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General Introduction 

The growing interest in materials science has led to a true technological revolution of our 

time. The need to develop new materials that can meet the rapidly changing and renewable 

needs of society is one of the major challenges in the field of engineering and new technologies. 

Materials science is concerned with the elaboration and characterization of materials of 

whatever types, and constantly searching for new materials that meet the increasing demands 

of technological applications. In fact, before choosing a material to be used in a particular 

technological application, the possibilities of its use must be first studied by determining its 

physical and chemical properties (structural, electronic, mechanical … etc) through both 

experimental and theoretical methods.  For example, improving aircraft engines must include 

an increase in operating temperature, so the materials used should be lighter and more resistant 

to high temperatures. In recent decades, researchers have shown that even the strongest metal 

alloys become soft at temperatures above 1000°C. Scientists have developed a new class of 

materials known as ceramics, but unfortunately it is characterized by fragility that limits its use 

despite undeniable progress in this field. Generally, brittleness, hardness and low usability are 

closely related to good resistance to high temperatures. 

During the 1990s, the team Barsoum et al. [1] from Drexel University in Philadelphia, 

discovered interesting properties of Ti3SiC2. In addition to being inexpensive, this material is 

distinguished by its hardness, lightness, useable, resistance to oxidation and thermal shock and 

ability to remain solid at temperature above 1300°C in air. About fifty compounds with similar 

properties were synthesized and classified into a new family known as MAX phases, referring 

to their formulations.  

MAX phases are ternary ceramic materials based on carbides or nitrides which constitute a 

new class of nanolamellar materials combining the properties of metals and ceramics which 

give them exceptional properties such as high elastic stiffness, high melting temperature, high 

thermal shock resistance and high electrical conductivity [2,3]. Due to the exceptional and 

desirable properties of MAX phases materials, they are well known to be used in many 

industrial applications such as in aerospace, automotive, defense, medical and nuclear reactors 

[4-7].  
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Recently in 2016, a successful experimental study of the new compound Zr3AlC2 of MAX 

family was reported [8]. After that, Zapata-Solvas et al. synthesized experimentally solid 

solutions (Zr1-xTix)3AlC2 by mixing Zr with Ti for different x concentration [4, 9,10].      

In addition to experimental work, there are many theoretical studies related to the properties 

of MAX phases, for example, elastic properties and electronic-structure calculations. Moreover, 

theoretical study has significance in stimulating experimental research on the synthesis and 

application of new MAX phases compounds with better characteristics, reaching some results 

that are difficult to reach experimentally.  

According to the theory of quantum mechanics, the electronic structures of materials can be 

theoretically determined by solving the Schrödinger equation, where defining the electronic 

structures of materials is fundamental to understanding and explaining experimental results 

obtained on their properties or even predicting their properties even if they have not yet been 

experimentally determined.  

In order to widen previous works on Zr3AlC2 and Ti3AlC2 compounds and enriched literature 

by the uninvestigated MAX phase compounds, we have investigated the structural, mechanical 

electronic and thermodynamic properties of the new quaternary MAX phases (Zr1-xTix)3AlC2 

for different concentrations (x = 0, 1/3, 1/2, 2/3, 1) using the first-principle full potential 

linearized augmented plane wave (FP-LAPW) method [11], in the framework of density 

functional theory (DFT) [12,13] and implemented in the WIEN2k code [14].  
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I.1. Introduction 

The MAX phases Mn+1AXn are compounds with specific composition where M is an early 

transition metal, A is an A-group element and X is C and/or N, knows as 211, 312, 413 MAX 

phases for n = 1, 2 and 3, respectively. They have attracted an intensive interest at the 

community of science for nearly two decades. The first study of this type of compounds was 

done in 1960s on the Ti3SiC2 powder to determine its specific properties [1]. However, interest 

in these phases remained limited for many years. Significantly renewed interest in the MAX 

phases since mid-1990s after the intrinsic properties of the compounds became known, where 

Barsoum and El-Raghy reported on the synthesis and characterization of bulk and pure samples 

of Ti3SiC2, which combine the best properties of metals and ceramics that seemed very 

promising [2-4]. A major research effort has been carried out to synthesize pure MAX phases 

compounds, in the form of bulk or thin film [5,6]. Several MAX phases have been synthesized 

and many have been investigated for their interesting properties. Characterization and 

understanding of their physical, mechanical and chemical properties have fundamental and 

development goals for potential applications. Many recent articles focus on compounds such as 

Ti3SiC2 [7] and Ti3AlC2 [8], especially on their elastic and mechanical properties.   

In 2016, T. Laupauw et al. were the first team to experimentally synthesized a new compound 

Zr3AlC2 of MAX family (312) [9]. Barsoum et al also successfully in synthesizied Ti4AlN3 

compound of MAX family (413) [10]. 

The MAX phases have now been shown to include over 90 different compounds. The 

majority consists of 211 compounds, most of which were discovered by Nowotny [11]. There 

is a lot of work being done regarding the theoretical prediction of the stability of these types of 

compounds and there is still definitely an undiscovered chemical group [12]. Finally, it is 

interesting to note that it is possible to make a large number of solid solutions at sites M, A, and 

X, of which only a few have been synthesized thus far, so this will be particularly important to 

modify and improve the properties of these materials. 

I.2. Chemical elements  

The MAX phases take their name from their chemical composition Mn+1AXn, where: 

 M is a transition metal (Sc, Ti, Zr, Nb,…). 

 A is an element of group A (Al, Si, P,…). 

 X is either C and /or N. 
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The index n varies from 1 to 3 and the corresponding structures M2AX, M3AX2 and M4AX3 

are named 211, 312 and 413 respectively [5]. The Fig I.1 shows the different possible elements 

used and gives the list of thermodynamically stable MAX phases. 

 

Fig I.1.  Elements known to make up the MAX phases. Red indicates M-elements, blue A-     

                elements and grey X-elements, and a list of the different thermodynamically stable 

phases [13]. 

I.3. Crystal structure 
Mn+1AXn phases are hexagonal lamellar compounds which crystallize in the P63/mmc space 

group. The Fig I.2 represents the hexagonal unit cell 211, 312 and 413 MAX phase, respectively. 

The size of the unit cell increases along the c-axis with increasing values of n. 

The atoms in the MAX phases are arranged in alternate nanolaminate layers consisting of 

close-packed layers of M and X atoms – where the X atoms fill the octahedral sites between M 
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layers – intertwined with layers of pure A elements [5]. Wyckoff’s positions for the atom sites 

in structures 211, 312, and 413 are listed in Table I.1. 

The difference MAX phases between the three structures is due to the number of M layers 

separating the A layers, so that there are two layers in 211, three in 312 and four in 413 MAX 

phases. This difference in particular, is a fundamental factor in the origin of the mechanical 

properties of the MAX phase.  The unit cells consisting of M6X octahedral, for example Nb6C, 

interleaved with layers of A-elements (such as As, In, Ga, or Ge). The M6X edge-sharing 

octahedral building block in the MAX phases is the same as in the binary carbides and nitrides, 

MX. In MAX phases, the MX layers are twinned with respect to each other and separated by 

the A-layer which acts as mirror plane. This is shown in the Fig I.3, which is a cross-section 

image of a Ti3SiC2 structure taken with a high-resolution transmission electron microscope 

(TEM) [13]. 

 

Fig I.2. Crystal structures of the three MAX groups. Early transition metal atoms are colored 

in red, A-group elements in blue, carbon or nitrogen in black [14]. 
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Phases Atoms Wyckoff x y z 

211 M2AX 

M 4f 1/3 2/3 ZM≈0.08 

A 2d 1/3 2/3 3/4 

X 2a 0 0 0 

312 

α-M3AX2 

M1 2a 0 0 0 

M2 4f 2/3 1/3 ZM≈0.14 

A 2b 0 0 1/4 

X 4f 1/3 2/3 ZM≈0.07 

312 

β-M3AX2 

M1 2a 0 0 0 

M2 4f 2/3 1/3 ZM≈0.14 

A 2d 1/3 2/3 3/4 

X 4f 1/3 2/3 ZM≈0.07 

413 

α-M4AX3 

M1 4e 0 0 ZM≈0.16 

M2 4f 1/3 2/3 ZM≈0.05 

A 2c 1/3 2/3 1/4 

X1 4f 2/3 1/2 ZM≈0.10 

X2 2a 0 0 0 

413 

β-M4AX3 

M1 4f 1/3 1/3 ZM≈0.66 

M2 4f 1/3 2/3 ZM≈0.05 

A 2c 1/3 2/3 1/4 

X1 4e 0 0 ZM≈0.10 

X2 2a 0 0 0 

Table I.1. The Wyckoff positions for the atom sites in 211, 312 and 413 MAX phases. 
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Fig I.3. The TEM image shows the cross section of the structure of Ti3SiC2. Small carbon 

atoms are not visible in the image (left). Diagram on the right is a micrograph of the 

same [5]. 

I.4. MAX Phases Properties 

MAX phases have distinct properties of ceramic as well as certain properties of metals. The 

properties of the MAX phases compounds are generally similar to those of their binary carbide 

and nitride counterparts of formula MX. 

I.4.1. Mechanical properties  

Mechanical properties of some MAX phases were reported by Barsoum [5] and by Zhang et 

al [7]. In general, MAX phase are very stiffness with values of Young’s modulus and shear 

modulus at room temperature ranging from 178 to 362 and 80 to 142 GPa, respectively [15,16]. 

This is especially true for the M3AX2 compounds where Young’s modulus takes values greater 

than 300 GPa and shear modulus are close to 120 and 200 GPa. For example, Young’s modulus 

value for Ti3AlC2 is 300 GPa while for Ti2AlCit is only 200 GPa, since the number of M-X 

bonds is greater for 312 compounds compared to 211 compounds and therefore is stiffer than 

it. The Poisson’s ratio for all MAX phases is approximately 0.2. This value is much lower than 

that of pure Ti (0.3) and closer to the TiC value (0.19) [15].  Although many of the physical 
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properties are similar between the MX and MAX phases, there are significant differences in 

mechanical properties. MX unlike MAX phases, are not machinable, do not tolerant damage, 

and are sensitive to thermal shock. The Debye temperature of MAX phases are relatively high 

and can be compared to ceramics instead of metals. The easy machinability of MAX phases at 

room temperature makes them candidates for many applications areas [14,15]. 

 

 

Fig I.4. Illustration of the machinability of the MAX phases Ti3SiC2 with the conventional 

tools [5].   

I.4.2. Electrical properties 

MAX phases are good metallic-type electrical conductors as their resistances are in a 

relatively narrow range of 0.2 to 0.7 𝜇Ω.m at room temperature [17].  It should be noted that 

the resistivity of MAX phases increases linearly with temperature as in the case of metals and 

its behavior can be described by: 

𝝆(𝑻) = 𝝆𝟑𝟎𝟎(𝟏 + 𝜶(𝑻 − 𝟑𝟎𝟎))  ; T> 100𝐾                      (I.1) 

where 𝛼 is the temperature coefficient of resistivity. We note in the Fig I.5 that the Ti3SiC2 has 

better conductivity compared to Ti3AlC2, and even the latter is a good conductor compared to 

pure Ti. Exceptionally for Ti4AlN3, the resistivity of pure titanium and that of TiC are higher 

than those of compounds containing Ti. 
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Fig I.5. Variation of the electrical resistivity with the temperature of some MAX phases 

[18,19]. 

I.4.3. Thermal properties 

The MAX phases are good thermal conductors due to their good electrical conductivity, and 

their thermal conductivity ranges from 12 to 60 W/m.K at room temperature. Fig I.6 represents 

the variation in thermal conductivity of some MAX phases as a function of temperature. 

 

Fig I.6. The thermal conductivity of some MAX phases as a function of temperature [20]. 
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 MAX phases tend to have little anisotropy to thermal expansion, the coefficient of thermal 

expansion of the MAX phases is a little higher than that of the corresponding MX binary, which 

are in general between 5 and 10 μK-1 for the MAX phases [21]. More recently, it was discovered 

that Cr2GeC has the highest thermal conductivity known to date, making it an excellent 

candidate for coating large areas on steels. 

  Also, Barsoum studied the evolution of the molar heat capacity Cp of the compounds: 

Nb2SnC, Ti3SiC2 and Ti4AlN3 in the range 300-1300K under constant pressure [5]. The results 

of the experiment are shown in the Fig I.6 where the continuous lines created using the Debye 

model [5]. 

 

Fig I.7. The heat capacity CP of Nb2SnC, Ti3SiC2 and Ti4AlN3 compounds as a function of 

temperature [5]. 

The MAX phase don’t melt, but decompose at high temperature producing transition metal 

carbide or nitride and the group A element depending on the reaction: 

𝑴𝒏+𝟏𝑨𝑿𝒏 → 𝑴𝒏+𝟏𝑿𝒏 + 𝑨                                               (I.2) 

This high temperature decomposition usually results in the evaporation of element A. The 

Ti3SiC2 compound is considered as a particularly heat resistant material because it only 

decomposes at more than 2300°C.  Thermal shock resistance is a very important factor in 

thermal properties, and it can be defined as the thermal gradient that ceramic can undergo 

without affecting mechanical properties. Despite the brittleness of MAX phases, they have high 
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thermal shock resistance. For example, the Ti3SiC2 can withstand thermal shocks from 1400 °C 

to room temperature [5]. 

  In the Table I.2, we present some of the physical properties of MAX phase compounds. 

Metallic properties Ceramic properties 

 Excellent electrical and thermal 

conductivity 

 Thermal shock resistance 

 Resistance to damage 

 Machinability at room temperature with    

   traditional cutting tools 

 Low hardness 

 Relatively low thermoelectric power and 

Hall coefficient 

 Very good resistance to acids and bases 

 Refractory, decomposition at very high 

temperature (> 1300℃) 

 Very good resistance to oxidation and 

corrosion 

 Thermal stability of the crystal structure 

and retention of most of their properties 

at high temperature 

 High stiffness and low density 

Table I.2. Some physical properties of MAX phase compounds. 

I.5. Synthesis of MAX phases  

Herein, we briefly discuss the different methods of constructing MAX phases: 

I.5.1. Synthesis of massive samples 

The bulk MAX phases compounds are obtained from powder metallurgy. Two techniques 

are commonly used: Spark Plasma Sintering (SPS) [22] and Hot Isostatic Pressing (HIP)  [4,23]. 

The modifications of the experimental conditions (temperature, pressure, duration) gives access 

to samples of different microstructures.   

 I.5.2. Synthesis of thin film 

Growth of thin films from vapour phase can be divided into two two main groups: Physical 

vapour deposition (PVD) and chemical vapour deposition (CVD).  

 Physical vapor deposition PVD: employs purely physical processes for generation vapour      
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which is condensed on substrate, for example thermal evaporation or sputtering.   

 Chemical vapor deposition CVD: the growth occurs through chemical reaction of species 

forming the desired material. This process takes place at thermodynamical equilibrium 

and thus requires high temperatures. 

I.6. Potential applications   

The MAX phases have distinct properties because they combine the mineral and ceramic 

properties, and they can be considered as good candidates for many applications. In addition to 

being good thermal and electrical conductors, they have good thermal and structural stability. 

Therefore, they are compounds that are used at high temperatures [5,24]. We will cite below 

some examples of the use of these materials:  

 They can be used to build internal combustion engines that operate at higher 

temperatures than is currently possible, making them more efficient. 

 Used as a structural material for aerospace applications. 

 Protective coating in thermal barriers or as protective layers on various components. 

 Automotive and vehicle applications. 

 Defense, medical and nuclear reactors, … etc. 

 

Fig I.8. (a): The Ti2AlC is used as heating elements (~ 1400 ° C), (b): The replacement of the 

gold layer by Ti3SiC2 in the form of thin   layers is carried out for electrical contacts coating 

[5,24]. 
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II.1- Introduction 

The solid matters contain a large number of particles interacting with each other, which are 

represented by electrons, which are negatively charged particles, and in atomic nuclei, which 

are positively charged particles. They are usually arranged in a networked crystal system. If we 

had N nucleus, we would be faced with the issue of an electromagnetic reaction of 3(1 +  𝑍). 𝑁 

particles. Since the physical properties of a solid are closely related to the dynamics of these 

lightweight particles, the ground state of a system of atomic nuclei surrounded by electrons can 

be described by solving the time-independent Schrödinger equation, which is given by the 

following phrase [1,2]: 

𝑯𝝍 = 𝑬𝝍                                                                                                      (II.1) 

where : 

             𝜓 is the wave function of the crystal. 

             𝐸 is the energy of the basic state of the crystal. 

             𝐻 is the Hamiltonian that describes the electrostatic interaction between the particles     

                 (nuclei and electrons) inside the crystal.  

The Hamiltonian 𝐻 can be generalized: 

𝑯 = 𝑻𝒆 + 𝑻𝑵 + 𝑽𝒆𝒆 + 𝑽𝒆𝑵 + 𝑽𝑵𝑵                                                                (II.2)                                                                         

where: 

𝑻𝒆 = −
ℏ2

2𝒎
∑ 𝛻𝒊𝒊   (The kinetic energy of the electrons)                                  (II.3)                                                                                       

𝑻𝑵 = −
ℏ2

2𝑴
∑ 𝛻𝑲𝑲  (The kinetic energy of the nuclei)                                     (II.4)     

As well as the potential energies of the interaction:                                                                                

𝑽𝒆𝒆 =
1

2
∑ 𝐔𝒊𝒋 =

𝟏

𝟐
∑

𝒆𝟐

𝟒𝝅𝜺𝟎|𝒓𝒊⃗⃗  ⃗−𝒓𝒋⃗⃗  ⃗|
𝒊,𝒋≠𝒊𝒊,𝒋≠𝒊   (between the electrons)                    (II.5)                                                                                

𝑽𝒆𝑵 =
1

2
∑ 𝐔𝒊𝒋 =

1

2
∑

𝒆2𝒁𝑲

4𝝅𝜺0|𝑹𝒌⃗⃗ ⃗⃗  ⃗−𝒓𝑰⃗⃗  ⃗|
𝒊,𝒋≠𝒊𝒊,𝒌   (between the electrons-nuclei)          (II.6)                                                                                       

𝑽𝑵𝑵 =
1

2
∑ 𝐔𝒊𝒋 =

1

2
∑

𝒆2𝒁𝑲𝒁𝒍

4𝝅𝜺0|𝑹𝒌⃗⃗ ⃗⃗  ⃗−𝑹𝒍⃗⃗⃗⃗ |
𝑲,𝒍≠𝒊𝑲,𝒍≠𝒊   (between the nuclei)                     (II.7)                                                                                       
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where the indexes: 𝑘, 𝑙 run on nuclei, 𝑖 and 𝑗 on electrons, 𝑅𝑘  and 𝑀 are positions and masses 

of the nuclei, 𝑟𝑖  and 𝑚 of the electrons, 𝑍𝑘  the atomic number of nucleus 𝑘.  

 

The Schrödinger equation (1.1) contains 3(𝑍 + 1). 𝑁 variable, 𝑁 is the number of atoms in 

a crystal. If each one cm3 of a solid crystal has about 5. 1022 atoms and with 𝑍 =  14 , then the 

number of variables will be equal to 2. 1024 variables [3]. There is no general method in modern 

quantum mechanics that allows for a solution to this problem containing a large number of 

particles. Several approaches are presented at different levels to simplify equation (1.1) in order 

to be solvable. Generally, three approximations are entered at three different levels. 

II.2.  Born − Oppenheimer Approximation 

Since nuclei are much heavier than electrons (the mass of a proton is about 1836 times the 

mass of an electron), so they move much slower than electrons, therefore, as a first 

approximation, the motion of the nucleus can be considered constant when studying the motion 

of electrons [4]. So, we can neglect the kinetic energy of the nucleus (𝑇𝑁  ) and limit of the 

interaction of the nuclei with each other 𝑉𝑁𝑁 is taken as constant.  

Accordingly, we have: 

𝑯𝒕𝒐𝒕 = 𝑯𝒆 + 𝑽𝑵𝑵                                                                                           (II.8)                                                                       

         𝑯𝒆 = 𝑻𝒆 + 𝑽𝑵𝒆 + 𝑽𝒆𝒆                                                                                     (II.9) 

where 𝐻𝑒 is the electronic Hamilton.  

Now, the problem is limited to searching for values and the intrinsic functions of electrons, that 

is searching for a solution to the following equation: 

𝑯𝒆𝝋 = 𝑬𝒆𝝋                                                                                                    (II.10) 

Thanks to the Born-Oppenheimer’s Approximation, the problem has been simplified from  

(𝑍 +  1) 𝑁 to the problem of 𝑍𝑁, but the solution of equation (1.10) is not possible  analytical 

or numerical. Several methods have been developed to solve the multi-electron Schrödinger 

equation, among them the Hartree and Hartree-Fock method, and density functional theory.  

