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Abstract

Functional differential equations occur in a variety of areas of biological, physical,
and engineering applications, and such equations have received much attention in recent
years. This thesis discusses the existence of solutions and random solutions for some
implicit fractional differential equations, coupled systems and inclusions involving both
retarded and advanced arguments, with Caputo-type modification of the Erdélyi-Kober
fractional derivative. Our results will be obtained by means of fixed points theorems and
by the technique of measures of noncompactness.
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Introduction

Fractional calculus is a generalization of differentiation and integration to arbitrary or-
der (non-integer) fundamental operator Dα

a+ where a, α ∈ IR. Several approaches to frac-
tional derivatives exist : Riemann-Liouville (RL), Hadamard, Erdélyi-Kober, Grunwald-
Letnikov (GL), Weyl and Caputo etc. The Caputo fractional derivative is well suitable
to the physical interpretation of initial conditions and boundary conditions. We refer
readers, for example, to the books [21, 65, 67, 75, 90] and the references therein. In this
thesis, we always use the Caputo type modification of the Erdélyi-Kober derivative.

Fractional differential equations and inclusions appear in several areas such as engi-
neering, mathematics, bio-engineering, physics, viscoelasticity, electrochemistry, control,
etc. For current advances of fractional calculus, we refer the reader to the monographs
[4, 5, 6, 62, 67, 81, 84, 92] and the references therein. In particular, time fractional differen-
tial equations are used when attempting to describe transport processes with long memory.
Recently, considerable attention has been given to the existence of solutions of bound-
ary value problem and boundary conditions for implicit fractional differential equations
and integral equations with Caputo and Caputo type modification of the Erdélyi-Kober
derivative. See for example [15, 16, 17, 18, 24, 33, 34, 66, 89] and references therein.

The differential equation with delay is a special type of functional differential equa-
tions. Delay differential equations arise in many biological and physical applications and it
often forces us to consider variable or state-dependent delays. The functional differential
equations with state-dependent delay have many important applications in mathematical
models of real phenomena and the study of this type of equations has received much
attention in recent years. We refer the reader to the monographs [7, 12, 26, 27, 32, 37,
39, 40, 41, 45, 57].

Recently there have been special situations in decision making, organizational trans-
formation, chaotic equations, wavelet theory and so on, where specific equations with
anticipation as well as retardation and anticipation appear in modeling [20, 54, 55]. This
lead to the initiation of the study of the general theory of differential equations involving
anticipation as well as retardation and anticipation in [72, 86] and continued in [47, 48].
The authors studied the existence and uniqueness of solutions for boundary value prob-
lems of Hadamard-type fractional functional differential equations and inclusions involving
both retarded and advanced arguments;see [14, 32, 37] and the references therein.
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6 INTRODUCTION

Coupled systems of fractional differential equations arise in various problems of applied
nature. In recent years, some authors have investigated the existence and uniqueness of
solutions for coupled systems of nonlinear fractional differential equations; see [11, 12, 19]
and the references therein.

The measure of noncompactness which is one of the fundamental tools in the theory
of nonlinear analysis was initiated by the pioneering articles of Kuratowski [70], Darbo
[51] and was developed by Bana’s and Goebel [23] and many researchers in the literature.
The applications of the measure of noncompactness (for the weak case, the measure
of weak noncompactness developed by De Blasi [52]) can be seen in the wide range of
applied mathematics: theory of differential equations (see [11, 12, 13, 37, 38] and references
therein).

Implicit differential equations involving the regularized fractional derivative were an-
alyzed by many authors, in the last year ; see for instance[8, 25, 31, 37, 88] and the
references therein.

Probabilistic functional analysis is an important mathematical area of research due to
its applications to probabilistic models in applied problems. Random differential equa-
tions, used in many on cases, to describe phenomena in biology, physics, engineering, and
systems sciences contain certain parameters or coefficients which have specific interpreta-
tions, but whose values are unknown. We refer the reader to the monographs [49, 71, 85],
the papers [1, 2, 3, 9, 10] and references therein.

In the following we give an outline of our thesis organization consisting of six chapters.
The first chapter gives some notations, definitions, lemmas and fixed point theorems which
are used throughout this thesis.

In Chapter 2, we establish the existence of solutions for a class of problems for nonlinear
implicit Caputo type modification of the Erdélyi-Kober fractional differential equations
involving both retarded and advanced arguments. Here two results are discussed, the
first is based on the Banach contraction principle, Schauder’s and Schaefer’s fixed point
theorems, the second is based on the method associated with the technique of measures
of non compactness and the fixed point theorems of Darbo and Mönch.

In Section 2.2, we discuss existence and uniqueness of solutions for a class of problem
for nonlinear implicit fractional differential equations (NIFDE for short) involving both
retarded and advanced arguments.

ρ
cD

α
a+y(t) = f(t, yt,ρc D

α
a+y(t)), for t ∈ I := [a, T ], 1 < α ≤ 2,

y(t) = φ(t), t ∈ [a− r, a], r > 0

y(t) = ψ(t), t ∈ [T, T + β], β > 0,

(1)

where ρ
cD

α
a+ is the Caputo type modification of the Erdélyi-Kober fractional derivative,

f : I×C([−r, β], IR)×IR→ IR is a given function, φ ∈ C([a−r, a], IR) with φ(a) = 0 and
ψ ∈ C([T, T + β], IR) with ψ(T ) = 0. We denote by yt the element of C([−r, β]) defined
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by:
yt(s) = y(t+ s) : s ∈ [−r, β]

here yt(·) represents the history of the state from time t− r up to time t+ β.

In Section 2.4, we discuss existence and uniqueness of solutions for the following prob-
lem of nonlinear implicit fractional differential equations in Banach space with retarded
and advanced arguments

ρ
cD

ν
a+y(t) = f(t, yt,ρc D

ν
a+y(t)), t ∈ I := [a, T ], 1 < ν ≤ 2,

y(t) = φ(t), t ∈ [a− r, a], r > 0

y(t) = ψ(t), t ∈ [T, T + β], β > 0,

(2)

where ρ
cD

ν
a+ is the Caputo type modification of the Erdélyi-Kober fractional derivative,

(E, ‖ · ‖) is a real Banach space and f : I × C([−r, β], E) × E → E is a given function,
φ ∈ C([a− r, a], E) with φ(a) = 0 and ψ ∈ C([T, T + β], E) with ψ(T ) = 0.
We denote by yt the element of C([−r, β]) defined by

yt(s) = y(t+ s) : s ∈ [−r, β].

In Chapter 3, we establish the existence of solutions to the following coupled system
nonlinear implicit of Caputo type modification of the Erdélyi-Kober fractional differential
equations involving both retarded and advanced arguments. Here two results are dis-
cussed, the first is based on the Banach contraction principle and Schauder’s fixed point
theorem, the second is based our investigation relies upon Mönch fixed point theorem
combined with the technique of measures of weak non compactness.

In Section 3.2 we deal with the existence and uniqueness of solutions to the follow-
ing coupled system nonlinear implicit of Caputo type modification of the Erdélyi-Kober
fractional differential equations involving both retarded and advanced arguments{

ρ
cD

α
a+u(t) = f1(t, ut, vt,ρc D

α
a+u(t),ρc D

α
a+v(t))

ρ
cD

α
a+v(t) = f2(t, ut, vt,ρc D

α
a+u(t),ρc D

α
a+v(t))

t ∈ I := [a, T ], (3)

{
(u(t), v(t)) = (φ1(t), φ2(t)), t ∈ [a− r, a], r > 0

(u(t), v(t)) = (ψ1(t), ψ2(t)), t ∈ [T, T + β], β > 0,

where ρ
cD

α
a+ is the Caputo type modification of the Erdélyi-Kober fractional derivative

and fi : I × C([−r, β], IR)2 × IR2 → IR is a given function, φi ∈ C([a − r, a], IR) with
φi(a) = 0 and ψi ∈ C([T, T + β], IR) with ψi(T ) = 0 ,i = 1, 2.

In Section 3.4, we prove the existence of weak solutions to the following Coupled
system nonlinear implicit of Caputo type modification of the Erdélyi-Kober fractional
differential equations involving both retarded and advanced arguments:{

ρ
cD

α
a+u(t) = f1(t, ut, vt,ρc D

α
a+u(t),ρc D

α
a+v(t))

ρ
cD

α
a+v(t) = f2(t, ut, vt,ρc D

α
a+u(t),ρc D

α
a+v(t))

t ∈ I := [a, T ], (4)
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(u(t), v(t)) = (φ1(t), φ2(t)), t ∈ [a− r, a], r > 0

(u(t), v(t)) = (ψ1(t), ψ2(t)), t ∈ [T, T + β], β > 0,

where ρ
cD

α
a+ is the Caputo type modification of the Erdélyi-Kober fractional derivative and

E is a real (or complex) Banach space with norm ‖ · ‖E and dual E∗, such that E is the
dual of a weakly compactly generated Banach space X, fi : I ×C([−r, β], E)2 ×E2 → E
is a given function, φi ∈ C([a − r, a], E) with φi(a) = 0 and ψi ∈ C([T, T + β], E) with
ψi(T ) = 0, i = 1, 2.

In Chapter 4, we study the existence and uniqueness of Random solutions to the
following coupled nonlinear implicit system of Caputo type modification of the Erdélyi-
Kober fractional differential equations involving both retarded and advanced arguments:{

(ρcD
α1

a+u)(t, w) = f1(t, ut(w), vt(w), (ρcD
α1

a+u)(t, w), w)

(ρcD
α2

a+v)(t, w) = f2(t, ut(w), vt(w), (ρcD
α2

a+v)(t, w), w)
t ∈ I := [a, T ], w ∈ Ω, (5)

{
(u(t, w), v(t, w)) = (φ1(t, w), φ2(t, w)), t ∈ [a− r, a], r > 0,

(u(t, w), v(t, w)) = (ψ1(t, w), ψ2(t, w)), t ∈ [T, T + β], β > 0,
w ∈ Ω

where αi ∈ (1, 2], ρ
cD

αi
a+ , i = 1, 2, is the Caputo type modification of the Erdélyi-Kober

fractional derivative and fi : I × C([−r, β], IRn) × C([−r, β], IRn) × IRn × Ω → IRn is a
given function, φi ∈ C([a− r, a], IRn) with φi(a, w) = 0 and ψi ∈ C([T, T + β], IRn) with
ψi(T,w) = 0, i = 1, 2.

In Chapter 5, we study the existence of solutions for a class of problem for nonlinear
Caputo type modification of the Erdélyi-Kober fractional differential inclusions (FDI for
short) involving both retarded and advanced arguments.
Here two results are discussed, the first present the existence results for convex and non-
convex multi-valued maps involved which, respectively, rely on the nonlinear alternative
of Leray-Schauder type and a fixed point theorem for contractive multi-valued maps due
to Covitz and Nadler. The second is based on the method associated with the technique
of measures of non compactness and the fixed point theorems of Darbo and Mönch. In
Section 5.2, we prove the existence of solutions for a class of problems for Caputo type
modification of the Erdélyi-Kober fractional differential inclusions with retarded and ad-
vanced arguments given by:

ρ
cD

α
a+y(t) = F (t, yt), t ∈ I := [a, T ], 1 < α ≤ 2,

y(t) = φ(t), t ∈ [a− r, a], r > 0

y(t) = ψ(t), t ∈ [T, T + β], β > 0,

(6)

where ρ
cD

α
a+ is the Caputo type modification of the Erdélyi-Kober fractional derivative,

F : I × C([−r, β], IR) → P(IR) is a given function, φ ∈ C([a − r, a], IR) with φ(a) = 0
and ψ ∈ C([T, T + β], IR) with ψ(T ) = 0.
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In Section 5.4, we discuss the existence of solutions for a class of problem for nonlinear
Caputo type modification of the Erdélyi-Kober fractional differential inclusions

ρ
cD

α
a+y(t) ∈ F (t, yt), for t ∈ I := [a, T ], 1 < α ≤ 2,

y(t) = φ(t), t ∈ [a− r, a], r > 0

y(t) = ψ(t), t ∈ [T, T + β], β > 0,

(7)

where ρ
cD

α
a+ is the Caputo type modification of the Erdélyi-Kober fractional derivative,

F : I × C([−r, β], E)→ P(E) is a given function, φ ∈ C([a− r, a], E) with φ(a) = 0 and
ψ ∈ C([T, T + β], E) with ψ(T ) = 0.

