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Abstract

In this thesis, we study the asymptotic properties of functional parameters in non-
parametric statistics for incomplete data. More precisely, we are interested in the robust
and relative regression for which we build estimators and we study the asymptotic behav-
ior in the censored and missing model.

We first studied, the asymptotic properties of a nonparametric estimator of the relative
error regression given a functional explanatory variable, when the scalar response is right
censored, in the both i.i.d. case and α−mixing case. We establish the strong almost com-
plete convergence rate and asymptotic normality of these estimators. A simulation study
and real data application are performed to illustrate how this fact allows getting higher
predictive performances than those obtained with standard estimates.

Finally, it seems possible to us to study the robust model, in the case of a scalar missing
at random (MAR) response, for both cases, without and with unknown scale parameter.
We establish, the almost complete convergence rate of our estimators in the two proposed
models.
The numerical study is based on the statistical software R.

Key words: Relative error regression; Censored data; Functional data analysis; al-
most complete convergence; asymptotic normality; robust regression; α−mixing data;
missing at random data; scale parameter.



Résumé

Dans cette thèse, nous étudions les propriétés asymptotiques des paramètres fonc-
tionnels en statistique non paramétrique pour des données incomplètes. Plus précisement,
nous nous intéressons à la regression robuste et relative pour lesquelles nous construisons
des estimateurs et nous étudions le comportement asymptotique dans le modèle censuré
et manquantes.

Nous avons d’abord étudié les propriétés asymptotiques d’un estimateur non paramétrique
de la régression d’erreur relative étant donné une variable explicative fonctionnelle, lorsque
la réponse scalaire est censurée à droite, dans les deux cas i.i.d. et α−mélange. Nous étab-
lissons la convergence uniforme presque complète et la normalité asymptotique de ces
estimateurs. Une étude de simulation et une application de données réelles sont réalisées
pour illustrer comment ce fait permet d’obtenir des performances prédictives supérieures
à celles obtenues avec des estimations classiques.

Enfin, il nous semble possible d’étudier le modèle robuste, dans le cas d’une réponse
scalaire manquante (MAR), dans les deux cas, sans et avec paramètre d’échelle. Nous
établissons, la convergence presque complète de nos estimateurs, dans les deux modèles
proposés.
Du coté numérique, notre étude est fondée sur le logiciel statistique R.

Mots- clés: Régression d’erreur relative; Données censurées; Analyse des données
fonctionnelles; convergence presque complète; normalité asymptotique; régression ro-
buste; données α− mélange; données manquant; paramètre d’échelle.
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CHAPTER 1

GENERAL INTRODUCTION

1.1 Nonparametric Functional Data Analysis (NPFDA):
Motivation and Examples

1.1.1 Motivation

Functional data analysis is a branch of statistics that has been the object of many
studies and developments during the last few years. This type of data appears in many
practical situations, as soon as one is interested in a continuous-time phenomenon for
instance. For this reason, the possible application fields promising for the use of functional
data are extensive: climatology, economics, linguistics, medicine. In the digital age, the
development of computer systems and the computing power of machines have led to a
constant increase in the quantity of data to be processed. This increase reveals, each
time, the limitations of the analytical techniques used, which poses a real challenge to
statisticians for the construction and development of new statistical methods, adapted
to this profusion of data. Aforementioned is one of the reasons why, during the last
twenty years, functional data analysis has become one of the most used tools for studying
data in their dimensions, providing among other things several elements of answer to the
problem.
Functional data analysis is used for twofold: In practice, it is often possible to collect data
for which the observation times are different for each individual, which makes it difficult
to approach by conventional methods of multivariate statistics. On the other hand, when
the temporal variability is extremely frequent in the real data (in particular when one has
high-resolution observations of any phenomenon), the functional statistic then makes it
possible to avoid the simplification of some observations by replacing them by example

1



CHAPTER 1. GENERAL INTRODUCTION

by an average.
In the case of infinite dimensional spaces, the problem that always arises is that there

is no existing for Lebesgue or any analogous measures. Also, it should be kept in mind
that the Haar measure, which could be an alternative choice, does not generally exist in
infinite dimensional space even for Hilbert spaces. Then, it becomes interesting to address
the estimation problems in infinite dimensional spaces.

There are many results for non-parametric models. For instance, Ferraty and Vieu
(2004) established the strong consistency of kernel estimators of the regression function
when the explanatory variable is functional and the response is scalar. Their study is
an extension of a previous work Ferraty and Vieu (2002) with non-standard regression
problems such as time series prediction or curves discrimination. They highlighted the
issue of the curse of dimensionality for functional data and gave methods to overcome
the problem. Dabo-Niang (2004) studied density estimation in a Banach space with an
application to the estimation density of a diffusion process with respect to Wiener’s mea-
sure. The kernel type estimation of some characteristics of the conditional cumulative
distribution function as well as the successive derivatives of the conditional density was
introduced by Ferraty and Vieu (2006). Some asymptotic properties were established
with a particular application to the conditional mode and quantile. The almost complete
convergence with rates for the kernel type estimates is established and illustrated by an
application to El Nino data Ferraty et al. (2006). It should be noted that there exist pre-
vious results for the conditional mode and quantile problems in abstract metric spaces.
Finally, for more details on the subject, we refer the reader to the monograph of Ferraty
and Vieu (2006).

1.1.2 Examples

Now we will introduce some statistical problematics and associated functional data.
In fact, there are many nonparametrical statistical problems which occur in the functional
setting. Sometimes, they appear purely in terms of statistical modelling or, on the con-
trary, they can be drawn directly from some specific functional datasets. This section
describes various functional data. As we will see, these data have been choosen to cover
different applied statistics fields, different shapes of curves (smooth, unsmooth), various
grids of discretization (fine, sparse).

1. Near-infrared spectrometry provides benchmark examples coming from chemo-
metrics. This is a non-destructive technology able to measure numerous chemi-

2
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cal compounds in a wide variety of products for example in petroleum industry.
The diesel fuel data set investigated here has been used in a number of previous
studies (Boger (2003); Esteban-Dıéz et al. (2004); Feng et al. (2015)) for testing
new variable selection and calibration algorithms. For instance, let us consider a
sample of n = 784 diesel fuels samples. Each sample is illuminated by a light
beam at 401 equally spaced wavelengths (ω1, . . . , ω401) in the near-infrared range
750 − 1550 nm. For each wavelength ω and each diesel sample i, the absorption
Xi(ω) of radiation is measured. The ith discretized spectrometric curve is given by
Xi (ω1) , . . . ,Xi (ω401); Figure 1.1 displays the spectrometric curves.
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Figure 1.1: The spectrometric curves of the diesel fuels data.

2. In medicine, Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging
methodology which is used to measure the diffusion of water in the brain. Wa-
ter diffuses isotropically (i.e. the same in all directions) in the brain except in white
mater where it diffuses anisotropically (i.e. differently in different directions). This
allows researchers to utilize DTI to generate images of white matter in the brain.
Understanding the structure of the brain is important for a wide range of neuro-
logical conditions and diseases including Multiple Sclerosis. These data have been
previously analyzed using several methods Goldsmith et al. (2011), Randolph et al.
(2012). The Figure 1.2 shows the tract summaries sorted. This data set is available
in the R package refund (Crainiceanu et al. (2012)), available on CRAN. A total of
376 patients are considered, with each tract measured at 93 equally spaced locations

3
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Figure 1.2: Fractional anisotropy (FA) curves along the right corticospinal tract.

3. One of the main specific problems in economic is to predict future or maximum
consumption of electricity, and usual statistical models (either parametric or non-
parametric) achieve that by taking into consideration a finite number of past data.
However, one could think that it is more reasonable to take into account as explana-
tory variable the continuous time series over some period. We have acquired a large
dataset, consisting of number of 8784 records, containing the hourly electricity con-
sumption for the year 2016 (measured in MWh), retrieved from the smart metering
device of a commercial center type of consumer (a large hypermarket) (see Pîrjan
et al. (2017) for more description on this data set). For our example, we decided
to choose the whole past day as explanatory period. That means that the set of ex-
planatory variables to be included in our statistical method is composed with 366
curves data which are the 366 daily continuous time series. These functional data
are presented in figure 1.3.
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Figure 1.3: Electricity Consumption: Daily Curves.

4. Air pollution in developed countries has become a major problem in the daily lives
of people living in these countries and has arisen and manifested itself by the high
levels of smoke produced by industries or traffic, forcing authorities to search mech-
anisms to better control air quality in real time. For this purpose, our final exam-
ple concerning the analyze the relationship between the palling gases such as the
Ozone (O3), Nitric Oxides (NO), Nitrogen Dioxide (NO2) and Sulphur Dioxide
(SO2). The data of this contribution are acquired from real-time measurement by
Marylebone road monitoring site. Marylebone Road is an important thoroughfare
in central London, within the City of Westminster. The data used here are pro-
vided by the website https://www.airqualityengland.co.uk/site/
data?site_id=MY1. It consist the hourly measurements during the period from
January 1st to the 31st December for the year 2017. The daily emission of the gases
observed are plotted in figure 1.4
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Figure 1.4: The curves of the daily emission of the gases in µg/m3.

1.2 Robustness in Nonparametric Statistic

The robustness of a standard statistical procedure (estimation, test) is a very important
question in statistics. It makes it possible to control the stability of this procedure relative
to the deviation of the model and / or of the observations. Note that this problem was the
subject of a long debate at the end of the XIX century, several scientists already had a
relatively clear idea of this notion of robustness. In fact, the first mathematical work on
robust estimation seems to have gone back in 1818 with the work of Laplace (1818). in
his second supplement to the analytical theory of probabilities. More precisely, the term
"robust" was introduced in 1954 by Box et al. (1954). But this notion was not recognized
as a field of research until the mid-sixties. It is especially with the work of Huber (1992),
Hampel (1971) that a coherent theory of robust statistics has been developed based on
criteria of the minmax type and essentially uses arguments of convexity. From another
point of view, other authors (Huber et al. (1973) and Huber and Ronchetti (1981)). An-
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drews (1974), Krasker and Welsch (1982), have developed automatic methods of robust
adjustment, which is effective as the method of least squares when there are no aberrant
points, but more effective in the presence of atypical observations or when the distribution
of the error in the model follows a distribution with heavy tails.

It is well-known that the classical regression methods are sensitive to the outliers. The
treatment of outliers is an essential step in highlighting the features of any data set. In
this situation, outlying observations can be even more dangerous since the shape of the
estimated curve is highly sensitive to outlying observations. Therefore, in order to over-
come this problem, we consider a robust approach. More precisely, we are interested in
the class of M-estimates, which was introduced by Huber (1965). The first work of robust
estimates for nonparametric regression was given by Cleveland (1979), who give local
polynomial fit versions by introducing weights to deal with large residuals. Härdle and
Gasser (1984) and Tsybakov (1982), also studied pointwise asymptotic properties of a
robust version of the Nadaraya−Watson method. These results were extended to M−type
scale equivariant kernel estimates by Boente and Fraiman (1989) and Härdle et al. (1988)
who also considered robust equivariant nonparametric estimates using nearest neighbor
weights.

In particular, the presence of outliers can lead to unreasonable results since all vari-
ables have the same weight. Now, to overcome this limitation an alternative robust tool
can be used in this kind of situation as relative error method. The literature on the relative
error regression in Nonparametric Functional Data Analysis (NFDA) is still limited. The
first consistent results were obtained in by Campbell and Donner (1989), where relative
regression was used as a classification tool. Jones et al. (2008) studied the nonparametric
prediction via relative error regression. They investigated the asymptotic properties of an
estimator minimizing the sum of the squared relative errors by considering both (kernel
method and local linear approach). Recently, Mechab and Laksaci (2016) studied this
regression model when the observations are weakly dependent. For spatial data, Attouch
et al. (2017) proved the almost complete consistency and the asymptotic normality of this
estimator. Altendji et al. (2018) investigated the relative error in functional regression
under random left-truncation model.
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1.3 Incomplete Data

1.3.1 Censored data

Many researchers consider survival data analysis to be merely the application of two
conventional statistical methods to a special type of problem: parametric if the distri-
bution of survival times is known to be normal and nonparametric if the distribution is
unknown. This assumption would be true if the survival times of all the subjects were
exact and known; however, some survival times are not.

For example, some patients may still be alive or disease free at the end of the study
period. The exact survival times of these subjects are unknown. These are called censored
observations or censored times and can also occur when people are lost to follow up after
a period of study. When these are not censored observations, the set of survival times is
complete. There are three types of right censoring.

Type I censorship :

Instead of observing the variables Y1, Y2, . . . , Yn which interest us, we observe Yi when
it is less than a fixed duration C, otherwise we only know that Yi is greater than C. We
therefore observe a variable Ti such that Ti = min(Yi,C).

Type II censorship:

We observe the lifetimes of n patients until r of them have died and we stop at
this point. If we order the Y1, Y2, . . . , Yn, we get the order statistics Y(1), Y(2), . . . , Y(n).
The censorship date is then Y(r) and we observe T(1) = Y(1), T(2) = Y(2), . . . , T(r) =

Y(r), T(r+1) = Y(r), . . . , T(n) = Y(r).

Type III censorship:

Definition: Given an n−sample Y1, Y2, . . . , Yn of a positive random variable Y , we
say that there is random censorship of this sample if there exists an n−dimensional random
variable C1,C2, . . . ,Cn such that, instead of observing Y1, Y2, . . . , Yn, we observe

(Ti, δi) with Ti = min (Yi,Ci) and δi = 1Yi≤Ci . (1.1)

Here Ti is the duration actually observed. We know, moreover, what is the nature of
this duration: if δi = 1, it is a survival, if δi = 0, it is a censorship.

8
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1.3.2 Missing At Random (MAR) data

In many practical works including for instance sampling survey, pharmaceutical trac-
ing or reliability, data are often incompletely observed and part of the responses are miss-
ing at random (MAR). The literature in multivariate setting for MAR samples is rather
developed (see for among other Cheng (1994), Little and Rubin (2019) and Efromovich
(2011)). When the explanatory variable is infinite dimensional, as far as we know the
only contribution dealing with MAR sample is by Ferraty et al. (2013) and concerns the
simple (parametric) problem of estimating the response mean.

Let (X,Y, δ) be a random variables (rv) in F × R × {0,1}, where (F , d) is a semi-
metric space (i.e. X is a functional random variable (f.r.v) and d a semi-metric). Let x
be a fixed element of F . One has an incomplete sample of size n from (X,Y, δ) which is
classically denoted by {(Xi, Yi, δi) ,1 ≤ i ≤ n} , where δi = 1 if Yi is observed, and δi = 0

otherwise. The Bernoulli random variable δ is supposed to be such that

P(δ = 1 ∣X = x,Y = y) = P(δ = 1 ∣X = x) = p(x),

where p(x) is a functional operator. This last condition models the fact that the censoring
process δ is, conditionally on X, independent of the response Y .

1.4 Brief presentation of results

In this section, we give a brief presentation of the different results obtained for each
chapter of this thesis.

1.4.1 Presentation of the estimators

We consider model 1.1, assuming that Y and C admit continues c.d.f. H and G, re-
spectively. Consider a functional variable X of F representing a covariate variable of the
regression function r.

Now, we estimate the regression function r(.) under our relative loss function as

r̃n(x) =

n

∑
i=1

δiT −1
i

Ḡn(Ti)
K (

d(x,Xi)

h
)

n

∑
i=1

δiT −2
i

Ḡn(Ti)
K (

d(x,Xi)

h
)

, (1.2)

9
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with Ḡn(.) = 1 − Gn(.) where Gn(.) is the Kaplan-Meier estimator of G(.), K is the
kernel and h ∶= hn is a sequence of positive reals tending towards zero when n→∞.

Now we aim to generalize the results of Boente and Vahnovan (2015) which are ob-
tained in the complete case to missing case (see 1.3.2).
We consider a real, measurable function, denoted ψ. The functional parameter studied in
this note, noted ϑx, is solution of the following equation:

Γ(x, t, σ) ∶= E(ψ (
Y − t

σ
) ∣X = x) = 0, (1.3)

where σ is a robust measure of the conditional scale. This measure can be taken as the
conditional median of the absolute deviation from the conditional median, that is,

σ ∶= s(x) = MED(∣Y −m(x)∣ ∣X = x) = MADC (F x
Y (⋅)) .

Denote by ŝ(x) a robust estimator of the conditional scale, for instance, ŝ(x) =MADC(F̂ (⋅ ∣

X = x)), the scale measure. On the other hand, the robust nonparametric estimator of ϑx
is given by the solution ϑ̂x of Γ̂(x, ., ŝ(x)) = 0, where Γ̂(x, t, ŝ(x)) as an estimate of
Γ(x, t, s(x)) by

Γ̂(x, t, ŝ(x)) =
∑
n
i=1 δiK (h−1d (x,Xi))ψ (Yi−tŝ(x))

∑
n
i=1 δiK (h−1d (x,Xi))

.

We also note by θ̂x the estimator of θx which is the solution of 1.3 in the case with σ = 1.

1.4.2 Results: Relative i.i.d. Case

In this part, we assume that our observations are i.i.d. If the regression function r(.)
Satisfies certain regularity conditions then, under general technical hypotheses, we es-
tablish the almost complete uniform convergence and the asymptotic normality of our
proposed estimator.

Theorem 1.4.1. Under certain assumptions mentioned in 2.3. We have

sup
x∈F

∣r̃n(x) − r(x)∣ = Oa.co. (h
k1) +Oa.co. (h

k2) +Oa.co.

⎛
⎜
⎝

¿
Á
ÁÀψSF (

logn
n

)

nϕx(h)

⎞
⎟
⎠
. (1.4)
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Theorem 1.4.2. Under certain assumptions mentioned in 2.3. We have

(
nϕx(h)

σ2(x)
)

1/2

(r̃n(x) − r(x) −Bn(x) − o(h))
D
→ N(0,1) as n→∞, (1.5)

where
D
→ means the convergence in distribution. Also,

Bn(x) =
(Ψ′

1(0) − r(x)Ψ
′
2(0))β0

β1g2(x)
(1.6)

and

σ2(x) =
(q2(x) − 2r(x)q3(x) + r2(x)q4(x))β2

β2
1

(1.7)

with

β0 =K(1) − ∫
1

0
(sK(s))′χx(s)ds and βj =K

j(1) − ∫
1

0
(Kj)

′
(s)χx(s)ds

for j = 1,2.

1.4.3 Results: Relative α−mixing Case

In order to generalize the results obtained in chapter 2 to the dependent observations,
we reinforce the previous hypotheses, by adding hypotheses on the concentration of joint
law (Xi,Xj) and on the mixing coefficient. We establish the asymptotic properties of
estimator.

Theorem 1.4.3. Under restrictive assumptions on the mixing coefficient (see 3.3), the

kernel and the regression function r, we have

∣r̃n(x) − r(x)∣ = O (hk1) +O (hk2) +Oa.s.

⎛

⎝

√
logn

nϕx(h)

⎞

⎠
. (1.8)

Theorem 1.4.4. Under regularity assumptions mentioned in 2.3, we have

(
nϕx(h)

σ2(x)
)

1/2
⎛

⎝
r̃n(x) − r(x) − hBn(x) − o(h)

⎞

⎠

D
→ N(0,1) as n→∞. (1.9)

where
D
→ denotes convergence in distribution.

Bn(x) =

⎛

⎝
Ψ′

1(0) − r(x)Ψ
′
2(0)

⎞

⎠
β0

β1g2(x)
(1.10)
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and

σ2(x) =

⎛

⎝
q2(x) − 2r(x)q3(x) + r2(x)q4(x)

⎞

⎠
β2

β2
1

. (1.11)

with

β0 =K(1) − ∫
1

0
(sK(s))′χx(s)ds and βj =K

j(1) − ∫
1

0
(Kj)

′
(s)χx(s)ds ≠ 0

for j = 1,2.

1.4.4 Results: Robust i.i.d. Case

In this part the observations are considered independent. If the model satisfies certain
regularity conditions, we have the following asymptotic properties for the estimators θ̂x
and ϑ̂x.

Theorem 1.4.5. Under concentration hypothesis of the probability measure of the func-

tional variable and standard technical conditions for the kernel and the bandwidth ( see

4.2.2), we have

∣θ̂x − θx∣ = Oa.co.

⎛

⎝
hb +

√
logn

nϕx(h)

⎞

⎠
. (1.12)

Theorem 1.4.6. Under standard assumptions and technical conditions on the scale pa-

rameter σ ( see 4.2.3), we have

∣ϑ̂x − ϑx∣ = Oa.co.

⎛

⎝
hb +

√
logn

nϕx(h)

⎞

⎠
. (1.13)
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CHAPTER 2. NONPARAMETRIC RELATIVE ERROR REGRESSION UNDER
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Strong convergence of the functional
nonparametric relative error regression estimator

under right censoring
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Abstract : In this paper, we investigate the asymptotic properties of a nonparametric
estimator of the relative error regression given a functional explanatory variable, in the
case of a scalar censored response, we use the mean squared relative error as a loss func-
tion to construct a nonparametric estimator of the regression operator of these functional
censored data. We establish the strong almost complete convergence rate and asymptotic
normality of these estimators. A simulation study is performed to illustrate and compare
the higher predictive performances of our proposed method to those obtained with stan-
dard estimators.

Keywords : Relative error regression, Censored data, Nonparametric kernel estimation,
Functional data analysis, Almost complete convergence, Asymptotic normality, Small
ball probability.
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2.1 Introduction

Functional data analysis is a branch of statistics that has been the object of many
studies and developments during the last few years. This type of data appears in many
practical situations, as soon as one is interested in a continuous-time phenomenon, for
instance. This increase reveals, each time, the limitations of the analytical techniques
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used, which poses a real challenge to statisticians for the construction and development
of new statistical methods, adapted to this profusion of data. Aforementioned is one of
the reasons why, during the last twenty years, functional data analysis has become one of
the most used tools for studying data in their dimensions, providing among other things
several elements of answer to the problem (See, for instance, Ramsay (2004) and Ferraty
and Vieu (2006)).

Modeling functional variables have received increasing interest in the last few years
from mathematical or application points of view. There are many results for nonparamet-
ric models for more details on the subject, and we refer the reader to the monograph of
Ferraty and Vieu (2006).