 Here we confine ourselves to giving the basic principles of the density functional theory used 

in the thesis topic. 
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II.3. Density Functional Theory 

The basic idea of density functional theory (DFT) was introduced in 1927 by two scientists 

(Thomas and Fermi) [5,6] who proved that the homogeneous gas energy of electrons is a 

functional of the electronic density.  

In fact, the use of electronic density as a functional variable to describe the properties of the 

system has existed since the earliest approaches to the electronic structure of matter, but it has 

obtained proof only by the demonstration of the two so-called Hohenberg and Kohn.  DFT was 

developed in two phases: 

 Theorems of Hohenberg and Kohn, in 1964 [7]. 

 Kohn − Sham equations, in 1965 [8]. Khon won the Nobel Prize in 1998 for his     

                        contribution to the development of the density functional theory DFT.  

II.3.1. The Hohenberg and Kohn theorems 

Density functional theory DFT was proven to be an accurate theory of multi-body systems 

by Hohenberg and Kohn [7] in 1964. It applies to any system of particles interacting in an 

external potential 𝑉𝑒𝑥𝑡(𝑟). The theory is founded on two theorems: 

    II.3.1.1. First theorem 

The first theorem of Hohenberg and Kohn states the following: 

“The ground state density ρ (r) of a system of interacting electrons in an external potential 

Vext(r) uniquely defines this potential”.  

Hohenberg and Kohn have shown that the total energy 𝐸 of a system with 𝑁 electrons in 

its ground state in the presence of an external potential 𝑉𝑒𝑥𝑡(𝑟) can only be determined by 

its electronic density ρ(r) and can be written under the form: 

𝑬(𝝆)=𝑭(𝝆)+∫ 𝝆(𝒓)𝑽𝒆𝒙𝒕(𝒓)𝒅
3𝒓                                                                       (II.11)                 

where: 

𝑭(𝝆)=𝑻(𝝆)+𝑽𝒆𝒆(𝝆)                                                                                          (II.12)                                       

F (ρ) is a universal function of the electron density ρ. 
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II.3.1.2. Second theorem  

The second theorem of Hohenberg and Kohn is derectly related to the first and indicates 

that: 

 “There exists a universal functional 𝐹 (𝜌) of the density, valid for any external potential 

Vext , such that the global minimum value of the energy functional 𝐸(𝜌) = 𝐹𝐻𝐾(𝜌) +

∫𝑑𝑟𝑉𝑒𝑥𝑡𝜌(𝑟) is the exact ground state energy of the system and the density that minimizes 

this functional is the exact ground state density 𝜌0. Thus, the exact ground state energy and 

density are fully determined by the functional 𝐸(𝜌)”.                                                                                  

Here, Hohenberg and Kohn show that the real density of the ground state is only that which 

minimizes the energy E (ρ) and all the other properties are also a function of this density.  

𝑬(𝝆0) = 𝐦𝐢𝐧𝑬(𝝆)                                                                                       (II.13) 

𝜌0  is the density of the ground state. 

Unfortunately, the functional 𝐹 (𝜌) is not known and the corresponding equations cannot 

be solved. 

II.3.2. The Kohn −Sham equations 

In 1965, Kohn and Sham (KS) [8] proposed a practical method for using the density 

functional theory. Kohn and Sham considered the equivalence between an electron system 

interacting in an external potential 𝑉(𝑟) and an electron system without interaction in an 

effective potential 𝑉𝑒𝑓𝑓. Therefore, the functional of energy can be expressed by the following 

expression: 

𝑬[𝝆(𝒓⃗ )] = 𝑻0[𝝆(𝒓⃗ )] + 𝑬𝑯[𝝆(𝒓⃗ )] + 𝑬𝒙𝒄[𝝆(𝒓⃗ )]+∫ 𝑽𝒆𝒙𝒕(𝒓)𝝆(𝒓)𝒅
3𝒓               (II.14) 

where:  

             𝑇0[𝜌(𝑟 )]: The kinetic energy of the electron gas without interaction. 

             𝐸𝐻[𝜌(𝑟 )]: The term of Hartree for electrons. 

             𝐸𝑥𝑐[𝜌(𝑟 )]: The energy of exchange-correlation. 

The difference between the real kinetic energy and that of electrons without interaction as 

well as the difference between the real interaction energy and that of Hartree are taken into 

account in the energy of exchange-correlation 𝐸𝑥𝑐[𝜌(𝑟 )].  
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So the Schrödinger equation to be solved under the Kohn and Sham approach consistently 

is of the form: 

(−
𝟏

𝟐
𝜵𝟐 + 𝑽𝒆𝒇𝒇(𝒓))𝝋𝒊(𝒓) = 𝜺𝒊𝝋𝒊(𝒓)                                                             (II.15) 

where the effective potential is defined by: 

 

𝑽𝒆𝒇𝒇[𝝆(𝒓⃗ )] = 𝑽𝑯[𝝆(𝒓)] + 𝑽𝒆𝒙𝒕[𝝆(𝒓)] + 𝑽𝒙𝒄[𝝆(𝒓)]                                        (II.16) 

where: 

 

       𝑽𝑯[𝝆(𝒓)] =
1

2
∫

𝒆2

4𝝅𝜺0

𝝆(𝒓′)

|𝒓−𝒓′|
𝒅𝒓′ is the Hartree potential of the electrons.     

 

       𝑽𝒙𝒄[𝝆(𝒓)] =
𝜹𝑬𝒙𝒄[𝝆(𝒓)]

𝜹𝝆(𝒓)
   is the potential for exchange and correlation.  

and 𝜑𝑖(𝑟) are the states of a single particle and the electron density 𝜌 (𝑟) is given by the sum 

of the orbitals occupied as follows: 

𝝆(𝒓) = ∑𝝋𝒊
∗(𝒓)𝝋𝒊(𝒓)                                                                                   (II.17)              

To solve the system of equations (1.15) it is necessary to give an analytical form to the energy 

of exchange and correlation 𝐸𝑥𝑐. 

II.3.3. The exchange–correlation potential 

Solving the Kohn and Sham equations which opened the way for practical applications of 

DFT, can only be achieved by giving an analytical form to the exchange and correlation energy. 

The most used approximations are: the local density approximation (LDA) and the generalized 

gradient approximation (GGA) and the Modified Becke–Johnson (MBJ) potential, …etc. 

II.3.3.1. The local density approximation (LDA) 

Kohn and Sham proposed the simplest way to approach the exchange-correlation energy, 

which is Local Density Approximation (LDA) [8]. 

 The Local Density Approximation (LDA) consists in treating an inhomogeneous system, as 

locally homogeneous (uniform gas of interacting electrons where ρ is constant), therefore the 

exchange-correlation energy depends only on the electron density at a point r, neglecting any 

influence of the inhomogeneity of the system (the density is considered to vary very slowly).  

It is expressed as a function of the exchange-correlation energy per particle εxc: 
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𝑬𝒙𝒄
𝑳𝑫𝑨[𝝆] = ∫ 𝜺𝒙𝒄[𝝆(𝒓)]𝝆(𝒓)𝒅

3𝒓                                                                    (II.18) 

The LDA approximation assumes that the functional of εxc is purely local. This energy can be 

divided into two negative terms: 

𝜺𝒙𝒄(𝝆) = 𝜺𝒙(𝝆) + 𝜺𝒄(𝝆)                                                                                  (II.19)  

where 𝜺𝒙 is the exchange energy and 𝜺𝒄 is the correlation energy.    

The LDA approximation is only strictly valid for interacting electron systems within the 

limits of a slowly varying density and high densities. In general, the LDA approximation is 

applicable for many systems close to the electronic gas model (electrons in solids), but it 

presents a serious defect for long distance interactions like molecules for example, it often leads 

to very poor energy data such as bond and low gap energy for semiconductors and insulating 

compounds. 

Several approximate estimates of density have emerged to improve the exchange and 

correlation energy, and as a natural way to improve the LDA, is to make the exchange-

correlation functional dependent on the local density and as well as density gradient. Generally, 

𝜺𝒙𝒄 is determined by the procedures like those of Kohn and Sham [8], Winger [9], Ceperly and 

Alder [10], Perdew and Wang [11].  

II.3.3.2. The generalized gradient approximation (GGA) 

In several cases, the LDA approximation has given reliable results with a slowly varying 

density, but in practical, it is rarely satisfied this condition. The generalized gradient 

approximation (GGA) was introduced to improve the accuracy of LDA results. The GGA 

proposed here retains correct features of LDA, and combines them with the most energetically 

important features of gradient-corrected nonlocality. It consists in writing the energy of 

exchange and correlation not only as a functional of the electronic density 𝜌(𝑟) but also of its 

gradient 𝛻𝜌(𝑟) to take into account the non-uniform character of the electron gas. It is written 

as follows: 

𝑬𝒙𝒄
𝑮𝑮𝑨(𝝆) = ∫ 𝒇[𝝆(𝒓), 𝛻𝝆(𝒓)]𝒅3𝒓                                                                     (II.20)    

The GGA approximation is given for different parametrizations, among them that of  

Perdew and its collaborators.  
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II.4. Solving the Kohn − Sham equations 

In order to solve the Kohn - Sham equations numerically, it is necessary to choose a basis 

for the wave functions which can be taken as a linear combination of orbital, called the Kohn - 

Sham orbitals: 

𝝋𝒊(𝒓) = ∑𝑪𝒊𝒋∅𝒋(𝒓)                                                                                           (II.21)   

where the ∅𝑗(𝑟) are the basic functions and the 𝐶𝑖𝑗 the development coefficients. 

It is possible to determine the coefficients 𝐶𝑖𝑗 by solving the secular equation in a self-

consistent manner for busy orbitals which minimize the total energy by keeping the orbitals 

orthogonal to each other. 

    (𝑯 − 𝑬𝒊𝑺)𝑪𝒊 = 0                                                                                          (II.22) 

where 𝐻 represents the Hamiltonian and S the recovery matrix.  

Then, the new charge density 𝜌𝑜𝑢𝑡 is determined with the eigenvectors of this secular equation 

using the total charge density which can be obtained by summing over all the occupied orbitals 

(1.17). If the convergence of the calculations is not obtained, the charge densities 𝜌𝑖𝑛  and  

𝜌𝑜𝑢𝑡  are mixed as follows: 

𝝆𝒊𝒏
𝒊+1 = (1 − 𝜶)𝝆𝒊𝒏

𝒊 + 𝜶𝝆𝒐𝒖𝒕
𝒊                                                                              (II.23)  

with 𝑖 represents the number of iterations and 𝛼 the mixing parameter. 

Thus, the iterative procedure can be continued until convergence is achieved. 

Finally, in Fig II.1, a diagram illustrating the different steps in a self-consistent calculation 

performed by the density functional theory (DFT). 

  For the resolution of the Kohn-Sham equations, several methods based on the density 

functional theory (DFT) are used:  

- Methods based on a linear combination of atomic orbitals (LCAO) [12,13] which can be 

used, for example, for the d bands of transition metals. 

- Methods derived from orthogonalized plane waves (OPW) [13,14]  better suited to 

conduction bands of s-p character of simple metals. 

- The augmented plane wave type (APW) [15]. 
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- The linearized methods developed by Anderson [16]: Linearized augmented plane wave 

(LAPW) and linearized “Muffin-Tin” orbitals (LMTO), make it possible to gain several 

orders of magnitude in the computational times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig II.1. The self-consistent field for solving KS and DFT equation. 
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𝝆𝒐𝒖𝒕(𝒓) 
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Mix : 

𝝆𝒊𝒏(𝒓)  and  𝝆𝒐𝒖𝒕(𝒓) 
 

𝝆𝒊𝒏
𝒊+1 = (1 − 𝜶)𝝆𝒊𝒏

𝒊 + 𝜶𝝆𝒐𝒖𝒕
𝒊                                                                                  

 

 

Initial density 

𝝆𝒊𝒏(𝒓) 

Calculation of the effective potential 
 

𝑽𝒆𝒇𝒇[𝝆(𝒓⃗ )] = 𝑽𝑯[𝝆(𝒓)] + 𝑽𝒆𝒙𝒕[𝝆(𝒓)] + 𝑽𝒙𝒄[𝝆(𝒓)] 

 

Solving Kohn and Sham equation 

ቆ−
𝟏

𝟐
𝜵𝟐 + 𝑽𝒆𝒇𝒇(𝒓)ቇ𝝋𝒊(𝒓) = 𝜺𝒊𝝋𝒊(𝒓) 

 

Calculation of properties 

End 
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III.1. Introduction 

The search for an effective way for solving the Kohn - Sham equations for solids, particles 

and materials (II.15) has led to the development of several more accurate and effective methods 

to calculating electronic structure, such as the Pseudo Potential Plane Wave and (PP-PW) and 

the Full Potential Linearized Plane Wave (FP-LAPW), which allow prediction of its structural, 

electronic, mechanical, optical and other properties. Often these methods replace experiment in 

which it is difficult or impossible to make experimental measurements. Among these more 

accurate computational methods for determining the electronic structure, constructed within 

framework of the functional density theory, the Full Potential Linearized Augmented Plane 

Wave (FP-LAPW) method, which we used in this study. 

III.2. The augmented plane wave (APW)  

In 1937, Slater proposed the augmented plane wave (APW) method in order to solve the 

Schrödinger equation for one electron [1-3]. Where the space surrounding the atoms is divided 

into two regions: the region near the nucleus, which is called a Muffin-Tin or atomic spheres, 

and the interstitial region, where it is further from the nucleus, as shown in Fig III.1. 

 

Fig III.1. Distribution of chemical unit cell spheres: Muffin-Tin region (I) and interstitial 

region (II). 
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The wave function for the wave vector K is written as the following: 

 

𝝋(𝒓) = {

     ∑ 𝑨𝒍𝒎𝑼𝒍(𝒓)𝒀𝒍𝒎(𝒓)                         𝒓 ∈  𝑰          𝒍𝒎

    
𝟏

√𝛀
∑ 𝑪𝑮𝒆

𝒊(𝑮+𝑲)𝒓
𝑮                             𝒓 ∈  𝑰𝑰       

                     (III.1) 

 

where: K is Bloch vector, G is a reciprocal lattice vector, Ω is the unit cell volume, 𝑌𝑙𝑚 are 

spherical harmonics, 𝐴𝑙𝑚 and 𝐶𝐺 are expansion coefficients (l and m are quantum numbers ) 

and the function 𝑈𝑙(𝑟) is the regular solution of the radial Schrödinger equation which is written 

in the form: 

{−
𝒅𝟐

𝒅𝒓𝟐
+
𝒍(𝒍+𝟏)

𝒓𝟐
+ 𝑽(𝒓) − 𝑬𝒍} 𝒓𝑼𝒍(𝒓) = 𝟎                                              (III.2) 

𝑉(𝑟) represents the potential Muffin-Tin and 𝐸𝑙 the linearization energy. The radial function 

𝑈𝑙(𝑟) are the orthogonal to any eigenvalue of the heart. This orthogonality disappears in sphere 

limit [3] as shown by the following Schrödinger equation:  

𝑼𝟐
𝒅𝟐𝒓𝑼𝟏

𝒅𝒓𝟐
− 𝑼𝟏

𝒅𝟐𝒓𝑼𝟐

𝒅𝒓𝟐
= (𝑬𝟐 − 𝑬𝟏)𝒓𝑼𝟏𝑼𝟐                                                             (III.3) 

where 𝑈1 and 𝑈2 are radial solutions for the 𝐸1 and 𝐸2 energies. Recovery being constructed 

using equation (3.2) and integrating it in parts.  

Slater justifies the particular choice of these functions by noting that the plane wave are 

solutions of the Schrödinger equation when the potential is constant. As for the radial functions, 

they are solutions in the case of a spherical potential with 𝐸1  as a proper value.  This 

approximation is very good for face centered cubic materials, and less satisfactory with the 

decrease of symmetry of the material. 

To ensure the continuity of the 𝜑(𝑟) function on the surface of the MT sphere, the 

coefficients 𝐴𝑙𝑚 must be developed according to the  𝐶𝐺 coefficients of the plane wave in the 

interstitial regions. After some algebraic calculations, these coefficients are expressed as the 

follows: 

𝑨𝒍𝒎 =
𝟒𝝅𝒊𝒍

√𝛀𝑼𝒍(𝑹𝜶)
∑ 𝑪𝑮𝒋𝒍𝑮 (|𝑲 + 𝒈|𝑹𝜶)𝒀𝒍𝒎

∗ (𝑲 + 𝑮)                                           (III.4) 
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The origin is taken at the center of the sphere, and the coefficients 𝐴𝑙𝑚 are determined  from 

those of the plane waves  𝐶𝐺. The individual functions identified by G, thus become compatible 

with the radial functions in the M.T sphere, and one then obtains augmented plane waves 

(APWs). 

 The APWs functions are solutions to the Schrödinger equation in the spheres, but only for 

the energy 𝐸𝑙. Consequently, the energy 𝐸𝑙 must be equal to that of the index band G. This 

means that the energy bands (for a point K) cannot be obtained by a simple diagonalization, and 

that it is necessary to treat the secular determinant as a function of energy.     

There are some difficulties in the APW method related to the function  𝑈𝑙(𝑅𝛼) which appears 

at the denominator of equation (III.4). Indeed, the value of 𝑈𝑙(𝑅𝛼) can be equal zero at the 

surface of sphere M.T depending on the value of 𝐸𝑙, causing the radial functions to be separated 

with respect to the plane wave functions. To solve this problem, Koelling et al [4] and Anderson 

[3] made a series of changes to the APW method, mainly based on the representation of the 

radial function 𝜑(𝑟) inside the spheres by a linear combination of the radial functions  𝑈𝑙(𝑟) 

and their derivatives with respect to the energy 𝑈(𝑟), thus giving birth the FP-LAPW method.    

III.3. The linearized augmented plane wave (LAPW)  

The LAPW approach solves the problems of APW method, that is, the basic functions and 

their first derivatives were parked at the Muffin-Tin boundary between core and interstitial 

region. To solve the problem, Anderson [3], Keolling et al [4] developed the linearized 

augmented plane wave (LAPW) method. Concerning this method, the basic functions in the 

MT spheres are combinations linear radial functions 𝑈𝑙(𝑟)𝑌𝑙𝑚(𝑟) and their derivatives 

𝑈̇(𝑟)𝑌𝑙𝑚(𝑟) with respect to energy. The 𝑈𝑙(𝑟) functions are defined as in the APW method (3.2) 

and the functions  𝑈̇(𝑟)𝑌𝑙𝑚(𝑟) must satisfy the following condition: 

{−
𝒅𝟐

𝒅𝒓𝟐
+
𝒍(𝒍+𝟏)

𝒓𝟐
+ 𝑽(𝒓) − 𝑬𝒍} 𝒓𝑼̇(𝒓) = 𝒓𝑼𝒍(𝒓)                                        (III.5) 

In the non-relativistic case, these radial functions 𝑈𝑙(𝑟)  and 𝑈̇(𝑟) ensure, on the surface of 

the MT spheres, continuity with the plane waves outside. And the augmented wave functions 

are used as basic functions of the FP-LAPW method, so we have: 

𝝋(𝒓) = {    
∑ [𝑨𝒍𝒎𝑼𝒍(𝒓)+𝑩𝒍𝒎𝑼̇(𝒓)]𝒀𝒍𝒎(𝒓)                                        𝒓 ∈  𝑰     𝒍𝒎
𝟏

√𝛀
∑ 𝑪𝑮𝒆

𝒊(𝑮+𝑲)𝒓
𝑮                                                                 𝒓 ∈  𝑰𝑰         

       (III.6) 
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where the coefficients 𝐵𝑙𝑚 corresponding to the function 𝑈̇(𝑟) are the same nature as  the 

coefficients 𝐴𝑙𝑚. 

The LAPW functions are flat waves only in the interstitial zones as in the APW method, but 

they are better suited within the spheres than the APW.  In fact, if differs a bit from the 𝐸𝑙   band 

energy, a linear combinations will better reproduce the radial function than the APW functions 

consisting of a single radial function. Therefore, the function, can be developed according to its 

derivative and the energy 𝐸. 

𝑼𝒍(𝑬, 𝒓) = 𝑼𝒍(𝑬𝒍, 𝒓) + (𝑬 − 𝑬𝒍)𝑼𝒍̇ (𝑬, 𝒓) + 𝑶[(𝑬 − 𝑬𝒍)
𝟐]                              (III.7)  

where the [(𝐸 − 𝐸𝑙)
2] represents the energetic quadratic error.                                

