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Introduction. . .

0.1 Introduction to the context

Several problems from academic, economic and industrial fields can
be modelled as combinatorial optimization problems. Most of these

problems are complex and often recognized to be NP-hard, making the
exhaustive exploration of all solutions impractical because of the combi-
natorial explosion of the solutions.

This is the case of Molecular Docking(MD) which is the problem of the
subject treated in this thesis. MD is a technique used in the pharmaceutical
industry in the process of discovering new drugs. Its aim is to predict the
binding pose between a small molecule (drug candidate called ligand)
and a protein target (the origin of a disease). It consists in calculating
the optimal orientation and position of the ligand when bound with the
protein to form a stable molecular complex. The objective is to find the
best solution (configuration) among a very large set of feasible solutions
(the so called search space). Since there is an infinite number of possible
configuration, this problem is complex, and known to be NP-hard and
CPU time-intensive; its sequential exact resolution in a reasonable amount
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Introduction. . .

of time is impossible. To cope with this difficulty, the problem is modeled
as an optimization problem.

Metaheuristics have proven their effectiveness in solving this type of
problems as they lead to acceptable solutions within a reasonable time.
Several metaheuristics have been proposed to solve the MD problem,
such as Genetic Algorithm (GA), simulation annealing (SA), and Parti-
cle Swarm Optimization (PSO), etc. Such techniques significantly reduce
the computation time needed to examine the entire search space. Nev-
ertheless, these approximate algorithms remain inefficient when dealing
with very large instances, since they are greedy in terms of computation
time, making it impossible to run them on a simple machine, and often re-
quire the use of High-performance computing (HPC), with large comput-
ing power and a huge amount of computing resources. Nowadays, such a
power can be provided by the Graphics Processing Unit (GPUs) through
the use of the parallel computing and the GPGPU paradigm (General-
purpose computing on GPUs). The GPUs have lower cost and energy con-
sumption compared with the other HPC solution such as supercomputers.

0.2 The subject of the thesis

The objective of this thesis is to propose, design and implement parallel
metaheuristics on GPUs to solve the MD problem with the support of
MD related challenges in addition to the new challenges related to the
implementation of metaheuristics on modern GPU architectures.

The parallel models of metaheuristics need adaptation and modifica-
tion to leverage the new requirements of the modern GPU architectures
with many issues that have to be taken into account. The latter are mainly
related to the latency of the GPU memories and their hierarchical man-
agement, divergence of GPU threads and their synchronization, and the
optimization of data transferring between the CPU and GPU.

A deep study has to be performed on both types of metaheuris-
tics, population-based metaheuristics (P-metaheuristics ) or solution-based
metaheuristics (S-metaheuristics), and their data structures, since their
data sizes and the access frequencies are different. On the other hand,
these data have to be mapped to different kinds of GPU memories with
different size and access latency. Thus, during the execution of metaheuris-
tics on GPU, the different threads may access multiple data structures
from multiple memory spaces. A key challenge is to efficiently map the
threads to the corresponding metaheuristic, for example one neighbor per
thread for S-metaheuristic, or a single population per threads block for
P-metaheruistic, etc. The coalesced access 1 to the memory is another im-
portant issue to deal with to optimize the performance of a GPU-based
metaheuristic. The data transferring between GPU and CPU, is another
important factor, for which good strategies should be adopted. In addition
to the memory access and latency issues, the encoding step is very impor-
tant when designing a metaheuristic for a specific problem. Thus, the data

1A group of threads access to consecutive addresses of the global memory at the same
time.
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Introduction. . .

types should be chosen carefully, the ranges of data values should also be
analyzed to minimize the memory space required.

Since GPU architecture is based on massively parallel multi-threading,
thread synchronization and synchronization requirements of the imple-
mented metaheuristic are important issues that should be dealt about. An
efficient parallelization on GPU can be achieved when running a large
number of threads, but the order in which these threads are executed is
not known. To cope with this challenging issue the programmer has to
explicitly manage the threads by the insertion of barrier synchronizations
or by using other methods to avoid concurrent accesses to data struc-
tures. Metaheuristics contain irregular loops and conditional instructions
which can make them hard to parallelize. In addition, threads of the same
warp 2 have to simultaneously execute instructions directing to different
branches, considering that in a SIMD model threads of the same warp ex-
ecute the same instruction at a time. Therefore, the different branches of
a conditional instruction which is data-dependent may force a serial exe-
cution of the different parallel threads of the same warp, considerably de-
grading the performance of the parallel metaheuristic (Cecilia et al. 2013)
(Delévacq et al. 2013).

To achieve the best performance, an efficient decomposition of the code
and a good distribution of tasks between the CPU and the GPU should be
adopted. The objective is to leverage the GPU computing power without
losing performance in CPU/GPU communication and memory accesses.
Thus, the code should be carefully analyzed in order to decide which part
of it will stay and execute on CPU, and which compute-intensive part will
be sent to the GPU for parallel execution. CPU/GPU communication is
another important factor to take into consideration. This communication
is done through the global memory which is a relatively slow memory,
making the memory transfer between the CPU and GPU time-consuming,
possibly inducing a significant degradation of the performance of the ap-
plication. Therefore, the programmer should optimize the code to mini-
mize the amount of data to be transferred between the host (CPU) and the
device (GPU)(Mehdi et al. 2013).

The exploration of the huge search space by the search algorithm and
the evaluation of the results of the search step by the scoring function are
the two big challenges that need to to be addressed in MD. In the last
two decades, a lot of effort went to the development of the search algo-
rithms and scoring functions with the aim of coping with these challenges.
Despite these huge efforts, some parts of the scoring function remain chal-
lenging. For example, the solvation energy calculation which is the most
important part of the scoring function is still a challenging part.

Rapidity (speed) and efficiency are the two crucial characteristics of a
scoring function in addition to its accuracy (by how much the function
fits with the physical reality). For this reason, researchers were forced to
develop a simple and acceptable accurate scoring function. Now, with the
fast development in computing power (HPC), the coming focus for the
scoring function development is how to enhance performance and accu-
racy. Because of the complexity of the problem the limitation of the com-
puting power in the past, only ligand flexible docking has been addressed,

2A warp is a set of 32 threads

3
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protein flexibility is still considered as a big challenge, since higher flexi-
bility needs more computational time to simulate the docking interactions.

0.3 Contributions

We now list the three main contributions of our thesis.
First, we propose a new metaheuristic based on bees swarm optimiza-

tion (BSO) to model MD as an alternative to the traditional metaheuristics
such as Genetic Algorithm (GA), Simulated Annealing (SA), and Particle
Swarm Optimization (PSO). BSO simulates the collective honey bee be-
havior in nature when looking for nectar of the easiest and richest sources
using the bees dance protocol. In this algorithm an artificial bee named
InitBee works out to find a first solution named Sref with some good fea-
tures. It then uses Sref as a starting point to find a group of disjoint solu-
tions called space-of-regions to maximally exploit the search space. Subse-
quently, every bee takes one solution from the space-of-regions group and
considers it as its starting point to do a local search (intensification) to look
for other potential solutions. To design and adapt our BSO metaheuristic
to the molecular docking problem we have to define the components of
BSO algorithm: the representation of the problem (encoding solution), the
fitness function that evaluates the found solutions, the Search strategy to
find disjoint solutions (diversification of solutions), and the neighborhood
search performed by each artificial bee (intensification of solutions ).

In the second contribution, we design and implement a parallel strat-
egy for the BSO metaheuristic. We propose for that purpose to use the
MapCG framework which is based on the MapReduce programming
model. The latter facilitates the task for massively parallel and distributed
programming. Our aim is to propose a portable application that is inde-
pendent from the hardware architecture and which can run on CPUs, on
GPUs, or on both CPU and GPUs without changing any line of the code.
In addition, we propose an efficient calculation of the scoring function on
the GPU by evaluating several solutions in parallel. The main idea is to
divide the dance table which contains solutions into several pieces and
execute them on GPU, then choose the best solution within the set of so-
lutions found in the first step by the reduce function.

In the third contribution, we propose a solution to improve the per-
formance of the blind docking problem (BD). In the last few years, blind
docking was proposed to examine the entire surface of target proteins
in order to find new interesting binding sites where small molecules (Lig-
ands) can eventually connect to make a stable complex. This method helps
to improve the quality of the docking process, but it exponentially in-
creases the computational time. By profiling the docking process, it was
noted that most of the CPU time in the docking process is spent in the
scoring function. Moreover, for blind docking this time is to be multiplied
by the number of binding sites. It is thus of great interest to parallelize this
calculation in order to speed up the metaheuristic and the whole docking
process. Indeed we propose a new approach to accelerate BD through the
exploitation of the emerging GPU architectures with the CUDA program-
ming model and the hyper-Q technique (Bradley 2012). The latter enables

4



Introduction. . .

multiple CPU threads to simultaneously launch multiple GPU Kernels 3

to perform calculation. We compared the performances of our parallel ap-
proach with the sequential version executed on a single-core CPU and
with the parallel multi-core CPU version (48 CPU threads). Our paral-
lel approach was applied to dock a set of protein-ligand complexes from
a known benchmark. The experiments show that the GPU-based paral-
lel version outperforms both the multi-core CPU and sequential versions.
Indeed, for 100 binding sites, our results show an average speedup of
200x compared to the serial implementation, and 10x compared to the
best multi-core CPU version(48 CPU thread). In addition, our parallel ap-
proach outperforms the best solution of the literature for solvation energy
calculation.

0.4 Thesis plan

This thesis is organized into five chapters:
Chapter one sets out the problematic of the thesis. First, an introduc-

tion to the molecular docking (MD) problem is given, followed by a deep
study of this field intended to allow the reader to clearly understand the
relevant research issues that are addressed in this thesis, like the scoring
function, the search algorithm with metaheuristics, and the need for the
accelerating of these metaheuristics to enhance the speed and the quality
of the solutions to the MD problem.

Chapter two introduces the basic concepts relative to parallelism in a
general way. It first presents the different classification of parallel architec-
tures that exist in the literature and the metrics used to evaluate parallel
algorithms such as speedup and efficiency. After that, it details the GPUs
architecture and show how scientists can leverage this recent architecture
to speed up their algorithms. Then, it presents parallel metaheuristics and
the challenge faced when trying to implement them on GPU architecture.
The second part of this chapter presents a detailed review of the parallel
metaheuristics used for solving MD problem on GPU architectures.

Chapter three represents our first contribution in this thesis. It is struc-
tured as follows. The background section describes biological and artifi-
cial bee swarms and introduces the most well known artificial bees swarm
metaheuristics, with a focus on BSO. Section two presents our strategy
to solve the docking problem with the BSO algorithm called BSO-DOCK
(BSO for Molecular Docking), giving detailed description of all its opera-
tors. The last section describes the used dataset and presents some results
and discussions.

Chapter four, first introduces the MapReduce model we chose as the
parallel model (Dean & Ghemawat 2010). It then introduces the MapCG
framework used to implement this model, after that it introduces our GPU
parallelization strategies (Liu et al. 2017). Finally it gives details on exper-
iments and discusses the obtained results.

The last chapter of this thesis is structured as follows. In the first sec-
tion, we present the background needed to understand the remaining sec-

3Functions in C++/C program when called are executed in parallel on GPU.

5



Introduction. . .

tions, such as the Solvation energy term calculation and NVIDIA Pascal
GPU architecture (Saadi et al. 2019b). Then, it introduces our multi-core
CPU and GPU parallelization strategies. It then gives details of the experi-
ments and discusses the obtained results. Finally, last section summarizes
the results and presents some concluding remarks.

Finally, the conclusion of this thesis summarizes the major achieve-
ment and gives the general appreciation of the results obtained and some
perspectives of our work.

0.5 Publications

This thesis gave rise to various written works:

• Hocine Saadi, Nadia Nouali-Taboudjemat, Abdellatif Rahmoun, Bal-
domero Imbernon, Horacio Emilio Pérez Sánchez, José M. Ce-
cilia.(2020). Efficient GPU-based parallelization of solvation calcu-
lationfor the blind docking problem. J.Supercomput.76(3):1980-1998

• Hocine Saadi, Nadia Nouali-Taboudjemat, Malika Mehdi, Ousm-
erSabrine. (2019). A GPU-MapCG based parallelization of BSO meta-
heuristic for Molecular Docking problem. The International Confer-
ence on Parallel and Distributed Processing Techniques Applications
PDPTA’19:205-210

• Hocine Saadi, Nadia Nouali-Taboudjemat, Abdellatif Rahmoun, Bal-
domero Imbernon, Horacio Pérez Sánchez, José M. Cecilia. (2017).
Parallel Desolvation Energy Term Calculation for Blind Docking on
GPU Architectures. 46th International Conference on Parallel Pro-
cessing Workshops. ICPP Workshops:16-22

• H.Saadi, Y.Djenouri, N.Nouali, A.Rahmoun, M.Mehdi, A.Bendjoudi.
(2016). Bees Swarm Optimization for Molecular Docking ). The 6th
International Conference on Metaheuristics and Nature Inspired-
Computing META’16

• H.saadi, Y.Djanouri, N.Nouali, A.Rahmoune, M.Mehdi, A. Bend-
joudi.(2016). Bees Swarm Optimisation for Molecular Docking
(Poster). IWBBIO International Work-Conference on Bioinformat-
ics and Biomedical Engineering.
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1Molecular Docking

Inthis chapter, an introduction to Molecular docking (MD) problem is
given. Studying this field allows us to clearly present the relevant

research issues that are addressed in this thesis, like the scoring function,
the search algorithm using metaheuristics, and the need to accelerating
these metaheuristics to enhance the performance and the quality of the
MD problem.
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Chapter 1. Molecular Docking

1.1 What is Molecular Docking

The study of biological molecules interactions in laboratory is difficult,
long, and very expensive. Molecular Docking (MD) is introduced to
predict the interaction between two molecules by simulations based on
their three-dimensional (3D) structure. The problem is like solving three-
dimensional puzzles. It predicts the preferred position, orientation, and
conformation of one molecule to a second when bound to each other to
form a stable complex (Morris & Lim-Wilby 2008). This method is used in
modern structure-based drug design for therapeutic aims (structure based
drug design means that we use the 3D structure of molecules to design
new drugs with the help of software). MD reduces the time and the price
needed to discover novel drugs.

Molecule docking is used also to:

• Study how a molecule is placed relative to another molecule, and
visualize the 3D structure of the two molecules before and after in-
teraction.

• Understand how the interaction takes place, which atoms are in-
volved in interaction process, and then answers some biological
questions.

• Predict on a large data base of 3D molecules some ones which
present the best features and affinities for later laboratory experi-
ments.

Molecule docking method can then be used not only to predict pos-
sible positions but also to predict how strong the association between
the molecules can be. This is called binding affinity. Indeed, it is useful
to know the binding strength when we compare (rank) a group of com-
pounds to determine which one is the best candidate (how strong a com-
pound will bind to the target). By using molecular docking we can save
a lot of time and money as use simulation before going to the laboratory
to make chemical and biological experiments. In addition, we can predict
how a molecule interacts or react. For example, the way towards finding
new and safe medications against complex sicknesses needs a huge time
of research, from 10 to 15 years with immense finance, sometimes more
than one Billion dollars per drug. Grand companies which produce drugs
use these methods in the discovery and the development of new medicine.

This method is also very useful when we want to screen (“virtual
screening”) a number of small compounds called ligands from a synthetic
or natural product, to even see if small molecules (ligands) have certain
pharmacological effects (inhibitor) on a particular protein that has a bad
effect in our body. This inhibitor bind to that protein and deactivate its
harmful function (Morris & Lim-Wilby 2008).
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All docking methods require a search method to explore the search
space and to find position and orientation of the ligand, and a scor-
ing function to rank the various positions and orientations found
(Sousa et al. 2006).

In MD the scoring functions are methods to evaluate docking poses,
these methods can be empirical, force-field based, or knowledge based.

The search methods fall into two major categories: systematic or
stochastic. Systematic search methods sample the search space at pre-
defined intervals, and are deterministic. Stochastic search methods iter-
atively make random changes to the state variables until a user-defined
termination criterion is met, so the outcome of the search varies.

Search methods can also be classified by how broadly they explore
the search space, as either local or global. Local search methods tend to
find the nearest or local minimum solution to the current conformation,
whereas global methods search for the best or global minimum solution
within the defined search space. Hybrid global–local search methods have
been shown to perform even better than global methods alone, being more
efficient and able to find lower energies (Morris et al. 1998b).

1.2 Useful definitions for MD

In this section, we give some definitions necessary for understanding the
content of this thesis (Chaudhary & Mishra 2016).

• Molecular modeling: a general term used to describe the use of com-
puters to design molecules and realize a variety of calculation on
these molecules in order to predict their chemical characteristics and
behavior.

• Computational chemistry: any use of computer to study chemical
systems.

• Receptor : called also target or host is the receiving molecule, most
commonly a protein as Fig 1.1 shows, or another macro-molecule.

• Ligand: a small molecule in size compared to the receptor (see Fig
1.2 ), usually named guest or key. A Ligand binds to the receptor to
form a stable complex.

• Binding site: The hole in the surface of the protein where the ligand
can take place to form a complex with the receptor (see Fig 1.3).

• Binding mode: The position, and the orientation of the ligand rela-
tive to the receptor, and also the conformation of both two molecules
when bound to each other.

• Pose: one possible binding mode named also configuration.

• Search algorithms (Search methods): the methods to predict the
docking poses.
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Figure 1.1 – Receptor Protein surface

Figure 1.2 – Ligand represented in 3D structure of atoms

• Scoring function (Fitness function): the methods to evaluate dock-
ing poses.

• Scoring: the process of evaluating a particular pose by calculation
the energy of interaction

• Ranking: classifying ligands and find the best ones which can most
likely bind favorably to a particular receptor based on the scoring
process.

1.3 Docking types

There are two main types of docking in practice depending on the size
and the type of the molecules used (Chaudhary & Mishra 2016):
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Figure 1.3 – Small Ligand docked to in a Protein’s binding site

Figure 1.4 – Ligand-Protein Docking

Ligand–Protein docking

A ligand is a small molecule compared to the protein which is a macro-
molecule, Molecular docking can be thought of as a problem of “lock-and-
key”, where we are interested in finding the correct relative orientation of
the “key” which will open up the “lock” (see figure 1.4). The key is the lig-
and and the lock is the protein. If the protein is flexible, a Hand–in-glove
analogy is more appropriate than lock and key.

Protein – Protein docking

This docking involves two macro-molecules (proteins) which interact with
each other by simulation using a computer software. This docking uses
the same principle as the protein-ligand docking. However, the complexity
increases dramatically. For this reason, most of the solutions proposed in
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Figure 1.5 – Ligand-DNA docking

this type of docking consider the two proteins as rigid molecules (do not
change their form). This method provides beneficial information on how
certain mechanisms take place in the protein-protein interactions

- Fig 1.5 shows a new kind of docking categorized as Lig-
and–DNA/RNA docking, or Ligand–nucleic acid (Yan et al. 2017). Few
researches are done in this field. This docking type is used to study and
predict the binding properties between drugs and DNA, for example to
find a drug for cancer disease.

If we take into account the complexity as a characteristic of classifica-
tion, we can distinguish three types of docking (Morris et al. 1998a):

Rigid docking

The receptor and ligand are rigid (the structure does not change), the
conformation of both is fixed (see Fig 1.6). This method has been widely
utilized in docking solutions because it is rapid and does not require a lot
of computing power to explore the search space (Halperin et al. 2002).

Semi flexible docking

The ligand is flexible (the bonds of the ligand can rotate), the receptor is
held fixed, or vice versa.
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Figure 1.6 – Flexible and Rigid Docking

Flexible docking

Both molecules are considered flexible (see Fig. 1.6), it is a computation-
ally demanding method but it gives better results since it reflects what
happens in reality (Camacho & Vajda 2002).

The decision of using rigid or flexible docking depends essentially on
the calculation resource available, the size and the characteristics of the
protein, and the number of ligands if we are dealing with virtual screen-
ing.

1.4 Docking approaches

In MD, two approaches are the most used and popular for docking
(Chaudhary & Mishra 2016). The first approach uses a surface comple-
mentary as criteria to match the protein and the ligand, when the second
approach utilizes the energy calculation and simulation of interaction to
evaluate the stability of the two compounds. the advantages and limita-
tions of each method are described below.

Shape complementary docking

This approach matches the two molecules by their geometry (see Fig.1.7),
it describes the receptor and the ligand as a set of characteristics of
their surfaces that make them dockable. These features are the solvent-
accessible surface area (SASA) descriptor for the receptor, and the match-
ing surface descriptor of the ligand. Another matching technique is to use
the hydrophobic features of the protein. The shape complimentary ap-
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Figure 1.7 – Docking by shape complementary

proach is generally fast because it does not take into consideration the
conformations of the ligand. It is also scalable to protein-protein interac-
tions. However, it does not take into consideration all the types of energy
interaction between the two molecules.

Energy based docking

This approach simulates the atoms interaction between the two com-
pounds (see Fig.1.8). It is the most difficult docking method. It simulates
the moves of the ligand to find a good position in the active site of the
target protein. The moves include translations of the center of the ligand
and its rotations in the binding site. It also include its conformation which
is the structural changes of the molecule defined by the torsion angle ro-
tations. Then the energy of each of these moves is calculated to evaluate
it.

The clear advantage of this approach is the ability to model the lig-
and flexibility whereas shape complementary approach has to use some
intelligent techniques to model the flexibility of ligand or protein side. In
addition, this approach is substantially closer to what happens in protein-
ligand interaction in reality. An evident disadvantage is that this approach
is time-consuming which needs huge computation resource to calculate
the energy of all poses found and rank them to find the optimal one.