The study of a scalar response variable Y given a new value for the explanatory vari-
able X is an important subject in nonparametric statistics. This regression relation is
modeled by:

Y = r(X) + ε, (2.1)

where r(.) is the regression function and ε a sequence of error independent to X .
Usually, r(.) = E[Y ∣X = .] is estimated by minimizing the mean squared loss func-

tion. However, this loss function is based on some restrictive conditions that is the vari-
ance of the residual is the same for all the observations, which is inadequate when the
data contains some outliers.

When the predicted values are large or when the data contain many outliers, the fol-
lowing criterium

E [(
Y − r(X)

Y
)

2

∣X] , for , Y > 0 (2.2)

is a more meaningful measure of the prediction performance than the least square error.
Notice that this kind of model, so-called relative error regression, has been widely studied
in parametric regression analysis. When the first two conditional inverse moments of Y
givenX are finite, the solution is given by the minimization of the sum of absolute relative
errors for a linear model of the following ratio:

r(x) =
E[Y −1∣X = x]

E[Y −2∣X = x]
. (2.3)

The least absolute relative error estimation for multiplicative regression models was
proposed by Chen et al. (2010), who proved consistency and asymptotic normality of their
estimator and also provided an inference approach via random weighting. Ruiz-Velasco
(1991) discussed the asymptotic efficiency of relative logistic regression in a paramet-
ric context, particularly when explanatory variables are normally distributed. Moreover,
Jones et al. (2008) has built a consistent estimator for this model using the kernel method.
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They established asymptotic properties, especially its quadratic convergence, in the case
where the observations are independent and identically distributed.

The literature on the relative error regression (RER) in nonparametric functional data
analysis is still not very developed. The first consistent results were obtained by Camp-
bell and Donner (1989), where relative regression was used as a classification tool. For
the kernel method combined with the local linear method, Jones et al. (2008) gives the
asymptotic properties of the nonparametric prediction via relative error regression. Re-
cently, Attouch et al. (2017) proposed a kernel regression estimator version in the spatial
framework context and derived asymptotically and numerically the effectiveness of this
kind of estimator, whereas Demongeot et al. (2016) proposed a functional version of the
relative kernel regression estimator while Thiam (2018) proposed a nonparametric method
estimation for deconvolution regression model using relative error prediction.

On the other hand, the literature on the nonparametric analysis of incomplete func-
tional data is quite restricted. There are very few results on this topic (see, for instance,
Altendji et al. (2018) for estimation of the relative error in functional regression under the
random left-truncation model). In the right censorship model, the kernel estimator of the
classical regression was introduced by Carbonez, Carbonez et al. (1995), and improved
by Köhler et al. (2002). This model was used later by Ould-Saïd and Guessoum (2008),
Horrigue and Ould-Saïd (2011) and Horrigue and Ould-Saïd (2014) for the conditional
quantile estimation when regressors are functional. In addition, Helal and Ould-Saïd
(2016) used the same model with truncated data.

In this work, we focus on the prediction problem in models with incomplete data
lifetimes (randomly censored on the right). Beyond the historical origins of the statisti-
cal analysis of lifetime, demographic, and actuarial life, the three main areas of current
analysis of survival data are reliability, biostatistics, and economics.

Generally, we can say that censored regression models have received a great deal of
attention in both theoretical and applied statistics literature. In this work, we give an
alternative approach to traditional estimation models by considering the minimization of
the least relative error for regressions models when the data are randomly right-censored,
then we establish the asymptotic properties of the kernel estimator of the functional RER.
More precisely, we define the relative error estimator for both complete and incomplete
data (randomly censored data), and establish the strong almost complete convergence
(a.co.), with rate, and obtain the asymptotic normality of this estimator.

The rest of the paper is organized as follows. Section 2.2 deal with nonparametric
relative regression and regression under random censorship. Section 2.3 summarizes the
assumptions and the main results, while Section 2.4 is devoted to our simulations results.
The proofs of the auxiliary results given in Appendix 2.5.
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2.2 Model

2.2.1 Nonparametric relative regression

Let {Zi = (Xi, Yi)1≤i≤n} be n independent pairs, identically distributed as Z = (X,Y )

and valued in F × R, where (F , d) is a semi-metric space (i.e. X is a functional ran-
dom variable (f.r.v) and d a semi-metric). Let x and y be a fixed element of F and R
respectively.

By simple algebra, we explicitly determine a kernel-based estimator of the equation
(2.2) by

r̂(x) =
∑
n
i=1 YiK (

d(x,Xi)
h )

∑
n
i=1K (

d(x,Xi)
h )

, (2.4)

where K is an asymmetrical kernel and h (depending on n) is a strictly positive real
number.

Note that the formula in (2.4) is a functional extension of the familiar Nadaraya-
Watson estimate. The main change comes from the semi-metric d, which measures the
proximity between functional objects. However, the use of the previous loss function as a
measure of prediction performance may be not suitable in some situations. In particular,
the presence of outliers can lead to unreasonable results since all variables have the same
weight.

It is clear that the criterion in (2.3) is a more meaningful measure of prediction per-
formance than the least squares error, in particular, when the range of predicted values is
large. Moreover, the solution of (2.3) can be explicitly expressed by the ratio of first two
conditional inverse moments of Y given X , i.e.

r(.) =
E[Y −1∣X = .]

E[Y −2∣X = .]
=∶
g1(.)

g2(.)
. (2.5)

Now, we estimate the regression function r(.) under our relative loss function as

r̂(x) =

n

∑
i=1

Y −1
i K (

d(x,Xi)

h
)

n

∑
i=1

Y −2
i K (

d(x,Xi)

h
)

=∶
ĝ1(x)

ĝ2(x)
, (2.6)

where
ĝl(x) =

1

nE [K (
d(x,X1)

h )]

n

∑
i=1

Y −l
i K (

d(x,Xi)

h
) for l = 1,2.
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2.2.2 Relative error regression under random censorship

In the censoring case, instead of observing the lifetimes Y (which has a continuous
distribution function (df) H) we observe the censored lifetimes of items. That is, assum-
ing that (Ci)1≤i≤n is a sequence of i.i.d. censoring random variable (r.v.) with common
unknown continuous df G. Then, in the right censorship model, we only observe the n
pairs (Ti, δi) with

Ti = Yi ∧Ci and δi = 1{Yi≤Ci},1 ≤ i ≤ n, (2.7)

where 1A denotes the indicator function of the set A.
Now, we assume that (Ci)1≤i≤n and (Xi, Yi)1≤i≤n are independent. In censorship

model, only the (Xi, Ti, δi)1≤i≤n are observed. For any df L, we will write τL = sup{t ∶

L̄(t) > 0}, where L̄(.) = 1 − L(.) On the other hand, Ln(.) will denote a functional
estimator of L(.). Denote by r̃(x) the estimator of r(x) in presence of censored data.
Then,

r̃(x) =

n

∑
i=1

δiT −1
i

Ḡ(Ti)
K (

d(x,Xi)

h
)

n

∑
i=1

δiT −2
i

Ḡ(Ti)
K (

d(x,Xi)

h
)

=∶
g̃1(x)

g̃2(x)
, (2.8)

where

g̃l(x) =

n

∑
i=1

δiT −l
i

Ḡ(Ti)
K (

d(x,Xi)

h
)

nE [K (
d(x,X1)

h )]
, for l = 1,2

In practice, G is unknown. So, we use the Kaplan-Meier estimator in Kaplan et al. (1958)
of Ḡ given by

Ḡn(t) =

⎧⎪⎪
⎨
⎪⎪⎩

∏
n
i=1 (1 −

1−δ
(i)

n−i+1)
1
{T
(i)≤t} if t ≤ T(n)

0 otherwise,
(2.9)

where T(1) ≤ T(2) ≤ ... ≤ T(n) are the order statistics of (Ti)1≤i≤n and δ(i) is the concomitant
of T(i). Therefore, the estimator of r(x) is given by

r̃n(x) =

n

∑
i=1

δiT −1
i

Ḡn(Ti)
K (

d(x,Xi)

h
)

n

∑
i=1

δiT −2
i

Ḡn(Ti)
K (

d(x,Xi)

h
)

=∶
g̃1,n(x)

g̃2,n(x)
, (2.10)

where

g̃l,n(x) =
1

nE [K (
d(x,X1)

h )]

n

∑
i=1

δiT −l
i

Ḡn(Ti)
K (

d(x,Xi)

h
) for l = 1,2.
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2.3 Assumptions and main results

The main purpose of this section is to study the uniform almost-complete conver-
gence1(a.co.) of r̃n(x) toward r(x).

From now on, for all x inF , for all positive real h, and denote byNx the neighborhood
of the point x, when no confusion is possible, we will denote by c and c′ generic constants
and define Ki(x) by

Ki(x) =K (
d(x,Xi)

h
) for i = 1, ..., n,

where K is a kernel function and h ∶= hn,K is a sequence of positive numbers decreasing
toward 0. We will also use the notation

ϕx(h) = P(X ∈ B(x,h)), (2.11)

where B(x,h) = {x′ ∈ F , d(x,x) ≤ h}.
We recall the definition of the Kolmogorov’s entropy which is an important tool to

obtain uniform convergence results. Given a subset SF ⊂ S and ε > 0, denote Nε(S) or
N the minimal number of open balls of radius ε needed to cover S. Then, the quantity
ψSF = log(N) is called Kolmogorov’s ε-entropy of the set S. In what follows, we will
need the following assumptions:

(H1) P(X ∈ B(x,h)) =∶ ϕx(h) > 0 for all h > 0 and lim
h→0

ϕx(h) = 0.

(H2) For all (x1, x2) ∈ N
2
x , we have

∣gl(x1) − gl(x2)∣ ≤ cd
kl(x1, x2) for kl > 0.

(H3) The kernel K is a bounded Lipshitzian and differentiable function on its support
(0; 1) and satisfying:

0 < c ≤K(.) ≤ c′ < +∞,

and its first derivative function K ′ is such that: −∞ < c <K ′(.) < c′ < 0.

(H4) The bandwidth h satisfies:

(i)
√

log logn
n = o(ϕx(h));

1Let (Zn)n∈N be a sequence of real r.v.’s. We say that Zn converges almost completely (a.co.) toward
zero if and only if ∀ε > 0,∑

∞

n=1 P(∣Zn∣ > ε) < ∞. Moreover, we say that the rate of the almost complete
convergence of Zn to zero is of order un (with un → 0) and we write Zn = O(un) a.co. if and only if
∃ε > 0 such that ∑∞n=1 P(∣Zn∣ > εun) < ∞. This kind of convergence implies both almost sure convergence
and convergence in probability.
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(ii) nϕx(h)
logn →∞ as n→∞.

(H5) The response variable Y is such that: ∣Y ∣ > c > 0 for all x ∈ F and

inf
x∈F

g2(x) ≥ γ > 0.

(H6) The functions ϕx and ψSF are such that:

(H6a) there exists η0 > 0 such that for all η < η0, ϕ′x(η) < c, where ϕ′x denotes the
first derivative function of ϕx.

(H6b) for a large enough integer n, we have:

(logn)2

nϕx(h)
< ψSF (

logn

n
) <

nϕx(h)

logn
,

(H6c) the Kolmogorov’s ε-entropy of SF satisfies:

∞
∑
n=1

exp [(1 − β)ψSF (
logn

n
)] < ∞ for some β > 1.

(N1) There exists a function χx(.) such that:

for all s ∈ [0,1], lim
r→0

ϕx(sr)

ϕx(r)
= χx(s)

(N2) For γ ∈ {1,2}, the functions Ψγ(.) = E [gγ(X) − gγ(x)∣d(x,X) = .] are derivable
at 0.

(N3) The small ball probability satisfies: nϕx(h) Ð→∞.

(N4) For m ∈ {1,2,3,4}, the functions qm(.) = E [G−1Y −m∣X = .] are continuous in a
neighborhood of x.

Comments on the hypotheses: All these conditions are very standard and usually
assumed in this context of nonparametric functional estimation. Specifically, Assumption
(H1) is classic in the asymptotic theory of nonparametric functional statistic, which was
linked to the functional structure of the functional covariate. Such a function can be
explicitly obtained for several continuous processes (see Ferraty and Vieu (2006)).

The nonparametric aspects of our model are ensured by means of Assumptions (H2),
(N1) and (N4). These hypotheses are regularity conditions which characterize the func-
tional space of our model and are needed to evaluate the bias term in the asymptotic
properties. Assumptions (H3) and (H4) concern the kernel K(.) and the smoothing pa-
rameter h and (H5) is a technical condition for getting the proof of our results, while
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Hypothesis (H6) deals with topological considerations by controlling the entropy of SF .
For a radius not too large, one requires that ψSF (

logn
n

) is not too small and not too large.

Moreover, (H6)b implies that
ψS
F
( logn

n
)

nϕx(h) tends to 0 when n tends to +∞. In a different
way, Assumption (H6c) acts on Kolmogorov’s ε-entropy of SF . Similarly to the concen-
tration property, this additional argument also controls the contribution of the topological
structure of F in the uniform convergence rate. The Assumptions (N3) and (N4) are very
similar to those used by Ferraty et al. (2007).

Now we are in a position to give our main result.

Theorem 2.3.1. Under Assumptions (H1)-(H6), we have

sup
x∈F

∣r̃n(x) − r(x)∣ = Oa.co. (h
k1) +Oa.co. (h

k2) +Oa.co.

⎛
⎜
⎝

¿
Á
ÁÀψSF (

logn
n

)

nϕx(h)

⎞
⎟
⎠
. (2.12)

Theorem 2.3.2. Under Assumptions (H1),(H3)and (N1)-(N4), for any x ∈ F , we have:

(
nϕx(h)

σ2(x)
)

1/2

(r̃n(x) − r(x) −Bn(x) − o(h))
D
→ N(0,1) as n→∞, (2.13)

where
D
→ means the convergence in distribution. Also,

Bn(x) =
(Ψ′

1(0) − r(x)Ψ
′
2(0))β0

β1g2(x)
(2.14)

and

σ2(x) =
(q2(x) − 2r(x)q3(x) + r2(x)q4(x))β2

β2
1

(2.15)

with

β0 =K(1) − ∫
1

0
(sK(s))′χx(s)ds and βj =K

j(1) − ∫
1

0
(Kj)

′
(s)χx(s)ds

for j = 1,2.
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2.3.1 Proofs of Theorem 2.3.1

From (2.12), we can see that:

sup
x∈F

∣r̃n(x) − r(x)∣ ≤ sup
x∈F

{∣
g̃1,n(x)

g̃2,n(x)
−
g̃1(x)

g̃2,n(x)
∣ + ∣

g̃1(x)

g̃2,n(x)
−
E(g̃1(x))

g̃2,n(x)
∣

+ ∣
E(g̃1(x))

g̃2,n(x)
−
g1(x)

g̃2,n(x)
∣ + ∣

g1(x)

g̃2,n(x)
−
g1(x)

g2(x)
∣}

≤
1

inf
x∈F

∣g̃2,n(x)∣
{sup
x∈F

∣g̃1,n(x) − g̃1(x)∣ + sup
x∈F

∣g̃1(x) −E(g̃1(x))∣

+ sup
x∈F

∣E(g̃1(x)) − g1(x)∣} +

sup
x∈F

∣g1(x)∣γ
−1

inf
x∈F

∣g̃2,n(x)∣
{sup
x∈F

∣g̃2,n(x) − g̃2(x)∣

+ sup
x∈F

∣g̃2(x) −E(g̃2(x))∣ + sup
x∈F

∣E(g̃2(x)) − g2(x)∣} .

Therefore, Theorem 2.3.1’s result is a consequence of the following intermediate results,
where their proofs are postponed to the appendix.

Lemma 2.3.1. Under assumptions (H2)-(H5), we have

sup
x∈F

∣g̃l,n(x) − g̃l(x)∣ = Oa.s.

⎛

⎝

√
log logn

n

⎞

⎠
, with l ∈ {1,2}. (2.16)

Where Oa.s. means the rate of the almost sure convergence.

Lemma 2.3.2. Under assumptions (H1)-(H3) and (H5), we have

sup
x∈F

∣E(g̃l(x)) − gl(x)∣ = O (hkl) , (2.17)

withe l ∈ {1,2}.

Lemma 2.3.3. Under assumptions (H1)-(H3) and (H6), we have

sup
x∈F

∣g̃l(x) −E(g̃l(x))∣ = Oa.co.

⎛
⎜
⎝

¿
Á
ÁÀψSF (

logn
n

)

nϕx(h)

⎞
⎟
⎠
, (2.18)

withe l ∈ {1,2}.

Corollary 2.3.1. Under the assumptions of lemma 2.3.2 and 2.3.3, we obtain:

there exists δ > 0 such that
∞
∑
n=1

P(inf
x∈F

∣g̃2,n(x)∣ < δ) < ∞. (2.19)
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2.3.2 Proofs of Theorem 2.3.2

To prove Theorem 2.3.2, we use the following decomposition

r̃n(x) − r(x) =
1

g̃2,n(x)
[Dn +An (g̃2,n(x) −E [g̃2(x)])] +An,

where
An =

1

E [g̃2(x)] g2(x)
[E [g̃1(x)] g2(x) −E [g̃2(x)] g1(x)]

and

Dn =
1

g2(x)
[[g̃1,n(x) −E [g̃1(x)]] g2(x) + [E [g̃2(x)] − g̃2,n(x)] g1(x)] .

Consequently, the proof of Theorem 2.3.2 can be deduced from the convergence rate of
Lemma 2.3.1 and the following intermediate results (cf. Lemmas 2.3.4, 2.3.5 and 2.3.6).

Lemma 2.3.4. Under assumptions of Theorem 2.3.2, we have

(
nϕx(h)

g2
2(x)σ

2(x)
)

1/2

([g̃1(x) −E [g̃1(x)]] g2(x) − [g̃2(x) −E [g̃2(x)]] g1(x))
D
→ N(0,1).

Lemma 2.3.5. Under assumptions of Theorem 2.3.2, we obtain

An = hBn + o(h).

Lemma 2.3.6. Under assumptions of Theorem 2.3.2, we obtain

g̃2(x) → g2(x), in probability

and

(
nϕx(h)

g2
2(x)σ

2(x)
)

1/2

An (g̃2(x) −E[g̃2(x)]) → 0, in probability.

2.4 Simulation study

In order to see the behavior of our proposed estimator, we consider the curves gener-
ated in the following way:

Xi(t) = ai sin(4(bi − t)) + bi + ηi,t i = 1 ∶ 200 t ∈ [0,1[,

where ai ∼ N(5,2), bi ∼ N(0, 0.1) and ηi,t ∼ N(0, 0.2). All the curves are discretized
on the same grid generated from m = 150 equispaced points t ∈ [0,1[. The observations
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Yi’s for i = 1, ..., n are generated from the model

Yi = r(Xi) + εi where εi ∼ N(0, 0.01),

where
r(x) = ∫

1

0

dt

1 + ∣x(t)∣
.

In practice, the semi-metric choice is based on the regularity of the curves which are
under study. In our case, regarding the shape of the curvesXi, it is clear that the PCA-type
semi-metric (cf. Ferraty and Vieu (2006)) is well adapted to this data set. It should also
be noticed that the best results concerning prediction are obtained for q = 4 (the number
of components in the PCA-type semi-metric). The optimal bandwidth h is chosen by the
cross-validation method for the k nearest neighbors (kNN) in a local way.
We select the quadratic kernel for both classic and relative estimators defined by

K(u) =
3

2
(1 − u2)1(0,1).

Next, we consider a sample of size n = 200 and we split the data generated from
the model above into two subsets: a training sample (Xi, Ti, δi), i = 1, ...,150 and a
test sample (Xi, Ti, δi), i = 151, ...,200. Then, we calculate the estimator θ̂(Xi) for any
i ∈ {151, ...,200}.

We also, simulate n i.i.d. rv’s Ci, i = 1, ..., n with law E(λ) (the exponential law with
the λ parameter that controls the censorship rate).

2.4.1 Prediction regression

The performance of both estimators was compared under the mean squared prediction
error (MSE) criterion:

MSE =
1

50

200

∑
j=151

(θ(Xj) − θ̂(Xj))
2,

where θ̂(Xj) means the estimator of both regression models and θ(Xj) the response vari-
able.

1) Data without outliers : The obtained results are shown in Figure 2.2. With the
censorship rate CR = 1.33%, it is clear that there is no meaningful difference between
the two estimation methods: the Classical Kernel Estimator (CKE) and the Relative Error
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Figure 2.1: The curves Xi=1,...,100(t), t ∈ [0,1[.

Estimator (REE) (MSECKE = 0.00038, MSEREE = 0.00048).
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Figure 2.2: Comparison between the Classical Kernel Estimator (CKE) and the Relative
Error Estimator (REE) without outliers.

2) Data with outliers : Here, we concentrate on the comparison of both models’
performances in the presence of outliers. For this aim, we introduce artificial outliers by
multiplying some values of Y in the training sample by 10. The estimators of both models
are obtained by the same previous selection methods of the smoothing parameter, i.e., the
same metric d and also the same kernel K. Finally, the obtained results are shown in
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Table 2.1 and displayed in Figure 2.3. Note that, in Figure 2.2 the two estimators are

Table 2.1: MSE for the Classical Kernel Estimator (CKE) and the Relative Error Estimator
(REE) according to numbers of introduced artificial outliers.

Number of artificial outliers 0 10 30 50
Classical Kernel Estimator MSECKE 0.00076 0.02520 3.98068 434.82333

Relative Error Estimator MSEREE 0.00060 0.00064 0.00072 0.00054
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Figure 2.3: Comparison between the Classical Kernel Estimator (CKE) and the Relative
Error Estimator (REE) in the presence of outliers.

equivalent but in Figure 2.3, in which we considered the presence of outliers, the relative
error regression is robust than the classical kernel regression; i.e., the classical kernel
method is susceptible to the presence of outliers. Now, we will study the behavior of our
estimator with different censored rates (CR). The results are shown in Table 2.2. We see
that the quality of fit is affected and becomes worse as the CR increases, but the relative
error estimator is more efficient than the classical one in the presence of censoring data.

Another point of view, and in order to verify the superiority of our methodology, we
provide a comparative study with the case of missing data. Note that, in the case of
missing data the estimator is given as follow:

r̂(x) =

n

∑
i=1

δiT
−1
i K (

d(x,Xi)

h
)

n

∑
i=1

δiT
−2
i K (

d(x,Xi)

h
)

. (2.20)
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Table 2.2: MSE for the Classical Kernel Estimator (CKE) and the Relative Error Estimator
(REE) according to to the censoring rates with different sample size.