  With this procedure the accuracy is less good than that of the APW method. The errors 

introduced into the calculation of the wave function and the energy are of the order  (𝐸 − 𝐸𝑙)
2, 

(𝐸 − 𝐸𝑙)
4 respectively. The LAPW functions form a good basis which allowing one 𝐸𝑙 to be 

used to obtain all the valence bands in a large energy region. When this is not possible, the 

energy window can generally be divided into two parts, which is a great simplification 

compared to the APW method. In general, if  𝑈𝑙 is equal to zero on the surface of the sphere, 

its derivative will be different from zero. Consequently, the problem of continuity at the surface 

of the MT sphere will not arise in the LAPW method.  

Takeda and Kubler [5] suggested popularizing the LAPW method using N radial functions 

and their derivatives (N-1). Each radial function has its own parameter 𝐸𝑙𝑖 so that the 

linearization error is avoided. We find the standard LAPW method for 𝑁 = 2 and 𝐸𝑙1 close to 

𝐸𝑙2, while for 𝑁 > 2 the errors can be reduced. It should be noted, the use of high order 

derivatives to achieve convergence requires a much larger computation time than in the standard 

LAPW method. Singh [6] modified this approach by adding local orbitals at the base without 

increasing the cutoff energy of the plane waves. 

III.4. The roles of  linearization energies of 𝑬𝒍 

We have already mentioned above that the errors in the wave function are on the order of 

(𝐸 − 𝐸𝑙)
2 and in the energy bands of the order (𝐸 − 𝐸𝑙)

4, indicates that the parameter 𝐸𝑙 must 

be chosen in the center of the energy bands in order to obtain good results, and we can optimize 

the choice of the parameter 𝐸𝑙 by calculation the total energy of the system for several values 

of 𝐸𝑙 and selecting the set which gives the lowest energy. 
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Unfortunately, when these strategies work well in many cases, they can fail miserably in 

many others. The reason for this failure is described in the presence of high layer and extent of 

core state (only known as semi-core state) in several elements in particular: alkali metal, rare 

earths, recently metals of transition and actinides.  

As mentioned, the augmented functions 𝑈(𝑟)𝑌𝑙𝑚(𝑟) and 𝑈̇(𝑟)𝑌𝑙𝑚(𝑟) are orthogonal to each 

state of the core, this condition is never satisfied exactly accepted for the case where the states 

of the core would not have the same 𝑙. The effects of this inaccurate orthogonality to the core 

states in the FP-LAPW method are sensitive to the choices of 𝐸𝑙. 

The most critical case, where there is an overlap between the bases FP-LAPW and the states 

of the core, which has presented false states of the core into the energy spectrum. To eliminate 

the ghost bands from the spectrum, we can set the energy parameter 𝐸𝑙 equal to the energy of 

the state of the core. 

III.5.  Development in local orbitals 

The aim of the LAPW method is to obtain precise band energies in the vicinity of the 

linearization energies 𝐸𝑙  [3]. In most materials, just choose these energies from the center of the 

bands. However, this is not always possible and there are materials for which the choice of a 

single value of 𝐸𝑙 is not sufficient for calculate all energy bands, it is for materials with 4𝑓 

orbitals [7] and transition metals [8,9]. This is the fundamental problem of the state of semi-

core which is intermediate between the state of valence and that of the core. To be able to 

remedy this situation, we either resort to using multiple energy windows, or by using 

development in local orbitals. 

III.6. The LAPW + LO method  

This method is based on treating all energy states with a single energy window. A linear 

combination of two radial functions are proposed [6,10]; the derivatives of these functions with 

respect energy are equal and their corresponding linearization energies are different.  

The proper function is written as follows:  

𝝋𝒍𝒎
𝑳𝑶 = ⌊[𝑨𝒍𝒎𝑼𝒍(𝒓, 𝑬𝟏,𝒍) + 𝑩𝒍𝒎𝑼̇𝒍(𝒓, 𝑬𝟏,𝒍) + 𝑪𝒍𝒎𝑼𝒍(𝒓, 𝑬𝟐,𝒍)⌋𝒀𝒍𝒎(𝒓) ;  

                                                              𝒓 < 𝑹𝜶                                                                (III.8) 

 



 
Full Potential Linearized Plane Wave Method    CHAPTER III 

 

 

 
35 

 

The 𝐴𝑙𝑚, 𝐵𝑙𝑚 and 𝐶𝑙𝑚 coefficients are determined by the requirements that 𝜑𝑙𝑚
𝐿𝑂

 must be 

normalized and has zero value and slope at the sphere boundary. 

III.7. The concept of the method FP-LAPW 

Hamann and Wimmer [11,12] developed the accuracy of the LAPW + LO method by using 

the full potential (FP). In the FP-LAPW, no approximation is made in the interstitial region and 

inside the Muffin-tines which means that all the charge inside the solid is taken into account 

not only that of the valence states.  In the FP-LAPW approach, the potential and the charge 

density are developed into radial functions times spherical harmonics inside each atomic 

spheres, and into Fourrier series in the interstitial region, with is the origin of the name “Full 

Potential”. For this method, the potential and the charge density are expanded as: 

 

𝑉(𝒓) = {
∑ 𝑽𝒍𝒎𝒀𝒍𝒎(𝒓)𝒍𝒎                                   𝒓 < 𝑹

 
∑ 𝑽𝑮𝑮 𝒆𝒊𝑮.𝑹                                           𝒓 > 𝑹

                                          (III.9)    

and:                                      

 𝝆(𝒓) = {
∑ 𝝆𝒍𝒎𝒀𝒍𝒎(𝒓)𝒍𝒎                                   𝒓 < 𝑹

 
∑ 𝑽𝑮𝑮 𝒆𝒊𝑮.𝑹                                           𝒓 > 𝑹

                                         (III.10)      

                           

III.8. The WIEN2k code 

     WIEN2k is one of the fastest and most reliable simulation codes among the calculation 

methods. The FP-LAPW method has been implemented in the WIEN code, a set of independent 

F90 programs developed by Blaha, Schwarz and their collaborators [13] which are linked by 

C. Shell Script. There are several versions of WIEN including WIEN97 [14], which was later 

improved to give WIEN2k [13]. The main programs necessary to make the self-coherent 

calculation are: 

NN: a program which gives the distance between the nearest neighbors, which helps to 

determine the atomic radius of the sphere MT and also check the overlap of the atoms.  

LSTART: generate free atomic electronic densities, and determines the treatment of different 

orbitals in the band structure calculation, like states of the heart with or without 

local orbitals. 
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Symmetry: generates the space group symmetry operations and determines the point group    of 

individual atomic sites in order to reduce the period of calculation. 

KGEN:  generates a k-mesh in the Brillouin zone. 

DSTART: computes the initial starting density for the auto-coherent cycle from the 

superposition of free atomic densities generated in LSTART. Then a self-coherent 

cycle is initialized and repeated until the convergence criterion is verified. 

 This cycle is part of the following stages: 

LAPW0: generates the potential from density. 

LAPW1: calculates the eigenvalues and eigenvectors of valence bands. 

LAPW2: calculates valence densities from eigenvectors and fermi’s energy. 

LCORE: calculates the energy and density of the core states. 

MIXER: combine the initial density and the final density and uses the total resulting density 

as an initial one for the next iteration.  

Once the self-consistent calculation is completed, the properties of the ground state (charge 

density, band structure, elastic properties, …etc.) are then determined.  

The different calculation processes are illustrated in the diagram presented in Fig III.2. 
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Fig III.2. Program flow in WIEN2K [13]. 
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VI.1. Computational method 

In this thesis and in order to do our calculation, we have employed full potential linearized 

augmented plane wave (FP-LAPW) method [1] implemented in  the WIEN2k code [2] and 

based on the density functional theory (DFT) which has proven to be one of the most accurate 

theory for the calculation of the electronic and structural properties of solids [3-18].  

In the FP-LAPW method, the space is divided into two regions: the first is a non-overlapping 

Muffin-Tin (MT) spheres where the basis set inside this region is described by radial solutions 

of the one-particle Schrodinger equation and their energy derivatives multiplied by spherical 

harmonics and the second one which is interstitial region (IR) the basis set consists of plane 

waves [19]. 

 For the exchange-correlation functional we have adopted the generalized gradient 

approximation (GGA) parametrized by Perdew-Burke-Ernzerhof (PBE) [20]. The convergence 

tests allow us to choose the parameter Rmt*Kmax = 8 where Rmt is the smallest atomic sphere 

radius and Kmax is the plane wave cutoff [21]. The chosen RMT values of Zr, Ti, Al and C are 

1.96, 1.96, 2.38 and 1.74 Bohr, respectively. The Gmax was chosen to equal the 14 value where 

Gmax is defined as the magnitude of the largest vector in the charge density Fourier expansion. 

The MT sphere were considered up to lmax = 10. The Monkorst-Pack method in the first 

Brillouin zone (IBZ) was performed using 1500 kpoints.  The charge convergence was set to 

10-4.  

The M3AlC2 compounds crystallize in a hexagonal structure with the P63/mmc space group 

(#194) [22,23] as shown in Fig IV. 1. The atoms Zr occupy the Wyckoff positions 2a and 4f 

with ZM ~0.12. The Al atoms occupy 2b atomic positions while the C atoms reside in 4f with 

ZC ~0.07 (see Table IV. 1). 
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Compound Atom Site              Coordinates 

M3AlC2 

M= Zr, Ti 

P63/mmc  (#194) 

M 

2a (0, 0, 0) 

4f (2/3, 1/3, zM) 

Al 2b (0, 0, 1/4) 

C 4f (1/3, 2/3, zC) 

 

Table IV. 1. The Wyckoff positions for M3AlC2 compounds [24]. 

 

   
 Fig IV.1. A view of the crystal structure of the MAX Phase M3AlC2 compound where (M=Zr 

and/or Ti) [24]. 
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IV.2. Structural properties 

The structural properties of (Zr1-xTix)3AlC2 compounds were studied for x=0, 1/3, 1/2, 2/3 

and 1). The behavior of a solid under pressure is described by the equation of state. We initialize 

by calculating the total energy as a function of the unit volume using the Perdew-Burke-

Ernzerhof (PBE), in order to determine the equilibrium unit-cell parameters (lattice parameter 

𝑎 and 𝑐), the bulk modulus B(GPa), the resulting data were fitted by the Birch-Maranghan state 

equation (EOS) [25,26]. 

𝑬(𝑽) = 𝑬𝟎 +
𝟗𝑽𝟎𝑩𝟎

𝟏𝟔
{[(

𝑽𝟎

𝑽
)

𝟐

𝟑
− 𝟏]

𝟑

𝑩𝟎
′ + [(

𝑽𝟎

𝑽
)

𝟐

𝟑
− 𝟏]

𝟐

[𝟔 − 𝟒(
𝑽𝟎

𝑽
)

𝟐

𝟑
]}            (IV.1) 

where: 

 𝑉0 is the equilibrium volume of the unit cell. 

𝐸0 is the corresponding total energy (the minimum of the total energy). 

 𝐵0 is the compressibility modulus and B’ is its pressure derivative; where: 

𝑩𝟎 = 𝑽(
𝝏𝟐𝑬

𝝏𝑽𝟐
)𝑷=𝟎                                                                                               (IV.2)                                      

We have used the 2D-optimize package developed by J. Morteza [27] which is implemented 

in the WIEN2K code to determine the structural lattice parameters of our compounds. 

 The Fig IV.2 shows the change of the total energy as a function of the volume of unit cell of 

our compounds.  

In Table IV.2, we presented our results and some other experimental and theoretical results 

recently obtained for comparison. We can see that our results are in good agreement with 

corresponding experimental and theoretical results. We also see that when the x concentration 

increases, all the lattice parameters 𝑎 and 𝑐 and the volume of the unit cell decrease while the 

hexagonal ration 𝑐 𝑎⁄  increases in general. We can interpret this by decreasing the atomic radius 

because the atomic radius of Ti atom is less than the one of the Zr atom. The values of the bulk 

modulus 𝐵 increase when the x concentration increases. This result is consistent with the fact 

that B is inversely proportional with the unit cell volume. Thus, it achieves the inverse 

relationship between the volume and pressure.  
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Fig IV.2. The variation of the energy as a function of the volume for the (Zr1-xTx)3AlC2 

compounds, where x=0, 1/3, 1/2, 2/3 and 1 using GGA-PBE approximation [24]. 

In attempt to identify the effect of pressure on the structural properties, we have investigate 

the parameters constants 𝑎 and 𝑐 under pressure effect in the range from 0 to 25 GPa.  

The Fig IV.3 illustrate the lattice parameters 𝑎 and 𝑐 as a function of the pressure.  We can note 

that when the pressure increases, the lattice parameters 𝑎 and 𝑐 of our compounds                       

(Zr1-xTx)3AlC2 decrease. 

Also, we have investigate the parameters constants 𝑎 and 𝑐  as a function of  x concentration. 

The Fig IV.4 represents the relation between lattice parameters 𝑎 and 𝑐 and the x concentration 

under constant pressure, where all the lattice parameters a and c decrease with increasing value 

of x. 
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Ti content; x 𝒂 (Å) 𝒄 (Å) 𝒄/𝒂 𝐕 (Å
3
) B (GPa) 𝑩′ Remarks 

0 

3.341 

3.333 

3.335 

19.960 

19.951 

19.961 

5.974 

5.986 

5.985 

193.02 

191.95 

192.27 

165.77 

- 

147.29 

4.26 

- 

- 

Calca 

Expt
b
 

Calcc 

1/3 

3.269 

3.267 

3.240 

19.513 

19.572 

19.439 

5.969 

5.991 

5.999 

181.45 

180.97 

176.75 

168.55 

- 

156.67 

3.96 

- 

- 

Calca 

Calcd 

Calcc 

1/2 

3.230 

3.232 

3.197 

19.366 

19.397 

19.220 

5.995 

6.002 

6.012 

175.02 

175.45 

170.11 

168.93 

- 

160.42 

4.05 

- 

- 

Calca 

Exptd 

Calcc 

2/3 

3.184 

3.128 

3.156 

19.062 

18.816 

19.026 

5.987 

6.015 

6.029 

166.16 

159.41 

164.11 

172.39 

- 

159.06 

4.59 

- 

- 

Calca 

Calcd 

Calcc 

1 

3.077 

3.075 

3.078 

18.638 

18.578 

18.670 

6.057 

6.042 

6.065 

152.78 

152.16 

153.19 

185.26 

- 

158.23 

4.06 

- 

- 

Calca 

Expt
e
 

Calc
c
 

a Present work [24].  
 b

 Ref [22].  
c 

Ref [30].  
d
 Ref [31].  

e 
Ref [23]. 

Table IV. 2. The calculated lattice parameters, Hexagonal ration 𝑐/𝑎 and the unit cell volume 

of (Zr1-xTix)3AlC2 for different values of x concentration. 
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Fig IV. 3. The lattice parameters 𝑎 and 𝑐  of (Zr1-xTix)3AlC2 compounds, where x=0, 1/3, 

1/2, 2/3 and 1 of as a function of the pressure [24]. 

 

Fig IV.4. The variation of the lattice parameters 𝑎 and 𝑐  of (Zr1-xTix)3AlC2 compounds, as 

a function of x concentration [24]. 

. 
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 To calculate the stability of our compounds, the best indicator is their formation 

energy. The formation energy is calculated using the following equation [28,29]: 

∆𝑯𝒇(𝐙𝐫𝟏−𝐱𝐓𝐢𝐱)𝟑𝐀𝐥𝐂𝟐 = (𝑬𝒕𝒐𝒕(𝐙𝐫𝟏−𝐱𝐓𝐢𝐱)𝟑𝐀𝐥𝐂𝟐 − (𝟑(𝟏 − 𝒙)𝑬𝒁𝒓 + 𝟑𝒙𝑬𝑻𝒊 + 𝑬𝑨𝒍 + 𝟐𝑬𝑪)     (IV.1) 

where  ∆𝐻𝑓(Zr1−xTix)3AlC2   is the formation energy of (Zr1−xTix)3AlC2, with (x = 0, 1/3,1/2, 

2/3, 1), 𝐸𝑡𝑜𝑡 is the total energy per unit cell of the our compounds, 𝐸 (𝑋 =  𝑍𝑟, 𝑇𝑖, 𝐴𝑙 𝑎𝑛𝑑 𝐶), 

it represents the total energy per atom of the element in pure solid state. The calculated 

formation energies of our compounds are regrouped in Table IV. 3. From these results, it is 

obvious that the calculated formation energies are negative, which indicates that the examined 

compounds are quite stable.  

Compounds 

(Zr1-xTix)3AlC2 

Ti content; x 

0 1/3 1/2 2/3 1 

∆𝑯𝒇  

(𝑒𝑉/𝑓. 𝑢. ) 

-0.817 -0.753 -0.776 -0.729 -0.826 

Table IV. 3. The formation energy of (Zr1-xTix)3AlC2 for different values of x 

concentration [24]. 

IV.3. Mechanical properties 

The study of the mechanical properties depends on the determination of the elastic 

parameters. These parameters allow us to get knowledge about the structural stability and the 

anisotropic character of a material. Furthermore, when a stress is applied on a material, these 

parameters are able to provide information about the mechanical stability, and strength under 

stress. 

All solid objects are susceptible to deformation under the influence of applied external 

forces. The resistance against this deformation in crystals is greater than that of amorphous 

materials due to internal forces. 

Elasticity is the physical property of a material that returns the material to its original form 

and dimensions after removing the external forces that affect the material and lead to its 

deformation and consequently the material has a preferred natural state. The behavior of the 

solid under the applied force 𝐹 which stretches the solid elastically from 𝐿0 to 𝐿0 + 𝛿𝐿 can be 



Results and discussion  
 

 
49 

 

illustrated through the Fig IV. 5. The force is divided between the chains of atoms that make up 

the solid, with each chain carrying a force 𝛿𝐹.  

 

Fig IV.5. The behavior of a solid material under an applied force F [32]. 

The elastic constants of a material describe its response to an applied stress or, conversely, 

the stress required to maintain a given deformation. Both stress and strain have three tensile and 

three shear components, giving six components in total. The linear elastic constants form a 6 × 

6 symmetric matrix, having 27 different components, such that 𝜎𝑗 = 𝐶𝑖𝑗  𝜀𝑗 for small stresses, σ, 

and strains, ε [33]. Any symmetry present in the structure may make some of these components 

equal and others may be fixed at zero. 

 In our hexagonal system of (Zr1-xTix)3AlC2 MAX phases, there are six different elastic 

constants C11, C12, C13, C33, C44 and C66 , where C66 =
(C11−C12)

2
.   We have used the Hex-elastic 

package of Jamal Morteza to determine the elastic constants of our compounds at their 

equilibrium lattice constants [34]. The elastic constants are derived by means of a Taylor 

expansion of the total energy E(V, εi) of the system with respect to the strain tensor εi: 

 𝑬(𝑽, 𝜺𝒊) = 𝑬𝟎(𝑽𝟎, 𝟎) + 𝑽𝟎 (∑ 𝝉𝒊𝝃𝒊𝒊 𝜺𝒊 +
𝟏

𝟐
∑ 𝒄𝒊𝒋𝜺𝒊𝝃𝒊𝒊𝒋 𝜺𝒋𝝃𝒋) + 𝜪(𝜺

𝟑)           (𝐈𝐕. 𝟐) 

where; E0 and V0 are the energy and the volume of unstrained hexagonal system respectively. 