1.5 Docking Challenges

The scoring function and the search algorithm are the major two chal-
lenges to face in molecular docking

In the last two decades, lot of effort has gone into developing the
search algorithm and the scoring function, this effort has almost settled the
search algorithm problems. Although some parts of the scoring function
remain challenging. For example, the solvation energy calculation persist
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Figure 1.8 – Docking with simulation approach

the main challenging part, in particular, for the force field scoring func-
tions (Dar & Mir 2017).

Rapidity (speed) and efficiency are the two crucial characteristics of a
scoring function. In the past, researcher were forced to develop a simple
and acceptable scoring function because of the calculation power limita-
tion. Now with the fast development in computing calculation power, the
coming focus for the scoring function development is how to enhance per-
formance and accuracy (Huang & Zou 2010).

Because of the complexity of the problem which increases with the de-
gree of freedom ( ligand’s bonds which can moves), and the limitation of
the computing power in the past, only ligand flexible docking with pro-
tein chain side flexibility has been addressed recently, protein flexibility
is considered as a big challenge where higher flexibility needs more com-
putational time to simulate the interactions. The development of docking
methods with protein flexibility still in its beginning and thereby stands
one of the leading future research directions in docking between protein
and ligand.

1.6 The Search Algorithm

The search algorithm is used in MD to explore the search space to find the
best ligand poses among millions of ligand conformations investigated.
We can distinct two major classes of searching algorithms:

Systematic Search algorithm

Systematic search algorithms are used to generate all possible ligand bind-
ing poses by exploring all the search space of the ligand when bounded
to the protein. There are two major categories of those searching methods:
exhaustive search and fragmentation search (Huang & Zou 2010).

The simplest systematic methods are exhaustive search methods which

15



Chapter 1. Molecular Docking

use exact search algorithms. In these methods, docking is performed by
looking for all possible conformations. However, the number of the solu-
tions becomes gigantic (combinatorial explosion) with the increase of the
degree of freedom. Thus, this method can be used for rapid virtual screen-
ing with rigid docking, after that the best ligands are docked with more
accurate search methods (Huang & Zou 2010).

In the second systematic search called fragmentation methods; the
small molecule is split into several fragments. Then, the conformation of
the ligand is built adding fragments incrementally in the binding site and
linking them. DOCK (Ewing et al. 2001), and FlexX (Pagadala et al. 2017)
are the most known tools that use fragmentation methods.

Stochastic Algorithms

In these algorithms, the position, the orientations and the conformations
of the ligand are found by making random changes in the search space. It
is generally based on meta-heuristics (Huang & Zou 2010). The most used
algorithms in this methods are; Evolutionary Algorithms (EA), Swarm Op-
timization (SO), Tabu Search, and Monte Carlo (MC) methods.

Evolutionary algorithms (EAs) are inspired from the evolutionary pro-
cess in biological systems, and use this evolution process to look for the
best ligand poses. The most known algorithms of EAs are the genetic
algorithms (GAs). The popular docking software that implement evolu-
tionary algorithms are: AutoDock, MolDock, GOLD, DIVALI, FLIPDock
(Pagadala et al. 2017).

Swarm optimization meta-heuristics (SO) model the swarm intelli-
gence to explore the search space and find an optimal solution. The confor-
mation and the position of the ligand are calculated based on the neigh-
bors’ information. SODOCK, Tribe-PSO, and PSO@Autodock are exam-
ples of popular solutions that use swarm optimization meta-heuristics as
search algorithm(Pagadala et al. 2017).

Tabu search is a local search method, the acceptance or rejection of a
solution depends on the neighborhoods search area explored previously.
A docking parameter called RMSD of the current solutions is calculated
(Raschka 2014), then it is compared with the RMSD of the previous regis-
tered solutions, some probabilities are used to accept or reject this solution.
PSI-DOCK, PRO, and LEADS are examples of docking softwares that use
tabu-search methods (Pagadala et al. 2017).

Monte Carlo method uses the Boltzmann probability (P) as shown in
equation 1.1, this P is calculated for each conformation and used to accept
or reject this conformation

P ≈ e[−(E1−E0)÷kB∗T] (1.1)

In equation 1.1 E0 is the initial energy score ( the energy of interaction
between molecules which represent the scoring function) before confor-
mation change, E1 is the energy scores after the conformation random
change, kB is the Boltzmann constant, T is the absolute temperature of the
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system. ICM, MCDOCK, QXP, Prodock, are example of docking software
that use Monte Carlo method (Liu & Wang 1999).

1.7 The scoring Function

The scoring function is a set of mathematical functions which evaluate
the results of the search algorithm (Huang & Zou 2010). This function is
used to approximately evaluate the protein-ligand interactions, and pre-
dict the binding affinity and the strength between the two molecules after
the docking process. Below, we give the mathematical formulation of this
function. A good scoring function with a good quality is computationally
too expensive. To reduce the complexity, more simple terms must be used
while keeping an acceptable cost in term of accuracy. A compromise be-
tween the speed of calculation and the accuracy of the scoring function
represents a challenge to be met (Sousa et al. 2006). There are typically
three general classes of scoring functions, force-field-based, empirical, and
knowledge-based.

Force Field-Based Scoring Function

This type of function is called also molecular mechanics-based scoring
functions ( force field energy) (Chaudhary & Mishra 2016). Most of the
MD scoring functions belongs to this category, where the binding affinities
are calculated by summing the strength of different intramolecular and
intermolecular interactions between all atoms of the ligand and the target
protein (Liu & Wang 2015). The energy forces used are;

• van der Waals energy

• electrostatic energy

• hydrogyn bonds energy

• solvation (desolvation) energy

The following equation represents the most used force field scoring
function

Gbinding = Evdw + Eelectrostatic + EH−bond + Edesolvation (1.2)

Empirical Scoring Function

In the empirical scoring functions, the affinity energy is calculated
by approximations, using a set of solved docking complex. It is
based on reproducing experimental data to determine the coefficients
(Wi in equation 1.3) for the different terms of the scoring function
(Dar & Mir 2017)(Sousa et al. 2006).

∆G = ∑ Wi ∗ ∆Gi (1.3)
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In this equation Gi represent individual empirical energy terms such as
VDW energy, electrostatic energy, hydrogen bonding energy, desolvation
term, entropy term, hydrophobicity term...Etc (Huang & Zou 2010).

The advantage of this method is the easy calculation of the various
terms. However, the principal disadvantages of these techniques are their
dependency on the experimental data (training set) utilized in the param-
eterization procedure (Huang & Zou 2010).

Knowledge- Based scoring Function

This method uses a database of known ligand-protein complex struc-
ture (Chaudhary & Mishra 2016), it is based on statistical observation
on the frequency of occurrence of different atoms pair contacts in the
protein-ligand compounds, which contributes favorably to binding affin-
ity (Sousa et al. 2006). It deals with the very simple type of interactions
between atoms. However, the main disadvantages of this class can be sum-
marized in the reliance on limited available data on known complex struc-
tures.

In the last decade, new scoring functions based on machine learn-
ing have been developed (Ballester & Mitchell 2010) (Silva et al. 2014)
(Kinnings et al. 2011). The aim is to outperform the traditional classes of
scoring functions cited above as the scoring function is induced.

1.8 Docking Workflow

The general process used in the most docking methods involves more or
less the following steps ( see Fig.1.9) [7 sur les article formart papier ]

Step I - Preparation of the protein and the ligand

The protein represented in its 3D structure is downloaded from the Pro-
tein data bank (PDB) (DataBank 2017). The ligands can also retrieved from
a ligands data base such as ZINC database (Irwin & Shoichet 2017), Pub-
Chem database (National Institutes of Health (NIH) 017) or it can be de-
signed from scratch by using some tools like Chemsketch tool. The protein
structure should be prepared by removing the water molecules and het-
erogeneous atoms if present, adding or removing some charges, adding
some residues (molecules). If we are dealing with protein flexibility we
should generate the flexible side chains of this protein ( the atoms of the
protein which interact with the ligand ). For the ligand, the most impor-
tant treatment is to fix the degree of freedom by choosing the number of
dynamic bonds. If we choose the ligand from a database, the rule of five
of LIPINSKY should be applied to increase the chance of the success of
the docking (Huang & Zou 2010).
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The five rules LIPINSKY are:

1. Less than five hydrogen bond donors.

2. Less than ten hydrogen bond acceptors.

3. Molecular mass less than 500 units.

4. High lipophilicity (expressed as LogP not over 5)

5. Molar reactivity should be between 40-130

If two rules or more are not satisfied, the ligand is non-drung like and
should not be used for docking.

Step II – Active site prediction

After the preparation of the protein and the ligand, the active site of
the protein should be found by using specific algorithms. The pro-
tein could contain many active sites; the best one should be chosen
(Halperin et al. 2002) (Morris et al. 2010).

Step III- Docking

After preparing the ligand and the protein, the docking process can take
place by using a software such as Autodock or Gold. The scoring function
evaluates scores on the basis of poses given by the search algorithm and
picks out the best one. The scoring function is also used to rank the best
ligands from a database in case of virtual screening.

Step IV Analyzing of the results

Finally, the results of the docking process are analyzed. The best confor-
mation of the ligand is chosen based on the best energy (lowest), and the
good stability with the protein target ( number of H-bonds formed be-
tween ligand and protein).

1.9 Docking softwares

There are many commercial or free open source docking programs avail-
able which are able to simulate the protein interaction with the ligand.
New algorithms from industry and academia are quickly incorporated
into the high end packages. Free open source packages are becoming
more stable and offering functionality that rivals some of the commer-
cial software. The success of a docking program mainly depends on
two components: the search algorithm and, the scoring function. More
than 60 softwares for docking are created during the last 20 years,
Here we summarize the most known and used software for docking
(Chaudhary & Mishra 2016).
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Figure 1.9 – Docking workflow

1.9.1 Autodock

Autodock is a popular and one of the most cited docking software in re-
search community, it is open source and free for academic uses. Autodock
is the first docking program which performs full flexibility docking be-
tween ligand and protein (Morris et al. 2010). It combines two methods
to achieve docking: rapid grid-based energy pre-calculation and efficient
search algorithm (Morris et al. 2009). The current version of Autodock pri-
marily uses Lamarckian Genetic Algorithm (LGA) metaheuristic which is
a Genetic algorithm GA combined with a local search method (Solis and
Wets), The user can also utilize other metaheuristics offered by this soft-
ware like simulated annealing (SA) or simple genetic algorithm (GA). To
evaluate conformations, the Semi-empirical force field free energy scoring
function is used. The actual version of Autodock contains two primary
programs: autodock used to perform the docking of the ligand to a set of
energy grids that describes the target macromolecule and autogrid which
pre-calculates these grids.

The docking process with Autodock is performed in several steps:

1. Preparation of coordinate files with PDBQ format for both ligand
and protein by using AutoDockTools (ADT). ADT is a set of tools to
prepare molecules, visualize and analyze the results.
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2. Pre-calculation of the atomic energy using Autogrid program

3. Docking of ligand with the target protein using autodock program

4. Analysis of results using AutoDockTools.

Autodock Vina is an improved version of autodock with an improved
local search algorithm and a simple and rapid scoring function compared
to Autodock (Trott & Olson 2010). Vina allows the use of multicore CPU.
It uses the same input files format as autodock (Pdbqt) and AutodockTools
can be used also for visualizing results.

Autodock is a free open source software accessible under the GNU
General Public License (GPL) for academic use. Autodock Vina is under
the Apache license available for commercial or academic use.

1.9.2 GOLD

Genetic Optimisation for Ligand Docking (GOLD) is a good software for
docking flexible ligand into protein binding sites and for virtual screening.
The software packages include a software tool called Hermes which is a
graphical user interface for docking with Gold. Hermes is used also to pre-
pare input files, and to visualize the docking results (Verdonk et al. 2003).

The scoring function of Gold is a molecular mechanics function with 4

terms as defined in (Verdonk et al. 2003) and shown in Equation 1.4.

S = Shb + Svdw + Shb−int + Svdw−int (1.4)

Where:

• Shb: the hydrogen bond energy of the complex protein-ligand

• Svdw : the complex van der Waals energy

• Shb-in: the intramolecular hydrogen bonds energy in the ligand

• Svdw-int : the intramolecular van der Waals energy in the ligand

The search algorithm used is the genetic algorithm (GA) meta-heuristic
in which some parameters are modified.

Gold uses a unique method to put the ligand in the binding site.
This mechanism is based on a set of fitting points added to the
hydrogen-bonding groups on both molecules, then mapping receptor
points on the ligand with donor points in the protein and vice versa
(Verdonk et al. 2003).

Gold has only Commercial software license.
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1.9.3 DOCK

The first version of DOCK is one of the oldest docking programs. It uses
geometric matching technique with rigid body and fragment based algo-
rithm, which make it a fast docking tool. The force-field based scoring
function is used for binding affinity (Ewing et al. 2001).

The current version named DOCK 6 is open source software. The scor-
ing function is improved in this version by enhancing the Solvation en-
ergy term. Ligand and protein flexibility are allowed. With this version re-
searchers can also use De-novo design docking method (Lang et al. 2009).

1.9.4 FlexX

Flexible ligands and grid of the proteins are used in Flex. This software is a
fragment based method where conformations are generating by using MI-
MUMBA torsion angle data base (Morris & Lim-Wilby 2008). FlexX uses a
scoring function called Boehm with some adaptations made for docking
purpose (Pagadala et al. 2017).

FlexE is the newest version, it allows protein side chain flexibility, and
therefore it enhances the accuracy of the docking.

The most used and known docking software and their features and
uses are surmised in Table 1.1. (Fan et al. 2019).

Table 1.1 – Molecular docking software

Software name Search algorithm Scoring Function Uses and features
Autodock Genetic Algorithm

GA,local Genetic Algo-
rithm LGA,Simulated
Annealing SA, Particle
Swarm Optimization
PSO

Semi-Empirical
molecular force
field

General Public Li-
cense (GPL) Free open
source for academic
uses Rigid or flexible
docking

Autodock vina GA with simple Local
search

Fast Semi-
Empirical

Rigid or flexible
docking Faster than
Autodock Not suitable
for ligands charged

Gold Genetic Algorithm GA Molecular me-
chanics

Commercial software
license Evaluated as
a very accurate soft-
ware Rigid or flexible
docking

Dock Fragment based Algo-
rithm

Molecular force
field

Fast docking software
Geometric matching
technique Flexible
Docking

FlexX Fragment based Algo-
rithm

Semi-Empirical Fast docking software
Rigid or flexible dock-
ing Can be used for
Virtual screening

ZDOCK Molecular dynamics Molecular force
field

Geometric matching
Rigid Docking

LeDOCK Genetic Algorithm GA
Simulated Annealing
SA

Molecular force
field

Fast docking software
Recommended for vir-
tual screening
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AutoDock and GOLD are the popular and the most cited and top-
ranked docking tools. However, they are not necessarily the most ac-
curate. Each of them has many advantages, but also has several limita-
tions (Rawal et al. 2019). Therefore, the user is always advised to carefully
choose the docking tool based on the details of each program and the size
and the nature of the molecules to be docked.

1.10 Molecular Docking tools

In this section we present the most known and used tools which help
researchers to perform a good docking,these tool can be used to prepare
the molecules for docking, and to visualise the results.

1.10.1 Autodock tools

AutodockTools ADT is a docking user interface tools developed by
the same laboratory that develops Autodock. With ADT users can pre-
pare input ligands and proteins files, visualize molecules in 3D and
analyse the results of the doking process ran with Autodock software
(El-Hachem et al. 2017). The users use ADT to prepare the ligand and
the protein molecules by adding hydrogen atoms or atomic charges, con-
verting input molecules to a convenient PDBQT format appropriate with
Autodock, define rotatable bonds in the ligand (flexibility). Then they can
create a grids parameter file GPF and a docking parameters file DPF. And
finally visualize the results in 3D images.

1.10.2 Paymol

PyMOL is an open source tool, created by Warren Lyford DeLano and
maintained by Schrödinger laboratory [24]. It is a commercial software,
but free for academic uses. Initially created for molecules visualization
in 3D, however, it can be used for Molecular docking simulation. Many
plug-ins are developed to allow the researchers to prepare and visualize
MD with PyMol. As an example we can name Autodock and Autodock
vina plugins (Seeliger & De Groot 2010).

1.10.3 UCSF Chimera

Chimera is a good software to analyze and visualize molecules inter-
action, and molecules structures. This software is used also to visual-
ize the docking results. It creates a high quality images and movies
(Pettersen et al. 2004). It is well documented and free for noncommercial
use. Chimera is introduced by the university of California, San Francisco.
And it is supported by the National Institutes of Health of USA.
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1.11 Conclusion

In this chapter we introduced the MD domain and detailed the two key
elements which ensure the success of the MD process which are the search
algorithm and the scoring function. MD is an optimization and an NP-
hard problem; accordingly, metaheuristics are needed to render the issue
tractable with an accepted time span. However, when we deal with huge
data-sets, these metaheuristics require acceleration. The solution to this
issue is to parallelize those metaheuristics by using the high performance
computing (HPC) resources like accelerators. The scoring function is a
major challenge in structure based drug design. The efficiency and the
accuracy of the docking process depend on the quality and the speed of
this scoring function.

In the next chapter, we present the parallel metaheuristics, the archi-
tecture of the modern GPUs, and the stat of art of parallel metaheuristic
on GPU used to solve the MD problem.
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2Parallel Metaheuristics on

GPU

2.1 Introduction

In the following, we introduce the basic information on parallel comput-
ing and parallel metaheuristics. A clear understanding of GPU charac-

teristics is required before providing an efficient implementation of paral-
lel metaheuristics on GPU. So we give details about GPU architectures in
the first part. In the last part of this chapter, we focus on the existing works
on solving the molecular docking problem with parallel metaheuristics on
GPU architectures.
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2.2 Parallel Computing

Parallel computing is the ability to run multiple tasks or computations
at the same time, all nowadays computer systems have parallelism tech-
nology implemented at many scales, starting from parallelism in nano-
circuits to reach parallel systems that occupy large data center. There are
divers reasons for why parallelism has become popular over the past years
which are related to the computation time and the energy consumption.
First, parallel computing is commonly faster than sequential computing,
second efficiency in terms of power consumption, especially when using
GPUs (Acar & Blelloch 2019).

Parallel Hardware

In the last two decades multiple processing units (cores) have been placed
onto a single chip. These processors can be special purpose, like those
found in Graphics Processing Units (GPUs), or general purpose proces-
sors. In the last years, most of computing devices such as mobile phones,
desktops and servers used multi-core chips and take advantage of this par-
allel hardware. At a larger scale, many computers can be connected by a
network and used together to solve large problems (Acar & Blelloch 2019).

Parallel Software

The way of organizing the computation in parallel programs is very dif-
ferent than the sequential programs. This is the big challenge because the
computation in parallel software must be independent to be performed
in parallel, and the developer has to identify dependencies in the compu-
tation and avoid creating unnecessary ones. Another important challenge
is how to implement the parallel algorithms, and which programming
language and system to use for coding, knowing that these different pro-
gramming languages and systems frequently target a particular kind of
hardware and are used to solve a particular problem.

2.3 Parallel architectures classification

Numerous classifications of parallel architectures have been proposed in
the literature. The best known is the one proposed by Flynn in 1966

(Flynn 1966). This latter is based on instruction flows and the way they
are applied to the data flow. A parallel or concurrent operation can have
different forms within a computer system based on the different flows
used in the calculation process. There are four classes based on the Flynn
classification (see Figure 2.1).

Single Instruction Single Data stream (SISD)

SISD is a term for a hardware architecture in which a single instruction
is executed by one CPU using a single data as input (Flynn 1995). The
execution of a new instruction starts only at the end of the previous one.
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Figure 2.1 – Flynn’s taxonomy

Therefore, there is no parallelism. The classical machine of Von Neumann
is a typical example from this class.

Single Instruction Multiple Data (SIMD)

This class is called the massively parallel architecture. SIMD machines
incorporate many processors managed by one or many control units. All
units of calculation execute the same instruction or program received from
the control unit, but operates on different data. The units of calculation ex-
ecute the same instruction at each unit of time (operate synchronously).
The two most popular categories of SIMD processors are the vector pro-
cessor and the matrix processor. GPUs and newer CPUs belong to this
architecture

Multiple Instruction Single Data (MISD)

The MISD architecture can conceptually be represented by several in-
dependent processors operating on a single data stream, transmitting
the results from one unit to another one. In terms of micro architec-
ture, this is exactly what the vector processor does. However, in the vec-
tor pipeline the operations are simply fragments of a larger operation
(Flynn & Rudd 1996). The data processed during each processing step in
the pipeline is different from the previous one. According to some authors
and experts, this class does not correspond to realistic model of operation
(Matloff 2006).
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Multiple Instruction Multiple Data (MIMD)

In this class, the processors are independent of each other and work asyn-
chronously. Each processor has its own control unit, and its own data
like SIMD model. However, it can also have its own flow of instruction,
it can perform its task independently of the others even though most ap-
plications require some form of synchronization between processors to
exchange information and data with each other (Flynn & Rudd 1996). The
MIMD is the most common architecture of parallel processors. Multipro-
cessors machines belong to this class.

To ensure data coherence, it is often necessary to synchronize the dif-
ferent processors with each other, the synchronization techniques rely on
the memory organization.

If we take memory access and uses as a criteria of classification, we can
distinguish two major classes; shared memory machines and distributed
memory machines

Shared Memory machines

A shared-memory machine is mainly made of processors with indepen-
dent clocks working asynchronously, and communicating via a single and
same memory (the shared memory) by dropping and reading their data
using this memory (see Figure 2.2). An additional difficulty is that each
processor usually has at least one data cache memory. All of these caches
memory must have coherent information at the crucial moments. The Syn-
chronization can be performed by using:

• Synchronization barriers.