Sample size CR Classical Kernel Estimator Relative Error Estimator
MSECKE MSEREE

10% 0.00239 0.00203
100 20% 0.00613 0.00366

60% 0.01483 0.00679
10% 0.00175 0.00182

200 20% 0.00545 0.00292
60% 0.01155 0.00576
10% 0.00100 0.00051

600 20% 0.00860 0.00284
60% 0.01179 0.00408

We obtain the following result resumed in this table:

Table 2.3: MSE for the REE estimator under missing case and the REE estimator under
censored case.

Incomplete data 9% 24% 50% 64%
Relative Error Estimator MSEmissing 0.00628 0.07332 0.11894 0.12236

Relative Error Estimator MSEcensoring 0.00315 0.00457 0.00644 0.00702

We note that the model with censorship gives better results than the missing model when
the censorship rate increases.

2.4.2 Confidence Interval

Based on Theorem 2.3.2, we aim in this subsection to build confidence interval for
the true value of r(x) given curve X = x. Plug-in estimates for the asymptotic standard
deviation (nϕx(h)/σ2(x))

1/2 and the bias term hBn(x) + o(h). Then, estimate qm(x) by

q̂m(x) =
∑
n
i=1KiδiḠ−1

n (Ti)T −m
i

∑
n
i=1Ki

.

Whereas β1 and β2 are empirically estimated by

β̂1 =
1

nϕx(h)

n

∑
i=1

KiδiG
−1
n (Ti) and β̂2 =

1

nϕx(h)

n

∑
i=1

K2
i δiG

−1
n (Ti) (2.21)
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Finally, the practical estimator of the normalized deviation is

(
(∑

n
i=1KiδiG−1

n (Ti))
2
q̃2

2(x)

(∑
n
i=1K

2
i δiG

−1
n (Ti)) (q̃2(x) − 2r̃(x)q̃3(x) + r̃2(x)q̃4(x))

)

1/2

.

We point out that the function ϕx(.) in (2.21) does not intervene in the calculation of the
confidence interval.Finally, the approximated 1−ζ/2 confidence interval for r(x), for any
x ∈ F , is

[binf , bsup] ,

where

binf = r̃n(x) − t1−ζ/2 (
(∑

n
i=1KiδiG−1

n (Ti))
2
q̃2

2(x)

(∑
n
i=1K

2
i δiG

−1
n (Ti)) (q̃2(x) − 2r̃(x)q̃3(x) + r̃2(x)q̃4(x))

)

1/2

and

bsup = r̃n(x) + t1−ζ/2 (
(∑

n
i=1KiδiG−1

n (Ti))
2
q̃2

2(x)

(∑
n
i=1K

2
i δiG

−1
n (Ti)) (q̃2(x) − 2r̃(x)q̃3(x) + r̃2(x)q̃4(x))

)

1/2

,

where t1−ζ/2 denotes the 1 − ζ/2 quantile of the standard normal distribution.
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Figure 2.4: Extremities of the predicted values versus the true values and the confidence
bands (simulation data without outliers).

We see clearly in Figure 2.5 that our predicted values of REE fit very well the real
values and the latter are all in the confidence interval in the presence of outliers.
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Figure 2.5: Extremities of the predicted values versus the true values and the confidence
bands (simulation data with 10 outliers).

2.5 Appendix

Proof of Lemma 2.3.1:
For all l = 1,2, we have:

∣g̃l,n(x) − g̃l(x)∣ ≤
1

E(K1(x))

n

∑
i=1

∣
δiT −l

i

Ḡn(Ti)
Ki(x) −

δiT −l
i

Ḡ(Ti)
Ki(x)∣

≤

sup
t∈R

∣Ḡn(t) − Ḡ(t)∣

Ḡn(τH)Ḡ(τH)

∑
n
i=1 ∣Y

−l
i Ki(x)∣

nE(K1(x))
.

Since Ḡ(τH) > 0, in conjunction with the SLLN and the LIL on the censoring law (see
Formula (4.28) in Deheuvels and Einmahl (2000)), we have:

sup
x∈F

∣g̃l,n(x) − g̃l(x)∣ ≤
∑
n
i=1 ∣Y

−l
i Ki(x)∣

nE(K1(x))

1

Ḡ2(τH)

√
log logn

n
.

(2.3) allows to achieve the proof.

Proof of Lemma 2.3.2:
Since (X1, Y1), ..., (Xn, Yn) are independent and identically distributed pairs, and for all
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l = 1,2, we have:

∀x ∈ F , ∣E(g̃l(x)) − gl(x)∣ = ∣E(
K1(x)

E(K1(x))
E [

E(1Y1≤Ci ∣Y1)Y −l
1

Ḡ(Y1)
∣X1]) − gl(x)∣

=
1

E(K1(x))
∣E{[E(Y −l

1 ∣X1) − gl(x)]1B(x,h)(X1)K1(x)}∣ .

Then, by the Hölder assumption (H2) we get that

∀x ∈ F , ∣gl(X1) − gl(x)∣ ≤ ch
kl .

Thus,
sup
x∈F

∣E(g̃l(x)) − gl(x)∣ ≤ ch
kl .

Proof of Lemma 2.3.3:
The proof of this Lemma is based on the exponential inequality given in Corollary A.8.ii
in Ferraty and Vieu (2006) with

Zi,l =
1

E(K1(x))
[
δiT −l

i

Ḡ(Ti)
Ki(x) −E(

δiT −l
i

Ḡ(Ti)
Ki(x))] . (2.22)

To do that, we have to show that:

∃c > 0,∀m ≥ 2, E(∣Zm
1,l∣) = cϕ

−m+1
x (h). (2.23)

First, we prove for m ≥ 2 that:

1

Em(K1(x))
E [∣

δ1T −lm
1

Ḡm(T1)
Km

1 (x)∣] = O(ϕ−m+1
x (h)). (2.24)

Then, we write:

E [∣
δ1T −lm

1

Ḡm(T1)
Km

1 (x)∣] = E [∣
1{Y1≤C1}Y

−lm
1

Ḡm(Y1)
Km

1 (x)∣]

= E [E(
E(1{Y1≤C1}∣Y1)∣Y −lm

1 ∣

Ḡm(Y1)
∣X1)K

m
1 (x)]

= E [E(
∣Y −lm

1 ∣

Ḡm−1(Y1)
∣X1)K

m
1 (x)]

≤
c

Ḡ(τH)
E(Km

1 (x))

≤ cϕx(h)
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which implies that

1

Em(K1(x))
E [∣

δ1T −lm
1

Ḡm(T1)
Km

1 (x)∣] = O(ϕ−m+1
x (h))

and
1

E(K1(x))
E [∣

δ1T −l
1

Ḡ(T1)
K1(x)∣] ≤ c.

Next, by the Newton’s binomial expansion we obtain:

E(∣Zm
1,l∣) ≤ c

m

∑
k=0

E [∣
δ1T

−lk
1

Ḡk(T1)K
k
1 (x)∣]

Ek(K1(x))

⎡
⎢
⎢
⎢
⎢
⎢
⎣

E [∣
δ1T

−l
1

Ḡ(T1)K1(x)∣]

E(K1(x))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

m−k

≤ c max
k=0,...,m

ϕ−k+1
x (h)

≤ cϕ−m+1
x (h).

It follows that:
E(∣Zm

1,l∣) = O(ϕ−m+1
x (h)). (2.25)

Thus, we apply the exponential inequality given in Corollary A.8.ii in Ferraty and Vieu
(2006) with a2 = ϕ−1

x (h) and obtain

1

n

n

∑
i=1

Z1,l = Oa.co. (
logn

nϕx(h)
) .

Let x1, ..., xN be a finite set of points in F and SF ⊂ F such that

SF =
N

⋃
k=1

B(xk, ε) with ε =
logn

n
.

For all x ∈ SF , we set k(x) = arg min
k∈{1,2,...,N}

d(x,xk).

Then, we have the following decomposition:

sup
x∈SF

∣g̃l(x) −E(g̃l(x))∣ ≤ sup
x∈SF

∣g̃l(x) − g̃l(xk(x))∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F1

+ max
k∈{1,2,...,N}

∣g̃l(xk(x)) −E(g̃l(xk(x)))∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F2

+ sup
x∈SF

∣E(g̃l(xk(x))) −E(g̃l(x))∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F3

.

We would have demonstrated the expected result if we show that

Fi → 0 for i = 1,2,3.
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For the term F1, a direct consequence of the assumption (H3) is that:

cϕx(h) ≤ E(K (
d(x,X)

h
)) ≤ c′ϕx(h).

Therefore,

F1 ≤ sup
x∈SF

1

n

n

∑
i=1

∣
δiT −l

i

Ḡ(Ti)E(K1(x))
Ki(x) −

δiT −l
i

Ḡ(Ti)E(K1(xk(x)))
Ki(xk(x))∣

≤
c

ϕx(h)
sup
x∈SF

1

n

n

∑
i=1

δi∣T −l
i ∣

Ḡ(Ti)
∣Ki(x) −Ki(xk(x))∣1B(x,h)⋃B(xk(x),h)(Xi),

In this situation K is lipshitzian on (0,1). One has to decompose F1 into three terms as
follows:

F1 ≤ c sup
x∈SF

(F11 + F12 + F13),

with

F11 =
1

nϕx(h)

n

∑
i=1

δi∣T −l
i ∣

Ḡ(Ti)
∣Ki(x) −Ki(xk(x))∣1B(x,h)⋂B(xk(x),h)(Xi),

F12 =
1

nϕx(h)

n

∑
i=1

δi∣T −l
i ∣

Ḡ(Ti)
Ki(x)1B(x,h)⋂B(xk(x),h)(Xi),

F13 =
1

nϕx(h)

n

∑
i=1

δi∣T −l
i ∣

Ḡ(Ti)
∣Ki(x) −Ki(xk(x))∣1B(x,h)⋂B(xk(x),h)(Xi).

Next, we write:

F11 ≤
c

n

n

∑
i=1

Ui,l with Ui,l =
ε

hϕx(h)

δi∣T −l
i ∣

Ḡ(Ti)
1B(x,h)⋂B(xk(x),h)(Xi),

F12 ≤
c

n

n

∑
i=1

Vi,l with Vi,l =
1

ϕx(h)

δi∣T −l
i ∣

Ḡ(Ti)
1B(x,h)⋂B(xk(x),h)(Xi),

and

F13 ≤
c

n

n

∑
i=1

Wi,l with Wi,l =
1

ϕx(h)

δi∣T −l
i ∣

Ḡ(Ti)
1B(x,h)⋂B(xk(x),h)(Xi).

Following the same steps as in Zi,l to obtain the result of F11.

E(∣Um
1,l∣) ≤

cεm

hmϕx(h)m−1
.

Also, we apply the inequality of Corollary A.8.ii in Ferraty and Vieu (2006),with a =
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√
ε

hϕx(h) to get

F11 = Oa.co.

⎛

⎝

√
ε logn

nhϕx(h)

⎞

⎠
.

Following the same ideas for studying F12 and F13 we obtain:

F12 = O (
ε

ϕx(h)
) +Oa.co.

⎛

⎝

√
ε logn

nϕx(h)2

⎞

⎠

and

F13 = O (
ε

ϕx(h)
) +Oa.co.

⎛

⎝

√
ε logn

nϕx(h)2

⎞

⎠
.

To end the proof of F1, it suffices to put together all the intermediate results and to use
again (H6b) for determining

F1 = Oa.co.

⎛
⎜
⎝

¿
Á
ÁÀψSF (ε)

nϕx(h)

⎞
⎟
⎠
→ 0.

For F3, it is clear that F3 ≤ E(sup
x∈SF

∣g̃l(x) − g̃l(xk(x))∣) and by following a similar proof

to the one used for F1, it comes

F3 = Oa.co.

⎛
⎜
⎝

¿
Á
ÁÀψSF (ε)

nϕx(h)

⎞
⎟
⎠
→ 0.

Now, we deal with F2, for all η > 0, we have

P(F2 > η) = P( max
k∈{1,2,...,N}

∣g̃l(xk(x)) −E(g̃l(xk(x)))∣ > η)

≤ N max
k∈{1,2,...,N}

P (∣g̃l(xk(x)) −E(g̃l(xk(x)))∣ > η) .

Put η = η0

√
ψS
F
(ε)

nϕx(h) , and apply the exponential inequality given by Corollary A.8.ii in
Ferraty and Vieu (2006) for

∆l,i =
1

E(K1(xk)))
[
δiT −l

i

Ḡ(Ti)
Ki(xk) −E(

δiT −l
i

Ḡ(Ti)
Ki(xk))] .
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Since E[∣∆l,i∣
m] = O(ϕx(h)−m+1), then, we can take a2 = 1

ϕx(h) . Hence, for all η0 > 0:

P
⎛
⎜
⎝
∣g̃l(xk(x)) −E(g̃l(xk(x)))∣ > η0

¿
Á
ÁÀψSF (ε)

nϕx(h)

⎞
⎟
⎠

= P
⎛
⎜
⎝

1

n
∣
n

∑
i=1

∆l,i∣ > η0

¿
Á
ÁÀψSF (ε)

nϕx(h)

⎞
⎟
⎠

≤ 2 exp (−cη2
0ψSF (ε)) .

By using the fact ψSF (ε) = logN and by choosing η0 such that cε2
0 = β, we obtain:

N max
k∈{1,2,...,N}

P
⎛

⎝
∣g̃l(xk(x)) −E(g̃l(xk(x)))∣ > η0

√
ψSF

nϕx(h)

⎞

⎠
≤ cN1−β. (2.26)

Since ∑∞
N=1N

1−β < ∞, we obtain that

F2 = Oa.co.

⎛
⎜
⎝

¿
Á
ÁÀψSF (ε)

nϕx(h)

⎞
⎟
⎠
→ 0.

Proof of Corollary 2.3.1:
It is easy to remark that:

inf
x∈F

∣g̃2,n(x)∣ ≤
g2(x)

2
implies that there exists x ∈ F such that g2(x) − g̃2,n(x) ≥

g2(x)
2

which implies that sup
x∈F

∣g2(x) − g̃2,n(x)∣ ≥
g2(x)

2
.

We deduce, from Lemma 2.3.2 and 2.3.3, that

P(inf
x∈F

∣g̃2,n(x)∣ ≤
g2(x)

2
) ≤ P(sup

x∈F
∣g2(x) − g̃2,n(x)∣ >

g2(x)

2
)

Consequently
∞
∑
n=1

P(inf
x∈F

∣g̃2,n(x)∣ <
g2(x)

2
) < ∞.

Proof of Lemma 2.3.4:
We write

√
nϕx(h) (g

2
2(x)σ(x))

−1
[(g̃2(x) −E [g̃2(x)]) g1(x) − (g̃1(x) −E [g̃1(x)]) g2(x)] =

Sn
g2

2(x)σ(x)
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with Sn =
n

∑
i=1

(Li(x) −E(Li(x)), where

Li(x) ∶=

√
nϕx(h)

nE [K1]

δi
Ḡ (Ti)

Ki (g1(x)T
−2
i − g2(x)T

−1
i ) (2.27)

Thus, to achieve this lemma’s proof it suffices to show the asymptotic normality of Sn.
This last is reached by applying the Lyapounov central limit Theorem Feller (1966) on
Li(x), i.e., it suffices to show, for some κ > 0, that:

n

∑
i=1

E [∣Li(x) −E [Li(x)]∣
2+κ

]

(var [
n

∑
i=1

Li(x)])

(2+κ)/2 → 0. (2.28)

Clearly

var [
n

∑
i=1

Li(x)] = = nϕx(h) (var [g̃1(x)] g
2
2(x) + var [g̃2(x)] g

2
1(x)

−2g1(x)g2(x)Cov [g̃1(x), g̃2(x)]) .

We have for l ∈ {1,2}:

var(g̃l(x)) =
1

(nE [K1])
2

n

∑
i=1

var [
δi

Ḡ(Ti)
T −l
i Ki] =

1

n (E [K1])
2 var [

δ1

Ḡ(T1)
T −l

1 K1]

By conditioning on the random variable X , by the same ideas in the proof of lemma 2.3.2
and by using assumptions (N1) and (N3), we get:

E
⎛

⎝
(

δ1

Ḡ(Y1)
)

2

Y −2l
1 K2

1

⎞

⎠
= E (E(Ḡ−1(Y1)Y

−2l
1 ∣X = x)K2

1)

= ϕx(h)E [Ḡ−1(Y1)Y
−2l

1 ∣X = x] (K2(1) − ∫
1

0
(K2(s))

′
χx(u)du)

+o(ϕx(h))

and

E(
δ1

Ḡ(Y1)
Y −l

1 K1) = O(ϕx(h)).
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Thus,

var [
δ1

Ḡ(T1)
T −l

1 K1] = ϕx(h)E [Ḡ−1(Y )Y −2l∣X = x] (K2(1) − ∫
1

0
(K2(s))

′
χx(u)du)

+o(ϕx(h)) +O (ϕ2
x(h)) .

Then, we obtain

var [g̃l(x)] =
E [Ḡ−1(Y )Y −2l∣X = x] (K2(1) − ∫

1

0 (K2(s))
′
χx(u)du)

nϕx(h) (K(1) − ∫
1

0 K
′(s)χx(s)ds)

2 + o(
1

nϕx(h)
) .

Concerning the covariance term, we follow the same steps as for the variance to get

Cov [g̃1(x), g̃2(x)] =
E [Ḡ−1(Y )Y −3∣X = x] (K2(1) − ∫

1

0 (K2(s))
′
χx(u)du)

nϕx(h) (K(1) − ∫
1

0 K
′(s)χx(s)ds)

2 +o(
1

nϕx(h)
) .

Hence,

var(
n

∑
i=1

Li(x)) = g2
2(x)σ

2(x) + o(1).

Therefore, to complete the proof of this Lemma, it is enough to show that the numerator
of (2.28) converges to 0. To do this, we use the Cr-inequality (cf. Loeve (1963), page
155) to show that:

n

∑
i=1

E [∣Li(x) −E [Li(x)]∣
2+κ

] ≤ c
n

∑
i=1

E [∣Li(x)∣
2+κ

] + c′
n

∑
i=1

∣E [Li(x)]∣
2+κ (2.29)

Recall that, for all j > 0, E[Kj
1] = O(ϕx(h)), and assumption (H5), we get:

n

∑
i=1

E [∣Li(x)∣
2+κ

] ≤ c (nϕx(h))
−κ/2

(E [K2+κ
1 ] /ϕx(h)) → 0.

Hence, the second term of (2.29) becomes

n

∑
i=1

∣E [Li(x)]∣
2+κ

≤ cn−κ/2 (ϕx(h))
1+κ/2

→ 0,

which completes the proof.

Proof of Lemma 2.3.5:
By standard arguments we show that:

E[r̃n(x)] =
E [g̃1(x)]

E [g̃2(x)]
+O (

1

nϕx(h)
) .
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So, it suffices to evaluate E[g̃1(x)] and E[g̃2(x)]. Indeed, by the same ideas as in the
proof of Lemma 2.3.2, we obtain

E [g̃l(x)] =
1

E [K1]
E [K1(x)E [Y −l

1 ∣X1]] for l ∈ {1,2}.

Now, for l = 1,2, we can write

E [Y −l
1 ∣X1] = gl(x)E [K1] +E [K1E [gl (X1) − gl(x)∣d (X1, x)]]

= gl(x)E [K1] +E [K1 (Ψl (d (X1, x)))] .

By the same arguments as those used by Ferraty et al. (2007) for the regression operator,
we show that

E [g̃l(x)] = gl(x) + hΨ′
l(0)

⎡
⎢
⎢
⎢
⎢
⎣

K(1) − ∫
1

0 (uK(u))′χx(u)du

K(1) − ∫
1

0 K
′(u)χx(u)du

⎤
⎥
⎥
⎥
⎥
⎦

+ o(h).

Then, we deduce that

An =
E [g̃1(x)]

E [g̃2(x)]
− r(x) = hBn + o(h).

Proof of Lemma 2.3.6:
For the first limit in the Lemmas 5 and 6’s results, we have

E [g̃2(x) − g2(x)] → 0,

and
var [g̃2(x)] → 0.

Hence,
g̃2(x) − g2(x) → 0, in probability.

Next, for the last needed convergence, we obtain by the same manner:

E
⎡
⎢
⎢
⎢
⎢
⎣

(
nϕx(h)

g1(x)2σ2(x)
)

1/2

An (g̃2(x) −E [g̃2(x)])

⎤
⎥
⎥
⎥
⎥
⎦

= 0
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and

var

⎡
⎢
⎢
⎢
⎢
⎣

(
nϕx(h)

g1(x)2σ2(x)
)

1/2

An (g̃2(x) −E [g̃2(x)])

⎤
⎥
⎥
⎥
⎥
⎦

= O(A2
n) = O(h2) → 0.

It follows that

(
nϕx(h)

g1(x)2σ2(x)
)

1/2

An (g̃2(x) −E [g̃2(x)]) → 0, in probability.
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Abstract : In this paper, we investigate the asymptotic properties of a nonparametric es-
timator of the relative error regression given a dependent functional explanatory variable,
in the case of a scalar censored response. We use the mean squared relative error as a
loss function to construct a nonparametric estimator of the regression operator of these
functional censored data. We establish the almost complete convergence (with rates) and
the asymptotic normality of the proposed estimator. A simulation study is performed to
lend further support to our theoretical results and to compare the quality of predictive
performances of the relative error regression estimator than those obtained with standard
kernel regression estimates.

Keywords : Kernel method, Nonparametric estimation, Functional data analysis, Al-
most complete convergence, Censored data, Small ball probability, α-mixing dependency,
Functional regression, Mean square relative error.

Mathematics Subject Classification: 62G05, 62G08, 62G20, 62G35, 62N01.

