJ 1−γ+α

t+m
h
)
(b) +

∑
a<tk<t

Lk(u(t
−
k )) +

∑
a<tk<t

(
ρJ 1−γ+α

(tk−1)+
h
)
(tk)

]
,

(3.22)

Q2u(t) =
(
ρJ α

t+k
h
)
(t), (3.23)

where k = 0, . . . ,m and h : J → IR be a function satisfying the functional equation

h(t) = f(t, u(t), h(t)).

Then the fractional integral equation (3.18) can be written as operator equation

Ψu(t) = Q1u(t) +Q2u(t), u ∈ PCγ,ρ(J).

The proof will be given in several steps.

Step 1: We prove that Q1u+Q2w ∈ Bη for any u, z ∈ Bη.
Same as Step 2 of the last result, by (Ax4), (Ax5) and Lemma 1.10, for each t ∈ J we
have

‖Q1u+Q2w‖PCγ,ρ ≤ ‖Q1u‖PCγ,ρ + ‖Q2w‖PCγ,ρ

≤ (|ξ1|+ 1)

(
m(Φ1p

∗η + Φ2)

Γ(γ)
+

mΛ

Γ(1 + α)

(
bρ − aρ

ρ

)α)

+Λ

(
|ξ1|

Γ(1 + α)
+

Γ(γ)

Γ(γ + α)

)(
bρ − aρ

ρ

)α
+

|ξ2|
Γ(γ)

.

Since

η ≥
(|ξ1|+1)

(
mΦ2

Γ(γ)
+

mΛ
Γ(1+α)

(
bρ−aρ
ρ

)α)
+Λ

(
|ξ1|

Γ(1+α)
+

Γ(γ)
Γ(γ+α)

)(
bρ−aρ
ρ

)α
+

|ξ2|
Γ(γ)

1−(|ξ1|+1)
mΦ1p∗

Γ(γ)

.

we have
‖Q1y +Q2z‖PCγ,ρ ≤ η,

which infers that Q1u+Q2w ∈ Bη.

Step 2: Q1 is a contraction.
Let u,w ∈ PCγ,ρ(J) and t ∈ J.
By (Ax4), we have

|h(t)− g(t)| = |f(t, u(t), h(t))− f(t, w(t), g(t))|
≤ p2(t)|u(t)− w(t)|+ p3(t)|h(t)− g(t)|.

Then,
|h(t)− g(t)| ≤ p2(t)

1− p3(t)
|u(t)− w(t)| ≤ p∗2

1− p∗3
|u(t)− w(t)|.
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where p∗1 = sup
t∈[a,b]

p1(t), p∗2 = sup
t∈[a,b]

p2(t) and h, g ∈ C([a, b], IR) such that

h(t) = f(t, u(t), h(t)),

g(t) = f(t, w(t), g(t)).

Then by (Ax5) and using the estimation in Step 1 of the first result, we have

|Q1y(t)−Q1z(t)|

≤ 1

Γ(γ)

(
tρ − tρk
ρ

)γ−1

‖u− w‖PCγ,ρ

[
|ξ1|mΦ1p

∗

+
p∗2|ξ1|Γ(γ)

(1− p∗3)Γ(1 + α)

(
bρ − tρm

ρ

)α
+

mp∗2|ξ1|Γ(γ)
(1− p∗3)Γ(1 + α)

(
tρk − tρk−1

ρ

)α
+mΦ1p

∗ +
mp∗2Γ(γ)

(1− p∗3)Γ(1 + α)

(
tρk − tρk−1

ρ

)α]
,

hence

‖Q1u−Q1w‖PCγ,ρ ≤

[
(|ξ1|+ 1)

(
mΦ1p

∗

Γ(γ)
+

mp∗2
(1− p∗3)Γ(1 + α)

(
bρ − aρ

ρ

)α)

+
p∗2|ξ1|

(1− p∗3)Γ(1 + α)

(
bρ − aρ

ρ

)α]
‖u− w‖PCγ,ρ .

By (3.21), the operator Q1 is a contraction.

Step 3: Q2 is continuous and compact.
The continuity of Q2 follows from the continuity of f. Next we prove that Q2 is uniformly
bounded on Bη. Let any w ∈ Bη. By using the estimation in Step 2 of the last result,
(3.23) implies∣∣∣∣∣

(
tρ − tρk
ρ

)1−γ

(Q2z)(t)

∣∣∣∣∣ ≤
(
tρ − tρk
ρ

)1−γ (
ρJ α

t+k
|g(s)|

)
(t),

≤ Λ

(
tρ − tρk
ρ

)1−γ
(
ρJ α

t+k

(
sρ − tρk
ρ

)γ−1
)
(t),

where k = 0, . . . ,m and g : J → IR be a function satisfying the functional equation

g(t) = f(t, w(t), g(t)).

By Lemma 1.10, we have

‖Q2z‖PCγ,ρ ≤
ΛΓ(γ)

Γ(γ + α)

(
bρ − aρ

ρ

)α
.

This means that Q2 is uniformly bounded on Bη. Next, we show that Q2Bη is equicon-
tinuous. Let any w ∈ Bη and a < ϵ1 < ϵ2 ≤ b. Then∣∣∣∣∣

(
ϵρ1 − tρk
ρ

)1−γ

(Q2z)(ϵ1)−
(
ϵρ2 − tρk
ρ

)1−γ

(Q2z)(ϵ2)

∣∣∣∣∣
≤ ΛΓ(γ)

Γ(γ + α)

∣∣∣∣(ϵρ1 − tρk
ρ

)α
−
(
ϵρ2 − tρk
ρ

)α∣∣∣∣ .
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Note that∣∣∣∣∣
(
ϵρ1 − tρk
ρ

)1−γ

(Q2z)(ϵ1)−
(
ϵρ2 − tρk
ρ

)1−γ

(Q2z)(ϵ2)

∣∣∣∣∣→ 0 as ϵ1 → ϵ2.

This shows that Q2Bη is equicontinuous on J. Therefore Q2Bη is relatively compact. By
PCγ type Arzela-Ascoli Theorem Q2 is compact.
As a consequence of Theorem 1.28, we deduce that Ψ has at least a fixed point u∗ ∈
PCγ,ρ(J) and by the same way of the proof of Theorem 3.3, we can easily show that
u∗ ∈ PCγ

γ,ρ(J). Using Lemma 3.2, we conclude that the problem (3.1)-(3.3) has at least
one solution in the space PCγ

γ,ρ(J). �

3.2.2 Ulam-Hyers-Rassias stability
Now we are concerned with the Ulam-Hyers-Rassias Stability of our problem (3.1)-(3.3).
Let u ∈ PCγ,ρ(J), ϵ > 0, τ > 0 and ϑ : J −→ [0,∞) be a continuous function. We
consider the following inequality :


∣∣∣(ρDα,β

t+k
u
)
(t)− f

(
t, u(t),

(
ρDα,β

t+k
u
)
(t)
)∣∣∣ ≤ ϵϑ(t), t ∈ Jk, k = 0, . . . ,m,

∣∣∣(ρJ 1−γ
t+k

u
)
(t+k )−

(
ρJ 1−γ

t+k−1

u
)
(t−k )− Lk(u(t

−
k ))
∣∣∣ ≤ ϵτ, k = 1, . . . ,m.

(3.24)

Definition 3.6. ([108]) Problem (3.1)-(3.3) is Ulam-Hyers-Rassias (U-H-R) stable with
respect to (ϑ, τ) if there exists a real number af,m,ϑ > 0 such that for each ϵ > 0 and for
each solution u ∈ PCγ,ρ(J) of inequality (3.24) there exists a solution w ∈ PCγ,ρ(J) of
(3.1)-(3.3) with

|u(t)− w(t)| ≤ ϵaf,m,ϑ(ϑ(t) + τ), t ∈ (a, b].

Remark 3.7. ([108]) A function u ∈ PCγ,ρ(J) is a solution of inequality (3.24) if and
only if there exist σ ∈ PCγ,ρ(J) and a sequence σk, k = 0, . . . ,m such that

1. |σ(t)| ≤ ϵϑ(t) and |σk| ≤ ϵτ , t ∈ Jk, k = 1, . . . ,m;

2.
(
ρDα,β

t+k
u
)
(t) = f

(
t, u(t),

(
ρDα,β

t+k
u
)
(t)
)
+ σ(t), t ∈ Jk, k = 0, . . . ,m;

3.
(
ρJ 1−γ

t+k
u
)
(t+k ) =

(
ρJ 1−γ

t+k−1

u
)
(t−k ) + Lk(u(t

−
k )) + σk, k = 1, . . . ,m.

Theorem 3.8. Assume that in addition to (Ax1) – (Ax3) and (3.19), the following
hypothesis holds:

(Ax6) There exist a nondecreasing function ϑ ∈ PCγ,ρ(J) and λϑ, λ̃ϑ > 0 such that for
each t ∈ (a, b], we have

(ρJ α
a+ϑ)(t) ≤ λϑϑ(t),

and
(ρJ 1−γ

a+ ϑ)(t) ≤ λ̃ϑϑ(t).

Then equation (3.1) is U-H-R stable with respect to (ϑ, τ).
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Proof: Consider the operator Ψ defined in (3.18). Let u ∈ PCγ,ρ(J) be a solution if
inequality (3.24), and let us assume that w is the unique solution of the problem

(
ρDα,β

t+k
w
)
(t) = f

(
t, w(t),

(
ρDα,β

t+k
w
)
(t)
)
; t ∈ Jk, k = 0, . . . ,m,(

ρJ 1−γ
t+k

w
)
(t+k ) =

(
ρJ 1−γ

t+k−1

w
)
(t−k ) + Lk(w(t

−
k )); k = 1, . . . ,m,

c1
(
ρJ 1−γ

a+ w
)
(a+) + c2

(
ρJ 1−γ

t+m
w
)
(b) = c3,(

ρJ 1−γ
a+ w

)
(a+) =

(
ρJ 1−γ

a+ u
)
(a+).

By Lemma 3.2, we obtain for each t ∈ J

w(t) =
1

Γ(γ)

(
tρ − tρk
ρ

)γ−1
[(

ρJ 1−γ
a+ w

)
(a+) +

∑
a<tk<t

Lk(w(t
−
k )) +

∑
a<tk<t

(
ρJ 1−γ+α

(tk−1)+
h
)
(tk)

]
+
(
ρJ α

t+k
h
)
(t) t ∈ Jk, k = 0, . . . ,m,

where h : J → IR be a function satisfying the functional equation

h(t) = f(t, w(t), h(t)).

Since u is a solution of the inequality (3.24), by Remark 3.7, we have
(
ρDα,β

t+k
u
)
(t) = f

(
t, u(t),

(
ρDα,β

t+k
u
)
(t)
)
+ σ(t), t ∈ Jk, k = 0, . . . ,m;(

ρJ 1−γ
t+k

u
)
(t+k ) =

(
ρJ 1−γ

t+k−1

u
)
(t−k ) + Lk(u(t

−
k )) + σk, k = 1, . . . ,m.

(3.25)

Clearly, the solution of (3.25) is given by

u(t) =
1

Γ(γ)

(
tρ − tρk
ρ

)γ−1
[(

ρJ 1−γ
a+ u

)
(a+) +

∑
a<tk<t

Lk(u(t
−
k )) +

∑
a<tk<t

σk

+
∑

a<tk<t

(
ρJ 1−γ+α

(tk−1)+
g
)
(tk) +

∑
a<tk<t

(
ρJ 1−γ+α

(tk−1)+
σ
)
(tk)

]
+
(
ρJ α

t+k
g
)
(t) +

(
ρJ α

t+k
σ
)
(t) t ∈ Jk, k = 0, . . . ,m,

where g : J → IR be a function satisfying the functional equation

g(t) = f(t, u(t), g(t)).

Hence, for each t ∈ J , we have

|u(t)− w(t)| ≤ 1

Γ(γ)

(
tρ − tρk
ρ

)γ−1
[

m∑
k=1

|Lk(u(t−k ))− Lk(w(t
−
k ))|+

m∑
k=1

|σk|

+
m∑
k=1

(
ρJ 1−γ+α

(tk−1)+
|g(s)− h(s)|

)
(tk) +

m∑
k=1

(
ρJ 1−γ+α

(tk−1)+
|σ(s)|

)
(tk)

]
+
(
ρJ α

t+k
|g(s)− h(s)|

)
(t) +

(
ρJ α

t+k
|σ(s)|

)
(t).
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Thus,

‖u− w‖PCγ,ρ ≤ 1

Γ(γ)

[
mϵτ + (mλ̃ϑ + 1)ϵλϑϑ(t) +

m∑
k=1

l∗|u(t−k )− w(t−k )|

+
m∑
k=1

(
ρJ 1−γ+α

(tk−1)+
|g(s)− h(s)|

)
(tk)

]
+

(
tρ − tρk
ρ

)1−γ (
ρJ α

t+k
|g(s)− h(s)|

)
(t).

By (Ax2) and Lemma 1.10, for t ∈ J , we have

‖u− w‖PCγ,ρ

≤ 1

Γ(γ)

[
mϵτ + (mλ̃ϑ + 1)ϵλϑϑ(t) +ml∗p∗‖u− w‖PCγ,ρ

]

+

[
mK

(1−M)Γ(1 + α)

(
tρk − tρk−1

ρ

)α
+

KΓ(γ)

(1−M)Γ(γ + α)

(
tρ − tρk
ρ

)α ]
‖u− w‖PCγ,ρ .

Thus,

‖u− w‖PCγ,ρ ≤ 1

Γ(γ)

(
mϵτ + (mλ̃ϑ + 1)ϵλϑϑ(t)

)
+

[
ml∗p∗

Γ(γ)
+

K

1−M

(
m

Γ(1 + α)
+

Γ(γ)

Γ(γ + α)

)(
bρ − aρ

ρ

)α ]
‖u− w‖PCγ,ρ .

Then by 3.19, we have
‖u− w‖PCγ,ρ ≤ aϑϵ(τ + ϑ(t)),

where

aϑ =
1

Γ(γ)
(m+(mλ̃ϑ+1)λϑ)

[
1−ml

∗p∗

Γ(γ)
+

K

1−M

(
m

Γ(1 + α)
+

Γ(γ)

Γ(γ + α)

)(
bρ − aρ

ρ

)α]−1

.

Hence, equation (3.1) is U-H-R stable with respect to (ϑ, τ). �

3.2.3 Examples
Example 3.9. Consider the following impulsive boundary value problem of generalized
Hilfer Fractional differential equation(

1
2D

1
2
,0

t+k
u
)
(t) =

1

97et+2
(
1 + |u(t)|+

∣∣∣ 12D 1
2
,0

t+k
u(t)

∣∣∣) +
ln(e+

√
t)

e2
√
t− 1

, for each t ∈ J0 ∪ J1,

(3.26)(
1
2J

1
2

e+u
)
(e+)−

(
1
2J

1
2

1+u
)
(e−) =

|u(e−)|
3 + |u(e−)|

, (3.27)

3
(

1
2J

1
2

1+u
)
(1+)− 2

(
1
2J

1
2

e+u
)
(3) = 0, (3.28)
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where J0 = (1, e], J1 = (e, 3], t0 = 1 and t1 = e.
Set

f(t, u, w) =
1

97et+2(1 + |u|+ |w|)
+

ln(e+
√
t)

e2
√
t− 1

, t ∈ (1, 3], u, w ∈ IR.

We have

PCβ(1−α)
γ,ρ ([1, 3]) = PC0

1
2
, 1
2
([1, 3]) =

{
g : (1, 3] → IR :

√
2
(√

t−
√
tk

) 1
2
g ∈ PC([1, 3])

}
,

with γ = α = 1
2
, ρ = 1

2
, β = 0, and k ∈ {0, 1}. Clearly, the continuous function

f ∈ PC0
1
2
, 1
2

([1, 3]) . Hence the condition (Ax1) is satisfied.
For each u, ū, w, w̄ ∈ IR and t ∈ (1, 3] :

|f(t, u, w)− f(t, ū, w̄)| ≤ 1

97et+2
(|u− ū|+ |w − w̄|)

≤ 1

97e3
(|u− ū|+ |w − w̄|) .

Hence condition (Ax2) is satisfied with K =M =
1

97e3
.

And let
L1(u) =

u

3 + u
, u ∈ [0,∞).

Let u,w ∈ [0,∞). Then we have

|L1(u)− L1(w)| = | u

3 + u
− w

3 + w
| = 3|u− w|

(3 + u)(3 + w)
≤ 1

3
|u− w|,

and so the condition (Ax3) is satisfied and l∗ = 1
3
.

A simple computation shows that the condition (3.19) of Theorem 3.3 is satisfied, for

L =
1√

2π(
√
e− 1)

+
3
√
2(
√
3− 1)

1
2

(97e3 − 1)Γ(3
2
)
+

√
2(
√
3− 1)

1
2

(97e3 − 1)

(
2

Γ(3
2
)
+
√
π

)
≈ 0.52720987569 < 1.

Then the problem (3.26)-(3.28) has a unique solution in PC
1
2
1
2
, 1
2

([1, 3]).
Also, hypothesis (Ax6) is satisfied with

ϑ(t) = e5, τ = 1 and λϑ = λ̃ϑ =
2

Γ(3
2
)
.

Indeed, for each t ∈ J0 ∪ J1, we get

(ρJ
1
2

1+ϑ)(t) ≤ 2e5

Γ(3
2
)

= λϑϑ(t) = λ̃ϑϑ(t).

Consequently, Theorem 3.8 implies that equation (3.26) is U-H-R stable.



CHAPTER 3. EXISTENCE AND ULAM STABILITY FOR IMPULSIVE GENERALIZED
HILFER-TYPE FRACTIONAL DIFFERENTIAL EQUATIONS 44

Example 3.10. Consider the following impulsive initial value problem of generalized
Hilfer Fractional differential equation

(
1D

1
2
,0

t+k
u
)
(t) =

3 + |u(t)|+ |1D
1
2
,0

t+k
u(t)|

53e−t+4(1 + |u(t)|+ |1D
1
2
,0

t+k
u(t)|)

, for each t ∈ J0 ∪ J1, (3.29)

(
1J

1
2

e+u
)
(e+)−

(
1J

1
2

1+u
)
(e−) =

|u(e−)|
2 + |u(e−)|

, (3.30)(
1J

1
2

1+u
)
(1+) = 0, (3.31)

where J0 = (1, e], J1 = (e, 3], t0 = 1 and t1 = e.
Set

f(t, u, w) =
3 + |u|+ |w|

53e−t+4(1 + |u|+ |w|)
, t ∈ (1, 3], u, w ∈ IR.

We have

PCβ(1−α)
γ,ρ ([1, 3]) = PC0

1
2
,1
([1, 3]) =

{
g : (1, 3] → IR : (

√
t− tk)g ∈ PC([1, 3])

}
,

with γ = α = 1
2
, ρ = 1, β = 0 and k ∈ {0, 1}.

Clearly, the continuous function f ∈ PC0
1
2
,1
([1, 3]). Hence the condition (Ax1) is satisfied.

For each u,w ∈ IR and t ∈ (1, 3] :

|f(t, u, w)| ≤ 1

53e−t+4
(3 + |u|+ |w|).

Hence condition (Ax4) is satisfied with

p1(t) =
3

53e−t+4
, p2(t) = p3(t) =

1

53e−t+4
,

and

p∗1 =
3

53e
, p∗2 = p∗3 =

1

53e
.

And let
L1(u) =

u

2 + u
, u ∈ [0,∞).

Then we have
|L1(u)| ≤

1

2
|u|+ 2,

and so the condition (Ax5) is satisfied with Φ1 =
1

2
and Φ2 = 2.

The condition (3.20) of Theorem 3.4 is satisfied, for

(|ξ1|+ 1)
(
mΦ1p∗

Γ(γ)
+

mp∗2(b
ρ−aρ)α

(1−p∗3)Γ(1+α)ρα

)
+
(

|ξ1|
Γ(1+α)

+ Γ(γ)
Γ(γ+α)

)(
p∗2(b

ρ−aρ)α

(1−p∗3)ρα

)
=

(
1

2
√
2π

+

√
2

(53e− 1)Γ(3
2
)

)
+

√
2π

53e− 1

≈ 0.22814541069 ≤ 1.

Then the problem (3.29)-(3.31) has at least one solution in PC
1
2
1
2
,1
([1, 3]). Also, hypothesis

(Ax6) is satisfied with
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ϑ(t) = t− 1, τ = 1 and λϑ = λ̃ϑ =

√
2Γ(2)

Γ(5
2
)

.

Indeed, for each t ∈ J0 ∪ J1, we get

(ρJ
1
2

1+ϑ)(t) ≤
√
2Γ(2)

Γ(5
2
)

(t− 1)

= λϑϑ(t) = λ̃ϑϑ(t).

Consequently, by a simple change of the constants l∗, K and M from hypothesis (Ax1)
and (Ax2) to Φ1, p∗2 and p∗3 from (Ax4) and (Ax5), Theorem 3.8 implies that equation
(3.29) is G.U-H-R stable.

Example 3.11. Consider the following impulsive anti–Periodic boundary value problem
of generalized Hilfer Fractional differential equation

(
1D

1
2
,0

t+k
u
)
(t) =

e2 + |u(t)|+ |1D
1
2
,0

t+k
u(t)|

77e−t+2(1 + |u(t)|+ |1D
1
2
,0

t+k
u(t)|)

, for each t ∈ Jk, k = 0, . . . , 4, (3.32)

(
1J

1
2

t+k
u
)
(t+k )−

(
1J

1
2

t(k−1)
+u
)
(t−k ) =

|u(t−k )|
10k + |u(t−k )|

, k = 1, . . . , 4, (3.33)

(
1J

1
2

1+u
)
(1+) = −

(
1J

1
2
9
5

+u

)
(2), (3.34)

where Jk = (tk, tk+1], tk = 1 +
k

5
for k = 0, . . . , 4, m = 4, a = t0 = 1 and b = t5 = 2.

Set
f(t, u, w) =

e2 + |u|+ |w|
77e−t+2(1 + |u|+ |w|)

, t ∈ (1, 2], u, w ∈ IR.

We have

PCβ(1−α)
γ,ρ ([1, 2]) = PC0

1
2
,1
([1, 2]) =

{
g : (1, 2] → IR : (

√
t− tk)g ∈ PC([1, 2])

}
,

with γ = α = 1
2
, ρ = 1, β = 0 and k = 0, . . . , 4.

Clearly, the continuous function f ∈ PC0
1
2
,1
([1, 2]) . Hence the condition (Ax1) is satisfied.

For each u,w ∈ IR and t ∈ (1, 2] :

|f(t, u, w)| ≤ 1

77e−t+2
(e2 + |u|+ |w|).

Hence condition (Ax4) is satisfied with

p1(t) =
e2

77e−t+2
, p2(t) = p3(t) =

1

77e−t+2
,

and

p∗1 =
e2

77
, p∗2 = p∗3 =

1

77
.
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And let
Lk(u) =

u

10k + u
, k = 1, . . . , 4, u ∈ [0,∞).

Then we have
|Lk(u)| ≤

1

10
|u|+ 1, k = 1, . . . , 4,

and so the condition (Ax5) is satisfied with Φ1 =
1

10
and Φ2 = 1.

The condition (3.21) of Theorem 3.5 is satisfied, for

(|ξ1|+ 1)
(
mΦ1p∗

Γ(γ)
+

mp∗2(b
ρ−aρ)α

(1−p∗3)Γ(1+α)ρα

)
+

p∗2|ξ1|(bρ−aρ)
α

(1−p∗3)Γ(1+α)ρα
=

3
√
5

5
√
π
+

125

1463Γ(3
2
)
< 1.

Then the problem (3.32)-(3.34) has at least one solution in PC
1
2
1
2
,1
([1, 2]). Also, hypothesis

(Ax6) is satisfied with

ϑ(t) = (1− t)2, τ = 1 and λϑ = λ̃ϑ =
Γ(3)

Γ(7
2
)
.

Indeed, for each t ∈ Jk, k = 0, . . . , 4, we get

(ρJ
1
2

1+ϑ)(t) ≤ Γ(3)

Γ(7
2
)
(t− 1)2

= λϑϑ(t) = λ̃ϑϑ(t).

Same as Example 3.10, Theorem 3.8 implies that equation (3.32) is U-H-R stable.
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3.3 Existence and Ulam Stability for Impulsive Gen-
eralized Hilfer-Type Fractional Differential Equa-
tions in Banach Spaces2

Motivated by the works mentioned in the Introduction of the current chapter, in
this section we discuss the existence results to the boundary value problem with non-
linear implicit generalized Hilfer-type fractional differential equation with instantaneous
impulses: (

ρDα,β

t+k
u
)
(t) = f

(
t, u(t),

(
ρDα,β

t+k
u
)
(t)
)
; t ∈ Jk, k = 0, · · · ,m, (3.35)

(
ρJ 1−γ

t+k
u
)
(t+k ) =

(
ρJ 1−γ

t+k−1

u
)
(t−k ) +ϖk(u(t

−
k )); k = 1, · · · ,m, (3.36)

c1
(
ρJ 1−γ

a+ u
)
(a+) + c2

(
ρJ 1−γ

t+m
u
)
(b) = c3, (3.37)

where ρDα,β

t+k
, ρJ 1−γ

t+k
are the generalized Hilfer fractional derivative of order α ∈ (0, 1) and

type β ∈ [0, 1] and generalized Hilfer fractional integral of order 1− γ, (γ = α + β − αβ)
respectively, c1, c2 are reals with c1 + c2 6= 0, Jk := (tk, tk+1]; k = 0, · · · ,m, a = t0 < t1 <
· · · < tm < tm+1 = b <∞, u(t+k ) = lim

ϵ→0+
u(tk + ϵ) and u(t−k ) = lim

ϵ→0−
u(tk + ϵ) represent the

right and left hand limits of u(t) at t = tk, c3 ∈ E, f : J ×E×E → E is a given function
and ϖk : E → E; k = 1, · · · ,m are given continuous functions.

3.3.1 Existence Results
Consider the weighted Banach space

PCγ,ρ(J) =

{
u : J → E :

(
tρ − tρk
ρ

)1−γ

u(t) ∈ CE(Jk); k = 0, · · · ,m, and there exist u(t−k )

and
(
ρJ 1−γ

t+k
u
)
(t+k ); k = 0, · · · ,m,with u(t−k ) = u(tk)

}
, 0 ≤ γ < 1.

and

PCn
γ,ρ(J) =

{
u ∈ PCn−1 : u(n) ∈ PCγ,ρ(J)

}
, n ∈ IN,

PC0
γ,ρ(J) = PCγ,ρ(J),

with the norm

‖u‖PCγ,ρ = max
k=0,...,m

{
sup

t∈[tk,tk+1]

∥∥∥∥∥
(
tρ − tρk
ρ

)1−γ

u(t)

∥∥∥∥∥
}
.

We define the space

PCγ
γ,ρ(J) =

{
u ∈ PCγ,ρ(J),

ρDγ

t+k
u ∈ PCγ,ρ(J)

}
, k = 0, . . . ,m.

2. A. Salim, M. Benchohra, E. Karapinar and J. E. Lazreg, Existence and Ulam
stability for impulsive generalized Hilfer-type fractional differential equations, Adv.
Difference Equ. 2020 (2020), 1-21pp.



CHAPTER 3. EXISTENCE AND ULAM STABILITY FOR IMPULSIVE GENERALIZED
HILFER-TYPE FRACTIONAL DIFFERENTIAL EQUATIONS 48

Lemma 3.12. ([61]) Let D ⊂ PCγ,ρ(J) be a bounded and equicontinuous set, then
(i) the function t→ µ(D(t)) is continuous on J , and

µPCγ,ρ(D) = sup
t∈[a,b]

µ

((
tρ − tρk
ρ

)1−γ

D(t)

)
,

(ii) µ
(∫ b

a

u(s)ds : u ∈ D

)
≤
∫ b

a

µ(D(s))ds, where

D(t) = {u(t) : t ∈ D}, t ∈ J.

By following the same results from the first section, we have the following result

Lemma 3.13. Let γ = α+β−αβ where 0 < α < 1 and 0 ≤ β ≤ 1, let f : J×E×E → E
be a function such that f(·, u(·), w(·)) ∈ PCγ,ρ(J) for any u,w ∈ PCγ,ρ(J).
If u ∈ PCγ

γ,ρ(J), then u satisfies the problem (3.35) − (3.37) if and only if u is the fixed
point of the operator Ψ : PCγ,ρ(J) → PCγ,ρ(J) defined by

Ψu(t) =
1

Γ(γ)

(
tρ − tρk
ρ

)γ−1
[
ξ2 − ξ1

m∑
i=1

ϖi(u(t
−
i ))− ξ1

m∑
i=1

(
ρJ 1−γ+α

(ti−1)+
h
)
(ti)

−ξ1
(
ρJ 1−γ+α

t+m
h
)
(b) +

∑
a<tk<t

ϖk(u(t
−
k )) +

∑
a<tk<t

(
ρJ 1−γ+α

(tk−1)+
h
)
(tk)

]
+
(
ρJ α

t+k
h
)
(t) t ∈ Jk, k = 0, · · · ,m,

(3.38)

where h : J → IR be a function satisfying the functional equation

h(t) = f(t, u(t), h(t)).

The following hypotheses will be used in the sequel :

(Ax1) The function t 7→ f(t, u, w) is measurable and continuous on J for each u,w ∈ E,
and the functions u 7→ f(t, u, w) and w 7→ f(t, u, w) are continuous on E for a.e.
t ∈ J, and

f(·, u(·), w(·)) ∈ PCβ(1−α)
γ,ρ for any u,w ∈ PCγ,ρ(J).

(Ax2) There exists a continuous function p : [a, b] −→ [0,∞) such that

‖f(t, u, w)‖ ≤ p(t), for a.e. t ∈ J and for each u,w ∈ E.

(Ax3) For each bounded set B ⊂ E and for each t ∈ (a, b], we have

µ(f(t, B, (ρDα,β
a+ B))) ≤

(
tρ − tρk
ρ

)1−γ

p(t)µ(B),

where ρDα,β
a+ B = {ρDα,β

a+ w : w ∈ B} and k = 1, · · · ,m.

(Ax4) The functions ϖk : E −→ E are continuous and there exists η∗ > 0 such that

‖ϖk(u)‖ ≤ η∗‖u‖ for each u ∈ E, k = 1, · · · ,m.
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(Ax5) For each bounded set B ⊂ E and for each t ∈ J , we have

µ(ϖk(B)) ≤ η∗
(
tρ − tρk
ρ

)1−γ

µ(B), k = 1, · · · ,m.