• Semaphores with the two operations, P and V.

• Mutexlock by using binary semaphore, used to protect a critical sec-
tion.

• Monitors: high-level construction, implicit lock.

Distributed Memory machines

Each processor has its own memory and cannot access to the others mem-
ories. Information is communicated and exchanged between the proces-
sors in the form of messages, either synchronously or asynchronously.
Processors are not all connected to each other because of the high cost of
these types of connections. A message between two processors that are
not immediately neighbors will take a path composed of a succession of
processors (see Figure 2.3).
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Figure 2.2 – Shared memory machine

Figure 2.3 – Distributed memory machine

2.4 Acceleration and efficiency

Efficiency and acceleration are the most used criteria to evaluate the per-
formance of parallel algorithms.

The efficiency for sequential algorithms is commonly measured by the
execution time, the later depends typically on the size of the problem and
input data (Cormen et al. 1994).

The accelerating or speed-up Sp for parallel algorithms is defined as
follows: Let n be the size of the input data, and we use P parallel pro-
cessors. Sp is the ratio between the time of the best sequential algorithm
Ts(n) and the time spend by the parallel version to solve it Tp(n). So, the
speed-up Sp of the parallel version that solves the problem X is defined
by the Equation 2.1:

Spx(n) = Ts(n)÷ Tp(n) (2.1)
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Figure 2.4 – Different cases of speed-up and efficiency

The efficiency E represents the second performance measure of a par-
allel algorithm, it is represented by the following equation:

Ex(n) = Ts(n)÷ (p ∗ Tp(n)) (2.2)

which is equal to :

Ex(n) = Spx(n)÷ P (2.3)

This measurement gives an indication about the efficiency of using P
processors in the parallel algorithm. An efficiency value equal to one in-
dicates that the parallel algorithm runs P time faster using P processors
as compared with the best serial algorithm with on processor. Thus, each
parallel processor accomplishes its tasks efficiency during each step of the
parallel algorithm (JéJé 1992). We can notice that efficiency is closely re-
lated to the number of processors. In addition to its use in comparing the
sequential and parallel algorithm, efficiency can also be used to compare
the performance of two parallel algorithm, i.e., the greater the efficiency,
the better the parallel solution is. As shown in the Figure 2.4, an ideal
parallel speed-up implies an efficiency equal to one. For some kind of al-
gorithm and optimization problems, we can get a super-linear speed-up
characterized by an efficiency greater then one. This situation can appear
when the parallel algorithm avoid some computation performed in the se-
quential algorithm. We say that a parallel algorithm is scalable if it remains
efficient for a large number of processors.

The speed-up and efficiency depend on the size of the problem and
one the number of processor. By fixing the size of the problem, it is pos-
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sible to study the evolution of these indicators ( speed-up and efficiency)
according to the number of processors. The converse is also possible, by
fixing the number of processors, we can study the evolution of the acceler-
ation and the efficiency according to the size of the problem. To this aim,
the iso-efficiency criteria is used. This relationship can be useful for deter-
mining the ideal number of processors for a given instance of the problem
or to estimate the minimum size that a problem instance should have, in
order to get some given speed-up.

2.5 Performance factors of parallel algorithm

To write a good and an efficient parallel algorithm, programmers should
take into consideration some important factors which have a big impact
on the performance of this parallel algorithm. In the following, we present
some of these factors (Codenotti & Leoncini 1992).

2.5.1 Granularity of parallelism

The parallelism grain means the average size of jobs assigned to the pro-
cessors. The size is generally measured by either the execution time, the
used memory, or the number of executed instructions. Two types of granu-
larity of parallelism may be determined; coarse grain parallelism and fine
grain parallelism. The choice between these two kinds is firmly related to
the characteristics of the used parallel machine. Principally, we start by
considering coarse grained parallelism before going to fine grained. Fine
grained dose not require a deep knowledge the code contrary to coarse
grained parallelism. But, it needs many synchronization point, and sev-
eral part of code need to be run in parallel. The coarse grained uses a
limited number of synchronization which gives a higher parallelization
gain. However, it requires a good knowledge of the code.

2.5.2 Communications

An important part of the execution time of a parallel algorithm is devoted
to information interchange between the processors which represents the
communication load . This later can affect the performance of this paral-
lel algorithm according to the used communicating model. In a shared-
memory model, all processors have access to the common memory, the
communication load in this model depends on the size of the data ex-
changed between all processors, the memory access time, and the conflicts
management of the simultaneous read and write of the same data. In a dis-
tributed memory model, the communication load in this kind depends on
the network topology, the network bandwidth (the network capacity of
data transferring), the size and the number of messages sent, the structure
of the algorithm, and the number of the processors used.

2.5.3 Synchronization

In parallel programming synchronization points are used to organize
some order of events that are dependent on each other, in order to guaran-
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tee that all the processors have completed their parallel task. In a shared
memory model, synchronization can be performed using either barriers
or semaphores. If a barrier is used, no processor can continue running af-
ter that point until all the other processors have reached it. Semaphores
are used to control a critical area where only one processor can execute
certain instructions in the algorithm. In a distributed memory model, syn-
chronization is achieved by using blocking send and receive operations.
During the synchronization, processors remain inactive for a period of
time that varies according to the algorithm. Synchronization can be detri-
mental to the efficiency of the parallelization, programmer should mini-
mize the synchronization points as much as possible.

2.5.4 Task decomposition

The aim of task decomposition is the distribution of computation and the
data across all processors, in order to minimize the inactive time of pro-
cessors during synchronization and to maximize the efficiency. Calégari
(Calégari 1999) proposed three task allocation strategies. These strategies
depend on the time of the allocation and on the number of tasks. If they are
both determined at the compilation time, then the static allocation strategy
is used. Contrarily, if they both vary during the execution, then the adap-
tive allocation strategy is used. If the number of tasks is determined at
compilation time and the allocation is performed during execution, then,
a dynamic allocation strategy is used. In the last two strategies, a load
balancing algorithm is needed to balance the load between processors.
Generally the static allocation is used if the computation load of the dif-
ferent task is approximately the same and the number of tasks is known
in advance. However, if the tasks are heterogeneous, then the dynamic
strategy will probably be sufficient.

2.6 Current parallel Computer Architectures

In order to build efficient parallel programs, it is important to be aware
of the trends in the recent computer architectures. The classification
of current parallel computer architectures are summarized as follows
(Geshi 2019):
• Multi-core : In this class, the number of cores (computational units),

is increased to achieve a good speed-up. The number of cores is around
10 in the basic CPU models of this architecture, it can reach more than 30

cores in the high-end CPU classes.
• Many-Core: The parallel architecture is the same as multi-core ar-

chitecture. However, the number of cores is greater and the frequency is
invented to be lower. The number of cores is about 60 physical cores. From
2018, the parallelism is more than 200.
• GPU (Accelerator): In the last decade, Graphics Processing Units

(GPUs) are commonly used as accelerators in addition to CPUs. In the
following , We will detailed the GPUs architecture.
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Figure 2.5 – CPU vs GPU cores comparison

2.7 GPU architectures

General Purpose GPU (GPGPU)

A Graphics Processing Unit (GPU) is massively multi-threaded architec-
ture, initially designed for display process, visual computing, and com-
puter games, but have recently been successfully used to accelerate many
scientific applications, ranging from artificial intelligence, and smart cars
to medical imaging, just to name a few. The GeForce 256 card was the
world’s first GPU card introduced by Nvidia in 1999, then the rival ven-
dor “ATI” gave its first graphic card “Radeon 9700” in 2002, and used the
term of Visual Processing Unit or VPU instead of GPU (Saadi et al. 2017).

GPGPU (General Purpose GPU) is the use of a GPU for processing non
graphical entities, and for general purpose scientific and engineering com-
puting. The best model for GPGPU is to use a CPU and GPU together in
a heterogeneous co-processing computing model. The sequential part of
the application runs on the CPU and the computationally-intensive part is
accelerated by the GPU (Saadi et al. 2019b). In the last years CPU is capa-
ble of carry on more numbers of cores than before. But, processing huge
data in parallel needs a huge number of cores, this can be done powerfully
by the GPU architecture with thousand of cores. Figure 2.5 illustrates the
difference in number of cores between the two architectures. The CPU
cores can be used to handle various tasks in parallel because it has large
memory cache and important control units, but it has few arithmetic units
(ALU). Contrarily, GPU can massively calculate in parallel a small and
independent data because GPU is equipped with a huge number of arith-
metic units (ALU), but it has a small memory cache and small number
of control units. Thus, GPU is designed for huge data parallelization and
CPU for task parallelization.
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Figure 2.6 – GPU architecture

An effective GPGPU programming needs a good understanding of the
GPUs architecture and the hardware mechanisms.

2.7.1 Modern GPU Computing Architecture

Modern GPUs are composed principally of streaming multiprocessors
(SMs) (Figure 2.6 and figure 2.7), each SM consists of a number cores called
streaming processors (SP), thread scheduler, registers, double-precision
unit(s), and special functional units. The GPU core has the floating point
and the integer arithmetic units (AUs), where instructions of the paral-
lel program are executed. These GPU cores support multithreading, and
commonly tolerating 32 to 96 threads in the current GPU architectures
(Shi et al. 2018).

Blocks are used to organize SMs. In a typical GPU architecture a
building block is composed of to two SMs; nonetheless, this number of
SMs may vary from one generation to another generation of GPU card
(Ghorpade et al. 2012) .

The GPU memory architecture can be grouped into two categories :
on-device memory and on-chip memory (see Figure 2.8). Global memory,
constant memory and texture memory are DRAM memory, and they be-
long to the on-device memory. All threads have access to global memory,
while constant and texture memory are principally created for graphical
computations. The on-chip memory is composed of many physical com-
ponents, including register, shared memory, L1/L2 cache (Shi et al. 2018).
The GPU global memory has a double data rate (GDDR) memory, this
memory is unlike the CPU DRAM. For graphic uses, it is used as a frame
buffer to hold video and images, and texture information for 3D render-
ing. However, for computing and for massively parallel applications, it
works as very-high-bandwidth memory, nerveless with long latency than
typical CPU memory. In this case the higher bandwidth compensates the
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Figure 2.7 – Modern GPU architecture (NVIDIA 2017)

latency. Cache memories are used on a SM to reduce latency on the GPU
architectures, like the constant and texture caches, and L1/L2 cache. The
shared memory on each SM is small (48KB per SM in NVIDIA K40 GPU)
but it is of high-speed, and is only accessible to the threads generated on
that SM.

A GPU is connected to the host by the PCI-Express bus, and by the
VLINK bus in the latest GPU architectures. The data is transferred be-
tween memory in GPU and the main memory in CPU usually by using
the programmed DMA, which operates concurrently with both the host
CPU and the GPU computing units.

More detailed information about the latest NVIDIA GPU architectures
is given in NVIDIA white-paper site (Whitepaper ).

2.7.2 GPU programming

There are multiple SDKs and APIs available for the programming of GPUs
for general purpose computation that is basically other than graphical pur-
pose for example NVIDIA CUDA, ATI Stream SDK, OpenCL, Rapidmind,
HMPP, and PGI Accelerator. Selection of the right approach for accelerat-
ing a program depends on a number of factors, including which language
is currently being used, portability, supported software functionality, and
other considerations depending on the project (Ghorpade et al. 2012).

An overview of CUDA Programming Model

CUDA is an acronym for "Compute Unified Device Architecture". It is a
popular heterogeneous programming model invented by NVIDIA com-
pany in late 2006 and designed for general purpose programming on
GPUs (GPGPU) (GPGPU 2017). It allows developers and scientists to par-
allelize and speedup their applications. The architecture of this parallel
computing model is based on a pseudo assembly language called PTX
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Figure 2.8 – GPU memory architecture (NVIDIA 2017)

(Parallel Thread Execution) and the NVCC compiler. CUDA allows the
exploitation of both the CPU and the GPU in the same code. In this model,
the CPU is called host, and the GPU device. The code is partitioned into
two sections: the first section is sequential and keeps running on the CPU
while the second named kernel is executed in parallel on the device by
many GPU threads (Sanders & Kandrot 2010).

A thread is the basic execution unit on the GPU card (Fang et al. 2014).
Each thread has its unique and own identifier (id). Threads are grouped
into blocks which in their turn are assembled in a grid. The blocks of a
grid are managed by the hardware and can be executed in any order. The
number of threads per block is defined by the programmer. The threads
are generated by the hardware while launching the kernel. A warp is a
scheduled unit. It is a batch of 32 threads executed together by the device.
Threads of the same block are scheduled warp by warp and can cooperate
together using specific functions and memories. NVIDIA GPUs architec-

ture is based on two main type of components: Streaming Multiprocessors
(SMs) and memories (Nickolls & Dally 2010). SMs has numerous Stream
Processors (SP). Each of them performs computations with SIMD (Single
Instruction Multiple Data) parallel model. Any SP has its own registers,
control units, caches, and execution pipelines. GPUs memories are mainly
grouped in three categories:

• Global memory: this memory is the interface between host and de-
vice; it is private to each GPU, nonetheless shared for all SMs within
the same GPU.

• Shared memory: is faster but smaller than global memory. It is a pri-
vate memory space for each block and can be used only by threads
within the same block. Frequently used data can be stored in this
memory to accelerate computations.
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• Registers: are a very fast type of memory that are private to threads.

To write a good parallel code to leverage the latest NVIDIA ar-
chitectures, developers should follow the best practice guidelines
and recommendations described in details in CUDA C Program-
ming Guide (Corporation 2018) and in CUDA C Best Practices Guide
(NVIDIA CUDA 2017), those recommendations are applicable to all
NVIDIA GPU architectures. Further, there are guides to tuning the par-
allel code for each specific new architecture created by NVIDIA such as
Kepler, Maxwell and Pascal. The best recommendations are summarized
along these lines:

• Find good approaches to parallelize sequential code.

• Maximize GPU utilization by fin-tuning Kernel launch configura-
tion.

• Decrease data move from the host to the device and vice versa.

• Enhance data accesses to global memory by saving data in coalesced
way.

• Reduce redundant accesses to global memory by using the other
kind of memories available on the device.

• Avoid threads divergence of the same wrap.

OpenCL

OpenCL (Open Computing Language) is an open, free and standard pro-
gramming language (Trobec et al. 2018). It can be used to write programs
for heterogeneous platforms consisting of CPUs, GPUs, or other types
of processors. OpenCL was released in 2009 by the Khronos Group. The
code written with this language is compiled at the run-time and execute
in FIFO queue, thus it can work on many different platforms, and support
multiple devices simultaneously.

OpenCL has one significant drawback, it is difficult to learn. Program-
mers need to clearly understand three basic concepts: device memory
models, heterogeneous systems, and execution model.

• Memory model: the data can be placed in one of four memory types:
global memory, local memory, private memory, or constant memory.
The location of the data in one of these types determines how the
data is shared within a work-group, and the speed to access to these
data.

• Execution model: Kernels are executed by one or many work-
items(threads), each work-item executes the same kernel function.
Workitems are grouped into work-groups (blocks) and each work-
group executes on a compute unit. Kernels are invoked over an in-
dex space called NDRange which defines the total number of work
items that can be executed in parallel.

Table 2.1 shows some of the comparable CUDA and OpenCL terms.
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Table 2.1 – Comparison between CUDA and OpenCL terms.

CUDA OpenCL

Thread Work-Item
Thread Block Work-Group
global function kernel function
Shared Memory Local Memory
Local Memory Private Memory
device function Implicit
shared variable local variable
threadIdx get local id()
gridDim get num groups()
blockDim get local size()
blockIdx get group id()
syncthreads() barrier()

OpenACC

OpenACC is a high-level programming model based on directive (prag-
mas) (Chandrasekaran & Juckeland 2017). Programming with this model
requires significantly less effort than using a low-level model such as
CUDA or OpenCL. The compiler runs the code on the specified hard-
ware platform at the time of compilation and handles most of the complex
details of the code translations. This allows scientists to focus on their sci-
ence rather than spending time to understand the target architecture de-
tails and leaning low-level languages. OpenACC offers portable code for
more than one platform such as X86, multicore processors, GPUs , field-
programmable gate arrays (FPGAs)...etc. The code can be compiled simply
in a serial manner on CPU, ignoring the directives and producing correct
results, or runs in parallel. The OpenACC compiler interprets directives
and generates corresponding parallel code. If the OpenACC compiler is
disabled or does not exit, the compiler ignores the directives and gener-
ates a serial program without any parallelism. The following code shows
the how to write an OpenACC directives :

#pragma acc <directive> [clause, clause, . . . ] new-line

OpenACC has three advantages. First, using a working program with
just adding directives to it is more easy than rewriting in a new language.
Second, it is designed for writing more scalable programs by allowing
fewer way to insert synchronization into the code. Third, OpenACC en-
sures portability across different target HPC systems, programmer does
not need to re-tune his code every time a vendor comes out with a new
model (Farber 2016).
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2.8 Parallel metaheuristics

2.8.1 Introduction to metaheuristics

Metaheuristics are approximate methods to solve complex and NP-hard
problems. Indeed, these methods help to find good quality solutions in
reasonable computation time compared to exact methods, but with no
guarantee to reach the optimal solution (Mehdi et al. 2013). Metaheuris-
tics can be devised into two categories according to the number of so-
lutions considered at each iteration; Population-based metaheuristics (P-
metaheuristics) (Mehdi et al. 2013), and solution-based metaheuristic (S-
metaheuristics). P-metaheuristics begin with a set of solution (population)
and release an iterative operation to enhance the quality of the current
population, this operation is repeated until meting a stopping criteria.
The most known meta-heuristic of this class are Evolutionary Algorithms
(EA) like Genetic Algorithm, swarm optimization like Particle Swarm Op-
timization (PSO) and Ant Colonies (AO) . A survey of these methods is
available in (Bozorg-Haddad et al. 2017).

Otherwise, in S-metaheuristics, the search method begins with a
unique solution (defined randomly), this first solution is iteratively im-
proved by exploring its neighborhood. Local search methods fall in this
class. Examples of local search are, simulated annealing, tabu search, it-
erated local search, variable neighborhood search. A survey and a state-
of-the-art of these algorithms can be found in (Trott & Olson 2010) and
(Talbi 2009). P-metaheuristics are good for exploration of the global search
space with a better diversification of solutions. S-metaheuristics are good
for intensifying the search for solution in local region, it is better for ex-
ploitation.

2.8.2 Parallel Models of Metaheuristics

Metaheuristics are known to achieve satisfying results in an acceptable
time when dealing with optimization problems. However, they suffer from
the lack of scalability. it becomes limited with complex and high dimen-
sional optimization problems. To reduce this limitation, parallel comput-
ing appears as a strong alternative. Thanks to this technology, parallel
metaheuristics can obtain better results in terms of computation, and
sometimes in term of the quality (Essaid et al. 2019), in the next section
we detail the taxonomy of parallel metaheuristic.

Classification of Talbi et al.

According to Talbi et all, three parallel models for metaheuristics can be
classified as illustrated in Figure 2.9; algorithmic-level , iteration-level and
solution-level (Talbi 2009).
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Figure 2.9 – Parallel models for metaheuristics

1. Algorithmic-level: Many metaheuristics run in parallel to enhance
performance. They can be homogeneous or heterogeneous, they may
start with identical or different solutions, with the same or different
parameter settings for its configuration. The parallel metaheuristic
launched can progress independently or in cooperative manner. For
the first case, the execution time is reduced, but the quality is the
same. However, in the second case (cooperative parallel models), the
metaheuristics cooperate with each other to find better solutions and
then improve the quality.

2. Iteration-level: this class is low level master-worker model, this level
focuses in the parallelization of each iteration. In s-metaheuristics,
the neighborhood is decomposed into smaller partitions, then each
partition is processed and evaluated in a parallel. The same method
is applied for p-metaheuristics, but population is decomposed into
smaller population instead of neighborhood in s-metheuristic, each
s-population is evaluated in parallel. In this parallelization model
the behavior of the metaheuristic is not changed, the objective is to
enhance performance.

3. Solution-level : this level focuses in the parallelization of each so-
lution, This model is used to parallelize the objective function or
constraints which are the most time consuming part. The objective
is to enhance performance, indeed the quality is not altered. This
parallelization level is specifically interesting when the scoring func-
tion can be itself parallelized. And this function can be divided in a
number of partial functions.
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2.8.3 State-of-the-art of parallel metaheuristics on GPUs

This section summarizes the sate of art of the GPU-based metaheuris-
tics for solving some known discrete and continuous problems. This
state-of-the-art is based on the recent works published by Essaid et al
(Essaid et al. 2019).

GPU-based metaheuristics for discrete problems

Table 2.2 summarizes the results and characteristics of the implementa-
tions of single solution based metaheuristics (s-metaheuristics) for discrete
problems such as Qquadratic assignment problem (QAP), Multi-criteria
vehicle routing problem (MVRP), Resource constrained project schedul-
ing problem (RCPSP), Multidimensional knapsack problem (MKP), the
algorithms used are tabu search (TS), greedy randomised adaptive search
procedure (GRASP), and simulating annealing (SA)

Table 2.2 – GPU based S-Metaheuristic for discrete problems.