In Chapter 6, we study the existence of weak solutions for Caputo type modification of
the Erdélyi-Kober fractional differential system inclusions. with retarded and advanced
arguments in Banach space given by:{

(ρcD
α1

a+u)(t) ∈ F1(t, ut, vt)

(ρcD
α2

a+v)(t) ∈ F2(t, ut, vt)
; t ∈ I := [a, T ], (8)

{
(u(t), v(t)) = (φ1(t), φ2(t)), t ∈ [a− r, a], r > 0

(u(t), v(t)) = (ψ1(t), ψ2(t)), t ∈ [T, T + β], β > 0,

where β > 0, αi ∈ (1, 2] (E, ‖·‖) is a real Banach space and ρ
cD

α
a+ is the Caputo type modi-

fication of the Erdélyi-Kober fractional derivative, F : I×C([−r, β], E)×C([−r, β], E)→
P(E) is a given function, φi ∈ C([a − r, a], E) with φi(a) = 0 and ψi ∈ C([T, T + β], E)
with ψi(T ) = 0, i = 1, 2. The main result of the chapter is based on the fixed point
theorem of Mönch’s type and the technique of measure of weak noncompactness.
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Chapter 1

Preliminaries

In this chapter, we review some fundamental concepts, notations, definitions, fixed
point theorems and properties required to establish our main results.

1.1 Notations and Definitions

Let C([−r, β], E) be the Banach space of all continuous functions from [−r, β] into
Banach space E equipped with the norm

‖y‖[−r,β] = sup{‖y(t)‖ : −r ≤ t ≤ β}, r, β > 0,

and C([a, T ], E) is the Banach space endowed with the norm

‖y‖[a,T ] = sup{‖y(t)‖ : a ≤ t ≤ T}.

Also, let E1 = C([a− r, a], E) , E2 = C([T, T + β], E), a, T ∈ IR+

and let the space
AC1(I) := {w : I −→ E : w′ ∈ AC(I)},

where

w′(t) = t
d

dt
w(t), t ∈ I = [a, T ],

AC(I, E) is the space of absolutely continuous functions on I,
C = {y : [a− r, T + β] 7−→ E : y |[a−r,a]∈ C([a− r, a]), y |[a,T ]∈ AC1([a, T ])

and y |[T,T+β]∈ C([T, T + β])}

be the spaces endowed, respectively, with the norms

‖y‖[a−r,a] = sup{‖y(t)‖ : a− r ≤ t ≤ a},

and
‖y‖[T,T+β] = sup{‖y(t)‖ : T ≤ t ≤ T + β},

11



12 CHAPTER 1. PRELIMINARIES

‖y‖Ω = sup{‖y(t)‖ : a− r ≤ t ≤ T + β}.
Let L1(I), be the Banach space of measurable functions v : I −→ E which are Bochner
integrable, equipped with the norm

‖v‖L1 =

∫ T

a

‖v(t)‖dt.

Consider the space Xp
c (a, b), (c ∈ IR, 1 ≤ p ≤ ∞) of those complex-valued Bochner

measurable functions f on [a, b] for which ‖f‖Xp
c
<∞, where the norm is defined by :

‖f‖Xp
c

=

(∫ b

a

|tcf(t)|pdt
t

) 1
p

, (1 ≤ p <∞, c ∈ IR).

In particular, where c = 1
p

the space Xp
c (a, b) coincides Lp(a, b) space, i.e., Xp

1
p

(a, b) =

Lp(a, b).
Denote by L∞(I, IR), the Banach space of essentially bounded measurable functions

u : I −→ IR equipped with the norm

‖f‖L∞ = inf{c ≥ 0; |f(x)| ≤ c a.e. on I}.

Definition 1.1.1 A Banach space X is said to be weakly compactly generated (WCG) if
it contains a weakly compact set whose linear span is dense in X.

Definition 1.1.2 A function h : E −→ E is said to be weakly sequentially continuous if
h takes each weakly convergent sequence in E to weakly convergent sequence in E (i.e. for
any (xn)n in E with xn −→ x in (E,ω), h(xn) −→ h(x) in (E,ω)).

Definition 1.1.3 ([80]) The function x : J −→ E is said to be Pettis integrable on
J if and only if there is an element uI ∈ E corresponding to each I ⊂ J such that
ϕ(uI) =

∫
I
ϕ(u(s))ds for all ϕ ∈ E∗, where the integral on the right is supposed to exist

in the sense of Lebesgue. We have uI =
∫
I
ϕ(u(s))ds. Let P (J,E) be the space of all E-

valued Pettis integrable functions in the interval J , and let L1(I, E) be the Banach space
of Bochner-integrable measurable functions u : I −→ E. Define the class

P1(J,E) = {u ∈ P (J,E) : ϕ(u) ∈ L1(I, IR) for every ϕ ∈ E∗}

The space P1(J,E) is normed by

‖u‖P1 = sup
ϕ∈E∗,‖ϕ‖≤1

∫ T

a

|ϕ(u(x))|dλx,

where λ is the Lebesgue measure on J .

Proposition 1.1.1 ([80]) If u ∈ P1(I, E) and h is a measurable and essentially bounded
real-valued function, then uh ∈ P (I, E). In what follows,the symbol ”

∫
” denotes the

Pettis integral.
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1.2 Fractional Calculus

Definition 1.2.1 ([65, 68, 69]): (Erdélyi-Kober fractional integral) Let α ∈ IR, c ∈
IR and g ∈ Xp

c (a, b), the Erdélyi-Kober fractional integral of order α is defined by :

(ρIαa+g)(t) =
ρ1−α

Γ(α)

∫ t

a

sρ−1 (tρ − sρ)α−1 g(s)ds, t > a, ρ > 0 (1.1)

where Γ is the Euler gamma function defined by

Γ(α) =

∫ ∞
0

tα−1e−tdt, α > 0.

Definition 1.2.2 ([64]) The generalized fractional derivative, corresponding to the frac-
tional integral (1.1), is defined, for 0 ≤ a < t, by:

ρDα
a+g(t) =

ρ1−n+α

Γ(n− α)

(
t1−ρ

d

dt

)n ∫ t

a

sρ−1

(tρ − sρ)1−n+α
g(s)ds (1.2)

= δnρ (ρIn−αa+ g)(t),

where δnρ =
(
t1−ρ d

dt

)n
.

Definition 1.2.3 ([64, 74]) The Caputo-type generalized fractional derivative ρ
cD

α
a+ is

defined via the above generalized fractional derivative (1.2) as follows

(ρcD
α
a+g)(t) =

(
ρDα

a+

[
g(t)−

n−1∑
k=0

g(k)(a)

k!
(s− a)k

])
. (1.3)

Lemma 1.2.1 ([64]) Let α, ρ ∈ IR+, then

(ρIαa+
ρ
cD

α
a+g)(t) = g(t)−

n−1∑
k=0

ck

(
tρ − aρ

ρ

)k
, (1.4)

for some ck ∈ IR, n = [α] + 1.

1.3 Multi-valued analysis

Let (E, ‖ · ‖) be a Banach space. We define the following subsets of P(E) :

Pcl(E) = {Y ∈ P(E) : Y is closed},

Pb(E) = {Y ∈ P(E) : Y is bounded},

Pcp(E) = {Y ∈ P(E) : Y is compact}
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Pcv(E) = {Y ∈ P(E) : Y is convex}

Pcp,cv(E) = Pcp(E) ∩ Pcv(E).

Definition 1.3.1 A multivalued map G : E → P(E) is said to be convex (closed) valued
if G(x) is convex (closed) for all x ∈ E. A multivalued map G is bounded on bounded sets
if G(B) = ∪x∈BG(x) is bounded in E for all B ∈ Pb(E) (i.e. supx∈B{sup{|y| : y ∈ G(x)}
exists).

Definition 1.3.2 A multivalued map G : E → P(E) is called upper semi-continuous
(u.s.c.) on E if for each x0 ∈ E, the set G(x0) is a nonempty closed subset of E, and for
each open set N of E containing G(x0), there exists an open neighborhood N0 of x0 such
that G(N0) ⊂ N . G is said to be completely continuous if G(B) is relatively compact for
every B ∈ Pb(IR).

Definition 1.3.3 Let G : X → P(E) be completely continuous with nonempty compact
values. Then G is u.s.c. if and only if G has a closed graph (i.e. xn → x∗, yn → y∗, yn ∈
G(xn) imply y∗ ∈ G(x∗)). G has a fixed point if there is x ∈ E such that x ∈ G(x).

We denote by FixG the fixed point set of the multivalued operator G.

Definition 1.3.4 A multivalued map G : J → Pcl(E) is said to be measurable if for every
y ∈ E, the function:

t→ d(y,G(t)) = inf{‖y − z‖ : z ∈ G(t)}
is measurable.

Lemma 1.3.1 [78] Let G be a completely continuous multivalued map with nonempty
compact values, then G is u.s.c. if and only if G has a closed graph.

Definition 1.3.5 A multivalued map F : I × E → P(E) is said to be Carathéodory if:

(1) t→ F (t, u) is measurable for each u ∈ E

(2) u→ F (t, u) is upper semicontinuous for almost all t ∈ I.
F is said to be L1-Carathéodory if (1), (2) and the following condition holds:

(3) For each q > 0, there exists ϕq ∈ L1(I, IR+) such that

‖F (t, u)‖P = sup{‖v‖ : v ∈ F (t, u)} ≤ ϕq for all ‖u‖ ≤ q and for a.e. t ∈ I.

For each y ∈ C(I), define the set of selections of F by

SF◦y = {v ∈ L1(I) : v(t) ∈ F (t, y(t)) a.e. t ∈ I}.
Let (E, d) be a metric space induced from the normed space ( | · |). The function
Hd : P(E)× P(E)→ IR+ ∪ {∞} given by:

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)}

is known as the Hausdorff-Pompeiu metric. For more details on multivalued maps see the
books of Hu and Papageorgiou [78].
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1.4 Measure of Noncompactness and Auxiliary Re-

sults

Now let us recall some fundamental facts of the notion of Kuratowski measure of non-
compactness and De Blasi measure of weak noncompactness.

Definition 1.4.1 ([23]) Let E be a Banach space and ΩE the family of bounded subsets
of E. The Kuratowski measure of noncompactness is the map α : ΩE → [0,∞) defined by

α(B) = inf{ε > 0 : B ⊆ ∪ni=1Bi and diam(Bi) ≤ ε}; here B ∈ ΩE,

where
diam(Bi) = sup{||x− y|| : x, y ∈ Bi}.

Properties 1.4.1 The Kuratowski measure of noncompactness satisfies the following
properties (for more details see [23]).

(a1) α(B) = 0⇐⇒ B is compact (B is relatively compact).

(b1) α(B) = α(B).

(c1) A ⊂ B =⇒ α(A) ≤ α(B).

(d1) α(A+B) ≤ α(A) + α(B).

(e1) α(cB) = |c|α(B); c ∈ IR

(f1) α(convB) = α(B).

Theorem 1.4.1 [61] Let E be a Banach space. Let C ⊂ L1(I, E) be a countable set
with ‖u(t)‖ ≤ h(t) for a.e. t ∈ J and every u ∈ C, where h ∈ L1(I,R+). Then φ(t) =
µ(C(t)) ∈ L1(I,R+) and verifies

µ

({∫ T

a

u(s) ds : u ∈ C
})
≤ 2

∫ T

a

µ(C(s)) ds,

where µ is the Kuratowski measure of noncompactness on the set E.

Lemma 1.4.1 [73] Let I be a compact real interval. Let F be a Carathéodory multivalued
map and let Θ be a linear continuous map from L1(I)→ C(I). Then the operator

Θ ◦ SF◦u : C(I)→ Pcv,cp(C(I)), u 7→ (Θ ◦ SF◦u)(u) = Θ(SF◦u)

is a closed graph operator in C(I)× C(I).