The factor 𝜉𝑖 takes the value 1 if the index i is equal to 1, 2 or 3 and the value 2 if it is equal to 
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4, 5 or 6. In the above equation 𝜏𝑖 are related to the strain on the crystal. For our compounds, 

the total energy from equation (IV.3) is modified by applying six distortions described as 

follows [24].:  

𝑫𝟏 = (
𝟏 + 𝜺 𝟎 𝟎
𝟎 𝟏 + 𝜺 𝟎
𝟎 𝟎 𝟏

)                                                                                         (𝐈𝐕. 𝟑) 

𝑫𝟐 = (

𝟏 + 𝜺 𝟎 𝟎
𝟎 𝟏 + 𝜺 𝟎

𝟎 𝟎
𝟏

(𝟏 + 𝜺)𝟐

)                                                                         (𝐈𝐕. 𝟒) 

𝑫𝟑 = (
𝟏 𝟎 𝟎
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏 + 𝜺

)                                                                                               (𝐈𝐕. 𝟓) 

𝑫𝟒 =

(

 
 
 (
𝟏 + 𝜺

𝟏 − 𝜺
)

𝟏
𝟐

𝟎 𝟎

𝟎 (
𝟏 − 𝜺

𝟏 + 𝜺
)

𝟏
𝟐
𝟎

𝟎 𝟎 𝟏)

 
 
 
                                                                         (𝐈𝐕. 𝟔 

𝑫𝟓 = (
𝟏 𝟎 𝜺
𝟎 𝟏 𝜺
𝜺 𝜺 𝟏 + 𝜺𝟐

)                                                                                              (𝐈𝐕. 𝟕) 

𝑫𝟔 = (
(𝟏 + 𝜺𝟐)

𝟏
𝟐 𝜺 𝟎

𝜺 (𝟏 + 𝜺𝟐)
𝟏
𝟐 𝟎

𝟎 𝟎 𝟏

)                                                                       (𝐈𝐕. 𝟖) 

The energy for these distortions can be obtained as: 

𝑬(𝑽, 𝜺) = 𝑬(𝑽𝟎, 𝟎) + 𝑽𝟎 ((𝑪𝟏𝟏 + 𝑪𝟏𝟐)𝜺
𝟐 + 𝜪(𝜺𝟑))                                           (𝐈𝐕. 𝟗) 

𝑬(𝑽, 𝜺) = 𝑬(𝑽𝟎, 𝟎) + 𝑽𝟎 ቆ
𝑪𝟑𝟑
𝟐
𝜺𝟐 + 𝜪(𝜺𝟑)ቇ                                                      (𝐈𝐕. 𝟏𝟎) 

𝑬(𝑽, 𝜺) = 𝑬(𝑽𝟎, 𝟎) + 𝑽𝟎 ((𝑪𝒛𝒛)𝜺
𝟐 + 𝜪(𝜺𝟑))                                                      (𝐈𝐕. 𝟏𝟏) 
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with:   

       𝑪𝒛𝒛 = 𝑪𝟏𝟏 + 𝑪𝟏𝟐 + 𝟐𝑪𝟑𝟑 − 𝟒𝑪𝟏𝟑                                                                              (𝐈𝐕. 𝟏𝟐) 

𝑬(𝑽, 𝜺) = 𝑬(𝑽𝟎, 𝟎) + 𝑽𝟎 ((𝑪𝟏𝟏 − 𝑪𝟏𝟐)𝜺
𝟐 + 𝜪(𝜺𝟒))                                           (𝐈𝐕. 𝟏𝟑) 

𝑬(𝑽, 𝜺) = 𝑬(𝑽𝟎, 𝟎) + 𝑽𝟎 (𝟒(𝑪𝟒𝟒)𝜺
𝟐 + 𝜪(𝜺𝟑))                                                   (𝐈𝐕. 𝟏𝟒) 

and : 

𝑬(𝑽, 𝜺) = 𝑬(𝑽𝟎, 𝟎) + 𝑽𝟎 (𝟐(𝑪𝟔𝟔)𝜺
𝟐 + 𝜪(𝜺𝟑))                                                 (𝐈𝐕. 𝟏𝟓) 

respectively.  

To date, there is no experimental report in the elastic constants for the compounds examined 

here.  Our results of these elastic constants are illustrated in Table IV.4 

Compounds 

(Zr1-xTix)3AlC2 

Ti content; x 

0 1/3 1/2 2/3 1 

C11 (GPa) 308.59 308.58 313.41 340.01 358.86 

C12 (GPa) 89.33 89.35 90.86 90.62 99.95 

C13 (GPa) 97.37 102.70 97.20 93.85 92.33 

C33 (GPa) 318.24 328.91 331.38 355.97 366.22 

C44 (GPa) 82.27 90.86 89.09 98.55 102.19 

C66 (GPa) 109.63 109.62 111.28 124.69 129.45 

Table IV.4. Calculated elastic constants Cij (GPa) of (Zr1-xTix)3AlC2 compounds [24]. 

We can observe obviously that all these elastic constants Cij are positive and completely 

satisfy the conditions of mechanic stability of compounds for hexagonal structure [35]:  
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𝐂𝟏𝟏 > 𝟎,     𝐂𝟑𝟑 > 𝟎,     𝐂𝟒𝟒 > 𝟎,    𝐂𝟏𝟏 − 𝐂𝟏𝟐 > 𝟎,

(𝐂𝟏𝟏 + 𝐂𝟏𝟐)𝐂𝟑𝟑 > 𝟐𝐂𝟏𝟑
𝟐                                                            (𝐈𝐕. 𝟏𝟔) 

These results confirm the stability of the (Zr1-xTix)3AlC2 MAX phases against elastic 

deformation. Meanwhile, the present results of the elastic constants show that C33 is larger than 

C11 for all our compounds, which reveals that the a and b-axes are more compressible than the 

c-axis. These results can be explained in terms of the existence of strong covalent bonding in 

the [001] direction for the studied compounds. Also, we can note that the C11 and C33 are 

considerably higher than other elastic constants, which divulge an elastic anisotropy in these 

compounds. 

The bulk modulus B, which describes volumetric elasticity, or the tendency of an object to 

deform in all directions when uniformly loaded in all directions, is defined as volumetric stress 

over volumetric strain, and is the inverse of compressibility and in other words, B measures the 

resistance of a material to volume change and provides us an estimate of its response to a 

hydrostatic pressure [36], where: 

 𝑩 = −𝑽
𝒅𝑽

𝒅𝑷
                                                                                                           (𝐈𝐕. 𝟏𝟕) 

where P is pressure, V is volume, and denotes the derivative of volume with respect to pressure.  

The shear modulus G, which describes an object's tendency to shear (the deformation of 

shape at constant volume) when acted upon by opposing forces, is defined as shear stress over 

shear strain [36]. 

From the elastic constants, we have calculated the elastic modulus (the bulk modulus B and 

the shear modulus G), which allow us to determine all the mechanical properties. From the Hill 

approximation which based on the Reuss and Voigt approaches, the bulk modulus B and the 

shear modulus G are given by these following expressions [37-39]: 

𝐁𝑽 =
𝟐(𝐂𝟏𝟏 + 𝐂𝟏𝟐) + 𝐂𝟑𝟑 + 𝟒𝐂𝟏𝟑

𝟗
                                                    (𝐈𝐕. 𝟏𝟖) 

𝐁𝑹 =
(𝐂𝟏𝟏 + 𝐂𝟏𝟐)𝐂𝟑𝟑 − 𝟐𝐂𝟏𝟑

𝟐

𝐂𝟏𝟏 + 𝐂𝟏𝟐 + 𝟐𝐂𝟑𝟑 − 𝟒𝐂𝟏𝟑
                                                       (𝐈𝐕. 𝟏𝟗) 
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𝐁𝑯 =
𝐁𝑽 + 𝐁𝑹
𝟐

                                                                                     (𝐈𝐕. 𝟐𝟎) 

𝐆𝑽 =
𝐂𝟏𝟏 + 𝐂𝟏𝟐 + 𝟐𝐂𝟑𝟑 − 𝟒𝐂𝟏𝟑 + 𝟏𝟐(𝐂𝟓𝟓 + 𝐂𝟔𝟔)

𝟑𝟎
                      (𝐕𝐈. 𝟐𝟏) 

𝐆𝑹 =
𝟓

𝟐

[(𝐂𝟏𝟏 + 𝐂𝟏𝟐)𝐂𝟑𝟑 − 𝟐𝐂𝟏𝟑
𝟐 ]𝐂𝟓𝟓𝐂𝟔𝟔

𝟑𝐁𝑽𝐂𝟓𝟓𝐂𝟔𝟔 + [(𝐂𝟏𝟏 + 𝐂𝟏𝟐)𝐂𝟑𝟑 − 𝟐𝐂𝟏𝟑
𝟐 ](𝐂𝟓𝟓+𝐂𝟔𝟔)

      (𝐕𝐈. 𝟐𝟐) 

𝐆𝑯 =
𝐆𝑽 + 𝐆𝑹
𝟐

                                                                                     (𝐕𝐈. 𝟐𝟑) 

where B = BH (the Hill bulk modulus) and G = GH (the Hill shear).  

Young's modulus E, which describes the tensile elasticity or the tendency of an object to 

deform along an axis when opposing applied forces along that axis, is defined as the ratio of 

tensile stress to tensile strain and is considered a measure of the material's ability to resist stress 

and pressure in the elastic deformation range [40], where when it is Young's modulus is bigger, 

the deformation of the material is more difficult.  

𝑬 =
𝝈

𝜺
                                                                                                   (𝐕𝐈. 𝟐𝟒) 

Poison’s ratio ν is the ratio of transverse contraction strain to longitudinal extension strain in 

the direction of stretching force.  

𝛎 = −
𝜺𝐭𝐫𝐚𝐧𝐬𝐯𝐞𝐫𝐬𝐞
𝜺𝒍𝒐𝒏𝒈𝒊𝒕𝒖𝒅𝒊𝒏𝒂𝒍

                                                                              (𝐕𝐈. 𝟐𝟓) 

In engineering science, calculating the Poisson ratio allow us to classify materials as brittle 

or ductile. If the Poisson ratio of the material is greater than the value 0.26, it is considered as 

ductile, otherwise if it is considered as brittle [41].   

The Young’s modulus E and Poisson’s ratio ν of a hexagonal structure are also calculated by 

using the following expressions [42]: 

𝑬 =
𝟗𝐁𝐆

𝟑𝐁 + 𝐆
                                                                                         (𝐕𝐈. 𝟐𝟔) 

𝛎 =
𝟑𝐁 − 𝐄

𝟔𝐁 
                                                                                          (𝐕𝐈. 𝟐𝟕) 
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The values of the B, G, E and ν for our compounds (Zr1-xTix)3AlC2 with different values of 

x are represented in the Table IV.5.  We can see that: 

 When the x concentration increases, the values of B, G and E increase, indicating 

that the hardness of these compounds increases with x. 

 For each considered compound, the calculated B value from the single-crystal 

elastic constants through the Voigt-Reuss-Hill average is in good agreement with 

the corresponding one derived from the EOS fit. 

 Therefore, this good agreement between the B values obtained via two different 

computational methods constitutes another proof of the reliability and accuracy of 

the computed elastic modulus. 

 For all the compounds examined, the shear modulus G is smaller than the volume 

modulus B and thus the parameter that can limit the mechanical stability of these 

materials is the shear modulus. 

 We have found that all Poisson ratio values are less than 0.26, which means that 

they are all classified as brittle. 

 The compound Ti3AlC2 present a higher ability to resist deformation, while it’s the 

inverse in the case of the compound Zr3AlC2. 

Another criterion called Pugh criterion can also make classification of ductile and brittle 

materials. When B/G is greater than 1.75, the material will be ductile, and if not, it will be 

considered brittle [43].  From our results of B/G ratio in the Table IV.5, we obtained that all the 

B/G values are less than 1.75 which confirms that these compounds exhibit a brittle nature.  

The Poisson’s ratio ν is frequently used to deduce the type of the chemical bonding. When 

its value is less than 0.25, the chemical bonding has a covalent, while if its value is more than 

0.25, the bonding will be a typical ionic [44]. 

 The calculated values of the Poisson’s ratio ν are 0.255, 0.252, 0.249, 0.234 and 0.233 for 

x=0, 1/3, 1/2, 2/3 and 1 respectively, which indicate that the chemical bonding nature is more 

ionic for Zr3AlC2 and (Zr2/3Ti1/3)3AlC2, a mixed ionic-covalent nature for (Zr1/2Ti1/2)3AlC2 and 

more covalent for (Zr1/3Ti2/3)3AlC2 and Ti3AlC2. It’s also possible to study the nature of the 

chemical bonding using the Cauchy pressure. When the value of Cauchy pressure is positive, 

then the ionic bonding is dominant, while the covalent bonding is dominant when its value is 

negative [45]. 
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 In the hexagonal system, the Cauchy pressure is estimated in different directions as follows: 

𝐏𝐱
𝐂𝐚𝐮𝐜𝐡𝐲

= 𝐂𝟏𝟑 − 𝐂𝟒𝟒                                                                        (𝐈𝐕. 𝟐𝟖) 

𝐏𝐲
𝐂𝐚𝐮𝐜𝐡𝐲

= 𝐂𝟏𝟐 − 𝐂𝟔𝟔                                                                        (𝐈𝐕. 𝟐𝟗) 

From the Table IV. 5, it clear that for the  (Zr2/3Ti1/3)3AlC2 and Ti3AlC2 compounds, all the 

values of Cauchy pressure P𝑥
𝐶𝑎𝑢𝑐ℎ𝑦

 or P𝑦
𝐶𝑎𝑢𝑐ℎ𝑦

 are negative, which confirm the more covalent 

character for this compound, while the compounds Zr3AlC2, (Zr1/3Ti2/3)3AlC2 and 

(Zr1/2Ti1/2)3AlC2 have positive values of P𝑥
𝐶𝑎𝑢𝑐ℎ𝑦

  and negative values of  P𝑦
𝐶𝑎𝑢𝑐ℎ𝑦

 which 

indicate the mixed nature for these compounds, especially in for the compound Zr3AlC2 where 

the ionic character is clear.  

The calculation of the shear anisotropic factors of materials is extremely important to study 

the degree of durability related mainly to micro-cracks in crystals. In our hexagonal system, we 

have calculated three elastic anisotropy factors A1, A2 and A3 [46], where A1 for {100} planes 

between the [011] and [010] directions, A2 for {010} shear planes between the [101] and [001] 

directions and A3 for {001} shear planes between the [110] and [010] directions, where: 

𝐀𝟏 =
𝐂𝟏𝟏 + 𝐂𝟏𝟐 + 𝟐𝐂𝟑𝟑 − 𝟒𝐂𝟏𝟑

𝟔𝐂𝟒𝟒
                                               (𝐈𝐕. 𝟑𝟎) 

𝐀𝟐 =
𝟐𝐂𝟒𝟒

𝐂𝟏𝟏 + 𝐂𝟏𝟐
                                                                             (𝐈𝐕. 𝟑𝟏) 

 𝐀𝟑 =
𝐂𝟏𝟏 + 𝐂𝟏𝟐 + 𝟐𝐂𝟑𝟑 − 𝟒𝐂𝟏𝟑

𝟑(𝐂𝟏𝟏 − 𝐂𝟏𝟐)
                                               (𝐈𝐕. 𝟑𝟐) 

All the values of A1, A2 and A3 must be equal to 1 for an isotropic crystal while they differ 

from 1 for anisotropic crystal [47]. According to our results reported in Table IV. 5, all the 

anisotropy factors are greater or smaller than 1, which indicates that the (Zr1-xTix)3AlC2 MAX 

phase compounds exhibit an anisotropy behavior. 

Hardness is another mechanical property of a material related to the elastic and plastic 

response of a material. In general, hardness is an important indicator of corrosion resistance of 

materials, so the most corrosion-resistant materials are those with the greater hardness [48]. We 

have used the formula of Chen of Vickers’s Hardness [24,49]: 
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𝐇𝑽 = 𝟐ቆ
𝐆𝟑

𝐁𝟐
ቇ

𝟎.𝟓𝟖𝟓

− 𝟑                                                                            (𝐈𝐕. 𝟑𝟑) 

The calculated results are found to equal 12.48 GPa, 13.20 GPa, 13.52 GPa, 16.11 GPa and 

16.74 GPa for (Zr1-xTix)3AlC2 when x=0, 1/3, 1/2, 2/3 and 1 respectively. The hardness of 

Zr3AlC2 is the smallest among of the three compounds, and the hardness of Ti3AlC2 is the 

greatest among of them. 

Compounds 

(Zr1-xTix)3AlC2 

Ti contient, x 

0 1/3 1/2 2/3 1 

B (GPa) 167.01 170.42 169.76 176.91 183.68 

G (GPa) 97.33 101.27 102.11 114.05 119.10 

E (GPa) 244.50 253.52 255.16 281.63 293.80 

B/G 1.72 1.68 1.66 1.55 1.54 

𝜈 0.255 0.252 0.249 0.234 0.233 

P𝑥
𝐶𝑎𝑢𝑐ℎ𝑦

 15.10 11.84 8.11 -4.70 −9.86 

P𝑦
𝐶𝑎𝑢𝑐ℎ𝑦

 −20.30 -20.27 −20.42 -34.07 −29.50 

A1 1.30 1.18 1.27 1.29 1.24 

A2 0.75 0.45 0.80 0.45 0.79 

A3 0.98 0.98 1.01 1.02 1.06 

HV (Gpa) 12.48 13.20 13.52 16.11 16.74 

Table IV.5. Calculated elastic moduli (B , G and E) (GPa), Poisson’s ratio v,  B/G ratio, shear 

anisotropic factor for the three different shear planes (A1, A2 and A3 ), Cauchy 

pressure and Vickers hardness HV (GPa) for (Zr1-xTix)3AlC2 compounds [24]. 
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IV.4. Electronic properties 

The electronic properties of a crystalline material are generally determined by its electronic 

band structure as the calculation of the electronic properties of the material is very important, 

it tells us about the electronic conductivity, and the nature of the contacts that are formed 

between the various elements of this material, and these properties include band structure band, 

state density, and charge density. The electrical conductivity of a material is determined by the 

distribution of electrons in the conduction and valence bands.  

In the Fig IV.6, we illustrate the band structures for (Zr1-xTix)3AlC2 compounds, where x=0, 

1/3, 1/2, 2/3 and 1 along the high-symmetry axes of the first Brillouin zone. We can note from 

this figure that the band structures are topologically identical and we can easily observe the 

overlap between the valence and conduction bands at the Fermi level of all these diagrams. 

Consequently, no band gap is found at the Fermi level and as a result, all these compounds show 

metallic nature. We can also observe a great dispersion at both the valence and conduction 

bands. 
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Fig. IV.6. The band structures for (Zr1-xTix)3AlC2 compounds, where x=0, 1/3, 1/2, 2/3 and 

1 along the high-symmetry axes of the first Brillouin zone [24]. 
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 In order to further understanding the nature of the calculated band structures, we have also 

calculated the total density of states (TDOS) and partial density of states (PDOS) for the studied 

compounds in a wide energy interval [-6 eV, 6 eV] symmetric around the Fermi level. We 

illustrate in Fig IV. 7 the TDOS and PDOS of our compounds. 

 The Fermi level is taken as the origin of the energies.  
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Fig IV.7. The Total and Partial densities of states (TDOS, PDOS) of (Zr1-xTix)3AlC2 

compounds, where x=0, 1/3, 1/2, 2/3 and 1 [24]. 
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The TDOS results confirming the metallic nature for our compounds. We can divide the 

valence region into two parts: 

 The first part where the valence band between -5.0 eV to -1.5 eV. 

 The second part where the valence band between -1.5 eV to 0.0 eV.  

 The first part is mostly dominated by the p-d states of the transition elements (Zr and Ti),  

 s-Al and p-C for all the five investigated compounds. 

 The second part presents a  p-d  states hybridization between the d orbital of transition metal 

elements (Ti and Zr) and p  orbital of Al.  

 The conduction band is originated mainly to the d-Zr and or Ti contributions with a minor 

contribution of   s-p states of Al and p states of C. 

IV.5. Thermodynamic properties  

Thermodynamics is a branch of physics concerned with pressure and temperature and their 

relationship to energy and work [50]. The laws of thermodynamics are explained in terms of 

macroscopic constituents by statistical mechanics. 

In solid states physics, the Debye temperature 𝜃𝐷  and the sound velocity 𝑣 play a very 

important role to study the thermodynamic properties. The determination of both values is 

calculated as follows [51,52]: 

𝜽𝑫 =
𝒉

𝒌𝑩
[(
𝟑𝒏

𝟒𝝅
)
𝑵𝑨𝝆

𝑴
]

𝟏
𝟑
                                                          (𝐈𝐕. 𝟑𝟏) 

𝒗𝒎 = [
𝟏

𝟑
ቆ
𝟐

𝒗𝒕
𝟑
+
𝟏

𝒗𝒍
𝟑
ቇ]

−
𝟏
𝟑

                                                           (𝐈𝐕. 𝟑𝟐)    

Where : 

𝒗𝒍 = (
𝟑𝑩 + 𝟒𝑮

𝟑𝝆
)

𝟏
𝟐
                                                                  (𝐈𝐕. 𝟑𝟑) 

𝒗𝒕 = (
𝑮

𝝆
)

𝟏
𝟐
                                                                               (𝐈𝐕. 𝟑𝟒) 
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where ℎ is Plank’s constant, 𝑘𝐵 is Boltzmann’s constant, n is the number of atoms per formula 

unit, 𝑁𝐴 is Avogadro’s number, 𝜌 is the density, 𝑀 is the molecular weight, 𝑣𝑚 is the average 

sound velocity, 𝑣𝑙 and 𝑣𝑡 are the longitudinal and transverse sound velocities, respectively.  

The values of ρ, 𝑣𝑡, 𝑣𝑙, 𝑣𝑚 and 𝜃𝐷 are shown in the Table IV.5.  