3.1 Introduction

Functional data analysis is a branch of statistics that has received an increasing inter-
est in the last few years from mathematical or applications points of view. This type of
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data appears in many practical situations such as continuous phenomena ( climatology,
economics, linguistics, medicine, and so on.). Since the work by Ramsay and Dalzell
(1991), many developments have been investigated, in order to build theory and meth-
ods around functional data. The monographs of Ramsay and Silverman (2005) provide
an overview of both the theoretical and practical aspects of functional data analysis and
Ferraty and Vieu (2006) for the nonparametric approaches. From a nonparametric point
of view, several models have been developed. For instance, Ferraty and Vieu (2004) es-
tablished the strong consistency of the regression function when the explanatory variable
is functional and the response is scalar, and their study extended to non-standard regres-
sion problems such as time series prediction and curves’ discrimination (see Ferraty et al.
(2002); Ferraty and Vieu (2003)), we can also cite (Attouch et al. (2009)) for the ro-
bust estimation. The asymptotic normality of the same estimator is established by Masry
(2005) under an α-mixing assumption. Dabo-Niang (2004) studied density estimation in
a Banach space with an application to the estimation density of a diffusion process with
respect to Wiener’s measure. The kernel type estimation of some characteristics of the
conditional cumulative distribution function as well as the successive derivatives of the
conditional density were introduced by Ferraty and Vieu (2006). The almost complete
convergence (a.co.) with rates for the kernel type estimates is established and illustrated
by an application to El Ninõ data.

In this paper, we consider the problem of estimating the regression function based on
the minimization of the mean squared relative error (MSRE). We consider a regression
model in which the response variable is subject to random right censoring dependent
data when the covariates takes values in an infinite dimensional semi-metric vector space
(F , d(., .)).

This problem can be formulated by considering that (Yi,Xi) i = 1 . . . n is a station-
ary α− mixing couples, where Yi is real-valued and Xi takes values in some functional
space F . Assume that E∣Yi∣ < ∞ and define the regression functional as

r(x) = E[Yi∣Xi = x], x ∈ F , ∀i ∈ N. (3.1)

The model (3.1), can be written as follows

Yi = r(Xi) + εi, i = 1⋯n,

where εi is a random variable, such that E[εi∣Xi] = 0 and E[ε2
i ∣Xi] = σ2

i (Xi) < +∞.
Unlike to the multivariate case, there exists various versions of the functional regres-

sion estimate. But, all these versions are based on two common procedures. The first
one is the functional operator which is supposed smooth enough to be locally well ap-
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proximated by a polynomial. The second one is the use of the following least square
error

r (x) = arg min
r∗

(E [(Y − r∗ (x))
2
∣X = x]) , (3.2)

as a loss function to determine the estimates of r(⋅).
In complete data, a typical kernel regression estimator based on (3.2) (see Ferraty et al.

(2007)), is given by

r̂ (x) =
∑
n
i=1 YiK (h−1d(x,Xi))

∑
n
i=1K (h−1d(x,Xi))

,

whereK is a kernel, (h = hn) is sequence of bandwidths. For an overview results for both
theoretical and application points of view considering independent or dependent case,
we refer the reader to the studies of Chahad et al. (2017), Attouch et al. (2017). Amiri
et al. (2014) studied the regression function of a real random variable with functional
explanatory variable by using a recursive nonparametric kernel approach.

In the presence of right random censoring, the problem has been studied by (Buckley
and James (1979)) using parametric methods. For nonparametric approaches, we refer
to Amiri and Khardani (2018), Stute (1993). Some asymptotic properties were estab-
lished with a particular application to the conditional mode and quantile by Chaouch and
Khardani (2015) and Khardani and Thiam (2016). Horrigue and Ould-Saïd (2014) studied
a regression quantile estimation for dependent functional data.

However, the use of previous loss function (3.2) as a measure of prediction perfor-
mance may be not suitable in some situation. In particular, the presence of outliers can
lead to unreasonable results since all variables have the same weight. Now, to overcome
this limitation we propose to estimate the function r by an alternative loss function. In
the relative regression analysis r (x) is obtained by minimizing the mean squared relative
error (MSRE) ie: r (x) is the solution of the optimisation problem:

r (x) = arg min
r∗

(E [(
Y − r∗ (X)

Y
)

2

∣X = x]) .

As mentioned in Jones et al. (2008) where outlier data are present and the response vari-
able of the model is positive, the MSRE is to be minimized. Moreover, the solution of
this problem can be expressed by the ratio of first two conditional inverse moments of Y
given X . As discussed by Park and Stefanski (1998), for Y > 0

r (⋅) =
E [Y −1∣X = ⋅]

E [Y −2∣X = ⋅]
∶=
g1(⋅)

g2(⋅)
, (3.3)

where gl(⋅) = E [Y −l∣X = ⋅], for l = 1,2, is the best MSRE predictor of Y given X = x.
The literature on the relative error regression in Nonparametric Functional Data Anal-
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ysis (NFDA) is still limited. The first consistent results were obtained in by Campbell and
Donner (1989), where relative regression was used as a classification tool. Jones et al.
(2008) studied the nonparametric prediction via relative error regression. They investi-
gated the asymptotic properties of an estimator minimizing the sum of the squared relative
errors by considering both (kernel method and local linear approach). Recently, Mechab
and Laksaci (2016) studied this regression model when the observations are weakly de-
pendent. For spatial data, Attouch et al. (2017) proved the almost complete consistency
and the asymptotic normality of this estimator. Fetitah et al. (2020) investigated the rela-
tive error in functional regression under random censorship in the independent case.

Note that, data are truncated when the data set does not include observations in the
analysis that are beyond a boundary value. Having a value beyond the boundary elim-
inates that individual from being in the analysis. In contrast, data are censored when
we have partial information about the value of a variable—we know it is beyond some
boundary, but not how far above or below it. Thus, the work that we discuss in this paper
is completely different from that studied in Altendji et al. (2018).

In this paper we define and study a new estimator of the relative-error regression
function when the interest random variable is subject to random right-censoring and the
explanatory variable is functional. Notice that the main feature of our approach is to
develop a prediction model alternative to the classical regression which is not sensitive to
the presence of the outliers.

The paper is organized as follows: in Section 3.2 we define our parameter of interest
and its corresponding estimators. In Section 3.3 we give some assumptions and state an
almost sure (a.c.) consistency and asymptotic normality for the proposed estimator. A
simulation study is performed in Section 3.4, whereas the technical details and the proofs
are deferred to Section 3.5.

3.2 Model

3.2.1 Construction of the estimator

To construct our estimator, let us recall that in the case of complete data, a well-
known estimator of the regression function is based on the Nadaraya-Watson weights.
Let {Zi = (Xi, Yi)1≤i≤n} be n pairs, identically distributed as Z = (X,Y ) and valued in
F ×R, where (F , d) is a semi-metric space (i.e. X is a functional random variable (f.r.v)
and d a semi-metric). Let x be a fixed element of F .

For the complete data, it is well known that the kernel estimator of (3.3), and is given
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by

r̂(x) =

n

∑
i=1

Y −1
i K (

d(x,Xi)

h
)

n

∑
i=1

Y −2
i K (

d(x,Xi)

h
)

∶=
ĝ1(x)

ĝ2(x)
, (3.4)

where ĝl(x) =
1

nE(K1)

n

∑
i=1

Y −l
i K (

d(x,Xi)

h
), for l = 1,2, with K is an asymmetrical

kernel and h = hn,K (depending on n) is a strictly positive real numbers and K1 =

K (
d(x,X1)

h ). It is a functional extension of the familiar Nadaraya-Watson estimate.
The main change comes from the semi-metric d which measures the proximity be-

tween functional objects. In the censoring case, instead of observing the lifetimes Y we
observe the censored lifetimes of items under study. That is, assuming that (Ci)1≤i≤n is
a sequence of i.i.d. censoring random variable (r.v.) with common unknown continuous
distribution function (df) G.

Then in the right censorship model, we only observe the n pairs (Ti, δi) with

Ti = Yi ∧Ci and δi = 1{Yi≤Ci},1 ≤ i ≤ n, (3.5)

where 1A denotes the indicator function of the set A.

In censorship model only the (Xi, Ti, δi)1≤i≤n are observed, we define r̃(x) as an esti-
mate of r(x) by

r̃(x) =

n

∑
i=1

δiT −1
i

Ḡ(Ti)
K (

d(x,Xi)

h
)

n

∑
i=1

δiT −2
i

Ḡ(Ti)
K (

d(x,Xi)

h
)

=∶
g̃1(x)

g̃2(x)
, (3.6)

where g̃l(x) =
1

nE(K1)

n

∑
i=1

δiT −l
i

Ḡ(Ti)
K (

d(x,Xi)

h
) for l = 1,2.

In practiceG is unknown, we use the Kaplan-Meier estimator Deheuvels and Einmahl
(2000) of Ḡ given by:

Ḡn(t) =

⎧⎪⎪
⎨
⎪⎪⎩

∏
n
i=1 (1 −

1−δ
(i)

n−i+1)
1
{T
(i)≤t} if t ≤ T(n)

0 otherwise,
(3.7)

where T(1) ≤ T(2) ≤ ... ≤ T(n) are the order statistics of (Ti)1≤i≤n and δ(i) is the concomitant
of T(i).
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Finally, the estimator of r(x) can be written as:

r̃n(x) =

n

∑
i=1

δiT −1
i

Ḡn(Ti)
K (

d(x,Xi)

h
)

n

∑
i=1

δiT −2
i

Ḡn(Ti)
K (

d(x,Xi)

h
)

∶=
g̃1,n(x)

g̃2,n(x)
, (3.8)

where g̃l,n(x) =
1

nE(K1)

n

∑
i=1

δiT −l
i

Ḡn(Ti)
K (

d(x,Xi)

h
) for l = 1,2.

Remark 3.2.1. In (3.6) and (3.8) the sums are taken for the subscripts i for which

Ḡn(Ti) ≠ 0 and Ḡ(Ti) ≠ 0. The same convention is followed in the forthcoming formulae.

Note that under the assumptions on the model, the sets {i, Ḡ(Yi) = 0} and {i, Ḡn(Yi) = 0}

are P-negligible.

3.3 Assumptions and main results

In what follows, we define the endpoints of F and G by τF = sup{t ∶ F̄ (t) > 0}, and
τG = sup{t ∶ Ḡ(t) > 0} where F̄ (⋅) = 1−F (⋅) and Ḡ(⋅) = 1−G(⋅).We assume that τF < ∞

and Ḡ(τF ) > 0, (this implies τF < τG).
Throughout this paper, x is a fixed element of the functional space F . To formulate

our assumptions, some notations are required. and we denote by Nx a neighborhood of
the point x. Hereafter, when no confusion is possible, we will denote by c and c′ some
strictly positive generic constants.

LetB(x,h) be the closed ball centered at xwith radius h, and consider the cumulative
distribution function (CFD) of d(x,X) defined by

ϕx(h) = P(X ∈ B(x,h)) = P(d(x,X) ≤ h),

h being positive and satisfies ϕx(0) = 0 and ϕx(h) → 0 when h → 0. Let us consider the
following definition.

Definition 3.3.1. Let (Zn)n∈N be a sequence of rv’s. Given a positive integer n, set

α(n) = sup
k

{∣P(A ∩B) − P(A)P(B)∣,A ∈ Fk1 (Z) and B ∈ F∞
k+n(Z)} ,

where Fki (Z) denotes the σ−field generated by {Zj, i ≤ j ≤ k}.

The sequence is said to be α−mixing if the mixing coefficient α(n) → 0 when n→∞.
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3.3.1 Asymptotic consistency

Our main first result is the pointwise almost sure convergence. In order to state this
result, we will need some assumptions which are gathered together in order to make our
results reading easier.

In what follows, we will assume that the following assumptions hold:

(H1) P (X ∈ B(x,h)) =∶ ϕx(h) > 0 for all h > 0.

(H2) For all (x1, x2) ∈ N
2
x , we have

∣gl(x1) − gl(x2)∣ ≤ Cd
kl(x1, x2) for an integer kl > 0.

(H3) The kernel K is a bounded and Lipschitzian function on its support (0,1) and sat-
isfying:

0 < c ≤K(.) ≤ c′ < +∞.

(H4) The bandwidth h satisfies:h→ 0,
logn

nϕx(h)
→ 0 as n→∞.

(H5) The inverse moments of the response variable verify:

for all m ≥ 2, E[Y −m∣X = x] < c < ∞.

(H6) (i) (Xn, Yn)n≥1 is a sequence of stationary α−mixing rv’s with coefficient α(n) =
O(n−a), for some a ∈ R∗

+.

(ii) (Cn)n≥1 and (Xn, Yn)n≥1 are independent.

(H7)
∀i ≠ j,E[Y −1

i Y −2
j ∣(Xi,Xj)] ≤ c < ∞,

and

0 < sup
i≠j

⎧⎪⎪
⎨
⎪⎪⎩

P ((Xi,Xj) ∈ B(x,h) ×B(x,h))

⎫⎪⎪
⎬
⎪⎪⎭

= O
⎛

⎝

(ϕx(h))
(a+1)/a

n1/a
⎞

⎠
.

(H8) There exists η > 0, such that, cn
3−a
a+1

+η ≤ ϕx(h) ≤ c
′n

1
1−a , with a > 2.

We are in state to give our main result.

Theorem 3.3.1. Under Assumptions (H1)-(H8), we have

∣r̃n(x) − r(x)∣ = O (hk1) +O (hk2) +Oa.s.

⎛

⎝

√
logn

nϕx(h)

⎞

⎠
. (3.9)
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Proofs of Theorem 3.3.1: From (3.8), we have:

∣r̃n(x) − r(x)∣ ≤
1

∣g̃2,n(x)∣

⎧⎪⎪
⎨
⎪⎪⎩

∣g̃1,n(x) − g̃1(x)∣ + ∣g̃1(x) −E(g̃1(x))∣

+ ∣E(g̃1(x)) − g1(x)∣

⎫⎪⎪
⎬
⎪⎪⎭

+
∣r(x)∣

∣g̃2,n(x)∣

⎧⎪⎪
⎨
⎪⎪⎩

∣g̃2,n(x) − g̃2(x)∣

+ ∣g̃2(x) −E(g̃2(x))∣ + ∣E(g̃2(x)) − g2(x)∣

⎫⎪⎪
⎬
⎪⎪⎭

.

Therefore, Theorem 3.3.1’s result is a consequence of the following intermediate re-
sults, where their proofs are postponed to the appendix.

Lemma 3.3.1. Under hypotheses (H2)-(H5), we have

∣g̃l,n(x) − g̃l(x)∣ = Oa.s.

⎛

⎝

√
log logn

n

⎞

⎠
, (3.10)

for l ∈ {1,2}.

Lemma 3.3.2. Under hypotheses (H1)-(H3) and (H5), we have

∣E(g̃l(x)) − gl(x)∣ = O (hkl) , (3.11)

for l ∈ {1,2}.

Lemma 3.3.3. Under hypotheses (H1)-(H4) and (H6)-(H8), we have

∣g̃l(x) −E(g̃l(x))∣ = Oa.co.

⎛

⎝

√
logn

nϕx(h)

⎞

⎠
, (3.12)

for l ∈ {1,2}.

Corollary 3.3.1. Under the hypotheses of lemma 3.3.2 and 3.3.3, we obtain:

there exists δ > 0; such that
∞
∑
n=1

P
⎛

⎝
∣g̃2,n(x)∣ < δ

⎞

⎠
< ∞. (3.13)

3.3.2 Asymptotic normality

This section is devoted to the study of the asymptotic normality of r̃n(x). To do that,
we replace assumptions (H1), (H3) and (H4) respectively by the following assumptions:
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(N1) The concentration property (H1) holds. Moreover, There exists a function χx(.),
such that:

for all s ∈ [0,1], lim
r→0

ϕx(sr)

ϕx(r)
= χx(s).

(N2) For γ ∈ {1,2}, the functions Ψγ(.) = E [gγ(X) − gγ(x)∣d(x,X) = .] are derivable
at 0.

(N3) The kernel function K satisfies (H3) and is a differentiable function on ]0,1[ where
its first derivative function K ′ is such that; −∞ < c <K ′(.) < c′ < 0.

(N4) The small ball probability satisfies, nϕx(h) Ð→∞.

(N5) For m ∈ {1,2,3,4}, the functions qm(⋅) = E [Ḡ(Y )−1Y −m∣X = ⋅] are continuous in
a neighborhood of x.

Remarks on the assumptions

Assumption (H1) is the same as that used by Ferraty and Vieu (2006) which is linked
to the functional structure of the functional covariates. Assumptions (H2), (H3) and (H7)
deal with the functional aspect of the covariates and the associated small ball probability
techniques used in this paper. Assumptions (H6) and (H8) specify the model and the
rate of mixing coefficient. Condition (N5) stands as regularity condition that is useful to
establish the asymptotic properties of the estimators. Assumptions (H3), (H4), (N3) and
(N4) concern the kernelK(⋅) and the smoothing parameter h and are technical conditions.

The fractal or geometric process is a family of infinite dimensional processes for
which the small balls have the property

ϕx(t) = P (∥x −X∥ < t) ∼ cxt
γ,

where cx and γ are positive constants. In this case, setting hn = An−a with 0 < a < 1 and
0 < A implies ϕx(h) = cxAn−γa . Thus, (H1), (H4) and (H8) hold when γ < 1/a.

Theorem 3.3.2. Under Assumptions (H6)-(H8)and (N1)-(N4), we have

(
nϕx(h)

σ2(x)
)

1/2
⎛

⎝
r̃n(x) − r(x) − hBn(x) − o(h)

⎞

⎠

D
→ N(0,1) as n→∞. (3.14)

where
D
→ denotes convergence in distribution, and

Bn(x) =

⎛

⎝
Ψ′

1(0) − r(x)Ψ
′
2(0)

⎞

⎠
β0

β1g2(x)
, (3.15)
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σ2(x) =

⎛

⎝
q2(x) − 2r(x)q3(x) + r2(x)q4(x)

⎞

⎠
β2

β2
1

, (3.16)

with

β0 =K(1) − ∫
1

0
(sK(s))′χx(s)ds and βj =K

j(1) − ∫
1

0
(Kj)

′
(s)χx(s)ds,≠ 0

for j = 1,2.

Remark 3.3.1. (Comeback to complete data). In absence of censoring, (Ḡ(⋅) = 1), the

asymptotic variance becomes

σ2(x) =

⎛

⎝
a2(x) − 2r(x)a3(x) + r2(x)a4(x)

⎞

⎠
β2

β2
1

,

where

aj(⋅) = E [Y −j ∣X = ⋅] ,

corresponding to the result obtained in Demongeot et al. (2016).

Proofs of Theorem 3.3.2.
From (3.8), we adopt the following decomposition:

r̃n(x) − r(x) = r̃n(x) − r̃(x) + r̃(x) − r(x) =∶ I1n(x) + I2n(x),

where

I1n(x) =∶ r̃n (x) − r̃(x) and I2n(x) =∶ r̃(x) − r(x).

The proof can be deduced by showing that I1n(x) is negligible, whereas I2n(x) is asymp-
totically normal. From Lemma 3.3.1 and Corollary 3.3.1, we deduce that

I1n(x) → 0, in probability. (3.17)

Now, we can write that

I2n(x) =
1

g̃2(x)

⎡
⎢
⎢
⎢
⎢
⎣

Dn +An
⎛

⎝
E [g̃2(x)] − g̃2(x)

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

+An, (3.18)
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where

An =
1

E [g̃2(x)] g2(x)

⎧⎪⎪
⎨
⎪⎪⎩

E [g̃1(x)] g2(x) −E [g̃2(x)] g1(x)

⎫⎪⎪
⎬
⎪⎪⎭

Dn =
1

g2(x)

⎡
⎢
⎢
⎢
⎢
⎣

V1n (x) g2(x) − V2n (x) g1(x)

⎤
⎥
⎥
⎥
⎥
⎦

,

whit

Vln (x) = g̃l(x) −E [g̃l(x)] , for l = 1,2.

Then, it follows from (3.18), that

r̃(x) − r(x) −An =
1

g̃2(x)

⎡
⎢
⎢
⎢
⎢
⎣

Dn +An
⎛

⎝
E [g̃2(x)] − g̃2(x)

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= ∶
Dn −AnV2n(x)

g̃2(x)
,

where

Vln (x) = g̃l,n(x) −E [g̃l,n(x)] , for l = 1,2.

Consequently, the proof of Theorem 3.3.2 can be deduced from the convergence in (3.17),
and the following intermediate results (cf. Lemmas 3.3.4, 3.3.5 and 3.3.6), which the
proves are postponed into the Appendix.

Lemma 3.3.4. Under hypotheses of Theorem 3.3.2, we have

(
nϕx(h)

g2
2(x)σ

2(x)
)

1/2
⎛

⎝

⎡
⎢
⎢
⎢
⎢
⎣

g̃1(x) −E [g̃1(x)]

⎤
⎥
⎥
⎥
⎥
⎦

g2(x) −

⎡
⎢
⎢
⎢
⎢
⎣

g̃2(x) −E [g̃2(x)]

⎤
⎥
⎥
⎥
⎥
⎦

g1(x)
⎞

⎠

D
→ N(0,1).

Lemma 3.3.5. Under assumptions of Theorem 3.3.2, we obtain

An = hBn + o(h).

Lemma 3.3.6. Under assumptions of Theorem 3.3.2, we get

g̃2(x) → g2(x), in probability,

and

(
nϕx(h)

g2
2(x)σ

2(x)
)

1/2

An (E[g̃2(x)] − g̃2(x)) → 0, in probability.
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3.4 Simulation study

In this section, we treat a simulation example to show the behaviour of our estimator
r̃n(x), and compare the obtained result in presence of outliers to the classical regression
defined as the conditional expectation m(x) = E[Y ∣X = x], estimated by

m̂(x) =

n

∑
i=1

δiTi
Ḡn(Ti)

K (h−1
n d (x,Xi))

n

∑
i=1

K (h−1
n d (x,Xi))

,

and the relative error estimator r̃n(x) previously defined in the equation 3.8.
To do this, we consider the classical nonparametric functional regression model

Y = r(X) + ε,

where the operator r is defined by

r(X) =
10

1 + ∫
1

0 X
2(t)dt

. (3.19)

We consider two diffusion processes on the interval [0,1], Z1(t) = 2 − cos(πtW ) and
Z2(t) = cos(πtW ), (W → N(0,1)) and we take X(t) = AZ1(t) + (1 −A)Z2(t), where
A is a Bernoulli distributed random variable.

We carried out the simulation with 200-sample of the curve X , and ε is an α-mixing
process generated by the following model

εi =
1

√
2
(εi−1 + ηi) , i = 1, . . . ,200,

ηi being centered Gaussian rv’s with variance 0.5, and is independent of ηi. We also,
simulate n i.i.d. rv’s Ci, i = 1, ..., n with law E(λ) (that is exponentially distributed with
density λe−λx1x≥0).