Algorithm Problem Parallel
level

Acceleration Benchmark CPU/GPU

TS QAP Algorithm
+ Iteration
level

420x vs CPU and
70x vs 6 core
CPU

QAPLIB CPU: Intel 6

cores I7 / GPU:
Nvidia GTX 480

with 480 Cores
TS QAP Algorithm

+ Solution
+Iteration
level

GPU saves up
3h compared to
CPU

QAPLIB CPU: Intel I5
/ GPU: Nvidia
GTX -680 with
1536 Cores

TS MVRP Algorithm
level

14x vs CPU
sequential imple-
mentation

Instance of
size from
10 to 500

CPU:Tesla S2050

, GPU: Nvidia
GTX 480 with 480

Cores
TS RCPSP Algorithm

+ Iteration
level

5.4x vs parallel
CPU and 22 x vs
sequential CPU

J30, J60, J90,
J120

CPU: AMD X4

945 server, GPU:
Nvidia GTX -650

with 768 Cores
GRASP MKP Algorithm

+ Iteration
level

No accelera-
tion but quality
improved

ORLIB Not motioned

SA TSP Algorithm
+ Iteration
level

14.84 vs CPU im-
plementation

9 instance
from
TSPLLIB

CPU: AMD A8

3870k, GPU:
Nvidia GTX -680

with 1536 Cores

Table 2.3 outlines some works of parallel p-metaheurstic on GPU such
as Ant colony optimization (ACO), Particle Swarm Optimization (PSO),
and evolutionary algorithms for solving discrete problems on GPU, the
problems tackled are Unmanned Aerial Vehicles (UAV), Vertex Coloring
Problem VCP, edge detection in images, simulate the pedestrian move-
ment, the Satisfiability Problem (SAT), max constraint satisfaction prob-
lems (Max-CSPs), Golomb ruler problem, massively multi-modal decep-
tive problem (MMDP), subset sum problem (SSP), and Maximum CUT
problem (MAXCUT), task scheduling problem...etc
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Table 2.3 – GPU based P-Metaheuristic for discrete problems.

Algorithm Problem Parallel
level

Acceleration Benchmark CPU/GPU

EA Golomb
ruler

Solution +
Iteration
level

10x 8 instances of dif-
ferent length of
ruler

CPU: Intel 64

(2.4GHz),GPU Nvidia
Tesla M2090 512 cores

SS Golomb
ruler

Solution +
Iteration
level

1.22x 8 instances of dif-
ferent length of
ruler

CPU: Xeon E5645(2.4
GHz),GPU Nvidia
M2090 512 cores

ACO TSP Solution +
Iteration
level

546,66x TSPLIB CPU:Intel i5(3 GHz),
GPU Nvidia GTX 680

with 1536 Cuda cores
ACO The pedes-

trian move-
ment

Solution +
Iteration
level

18x 2D grid and
agents manually
generated

CPU: Intel i7(2,8
GHz),GPU Nvidia
GTX 560ti with 448

Cuda cores
ACO Vertex col-

oring
Solution +
Iteration
level

19.68 to
36.81x

6 instance from
[22]

CPU:Intel i7 4790(3.66

GHz),GPU Nvidia
GTX 1080 with 2560

Cuda cores
ACO MKP Solution +

Iteration
level

575x ORLIB Not montioned

ACO Edge detec-
tion

Iteration
level

150x The standard test
images [22]

CPU:Intel i7 950 (3,06

GHz), GPU Nvidia
GTX 580 with 580

Cuda cores
ACO SAT Solution +

Iteration
level

21x Instance from the
SAT VNFs

CPU: Intel i7 3770K
(4.5 GHz),GPU Nvidia
GTX 680 with 1536

Cuda cores
SNS+uGA MMDP and

MAXCUT
Iteration
level

216x Large instance
K=20,30,40

CPU: Intel i7 920 (2.66

GHz), GPU Nvidia
GTX 650 with 384

Cuda cores
Graphic
cell

Task
Scheduling
TS

Solution +
Iteration
level

Not men-
tioned

Instance as in
[22]

CPU: Intel Xeon
E5440,GPU Nvidia
Tesla C2050 GTX 580

with 448 Cuda cores
Memetic
Algorithm

TS with
precedence
relations

Algorithm
+ Iteration
level

696x Benchmark as in
[22]

CPU: Intel Xeon (2.8
GHz),GPU Nvidia
GTX 480 with 480

Cuda cores
RRLS Probabilistic

TSP with
deadlines

Solution +
Iteration
level

10x Instance chosen
as in [22]

CPU: quad core Intel
i7 950 (2 GHz), GPU
Nvidia GTX 580 with
512 Cuda cores

GA QAP Iteration
level

30x 10 instance from
QAPLIB

Not montioned

PSO MKP Solution +
Iteration
level

3.5 to 9.6x Taken From [22] CPU: Quad core Intel
i7 920 (2,66 GHz), GPU
Nvidia GTX 580 with
512 Cuda cores

2 variants
of PSO

Max-CSPs Solution +
Algorithm
Iteration
level

1,3x vs
GPU-PSO

Randomly gener-
ated in stances
[22]

CPU: Intel i7 2630QM
(2.0 GHz), GPU Nvidia
GTX 525M with 96

Cuda cores
ABC connected

cover sen-
sors

Iteration
level

5x 100*100 square
area

CPU:i3 (3.4GHz), GPU
Nvidia GTX 760 with
1152 Cuda cores
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GPU-based metaheuristics for continuous problems

This subsection outlines different implementations of GPU-based meta-
heuristics addressed to solve continuous problems (Essaid et al. 2019).
Table 2.4 summarize the characteristics and the results of the imple-
mentations of the important works to accelerate different metaheuritics
such as PSO, Differential evolution (DV), memetic algorithm, Genetic
Algorithm (GA), CU bee algorithm (CUBA), multi-objective tabu search
(MOTS2)...etc.

Table 2.4 – Characteristic of GPU based Metaheuristic on continuous problems.

Algorithm Problem Parallel
level

Acceleration Benchmark CPU/GPU

DE Iteration level 4.475x Function from
CEC 2008

Improved CPU: intel core
quad GPU:
Nvidia GeForce
GTX285 with 240

cores
DE-BSA-SA Solution + Iteration level 40x Function from

[22]
No im-
provement

CPU: intel I5
GPU: Nvidia
GeForce GTX680

with 1536 cores
DE+PSO Solution + Iteration level Not men-

tioned
4 test from
CVSSP+ 15

images of hip-
pocampi

PSO per-
forms
better in
human
body pose
but DE
is better
in hippo-
campus
localization

CPU: intel I7
GPU:Nvidia
GeForce GTS450

with 198 cores

MA-SW chains Solution + Iteration level 82.17x CEC 2010 No im-
provement

CPU: intel I7
GPU: Nvidia
Titan with 2688

cores
PSO Solution + Iteration level 46x Sphere, Rosen-

brock, rastrigin,
Griewank, ackley,
de jong, Easom

Quality im-
proved in
sphere and
Griewank

CPU: intel I7
GPU: Geforce
GTX 980 with
2048 cores

GA Iteration level 1.18 to 4.15 Function taken
from [22]

No im-
provement

CPU: intel I5
4200 /GPU:
Geforce GTX 740

with 384 cores
CUBA Algorithmic + Iteration level 18x Function taken

from [22]
Quality im-
proved

CPU: AMD
Athlon II/ GPU:
Geforce GTX 460

wth 336 cores
MOTS2 Solution + Iteration level 23.7x ZDT and ZDT2

function
No im-
provement

CPU: not men-
tioned/ GPU:
quadro 1000m
with 96 cores

Discussion

Few works use s-metaheuristics to solve continuous problems. Iteration
level model is used to implement and adapt s-metaheuristics on GPU,
this parallel model is generally used to accelerate the generation and the
evaluation of neighbors without affecting the behavior of the algorithm
(Essaid et al. 2019). Algorithmic level is used to enhance the exploration
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of the search space by launching multiple instances. In this model, com-
munication strategies like diversification strategy can be adopted between
instances to enhance quality by better exploring the area to find promising
search regions. Nevertheless, beside the improved quality of this model,
lot of works show that a performance is not achieved if we consider the
huge computing power of GPU. So it is a compromise between perfor-
mance and quality (Essaid et al. 2019).

For p-metaheuristics with discrete problems, and according to
(Essaid et al. 2019), iteration level is the most adopted parallel model
because of the large number of individuals to be evaluated and processed.
However, algorithmic level is used only in few papers, for example the
swarm is partitioned into sub swarms, then each sub swarm runs a
metaheuristic separately. To further speed up the algorithm, the solution
level used to generate and evaluate solutions, for example in ACO meta-
heuristic, tour construction phase can be performed in parallel, where an
ant generates a set of possible moves in parallel. Then, it selects the best
move. Always according to (Essaid et al. 2019), solution quality has been
treated in some works with a small speed-up factor of at best 1.19x. While
in other works the quality is not improved but a significant acceleration
factor of at best 696x is achieved. Further, few works made the exception,
they improve the quality along with keeping a high speed-up.

P-metaheuristics have been widely implemented to tackle continuous
problems. Besides iteration level, in most of works, solution level model
is used to enhance the speed up of the metaheuristic. The quality is main-
tained, and improved in some works. According to (Essaid et al. 2019) al-
gorithmic level is less implemented in this case. This level is implemented
by running sub-populations with defined algorithm and an appropriate
communication strategy.

Finally, the common point to design an efficient parallel metaheuris-
tic on GPU is to maximize data parallelism to enhance the occupancy of
the GPU, and then to benefit from the computation power of the GPU.
Moreover, GPU impact becomes clear when dealing with large instances.

2.9 Challenges and guidelines for porting metaheuris-
tics to GPU

The parallel models of metaheuristics need adaptation and modification
with huge effort at the design and implementation level to leverage the
new requirements of the GPU architectures. Many challenges and issues
have to be taken into account. These issues are mainly related to the la-
tency of the GPU memories and their hierarchical memory management,
divergence of GPU threads and their synchronization, optimization of data
transferring between the CPU and GPU, the efficient distribution of date
processing between the host and the device (Mehdi et al. 2013).

2.9.1 Memory management and data placement

To design an efficient parallel metaheuristic on GPU, a deep study has to
be performed on both metaheuristic (p-metaheuristics or s-metaheuristics)
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and their data structures, and the GPU memories. P-metaheuristics need
the exploration of a large number of individuals to diversify the search,
s-metaheuristics requires exploring large neighborhoods, so the data size
and the access frequency are different. On the other hand, these data have
to be mapped to deffirent kind of GPU memories with different sizes and
access latency. For example, registers and shared memories are very fast
but very small, global memory is larger in size and relatively slower. Thus,
during the execution of metaheuristics on GPU, the different threads may
access multiple data structures from multiple memory spaces. Program-
mers have to take into account this point to efficiently place the different
data structures of the metaheuristic on the different memories to bene-
fit from both the faster memories and the larger ones (which data will
be placed on which memory). Generally, the most accessed ones should
be put on faster memories (registers, shared memory) and larger ones on
the lager memories (global memory). An other key is to map efficiently
threads with the corresponding metaheuristic individual, for example one
neighbor per thread for s-metaheuristic, or single population per threads
block for p-metaheuristic, etc.), this parameter must be well defined to
maximize the occupancy of the GPU and to optimize memory access times
and CPU/GPU communication. The high occupancy covers the high la-
tency of the GPU memory, it can be ensured by Increasing the size of
neighborhood or population for s-metaheuristics and p-metaheuristics re-
spectively. However, the bad use of the high occupancy can deteriorate
the performance. For example, when increasing the number of thread un-
til it becomes bigger than registers capacity, then, this would require using
global memory, which is a very slow memory.

The coalesced access to the memory is another important issue to deal
with to optimize the performance of GPU-based metaheuristic; the global
memory is optimized for coalesced accesses. However, the constant and
the texture memory are uncoalesced and read-only memories; they are
optimized for simultaneously accesses of concurrent threads to the same
location. Therefore, coalesced data have to be placed on global memory,
concurrent data on constant memory (e.g. constant for fitness evaluation),
and uncoalesced read-only data on texture memory. The shared memory
should be used for the most accessed data structures (e.g. population of
individuals ).

The data transferring between GPU and CPU, is another important
factor, good strategies should be adopted, for example using the so called
Page Locked Memory. It will disable the memory paging, and use Write
Combining Allocation. It disables CPU caching of a memory that the CPU
will only write to, and improves transfer performance by 40 %.

In addition to the memory access and latency issues, the encoding step
is crucial when designing a metaheuristic for a specific problem. Indeed,
the data types should be chosen carefully, the ranges of this data values
should also be analyzed to minimize the memory space to be occupied by
this data.
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2.9.2 Threads divergence and synchronization

GPU architecture is based on massively parallel multi-threading. Thread
synchronization issue is due to this architecture and the synchronization
requirements of the implemented metaheuristic. Indeed, GPUs are based
on Streaming Multiprocessor (SM), each SM contains huge number of
cores executing the same instruction of different threads following the
SIMD model. These threads must be executed in a warp with different
data elements. An efficient parallelization on GPU is achieved when run-
ning a large number of threads (thousands of threads). Nevertheless, the
order in which these threads are executed is not known. To face this chal-
lenging issue the programmer has to manage explicitly the threads by the
insertion of barrier synchronizations in the codes or by using other meth-
ods to avoid concurrent accesses to data structures.

In Thread divergence issue, the challenge is to redesign the tra-
ditional irregular metaheuristic codes to eliminate these divergences
(Cecilia et al. 2013) (Delévacq et al. 2013). Indeed, metaheuristics contain
irregular loops and conditional instructions when generating and evaluat-
ing solutions in the same block. In addition, threads of the same warp have
to execute simultaneously instructions directing to different branches, con-
sidering that in a SIMD model threads of a same warp execute the same
instruction at a time. Therefore, the different branches of a conditional
instruction which is data-dependent force to a serial execution of the dif-
ferent parallel threads of the same wrap, which deteriorates considerably
the performance of the parallel metaheuristic.

2.9.3 Code mapping and CPU/GPU communication

To achieve the best performance of parallel metaheuristics on GPU in
terms of execution time, an efficient decomposition of the code and the
efficient re-partition of taskes between the CPU and the GPU should be
adopted. The objective is to leverage the GPU computing power without
losing performance in CPU/GPU communication and memory accesses.
Thus, the code should be carefully analyzed in order to decide which part
of the code will be stay and executed on CPU, and then which compute-
intensive part will be send to the GPU for parallel execution.

CPU/GPU communication is another important factor to take in con-
sideration when designing parallel metaheuristic, this communication is
done through the global memory which is relatively a slow memory mak-
ing the memory transfer between the CPU and GPU time-consuming and
can significantly degrade the performance of the application. Therefore,
programmer should optimize the code to minimize the amount of trans-
ferred data between the host and the device, and the accesses way to these
data, these technique participate in the reduction of the whole execution
time of the metaheuristic.

Several approaches can be used to analyse GPU code (kernel) bottle-
necks, CUDA profiler (Matloff 2006) is a good tool which allow to identify
if a kernel is limited by bandwidth or by the arithmetic operations, and
locate the part of the code that may lead to better performance.
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2.10 Related Works solving the MD with parallel meta-
heuristic on GPU

In this section, we focus on the existing works on solving the molecular
docking problem with parallel meta-heuristic on GPUs. Parallel optimiza-
tion of molecular docking has turned to take advantage of the GPU. For
example, to accelerate the calculation of the energy of interaction (scoring
function) on GPUs. The latter consumes up to 80% of the total execution
time, thus, it is an important bottleneck (Dong et al. 2018).

Sukhwani et all reached a speedup of at least 17.7x with re-
spect to one CPU core and 6.1x with respect to four CPU cores
(Sukhwani & Herbordt 2009). The ligand and receptor data are trans-
ferred to the device memory, the receptor data are stored in the global
memory. The large ligands are also stored in global. However, the smaller
ligands are stored in the shared memory to benefit from the rapid access
time from this kind of memory, and consequentially enhance the perfor-
mance. To perform the scoring function, the constant memory is used
to store the scoring coefficients. The first scheme propose to divide and
distribute the work to K different blokes to compute its respective best
scores, the top score of each bloks is stored in the GPU global memory.
The results was inspected and gives a significant slowdown compared to
the CPU code. In the second scheme, aothors assigned different tasks to
different thread with, each block containing M threads (M = 500). The
best score found by each thread is stored in a shared array in the GPU
shared memory. The master thread (thread 0) processes the shared array
to find the best scores and stores it in the global memory.

Gine’s D. Guerrero et al. developed the algorithm based on
CUDA programming model for calculating the energy of interaction
(Guerrero et al. 2011).Each atom from the receptor molecule is repre-
sented by a single thread. Then, every CUDA thread goes through all
the atoms of the ligand molecule. Each thread simply charges with the
electrostatic interaction calculations with its corresponding atom of the
receptor molecule and all the ligand molecule atoms. In order to avoid
communication overhead, each thread block should contain all informa-
tion related to the ligand and the protein. They tested the kernel on GPUs
and got a speedup of 260 times.

FlexScreen is parallel docking software, in which the authors designed
a hybrid parallel architecture of MPI-OpenMP for CPUs, and CUDA for
GPU. MPI is used to send data to nodes, then energy calculations are
carried out on each node with OpenMP. Experiments showed the CUDA
program on GPU outperforms the MPI-OpenMP hybrid parallel program
in terms of speed (Guerrero et al. 2012).

MolDock (Simonsen et al. 2011) is a flexible molecular docking soft-
ware with uses modified differential evolution search algorithm, this soft-
ware utilizes CUDA for GPU and multithreading for CPUs. This parallel
strategy can be applied in other flexible molecular docking algorithms.

GeauxDock uses Monte Carlo metaheuristic with a new hybrid fitness
function combining physics-based and knowledge-based energy calcula-
tion. The parallel optimized version of GeauxDock (Fang et al. 2016) can
runs in the multi-core CPU, as well as in GPU, or Intel Xeon Phi. All three
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platforms share a common code for the user, whereas back-end codes have
one version for GPU, and an other code for CPU and Xeon Phi. Geaux-
Dock was designed with two level of parallelism. At coarse grain level,
each protein-ligand complex conformations is assigned to different CUDA
thread blocks on GPU . At the fine-grained level, the protein-ligand con-
formation data are accessed in parallel by CUDA threads of GPUs.

E. Vitali et al proposed a parallel model for MD on an heterogeneous
system with one or more GPUs or multi-core CPU. The docking approach
used is based just on geometric features of the ligand and of the target pro-
tein (Vitali et al. 2019). For parallellization strategy, they utilize OpenACC
for the GPU, OpenMP for the CPU work sharing and MPI for the inter
node work sharing and communication. They reached a 25% throughput
improvement within the single node.

2.11 Conclusion

In this chapter, we introduced the basic concepts related to parallelism
in a general way. We first presented the different classification of parallel
architectures that exist in the literature, and the metrics used to evaluate
parallel algorithms such as speedup and efficiency. After that, we detailed
the GPU architectures and how scientists can leverage this recent archi-
tecture to speed up their algorithms efficiently. We then presented parallel
metaheuristics and the challenge to face in order to implement these paral-
lel metaheuristics on GPU architectures. In the last part of this chapter we
detailed the literature reviews on solving the MD problem with parallel
metaheuristics on GPU architectures.

In the next chapters, we will present our contributions to solve the
MD problem with the parallel BSO metaheuristic and how to efficiently
implement it on GPU to speed up the simulations of molecules interaction.
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3BSO Metaheuristic For MD
problem

3.1 Introduction

In the first chapter of this thesis, we detailed the problem of molecular
docking, after which we gave the different metaheuristics used in the

literature to solve the problem, such as, the genetic algorithms GAs, taboo
search TS, and particle swarm optimizations PSOs. This chapter presents
our first contribution in this thesis. It deals with the molecular docking
problem, which is a set of techniques used in the new drug discovery
process. This method helps in screening for new drug candidates quickly
with lower cost. It consists in calculating the optimum orientation, posi-
tion, and conformation of a new molecule (Drug candidate) to an existing
molecule (which is at the origin of a disease), to form a stable molecular
complex with overall minimum energy. Since there are an infinite number
of possible positions and orientations, this problem is NP-hard. This prob-
lem can be modeled as an optimization problem and our goal is to solve
it in reasonable time through the use of metaheuristics. Motivated by the
success and the power of Bees Swarm Optimization (BSO) metaheuristic
(Drias et al. 2005), we propose a new docking search algorithm based on
BSO metaheuristic, we called this solution BSO-DOCK (BSO for Molecular
Docking).

This chapter is structured as follows. In Section 3.2 and Section 3.3, we
describe biological and artificial bee swarms respectively, we introduce the

49



Chapter 3. BSO Metaheuristic For MD problem

most know artificial bees swarm metaheuristics with focusing on BSO. In
Section 3.4, we present our strategy to solve the docking problem with the
BSO algorithm, we detail the component of this metaheuristic to efficiently
model our problem. In Section 3.5, we first describe the data-set used and
the experimental setup and then we present some results and discussion.

3.2 Natural bees

Bee swarms are considered to be among the most important swarms in
nature. These swarms allocate tasks dynamically, and adapt to different
changes in the environment in a collective and intelligent way. Bees have
a photographic memory, antennas and navigation systems, which make
it possible on the one hand, to detect new hives and, on the other hand,
to perform their various biological tasks such as foraging and breeding.
Several researchers have drawn inspiration from the collective behavior of
natural bees to create models that solve combinatorial optimization prob-
lems.

Before presenting the different algorithms based on bee swarms, we
will see the different types of bees such as: the queen, the workers and
the male, as well as the behavior of bees to collectively perform biological
activities such as nest selection, food, and marriage (wiki Bees 2020).