Ti content; x 𝝆(𝑔/𝑐𝑚3) 𝒗𝒍(𝐾𝑚/𝑠) 𝒗𝒕(𝐾𝑚/𝑠) 𝒗𝒎(𝐾𝑚/𝑠) 𝜽𝑫 (K) Remarks 

0 

5.95 

 

5.61 

7.29 

 

12.74 

4.17 

 

4.57 

4.64 

 

5.19 

546.8 

 

613.0 

Calc a 

 

Calc b 

1/3 

5.15 

 

5.28 

7.94 

 

13.69 

4.57 

 

4.96 

5.07 

 

5.63 

 

599.0 

 

684.0 

 

   Calc a 

 

Calc b 

1/2 

4.93 

 

5.07 

7.88 

 

14.16 

4.55 

 

5.14 

5.05 

 

5.83 

615.8 

 

718.0 

Calc a 

 

Calc b 

2/3 
4.76 

4.81 

8.35 

14.54 

5.00 

5.30 

5.53 

6.02 

685.9 

750.0 

Calc a 

 

Calc b 

1 

4.22 

 

4.22 

9.01 

 

15.48 

5.31 

 

5.64 

5.89 

 

6.40 

749.9 

 

815.0 

Calc a 

 

Calc b 

a  Present work [24],    
b  Ref [53]. 

Table IV. 6. Density ρ , longitudinal, transverse and average sound velocity 𝑣𝑙, 𝑣𝑡 and 𝑣𝑚 as 

well as Debye temperature 𝜃𝐷  for (Zr1-xTix)3AlC2 compounds. 
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We can note that:  

 All the values of velocity  𝑣𝑙, 𝑣𝑡, 𝑣𝑚 and 𝜃𝐷  of (Zr1-xTix)3AlC2 are increase with x, 

while the density 𝜌 is decreases with x.   

 The longitudinal wave velocity is larger than the transverse one and both the 

longitudinal and transverse waves increase with increasing the value of x. 

 The 𝜃𝐷 value increases with increasing x, which corresponds to an  increase in 

stiffness in the same sequence. This may indicate an increase in thermal conductivity 

when x is increased.  

Unfortunately, there is no experimental report in the literature about these quantities for our 

compounds up to now. 

Many of the physical properties of an atomic crystal lattice can be successfully determined 

from the first principles within static approximation at zero temperature. However, the crystal 

lattice is in a dynamic, continuous state, as the atoms vibrate around their equilibrium sites and 

hence, the material gains or loses heat by gaining or losing phonons [54]. 

We have also evaluated the Debye temperature, bulk modulus and heat capacity under 

temperatures from 0 to 600 K and the pressure from 0 to 30 GPa by employing the quasi-

harmonic Debye model as implemented in the Gibbs code [55], which is based on the estimation 

of the Debye temperature 𝜃𝐷 by using the following formulas [56]: 

𝜽𝑫 =
ħ

𝑲𝑩
[𝟔𝝅𝟐𝑽

𝟏
𝟐𝒓]

𝟏
𝟑
𝒇(𝝂)√

𝑩𝒔
𝑴
                                              (𝐈𝐕. 𝟑𝟓) 

where V is the molecular volume, M the molecular mass of the compound, 𝑘𝐵 is the Boltzman 

constant and f (ν) the scaling function [57,58], that depends on the Poisson’s ratio ν of the 

isotropic material [59]:  

𝒇(𝝂) = {𝟑 [𝟐 (
𝟐

𝟑 
 
𝟏 + 𝝂

𝟏 − 𝟐𝝂
)

𝟑
𝟐
+ (
𝟏

𝟑

𝟏 + 𝝂

𝟏 − 𝝂
)

𝟑
𝟐
]

−𝟏

}

𝟏
𝟑

                      (𝐈𝐕. 𝟑𝟔) 

 

 



Results and discussion  
 

 
64 

 

Bs the adiabatic bulk modulus given by the static compressibility: 

𝑩𝒔 ≅ 𝑩𝒔𝒕𝒂𝒕𝒊𝒄 = 𝑽ቆ
𝒅𝟐𝑬(𝑽)

𝒅𝑽𝟐
ቇ                                                     (𝐈𝐕. 𝟑𝟕) 

where E (V) is the total energy per unit cell for our compounds. 

The heat capacity CV (the constant- volume heat capacity) and CP (the constant- pressure 

heat capacity) are given by: 

𝑪𝑽 = 𝟑𝒏𝒌𝑩 (𝟒𝑫(
𝜽𝑫
𝑻
)

𝟑𝜽𝑫
𝑻

𝒆
𝜽𝑫
𝑻 − 𝟏

)                                                   (𝐈𝐕. 𝟑𝟖) 

𝑪𝑷 = 𝑪𝑽(𝟏 + 𝜶𝜸𝑻)                                                                              (𝐈𝐕. 𝟑𝟗) 

where 𝐷 (
𝜃𝐷

𝑇
) denote the Debye integral and n is the number of atoms per unit cell. 

𝑫(
𝜽𝑫

𝑻
) =

𝟑

(𝜽𝑫/𝑻)𝟑
∫

𝒙𝟑

𝒆𝒙−𝟏

𝜽𝑫/𝑻

𝟎
𝒅𝒙                                                                    (𝐈𝐕. 𝟒𝟎) 

and volumetric thermal expansion 𝜶 can be derived as  

𝜶 =
𝜸𝑪𝑽

𝑩𝑻𝑽
                                                                                   (𝐈𝐕. 𝟒𝟏) 

where 𝜸 is the Gruneisen parameter, which is defined as 

𝜸 = −
𝒅 𝒍𝒏𝜽𝑫(𝑽)

𝒅 𝒍𝒏𝑽
                                                                                 (𝐈𝐕. 𝟒𝟐) 

 

The calculated bulk modulus of Zr3AlC2, (Zr0.5Ti0.5)3AlC2 and Ti3AlC2 are show in Figs IV.8 

(a, b and c), respectively. 
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Fig IV.8a. The bulk modulus of Zr3AlC2 compound as a function of temperature and pressure 

[24]. 

Fig IV.8b. The bulk modulus of (Zr0.5Ti0.5)3AlC2 compound as a function of temperature and 

pressure [24]. 
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Fig. IV.8c. The bulk modulus of Ti3AlC2 compound as a function of temperature and pressure 

[24]. 

Fig. IV.8 ( a, b and c) gives respectively the variation of the bulk modulus B  with temperature 

and pressure for Zr3AlC2, (Zr0.5Ti0.5)3AlC2  and Ti3AlC2.  From these Figures, we can note the 

following: 

 The value of bulk modulus B slowly decreases with increasing temperature under 

constant pressure, but increases rapidly as pressure increases under constant 

temperature for all our compounds.  

  It is noted from the figure that the relationship between bulk modulus and pressure 

(temperature) is nearly linear at fixed temperature (pressure). 

The calculated Debye temperature 𝜃𝐷 of Zr3AlC2, (Zr0.5Ti0.5)3AlC2 and Ti3AlC2 are show in 

Figs IV.9 (a, b and c), respectively. 
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Fig. IV.9a. The Debye temperature of Zr3AlC2 compound as a function of temperature and 

pressure [24]. 

      

Fig. IV. 9b. The Debye temperature of (Zr0.5Ti0.5)3AlC2 compound as a function of 

temperature and pressure [24]. 
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Fig. IV. 9c. The Debye temperature of Ti3AlC2 compound as a function of temperature and 

pressure [24]. 

Fig. IV.9 (a, b and c) give respectively the variation of the Debye temperature 𝜃𝐷  with 

temperature and pressure for Zr3AlC2, (Zr0.5Ti0.5)3AlC2  and Ti3AlC2. From these Figures, we 

can note that: 

 The value of the Debye temperature 𝜃𝐷 slowly decreases when the temperature 

increases at constant pressure, but it increases rapidly when the pressure increases at 

constant temperature for all our compounds. 

From the Fig. IV.8 and Fig. IV.9, we point out that bulk modulus and Debye temperature 𝜃𝐷 

change similarly for all our compounds. 

The heat capacity CP and CV are also investigated under the pressure and temperature 

variations. The Fig. IV.10 (a, b and c) and Fig. IV.11 (a, b and c) show the variation of the heat 

capacity CP and CV of Zr3AlC2 (Zr0.5Ti0.5)3AlC2 and Ti3AlC2 as a function of temperature and 

pressure, respectively. 
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Fig. IV.10a. The heat capacity CP of Zr3AlC2 compound as a function of temperature and 

pressure [24]. 

Fig. IV. 10b. The heat capacity CP of (Zr0.5Ti0.5)3AlC2 compound as a function of temperature 

and pressure [24]. 
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Fig. IV.10c. The heat capacity CP of Ti3AlC2 compound as a function of temperature and 

pressure [24]. 

Fig. IV .11a. The heat capacity CV of Zr3AlC2 compound as a function of temperature and 

pressure [24]. 
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Fig. IV.11b. The heat capacity CV of (Zr0.5Ti0.5)3AlC2 compound as a function of temperature 

and pressure [24]. 

Fig. IV.11c. The heat capacity CV of Ti3AlC2 compound as a function of temperature and 

pressure [24]. 
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We can note from these figures that the CP and CV values change similarly for all our 

compounds, increasing rapidly with increasing temperature when the temperature is below 

200K and continuing to increase weakly with increasing temperature.  

The CP and CV values slowly decrease when the pressure increases under the constant 

temperature for all of our compounds except when the temperature is equal to zero where all 

the values of CP and CV remain zero. 
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V. Summary and Conclusion 

In summary, we have presented a report on the structural, electronic, mechanical and the 

thermodynamic properties of the MAX phases (Zr1-xTix)3AlC2 compounds by means of the ab-

initio plane-wave (FP-LAPW) method. The equilibrium properties were calculated and 

compared with other work. The lattice constants 𝑎 and 𝑐 as function of pressure were evaluated. 

We have found that the compression along the (a,c)-axis decreases with linear dependence when 

the pressure increases. The formation energy shows that the compounds examined are quite 

stable and can be synthesized experimentally. The independent elastic constants obtained 

confirm the stability of the (Zr1-xTix)3AlC2 compounds against elastic deformation. Elastic 

moduli such as bulk modulus, shear modulus, Young's modulus E, Poisson’s ratio, Cauchy 

pressure and Vickers hardness are calculated. The chemical bonding between the nearest 

neighbor atoms which is dominant is the ionic for Zr3AlC2 and (Zr2/3Ti1/3)3AlC2, mixed ionic-

covalent for (Zr0.5Ti0.5)3AlC2 and covalent for (Zr1/3Ti2/3)3AlC2 and Ti3AlC2. Also, all these 

compounds present a brittle nature and anisotropy behavior. Calculation of the Hardness shows 

that hardness increases with increasing concentration x. For example, the Ti3AlC2 compound is 

harder than (Zr0.5Ti0.5)3AlC2 and Zr3AlC2 compounds. Since all the electronic structures don’t 

have band gap at the Fermi level, so the studied compounds exhibit metallic behavior. The 

TDOS and PDOS curves reveal the existence of p-d hybridization. Finally, by the quasi-

harmonic Debye model we have calculated the variation of the bulk modulus, Debye 

temperature and heat capacity as function of temperature and pressure. The bulk modulus and 

the Debye temperature in each compound increase significantly with increasing pressure and 

slowly decrease with increasing temperature. Conversely, the heat capacity increases with 

increasing temperature and slightly decreasing with increasing pressure. 
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Abstract 

The structural, electronic, mechanical and the thermodynamic properties of the MAX phases 

(Zr1-xTix)3AlC2 compounds have been investigated by using the full-potential plane-wave FP-

LAPW method as implemented in the Wien2k code. The exchange-correlation (XC) energy of 

electrons was treated using the Perdew-Burke-Ernzerhof parametrization. The ground-state 

properties for the studied compounds were calculated and compared with available 

experimental and theoretical data. The calculated lattice parameters are reasonably comparable 

with experimental and theoretical results. The formation energy has been evaluated in order to 

determinate the stability of our compounds. The calculation of the electronic structure was 

predicted for the first time for the present MAX phase compounds. These results indicate that, 

all our compounds exhibit metallic behavior and this metallicity is due to the p-d hybridization. 

The elastic constants have also evaluated by the Hex-elastic package. The 

mechanical stability reveal that, all our compounds are stable mechanically. The bulk modulus 

(B), shear modulus (G), Young’s modulus (E), Poisson’s ratio (ν), Debye temperature (θ𝐷) , 

Cauchy pressure (P Cauchy) as well as the Vickers’s hardness (Hv) were calculated and discussed 

in detail. Furthermore, the temperature and pressure effect on: Bulk modulus, Debye 

temperature and heat capacity at constant volume and constant pressure (CV) and (CP) 

respectively, have been investigated by the quasi-harmonic Debye model. 

Keywords: 

New MAX phases, Mechanical properties, Thermodynamic properties, Bonding nature. 
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Résumé 

Les propriétés structurales, électroniques, mécaniques et thermodynamiques des composés de 

phases MAX (Zr1-xTix)3AlC2 ont été étudiées en utilisant la méthode FP-LAPW des ondes 

planes à potentiel total mise en œuvre dans le code Wien2k. L'énergie de corrélation d'échange 

(XC) des électrons a été traitée à l'aide du paramétrage Perdew-Burke-Ernzerhof. Les propriétés 

de l'état fondamental des composés étudiés ont été calculées et comparées aux données 

expérimentales et théoriques disponibles. Les paramètres de réseau calculés sont 

raisonnablement comparables aux résultats expérimentaux et théoriques. L'énergie de 

formation a été évaluée afin de déterminer la stabilité de nos composés. Le calcul de la structure 

électronique a été prédit pour la première fois pour les présents composés en phase MAX. Ces 

résultats indiquent que tous nos composés présentent un comportement métallique et que cette 

métallicité est due à l'hybridation p-d.  Les constants élastiques ont également été évalués par 

le sous-programme Hex-elastic. La stabilité mécanique révèle que tous nos composés sont 

stables mécaniquement. Le module de compressibilité (B), le module de cisaillement (G), le 

module de Young (E), le coefficient de Poisson (ν), la pression de Cauchy (P Cauchy) et dureté 

(Hv) ont été calculés et discutés en détail. En outre, l'effet de la température et de la pression 

sur : le module de compressibilité, la température de Debye et la capacité thermique à volume 

constant et pression constante (CV) et (CP), respectivement, ont été étudiés par le modèle quasi-

harmonique de Debye. 

Mots clés : 

 Nouvelles phases Max, Propriétés mécaniques, Propriétés thermodynamiques, Nature de 

liaison 
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 مـلـــــخـص

  )2AlC3)xTix-1Zr ترونية والميكانيكية والديناميكية الحرارية لمركباتلكفحص الخصائص الهيكلية والإ في دراستنا هذه تم 

 MAX phases المتزايدة خطيا  الموجة المستويةطريقة  باستخدامFP-LAPW   المدمجة في برنامجWien2k. 

 .Perdew-Burke-Ernzerhof  ( للإلكترونات باستخدام المعايير والثوابتXCلـقـد تمت معالجة طاقة التبادل و الارتباط )

 .للمركبات المدروسة ومقارنتها مع البيانات التجريبية والنظرية المتوفرة لأساسيةتم حساب خصائص الحالة ا  كما

تم تقييم طاقة التكوين كما  ،المتوفرة مع النتائج التجريبية والنظريةمتوافقة وكانت  لجميع مركباتنا شبكة الثوابت دراسة  تمت

. تشير النتائج إلي أن جميع ول مرةلأو المدروسة كباتللمر ةاللكترونيلبنية اقمنا أيضا بدراسة  .من أجل تحديد ثبات مركباتنا

 . p-dهذه المركبات تظهر سلوكا معدنيا بسبب التهجين 

 كيالميكاني برهنت على الاستقرار التيو ، Hexa-elastic  برنامج باستخدام مستقلةال المرنة الثوابت على الحصول تم

 ،(E) معامل يونغ ، (G) القص معامل ،(B) الإنضغاطية معاملللمركبات. كما تم حساب و مناقشة قيم المعاملات التالية: 

  .)VH( و الصلابة  ) Cauchy )CauchyPضغط  ،( ν)  بواسون نسبة

 بثبوتوالسعة الحرارية  Debyeودرجة حرارة   الإنضغاطية تأثير درجة الحرارة والضغط على معاملقمنا أيضا بدراسة 

 .harmonic Debye-quasi بواسطة نموذج   PC الضغط بثبوتوالسعة الحرارية  و VC الحجم 

 طبيعة الروابط. الحرارية،الخواص الميكانيكية،  الجديدة،  MAX phasesمركبات  :مفتاحيةالكلمات ال
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a b s t r a c t

The structural, electronic, mechanical and the thermodynamic properties of the MAX phases (Zr1-
xTix)3AlC2 compounds have been investigated by using the full-potential plane-wave FP-LAPW method
as implemented in the Wien2k code. The exchange-correlation (XC) energy of electrons was treated
using the PerdeweBurkeeErnzerhof parametrization. The ground-state properties for the studied
compounds were calculated and compared with available experimental and theoretical data. The
calculated lattice parameters are reasonably comparable with experimental and theoretical results. The
formation energy has been evaluated in order to determinate the stability of our compounds. The
calculation of the electronic structure was predicted for the first time for the present MAX phase
compounds. These results indicate that, all our compounds exhibit metallic behavior and this metallicity
is due to the p-d hybridization. The elastic constants have also evaluated by the Hex-elastic package. The
mechanical stability reveal that, all our compounds are stable mechanically. The bulk modulus, shear
modulus, Young’s modulus, Poisson’s ratio and Cauchy pressure were calculated and discussed in detail.
Furthermore, the temperature and pressure effect on: Bulk modulus, Debye temperature and heat ca-
pacity at constant volume and constant pressure CV and CP, respectively have been investigated by the
quasi-harmonic Debye model.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The MAX phases Mnþ1AXn are compounds with specific
composition where M is an early transition metal, A is an A-group
element and X is C and/or N, knows as 211, 312, 413 MAX phases for
n ¼ 1, 2 and 3, respectively. They have attracted an intensive in-
terest at the community of science for nearly two decades. This
group of compounds crystallizes with the hexagonal P63/mmc
space group (#194) [1e3]. The first study of this type of compounds
was done on the Ti3SiC2 powder to determine its specific properties
[3]. The interest on the MAX phases increased since mid- 1990s
after the intrinsic properties of the compounds became known
[4,5]. By combining the properties of metals and ceramics, MAX
phases have an exceptional properties: high elastic stiffness, high

melting temperature, high thermal shock resistance and high
electrical conductivity [6,7].

In 2016, T. Laupauw et al. were the first to succeed to synthesize
experimentally a new compound Zr3AlC2 of MAX family (312) [8].
The MAX phase materials are known to enter into many industrial
applications for their desirable property [9], such as in aerospace,
automotive, defense, medical and nuclear reactors [10e12]. A lot of
MAX phase compounds are studied in the recent years by Gokhan
Surucu et al. [13e18]. The structural, mechanical, electronic and
lattice dynamic properties of hypothetical Sc2AlB0.5C0.5,
Sc2AlB0.5N0.5 and Sc2AlC0.5N0.5 compounds are investigated by
CASTEP plane-wave pseudo-potential code. These compounds have
hexagonal crystal structure and show ametallic behavior. The same
author Gokhan have also investigate the structural, electronic, dy-
namic, and thermo-elastic properties of M2AlB (X ¼ V, Nb, Ta) MAX
phase borides by VASP code, which are found to be energetically,
mechanically and dynamically stable. To get better properties of the
MAX family compounds, Zapata-Solvas et al. synthesized
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experimentally solid solutions (Zr3-xTix)AlC2 by mixing Zr with Ti
for different x concentration [9,19,20]. M.A. Hadi et al. have studied
the structural and optical properties of these solutions (Zr1-
xTix)3AlC2 [19]. The elastic and thermodynamic properties also
were studied by M.A. Hadi et al. to understand their mechanical
comportment under extreme conditions [20].

In order to widen previous works on Zr3AlC2 and Ti3AlC2 com-
pounds and enriched literature by the as yet uninvestigated prop-
erties of the (Zr3-xTix)AlC2, we have investigated the structural,
mechanical electronic and thermodynamic properties of new
quaternary MAX phases (Zr1-xTix)3AlC2 for different concentrations
(x ¼ 0, 0.5, 1) by using a first-principles density functional theory
(DFT) [21,22].