Simulated data from our model are plotted in Figure3.1. To compute our estimator
based on the observed data (Xi, Ti, δi), i = 1, ..., n, where Ti = Yi ∧Ci and δi = 1{Yi≤Ci}.
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Figure 3.1: The curves Xi=1,...,100(t), t ∈ [0,1[.

We choose the quadratic kernel defined by

K(x) =
3

2
(1 − x2)1(0,1).

In practice, the semi-metric choice is based on the regularity of the curvesX(.) which are
under study. In our case, we take the semi-metric based on the second derivatives of the
curves x. More precisely, we take

d(x,x′) = (∫

1

0
(x(i)(t) − x′(i)(t))2dt)

1/2
,

where x(i) denotes the i−th derivative of the curve x.
For the bandwidth, we choose the automatic selection with a cross validation proce-

dure introduced by (Ferraty and Vieu (2006), Chapter 13 ).
We split the data generated from the model above into two subsets: a training sam-

ple (Xi, Ti, δi), i = 1, ...,150 and a test sample (Xj, Tj, δj), j = 151, ...,200. Then, we
calculate the estimator θ̂(Xj) for any j ∈ {151, ...,200}.

The performance of both estimators is described by the mean squared prediction error:

MSE =
1

50

200

∑
j=151

(Yj − r̃(Xj))
2,

where r̃(Xj) means the estimator of both regression models. We note that the result of
our simulation study is evaluated over 100 independent replications.

The obtained results are shown in Figure 3.2 with the censorship rate CR = 20.67%

it is clear that there is no meaningful difference between the two estimation methods:
the Classical Kernel Estimator and the Relative Error Estimator (MSECKE = 0.2209,
MSEREE = 0.1579)
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Figure 3.2: Comparison between the Classical Kernel Estimator (CKE) and the Relative
Error Estimator (REE).

The second illustration is given in the following table where we observe that in the
presence of outliers (0, 10, 20) with different values of censorship rate (CR = 3%,30%,60%),
the Relative Error regression gives better results than the classical method, in sense that,
even if the MSE value of the both methods increases substantially relatively to the num-
ber of the perturbed points and censorship rate, but it remains very low for the Relative
Error one.

Table 3.1: MSE for the Classical Kernel Estimator (CKE) and the Relative Error Estimator
(REE) according to numbers of introduced artificial outliers and different censorship rate.

number of artificial outliers → 0 10 20
censorship rate CR

↓
3% 0.0921 2856.646 6499.6945

Classical Kernel Estimator 30% 0.8766 14126.2706 19358.5386
MSECKE 60% 2.8038 32182.8188 56681.7038

3% 0.0551 0.0579 0.0665
Relative Error Estimator 30% 0.0949 0.1048 0.1258

MSEREE 60% 0.1455 0.1903 0.2712

Confidence Interval:
Our main application of Theorem 3.3.2 is to build confidence interval for the true value
of r(x) given curve X = x. A plug-in estimate for the asymptotic standard deviation
(nϕx(h)/σ2(x))

1/2 and the bias term hBn(x) + o(h). Precisely, we estimate qm(x) by

q̃m(x) =
∑
n
i=1KiδiḠ−2

n (Ti)T −m
i

∑
n
i=1Ki

.
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Whereas we estimate empirically β1 and β2 by

β̂1 =
1

nϕx(h)

n

∑
i=1

Ki, and β̂2 =
1

nϕx(h)

n

∑
i=1

K2
i .

Finally, the practical estimator of the normalised deviation is

σ̃n(x) = (
(∑

n
i=1K

2
i ) (q̃2(x) − 2r̃(x)q̃3(x) + r̃2(x)q̃4(x))

(∑
n
i=1Ki)

2
q̃2

2(x)
)

1/2

.

We point out that the function ϕx(.) do not intervene in the calculation of the confidence
interval by simplification. Finally, the approximate 1 − ζ/2 confidence interval for r(x),
for any x ∈ F , is

[r̃n(x) − t1−ζ/2σ̃n(x) , r̃n(x) + t1−ζ/2σ̃n(x)] ,

where t1−ζ/2 denotes the 1 − ζ/2 quantile of the standard normal distribution.
In order to compare our confidence interval with that of the classical regression, we

will generalize the Corollary 1 in Ferraty et al. (2007), for the censored case, we get

√
nϕx(h)

β1

σε(x)
√
β2

(m̂(x) −m(x)) → N(0,1),

where σ2
ε(x) = E [(Y −m(x))2∣X = x] and β1, β2 are define previously.

With simple calculus, we can estimate σ2
ε(x) by:

σ̂2
ε(x) = ρ̂2(x) − 2m̂(x)ρ̂1(x) + m̂

2(x),

where

ρ̂m(x) =
∑
n
i=1KiδiḠ−1

n (Ti)Tmi
∑
n
i=1Ki

for all m ∈ {1,2}.

Finally, the approximate 1 − ζ/2 confidence interval for m(x) (the classical regression),
for any x ∈ F , is

⎡
⎢
⎢
⎢
⎢
⎣

m̂(x) − t1−ζ/2

√
β̂2σ̂ε(x)

β̂1

, m̂(x) + t1−ζ/2

√
β̂2σ̂ε(x)

β̂1

⎤
⎥
⎥
⎥
⎥
⎦

.

In order to construct confidence bands (for both CKE and REE), we proceed by the fol-
lowing algorithm:

Step 1 We split our data into randomly chosen subsets:(Xi, Yi)i∈I : training sample and
(Xj, Yj)j∈J : test sample.

Step 2 We calculate the estimator r̃n(Xi) for all i ∈ I by using the training sample.
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Step 3 For each Xj in the test sample, we set: i∗ ∶= arg mini∈I d(Xj,Xi).

Step 4 For all, j ∈ J , we define the confidence bands by

[r̃n(Xi∗) − t0.975σ̃n(Xi∗) , r̃n(Xi∗) + t0.975σ̃n(Xi∗)] ,

where t0.975 is the 2.5% quantile of a standard normal distribution.

Step 5 We present our results by plotting the extremities of the predicted values versus
the true values and the confidence bands.

Figures (3.3) and (3.4) shows clearly a good behaviour of our estimator compared to the
classical regression, with censorship rate (CR = 30%), without and in the presence of
outliers.
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Figure 3.3: Extremities of the predicted values versus the true values and the confidence
bands (simulation data without outliers). The solid black curve connects the true values.
The dashed Blue curves connect the lower and upper predicted values. The solid Red
curve connects the crossed points which give the predicted values.
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Figure 3.4: Extremities of the predicted values versus the true values and the confidence
bands (simulation data in the presence of 10 outliers). The solid black curve connects the
true values. The dashed Blue curves connect the lower and upper predicted values. The
solid Red curve connects the crossed points which give the predicted values.
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3.5 Appendix

We recall the exponential type inequality used above in the proof of the Theorem
3.3.1.

Lemma 3.5.1. [Fuk-Nagaev](see Rio (1999), p. 87, 6.19b). Let {Ui, i ∈ N} be a sequence

of centered real rv’s, with strong mixing coefficient α(n) = O(n−ν), ν > 1, such that

∀n ∈ N,1 ≤ i ≤ n ∣Ui∣ < +∞. Then for each r > 1:

P{∣
n

∑
i=1

Ui∣ > ε} ≤ c(1 +
ε2

16rS2
n

)

−r/2

+ ncr−1 (
2r

ε
)
ν+1

,

where S2
n = ∑1≤i,j≤n ∣cov(Ui, Uj)∣.

Let denote by, Ki(x) =K (
d(x,Xi)

h ) .

Proof of Lemma 3.3.1:
For all l = 1,2. we have:

∣g̃l,n(x) − g̃l(x)∣ ≤
1

E(K1(x))

n

∑
i=1

∣
δiT −l

i

Ḡn(Ti)
Ki(x) −

δiT −l
i

Ḡ(Ti)
Ki(x)∣

≤

sup
t∈R

∣Ḡn(t) − Ḡ(t)∣

Ḡn(τF )Ḡ(τF )

∑
n
i=1 ∣Y

−l
i Ki(x)∣

nE(K1(x))
.

Since Ḡ(τF ) > 0, in conjunction withe SLLN1 and the LIL2 on the censoring law (see
formula (4.28) in Deheuvels and Einmahl (2000)), we have

∣g̃l,n(x) − g̃l(x)∣ ≤
E∣Y −l

1 K1(x)∣

E(K1(x))

1

Ḡ2(τH)

√
log logn

n

(H5) concludes the proof.
Proof of Lemma 3.3.2:

For all l = 1,2, we have

∣E(g̃l(x)) − gl(x)∣ = ∣E(
K1(x)

E(K1(x))
E [

E(1Y1≤C1 ∣Y1)Y −l
1

Ḡ(Y1)
∣X1]) − gl(x)∣

=
1

E(K1(x))

RRRRRRRRRRR

E
⎧⎪⎪
⎨
⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎣

E(Y −l
1 ∣X1) − gl(x)

⎤
⎥
⎥
⎥
⎥
⎦

1B(x,h)(X1)K1(x)

⎫⎪⎪
⎬
⎪⎪⎭

RRRRRRRRRRR

.

1Strong law of large numbers
2Law of the iterated logarithm
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Then, by the Hölder hypothesis (H2), we get

∣gl(X1) − gl(x)∣ ≤ ch
kl .

Thus,
∣E(g̃l(x)) − gl(x)∣ ≤ ch

kl .

Proof of Lemma 3.3.3:
For l = 1,2, we note

∆i(x) =
δiT −l

i

Ḡ(Ti)
K (

d (x,Xi)

h
) −E [

δiT −l
i

Ḡ(Ti)
K (

d (x,Xi)

h
)] .

The use of the Fuk-Nagaev’s inequality (see lemma (3.5.1)) which is based on

S2
n =

n

∑
i=1

n

∑
j=1

∣Cov (∆i(x),∆j(x))∣

= ∑
i≠j

∣Cov (∆i(x),∆j(x))∣ + nvar (∆1(x)) .

By using (H5), we get

var (∆1(x)) ≤ E [
δ1Y −2l

1

Ḡ2(Y1)
K2

1(x)] +E2 [
δ1Y −l

1

Ḡ(Y1)
K1(x)]

≤
c

Ḡ(τH)
E [K2

1(x)] + cϕ
2
x(h)

≤ c (ϕx(h) + ϕ
2
x(h)) .

On the other hand, for i ≠ j, we have

∣Cov (∆i(x),∆j(x))∣ = ∣E (∆i(x)∆j(x))∣

≤ c ∣E (Ki(x)Kj(x)) +E (Ki(x))E (Kj(x))∣ .

Now, following Masry (1986), we define the sets

E1 = {(i, j) such that 1 ≤ ∣i − j∣ ≤ νn} and E2 = {(i, j) such that νn + 1 ≤ ∣i − j∣ ≤ n},

where νn →∞ as n→∞, we can write

∑
i≠j

∣Cov (∆i(x),∆j(x))∣ = J1,n + J2,n,
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where J1,n and J2,n be the sums of the covariances over E1 and E2 respectively.
Therefore, under (H7), we get

J1,n = ∑
E1

∣Cov (∆i(x),∆j(x))∣ ≤ c∑
E1

∣E (Ki(x)Kj(x)) +E (K1(x))
2
∣

≤ c∑
E1

∣P ((Xi,Xj) ∈ B(x,h) ×B(x,h)) + ϕx(h)
2∣

≤ cnνnϕx(h)

⎡
⎢
⎢
⎢
⎢
⎣

(
ϕx(h)

n
)

1
a

+ ϕx(h)

⎤
⎥
⎥
⎥
⎥
⎦

.

For the second term, we use the modified Davydov covariance inequality for mixing pro-
cesses (see Rio (1999), Formula 1.12a, p.10), we have

∀i ≠ j, ∣Cov (∆i(x),∆j(x))∣ ≤ cα(∣i − j∣).

Then, we get by (H6)

J2,n ≤ ∑
E2

∣Cov (Ki(x),Kj(x))∣ ≤ n
2ν−an .

So, for νn = (
ϕx(h)

n
)

−1/a
, we will have

∑
i≠j

∣Cov (∆i(x),∆j(x))∣ = O(nϕx(h)). (3.20)

Finally, combining previous result

S2
n = O(nϕx(h)). (3.21)

Using Fuk-Nagaev’s inequality (see Rio (1999), Formula 6.19b, p.87), we get for all
l = 1,2, ε > 0 and r > 1

P
⎡
⎢
⎢
⎢
⎢
⎣

RRRRRRRRRRR

E[g̃l(x)] − g̃l(x)
RRRRRRRRRRR

> ε

⎤
⎥
⎥
⎥
⎥
⎦

= P [∣
1

nE(K1(x))

n

∑
i=1

∆i(x)∣ > ε]

= P [∣
n

∑
i=1

∆i(x)∣ > εnE(K1(x))]

≤ c

⎧⎪⎪
⎨
⎪⎪⎩

(1 +
ε2n2E(K1(x))2

rS2
n

)

−r/2

+ nr−1 (
r

εnE(K1(x))
)

a+1⎫⎪⎪
⎬
⎪⎪⎭

≤ c(A1 +A2),
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where

A1 = (1 +
ε2n2 (E [K1(x)])

2

rS2
n

)

−r/2

and A2 = nr
−1 (

r

εnE [K1(x)]
)

a+1

.

Therefore, by (3.21) and putting

ε = ε0

√
logn

nϕx(h)
and r = (logn)2.

It follow that
A2 ≤ cn

1−(a+1)/2ϕx(h)
−(a+1)/2(logn)(3a−1)/2.

Next, using the left side of (H8), we obtain

A2 ≤ cn
−1−η(a+1)/2(logn)(3a−1)/2.

So, it exists some real ν > 0, such that

A2 ≤ cn
−1−ν . (3.22)

Because of r = (logn)2, we show that

A1 ≤ (1 +
ε2

0

logn
)

− (logn)
2

2

= exp(−
(logn)2

2
log(1 +

ε2
0

logn
)) .

Using the fact that, log(1 + x) = x − x2/2 + o(x2) when x→ 0, we get

A1 ≤ e
− ε

2
0 logn

2 = n−
ε20
2 .

The last result allows us to get directly that, there exist some ε0 and some ν′, such that

A1 ≤ cn
−1−ν′ . (3.23)

Finally, by the results (3.23) and (3.22), we can deduce that

∑
n≥1

P
⎡
⎢
⎢
⎢
⎢
⎣

RRRRRRRRRRR

E[g̃l(x)] − g̃l(x)
RRRRRRRRRRR

> ε0

√
logn

nϕx(h)

⎤
⎥
⎥
⎥
⎥
⎦

< ∞.

Proof of Corollary 3.3.1:
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It is easy to remark that:

∣g̃2,n(x)∣ ≤
g2(x)

2
,

which implies that

∣g2(x) − g̃2,n(x)∣ ≥
g2(x)

2
.

We deduce, from Lemmas 3.3.2 and 3.3.3, that

P(∣g̃2,n(x)∣ ≤
g2(x)

2
) ≤ P(∣g2(x) − g̃2,n(x)∣ >

g2(x)

2
)

Consequently:
∞
∑
n=1

P(∣g̃2,n(x)∣ <
g2(x)

2
) < ∞.

Proof of Lemma 3.3.4:
It is easy to see that

√
nϕx(h)

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
g̃2(x) −E [g̃2(x)]

⎞

⎠
g1(x) −

⎛

⎝
g̃1(x) −E [g̃1(x)]

⎞

⎠
g2(x)

⎤
⎥
⎥
⎥
⎥
⎦

=
1

√
n

n

∑
i=1

Li(x),

where

Li(x) ∶=

√
ϕx(h)

E [K1]
{

δi
Ḡ (Ti)

Ki (g1(x)T
−2
i − g2(x)T

−1
i ) −E [

δi
Ḡ (Ti)

Ki (g1(x)T
−2
i − g2(x)T

−1
i )]} .

(3.24)
The proof of this Lemma is based on the central limit theorem of Doukhan et al. (1994).
We have then to consider the asymptotic behavior of the variance term, and the following
assumption

∫

1

0
α−1(u) (QL1(u))

2
du < +∞, (3.25)

where QL1 is the "upper tail" quantile function defined by

QL1(u) = inf {t ≥ 0 ∶ P (L1 > t) ≤ u} ,

and α−1(u) = ∑n∈N 1u<αn .
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Clearly,

Var(
1

√
n

n

∑
i=1

Li(x)) = nϕx(h)Var(
g1(x)

nE [K1]

n

∑
i=1

δi
Ḡ (Ti)

KiT
−2
i −

g2(x)

nE [K1]

n

∑
i=1

δi
Ḡ (Ti)

KiT
−1
i )

= nϕx(h)
⎛

⎝
Var [g̃1(x)] g

2
2(x) +Var [g̃2(x)] g

2
1(x)

− 2g1(x)g2(x)Cov [g̃1(x), g̃2(x)]
⎞

⎠
.

By definition of, g̃l(x) for l = 1; 2, we have

nϕx(h)Var [g̃l(x)] =
ϕx(h)

(E [K1])
2 Var [

δ1

Ḡ (T1)
K1T

−l
1 ]

+
ϕx(h)

n (E [K1])
2

n

∑
i=1

n

∑
j=1
∣i−j∣>0

Cov [
δi

Ḡ (Ti)
KiT

−l
i ,

δj

Ḡ (Tj)
KjT

−l
j ]

=
ϕx(h)

(E [K1])
2J1,1 +

ϕx(h)

n (E [K1])
2J2,n,

where

J1,1 = Var [
δ1

Ḡ (T1)
K1T

−l
1 ] ,

J2,n =
n

∑
i=1

n

∑
j=1
∣i−j∣>0

Cov [
δi

Ḡ (Ti)
KiT

−l
i ,

δj

Ḡ (Tj)
KjT

−l
j ] .

By conditioning on the random variable X , by the same ideas in the proof of Lemma
3.3.2, and by using assumptions (H5),(N1) and (N5), we get

E
⎛

⎝
(

δ1

Ḡ(Y1)
)

2

Y −2l
1 K2

1

⎞

⎠
= ϕx(h)E [Ḡ−1(Y1)Y

−2l
1 ∣X = x] (K2(1) − ∫

1

0
(K2(s))

′
χx(u)du)

+o(ϕx(h)),

and

E(
δ1

Ḡ(Y1)
Y −l

1 K1) = O(ϕx(h)).

Thus,

Var [
δ1

Ḡ(T1)
T −l

1 K1] = ϕx(h)E [Ḡ−1(Y )Y −2l∣X = x] (K2(1) − ∫
1

0
(K2(s))

′
χx(u)du)

+O (ϕ2
x(h)) .
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We obtain
ϕx(h)

(E [K1])
2J1,1 →

q2l(x)β2

β2
1

. (3.26)

Let us turn to J2,n, for this we use the same technic used in Masry (1986). We define the
same sets, E1 and E2, used in the proof of Lemma 3.3.3. Let J1

2,n and J2
2,n, be the sums

of covariances over E1 and E2 respectively. On the one hand, we have

J1
2,n = ∑

E1

∣Cov [
δi

Ḡ (Ti)
KiT

−l
i ,

δj

Ḡ (Tj)
KjT

−l
j ]∣ ≤ c∑

E1

∣E [KiKj] −E [Ki]E [Kj]∣ .

Because of the assumptions of Lemma 3.3.3, we can write

J1
2,n ≤ cnνnϕx(h)

⎛

⎝
(
ϕx(h)

n
)

1
a

+ ϕx(h)
⎞

⎠
.

On the other hand, for the summation over E2, we use Davydov-Rio’s inequality (Rio
(1999), p.87) for mixing processes. This leads, for all i ≠ j, to

∣Cov (Ki,Kj)∣ ≤ cα(∣i − j∣).

Therefore,

∑
E2

∣Cov (Ki,Kj)∣ ≤ n
2ν−an .

The choice νn =
1

ϕx(h) log(n)
, motivated by the upper bound in (H8), permits to get

n

∑
i≠j

Cov (Ki,Kj) = o (nϕx(h)) ,

then
ϕx(h)

n (E [K1])
2J2,n = o(1) as nÐ→∞. (3.27)

Thanks to (3.26) and (3.27), we have

nϕx(h)Var (g̃l(x)) Ð→
nÐ→∞

β2q2l(x)

β2
1

. (3.28)

Concerning the covariance term, we follow the same steps as for the variance (3.28), then
we get

nϕx(h)Cov (g̃1(x), g̃2(x)) Ð→
nÐ→∞

β2q3(x)

β2
1

. (3.29)
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Let us now prove the claimed result. Clearly, the function QL1 is nonincreasing, then

∞
∑
n=1
∫

αn

0
[QL1(u)]

2
du ≤

∞
∑
n=1

αnQ
2
L1

(0).

By Hypotheses (H1), (H3) and (H5), we can write

c
1

√
ϕx(h)

≤ ∣L1∣ ≤ c
′ 1
√
ϕx(h)

,

then
QL1(0) ≤ c

′ 1
√
ϕx(h)

.

Therefore, we have

∞
∑
i=1
∫

αn

0
[QL1(u)]

2
du ≤

∞
∑
n=1

αn (ϕx(h))
−1
.

It follows from (H7) and (H8), that

∞
∑
i=1
∫

αn

0
[QL1(u)]

2
du < ∞. (3.30)

From (3.28), (3.29) and by noting σ2(x) =

⎛

⎝
q2(x) − 2r(x)q3(x) + r2(x)q4(x)

⎞

⎠
β2

β2
1

, we

conclude that:

Var(
1

√
n

n

∑
i=1

Li(x))
n→∞
→ σ2(x). (3.31)

Now, the Lemma can be easily deduced from (3.30), (3.31) and the central limit theorem
of Doukhan et al. (1994):

1
√
ng2

2σ
2(x)

n

∑
i=1

Li(x) =

(
nϕx(h)

g2
2(x)σ

2(x)
)

1/2
⎛

⎝

⎡
⎢
⎢
⎢
⎢
⎣

g̃1(x) −E [g̃1(x)]

⎤
⎥
⎥
⎥
⎥
⎦

g2(x) −

⎡
⎢
⎢
⎢
⎢
⎣

g̃2(x) −E [g̃2(x)]

⎤
⎥
⎥
⎥
⎥
⎦

g1(x)
⎞

⎠

D
→ N(0,1).