Definition 1.4.2 Let E be Banach space. A multivalued mapping T : E → Pcl,b(E) is
called k−set- Lipschitz if there exists a constant k > 0, such that µ(T (X)) ≤ kµ(X) for
all X ∈ Pcl,b(E) with T (X) ∈ Pcl,b(E). If k < 1, then T is called a k−set-contraction on
E.
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Definition 1.4.3 ([52]) Let E be a Banach space and ΩE the bounded subsets of E and
B1 the unit ball of E. The De Blasi measure of weak noncompactness is the map
µ : ΩE → [0,∞) defined by

µ(B) = inf{ε > 0 : there exists a weakly compact subset Ω ofE : X ⊂ εB1 + Ω}.

The next result follows directly from the Hahn-Banach theorem.

Proposition 1.4.1 If E is a normed space and x0 ∈ E\{0}, then there exists ϕ ∈ E∗

with ‖ϕ‖ = 1 and ϕ(x0) = ‖ϕ‖.

The De Blasi measure of weak noncompactness satisfies the following properties.

Lemma 1.4.2 ([52]) Let A and B bounded sets.

(1) µ(B) = 0⇔ B is compact (B is weakly relatively compact).

(2) µ(cov(B)) = µ(B).

(3) µ(B) = α(B
ω
), (B

ω
denote the weak closure of B.)

(4) A ⊂ B ⇒ µ(A) ≤ µ(B).

(5) µ(A+B) ≤ µ(A) + µ(B), where A+B = {x+ y : x ∈ A, y ∈ B}.

(6) µ(λB) = |λ|µ(B); λ ∈ IR, where λB = {λx : x ∈ B}.

(7) µ(A ∪B) = max{µ(A), µ(B)}.

(8) µ(B + x0) = µ(B) for any x0 ∈ E.

Lemma 1.4.3 ([60]) Let V ⊂ C(I, E) is a bounded and equicontinuous set, then

(i) the function t 7−→ µ(V (t)) is continuous on I, and

µC(V ) = max
t∈I

µ(V (t)),

(ii)

µ

(∫ T

a

y(s)ds : y ∈ V
)
≤
∫ T

a

µ(V (s))ds,

where

V (t) = {y(t) : y ∈ V }, t ∈ I.

and µC is the De Blasi measure of weak noncompactness defined on the bounded sets
of C(I).
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1.5 Random operators

Let BRm be the σ-algebra of Borel subsets of Rm and Ω is the sample space in a probability
space (Ω, F ). A mapping v : Ω → Rm is said to be measurable if for any D ∈ BRm , one
has

v−1(D) = {w ∈ Ω : v(w) ∈ D} ⊂ A.

To define integrals of sample paths of a random process, it is necessary to define a
jointly measurable map.

Definition 1.5.1 A mapping T : Ω × Rm → Rm is called jointly measurable if for any
D ∈ BRm , one has

T−1(D) = {(w, v) ∈ Ω× E : T (w, v) ∈ D} ⊂ A×BRm ,

where A×BRm is the direct product of the σ-algebras A and BRm, those defined in Ω and
Rm, respectively.

Definition 1.5.2 A function T : Ω× Rm → Rm is called jointly measurable if T (·, u) is
measurable for all u ∈ Rm and T (w, ·) is continuous for all w ∈ Ω.

A mapping T : Ω × Rm → Rm is called a random operator if T (w, u) is measurable
in w for all u ∈ Rm, and it expressed as T (w)u = T (w, u). In this case we also say that
T (w) is a random operator on Rm. A random operator T (w) on E is called continuous
(resp. compact, totally bounded and completely continuous) if T (w, u) is continuous
(resp. compact, totally bounded and completely continuous) in u for all w ∈ Ω. The
details of completely continuous random operators in Banach spaces and their properties
appear in Itoh [63].

Definition 1.5.3 [56] Let P(Y ) be the family of all nonempty subsets of Y and C be
a mapping from Ω into P(Y ). A mapping T : {(w, y) : w ∈ Ω, y ∈ C(w)} → Y is
called random operator with stochastic domain C, if C is measurable (i.e., for all closed
A ⊂ Y, {w ∈ Ω, C(w) ∩ A 6= ∅} is measurable) and for all open D ⊂ Y and all
y ∈ Y, {w ∈ Ω : y ∈ C(w), T (w, y) ∈ D} is measurable. T will be called continuous
if every T (w) is continuous. For a random operator T, a mapping y : Ω → Y is called
a random (stochastic) fixed point of T if for P−almost all w ∈ Ω, y(w) ∈ C(w) and
T (w)y(w) = y(w), and for all open D ⊂ Y, {w ∈ Ω : y(w) ∈ D} is measurable.

Definition 1.5.4 A function f : I × C([−r, β], IRn) × C([−r, β], IRn) × IRn × Ω → Rm

is called random Carathéodory if the following conditions are satisfied:

(i) The map (t, w)→ f(t, u, v, x, w) is jointly measurable for all
(u, v, x) ∈ C([−r, β], IRn)× C([−r, β], IRn)× IRn and

(ii) The map (u, v, x)→ f(t, u, v, x, w) is continuous for all t ∈ I and w ∈ Ω.
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Let x, y ∈ Rm with x = (x1, x2, . . . , xm), y = (y1, y2, . . . , ym). By x ≤ y we mean
xi ≤ yi, i = 1, . . . ,m. Also |x| = (|x1|, |x2|, . . . , |xm|),
max(x, y) = (max(x1, y1), . . . ,max(xm, ym)), and Rm

+ = {x ∈ Rm : xi ∈ R+, i =
1, . . . ,m}. If c ∈ R, then x ≤ c means xi ≤ c, i = 1, . . . ,m.

Definition 1.5.5 Let X be a nonempty set. By a vector-valued metric on X we mean a
map d : X ×X → Rm with the following properties:

(i) d(x, y) ≥ 0 for all x, y ∈ X, and if d(x, y) = 0, then x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We call the pair (X, d) a generalized metric space with d(x, y) :=


d1(x, y)
d2(x, y)
·
·
·

dm(x, y)

 .

Notice that d is a generalized metric space on X if and only if di, i = 1, . . . ,m, are metrics
on X.

Definition 1.5.6 [87] A square matrix of real numbers is said to be convergent to zero
if and only if its spectral radius ρ(M) is strictly less than 1. In other words, this means
that all the eigenvalues of M are in the open unit disc, i.e. |λ| < 1, for every λ ∈ C with
det(M − λI) = 0, where I denotes the unit matrix of Mm×m(R).

Example 1.5.1 The matrix A ∈M2×2(R) defined by

A =

(
a b
c d

)
,

converges to zero in the following cases:

(1) b = c = 0, a, d > 0 and max{a, d} < 1.

(2) c = 0, a, d > 0, a+ d < 1 and −1 < b < 0.

(3) a+ b = c+ d = 0, a > 1, c > 0 and |a− c| < 1.
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1.6 Some Fixed Point Theorems

Theorem 1.6.1 [59, 79, 83] Let (Ω,F) be a measurable space, X be a real separable
generalized Banach space and F : Ω×X → X be a continuous random operator, and let
M(w) ∈ Mn×n(R+) be a random variable matric such that for every w ∈ Ω, the matrix
M(w) converges to 0 and

d(F (w, x1), F (w, x2)) ≤M(w)d(x1, x2); for each x1, x2 ∈ X and w ∈ Ω.

Then there exists a random variable x : Ω→ X which is the unique random fixed point of
F.

Theorem 1.6.2 ([58])(Schauder’s). Let X be a Banach space, D ⊂ X a nonempty
convex bounded closed set and let N : D 7−→ D be a completely continuous operator. Then
N has at least one fixed point.

Theorem 1.6.3 ([58])(Schaefer’s ). Let X be a Banach space, and N : X 7−→ X be a
completely continuous operator. If the set

ξ = {y ∈ X : y = λNy, for some λ ∈ (0, 1)} is bounded,

then N has a fixed point.

Lemma 1.6.1 (Darbo , [51]). Let D be a bounded, closed and convex subset of Banach
space X. If the operator N : D → D is a strict set contraction, i.e there is a constant
0 ≤ λ < 1 such that α(N(S)) ≤ λα(S) for any set S ⊂ D then N has a fixed point in D.

Theorem 1.6.4 (Mönch , [76]). Let D be a bounded, closed and convex subset of a
Banach space such that 0 ∈ D, and let N be a continuous mapping of D into itself. If the
implication

V = convN(V ) or V = N(V ) ∪ 0 =⇒ α(V ) = 0

holds for every subset V of D, then N has a fixed point.

Theorem 1.6.5 ([58]).Let D be a nonempty, closed, convex and equicontinuous subset
of a metrizable locally convex vector space C(I) such that 0 ∈ D. Suppose N : D −→ D
is weakly-sequentially continuous. If the implication

V = co(N(V ) ∪ {(0, 0)}) =⇒ V is relatively weakly compact, (1.5)

holds for every subset V ⊂ D then the operator N has a fixed point.

Lemma 1.6.2 ([58]) (Nonlinear alternative for Kakutani maps ) Let E be a Banach
space, Ca closed convex subset of E, U an open subset of C and 0 ∈ U. Suppose that
N : U −→ Pcp,c(C) is a upper semicontinuous compact map. Then either
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(i) N has a fixed point in U , or

(ii) there is a u ∈ ∂U and λ ∈ (0, 1) with u ∈ λN(u).

Lemma 1.6.3 (Covitz and Nadler ([50])) Let (X, d) be a complete metric space. If N :
X −→ Pcl(X) is a contraction, then FixN 6= ∅.

Theorem 1.6.6 (Darbo fixed point theorem) [53] Let K be a bounded, closed and convex
subset of a Banach space X and let T : K → Pcl,b(K) be a closed and k−set-contraction.
Then T has a fixed point.

Theorem 1.6.7 (Mönch fixed point theorem) [77] Let K be a closed and convex subset
of a Banach space E, U be a relatively open subset of K, and N : U 7→ P(K). Assume
that graphN is closed, N maps compact sets into relatively compact sets, and for some
x0 ∈ U , the following two conditions are satisfied:

(1) M ⊂ U , M ⊂ conv(x0 ∪N(M)), M = C =⇒ M is compact

where C a countable subset of M ,

(2)
x /∈ (1− λ)x0 + λN(x) ∀x ∈ U\U, λ ∈ (0, 1). (1.6)

Then there exists x ∈ U with x ∈ N(x)



Chapter 2

Nonlinear Implicit Fractional
differential with Retarded and
Advanced Arguments

2.1 Introduction

In this chapter, we establish in Section 2.2, the existence and uniqueness of solutions for
implicit Caputo type modification of the Erdélyi-Kober fractional differential equations
with retarded and advanced arguments see [39]. An extension of this problem is given
in Section 2.4. More precisely, we shall present a result on the existence of solutions for
nonlinear implicit of Caputo type modification of the Erdélyi-Kober fractional differential
equations in Banach space with retarded and advanced arguments see [40].

2.2 Nonlinear IFDE with Retarded and Advanced

Arguments

1

In this Section, we study the existence and uniqueness of solutions for a class of problem
for nonlinear implicit fractional differential equations (NIFDE for short) involving both
retarded and advanced arguments.

ρ
cD

α
a+y(t) = f(t, yt,ρc D

α
a+y(t)), for t ∈ I := [a, T ], 1 < α ≤ 2, (2.1)

y(t) = φ(t), t ∈ [a− r, a], r > 0 (2.2)

y(t) = ψ(t), t ∈ [T, T + β], β > 0, (2.3)

1M. Boumaaza, M. Benchohra, F. Berhoun, Nonlinear implicit Caputo type modification of the
Erdélyi-Kober fractional differential equations with retarded and advanced Arguments, Panam. Math.
J, 30 (2020), 21 - 36.

21
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where ρ
cD

α
a+ is the Caputo type modification of the Erdélyi-Kober fractional derivative,

f : I×C([−r, β], IR)×IR→ IR is a given function, φ ∈ C([a−r, a], IR) with φ(a) = 0 and
ψ ∈ C([T, T + β], IR) with ψ(T ) = 0. We denote by yt the element of C([−r, β]) defined
by:

yt(s) = y(t+ s) : s ∈ [−r, β]

here yt(·) represents the history of the state from time t− r up to time t+ β.