2. Computational method

To doing our calculation, we have employed full potential line-
arized augmented plane wave (FP-LAPW) method [23] imple-
mented in the Wien2k code [24] and based on the density
functional theory (DFT) which has proven to be one of the most
accurate theory for the calculation of the electronic and structural
properties of solids [25e40]. In the FP-LAPW method, the space is
divided into two regions: the first is a non-overlapping muffin-tin
(MT) spheres where the basis set inside this region is described by
radial solutions of the one-particle Schrodinger equation and their
energy derivatives multiplied by spherical harmonics and the sec-
ond one which is interstitial region (IR) the basis set consists of
plane waves [41]. For the exchange-correlation functional we have
adopted the generalized gradient approximation (GGA) parame-
trized by PerdeweBurkeeErnzerhof (PBE) [42]. The convergence
tests allow us to choose the parameter Rmt*Kmax ¼ 8 where Rmt is
the smallest atomic sphere radius and Kmax is the plane wave cut-
off [43]. The chosen RMT values of Zr, Ti, Al and C are 1.96, 1.96, 2.38
and 1.74 Bohr, respectively. The Gmax was chosen to equal the 14
value where Gmax is defined as the magnitude of the largest vector
in the charge density Fourier expansion. The MT sphere were
considered up to lmax ¼ 10. The Monkorst-Pack method in the first
Brillouin zone (IBZ) was performed using 1500 kpoints. The charge
convergence was set to 10�4.

TheM3AlC2 compounds crystallize in a hexagonal structurewith
the P63/mmc space group (#194) [8,44] as shown in Fig. 1. The
atoms Zr occupy theWyckoff positions 2a and 4f with ZM ~0.12. The
Al atoms occupy 2b atomic positions while the C atoms reside in 4f
with ZC ~0.07 (Table 1).

3. Results and discussions

3.1. Structural properties

We have used the 2D-optimize package developed by J. Morteza
[45] to determine the structural lattice parameters of our com-
pounds. In Table 2, we presented our results and some other
experimental and theoretical results recently obtained for com-
parison. We can see that our results are in good agreement with
corresponding experimental and theoretical results. We can see
also that when the x concentration increase, all the lattice param-
eters a and c and the volume of unit cell decrease while the hex-
agonal ration c/a increase. We can interpret that by the decrease of
the atomic radius because the atomic radius of Ti atom is less than
the one of the Zr atom. In attempt to identify the effect of pressure
on the structural properties, we have investigate the parameters
constants a and c under pressure effect in the range from 0 to
25 GPa. Fig. 2 illustrate the Lattice parameters a and c as function of
pressure. We can note that when the pressure is enhanced the
compression along the (a,c)-axis decreases.

Fig. 1. A view of the crystal structure of the MAX Phase Zr3AlC2 compound.
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To calculate the stability of our compounds, the best indicator is
their formation energy. The formation energy is calculated using
the following equation [18,46]:

DEf ðZr1�xTixÞ3AlC2
¼ Etot ðZr1�xTixÞ3AlC2

� ð3ð1� xÞEZr þ3xETi þ EAl þ2ECÞ (1)

where DEf ðZr1�xTixÞ3AlC2 is the formation energy of

ðZr1�xTixÞ3AlC2 with ((x ¼ 0, 0.5, 1), Etot is the total energy per unit
cell of the bulk compounds, E (X ¼ Zr, Ti, Al and C), it represents the
total energy per atom of the element in pure solid state. The
calculated formation energies of our compounds are regrouped in
Table 2. To the best of our knowledge, the formation energy has not
been measured or calculated yet for these compounds, hence our
result maybe considered as a quantitative theoretical prediction.
From these results, it is obvious that the calculated formation en-
ergies are negative, which indicates that the examined compounds
are quite stable even at high temperatures.

3.2. Mechanical properties

The study of the mechanical properties is based upon the
determination of the elastic parameters. These parameters allow us
to get knowledge about the structural stability and anisotropic
character of a material. Furthermore, when a pressure is applied on
a material, these parameters are able to provide information about
the mechanical stability, and strength under compression. In our
hexagonal system of (Zr1-xTix)3AlC2 MAX phases, there are six
different elastic constants C11, C12, C13, C33, C44 and C66 where C66 ¼
ðC11� C12Þ

2 . We have used the Hex-elastic package of Jamal Morteza

Table 1
The Wyckoff positions for Zr3AlC2 compounds.

Compound Atom Site Coordinates

M3AlC2
M ¼ Zr, Ti
P63/mmc (#194)

M 2a
(0,0,0) (0,0,

1
2
)

4f
(
1
3
,
2
3
, zM) (

2
3
,
1
3
, zMþ1

2
) (

2
3
,
1
3
,-zM) (

1
3

2
3
, -zMþ1

2
)

Al 2b
(0,0,

1
4
) (0,0,

3
4
)

C 4f
(
1
3
,
2
3
, zC) (

2
3
,
1
3
, zCþ1

2
) (

2
3
,
1
3
,-zC) (

1
3
,
2
3
,-zCþ1

2
)

Table 2
The calculated lattice parameters, Hexagonal ration c/a and unit cell volume of Zr3AlC2, (Zr0.5Ti0.5)3AlC2 and Ti3AlC2.

Compounds a (�A) c ð�AÞ c/a Vð�A3Þ DHf (eV/f.u.) Remarks

Zr3AlC2 3.341 3.333 3.335 19.960 19.951 19.961 5.974 5.986 5.985 193.02 191.95 192.27 �0.8176
e

e

Calca

Exptb

Calcc

(Zr0.5Ti0.5)3AlC2 3.230 3.232 3.197 19.366 19.397 19.220 5.995 6.002 6.012 175.02 175.45 170.11 �0.7765
e

e

Calca

Exptd

Calcc

Ti3AlC2 3.077 3.075 3.078 18.638 18.578 18.670 6.057 6.042 6.065 152.78 152.16 153.19 �0.8262
e

e

Calca

Expte

Calcc

a Present work.
b Ref [8].
c Ref [19].d Ref [48].
e Ref [44].

Fig. 2. The Lattice parameters a and c as function of pressure.
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to determine the elastic constants of our compounds at their
equilibrium lattice constants [47]. The elastic constants are derived
by means of a Taylor expansion of the total energy E (V, εi) of the
system with respect to the strain tensor εi:

EðV ; εiÞ¼ E0ðV0;0ÞþV0

0
@X

i

tixiεi þ
1
2

X
ij

cijεixiεjxj

1
Aþ Ο

�
ε
3
�

(2a)

Where E0 and V0 are the energy and the volume of unstrained
hexagonal system respectively. The factor xi, takes the value 1 if the
index i is equal to 1, 2 or 3 and the value 2 if it is equal to 4, 5 or 6. In
the above equation ti are related to the strain on the crystal. For our
compounds, the total energy from equation (2a) is modified by
applying six distortions described as follows:

D1 ¼
0
@1þ ε 0 0

0 1þ ε 0
0 0 1

1
A (2b)

D2 ¼

0
BBBB@

1þ ε 0 0

0 1þ ε 0

0 0
1

ð1þ εÞ2

1
CCCCA (3)

D3 ¼
0
@1 0 0

0 1 0
0 0 1þ ε

1
A (4)

D4 ¼

0
BBBBBBBBB@

�
1þ ε

1� ε

�1
2

0 0

0
�
1� ε

1þ ε

�1
2

0

0 0 1

1
CCCCCCCCCA

(5)

D5 ¼
0
@1 0 ε

0 1 ε

ε ε 1þ ε
2

1
A (6)

D6 ¼

0
BBBBBB@

�
1þ ε

2
�1

2
ε 0

ε

�
1þ ε

2
�1

2 0

0 0 1

1
CCCCCCA

(7)

The energy for these distortions can be obtained as:

EðV ; εÞ¼ EðV0;0Þ þ V0

�
ðC11 þC12Þε2 þΟ

�
ε
3
��

(8)

EðV ; εÞ¼ EðV0;0Þ þ V0

�
C33
2

ε
2 þΟ

�
ε
3
��

(9)

EðV ; εÞ¼ EðV0;0Þ þ V0

�
ðCzzÞε2 þΟ

�
ε
3
��

(10)

with Czz ¼ C11 þ C12 þ 2C33 � 4C13 (11)

EðV ; εÞ¼ EðV0;0Þ þ V0

�
ðC11 �C12Þε2 þΟ

�
ε
4
��

(12)

EðV ; εÞ¼ EðV0;0Þ þ V0

�
4ðC44Þε2 þΟ

�
ε
3
��

(13)

and

EðV ; εÞ¼ EðV0;0Þ þ V0

�
2ðC66Þε2 þΟ

�
ε
3
��

(14)

respectively.
Our results of these elastic constants are illustrated in Table 3. To

date, there is no experimental report in the elastic constants for the
herein investigated compounds. We can observe obviously that all
these elastic constants Cij are positive and completely satisfy the
conditions of mechanic stability of compounds for hexagonal
structure [49]:

C11 > 0; C33 >0; C44 >0; C11

� C12 >0; ðC11 þC12ÞC33 >2C213 (15)

These results confirm the stability of the (Zr1-xTix)3AlC2 MAX
phases against any elastic deformation. Meanwhile, the present
results of the elastic constants shows that C33 is larger than C11 for
all our compounds, which reveals that the a and b-axes are more
compressible than the c-axis. These results can be explained in
terms of the existence of strong covalent bonding in the [001] di-
rection for the studied compounds. Also, we can note that the C11
and C33 are considerably higher than other elastic constants, which
divulge an elastic anisotropy in these compounds.

From the elastic constants we have calculate the elastic modulus
which allow us to determine all the mechanical properties. These
modulus are the bulk modulus B and the shear modulus G. The B
measures the resistance of a material to volume change and pro-
vides us an estimate of its response to a hydrostatic pressure, while
G describes the resistance of a material to shape change [50]. From
the Hill approximation which based on the Reuss and Voigt ap-
proaches, the compressibility modulus B and the shear modulus G
are given by these following expressions [51e53]:

Table 3
Calculated elastic constants Cij (GPa), elastic modulus (B, G and E) (GPa), Poisson’s
ratio v, B/G ratio, shear anisotropic factor for the three different shear planes (A1, A2

and A3), Cauchy pressure and Vickers hardness HV (GPa) for Zr3AlC2, (Zr0.5Ti0.5)3AlC2

and Ti3AlC2 compounds.

Compound Zr3AlC2 (Zr0.5Ti0.5)3AlC2 Ti3AlC2

C11 (GPa) 308.59 313.41 358.86
C12 (GPa) 89.33 90.86 99.95
C13 (GPa) 97.37 97.20 92.33
C33 (GPa) 318.24 331.38 366.22
C44 (GPa) 82.27 89.09 102.19
C66 (GPa) 109.63 111.28 129.45
B (GPa) 167.01 169.76 183.68
G (GPa) 97.33 102.11 119.10
E (GPa) 244.50 255.16 293.80
B/G 1.72 1.66 1.54
n 0.255 0.249 0.233

PCauchyx
15.1 8.1 �9.86

PCauchyy
�20.30 �20.42 �29.5

A1 1.30 1.27 1.24
A2 0.75 0.80 0.79
A3 0.98 1.01 1.06
HV (Gpa) 12.48 13.52 16.74
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BV ¼2ðC11 þ C12Þ þ C33 þ 4C13
9

(16)

BR ¼
ðC11 þ C12ÞC33 � 2C2

13
C11 þ C12 þ 2C33 � 4C13

(17)

BH ¼BV þ BR
2

(18)

GV ¼C11 þ C12 þ 2C33 � 4C13 þ 12ðC44 þ C66Þ
30

(19)

GR ¼
5
2

h
ðC11 þ C12ÞC33 � 2C2

13

i
C44C66

3BVC44C66 þ
h
ðC11 þ C12ÞC33 � 2C2

13

i
ðC44 þ C66Þ

(20)

GH ¼GV þ GR

2
(21)

Where B ¼ BH (the Hill bulk modulus) and G ¼ GH (the Hill shear).
The Young’s modulus E and Poisson’s ratio n of a hexagonal struc-
ture are also calculated by using the following expressions [54]:

E¼ 9BG
3Bþ G

(22)

n ¼3B� E
6B

(23)

The Young’s modulus is considered as a measure of the mate-
rial’s ability to resist stress and pressure in the elastic deformation
range [55]. More Young’s modulus is bigger, more the deformation
of matter is difficult. The values of the B, G and Emagnitudes for our
compounds Zr 3AlC2, (Zr0.5Ti0.5)3AlC2 and Ti3AlC2 are represented in
Table 3. We can see that, when the concentration x increase, the
values of B, G and E increase. The compound Ti3AlC2 present a
higher ability to resist deformation, while it’s the inverse in the case
of the compound Zr3AlC2. The Poisson’s ratio n is frequently used to
deduce the type of the chemical bonding. When its value is less
than 0.25, the chemical bonding has a covalent, while if its value is
more than 0.25, the bonding will be a typical ionic [56]. The
calculated values of the Poisson’s ratio n are 0.255, 0.249 and 0.233
for Zr3AlC2, (Zr0.5Ti0.5)3AlC2 and Ti3AlC2 respectively, which indi-
cate that the chemical bonding nature is more ionic for Zr3AlC2,
have a mixed nature for (Zr0.5Ti0.5)3AlC2 and more covalent for
Ti3AlC2. It’s also possible to study the nature of the chemical
bonding using the Cauchy pressure. When the value of Cauchy
pressure is positive, then the ionic bonding is dominant, while the
covalent bonding is dominant when its value is negative [57]. In
hexagonal system, the Cauchy pressure is estimated for the
different directions as follows:

PCauchyx ¼C13 � C44 (24)

PCauchyy ¼C12 � C66 (25)

From Table 3, it clear that for the Ti3AlC2 compound, all the
values of Cauchy pressure PCauchyx or PCauchyy are negative, which
confirm the more covalent character for this compound, while the
compounds Zr3AlC2 and (Zr0.5Ti0.5)3AlC2 have positive values of
PCauchyx and negative values of PCauchyy which indicate the mixed
nature for these compounds, especially in for the compound
Zr3AlC2 where the ionic character is clear. In engineering science,

calculating the Poisson ratio allow us to classify materials as brittle
or ductile. If the Poisson ratio of a material is greater than the value
0.26, it is considered as ductile, otherwise if it is considered as
brittle [58]. For our compounds, we have found that all Poisson
ratio values are less than 0.26, which means that they are all clas-
sified as brittle. Another criterion called Pugh criterion can also
make classification of ductile and brittle materials. When B/G is
greater than 1.75, the material will be ductile, and if not, it will be
considered brittle [59]. From our results of B/G ratio in Table 3, we
obtained that all the B/G values are less than 1.75 which confirms
that these compounds exhibit a brittle nature.

The calculation of the shear anisotropic factors of materials is
extremely important to study the degree of durability related
mainly to micro-cracks in crystals. In our hexagonal system, we
have calculated three elastic anisotropy factors A1, A2 and A3 [60],
where A1 for {100} planes between the [011] and [010] directions,
A2 for {010} shear planes between the [101] and.

[001] directions and A3 for {001} shear planes between the [110]
and [010] directions, where:

A1 ¼
C11 þ C12 þ 2C33 � 4C13

6C44
(26)

A2 ¼
2C44

C11 þ C12
(27)

A3 ¼
C11 þ C12 þ 2C33 � 4C13

3ðC11 � C12Þ
(28)

All the values of A1, A2 and A3 must be equal to 1 for an isotropic
crystal while they differ from 1 for anisotropic crystal [61]. Ac-
cording to our results reported in Table 3, all the anisotropy factors
are greater or smaller than 1, which indicates that the (Zr1-
xTix)3AlC2 MAX phase compounds exhibit an anisotropy behavior.

Hardness is anothermechanical property of a material related to
the elastic and plastic response of a material. In general, hardness is
an important indicator of corrosion resistance of materials, so the
most corrosion-resistant materials are those with the greater
hardness [62]. We have used the formula of Chen of Vickers’s
Hardness [63]:

HV ¼2

 
G3

B2

!0:585

� 3 (29)

The calculated results are found to equal 12.48 GPa, 13.52 GPa
and 16.74 GPa for Zr3AlC2, (Zr0.5Ti0.5)3AlC2 and Ti3AlC2, respectively.
The hardness of Zr3AlC2 is the smallest among of the three com-
pounds, and the hardness of Ti3AlC2 is the greatest among of them.

3.3. Effect of the pressure on the mechanical properties

We have also studied the effect of the pressure on the me-
chanical properties of our compounds (Zr1-xTix)3AlC2 (where x ¼ 1,
0.5 and 1). Fig. 3 show change of the elastic constants under
different pressures from 0 to 25 GPa. We can see that the elastic
constants of our compounds increase when the pressure increase,
but despite that, the mechanical stability condition is kept fulfilled.
Fig. 4 shows the change of elastic modulus under different pres-
sures from 0 to 25 GPa. We can notice that all the bulk modulus B,
shear modulus G and Young’s modulus E increase almost linearly
when the pressure increases. That means these compounds main-
tain their mechanical stability under pressures up to 25 GPa.

I. Ouadha et al. / Computational Condensed Matter 23 (2020) e00468 5



3.4. Electronic properties

The calculation of the electronic properties of a material is
extremely important, as it informs us about the electronic con-
ductivity, the nature of the connections that are formed between
the different elements of this material, and these properties include
band structures, state density and charge densities. In Fig. 5, we
illustrate the band structures for Zr3AlC2, (Zr0.5Ti0,5)3AlC2 and
Ti3AlC2 compounds along the high-symmetry axes of the first
Brillouin zone. We can note from this figure that the three band
structure are topologically identical and we can easily observe the
overlap between the valence and conduction bands at the Fermi
level of all these diagrams. Consequently, no band gap is found at
the Fermi level and as a result all these compounds show metallic
nature. We can also observe a great dispersion at both the valence
and conduction bands. In order to further understanding the nature
of the calculated band structures, we have also calculate the total
density of states (TDOS) and partial density of states (PDOS) for the
studied compounds in a wide energy interval [-6 eV, 6 eV] sym-
metric around the Fermi level. We illustrate in Fig. 6(a and b and c)
the TDOS and PDOS of Zr3AlC2, (Zr0.5Ti0.5)3AlC2 and Ti3AlC2,
respectively. The Fermi level is taken as the origin of the energies.
The TDOS results confirm the metallic nature for our compounds.
We can divide the valence region into two parts: the first part

where the valence band between �5.0 eV and �1.5 eV and the
second part where the valence band between �1.5 eV and 0.0 eV.
The first part is mostly dominated by the p-d of the transition
element (Zr and Ti), s-Al and p-C for the three investigated com-
pounds. The second part present a strong p-d hybridization be-
tween the d orbital of transition metal elements (Ti and Zr) and p
orbital of Al. While, the conduction band are originated mainly to
the d-Zr contributions with a minor contribution of s-p states of Al
and p states of C. The presence of p-d and s-p hybridization reveal
that the chemical bonding are mixed ionic-covalent for our com-
pounds, which confirm the result obtained from mechanical
properties. The hybridization p-d contribute to forming the met-
allicity of our compounds. It is important to emphasize that, to our
knowledge; there are no experimental or theoretical results about
the electronic properties for these compounds.

3.5. Thermodynamic properties

In solid states physics, the Debye temperature qD and the sound
v velocity play a very important role to study the thermodynamic
properties. The determination of both values is calculated as fol-
lows [64,65]:

Fig. 3. Variation of the elastic constants Cij under different pressures from 0 to 25 GPa. Fig. 4. Variation of the Bulk modulus B, shear modulus G and Young’s modulus E
under different pressures from 0 to 25 GPa.
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qD ¼ h
kB

��
3n
4p

�
NAr

M

�1
3

(30)

vm ¼
"
1
3

 
2
v3t

þ 1
v3l

!#�1
3

(31)

vl ¼
�
3Bþ 4G

3r

�1
2

(32)

vt ¼
�
G
r

�1
2

(33)

where h is Plank’s constant, kB is Boltzmann’s constant, n is the
number of atoms per formulaunit, NA is Avogadro’s number, r is the
density,M is themolecular weight, vm is the average sound velocity,
vl and vt are the longitudinal and transverse sound velocities,
respectively. The values of r, vt , vl, vm and qD are shown in Table 4.
We can note the values of density r of (Zr1-xTix)3AlC2 are decrease
when x increase where x ¼ 0, 0.5 and 1. All the values of vl, vt and
vm and qD are increase with x. To the best of our knowledge, there is
no experimental report in the literature about these quantities for
our compounds up to now.

We have also evaluated the Debye temperature, bulk modulus
and heat capacity under temperatures from 0 to 600 K and the
pressure from 0 to 30 GPa by employing the quasi-harmonic Debye
model as implemented in the Gibbs code [66], which is based on
the estimation of the Debye temperature by using the following
formulas [67]:

qD ¼ ħ
KB

2
46p2V

1
2r

3
5

1
3

f ðnÞ
ffiffiffiffiffi
Bs
M

r
(34)

Where V is the molecular volume, M the molecular mass of the
compound, kB is the Boltzman constant and f (n) the scaling func-
tion [68,69], that depends on the Poisson’s ratio n of the isotropic

Fig. 5. The band structures for Zr3AlC2, (Zr0.5Ti0.5)3AlC2 and Ti3AlC2 compounds along the high-symmetry axes of the first Brillouin zone.