We are now in a position to state and prove our existence result for the problem
(3.35)−(3.37) based on Mönch’s fixed point theorem.

Theorem 3.14. Assume (Ax1) – (Ax5) hold. If

L :=
mη∗

Γ(γ)
+ p∗

(
1

Γ(α + 1)
+

m

Γ(γ)Γ(2− γ + α)

)(
bρ − aρ

ρ

)1−γ+α

< 1, (3.39)

where p∗ = sup
t∈[a,b]

p(t), then the problem (3.35)-(3.37) has at least one solution in PCγ
γ,ρ(J).

Proof: Consider the operator Ψ : PCγ,ρ(J) → PCγ,ρ(J) defined in (3.38) and the ball
BR := B(0, R) = {w ∈ PCγ,ρ(J) : ‖w‖PCγ,ρ ≤ R}.
For any u ∈ BR, and each t ∈ J we have∥∥∥∥∥

(
tρ − tρk
ρ

)1−γ

(Ψu)(t)

∥∥∥∥∥
≤ 1

Γ(γ)

[
‖ξ2‖+ |ξ1|

m∑
i=1

‖ϖi(u(t
−
i ))‖+ |ξ1|

m∑
i=1

(
ρJ 1−γ+α

(ti−1)+
‖h(s)‖

)
(ti)

+|ξ1|
(
ρJ 1−γ+α

t+m
‖h‖
)
(b) +

∑
a<tk<t

‖ϖk(u(t
−
k ))‖+

∑
a<tk<t

(
ρJ 1−γ+α

(tk−1)+
‖h(s)‖

)
(tk)

]

+

(
tρ − tρk
ρ

)1−γ (
ρJ α

t+k
‖h(s)‖

)
(t)

≤ ‖ξ2‖
Γ(γ)

+
|ξ1|+ 1

Γ(γ)

(
ml∗R +mp∗

(
ρJ 1−γ+α

(ti−1)+
(1)
)
(ti)
)
+

|ξ1|p∗

Γ(γ)

(
ρJ 1−γ+α

t+m
(1)
)
(b)

+p∗
(
tρ − tρk
ρ

)1−γ (
ρJ α

t+k
(1)
)
(t).

By Lemma 1.10, we have∥∥∥∥∥
(
tρ − tρk
ρ

)1−γ

(Ψu)(t)

∥∥∥∥∥
≤ ‖ξ2‖

Γ(γ)
+

|ξ1|+ 1

Γ(γ)

(
ml∗R +

mp∗

Γ(2− γ + α)

(
tρi − tρi−1

ρ

)1−γ+α
)

+
|ξ1|p∗

Γ(γ)Γ(2− γ + α)

(
bρ − tρm

ρ

)1−γ+α

+
p∗

Γ(α + 1)

(
tρ − tρk
ρ

)1−γ+α

.

Hence, for any u ∈ PCγ,ρ(J), and each t ∈ (a, b] we get

‖(Ψu)‖PCγ,ρ ≤ ‖ξ2‖
Γ(γ)

+
|ξ1|+ 1

Γ(γ)

(
ml∗R +

mp∗

Γ(2− γ + α)

(
bρ − aρ

ρ

)1−γ+α
)

+

(
|ξ1|p∗

Γ(γ)Γ(2− γ + α)
+

p∗

Γ(α + 1)

)(
bρ − aρ

ρ

)1−γ+α

.

≤ R.
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This proves that Ψ transforms the ball BR into itself. We shall show that the operator
Ψ : BR → BR satisfies all the assumptions of Theoreme 1.24. The proof will be given
in several steps.

Step 1: Ψ : BR → BR is continuous.
Let {un} be a sequence such that un → u in PCγ,ρ(J).
Then for each t ∈ (a, b] we have ,∥∥∥∥∥((Ψun)(t)− (Ψu)(t))

(
tρ − tρk
ρ

)1−γ
∥∥∥∥∥

≤ 1

Γ(γ)

[
|ξ1|

m∑
i=1

‖ϖi(un(t
−
i ))−ϖi(u(t

−
i ))‖+ |ξ1|

(
ρJ 1−γ+α

t+m
‖hn(s)− h(s)‖

)
(b)

+|ξ1|
m∑
i=1

(
ρJ 1−γ+α

(ti−1)+
‖hn(s)− h(s)‖

)
(ti) +

∑
a<tk<t

‖ϖk(un(t
−
k ))−ϖk(u(t

−
k ))‖

+
∑

a<tk<t

(
ρJ 1−γ+α

(tk−1)+
‖hn(s)− h(s)‖

)
(tk)

]
+

(
tρ − tρk
ρ

)1−γ (
ρJ α

t+k
‖hn(s)− h(s)‖

)
(t),

where hn, h ∈ PCγ,ρ such that

hn(t) = f(t, un(t), hn(t)),

h(t) = f(t, u(t), h(t)).

Since un → u, then we get hn(t) → h(t) as n → ∞ for each t ∈ J , and by Lebesgue
dominated convergence theorem we have

‖Ψun −Ψu‖PCγ,ρ → 0 as n→ ∞.

Step 2: Ψ(BR) is bounded and equicontinuous.
Since Ψ(BR) ⊂ BR and BR is bounded, then Ψ(BR) is bounded.
Next, let ϵ1, ϵ2 ∈ J , ϵ1 < ϵ2, and let u ∈ BR. Then∥∥∥∥∥

(
ϵρ1 − tρk
ρ

)1−γ

(Ψu)(ϵ1)−
(
ϵρ2 − tρk
ρ

)1−γ

(Ψu)(ϵ2)

∥∥∥∥∥
≤ 1

Γ(γ)

[ ∑
ϵ1<tk<ϵ2

‖ϖk(u(t
−
k ))‖+

∑
ϵ1<tk<ϵ2

(
ρJ 1−γ+α

(tk−1)+
‖h(s)‖

)
(tk)

]

+
p∗

Γ(α + 1)

∣∣∣∣∣
(
ϵρ1 − tρk
ρ

)1−γ+α

−
(
ϵρ2 − tρk
ρ

)1−γ+α
∣∣∣∣∣ .

As ϵ1 → ϵ2, the right-hand side of the above inequality tends to zero. Hence, Ψ(BR) is
bounded and equicontinuous.

Step 3: The implication (1.1) of Theorem 1.24 holds.

Now let D be an equicontinuous subset of BR such that D ⊂ Ψ(D)∪ {0}, therefore the
function t −→ d(t) = µ(D(t)) are continuous on J . By (Ax3), (Ax5) and the properties
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of the measure µ, for each t ∈ J , we have(
tρ − tρk
ρ

)1−γ

d(t) ≤ µ

((
tρ − tρk
ρ

)1−γ

(ΨD)(t) ∪ {0}

)

≤ µ

((
tρ − tρk
ρ

)1−γ

(ΨD)(t)

)

≤ 1

Γ(γ)

[ ∑
a<tk<t

η∗
(
tρ − tρk
ρ

)1−γ

µ(D(t))

+
∑

a<tk<t

(
ρJ 1−γ+α

(tk−1)+

(
sρ − tρk
ρ

)1−γ

p(s)µ(D(s))

)
(tk)

]

+

(
tρ − tρk
ρ

)1−γ
(
ρJ α

t+k

(
sρ − tρk
ρ

)1−γ

p(s)µ(D(s))

)
(t)

≤ mη∗

Γ(γ)
‖d‖PCγ,ρ + p∗

(
bρ − aρ

ρ

)1−γ
(
ρJ α

a+

(
sρ − tρk
ρ

)1−γ

d(s)

)
(t)

+
mp∗

Γ(γ)

(
ρJ 1−γ+α

a+

(
sρ − tρk
ρ

)1−γ

d(s)

)
(t)

≤

[
mη∗

Γ(γ)
+

p∗

Γ(α + 1)

(
bρ − aρ

ρ

)1−γ+α

+
mp∗

Γ(γ)Γ(2− γ + α)

(
bρ − aρ

ρ

)1−γ+α
]
‖d‖PCγ,ρ .

Thus
‖d‖PCγ,ρ ≤ L‖d‖PCγ,ρ .

From (3.39), we get ‖d‖PCγ,ρ = 0, that is d(t) = µ(D(t)) = 0, for each
t ∈ Jk, k = 0, · · · ,m, and then D(t) is relatively compact in E. In view of the
Ascoli-Arzela Theorem, D is relatively compact in BR. Applying now Theorem 1.24,
we conclude that Ψ has a fixed point u∗ ∈ PCγ,ρ(J), which is solution of the problem
(3.35)-(3.37).

Step 4: We show that such a fixed point u∗ ∈ PCγ,ρ(J) is actually in PCγ
γ,ρ(J).

Since u∗ is the unique fixed point of operator Ψ in PCγ,ρ(J), then for each t ∈ Jk, with
k = 0, · · · ,m, we have

u∗(t) =
1

Γ(γ)

(
tρ − tρk
ρ

)γ−1
[
ξ2 − ξ1

m∑
i=1

ϖi(u(t
−
i ))− ξ1

m∑
i=1

(
ρJ 1−γ+α

(ti−1)+
h
)
(ti)

− ξ1

(
ρJ 1−γ+α

t+m
h
)
(b) +

∑
a<tk<t

ϖk(u(t
−
k )) +

∑
a<tk<t

(
ρJ 1−γ+α

(tk−1)+
h
)
(tk)

]
+
(
ρJ α

t+k
h
)
(t),

where h ∈ PCγ,ρ such that
h(t) = f(t, u∗(t), h(t)).
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Applying ρDγ

t+k
to both sides and by Lemma 1.10 and Lemma 1.16, we have

ρDγ

t+k
u∗(t) =

(
ρDγ

t+k

ρJ α
t+k
f(s, u∗(s), h(s))

)
(t)

=
(
ρDβ(1−α)

t+k
f(s, u∗(s), h(s))

)
(t).

Since γ ≥ α, by (Ax1), the right hand side is in PCγ,ρ(J) and thus ρDγ

t+k
u∗ ∈ PCγ,ρ(J)

which implies that u∗ ∈ PCγ
γ,ρ(J). As a consequence of Steps 1 to 4 together with

Theorem 3.14, we can conclude that the problem (3.35)−(3.37) has at least one solution
in PCγ

γ,ρ(J). �

Our second existence result for the problem (3.35)-(3.37) is based on Darbo’s fixed
point Theorem.

Theorem 3.15. Assume (Ax1) – (Ax5) and (3.39) hold. then the problem (3.35)-(3.37)
has at least one solution in PCγ

γ,ρ(J).

Proof: Consider the operator Ψ defined in (3.38). We know that Ψ : BR −→ BR is
bounded and continuous and that Ψ(BR) is equicontinuous, we need to prove that the
operator Ψ is a L-contraction.
Let D ⊂ BR and t ∈ J . Then we have

µ

((
tρ − tρk
ρ

)1−γ

(ΨD)(t)

)
= µ

((
tρ − tρk
ρ

)1−γ

(Ψu)(t) : u ∈ D

)

≤ 1

Γ(γ)

[ ∑
a<tk<t

η∗µ

({(
tρ − tρk
ρ

)1−γ

u(t), u ∈ D

})

+
∑

a<tk<t

{(
ρJ 1−γ+α

(tk−1)+
p∗µ

((
sρ − tρk
ρ

)1−γ

u(s)

))
(tk), u ∈ D

}]

+

(
bρ − aρ

ρ

)1−γ
{(

ρJ α
t+k
p∗µ

((
sρ − tρk
ρ

)1−γ

u(s)

))
(t), u ∈ D

}
.

By Lemma 1.10, we have

µPCγ,ρ(ΨD) ≤

[
mη∗

Γ(γ)
+

(
p∗

Γ(α + 1)
+

mp∗

Γ(γ)Γ(2− γ + α)

)(
bρ − aρ

ρ

)1−γ+α
]
µPCγ,ρ(D).

Therefore
µPCγ,ρ(ΨD) ≤ LµPCγ,ρ(D).

So, By (3.39), the operator Ψ is a L-contraction.
As consequence of Theorem 1.25 and using Step 4 of the last result, we deduce that Ψ
has a fixed point which is a solution of the problem (3.35)-(3.37). �

3.3.2 Ulam Type Stability

Now, we consider the Ulam stability for problem (3.35)-(3.37). Let u ∈ PCγ,ρ(J),
ϵ > 0, τ > 0 and ϑ : J −→ [0,∞) be a continuous function. We consider the following
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inequality :
∥∥∥(ρDα,β

t+k
u
)
(t)− f

(
t, u(t),

(
ρDα,β

t+k
u
)
(t)
)∥∥∥ ≤ ϵϑ(t), t ∈ Jk, k = 0, . . . ,m,

∥∥∥(ρJ 1−γ
t+k

u
)
(t+k )−

(
ρJ 1−γ

t+k−1

u
)
(t−k )−ϖk(u(t

−
k ))
∥∥∥ ≤ ϵτ, k = 1, . . . ,m.

(3.40)

Definition 3.16. ([108]) Problem (3.35)−(3.37) is Ulam-Hyers-Rassias (U-H-R) stable
with respect to (ϑ, τ) if there exists a real number af,m,ϑ > 0 such that for each ϵ > 0 and
for each solution u ∈ PCγ,ρ(J) of inequality (3.40) there exists a solution w ∈ PCγ,ρ(J)
of (3.35)−(3.37) with

‖u(t)− w(t)‖ ≤ ϵaf,m,ϑ(ϑ(t) + τ), t ∈ J.

Remark 3.17. ([108]) A function u ∈ PCγ,ρ(J) is a solution of inequality (3.40) if and
only if there exist σ ∈ PCγ,ρ(J) and a sequence σk, k = 0, . . . ,m such that

1. ‖σ(t)‖ ≤ ϵϑ(t) and ‖σk‖ ≤ ϵτ , t ∈ Jk, k = 1, . . . ,m;

2.
(
ρDα,β

t+k
u
)
(t) = f

(
t, u(t),

(
ρDα,β

t+k
u
)
(t)
)
+ σ(t), t ∈ Jk, k = 0, . . . ,m;

3.
(
ρJ 1−γ

t+k
u
)
(t+k ) =

(
ρJ 1−γ

t+k−1

u
)
(t−k ) +ϖk(u(t

−
k )) + σk, k = 1, . . . ,m.

Theorem 3.18. Assume that in addition to (Ax1) – (Ax5) and (3.39), the following
hypothesis hold.

(Ax6) There exist a nondecreasing function ϑ ∈ PCγ,ρ(J) and λϑ > 0 such that for
each t ∈ J , we have

(ρJ α
a+ϑ)(t) ≤ λϑϑ(t).

(Ax7) There exists a continuous function χ : [a, b] −→ [0,∞) such that for each t ∈
Jk; k = 0, . . . ,m, we have

p(t) ≤ χ(t)ϑ(t).

Then equation (3.35) is U-H-R stable with respect to (ϑ, τ).

Set χ∗ = sup
t∈[a,b]

χ(t).

Proof: Consider the operator Ψ defined in (3.38). Let u ∈ PCγ,ρ(J) be a solution if
inequality (3.40), and let us assume that w is the unique solution of the problem

(
ρDα,β

t+k
w
)
(t) = f

(
t, w(t),

(
ρDα,β

t+k
w
)
(t)
)
; t ∈ Jk, k = 0, . . . ,m,(

ρJ 1−γ
t+k

w
)
(t+k ) =

(
ρJ 1−γ

t+k−1

w
)
(t−k ) +ϖk(w(t

−
k )); k = 1, . . . ,m,

c1
(
ρJ 1−γ

a+ w
)
(a+) + c2

(
ρJ 1−γ

t+m
w
)
(b) = c3,(

ρJ 1−γ
t+k

w
)
(t+k ) =

(
ρJ 1−γ

t+k
u
)
(t+k ); k = 0, . . . ,m.
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By Lemma 1.21, we obtain for each t ∈ (a, b]

w(t) =

(
ρJ 1−γ

t+k
w
)
(t+k )

Γ(γ)

(
tρ − tρk
ρ

)γ−1

+
(
ρJ α

t+k
h
)
(t) t ∈ Jk, k = 0, . . . ,m,

where h : (a, b] → E be a function satisfing the functional equation

h(t) = f(t, w(t), h(t)).

Since u is a solution of the inequality (3.40), by Remark 3.17, we have
(
ρDα,β

t+k
u
)
(t) = f

(
t, u(t),

(
ρDα,β

t+k
u
)
(t)
)
+ σ(t), t ∈ Jk, k = 0, . . . ,m;(

ρJ 1−γ
t+k

u
)
(t+k ) =

(
ρJ 1−γ

t+k−1

u
)
(t−k ) +ϖk(u(t

−
k )) + σk, k = 1, . . . ,m.

(3.41)

Clearly, the solution of (3.41) is given by

u(t) =
1

Γ(γ)

(
tρ − tρk
ρ

)γ−1
[(

ρJ 1−γ
a+ u

)
(a+) +

∑
a<tk<t

ϖk(u(t
−
k )) +

∑
a<tk<t

σk

+
∑

a<tk<t

(
ρJ 1−γ+α

(tk−1)+
g
)
(tk) +

∑
a<tk<t

(
ρJ 1−γ+α

(tk−1)+
σ
)
(tk)

]
+
(
ρJ α

t+k
g
)
(t) +

(
ρJ α

t+k
σ
)
(t) t ∈ Jk, k = 0, . . . ,m,

where g : (a, b] → E be a function satisfing the functional equation

g(t) = f(t, u(t), g(t)).

We have for each t ∈ Jk, k = 0, . . . ,m,(
ρJ 1−γ

t+k
u
)
(t+k ) =

(
ρJ 1−γ

a+ u
)
(a+) +

∑
a<tk<t

ϖk(u(t
−
k )) +

∑
a<tk<t

σk

+
∑

a<tk<t

(
ρJ 1−γ+α

(tk−1)+
g
)
(tk) +

∑
a<tk<t

(
ρJ 1−γ+α

(tk−1)+
σ
)
(tk).

Hence, for each t ∈ J , we have

‖u(t)− w(t)‖ ≤
(
ρJ α

t+k
|g(s)− h(s)|

)
(t) +

(
ρJ α

t+k
|σ(s)|

)
(t).

Thus,
‖u(t)− w(t)‖ ≤

(
ρJ α

a+‖g(s)− h(s)‖
)
(t) +

(
ρJ α

a+‖σ(s)‖
)

≤ ϵλϑϑ(t) +

∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1
2χ(t)ϑ(t)

Γ(γ)
ds

≤ ϵλϑϑ(t) + 2χ∗ (ρJ α
a+ϑ
)
(t)

≤ (ϵ+ 2χ∗)λϑϑ(t)

≤ (1 +
2χ∗

ϵ
)λϑϵ(τ + ϑ(t))

≤ aϑϵ(τ + ϑ(t)),

where aϑ = (1+ 2χ∗

ϵ
)λϑ. Hence, equation (3.35) is U-H-R stable with respect to (ϑ, τ). �
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3.3.3 Examples
Let

E = l1 =

{
u = (u1, u2, · · · , un, · · · ),

∞∑
n=1

|un| <∞

}
be the Banach space with the norm

‖u‖ =
∞∑
n=1

|un|.

Example 3.19. Consider the following impulsive boundary value problem of generalized
Hilfer fractional differential equation(

1D
1
2
,0

t+k
un

)
(t) =

3t2 − 20

213e−t+3(1 + |un(t)|+ |1D
1
2
,0

t+k
un(t)|)

, t ∈ Jk, k = 0, · · · , 9, (3.42)

(
1J

1
2

t+k
un

)
(t+k )−

(
1J

1
2

t(k−1)
+un

)
(t−k ) =

|un(t−k )|
10(k + 3) + |un(t−k )|

, k = 1, · · · , 9, (3.43)

(
1J

1
2

1+un

)
(1+) + 2

(
1J

1
2
9
5

+un

)
(3) = 0, (3.44)

where Jk = (tk, tk+1], tk = 1+
k

5
for k = 0, · · · , 9, m = 9, a = t0 = 1, and b = t10 = 3.

Set
f(t, u, w) =

3t2 − 20

213e−t+3(1 + ‖u‖+ ‖w‖)
, t ∈ (1, 3], u, w ∈ E.

We have

PCβ(1−α)
γ,ρ ([1, 3]) = PC0

1
2
,1
([1, 3]) =

{
g : (1, 3] → IR : (

√
t− tk)g ∈ PC([1, 3])

}
,

with γ = α = 1
2
, ρ = 1, β = 0 and k = 0, · · · , 9. Clearly, the continuous function

f ∈ PC0
1
2
,1
([1, 2]).

Hence the condition (Ax1) is satisfied.
For each u,w ∈ E and t ∈ (1, 3] :

‖f(t, u, w)‖ ≤ 3t2 − 20

213e−t+3
.

Hence condition (Ax2) is satisfied with p∗ = 7

213
.

And let
ϖk(u) =

‖u‖
10(k + 3) + ‖u‖

, k = 1, · · · , 9, u ∈ E.

Let u ∈ E. Then we have

‖ϖk(u)‖ ≤ 1

40
‖u‖, k = 1, · · · , 9,
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and so the condition (Ax4) is satisfied with η∗ = 1

40
.

The condition (3.39) of Theorem 3.14 is satisfied, for

L :=
mη∗

Γ(γ)
+

(
p∗

Γ(α + 1)
+

mp∗

Γ(γ)Γ(2− γ + α)

)(
bρ − aρ

ρ

)1−γ+α

=
9

40
√
π
+ 2

(
17

213
√
π
+

63

213Γ(2)
√
π

)
≈ 0.55074703829 < 1.

Then the problem (3.42)−(3.44) has at least one solution in PC
1
2
1
2
,1
([1, 3]).

Example 3.20. Let the following impulsive anti–periodic boundary value problem(
1
2D

1
2
,0

t+k
un

)
(t) =

(3t3 + 5e−3)|un(t)|

144e−t+e(1 + ‖u(t)‖+ ‖ 1
2D

1
2
,0

t+k
u(t)‖)

, for each t ∈ J0 ∪ J1, (3.45)

(
1
2J

1
2

2+un

)
(2+)−

(
1
2J

1
2

1+un

)
(2−) =

|un(2−)|
77e−t+4 + 2

, (3.46)(
1
2J

1
2

1+u
)
(1+) = −

(
1
2J

1
2

2+u
)
(e), (3.47)

where J0 = (1, 2], J1 = (2, e], t1 = 2, m = 1, a = t0 = 1 and b = t2 = e.
Set

f(t, u, w) =
(3t3 + 5e−3)‖u‖

144e−t+e(1 + ‖u‖+ ‖w‖)
, t ∈ (1, e], u, w ∈ E.

We have

PCβ(1−α)
γ,ρ ([1, 2]) = PC0

1
2
, 1
2
([1, e]) =

{
g : (1, e] → E :

√
2(
√
t−

√
tk)

1
2 g ∈ C([1, e])

}
,

with γ = α = 1
2
, ρ = 1

2
, β = 0 and k ∈ {0, 1}. Clearly, the continuous function

f ∈ PC0
1
2
, 1
2

([1, e]) .
Hence the condition (Ax1) is satisfied.
For each u,w ∈ E and t ∈ (1, e] :

‖f(t, u, w)‖ ≤ (3t3 + 5e−3)

144e−t+e
.

Hence condition (Ax2) is satisfied with

p(t) =
(3t3 + 5e−3)

144e−t+e
,

and
p∗ =

(3e3 + 5e−3)

144
.

And let
ϖ1(u) =

‖u‖
77e−t+4 + 2

, u ∈ E.
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Let u ∈ E. Then we have
‖ϖk(u)‖ ≤ 1

77e−t+4 + 2
‖u‖,

and so the condition (Ax4) is satisfied with η∗ = 1

77e4−e + 2
.

The condition (3.39) of Theorem 3.14 is satisfied, for

L :=
mη∗

Γ(γ)
+

(
p∗

Γ(α + 1)
+

mp∗

Γ(γ)Γ(2− γ + α)

)(
bρ − aρ

ρ

)1−γ+α

=
1

(77e4−e + 2)
√
π
+ (2

√
e− 2)

(
6e3 + 10e−3

144
√
π

+
3e3 + 5e−3

144
√
πΓ(2)

)
≈ 0.92473323802 < 1.

Then the problem (3.45)−(3.47) has at least one solution in PC
1
2
1
2
, 1
2

([1, e]). Also, hypothesis
(Ax6) is satisfied with τ = 1, ϑ(t) = e3 and λϑ = 3. Indeed, for each t ∈ (1, e], we get

(
1
2J

1
2

1+ϑ)(t) ≤
2e3

Γ(3
2
)
≤ λϑϑ(t).

Let the function χ : [1, e] −→ [0,∞) defined by :

χ(t) =
(3e−3t3 + 5e−6)

144e−t+e
,

then, for each t ∈ (1, e], we have

p(t) = χ(t)ϑ(t),

with χ∗ = p∗e−3. Hence, the condition (Ax7) is satisfied. Consequently, Theorem 3.18
implies that equation (3.45) is U-H-R stable.
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Chapter 4

Nonlinear Implicit Generalized Hilfer-Type Fractional

Differential Equations with Non-Instantaneous

Impulses

4.1 Introduction and Motivations
In the present chapter, we prove some results concerning the existence of solutions for a
class of initial value problems for nonlinear implicit fractional differential equations with
non-instantaneous impulses and generalized Hilfer fractional derivative. The results are
based on Banach contraction principle and Schaefer’s fixed point theorem. Then, we study
the same problem in Banach spaces with results based on fixed point theorems of Darbo
and Mönch associated with the technique of measure of noncompactness. Examples are
included to show the applicability of our results. There are numerous books and articles
focused on linear and nonlinear problems for fractional differential equations involving
different kinds of fractional derivatives. One can refer to [7, 10–14, 25, 27, 38, 45–47] for
instance and references therein. The class of problems for fractional differential equations
with abrupt and instantaneous impulses is vastly studied, and different topics on the
existence and qualitative properties of solutions are considered, see the papers [45,57,106].
Fractional differential equations with not instantaneous impulses have been developed in
the last years; see the books [7, 102], the papers [1–6, 8, 15, 24, 34, 63, 71, 91, 92, 107, 109],
and the references therein.
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4.2 Initial Value Problem for Nonlinear Implicit Gen-
eralized Hilfer-Type Fractional Differential
Equations1

In this section, we establish existence results to the initial value problem with nonlin-
ear implicit generalized Hilfer-type fractional differential equation with non-instantaneous
impulses: (

ρDα,β

s+k
u
)
(t) = f

(
t, u(t),

(
ρDα,β

s+k
u
)
(t)
)
; t ∈ Ik, k = 0, . . . ,m, (4.1)

u(t) = gk(t, u(t)); t ∈ Ĩk, k = 1, . . . ,m, (4.2)

(
ρJ 1−γ

a+ u
)
(a+) = ϕ0, (4.3)

where ρDα,β

s+k
, ρJ 1−γ

a+ are the generalized Hilfer fractional derivative of order α ∈ (0, 1) and
type β ∈ [0, 1] and generalized fractional integral of order 1 − γ, (γ = α + β − αβ)
respectively, ϕ0 ∈ IR , Ik := (sk, tk+1]; k = 0, . . . ,m, Ĩk := (tk, sk]; k = 1, . . . ,m,
a = t0 = s0 < t1 ≤ s1 < t2 ≤ s2 < . . . ≤ sm−1 < tm ≤ sm < tm+1 = b < ∞,
u(t+k ) = lim

ϵ→0+
u(tk + ϵ) and u(t−k ) = lim

ϵ→0−
u(tk + ϵ) represent the right and left hand lim-

its of u(t) at t = tk, f : J × IR × IR → IR is a given function and gk : Ĩk × IR → IR;
k = 1, . . . ,m are given continuous functions such that

(
ρJ 1−γ

s+k
gk

)
(t, u(t)) |t=sk = ϕk ∈ IR .

4.2.1 Existence Results
Consider the weighted Banach space

Cγ,ρ(Ik) =

{
u : Ik → IR : t→

(
tρ − sρk
ρ

)1−γ

u(t) ∈ C([sk, tk+1], IR)

}
,

where 0 ≤ γ < 1, k = 0, . . . ,m, and

Cn
γ,ρ(Ik) =

{
u ∈ Cn−1(Ik) : u

(n) ∈ Cγ,ρ(Ik)
}
, n ∈ IN,

C0
γ,ρ(Ik) = Cγ,ρ(Ik).

Also consider the Banach space

PCγ,ρ(J) =

{
u : J → IR : u ∈ Cγ,ρ(Ik); k = 0, . . . ,m, and u ∈ C(Ĩk, IR); k = 1, . . . ,m,

and there exist u(t−k ), u(t+k ), u(s−k ), and u(s+k ) with u(t−k ) = u(tk)

}
,

and

PCn
γ,ρ(J) =

{
u ∈ PCn−1(J) : u(n) ∈ PCγ,ρ(J)

}
, n ∈ IN,

PC0
γ,ρ(J) = PCγ,ρ(J).

1. A. Salim, M. Benchohra, J. E. Lazreg and G. N’Guérékata, Nonlinear implicit
generalized Hilfer-type fractional differential equations with non-instantaneous impulses.
(submitted).
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with the norm

‖u‖PCγ,ρ = max
{

max
k=0,...,m

{
sup

t∈[sk,tk+1]

∣∣∣∣∣
(
tρ − sρk
ρ

)1−γ

u(t)

∣∣∣∣∣
}
, max
k=1,...,m

{
sup

t∈[tk,sk]
|u(t)|

}}
,

We define the space,

PCγ
γ,ρ(J) =

{
u : J → IR : u ∈ Cγ

γ,ρ(Ik); k = 0, . . . ,m, and u ∈ C(Ĩk, IR); k = 1, . . . ,m,

and there exist u(t−k ), u(t+k ), u(s−k ), and u(s+k ) with u(t−k ) = u(tk)

}
.