3.2.1 Types of bees

The queen

The queen is the only fertile female in the swarm (see Figure 3.1), so she
is the mother of all the individuals who make up the community (the
drones, the workers and the future queens). Its laying capacity is very
high, its daily production often exceeds 1500 eggs. The queen does not
have the appendages of the workers such as pollen baskets, wax secretion
glands and the well-developed honey bag. Its almost exclusive food is a
secretion, called royal jelly, produced by the glands in the workers’ heads.
The average life span of the queen is one to three years.

The worker

The workers are always much more numerous than the males. In the hive
of a temperate region, the number of workers is between 8000 and 15000

in spring, but can exceed 8000 in early summer. The workers are unable
to mate and therefore to reproduce. They secrete wax, build cells, collect
nectar, pollen and water, transform nectar into honey, clean the hive and
defend it against predators. The life expectancy of female workers is about
six weeks. During the first three weeks of their lives, the workers build the
combs, clean and polish the cells, feed the young and the queen, control
the temperature, and evaporate the water from the nectar until it became
a thick honey consistency. After this period, they will collect nectar from
the flowers and defend the hive.
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Figure 3.1 – Types of honeybees

The male (Drone)

It does not work; it is unable to feed himself and cannot even defend the
colony, since it has no sting. The number of males is between 300 and
3000 in the colony, its only function is to mate with the queen, when the
queen leaves the hive, the males are attracted by her smell. After mating,
the male dies quickly; their average life span is 90 days.

3.2.2 The behavior of bees in the nature

Selection of nest location

Bee companies live in nests called hives. In the last month of spring or
early summer, the queen flies away with thousands of workers, to build
another colony, they are divided into two groups: the queen with half of
the workers and the queen’s daughters with the rest of the workers. For
nest selection, some bees explore the sites; the other bees remain inactive,
probably retaining swarm energy, until they make a decision and migrate
to the new nest. The bees responsible for the search for food indicate the
different nests by several dances called the stirred dance. The direction is
indicated by an angle from the sun, the distance is defined by the dura-
tion of a stirred part of the dance, and the stir turns 40 to the right to
indicate the food source. Through the path represented by the dance, the
bee turns vertically around the center and forms an angle with its body
by a vibration. This angle connects the hive with the nectar.

Food

The main role of the bee in search of food is to find a very rich source
of food to obtain the maximum amount of nectar. And for that, there are
different types of these bees:
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Unemployed bees

There are bees with no knowledge of the food source and no view of the
food source to exploit. So these bees stay in the hive and wait for the dance
of the other bees to establish the food source.

Employee bees

An employee bee is associated with a particular food source. it has suffi-
cient knowledge to know the food source. It finds and exploits the source,
memorizes the location and loads part of the nectar and discharges it into
the hive.

Marriage

The mating process takes place in the open air. Between April and June,
the queen enters the ideal period for mating. It reduces its weight by
switching from a royal jelly diet to a honey diet and prepares for nup-
tial flight. On a sunny day, Iit slowly slips out of the hive and flight. The
meeting will take place somewhere in the sky, between the queen and
males from the hive but also males from other hives. What is strange is
that even during the breeding period, a meeting between the queen and
the males in the hive will not produce any follow-up. It is only at the exit
of the hive that the queen makes herself available for mating.

3.3 Artificial bees

There are several algorithms that simulate the behavior of natural bees.
In the following we will detail the most used algorithms in the literature
(Karaboga & Akay 2009) .

3.3.1 Bee Colony Optimization metaheuristic (BCO)

Initially, all bees are located in the hive. Each bee flies to perform a series
of movements or displacements in order to build a step-by-step solution.
Bees incrementally add components to the current solution until they ob-
tain one or more eligible solutions (Teodorovic & Dell’Orco 2005). During
the exploitation of the solution space, the bees perform two steps. In the
forward step, the bees create several partial solutions based on the col-
lective experience accomplished in previous iterations. In the backwards
step all bees return to the hive and communicate with each other in order
to participate in the construction of complete solutions for each iteration.
Indeed, each bee shares its already created partial solution and its quality
with the other bees. Complete solutions of a single iteration are designed
while saving the best solution. This process must be repeated until a max-
imum number of iterations is reached (see Algorithm 1).

52



Chapter 3. BSO Metaheuristic For MD problem

Algorithm 1 The BCO algorithm

Begin
1: Initialize the basic population
2: while Stopping criteria not met do
3: Each bee moves through the search space by building a partial solu-

tion step by step.
4: Each bee sends its partial solution and its quality to all bees.
5: Build the complete solutions for this iteration.
6: Save the best solution for this iteration
7: end while

End

3.3.2 Artificial Bee Colony (ABC)

Karaboga proposed this metaheuristic called Artificial Bee Colony in
(Karaboga 2005), food sources represent the solution space of a given
problem and the nectar from each source represents the quality of a single
solution. There are three types of bees (worker bees, spectators and mas-
ters). The number of worker or spectators bees is equal to the size of the
population in a single iteration.

First, the ABC algorithm randomly generates the initial population that
contains SN solutions such that SN is the number of worker or spectator
bees. Then, each worker bee establishes modifications on the current so-
lution according to the quality of the solution and the local information
in its memory. If the quality of the new solution is better than the pre-
vious one, then the bee will replace the previous solution with the new
one. Afterwards, the worker bees share their solutions with the specta-
tor bees. Thereafter, each spectator bee chooses the solution closest to the
current solution. As in the case of worker bees, each spectator bee estab-
lishes a modification on the current solution, evaluates the found solution
and keeps the best solution among the two solutions. At the end, the mas-
ter bees explore other research regions, each time saving the best solutions
produced by the worker and spectator bees. This process must be repeated
for a maximum number of iterations or until the stopping criterion is met
(see Algorithm 2).

3.3.3 Bee Algorithm (BA)

This metaheuristic has been introduced by Pham et al (Pham et al. 2005). It
is inspired by the natural foraging behavior of honey bees. First, a popula-
tion of n bees is generated, then divided into two groups. The first group
contains m bees that explore m different regions of the search space, each
bee explores its region independently and returns the best solution from
its region. The best solutions from each region are saved at each iteration
so that the best regions are likely to be explored in the next iterations.
The remaining n - m bees establish a random search to reconstruct a new
population for the next iteration. This process must be repeated up to a

53



Chapter 3. BSO Metaheuristic For MD problem

Algorithm 2 The ABC Algorithm

Bging
1: Initialize the basic population
2: while the stop criterion is not reached do
3: Place the worker bees on their food sources.
4: Place the spectators bees on the solutions already found by worker

bees.
5: Save the best solution found by the workers and spectators specta-

tors.
6: Send the master bees to the solution area in order to find other

sources of food
7: end while

End

maximum number of iterations. Figure 3.2 clearly explains the different
steps of this algorithm.

3.3.4 BeeHive metaheuristic

In nature, there are two types of bees, bees at a short distance that search
for food near the hive. and bees called long-distance bees, that explore other
areas far from the hive. The algorithm BeeHive was inspired by this idea.
Indeed, the set of bees is divided into two subgroups. The first sub-set
applies a local search near the hive, while the second one applies a diver-
sification operation by exploring other areas of the search spaces. At the
end of each iteration, we save the best solutions found by the two types of
bees (Wedde et al. 2004).

Algorithm 3 The BeeHive algorithm

Bging
1: Divide the initial population into two subgroups (small distance bees

and long distance bees)
2: while the stop criterion is not reached do
3: Each short-distance bee applies a local search to its solution
4: Determines the best solution for the short-distance bees
5: Each long-distance bee explores its region locally
6: Determines the best solution for the long-distance bees
7: Save the best solution for these subgroups
8: end while

End
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Figure 3.2 – BA algorithm
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3.3.5 Marriage Bee Optimization (MBO)

This metaheuristic is based on the mating (marriage) behavior in honey
bees (Abbass 2001). The queen is the main individual of this event, it
moves with a certain energy and speed and chooses the best males. If
the male is selected by the queen, production is carried out while adding
his sperm to the queen’s ovum. By using mutation and crossbreeding, lar-
vae production is carried out, thereafter, each worker takes care of a single
larvae. The best larvae will be the new queen of the next iteration. The
following algorithm describes the structure of this algorithm.

Algorithm 4 The MBO algorithm
Begin

1: Random initialization of the queen
2: while the number of mating is not reached do
3: Initialize the queen’s energy and speed
4: while The energy of the queen > 0 do
5: The queen moves and chooses the males
6: if The male is selected then
7: Add her sperm to the queen’s ovary
8: Modify the queen’s energy and speed
9: end if

10: end while
11: Produce larvae with mutations and crosses
12: Use workers for larval occupation by conducting a local search from

each larvae
13: Modify the fitness of the workers
14: if The best suitable larvae are the queen then
15: Replace the queen’s chromosomes with the chromosomes of the

best larva
16: end if
17: end while
End

3.3.6 Bees Swarm Optimization BSO

The metaheuristic Bees Swarm Optimization (BSO) is among the newest
swarm intelligence algorithms. It has been proposed by Drias et al
(Drias et al. 2005). It is based on a swarm of artificial bees cooperating
together to solve an NP-hard problem (see Figure 3.3). BSO simulates the
collective honey bee behavior in nature when looking for nectar of the
nearest and richest sources using the bee dance. In this algorithm, an ar-
tificial bee named InitBee works out to find a first solution named Sref
with some good features. Then, it uses Sref as a starting point to find
a group of disjoint solutions called Search-Area or space of regions, the
aim is to maximally exploit the search space, by using a certain strategy
in such a way that the different points are very distant from each other.
Subsequently, every bee takes one solution from the Search-Area group
and considers it as its starting point to do a local search (intensification) to
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Figure 3.3 – BSO algorithm

look for other potential solutions. After that, every bee communicates the
found solution to all its neighbors through a table named Dance Table.
The best solution stored in this table becomes the new reference solution
for the next iteration. A scoring function is used to choose the best solu-
tion.

A taboo-list structure is used to store the reference solution of each
iteration in order to avoid cycles and prevent bees from returning to an
already found solution. However, if the quality of the solution found by
the bees is not improved after a given number of iterations, the bees intro-
duce the technique of diversification, which consists in selecting from the
taboo-list, the furthest solution from the current one. The algorithm stops
when the optimal solution is found or the maximum number of iterations
is reached.

Algorithm 5 BSO Algorithm

Begin
1: Sref = the solution found by InitBee
2: evaluate Sref
3: while The stopping criterion is not met do
4: Insert Sref in taboo list
5: Search-Area (Sref )
6: Assign regions to Bees
7: for each Bee a do
8: Local-Search(a)
9: Save the result in the table dance

10: end for
11: evaluate the solution (table dance)
12: choose the new reference solution Sref
13: end while
End
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Figure 3.4 – Illustration of docking process

3.4 Methodology

Molecular docking methods play an important role in the field of com-
putational chemistry and biomedical engineering (Sousa S.F & M.J 2006).
They are frequently used to predict binding orientation and affinity
of small molecule to its protein target evaluated by a scoring func-
tion (see Figure 3.4). The description of protein-ligand poses in chem-
ical detail provides information on the binding site, bound confor-
mation and binding strength, which is referred to as binding mode
(Namasivayam & Günther 2007)(Pagadala et al. 2017). In protein-ligand
docking, an optimization algorithm (research algorithm) is used to find
the best binding mode of a ligand with a target protein by traveling
through the search space. The type of the employed algorithm plays
therefore a central role in docking accuracy (Guo et al. 2014).The scoring
function determines the free energy for all given poses of the molecules
by modeling their chemistry energy.

Many metaheuristics for searching algorithms have been proposed in
the literature. Among these algorithms, we can mention: Genetic Algo-
rithm (GA), Simulated Annealing (SA), and Particle Swarm Optimization
(PSO).

Our interest is, however, focused on the BSO algorithm described in
section 3.3.6, motivated by its power and success. It is, moreover, ef-
ficient, simple to implement, and manages few parameters in compar-
ison with the other metaheuristics. In addition, it has been shown to
be effective in several areas such as: data mining (Renli et al. 2016), SAT
and MAX-W-SAT problems (Sadeg & Drias 2007), information retrieval
(Djenouri et al. 2018) etc. For those reasons we opted for this metaheuristic
(BSO) in our first contribution in this thesis .

In the next section, we will detailed our BSO based metaheuristic so-
lution to solve the molecular docking problem. We named this solution
BSO-DOCK.
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x y z a b c r t1  ... tn

D1 D2 D3

Translation Orientation  Torsion

Figure 3.5 – Representation of the ligand in the Molecular Docking problem

To design and adapt our BSO metaheuristic to the molecular docking
problem we have to define the components of the BSO algorithm: the
representation of the problem (encoding solution), the scoring function
that evaluates the found solutions), the initial solution Sref, the SearchArea
strategy to find disjoint solutions (diversification of solutions), and the
neighborhood search performed by each artificial bee (intensification of
solutions or local search) (Saadi et al. 2016).

3.4.1 The encoding solution

Our problem can be formulated as an optimization problem
(Liu et al. 2009), it may be mathematically expressed by a vector S and an
objective function E.

Given: (S) = (x,y,z, a,b,c,r, t1, t2,t3 ...tn)

Though: S*, E(S*) =< E(S)

S: is the vector of decision variables.
E(s): is a scoring function used to predict the free energy of the

molecule complex defined by S

We try to find in a very large set of potential solutions S, the best
solution S* that minimizes the objective function E(S). The vector S can be
described as a set of three fields (D1, D2, D3) as shown in Figure 3.5 :

• D1 (x,y,z) : Translation: The variables x, y and z represent the posi-
tion of the center of mass of the ligand.

• D2 (a,b,c,R): Orientation: The orientation is represented by a quater-
nion, where a, b, c denote the vector of the orientation axis, and r
denotes the rotation angle around this axis.

• D3 (t1,t2,t3,. . . ,tn): Torsion: ti is an angle associated with the i-th
rotatable bond, n is the number of rotatable bonds.
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Figure 3.6 – The Scoring function

To summarize, we use three parameters to denote the translation, four
for the orientation, and n parameters for the torsion. Thus, a docked con-
formation of the ligand will need 7+n parameters to be represented. The n
parameter can either value 0 for a rigid ligand, or can vary from 1 to 20 or
more for a flexible ligand. The complexity of the docking process depends
essentially of the n parameters.

3.4.2 Scoring function (Fitness function)

The BSO-DOCK scoring function models the affinity between the lig-
and and the protein, it is based on an energy prediction. The lower is
the energy, means the better is the docking (Liu et al. 2005) (see Figure
3.6). In our solution the implementation of the scoring function is in-
spired from the semi-empirical force field scoring function of Autodock4.2
(Forli et al. 2012). The latter is the most used and cited framework for
molecular docking experiments in the literature. It is also an open source
software.

The scoring function involves three energy terms (Liu et al. 2009); in-
tramolecular energy of the ligand, intramolecular energy of the protein,
and the intermolecular binding energy between the protein and the lig-
and as shown in Equation 3.1, Equation 3.2, and as illustrated in Figure
3.7.

∆G = ∆intra + ∆inter (3.1)
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Figure 3.7 – Autodock Scoring function

∆G = (VL−L
bound−VL−L

unbound)+ (VP−P
bound−VP−P

unbound)+ (VP−L
bound−VP−L

unbound)+∆Scon f
(3.2)

Autodock scoring function calculation involves two steps. In the first
step the intramolecular energetics are estimated for both ligand and pro-
tein for the transition from unbound states (before interaction) to bound
states (after interaction). The second step then evaluates the intermolec-
ular energetics of interaction between the ligand and the protein in their
bound conformation (Huey et al. 2007).

In Equation 3.2, L refers to the “ligand” and P refers to the “protein”.
The first two terms are intramolecular energies for the bound and un-
bound states of the ligand, and the following two terms are intramolecular
energies of the protein. The last term denotes the change in intermolecular
energy between the bound and unbound states. And ∆Scon f estimates the
conformational entropy lost during the binding process.

Each of the pair-wise energetic terms in Eq2 includes four types of
energy (Scripps-Research-Inst 2009), that is, van der Waals or disper-
sion/repulsion, hydrogen bonding, electrostatics, and solvation energies,
respectively described in equations 3.3, 3.4, 3.5, and 3.6.

∆GvdW = ∆Gvdw ∑
ij

Aij ÷ r12
ij − Bij ÷ r6

ij (3.3)

∆Gelect = ∆Gelect ∑
ij

qiqj ÷ εrijrij + ∆Gtor.Ntor + ∆Gsol ∑
ij

SiVjE−r2
ij ÷ 2.σ2

(3.4)
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∆GHbond = ∆GHbond ∑ i, jE(t)(Cij ÷ r12
ij − Dij ÷ r10

ij + Ebound) (3.5)

∆Gdesolv = ∆Gdesolv ∑(i, jSi.Vj + SjVi)er2
ij ÷ 2.σ2 (3.6)

3.4.3 The Search Area strategy (Regions)

The aim of this step is to generate from a reference solution Sref, a set of
K disjoint solutions or regions to diversify the solutions, in order to better
exploit the search space. Starting from a reference solution Sref (Ds1, Ds2,
and Ds3) found by the first bee Initbee, a set of K disjoint solutions is
generated in the search area. For this task, we use a field variable named
Flip, which is added or subtracted from each variable of each domain to
generate another solution from the current solution (or from Sref, the first
time). In our case we have three variables Flip; Flip1 used to modify the
first domain D1 which models the position of the ligand, Flip2 modifies
the second domain D2 for ligand rotation modulation, Flip3 modifies the
third domain D3 which represents the change of the ligand structure (con-
formation). The values of the Flip field determine the grid spacing of the
search space. All possible k solutions of the search area are generated by
successively varying only one field, for example D1, or D 2, or D 3 at a
time, and then combine it with the other two unmodified domain D do-
mains.

D1 (x,y,z) and Flip1

Domain D1 takes values between (x-T/2, y-T/2, z-T/2) and (x+T/2,
y+T/2, z+T/2), where T is the size the box surrounding the active site.
Flip1 is an integer, with 0 < Flip1 <= T/n, and n is an empirical value.
To find regions of D1, we take each variable, for example x, then either
add Flip1 to x, or subtract Flip1 from x without changing the other two
variables y and z. We do the same operation with the other two variable
y, and z to get many solutions or regions.

Example:
We assume that D1 of Sref= (5,2; 35; 10,1)
i. e. x=5,2; y=35; z=10,1; T=60 and n =10, therefore, Flip1=10.

Example of generated solutions:

• D1S1 (5,2+10; 35 ; 10,1) = (15,2; 35 ; 10,1) The first solution S1 for
domain D1

• D1S2 (5,2-10; 35 ; 10,1) = ( -5,2; 35 ; 10,1)

• D1S3 (5,2 ; 35+10 ; 10,1) = (5,2 ; 45 ; 10,1)

• D1S4 (5,2 ; 35-10 ; 10,1) = (5,2 ; 25 ; 10,1)
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• D1S5 (5,2 ; 35 ; 10,1+10) = (5,2 ; 35 ; 20,1)

• D1D6 (5,2 ; 35 ; 10,1-10) = (5,2 ; 35 ; 0,1 )

D2 (a,b,c,r) and Flip2

a, b, c coordinates denote the vector of the orientation of the ligand, D2

takes values between (a-T/2, b-T/2, c-T/2) and (a+T/2, b+T/2, c+T/2),
that T is the size of the box surrounding the active site, Flip2 is an integer,
and 0 < Flip2 < T/n, where n is an empirical value too. As we have done
with D1, we change one variable by either adding or subtracting Flip2

to/from the variable, while keeping the two other variables unchanged.
We do the same operation with the other two variables.

Example:
We assume that D2 of Sref= (-4; 50 ; 15.1)
i. e. a=-4 ; b=50 ; c=15.1; T=80 and n =10, therefore, Flip2=8,
Example of generated solutions for D2:

• D2S1(-4+8; 50 ; 15,1)= (4; 50 ; 15,1)

• D2S2(-4-8; 50 ; 15,1)= ( -12; 5O ; 15,1)

• D2S3 (-4; 50+8 ; 15,1)= (-4 ; 58 ; 15,1)

• D2S4 (-4 ; 50-8 ; 15,1)= (-4; 42 ; 15,1)

• D2S5 (-4 ; 50 ; 15,1+8)= (-4 ; 50 ; 23,1)

D3 (t1,t2,t3, . . . ,tn) and Flip3

D3 gives information about rotation inside the ligand known as ligand’s
conformation, n represents the degree of freedom or the number of tor-
sional angle of this ligand. Each ti will take values between (-180, 180). The
flip3 between 30 and 60, Flip 3 is an empirical parameter too. The value of
Flip3 which is also an empirical parameter is chosen between 30 and 60.

Example:
We suppose Flip3 = 40, n = 5, Sref of D3= (30, 120, 15, -30, 60)
We can generate several solutions from this initial solution by using

Flip3 under the condition that ( ti+Flip3 ) is no larger than 180 and (ti-
Flip3) is no smaller than -180.

Sref of D3= (30, 120, 15, -30, 60)

• D3S1 = (70, 120, 15, -30, 60)

• D3S2 = (-10, 120, 15, -30, 60)

• .