Fig. 6A. The Total and Partial density of states (TDOS, PDOS) of Zr3AlC2 compound.
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material [70]:

f ðnÞ¼

8>><
>>:3

2
642�2

3
1þ n

1� 2n

�3
2

þ
�
1
3
1þ n

1� n

�3
2

3
75
�19>>=
>>;

1
3

(35)

Bs the adiabatic bulk modulus given by the static
compressibility:

BsyBstatic ¼V

 
d2EðVÞ
dV2

!
(36)

Where E (V) is the total energy per unit cell for our compounds,
determined from the ground-state calculation established in sec-
tion 3.1. The heat capacity is given by:

CV ¼3nkB

0
B@4D

�qD
T

�
�

3qD
T

e
qD
T � 1

1
CA (40)

Where D
�
qD
T

�
denote the Debye integral and n is the number of

atoms per unit cell.
The calculated Bulk modulus and the Debye temperature of

Zr3AlC2, (Zr0.5Ti0.5)3AlC2 and Ti3AlC2 are displayed in Figs. 7 and 8
(a, b and c), respectively. From these Figures, we can observe that
the values of bulk modulus B and Debye temperature qD decrease
slowly when the temperature increase under constant pressure,
but they increase rapidly when the pressure increase under con-
stant temperature for all our compounds. We point out that Debye
temperature qD and Bulk modulus change similarly for all our
compounds.

Fig. 6b. The Total and Partial density of states (TDOS, PDOS) of (Zr0.5Ti0.5)3AlC2

compound.

Fig. 6c. The Total and Partial density of states (TDOS, PDOS) of Ti3AlC2 compound.

Table 4
Density (r in (g=cm3), longitudinal, transverse and average sound velocity vl, vt and
vm in (Km=s) as well as Debye temperature qD in (K) for Zr3AlC2, (Zr0.5Ti0.5)3AlC2 and
Ti3AlC2 compounds.

Composition r vl vt vm qD Remark

Zr3AlC2 5.59
5.61

7.29
12.74

4.17
4.57

4.64
5.19

546.8
613

Calca

Calcb

(Zr0.5Ti0.5)3AlC2 4.93
5.07

7.88
14.16

4.55
5.14

5.05
5.83

615.8
718

Calca

Calcb

Ti3AlC2 4.22
4.22

9.01
15.48

5.31
5.64

5.89
6.40

749.9
815

Calca

Calcb

a Present work.
b Ref. [20].
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Fig. 7A. The Bulk modulus of Zr3AlC2 compound as a function of temperature and pressure.

Fig. 7b. The Bulk modulus of (Zr0.5Ti0.5)3AlC2 compound as a function of temperature and pressure.

Fig. 7c. The Bulk modulus of Ti3AlC2 compound as a function of temperature and pressure.
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The heat capacity Cp and Cv are also investigated under the
pressure and temperature changes. Figs. 9 and 10 (a, b and c)show
the variation of the heat capacity Cp and Cv of Zr3AlC2
(Zr0.5Ti0.5)3AlC2 and Ti3AlC2 as a function of temperature and
pressure, respectively. We can note from these figures that the Cp
and Cv values for all our compounds increase rapidly with
increasing temperaturewhen the temperature is inferior than 200K
and continue to increase weakly as the temperature rises. The
values of Cp and Cv decrease slowly when the pressure increases
under a constant temperature for all of our compounds except
when the temperature equals zero where all the values of Cp and Cv
remain zero.

4. Conclusion

In summary, we have presented a report on the structural,
electronic, mechanical and the thermodynamic properties of the

MAX phases (Zr1-xTix)3AlC2 compounds by means of the ab-initio
plane-wave (FP-LAPW) method. The equilibrium properties were
calculated and compared with others work. The lattice constants a
and c as function of pressure were evaluated. We found that, the
compression along the (a,c)-axis decreases with linear dependence
when the pressure increase. The results of the formation energy
show that, the examined compounds are quite stable even at high
temperatures. The obtained independent elastic constants confirm
the stability of the (Zr1-xTix)3AlC2 compounds against any elastic
deformation. The bulk modulus, shear modulus, Young’s modulus
E, Poisson’s ratio, Cauchy pressure and Vickers hardness are
calculated. The chemical bonding between the nearest neighbor
atoms which is dominant is the ionic for Zr3AlC2, mixed ionic-
covalent for (Zr0.5Ti0.5)3AlC2 and covalent for Ti3AlC2. Also, all
these compounds present a brittle nature and anisotropy behavior.
The Hardness calculation show that, the Ti3AlC2 is harder than
(Zr0.5Ti0.5)3AlC2 and Zr3AlC2 compounds. Sine all the electronic

Fig. 8A. The Debye temperature of Zr3AlC2 compound as a function of temperature and pressure.

Fig. 8b. The Debye temperature of (Zr0.5Ti0.5)3AlC2 compound as a function of temperature and pressure.
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Fig. 8c. The Debye temperature of Ti3AlC2 compound as a function of temperature and pressure.

Fig. 9A. The Heat capacity Cp of Zr3AlC2 compound as a function of temperature and pressure.

Fig. 9b. The Heat capacity Cp of (Zr0.5Ti0.5)3AlC2 compound as a function of temperature and pressure.
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Fig. 9c. The Heat capacity Cp of Ti3AlC2 compound as a function of temperature and pressure.

Fig. 10A. The Heat capacity Cv of Zr3AlC2 compound as a function of temperature and pressure.

Fig. 10b. The Heat capacity Cv of (Zr0.5Ti0.5)3AlC2 compound as a function of temperature and pressure.
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structure haven’t band gap at Fermi level so the studied compounds
show a metallic behavior. The TDOS and PDOS curves reveal the
existence of p-d and s-p hybridization. Finally, by the quasi-
harmonic Debye model we have calculated the variation of the
bulk modulus, Debye temperature and heat capacity as function of
temperature and pressure. The bulk modulus and the Debye tem-
perature in each compound increase significantly with increasing
pressure and decrease slowly with increasing temperature.
Conversely, the heat capacity increases with increasing tempera-
ture and slightly decreasing with increasing temperature.
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H I G H L I G H T S  

• Based on the first-principle calculation, the V-doped Zr2AlC compounds have been investigated. 
• The elastic stabilities reveal that these compounds are stable against any elastic deformations. 
• The mechanical properties class the studied compounds as Brittle, Stiff and hard materials. 
• The electronic structure analysis divulge that all our compounds exhibit a metallic behavior with strong p-d hybridization.  
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A B S T R A C T   

The Vanadium substitutions effect on physical properties of Zr2AlC MAX phase compounds have been studied 
using the first-principle method. The equilibrium ground states of properties were calculated and compared with 
available experimental, and theoretical data. The formation energy has been calculated in order to evaluate the 
stability of our compounds especially which are un-synthesized ones yet. The elastic constants are calculated by 
the Hex-elastic package and revealed that our compounds are mechanically stable. The obtained elastic modulus 
and anisotropy factor divulged that the compressibility along the a-axis is stronger than that along the c-axis. All 
the studied materials represent a strong elastic anisotropy. The macroscopic mechanical properties class the 
compounds as brittle, stiff, and hard materials. The electronic structure indicated that, all our compounds exhibit 
a metallic behavior, and this metallicity is due to the strong p-d covalent bonding. Furthermore, the effect of 
temperature, and pressure on the heat capacity, Debye’s temperature, entropy, and the volume at ambient 
condition are calculated by the quasi-harmonic Debye model. It is important to emphasis that, the investigated 
properties of the quaternary MAX phase compounds have not been calculated. Therefore, our results can be 
considered as a first quantitative theoretical prediction.   

1. Introduction 

In the latest years, an extraordinary development has been made by 
way of the manner of chemists, physicists, and technologists to examine, 
and to develop new substances among them the MAX phase [1]. 
Recently, a good number of MAX phases have been theoretically, and 
experimentally investigated due to their properties which combine 
metallic, and ceramic behaviors [2,3], and also for their good 

mechanical properties at high temperatures [4]. The MAX phase mate
rials are known to enter into many industrial applications for their 
desirable property [5], such as in aerospace, automotive, defense, 
medical, and nuclear reactors [6–8]. 

Generally, these classes of materials crystallize in hexagonal struc
ture with a stoichiometric composition (which is the general formula of 
type-structure) is Mn+1AXn (where M is an early transition metal, A is an 
element from group III-A, and IV-A, X is either C or N and n = 1, 2 and 3) 
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[2,9]. There was no interest in this phase until 1996, with the first 
publication of Barsoum’s [10]. Thereafter, a large range of these com
pounds are investigated. It was found that, they present many points in 
common for the corresponding carbides, and nitrides at the level of the 
thermal, elastic, and electric [6,11]. However, the mechanical proper
ties are extremely different, they are mechanically stable with lower 
hardness values, and resist to thermal shocks. It’s certainly a tenacious 
material, having a terrific and excessive resistance to temperature [12]. 
A. Bouhemadou et al. [13], studied using the pseudo-potential plane-
waves method the effect of high pressures, up to 20 GPa, on the struc
tural, and elastic properties of Zr2AlX and Ti2AlX, with (X = C and N). By 
the full-potential plane-wave method Yakoubi et al. [9], investigated the 
ground states properties, and the electronic structure of Zr2AlX (X = C 
and N) compounds. Yakoubi demonstrated that, strength and electrical 
properties in these materials are principally governed by the metallic 
planes. The Zr2(Al0.58Bi0.42)C, Zr2(Al0.2Sn0.8)C, and Zr2(Al0.3Sb0.7)C 
MAX nanolaminates have been studied by using the pseudo potential 
plane-wave PP-PW method in order to evaluate their structural, elastic, 
and electronic properties [4]. Mahbuba Roksana Khatun et al. [14], 
reported on the Mulliken bond population, Vickers hardness, thermo
dynamic, and optical properties of MAX phases V2AC (A = Al, Ga). 
Khatun revealed that these compounds could be good candidate mate
rials to reduce solar heating up to ~15 eV. 

In order to widen previous theoretical, and experimental works on 
Zr2AlC and V2AlC compounds and enriched literature for the first time 
by new quaternary MAX phase (Zr1-xVx)2AlC in the objective to propose 
new materials that have not been studied before and which may have an 
extraordinary properties. For this purpose, we have studied the effect of 
Vanadium atom substitution for Zirconium based MAX-phase Zr2AlC on 
the structural, electronic, mechanical, and thermodynamic properties. 

2. Computational method 

The calculations were done by using the full potential linearized 
augmented plane waves within the density functional theory (DFT) and 
implemented in the Wien2k code [15,16]. The local density approxi
mation (LDA) parameterized by Perdew and Wang [17] was considered 
for exchange and correlation potentials VXC. We reported in Table 1 all 
the parameters used in the calculations for the (Zr1-xVx)2AlC compounds 
such as the convergence parameter RMT × Kmax which controlling the 
size of the basis sets (where Kmax is the maximum reciprocal lattice 
vector, and RMT is the smallest muffin-tin radius), the magnitude of the 
largest vector responsible in the Fourier expansion of density Gmax, and 
the number of special k-points in the Irreducible first Brillouin zone IBZ. 
The self-consistent calculation cycle (SCF) is performed iteratively until 

convergence energy 0.00001 is reached. The muffin-tin (MT) sphere was 
considered up to lmax = 10. The Monkorst-Pack method in the Irreduc
ible first Brillouin Zone (IBZ) was performed in this work [18]. 

The crystal structures of (Zr1-xVx)2AlC are hexagonal type with space 
group P63/mmc (#194). The C atoms occupied the positions: 
(

(0; 0; 0) and
(

0; 0;
1
2

))

The Al atoms occupied the positions: 
((

1
3
;

2
3
;

3
4

)

and
(

2
3
;

1
3
;

1
4

))

While the Zr atoms occupied the positions: 
((

1
3
;

2
3
; z
)

,

(
2
3
;

1
3
; z+

1
2

)

,

(
2
3
;

1
3
; − z

)

and
(

1
3
;

2
3
; − z+

1
2

))

Where z is the free internal parameter. The crystalline structures of the 
compounds are shown in Fig. 1. 

Table 1 
The parameters used during the calculation for (Zr1-xVx)2AlC compounds.  

Compounds RMT × Kmax  Gmax  Electronic configuration RMT  k-point Separation Energy (Rydberg) 

Zr2AlC 9 15 Zr:[Kr]5s24d2 Zr: 2.09 230 − 6 
Al:[Ne]3s23p3 Al: 2.32 
C:[He]2s22p2 C: 1.71 

(Zr0.75V0.25)2AlC 9 14 Zr:[Kr]5s24d2 

V:[Ar] 4s23d3 Al:[Ne]3s23p3 

C:[He]2s22p2 

Zr: 2.05 
V:2.05 
Al: 2.37 
C:1.68 

200 − 8 

(Zr0.50V0.50)2AlC 9 14 Zr:[Kr]5s24d2 

V:[Ar] 4s23d3 Al:[Ne]3s23p3 

C:[He]2s22p2 

Zr:1.99 
V:1.99 
Al:2.31 
C:1.63 

200 − 8 

(Zr0.25V0.75)2AlC 9 14 Zr:[Kr]5s24d2 

V:[Ar] 4s23d3 Al:[Ne]3s23p3 

C:[He]2s22p2 

Zr:1.98 
V:1.98 
Al:2.27 
C:1.62 

200 − 8 

V2AlC 9 15 V:[Ar] 4s23d3 Al:[Ne]3s23p3 

C:[He]2s22p2 
V:1.43 
Al:2.04 
C:1.75 

200 − 6  

Fig. 1. The crystal structure of the (Zr1-xVx)2AlC MAX phase compounds.  
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3. Results and discussions 

3.1. Ground states properties 

To calculate the ground-states equilibrium of properties we started 
by doing the relaxation of all the structure in order to optimize the in
ternal parameter in the first step. Secondly, we calculated the geometric 
optimization of the compounds by using the 2D-optimize package 
developed by Jamal Morteza [19] and fitted them by the Birch-Murna
ghan’s equation of states [20]. 

The results of lattice constants (a, c), the internal parameter (z), the 
bulk modulus (B0), and its pressure derivative (B’) with LDA approxi
mations are reported with some other experimental, and theoretical 
results in Table 2. Through these results, we found that the results are in 
reasonable agreement with all other works reported for the ternary 
compounds. In order to evaluate the stability of the compounds espe
cially, un-synthesized ones, we calculated the formation enthalpy by 
using the following equation [21,22]: 

ΔEf (Zr1− xVx)2AlC =Etot(Zr1− xVx)2AlC − (2(1 − x)EZr + 2xEV +EAl +EC) (1)  

Where ΔEf (Zr1− xVx)2AlC is the formation enthalpy of (Zr1− xVx)2AlC, Etot is 
the total energy per unit cell of the bulk compounds, E(X = Zr, V, Al and 
C); it represents the total energy per atom of the element in pure solid 
state, and x is the V-doped concentration (x = 0, 0.25, 0.5, 0.75 and 1.0). 
The values obtained of the formation enthalpy are − 0.637 eV, − 0.550 
eV, − 0.401 eV, − 0.419 eV, and -0.587 eV for Zr2AlC, (Zr0.75V0.25)2AlC, 
(Zr0.50V0.50)2AlC, (Zr0.25V0.75)2AlC, and V2AlC, respectively. All the 
formation enthalpies are negative, which indicates that the examined 
compounds are quite stable even at high temperatures. Fig. 2 shows the 
variation of the lattice parameter as a function of V-doped concentration 
(x). From this figure, we observe that, an increase in V concentration of 
the quaternary compound leads to a decrease in lattice parameter. We 
can interpret that by the atomic radius difference between Zr and V. 
From the results of the bulk modulus, we observe an increase in 
compressibility module with the increase of the V concentration, which 
means that the quaternary compound becomes less compressible, and 
less resistant to fracture when the V concentration increases. Fig. 3 re
ports the variation of minimum energy as a function of V concentration x 
for (Zr1-xVx)2AlC. We note that, an increase of the V concentration of the 
quaternary compound leads to an increase in the minimum energy. This 
increase could be due to the electronegativity difference between Zr, and 
V. According to our research; there are no experimental or theoretical 
results about the quaternary compounds. This strongly confirms that the 

calculations, for the investigated quaternary compounds, reported here 
are new. 

3.2. Mechanical properties 

3.2.1. Elastic constants 
Hook’s law is recognized as a linear relationship between stress σij, 

strain tensor εkl, and elastic constants Cijkl. 

σij =Cijkl εkl (2) 

Table 2 
The lattice parameters (a(Å) and c(Å)), bulk modulus B (GPa), pressure derivative of the bulk modulus (B’) and internal parameter z (Zr, V) for (Zr1-xVx)2AlC 
compounds.  

Compounds Method Source a (Å) c (Å) B (GPa) B′ z (Zr, V) 

Zr2AlC FP-LAPW LDA Our work 3.27 14.73 161.727 3.481 0.081 
CASTEP PP-PW [13] 3.26899 14.40815 134 3.89 0.08646 
Experimental XRD [1] 3.3237 14.5705 - - 0.0871 
Experimental SAED 3.3 14.6 - - - 
Experimental NPD 3.3239 14.556 - - 0.0898 
FP-LAPW LDA [9] 3.2104 14.246 176.28 4.04 0.0869 
CASTEP PP-PW [24] 3.3174 14.6304 124.04 4.0836 0.0861 
CASTEP PP-PW [25] 3.319 14.6045 - - - 
CASTEP PP-PW [4] 3.319 14.604   0.0864 

(Zr0.75V0.25)2AlC FP-LAPW LDA Our work 3.1874 14.118 168.4347 3.6357 - 
(Zr0.50V0.50)2AlC FP-LAPW LDA Our work 3.0936 13.801 177.0276 4.1425 - 
(Zr0.25V0.75)2AlC FP-LAPW LDA Our work 2.9781 13.370 196.3967 3.8083 - 
V2AlC FP-LAPW LDA Our work 2.8499 12.955 230.2683 3.9130 0.0861 

GGA-PW-PP [26] 2.895 13.015 - - - 
GGA-PAW [27] 2.95 13.29 197 4.12 0.083 
Experimental [28] 2.909 13.12 - - - 
Experimental [29] 2.91 13.13 - - 0.086 
Experimental [30] 2.91 13.17 - - - 
CASTEP PP-PW [14] 2.907 13.147 - - -  

Fig. 2. The lattice parameter variation as a function of V-doped concentra
tion (x). 
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Using this law we can specify five independent elastic constants Cij 

for the hexagonal symmetry, namely Cij in addition to the sixth one 
expressed by: 

C66 =
1
2
(C11 − C12) (3) 

To determine the elastic constants of the compounds at their equi
librium lattice constants we used the Hex-elastic package established by 
Jamal Morteza [23]. From this package the elastic constants are derived 
by means of a Taylor expansion of the total energy E(V, εi) with respect 
to the small strain εi of the lattice [23]: 

E(V, εi)=E0(V0, 0)+V0

(
∑

i
τiξiεi +

1
2
∑

ij
cijεiξiεjξj

)

+ Ο
(
ε3) (4) 

The E0, and V0 are the energy, and the volume of unstrained crystal, 
respectively. The factor ξi, takes the value 1 if the index i is equal to 1, 2 
or 3 and the value 2 if it is equal to 4, 5 or 6. In the above equation τi are 
related to the strain εi. For our systems, the total energy E(V, εi) is 
modified by applying five distortions defined as follows: 

D1 =

⎛

⎝
1 + ε 0 0
0 1 + ε 0
0 0 1

⎞

⎠ (5)  

D2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(
1 + ε
1 − ε

)1
2

0 0

0
(

1 − ε
1 + ε

)1
2

0

0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(6)  

D3 =

⎛

⎝
1 0 0
0 1 0
0 0 1 + ε

⎞

⎠ (7)  

D4 =

⎛

⎝
1 0 ε
0 1 0
ε 0 1

⎞

⎠ (8)  

D5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(1 + ε)−
1
3 0 0

0 (1 + ε)−
1
3 0

0 0 (1 + ε)
2
3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(9) 

The energy under these distortions can be obtained by the following 
equations: 

E(V, ε)=E(V0, 0)+V0δ(τ1 + τ2) + V0
(
(C11 +C12)ε2 +Ο

(
ε3)) (10)  

E(V, ε)=E(V0, 0) + V0
(
(C11 − C12)ε2 +Ο

(
ε3)) (11)  

E(V, ε)=E(V0, 0)+V0δ(τ3) + V0

(
C33

2
ε2 +Ο

(
ε3)
)

(12)  

E(V, ε)=E(V0, 0)+V0δ(τ5) + V0
(
2(C55)ε2 +Ο

(
ε3)) (13)  

E(V, ε)=E(V0, 0) + V0

(

(Czz)
ε2

9
+Ο

(
ε3)
)

(14)  

Czz =C11 + C12 + 2C33 − 4C13 (15) 

The values of all the elastic constants calculated for our compounds 
are reported in Table 3. It is clear from the table that the findings are in 
excellent agreement with that obtained from other study [24–30]. To get 
a mechanical stability, the following criteria, known as the Born Huang 
criteria, must be satisfied [31]:  

C55 > 0, (C11–C12) > 0, (C11+C33+C12) > 0, (C11+C12) C33 – 2C13
2 > 0 (16) 

We can mention that it has been suggested by J. Wang et al. that the 
Born-Huang criteria are valid only for the stability analysis of an un
stressed lattice and not for the stressed one [33,34]. 