We consider the following linear fractional differential equation(
ρDα,β

s+k
u
)
(t) = ψ(t), t ∈ Ik, k = 0, . . . ,m, (4.4)

where 0 < α < 1, 0 ≤ β ≤ 1, ρ > 0, with the conditions

u(t) = gk(t, u(t)); t ∈ Ĩk, k = 1, . . . ,m, (4.5)

and (
ρJ 1−γ

a+ u
)
(a+) = ϕ0, (4.6)

where γ = α + β − αβ, ϕ0 ∈ IR and ϕ∗ = max{|ϕk| : k = 0, . . . ,m}. The following
theorem shows that the problem (4.4)–(4.6) has a unique solution given by

u(t) =


ϕk
Γ(γ)

(
tρ − sρk
ρ

)γ−1

+
(
ρJ α

s+k
ψ
)
(t) if t ∈ Ik, k = 0, . . . ,m,

u(t) = gk(t, u(t)) if t ∈ Ĩk, k = 1, . . . ,m.

(4.7)

Theorem 4.1. Let γ = α + β − αβ, where 0 < α < 1 and 0 ≤ β ≤ 1. If ψ : Ik →
IR; k = 0, . . . ,m, is a function such that ψ(·) ∈ Cγ,ρ(Ik), then u ∈ PCγ

γ,ρ(J) satisfies the
problem (4.4)–(4.6) if and only if it satisfies (4.7).

Proof: Assume u satisfies (4.4)–(4.6). If t ∈ I0, then(
ρDα,β

a+ u
)
(t) = ψ(t),

Lemma 1.21 implies we have the solution can be written as

u(t) =

(
ρJ 1−γ

a+ u
)
(a)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1ψ(s)ds.

If t ∈ Ĩ1, then we have u(t) = g1(t, u(t)).
If t ∈ I1, then Lemma 1.21 implies

u(t) =

(
ρJ 1−γ

s+1
u
)
(s1)

Γ(γ)

(
tρ − sρ1
ρ

)γ−1

+
1

Γ(α)

∫ t

s1

(
tρ − sρ

ρ

)α−1

sρ−1ψ(s)ds

=
ϕ1

Γ(γ)

(
tρ − sρ1
ρ

)γ−1

+
(
ρJ α

s+1
ψ
)
(t).



CHAPTER 4. NONLINEAR IMPLICIT GENERALIZED HILFER-TYPE FRACTIONAL
DIFFERENTIAL EQUATIONS WITH NON-INSTANTANEOUS IMPULSES 61

If t ∈ Ĩ2, then we have u(t) = g2(t, u(t)).
If t ∈ I2, then Lemma 1.21 implies

u(t) =

(
ρJ 1−γ

s+2
u
)
(s2)

Γ(γ)

(
tρ − sρ2
ρ

)γ−1

+
1

Γ(α)

∫ t

s2

(
tρ − sρ

ρ

)α−1

sρ−1ψ(s)ds

=
ϕ2

Γ(γ)

(
tρ − sρ2
ρ

)γ−1

+
(
ρJ α

s+2
ψ
)
(t).

Repeating the process in this way, the solution u(t) for t ∈ J , can be written as

u(t) =


ϕk
Γ(γ)

(
tρ − sρk
ρ

)γ−1

+
(
ρJ α

s+k
ψ
)
(t) if t ∈ Ik, k = 0, . . . ,m,

u(t) = gk(t, u(t)) if t ∈ Ĩk, k = 1, . . . ,m.

Reciprocally, for t ∈ I0, applying ρJ 1−γ
a+ on both sides of (4.7) and using Lemma 1.10

and Theorem 1.9, we get(
ρJ 1−γ

a+ u
)
(t) = ϕ0 +

(
ρJ 1−γ+α

a+ ψ
)
(t). (4.8)

Next, taking the limit t → a+ of (4.8) and using Lemma 1.13, with 1− γ < 1− γ + α,
we obtain (

ρJ 1−γ
a+ u

)
(a+) = ϕ0. (4.9)

which shows that the initial condition
(
ρJ 1−γ

a+ u
)
(a+) = ϕ0, is satisfied. Next, for t ∈

Ik; k = 0, . . . ,m, apply operator ρDγ

s+k
on both sides of (4.7). Then, from Lemma 1.10

and Lemma 1.16 we obtain

(ρDγ

s+k
u)(t) =

(
ρDβ(1−α)

s+k
ψ
)
(t). (4.10)

Since u ∈ Cγ
γ,ρ(Ik) and by definition of Cγ

γ,ρ(Ik), we have ρDγ

s+k
u ∈ Cγ,ρ(Ik), then (4.10)

implies that

(ρDγ

s+k
u)(t) =

(
δρ

ρJ 1−β(1−α)
s+k

ψ
)
(t) =

(
ρDβ(1−α)

s+k
ψ
)
(t) ∈ Cγ,ρ(Ik). (4.11)

As ψ(·) ∈ Cγ,ρ(Ik) and from Lemma 1.12, follows(
ρJ 1−β(1−α)

s+k
ψ
)
∈ Cγ,ρ(Ik), k = 0, . . . ,m. (4.12)

From (4.11), (4.12) and by the definition of the space Cn
γ,ρ(Ik), we obtain(

ρJ 1−β(1−α)
s+k

ψ
)
∈ C1

γ,ρ(Ik), k = 0, . . . ,m.

Applying operator ρJ β(1−α)
s+k

on both sides of (4.10) and using Lemma 1.15, Lemma 1.13
and Property 1.11, we have

(
ρDα,β

s+k
u
)
(t) = ρJ β(1−α)

s+k

(
ρDγ

s+k
u
)
(t) = ψ(t)−

(
ρJ 1−β(1−α)

s+k
ψ
)
(sk)

Γ(β(1− α))

(
tρ − sρk
ρ

)β(1−α)−1

= ψ(t),
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that is, (4.4) holds.
Also, we can easily show that

u(t) = gk(t, u(t
−
k )); t ∈ Ĩk, k = 1, . . . ,m.

This completes the proof. �
As a consequence of Theorem 4.1, we have the following result

Lemma 4.2. Let γ = α + β − αβ where 0 < α < 1 and 0 ≤ β ≤ 1, and k = 0, . . . ,m,
let f : J × IR × IR → IR, be a function such that f(·, u(·), w(·)) ∈ Cγ,ρ(Ik), for any
u,w ∈ PCγ,ρ(J). If u ∈ PCγ

γ,ρ(J), then u satisfies the problem (4.1)-(4.3) if and only if u
is the fixed point of the operator Ψ : PCγ,ρ(J) → PCγ,ρ(J) defined by

Ψu(t) =


ϕk
Γ(γ)

(
tρ − sρk
ρ

)γ−1

+
(
ρJ α

s+k
h
)
(t) if t ∈ Ik, k = 0, . . . ,m,

gk(t, u(t)) if t ∈ Ĩk, k = 1, . . . ,m.

(4.13)

where h ∈ Cγ,ρ(Ik), k = 0, . . . ,m be a function satisfying the functional equation

h(t) = f(t, u(t), h(t)).

Also, by Lemma 1.12, Ψu ∈ PCγ,ρ(J).

The following hypotheses will be used in the sequel :

(Ax1) The function f : Ik × IR × IR → IR is continuous on Ik; k = 0, . . . ,m, and

f(·, u(·), w(·)) ∈ Cβ(1−α)
γ,ρ (Ik), k = 0, . . . ,m, for any u,w ∈ PCγ,ρ(J).

(Ax2) There exist constants M1 > 0 and 0 <M2 < 1 such that

|f(t, u, w)− f(t, ū, w̄)| ≤ M1|u− ū|+M2|w − w̄|

for any u,w, ū, w̄ ∈ IR and t ∈ Ik, k = 0, . . . ,m.

(Ax3) The functions gk are continuous and there exists a constant l∗ > 0 such that
|gk(u)− gk(ū)| ≤ l∗|u− ū| for any u, ū ∈ IR and k = 1, . . . ,m.

(Ax4) There exist functions p1, p2, p3 ∈ C([a, b], IR+) such that

|f(t, u, w)| ≤ p1(t) + p2(t)|u|+ p3(t)|w| for t ∈ Ik, k = 0, . . . ,m, and u,w ∈ IR.

(Ax5) The functions gk are continuous and there exist constants Φ1,Φ2 > 0 such that

|gk(t, u)| ≤ Φ1|u|+ Φ2 for each u ∈ IR, t ∈ J ′
k, k = 1, . . . ,m,

We are now in a position to state and prove our existence result for the problem
(4.1)-(4.3) based on based on Banach’s fixed point theorem. Set Υ = K

1−M .
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Theorem 4.3. Assume (Ax1) – (Ax3) hold. If

L := l∗ +
ΥΓ(γ)

Γ(γ + α)

(
bρ − aρ

ρ

)α
< 1, (4.14)

then the problem (4.1)-(4.3) has a unique solution in PCγ,ρ(J).

Proof: The proof will be given in two steps.
Step 1: We show that the operator Ψ defined in (4.13) has a unique fixed point u∗ in
PCγ,ρ(J). Let u,w ∈ PCγ,ρ(J) and t ∈ J.
For t ∈ Ik, k = 0, . . . ,m, we have

|Ψu(t)−Ψw(t)| ≤
(
ρJ α

s+k
|h(s)− g(s)|

)
(t),

where h, g ∈ Cγ,ρ(Ik); k = 0, . . . ,m, such that

h(t) = f(t, u(t), h(t)),

g(t) = f(t, w(t), g(t)).

By (Ax2), we have

|h(t)− g(t)| = |f(t, u(t), h(t))− f(t, w(t), g(t))|
≤ M1|u(t)− w(t)|+M2|h(t)− g(t)|.

Then,
|h(t)− g(t)| ≤ Υ|u(t)− w(t)|.

Therefore, for each t ∈ Ik, k = 0, . . . ,m,

|Ψu(t)−Ψw(t)| ≤ Υ
(
ρJ α

s+k
|u(s)− w(s)|

)
(t).

Thus

|Ψu(t)−Ψw(t)| ≤

[
Υ

(
ρJ α

s+k

(
sρ − sρk
ρ

)γ−1
)
(t)

]
‖u− w‖PCγ,ρ .

By Lemma 1.10, we have

|Ψu(t)−Ψw(t)| ≤

[
ΥΓ(γ)

Γ(γ + α)

(
tρ − sρk
ρ

)α+γ−1
]
‖u− w‖PCγ,ρ .

Hence∣∣∣∣∣(Ψu(t)−Ψw(t))

(
tρ − sρk
ρ

)1−γ
∣∣∣∣∣ ≤

[
ΥΓ(γ)

Γ(γ + α)

(
tρ − sρk
ρ

)α]
‖u− w‖PCγ,ρ

≤
[
l∗ +

ΥΓ(γ)

Γ(γ + α)

(
bρ − aρ

ρ

)α]
‖u− w‖PCγ,ρ .

For t ∈ Ĩk, k = 1, . . . ,m, we have

|Ψu(t)−Ψw(t)| ≤ |(gk(t, u(t))− gk(t, w(t)))|
≤ l∗‖u− w‖PCγ,ρ

≤
[
l∗ +

ΥΓ(γ)

Γ(γ + α)

(
bρ − aρ

ρ

)α]
‖u− w‖PCγ,ρ .
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Then, for each t ∈ J, we have

‖Ψu−Ψw‖PCγ,ρ ≤
[
l∗ +

ΥΓ(γ)

Γ(γ + α)

(
bρ − aρ

ρ

)α]
‖u− w‖PCγ,ρ .

By (4.14), the operator Ψ is a contraction. Hence, by Theorem 1.26, Ψ has a unique
fixed point u∗ ∈ PCγ,ρ(J).

Step 2: We show that such a fixed point u∗ ∈ PCγ,ρ(J) is actually in PCγ
γ,ρ(J).

Since u∗ is the unique fixed point of operator Ψ in PCγ,ρ(J), then for each t ∈ J, we
have

Ψu∗(t) =


ϕk
Γ(γ)

(
tρ − sρk
ρ

)γ−1

+
(
ρJ α

s+k
h
)
(t) if t ∈ Ik, k = 0, . . . ,m,

gk(t, u
∗(t)) if t ∈ Ĩk, k = 1, . . . ,m.

where h ∈ Cγ,ρ(Ik); k = 0, . . . ,m, such that

h(t) = f(t, u∗(t), h(t)).

Applying ρDγ

s+k
to both sides and by Lemma 1.10 and Lemma 1.16, we have

ρDγ

s+k
u∗(t) =

(
ρDγ

s+k

ρJ α
s+k
f(s, u∗(s), h(s))

)
(t)

=
(
ρDβ(1−α)

s+k
f(s, u∗(s), h(s))

)
(t).

Since γ ≥ α, by (Ax1), the right hand side is in Cγ,ρ(Ik) and thus ρDγ

s+k
u∗ ∈ Cγ,ρ(Ik).

And since gk ∈ C(Ĩk, IR); k = 1, . . . ,m, then u∗ ∈ PCγ
γ,ρ(J). As a consequence of Steps

1 and 2 together with Theorem 4.3, we can conclude that the problem (4.1)-(4.3) has a
unique solution in PCγ,ρ(J). �

Our second result is based on Schaefer’s fixed point theorem. Set

p∗1 = sup
t∈[a,b]

p1(t), p
∗
2 = sup

t∈[a,b]
p2(t), p

∗
3 = sup

t∈[a,b]
p3(t) < 1.

Theorem 4.4. Assume (Ax1), (Ax4) and (Ax5) hold. If

max

{
Φ1,

(
p∗2Γ(γ)

(1− p∗3)Γ(γ + α)

)(
bρ − aρ

ρ

)α}
< 1, (4.15)

then the problem (4.1)-(4.3) has at least one solution in PCγ,ρ(J).

Proof: We shall use Schaefer’s fixed point theorem to prove in several steps that the
operator Ψ defined in (4.13) has a fixed point.
Step 1: Ψ is continuous. Let {un} be a sequence such that un → u in PCγ,ρ(J).
Then for each t ∈ Ik, k = 0, . . . ,m, we have,∣∣∣∣ ((Ψun)(t)− (Ψu)(t))

(
tρ − sρk
ρ

)1−γ ∣∣∣∣ ≤ (tρ − sρk
ρ

)1−γ (
ρJ α

s+k
|hn(s)− h(s)|

)
(t),
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where hn, h ∈ Cγ,ρ(Ik), such that

hn(t) = f(t, un(t), hn(t)),

h(t) = f(t, u(t), h(t)).

For each t ∈ Ĩk, k = 1, . . . ,m, we have,

|Ψun(t)−Ψu(t)| ≤ |(gk(t, un(t))− gk(t, u(t)))| .

Since un → u, then we get hn(t) → h(t) as n → ∞ for each t ∈ J , and since f and gk
are continuous, then we have

‖Ψun −Ψu‖PCγ,ρ → 0 as n→ ∞.

Step 2: We show that Ψ is the mapping of two bounded sets in PCγ,ρ(J).
For η > 0, there exists a positive constant r such that Bη = {u ∈ PCγ,ρ(J) : ‖u‖PCγ,ρ ≤
η}, we have ‖Ψ(u)‖PCγ,ρ ≤ r.
By (Ax4) and from (4.13), We have for each t ∈ Ik, k = 0, . . . ,m,∣∣∣∣∣

(
tρ − sρk
ρ

)1−γ

h(t)

∣∣∣∣∣ =
∣∣∣∣∣
(
tρ − sρk
ρ

)1−γ

f(t, u(t), h(t))

∣∣∣∣∣
≤
(
tρ − sρk
ρ

)1−γ

(p1(t) + p2(t)|u(t)|+ p3(t)|h(t)|) ,

which implies that∣∣∣∣∣
(
tρ − sρk
ρ

)1−γ

h(t)

∣∣∣∣∣ ≤ p∗1

(
bρ − aρ

ρ

)1−γ

+ p∗2η + p∗3

∣∣∣∣∣
(
tρ − sρk
ρ

)1−γ

h(t)

∣∣∣∣∣ .
Then ∣∣∣∣∣

(
tρ − sρk
ρ

)1−γ

h(t)

∣∣∣∣∣ ≤
p∗1

(
bρ − aρ

ρ

)1−γ

+ p∗2η

1− p∗3
:= Λ.

Thus, for t ∈ Ik, k = 0, . . . ,m, (4.13) implies∣∣∣∣∣
(
tρ − sρk
ρ

)1−γ

(Ψu)(t)

∣∣∣∣∣ ≤ |ϕk|
Γ(γ)

+

(
tρ − sρk
ρ

)1−γ (
ρJ α

s+k
|h(s)|

)
(t).

By Lemma 1.10, for t ∈ Ik, k = 0, . . . ,m, we have∣∣∣∣∣
(
tρ − sρk
ρ

)1−γ

(Ψu)(t)

∣∣∣∣∣ ≤ ϕ∗

Γ(γ)
+ Λ

(
Γ(γ)

Γ(γ + α)

)(
bρ − aρ

ρ

)α
:= r1.

And for each t ∈ Ĩk, k = 1, . . . ,m, we have,

|Ψu(t)|PCγ,ρ ≤ |gk(t, u(t))| ≤ Φ1η + Φ2 := r2.
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Thus, for each t ∈ J we have,

‖Ψu‖PCγ,ρ ≤ max{r1, r2} := r.

Step 3: Ψ maps bounded sets into equicontinuous sets of PCγ,ρ(J).
Let ϵ1, ϵ2 ∈ J , ϵ1 < ϵ2, Bη be a bounded set of PCγ,ρ(J) as in Step 2, and let u ∈ Bη.
Then for each t ∈ Ik, k = 0, . . . ,m, and by Lemma 1.10, we have∣∣∣∣∣

(
ϵρ1 − sρk
ρ

)1−γ

(Ψu)(ϵ1)−
(
ϵρ2 − sρk
ρ

)1−γ

(Ψu)(ϵ2)

∣∣∣∣∣
≤

∣∣∣∣∣
(
ϵρ1 − sρk
ρ

)1−γ (
ρJ α

s+k
h(τ)

)
(ϵ1)−

(
ϵρ2 − sρk
ρ

)1−γ (
ρJ α

s+k
h(τ)

)
(ϵ2)

∣∣∣∣∣
≤
(
ϵρ2 − sρk
ρ

)1−γ (
ρJ α

ϵ+1
|h(τ)|

)
(ϵ2) +

1

Γ(α)

∫ ϵ1

sk

∣∣τ ρ−1H(τ)h(τ)
∣∣ dτ,

where H(τ) =

[(
ϵρ1 − sρk
ρ

)1−γ (
ϵρ1 − τ ρ

ρ

)α−1

−
(
ϵρ2 − sρk
ρ

)1−γ (
ϵρ2 − τ ρ

ρ

)α−1
]
.

Then by Lemma 1.10, we have∣∣∣∣∣
(
ϵρ1 − sρk
ρ

)1−γ

(Ψu)(ϵ1)−
(
ϵρ2 − sρk
ρ

)1−γ

(Ψu)(ϵ2)

∣∣∣∣∣
≤ ΛΓ(γ)

Γ(α + γ)

(
ϵρ2 − sρk
ρ

)1−γ (
ϵρ2 − ϵρ1
ρ

)α+γ−1

+ Λ

∫ ϵ1

sk

∣∣∣∣H(τ)
τ ρ−1

Γ(α)

∣∣∣∣ (τ ρ − sρk
ρ

)γ−1

dτ.

And for each t ∈ Ĩk, k = 1, . . . ,m, we have

|(Ψu)(ϵ1)− (Ψu)(ϵ2)| ≤ |gk(ϵ1, u(ϵ1))− gk(ϵ2, u(ϵ2))| .

As ϵ1 → ϵ2, the right-hand side of the above inequality tends to zero. From step 1 to
3 with Arzela-Ascoli theorem, we conclude that Ψ : PCγ,ρ → PCγ,ρ is continuous and
completely continuous.
Step 4: A priori bound. Now it remains to show that the set

G = {u ∈ PCγ,ρ : u = λ∗Ψ(u) for some 0 < λ∗ < 1}

is bounded. Let u ∈ G, then u = λ∗Ψ(u) for some 0 < λ∗ < 1.
By (Ax4), we have for each t ∈ Ik, k = 0, . . . ,m,∣∣∣∣∣

(
tρ − sρk
ρ

)1−γ

h(t)

∣∣∣∣∣ =
∣∣∣∣∣
(
tρ − sρk
ρ

)1−γ

f(t, u(t), h(t))

∣∣∣∣∣
≤
(
tρ − sρk
ρ

)1−γ

(p1(t) + p2(t)|u(t)|+ p3(t)|h(t)|) ,

which implies that∣∣∣∣∣
(
tρ − sρk
ρ

)1−γ

h(t)

∣∣∣∣∣ ≤ p∗1

(
bρ − aρ

ρ

)1−γ

+ p∗2‖u‖PCγ,ρ + p∗3

∣∣∣∣∣
(
tρ − sρk
ρ

)1−γ

h(t)

∣∣∣∣∣ ,
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then ∣∣∣∣∣
(
tρ − sρk
ρ

)1−γ

h(t)

∣∣∣∣∣ ≤
p∗1

(
bρ − aρ

ρ

)1−γ

+ p∗2‖u‖PCγ,ρ

1− p∗3
.

This implies, by (4.13), (Ax5) and by letting the estimation of Step 2, that for each
t ∈ Ik, k = 0, . . . ,m, we have

∣∣∣∣( tρ−sρkρ

)1−γ
u(t)

∣∣∣∣ ≤ |ϕk|
Γ(γ)

+
p∗1

(
bρ−aρ
ρ

)1−γ
+ p∗2‖u‖PCγ,ρ

1− p∗3

(
Γ(γ)

Γ(γ + α)

)(
bρ − aρ

ρ

)α
,

thus ∣∣∣∣∣
(
tρ − sρk
ρ

)1−γ

u(t)

∣∣∣∣∣ ≤ ϕ∗

Γ(γ)
+

(
p∗1Γ(γ)

(1− p∗3)Γ(γ + α)

)(
bρ − aρ

ρ

)1−γ+α

+

(
p∗2Γ(γ)

(1− p∗3)Γ(γ + α)

)(
bρ − aρ

ρ

)α
‖u‖PCγ,ρ .

And for each t ∈ Ĩk, k = 1, . . . ,m, we have,

|u(t)| ≤ |gk(t, u(t))| ≤ Φ1‖u‖PCγ,ρ + Φ2,

Then, for each t ∈ J we have,

‖u‖PCγ,ρ ≤ χ1 + χ2‖u‖PCγ,ρ ,

where

χ1 = max
{
Φ2,

ϕ∗

Γ(γ)
+

(
p∗1Γ(γ)

(1− p∗3)Γ(γ + α)

)(
bρ − aρ

ρ

)1−γ+α
}
,

and
χ2 = max

{
Φ1,

(
p∗2Γ(γ)

(1− p∗3)Γ(γ + α)

)(
bρ − aρ

ρ

)α}
.

Then by (4.15), we have
‖u‖PCγ,ρ ≤

χ1

1− χ2

:= R.

As consequence of Theorem 1.27, and using Step 2 of the last result, we deduce that Ψ
has a fixed point which is a solution of the problem (4.1)-(4.3). �

4.2.2 Nonlocal Impulsive Differential Equations
This section is concerned with a generalization of the results presented in the previous
section to nonlocal impulsive fractional differential equations. More precisely we shall
present some existence results for the following nonlocal problem(

ρDα,β

s+k
u
)
(t) = f

(
t, u(t),

(
ρDα,β

s+k
u
)
(t)
)
; t ∈ Ik, k = 0, . . . ,m, (4.16)

u(t) = gk(t, u(t)); t ∈ Ĩk, k = 1, . . . ,m, (4.17)
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(
ρJ 1−γ

a+ u
)
(a+) + ξ(u) = ϕ0, (4.18)

where ρDα,β

s+k
,ρ J 1−γ

a+ are the generalized Hilfer fractional derivative of order α ∈ (0, 1) and
type β ∈ [0, 1] and generalized Hilfer fractional integral of order 1− γ, (γ = α + β − αβ)
respectively, ϕ0 ∈ IR and Ik, Ĩk, f , gk are as in Section 3, ξ : PCγ,ρ(J) 7→ IR is a
continuous function. Nonlocal conditions were initiated by Byszewski [52] when he proved
the existence and uniqueness of mild and classical solutions of nonlocal Cauchy problems.
The nonlocal condition can be more useful than the standard initial condition to describe
some physical phenomena. The following hypothesis will be used in the sequel.

(Ax6) There exist constants K∗ > 0 such that

|ξ(u)− ξ(ū)| ≤ K∗|u(t)− ū(t)|

for any u, ū ∈ PCγ,ρ(J).

Theorem 4.5. Assume (Ax1) – (Ax3), (Ax6) hold. If

l∗ +K∗ +
ΥΓ(γ)

Γ(γ + α)

(
bρ − aρ

ρ

)α
< 1, (4.19)

then the nonlocal problem (4.16)−(4.18) has a unique solution in PCγ,ρ(J).

Proof: We transform the problem (4.16)−(4.18) into a fixed point problem. Consider
the operator Ψ̃ : PCγ,ρ(J) −→ PCγ,ρ(J) defined by

Ψ̃u(t) =



ϕ0 − ξ(u)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+ (ρJ α
a+h) (t) if t ∈ I0,

ϕk
Γ(γ)

(
tρ − sρk
ρ

)γ−1

+
(
ρJ α

s+k
h
)
(t) if t ∈ Ik, k = 1, . . . ,m,

gk(t, u(t)) if t ∈ Ĩk, k = 1, . . . ,m.

(4.20)

where h ∈ Cγ,ρ(Ik), k = 0, . . . ,m be a function satisfying the functional equation

h(t) = f(t, u(t), h(t)).

Clearly, the fixed points of the operator Ψ̃ are solutions of the problem (4.16)−(4.18).
We can easily show that Ψ̃ is a contraction and its fixed points are in PCγ

γ,ρ(J). �

Theorem 4.6. Assume (Ax1), (Ax4) – (Ax6) hold. If

max

{
Φ1,

(
p∗2Γ(γ)

(1− p∗3)Γ(γ + α)

)(
bρ − aρ

ρ

)α}
< 1, (4.21)

then the nonlocal problem (4.16)−(4.18) has at least one solution in PCγ,ρ(J).



CHAPTER 4. NONLINEAR IMPLICIT GENERALIZED HILFER-TYPE FRACTIONAL
DIFFERENTIAL EQUATIONS WITH NON-INSTANTANEOUS IMPULSES 69

4.2.3 Ulam-Hyers-Rassias stability
First, we consider the Ulam Stability for problem (4.1)−(4.3). Let u ∈ PCγ,ρ(J), ϵ >
0, τ > 0 and ϑ : J −→ [0,∞) be a continuous function. We consider the following
inequalities :

∣∣∣(ρDα,β

s+k
u
)
(t)− f

(
t, u(t),

(
ρDα,β

s+k
u
)
(t)
)∣∣∣ ≤ ϵϑ(t), t ∈ Ik, k = 0, . . . ,m,

|u(t)− gk(t, u(t))| ≤ ϵτ, t ∈ Ĩk, k = 1, . . . ,m.

(4.22)

Definition 4.7. ([108,110]) Problem (4.1)−(4.3) is Ulam-Hyers-Rassias (U-H-R) stable
with respect to (ϑ, τ) if there exists a real number af,ϑ > 0 such that for each ϵ > 0 and
for each solution u ∈ PCγ,ρ(J) of inequality (4.22) there exists a solution w ∈ PCγ,ρ(J)
of (4.1)−(4.3) with

|u(t)− w(t)| ≤ ϵaf,ϑ(ϑ(t) + τ), t ∈ J.

Remark 4.8. ([108, 110]) A function u ∈ PCγ,ρ(J) is a solution of inequality (4.22) if
and only if there exist σ ∈ PCγ,ρ(J) and a sequence σk, k = 0, . . . ,m such that

1. |σ(t)| ≤ ϵϑ(t), t ∈ Ik, k = 0, . . . ,m; and |σk| ≤ ϵτ , t ∈ Ĩk, k = 1, . . . ,m,

2.
(
ρDα,β

s+k
u
)
(t) = f

(
t, u(t),

(
ρDα,β

s+k
u
)
(t)
)
+ σ(t), t ∈ Ik, k = 0, . . . ,m,

3. u(t) = gk(t, u(t)) + σk, t ∈ Ĩk, k = 1, . . . ,m.

Theorem 4.9. Assume that in addition to (Ax1) – (Ax3) and (4.14), the following
hypothesis holds.

(Ax7) There exist a nondecreasing function ϑ : J −→ [0,∞) and λϑ > 0 such that for
each t ∈ Ik; k = 0, . . . ,m, we have

(ρJ α
s+k
ϑ)(t) ≤ λϑϑ(t).

Then problem (4.1)–(4.3) is U-H-R stable with respect to (ϑ, τ).

Proof: Consider the operator Ψ defined in (4.13). Let u ∈ PCγ,ρ(J) be a solution if
inequality (4.22), and let us assume that w is the unique solution of the problem

(
ρDα,β

s+k
w
)
(t) = f

(
t, w(t),

(
ρDα,β

s+k
w
)
(t)
)
; t ∈ Ik, k = 0, . . . ,m,

u(t) = gk(y, w(t
−
k )); t ∈ Ĩk, k = 1, . . . ,m,(

ρJ 1−γ
s+k

w
)
(s+k ) =

(
ρJ 1−γ

s+k
u
)
(s+k ) = ϕk, k = 0, . . . ,m.

By Lemma 4.2, we obtain for each t ∈ (a, b]

w(t) =


ϕk
Γ(γ)

(
tρ − sρk
ρ

)γ−1

+
(
ρJ α

s+k
h
)
(t) if t ∈ Ik, k = 0, . . . ,m,

gk(t, w(t)) if t ∈ Ĩk, k = 1, . . . ,m,
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where h ∈ Cγ,ρ(Ik); k = 0, . . . ,m, be a function satisfying the functional equation

h(t) = f(t, w(t), h(t)).

Since u is a solution of the inequality (4.22), by Remark 4.8, we have{ (
ρDα,β

s+k
u
)
(t) = f

(
t, u(t),

(
ρDα,β

s+k
u
)
(t)
)
+ σ(t), t ∈ Ik, k = 0, . . . ,m;

u(t) = gk(t, u(t)) + σk, t ∈ Ĩk, k = 1, . . . ,m.
(4.23)

Clearly, the solution of (4.23) is given by

u(t) =


ϕk
Γ(γ)

(
tρ − sρk
ρ

)γ−1

+
(
ρJ α

s+k
g
)
(t) +

(
ρJ α

s+k
σ
)
(t) if t ∈ Ik, k = 1, . . . ,m,

gk(t, u(t)) + σk if t ∈ Ĩk, k = 1, . . . ,m,

where g : Ik → IR, k = 0, . . . ,m, be a function satisfying the functional equation

g(t) = f(t, u(t), g(t)).