Proof of Lemma 3.3.5:
As in Ferraty et al. (2007), we show that

E[r̃n(x)] =
E [g̃1(x)]

E [g̃2(x)]
+O (

1

nϕx(h)
) .
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So, it suffices to evaluate E[g̃l(x)] for l ∈ {1,2}, we obtain

E [g̃1(x)] =
1

E [K1]
E
⎛

⎝
K1(x)E [Y −l

1 ∣X1]
⎞

⎠

=
1

E [K1]

⎛

⎝
gl(x)E [K1] +E

⎡
⎢
⎢
⎢
⎢
⎣

K1E
⎛

⎝
gl (X1) − gl(x)∣d (X1, x)

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠

= gl(x) +
∫

1

0 K(t)Ψl(ht)dPd(x,X)/h(t)

∫
1

0 K(t)dPd(x,X)/h(t)
.

By using the first-order Taylor’s expansion for Ψl(.) around 0, where Ψl(0) = 0, we have

E [g̃l(x)] = gl(x) + hΨ′
l(0)

⎡
⎢
⎢
⎢
⎢
⎣

∫
1

0 tK(t)dPd(x,X)/h(t)

∫
1

0 K(t)dPd(x,X)/h(t)

⎤
⎥
⎥
⎥
⎥
⎦

+ o(h).

According to Lemma 2 in Ferraty et al. (2007), we get, under (N1)

∫
1

0 tK(t)dPd(x,X)/h(t)

∫
1

0 K(t)dPd(x,X)/h(t)
Ð→

β0

β1

and ∫
1

0
K(t)dPd(x,X)/h(t) Ð→ β1.

Consequently

E [g̃l(x)] = gl(x) + hΨ′
l(0)

β0

β1

+ o(h),

then we can deduce that,

An =
E [g̃1(x)]

E [g̃2(x)]
− r(x) = hBn + o(h).

Proof of Lemma 3.3.6:
Thanks to Lemmas 3.3.4 and 3.3.5’s results, we have:

E [g̃2(x) − g2(x)] → 0,

and
Var [g̃2(x)] → 0.

Then,
g̃2(x) − g2(x) → 0, in probability.
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Next, for the last needed convergence, we obtain by the same manner:

E
⎡
⎢
⎢
⎢
⎢
⎣

(
nϕx(h)

g1(x)2σ2(x)
)

1/2

An (g̃2(x) −E [g̃2(x)])

⎤
⎥
⎥
⎥
⎥
⎦

= 0,

and

Var

⎡
⎢
⎢
⎢
⎢
⎣

(
nϕx(h)

g1(x)2σ2(x)
)

1/2

An (g̃2(x) −E [g̃2(x)])

⎤
⎥
⎥
⎥
⎥
⎦

= O(A2
n) = O(h2) → 0.

Consequently,

(
nϕx(h)

g1(x)2σ2(x)
)

1/2

An (g̃2(x) −E [g̃2(x)]) → 0, in probability.

which completes the proof.
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Abstract : The paper deal with the robust nonparametric regression in a functional space
when the response variables are missing at random (MAR), for both cases, without and
with unknown scale parameter. We establish, the almost complete convergence rate of
our estimators the two proposed models. Some simulations study is given to illustrate the
higher predictive performances of our proposed method.

Keywords : Robust regression, Functional data analysis, Almost complete convergence,
Missing data, Scale parameter.
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4.1 Introduction

The regression function plays an important role in the nonparametric prediction. In-
deed, it provides a very informative summary of the relationship between the variable of
interest Y and the covariate X . There is an extensive literature on the regression function
estimation when the data are incomplete given a functional random covariate (i.e. valued
in an F space on a real interval).

In this paper, we consider the problem of the co-variability analysis between a func-
tional variable X and a scalar response variable Y which is not completely observed. We
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use a non parametric approach to model this relationship by constructing an estimator of
the robust regression function when missing data occur in the response variable.

The purpose of this paper is to generalize the estimators proposed by Attouch et al.
(2009), Boente and Fraiman (1989) and Boente and Vahnovan (2015) to the case of miss-
ing data and for both cases, with and without unknown scale parameters. Moreover, one
can check that the estimators proposed by Ferraty et al. (2013) are a special case of our
proposed estimators.

In the literature, functional data analysis (FDA) has received considerable interest
in the statistical area because of its wide applications in many practical fields such as
climatology, economics and medicine. For more details related to this topic, one could
refer to the monographs of Ramsay and Silverman (2005), Bosq (2012), Ferraty and Vieu
(2006), Yao et al. (2005) and Cai et al. (2006).

As Known, the regression function is used to study the relationship between two vari-
ables denoted by,

r(x) = E[Y ∣X = x], x ∈ F . (4.1)

The link function in (4.1) is of the form

Y = r(X) + ε,

where ε is a random variable such that E[ε∣X] = 0 and E[ε2∣X] = σ2(X) < +∞.

However, in many practical situations such as in pharmaceutical tracing, econometric
life-test study or reliability, data are often incompletely observed, and part of the re-
sponses are missing at random (MAR). In the regression method with missing data, a
standard approach is to attribute the incomplete observations, then proceed to estimate
the conditional or unconditional mean of the response variable with the completed sam-
ple.

It is well-known that the above regression methods are outlier-sensitive. The treatment
of outliers is an essential step in highlighting the features of any data set. In this situation,
outlying observations can be even more dangerous since the shape of the estimated curve
is highly sensitive to outlying observations.

Therefore, in order to overcome this problem, we consider a robust approach. More
precisely, we are interested in the class of M-estimates which was introduced by Huber
(1965). In the statistical literature, several papers have been devoted to the study the prop-
erties of the nonparametric M-estimator defined as a solution of (4.3) when the variable
of interest Y is completely observed. One can refer, among others, to Laïb and Ould-
Saïd (2000) for stationary ergodic processes, Collomb and Härdle (1986), Boente and
Fraiman (1989), Boente and Rodriguez (2006) for mixing processes, Huber (1992) and
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Härdle (1984) for the independent and identically distributed (i.i.d.) case. Härdle and
Gasser (1984) and Tsybakov (1982) also studied pointwise asymptotic properties of a ro-
bust version of the Nadaraya−Watson method. These results were extended to M−type
scale equivariant kernel estimates by Boente and Fraiman (1989) and Härdle et al. (1988)
who also considered robust equivariant nonparametric estimates using nearest neighbor
weights. While Gheriballah et al. (2013) established the almost complete convergence
with rate in the setting of functional and stationary ergodic data.

Inspired by all the papers above, our work in this paper aims to contribute to the
research on functional nonparametric regression model by giving (provide) an alternative
estimation of regression based on missing data. More precisely, we construct a robust
regression estimator of a missing scalar response and a functional covariate. Noting that in
nonparametric modeling, robust regression is an essential regression analysis tool because
it is less sensitive to outliers in the data compared with the classical regression. On the
other hand, the statistical analysis of infinite-dimensional data has been the subject of
several works in the recent statistical literature.

Moreover, the regression analysis of incomplete data (missing data) has gained a par-
ticular interest in the statistics literature. Such kinds of data occur in many fields of appli-
cations such as in astronomy, economics, epidemiology, biometry, and medical studies.
Consider n independent pairs of random variables (Xi, Yi) for i = 1, ..., n that we assume
drawn from the pair (X,Y ). The latter is valued in F ×R, where F is a semi-metric space
and d denotes a semi-metric. Our main goal is to study the co-variation between Xi and
Yi by the nonparametric robust regression function.

For x ∈ F the nonparametric robust regression, denoted by θx, is defined as the unique
minimizer of

θx = arg min
t∈R

E [ρ (Y − t) ∣X = x] (4.2)

where ρ(.) is a real-valued Borel function satisfying some regularity conditions, for more
information we refer the reader to Maronna and Martin (2006). This kind of models be-
longs to the class of M-estimates introduced by Huber (1992). It includes many usual
nonparametric models. For example, when ρ(y) = y2 we obtain the classical regres-
sion, ρ(y) = ∣y∣ ∣α − 1y<0∣ leads to the αth conditional quantile. In this case, Chaouch
and Khardani (2015) considered the conditional quantile estimation based on functional
stationary ergodic data.

The paper is organized as follows. In Section 4.2, we describe our model in two cases
and precisely construct the robust estimator of r(⋅) based on the functional stationary data
with MAR and we give the main results. In Sections 4.3, we illustrate our methodol-
ogy by a simulation study to compare the classical nonparametric functional model with
the complete data and the model with MAR. Finally, the proofs of the main results are
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postponed to Section 4.4.

4.2 Model

4.2.1 Robust estimation under complete data

Let (X,Y ) be a pair of random variables (rv) in F ×R, where (F , d) is a semi-metric
space (i.e. X is a functional random variable (f.r.v) and d a semi-metric). Let x (resp. t)
be a fixed element of F (resp. R).

In this framework, let ψ be a real-valued Borel function satisfying some regularity
conditions to be stated below. We denote by θx, which is implicitly defined as a zero with
respect to (w.r.t.) t of the equation

Ψ(x, t) ∶= E (ψ(Y − t)∣X = x) . (4.3)

The robust nonparametric estimator of θx is given by the solution θ̃x of Ψ̃(x, t) = 0, where

Ψ̃(x, t) =

n

∑
i=1

K(h−1d(x,Xi))ψ (Yi − t)

n

∑
i=1

K(h−1d(x,Xi))

(4.4)

whereK is real-valued kernel function and h = hn > 0 is a smoothing parameter satisfying
hn → 0 as n→∞.

4.2.2 Robust estimation under missing data

Now, we will focus on the case of missing response, one has an incomplete sample
of size n from (X,Y, δ) which is classically denoted by {(Xi, Yi, δi),1 ≤ i ≤ n}, where
δi = 1 if Yi is observed, and δi = 0 otherwise. The Bernoulli random variable δ is supposed
to be such that

P(δ = 1∣X = x,Y = y) = P(δ = 1∣X = x) = p(x), (4.5)

where p(x) is a functional operator. This last condition models the fact that the censoring
process δ is, conditionally on X , independent of the response Y .

In the missing model only, the (Xi, Yi, δi)1≤i≤n are observed, the robust nonparametric
estimator of θx is given by the solution θ̂x of Ψ̂(x, t) = 0, where Ψ̂(x, t) as an estimate of

78



CHAPTER 4. ROBUST NONPARAMETRIC EQUIVARIANT REGRESSION FOR
FUNCTIONAL DATA WITH MAR

Ψ(x, t) defined by

Ψ̂(x, t) =

n

∑
i=1

δiK(h−1d(x,Xi))ψ (Yi − t)

n

∑
i=1

δiK(h−1d(x,Xi))

∶=
Ψ̂N(x, t)

Ψ̂D(x)
, (4.6)

with

Ψ̂N(x, t) =

n

∑
i=1

δiK(h−1d(x,Xi))ψ (Yi − t)

nE(K(h−1d(x,X1)))

and

Ψ̂D(x) =

n

∑
i=1

δiK(h−1d(x,Xi))

nE(K(h−1d(x,X1)))
.

Assumptions and main results

The main purpose of this section is to study the almost-complete convergence1(a.co.)
of θ̂x toward θx.

From now on, for all x in F and for all positive real h, when no confusion is possible,
we will denote by C and C ′ some strictly positive generic constants and by:

Ki(x) =K (
d(x,Xi)

h
) for i = 1, ..., n,

where K is a kernel function and h ∶= hn,K is a sequence of positive numbers decreasing
toward 0. We will also use the notation:

ϕx(h) = P(X ∈ B(x,h)), (4.7)

where B(x,h) = {x′ ∈ F , d(x′, x) ≤ h}.
In what follows, we will need the following assumptions:

(H1) P(X ∈ B(x,h)) =∶ ϕx(h) > 0 for all h > 0 and lim
h→0

ϕx(h) = 0 and

0 < Cϕx(h) ≤ P(X ∈ B(x,h)) ≤ C ′ϕx(h).

(H2) The bandwidth h satisfies:
nϕx(h)

logn
→∞ as n→∞.

1Let (Zn)n∈N be a sequence of real r.v’s. We say that Zn converges almost completely (a.co.) toward
zero if, and only if, ∀ε > 0,∑

∞

n=1 P(∣Zn∣ > ε) < ∞. Moreover, we say that the rate of the almost complete
convergence of Zn to zero is of order un (with un → 0) and we write Zn = O(un) a.co. if, and only if,
∃ε > 0 such that ∑∞n=1 P(∣Zn∣ > εun) < ∞. This kind of convergence implies both almost sure convergence
and convergence in probability.
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(H3) The kernel K is a bounded and continuous function on its support (0; 1) and satis-
fying:

0 < C ≤K(.) ≤ C ′ < +∞.

(H4) The function Ψ is such that:

i) Ψ is of class C1 on [θx − κ, θx + κ] ∀κ > 0.

ii) Ψ(., .) satisfies Hölder’s condition with first variable, that is : there exists strictly
positive constants b, b′ and κ, such that:

∀(t1, t2) ∈ [θx − κ, θx + κ]
2,∀(x1, x2) ∈ Nx ×Nx,

∣Ψ (x1, t) −Ψ (x2, t)∣ ≤ C(db (x1, x2) + ∣t1 − t2∣
b′).

iii) For each fixed t ∈ [θx −κ, θx +κ], the function Ψ(., t) is continuous at the point
x.

iv) p(x) is positive continuous in a neighbourhood of x.

(H5) The function ψ is strictly monotone, and

E [∣ψ(Y − t)∣m∣X] < C < ∞, m ≥ 1.

Theorem 4.2.1. Assume that the Assumptions (H1)-(H5)are satisfied, then θ̂x exists and

is unique a.co. for all sufficiently large n. Furthermore, if Ψ′ (x, θx) ≠ 0

∣θ̂x − θx∣ = Oa.co.

⎛

⎝
hb +

√
logn

nϕx(h)

⎞

⎠
. (4.8)

4.2.3 Robust equivariant estimation under missing data

Our robustification method allows us to consider the functional nonparametric regres-
sion model with a scale of the error assumed to be unknown by taking ψ(x, t) = ψ(x−tσ ),
where σ is a measure of spread for the conditional distribution of Y given X = x.

In this case, we denote by ϑx as a zero with respect to (w.r.t.) t of the equation

Γ(x, t, σ) ∶= E(ψ (
Y − t

σ
) ∣X = x) = 0, (4.9)

where σ is a robust measure of the conditional scale. This measure can be taken as the
conditional median of the absolute deviation from the conditional median, that is,

σ ∶= s(x) = MED(∣Y −m(x)∣∣X = x) = MADC (F x
Y (⋅)) (4.10)
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where F x
Y (.) = F (.∣X = x) = P(Y ≤ .∣X = x) the conditional distribution of Y given

X = x and m(x) = MED(Y ∣X = x) = inf {y ∈ R ∶ F (y∣X = x) ≥
1

2
} is the median of the

conditional distribution.
In the missing model only, the (Xi, Yi, δi)1≤i≤n are observed, noting that the condi-

tional distribution

F (y∣X = x) = P(Y ≤ y∣X = x) = E(1(−∞;y](Y )∣X = x),

where 1A denotes the indicator function of the set A, and using the Nadaraya-Watson
estimator an estimator F̂ (y∣X = x) of F (y∣X = x) can be defined as

F̂ (y∣X = x) =

n

∑
i=1

δiK(h−1d(x,Xi))1(−∞;y](Yi)

n

∑
i=1

δiK(h−1d(x,Xi))

∶=
R̂N(x, y)

Ψ̂D(x)
, (4.11)

where

R̂N(x, y) =
∑
n
i=1 δiK(h−1d(x,Xi))1(−∞;y](Yi)

nE(K(h−1d(x,X1)))

and Ψ̂D(x) is define previously.
Denote by ŝ(x) a robust estimator of the conditional scale, for instance, ŝ(x) =

MADC(F̂ (⋅∣X = x)), the scale measure. On the other hand, the robust nonparametric
estimator of ϑx is given by the solution ϑ̂x of Γ̂(x, ., ŝ(x)) = 0, where Γ̂(x, t, ŝ(x)) as an
estimate of Γ(x, t, s(x)) by

Γ̂(x, t, ŝ(x)) =

n

∑
i=1

δiK(h−1d(x,Xi))ψ (
Yi − t

ŝ(x)
)

n

∑
i=1

δiK(h−1d(x,Xi))

∶=
Γ̂N(x, t, ŝ(x))

Ψ̂D(x)
, (4.12)

with

Γ̂N(x, t, ŝ(x)) =

n

∑
i=1

δiK(h−1d(x,Xi))ψ (
Yi − t

ŝ(x)
)

nE(K(h−1d(x,X1)))
.

Assumptions and main results

The main goal of this section is to study the almost-complete convergence (a.co.) of
ϑ̂x toward ϑx.

In what follows, we will need the following assumptions:
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(E1) P(X ∈ B(x,h)) =∶ ϕx(h) > 0 for all h > 0 and lim
h→0

ϕx(h) = 0 and

0 < Cφ(h) ≤ P(X ∈ B(x,h)) ≤ C ′φ(h).

(E2) The bandwidth h satisfies:
nϕx(h)

logn
→∞ as n→∞.

(E3) The kernel K is a bounded and continuous function on its support (0; 1) and satis-
fying:

0 < C ≤K(.) ≤ C ′ < +∞.

(E4) Let Nx be a neighborhood of the point x:

i) F (.∣X = x) is continuous function symmetric around ϑx.

ii) F (y∣X = x) has a unique median m(x).

iii) for any fixed y ∈ [ϑx − κ,ϑx + κ], F (y∣X = .) : F → [0; 1] is a continuous
function.

iv) Let be Nx a neighborhood of the point x ∈ F , there exists a b1 > 0 and b2 > 0

such that:

∀(y1, y2) ∈ [ϑx − κ,ϑx + κ] × [ϑx − κ,ϑx + κ],∀(x1, x2) ∈ Nx ×Nx,

∣F (y1∣X = x1) − F (y2∣X = x2)∣ ≤ C (db1 (x1, x2) + ∣y1 − y2∣
b2) .

(E5) The function Γ is such that:

i) The function Γ is of class C1 on [ϑx − κ,ϑx + κ].

ii) Γ(., ., σ) satisfies Hölder’s condition with the first variable, that is: there exist
strictly positive constants b and κ such that :

∀t ∈ [ϑx − κ,ϑx + κ],∀σ > 0,∀(x1, x2) ∈ Nx ×Nx,

∣Γ (x1, t, σ) − Γ (x2, t, σ)∣ ≤ Cd
b (x1, x2) .

iii) For each fixed t ∈ [ϑx−κ,ϑx+κ] and σ > 0, the function Γ(., t, σ) is continuous
at the point x.

iv) p(x) is positive continuous in a neighbourhood of x.

(E6) ψ ∶ R → R is an odd function, strictly monotone, bounded and continuous differen-
tiable, with bounded derivative ψ′ such that ζ(u) = uψ′(u) is bounded.
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Property 4.2.1. Under Assumptions (E1)-(E4) and (E5 iv), we obtain

sup
y∈[ϑx−κ,ϑx+κ]

∣F̂ (y∣X = x) − F (y∣X = x)∣ = Oa.co.

⎛

⎝
hb1 +

√
logn

nϕx(h)

⎞

⎠
. (4.13)

Lemma 4.2.1. Under Assumptions of proposition 4.2.1 and if

sup
y∈[ϑx−κ,ϑx+κ]

∣F̂ (y∣X = x) − F (y∣X = x)∣ → 0

there exist positive constants A ≤ B, such that, ŝ(x) = MADC(F̂ (⋅∣X = x)) verifies

A ≤ ŝ(x) ≤ B forn ≥ n0. (4.14)

Theorem 4.2.2. Under Assumptions (E1)-(E3) and (E5)-(E6), then ϑ̂x exists and is unique

a.co. for all sufficiently large n. Furthermore, if Γ′ (x,ϑx, ŝ(x)) ≠ 0, we have

∣ϑ̂x − ϑx∣ = Oa.co.

⎛

⎝
hb +

√
logn

nϕx(h)

⎞

⎠
. (4.15)

4.3 Numerical study

In this section, we discuss a simulation example to check the behavior of our estimator.
The functional variable X is taken as a function with support [0,1] whose based on the
following observation:

Xi(t) = Ait
2 + cos (πBit) i = 1, . . . ,200; t ∈ [0,1];

where Ai are i.i.d. ∼ U(0,1) and Bi are i.i.d. ∼ N(0,1), and are independent from Ai and
Bi. For simplicity, figure4.1 presents a sample of n = 200 of the covariable curves X(t).
We define the response variable Y by Y = r(X) + ε, where r is the regression operator
with

r(x) = (∫

1

0
x′(t)dt)

2

. (4.16)

and ε ∼ N(0,0.075).
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Figure 4.1: The curves Xi=1,...,100(t), t ∈ [0,1].

Our main goal is to compare the sensitivity of the classical classical methods to out-
liers estimated by

r̂x =
∑
n
i=1 δiYiK (h−1

n d (x,Xi))

∑
n
i=1 δiK (h−1

n d (x,Xi))
(4.17)

and the robust regression estimator ϑ̂x where

ϑ̂x = arg min
t

n

∑
i=1

δiK(h−1d(x,Xi))ψ (
Yi − t

ŝ(x)
)

n

∑
i=1

δiK(h−1d(x,Xi))

,

with ŝ(x) = MADC(F̂ (⋅∣X = x)). We take ψ(t) = t√
1+t2/2 . For more details related to the

choice of the score function, we refer the reader to Attouch et al. (2009). We choose the
semi-metric on F :

d (xi, xj) =

√

∫

1

0
(x′i(t) − x

′
j(t))

2
dt, for ∀xi, xj ∈ F .

We choose the quadratic kernel defined as:

K(x) =
3

2
(1 − x2)1(0,1).

Then, we split the sample of size 200 into a learning sub-sample (Xi, Yi), i = 1, . . . ,150

and a testing sub-sample (Xj, Yj), j = 151, . . . ,200. For the missing mechanism, we
adopted it as in Ferraty et al. (2013):

p(x) = P(δ = 1∣X = x) = expit(2α∫
1

0
x2(t)dt) ,

where expit(u) = eu/(1 + eu) for ∀u ∈ R. The parameter α controls the degree of depen-
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dency between the functional curve X and the variable δ. To keep control the quantity
p(x), we compute δ = 1 − 1

150 ∑
150
i=1 δi. The optimal bandwidth h is selected by the cross-

validation method for the k nearest neighbours (k−NN) in a local way (see Ferraty and
Vieu (2006) for more details). Then we calculate the r̂Xj and ϑ̂Xj for j = 151, . . . ,200.