Lemma 2.2.1 Let 1 < α ≤ 2, φ ∈ C([a− r, a], IR) with φ(a) = 0, ψ ∈ C([T, T + β], IR)
with ψ(T ) = 0 and h : I → IR be a continuous function. Then the linear problem

ρ
cD

α
a+y(t) = h(t), for a.e. t ∈ I := [a, T ], 1 < α ≤ 2, (2.4)

y(t) = φ(t), t ∈ [a− r, a], r > 0 (2.5)

y(t) = ψ(t), t ∈ [T, T + β], β > 0, (2.6)

has a unique solution, which is given by

y(t) =



φ(t), if t ∈ [a− r, a],

−
∫ T

a

G(t, s)h(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β],

(2.7)

where

G(t, s) =
ρ1−α

Γ(α)


(tρ − aρ)(T ρ − sρ)α−1sρ−1

(T ρ − aρ)
− sρ−1(tρ − sρ)α−1, a ≤ s ≤ t ≤ T,

(tρ − aρ)(T ρ − sρ)α−1sρ−1

(T ρ − aρ)
, a ≤ t ≤ s ≤ T.

(2.8)

Here G(t, s) is called the Green function of the boundary value problem (2.4)-(2.6).
Proof. From (1.4), we have

y(t) = c0 + c1

(
tρ − aρ

ρ

)
+ρ Iαa+h(s), c0, c1 ∈ IR, (2.9)

therefore

y(a) = c0 = 0,
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y(T ) = c1

(
T ρ − aρ

ρ

)
+
ρ1−α

Γ(α)

∫ T

a

(T ρ − sρ)α−1sρ−1h(s)ds,

and

c1 = − ρ2−α

(T ρ − aρ)Γ(α)

∫ T

a

(T ρ − sρ)α−1sρ−1h(s)ds.

Substitute the value of c0 and c1 into equation (2.9), we get equation (2.7).

y(t) =



φ(t), if t ∈ [a− r, a],

−
∫ T

a

G(t, s)h(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β],

where G is defined by equation (2.4.1), the proof is complete.

Lemma 2.2.2 Let f : I × C[−r, β] × IR −→ IR be a continuous function. A function
y ∈ Ω is solution of problem (2.1) − (2.3) if and only if y satisfies the following integral
equation

y(t) =



φ(t), if t ∈ [a− r, a],

−
∫ T

a

G(t, s)h(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β],

where h ∈ C(I) satisfies the functional equation

h(t) = f(t, yt, h(t)).

The following hypotheses will be used in the sequel:

(H1) The function f : I × C[−r, β]× IR −→ IR is continuous.

(H2) There exist K > 0 , 0 < K < 1 such that

|f(t, u, v)− f(t, ū, v̄)| ≤ K‖u− ū‖[−r,β] +K|v − v̄|

for any u, ū ∈ C([−r, β]) and v, v̄ ∈ IR.
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(H3) There exists p ∈ L∞([a, T ], IR+) such that

|f(t, u, v)| ≤ p(t) for a.e. t ∈ I, and each u ∈ C([−r, β]) and v ∈ IR.

Set

p∗ = ess sup
t∈I

p(t)

G̃ = sup

{∫ T

a

|G(t, s)|ds, t ∈ I
}
.

Now, we state and prove our existence result for (2.1)-(2.3) based on the Banach con-
traction principle.

Theorem 2.2.1 Assume (H1) and (H2) hold. If

KG̃

(1−K)
< 1, (2.10)

then the problem (2.1)-(2.3) has a unique solution.

Proof: Let the operator N : C 7−→ C defined by

(Ny)(t) =



φ(t), if t ∈ [a− r, a],

−
∫ T

a

G(t, s)hy(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β].

(2.11)

By Lemma 2.2.2 it is clear that the fixed points of N are solutions (2.1)-(2.3) .
Let y1, y2 ∈ C. If t ∈ [a− r, a] or t ∈ [T, T + β] then

|(Ny1)(t)− (Ny2)(t)| = 0.

For t ∈ I, we have

|(Ny1)(t)− (Ny2)(t)| ≤
∫ T

a

|G(t, s)||hy1(s)− hy2(s)|ds, (2.12)

and by (H2) we have

|hy1(t)− hy2(t)| = |f(t, yt1,
ρ
c D

α
a+y1(t))− f(t, yt2,

ρ
c D

α
a+y2(t))|

≤ K‖y1 − y2‖[−r,β] +K|hy1(t)− hy2(t)|.
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Then

|hy1(t)− hy2(t)| ≤
K

(1−K)
‖y1 − y2‖[−r,β]. (2.13)

By replacing (2.13) in (2.12) we obtain,

|(Ny1)(t)− (Ny2)(t)| ≤ K

(1−K)

∫ T

a

|G(t, s)|‖y1 − y2‖[−r,β]ds

≤ KG̃

(1−K)
‖y1 − y2‖[−r,β].

Therefore, for each t ∈ I, we have

|(Ny1)(t)− (Ny2)(t)| ≤ KG̃

(1−K)
‖y1 − y2‖C.

Thus

‖Ny1 −Ny2‖C ≤
KG̃

(1−K)
‖y1 − y2‖C.

Hence, by the Banach contraction principle, N has a unique fixed point which is a unique
solution of the problem (2.1)-(2.3).

We now prove an existence result for (2.1)-(2.3) by using the Schauder’s fixed point
theorem.

Theorem 2.2.2 Assume that the hypotheses (H1) and (H3) hold. Then problem (2.1)-
(2.3) has at least one solution.

Step 1. N is continuous. Let {yn} be a sequence such that yn −→ y in C. If t ∈ [a−r, a]
or t ∈ [T, T + β] then

|(Nyn)(t)− (Ny)(t)| = 0.

For t ∈ I, we have

|(Nyn)(t)− (Ny)(t)| ≤
∫ T

a

|G(t, s)||hn(s)− h(s)|ds, (2.14)

where
hn(t) = f(t, ytn, hn(t)),

and
h(t) = f(t, yt, h(t)).

Since yn −→ y, and by (H1) we get hn(t) −→ h(t) as n −→∞ for each t ∈ I.
By (H3) we have for each t ∈ I,

|hn(t)| ≤ p∗. (2.15)
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Then,

|G(t, s)||hn(t)− h(t)| ≤ |G(t, s)| [|hn(t)|+ |h(t)|]
≤ 2p∗|G(t, s)|.

For each t ∈ I the functions s 7−→ 2p∗|G(t, s)| are integrable on [a, t], then by Lebesgue
dominated convergence theorem, equation (2.14 ) implies

|(Nyn)(t)− (Ny)(t)| −→ 0 as n −→∞,

and hence
‖N(yn)−N(y)‖C −→ 0 as n −→∞.

Consequently, N is continuous.
Let the constant R be such that:

R ≥ max
{
p∗G̃, ‖φ‖[a−r,a], ‖ψ‖[T,T+β]

}
, (2.16)

and define
DR = {y ∈ C : ‖y‖C ≤ R}.

It is clear that DR is a bounded, closed and convex subset of Ω.

Step 2. N(DR) ⊂ DR.

Let y ∈ DR we show that Ny ∈ DR.
If t ∈ [a− r, a], then

|N(y)(t)| ≤ ‖φ‖[a−r,a] ≤ R,

and if t ∈ [T, T + β], then
|N(y)(t)| ≤ ‖ψ‖[T,T+β] ≤ R.

For each t ∈ I, we have

|(Ny)(t)| ≤
∫ T

a

|G(t, s)||h(s)|ds.

By (H3), we have

|(Ny)(t)| ≤ p∗
∫ T

a

|G(t, s)|ds

≤ p∗G̃

≤ R,

from which it follows that for each t ∈ [a− r, T + β], we have |Ny(t)| ≤ R, which implies
that ‖Ny‖Ω ≤ R. Consequently,

N(DR) ⊂ DR.
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Step 3: N(DR) is bounded and equicontinuous.
By Step 2 we have N(DR) is bounded.
Let t1, t2 ∈ I = [a, T ], t1 < t2, and y ∈ DR then

|(Ny)(t2)− (Ny)(t1)| ≤
∫ T

a

|G(t2, s)−G(t1, s)||h(s)|ds

≤ p∗
∫ T

a

|G(t2, s)−G(t1, s)|ds.

As t1 −→ t2 the right hand side of the above inequality tends to zero. As consequence
of Step 1 to Step 3, together withe the Arzela-Ascoli theorem, we can conclude that N
is continuous and completely continuous. From Schauder’s theorem, we conclude that N
has a fixed point with is a solution of the problem (2.1)-(2.3).

We prove an existence result for the (2.1)-(2.3) problem by using the Schaefer’s fixed
point theorem.

Theorem 2.2.3 Assume that (H1) and
(H4) There exist d, q,m ∈ C(I, IR) with m∗ = sup

t∈I
m(t) < 1 such that

|f(t, u, v)| ≤ d(t) + q(t)‖u‖[−r,β] +m(t)|v|

where t ∈ I, u ∈ C([−r, β], IR) and v ∈ IR.
If

q∗G̃

(1−m∗)
< 1, (2.17)

then problem (2.1)-(2.3) has at least one solution.

Proof. Consider the operator N defined in (2.11). We shall show that N satisfies the
assumption of Schaefer’s fixed point theorem. As shown in Theorem 2.2.2, we see that
the operator N is continuous, and completely continuous.
Now it remains to show that the set

ξ = {y ∈ Ω : y = λNy, for some λ ∈ (0, 1)} is bounded.

Let y ∈ ξ, then y = λNy for some 0 < λ < 1. Thus for each t ∈ I we have

y(t) = −λ
∫ T

a

G(t, s)hy(s)ds, (2.18)

where
hy(t) = f(t, yt, hy(t)).

By (H4), we have for each t ∈ I

|hy(t)| ≤ d(t) + q(t)‖y‖[−α,β] +m(t)|hy(t)|
≤ d∗ + q∗‖y‖[−r,β] +m∗|hy(t)|.
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Thus

|hy(t)| ≤
1

1−m∗
(
d∗ + q∗‖y‖[−α,β]

)
.

This implies, by (2.18) that for each t ∈ I we have

|y(t)| ≤
∫ T

a

|G(t, s)| 1

1−m∗
(
d∗ + q∗‖y‖[−α,β]

)
ds

≤
(
d∗ + q∗‖y‖[−r,β]

)
G̃

(1−m∗)
.

Then

‖y‖[−r,β] ≤
d∗G̃

(1−m∗)
+
q∗G̃‖y‖[−r,β]

(1−m∗)
.

Thus [
1− q∗G̃

(1−m∗)

]
‖y‖[−r,β] ≤

d∗G̃

(1−m∗)
.

Finally, by (2.17) we have

‖y‖[−r,β] ≤
d∗G̃

(1−m∗)[
1− q∗G̃

(1−m∗)

] = b0.

If t ∈ [a− r, a], then
|y(t)| ≤ ‖φ‖[a−r,a] ≤ b1,

and if t ∈ [T, T + β], then
|y(t)| ≤ ‖ψ‖[T,T+β] ≤ b2.

From which it follows that for each t ∈ [a−r, T+β], we have |y(t)| ≤ max {b2, b1, b0}, which
implies that ‖y‖C ≤ max {b2, b1, b0}, this implies that ξ is bounded As a consequence of
Schaefer’s fixed point theorem, N admits a fixed point which is a solution of the problem
(2.1)-(2.3).

2.3 Examples

Example 1: Consider the boundary value problem of implicit Caputo type modification
of the Erdélyi-Kober fractional differential equation:

y(t) = et−2 − 1, t ∈ [1, 2],

1
2
cD

3
2

2+y(t) =
1

10et+2
(

1 + |yt|+
∣∣∣ 12cD 3

2

2+y(t)
∣∣∣) +

sin(t)

ln(t2 + 1)
, t ∈ I = [2, 4]

y(t) = t− 4, t ∈ [4, 6].

(2.19)
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Set

f(t, u, v) =
1

10et+2(1 + |u|+ |v|)
+

sin(t)

ln(t2 + 1)
, t ∈ [2, 4], u ∈ C([−r, β])

and v ∈ IR, α = 3
2
, ρ = 1

2
, r = 1, β = 2. For each u, ū ∈ C([−r, β]), v, v̄ ∈ IR and

t ∈ [2, 4], we have

|f(t, u, v)− f(t, ū, v̄)| ≤
∣∣∣∣ 1

10et+2(1 + |u|+ |v|)
− 1

10et+2(1 + |ū|+ |v̄|)

∣∣∣∣
≤ 1

10et+2
(|u− ū|+ |v − v̄|)

≤ 1

10et+2

(
‖u− ū‖[−r,β] + |v − v̄|

)
.