Hence, for each t ∈ Ik,k = 0, . . . ,m, we have

|u(t)− w(t)| ≤
(
ρJ α

s+k
|g(s)− h(s)|

)
(t) +

(
ρJ α

s+k
|σ(s)|

)
≤ ϵλϑϑ(t) + Υ

∫ t

sk

sρ−1

(
tρ − sρ

ρ

)α−1 |u(s)− w(s)|
Γ(α)

ds.

We apply Lemma 1.20 to obtain

|u(t)− w(t)| ≤ ϵλϑϑ(t) +

∫ t

sk

∞∑
τ=1

(Υ)τ

Γ(τα)
sρ−1

(
tρ − sρ

ρ

)τα−1

(ϵλϑϑ(s))ds

≤ ϵλϑϑ(t)Eα

[
Υ

(
tρ − sρk
ρ

)α]
≤ ϵλϑϑ(t)Eα

[
Υ

(
bρ − aρ

ρ

)α]
.

And for each t ∈ Ĩk,k = 1, . . . ,m, we have

|u(t)− w(t)| ≤ |gk(t, u(t))− gk(t, w(t))|+ |σk|
≤ l∗|u(t)− w(t)|+ ϵτ,

then by 4.14, we have
|u(t)− w(t)| ≤ ϵτ

1− l∗
.

Then for each t ∈ J , we have

|u(t)− w(t)| ≤ aϑϵ(τ + ϑ(t)),

where
aϑ =

1

1− l∗
+ λϑEα

[
Υ

(
bρ − aρ

ρ

)α]
.

Hence, problem (4.1)–(4.3) is U-H-R stable with respect to (ϑ, τ). Now we are concerned
with the Ulam-Hyers-Rassias stability of our problem (4.16)−(4.18). �
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Theorem 4.10. Assume that (Ax1), (Ax4) – (Ax7), and (4.21) hold. Then the
problem (4.16)–(4.18) is U-H-R stable with respect to (ϑ, τ).

4.2.4 Examples
Example 4.11. Consider the following impulsive Cauchy problem(

1
2D

1
2
,0

s+k
u
)
(t) =

e−t

79et+3(1 + |u(t)|+ | 12D
1
2
,0

s+k
u(t)|

, for each t ∈ I0 ∪ I1, (4.24)

u(t) =
|u(t)|

et + 2|u(t)|
, for each t ∈ Ĩ1, (4.25)(

1
2J

1
2

1+u
)
(1+) = 0, (4.26)

where
I0 = (1, 2], I1 = (e, 3], Ĩ1 = (2, e], s0 = 1, t1 = 2, and s1 = e.

Set
f(t, u, w) =

e−t

79et+3(1 + |u|+ |w|)
, t ∈ I0 ∪ I1, u, w ∈ IR.

We have

Cβ(1−α)
γ,ρ ((1, 2]) = C0

1
2
, 1
2
((1, 2]) =

{
v : (1, 2] → IR :

√
2
(√

t− 1
) 1

2
v ∈ C([1, 2], IR)

}
,

and

Cβ(1−α)
γ,ρ ((e, 3]) = C0

1
2
, 1
2
((e, 3]) =

{
v : (e, 3] → IR :

√
2
(√

t−
√
2
) 1

2
v ∈ C([e, 3], IR)

}
,

with
γ = α =

1

2
ρ =

1

2
, β = 0, and k ∈ {0, 1}.

Clearly, the continuous function f ∈ C0
1
2
, 1
2

((1, 2]) ∩ C0
1
2
, 1
2

((e, 3]) .
Hence the condition (Ax1) is satisfied.
For each u, ū, w, w̄ ∈ IR and t ∈ I0 ∪ I1, we have

|f(t, u, w)− f(t, ū, w̄)| ≤ e−t

79et+3
(|u− ū|+ |w − w̄|)

≤ 1

79e5
(|u− ū|+ |w − w̄|) .

Hence condition (Ax2) is satisfied with M1 = M2 =
1

79e5
.

And let
g1(u) =

u

et + 2u
, u ∈ [0,∞).

Let u,w ∈ [0,∞). Then we have

|g1(u)− g1(w)| = | u

et + 2u
− w

et + 2w
| = et|u− w|

(et + 2u)(et + 2w)
≤ 1

e
|u− w|,
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and so the condition (Ax3) is satisfied with l∗ = 1

e
.

A simple computation shows that the condition (4.14) of Theorem 4.3 is satisfied, for

L =
1

e
+

√
2π(

√
3− 1)

1
2

(79e5 − 1)
≈ 0.368062377 < 1.

Then the problem (4.24)−(4.26) has a unique solution in PC 1
2
, 1
2
([1, 3]). Also, hypothesis

(Ax7) is satisfied with τ = 1 and

ϑ(t) =


2(
√
t−√

sk), if t ∈ I0 ∪ I1,

e, if t ∈ Ĩ1,

and λϑ =

√
2Γ(2)(

√
2− 1)

1
2

Γ(5
2
)

. Indeed, for each t ∈ I0 ∪ I1, we get

(
1
2J

1
2

1+ϑ)(t) ≤
√
2Γ(2)(

√
2− 1)

1
2

Γ(5
2
)

(2
√
t− 2),

and

(
1
2J

1
2

e+ϑ)(t) ≤
√
2Γ(2)(

√
3−

√
e)

1
2

Γ(5
2
)

(2
√
t− 2

√
e).

Consequently, Theorem 4.9 implies that the problem (4.24)–(4.26) is U-H-R stable.

Example 4.12. Consider the following impulsive nonlocal initial value problem

(
1D

1
2
,0

s+k
u
)
(t) =

1 + |u(t)|+ |1D
1
2
,0

s+k
u(t)|

107e−t+3(1 + |u(t)|+ |1D
1
2
,0

s+k
u(t)|)

, t ∈ Ik, k = 0, . . . , 4, (4.27)

u(t) =
|u(t)|

10ek + |u(t)|
, for each t ∈ Ĩk, k = 1, . . . , 4, (4.28)

(
1J

1
2

1+u
)
(1+) +

1

5

u(t)

|u(t)|+ 1
= 1, (4.29)

where
Ik = (sk, tk+1], sk = 1 +

2k

9
for k = 0, . . . , 4

and
Ĩk = (tk, sk], tk = 1 +

2k − 1

9
for k = 1, . . . , 4, (m = 4),

and
a = s0 = 1, b = t5 = 2.

Set
f(t, u, w) =

1 + |u|+ |w|
107e−t+3(1 + |u|+ |w|)

, t ∈ Ik, k = 0, . . . , 4, u, w ∈ IR.
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We have

Cβ(1−α)
γ,ρ ((sk, tk+1]) = C0

1
2
,1
((sk, tk+1])

=
{
v : (sk, tk+1] → IR : (

√
t− sk)v ∈ C([sk, tk+1], IR)

}
,

with γ = α = 1
2
, ρ = 1, β = 0 and k = 0, . . . , 4. Clearly, the continuous function

f ∈ C0
1
2
,1
([sk, tk+1]); k = 0, . . . , 4. Hence the condition (Ax1) is satisfied.

For each u,w ∈ IR and t ∈ Ik; k = 0, . . . , 4, we have

|f(t, u, w)| ≤ 1

107e−t+3
(1 + |u|+ |w|).

Hence condition (Ax4) is satisfied with

p1(t) = p2(t) = p3(t) =
1

107e−t+3
,

and
p∗1 = p∗2 = p∗3 =

1

107e
.

Let
gk(u) =

u

10ek + u
, k = 1, . . . , 4, u ∈ [0,∞),

then we have
|gk(u)| ≤

1

10e
|u|+ 1, k = 1, . . . , 4,

and so the condition (Ax5) is satisfied with Φ1 =
1

10e
and Φ2 = 1.

And let
ξ(u) =

1

5

u

|u|+ 1

then we have
|g(u)| ≤ 42 sup{u(tk), k = 1, . . . , 4},

and so the condition (Ax6) is satisfied with M̃ = 42 sup{u(tk), k = 1, . . . , 4}.
The condition (4.21) of Theorem 4.6 is satisfied, for

Φ1 =
1

10e
< 1,

and (
p∗2Γ(γ)

(1− p∗3)Γ(γ + α)

)(
bρ − aρ

ρ

)α
=

√
π

(107e− 1)
< 1.

Then the problem (4.27)−(4.29) has at least one solution in PC 1
2
,1([1, 2]). Also, hypothesis

(Ax7) is satisfied with τ = 1 and

ϑ(t) =


(t− sk)

2, if t ∈ Ik, k = 0, . . . , 4,

2, if t ∈ Ĩk, k = 1, . . . , 4,
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and λϑ =
Γ(3)

Γ(7
2
)
. Indeed, for each t ∈ Ik, k = 0, . . . , 4, we get

(1J
1
2

s+k
ϑ)(t) ≤ Γ(3)

Γ(7
2
)
(t− sk)

5
2

≤ Γ(3)

Γ(7
2
)
(t− sk)

2

= λϑϑ(t).

Consequently, Theorem 4.10 implies that the problem (4.27)–(4.29) is U-H-R stable.
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4.3 Initial Value Problem for Nonlinear Implicit Gen-
eralized Hilfer-Type Fractional Differential Equa-
tions in Banach Spaces2

Motivated by the works mentioned in the introduction, in this section, we establish
existence results to the initial value problem of nonlinear implicit generalized Hilfer-type
fractional differential equation with non-instantaneous impulses:(

ρDα,β

s+k
u
)
(t) = f

(
t, u(t),

(
ρDα,β

s+k
u
)
(t)
)
; t ∈ Ik, k = 0, . . . ,m, (4.30)

u(t) = gk(t, u(t)); t ∈ Ĩk, k = 1, . . . ,m, (4.31)

(
ρJ 1−γ

a+ u
)
(a+) = ϕ0, (4.32)

where ρDα,β

s+k
, ρJ 1−γ

a+ are the generalized Hilfer-type fractional derivative of order α ∈ (0, 1)

and type β ∈ [0, 1] and generalized fractional integral of order 1 − γ, (γ = α + β − αβ),
respectively, ρ > 0, ϕ0 ∈ E , Ik := (sk, tk+1]; k = 0, . . . ,m, Ĩk := (tk, sk]; k = 1, . . . ,m,
a = s0 < t1 ≤ s1 < t2 ≤ s2 < . . . ≤ sm−1 < tm ≤ sm < tm+1 = b < ∞, u(t+k ) =
lim
ϵ→0+

u(tk + ϵ) and u(t−k ) = lim
ϵ→0−

u(tk + ϵ) represent the right and left hand limits of u(t)

at t = tk, f : Ik × E × E → E is a given function and gk : Ĩk × E → E; k = 1, . . . ,m are
given continuous functions such that

(
ρJ 1−γ

s+k
gk

)
(t, u(t)) |t=sk = ϕk ∈ E , where (E, ‖ · ‖)

is a real Banach space.

4.3.1 Existence Results
Consider the weighted Banach space

Cγ,ρ(Ik) =

{
u : Ik → E : t→

(
tρ − sρk
ρ

)1−γ

u(t) ∈ CE([sk, tk+1])

}
,

where 0 ≤ γ < 1, k = 0, . . . ,m, and

Cn
γ,ρ(Ik) =

{
u ∈ Cn−1(Ik) : u

(n) ∈ Cγ,ρ(Ik)
}
, n ∈ IN,

C0
γ,ρ(Ik) = Cγ,ρ(Ik).

Also consider the Banach space

PCγ,ρ(J) =

{
u : J → E : u ∈ Cγ,ρ(Ik); k = 0, . . . ,m, and u ∈ CE(Ĩk); k = 1, . . . ,m,

and there exist u(t−k ), u(t+k ), u(s−k ), and u(s+k ) with u(t−k ) = u(tk)

}
,

2. A. Salim, M. Benchohra, J. E. Lazreg and J. Henderson, Nonlinear implicit
generalized Hilfer-type fractional differential equations with non-instantaneous impulses
in Banach spaces, Adv. Theory Nonlinear Anal. Appl. 4 (2020), 332-348.
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and

PCn
γ,ρ(J) =

{
u ∈ PCn−1(J) : u(n) ∈ PCγ,ρ(J)

}
, n ∈ IN,

PC0
γ,ρ(J) = PCγ,ρ(J),

with the norm

‖u‖PCγ,ρ = max
{

max
k=0,...,m

{
sup

t∈[sk,tk+1]

∥∥∥∥∥
(
tρ − sρk
ρ

)1−γ

u(t)

∥∥∥∥∥
}
, max
k=1,...,m

{
sup

t∈[tk,sk]
‖u(t)‖

}}
,

Also, we define the following Banach space

PCγ
γ,ρ(J) =

{
u : J → IR : u ∈ Cγ

γ,ρ(Ik); k = 0, . . . ,m, and u ∈ CE(Ĩk); k = 1, . . . ,m,

and there exist u(t−k ), u(t+k ), u(s−k ), and u(s+k ) with u(t−k ) = u(tk)

}
.

Lemma 4.13. ([61]) Let D ⊂ PCγ,ρ(J) be a bounded and equicontinuous set, then
(i) the function t→ µ(D(t)) is continuous on J , and

µPCγ,ρ = max
{

max
k=0,...,m

{
sup

t∈[sk,tk+1]

µ

((
tρ − sρk
ρ

)1−γ

u(t)

)}
, max
k=1,...,m

{
sup

t∈[tk,sk]
µ (u(t))

}}
,

(ii) µ
(∫ b

a

u(s)ds : u ∈ D

)
≤
∫ b

a

µ(D(s))ds, where

D(t) = {u(t) : t ∈ D}, t ∈ J.

Same as the Last section, by following the same steps we can have the following result

Lemma 4.14. Let γ = α + β − αβ where 0 < α < 1, 0 ≤ β ≤ 1, and k = 0, . . . ,m,
let f : Ik × E × E → E, be a function such that f(·, u(·), w(·)) ∈ Cγ,ρ(Ik), for any
u,w ∈ PCγ,ρ(J). If u ∈ PCγ

γ,ρ(J), then u satisfies the problem (4.30)− (4.32) if and only
if u is the fixed point of the operator Ψ : PCγ,ρ(J) → PCγ,ρ(J) defined by

Ψu(t) =


ϕk
Γ(γ)

(
tρ − sρk
ρ

)γ−1

+
(
ρJ α

s+k
h
)
(t), t ∈ Ik, k = 0, . . . ,m,

gk(t, u(t)), t ∈ Ĩk, k = 1, . . . ,m.

(4.33)

where ϕ∗ = max{‖ϕk‖ : k = 0, . . . ,m} and h ∈ Cγ,ρ(Ik), k = 0, . . . ,m be a function
satisfying the functional equation

h(t) = f(t, u(t), h(t)).

Also, by Lemma 1.12, Ψu ∈ PCγ,ρ(J).

The following hypotheses will be used in the sequel :
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(Ax1) The function t 7→ f(t, u, w) is measurable on Ik; k = 0, . . . ,m, for each u,w ∈ E,
and the functions u 7→ f(t, u, w) and w 7→ f(t, u, w) are continuous on E for a.e.
t ∈ Ik; k = 0, . . . ,m, and

f(·, u(·), w(·)) ∈ Cβ(1−α)
γ,ρ (Ik) for any u,w ∈ PCγ,ρ(J).

(Ax2) There exists a continuous function p : [a, b] −→ [0,∞) such that

‖f(t, u, w)‖ ≤ p(t), for a.e. t ∈ Ik; k = 0, . . . ,m, and for each u,w ∈ E.

(Ax3) For each bounded set B ⊂ E and for each t ∈ Ik; k = 0, . . . ,m, we have

µ(f(t, B, (ρDα,β

s+k
B))) ≤ p(t)µ(B),

where ρDα,β

s+k
B = {ρDα,β

s+k
w : w ∈ B}.

(Ax4) The functions gk ∈ C(Ĩk, E); k = 1, . . . ,m, and there exists ∗ > 0 such that

‖gk(t, u)‖ ≤ l∗‖u‖ for each u ∈ E, k = 1, . . . ,m.

(Ax5) For each bounded set B ⊂ E and for each t ∈ Ĩk; k = 1, . . . ,m, we have

µ(gk(t, B)) ≤ l∗µ(B), k = 1, . . . ,m.

We are now in a position to state and prove our existence result for the problem
(4.30)−(4.32) based on Mönch’s fixed point theorem. Set p∗ = sup

t∈[a,b]
p(t).

Theorem 4.15. Assume (Ax1) – (Ax5) hold. If

L := max

{
l∗,

p∗Γ(γ)

Γ(α + γ)

(
bρ − aρ

ρ

)α}
< 1, (4.34)

then the problem (4.30)−(4.32) has at least one solution in PCγ,ρ(J).

Proof: Consider the operator Ψ : PCγ,ρ(J) → PCγ,ρ(J) defined in (4.33) and the ball
BR := B(0, R) = {w ∈ PCγ,ρ(J) : ‖w‖PCγ,ρ ≤ R}, such that

R ≥ ϕ∗

(1− l∗)Γ(γ)
+

p∗

(1− l∗)Γ(α + 1)

(
bρ − aρ

ρ

)1−γ+α

.

For any u ∈ BR, and each t ∈ Ik, k = 0, . . . ,m, we have

‖Ψu(t)‖ ≤ ‖ϕk‖
Γ(γ)

(
tρ − sρk
ρ

)γ−1

+
(
ρJ α

s+k
‖h(s)‖

)
(t)

≤ ϕ∗

Γ(γ)

(
tρ − sρk
ρ

)γ−1

+ p∗
(
ρJ α

s+k
(1)
)
(t).
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By Lemma 1.10, we have∥∥∥∥∥
(
tρ − sρk
ρ

)1−γ

Ψu(t)

∥∥∥∥∥ ≤ ϕ∗

Γ(γ)
+

p∗

Γ(α + 1)

(
tρ − sρk
ρ

)1−γ+α

≤ ϕ∗

Γ(γ)
+

p∗

Γ(α + 1)

(
bρ − aρ

ρ

)1−γ+α

.

And for t ∈ Ĩk, k = 1, . . . ,m, we have

‖(Ψu)(t)‖ ≤ l∗‖u(t)‖ ≤ l∗R.

Hence,

‖Ψu‖PCγ,ρ ≤ l∗R +
ϕ∗

Γ(γ)
+

p∗

Γ(α + 1)

(
bρ − aρ

ρ

)1−γ+α

≤ R.

This proves that Ψ transforms the ball BR into itself. We shall show that the operator
Ψ : BR → BR satisfies all the assumptions of Theoreme 1.24. The proof will be given
in several steps.
Step 1: Ψ : BR → BR is continuous. Let {un} be a sequence such that un → u in
PCγ,ρ(J). Then for each t ∈ Ik, k = 0, . . . ,m, we have,∥∥∥∥ ((Ψun)(t)− (Ψu)(t))

(
tρ − sρk
ρ

)1−γ ∥∥∥∥ ≤
(
tρ − sρk
ρ

)1−γ (
ρJ α

s+k
‖hn(s)− h(s)‖

)
(t),

where hn, h ∈ Cγ,ρ(Ik); k = 0, . . . ,m, such that

hn(t) = f(t, un(t), hn(t)),

h(t) = f(t, u(t), h(t)).

For each t ∈ Ĩk, k = 1, . . . ,m, we have,

‖((Ψun)(t)− (Ψu)(t))‖ ≤ ‖(gk(t, un(t))− gk(t, u(t)))‖ .

Since un → u, then we get hn(t) → h(t) as n → ∞ for each t ∈ J , and since f and gk
are continuous, then we have

‖Ψun −Ψu‖PCγ,ρ → 0 as n→ ∞.

Step 2: Ψ(BR) is bounded and equicontinuous.
Since Ψ(BR) ⊂ BR and BR is bounded, then Ψ(BR) is bounded.
Next, let ϵ1, ϵ2 ∈ Ik, k = 0, . . . ,m, ϵ1 < ϵ2, and let u ∈ BR. Then∥∥∥∥∥

(
ϵρ1 − sρk
ρ

)1−γ

(Ψu)(ϵ1)−
(
ϵρ2 − sρk
ρ

)1−γ

(Ψu)(ϵ2)

∥∥∥∥∥
≤

∥∥∥∥∥
(
ϵρ1 − sρk
ρ

)1−γ (
ρJ α

s+k
h(τ)

)
(ϵ1)−

(
ϵρ2 − sρk
ρ

)1−γ (
ρJ α

s+k
h(τ)

)
(ϵ2)

∥∥∥∥∥
≤
(
ϵρ2 − sρk
ρ

)1−γ (
ρJ α

ϵ+1
‖h(τ)‖

)
(ϵ2) +

1

Γ(α)

∫ ϵ1

sk

∥∥τ ρ−1H(τ)h(τ)
∥∥ dτ,
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where H(τ) =

[(
ϵρ1 − sρk
ρ

)1−γ (
ϵρ1 − τ ρ

ρ

)α−1

−
(
ϵρ2 − sρk
ρ

)1−γ (
ϵρ2 − τ ρ

ρ

)α−1
]
.

Then by Lemma 1.10, we have∥∥∥∥∥
(
ϵρ1 − sρk
ρ

)1−γ

(Ψu)(ϵ1)−
(
ϵρ2 − sρk
ρ

)1−γ

(Ψu)(ϵ2)

∥∥∥∥∥
≤ p∗

Γ(1 + α)

(
ϵρ2 − sρk
ρ

)1−γ (
ϵρ2 − ϵρ1
ρ

)α
+ p∗

∫ ϵ1

sk

∥∥∥∥H(τ)
τ ρ−1

Γ(α)

∥∥∥∥(τ ρ − sρk
ρ

)γ−1

dτ,

and for each t ∈ Ĩk, k = 1, . . . ,m, we have

‖(Ψu)(ϵ1)− (Ψu)(ϵ2)‖ ≤ ‖(gk(ϵ1, u(ϵ1)))− (gk(ϵ2, u(ϵ2)))‖ .

As ϵ1 → ϵ2, the right-hand side of the above inequality tends to zero. Hence, Ψ(BR) is
bounded and equicontinuous.
Step 3: The implication (1.1) of Theorem 1.24 holds.
Now let D be an equicontinuous subset of BR such that D ⊂ Ψ(D)∪ {0}, therefore the
function t −→ d(t) = µ(D(t)) are continuous on J . By (Ax3), (Ax5) and the properties
of the measure µ, for each t ∈ Ik, k = 0, . . . ,m, we have(

tρ − sρk
ρ

)1−γ

d(t) ≤ µ

((
tρ − sρk
ρ

)1−γ

(ΨD)(t) ∪ {0}

)

≤ µ

((
tρ − sρk
ρ

)1−γ

(ΨD)(t)

)
,

then, (
tρ − sρk
ρ

)1−γ

d(t) ≤
(
tρ − sρk
ρ

)1−γ (
ρJ α

s+k
p(s)µ(D(s))

)
(t)

≤ p∗
(
bρ − aρ

ρ

)1−γ (
ρJ α

s+k
d(s)

)
(t)

≤
[
p∗Γ(γ)

Γ(α + γ)

(
bρ − aρ

ρ

)α]
‖d‖PCγ,ρ .

And for each t ∈ Ĩk, k = 1, . . . ,m, we have

d(t) ≤ µ (gk(t,D(t))) ≤ l∗d(t).

Thus for each t ∈ J , we have
‖d‖PCγ,ρ ≤ L‖d‖PCγ,ρ .

From (4.34), we get ‖d‖PCγ,ρ = 0, that is d(t) = µ(D(t)) = 0, for each t ∈ J , and then
D(t) is relatively compact in E. In view of the Ascoli-Arzela Theorem, D is relatively
compact in BR. Applying now Theorem 1.24, we conclude that Ψ has a fixed point
u∗ ∈ PCγ,ρ(J), which is solution of the problem (4.30)-(4.32).
Step 4: We show that such a fixed point u∗ ∈ PCγ,ρ(J) is actually in PCγ

γ,ρ(J).
Since u∗ is the unique fixed point of operator Ψ in PCγ,ρ(J), then for each t ∈ J, we
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have

Ψu∗(t) =


ϕk
Γ(γ)

(
tρ − sρk
ρ

)γ−1

+
(
ρJ α

s+k
h
)
(t), t ∈ Ik, k = 0, . . . ,m,

gk(t, u
∗(t)), t ∈ Ĩk, k = 1, . . . ,m.

where h ∈ Cγ,ρ(Ik); k = 0, . . . ,m, such that

h(t) = f(t, u∗(t), h(t)).

For t ∈ Ik; k = 0, . . . ,m, applying ρDγ

s+k
to both sides and by Lemma 1.10 and Lemma

1.16, we have
ρDγ

s+k
u∗(t) =

(
ρDγ

s+k

ρJ α
s+k
f(s, u∗(s), h(s))

)
(t)

=
(
ρDβ(1−α)

s+k
f(s, u∗(s), h(s))

)
(t).

Since γ ≥ α, by (Ax1), the right hand side is in Cγ,ρ(Ik) and thus ρDγ

s+k
u∗ ∈ Cγ,ρ(Ik)

which implies that u∗ ∈ Cγ
γ,ρ(Ik). And since gk ∈ C(Ĩk, E); k = 1, . . . ,m, then u∗ ∈

PCγ
γ,ρ(J). As a consequence of Steps 1 to 4 together with Theorem 4.15, we can conclude

that the problem (4.30)-(4.32) has at least one solution in PCγ,ρ(J). �

Our second existence result for the problem (4.30)-(4.32) is based on Darbo’s fixed
point Theorem.

Theorem 4.16. Assume (Ax1) – (Ax5) hold. If

L := max

{
l∗,

p∗Γ(γ)

Γ(α + γ)

(
bρ − aρ

ρ

)α}
< 1,

then the problem (4.30)−(4.32) has at least one solution in PCγ,ρ(J).

Proof: Consider the operator Ψ defined in (4.33). We know that Ψ : BR −→ BR is
bounded and continuous and that Ψ(BR) is equicontinuous, we need to prove that the
operator Ψ is a L-contraction.
Let D ⊂ BR and t ∈ Ik, k = 0, . . . ,m. Then we have

µ

((
tρ − sρk
ρ

)1−γ

(ΨD)(t)

)
= µ

((
tρ − sρk
ρ

)1−γ

(Ψu)(t) : u ∈ D

)
≤

(
bρ − aρ

ρ

)1−γ {(
ρJ α

s+k
p∗µ(u(s))

)
(t), u ∈ D

}
.

By Lemma 1.10, we have for t ∈ Ik, k = 0, . . . ,m,

µ

((
tρ − sρk
ρ

)1−γ

(ΨD)(t)

)
≤

[
p∗Γ(γ)

Γ(α + γ)

(
bρ − aρ

ρ

)α]
µPCγ,ρ(D).

And for each t ∈ Ĩk, k = 1, . . . ,m, we have

µ ((ΨD)(t)) ≤ µ (gk(t,D(t))) ≤ l∗µ (D(t)) .
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Hence, for each t ∈ J , we have

µPCγ,ρ(ΨD) ≤ LµPCγ,ρ(D).

So, By (4.34), the operator Ψ is a L-contraction. As consequence of Theorem 1.25 and
using Step 4 of the last result, we deduce that Ψ has a fixed point which is a solution
of the problem (4.30)-(4.32). �

4.3.2 Ulam-Hyers-Rassias Stability
We are concerned with the Ulam-Hyers-Rassias stability of our problem (4.30)-(4.32). Let
u ∈ PCγ,ρ(J), ϵ > 0, τ > 0 and ϑ : J −→ [0,∞) be a continuous function. We consider
the following inequality :

∥∥∥(ρDα,β

s+k
u
)
(t)− f

(
t, u(t),

(
ρDα,β

s+k
u
)
(t)
)∥∥∥ ≤ ϵϑ(t), t ∈ Ik, k = 0, . . . ,m,

‖u(t)− gk(t, u(t))‖ ≤ ϵτ, t ∈ Ĩk, k = 1, . . . ,m.

(4.35)

Definition 4.17. ([108, 110]) Problem (4.30)−(4.32) is Ulam-Hyers-Rassias (U-H-R)
stable with respect to (ϑ, τ) if there exists a real number af,ϑ > 0 such that for each
ϵ > 0 and for each solution u ∈ PCγ,ρ(J) of inequality (4.35) there exists a solution
w ∈ PCγ,ρ(J) of (4.30)−(4.32) with

‖u(t)− w(t)‖ ≤ ϵaf,ϑ(ϑ(t) + τ), t ∈ J.

Remark 4.18. ([108, 110]) A function u ∈ PCγ,ρ(J) is a solution of inequality (4.35) if
and only if there exist σ ∈ PCγ,ρ(J) and a sequence σk, k = 0, . . . ,m such that

1. ‖σ(t)‖ ≤ ϵϑ(t), t ∈ Ik, k = 0, . . . ,m; and ‖σk‖ ≤ ϵτ , t ∈ Ĩk, k = 1, . . . ,m,

2.
(
ρDα,β

s+k
u
)
(t) = f

(
t, u(t),

(
ρDα,β

s+k
u
)
(t)
)
+ σ(t), t ∈ Ik, k = 0, . . . ,m,

3. u(t) = gk(t, u(t)) + σk, t ∈ Ĩk, k = 1, . . . ,m.

Theorem 4.19. Assume that in addition to (Ax1) – (Ax5) and (4.34), the following
hypothesis holds.

(Ax6) There exist a nondecreasing function ϑ : J −→ [0,∞) and λϑ > 0 such that for
each t ∈ Ik; k = 0, . . . ,m, we have

(ρJ α
s+k
ϑ)(t) ≤ λϑϑ(t).

(Ax7) There exists a continuous function χ :
m⋃
k=1

[sk, tk+1] −→ [0,∞) such that for each

t ∈ Ik; k = 0, . . . ,m, we have

p(t) ≤ χ(t)ϑ(t).

Then problem (4.30)–(4.32) is U-H-R stable with respect to (ϑ, τ).
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Proof: Consider the operator Ψ defined in (4.33). Let u ∈ PCγ,ρ(J) be a solution if
inequality (4.35), and let us assume that w is the unique solution of the problem

(
ρDα,β

s+k
w
)
(t) = f

(
t, w(t),

(
ρDα,β

s+k
w
)
(t)
)
; t ∈ Ik, k = 0, . . . ,m,

w(t) = gk(t, w(t
−
k )); t ∈ Ĩk, k = 1, . . . ,m,(

ρJ 1−γ
s+k

w
)
(s+k ) =

(
ρJ 1−γ

s+k
u
)
(s+k ) = ϕk, k = 0, . . . ,m.