To highlight the performance of our results, we plot the true values versus, the pre-
dicted values for the MSE for both cases complete data and response missing at random
MAR, respectively.

1. Complete case, the mean square error (CMSE) is

CMSEclass =
1

50

200

∑
j=151

(r̃Xj − r(Xj))
2

and CMSErobust =
1

50

200

∑
j=151

(ϑ̃Xj − r(Xj))
2

2. Incomplete case response MAR, the mean square error (MMSE) is

MMSEclass =
1

50

200

∑
j=151

(r̂Xj − r(Xj))
2

and MMSErobust =
1

50

200

∑
j=151

(ϑ̂Xj − r(Xj))
2
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Figure 4.2: The complete data case: CMSE.
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Figure 4.3: The missing at random case: MMSE.
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Table 4.1: MMSE comparison between both methods for the combinations of parameters
(α).

α δ MMSEclass MMSErobust

0 0.50 0.0816188 0.0827697
0.5 0.33 0.07811728 0.0798221
1 0.23 0.07026415 0.07212116

1.5 0.15 0.06799575 0.06894988
2 0.10 0.06621263 0.06748479

Table 4.2: MMSE for the Classical Kernel Estimator and the Robust Estimator according
to numbers of introduced artificial outliers.

number of artificial outliers 0 10 20 40
Classical Estimator MMSEclass 0.04605103 34.41909 104.3417 1112.265

Robust Estimator MMSERobust 0.04678676 0.08507463 0.1022152 0.422661

As illustrated in Figures 4.2 and 4.3, one could notice, that there is no difference between
the two methods: the Classical Kernel method and the Robust method. On the other hand,
we can see that our estimator ϑ̂x on MAR works almost as well as if we had the complete
dataset and using ϑ̃x.

In all the following, we have picked n = 200 and have treated different values for the
parameter α. We carried 100 independent replications of the model, for each value of α,
and we have computed the mean squared error (MMSE) of both estimators. The results
are shown in Table 4.1.

In Table 4.1, we can see the good performance of both estimators r̂x and ϑ̂x when δ is
small, but it goes bad when δ is bigger.

Now, we will move to compare the performance of both estimators(classic and robust)
in the presence of outliers. To do this, we introduced artificial outliers by multiplying
some values of responses by 100 with a fixed degree of dependence (α). The Robust
estimator has a better performance than the classical one, even if the MMSE of both
estimators increases substantially relative to the number of outliers, but it remains very
low for the Robust method, as shown in table 4.2.

4.4 Appendix

4.4.1 Proofs of Theorem 4.2.1:

For the proofs of the theorem 4.2.1, we use the fact that ρ is a strictly convex function
and continuously differentiable w.r.t. the second component, then ψ is strictly monotone
and continuous w.r.t. the second component. We give the proofs for the case of an in-
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creasing ψ(Y − .), decreasing case being obtained by considering −ψ(Y − .). Therefore,
we can write, under this consideration, for all κ > 0

Ψ (x, θx − κ) ≤ Ψ (x, θx) = 0 ≤ Ψ (x, θx + κ)

and
Ψ̂ (x, θ̂x − κ) ≤ Ψ̂ (x, θ̂x) = 0 ≤ Ψ̂ (x, θ̂x + κ) .

Hence, for all κ > 0, we have

P (∣θ̂x − θx∣ ≥ κ) ≤ P (∣Ψ̂ (x, θx + κ) −Ψ (x, θx + κ)∣ ≥ Ψ (x, θx + κ))

+P (∣Ψ̂ (x, θx − κ) −Ψ (x, θx − κ)∣ ≥ −Ψ (x, θx − κ)) .

So, it suffices to show that

Ψ̂(x, t) −Ψ(x, t) → 0 a.co. for t ∶= θx ± κ. (4.18)

Moreover, under ((H4) (i)), we get that

θ̂x − θx =
Ψ (x, θ̂x) − Ψ̂ (x, θ̂x)

Ψ′ (x, ξn)

where ξn is between θ̂x and θx. As long as we could be able to check that

∃τ > 0,
∞
∑
n=1

P (Ψ′ (x, ξn) < τ) < ∞, (4.19)

we would have

∣θ̂x − θx∣ = Oa.co. ( sup
t∈[θx−κ,θx+κ]

∣Ψ(x, t) − Ψ̂(x, t)∣) .

Therefore, all that is left to do is to study the convergence rate of

sup
t∈[θx−κ,θx+κ]

∣Ψ(x, t) − Ψ̂(x, t)∣ .
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To do that, we consider the following decomposition

Ψ̂(x, t) −Ψ(x, t) =
1

Ψ̂D(x)
{(Ψ̂N(x, t) −E [Ψ̂N(x, t)])

− (E [Ψ̂D(x)]Ψ(x, t) −E [Ψ̂N(x, t)])}

+
Ψ(x, t)

Ψ̂D(x)
(E [Ψ̂D(x)] − Ψ̂D(x)) . (4.20)

Therefore, Theorem 4.2.1’s result is a consequence of the following intermediate results,
where their proofs are postponed to the appendix.

Lemma 4.4.1. Under hypotheses (H1)-(H4 iv), we obtain

∣Ψ̂D(x) −E [Ψ̂D(x)] ∣ = Oa.co.

⎛

⎝

√
logn

nϕx(h)

⎞

⎠
. (4.21)

and

lim
n→∞

Ψ̂D(x) = lim
n→∞

E [Ψ̂D(x)] = p(x), a.co. (4.22)

Corollary 4.4.1. Under hypotheses of lemma 4.4.1, we obtain:

there exists η > 0, such that
∞
∑
n=1

P (∣Ψ̂D(x)∣ < η) < ∞. (4.23)

Lemma 4.4.2. Under hypotheses (H3) and (H4), we have

sup
t∈[θx−κ,θx+κ]

∣E [Ψ̂D(x)]Ψ(x, t) −E [Ψ̂N(x, t)]∣ = O (hb) . (4.24)

Lemma 4.4.3. Under hypotheses (H1)-(H5), we have

sup
t∈[θx−κ,θx+κ]

∣Ψ̂N(x, t) −E [Ψ̂N(x, t)]∣ = Oa.co.

⎛

⎝

√
logn

nϕx(h)

⎞

⎠
. (4.25)

Lemma 4.4.4. Under the hypotheses of Theorem 4.2.1, θ̂x exists and is unique a.co. for

all sufficiently large n and there exists τ > 0 such that

∑
n≥1

P{Ψ′ (x, ξn) < τ} < ∞.
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4.4.2 Proofs of Proposition 4.2.1:

Similarly to (4.20), we have

F̂ (y∣X = x) − F (y∣X = x) =
1

Ψ̂D(x)
{(R̂N(x, y) −E [R̂N(x, y)])

− (E [Ψ̂D(x)]F (y∣X = x) −E [R̂N(x, y)])}

+
F (y∣X = x)

Ψ̂D(x)
(E [Ψ̂D(x)] − Ψ̂D(x)) .

Then, Proposition 4.2.1 can be deduced from the following intermediate results, together
with Lemma 4.4.1 and Corollary 4.4.1.

Lemma 4.4.5. Under hypotheses (E3) and (E4), we have

sup
y∈[ϑx−κ,ϑx+κ]

∣E [Ψ̂D(x)]F (y∣X = x) −E [R̂N(x, y)]∣ = O (hb1) . (4.26)

Lemma 4.4.6. Under hypotheses (E1)-(E4), we have

sup
y∈[ϑx−κ,ϑx+κ]

∣R̂N(x, y) −E [R̂N(x, y)]∣ = Oa.co.

⎛

⎝

√
logn

nϕx(h)

⎞

⎠
. (4.27)

4.4.3 Proofs of Theorem 4.2.2:

Assumption (E5 (i)) leads to

ϑ̂x − ϑx =
Γ (x, ϑ̂x, ŝ(x)) − Γ̂ (x, ϑ̂x, ŝ(x))

Γ′ (x, ξn, ŝ(x))

where ξn is between ϑ̂x and ϑx. Assumption (E5 (i)) and Lemma 4.2.1 imply that

∃τ > 0,
∞
∑
n=1

P (Γ′ (x, ξn, ŝ(x)) < τ) < ∞, (4.28)

we would have

∣ϑ̂x − ϑx∣ = Oa.co. ( sup
y∈[ϑx−κ,ϑx+κ]

sup
A≤σ≤B

∣Γ(x, y, σ) − Γ̂(x, y, σ)∣) .
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This result is based on the same kind of decomposition as (4.20). Indeed, we can write:

Γ̂(x, y, σ) − Γ(x, y, σ) =
1

Ψ̂D(x)
{(Γ̂N(x, y, σ) −E [Γ̂N(x, y, σ)])

− (E [Ψ̂D(x)]Γ(x, y, σ) −E [Γ̂N(x, y, σ)])}

+
Γ(x, y, σ)

Ψ̂D(x)
(E [Ψ̂D(x)] − Ψ̂D(x)) . (4.29)

Finally, the proof of Theorem 4.2.2 is achieved via the following lemmas, together with
Lemma 4.4.1 and Corollary 4.4.1.

Lemma 4.4.7. Under hypotheses (E3) and (E5), we have

sup
y∈[ϑx−κ,ϑx+κ]

sup
A≤σ≤B

∣E [Ψ̂D(x)]Γ(x, y, σ) −E [Γ̂N(x, y, σ)]∣ = O (hb1) . (4.30)

Lemma 4.4.8. Under hypotheses (E1)-(E3) and (E5)-(E6), we have

sup
y∈[ϑx−κ,ϑx+κ]

sup
A≤σ≤B

∣Γ̂N(x, y, σ) −E [Γ̂N(x, y, σ)]∣ = Oa.co.

⎛

⎝

√
logn

nϕx(h)

⎞

⎠
. (4.31)

Lemma 4.4.9. Under the hypotheses of Theorem 4.2.2, ϑ̂x exists and is unique a.co. for

all sufficiently large n.

4.4.4 Proofs of Lemmas:

Proof of Lemma 4.4.1:
First, we have:

Ψ̂D(x) −E [Ψ̂D(x)] =
1

n

n

∑
i=1

(
δiKi(x)

E(K1(x))
−
E(δiKi(x))

E(K1(x))
) =

1

n

n

∑
i=1

(∆̃i −E(∆̃i)) ,

where ∆̃i =
δiKi(x)

E(K1(x))
. Because of (H1) and (H3), we can write

Cϕx (h) < E(K1(x)) < C
′ϕx (h)

So, we can get directly that

∣∆̃i∣ < C/ϕx (h) and E ∣∆̃i∣
2
< C ′/ϕx (h) .
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Thus, the use of the classical Bernstein’s inequality allows us to write for all η > 0:

P
⎛

⎝
∣Ψ̂D(x) −E [Ψ̂D(x)]∣ > η

√
logn

nϕx (h)

⎞

⎠
≤ C ′n−Cη

2

.

For the proof of (4.22), we only need to establish

E [Ψ̂D(x)] → p(x), a.co. as n→∞. (4.32)

By the properties of conditional expectation and the mechanism of MAR and (H4 iv), it
follows that

E [Ψ̂D(x)] =
1

nE (K1(x))

n

∑
i=1

E (δiKi(x)) =
1

nE (K1(x))

n

∑
i=1

E (E [δi∣Xi]Ki(x))

=
1

nE (K1(x))
[p(x) + o(1)]

n

∑
i=1

E (Ki(x)) → p(x), a.co. as n→∞.

Therefore, (4.22) follows from (4.21) and (4.32).

Proof of Corollary 4.4.1:
It is easy to remark that:

∣Ψ̂D(x)∣ ≤
p(x)

2
implies that p(x) − Ψ̂D(x) ≥

p(x)

2
which implies that ∣Ψ̂D(x) − p(x)∣ ≥

p(x)

2
.

We deduce, from Lemma 4.4.1, that

P(∣Ψ̂D(x)∣ ≤
p(x)

2
) ≤ P(∣Ψ̂D(x) − p(x)∣ >

p(x)

2
) .

Consequently
∞
∑
n=1

P(∣Ψ̂D(x)∣ <
p(x)

2
) < ∞.

Proof of Lemma 4.4.2:
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Since (X1, Y1, δ1), ..., (Xn, Yn, δn) are independents identically distributed, we have:

∀t ∈ [θx − κ, θx + κ] ∣E [Ψ̂D(x)]Ψ(x, t) −E [Ψ̂N(x, t)]∣

=
∣E [δ1K1(x)ψ(Y1 − t) − δ1K1(x)Ψ(x, t)]∣

E(K1(x))

=
∣E (1B(x,h)(X1)K1(x)p(X1) [E(ψ(Y1 − t)∣X =X1) −Ψ(x, t)])∣

E(K1(x))

=
∣E (1B(x,h)(X1)K1(x)p(X1) [Ψ(X1, t) −Ψ(x, t)])∣

E(K1(x))
.

Then, by the Hölder hypothesis (H4 (ii)), (H3) and the continuity of p(x), we get that:

∀t ∈ [θx − κ, θx + κ]

∣E [Ψ̂D(x)]Ψ(x, t) −E [Ψ̂N(x, t)]∣ ≤ Chb[p(x) + o(1)]
∣E (K1(x))∣

E(K1(x))

= O(hb).

Proof of Lemma 4.4.3:
Using the compactness of [θx − κ, θx + κ], we can write that [θx − κ, θx + κ] ⊂ ⋃

sn
k=1 Sk

where Sk = (yk − ln, yk + ln).
We consider the intervals extremities gride

Hn = {yj − ln, yj + ln,1 ≤ j ≤ sn} .

Then the monotony of E [Ψ̂N(x, t)] and Ψ̂N(x, t) gives, for 1 ≤ j ≤ sn

E [Ψ̂N (x, yj − ln)] ≤ sup
t∈(yj−ln,yj+ln)

E [Ψ̂N(x, t)] ≤ E [Ψ̂N (x, yj + ln)]

Ψ̂N (x, yj − ln) ≤ sup
t∈(yj−ln,yj+ln)

Ψ̂N(x, t) ≤ Ψ̂N (x, yj + ln) . (4.33)

Now, from (H4 (ii)) we have, for any t1, t2 ∈ [θx − κ, θx + κ]

∣E [Ψ̂N (x, t1)] −E [Ψ̂N (x, t2)]∣ ≤ C ∣t1 − t2∣
b′
. (4.34)

So, we deduce from (4.33) and (4.34) that

sup
t∈[θx−κ,θx+κ]

∣E [Ψ̂N (x, t)] − Ψ̂N (x, t)∣

≤ max
1≤j≤sn

max
z∈{yj−ln,yj+ln}

∣Ψ̂N(x, z) −E [Ψ̂N(x, z)]∣ + 2Clb
′

n . (4.35)
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Take now ln = n−α/b
′ for some α > b′/2, and note that because of limn→∞ ln = 0 and (H2),

we have

sup
t∈[θx−κ,θx+κ]

∣E [Ψ̂N (x, t)] − Ψ̂N (x, t)∣ ≤ max
z∈Hn

∣Ψ̂N(x, z) −E [Ψ̂N(x, z)]∣+O
⎛

⎝

√
logn

nϕx (h)

⎞

⎠
.

(4.36)
The proof of this part is based on the exponential inequality given in Corollary A.8.ii in

Ferraty and Vieu (2006) withZi =
1

E(K1(x))
[δiKi(x)ψ (Yi − z) −E (δiKi(x)ψ (Yi − z))].

To do that, we have to show that:

∃C > 0,∀m ≥ 2, E(∣Zm
1 ∣) = Cϕ−m+1

x (h). (4.37)

First, we prove for m ≥ 2 that:

1

Em(K1(x))
E [∣δ1K1(x)ψ (Y1 − z)∣

m
] = O(ϕ−m+1

x (h)). (4.38)

Then, using (H3) and (H5) we write:

E [∣δ1K
m
1 (x)ψ (Y1 − z)

m
∣] ≤ E [E (∣ψ (Y1 − z)∣

m
∣X1)K

m
1 (x)]

≤ CE(Km
1 (x))

≤ Cϕx(h).

Which implies that

1

Em(K1(x))
E [∣δ1ψ (Y1 − z)

m
Km

1 (x)∣] = O(ϕ−m+1
x (h))

and
1

E(K1(x))
E [∣δ1ψ (Y1 − z)K1(x)∣] ≤ C.

Next, by the Newton’s binomial expansion we obtain:

E(∣Zm
1 ∣) ≤ C

m

∑
k=0

E [∣δ1ψ (Y1 − z)
k
Kk

1 (x)∣]

Ek(K1(x))
[
E [∣δ1ψ (Y1 − z)K1(x)∣]

E(K1(x))
]

m−k

≤ C max
k=0,...,m

ϕ−k+1
x (h)

≤ Cϕ−m+1
x (h).

It follows that:
E(∣Zm

1 ∣) = O(ϕ−m+1
x (h)). (4.39)
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Now apply the exponential inequality given by Corollary A.8.ii in Ferraty and Vieu (2006)
for Zi. Since E[∣Zi∣m] = O(ϕx(h)−m+1), then, we can take a2 = 1

ϕx(h) . Hence, for all
η0 > 0:

P
⎛

⎝
∣Ψ̂N(x, z) −E (Ψ̂N(x, z))∣ > η

√
logn

nϕx (h)

⎞

⎠
= P

⎛

⎝

1

n
∣
n

∑
i=1

Zi∣ > η

√
logn

nϕx (h)

⎞

⎠

≤ 2 exp (−Cη2 logn) .

Then, we have for any η > 0

P
⎛

⎝
max
z∈Hn

∣Ψ̂N(x, z) −E (Ψ̂N(x, z))∣ > η

√
logn

nϕx (h)

⎞

⎠

≤ sn max
z∈Hn

P
⎛

⎝
∣Ψ̂N(x, z) −E (Ψ̂N(x, z))∣ > η

√
logn

nϕx (h)

⎞

⎠

≤ Csnn
−Cη2

≤
C

ln
n−Cη

2

.

Thus, by choosing η such that Cη2 = 1/2 + 2α/b′, we obtain

sn max
z∈Hn

P
⎛

⎝
∣Ψ̂N(x, z) −E (Ψ̂N(x, z))∣ > η

√
logn

nϕx (h)

⎞

⎠
≤ n−1/2−2α/b′ .

Now, we can conclude

sup
t∈[θx−κ,θx+κ]

∣Ψ̂N(x, t) −E (Ψ̂N(x, t))∣ = Oa.co.

⎛

⎝

√
logn

nϕx (h)

⎞

⎠
. (4.40)

Proof of Lemma 4.4.4:
We give the proof for the case of an increasing ψ(Y − .), decreasing case being obtained
by considering −ψ(Y − .). Therefore we can Therefore write, under this consideration,
for all κ > 0

Ψ (x, θx − κ) ≤ Ψ (x, θx) = 0 ≤ Ψ (x, θx + κ)

The results of lemmas 4.4.1,4.4.2,4.4.3 and 4.4.1 show that

Ψ̂(x, t) → Ψ(x, t), in a.co. as n→∞.
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for all real fixed t ∈ [θx − κ, θx + κ]. So, for sufficiently large n.

Ψ̂ (x, θ̂x − κ) ≤ 0 ≤ Ψ̂ (x, θ̂x + κ) , in a.co. .

Since ψ is a continuous function, then as Ψ̂(x, t) is a continuous function of t, there exists
a θ̂x ∈ [θx − κ, θx + κ] such that Ψ̂(x, θ̂x) = 0. Finally, the uniqueness (in a.co.) of θ̂x
is a direct consequence of the strict monotonicity of ψ, while the second part is a direct
consequence of the regularity assumption (H4 (i)).
Proof of Lemma 4.4.5:
The same idea in the proof of lemma 4.4.2
Proof of Lemma 4.4.6:
As in Lemma 3 of Attouch et al. (2013) using the compactness of [ϑx − κ,ϑx + κ], we can
write

[ϑx − κ,ϑx + κ] ⊂
dn

⋃
j=1

(yj − ln, yj + ln) .

We consider the intervals extremities gride

Gn = {yj − ln, yj + ln,1 ≤ j ≤ dn} .

Then the monotony of E [R̂N(x, y)] and R̂N(x, y) gives, for 1 ≤ j ≤ dn

E [R̂N (x, yj − ln)] ≤ sup
y∈(yj−ln,yj+ln)

E [R̂N(x, y)] ≤ E [R̂N (x, yj + ln)]

R̂N (x, yj − ln) ≤ sup
y∈(yj−ln,yj+ln)

R̂N(x, y) ≤ R̂N (x, yj + ln) . (4.41)

Now, from (E4 (iv)) we have, for any y1, y2 ∈ [ϑx − κ,ϑx + κ]

∣E [R̂N (x, y1)] −E [R̂N (x, y2)]∣ ≤ C ∣y1 − y2∣
b2 . (4.42)

So, we deduce from (4.41) and (4.42) that

sup
y∈[ϑx−κ,ϑx+κ]

∣E [R̂N (x, y)] − R̂N (x, y)∣

≤ max
1≤j≤dn

max
z∈{yj−ln,yj+ln}

∣R̂N(x, z) −E [R̂N(x, z)]∣ + 2Clb2n (4.43)

≤ max
z∈Gn

∣R̂N(x, z) −E [R̂N(x, z)]∣ +O
⎛

⎝

√
logn

nϕx (h)

⎞

⎠
. (4.44)

Let Λi = (δiKi(x)1(−∞;z](Yi) − E[δiKi(x)1(−∞;z](Yi)])/E(K1(x)). By using similar
arguments for the proof of Lemma 4.4.1, we deduce that E∣Λi∣ ≤ C/ϕx(h) and E(Λ2

i ) ≤
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C ′/ϕx(h). By applying again the Bernstein’s exponential inequality, we get

max
z∈Gn

∣E [R̂N (x, z)] − R̂N (x, z)∣ = Oa.co.