Therefore, (H2) is verified with K = K = 1
10e4

.
For each t ∈ I we have

∫ T

a

|G(t, s)|ds ≤ 1

Γ(α)

(
tρ − aρ

T ρ − aρ

)∫ T

a

∣∣∣∣∣
(
T ρ − sρ

ρ

)α−1

sρ−1

∣∣∣∣∣ ds

+
1

Γ(α)

∫ t

a

∣∣∣∣∣
(
tρ − sρ

ρ

)α−1

sρ−1

∣∣∣∣∣ ds.
Then ∫ T

a

|G(t, s)|ds ≤ 2

Γ(α + 1)

(
T ρ − aρ

ρ

)α
.

Therefore

G̃ ≤ 2

Γ(α + 1)

(
T ρ − aρ

ρ

)α
.

The condition

KG̃

(1−K)
≤ 2

1
10e4

(1− 1
10e4

)Γ(5
2
)

(
2− 2

1
2

1
2

) 3
2

≈ 0.0035008

< 1,

is satisfied with T = 4, a = 2 and α = 3
2
. Hence all conditions of Theorem 2.2.1 are

satisfied, it follows that the problem (2.19) admit a unique solution defined on I.

Example 2: Consider the boundary value problem of implicit Caputo type modifica-
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tion of the Erdélyi-Kober fractional differential equation:

y(t) = et − 1, t ∈ [−1, 0],

1
2
cD

3
2

0+y(t) =
sin(2t)

(
2 + |yt|+

∣∣∣ 12cD 3
2

0+y(t)
∣∣∣)

20et+4
(

1 + |yt|+
∣∣∣ 12cD 3

2

0+y(t)
∣∣∣) , t ∈ I = [0, e]

y(t) = ln(t)− 1, t ∈ [e, 4],

(2.20)

with

f(t, u, v) =
sin(2t) (2 + |u|+ |v|)
10et+2(1 + |u|+ |v|)

, t ∈ I = [0, e], u ∈ C([−r, β]) and v ∈ IR

α =
3

2
, ρ =

1

2
, r = 1, β = 4− e.

Condition (H4) is satisfied for each u,∈ C([−r, β]) , v ∈ IR and t ∈ [0, e]:

|f(t, u, v)| ≤ 2 + |u|+ |v|
20et+4

≤ 1

20et+4

(
2 + |v|+ ‖u‖[−r,β]

)
.

Therefore, (H4) is verified with

d(t) =
1

10et+4
, q(t) = m(t) =

1

20et+4
and m∗ =

1

20e4
< 1.

Condition:

q∗G̃

(1−m∗)
≤ 2

1
20e4

(1− 1
20e4

)Γ(5
2
)

(
e

1
2

1
2

) 3
2

≈ 0.0082575

< 1,

is satisfied with T = e, a = 0 and α = 3
2
. Hence all conditions of Theorem 2.2.3 are

satisfied, it follows that the problem (2.20) has at least one solution on I.

2.4 Fractional implicit differential equations with re-

tarded and advanced arguments in Banach Spaces

2

2M. Benchohra, F. Berhoun, M. Boumaaza, S. Sivasundaram, Caputo type modification of the Erdelyi-
Kober fractional implicit differential equations with retarded and advanced arguments in Banach Spaces,
Nonlinear Stud. 27 (1) (2020), 285-296.
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In this Section, we study the existence of solutions for the following problem of non-
linear implicit fractional differential equations (NIFDE for short), in Banach space with
retarded and advanced arguments

ρ
cD

ν
a+y(t) = f(t, yt,ρc D

ν
a+y(t)), t ∈ I := [a, T ], 1 < ν ≤ 2, (2.21)

y(t) = φ(t), t ∈ [a− r, a], r > 0 (2.22)

y(t) = ψ(t), t ∈ [T, T + β], β > 0, (2.23)

where ρ
cD

ν
a+ is the Caputo type modification of the Erdélyi-Kober fractional derivative,

(E, ‖ · ‖) is a real Banach space and f : I × C([−r, β], E) × E → E is a given function,
φ ∈ C([a− r, a], E) with φ(a) = 0 and ψ ∈ C([T, T + β], E) with ψ(T ) = 0.
We denote by yt the element of C([−r, β]) defined by:

yt(s) = y(t+ s) : s ∈ [−r, β]

here yt(·) represents the history of the state from time t− r up to time t+ β.

Definition 2.4.1 A function y ∈ C, is said to be a solution of (2.21)-(2.23) if y satisfies
the equation ρ

cD
ν
a+y(t) = f(t, yt,ρc D

ν
a+y(t)) on I, and the conditions y(t) = φ(t), φ(a) = 0

on [a− r, a] and y(t) = ψ(t), ψ(T ) = 0 on [T, T + β].

To prove the existence of solutions to (2.21)–(2.23), we need the following auxiliary
Lemma.

Lemma 2.4.1 Let f : I × C[−r, β] × E −→ E be a continuous function. A function
y ∈ Ω is solution of problem (2.21)− (2.23) if and only if y satisfies the following integral
equation

y(t) =



φ(t), if t ∈ [a− r, a],

−
∫ T

a

G(t, s)h(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β],

where h ∈ C(I) satisfies the functional equation

h(t) = f(t, yt, h(t)),

and

G(t, s) =
ρ1−α

Γ(α)


(tρ − aρ)(T ρ − sρ)α−1sρ−1

(T ρ − aρ)
− sρ−1(tρ − sρ)α−1, a ≤ s ≤ t ≤ T,

(tρ − aρ)(T ρ − sρ)α−1sρ−1

(T ρ − aρ)
, a ≤ t ≤ s ≤ T.
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The following hypotheses will be used in the sequel:

(H1) The function f : I × C[−r, β]× E −→ E is continuous.

(H2) There exist d, q,m ∈ C(I, IR) with m∗ = sup
t∈I

m(t) < 1 such that

‖f(t, u, v)‖ ≤ d(t) + q(t)‖u‖[−α,β] +m(t)‖v‖, u ∈ C([−r, β], E), v ∈ E, t ∈ I.

(H3) for each bounded set B ⊂ C, and for each t ∈ I, we have

α(f(t, B1, B2)) ≤ q(t) sup
t∈[−r,β]

α(B1) +m(t) sup
t∈[−r,β]

α(B2),

for any bounded sets, B1 ⊂ C([−r, β]), B2 ⊂ E.
Set

q∗ = sup
t∈I

q(t), m∗ = sup
t∈I

m(t), G̃ = sup

{∫ T

a

|G(t, s)|ds, t ∈ I
}
.

We prove an existence result for the (2.21)-(2.23) problem, by using the Darbo fixed
point theorem.

Theorem 2.4.1 Assume that the hypotheses (H1)− (H3) hold. If

q∗G̃

1−m∗
< 1, (2.24)

then problem (2.21)-(2.23) has at least one solution.

Proof. Let the operator N : C 7−→ C defined by

(Ny)(t) =



φ(t), if t ∈ [a− r, a],

−
∫ T

a

G(t, s)hy(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β].

(2.25)

By Lemma 2.4.1 it is clear that the fixed points of N are solutions (2.21)-(2.23).
Step 1: N is continuous. Let {yn} be a sequence such that yn −→ y in C. If t ∈ [a−r, a]
or t ∈ [T, T + β] then

‖(Nyn)(t)− (Ny)(t)‖ = 0.

For t ∈ I, we have

‖(Nyn)(t)− (Ny)(t)‖ ≤
∫ T

a

|G(t, s)|‖hn(s)− h(s)‖ds, (2.26)
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where
hn(t) = f(t, ytn, hn(t)),

and
h(t) = f(t, yt, h(t)).

Since yn −→ y, by (H1) we get hn(t) −→ h(t) as n −→∞ for each t ∈ I.
And let η > 0, such that, for each t ∈ I, we have ‖hn(t)‖ ≤ η and ‖h(t)‖ ≤ η.
Therefore

|G(t, s)|‖hn(t)− h(t)‖ ≤ |G(t, s)| [‖hn(t)‖+ ‖h(t)‖]
≤ 2η|G(t, s)|.

For each t ∈ I the function s 7−→ 2η|G(t, s)| is integrable on [a, t] , then by Lebesgue
dominated convergence theorem, equation (2.26 ) implies

‖(Nyn)(t)− (Ny)(t)‖ −→ 0 as n −→∞,

and hence
‖N(yn)−N(y)‖C −→ 0 as n −→∞.

Thus N is continuous.
Let the constant R be such that:

R ≥ max
{
AG̃, ‖φ‖[a−r,a], ‖ψ‖[T,T+β]

}
, (2.27)

and define
DR = {y ∈ C : ‖y‖C ≤ R}.

It is clear that DR is a bounded, closed and convex subset of Ω.

Step 2: N maps DR into itself.
Let y ∈ DR we show that Ny ∈ DR.
If t ∈ [a− r, a], then

‖N(y)(t)‖ ≤ ‖φ‖[a−r,a] ≤ R,

and if t ∈ [T, T + β], then

‖N(y)(t)‖ ≤ ‖ψ‖[T,T+β] ≤ R.

For each t ∈ I, we have

‖(Ny)(t)‖ ≤
∫ T

a

|G(t, s)|‖h(s)‖ds.

By (H2) we have for each t ∈ I

‖h(t)‖ ≤ d(t) + q(t)‖y‖[−α,β] +m(t)‖h(t)‖
≤ d∗ + q∗‖y‖[−α,β] + r∗‖h(t)‖
≤ d∗ + q∗R1 + r∗‖h(t)‖,
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where
d∗ = sup

t∈I
d(t), q∗ = sup

t∈I
q(t) and m∗ = sup

t∈I
m(t).

Then

‖h(t)‖ ≤ d∗ + q∗R

1−m∗
= A. (2.28)

By (2.28), for t ∈ I, we have

‖(Ny)(t)‖ ≤ A

∫ T

a

|G(t, s)|ds

≤ AG̃

≤ R,

from which it follows that for each t ∈ [a− r, T +β], we have ‖Ny(t)‖ ≤ R, which implies
that ‖Ny‖Ω ≤ R. This proves that N transforms the set DR into itself.
Step 3: N(DR) is bounded and equicontinuous.
Since N(DR) = {N(y) : y ∈ DR} ⊂ DR and DR is bounded, then N(DR) is bounded.
Now, let t1, t2 ∈ I = [a, T ], t1 < t2, and y ∈ DR then

‖(Ny)(t2)− (Ny)(t1)‖ ≤
∫ T

a

|G(t2, s)−G(t1, s)|‖h(s)‖ds

≤ A

∫ T

a

|G(t2, s)−G(t1, s)|ds.

As t1 −→ t2 the right hand side of the above inequality tends to zero.
Step 4: The operator N : DR 7−→ DR is a strict set contraction.
Let V ⊂ DR if t [a− r, a], then

α(N(V )(t)) = α(N(y)(t), y ∈ V )

= α(φ(t))

= 0,

also if t [T, T + β], then

α(N(V )(t)) = α(N(y)(t), y ∈ V )

= α(ψ(t))

= 0.

And if t ∈ I, we have

α(N(V )(t)) = α(N(y)(t), y ∈ V )

≤
{∫ T

a

|G(t, s)|α(h(s))ds, y ∈ V
}
.
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By (H3) we have

α(h(s), y ∈ V ) = α({f(s, y(s), h(s)), y ∈ V })
≤ q(t)α({y(s), y ∈ V }) +m(t)α({h(s), y ∈ V })
≤ q∗α({y(s), y ∈ V }) +m∗α({h(s), y ∈ V }).

Then

α({h(s), y ∈ V }) ≤ q∗

1−m∗
α({y(s), y ∈ V }). (2.29)

Thus

α(N(V )(t)) ≤ q∗

1−m∗

∫ T

a

|G(t, s)|α({y(s), y ∈ V })ds

≤ q∗G̃

1−m∗
αc(V ).

Therefore

αc(NV ) ≤ q∗G̃

1−m∗
αc(V ).

So by (2.24) the operator N is a set contraction. And thus, by Theorem 1.6.1, N has a
fixed point, which is solution to problem (2.21)− (2.23) .