By Lemma 4.14, we obtain for each t ∈ (a, b]

w(t) =


ϕk
Γ(γ)

(
tρ − sρk
ρ

)γ−1

+
(
ρJ α

s+k
h
)
(t) if t ∈ Ik, k = 0, . . . ,m,

gk(t, w(t)) if t ∈ Ĩk, k = 1, . . . ,m,

where h ∈ Cγ,ρ(Ik); k = 0, . . . ,m, be a function satisfying the functional equation

h(t) = f(t, w(t), h(t)).

Since u is a solution of the inequality (4.35), by Remark 4.18, we have{ (
ρDα,β

s+k
u
)
(t) = f

(
t, u(t),

(
ρDα,β

s+k
u
)
(t)
)
+ σ(t), t ∈ Ik, k = 0, . . . ,m;

u(t) = gk(t, u(t)) + σk, t ∈ Ĩk, k = 1, . . . ,m.
(4.36)

Clearly, the solution of (4.36) is given by

u(t) =


ϕk
Γ(γ)

(
tρ − sρk
ρ

)γ−1

+
(
ρJ α

s+k
g
)
(t) +

(
ρJ α

s+k
σ
)
(t), t ∈ Ik, k = 1, . . . ,m,

gk(t, u(t)) + σk, t ∈ Ĩk, k = 1, . . . ,m,

where g : Ik → E, k = 0, . . . ,m, be a function satisfying the functional equation

g(t) = f(t, u(t), g(t)).

Hence, for each t ∈ Ik,k = 0, . . . ,m, we have

‖u(t)− w(t)‖ ≤
(
ρJ α

a+‖g(s)− h(s)‖
)
(t) +

(
ρJ α

a+‖σ(s)‖
)

≤ ϵλϑϑ(t) +

∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1
2χ(t)ϑ(t)

Γ(γ)
ds

≤ ϵλϑϑ(t) + 2χ∗ (ρJ α
a+ϑ
)
(t)

≤ (ϵ+ 2χ∗)λϑϑ(t)

≤ (1 +
2χ∗

ϵ
)λϑϵ(τ + ϑ(t)),

where

χ∗ = max
k=0,...,m

{
sup

t∈[sk,tk+1]

χ(t)

}
.

For each t ∈ Ĩk,k = 1, . . . ,m, we have

‖u(t)− w(t)‖ ≤ ‖gk(t, u(t))− gk(t, w(t))‖+ ‖σk‖
≤ l∗‖u(t)− w(t)‖+ ϵτ,
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then by (4.34),
‖u(t)− w(t)‖ ≤ ϵτ

1− l∗
≤ ϵ

1− l∗
(τ + ϑ(t)),

Then for each t ∈ (a, b], we have

‖u(t)− w(t)‖ ≤ aϑϵ(τ + ϑ(t)),

where
aϑ = max

{
(1 +

2χ∗

ϵ
)λϑ,

1

1− l∗

}
.

Hence, problem (4.30)–(4.32) is U-H-R stable with respect to (ϑ, τ). �

4.3.3 An Example
Let

E = l1 =

{
v = (v1, v2, . . . , vn, . . .),

∞∑
n=1

|vn| <∞

}
be the Banach space with the norm

‖v‖ =
∞∑
n=1

|vn|.

Consider the following initial value problem with not instantaneous impulses(
1D

1
2
,0

s+k
u
)
(t) = f

(
t, u(t),

(
1D

1
2
,0

s+k
u
)
(t)
)
, t ∈ (1, 2] ∪ (e, 3], k ∈ {0, 1} (4.37)

u(t) = g(t, u(t)), t ∈ (2, e], (4.38)(
1J

1
2

1+u
)
(1+) = 0, (4.39)

where
a = t0 = s0 = 1 < t1 = 2 < s1 = e < t2 = 3 = b,

u = (u1, u2, . . . , un, . . .),

f = (f1, f2, . . . , fn, . . .),

1D
1
2
,0

s+k
u = (1D

1
2
,0

s+k
u1, . . . ,

1D
1
2
,0

s+k
u2, . . . ,

1D
1
2
,0

s+k
un, . . .),

g = (g1, g2, . . . , gn, . . .),

fn(t, un(t),
(
1D

1
2
,0

s+k
un

)
(t)) =

(2t3 + 5e−2)|un(t)|

183e−t+3(1 + ‖u(t)‖+ ‖
(
1D

1
2
,0

s+k
u
)
(t)‖)

, t ∈ (1, 2] ∪ (e, 3],

with k ∈ {0, 1}, n ∈ N, and

gn(t, un(t)) =
|un(t)|

105e−t+5 + 1
, t ∈ (2, e], n ∈ N.
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We have

Cβ(1−α)
γ,ρ ((1, 2]) = C0

1
2
,1
((1, 2]) =

{
h : (1, 2] → E : (

√
t− 1)h ∈ C([1, 2], E)

}
,

and

Cβ(1−α)
γ,ρ ((e, 3]) = C0

1
2
,1
((e, 3]) =

{
h : (e, 3] → E : (

√
t− e)h ∈ C([e, 3], E)

}
,

with γ = α = 1
2
, ρ = 1, β = 0 and k ∈ {0, 1}. Clearly, the continuous function

f ∈ C0
1
2
,1
((1, 2]) ∩ C0

1
2
,1
((e, 3]). Hence the condition (Ax1) is satisfied.

For each u,w ∈ E and t ∈ (1, 2] ∪ (e, 3] :

‖f(t, u, w)‖ ≤ 2t3 + 5e−2

183e−t+3
.

Hence condition (Ax2) is satisfied with

p(t) =
2t3 + 5e−2

183e−t+3
,

and
p∗ =

54 + 5e−2

183
.

And for each u ∈ E and t ∈ (2, e] we have

‖g(t, u)‖ ≤ ‖u‖
105e5−e + 1

,

and so the condition (Ax4) is satisfied with l∗ =
1

105e5−e + 1
.

The condition (4.34) of Theorem 4.15 is satisfied, for

L := max
{
l∗,

p∗Γ(γ)

Γ(α + γ)

(
bρ − aρ

ρ

)α}
≈ 0.7489295248 < 1.

Let Ω be a bounded set in E where 1D
1
2
,0

s+k
Ω =

{
1D

1
2
,0

s+k
v : v ∈ Ω

}
; k ∈ {0, 1}, then by

the properties of the Kuratowski measure of noncompactness, for each u ∈ Ω and t ∈
(1, 2] ∪ (e, 3], we have

µ
(
f(t,Ω, 1D

1
2
,0

s+k
Ω)
)
≤ p(t)µ(Ω),

and for each t ∈ (2, e],
µ (g(t,Ω)) ≤ l∗µ(Ω).

Hence conditions (Ax3) and (Ax5) are satisfied. Then the problem (4.37)−(4.39) has at
least one solution in PC 1

2
,1([1, 3]).

Also, hypothesis (Ax6) is satisfied with τ = 1 and

ϑ(t) =


1√
t− sk

, if t ∈ (1, 2] ∪ (e, 3],

1, if t ∈ (2, e],
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and λϑ =
√
π. Indeed, for each t ∈ (1, 2], we get

(1J
1
2

1+ϑ)(t) =
√
π ≤

√
π√

t− 1
,

and for each t ∈ (e, 3], we get

(1J
1
2

e+ϑ)(t) =
√
π ≤

√
π√

t− e
.

Let the function χ : [1, 2] ∪ [e, 3] −→ [0,∞) defined by :

χ(t) =
(2t3 + 5e−2)

√
t− sk

183e−t+3
; k ∈ {0, 1},

then, for each t ∈ (1, 2] ∪ (e, 3], we have

p(t) = χ(t)ϑ(t),

with χ∗ = p∗. Hence, the condition (Ax7) is satisfied. Consequently, Theorem 4.19
implies that the problem (4.37)–(4.39) is U-H-R stable.
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Chapter 5

Boundary Value Problem for Fractional Order

Generalized Hilfer-Type Fractional Derivative with

Non-Instantaneous Impulses
1

5.1 Introduction and Motivations
This chapter is devoted to proving some results concerning the existence of solutions

for a class of boundary value problem for nonlinear implicit fractional differential equa-
tions with non-instantaneous impulses and Generalized Hilfer fractional derivative. The
results are based on Banach contraction principle and Krasnoselskii’s fixed point theorem.
Further, for the justification of our results we provide two examples. Fractional calculus
is a branch of classical mathematics, which generalizes the integer order differentiation
and integration of a function to non-integer order [11, 12, 45]. There are several kinds of
fractional derivatives, such as, Riemann-Liouville fractional derivative, Caputo fractional
derivative, Hilfer fractional derivative, Hadamard fractional derivative and others. For
some fundamental results in the theory of fractional calculus and fractional differential
equations we refer the reader to [13, 14, 25, 27, 38]. Impulsive differential equations serve
as basic models to study the dynamics of processes that are subject to sudden changes in
their states. In the literature there are two popular types of impulses. In [45] the authors
studied some new classes of abstract impulsive differential equations with instantaneous
impulses, for more interesting results on the classes with not instantaneous impulses, one
can see [4,6,24]. On the other hand, the stability investigation of differential and integral
equations are important in applications. For basic results and recent development on
Ulam stabilities of differential and integral equations, We refer the reader, for example,
to references [10, 13, 46, 47, 65, 84, 89, 105].

Motivated by the works of the papers mentioned above, in this chapter, we establish
existence and stability results to the boundary value problem with nonlinear implicit
Generalized Hilfer-type fractional differential equation with non-instantaneous impulses:(

αDϑ,r

τ+i
x
)
(t) = f

(
t, x(t),

(
αDϑ,r

τ+i
x
)
(t)
)
; t ∈ Ji, i = 0, . . . ,m, (5.1)

x(t) = ψi(t, x(t)); t ∈ J̃i, i = 1, . . . ,m, (5.2)

ϕ1

(
αJ 1−ξ

a+ x
)
(a+) + ϕ2

(
αJ 1−ξ

m+ x
)
(b) = ϕ3, (5.3)

1. A. Salim, M. Benchohra, J.R. Graef and J. E. Lazreg, Boundary Value Problem for
Fractional Order Generalized Hilfer-Type Fractional Derivative with Non-Instantaneous
Impulses. Fractal Fract. 5 (2021), 1-21.
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where αDϑ,r

τ+i
, αJ 1−ξ

a+ are the generalized Hilfer-type fractional derivative of order ϑ ∈ (0, 1)

and type r ∈ [0, 1] and generalized fractional integral of order 1− ξ, (ξ = ϑ+ r − ϑr) re-
spectively, ϕ1, ϕ2, ϕ3 ∈ IR , ϕ1 6= 0, Ji := (τi, ti+1]; i = 0, . . . ,m, J̃i := (ti, τi]; i = 1, . . . ,m,
a = t0 = τ0 < t1 ≤ τ1 < t2 ≤ τ2 < . . . ≤ τm−1 < tm ≤ τm < tm+1 = b < ∞,
x(t+i ) = lim

ϵ→0+
x(ti+ ϵ) and x(t−i ) = lim

ϵ→0−
x(ti+ ϵ) represent the right and left hand limits of

x(t) at t = ti, f : Ji×IR×IR → IR is a given function and ψi : J̃i×IR → IR; i = 1, . . . ,m

are given continuous functions such that
(
αJ 1−ξ

τ+i
ψi

)
(t, x(t)) |t=τi = ci ∈ IR .

5.2 Existence of Solutions
We can use the preliminary details, essential notations, definitions and lemmata

introduced in the first section of Chapter 4.
We consider the following linear fractional differential equation(

αDϑ,r

τ+i
x
)
(t) = v(t), t ∈ Ji, i = 0, . . . ,m, (5.4)

where 0 < ϑ < 1, 0 ≤ r ≤ 1, α > 0, with the conditions

x(t) = ψi(t, x(τ
−
i )); t ∈ J̃i, i = 1, . . . ,m, (5.5)

ϕ1

(
αJ 1−ξ

a+ x
)
(a+) + ϕ2

(
αJ 1−ξ

τ+m
x
)
(b) = ϕ3, (5.6)

where ξ = ϑ+ r − ϑr, ϕ1, ϕ2, ϕ3 ∈ IR, ϕ1 6= 0 and c∗ = max{|ci| : i = 1, . . . ,m}.

The following theorem shows that the problem (5.4)–(5.6) has a unique solution given
by

x(t) =



1

Γ(ξ)

(
tα − aα

α

)ξ−1 [
ϕ3

ϕ1

− cmϕ2

ϕ1

− ϕ2

ϕ1

(
αJ 1−ξ+ϑ

τ+m
v
)
(b)

]
+
(
αJ ϑ

a+v
)
(t) if t ∈ J0,

ci
Γ(ξ)

(
tα − ταi
α

)ξ−1

+
(
αJ ϑ

τ+i
v
)
(t) if t ∈ Ji, i = 1, . . . ,m,

ψi(t, x(t)) if t ∈ J̃i, i = 1, . . . ,m.

(5.7)

Theorem 5.1. Let ξ = ϑ+ r − ϑr, where 0 < ϑ < 1 and 0 ≤ r ≤ 1. If v : Ji → IR; i =
0, . . . ,m, is a function such that v(·) ∈ Cξ,α(Ji), then x ∈ PCξ

ξ,α(J) satisfies the problem
(5.4)–(5.6) if and only if it satisfies (5.7).

Proof: Assume x satisfies (5.4)–(5.6). If t ∈ J0, then(
αDϑ,r

a+ x
)
(t) = v(t),

Lemma 1.21 implies we have the solution can be written as

x(t) =

(
αJ 1−ξ

a+ x
)
(a)

Γ(ξ)

(
tα − aα

α

)ξ−1

+
1

Γ(ϑ)

∫ t

a

(
tα − τα

α

)ϑ−1

τα−1v(τ)dτ.
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If t ∈ J̃1, then we have x(t) = ψ1(t, x(t)).
If t ∈ J1, then Lemma 1.21 implies

x(t) =

(
αJ 1−ξ

τ+1
x
)
(τ1)

Γ(ξ)

(
tα − τα1
α

)ξ−1

+
1

Γ(ϑ)

∫ t

τ1

(
tα − τα

α

)ϑ−1

τα−1v(τ)dτ

=
c1

Γ(ξ)

(
tα − τα1
α

)ξ−1

+
(
αJ ϑ

τ+1
v
)
(t).

If t ∈ J̃2, then we have x(t) = ψ2(t, x(t)).
If t ∈ J2, then Lemma 1.21 implies

x(t) =

(
αJ 1−ξ

τ+2
x
)
(τ2)

Γ(ξ)

(
tα − τα2
α

)ξ−1

+
1

Γ(ϑ)

∫ t

τ2

(
tα − τα

α

)ϑ−1

τα−1v(τ)dτ

=
c2

Γ(ξ)

(
tα − τα2
α

)ξ−1

+
(
αJ ϑ

τ+2
v
)
(t).

Repeating the process in this way, the solution x(t) for t ∈ J , can be written as

x(t) =



(
αJ 1−ξ

a+ x
)
(a)

Γ(ξ)

(
tα − aα

α

)ξ−1

+
(
αJ ϑ

a+v
)
(t) if t ∈ J0,

ci
Γ(ξ)

(
tα − ταi
α

)ξ−1

+
(
αJ ϑ

τ+i
v
)
(t) if t ∈ Ji, i = 1, . . . ,m,

ψi(t, x(t)) if t ∈ J̃i, i = 1, . . . ,m.

(5.8)

Applying αJ 1−ξ
τ+m

on both sides of (5.8), using Lemma 1.10 and taking t = b, we obtain(
αJ 1−ξ

τ+m
x
)
(b) = cm +

(
αJ 1−ξ+ϑ

τ+m
v
)
(b),

using the condition (5.6), we get(
αJ 1−ξ

a+ x
)
(a) =

ϕ3

ϕ1

− cmϕ2

ϕ1

− ϕ2

ϕ1

(
αJ 1−ξ+ϑ

τ+m
v
)
(b). (5.9)

Substituting (5.9) in (5.8) we get (5.7).

Reciprocally, for t ∈ Ji; i = 0, . . . ,m, applying αJ 1−ξ
τ+i

on both sides of (5.7) and using
Lemma 1.10 and Theorem 1.9, we get

(
αJ 1−ξ

τ+i
x
)
(t) =


ϕ3

ϕ1

− cmϕ2

ϕ1

− ϕ2

ϕ1

(
αJ 1−ξ+ϑ

τ+m
v
)
(b) +

(
αJ 1−ξ+ϑ

a+ v
)
(t) if t ∈ J0,

ci +
(
αJ 1−ξ+ϑ

τ+i
v
)
(t) if t ∈ Ji, i = 1, . . . ,m.

(5.10)
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Next, taking the limit t→ a+ of (5.10) and using Lemma 1.13, with 1− ξ < 1− ξ + ϑ,
we obtain (

αJ 1−ξ
a+ u

)
(a+) =

ϕ3

ϕ1

− cmϕ2

ϕ1

− ϕ2

ϕ1

(
αJ 1−ξ+ϑ

τ+m
v
)
(b). (5.11)

Now taking t = b in (5.10), we get(
αJ 1−ξ

τ+m
u
)
(b) = cm +

(
αJ 1−ξ+ϑ

τ+m
v
)
(b). (5.12)

From (5.11) and (5.12) we obtain

ϕ1

(
αJ 1−ξ

a+ x
)
(a+) + ϕ2

(
αJ 1−ξ

τ+m
x
)
(b) = ϕ3,

which shows that the boundary condition (5.6) is satisfied.
Next, for t ∈ Ji; i = 0, . . . ,m, apply operator αDξ

τ+i
on both sides of (5.7). Then, from

Lemma 1.10 and Lemma 1.16 we obtain

(αDξ

τ+i
x)(t) =

(
αDr(1−ϑ)

τ+i
v
)
(t). (5.13)

Since x ∈ Cξ
ξ,α(Ji) and by definition of Cξ

ξ,α(Ji), we have αDξ

τ+i
x ∈ Cξ,α(Ji), then (5.13)

implies that

(αDξ

τ+i
x)(t) =

(
δα

αJ 1−r(1−ϑ)
τ+i

v
)
(t) =

(
αDr(1−ϑ)

τ+i
v
)
(t) ∈ Cξ,α(Ji). (5.14)

As v(·) ∈ Cξ,α(Ji) and from Lemma 1.12, follows(
αJ 1−r(1−ϑ)

τ+i
v
)
∈ Cξ,α(Ji), i = 0, . . . ,m. (5.15)

From (5.14), (5.15) and by the definition of the space Cn
ξ,α(Ji), we obtain(

αJ 1−r(1−ϑ)
τ+i

v
)
∈ C1

ξ,α(Ji), i = 0, . . . ,m.

Applying operator αJ r(1−ϑ)
τ+i

on both sides of (5.13) and using Lemma 1.15, Lemma 1.13
and Property 1.11, we have

(
αDϑ,r

τ+i
x
)
(t) = αJ r(1−ϑ)

τ+i

(
αDξ

τ+i
x
)
(t) = v(t)−

(
αJ 1−r(1−ϑ)

τ+i
v
)
(τi)

Γ(r(1− ϑ))

(
tα − ταi
α

)r(1−ϑ)−1

= v(t),

that is, (5.4) holds.
Also, we can easily have

x(t) = ψi(t, x(t)); t ∈ J̃i, i = 1, . . . ,m.

This completes the proof. �
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As a consequence of Theorem 5.1, we have the following result

Lemma 5.2. Let ξ = ϑ + r − ϑr where 0 < ϑ < 1 and 0 ≤ r ≤ 1, and i = 0, . . . ,m,
let f : J × IR × IR → IR, be a function such that f(·, x(·), y(·)) ∈ Cξ,α(Ji), for any
x, y ∈ PCξ,α(J). If x ∈ PCξ

ξ,α(J), then x satisfies the problem (5.1)-(5.3) if and only if x
is the fixed point of the operator = : PCξ,α(J) → PCξ,α(J) defined by

=x(t) =



c

Γ(ξ)

(
tα − aα

α

)ξ−1

+
(
αJ ϑ

a+φ
)
(t) if t ∈ J0,

ci
Γ(ξ)

(
tα − ταi
α

)ξ−1

+
(
αJ ϑ

τ+i
φ
)
(t) if t ∈ Ji, i = 1, . . . ,m,

ψi(t, x(t)) if t ∈ J̃i, i = 1, . . . ,m.

(5.16)

where φ be a function satisfying the functional equation

φ(t) = f(t, x(t), φ(t)),

and c = ϕ3

ϕ1

− cmϕ2

ϕ1

− ϕ2

ϕ1

(
αJ 1−ξ+ϑ

τ+m
φ
)
(b). Also, by Lemma 1.12, =u ∈ PCξ,α(J).

The following hypotheses will be used in the sequel :

(Ax1) The function f : Ji × IR × IR → IR is continuous on Ji; i = 0, . . . ,m, and

f(·, x(·), y(·)) ∈ C
r(1−ϑ)
ξ,α (Ji), i = 0, . . . ,m, for any x, y ∈ PCξ,α(J).

(Ax2) There exist constants η1 > 0 and 0 < η2 < 1 such that

|f(t, x, y)− f(t, x̄, ȳ)| ≤ η1|x− x̄|+ η2|y − ȳ|

for any x, y, x̄, ȳ ∈ IR and t ∈ Ji, i = 0, . . . ,m.

(Ax3) The functions ψi are continuous and there exists a constant K∗ > 0 such that

|ψi(x)− ψi(x̄)| ≤ K∗|x− x̄|, x, x̄ ∈ IR, i = 1, . . . ,m.

Remark 5.3. By the hypothesis (Ax2) we have

|f(t, x, y)| ≤ |f(t, x, y)− f(t, 0, 0)|+ |f(t, 0, 0)|
≤ η1|x|+ η2|y|+ f0.

where f0 = sup
t∈[a,b]

|f(t, 0, 0)|.

We are now in a position to state and prove our existence result for the problem (5.1)-(5.3)
based on based on Banach’s fixed point theorem.
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Theorem 5.4. Assume (Ax1) – (Ax3) hold. If

ℓ̃ = max
{
K∗,

η1
1− η2

(
bα − aα

α

)ϑ [ |ϕ2|
|ϕ1|Γ(ϑ+ 1)

+
Γ(ξ)

Γ(ξ + ϑ)

]}
< 1, (5.17)

then the problem (5.1)−(5.3) has a unique solution in PCξ,α(J).

Proof: The proof will be given in two steps.
Step 1: We show that the operator = defined in (5.16) has a unique fixed point x∗ in
PCξ,α(J). Let x, y ∈ PCξ,α(J) and t ∈ J.
For t ∈ J0 we have

|=x(t)−=y(t)| ≤ |ϕ2|
|ϕ1|Γ(ξ)

(
tα − aα

α

)ξ−1 (
αJ 1−ξ+ϑ

τ+m
|φ(τ)− φ̃(τ)|

)
(b)

+
(
αJ ϑ

a+ |φ(τ)− φ̃(τ)|
)
(t),

and for t ∈ Ji, i = 1, . . . ,m, we have

|=x(t)−=y(t)| ≤
(
αJ ϑ

τ+i
|φ(τ)− φ̃(τ)|

)
(t),

where φ, φ̃ ∈ Cξ,α(Ji); i = 0, . . . ,m, such that
φ(t) = f(t, x(t), φ(t)),

φ̃(t) = f(t, y(t), φ̃(t)).

By (Ax2), we have
|φ(t)− φ̃(t)| = |f(t, x(t), φ(t))− f(t, y(t), φ̃(t))|

≤ η1|x(t)− y(t)|+ η2|φ(t)− φ̃(t)|.
Then,

|φ(t)− φ(t)| ≤ η1
1− η2

|x(t)− y(t)|.

Therefore, for each t ∈ Ji, i = 1, . . . ,m,

|=x(t)−=y(t)| ≤ η1
1− η2

(
αJ ϑ

τ+i
|x(τ)− y(τ)|

)
(t).

Thus

|=x(t)−=y(t)| ≤

[
η1

1− η2

(
αJ ϑ

τ+i

(
τα − ταi

α

)ξ−1
)
(t)

]
‖x− y‖PCξ,α .

By Lemma 1.10, we have

|=x(t)−=y(t)| ≤

[
η1Γ(ξ)

(1− η2)Γ(ξ + ϑ)

(
tα − ταi
α

)ϑ+ξ−1
]
‖x− y‖PCξ,α ,

hence∣∣∣∣∣(=x(t)−=y(t))
(
tα − ταi
α

)1−ξ
∣∣∣∣∣ ≤

[
η1Γ(ξ)

(1− η2)Γ(ξ + ϑ)

(
tα − ταi
α

)ϑ]
‖x− y‖PCξ,α

≤

[
η1Γ(ξ)

(1− η2)Γ(ξ + ϑ)

(
bα − aα

α

)ϑ]
‖x− y‖PCξ,α

≤ ℓ̃‖x− y‖PCξ,α .



CHAPTER 5. BOUNDARY VALUE PROBLEM FOR FRACTIONAL ORDER GENERALIZED
HILFER-TYPE FRACTIONAL DERIVATIVE WITH NON-INSTANTANEOUS IMPULSES 92

And for t ∈ J0 we have
|=x(t)−=y(t)|

≤ |ϕ2|
|ϕ1|Γ(ξ)

(
tα − aα

α

)ξ−1 (
αJ 1−ξ+ϑ

τ+m
|φ(τ)− φ̃(τ)|

)
(b) +

(
αJ ϑ

a+ |φ(τ)− φ̃(τ)|
)
(t)

≤ η1
1− η2

[
|ϕ2|

|ϕ1|Γ(ϑ+ 1)

(
bα − ταm

α

)ϑ+ξ−1

+
Γ(ξ)

Γ(ξ + ϑ)

(
tα − aα

α

)ϑ+ξ−1
]
‖x− y‖PCξ,α ,

hence∣∣∣∣∣(=x(t)−=y(t))
(
tα − aα

α

)1−ξ
∣∣∣∣∣ ≤ η1 (b

α − aα)ϑ

(1− η2)αϑ

[
|ϕ2|

|ϕ1|Γ(ϑ+ 1)
+

Γ(ξ)

Γ(ξ + ϑ)

]
‖x− y‖PCξ,α

≤ ℓ̃‖x− y‖PCξ,α .

For t ∈ J̃i, i = 1, . . . ,m, we have
|=x(t)−=y(t)| ≤ |(ψi(t, x(t))− ψi(t, y(t)))|

≤ K∗‖x− y‖PCξ,α
≤ ℓ̃‖x− y‖PCξ,α .

Then, for each t ∈ J, we have
‖=x−=y‖PCξ,α ≤ ℓ̃‖u− w‖PCξ,α .

By (5.17), the operator = is a contraction. Hence, by Theorem 1.26, = has a unique
fixed point x∗ ∈ PCξ,α(J).

Step 2: We prove that the fixed point x∗ ∈ PCξ,α(J) is actually in PCξ
ξ,α(J).

Since x∗ is the unique fixed point of operator = in PCξ,α(J), then for each t ∈ J, we
have

=x∗(t) =



c

Γ(ξ)

(
tα − aα

α

)ξ−1

+
(
αJ ϑ

a+φ
)
(t) if t ∈ J0,

ci
Γ(ξ)

(
tα − ταi
α

)ξ−1

+
(
αJ ϑ

τ+i
φ
)
(t) if t ∈ Ji, i = 1, . . . ,m,

ψi(t, x
∗(t)) if t ∈ J̃i, i = 1, . . . ,m,

where φ ∈ Cξ,α(Ji); i = 0, . . . ,m, such that
φ(t) = f(t, x∗(t), φ(t)),

For t ∈ Ji; i = 0, . . . ,m, applying αDξ

τ+i
to both sides and by Lemma 1.10 and Lemma

1.16, we have
αDξ

τ+i
x∗(t) =

(
αDξ

τ+i

αJ ϑ
τ+i
f(τ, x∗(τ), φ(τ))

)
(t)

=
(
αDr(1−ϑ)

τ+i
f(τ, x∗(τ), φ(τ))

)
(t).

Since ξ ≥ ϑ, by (Ax1), the right hand side is in Cξ,α(Ji) and thus αDξ

τ+i
x∗ ∈ Cξ,α(Ji).

And since ψi ∈ C(J̃i, IR); i = 1, . . . ,m, then x∗ ∈ PCξ
ξ,α(J). As a consequence of Steps

1 and 2 together with Theorem 5.4, we can conclude that the problem (5.1)-(5.3) has a
unique solution in PCξ,α(J). �
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Our second result is based on Krasnoselskii’s fixed point theorem.

Theorem 5.5. Assume that (Ax1), (Ax2) and the following condition hold :

(Ax4) The functions ψi are continuous and there exist constants 1 > Φ1 > 0,Φ2 > 0
such that

|ψi(x)| ≤ ϕ1|x|+ ϕ2 for each x ∈ IR, i = 1, . . . ,m.

If
|ϕ2|η1

|ϕ1|Γ(ϑ+ 1)(1− η2)

(
bα − aα

α

)ϑ
< 1, (5.18)

then the problem (5.1)-(5.3) has at least one solution in PCξ,α(J).

Proof: Consider the set

Bω = {x ∈ PCξ,α(J) : ||x||PCξ,α ≤ ω},

where ω ≥ r1 + r2, with

r1 := max
{

c∗

Γ(ξ)
,
|ϕ3 − cmϕ2|
Γ(ξ)|ϕ1|

+
A|ϕ2|

Γ(ϑ+ 1)|ϕ1|

(
bα − aα

α

)ϑ}
,

r2 := max
{
Φ1r + Φ2, A

(
Γ(ξ)

Γ(ξ + ϑ)

)(
bα − aα

α

)ϑ}
.

We define the operators N1 and N2 on Bω by

N1x(t) =



1

Γ(ξ)

(
tα − aα

α

)ξ−1 [
ϕ3

ϕ1

− cmϕ2

ϕ1

− ϕ2

ϕ1

(
αJ 1−ξ+ϑ

τ+m
φ
)
(b)

]
if t ∈ J0,

ci
Γ(ξ)

(
tα − ταi
α

)ξ−1

if t ∈ Ji, i = 1, . . . ,m,

0 if t ∈ J̃i, i = 1, . . . ,m.