We remark that the calculated elastic constants completely satisfy 
the criteria of the mechanical stability at a zero pressure, which reveal 
that all the studied materials are stable against any elastic deformations. 
One can observe that, the (C13/C12) ratio is larger than the (C33/C11) 
ratio which can be explained by the existence of a strong covalent 
bonding in the [100] than [001] direction. The current findings reveal 
that C11 is larger than C33 for Zr2AlC, (Zr0.75V0.25)2AlC, 
(Zr0.25V0.75)2AlC, and V2AlC compounds, which indicates that, the 
compression along the a, and b-axes are more difficult than that along 
the c-axis, contrary to the results of (Zr0.5V0.5)2AlC compound; the a and 
b-axes are more compressible than the c axis. One can also remark that, 
C11 and C33 are considerably higher than all other elastic constants, 
which divulge that the compounds present a strong elastic anisotropy 
and indicating that the deformation resistances along the axial direction 
are stronger than the deformation resistances in shape. The variation of 
the elastic constants as function of V-doped concentration (x) are plotted 
in Fig. 4. This clearly illustrates an increase in the elastic coefficients 

Fig. 3. The minimum energy (Ry) variation as a function of V-doped concen
tration (x). 
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when increasing Vanadium concentration. 

3.2.2. Anisotropy factor 
Secondly, we estimated an important parameters called the shear 

anisotropy parameters. For the hexagonal lattice, One defines three 
parameters expressed by the following relations [35]: 

A1 =
(C11 + C12 + 2C33 − 4C13)

6C55
(17)  

A2 =
2C55

(C11 − C12)

A3 =A1.A2 =
(C11 + C12 + 2C33 − 4C13)

3(C11 − C12)
(18)  

Where A1 for the {1 0 0} plane between the [011] and [010] directions, 
A2 for the {0 1 0} plane between the [101] and [001] directions, and A3 
for the {0 0 1} plane between the [110] and [010] directions. The 
anisotropy factor, which indicates in which direction the MAX phase is 
more compressible, is defined as follows: 

kc

ka
=
(C11 + C12 − 2C13)

(C33 − C13)
(19) 

The calculated values of the shear anisotropic parameters as well as 
that of anisotropy factor are summarized in Table 4. From this result; all 
the values of Ai are close to 1, which indicate the degree of elastic 
anisotropy, as it determines that the middle plane is the most important 
between the three parameters. We see that the calculated value of the 
anisotropy factor kc/ka of our compounds is less than 1; indicating that 
the compressibility along the a-axis is stronger than that along the c-axis. 

3.2.3. Elastic modulus and hardness 
In order to evaluate the macroscopic mechanical properties of the 

compounds we have calculated the elastic modulus by using the Voigt, 
Reuss and Hill approximations [36–38]. The Bulk modulus BV, BR, BH, 
and Shear modulus GV , GR, GH are defined by the following relations: 

Voigt’s approximation 

BV =
1
2
(2(C11 +C12)+ 4C13 +C33) (20)  

GV =
1
30

(C11 +C12 + 2C33 − 4C13 + 12C55 +C66) (21) 

Table 3 
The calculated elastic constants Cij (GPa) for (Zr1-xVx)2AlC compounds.  

Compounds Method Source C11 C12 C13 C33 C55 C66 

Zr2AlC FP-LAPW LDA Our work 261.91 63.55 84.40 260.56 103.27 99.18 
CASTEP PP-PW [13] 278 64 67 235 97 107 
CASTEP PP-PW [4] 258 67 63 221 91 - 
CASTEP PP-PW [25] 258 67 63 221 91 - 

(Zr 0.75V 0.25)2AlC FP-LAPW LDA Our work 301.05 79.39 115.83 295.81 137.64 110.83 
(Zr 0.5V 0.5)2AlC FP-LAPW LDA Our work 324.91 84.27 115.72 332.11 158.49 120.32 
(Zr 0.25V 0.75) 2AlC FP-LAPW LDA Our work 346.80 105.72 150.60 343.14 163.18 120.53 
V2AlC FP-LAPW LDA Our work 389.78 126.64 140.06 377.74 181.40 131.57 

GGA-PAW [32] 338 92 148 328 155 - 
GGA-PW-PP [26] 346 71 106 314 151 138 
CASTEP PP-PW [14] 345.4 61.6 100.5 312.4 147.6 -  

Fig. 4. The variations of the elastic constants and bulk modulus as a function of 
V-doped concentration (x). 

Table 4 
The shear anisotropic parameters for the three different shear planes (A1,

A2 andA3) and anisotropy factor 
kc

ka 
ratio for (Zr1-xVx)2AlC compounds.  

Compounds Method Source A1  A2  A3  kc

ka  

Zr2AlC FP-LAPW 
LDA 

Our 
work 

0.8214 1.04123 0.8553 0.8893 

CASTEP 
PP-PW 

[13] - - - - 

CASTEP 
PP-PW 

[25] 0.94 0.95 0.90 1.26 

CASTEP 
PP-PW 

[4] 0.53 1.80 0.95 0.58 

(Zr 0.75V 
0.25)2AlC 

FP-LAPW 
LDA 

Our 
work 

0.6159 1.2419 0.7650 0.8266 

(Zr 0.5V 
0.5)2AlC 

FP-LAPW 
LDA 

Our 
work 

0.6420 1.3172 0.8456 0.8213 

(Zr 0.25V 
0.75) 2AlC 

FP-LAPW 
LDA 

Our 
work 

0.5478 1.3538 0.7416 0.7859 

V2AlC FP-LAPW 
LDA 

Our 
work 

0.6538 1.3787 0.9014 0.9941  
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Reuss’s approximation 

BR =
(C11 + C12)C33 − 2C2

13

C11 + C12 + 2C33 − 4C13
(22)  

GR =
5

20
×

C55C66
[
(C11 + C12)C33 − 2C2

13

]

3BV C44C66 +
{
(C11 + C12)C33 − 2C2

13
}
(C55 + C66)

} (23) 

Hill’s approximation 

BH =
(BV + BR)

2
(24)  

GH =
(GV + GR)

2
(25) 

One can deduce the Young’s modulus E, and Poisson’s ratio ʋ given 
by the following relationships [39,40]: 

E =
9BG

3B + G
(26)  

υ= 3B − 2G
2(3B + G)

(27) 

The results of the calculated elastic modulus from the Hill’s 
approximation are reported in Table 5. The values of various physical 
quantities (Bulk, shear, and Young’s modulus) increase with the 
increasing of V-doped concentration (x). The V2AlC is relatively more 
incompressible, and stiffer and have the greater resistance to shear de
formations. From the table, it is clear that the calculated values of the 
Poisson’s ratio are less than 0.25 for all the materials, which indicate a 
covalent character in inter-atomic bounding for these materials. More
over, the value of Poisson’s ratio can also be used to distinguish between 
brittle and ductile behavior [41]. The calculated values of Poisson’s 
ratio which are less than 0.26 are indicative of brittle response to applied 
stress. In addition to the Poisson’s ratio a critical value of Pugh’s ratio (K 
= G/B ~ 0.57) separate between the brittle and ductile nature of ma
terials [42]. It’s obvious from the results that the values are greater than 
0.57 for all the compounds, which indicate a brittle behavior for these 
materials which is consistent with Poisson’s ratio results. Cauchy pres
sure of any crystal is quite important in crystal physics. It gives infor
mation about the ionic/covalent bonding of the materials by value of 
Cauchy pressure positive/negative, respectively [43]. In hexagonal 
materials, the Cauchy pressure can be estimated for the two different 
directions: 

PCauchy
X =C13 − C55 (28)  

PCauchy
Z =C12 − C66 (29) 

All the values of Cauchy pressure PCauchy
x , and PCauchy

y are negative, 
these results confirm the covalent character of our compounds. We can 

note that the three criteria give the same result about the nature of the 
chemical bonding which approves that the three parameters (Cauchy 
pressure, the Poisson’s ratio, and Pugh’s ratio) are related. 

Another parameter which is closely related to bulk and shear moduli 
of materials, namely Vickers hardness can be calculated by using Chen’s 
formula [44]: 

HV = 2
(
K2G

)0.585
− 3 (30) 

From the results, the values of V2AlC, and (Zr0.5V0.5)2AlC compounds 
exceeds the value of 20 GPa which indicate that, these compounds are 
hard materials. 

3.2.4. Debye temperature 
The Debye temperature (θD) is an important parameter. The θD can 

be estimated from the average sound velocity proposed by Anderson 
[45], which is related by the elastic modulus. The formulas used to 
calculate θD are expressed in the following relationships: 

θD =
h
kB

[
3n
4π

(
Na.

ρ
M

)]1
3

.vm (31)  

vm =

[
1
3

(
2
v3

t
+

1
v3

l

)]− 1
3

(32)  

vl =

(
3B + 4G

3ρ

)1
2

(33)  

vt =

(
G
ρ

)1
2

(34)  

Where kB, h, n, NA, ρ, M, vm, vl, and vt are Boltzmann’s constant, Planck’s 
constant, number of atoms in unit cell, Avogadro’s number, density, 
molecular weight, the average sound velocity, longitudinal and trans
verse sound velocity, respectively. The results of these parameters (θD, 
vm, vl, and vt) are recapitulated in Table 6. The data indicate that the 
density decreases when the V-doped concentration (x) increases, which 
leads to an increase in Debye temperature and average sound velocity. 
We can deduce that when the V-doped concentration (x) increases the 
compounds become stiffer. 

The variations of the wave velocity and Debye temperature with 
vanadium concentration are plotted in Fig. 5. One can observe that the 
wave velocity as well Debye temperature increase when the V concen
tration increases. 

We have also interested to investigate the melting temperature Tm 
and Grüneisen parameter γ, which are another important parameters for 
these type of materials. The Grüneisen parameter describes how the 
thermal properties of a material vary with the volume of crystal. The low 
values of Grüneisen parameter indicates that the compounds possess a 

Table 5 

The calculated bulk modulus BH (GPa), shear modulus GH (GPa), Young’s modulus E (GPa), Poisson’s ratio v, Pugh’s ratio 
GH

BH
, Vickers hardness HV (GPa), and Cauchy 

pressure PCauchy
X , and PCauchy

Z for (Zr1-xVx)2AlC compounds.  

Compounds Method Source BH  GH  GH

BH  

E Hv ʋ PCauchy
X  PCauchy

Z  

Zr2AlC FP-LAPW LDA Our work 138.70 97.67 0.704 237.31 16.356 0.21 ¡18.87 ¡35.62 
CASTEP PP-PW [13] 131.6 99.5 - 238.4 - 0.19 - - 
CASTEP PP-PW [25] 125 92 - 222 16.7 0.20 - - 
CASTEP PP-PW [4] 124 91 0.73 219 16.37 0.24 - - 

(Zr 0.75V 0.25)2AlC FP-LAPW LDA Our work 168.67 114.48 0.678 280.08 17.344 0.22 ¡21.81 ¡31.44 
(Zr 0.5V 0.5)2AlC FP-LAPW LDA Our work 178.98 129.87 0.725 313.74 20.685 0.20 ¡42.77 ¡36.05 
(Zr 0.25V 0.75) 2AlC FP-LAPW LDA Our work 205.26 128.07 0.623 318.06 16.687 0.241 ¡12.58 ¡14.80 
V2AlC FP-LAPW LDA Our work 218.98 146.53 0.669 359.53 20.120 0.226 ¡41.33 ¡4.92 

GGA-PWPP [26] 175 139 - 261 - - - - 
CASTEP PP-PW [14] 169.7 135.7 - 321.0 - - - - 
GGA-PAW [32] 195.0 124.5 0.79 307.9 - 0.236 - -  
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rather stiff lattice and a good thermal conductivity. The Tm and γ are 
related by the elastic constants and the Poisson’s ratio, respectively [46, 
47]: 

Tm= 354 +
3
2
(2C11 +C33) (35)  

γ =
3
2

(1 + v)
(2 − 3v)

(36) 

The calculated values of melting temperature and Grüneisen 
parameter are indicated in Table 7. From these findings, we observe that 
the V2AlC compound exhibit the highest value of melting temperature 
indicating that this compound presents a strong bonding and good 
thermal conductivity compared to others. 

3.3. Electronic properties 

In this part, we investigate the electronic structure of the compounds, 
which provides important information about the nature of chemical 
bonding, electrical resistivity, electronic conductivity and optical ab
sorption. Firstly, we calculated the band structure of the herein studied 
compounds along the higher symmetry points in the first Brillouin zone 
(BZ). The results of band structure are shown in Fig. 6 and Fig. 7 for the 
ternary and quaternary MAX phase compounds, respectively. From 
these figures, it is obvious that the band structure is topologically 
identical and presents a great dispersion at the valence and conduction 
bands. One can also observe that at the Fermi level there is a significant 
overlap between the valence and conduction bands for the five inves
tigated compounds. This confirms the metallic nature for the materials. 
Secondly, the total density of states (TDOS) and the projected density of 
states (PDOS) were studied in a wide energy interval [-10 eV, 7 eV] 
symmetric around the Fermi level. The TDOS and PDOS of the ternary 

Table 6 
The calculated density ρ (g/cm3), longitudinal, transverse, and average elastic wave velocity vl, vt , vm(m/s) and the Debye temperatures ΔD θD(K) for (Zr1-xVx)2AlC 
compounds.  

Compounds Method Source ρ vl  vt  vm  θD  

Zr2AlC FP-LAPW LDA Our work 5.3619 7082.11 4268.01 4719.42 544.908 
CASTEP 
PP-PW 

[25] 5.278 6849.13 4174.41 4610.71 529.70 

CASTEP 
PP-PW 

[13] 5.56 6891 4228 4667 544 

(Zr 0.75V 0.25)2AlC FP-LAPW LDA Our work 5.3119 7726.85 4612.12 5104.69 609.183 
(Zr 0.5V 0.5)2AlC FP-LAPW LDA Our work 5.2596 8182.63 4969.27 5490.64 673.497 
(Zr 0.25V 0.75) 2AlC FP-LAPW LDA Our work 5.2068 8498.16 4959.51 5500.72 699.412 
V2AlC FP-LAPW LDA Our work 5.1339 8984.52 5343.52 5916.25 782.824 

GGA-PAW [32] 4.81 8863 5087 5369 731 
CASTEP 
PP-PW 

[14] 4.84 - - - 710  

Fig. 5. The variations of the wave velocity and Debye temperature as a func
tion of V-doped concentration (x). 

Table 7 
The Melting temperature Tm (K) and Grüneisen’s parameter γ for (Zr1-xVx)2AlC 
compounds.  

Compounds Method Source Tm γ 

Zr2AlC FP-LAPW LDA Our work 1530.57 1.340 
CASTEP 
PP-PW 

[25] 1459 1.30 

(Zr 0.75V 0.25)2AlC FP-LAPW LDA Our work 1700.88 1.378 
(Zr 0.5V 0.5)2AlC FP-LAPW LDA Our work 1826.91 1.3129 
(Zr 0.25V 0.75) 2AlC FP-LAPW LDA Our work 1909.071 1.457 
V2AlC FP-LAPW LDA Our work 2089.965 1.3917  

Fig. 6. The band structure of Zr2AlC and V2AlC compounds.  
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and quaternary compounds are illustrated in Fig. 8 and Fig. 9, respec
tively. The metallic nature of the compounds is confirmed by the non- 
vanishing value of the TDOS at the Fermi level. Furthermore, from the 
PDOS results, we can split the DOS spectrum into three main regions for 
the materials. The region located in lower valence band presents the s-p 
hybridization between the s orbital and p orbital of C and Al atoms, 
respectively. While, the second region located near the Fermi level we 
can observe that the d-(Zr, V) and p-C states are strongly mixed which 
reveal the presence of a strong covalent bonding in this region. This 
strong covalent bonding is mainly origin of the metallicity of our com
pounds. The remaining region contains weaker covalent bonding be
tween d-Zr and p-Al states. All these observations confirm the obtained 
findings from the mechanical properties. 

3.4. Thermodynamic properties 

The thermodynamic properties were investigated in the temperature 
range from 0 to 450 K and in the pressure range from 0 to 30 GPa. We 
used the Gibbs2 package [48] based upon the quasi-harmonic Debye 
model [49]. The Debye model consists of linking the elastic properties of 
solid to its acoustic vibration in the center of Brillouin zone. 

The calculation of the heat capacity allows to get an insight on the 
vibrational properties of materials. The heat capacity of (Zr1-xVx)2AlC as 
functions of temperature and pressure at constant volume and pressure 
(Cv and Cp) are plotted in Fig. 10 and Fig. 11, respectively. At low 

temperatures, the heat capacities increase when temperature increases 
and at higher temperatures the effect of anharmonic Cv is deleted, and 
Cv tends towards to the limit of Dulong-petit limit common to all 
investigated materials at 0 GPa. When the pressure increases the heat 
capacity decreases at 300 K. The investigation of the Debye temperature 
(θD) as a function of temperature at 0 GPa and pressure at 300 K for the 
compounds is plotted in Fig. 12. It mentions that the V2AlC compound 
has a higher θD than the others and there is no effect on θD below tem
perature 225 K and when the temperature is higher than 225 K, the 
values of θD show slight decrease at zero pressure whereas at ambient 
temperature (300 K), we notice that θD increases with when pressure 
increases. The influence of the pressure is more significant than that of 
the temperature on θD of (Zr1-xVx)2AlC. The entropy (S) as a function of 
temperature and pressure is plotted in Fig. 13. It shows that the entropy 
increases with increasing in temperature and decreases with increasing 
in pressure. We also noticed that the entropy is more sensitive to the 
temperature than to the pressure. The variation of the volume as func
tions of the temperature and pressure are presented in Fig. 14 for (Zr1- 

xVx)2AlC. It is clearly seen that the volume exhibits a very moderate 
decrease with pressure at 300 K and a slight increase with temperature 
at a small rate which indicates that our compounds are far from (Tm) 
melting point and the structural integrity is preserved at 0 GPa, which 
means that pressure is more significant than temperature at ambient 
conditions (0 GPa and 300 K). 

4. Conclusion 

The ab-initio plane-wave (FP-LAPW) method as implemented in 
Wien2k was used to study the structural, electronic, mechanical and 
thermodynamic properties of the MAX phase (Zr1-xVx)2AlC compounds. 
Firstly, the internal parameter and lattice parameters were optimized. It 
was found that, the compression along the (a, c)-axis decreased gradu
ally when V-doped concentration (x) increased. The formation energy 
was calculated in order to determine the stability of the compounds. 
Secondly from the mechanical properties we obtained that the studied 
compounds are stable against any elastic deformation. The mechanical 
properties revealed that our compounds are brittle and stiff materials. 
The calculation of the electronic properties showed a metallic behavior 
with the presence of a strong covalent bond. Within the quasi-harmonic 
Debye model, the effect of temperature and pressure on the heat ca
pacity, Debye’s temperature, entropy and the volume were calculated at 
ambient condition. These parameters were found to be more influenced 
by pressure than temperature. The findings are in reasonable agreement 
with reported works for the ternary compounds. However, the investi
gated properties for the quaternary MAX phase were not reported 
before. 

Fig. 7. The band structures of (Zr1-xVx)2AlC compounds (with x = 0.25, 0.50 and 0.75).  

Fig. 8. The total and partial densities of states for Zr2AlC and 
V2AlC compounds. 
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Fig. 9. The total and partial densities of states for (Zr1-xVx)2AlC compounds (with x = 0.25, 0.50 and 0.75).  

Fig. 10. The Heat capacity at a constant volume of (Zr1-xVx)2AlC as a function 
of temperature at zero pressure (a) and as a function of pressure at room 
temperature (b). 

Fig. 11. The Heat capacity at a constant pressure of (Zr1-xVx)2AlC as a function 
of temperature at zero pressure (a) and as a function of pressure at room 
temperature (b). 

Fig. 12. The Debye temperature of (Zr1-xVx)2AlC as a function of temperature 
at zero pressure (a) and as a function of pressure at room temperature (b). 

Fig. 13. The entropy of (Zr1-xVx)2AlC as a function of temperature at zero 
pressure (a) and as a function of pressure at room temperature (b). 
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