⎛

⎝

√
logn

nϕx(h)

⎞

⎠
. (4.45)

which concluded the proof.
Proof of Lemma 4.2.1:
The proof of this lemma is analogous to Lemma A.4 of Boente and Vahnovan (2015).
By Proposition 4.2.1 and Assumption (E2) we can check that:

sup
y∈[ϑx−κ,ϑx+κ]

∣F̂ (y∣X = x) − F (y∣X = x)∣ → 0. (4.46)

Otherwise by (E4) for a fixed x ∈ F there exist a, b such that F (b∣X = x) > 7
8 and

F (a∣X = x) < 1
8 . Let mn(x) be the median of F̂ (y∣X = x). Then, (4.46) implies that

there exists n0 ∈ N such that F̂ (a∣X = x) < 1
4 and F̂ (b∣X = x) > 3

4 for all n ≥ n0. Hence,
we have that a < mn(x) < b. It is easy to see that for a good choice of a, b and n also,
implies that ŝ(x) < b − a for all n ≥ n0.

For the lower bound, using that F (y∣X = x) is a continuous distribution function in
x ∈ F , there exist a(x) and b(x) such that

F (a(x)∣X = x) =
1

3
, F (b(x)∣X = x) =

7

10
.

Let a(x) = a and b(x) = b. Assumption (E4 (i)) entails that for any ε < 1
30 there exists

η > 0, such that

1

3
− ε < F (a − η∣X = x) <

1

3
+ ε,

7

10
− ε < F (b + η∣X = x) <

7

10
+ ε.

Finally, (4.46) implies that for all n ≥ n0 we have that F̂ (a∣X = x) < 1
2 , F̂ (b∣X = x) > 1

2 ,
F̂ (a − η∣X = x) > 1

4 and F̂ (b + η∣X = x) < 3
4 . Hence, a <mn(x) < b, and ŝ(x) > η for all

n ≥ n0.
Proof of Lemma 4.4.7:
The proof is analogous to the proof of lemma 4.4.2.
Proof of Lemma 4.4.8:
∀y ∈ [ϑx − κ,ϑx + κ] ,∀A ≤ σ ≤ B consider a finite covering of [ϑx − κ,ϑx + κ], we

have [ϑx − κ,ϑx + κ] ⊂
dn

⋃
k=1

(yk − ln, yk + ln). Taking ky = arg mint∈{y1,...,ydn} ∣y − t∣. On

the other hand, by the same way covering [A,B] ⊂
sn

⋃
k=1

(σk − νn, σk + νn) and taking

kσ = arg mins∈{σ1,...,σsn} ∣σ − s∣.
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With same manner in proof of lemma 4.4.3, by taking ln = νn = n−α for some α > 1/2,
we have

ln = νn = o
⎛

⎝

√
logn

nϕx (h)

⎞

⎠
. (4.47)

Note that,

sup
y∈[ϑx−κ,ϑx+κ]

sup
σ∈[A,B]

∣Γ̂N(x, y, σ) −E (Γ̂N(x, y, σ))∣

≤ sup
y∈[ϑx−κ,ϑx+κ]

sup
σ∈[A,B]

∣Γ̂N(x, y, σ) − Γ̂N(x, ky, σ)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F1

+ sup
y∈[ϑx−κ,ϑx+κ]

sup
σ∈[A,B]

∣Γ̂N(x, ky, σ) − Γ̂N(x, ky, kσ)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F2

+ sup
y∈[ϑx−κ,ϑx+κ]

sup
σ∈[A,B]

∣Γ̂N(x, ky, kσ) −E (Γ̂N(x, ky, kσ))∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F3

+ sup
y∈[ϑx−κ,ϑx+κ]

sup
σ∈[A,B]

∣E (Γ̂N(x, ky, kσ)) −E (Γ̂N(x, ky, σ))∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F4

+ sup
y∈[ϑx−κ,ϑx+κ]

sup
σ∈[A,B]

∣E (Γ̂N(x, ky, σ)) −E (Γ̂N(x, y, σ))∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F5

.

● Concerning F1 and F5, follow the same steps of T1 and T3 in Lemma 4.4.3 by conditions
(E3) and (E6), we obtain

sup
y∈[ϑx−κ,ϑx+κ]

sup
σ∈[A,B]

∣Γ̂N(x, y, σ) − Γ̂N(x, ky, σ)∣

≤ sup
y∈[ϑx−κ,ϑx+κ]

sup
σ∈[A,B]

1

nE(K1(x))

n

∑
i=1

∣ψ (
Yi − y

σ
) − ψ (

Yi − ky
σ

)∣ δiKi(x)

≤ sup
y∈[ϑx−κ,ϑx+κ]

∥ψ′∥∞
A

∣y − ky ∣ (
1

nE(K1(x))

n

∑
i=1

δiKi(x))

≤ Cln.

Now, for n large enough, we can write

P
⎛

⎝
sup

y∈[ϑx−κ,ϑx+κ]
sup

σ∈[A,B]
∣Γ̂N(x, y, σ) − Γ̂N(x, ky, σ)∣ >

η

5

√
logn

nϕx (h)

⎞

⎠
= 0 (4.48)
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and

P
⎛

⎝
sup

y∈[ϑx−κ,ϑx+κ]
sup

σ∈[A,B]
∣E (Γ̂N(x, ky, σ)) −E (Γ̂N(x, y, σ))∣ >

η

5

√
logn

nϕx (h)

⎞

⎠
= 0. (4.49)

● Concerning F2 and F4, by assumptions (E3) and (E6)(using that ζ(u) = uψ′(u) is
bounded), it follows

sup
y∈[ϑx−κ,ϑx+κ]

sup
σ∈[A,B]

∣Γ̂N(x, ky, σ) − Γ̂N(x, ky, kσ)∣

≤ sup
σ∈[A,B]

1

nE(K1(x))

n

∑
i=1

∣ψ (
Yi − ky
σ

) − ψ (
Yi − ky
kσ

)∣ δiKi(x)

≤
∥ζ∥∞
A

νn (
1

nE(K1(x))

n

∑
i=1

δiKi(x))

≤ Cνn.

Thus, for n large enough, we can write

P
⎛

⎝
sup

y∈[ϑx−κ,ϑx+κ]
sup

σ∈[A,B]
∣Γ̂N(x, ky, σ) − Γ̂N(x, ky, kσ)∣ >

η

5

√
logn

nϕx (h)

⎞

⎠
= 0 (4.50)

and

P
⎛

⎝
sup

y∈[ϑx−κ,ϑx+κ]
sup

σ∈[A,B]
∣E (Γ̂N(x, ky, σ)) −E (Γ̂N(x, ky, kσ))∣ >

η

5

√
logn

nϕx (h)

⎞

⎠
= 0.

(4.51)

●ConcerningF3: Let Ωi =
1

E (K1(x))
[δiKi(x)ψ (

Yi − ky
kσ

) −E(δiKi(x)ψ (
Yi − ky
kσ

))].

Note thatK and ψ are bounded and we have Γ̂N (x, ky, kσ)−E (Γ̂N (x, ky, kσ)) =
1

n

n

∑
i=1

Ωi,

we deduce that E∣Ωi∣ ≤ C/ϕx(h) and E(Ω2
i ) ≤ C

′/ϕx(h).
We apply now again the Bernstein’s exponential inequality to get

P
⎛

⎝
F3 >

η

5

√
logn

nϕx(h)

⎞

⎠

= P
⎛

⎝
max

ky∈{y1,...,ydn}
max

kσ∈{σ1,...,σsn}
∣Γ̂N (x, ky, kσ) −E (Γ̂N (x, ky, kσ))∣ >

η

5

√
logn

nϕx(h)

⎞

⎠

≤ dnsn max
ky∈{y1,...,ydn}

max
kσ∈{σ1,...,σsn}

P
⎛

⎝

1

n
∣
n

∑
i=1

Ωi∣ >
η

5

√
logn

nϕx(h)

⎞

⎠

≤ dnsn2 exp (−Cη2 logn) .
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Because ln = νn = n−α for α > 1/2, and by choosing η such that Cη2 = 1/2 + 3α, we have

P
⎛

⎝
max

ky∈{y1,...,ydn}
max

kσ∈{σ1,...,σsn}
∣Γ̂N (x, ky, kσ) −E (Γ̂N (x, ky, kσ))∣ >

η

5

√
logn

nϕx(h)

⎞

⎠
≤ Cn−α−1/2.

(4.52)
Now, from (4.48), (4.49), (4.50),(4.51) and (4.52), we conclude

sup
y∈[ϑx−κ,ϑx+κ]

sup
A≤σ≤B

∣Γ̂N(x, y, σ) −E [Γ̂N(x, y, σ)]∣ = Oa.co.

⎛

⎝

√
logn

nϕx(h)

⎞

⎠
. (4.53)
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CHAPTER 5

A REAL DATA APPLICATION

The objective of this chapter is to apply the theoretical results obtained in the previous
chapters to real data. More precisely, we study two datasets. First, our contribution in
section 5.1 leads to the prediction of the peak electricity demand given its daily tempera-
ture curve by using the nonparametric relative error regression under random censorship
studied in the chapter 3. The second application discussed in section 5.2 has an object
of determine some diesel fuels parameters by analysing its spectral data using the robust
nonparametric equivariant regression under MAR (see chapter 4). A comparative study
of these models is provided in order to emphasize their possible advantages.

5.1 Peak electricity demand (censored case)

5.1.1 Materials and methods

First, we have acquired a large dataset, consisting of number of 8784 records, contain-
ing the hourly energy consumption for the year 2016 (measured in MWh), retrieved from
the smart metering device of a commercial center type of consumer (a large hypermar-
ket). We have also acquired a dataset containing the historical hourly meteorological data
regarding the temperature (measured in Celsius degrees), recorded by the meteorological
sensors of a specialized institute for the year 2016, consisting in a number of 8784 records
(see Pîrjan et al. (2017) and Mebsout et al. (2020) for more description on this data set).

Now, we are interested in the estimation of interval prediction of peak consumption
of energy. For a fixed day i let us denote by (Ei (tj))j=1,...,24 the hourly measurements of
some consumption of energy. The peak demand observed for the day i is defined as

Pi = max
j=1,...,24

Ei (tj) .
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Figure 5.1: Sample of 15 daily temperature curves and the associated energy consumption
curves.

It is well known that peak demand is very correlated with temperature measurements.
Figure 5.1 provides a sample of 15 curves of hourly temperature measures and the associ-
ated electricity consumption curves. The observed peak, for each day. We split our sample
of 366 days into a learning sample containing the first 300 days and a testing sample with
the last 66 days. From the learning sample, we selected 30% of days within which we
generated the censorship randomly. Figure 5.2 provides a sample of four censored daily
load curves. For those days, we observe the electricity consumption until a certain time
tc ∈ [1,24] which corresponds to the time of censorship which is plotted in a dashed line
in Figure 5.2. For a censored day, we define the censored random variable

Ci = max
j=1,...,tc

Ei (tj) .
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Figure 5.2: Sample of four censored daily load curves, the dashed line corresponds to the
time of censorship tc.

Therefore, our sample is formed as follows (Xi, Yi, δi)i=1,...,300, where δi = 1 if Yi = Pi
and δi = 0 if Yi = Ci. In order to introduce the outliers in this sample we multiplies by 10
the response variable of a number of observations.

The selection of the bandwidth parameter is an important and basic problem in all
kernel smoothing techniques. Another important point for ensuring a good behavior of
the method, is to use a semi-metric that is well adapted to the kind of data we have to
deal with. Ours is based on the m eigenfunctions of the empirical covariance opera-
tor associated to the m greatest eigenvalues (see Ferraty and Vieu (2006), Chapter 13 ).
The estimators are obtained by choosing the optimal bandwidths by L1 cross-validation
method and the kernel K is the quadratic function defined by :

K(x) =
3

2
(1 − x2)1[0,1].

The error used is the mean of squared error (MSE) expressed by

MSECKE =
1

66

366

∑
i=301

(Yi − m̂(Xi))
2 and MSEREE =

1

66

366

∑
i=301

(Yi − r̃(Xi))
2
.

5.1.2 Results and discussions

The results are given in the Figure 5.3 where two curves corresponding to the observed
values (black curve) the predicted values (dashed curve green for the classical regression
and red for the relative one) are drawn. Clearly, this Figure 5.3 shows the good behavior of
our procedure. We observe that the relative approach gives better results than the classical
regression approach (MSECKE = 0.0883 and MSEREE = 0.0034).
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Figure 5.3: Prediction by classical and relative regression.

Now, we give in Table 5.1 the 90% predictive intervals of the concentrations for the
peak load of the 20 last values in the sample test. This conclusion shows the good perfor-
mance of our asymptotic normality.

Table 5.1: The 90% predictive intervals of the peak demand for the last 20 days.

The true value Predicted value Predictive intervals IC90%

0.851 0.8310 [0.6078 , 1.0542]
0.819 0.8177 [0.7376 , 0.8978]
0.896 0.8307 [0.7697 , 0.8918]
0.877 0.8358 [0.4879 , 1.1838]
0.813 0.8277 [0.4660 , 1.1894]
0.857 0.8501 [0.5713 , 1.1289]
0.862 0.8358 [0.7802 , 0.8914]
0.847 0.8284 [0.3206 , 1.3363]
0.832 0.8568 [0.7976 , 0.9160]
0.859 0.8511 [0.7328 , 0.9694]
1.062 1.0017 [0.8279 , 1.1756]
0.796 0.8514 [0.7592 , 0.9435]
1.259 1.0946 [0.9344 , 1.2548]
1.076 1.0545 [0.8648 , 1.2441]
1.152 1.0399 [0.9289 , 1.1508]
0.974 0.8968 [0.7833 , 1.0103]
0.790 0.8444 [0.7913 , 0.8974]
0.823 0.7091 [0.0456 , 1.3727]
0.804 0.7965 [0.6710 , 0.9219]
1.129 1.1054 [0.8670 , 1.3437]
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5.2 NIR Spectrometric of Diesel Fuels (MAR case)

5.2.1 Materials and methods

The near infrared spectra of diesel fuel samples, together with six properties that were
measured at the Southwest Research Institute, are obtained from the web site of Eigenvec-
tor Research Corporation (http://software.eigenvector.com/Data/index.
html). It contains six different data sets for the parameters: cetane number, boiling
point, freezing point, total aromatic content, viscosity, and density. The above physical
and chemical properties of the samples were determined independently using standard
reference methods before the near infrared spectra were recorded. The diesel fuel data
set investigated here has also been used in a number of previous studies (Boger (2003);
Esteban-Dıéz et al. (2004); Feng et al. (2015)) for testing new variable selection and
calibration algorithms. For instance, let us consider a sample of n = 480 diesel fuels
samples. Each sample is illuminated by a light beam at 401 equally spaced wavelengths
(ω1, . . . , ω401) in the near-infrared range 750 − 1550 nm. For each wavelength ω and
each diesel sample i, the absorption Xi(ω) of radiation is measured. The ith discretized
spectrometric curve is given by Xi (ω1) , . . . ,Xi (ω401); Figure 5.4 displays the 480 spec-
trometric curves.
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Figure 5.4: The 480 NIR spectroscopy curves of the diesel fuels data.

To fix the ideas, let’s present our prediction problem. Indeed, assume that we aim
to predict the content of certain diesel fuels parameters (in our case we are interested to
predict the total aromatic content), denoted by Yi, using the spectrometric curves associ-
ated Xi. Some of the properties Yi are not measured on some of the samples, so diesel
fuels parameters has some missing values (NaNs) in it (20% missing data). Therefore,
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our sample is formed as follows (Xi, Yi, δi)i=1,...,480, where δi = 1 if Yi is observed and
δi = 0 else. We assume that the output variable Y and the input variable X are linked by
the following regression formula,

Y =m(X) + ε, (5.1)

We would like to estimatem(x) by the MAR robust equivariant estimator ϑ̂x and compare
it with the models r̂(x) for the classical missing estimator and the MAR robust estimator
θ̂x.

The performance of all above mentioned models is closely linked with the use of
different parameters involved in the estimation. In fact, the kernel is supposed to be the
quadratic kernel defined byK(u) = 1.5(1−u2)1[0,1]. Because the curves are very smooth,
the L2 distance between the second derivative of the curves is considered as a semi-metric
d(., .) defined as:

d (xi, xj) =

√

∫

1

0
(x′′i (ω) − x

′′
j (ω))

2
dω.

Finally, we considered the optimal bandwidth h ∶= hn,K chosen by the cross-validation
procedure:

hopt = arg min
h
CV (h) where CV (h) =

n

∑
i=1

(Yi − Ỹ(−i) (Xi))
2
,

with Ỹ(−i)(Xi) the values of the estimator m̂(.), θ̂. or ϑ̂. calculate at Xi.

To evaluate the efficiency of the proposed models in this prediction issue, we randomly
split the n−sample into two parts : one is a training sample (Xi, Yi)i=1,...,400 which is used
to model, and the other is a testing sample (Xj, Yj)j=401,...,480 which is used to verify the
prediction effect.
The testing sample provides the mean absolute error MAE of prediction:

MAE =
1

80

480

∑
j=401

∣Yj − Ỹ (Xj)∣

where Ỹ (Xj) the prediction values of the estimators m̂(.), θ̂. and ϑ̂. calculate at Xj .

5.2.2 Results and discussions

The obtained prediction results are shown in the following Figure 5.5.
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Figure 5.5: Prediction of the testing sample (Classical, Robust and Robust equivariant
respectively).

Figure 5.5 gives an idea on the accuracy of the predictions corresponding to one run.
They presents the 80 of the predictions: the observed values (horizontal axis), the pre-
dicted values (vertical axis). It is depicted in Figure 5.5 that there is no significant differ-
ence between the three models when there is no outliers in the learning sample.

To further explore the performances of our models, we carry out M = 100 inde-
pendent replications which allows to compute 100 values for MAE and to display their
distribution by means of a beanplot. Figure 5.6 shows the bean-plots of the MAE of the
prediction values.

1
.5

2
.0

2
.5

Classic Robust Robust equivariant

Figure 5.6: The bean-plots of the MAE of the prediction values by the three methods
without outliers (Classical, Robust and Robust equivariant respectively).
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Now, we concentrate on the comparison of models performances in the presence of
outliers. For this aim, we introduce artificial outliers by multiplying 5 values of response
Y in the learning sample by 100. The estimators of our models are obtained by the
same previous selection methods of the smoothing parameter, i.e., the same metric d and
also the same kernel K. Finally, the obtained results of the bean-plots of the MAE are
shown in Figure 5.7. Note that, in Figure 5.6 the three estimators are equivalent but
in Figure 5.7, in which we considered the presence of outliers, the Robust equivariant
regression gives better results than the Classical and the robust methods: There is a small
difference between the Robust equivariant regression and the Robust one, while theMAE

is significantly large for the Classical model, in sense that; i.e., the classical method is
susceptible to the presence of outliers.

2
5

1
0

2
0

5
0

Classic Robust Robust equivariant

Figure 5.7: The bean-plots of the MAE of the prediction values by the three methods in
the presence of outliers (Classical, Robust and Robust equivariant respectively).
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GENERAL CONCLUSION AND PROSPECTS

Conclusion

The literature on missing data is still relevant, especially with regard to the estimation
of the functional parameters present in this model. Recall that one of the main motivations
for the craze of nonparametric functional statistics is the solution it offers for the problem
of the scourge of dimension, and the power of computers which have made it possible to
process data in very large dimensions.

In this thesis, we are interested in the robust estimation of the regression operator in
the presence of missing data. It is clear that the superiority of this approach over the clas-
sical method is the main motivation for this subject. In order to highlight this superiority
in NPFDA, we first studied, the asymptotic properties of a nonparametric estimator of the
relative error regression given a functional explanatory variable, when the scalar response
is right censored, in the i.i.d. case. We establish the strong almost complete convergence
rate and asymptotic normality of these estimators.

As a first idea of extension, is to establish similar results when one frees oneself from
the assumption of independence. It is well known that in practice several processes have
a certain dependence. The second part of this thesis is devoted to the problem of esti-
mating the relative regression operator when the observation are α−mixing. We establish
the almost complete convergence rate of these estimators. A simulation study and real
data application are performed to illustrate how this fact allows getting higher predictive
performances than those obtained with standard estimates.

Finally, it seems possible to us interested in studying the robust model given a func-
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tional explanatory variable, in the case of a scalar missing at random (MAR) response, for
both cases, without and with unknown scale parameter. We establish, the almost complete
convergence rate of our estimators in the two proposed models.

Prospects

To conclude the work of this thesis, many questions remain unanswered. We believe
we will invest in the future on a few issues in order to improve and extend our results.

• We think it is possible to adapt our results to another type of dependency such as
the quasi-associated and the ergodic case.

• Other issues are possible, such that extensions our estimators to the local linear
ideas.

• Another possible prospect is to obtain the asymptotic normality of the robust equiv-
ariant regression for functional data with responses missing at random.

• Robust estimation with single functional index model can be approached in the
missing case.

• We will be able to elaborate the asymptotic properties of our estimators based on the
k nearest neighbor (k−NN) method or other methods on the bandwidth selection,
because it allows the improvement of the quality of the estimator.

• We can generalize the results obtained using other models such as the aditive model
or the semi-functional partial linear model.

• An important issue about the comparison of the constructed estimators when there
are surrogate outputs.
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Résumé
Dans cette thèse, nous étudions les propriétés asymptotiques des paramètres fonctionnels en sta-
tistique non paramétrique pour des données incomplètes. Plus précisément, nous nous intéressons
à la régression robuste et relative pour lesquelles nous construisons des estimateurs et nous
étudions le comportement asymptotique dans le modèle censuré et manquantes. Nous avons
d’abord étudié les propriétés asymptotiques d’un estimateur non paramétrique de la régression
d’erreur relative étant donné une variable explicative fonctionnelle, lorsque la réponse scalaire
est censurée à droite, dans les cas i.i.d. et α−mélange. Ensuite, il nous semble possible d’étudier
le modèle robuste, dans le cas d’une réponse scalaire manquante (MAR), dans les deux cas,
sans et avec paramètre d’échelle inconnu.

Abstract

In this thesis, we study the asymptotic properties of functional parameters in nonparametric
statistics for incomplete data. More precisely, we are interested in the robust and relative
regression for which we build estimators, and we study the asymptotic behavior in the censored
and missing model. We first studied, the asymptotic properties of a nonparametric estimator of
the relative error regression given a functional explanatory variable, when the scalar response
is right censored, in the i.i.d. case and α−mixing case. Then, it seems possible to us to study
the robust model, in the case of a scalar missing at random (MAR) response, for both cases,
without and with unknown scale parameter.
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