We prove an existence result for the (2.21)-(2.23) problem, by using the Mönch’s fixed
point theorem.

Theorem 2.4.2 Assume that (H1)− (H3) hold. If

q∗G̃

1−m∗
< 1, (2.30)

then problem (2.21)− (2.23) has at least one solution.

Proof: Consider the operator N defined in (2.25). According to Theorem 2.4.1, the
operator N is bounded into itself, and equicontinuous.
Now let V be a subset of DR such that V ⊂ conv(N(V ) ∪ {0}). Since V is bounded and
equicontinuous, the function t 7−→ v(t) = α(V (t)) is continuous on [a − r, T + β]. By
(H1)− (H3), Lemma 1.4.3, and the properties of measure α, for each t ∈ I, we have

v(t) ≤ α(N(V )(t) ∪ {0})
≤ α ({(Ny)(t), y ∈ V })

≤
∫ T

a

|G(t, s)| q∗

1−m∗
α(V (s))ds

≤ q∗G̃

1−m∗
‖v‖c.
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Thus

‖v‖c ≤
q∗G̃

1−m∗
‖v‖c.

From (2.30 ), we get ‖v‖c = 0, that is α(V (t)) = 0 for each t ∈ I.
For t ∈ [a− r, a], we have

v(t) = α(φ(t))

= 0.

Also for t ∈ [T, T + β] we have

v(t) = α(ψ(t))

= 0,

then V (t) is relatively compact in E. In view of Ascoli-Arzela theorem, V is relatively
compact in DR. Applying Theorem 1.6.5, we conclude that N has a fixed point which is
a solution of the problem (2.21)− (2.23).

2.5 An Example

Let

E = l1 =

{
y = (y1, y2, . . . , yn, . . .),

∞∑
k=1

|yn| <∞

}
,

be the Banach space with the norm

‖y‖E =
∞∑
k=1

|yn|.

Consider the boundary value problem of implicit Caputo type modification of the Erdélyi-
Kober fractional differential equation

y(t) = ln(t)− 1, t ∈ [e, 4],

3
cD

3
2

2+yn(t) = f(t, ytn,
3
c D

3
2

2+yn(t)), t ∈ I = [2, e]

y(t) = 1
2
t− 1, t ∈ [−1, 2],

(2.31)

here T = e, a = 2, ν =
3

2
, ρ = 3.

Set

y = (y1, y2, . . . , yn, . . .), f = (f1, f2, . . . , fn, . . .)
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f(t, yt,3c D
3
2

2+y(t)) =
cos(t) + ‖yt‖C([−3,4−e]) + ‖3

cD
3
2

2+y(t)‖

2et−2
(

1 + ‖yt‖C([−3,4−e]) + ‖3
cD

3
2

2+y‖E
) .

For each y ∈ E and t ∈ [2, e] , we have

‖f(t, y(t),3c D
3
2

2+y(t))‖ ≤ 1

2et−2

(
cos(t) + ‖yt‖C([−3,4−e]) + ‖3

cD
3
2

2+y(t)‖
)
,

hence. (H2) is satisfied with m∗ = q∗ = 1
2

.
For each t ∈ I we have∫ T

a

|G(t, s)|ds ≤ 1

Γ(α)

(
tρ − aρ

T ρ − aρ

)∫ T

a

∣∣∣∣∣
(
T ρ − sρ

ρ

)α−1

sρ−1

∣∣∣∣∣ ds
+

1

Γ(α)

∫ t

a

∣∣∣∣∣
(
tρ − sρ

ρ

)α−1

sρ−1

∣∣∣∣∣ ds,
then ∫ T

a

|G(t, s)|ds ≤ 2

Γ(ν + 1)

(
T ρ − aρ

ρ

)ν
.

Therefore

G̃ ≤ 2

Γ(ν + 1)

(
T ρ − aρ

ρ

)ν
.

Condition (2.24) holds, indeed,

q∗G̃

1−m∗
≤ 2

Γ(3
2

+ 1)

(
e

3
2 − 2

3
2

3

) 3
2

≈ 0.61549

< 1.

Hence all conditions of Theorem 2.4.1 are satisfied. It follows that the problem (2.31) has
at least one solution.
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Chapter 3

Coupled Implicit Fractional
Differential Systems with Retarded
and Advanced Arguments

3.1 Introduction

In Section 3.2, we study the existence and uniqueness of solutions to the following cou-
pled system nonlinear implicit of Caputo type modification of the Erdélyi-Kober fractional
differential equations involving both retarded and advanced arguments see [42]. An ex-
tension of this problem is given in Section 3.4. More precisely, we shall present a result of
existence of weak solutions to coupled system nonlinear implicit of Caputo type modifi-
cation of the Erdélyi-Kober fractional differential equations involving both retarded and
advanced arguments see [44]. This chapter generalizes the previous one.

3.2 Existence Results for the Coupled Implicit Frac-

tional Differential Systems with Retarded and

Advanced Arguments

1. In this Section,, we study the existence and uniqueness of solutions to the follow-
ing Coupled system nonlinear implicit fractional differential equations (CSIFD for short)
involving both retarded and advanced arguments{

ρ
cD

α
a+u(t) = f1(t, ut, vt,ρc D

α
a+u(t),ρc D

α
a+v(t))

ρ
cD

α
a+v(t) = f2(t, ut, vt,ρc D

α
a+u(t),ρc D

α
a+v(t))

t ∈ I := [a, T ], (3.1)

1M. Boumaaza, M. Benchohra and Juan J. Nieto, Caputo type modification of the Erdélyi-Kober
coupled implicit fractional differential systems with retardation and anticipation, Differ. Equ. Appl.
(accepted)

39



40 CHAPTER 3. Coupled Implicit FDS{
(u(t), v(t)) = (φ1(t), φ2(t)), t ∈ [a− r, a], r > 0

(u(t), v(t)) = (ψ1(t), ψ2(t)), t ∈ [T, T + β], β > 0,
(3.2)

where ρ
cD

α
a+ is the Caputo type modification of the Erdélyi-Kober fractional derivative

and fi : I × C([−r, β], IR)2 × IR2 → IR is a given function, φi ∈ C([a − r, a], IR) with
φi(a) = 0 and ψi ∈ C([T, T + β], IR) with ψi(T ) = 0 ,i = 1, 2
We denote by ut the element of C([−r, β]) defined by:

ut(s) = u(t+ s) : s ∈ [−r, β]

here ut(·) represents the history of the state from time t− r up to time t+ β.

Lemma 3.2.1 Let 1 < α ≤ 2, φ ∈ C([a− r, a], IR) with φ(a) = 0, ψ ∈ C([T, T + β], IR)
with ψ(T ) = 0 and h : I → IR be a continuous function. Then the linear problem

ρ
cD

α
a+u(t) = h(t), for a.e t ∈ I := [a, T ], 1 < α ≤ 2, (3.3)

u(t) = φ(t), t ∈ [a− r, a], r > 0 (3.4)

u(t) = ψ(t), t ∈ [T, T + β], β > 0, (3.5)

has a unique solution, which is given by

u(t) =



φ(t), if t ∈ [a− r, a],

−
∫ T

a

G(t, s)h(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β],

(3.6)

where

G(t, s) =
ρ1−α

Γ(α)


(tρ − aρ)(T ρ − sρ)α−1sρ−1

(T ρ − aρ)
− sρ−1(tρ − sρ)α−1, a ≤ s ≤ t ≤ T.

(tρ − aρ)(T ρ − sρ)α−1sρ−1

(T ρ − aρ)
, a ≤ t ≤ s ≤ T.

(3.7)

Here G(t, s) is called the Green function of the boundary value problem (3.3)-(3.5).
Proof. From (1.4), we have

u(t) = c0 + c1

(
tρ − aρ

ρ

)
+ρ Iαa+h(s), c0, c1 ∈ IR, (3.8)

therefore

u(a) = c0 = 0,
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u(T ) = c1

(
T ρ − aρ

ρ

)
+
ρ1−α

Γ(α)

∫ T

a

(T ρ − sρ)α−1sρ−1h(s)ds,

and

c1 = − ρ2−α

(T ρ − aρ)Γ(α)

∫ T

a

(T ρ − sρ)α−1sρ−1h(s)ds.

Substitute the value of c0 and c1 into equation (3.8), we get equation (3.6).

u(t) =



φ(t), if t ∈ [a− r, a],

−
∫ T

a

G(t, s)h(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β],

where G is defined by equation (3.7), the proof is complete.

Lemma 3.2.2 Let fi : I × C[−r, β]2 × IR2 −→ IR i=1,2, be continuous functions. A
function (u, v) ∈ C2 is solution of system (3.1) − (3.2) if and only if (u, v) satisfies the
following coupled system of integral equations

u(t) =



φ1(t), if t ∈ [a− r, a],

−
∫ T

a

G(t, s)h1(s)ds, if t ∈ I

ψ1(t), if t ∈ [T, T + β],

v(t) =



φ2(t), if t ∈ [a− r, a],

−
∫ T

a

G(t, s)h2(s)ds, if t ∈ I

ψ2(t), if t ∈ [T, T + β],

where hi ∈ C(I) satisfies the system of functional equations{
h1(t) = f1(t, ut, vt, h1(t), h2(t)),

h2(t) = f2(t, ut, vt, h1(t), h2(t)).
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The following hypotheses will be used in the sequel:

(H1) The functions fi : I × C[−r, β]2 × IR2 −→ IR are continuous.

(H2) There exist Ki, Ki, Ci, Ci > 0, 0 < C2 < 1, 0 < C1 < 1 such that

|fi(t, u, v, w, z)−fi(t, ū, v̄, w̄, z̄)| ≤ Ki‖u−ū‖[−r,β]+Ki‖v−v̄‖[−r,β]+Ci|w−w̄|+Ci|z−z̄|

for any u, ū ∈ C([−r, β]) and v, v̄ ∈ IR, i = 1, 2.

(H3) There exist pi, qi ∈ L∞([a, T ], IR+) such that

|fi(t, u, v, ū, v̄)| ≤
pi(t)‖u‖[−r,β] + qi(t)‖v‖[−r,β]

1 + ‖u‖[−r,β] + ‖v‖[−r,β] + |ū|+ |v̄|

for a.e. t ∈ I, and each u, v ∈ C([−r, β]) and ū, v̄ ∈ IR.
Set

p∗i = ess sup
t∈I

pi(t), q∗i = ess sup
t∈I

qi(t), i = 1, 2

G̃ = sup

{∫ T

a

|G(t, s)|ds, t ∈ I
}
.

Now, we state and prove our existence result for (3.1)-(3.2) based on the Banach fixed
point theorem.

Theorem 3.2.1 Assume (H1) and (H2) hold. If

C2C1

(1− C1)(1− C2)
< 1, (3.9)

and
G∗1 +G∗2 < 1, (3.10)

then the problem (3.1)-(3.2) has a unique solution.

Proof: Let the operator N : C × C 7−→ C × C defined by

N(u, v)(t) = (N1(u, v), N2(u, v))

=



(φ1(t), φ2(t)), if t ∈ [a− r, a],

−
(∫ T

a

G(t, s)h1(s)ds,

∫ T

a

G(t, s)h2(s)ds

)
, if t ∈ I

(ψ1(t), ψ2(t)), if t ∈ [T, T + β].

(3.11)
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By Lemma 3.2.2 it is clear that the fixed points of N are solutions (3.1)-(3.2) .
Let (u2, v2), (u1, v1) ∈ C2. If t ∈ [a− r, a] or t ∈ [T, T + β] then

|N(u2, v2)(t)−N(u1, v1)(t)| = 0.

For t ∈ I, we have

|N1(u2, v2)(t)−N1(u1, v1)(t)| ≤
∫ T

a

|G(t, s)||ρcDαu2(t)−ρc Dαu1(t)|ds, (3.12)

and by (H2) we have

|ρcDα
a+u2(t)−ρc Dα

a+u1(t)| = |f1(t, ut2, v
t
2,
ρ
c D

α
a+u2(t),ρc D

α
a+v2(t))

− f1(t, ut1, v
t
1,
ρ
c D

α
a+u1(t),ρc D

α
a+v1(t))|

≤ K1‖u2 − u1‖[−r,β] +K1‖v2 − v1‖[−r,β]

+ C1|ρcDα
a+u2(t)−ρc Dα

a+u1(t)|+ C1|ρcDα
a+v2(t)−ρc Dα

a+v1(t)|.