• D3S9 = (30, 120, 15, -30, 100)

• D3S10 = (30, 120, 15, -30, 20)
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Once we have determined the three Flips, we will generate all regions
using the three domains D1, D2, and D3, the strategy consisting in varying
one domain at a time to generate all possible combinations. For example
the possible combinations for D1S1 combining with the two other domain
D2 and D3 are:

• K1 = D1S1D2S1D3S1

• K2 = D1S1D2S1D3S2

• K3 = D1S1D2S1D3S3

• K4 = D1S1D2S1D3S4

• K5 = D1S1D2S1D3S5

• K6 = D1S1D2S1D3S6

• K7 = D1S1D2S1D3S7

• K8 = D1S1D2S1D3S8

• K9 = D1S1D2S1D3S9

• K10= D1S1D2S1D3S10

• K11 = D1S1D2S2D3S1

• K12 = D1S1D2S2D3S2

• K13 = D1S1D2S2D3S3

• K14 = D1S1D2S2D3S4

• K15 = D1S1D2S2D3S5

• K16 = D1S1D2S2D3S6

• K17 = D1S1D2S2D3S7

• K18 = D1S1D2S2D3S8

• K19 = D1S1D2S2D3S9

• K20 = D1S1D2S2D3S10

So the value of the first region is: D1S1 D2S1 D3S1

K1= (15,2; 35 ; 10,1), (4; 50 ; 15,1), (70, 120, 15, -30, 60)
We do the same for D1Sx, x varying between 2 and 6 to have all the

possible combinations

3.4.4 The neighborhood search

We calculate the neighborhood search space by doing local searches for
each domain of the D1, D2, and D3. We take every regions found in the
preceding step and do a local search to find neighbors.
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Calculating neighborhood for D1(x, y, z)

The neighborhood search is calculated from each solution D1Si found in
the previous step, we add then subtract 1 point to each variable in D1S and
keep the two other variables unchanged, and then do the same operation
with the other two variables. The value of 1 point is equal to 0.375 A,
which is the best distance to move a ligand when binding to a protein.

Example:
If the solution is D1S1= (10.2; 35; 10.1) The generated solutions are:

• D1S1V1 = (10.2+0.375; 35; 10.1)

• D1S1V2 = (10.2-0.375; 35; 10, 1)

• D1S1V3 = (10.2; 35-0.375; 10.1)

• .

• .

• D1S1V3 = (10.2; 35; 10.1-0.375)

Calculating the neighborhood for D2 (a,b,c,r)

a,b, and c vary with 1 point .The neighborhood is determined from each
D2Si found in the first step by adding or subtracting 1 point for one vari-
able each time. For example, we change b and keep a and c unchanged,
then change c and keep a and b unchanged.

Example: If the solution D2S1= (5, 56, 61, 170)

• D2S1V1= (5, 56+ 1 point, 61, 170) = 5, 56+ 0,375 , 61, 170

• D2S1V2= (5, 56-1 point, 61, 170)

• ...

• ...

• D2S1V2= (5, 56, 61-1, 170)

Calculating the neighborhood for D3(T1,T2..Tn)

The neighborhood search for this domain is calculated from each solution
D3Si found in the previous step by adding or subtracting alpha angle
between 1 and 5 to one variable Ti each time and keep the others variable
unchanged.
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Example:
If the solution is D2S1= (70, 120, 15, -30, 60), alpha = 5

The generated solutions are:

• D3S1V1= (70+5, 120, 15, -30, 60)

• D3S1V2= (70-5, 120, 15, -30, 60)

• D3S1V3= (70, 120+5, 15, -30, 60)

• ...

• ...

• D3S1V3= (70, 120+5, 15, -30, 60)

The general BSO-DOCK algorithm

Algorithm 6 The general BSO-DOCK algorithm
Begin

1: Read empirical parameters N (number of bees), Flip1, Flip2, Flip3,
MaxIter, t(number of torsion angle)

2: Inputs: S0 (x0, y0, z0; ) // binding site
3: Output: best solution found Sf(x, y, z; a, b,c, R; n1, n2, n3. . . .nt)
4: Sref = S0 (x0, y0, z0, a0, b0, c0, R0, T1,T2..Tn) // the initial solution

generated randomly
5: Fitness(Sref)
6: S=Sref
7: i=0

8: while i < MaxIter do
9: taboo-list = taboo-list + Sref

10: solutions = Search-Area(Sref, Flip1, Flip2, Flip3)
11: table-dance[] = solutions
12: for each solution S in solutions do
13: Fitness(S)
14: Assign S to eachBee
15: for each Bee b do do
16: table-dance[b] = Calc-neighborhood(b)
17: end for
18: Sref= the best solution of the table-dance
19: end for
20: if (Fitness(Sref) > Fitness(S)) then
21: S=Sref
22: end if
23: i=i+1

24: end while
25: Print S
End
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3.5 Experiments and results

Simulation set-up

The docking performance of BSO-DOCK was evaluated by comparison
with two state-of-the-art algorithms: PSO and GA. The three algorithm
are evaluated under the identical conditions:

• The same scoring function is used for all metaheuristics, this scor-
ing function is inspired from Autodock 4.2 semi empirical scoring
function (Lopez-Camacho et al. ).

• Flexible ligands and rigid proteins are used.

• 20 protein-ligand complexes from Autodock package and Jmetal
framework are used as benchmark to assess the docking perfor-
mances and accuracy.

• The 20 complexes of the benchmark are divided into two groups
according to the complexity (number of rotational bonds of the lig-
ands).

• The binding site was set with a cubic box (60 60 60 ), (Angstrom).

1Angstrom = 0, 1nanometre

• The maximum number of energy evaluations was set to 200,000.

• Parameters of BSO-DOCK metaheuristic such as the number of bees
(n), Flip1, Flip2, and Flip3 were determined empirically.

• JMetalCpp framework is used to implement our BSO-DOCK meta-
heuristic (López-Camacho et al. 2014). JMetalCpp is a software plat-
form, the source code is available, this platform helps designers to
develop new metaheuristics for molecular docking problem.

Results and Discussion

The results of the docking simulations obtained with BSO-DOCK, PSO,
and GA are shown in Table 3.1 and table 3.2. The docking performance is
examined in terms of the lowest energy of interaction. However, the dock-
ing accuracy is examined in term of success rate of the docking process by
calculating the RMSD (Root Mean Square Deviation ) parameter.

The simulation results showed that BSO-DOCK gives good results with
the lowest energy results for many ligand-protein complexes, as we can
see in table 3.1 and in the most cases BSO-DOCK gives better results than
PSO and GA.

For the accuracy, the RMSD (Root-mean square deviation) parameter is
used in order to measure the similarity between the ligand before docking
and the same ligand after docking. The value of RSMD measures the aver-
age distance between atoms of the 2 ligands. If this value calculated after
the docking is less than 2 Å, we can say that this docking is acceptable and
successful. Equation 3.7 is used to calculate RMSD values (Raschka 2014)
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Table 3.1 – Scoring Function (SF)results

Complex Torsion BSO (SF) GA (SF) PSO (SF)

3ptb 0 -5.91 -5.15 -5.50

1tnl 2 -6.53 -5.90 -6.91
1okl 3 -7.25 -6.68 -7.1
1abl 4 -8.64 -8.80 -7.25

1abf 4 -7.89 -6.92 -7.2
1cbx 5 -8.55 -7.25 -8.01

1rls 6 -8.56 -6.25 -7 .11
3cpa 7 -9.16 -9.95 -8.25

1pph 8 -8.21 -7.02 -7.56

1nsd 9 -9.88 -8.16 -10.41
1ets 10 -10.15 -9.08 -9.25

1phg 12 -10.90 -9.20 9.99

6tmn 14 -11.33 -11.02 -12.02
2ifb 14 -11.55 -10.80 -11.54

1icn 15 -12.32 -5.28 -11.52

1apu 16 -12.45 -7.65 -12.11

6cpa 17 -12.91 -9.25 -11.02

1apt 19 -13.29 -8.02 -10.25

1aaq 20 -13.58 -7.25 -11.95

1hiv 23 -14.21 -9.78 -11.46

Win 14 2 4

RMSD(a, b) = 1/n
√

∑
i
(aix− bix)2 + (aiy− biy)2 + (aiz− biz)2 (3.7)

In equation 3.7 ai and bi refer to the atoms of molecule 1 and of the
molecule 2, respectively. x, y, z are the coordinates of each ligand atom.

Table 3.2 summarizes the RMSD values. It is clear from the results
obtained that BSO-DOCK is batter than PSO and GA, indeed, BSO-DOCK
is suitable for ligand-protein docking.

Moreover, BSO-DOCK found the best binding results for highly flexi-
ble ligands (result from table3.1). These kind of ligands are more difficult
for docking than less flexible ligand due to the huge search space to ex-
amine. Thus, these results sniffy that BSO-DOCK can be used for more
complicated docking type, such as protein-protein docking .

As a conclusion and from the global results, the BSO-DOCK meta-
heuristic is more suitable for solving the molecular docking problem than
the conventional metaheuristics.
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Table 3.2 – Comparison of docking accuracy with RMSD.

Complex (PDB) torsion BSO GA PSO

3ptb 0 3.6 1.2 0.99
1tnl 2 1.4 5.2 0.65
1okl 3 2.2 1.52 1.93

1abl 4 3.2 1.08 2.09

1abf 4 1.58 9.2 6.0
1cbx 5 0.96 1.23 1.98

1rls 6 2.14 9.52 1.58
3cpa 7 3.1 6.8 2.00
1pph 8 1.64 1.92 3.1
1nsd 9 8.1 1.82 4.05

1ets 10 1.98 15.1 5.1
1phg 12 10.2 2.55 1.58
6tmn 14 1.88 8.2 0.78

2ifb 14 2.08 1.65 3.1
1icn 15 0.97 10.3 1.11

1apu 16 2.94 1.50 4.02

6cpa 17 1.99 1.5 3.2
1apt 19 5.2 2.89 1.24
1aaq 20 1.90 5.81 3.1
1hiv 23 0.74 2.0 1.78

Win 10 4 6

Successful 12 9 10
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3.6 Conclusion

In this chapter we detailed a new method to explore the search space to get
the best position and conformation of a small molecule when it bounds a
macromolecule. This solution is based on Bees Swarm Optimization meta-
heuristic (BSO). We detailed all operators of the BSO-DOCK metaheuristic
for application to the molecular docking problem, such as the encoding so-
lution, the fitness function, the determination of the search area, and the
neighborhood search. Our solution BSO-DOCK showed a high efficiency
compared with the state-of-the-art algorithms. However, the calculation
time increases significantly when dealing with very large instances, mak-
ing it necessary to use parallelization in order to efficiently resolve the MD
problem.
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4BSO Metaheuristic on GPU
for Molecular Docking

problem

4.1 Introduction

As explained in chapter 1, molecular docking methods play an im-
portant role in the field of computational chemistry and biomedi-
cal engineering (Sousa et al. 2006), they are frequently used to pre-
dict the binding orientation of a small molecule (ligand) to its pro-
tein target in order to predict the affinity and activity measured by a
scoring function (Mukesh & Rakesh 2011). The scoring function models
chemical interactions and determines the free energy for given poses
(Pechan & Feher 2011), it gives information about the stability of the
protein-ligand complex. An optimization algorithm (Search algorithm) is
used to find the best binding pose of the ligand against a target protein
by traveling through the search space. This algorithm plays a central role
in determining the docking accuracy (Guo et al. 2014). Metaheuristics are
widely used as search algorithms in docking methods.

Recent studies have shown; through profiling in docking simulations
that most of the CPU time is spent in the evaluation phase (Scoring func-
tion) of the metaheuristic (Fang et al. 2014). In this phase, the calculation of
the scoring function consumes more than 80 % of the total execution time
and this is considered as a big challenge in the performance of the meta-
heuristic. This bottleneck could be resolved through the parallelization of
this calculation in order to speedup the docking process.

Recently, Graphics Processing Units (GPUs) have been playing an im-
portant role in the general purpose computing field. It exists actually
several high level frameworks to program GPUs instead of using low
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level GPU APIs such as CUDA. Indeed, although low level APIs can
achieve very good performances, it requires high development and main-
tence costs, it raises some portability issues because developers are re-
quired to write a specific code version for each potential target architecture
(Hong et al. 2010).

In the previous chapter we proposed BSO-DOCK, a bees swarm
optimization metaheuristic to solve the molecular docking problem. In
this chapter we propose our parallelization of this BSO-based meta-
heuristic for the molecular docking problem with MapCG framework
(Liu et al. 2017). This framework in its turn is based on MapReduce
(Dean & Ghemawat 2010) programing model which facilitates the task
for parallel programming, the aim is to propose a portable application
which can run on CPUs or GPUs, or in both CPU and GPUs. This
means is that our solution can run sequentially on CPU, or in parallel
on GPU without changing the code. In addition, experiments when dock-
ing a set of protein-ligand complexes show that our solution achieves a
good performance. Indeed, the parallel implementation using MapCG on
GPU gains an average speedup of 10x with respect to a single CPU core
(Saadi et al. 2019a).

The remainder of the chapter is structured as follows. In sections 4.2,
4.3, and 4.4 , we present the background needed to understand the remain-
ing sections. To that purpose, we first briefly introduce the MapReduce
model which we have chosen as the parallel model, then we introduce the
MapCG framework used to implement this model, and finally we sum-
marize some elements of BSO metaheuristic. In section 4.5 we introduces
our GPU parallelization strategies and in section 4.6 we give details on
experiments and discuss the obtained results. Finally, in section 5.7 we
summarize the results and present some concluding remarks and work
perspectives.

4.2 MapReduce

MapReduce is a parallel programming model introduced by Google for
large data processing on distributed systems(Dean & Ghemawat 2008).
First, this framework was used for the purpose of serving Google’s Web
page indexing, it substitutes earlier Google’s indexing algorithms. Then,
it was used for distribute and parallel computing in many fields. In this
model, the user defines the computation in terms of a Map and a Reduce
functions, and the associate runtime system accordingly parallelizes the
computation across different nodes of a cluster or across different CPUs
and GPUs cores of the same machine. Developers find the MapReduce
model easy to use and beneficial to create parallel programs without any
worries about inter-machines communication.

The Map and the Reduce functions are written by the user. The Map
allows to divide and distribute the work on different nodes of the cluster
and produces a set of intermediate key/value pairs for each data read.
The associated library puts together all intermediate values which have
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Figure 4.1 – An example of a text file treated with MapReduce Model

the same intermediate key K and passes them to the reduce function. The
reduce function gets the intermediate key provided by the Map function
and all values for that key K. It incorporates these values together to form
results with possibly one output(Dean & Ghemawat 2010).

The steps to follow to write a MapeReduce program are:
1- Choose an approach to split the data so that it can be parallelized

by the Map.
2- Choose a good key to use for the problem.
3- Write the program for Map function.
4- Write the program for the Reduce function.

Fig. 4.1 explains an example of a text treated in parallel with the
MapReduce Model, the aim is to find the number of occurrences of words
in the input text file. First, the lines of the file are splited into blocks. Then
in the "Map" phase, keys are created with an associated value. In this ex-
ample a key is a word and the value is the number 1 to indicate that the
word is present once. Then, all the identical keys are grouped together
(same words). Finally, and in the Reduce phase, a treatment is performed
on all the values of the same key (in this example, the values are added
together to obtain the number of occurrences of each word).

4.3 MapCG

MapCG is a framework based on MapReduce model. It allows program-
mers to write a parallel program that can be executed on CPU and GPU.
The programmer only needs to write one version of a program contains
essentially the Map and Reduce functions. The framework generates au-
tomatically the CPU and GPU versions of the Map and Reduce functions
by source code translation, it uses the MapCG runtime library to execute
them on CPU or/and GPU, this operation ensures portability with a high
level of abstraction (Hong et al. 2010).
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Figure 4.2 – MapCG architecture overview

Figure 4.2 shows the MapCG framework architecture. The later con-
tains two parts. The first part, provides the programmers a unified, high
level parallel programming environment which allows him to write a
MapReduce code once. While the second part represents the MapCG run-
time which executes MapReduce code efficiently on different platforms,
and bridges the gaps of different hardware features.

In the execution step the input data is split by the Splitter() function
into pieces, then these pieces are passed to the Map function. The Map
function processes the data and emits intermediate pairs ( key/value) us-
ing MapCG emit intermediate() function. The intermediate pairs are then
grouped and passed to the Reduce function, which emits data using the
MapCG emit() function. The data emitted by Reduce can then be obtained
by invoking the MapCG get output() function.

A hash table is used to group the key/value pair on GPU, it is hard
to implement this table on GPU, because the data must be dynamically
allocated. For this purpose MapCG uses its one memory allocation sys-
tem to dynamically allocate memory on GPU and use closed addressing
hash table. An other problem is the concurrent insertion issue, MapCG
framework uses lock-free algorithm to solve this problem. This algorithm
guarantees that the insertion never gets blocked by any particular thread
(Hong et al. 2012).

4.4 Overview of the BSO metaheuristic

The BSO proposed in (Drias et al. 2005) is inspired by the collective bees
behavior. It is based on a swarm of artificial bees cooperating together to
solve a problem. First, a bee named InitBee settles to find a solution pre-
senting good features. From this first solution called Sref we determine
a set of other solutions of the search space by using a certain strategy.
This set of solutions is called Search Area. Then, every bee will consider
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a solution from the Search Area as its starting point in the search. After
accomplishing its search, every bee communicates the best visited solu-
tion to all its neighbors through a table named Dance table. One of the
solutions stored in this table will become the new reference solution dur-
ing the next iteration. In order to avoid cycles, the reference solution is
stored every time in a taboo list. The reference solution is chosen accord-
ing to the quality criterion. However, if after a period of time the swarm
observes that the solution is not improved, it introduces a criterion of di-
versification preventing it from being trapped in a local optimum. The
diversification criterion consists to select among the solutions stored in
taboo list, the most distant one. The algorithm stops when the optimal
solution is found or the maximum number of iterations is reached.

4.5 Methodology

In this section, we present the design and implementation of our parallel
strategy of BSO metaheuristic. We first describe the overall design with
MapReduce model, and then present the implementation with MapCG
framwork on the GPU.

All the BSO search algorithm steps such as the determination of the ref-
erence solution, the determination of the regions, the neighbor search, all
those steps are executed sequentially on the CPU because their complexity
is negligible compared to the evaluation step ( the scoring function). The
later is parallelized using the MapReduce model in which we calculate
the free energy on the GPU efficiently by evaluating several solutions in
parallel with MAP workers. The main idea is to Maper (divide into sev-
eral pieces and execute on GPU) the dance table which contains solutions,
then chose the best solution within the all solutions found in the first step
by the reduce function.

Fig.4.3 explains our parallel approach details. We propose to paral-
lelize the evaluation step of the BSO algorithm. Initially, the dance table
generated by the search algorithm is split into several pieces Mi (Maper
i) using the split function provided by the MapCG framework. The dance
table contains all the solutions generated for one iteration. The number
of Mi is determined by this function split function based on the GPU ca-
pacity (number of cores) and data size. Each piece Mi is passed to a map
function (a map worker) to evaluate the solutions of each piece. During
processing, each map function produces intermediate pairs (key, value).
The key represents the number of Mi, and the value represents a solution
S which contains the position, the orientation and the conformation. We
added two elements to the vector of each solution; an index of the so-
lution, and the energy associated for this solution calculated during this
step. A solution S is represented as follows:

S = (Index, Translation, Orientation, Rotation, Energy).

These pairs (key, value) are sent by the intermediate_function to the re-
duce function. In this reduction step the MIN function is applied to define
the best solution with the smallest energy value of each piece Mi using the
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Figure 4.3 – Parallel BSO design with MapReduce Model

reduce function. Finally, the pairs generated during the reduction step are
emitted by the emit function which calls the get output function in order
to obtain the solution that has the best energy value for all Mi pieces by
choosing the min of the different pairs energy.

The pseudo code of the map and reduce functions is given in Algo-
rithm 7:

Algorithm 7 The Map and Reduce pseudo code for the evaluation step
BSO

1: Map (Key, value)
2: count i [K] // K is the number of Mi pieces
3: for i = 0 to K do
4: // Mi is a subset of solutions
5: Evaluate (Si) solutions
6: end for
7: emit_intermediate(...)
8: Reduce (key, value)
9: count i [K]

10: for j = 0 to K do
11: Choose the solution with minimum energy()
12: end for
13: emit(the best solution)
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4.6 Experiments and results

This section shows the experimental results. We compare the performance
of the BSO algorithm implemented in sequential with the parallel version
implemented with MapCG framework.

First, we describe the dataset and the environment used for the evalu-
ation before we show the experimental results. We use GeForce GT 740M
card, this GPU is a 1.03 GHz processor with 384 cores and 2 GB of mem-
ory size. For the CPU side we use Intel Core i5 model, which is 4 GHz
processor with 4 cores. On the software side, we use C++ with MapCG
framework, we run this experiments on Linux Mint 17.1 64 bits which was
chosen for its stability and performance

The results of this experimentation depend on two factors, the size of
the data (large, medium, or small) and the number of iterations of the BSO
Metaheuristic. For the size of data we have two elements that increase the
complexity and therefore affect the results of our experimentation. First
the number of flexible residues on ligand which is known as degree of
freedom. Then, the number of atoms in the protein and the ligand. To
calculate the energy of interaction between the ligand and the protein, we
must calculate the energy between each atom of a ligand with each atom
of the protein for n iterations.

The number of solutions generated depends on the size of the vector
which represents the solution. The number of variables for the Position
and Orientation fields is constant. However, it is variable for the rotation
bounds field (flexible residue). So, the number of solutions depends on
the number of the flexible bounds in some residues. This latter will vary
the number of regions (bees) and the population generated by BSO search
algorithm. Table 4.1 describes the population size according to the number
of flexible residues bound.

For the benchmark, we use a set of protein-ligand complexes with vari-
ous size as shown in Table 4.1, we take this datset from RCSB protein data
bank (DataBank 2017). The protein-ligand complexes are: COMT, PPAR,
ALR2, SRC, ACE, and GPB. For example COMT protein has 3419 atoms ,
the associate ligand has 52 atoms with 7 rotatable bounds.

In this experiment we vary the number of iteration from 10 to 20 and
we calculate the execution time for the sequential and parallel version of
BSO, then we calculate the speedup obtained with the parallel version on
GPU with respect to the sequential execution on CPU.