(5.19)

and

N2x(t) =


(
αJ ϑ

τ+i
φ
)
(t) if t ∈ Ji, 0 = 1, . . . ,m,

ψi(t, x(t)) if t ∈ J̃i, i = 1, . . . ,m.

(5.20)

where i = 0, . . . ,m and φ : Ji → IR be a function satisfying the functional equation

φ(t) = f(t, x(t), φ(t)).

Then the fractional integral equation (5.16) can be written as operator equation

=x(t) = N1x(t) +N2x(t), x ∈ PCξ,α(J).

We shall use Krasnoselskii’s fixed point theorem to prove in several steps that the
operator = defined in (5.16) has a fixed point.
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Step 1: We prove that N1x+N2y ∈ Bω for any x, y ∈ Bω.
By Remarque (5.3) and from (5.16), We have for each t ∈ Ji, i = 0, . . . ,m,∣∣∣∣∣

(
tα − ταi
α

)1−ξ

φ(t)

∣∣∣∣∣ =
∣∣∣∣∣
(
tα − ταi
α

)1−ξ

f(t, x(t), φ(t))

∣∣∣∣∣
≤
(
tα − ταi
α

)1−ξ

(η1|x(t)|+ η2|φ(t)|+ f0) ,

which implies that∣∣∣∣∣
(
tα − ταi
α

)1−ξ

φ(t)

∣∣∣∣∣ ≤ η1

(
bα − aα

α

)1−ξ

ω+η2

∣∣∣∣∣
(
tα − ταi
α

)1−ξ

φ(t)

∣∣∣∣∣+f0
(
bα − aα

α

)1−ξ

.

Then

max
i=0,...,m

{
sup
t∈Ji

∣∣∣∣∣
(
tα − ταi
α

)1−ξ

φ(t)

∣∣∣∣∣
}

≤
(η1ω + f0)

(
bα − aα

α

)1−ξ

1− η2
:= A.

Thus, for t ∈ J0, by (5.19) and Lemma 1.10,∣∣∣∣∣
(
tα − aα

α

)1−ξ

(N1x)(t)

∣∣∣∣∣ ≤ |ϕ3 − cmϕ2|
Γ(ξ)|ϕ1|

+
|ϕ2|

Γ(ξ)|ϕ1|

(
αJ 1−ξ+ϑ

τ+m
|φ(τ)|

)
(b)

≤ |ϕ3 − cmϕ2|
Γ(ξ)|ϕ1|

+
A|ϕ2|

Γ(ϑ+ 1)|ϕ1|

(
bα − aα

α

)ϑ
,

and for t ∈ Ji, i = 1, . . . ,m, we have∣∣∣∣∣
(
tα − ταi
α

)1−ξ

(N1x)(t)

∣∣∣∣∣ ≤ |ci|
Γ(ξ)

≤ c∗

Γ(ξ)
,

then for each t ∈ J we get

‖N1x‖PCξ,α ≤ max
{

c∗

Γ(ξ)
,
|ϕ3 − cmϕ2|
Γ(ξ)|ϕ1|

+
A|ϕ2|

Γ(ϑ+ 1)|ϕ1|

(
bα − aα

α

)ϑ}
. (5.21)

For t ∈ Ji, i = 0, . . . ,m, by (5.20) and Lemma 1.10, we have∣∣∣∣∣
(
tα − ταi
α

)1−ξ

(N2y)(t)

∣∣∣∣∣ ≤
(
tα − ταi
α

)1−ξ (
αJ ϑ

τ+i
|φ(τ)|

)
(t)

≤ A

(
Γ(ξ)

Γ(ξ + ϑ)

)(
bα − aα

α

)ϑ
,

and for each t ∈ J̃i, i = 1, . . . ,m, we have,

|(N2y)(t)| ≤ |ψi(t, y(t))|
≤ Φ1r + Φ2,
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then for each t ∈ J we get

‖N2y‖PCξ,α ≤ max
{
Φ1r + Φ2, A

(
Γ(ξ)

Γ(ξ + ϑ)

)(
bα − aα

α

)ϑ}
. (5.22)

From (5.21) and (5.22), for each t ∈ J we have,

‖N1x+N2y‖PCξ,α ≤ ‖N1x‖PCξ,α + ‖N2y‖PCξ,α
≤ r1 + r2
≤ ω,

which infers that N1x+N2y ∈ Bω.
Step 2: N1 is a contraction.
Let x, y ∈ PCξ,α(J) and t ∈ J.
By (Ax2), we have

|φ(t)− φ̃(t)| = |f(t, x(t), φ(t))− f(t, y(t), φ̃(t))|
≤ η1|x(t)− y(t)|+ η2|φ(t)− φ̃(t)|.

where φ, φ̃ ∈ Cξ,α(Ji); i = 0, . . . ,m, such that

φ(t) = f(t, x(t), φ(t)),

φ̃(t) = f(t, y(t), φ̃(t)).

Then,
|φ(t)− φ(t)| ≤ η1

1− η2
|x(t)− y(t)|.

Therefore, for t ∈ J0 we have

|N1x(t)−N1y(t)| ≤
|ϕ2|

|ϕ1|Γ(ξ)

(
tα − aα

α

)ξ−1 (
αJ 1−ξ+ϑ

τ+m
|φ(τ)− φ̃(τ)|

)
(b)

≤ η1
1− η2

[
|ϕ2|

|ϕ1|Γ(ϑ+ 1)

(
bα − ταm

α

)ϑ+ξ−1
]
‖x− y‖PCξ,α

hence∣∣∣∣∣(N1x(t)−N1y(t))

(
tα − aα

α

)1−ξ
∣∣∣∣∣ ≤ |ϕ2|η1

|ϕ1|Γ(ϑ+ 1)(1− η2)

(
bα − aα

α

)ϑ
‖x− y‖PCξ,α .

Then, for each t ∈ J, we have

‖N1x−N1y‖PCξ,α ≤ |ϕ2|η1
|ϕ1|Γ(ϑ+ 1)(1− η2)

(
bα − aα

α

)ϑ
‖x− y‖PCξ,α .

Then by (5.18), the operator N1 is a contraction.
Step 3: N2 is continuous and compact. Let {xn} be a sequence such that xn → x in
PCξ,α(J).
Then for each t ∈ Ji, i = 0, . . . ,m, we have,∣∣∣∣∣(N2xn)(t)− (N2x)(t))

(
tα − ταi
α

)1−ξ
∣∣∣∣∣ ≤

(
tα − ταi
α

)1−ξ (
αJ ϑ

τ+i
|φn(τ)− φ(τ)|

)
(t),
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where hn, h ∈ C(Ji, IR), such that

φn(t) = f(t, xn(t), φn(t)),

φ(t) = f(t, x(t), φ(t)).

For each t ∈ J̃i, i = 1, . . . ,m, we have,

|(N2xn)(t)− (N2x)(t)| ≤ |(ψi(t, xn(t))− ψi(t, x(t)))| .

Since xn → x, then we get φn(t) → φ(t) as n → ∞ for each t ∈ Ji; i = 0, . . . ,m. By
Lebesgue’s dominated convergence Theorem and since ψi are continuous, we have

‖N2xn −N2x‖PCξ,α → 0 as n→ ∞.

Then N2 is continuous. Next we prove that N2 is uniformly bounded on Bω. Let any
y ∈ Bω. We have form step 1 that for each t ∈ J

‖N2y‖PCξ,α ≤ max
{
Φ1r + Φ2, A

(
Γ(ξ)

Γ(ξ + ϑ)

)(
bα − aα

α

)ϑ}
.

This prove that the operator N2 is uniformly bounded on Bω. To prove the compactness
of N2, we take y ∈ Bω and a < ε1 < ε2 ≤ b. Then for ε1, ε2 ∈ Ji; i = 0, . . . ,m,∣∣∣∣∣

(
εα1 − ταi

α

)1−ξ

(N2y)(ε1)−
(
εα2 − ταi

α

)1−ξ

(N2y)(ε2)

∣∣∣∣∣
≤

∣∣∣∣∣
(
εα1 − ταi

α

)1−ξ (
αJ ϑ

τ+i
φ(τ)

)
(ε1)−

(
εα2 − ταi

α

)1−ξ (
αJ ϑ

τ+i
φ(τ)

)
(ε2)

∣∣∣∣∣
≤
(
εα2 − ταi

α

)1−ξ (
αJ ϑ

ε+1
|φ(τ)|

)
(ε2) +

1

Γ(ϑ)

∫ ε1

τi

∣∣τα−1H(τ)φ(τ)
∣∣ dτ,

where H(τ) =

[(
εα1 − ταi

α

)1−ξ (
εα1 − τα

α

)ϑ−1

−
(
εα2 − ταi

α

)1−ξ (
εα2 − τα

α

)ϑ−1
]
.

Then by Lemma 1.10, we have∣∣∣∣∣
(
εα1 − ταi

α

)1−ξ

(N2y)(ε1)−
(
εα2 − ταi

α

)1−ξ

(N2y)(ε2)

∣∣∣∣∣
≤ AΓ(ξ)

Γ(ϑ+ ξ)

(
εα2 − ταi

α

)1−ξ (
εα2 − εα1
α

)ϑ+ξ−1

+ A

∫ ε1

τi

∣∣∣∣H(τ)
τα−1

Γ(ϑ)

∣∣∣∣ (τα − ταi
α

)ξ−1

dτ,

note that∣∣∣∣∣
(
εα1 − ταi

α

)1−ξ

(N2y)(ε1)−
(
εα2 − ταi

α

)1−ξ

(N2y)(ε2)

∣∣∣∣∣→ 0 as ε1 → ε2.

And for ε1, ε2 ∈ J̃i; i = 1, . . . ,m,

|(N2y)(ε1)− (N2y)(ε2)| ≤ |ψi(ε1, y(ε1))− ψi(ε2, y(ε2))| ,
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note since ψi are continuous that

|(N2y)(ε1)− (N2y)(ε2)| → 0 as ε1 → ε2.

This proves that N2Bω is equicontinuous on J. Therefore N2Bω is relatively compact.
By PCξ,α type Arzela-Ascoli Theorem N2 is compact. As a consequence of Theorem
1.28, we deduce that = has at least a fixed point x∗ ∈ PCξ,α(J) and by the same way
of the proof of Theorem 5.4, we can easily show that x∗ ∈ PCξ

ξ,α(J). Using Lemma
5.2, we conclude that the problem (5.1)-(5.3) has at least one solution in the space
PCξ,α(J). �

5.3 Ulam-Hyers-Rassias Stability
Now, we consider the Ulam stability for problem (5.1)−(5.3). Let x ∈ PCξ,α(J), θ > 0,
µ > 0 and χ : J −→ [0,∞) be a continuous function. We consider the following inequality
: 

∣∣∣(αDϑ,r

τ+i
x
)
(t)− f

(
t, x(t),

(
αDϑ,r

τ+i
x
)
(t)
)∣∣∣ ≤ θ, t ∈ Ji, i = 0, . . . ,m,

|x(t)− ψi(t, x(t))| ≤ θ, t ∈ J̃i, i = 1, . . . ,m.

(5.23)


∣∣∣(αDϑ,r

τ+i
x
)
(t)− f

(
t, x(t),

(
αDϑ,r

τ+i
x
)
(t)
)∣∣∣ ≤ χ(t), t ∈ Ji, i = 0, . . . ,m,

|x(t)− ψi(t, x(t))| ≤ µ, t ∈ J̃i, i = 1, . . . ,m.

(5.24)

and 
∣∣∣(αDϑ,r

τ+i
x
)
(t)− f

(
t, x(t),

(
αDϑ,r

τ+i
x
)
(t)
)∣∣∣ ≤ θχ(t), t ∈ Ji, i = 0, . . . ,m,

|x(t)− ψi(t, x(t))| ≤ θµ, t ∈ J̃i, i = 1, . . . ,m.

(5.25)

Definition 5.6. ([108,110]) Problem (5.1)-(5.3) is Ulam-Hyers (U-H) stable if there exists
a real number af > 0 such that for each θ > 0 and for each solution x ∈ PCξ,α(J) of
inequality (5.23) there exists a solution y ∈ PCξ,α(J) of (5.1)-(5.3) with

|x(t)− y(t)| ≤ θaf , t ∈ J.

Definition 5.7. ([108,110]) Problem (5.1)-(5.3) is generalized Ulam-Hyers (G.U-H) stable
if there exists Kf : C([0,∞), [0,∞)) with Kf (0) = 0 such that for each θ > 0 and for
each solution x ∈ PCξ,α(J) of inequality (5.23) there exists a solution y ∈ PCξ,α(J) of
(5.1)-(5.3) with

|x(t)− y(t)| ≤ Kf (θ), t ∈ J.

Definition 5.8. ([108, 110]) Problem (5.1)-(5.3) is Ulam-Hyers-Rassias (U-H-R) stable
with respect to (χ, µ) if there exists a real number af,χ > 0 such that for each θ > 0 and
for each solution x ∈ PCξ,α(J) of inequality (5.25) there exists a solution y ∈ PCξ,α(J)
of (5.1)-(5.3) with

|x(t)− y(t)| ≤ θaf,χ(χ(t) + µ), t ∈ J.
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Definition 5.9. ([108,110]) Problem (5.1)-(5.3) is generalized Ulam-Hyers-Rassias (G.U-
H-R) stable with respect to (χ, µ) if there exists a real number af,χ > 0 such that for each
solution x ∈ PCξ,α(J) of inequality (5.25) there exists a solution y ∈ PCξ,α(J) of (5.1)-
(5.3) with

|x(t)− y(t)| ≤ af,χ(χ(t) + µ), t ∈ J.

Remark 5.10. It is clear that :

1. Definition 5.6 =⇒ Definition 5.7

2. Definition 5.8 =⇒ Definition 5.9

3. Definition 5.8 for χ(.) = µ = 1 =⇒ Definition 5.6

Remark 5.11. ([108,110]) A function x ∈ PCξ,α(J) is a solution of inequality (5.25) if
and only if there exist υ ∈ PCξ,α(J) and a sequence υi, i = 0, . . . ,m such that

1. |υ(t)| ≤ θχ(t), t ∈ Ji, i = 0, . . . ,m; and |υi| ≤ θµ, t ∈ J̃i, i = 1, . . . ,m,

2.
(
αDϑ,r

τ+i
x
)
(t) = f

(
t, x(t),

(
αDϑ,r

τ+i
x
)
(t)
)
+ υ(t), t ∈ Ji, i = 0, . . . ,m,

3. x(t) = ψi(t, x(t)) + υi, t ∈ J̃i, i = 1, . . . ,m.

Theorem 5.12. Assume that in addition to (Ax1) – (Ax3) and (5.17), the following
hypothesis holds:

(Ax5) There exist a nondecreasing function χ : J −→ [0,∞) and κχ > 0 such that for
each t ∈ Ji; i = 0, . . . ,m, we have

(αJ ϑ
τ+i
χ)(t) ≤ κχχ(t).

Then the problem (5.1)-(5.3) is U-H-R stable with respect to (χ, µ).

Proof: Let x ∈ PCξ,α(J) be a solution if inequality (5.25), and let us assume that y is
the unique solution of the problem

(
αDϑ,r

τ+i
y
)
(t) = f

(
t, y(t),

(
αDϑ,r

τ+i
y
)
(t)
)
; t ∈ Ji, i = 0, . . . ,m,

y(t) = ψi(t, y(t)); t ∈ J̃i, i = 1, . . . ,m,

ϕ1

(
αJ 1−ξ

a+ y
)
(a+) + ϕ2

(
αJ 1−ξ

m+ y
)
(b) = ϕ3,(

αJ 1−ξ
τ+i

y
)
(τi) =

(
αJ 1−ξ

τ+i
x
)
(τi), i = 0, . . . ,m.

By Lemma 5.2, we obtain for each t ∈ J

y(t) =



c

Γ(ξ)

(
tα − aα

α

)ξ−1

+
(
αJ ϑ

a+φ
)
(t) if t ∈ J0,

(
αJ 1−ξ

τ+i
y
)
(τi)

Γ(ξ)

(
tα − ταi
α

)ξ−1

+
(
αJ ϑ

τ+i
φ
)
(t) if t ∈ Ji, i = 1, . . . ,m,

ψi(t, y(t)) if t ∈ J̃i, i = 1, . . . ,m.
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where φ ∈ Cξ,α(Ji); i = 0, . . . ,m, be a function satisfying the functional equation
φ(t) = f(t, y(t), φ(t)).

and c =
ϕ3

ϕ1

− ϕ2

ϕ1

(
αJ 1−ξ

τ+m
y
)
(τm)−

ϕ2

ϕ1

(
αJ 1−ξ+ϑ

τ+m
φ
)
(b).

Since x is a solution of the inequality (5.25), by Remark 5.11, we have{ (
αDϑ,r

τ+i
x
)
(t) = f

(
t, x(t),

(
αDϑ,r

τ+i
x
)
(t)
)
+ υ(t), t ∈ Ji, i = 0, . . . ,m;

x(t) = ψi(t, x(t)) + υi, t ∈ J̃i, i = 1, . . . ,m.
(5.26)

Clearly, the solution of (5.26) is given by

x(t) =


(
αJ 1−ξ

τ+i
x
)
(τi)

Γ(ξ)

(
tα − ταi
α

)ξ−1

+
(
αJ ϑ

τ+i
(φ̃+ υ)

)
(t) if t ∈ Ji, i = 1, . . . ,m,

ψi(t, x(t)) + υi if t ∈ J̃i, i = 1, . . . ,m,

where φ̃ : Ji → IR, i = 0, . . . ,m, be a function satisfying the functional equation
φ̃(t) = f(t, x(t), φ̃(t)).

Hence, for each t ∈ Ji,i = 0, . . . ,m, we have

|x(t)− y(t)| ≤
(
αJ ϑ

τ+i
|φ̃(τ)− φ(τ)|

)
(t) +

(
αJ ϑ

τ+i
|υ(τ)|

)
≤ θκχχ(t) +

η1
(1− η2)

∫ t

τi

τα−1

(
tα − τα

α

)ϑ−1 |x(τ)− y(τ)|
Γ(ϑ)

dτ.

We apply Lemma 1.20 to obtain

|x(t)− y(t)| ≤ θκχχ(t) +

∫ t

τi

∞∑
k=1

(
η1

1−η2

)k
Γ(kϑ)

τα−1

(
tα − τα

α

)kϑ−1

(θκχχ(τ))dτ

≤ θκχχ(t)Eϑ

[
η1

1− η2

(
tα − ταi
α

)ϑ]

≤ θκχχ(t)Eϑ

[
η1

1− η2

(
bα − aα

α

)ϑ]
.

And for each t ∈ J̃i,i = 1, . . . ,m, we have
|x(t)− y(t)| ≤ |ψi(t, x(t))− ψi(t, y(t))|+ |υi|

≤ K∗|x(t)− y(t)|+ θµ,

then by 5.17, we have
|x(t)− y(t)| ≤ θµ

1−K∗ .

Then for each t ∈ J , we have
|x(t)− y(t)| ≤ aχθ(µ+ χ(t)),

where

aχ =
1

1−K∗ + κχEϑ

[
η1

1− η2

(
bα − aα

α

)ϑ]
.

Hence, the problem (5.1)–(5.3) is U-H-R stable with respect to (χ, τ ). �
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Remark 5.13. If the conditions (Ax1) – (Ax3), (Ax5) and (5.17) are satisfied, then by
Theorem 5.12 and Remark 5.10, it is clear that problem (5.1)-(5.3) is U-H-R stable and
G.U-H-R stable. And if χ(.) = µ = 1, then problem (5.1)-(5.3) is also G.U-H stable and
U-H stable.

Remark 5.14. Our results for the boundary value problem (5.1)–(5.3) apply in the fol-
lowing cases :

• Initial value problems : ϕ1 = 1, ϕ2 = 0.

• Anti-periodic problems : ϕ1 = 1, ϕ2 = 1, ϕ3 = 0.

• Periodic problems : ϕ1 = 1, ϕ2 = −1, ϕ3 = 0.

5.4 An Example
Consider the following impulsive periodic problem of generalized Hilfer fractional differ-
ential equation(

1
2D

1
2
,0

τ+i
x
)
(t) =

|cos(t)|e−2t + |sin(t)|

122et+2(1 + |x(t)|+ | 12D
1
2
,0

τ+i
x(t)|)

, for each t ∈ J0 ∪ J1, (5.27)

x(t) =
|x(t)|

5et + 3|x(t)|
, for each t ∈ J̃1, (5.28)(

1
2J

1
2

1+x
)
(1+) =

(
1
2J

1
2

3+x
)
(π), (5.29)

where J0 = (1, e], J1 = (3, π], J̃1 = (e, 3], s0 = 1, t1 = e and s1 = 3.
Set

f(t, u, w) =
|cos(t)|e−2t + |sin(t)|
122et+2(1 + |x|+ |y|)

, t ∈ J0 ∪ J1, x, y ∈ IR.

We have

C
r(1−ϑ)
ξ,α ((1, e]) = C0

1
2
, 1
2
((1, e])

=

{
u : (1, e] → IR :

√
2
(√

t− 1
) 1

2
u ∈ C([1, e], IR)

}
,

and

C
r(1−ϑ)
ξ,α ((3, π]) = C0

1
2
, 1
2
((3, π])

=

{
u : (3, π] → IR :

√
2
(√

t−
√
3
) 1

2
u ∈ C([3, π], IR)

}
,

with

ξ = ϑ = 1
2
, α = 1

2
, r = 0, and i ∈ {0, 1}.
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Clearly, the continuous function f ∈ C0
1
2
, 1
2

((1, e]) ∩ C0
1
2
, 1
2

((3, π]) . Hence the condition
(Ax1) is satisfied.
For each x, x̄, y, ȳ ∈ IR and t ∈ J0 ∪ J1, we have

|f(t, x, y)− f(t, x̄, ȳ)| ≤ |cos(t)|e−2t + |sin(t)|
122et+2

(|x− x̄|+ |y − ȳ|)

≤ 1 + e2

122e5
(|x− x̄|+ |y − ȳ|) .

Hence condition (Ax2) is satisfied with η1 = η2 =
1 + e2

122e5
.

And let
ψ(x) =

x

5et + 3x
, u ∈ [0,∞).

Let x, y ∈ [0,∞). Then we have

|ψ(x)− ψ(y)| = | x

5et + 3x
− y

5et + 3y
| = 5et|x− y|

(5et + 3x)(5et + 3y)
≤ 1

5e
|x− y|,

and so the condition (Ax3) is satisfied with K∗ =
1

5e
.

Also, the condition (5.17) of Theorem 5.4 is satisfied, for

ℓ̃ = max
{
K∗,

η1
1− η2

(
bα − aα

α

)ϑ [ |ϕ2|
|ϕ1|Γ(ϑ+ 1)

+
Γ(ξ)

Γ(ξ + ϑ)

]}

= max
{

1

5e
,

√
2(1 + e2)

122e5 − e2 − 1

(√
π − 1

) 1
2

[
1

Γ(3
2
)
+
√
π

]}
≈ max {0.0735758882, 0.00167130655}
= 0.00167130655 < 1.

Then the problem (5.27)−(5.29) has a unique solution in PC 1
2
, 1
2
([1, π]).

Hypothesis (Ax5) is satisfied with µ = 1 and

χ(t) =


1√

2(
√
t−√

τi)
, if t ∈ J0 ∪ J1,

π, if t ∈ J̃1,

and κχ =
√
2π(

√
e− 1)

1
2 . Indeed, for each t ∈ J0 ∪ J1, we get

(
1
2J

1
2

1+χ)(t) ≤
√
2π(

√
π −

√
3)

1
2√

2(
√
t− 1)

,

and

(
1
2J

1
2

3+χ)(t) ≤
√
2π(

√
e− 1)

1
2√

2(
√
t−

√
3)
.

Consequently, Theorem 5.12 implies that the problem (5.27)–(5.29) is U-H-R stable.
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Chapter 6

Initial Value Problem for Hybrid Fractional Implicit

Differential Equations

6.1 Introduction and Motivations

In this chapter, we prove some existence results of solutions for a class of initial value
problem for nonlinear fractional hybrid implicit differential equations . First, the prob-
lem studied is with Generalized Hilfer fractional derivative. Next, we deals with a problem
of ψ-Hilfer fractional derivative. The results are based on fixed point theorems due to
Dhage. Further, examples are provided to illustrate our results. We took as motiva-
tion the following papers [1, 10–14, 25, 27, 38, 44, 46, 91, 92, 95] and the references therein.
One should hope to find in these listed papers some fundamental results in the theory of
fractional calculus and fractional differential equations. Another interesting class of prob-
lems involves hybrid fractional differential equations appeared recently and has achieved
a great deal of interest and attention of several researchers. For some recent results on
this type of problems, we refer the reader, for example, to references [28, 36, 55, 64, 112].

In [43], the authors discussed the following terminal value problem for fractional dif-
ferential equations with generalized Hilfer fractional derivative :{ (

αDϑ,r
a+ x

)
(t) = f

(
t, x(t),

(
αDϑ,r

a+ x
)
(t)
)
, t ∈ I := [a, T ], a > 0,

x(T ) = c ∈ IR,

where αDϑ,r
a+ is the generalized Hilfer type fractional derivative of order ϑ ∈ (0, 1) and type

r ∈ [0, 1] and f : (a, T ]× IR × IR → IR is a given function.
Wang and Zhang [111] proved some existence results for the following nonlocal initial

value problem for differential equations involving Hilfer’s fractional derivative :
Dϑ,r
a+ u(t) = f(t, u(t)), t ∈ (a, b],(
I1−ξa+ u

)
(a+) =

m∑
i=1

λiu(τi),

where Dϑ,r
a+ , I

1−ξ
a+ are the left-sided Hilfer fractional derivative of order ϑ ∈ (0, 1) and type

r ∈ [0, 1] and the left-sided Riemann-Liouville fractional integral of order 1 − ξ, (ξ =
ϑ+ r− ϑr) respectively, f : (a, b]× IR → IR is a given function, λi, i = 1, . . . ,m, are real
numbers and τi, i = 1, . . . ,m, are pre-fixed points satisfying a < τ1 ≤ . . . ≤ τm < b.
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Zhao et al. [112] discussed the the following hybrid differential equations involving
Riemann-Liouville fractional derivative : RLDr

(
u(t)

g(t, u(t))

)
= h(t, u(t)), t ∈ I := [0, T ],

u(0) = 0,

where 0 < r < 1, g ∈ C(I × IR, IR\{0}) and h ∈ C(I × IR, IR).
Derbazi et al. [55] studied the existence and uniqueness of solutions of the follow-

ing three-point boundary value problem for fractional hybrid differential equations with
Caputo’s fractional derivative :

cDϑ
0+

(
u(t)−f(t,u(t))
g(t,u(t))

)
= h(t, u(t)), t ∈ J := [0, T ],

a1

(
u(0)−f(0,u(0))

g(0,u(0))

)
+ b1

(
u(T )−f(T,u(T ))

g(T,u(T ))

)
= c1,

a2
cDβ

0+

(
u(t)−f(t,u(t))
g(t,u(t))

)
t=η

+ b2
cDβ

0+

(
u(t)−f(t,u(t))
g(t,u(t))

)
t=T

= c2,

where 1 < ϑ ≤ 2, 0 < β ≤ 1, 0 < η < T , g ∈ C(I × IR, IR\{0}), f, h ∈ C(I × IR, IR) and
ai, bi, ci ∈ IR, with i = 1, 2 such that a1 + b1 6= 0, a2η1−β + b2T

1−β 6= 0.
In [101], Sousa and Oliveira proved some existence, uniqueness and stability results

for following initial value problem for fractional differential equations involving ψ-Hilfer
derivative : {

HDϑ,r;ψ
a+ y(t) = f

(
t, y(t),HDϑ,r;ψ

a+ y(t)
)

J1−ξ;ψa+ y(a) = ya,

where HDϑ,r;ψ
a+ , J1−ξ;ψa+ are the ψ-Hilfer fractional derivative of order ϑ ∈ (0, 1) and type

r ∈ [0, 1] and ψ-Riemann-Liouville fractional integral of order 1 − ξ, (ξ = ϑ + r − ϑr)
respectively, ya ∈ IR and f ∈ C([a, T ]×IR2, IR). the existence result is based on Banach’s
contraction principle.
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6.2 Nonlocal Initial Value Problem for Hybrid Gen-
eralized Hilfer-type Fractional Implicit Differen-
tial Equations1

Motivated by the works of the papers mentioned in the introduction of the chapter,
in this section, we establish existence results to the nonlocal initial value problem with
nonlinear implicit hybrid Generalized Hilfer-type fractional differential equation :

αDϑ,r
a+

(
x(t)− χ(t, x(t))

f(t, x(t))

)
= φ

(
t, x(t), αDϑ,r

a+

(
x(t)− χ(t, x(t))

f(t, x(t))

))
, t ∈ (a, b], (6.1)

(
αJ 1−ξ

a+

(
x(τ)− χ(t, x(t))

f(τ, x(τ))

))
(a+) =

m∑
i=1

ci

(
x(ϵi)− χ(ϵi, x(ϵi))

f(ϵi, x(ϵi))

)
, (6.2)

where αDϑ,r
a+ ,

αJ 1−ξ
a+ are the generalized Hilfer fractional derivative of order ϑ ∈ (0, 1) and

type r ∈ [0, 1] and generalized fractional integral of order 1−ξ, (ξ = ϑ+r−ϑr) respectively,
ci, i = 1, . . . ,m, are real numbers, ϵi, i = 1, . . . ,m, are pre-fixed points satisfying a < ϵ1 ≤
. . . ≤ ϵm < b, f ∈ C([a, b]× IR, IR\{0}), χ ∈ C([a, b]× IR, IR), φ ∈ C([a, b]× IR2, IR) and∑m

i=1 ciΨ̄ξ(ϵi, a) 6= 1, for further details see the definitions in the following subsection.

6.2.1 Existence Results
Consider the following parameters ϑ, r, ξ satisfying

ξ = ϑ+ r − ϑr, 0 < ϑ, r, ξ < 1.

Consider the weighted Banach space

Cξ,α(J) =

{
x : J → IR : the function t→ Ψξ(t, a)x(t) ∈ C([a, b], IR)

}
,

where Ψ̄ϑ(t, a) =
α1−ϑ

Γ(ϑ)
(tα − aα)ϑ−1, Ψξ(t, a) = αξ−1 (tα − aα)1−ξ, and

Cn
ξ,α(J) =

{
x ∈ Cn−1(J) : x(n) ∈ Cξ,α(J)

}
, n ∈ IN,

C0
ξ,α(J) = Cξ,α(J).

with the norm
‖x‖Cξ,α = sup

t∈[a,b]
|Ψξ(t, a)x(t)| .