Then

|ρcDα
a+u2(t)−ρc Dα

a+u1(t)| ≤ K1

(1− C1)
‖u2 − u1‖[−r,β] +

K1

(1− C1)
‖v2 − v1‖[−r,β]

+
C1

(1− C1)
|ρcDα

a+v2(t)−ρc Dα
a+v1(t)|.

Similarly, one can find that

|ρcDα
a+v2(t)−ρc Dα

a+v1(t)| ≤ K2

(1− C2)
‖u2 − u1‖[−r,β] +

K2

(1− C2)
‖v2 − v1‖[−r,β]

+
C2

(1− C2)
|ρcDα

a+u2(t)−ρc Dα
a+u1(t)|.

Therefore

|ρcDα
a+u2(t)−ρc Dα

a+u1(t)| ≤ K1

(1− C1)
‖u2 − u1‖[−r,β] +

K1

(1− C1)
‖v2 − v1‖[−r,β]

+
C1

(1− C1)

[
K2

(1− C2)
‖u2 − u1‖[−r,β] +

K2

(1− C2)
‖v2 − v1‖[−r,β]

]
+

C2C1

(1− C1)(1− C2)
|ρcDα

a+u2(t)−ρc Dα
a+u1(t)|,
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then

|ρcDα
a+u2(t)−ρc Dα

a+u1(t)| ≤ K1(1− C2) + C1K2

(1− C1)(1− C2)− C2C1

‖u2 − u1‖[−r,β]

+
K1(1− C2) + C1K2

(1− C1)(1− C2)− C2C1

‖v2 − v1‖[−r,β],

and

|ρcDα
a+v2(t)−ρc Dα

a+v1(t)| ≤ K2(1− C1) + C2K1

(1− C1)(1− C2)− C2C1

‖u2 − u1‖[−r,β]

+
K2(1− C1) +K1C2

(1− C1)(1− C2)− C2C1

‖v2 − v1‖[−r,β].

From it we get

|N1(u2, v2)(t)−N1(u1, v1)(t)| ≤
∫ T

a

|G(t, s)|( K1(1− C2) + C1K2

(1− C1)(1− C2)− C2C1

‖u2 − u1‖[−r,β]

+
K1(1− C2) + C1K2

(1− C1)(1− C2)− C2C1

‖v2 − v1‖[−r,β]ds)

≤
G̃
(
K1(1− C2) + C1K2

)
(1− C1)(1− C2)− C2C1

‖u2 − u1‖[−r,β]

+
G̃
(
K1(1− C2) + C1K2

)
(1− C1)(1− C2)− C2C1

‖v2 − v1‖[−r,β].

Therefore, for each t ∈ I, we have

|N1(u2, v2)(t)−N1(u1, v1)(t)| ≤
G̃
(
K1(1− C2) + C1K2

)
(1− C1)(1− C2)− C2C1

‖u2 − u1‖C

+
G̃
(
K1(1− C2) + C1K2

)
(1− C1)(1− C2)− C2C1

‖v2 − v1‖C.

Thus

‖N1(u2, v2)−N1(u1, v1)‖C ≤ G∗1 [‖u2 − u1‖C + ‖v2 − v1‖C] , (3.13)

with

G∗1 =
G̃
(
(K1 +K1)(1− C2) + C1(K2 +K2)

)
(1− C1)(1− C2)− C2C1

.
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likewise, we get

‖N2(u2, v2)−N2(u1, v1)‖C ≤ G∗2 [‖u2 − u1‖C + ‖v2 − v1‖C] , (3.14)

with

G∗2 =
G̃
(
(K2 +K2)(1− C1) + C2(K1 +K1)

)
(1− C1)(1− C2)− C2C1

.

Thus it follows from (3.13) and (3.14), that

‖N(u2, v2)−N(u1, v1)‖C ≤ (G∗1 +G∗2) [‖u2 − u1‖C + ‖v2 − v1‖C] ,

with

G∗1 +G∗2 = G̃

(
(K1 +K1)(1− C2 + C2) + (1− C1 + C1)(K2 +K2)

(1− C1)(1− C2)− C2C1

)
.

So by (3.10) the operator N is a contraction. By the Banach contraction principle, N has
a fixed point, which is solution to problem (3.1)-(3.2).

We now prove an existence result for (3.1)-(3.2) by using the Schauder’s fixed point
theorem.

Theorem 3.2.2 Suppose that (H1) and (H3) hold. Then problem (3.1)-(3.2) has at least
one solution.

Step 1. N is continuous. Let {(un, vn)} be a sequence such that (un, vn) −→ (u, v) in
C × C. If t ∈ [a− r, a] or t ∈ [T, T + β] then

|(N(un, vn))(t)− (N(u, v))(t)| = 0.

For t ∈ I, we have

|(Ni(un, vn)(t))− (Ni(u, v))(t)| ≤
∫ T

a

|G(t, s)||hi,n(s)− hi(s)|ds, i = 1, 2, (3.15)

where

hi,n(t) = fi(t, u
t
n, v

t
n, h1,n(t), h2,n(t)),

and

hi(t) = fi(t, u
t, vt, h1(t), h2(t)).

Since (un, vn) −→ (u, v) , and by (H1) we get hi,n(t) −→ h(t), i = 1, 2 as n −→ ∞ for
each t ∈ I. By (H3) we have for each t ∈ I, i = 1, 2,

|hi,n(t)| ≤ p∗i + q∗i . (3.16)
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Then,

|G(t, s)||hi,n(t)− hi(t)| ≤ |G(t, s)| [|hi,n(t)|+ |hi(t)|]
≤ 2(p∗i + q∗i )|G(t, s)|.

For each t ∈ I the functions s 7−→ 2(p∗i + q∗i )|G(t, s)| are integrable on [a, t] , then by
Lebesgue dominated convergence theorem, equation (3.15 ) implies

|(Ni(un, vn))(t)− (Ni(u, v))(t)| −→ 0 as n −→∞,

and hence
‖N(un, vn)−N(u, v)‖C −→ 0 as n −→∞.

Consequently, N is continuous.
Let the constant R be such that:

R ≥ max
{
L1 + L2, ‖φ1‖[a−r,a] + ‖φ2‖[a−r,a], ‖ψ1‖[T,T+β] + ‖ψ2‖[T,T+β]

}
, (3.17)

and define
DR = {(u, v) ∈ C × C : ‖(u, v)‖C ≤ R}.

It is clear that DR is a bounded, closed and convex subset of C.

Step 2. N(DR) ⊂ DR.

Let (u, v) ∈ DR we show that N(u, v) = (N1(u, v), N2(u, v)) ∈ DR.
If t ∈ [a− r, a], then

|N(u, v)(t)| ≤ ‖φ1‖[a−r,a] + ‖φ2‖[a−r,a] ≤ R,

and if t ∈ [T, T + β], then

|N(u, v)(t)| ≤ ‖ψ1‖[T,T+β] + ‖ψ2‖[T,T+β] ≤ R.

For each t ∈ I, we have

|(Ni(u, v))(t)| ≤
∫ T

a

|G(t, s)||hi(s)|ds, i = 1, 2.

By (H3), we have

|(Ni(u, v))(t)| ≤ (p∗i + q∗i )

∫ T

a

|G(t, s)|ds

≤ (p∗i + q∗i )G̃ = Li

from which it follows that for each t ∈ [a− r, T + β], we have

|Ni(u, v)(t)| ≤ Li,
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which implies that ‖Ni(u, v)‖C ≤ Li,
hence we get

‖N(u, v)‖C ≤ L1 + L2

≤ R.

Consequently,

N(DR) ⊂ DR.

Step 3: N(DR) is bounded and equicontinuous.
By Step 2 we have N(DR) is bounded.
Let t1, t2 ∈ I = [a, T ], t1 < t2, and (u, v) ∈ DR then

|(Ni(u, v))(t2)− (Ni(u, v))(t1)| ≤
∫ T

a

|G(t2, s)−G(t1, s)||hi(s)|ds

≤ (p∗i + q∗i )

∫ T

a

|G(t2, s)−G(t1, s)|ds.

As t1 −→ t2 the right hand side of the above inequality tends to zero.Therefore, the
operator N(u, v) is equicontinuous. As consequence of Step 1 to Step 3, together withe the
Arzela-Ascoli theorem, we can conclude that N is continuous and completely continuous
and satisfies the assumptions of Schauder’s fixed point theorem. Then N has a fixed
point, which is a solution of the problem (3.1)-(3.2).

3.3 An Example

Consider the boundary value problem of implicit Caputo type modification of the Erdélyi-
Kober fractional differential equation:

(u(t), v(t)) = (et−2 − 1, 2t− 4), t ∈ [1, 2],

1
2
cD

3
2

2+u(t) =
ln(t)

200et+2
(

1 + |ut|+ |vt|+
∣∣∣ 12cD 3

2

2+u(t)
∣∣∣+
∣∣∣ 12cD 3

2

2+v(t)
∣∣∣) , t ∈ I = [2, e]

1
2
cD

3
2

2+v(t) =
arctan(t)

100et+2
(

1 + |ut|+ |vt|+
∣∣∣ 12cD 3

2

2+u(t)
∣∣∣+
∣∣∣ 12cD 3

2

2+v(t)
∣∣∣) , t ∈ I = [2, e]

(u(t), v(t)) = (ln(t)− 1, t− e), t ∈ [e, 6].

(3.18)
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Set

f1(t, u, v, ū, v̄) =
ln(t)

200et+2 (1 + |ut|+ |vt|+ |ū|+ |v̄|)
, t ∈ [2, 4], u, v ∈ C([−r, β]), ū, v̄ ∈ IR,

f2(t, u, v, ū, v̄) =
arctan(t)

100et+2 (1 + |ut|+ |vt|+ |ū|+ |v̄|)
, t ∈ [2, 4], u, v ∈ C([−r, β]), ū, v̄ ∈ IR,

v ∈ IR, α =
3

2
, ρ =

5

2
, r = 1, β = 6− e.

Condition (H2) is satisfied, indeed, for each u, v ∈ C([−r, β]), ū, v̄ ∈ IR and t ∈ [2, e], we
have

|f1(t, u2, v2, ū2, v̄2)− f1(t, u1, v1, ū1, v̄1)| ≤ 1

200et+2
(‖u2 − u1‖[−r,β] + ‖u2 − v1‖[−r,β]

+ |ū2 − ū1|+ |v̄2 − v̄1|),

and

|f2(t, u2, v2, ū2, v̄2)− f2(t, u1, v1, ū1, v̄1)| ≤ π

200et+2
(‖u2 − u1‖[−r,β] + ‖u2 − v1‖[−r,β]

+ |ū2 − ū1|+ |v̄2 − v̄1|).

Therefore, (H2) is verified with

Ki = Ki = Ci = Ci =

{
π

200e4
for i = 2,

1
200e4

for i = 1.

For each t ∈ I we have∫ T

a

|G(t, s)|ds ≤ 1

Γ(α)

(
tρ − aρ

T ρ − aρ

)∫ T

a

∣∣∣∣∣
(
T ρ − sρ

ρ

)α−1

sρ−1

∣∣∣∣∣ ds
+

1

Γ(α)

∫ t

a

∣∣∣∣∣
(
tρ − sρ

ρ

)α−1

sρ−1

∣∣∣∣∣ ds
≤ 2

Γ(α + 1)

(
T ρ − aρ

ρ

)α
.

Therefore

G̃ ≤ 2

Γ(α + 1)

(
T ρ − aρ

ρ

)α
.

We have

G∗1 +G∗2 ≤
1

100e4
+ π

100e4

((1− 1
200e4

)(1− π
200e4

)− π
(200e4)2

)

2

Γ(5
2
)

(
e

5
2 − 2

5
2

5
2

) 3
2

≈ 6.689246337.10−7

< 1.
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Hence (3.10) is satisfied with T = e, a = 2 and α = 3
2
. Hence all conditions of Theorem

3.2.1 are satisfied, it follows that the problem (3.18) admit a unique solution defined on
I.