Table 4.2 shows that the Parallel BSO algorithm outperforms the se-
quential algorithm, especially for large data sizes where we evaluate a
huge number of solutions. We get better occupancy of the GPU for 20

iterations. We obtained an average speedup of 10x with respect to the
sequential algorithm. Indeed, the performance of the parallel algorithm
with MapCG framework on GPU is better than the sequential algorithm
on CPU.
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Table 4.1 – Population size according to data size.

Data set nrec nlig nrot

GPB 13261 29 1

ALR2 5105 37 6

COMT 3419 52 7

SRC 7158 67 8

PPAR 4430 70 12

ACE 9198 59 13

Table 4.2 – performance comparison between sequential and parallel BSO and Speed Up.

Data Size sequential parallel Speed Up

small 140.91 15.51 9.08

medium 550.34 60.21 9.15

large 1236.23 115.51 10.7

4.7 Conclusion

In this article we proposed a new parallel approach for BSO based meta-
heuristic to solve the molecular docking problem. This approach is based
on Map/Reduce Model. We parallelized and implemented the calculation
of the scoring function of BSO on GPUs architecture with MapCG Frame-
work. This framework allows us to write one version of the code which can
be executed on both CPU and GPU without changing any line of it. The
results show a total speed-up exceeding 10x for the scoring function with
respect to one CPU version. The MapCG framework and the MapReduce
model are a potentially fruitful area for future research in metaheuristic
parallelization on GPU and CPUs, and a good tool to accelerate the dock-
ing process which can help in drug design speedup process.
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5Parallelization of the

Scoring Function for the

Blind Docking Problem

5.1 Introduction

Molecular docking (MD) simulates the way that a ligand interacts with
a protein target focusing on one binding site. Blind docking is a recent
technique which is designed to search the entire surface of the protein
to discover new interesting binding sites. Unfortunately, this new dock-
ing method is computationally more intensive than MD since its com-
plexity grows exponentially according to the number of binding sites,
which severely limits its utilization in practice. This contribution shows
a road-map for an efficient parallelization of the calculation of the solva-
tion energy which represents the most time consuming part of the scoring
function (Saadi et al. 2019b). The latter constitutes a bottleneck in blind
docking and in the metaheuristics used to solve this problem. The pro-
posed parallelization approach aims to efficiently exploit the large com-
puting power offered by the latest NVIDIA GPU architectures (Pascal and
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3D  Protein x structure
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Figure 5.1 – Illustration of simple and Blind Docking

Maxwell). Towards this goal, we propose a new parallel approach that
exploits several GPU-kernels 1 simultaneously launched by several CPU
cores, thereby, speeding-up the computation process and maximizing the
GPU utilization.

5.2 The Blind Docking and GPUs

In the last few years, blind docking was proposed to examine the en-
tire surface of target proteins or other macromolecules in order to find
new interesting binding sites (Hetenyi & van der Spoel 2006), where small
molecules (Ligands) can eventually connect to make a stable complex
(as shown in Fig.5.1). This method helps to improve the quality of the
docking process, but it exponentially increases the computational time
(Hetényi & van der Spoel 2002).

By profiling the docking process, it was noted that most of the CPU
time of the metaheuristic used in the docking process is spent in the en-
ergy calculation phase (the scoring function), which consumes more than
90 % of the total execution time (Fang et al. 2014)(Imbernón et al. 2018).
Moreover, for blind docking this time is to be multiplied by the number
of binding sites which can be large. It is thus of great interest to par-
allelize this calculation in order to speed up the metaheuristic and the
whole docking process.

The scoring function we used is inspired from Autodock, typically it
involves four energy terms, the Van der Waals, the hydroen bond, the elec-

1units of code executed on the GPU
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trostatics, and the solvation energies. The calculation of the latter (salvation
energy) is the most time consuming.

Of particular interest to us are emerging Graphics Processing
Unit (GPUs); initially designed for computer games and display
process (Owens et al. 2008), but they have recently been successfully
used to accelerate many scientific applications (Kirk & Wen-Mei 2016).
These graphic cards are nowadays used in many fields ranging
from artificial intelligence (Bleiweiss 2008), to smart cars to med-
ical imaging (AUTOMOTIVE 2020)(Science & Imaging 2020), just
to name a few. GPUs are also used to accelerate algorithms
in the field of bioinformatics, especially for molecular docking
(Sukhwani & Herbordt 2009)(Kannan & Ganji 2010). The increase in the
use of these devices is supported by their moderate costs and low energy
consumption compared to clusters and supercomputers.

In this contribution :

• We first design a CUDA version for the energy calculation to lever-
age the emergent NVIDIA architectures.

• We then propose a multi-threaded Kernel approach using the Hyper-
Q feature (Bradley 2012) in order to increase the performance by
maximizing the uses of both CPUs and GPU by simultaneously
launching multiple GPU kernels (units of code executed on the
GPU).

• To evaluate the performance of our GPU parallel strategy, we first
compare its performance with a multi-core CPU version and the se-
quential counterpart version. We then implement our GPU solution
on two different architectures, namely the current (NVIDIA Pascal
architecture) and previous (NVIDIA Maxwell architecture) genera-
tions. Finally, we experimentally compare our solutions with MUR-
CIA (Zhang et al. 2013) (Molecular Unburied Rapid Calculation of
Individual Areas) which is one of the best solutions from the litera-
ture calculating the solvation term.

The remainder of this chapter is structured as follows. In Section 5.3, we
present the background needed to understand the remaining sections. For
that purpose, we first briefly introduce the solvation energy term calcu-
lation, then introduce the NVIDIA Pascal GPU architecture, and finally
summarize some elements of the CUDA programming model. In Section
5.4, we present the related works, such as MURCIA (Zhang et al. 2013). In
Section 5.5, we introduces our multi-core CPU and GPU parallelization
strategies, and in section 5.6 we give details on experiments and we dis-
cuss the obtained results. Finally, in Section 5.7 we summarize the results
and present some concluding remarks and work perspectives.
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5.3 Background

5.3.1 Solvation Term Computation

The following Equation 5.1 explains how to calculate the solvation
free energy term ∆GSolv (Huey et al. 2007), this equation is based on
the semi-empirical force field scoring function of Autodock framework
(Morris et al. 1998b), the latter is a popular solution composed of a set of
tools designed for molecular docking (Morris et al. 2009).

∆GSolv = ∆WSolv ∑
ij
(SiVj + SjVi)e−rij/2σ2

(1) (5.1)

In this equation, WSolv is a weight associated with the solvation free
energy term (TSRI 2017). Si, Sj are solvation terms for respectively atom i
of the ligand and atom j of the protein. Vi, Vj are atomic volume of atom i
of the ligand and atom j of the protein. rij represents the distance between
atom i and atom j. Finally σ is the gaussian distance constant (3.5Å).

The solvation term S for atom i and atom j is reformulated as shown
in the following equation

Si = ai + K|qi| (5.2)

In equation 5.2, ai is an atomic solvation parameter which depends
on the nature of atom i. (e.g it equals to −0.00143 for the Carbon, and
−0.00162 for the Nitrogen). K is a constant referred as the charge-based
atomic solvation parameter and qi is a partial atomic charge of atom i.

5.3.2 NVIDIA Pascal Architecture

With Pascal architecture, NVIDIA saves and extends the same program-
ming model (CUDA) afforded by earlier architectures such as Maxwell
and Kepler, but it introduces new improvements to performance and
power efficiency (NVIDIA 2018) (Whitepaper 2018):

This architecture covers two major variants of cards which can be used
for parallel computing: NVIDIA Tesla P100 for data center accelerator and
server (Figure 5.2), and Geforce GTX 1080 for Gaming and workstation
(Figure 5.3).

The improvements brought by Pascal architecture are :

• NVLink: a new technology developed by NVIDIA to interconnect
GPUs in high speed peer-to-peer connection. It is also used to con-
nect CPU to GPUs. It has data rates of at least 80 Giga bytes per
second, which is five to 12 times faster than the current PCIExpress.
It is also much more energy-efficient than the latter.
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Figure 5.2 – Pascal Tesla P100 (GP100

• HBM2 (High Bandwidth Memory 2): a technology which enables
multiple layers of memories to be stacked vertically on a single sili-
con package with the GPU die. It has greater bandwidth, more than
twice the capacity and higher energy efficiency than previous archi-
tectures. The Pascal Tesla P100 card has a peak bandwidth of 732

GB/s with only 715 MHz memory clock.

• FP16 (colloquially "half precision"): a set of new arithmetic primitives
on a half type variable which improves performance up to 2x with
less time transfers compared to FP32. It can be used in many fields,
especially for Faster Deep Learning.

• Improved shared memory atomic operations ’AtomicAdd()’
achieved by implementing native hardware compared to previ-
ous architectures were it was implemented in software. It can be
used to implement other atomic functions to reduce the overhead in
computation. Moreover atomic operations may target the memories
of peer GPUs connected through NVLink by using the same API as
atomics targeting global memory.

• The unified memory is improved to simplify programming and shar-
ing of memory between CPU and GPU. Two main hardware features
enable these improvements: The support for large address spaces
and the page faulting capability. With page faulting CUDA does not
need to synchronize all managed memory allocations to the GPU be-
fore each kernel launche. The needed page is automatically migrated
to the GPU memory on-demand.

As you can see in Figure5.3, the GP104 which is used for the GTX 1080

card is equipped with four GPCs (Graphic Processing Clusters), 20 Stream-
ing Multiprocessors (SMs) and 8 memory controllers (=256-bit). Each SM
has 128 (CUDA) cores, 256 KB Register File Buffer, 96 KB Shared Memory
unit, 48 KB L1-cache and 8 texture units "
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Figure 5.3 – GTX1080 (GP104)

5.4 Related work

In this section, we focus on one solution called MURCIA (Molecular Un-
buried Rapid Calculation of Individual Areas) (Zhang et al. 2013). To the
best of our knowledge, MURCIA is, so far, the fastest method that can be
used to calculate solvation energy on GPUs. For this reason, we chose to
compare its performance with the performance of our solution.

MURCIA calculates SASA (Solvent Accessible Surface Area)
(Zhang et al. 2013), over three functions (GenGrid, Neighbors, and Out-
points) which are described as follows:

1. GenGrid: a grid of points is built to form a sphere around each
atom, this procedure uses a grid of 72 points by unit sphere (very
low number of points compared to the other methods). However, it
guarantees a high precision.

2. Neighbors: for each atom we calculate a list of its closest neighbors,
this list is sorted from the closest to the farthest neighbor.

3. Outpoints: this function classifies all grid points generated by Gen-
Grid function in two categories. The first one is called non-buried
points, it contributes to SASA and solvation energy term. The second
category contains buried points which do not contribute to SASA
but give useful information about the molecule surface. This last
category can be used in conjunction with the first category for the
visualization of molecular surfaces. As shown in Fig.5.4, we take
each grid point k of each atom i and calculate the squared distance
to the first atom j of the neighbors list. We then test if this distance
is smaller than the radius of atom j, and if so, we store point k as
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Figure 5.4 – Illustration in 2D of the SASA calculation in MURCIA

buried point. Otherwise we flag it as an non-buried point. We do the
same procedure by calculating the distances with all other atoms in
the neighbors list. Once this procedure is finished for all k points of
atom i, we get n contributing points. The individual SASAi for this
atom is obtained by the fraction (n/72), where 72 is the number of
grid points.

To calculate solvation energy term from SASA, we calculate the sum
of all SASAi values by taking in consideration the hydrophobic and hy-
drophilic nature of each atom i (Eisenberg & McLachlan 1986).

5.4.1 Implementation of MURCIA on GPU with CUDA

Three CUDA kernels are dedicated for the three functions:

1. GenGrid_kernel: each grid point is computed by one thread, the
number of threads per block is proportional to the number of grid
points per atom (72 points). The total number of calculations for
atoms is divided into blocks.

2. Neighbors_kernel: one block is dedicated for each atom with a vari-
able number of threads. Each thread calculates the distance between
atom i and all the other atoms j. All threads within a block use shared
memory to cooperate and calculate together their neighbors.

3. Out Points_kernel: each thread calculates distances between each
grid point of atom i and all of its neighbors j. The number of threads
per block is proportional to the number of grid points per atom.
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5.5 Methodology

This section introduces the paralelization strategies we applied to solva-
tion energy calculation. First, our sequential and the multicore-based im-
plementations are explained before we provide detailed description of the
the CUDA-based parallelization approach.

5.5.1 Sequential Baseline

In this study, we focus on the calculation of the solvation term shown
in Algorithm 8. This algorithm calculates the solvation energy for each
spot (binding site) t by summing the result of Solvation() computation
for each ligand’s atom (i loop) with all protein’s atoms (j loop). We no-
tice that Solvation() computation is the implementation of Equation 5.1
(Sec:Background).

Algorithm 8 The sequential pseudo-code
1: for t = 0 to nspot do
2: for i = 0 to nligatoms do
3: for j = 0 to nprotatoms do
4: Solvation(ligand[i],protein[j])
5: end for
6: solvation[t] += Solvation()
7: end for
8: end for

The key words used in Algorithm 8 are:

• nspot: number of spots (binding sites) on the protein surface

• nprotatoms: number of a protein’s atoms

• nligatoms: number of ligand’s atoms

• ligand[1 nligatoms ], protein[1 nprotatoms ]: are vectors that contain
the x, y, and z positions and charges of ligand’s and protein’s atoms.

• Solvation: solvation term calculation for each atom of a ligand.

• solvation: solvation term calculation for each spot

5.5.2 Multicore implementation

The Algorithm 9 shows the Multicore CPU version with OpenMP of the
solvation calculation previously explained in Section 5.3. This algorithm
calculates solvation energy by computing the solvation energy term for
each binding site (spot) t on the protein surface (loop 1 in the pseudo-
code). The spots are independent of each other, and therefore the solvation
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calculation can be executed in parallel. In the multicore version, the loop-
parallelization is performed at this level in order to leverage all the cores
within the processor. The solvation [t] function calculates the solvation for
each spot (line 1 and 6 of the pseudo-code ) by summing the Solvation
term for each ligand’s atom with all protein atoms (see loops in lines 2

and 3, and line 6 of the pseudo-code ). The latter is implemented using
Equation (1) which was previously explained in the Background section.

Algorithm 9 The OpenMP pseudocode of the solvation calculation.
0: #pragma omp parallel for
1: for t = 0 to nspot do
2: for i = 0 to nligatoms do
3: for j = 0 to nportatoms do
4: Solvation (ligand[i],protein[j]);
5: end for
6: solvation[t] += Solvation();
7: end for
8: end for

As in the sequential code, in this algorithm, nspot represents the num-
ber of the binding sites on the protein surface, nportatoms and nligatoms
represent the number of the protein’s and ligand’s atoms respectively. lig-
and[1..nligatoms] and protein[1..nportatoms] are vectors that contain the 3D
positions of ligand’s and protein’s atoms.

5.5.3 Implementation on the GPU

Simple kernel implementation

Figure 5.5 represents the the design related to Algorithm 10 on NVIDIA
GPU architecture. For each spot t, one thread which represents one atom
i of the ligand, goes through all protein’s atom j to perform energy. As
shown in the device code in Algorithm 10, we reduce the sequential code
to just one loop instead of three loops, and use as much as possible threads
to perform energy. The total number of threads is equal to the number of
spot nspot multiplied by the number of a ligand’s atoms nligatoms. We
divide this number in blocks, so that we have a good thread distribution
in each block. As shown in the host side in Algorithm 10, we choose to
transfer all data to the GPU memory and perform energy. This choice
is basic, since this wipes unnecessary memory duplicates forward and
backward the GPU and host memories. After finishing the calculation, we
transfer the result to the host memory.

In Algorithm 10:

• each thread t which represents one ligand’s atom i, performs the
energy with the entire protein atoms by executing the Solvation com-
putation within the j for loop.
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Algorithm 10 The parallel pseudo code
Host side

1: Copy Data CPU to GPU

• protein vector : protein [1.. nprotatoms]

• ligand vector: ligand[1 .. nligatoms]

• autodock parameter vector : parmvect(...)

• nligatom, nprotatom, nspot

2: Call GPU Kernel

• SolvKernel(nligatom, nprotatom, nspot, ligand[],protein [],par-
mvect (...))

3: Copy Energy result GPU to CPU
Device side

1: __global__ SolvKernel(nligatom, nprotatom, nspot, ligand[],protein
[],parmvect (...))

2: total = nspot * nligatoms
3: t = blockIdx.x * blockDim.x + threadIdx.x
4: idSpot = t / nligatom
5: if t <total then
6: i = t % nligatoms
7: for j= 0 to nprotatoms do
8: Solvation(ligand[i],protein[j])
9: end for

10: AtomicAdd( solvation[idSpot],Solvation)
11: end if
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Figure 5.5 – CUDA design (conf i represents the binding site i or spot i on the protein
surface

• parmvect() is a vector which contains all the constants necessary to
calculate the solvation energy.

• Using CUDA atomicAdd function to Calculate solvation for each spot
by summing Solvation result for each ligand’s atom within the same
spot.

• having as many threads as nligatoms*nspo (namely total ).

• having as many thread blocks as total divided by the number of
threads within a block.

Optimized kernel implementation

Getting data from GPU’s global memory is critical to the performance of
a CUDA kernel. In order to optimize kernel in Algorithm 10, we decided
to use the tiling technique and shared memory to efficiently move data.
A structure of arrays is used for the representation of the protein and
ligands molecule to guarantee the accesses to the device memory in a
coalesced way. To optimize our kernel, we first used shared memory to
save x,y, and z coordinates of the ligand atoms loaded by one thread and
shared with all threads within the same block. We then used the tiling
technique to group the small number of protein atoms in tiles. Threads
in the same block collaborate to move this group from global memory
in a single access and put it in the shared memory. During the process of
energy calculation each thread which represents one ligand atom performs
energy with tiles instead of working with just one protein atom, and brings
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its data from global memory in a single way. By using this technique we
have considerably increased the performance of the kernel of algorithm
10.

5.5.4 Implementation on the GPU with CUDA Multi-Kernel

In this work, we design a CUDA with Multi-kernel technique for solvation
energy calculation on the NVIDIA Pascal architecture. It is an extension
of the design we proposed in our previous section. In order to maximize
GPU utilization, we propose an approach to launch several GPU-kernels
simultaneously by using the Hyper-Q technique (Bradley 2012). This tech-
nique enables multiple CPU threads to launch simultaneously many in-
stances of our kernel to calculate solvation energy on the GPU. HyperQ
permits multiple CPU threads to execute a code on a single GPU con-
currently. It also allows the CPU to launch up to 32 simultaneous tasks
on a GPU, which increases the entire number of connections between the
CPU and the device (GPU). This is different from the single connection
when we used the GPU without HyperQ (suach as Nvidia Fermi architec-
ture). Therefore, this hybrid hardware and software solution significantly
reduces CPU idle times while increasing GPU utilization. Fig.5.6 explains
our new CUDA design. First, m CPU threads (streams) launch simultane-
ously m instances of our kernel to calculate solvation energy on the GPU.
Each kernel calculates solvation energy for a group of binding sites (spots).
The number of launched kernels depends on the hardware features, (i.e.
how many CPU and GPU cores are available on the system) and the size
of the problem (i.e. small, medium, or large). The number of binding sites
treated by each kernel is equal to the total number of binding sites (nspots)
divided by the number of launched CPU threads (m). After launching ker-
nels, each thread on GPU represents one atom i of the ligand, and goes
through all the protein’s atoms j to perform solvation energy calculation.
This operation is repeated for all spots. The total number of threads by
kernel is equal to the number of spots by stream (CPU ) multiplied by the
number of a ligand’s atoms nligatoms, and the total number of threads on
the GPU is nspot multiplied by nligatoms.

As Algorithm 11 shows, on the host side we initialize and read the
proteins and ligands atoms 3D coordinates (x,y,z). We read also the vector
parmvect() that contains all the constants necessary to calculate solvation
energy. Then, we read the number of atoms in ligand and protein and the
number of CPU threads (nstreams) and the number of binding sites nspot.
After reading all necessary data, the code calculates the number of spot to
be treated by each GPU Kernel (line 2 in the Algorithm 11, then it creates
CPU threads (streams) which call simultaneously multiple instances of the
Kernel (SolvationKernel) on GPU.

On the device side, each instance of the kernel calculates solvation en-
ergy for a group of spots. The GPU thread represents one atom i of a
ligand and calculates the solvation energy with the entire proteins atoms
by executing the Solvation function within the innermost loop. In that loop
ligand[i] and protein[j] are elements of arrays of vectors of three dimen-
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Algorithm 11 The CUDA pseudocode of solvation calculation
Host side

1: Read data

• nligatoms,nportatoms,nspot,nstream

• protein[1..nportatoms],ligand[1..nligatoms]

• parmvect(...)

Call GPU Kernel instances using HyperQ
2: mspot = nspot / nstreams
3: for i= 0 to nstreams do
4: SolvationKernel (streams[i])
5: end for

Device side
1: __global__ SolvationKernel(nligatoms, nprotatoms, nspot, pro-

tein[],ligand[], parmvect(...))
2: total = mspot * nligatoms
3: id = blockIdx.x * blockDim.x + threadIdx.x
4: idSpot = id / nligatoms
5: if id < total then
6: i= id % nligatoms
7: for j= 0 to nprotatoms do
8: Solvation(ligand[i],protein[j])
9: end for

10: AtomicAdd(solvation[idSpot],Solvation)
11: end if
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sions, x, y and z. The numbers ’i’ and ’j’ represent indexes in the arrays
ligand and protein. For example: ligand [3]=(3;5.2;6) is the third atom of
the ligand which has three coordinates. protein [2] = (5;-2;1) is the second
atom of the protein which has three coordinates.