We consider the following fractional differential equation

αDϑ,r
a+

(
x(t)− χ(t, x(t))

f(t, x(t))

)
= v(t), t ∈ J, (6.3)

where 0 < ϑ < 1, 0 ≤ r ≤ 1, α > 0, with the nonlocal condition(
αJ 1−ξ

a+

(
x(τ)− χ(t, x(t))

f(τ, x(τ))

))
(a+) =

m∑
i=1

ci

(
x(ϵi)− χ(ϵi, x(ϵi))

f(ϵi, x(ϵi))

)
, (6.4)

1. A. Salim, M. Benchohra, J. E. Lazreg, J. J. Nieto and Y. Zhou, Nonlocal Initial
Value Problem for Hybrid Generalized Hilfer-type Fractional Implicit Differential
Equations. Nonauton. Dyn. Syst. 8 (2021), 87-100.
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where ξ = ϑ + r − ϑr, ci, i = 1, . . . ,m, are real numbers, f ∈ C([a, b] × IR, IR\{0}),
χ ∈ C([a, b]× IR, IR), ϵi, i = 1, . . . ,m, are pre-fixed points satisfying a < ϵ1 ≤ . . . ≤ ϵm <

b, v ∈ Cξ,α(J) and
m∑
i=1

ciΨ̄ξ(ϵi, a) 6= 1. The following theorem shows that the problem

(6.3)-(6.4) have a solution given by

x(t) = f(t, x(t))

Ψ̄ξ(t, a)

m∑
i=1

ci
(
αJ ϑ

a+v(τ)
)
(ϵi)

1−
m∑
i=1

ciΨ̄ξ(ϵi, a)

+
(
αJ ϑ

a+v(τ)
)
(t)

+ χ(t, x(t)). (6.5)

Theorem 6.1. Let ξ = ϑ + r − ϑr, where 0 < ϑ < 1 and 0 ≤ r ≤ 1. If v : J → IR
is a function such that v(·) ∈ Cξ,α(J), f ∈ C([a, b] × IR, IR\{0}), and the function
χ ∈ C([a, b]× IR, IR), then x satisfies equations (6.3) and (6.4) if and only if it satisfies
(6.5).

Proof: Assume x satisfies the equations (6.3) and (6.4) and such that the function
σ : t −→

(
x(t)−χ(t,x(t))
f(t,x(t))

)
∈ Cξ

ξ,α(J). We prove that x is a solution to the equation (6.5).
From the definition of the space Cξ

ξ,α(J) and by using Lemma 1.12 and Definition 1.5,
we have (

αJ 1−ξ
a+ σ(τ)

)
(t) ∈ Cξ,α(J),

and
αDξ

a+σ(t) =
(
δα

αJ 1−ξ
a+ σ(τ)

)
(t) ∈ Cξ,α(J).

By the definition of the space Cn
ξ,α(J), we have(
αJ 1−ξ

a+ σ(τ)
)
(t) ∈ C1

ξ,α(J).

Hence, Lemma 1.15 implies that(
αJ ξ

a+
αDξ

a+σ(τ)
)
(t) = σ(t)− Ψ̄ξ(t, a)

(
αJ 1−ξ

a+ σ(τ)
)
(a), for all t ∈ (a, b].

Using Lemma 1.16 we have(
αJ ξ

a+
αDξ

a+σ(τ)
)
(t) =

(
αJ ϑ

a+
αDϑ,r

a+ σ(τ)
)
(t)

=
(
αJ ϑ

a+v(τ)
)
(t).

Then,
x(t)− χ(t, x(t))

f(t, x(t))
= Ψ̄ξ(t, a)

(
αJ 1−ξ

a+ σ(τ)
)
(a) +

(
αJ ϑ

a+v(τ)
)
(t),

wich implies that

x(t) = f(t, x(t))

[
Ψ̄ξ(t, a)

(
αJ 1−ξ

a+

(
x(τ)− χ(τ, x(τ))

f(τ, x(τ))

))
(a) +

(
αJ ϑ

a+v(τ)
)
(t)

]
+χ(t, x(t)),

(6.6)
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where t ∈ J . Next, we substitute t = ϵi into (6.6), then we multiply ci to both sides, we
obtain

ci

(
x(ϵi)− χ(ϵi, x(ϵi))

f(ϵi, x(ϵi))

)
= ciΨ̄ξ(ϵi, a)

(
αJ 1−ξ

a+ σ(τ)
)
(a) + ci

(
αJ ϑ

a+v(τ)
)
(ϵi).

Then by using condition (6.4), we have(
αJ 1−ξ

a+ σ(τ)
)
(a+) =

m∑
i=1

ci

(
x(ϵi)− χ(ϵi, x(ϵi))

f(ϵi, x(ϵi))

)
=

(
αJ 1−ξ

a+ σ(τ)
)
(a)

m∑
i=1

ciΨ̄ξ(ϵi, a) +
m∑
i=1

ci
(
αJ ϑ

a+v(τ)
)
(ϵi),

which implies

(
αJ 1−ξ

a+ σ(τ)
)
(a+) =

m∑
i=1

ci
(
αJ ϑ

a+v(τ)
)
(ϵi)

1−
m∑
i=1

ciΨ̄ξ(ϵi, a)

. (6.7)

Substituting (6.7) into (6.6), we obtain (6.5).
Reciprocally, assume x satisfies the equation (6.5) such that the function σ : t −→(
x(t)−χ(t,x(t))
f(t,x(t))

)
∈ Cξ

ξ,α(J). We prove that x is a solution to the problem (6.3)-(6.4).
Apply operator αDξ

a+ on both sides of (6.5). And since f(t, x(t)) 6= 0 for all t ∈ J , then,
from Lemma 1.10 and Lemma 1.16 we obtain

(αDξ
a+σ(τ))(t) =

(
αDr(1−ϑ)

a+ v(τ)
)
(t). (6.8)

Since σ ∈ Cξ
ξ,α(J) and by definition of Cξ

ξ,α(J), we have αDξ
a+σ ∈ Cξ,α(J), then (6.8)

implies that

(αDξ
a+σ(τ))(t) =

(
δα

αJ 1−r(1−ϑ)
a+ v(τ)

)
(t) =

(
αDr(1−ϑ)

a+ v(τ)
)
(t) ∈ Cξ,α(J). (6.9)

As v(·) ∈ Cξ,α(J) and from Lemma 1.12, follows(
αJ 1−r(1−ϑ)

a+ v
)
∈ Cξ,α(J). (6.10)

From (6.9), (6.10) and by the definition of the space Cn
ξ,α(J), we obtain(

αJ 1−r(1−ϑ)
a+ v

)
∈ C1

ξ,α(J).

Applying operator αJ r(1−ϑ)
a+ on both sides of (6.9) and using Lemma 1.15, Lemma 1.13

and Property 1.11, we have(
αDϑ,r

a+ σ(τ)
)
(t) = αJ r(1−ϑ)

a+

(
αDξ

a+σ(τ)
)
(t)

= v(t)− Ψ̄r(1−ϑ)(t, a)
(
αJ 1−r(1−ϑ)

a+ v(τ)
)
(a)

= v(t),
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that is, (6.3) holds. Now, applying αJ 1−ξ
a+ on both sides of (6.5) and using Lemma 1.10

and Theorem 1.9, we get

(
αJ 1−ξ

a+ σ(τ)
)
(t) =

m∑
i=1

ci
(
αJ ϑ

a+v(τ)
)
(ϵi)

1−
m∑
i=1

ciΨ̄ξ(ϵi, a)

+
(
αJ 1−ξ+ϑ

a+ v(τ)
)
(t). (6.11)

Taking the limit t → a+ of (6.11) and using Lemma 1.13, with 1 − ξ < 1 − ξ + ϑ, we
obtain

(
αJ 1−ξ

a+

(
x(τ)− χ(τ, x(τ))

f(τ, x(τ))

))
(a+) =

m∑
i=1

ci
(
αJ ϑ

a+v(τ)
)
(ϵi)

1−
m∑
i=1

ciΨ̄ξ(ϵi, a)

. (6.12)

Substituting t = ϵi into (6.5), we have

x(ϵi)− χ(ϵi, x(ϵi))

f(ϵi, x(ϵi))
= Ψ̄ξ(ϵi, a)

m∑
i=1

ci
(
αJ ϑ

a+v(τ)
)
(ϵi)

1−
m∑
i=1

ciΨ̄ξ(ϵi, a)

+
(
αJ ϑ

a+v(τ)
)
(ϵi).

Then, we have

m∑
i=1

ci

(
x(ϵi)− χ(ϵi, x(ϵi))

f(ϵi, x(ϵi))

)
=

m∑
i=1

ciΨ̄ξ(ϵi, a)

m∑
i=1

ci
(
αJ ϑ

a+v(τ)
)
(ϵi)

1−
m∑
i=1

ciΨ̄ξ(ϵi, a)

+
m∑
i=1

ci
(
αJ ϑ

a+v(τ)
)
(ϵi),

thus,

m∑
i=1

ci

(
x(ϵi)− χ(ϵi, x(ϵi))

f(ϵi, x(ϵi))

)
=

m∑
i=1

ci
(
αJ ϑ

a+v(τ)
)
(ϵi)

1−
m∑
i=1

ciΨ̄ξ(ϵi, a)

. (6.13)

From (6.12) and (6.13), we find that(
αJ 1−ξ

a+

(
x(τ)− χ(τ, x(τ))

f(τ, x(τ))

))
(a+) =

m∑
i=1

ci

(
x(ϵi)− χ(ϵi, x(ϵi))

f(ϵi, x(ϵi))

)
,

which shows that the initial condition (6.4) is satisfied. This completes the proof. �
As a consequence of Theorem 6.1, we have the following result

Lemma 6.2. Let ξ = ϑ + r − ϑr where 0 < ϑ < 1 and 0 ≤ r ≤ 1, let f ∈ C([a, b] ×
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IR, IR\{0}), χ ∈ C([a, b] × IR, IR) and let φ : J × IR2 → IR, be a function such that
φ(·, x(·), y(·)) ∈ Cξ,α(J), for any x, y ∈ Cξ,α(J). If the function t −→

(
x(t)−χ(t,x(t))
f(t,x(t))

)
∈

Cξ
ξ,α(J), then x satisfies the problem (6.1)− (6.2) if and only if x is the fixed point of the

operator = : Cξ,α(J) → Cξ,α(J) defined by

=x(t) = f(t, x(t))

[
KΨ̄ξ(t, a)

m∑
i=1

ci
(
αJ ϑ

a+v(τ)
)
(ϵi) +

(
αJ ϑ

a+v(τ)
)
(t)

]
+χ(t, x(t)), (6.14)

where K =

[
1−

m∑
i=1

ciΨ̄ξ(ϵi, a)

]−1

and v : J → IR be a function satisfying the functional

equation
v(t) = φ(t, x(t), v(t)).

Since the functions f and χ are continuous and φ(·, x(·), y(·)) ∈ Cξ,α(J), then, by
Lemma 1.12, we have =x ∈ Cξ,α(J).

The following hypotheses will be used in the sequel :
(Ax1) The function φ : J × IR2 → IR be continuous on J and

φ(·, x(·), y(·)) ∈ C
r(1−ϑ)
ξ,α (J), for any x, y ∈ Cξ,α(J).

(Ax2) The functions f : [a, b]× IR → IR\{0} and χ : [a, b]× IR → IR are continuous and
there exist two functions p, q ∈ C([a, b], [0,∞)) such that

|f(t, x)− f(t, x̄)| ≤ p(t)Ψξ(t, a)|x− x̄|

and
|χ(t, x)− χ(t, x̄)| ≤ q(t)|x− x̄|

for any x, x̄ ∈ IR and t ∈ J .

(Ax3) There exists functions λ1, λ2, λ3 ∈ C([a, b], [0,∞)) such that

|φ(t, x, y)| ≤ λ1(t) + λ2(t)|x|+ λ3(t)|y| for t ∈ J, and x, y ∈ IR.

(Ax4) There exists a number ℓ > 0 such that

ℓ ≥ f ∗M + χ∗

1− p∗M − q∗
,

where
p∗ = sup

t∈[a,b]
p(t), q∗ = sup

t∈[a,b]
q(t),

λ∗i = sup
t∈[a,b]

λi(t), i = 1, 2, λ∗3 = sup
t∈[a,b]

λ3(t) < 1,

f ∗ = sup
t∈[a,b]

|f(t, 0)|, χ∗ = sup
t∈[a,b]

Ψξ(t, a)|χ(t, 0)|, Λ :=
Ψξ(b, a)λ

∗
1 + λ∗2ℓ

1− λ∗3

and

M =
Λα−ϑ

Γ(ϑ+ ξ)

[
|K|α1−ξ

m∑
i=1

|ci| (ϵαi − aα)ϑ+ξ−1 + Γ(ξ) (bα − aα)ϑ
]
.
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We are now in a position to state and prove our existence result for the problem (6.1)−(6.2)
based on based on Lemma 1.31.

Theorem 6.3. Assume (Ax1)–(Ax4) hold. If

max{p∗M, p∗Ψξ(b, a)M}+ q∗ < 1, (6.15)

then the problem (6.1)−(6.2) has at least one solution in Cξ,α(J).

Proof: We define a subset Ω of Cξ,α(J) by

Ω = {x ∈ Cξ,α(J) : ‖x‖ξ,α ≤ ℓ}.

We consider the operator = defined in (6.14), and define three operators S,N :
Cξ,α(J) → Cξ,α(J) by

(Sx)(t) = f(t, x(t)), t ∈ J, (6.16)
(Nx)(t) = χ(t, x(t)), t ∈ J, (6.17)

and T : Ω → Cξ,α(J) by

(T x)(t) = KΨ̄ξ(t, a)
m∑
i=1

ci
(
αJ ϑ

a+v(τ)
)
(ϵi) +

(
αJ ϑ

a+v(τ)
)
(t), t ∈ J. (6.18)

Then we get =x = SxT x+Nx. We shall show that the operators S, T and N satisfie
all the conditions of Lemma 1.31. The proof will be given in several steps.

Step 1: The operators S and N are Lipschitzian on Cξ,α(J).
Let x, y ∈ Cξ,α(J) and t ∈ J. Then by (Ax2) we have

|((Sx)(t)− (Sy)(t))Ψξ(t, a)| ≤ Ψξ(t, a)|f(t, x(t))− f(t, y(t))|,
≤ p(t)Ψξ(t, a)‖x(t)− y(t)‖ξ,α,
≤ p∗Ψξ(b, a)‖x(t)− y(t)‖ξ,α,

then for each t ∈ J we obtain

‖Sx− Sy‖ξ,α ≤ p∗Ψξ(b, a)‖x(t)− y(t)‖ξ,α.

Also, for each t ∈ J we have

|((Nx)(t)− (N y)(t))Ψξ(t, a)| ≤ Ψξ(t, a)|χ(t, x(t))− χ(t, y(t))|,
≤ q(t)‖x(t)− y(t)‖ξ,α,
≤ q∗‖x(t)− y(t)‖ξ,α,

then,

‖Nx−N y‖ξ,α ≤ q∗‖x(t)− y(t)‖ξ,α.

Step 2: The operator T is completely continuous on Ω.
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We firstly show that the operator T is continuous on Ω. Let {xn} be sequence in Ω such
that xn → x in Ω. Let x, y ∈ Cξ,α(J).
Then for each t ∈ J, we have

|(T xn)(t)− (T x)(t))Ψξ(t, a)| ≤ |K|
Γ(ξ)

m∑
i=1

|ci|
(
αJ ϑ

a+ |vn(τ)− v(τ)|
)
(ϵi)

+ Ψξ(t, a)
(
αJ ϑ

a+ |vn(τ)− v(τ)|
)
(t),

where vn, v ∈ Cξ,α(J) such that

vn(t) = φ(t, xn(t), vn(t)),

v(t) = φ(t, x(t), v(t)).

Since xn → x and φ is continuous function on J then we get vn(t) → v(t) as n→ ∞ for
each t ∈ J , so by Lebesgue’s dominated convergence theorem, we have

‖T xn − T x‖Cξ,α → 0 as n→ ∞.

Then T is continuous.
Next we prove that T (Ω) is uniformly bounded on Cξ,α(J). Let any x ∈ Ω. By (Ax3),
we have for each t ∈ J

|Ψξ(t, a)v(t)| = |Ψξ(t, a)φ(t, x(t), v(t))|
≤ Ψξ(t, a)(λ1(t) + λ2(t)|x(t)|+ λ3(t)|v(t)|)
≤ Ψξ(b, a)λ

∗
1 + λ∗2ℓ+ λ∗3|Ψξ(t, a)v(t)|.

Wich implies that

|Ψξ(t, a)v(t)| ≤ Ψξ(b, a)λ
∗
1 + λ∗2ℓ

1− λ∗3
.

Then, we have

sup
t∈(a,b]

|Ψξ(t, a)v(t)| ≤ Ψξ(b, a)λ
∗
1 + λ∗2ℓ

1− λ∗3
:= Λ.

For t ∈ J , by (6.18) and Lemma 1.10, we have

|Ψξ(t, a)(T x)(t)|

≤ |K|
Γ(ξ)

m∑
i=1

|ci|
(
αJ ϑ

a+ |v(τ)|
)
(ϵi) + Ψξ(t, a)

(
αJ ϑ

a+ |v(τ)|
)
(t)

≤ Λ|K|
m∑
i=1

|ci|
(
αJ ϑ

a+Ψ̄ξ(τ, a)
)
(ϵi) + ΛΨξ(t, a)Γ(ξ)

(
αJ ϑ

a+Ψ̄ξ(τ, a)
)
(t)

≤ Λ|K|
m∑
i=1

|ci|Ψ̄ϑ+ξ(ϵi, a) + ΛΨξ(t, a)Γ(ξ)Ψ̄ϑ+ξ(t, a)

≤ Λ|K|
Γ(ϑ+ ξ)

m∑
i=1

|ci|
(
ϵαi − aα

α

)ϑ+ξ−1

+
ΛΓ(ξ)

Γ(ϑ+ ξ)

(
bα − aα

α

)ϑ
.
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Then for t ∈ J , we obtain
‖T x‖Cξ,α ≤M.

This prove that the operator T is uniformly bounded on Ω. Next we prove that the
operator T Ω equicontinuous. We take x ∈ Ω and a < ε1 < ε2 ≤ b. Then,

|Ψξ(ε1, a)(T x)(ε1)−Ψξ(ε2, a)(T x)(ε2)|
≤

∣∣Ψξ(ε1, a)
(
αJ ϑ

a+v(τ)
)
(ε1)−Ψξ(ε2, a)

(
αJ ϑ

a+v(τ)
)
(ε2)

∣∣
≤

∫ ε1

a

|Ψξ(ε1, a)Ψ̄ϑ(ε1, τ)−Ψξ(ε2, a)Ψ̄ϑ(ε2, τ)|
∣∣τα−1v(τ)

∣∣ dτ,
+ Ψξ(ε2, a)

(
αJ ϑ

ε+1
|v(τ)|

)
(ε2).

Then by Lemma 1.10, we have for each t ∈ (a, b]

|Ψξ(ε1, a)(T x)(ε1)−Ψξ(ε2, a)(T x)(ε2)|

≤ ΛΓ(ξ)

∫ ε1

a

τα−1|Ψξ(ε1, a)Ψ̄ϑ(ε1, τ)−Ψξ(ε2, a)Ψ̄ϑ(ε2, τ)|Ψ̄ξ(τ, a)dτ,

+ΛΓ(ξ)Ψξ(ε2, a)Ψ̄ϑ+ξ(ε2, ε1).

Note that

|Ψξ(ε1, a)(T x)(ε1)−Ψξ(ε2, a)(T x)(ε2)| → 0 as ε1 → ε2.

This proves that T Ω is equicontinuous on J. Therefore by the Arzela-Ascoli Theorem,
T is completely continuous on Ω.

Step 3: Now we show that the third hypothesis of Lemma 1.31 is satisfied. Let x ∈
Cξ,α(J) and y ∈ Ω be arbitrary such that x = SxT y +Nx and ṽ ∈ Cξ,α(J) with

ṽ(t) = φ(t, y(t), ṽ(t)).

Then, for t ∈ J we have

|Ψξ(t, a)x(t)|
= |Ψξ(t, a)(SxT y)(t) + Ψξ(t, a)(Nx)(t)|
≤ Ψξ(t, a) |(Sx)(t)| |(T y)(t)|+ |Ψξ(t, a)(Nx)(t)|

≤ |f(t, x(t))|

[
|K|
Γ(ξ)

m∑
i=1

|ci|
(
αJ ϑ

a+ |ṽ(τ)|
)
(ϵi) + Ψξ(t, a)

(
αJ ϑ

a+ |ṽ(τ)|
)
(t)

]
+Ψξ(t, a)|χ(t, x(t))|

≤ M (|f(t, x(t))− f(t, 0)|+ |f(t, 0)|) + Ψξ(t, a) (|χ(t, x(t))− χ(t, 0)|+ |χ(t, 0)|)
≤ M

(
p∗‖x‖Cξ,α + f ∗)+ q∗‖x‖Cξ,α + χ∗,

then,

‖x‖Cξ,α =
f ∗M + χ∗

1− p∗M − q∗
≤ ℓ.

Then x ∈ Ω, thus the third hypothesis of Lemma 1.31 is satisfied.

Step 4: Now, we show that p∗Ψξ(b, a)L+ q∗ < 1, where

L = ‖T (Ω)‖Cξ,α = sup{‖T y‖Cξ,α : y ∈ Ω}.
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Since L ≤M , we have

p∗Ψξ(b, a)L+ q∗ ≤ p∗Ψξ(b, a)M + q∗ < 1.

That is, the last hypothesis of Lemma 1.31 is satisfied. Thus, the operator equation
=x = SxT x +Nx = x has at least one solution x∗ ∈ Cξ,α, wich is a point fixe for the
operator =.
Step 5: We prove that for such fixed point x∗ ∈ Cξ,α(J), the function σ : t →
x∗(t)− χ(t, x∗(t))

f(t, x∗(t))
is in Cξ

ξ,α(J).

Since x∗ is a fixed point of operator = in Cξ,α(J), then for each t ∈ J, we have

=x∗(t) = f(t, x∗(t))

[
KΨ̄ξ(t, a)

m∑
i=1

ci
(
αJ ϑ

a+v(τ)
)
(ϵi) +

(
αJ ϑ

a+v(τ)
)
(t)

]
+ χ(t, x∗(t)).

(6.19)
where v ∈ Cξ,α(J) such that

v(t) = φ(t, x∗(t), v(t)).

Applying αDξ
a+ to both sides of 6.19, and by Lemma 1.10 and Lemma 1.16, we have

αDξ
a+

(
x∗(t)− χ(t, x∗(t))

f(t, x∗(t))

)
=

(
αDξ

a+
αJ ϑ

a+v(τ)
)
(t)

=
(
αDr(1−ϑ)

a+ v(τ)
)
(t).

Since ξ ≥ ϑ, by (Ax1), the right hand side is in Cξ,α(J) and thus αDξ
a+σ ∈ Cξ,α(J). Its

clear that σ ∈ Cξ,α(J), since f ∈ C([a, b]× IR → IR\{0}) and χ ∈ C([a, b]× IR → IR),
then σ ∈ Cξ

ξ,α(J). As a consequence of Steps 1 and 5 with Theorem 6.3, we can conclude
that the problem (6.1)− (6.2) has at least a solution in Cξ,α(J). �

6.2.2 Example
Example 6.4. Consider the nonlocal initial value problem of hybrid generalized type Hilfer
Fractional differential equation

1D
1
2
,0

1+

(
x(t)−χ(t,x(t))
f(t,x(t))

)
=

√
t− 1

(
x(t) + 1D

1
2
,0

1+

(
x(t)−χ(t,x(t))
f(t,x(t))

)
+ 1
)

111e−t+2(1 +
√
t− 1|x(t)|)

, for each t ∈ (1, 2],

(6.20)(
1J

1
2

1+

(
x(τ)− χ(τ, x(τ))

f(τ, x(τ))

))
(1+) = 2

(
x(3

2
)− χ(3

2
, x(3

2
))

f(3
2
, x(3

2
))

)
, (6.21)

where I = (1, 2], a = 1, b = 2 and

f(t, x(t)) =
|sin(πt)|(t− 1)|x(t)|+ 1

41e−t+4
, t ∈ [1, 2], x ∈ C 1

2
,1([1, 2]),

and

χ(t, x(t)) =

√
t− 1 ln(|cos(t)|+ 1)x(t)

33e3
√
6− t

+
1

55e−t+2
, t ∈ [1, 2], x ∈ C 1

2
,1([1, 2]).
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Set
φ(t, x, y) =

√
t− 1 (x+ y + 1)

111e−t+2(1 + |x|
√
t− 1)

, t ∈ I, x, y ∈ IR.

We have

C
r(1−ϑ)
ξ,α (I) = C0

1
2
,1
(I) =

{
v : I → IR : t→ (

√
t− 1)v(t) ∈ C([1, 2], IR)

}
,

with ξ = ϑ = 1
2
, α = 1, r = 0. Clearly, the continuous function φ ∈ C0

1
2
,1
(I). Hence the

condition (Ax1) is satisfied.
For each x, x̄ ∈ IR and t ∈ I, we have

|f(t, x)− f(t, x̄)| ≤ |sin(πt)|(t− 1)

41e−t+4
|x− x̄| ,

and

|χ(t, x)− χ(t, x̄)| ≤
√
t− 1 ln(|cos(t)|+ 1)

33e3
√
6− t

|x− x̄| .

Hence condition (Ax2) is satisfied with

p(t) =
|sin(πt)|

√
t− 1

41e−t+4
, and q(t) =

√
t− 1 ln(|cos(t)|+ 1)

33e3
√
6− t

,

so we have
p∗ ≤ 1

41e2
, and q∗ ≤ ln(2)

66e3
.

Let x, y ∈ IR. Then we have

|φ(t, x, y)| ≤
√
t− 1

111e−t+2
(|x|+ |y|+ 1) , t ∈ I,

and so the condition (Ax3) is satisfied with

λ1(t) = λ2(t) = λ3(t) =

√
t− 1

111e−t+2
,

and
λ∗1 = λ∗2 = λ∗3 =

1

111
.

Also, the condition (Ax4) and the condition (6.15) of Theorem 6.3 is satisfied if we take

2956 ≈ 400e2 ≤ ℓ <
4510e2(2

√
2−

√
π)

(2
√
2π + 2

√
π − π)

− 1 ≈ 6496,

where
f ∗ = 1

41e2
, χ∗ = 1

55
, k =

√
π√

π−2
√
2

and
Λ =

1 + ℓ

110
.

Then the problem (6.22)-(6.23) has at least one solution in C 1
2
,1(I).
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Example 6.5. In this example, we change the boundary condition (6.23) which give us the
following nonlocal initial value problem of hybrid generalized Hilfer Fractional differential
equation

1D
1
2
,0

1+

(
x(t)−χ(t,x(t))
f(t,x(t))

)
=

√
t− 1

(
x(t) + 1D

1
2
,0

1+

(
x(t)−χ(t,x(t))
f(t,x(t))

)
+ 1
)

111e−t+2(1 +
√
t− 1|x(t)|)

, for each t ∈ (1, 2],

(6.22)

(
1J

1
2

1+

(
x(τ)− χ(τ, x(τ))

f(τ, x(τ))

))
(1+) = 3

(
x(5

4
)− χ(5

4
, x(5

4
))

f(5
4
, x(5

4
))

)
+ 2

(
x(4

3
)− χ(4

3
, x(4

3
))

f(4
3
, x(4

3
))

)
.

(6.23)
All the hypothesis of Theorem 6.3 are satisfied, indeed, we have

2956 ≈ 400e2 ≤ ℓ <
4510e2(66e3 − ln(2))(2

√
3−

√
π + 6)

66e3(11
√
π + 2

√
3π − π)

− 1 ≈ 11387,

where
m = 2, f ∗ = 1

41e2
, χ∗ = 1

55
, K =

√
π√

π−2
√
3−6

,

and
Λ =

1 + ℓ

110
.

Then the problem (6.22)-(6.23) has at least one solution in C 1
2
,1(I).

6.3 Initial Value Problem for Hybrid ψ-Hilfer Frac-
tional Implicit Differential Equations2

In this section, we consider the initial value problem with nonlinear implicit hybrid
ψ-Hilfer type fractional differential equation :

HDϑ,r;ψ
a+

(
x(t)

g(t, x(t))

)
= f

(
t, x(t),HDϑ,r;ψ

a+

(
x(t)

g(t, x(t))

))
, t ∈ (a, b], (6.24)

(
J1−ξ;ψa+

(
x(τ)

g(τ, x(τ))

))
(a+) = x0, (6.25)

where HDϑ,r;ψ
a+ , J1−ξ;ψa+ are the ψ-Hilfer fractional derivative of order ϑ ∈ (0, 1) and type

r ∈ [0, 1] and ψ-Riemann-Liouville fractional integral of order 1 − ξ, (ξ = ϑ + r − ϑr)
respectively, x0 ∈ IR, g ∈ C([a, b]× IR, IR\{0}) and f ∈ C([a, b]× IR2, IR).

6.3.1 Existence Results
Consider the weighted Banach space

Cξ;ψ(J) =
{
x : J → IR : t→ (ψ(t)− ψ(a))1−ξ x(t) ∈ C([a, b], IR)

}
, 0 ≤ ξ < 1,

2. A. Salim, M. Benchohra and J. E. Lazreg, Initial Value Problem for Hybrid ψ-Hilfer
Fractional Implicit Differential Equations. (Submitted)
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with the norm
‖x‖Cξ;ψ = sup

t∈[a,b]

∣∣∣(ψ(t)− ψ(a))1−ξ x(t)
∣∣∣ ,

and

Cn
ξ;ψ(J) =

{
x ∈ Cn−1(J) : x(n) ∈ Cξ;ψ(J)

}
, n ∈ IN,

C0
ξ;ψ(J) = Cξ;ψ(J),

with the norm

‖x‖Cnξ;ψ =
n−1∑
i=0

‖x(i)‖∞ + ‖x(n)‖Cξ;ψ .