The AtomicAdd function (line 10 in the Algorithm 11), which is en-
hanced in Pascal architectures, is used to calculate solvation energy for
each binding site (spot) by summing Solvation result for each ligands atom
calculated in the previous step.

To enhance the performance of our solution, we used the following
techniques:

• We used Tiling technique with shared memory to group a small
number of the protein atoms equal to warp size (32 threads). Tiles
are moved from global memory to shared memory in a single ac-
cess. Hence, during the process of energy calculation, each thread
(one atom of the ligand ) performs solvation calculation with tiles
(32 atoms) instead of working with just one protein atoms. This tech-
nique ensures the accesses to the global memory in a coalesced way.

• Minimization of redundant accesses to global memory by using vec-
tors structures for ligand and protein data which avoids threads di-
vergence within the same warp, and ensures the access to the global
memory in coalesced way.

• We used the unified memory to benefit from the fault pagination
offered by Pascal architectures, where the needed page (data) is au-
tomatically migrated to the GPU memory on-demand, and with the
very high data transfer rate offered by the Nvlink interconnections
and the HB2 memory technology.

5.6 Experimental Results

In this section we show the performance of our GPU-based solution de-
scribed in the previous section and compare it with the performance of
the sequential and the parallel multi-core CPU implementations.

We start by describing the benchmark and the environment used for
the evaluation, and then present the experimental results. In this exper-
imentation, we targeted one of the latest GPU architectures (Pascal). We
specifically used one of the latest GPU cards of this architecture family,
namely the GTX 1080 Ti card. The latter uses a 1480 MHz processor with
3584 cores and 11 GB of memory (See Table 5.2). For the CPU side as
shown in Table 5.3, we used two Intel Xeon E5-2650 processors, equipped
with a 2.20 GHz processor with a total of 24 cores (48 CPU threads) and
128 GB of RAM. On the software side, Open Multi-Processing (OpenMp)
API is used for multi threading computation on CPUs (Board 2018), and
CUDA platform is used for the GPUs programming. More precisely, we
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ACE

ALR2

COMT

GPB

Figure 5.7 – Protein-Ligand dataset 3D structure

used the CUDA 8.0 platform that leverages the latest Nvidia Pascal archi-
tecture.

For benchmarking, we used the Useful Decoys Database
(DUD), a dataset designed for virtual screening and docking tests
(Huang et al. 2006). We chose ligand-protein compounds with various
sizes that require different amounts of resources in the docking process.
As shown in Table 5.1, the protein in the first compound named GPB has
13261 atoms, and the associate ligand has 29 atoms. The second ALR2 has
5105 atoms for the protein and 37 atoms for the ligand.
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Table 5.1 – Protein-Ligand pairs characteristics

Data set nportatoms nligatoms

Comp 1 / GPB 13261 29

Comp 2 / ALR2 5105 37

Comp 3 / ACG 9198 59

Comp 4 / COMT 3419 52

In our experiments, we perform multiple evaluations and compar-
isons:

1. We compare the performances of our solution implemented on GPU
with the Multi-core CPUs implementation and the sequential code.
Then, we study the influence of the number of binding sites on the
performance of the docking process. To this end, we simulate a sim-
ple molecular docking by calculating solvation term for one binding
site (one spot), then we increase the number of spots to deal with the
blind docking and explore the whole surface of the protein (subsec-
tion 5.6.1 ).

2. We compare the implementations of our parallel solution on Pas-
cal architecture and on the previous Nvidia architecture (Maxwell)
(subsection 5.6.2).

3. We compare our parallel strategy with the best solution of the liter-
ature which is MURCIA (results in subsection 5.6.3).

5.6.1 Performance comparison between the GPU and the multi-cores
CPU implementation

Our experiments start with the simulation of a simple docking with one
binding site. We run the sequential code on just one core, then we execute
the parallel code to calculate solvation energy on multi-core CPUs (24

cores) using OpenMP. Finally, we run the multi-threaded CUDA code on
GPU ( Pascal GTX 1080 Ti card). For the time consumption (see Fig.5.9
), we observe that the performance on GPU is better than on one CPU
and on multi-core CPUs. However, the difference in not very large. Also,
the performance on one CPU is a little bit better than the performance on
multi-core CPUs for all compounds of the dataset. This is due primarily to
parallelization overhead with the OpenMP API, and secondly to the fact
that we do not have enough tasks to exploit CPU cores (24 cores).

For the speedup, the solvation term calculation got an average accel-
eration between 2.5x and 4.20x on the GPU version with respect to the
sequential code. This depends on the protein and ligand size. We can ex-
plain this result by the fact that we do not have enough threads to occupy
all the GPU blocks. This means that we did not fully exploit the computa-
tion power of the GPU. For the multicore CPU version, we did not get any
acceleration due to parallelization overhead with the OpenMP API. Hence,
for simple docking, GPU is better than both parallel multicore CPU and
sequential code.
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To fairly compare the parallel GPU solvation calculation with the par-
allel multi-core CPU implementation for blind docking, we ran the multi-
core code with different number of CPU threads (1, 4, 8, 16, 32, 48, 64, and
96) for a large benchmark with 200 spots and the largest protein-ligand
compound ( Comp 2 in Table 5.1). The goal is to get the best configuration
for the multicore CPU (optimal number of threads) in a 24-cores CPUs
server. As shown in Fig.5.8 , the best execution time was reached with
48 threads. We thus used the latter configuration for the multicore CPU
implementation.

In the second step of our experiments, we increased the number of
binding sites (spots) to simulate blind docking. We study the influence of
this parameter on the performance of our parallelization strategy. In our
tests, we used 10, 20, 50, 100, 200 and 300 binding sites.

In terms of accuracy, solvation calculation for blind docking with the
parallel version gives the same values as the sequential code.

We notice that increasing the number of spots has a significant influ-
ence over the performance of the three approaches. Escalating it greatly
increases the computation time in the case of the sequential code. It also
increases the computation time for the multi-core approach in smaller pro-
portions compared to the sequential version. The GPU version, however,
gives relatively good results, with smaller increase in computation time.
For example, when using 300 spots the average execution time is 10544 ms
for the sequential code, 200 ms for Multi-Cores CPU, and just 33 ms for
GPU. As can be seen from Fig.5.9 , with GPU the net speedup increases
exponentially with the number of binding site (spot). e.g., for the first com-
pound with 1 spot it equals 4.20x, 27.50x for 10 spots, 48.98x for 20 spots,
110.82x for 50 spots, and 213.39x for 100 spots. For the multi-core CPU ver-
sion, the speedup increases exponentially with the number of spots from 1

to 100. Then, it becomes stable (15x-16x) when the number of spots varies
from 100 to 300. From these results we can observe that the parallelization
is far better with GPU than with multicore CPU. We thus conclude that
the use of GPUs to parallelize blind docking is very promising.
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Figure 5.8 – Multicore performance with 1, 4, 8, 16 , 32 , 48, 96 threads

5.6.2 Performance comparison between Pascal and Maxwell imple-
mentations

In this section we compare the results obtained with the Pascal archi-
tecture with the ones obtained with the previous NVIDIA architecture
(Maxwell). We implemented our code on Titan X card which represents
the Maxwell architecture. We evaluated the computational performance
of our parallelization strategies on this architecture and compare it with
the Pascal implementation. We used the same dataset for the benchmark-
ing (see Table 5.1). Table 5.2 details the features and shows a hardware
comparison between the two GPU cards which represent the two archi-
tectures. Fig.5.10 shows time consumption for both architectures, and the
speedup obtained with these two cards with respect to sequential code.
The experimental results show that Maxwell gives good results, for 100

binding sites it achieves an average 121x speed-up with respect to the se-
quential code. This speed-up enhances exponentially with the number of
spots. However, as we can see on time consumption and speedup graphs
and for the entire dataset, Pascal consumes less time to calculate solvation
energy for the scoring function and accelerates better the sequential code.
We can conclude that Pascal-based solvation term outperforms Maxwell-
based solvation term calculation; using the Pascal architecture is very ben-
eficial for blind docking with lower cost and better power consumption.
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Table 5.2 – GPUs hardware resources comparison

GPU name TITAN X (Maxwell) GTX 1080Ti (Pascal)

Price (Amazon) 1400 $ 700 $
Year of release 2016 2017

Raw computational power

number of multiprocessors 24 28

Number of cores 3072 3584

Cores frequency 1417 MHz 1480 MHz
Peak processing 10.16 TFLOPS 10.6 TFLOPS
Compute capability 5.2 6.1
Memory

Global memory 12 GB 11 GB
Shared memory 49 KB 49 KB
L2 cache 3.1 MB 2.8 MB

Table 5.3 – CPUs Hardware resources

Feature Intel CPU
Model E5-2650 v4

Year released 2016

Raw computational power
Number of cores 24

Number of threads 48

Cores frequency (MHz) 2,20 GHz
Peak processing (GFLOPS) 254

Memory
Size (GB.) 128 GB
Cache
L1/Shared memory. 32 KB
L2 cache 256 KB
L3 cache 32 MB

99



Chapter 5. Parallelization of the Scoring Function for the Blind Docking Problem

Comp 4

Comp 2

Comp 1

Comp 3

1 10 20 50 100 300

0

5

10

15

20

25

30

35

40

45
Pascal Maxwell

Spots number

E
xe

cu
ti

o
n

 T
im

e 
(m

s)

1 10 20 50 100 300

0

50

100

150

200

250

Pascal

Maxwell

S
p

ee
d

 u
p

1 10 20 50 100 300

0

5

10

15

20

25

30
Pascal Maxwell

10 20 50 100 300

0

50

100

150

200

250

300

350

Pascal

Maxwell

1 10 20 50 100 300

0
10
20
30
40
50
60
70
80
90

100
Pascal Maxwell

1 10 20 50 100 300

0

50

100

150

200

250

300
Pascal

Maxwell

1 10 20 50 100 300

0

10

20

30

40

50

60

Pascal Maxwell

1 10 20 50 100 300

0

50

100

150

200

250

300

Pascal

Maxwell

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

)
E

x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

)

S
p

e
e

d
 u

p
S

p
e

e
d

 u
p

S
p

e
e

d
 u

p

Spots number

Spots number

Spots number Spots number

Spots number

Spots number

Spots number

Figure 5.10 – Performance comparison between PASCAL architecture (GTX 1080 Ti
card) and Maxwell architecture (Titan X graphic card),

100



Chapter 5. Parallelization of the Scoring Function for the Blind Docking Problem

Table 5.4 – Performance comparison with MURCIA

Data set Our solution ms MURCIA K1 ms MURCIA K2 ms

CP1 13.11 111.78 104.80

CP2 20.80 69.29 67.80

CP3 12.23 26.91 25.95

CP4 9.46 40.73 35.91

5.6.3 Performance comparison with the state of art (MURCIA)

In this section we compare the performance of our solution with the per-
formance of MURCIA (see Background section) which is considered as
the fastest method to date for the calculation of the solvation energy term
on GPU architectures. For the purpose of this experiment, we have ex-
ecuted two versions of MURCIA on the same GPU architecture which
we have used to execute our solution. The first version (called MURCIA-
K1) is developed with CUDA, whereas the second version (MURCIA-K2)
uses CUDA with Trust library (NVIDIA 2017) and Particle systems model
(Green 2010) to enhance the performance of MURCIA K1. We compare the
results of the implementations of the two versions of MURCIA with the
results of our parallel strategy.

Table 5.4 shows the results of this comparison. We found that our so-
lution outperforms both MURCIA versions i.e. runs faster then MURCIA
K1 and MURCIA K2. If we take the first compound from the dataset, the
execution time for MURCIA K1 and MURCIA K2 are 111.78 ms and 104.80

ms respectively, however it takes just 13.11 ms with our solution.

5.7 Conclusion

In this chapter, we showed our contributions to improve the performance
of the blind docking problem by parallelzing efficiently the calculation
of the solvation energy term, which is considered as the most time-
consuming part of the scoring function of the meta-heuristic used to solve
the blind docking problem. Towards this goal, we proposed a new ap-
proach to accelerate this calculations for both simple and blind docking
approaches by the exploitation of the emergent GPU architectures with the
CUDA programming model and the hyper-Q technique. The latter enables
multiple CPU threads to simultaneously launch multiple GPU Kernels to
perform calculation.

We compared the performances of our parallel approach with the se-
quential version executed on a single-core CPU and with the parallel
multi-core CPU version (48 CPU threads). Our parallel approach was ap-
plied to dock a set of protein-ligand complexes from the DUD database.
The experiments show that the GPU-based parallel version outperforms
both the multi-core CPU and sequential versions. Indeed, for 100 binding
sites, our results show an average speedup of 186x compared to the se-
rial implementation, and 10x as compared to the multi-core CPU version.
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In addition, the experimental results show that the speedup of the GPU
version increases exponentially with the number of binding sites.

In addition our parallel approach outperforms the best solution of the
literature (MURCIA) since it runs faster than the CUDA version of that
solution called (MURCIA-K1) and it is also faster than the second version
called (MURCIA-K2) which uses CUDA with Trust and Particle systems
libraries.

102



Scientific contributions

• Hocine Saadi, Nadia Nouali-Taboudjemat, Abdellatif Rahmoun, Bal-
domero Imbernon, Horacio Emilio Pérez Sánchez, José M. Ce-
cilia.(2020). Efficient GPU-based parallelization of solvation calcu-
lationfor the blind docking problem. J.Supercomput.76(3):1980-1998

• Hocine Saadi, Nadia Nouali-Taboudjemat, Malika Mehdi, Ousm-
erSabrine. (2019). A GPU-MapCG based parallelization of BSO meta-
heuristic for Molecular Docking problem. The International Confer-
ence on Parallel and Distributed Processing Techniques Applications
PDPTA’19:205-210 (USA).

• Hocine Saadi, Nadia Nouali-Taboudjemat, Abdellatif Rahmoun, Bal-
domero Imbernon, Horacio Pérez Sánchez, José M. Cecilia. (2017).
Parallel Desolvation Energy Term Calculation for Blind Docking on
GPU Architectures. 46th International Conference on Parallel Pro-
cessing Workshops. ICPP Workshops:16-22 (UK).

• H.Saadi, Y.Djenouri, N.Nouali-Taboudjemat, A.Rahmoun, M.Mehdi,
A.Bendjoudi. (2016). Bees Swarm Optimization for Molecular Dock-
ing ). The 6th International Conference on Metaheuristics and Na-
ture Inspired Computing META’16 (Maroc)

• H.saadi, Y.Djanouri, N.Nouali-Taboudjemat, A.Rahmoune,
M.Mehdi, A. Bendjoudi.(2016). Bees Swarm Optimisation for Molec-
ular Docking (Poster). IWBBIO International Work-Conference on
Bioinformatics and Biomedical Engineering. (Spain).

103



General Conclusion

In this thesis, we treated metaheuristics on GPU and their applica-
tion to solving the molecular docking (MD) problem. We particularly ad-
dressed some challenging issues related to the MD problem such as the
exploration of the huge search space by the appropriate metaheuristic
and the evaluation of the results of the search step by a rapid and effi-
cient scoring function. Also, we addressed the challenges related to the
implementation of metaheuristics on modern GPU architectures such as
CPU/GPU communication, GPU threads divergence, device hierarchically
memory management etc. We leverage the computing power offered by
GPUs through the use of GPGPU paradigm (General-purpose computing
on GPUs). GPU can be found on workstations, clusters, personnel comput-
ing, and even on a smartphone. It becomes affordable and efficient with
lower cost compared to the supercomputer.

We proposed three main contributions in this thesis. In the first con-
tribution, we proposed a new approach named BSO-DOCK to efficiently
explore the search space; this approach is based on Bees Swarm Opti-
mization metaheuristic (BSO). We gave details of the operators of BSO
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metaheuristique for MD, such as the encoding solution, the fitness func-
tion, the determination of regions, and the neighborhood search. The re-
sults revealed that BSO-DOCK showed its efficiency compared to the state-
of-the-art algorithms. However, the performance decreases when dealing
with very large instances, which requires a huge power computing.

In the second contribution, we intend to parallelize BSO-DOCK on
GPUs architecture to overcome the bottleneck faced in the first contribu-
tion. The proposed approach is based on MapReduce Model. We paral-
lelized the calculation of the scoring function of BSO-DOCK on GPU ar-
chitecture with MapCG Framework. The latter allows us to write portable
applications which can be executed on both CPU and GPU without chang-
ing any line of code. The results show a total speed-up exceeding 10x for
the evaluation stage with respect to one CPU version.

In the third contribution, we efficiently parallelized the calculation
of the most challenging part of the scoring function. The latter is the
most consuming time part of the metaheuristic used to solve both sim-
ple and blind docking problems. We first developed a pure GPU oriented
method using the CUDA programming model, we tuned our code to
leverage the emergent GPUs architectures (Kepler, Maxwell, and Pascal).
We then extend it to a hybrid method that simultaneously exploits both
CPU and GPU cores by using the hyper-Q technique. The latter enables
multiple CPU threads to simultaneously launch multiple GPU Kernel to
perform the calculation. The different experiments demonstrate that the
GPU-based parallel version outperforms both the multi-core CPU and the
sequential versions. Indeed, for 100 binding sites, our results show an av-
erage speedup of 186x compared to the serial implementation, and 10x as
compared to the multi-core CPU version. Our parallel approach outper-
forms the best solution of the literature.

Several conclusion can be drawn from our experience with the parallel
metaheuristics on GPUs :
• The trend for parallel metaheuristic and parallel computing in the

coming years is to use the GPU in cooperation with Many-core and
Multi-core resources in what is known as heterogeneous parallel
systems. The goal is to offer a huge computing resources for bio-
informatics or other scientific fields.

• Developments of parallel metaheuristics for docking or other prob-
lems always focus on a specific platform. Thus, it is important to
design parallel metaheuristics compatible with different hardware
platforms.

Perspectives

As perspective to this work, we plane to :

• Design and implement the first Algerian platform for bioinformat-
ics tools (molecular docking, molecular dynamics,etc.), this platform
will leverage the high-performance computing resources offered by
CERIST (Ibenbadis Cluster, GPUs stations etc). It will be available
for all Algerian researchers to do rapid simulations for academics
purpose for free.
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• Apply the proposed parallel approaches in the context of virtual
screening (a type of docking in which a database of ligands is docked
with a target protein).

• Implement the proposed parallel algorithms on other architectures
such as clusters with Multi-core and/or Mutli-GPU, explore the po-
tential of vector unit architectures such as Xeon-Phy.

• Enhancing the scoring function quality by combining the solvation
energy calculation presented in this thesis with other strategies like
SASA (solvent-accessible surface area).

• Combine BSO with a local search metaheuristic such as Tabu search
to batter explore the MD search space.

•
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Résumé

L’Amarrage Moléculaire (AM) est une technique utilisée dans
l’industrie pharmaceutique dans le process de découverte de nouveaux
médicaments. L’objectif est de prédire la position d’interaction entre une
petite molécule (substance médicale) et une protéine cible (l’origine d’une
maladie). Ce problème est complexe et connu pour être NP-difficile.
Plusieurs métaheuristiques ont été proposées pour le résoudre, telles que
l’algorithme génétique (GA), l’optimisation d’essaims de particules (PSO),
etc. Néanmoins, ces métaheuristiques sont gourmandes en temps de cal-
cul et souvent nécessitent beaucoup de ressources de calcul informatiques.
Aujourd’hui, cette puissance peut être fournie par les carte de traitement
graphique (GPU) et grâce à l’utilisation du paradigme GPGPU (General
Purpose Computing on GPU). Cette thèse présente deux approches de
parallélisation des métaheuristiques sur les cartes GPU pour résoudre
le problème d’amarrage moléculaire, ainssi une évaluation adéquate en
termes de temps de calcul réalisé sur différentes architectures GPUs, Les
approches de parallélisation proposée ont prouvé leur efficacité dans
l’accélération de AM sur les GPUs, ces résultats on été comparés avec
un seul et multi-coeur CPU. En plus de la présentation des stratégies de
parallélisation, nous proposons également un nouvau algorithme basé
sur la metaheuristique d’essaim d’abeilles (BSO) comme alternative aux
métaheurismes traditionnels tels que les algorithmes GA et PSO pour
résoudre le problème d’ Amarrage Moléculaire.
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Abstract

Molecular Docking (MD) is a technique used in the pharmaceutical in-
dustry in the process of discovering new drugs. The aim is to predict the
binding pose between a small molecule (drug candidate) and a protein tar-
get (the origin of a disease). Since this problem is complex and known to
be NP-hard, several metaheuristics have been proposed to solve it, such as
Genetic Algorithm (GA), and Particle Swarm Optimization (PSO), . . . etc.
Nevertheless, these metaheuristics are greedy in terms of computation
time and often require a huge amount of computing resources. Nowadays,
such computation power can be provided by the Graphics Processing Unit
(GPUs) through the use of the GPGPU paradigm (General-purpose com-
puting on GPUs). This thesis presents two parallelization approaches of a
metaheuristic on GPU to solve the molecular docking problem, and a cor-
responding evaluation in terms of computation time achieved on different
NVIDIA GPU architectures. The parallel metaheuristic approaches have
proven their effectiveness in accelerating MD on GPUs when compared to
a single-core CPU or multi-core CPU. Besides presenting the paralleliza-
tion strategies, we also propose a new metaheuristic based on bees swarm
optimization (BSO) algorithm to solve the MD problem as an alternative
to the traditional metaheuristics such as GA and PSO algorithms.

Keywords: Metaheuristics, GPUs, BSO, Molecular Docking.
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