The weighted space Cϑ,r
ξ;ψ(J) is defined by

Cϑ,r
ξ;ψ(J) =

{
x ∈ Cξ;ψ(J),

HDϑ,r;ψ
a+ x ∈ Cξ;ψ(J)

}
.

Lemma 6.6. ([99]) Let ϑ > 0, 0 ≤ ξ < 1. Then, Jϑ;ψa+ is bounded from Cξ;ψ(J) into
Cξ;ψ(J). In addition, if ξ ≤ ϑ, then Jϑ;ψa+ is bounded from Cξ;ψ(J) into C([a, b], IR).

Lemma 6.7. ([100]) Let 0 < a < b < ∞, ϑ > 0, 0 ≤ ξ < 1, x ∈ Cξ;ψ(J). If ϑ > 1 − ξ,

then Jϑ;ψa+ x ∈ C([a, b], IR) and(
Jϑ;ψa+ x

)
(a) = lim

t→a+

(
Jϑ;ψa+ x

)
(t) = 0.

Lemma 6.8. ([70,100]) Let t > a. Then, for ϑ ≥ 0 and r > 0, we have[
Jϑ;ψa+ (ψ(τ)− ψ(a))r−1

]
(t) =

Γ(r)

Γ(ϑ+ r)
(ψ(t)− ψ(a))ϑ+r−1 ,[

Dϑ;ψ
a+ (ψ(τ)− ψ(a))ϑ−1

]
(t) =

Γ(r)

Γ(ϑ− r)
(ψ(t)− ψ(a))ϑ+r−1 .

Lemma 6.9. ([100,101]) Let t > a, ϑ > 0, 0 ≤ r ≤ 1. Then for 0 < ξ < 1; ξ = ϑ+ r−ϑr,
we have [

Dξ;ψ
a+ (ψ(τ)− ψ(a))ξ−1

]
(t) = 0,

and [
HDϑ,r;ψ

a+ (ψ(τ)− ψ(a))ξ−1
]
(t) = 0.

Lemma 6.10. ([100,100]) Let ϑ > 0, 0 ≤ r ≤ 1, and h ∈ C1
ξ;ψ(J). Then,(

HDϑ,r;ψ
a+ Jϑ;ψa+ h

)
(t) = h(t), for all t ∈ (a, b].

Lemma 6.11. ([100,101]) Let ϑ > 0, 0 ≤ r ≤ 1, and h ∈ C1
ξ;ψ(J). Then,

(
Jϑ;ψa+

HDϑ,r;ψ
a+ h

)
(t) = h(t)−

(
J1−ξ;ψa+ h

)
(a)

Γ(ξ)
(ψ(t)− ψ(a))ξ−1 , for all t ∈ (a, b].
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We consider the following fractional differential equation

HDϑ,r;ψ
a+

(
x(t)

g(t, x(t))

)
= v(t), t ∈ (a, b], (6.26)

where 0 < ϑ < 1, 0 ≤ r ≤ 1, with the condition(
J1−ξ;ψa+

(
x(τ)

g(τ, x(τ))

))
(a+) = ϕ0, (6.27)

where ξ = ϑ + r − ϑr, ϕ0 ∈ IR, g ∈ C([a, b]× IR, IR\{0}). The following theorem shows
that the equations (6.26) and (6.27) have a unique solution given by

x(t) = g(t, x(t))

[
ϕ0 (ψ(t)− ψ(a))ξ−1

Γ(ξ)
+
(
Jϑ;ψa+ v(τ)

)
(t)

]
. (6.28)

Theorem 6.12. Let ξ = ϑ+ r− ϑr, where 0 < ϑ < 1 and 0 ≤ r ≤ 1. If v : J → IR is a
given function such that v ∈ C1

ξ,ψ(J) and the function g ∈ C([a, b]× IR, IR\{0}) then x
satisfies problem (6.26)-(6.27) if and only if it satisfies (6.28).

Proof: Assume x satisfies the equations (6.26) and (6.27) such that the function h :

t −→
(

x(t)
g(t,x(t))

)
∈ C1

ξ,ψ(J). We prove that x is a solution to the equation (6.28).
Applying the fractional integral Jϑ;ψa+ to both sides of equation (6.26) and using Lemma
6.11, we get

h(t)− (ψ(t)− ψ(a))ξ−1

Γ(ξ)

(
J1−ξ;ψa+ h(τ)

)
(a) =

(
Jϑ;ψa+ v(τ)

)
(t).

Thus,

x(t) = g(t, x(t))

[
(ψ(t)− ψ(a))ξ−1

Γ(ξ)

(
J1−ξ;ψa+

(
x(τ)

g(τ,x(τ))

))
(a) +

(
Jϑ;ψa+ v(τ)

)
(t)

]
.

By using the condition (6.27), we obtain equation (6.28).
Reciprocally, assume x satisfies the equation (6.28). We prove that x is a solution to
the equations (6.26) and (6.27). Applying operator HDϑ,r;ψ

a+ to both sides of (6.28) and
using Lemma 6.9 and Lemma 6.10, we have

HDϑ,r;ψ
a+

(
x(t)

g(t, x(t))

)
= HDϑ,r;ψ

a+
ϕ0 (ψ(t)− ψ(a))ξ−1

Γ(ξ)
+ HDϑ,r;ψ

a+

(
Jϑ;ψa+ v(τ)

)
(t)

= v(t),

that is, (6.26) holds.
Now, applying J1−ξa+ to both sides of (6.28) and using Lemma 1.19 and Lemma 6.8, we
get (

J1−ξ;ψa+ h(τ)
)
(t) = ϕ0 +

(
J1−ξ+ϑ;ψa+ v(τ)

)
(t). (6.29)

Next, taking the limit t → a+ of (6.29) and using Lemma 6.7, with 1 − ξ < 1 − ξ + ϑ,
we obtain (

J1−ξ;ψa+

(
x(τ)

g(τ, x(τ))

))
(a+) = ϕ0. (6.30)

which shows that the initial condition (6.27) is satisfied. This completes the proof. �
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As a consequence of Theorem 6.12, we have the following result

Lemma 6.13. Let ξ = ϑ + r − ϑr where 0 < ϑ < 1 and 0 ≤ r ≤ 1, let g ∈ C([a, b] ×
IR, IR\{0}) and let f : J × IR2 → IR, be a function such that f(·, x(·), y(·)) ∈ C1

ξ,ψ(J), for
any x, y ∈ Cξ,ψ(J). If the function t −→

(
x(t)

g(t,x(t))

)
∈ C1

ξ,ψ(J), then x satisfies the problem
(6.24)-(6.25) if and only if x is the fixed point of the operator = : Cξ,ψ(J) → Cξ,ψ(J)
defined by

=x(t) = g(t, x(t))

[
x0 (ψ(t)− ψ(a))ξ−1

Γ(ξ)
+
(
Jϑ;ψa+ v(τ)

)
(t)

]
, (6.31)

where v : J −→ IR be function satisfying the functional equation

v(t) = f(t, x(t), v(t)).

Since the function g is continuous and f(·, x(·), y(·)) ∈ Cξ,ψ(J), then, by Lemma 6.6,
we have =x ∈ Cξ,ψ(J).

The following hypotheses will be used in the sequel :

(Ax1) The function f : J × IR → IR be continuous on J and

f(·, x(·), y(·)) ∈ C1
ξ;ψ(J), for any x, y ∈ Cξ;ψ(J).

(Ax2) The function g : [a, b] × IR → IR\{0} is continuous and there exists function
p ∈ C([a, b], [0,∞)) that

|g(t, x)− g(t, x̄)| ≤ p(t) (ψ(t)− ψ(a))1−ξ |x− x̄|

for any x, x̄ ∈ IR and t ∈ (a, b].

(Ax3) There exist functions η1, η2, η3 ∈ C([a, b], [0,∞)) such that

|f(t, x, y)| ≤ η1(t) + η2(t)|x|+ η3(t) for t ∈ (a, b], and x, y ∈ IR.

(Ax4) There exists a number R > 0 such that

R ≥ g∗

1− ℓ

[
|x0|
Γ(ξ)

+
ηΓ(ξ)

Γ(ϑ+ ξ)
(ψ(b)− ψ(a))ϑ

]
,

where

p∗ = sup
t∈[a,b]

p(t), η∗i = sup
t∈[a,b]

ηi(t), i = 1, 2, η∗3 = sup
t∈[a,b]

η3(t) < 1,

g∗ = sup
t∈[a,b]

|g(t, 0)|, η =
(ψ(b)− ψ(a))1−ξ η∗1 + η∗2R

1− η∗3
,

and
ℓ = p∗

[
|x0|
Γ(ξ)

+
ηΓ(ξ)

Γ(ϑ+ ξ)
(ψ(b)− ψ(a))ϑ

]
< 1.

We are now in a position to state and prove our existence result for the problem
(6.24)−(6.25) based on based on Lemma 1.30.
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Theorem 6.14. Assume (Ax1)–(Ax4) hold. If

(ψ(b)− ψ(a))1−ξ ℓ < 1, (6.32)

then the problem (6.24)−(6.25) has at least one solution in Cξ;ψ(J).

Proof: We define a subset D of Cξ;ψ(J) by

D = {x ∈ Cξ;ψ(J) : ‖x‖ξ;ψ ≤ R}.

We consider the operator = defined in (6.31), and define two operators N1 : Cξ;ψ(J) →
Cξ;ψ(J) by

(N1x)(t) = g(t, x(t)), t ∈ (a, b], (6.33)
and N2 : D → Cξ;ψ(J) by

(N2x)(t) =
x0 (ψ(t)− ψ(a))ξ−1

Γ(ξ)
+
(
Jϑ;ψa+ v(τ)

)
(t), t ∈ (a, b]. (6.34)

Then we get =x = N1xN2x. We shall show that the operators N1 and N2 satisfies all
the conditions of Lemma 1.30. The proof will be given in several steps.

Step 1: The operator N1 is a Lipschitz on Cξ;ψ(J).
Let x, y ∈ Cξ;ψ(J) and t ∈ (a, b]. Then by (Ax2) we have∣∣∣(ψ(t)− ψ(a))1−ξ ((N1x)(t)− (N1y)(t))

∣∣∣ ≤ (ψ(t)− ψ(a))1−ξ |g(t, x(t))− g(t, y(t))|

≤ p(t) (ψ(t)− ψ(a))1−ξ ‖x− y‖ξ,ψ
≤ p∗ (ψ(b)− ψ(a))1−ξ ‖x− y‖ξ,ψ,

then for each t ∈ (a, b] we obtain

‖N1x−N1y‖ξ,ψ ≤ p∗ (ψ(b)− ψ(a))1−ξ ‖x− y‖ξ,ψ.

Step 2: The operator N2 is completely continuous on D.
We firstly show that the operator N2 is continuous on D. Let {xn} be sequence in D
such that xn → x in D. Let x, y ∈ Cξ;ψ(J).
Then for each t ∈ (a, b], we have∣∣∣(ψ(t)− ψ(a))1−ξ (N2xn)(t)− (N2x)(t))

∣∣∣ ≤ (ψ(t)− ψ(a))1−ξ
(
Jϑ;ψa+ |vn(τ)− v(τ)|

)
(t),

where vn, v ∈ Cξ,ψ(J) such that

vn(t) = f(t, xn(t), vn(t)),

v(t) = f(t, x(t), v(t)).

Since xn → x and f is continuous function on J then we get vn(t) → v(t) as n→ ∞ for
each t ∈ (a, b], so by Lebesgue’s dominated convergence theorem, we have

‖N2xn −N2x‖Cξ;ψ → 0 as n→ ∞.
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Then N2 is continuous. Next we prove that N2(D) is uniformly bounded on Cξ;ψ(J).
Let any x ∈ D.
By (Ax3), we have for each t ∈ (a, b]∣∣∣(ψ(t)− ψ(a))1−ξ v(t)

∣∣∣ = ∣∣∣(ψ(t)− ψ(a))1−ξ f(t, x(t), v(t))
∣∣∣

≤ (ψ(t)− ψ(a))1−ξ (η1(t) + η2(t)|x(t)|+ η3(t)|v(t)|)
≤ (ψ(b)− ψ(a))1−ξ η∗1 + η∗2R + η∗3| (ψ(t)− ψ(a))1−ξ v(t)|.

Witch implies that∣∣∣(ψ(t)− ψ(a))1−ξ v(t)
∣∣∣ ≤ (ψ(b)− ψ(a))1−ξ η∗1 + η∗2R

1− η∗3
.

Then, we have

sup
t∈(a,b]

∣∣∣(ψ(t)− ψ(a))1−ξ v(t)
∣∣∣ ≤ (ψ(b)− ψ(a))1−ξ η∗1 + η∗2R

1− η∗3
:= η.

For t ∈ (a, b], by (6.34), (Ax3) and Lemma 6.8, we have∣∣∣(ψ(t)− ψ(a))1−ξ (N2x)(t)
∣∣∣

≤ |x0|
Γ(ξ)

+ (ψ(t)− ψ(a))1−ξ
(
Jϑ;ψa+ |v(τ)|

)
(t)

≤ |x0|
Γ(ξ)

+ η (ψ(t)− ψ(a))1−ξ
(
Jϑ;ψa+ (ψ(τ)− ψ(a))ξ−1

)
(t)

≤ |x0|
Γ(ξ)

+
ηΓ(ξ)

Γ(ϑ+ ξ)
(ψ(t)− ψ(a))ϑ

≤ |x0|
Γ(ξ)

+
ηΓ(ξ)

Γ(ϑ+ ξ)
(ψ(b)− ψ(a))ϑ .

Then for t ∈ (a, b], we obtain

‖N2x‖Cξ;ψ ≤ |x0|
Γ(ξ)

+
ηΓ(ξ)

Γ(ϑ+ ξ)
(ψ(b)− ψ(a))ϑ .

This prove that the operator N2 is uniformly bounded on D. Next we prove that the
operator N2D equicontinuous. We take x ∈ D and a < ε1 < ε2 ≤ b. Then,∣∣∣(ψ(ε1)− ψ(a))1−ξ (N2x)(ε1)− (ψ(ε2)− ψ(a))1−ξ (N2x)(ε2)

∣∣∣
≤
∣∣∣(ψ(ε1)− ψ(a))1−ξ

(
Jϑ;ψa+ v(τ)

)
(ε1)− (ψ(ε2)− ψ(a))1−ξ

(
Jϑ;ψa+ v(τ)

)
(ε2)

∣∣∣
≤ (ψ(ε2)− ψ(a))1−ξ

(
Jϑ;ψ
ε+1

|v(τ)|
)
(ε2) +

1

Γ(ϑ)

∫ ε1

a

|ψ′(τ)Ψ(τ)v(τ)| dτ,

where

Ψ(τ) =
[
(ψ(ε1)− ψ(a))1−ξ (ψ(ε1)− ψ(τ))ϑ−1 − (ψ(ε2)− ψ(a))1−ξ (ψ(ε2)− ψ(τ))ϑ−1

]
.
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Then by Lemma 6.8, we have for each t ∈ (a, b]∣∣∣(ψ(ε1)− ψ(a))1−ξ (N2x)(ε1)− (ψ(ε2)− ψ(a))1−ξ (N2x)(ε2)
∣∣∣

≤ ηΓ(ξ)

Γ(ϑ+ ξ)
(ψ(ε2)− ψ(a))1−ξ (ψ(ε2)− ψ(ε1))

ϑ+ξ−1

+ η

∫ ε1

a

∣∣∣∣Ψ(τ)
ψ′(τ)

Γ(ϑ)

∣∣∣∣ (ψ(τ)− ψ(a))ξ−1 dτ,

note that∣∣∣(ψ(ε1)− ψ(a))1−ξ (N2x)(ε1)− (ψ(ε2)− ψ(a))1−ξ (N2x)(ε2)
∣∣∣→ 0 as ε1 → ε2.

This proves that N2D is equicontinuous on J. Therefore by the Arzela-Ascoli Theorem,
N2 is completely continuous.

Step 3: Now we show that the third hypothesis of Lemma 1.30 is satisfied. Let x ∈
Cξ;ψ(J) and y ∈ D be arbitrary such that x = N1xN2y. Then, for t ∈ (a, b] we have∣∣∣(ψ(t)− ψ(a))1−ξ x(t)

∣∣∣
=
∣∣∣(ψ(t)− ψ(a))1−ξ (N1xN2y)(t)

∣∣∣
= (ψ(t)− ψ(a))1−ξ |(N1x)(t)| |(N2y)(t)|

= |g(t, x(t))|
∣∣∣∣ x0Γ(ξ)

+ (ψ(t)− ψ(a))1−ξ
(
Jϑ;ψa+

∣∣∣∣f (τ, y(τ),HDϑ,r;ψ
a+

(
y(τ)

g(τ, y(τ))

))∣∣∣∣) (t)

∣∣∣∣
≤ (|g(t, x(t))− g(t, 0)|+ |g(t, 0)|)

[
|x0|
Γ(ξ)

+
ηΓ(ξ)

Γ(ϑ+ ξ)
(ψ(b)− ψ(a))ϑ

]
≤
(
p∗‖x‖Cξ;ψ + g∗

) [ |x0|
Γ(ξ)

+
ηΓ(ξ)

Γ(ϑ+ ξ)
(ψ(b)− ψ(a))ϑ

]
,

then,

‖x‖Cξ;ψ =

g∗
[
|x0|
Γ(ξ)

+
ηΓ(ξ)

Γ(ϑ+ ξ)
(ψ(b)− ψ(a))ϑ

]
1− p∗

[
|x0|
Γ(ξ)

+
ηΓ(ξ)

Γ(ϑ+ ξ)
(ψ(b)− ψ(a))ϑ

]
≤ R.

Then x ∈ D, thus the third hypothesis of Lemma 1.30 is satisfied.

Step 4: Now, we show that p∗ (ψ(b)− ψ(a))1−ξ L < 1, where L = ‖N2(D)‖Cξ;ψ =
sup{‖N2y‖Cξ;ψ : y ∈ D}.
Since

L ≤ |x0|
Γ(ξ)

+
ηΓ(ξ)

Γ(ϑ+ ξ)
(ψ(b)− ψ(a))ϑ ,

then p∗ (ψ(b)− ψ(a))1−ξ L ≤ (ψ(b)− ψ(a))1−ξ ℓ < 1. That is, the last hypothesis of
Lemma 1.30 is satisfied. Thus, the operator equation =x = N1xN2x = x has at least
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one solution x ∈ Cξ;ψ, witch is a point fixe for the operator =.
It is clear that by (Ax1) we have t −→

(
x(t)

g(t,x(t))

)
∈ C1

ξ,ψ(J). Then, as a consequence of
Steps 1 to 4 with Theorem 6.14, we can conclude that the problem (6.24)-(6.25) has at
least a solution in Cξ;ψ(J). �

6.3.2 Examples
Example 6.15. Taking r → 0, ϑ = 1

2
, ψ(t) = t, a = 1, b = 2 and x0 = 0, we obtain

a particular case of problem (6.24)-(6.25) with Riemann-Liouville fractional derivative,
given by

RLD
1
2
,0;t

1+

(
x(t)

g(t, x(t))

)
= f

(
t, x(t),RLD

1
2
,0;t

1+

(
x(t)

g(t, x(t))

))
, t ∈ (1, 2], (6.35)

(
J

1
2
;t

1+

(
x(τ)

g(τ, x(τ))

))
(1+) = 0, (6.36)

where J = (1, 2]. Set

g(t, x(t)) =

√
t− 1

33e−t+2
(|x(t)sin(t)|+ 3) , t ∈ [1, 2], x ∈ C 1

2
,t(J).

and
f(t, x, y) =

√
t− 1|cos(t)|(1 + x+ y)

55e−t+4(2 + |x|)
, t ∈ J, x, y ∈ IR.

We have
Cξ,ψ(J) = C 1

2
,t(J) =

{
u : J → IR : (

√
t− 1)u ∈ C([a, b], IR)

}
,

and
C1
ξ,ψ(J) = C1

1
2
,t
(J) =

{
u ∈ C 1

2
,t(J) : u

′ ∈ C 1
2
,t(J)

}
,

with ξ = ϑ = 1
2
, ψ(t) = t, r = 0. Clearly, the function f ∈ C1

1
2
,t
(J). Hence the condition

(Ax1) is satisfied.
For each x, x̄ ∈ IR and t ∈ J, we have

|g(t, x)− g(t, x̄)| ≤
√
t− 1|sin(t)|
33e−t+2

|x− x̄| .

Hence condition (Ax2) is satisfied with

p(t) =
|sin(t)|
33e−t+2

and p∗ =
1

33
.

Let x, y ∈ IR. Then we have

|f(t, x, y)| ≤
√
t− 1|cos(t)|(1 + |x|+ |y|)

55e−t+4
, t ∈ J,

and so the condition (Ax3) is satisfied with

η1(t) = η2(t) = η3(t) =

√
t− 1|cos(t)|
55e−t+4

,
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and
η∗1 = η∗2 = η∗3 =

1

55e2
.

Also, the condition (Ax4) and the condition (6.32) of Theorem 6.14 is satisfied if we take

2515 ≈ 605e2 −
√
π − 11√

π
≤ R <

1815e2 −
√
π − 33√

π
≈ 7547.

Then the problem (6.35)-(6.36) has at least one solution in C 1
2
,t(J).

Example 6.16. Taking r → 1, ϑ = 1
2
, ψ(t) = t, a = 1, b = π and x0 = 0, we obtain a

particular case of problem (6.24)-(6.25) involving Caputo fractional derivative, given by

CD
1
2
,1;t

1+

(
x(t)

g(t, x(t))

)
= f

(
t, x(t),C D

1
2
,1;t

1+

(
x(t)

g(t, x(t))

))
, t ∈ (1, π], (6.37)

(
J1;t1+

(
x(τ)

g(τ, x(τ))

))
(1+) = 0, (6.38)

where J = (1, π]. Set

g(t, x(t)) =
1

115

(
|x(t)|+ |tan−1(t)|

)
, t ∈ [1, π], x ∈ C1,t(J).

and

f(t, x, y) =
|sin2(t)|

77t

(
x

1 + |x|
+

y

2 + |y|

)
+ |tan−1(t)|+ 5π, t ∈ J, x, y ∈ IR.

We have
Cξ,ψ(J) = C1,t(J) = {u : J → IR : u ∈ C([1, π], IR)} ,

and
C1
ξ,ψ(J) = C1

1,t(J) = {u ∈ C1,t(J) : u
′ ∈ C1,t(J)} ,

with ϑ = 1
2
, ξ = 1, ψ(t) = t, r = 1. Clearly, the function f ∈ C1

1,t(J). Hence the condition
(Ax1) is satisfied.
For each x, x̄ ∈ IR and t ∈ J, we have

|g(t, x)− g(t, x̄)| ≤ 1

115
|x− x̄| .

Hence condition (Ax2) is satisfied with p(t) = 1

115
.

Let x, y ∈ IR. Then we have

|f(t, x, y)| ≤ |sin2(t)|(|x|+ |y|)
77t

+ |tan−1(t)|+ 5π, t ∈ J,

and so the condition (Ax3) is satisfied with

η1(t) = |tan−1(t)|+ 5π, η2(t) = η3(t) =
|sin2(t)|

77t
,

and
η∗1 =

11π

2
, η∗2 = η∗3 =

1

77
.

Same as the last example, the conditions (Ax4) and (6.32) of Theorem 6.14 is satisfied
if we choose a convenient constant R. Then the problem (6.37)-(6.38) has at least one
solution in C1,t([1, π]).
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Example 6.17. Taking r → 0, ϑ = 1
2
, ψ(t) = ln t, a = 1, b = e and x0 = e, we get a

particular case of problem (6.24)-(6.25) using the Hadamard fractional derivative, given
by

HDD
1
2
,0;ln t

1+

(
x(t)

g(t, x(t))

)
= f

(
t, x(t),HD D

1
2
,0;ln t

1+

(
x(t)

g(t, x(t))

))
, t ∈ (1, e], (6.39)

(
J

1
2
;ln t

1+

(
x(τ)

g(τ, x(τ))

))
(1+) = e, (6.40)

where J = (1, e]. Set

g(t, x(t)) =
e−t+1|cos(πt)|
12π + 111e2t

(
(
√

ln t)|x(t)|+ e−t+e
)
+ e

√
π, t ∈ [1, e], x ∈ C 1

2
,ln t(J).

and
f(t, x, y) =

e+ x+ y

22et
, t ∈ J, x, y ∈ IR.

We have
Cξ,ψ(J) = C 1

2
,ln t(J) =

{
u : J → IR : (

√
ln t)u ∈ C([1, e], IR)

}
,

and
C1
ξ,ψ(J) = C1

1
2
,ln t(J) =

{
u ∈ C 1

2
,ln t(J) : u

′ ∈ C 1
2
,ln t(J)

}
,

with ϑ = ξ = 1, ψ(t) = ln t, r = 0. Clearly, the continuous function f ∈ C1
1
2
,ln t(J). Hence

the condition (Ax1) is satisfied.
For each x, x̄ ∈ IR and t ∈ J, we have

|g(t, x)− g(t, x̄)| ≤ e−t+1|cos(πt)|
√

ln t
12π + 111e2t

|x− x̄| .

Hence condition (Ax2) is satisfied with

p(t) =
e−t+1|cos(πt)|
12π + 111e2t

, and p∗ =
1

12π + 111e2
.

Let x, y ∈ IR. Then we have

|f(t, x, y)| ≤ e+ |x|+ |y|
22et

, t ∈ J,

and so the condition (Ax3) is satisfied with

η1(t) =
e

22et
, η2(t) = η3(t) =

1

22et
,

and
η∗1 =

e

22e
, η∗2 = η∗3 =

1

22e
.

Same as before, we choose a suitable constant R so the conditions (Ax4) and (6.32) of
Theorem 6.14 be satisfied. Then the problem (6.39)-(6.40) has at least one solution in
C 1

2
,ln t(J).
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CONCLUSION AND PERSPECTIVE

In this thesis, we have presented some results to the theory of existence, uniqueness
and Ulam-Hyers-Rassias stability results for a class of initial value problem and boundary
value problem for differential equations with generalized Hilfer type fractional derivative
with and without impulses (both instantaneous and non-instantaneous), we also delved in
a class of initial value problem for nonlinear fractional Hybrid implicit differential equa-
tions with generalized Hilfer and ψ-Hilfer fractional derivative. The tools used include
the fixed point theorems of Krasnoselskii, Dhage and Schaefer and Banach contraction
principle. Also we have considered in this thesis the same problems but in Banach spaces,
with results based on the fixed point theorems of Darbo and Mönch associated with the
technique of measure of noncompactness.

Since the concept of proportional fractional and Integral derivatives is very recent,
in the future research, we plan to study some problems for nonlinear implicit fractional
equations with generalized proportional fractional derivative. Indeed, in recent years, var-
ious researchers have studied integrals and so-called conformable derivatives to recover
certain properties that are not satisfied by the fractional case. Based on this notion, some
authors have used modified conformable derivatives (proportional derivatives or propor-
tional fractional and integral derivatives) to generate integrals and nonlocal fractional
derivatives, called integrals and proportional derivatives, which contain exponential func-
tions in their kernels. For more information on this subject, see [17, 66, 83, 103] and the
references therein.

In terms of context and potential generalization, it will be useful to expand the findings
of the present study by considering differential inclusions, the case of hybrid equations
and the nonlinear coupled systems. In addition, the problems studied in Banach spaces
can be extended to Fréchet spaces with other methods, other fixed point theorems and
the conditions that are ideally suited to achieve the best results. We may add delay and
advance arguments, study the random problems or even go further and generalize our
problems with the recently studied generalized Mittag-Leffler functions.
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Abstract

In this thesis, we present some results on existence, uniqueness, and stability of
Ulam-Hyers-Rassias for a class of initial value problem and boundary value problem for

differential equations with generalized Hilfer-type fractional derivative with and
without impulses (both instantaneous and non-instantaneous), We have also discussed
the class of initial value problem for nonlinear fractional Hybrid implicit differential

equations with generalized Hilfer and ψ-Hilfer fractional derivative. The methods used
are the fixed point theorems of Krasnoselskii, Dhage and Schaefer and Banach

contraction principle. We also took into account the same problems, albeit in Banach
Spaces, with results based on the fixed point theorems of Darbo and Mönch associated

with the technique of measure of noncompactness.

Résumé

Dans cette thèse, nous présentons quelques résultats d’existence, d’unicité et de
stabilité au sens d’Ulam pour une classe de problèmes à valeurs initiales et de

problème aux limites pour des équations différentielles avec des dérivées fractionnaires
généralisées de type Hilfer, avec et sans impulsions (instantanées et non-instantané),

Nous avons également discuté la classe de problèmes à valeur initiale pour les
équations différentielles, implicites hybrides, non linéaires avec la dérivée fractionnaire
généralisée de Hilfer et la dérivée fractionnaire de ψ-Hilfer. Les méthodes utilisées sont

les théorèmes de points fixes de Krasnoselskii, Dhage, Schaefer et le principe de
contraction de Banach. Nous avons également pris en compte les mêmes problèmes

mais dans les espaces de Banach, avec des résultats basés sur en utilisent les théorèmes
de point fixe de Darbo et de Mönch associés à la technique de la mesure de

non-compacité.

ملخص
الرتب ذات التفاضلية المعادلات من الفئات لبعض الحلول وجود حول النتائج بعض نقدم ، الأطروحة هذه في

المعادلات على التعرف تم .Ulam بمفهوم (Stability) الإستقرار مسألة دراسة شمل ايضا تم وحدانيتها. و الـكسرية
نبضات بدون و مع Hilfer نوع من المعمم الـكسري المشتق ذات الحدية القيم ذات المعادلات و الأولية القيمة ذات
مع الخطية غير (hybrid) الهجينة التفاضلية للمعادلات الأولية القيمة مشكلة فئة أيضا ناقشنا . ية) فور غير و ية (فور
و Dhage و Krasnoselskii ل: الصامدة النقطة مبرهنات الدراسة هذه في إستخدمنا .ψ-Hilfer و Hilfer مشتق
تستند نتائج مع ، باناخ فضاءات في ولـكن ، نفسها المشكلات أيضا الاعتبار في أخذنا لقد .Banach و Schaefer

التراص. عدم قياس بتقنية المرتبطة Mönch و Darbo ل: الصامدة النقطة مبرهنات إلى
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