3.4 Existence Results for the Weak Solutions Of Cou-

pled Implicit Fractional Differential Systems with

Retarded and Advanced Arguments

2

In this Section, we study the existence of weak solutions to the following coupled
system nonlinear implicit fractional differential equations (CSIFD for short) involving
both retarded and advanced arguments:{

ρ
cD

α
a+u(t) = f1(t, ut, vt,ρc D

α
a+u(t),ρc D

α
a+v(t))

ρ
cD

α
a+v(t) = f2(t, ut, vt,ρc D

α
a+u(t),ρc D

α
a+v(t))

t ∈ I := [a, T ], (3.19)

{
(u(t), v(t)) = (φ1(t), φ2(t)), t ∈ [a− r, a], r > 0

(u(t), v(t)) = (ψ1(t), ψ2(t)), t ∈ [T, T + β], β > 0,
(3.20)

where ρ
cD

α
a+ is the Caputo type modification of the Erdélyi-Kober fractional derivative and

E is a real (or complex) Banach space with norm ‖ · ‖E and dual E∗, such that E is the
dual of a weakly compactly generated Banach space X, fi : I ×C([−r, β], E)2 ×E2 → E
is a given function, φi ∈ C([a − r, a], E) with φi(a) = 0 and ψi ∈ C([T, T + β], E) with
ψi(T ) = 0, i = 1, 2.
We denote by ut the element of C([−r, β]) defined by:

ut(s) = u(t+ s) : s ∈ [−r, β].

Definition 3.4.1 A function (u, v) ∈ C × C, is said to be a solution of (3.19)-(3.20), if
(u, v) satisfies the system equation{

ρ
cD

α
a+u(t) = f1(t, ut, vt,ρc D

α
a+u(t),ρc D

α
a+v(t))

ρ
cD

α
a+v(t) = f2(t, ut, vt,ρc D

α
a+u(t),ρc D

α
a+v(t))

on I, and the conditions (u(t), v(t)) = (φ1(t), φ2(t)), (φ1(a), φ2(a)) = (0, 0) on [a − r, a]
and (u(t), v(t)) = (ψ1(t), ψ2(t)), (ψ1(T ), ψ2(T )) = (0, 0) on [T, T + β].

To prove the existence of solutions to (3.19)-(3.20), we need the following auxiliary
Lemma.

2M. Boumaaza, M. Benchohra and Juan J. Trujillo, Weak solutions of coupled Caputo-type modifica-
tion of the Erdélyi-Kober implicit fractional differential systems with retarded and advanced arguments,
Jordan J. Math. Stat. (accepted).
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Lemma 3.4.1 Let fi : I×C[−r, β]×C[−r, β]×E2 −→ E i=1,2, be continuous functions.
A function (u, v) ∈ C2 is solution of system (3.19) − (3.20) if and only if (u, v) satisfies
the following coupled system of integral equations

u(t) =



φ1(t), if t ∈ [a− r, a],

−
∫ T

a

G(t, s)h1(s)ds, if t ∈ I

ψ1(t), if t ∈ [T, T + β],

v(t) =



φ2(t), if t ∈ [a− r, a],

−
∫ T

a

G(t, s)h2(s)ds, if t ∈ I

ψ2(t), if t ∈ [T, T + β],

where hi ∈ C(I) satisfies the system of functional equations{
h1(t) = f1(t, ut, vt, h1(t), h2(t)),

h2(t) = f2(t, ut, vt, h1(t), h2(t)).

and

G(t, s) =
ρ1−α

Γ(α)


(tρ − aρ)(T ρ − sρ)α−1sρ−1

(T ρ − aρ)
− sρ−1(tρ − sρ)α−1, a ≤ s ≤ t ≤ T.

(tρ − aρ)(T ρ − sρ)α−1sρ−1

(T ρ − aρ)
, a ≤ t ≤ s ≤ T.

(3.21)

The following hypotheses will be used in the sequel:

(H1) The functions (u, v, ū, v̄) −→ fi(t, u, v, ū, v̄) are weakly sequentially continuous for
a.e. t ∈ I.

(H2) For all u, v ∈ C([−r, β]), ū, v̄ ∈ E the functions t −→ fi(t, u, v, ū, v̄), i = 1, 2, are
Pettis integrable.
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(H3) There exist pi, qi ∈ C([a, T ], IR+) such that, for all ϕ ∈ E∗,

|ϕ(fi(t, u, v, ū, v̄))| ≤
pi(t)‖u‖[−r,β] + qi(t)‖v‖[−r,β]

1 + ‖ϕ‖+ ‖u‖[−r,β] + ‖v‖[−r,β] + ‖ū‖E + ‖v̄‖E

for a.e. t ∈ I, and each u, v ∈ C([−r, β]) and ū, v̄ ∈ E.

(H4) For each bounded measurable sets Bi ⊂ C[−r, β], i = 1, 2, and each t ∈ I, we have

µ(f1(t, B1, B2,
ρ
c D

α
a+(B1),ρc D

α
a+(B2)), 0) ≤ p1(t) sup

s∈[−r,β]

µ(B1(s))+q1(t) sup
s∈[−r,β]

µ(B2(s))

and

µ(0, f2(t, B1, B2,
ρ
c D

α
a+(B1),ρc D

α
a+(B2))) ≤ p2(t) sup

s∈[−r,β]

µ(B1(s))+q2(t) sup
s∈[−r,β]

µ(B2(s)),

where
ρ
cD

α
a+(Bi) = {ρcDα

a+(w) : w ∈ Bi}, i = 1, 2.

Set

p∗i = sup
t∈I

pi(t), q∗i = sup
t∈I

qi(t), i = 1, 2, G̃ = sup

{∫ T

a

|G(t, s)|ds, t ∈ I
}
.

We now prove an existence result for (3.19)-(3.20) by using the Mönch fixed point
theorem.

Theorem 3.4.1 Suppose that (H1) - (H4) hold. If

G̃(p∗1 + q∗1 + p∗2 + q∗2) < 1, (3.22)

then the coupled system (3.19)-(3.20) has at least one weak solution defined on I.
Proof: Let the operator N : C × C 7−→ C × C defined by

N(u, v)(t) = (N1(u, v), N2(u, v))

=



(φ1(t), φ2(t)), if t ∈ [a− r, a],

−
(∫ T

a

G(t, s)h1(s)ds,

∫ T

a

G(t, s)h2(s)ds

)
, if t ∈ I

(ψ1(t), ψ2(t)), if t ∈ [T, T + β].

(3.23)

First, notice that the hypotheses imply that, for each hi ∈ C(I), i = 1, 2, the function
t −→ G(t, s)hi(t) are Pettis integrable over I.
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Let the constant R be such that:

R ≥ max
{
L1 + L2, ‖φ1‖[a−r,a] + ‖φ2‖[a−r,a], ‖ψ1‖[T,T+β] + ‖ψ2‖[T,T+β]

}
, (3.24)

and define

D =


(u, v) ∈ C × C :



‖(u, v)‖C ≤ R,

‖u(t2)− u(t1)‖E ≤ (p∗1 + q∗1)
∫ T
a
|G(t2, s)−G(t1, s)|ds,

‖v(t2)− v(t1)‖E ≤ (p∗2 + q∗2)
∫ T
a
|G(t2, s)−G(t1, s)|ds.


Clearly, the subset D is closed, convex end equicontinuous. We shall show that the
operator N satisfies all the assumptions of Theorem 1.6.5. The proof will be given in
several steps.

Step 1. N maps D into itself.

Let (u, v) ∈ D, t ∈ I and assume that (N(u, v))(t) 6= (0, 0). Then there exists ϕ ∈ E∗
such that ‖Ni(u, v)(t)‖E = ϕ (Ni(u, v)(t)). Thus, for any i ∈ {1, 2} we have

‖Ni(u, v)(t)‖E = ϕ

(∫ T

a

G(t, s)hi(s)ds

)
,

where hi ∈ C(I), with
hi(t) = fi(t, u

t, vt, h1(t), h2(t)).

If t ∈ [a− r, a], then

‖N(u, v)(t)‖E ≤ ‖φ1‖[a−r,a] + ‖φ2‖[a−r,a] ≤ R,

and if t ∈ [T, T + β], then

‖N(u, v)(t)‖E ≤ ‖ψ1‖[T,T+β] + ‖ψ2‖[T,T+β] ≤ R.

For each t ∈ I, we have

‖(Ni(u, v))(t)‖E ≤
∫ T

a

|G(t, s)||ϕ(hi(s))|ds, i = 1, 2.

By (H3), we get

|ϕ(hi(t))| ≤ p∗i + q∗i .

Therefore

‖(Ni(u, v))(t)‖E ≤ (p∗i + q∗i )

∫ T

a

|G(t, s)|ds

≤ (p∗i + q∗i )G̃ = Li
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from which it follows that for each t ∈ [a− r, T + β], we have

‖Ni(u, v)(t)‖E ≤ Li,

which implies that ‖Ni(u, v)‖C ≤ Li,
hence we get

‖N(u, v)‖C ≤ L1 + L2

≤ R.

Next, Let t1, t2 ∈ I = [a, T ], t1 < t2, and (u, v) ∈ D be such that

(Ni(u, v))(t2)− (Ni(u, v))(t1) 6= 0.

Then there exists ϕ ∈ E∗ such that

‖(Ni(u, v))(t2)− (Ni(u, v))(t1)‖E = ϕ((Ni(u, v))(t2)− (Ni(u, v))(t1)),

and ‖ϕ‖ = 1. Then, for any i ∈ {1, 2}, we get

‖(Ni(u, v))(t2)− (Ni(u, v))(t1)‖E = ϕ((Ni(u, v))(t2)− (Ni(u, v))(t1))

≤ ϕ

(∫ T

a

|G(t2, s)−G(t1, s)|hi(s)
)

where hi ∈ C(I), with

hi(t) = fi(t, u
t, vt, h1(t), h2(t)).

Thus, we have

‖(Ni(u, v))(t2)− (Ni(u, v))(t1)‖E ≤
∫ T

a

|G(t2, s)−G(t1, s)||ϕ(hi(s))|ds

≤ (p∗i + q∗i )

∫ T

a

|G(t2, s)−G(t1, s)|ds.

Consequently,

N(D) ⊂ D.

Step 2. N is weakly sequentially continuous.
Let {(un, vn)}n be a sequence in D ×D, and let (un(t), vn(t)) −→ (u(t), v(t)) in (E,ω)×
(E,ω) for each t ∈ [a− r, T + β]. Fix t ∈ [a− r, T + β]. Since for any i ∈ 1, 2, the func-
tion fi(t, u

t
n, v

t
n,
ρ
c D

α
a+un(t),ρc D

α
a+vn(t)) satisfies assumption (H1), we have that it converges
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weakly uniformly to fi(t, u
t, vt,ρc D

α
a+u(t),ρc D

α
a+v(t)). Hence the Lebesgue dominated con-

vergence theorem for Pettis integral implies that (N(un, vn))(t) converges weakly uni-
formly to (N(u, v))(t) in (E,ω). We do it for each t ∈ I, so N(un, vn) −→ N(u, v). Then
N : D −→ D is weakly sequentially continuous.

Step 3. Now let V be a subset of D such that V = conv(N(V )∪{(0, 0)}). Obviously

V (t) ⊂ conv(N(V )(t) ∪ {(0, 0)}).

Since V is bounded and equicontinuous, the function t 7−→ v(t) = µ(V (t)) is continuous
on [a− r, T +β]. By (H1)− (H3), Lemma 1.4.3, and the properties of measure µ, for each
t ∈ I, we have

v(t) ≤ µ(N(V )(t) ∪ {(0, 0)})
≤ µ((NV )(t))

≤ µ ({((N1u)(t), (N2v)(t)) : (u, v) ∈ V })

≤
∫ T

a

|G(t, s)|µ({(f1(t, ut, vt,ρc D
α
a+u(t),ρc D

α
a+v(t)), 0)})ds

+

∫ T

a

|G(t, s)|µ({(0, f2(t, ut, vt,ρc D
α
a+u(t),ρc D

α
a+v(t)))})ds

≤
∫ T

a

|G(t, s)|(p1(s)µ({(u(s), 0); (u, 0) ∈ V })

+ q1(s)µ({(v(s), 0); (v, 0) ∈ V })ds

+

∫ T

a

|G(t, s)|(p2(s)µ({(0, u(s)); (0, u) ∈ V })

+ q2(s)µ({(0, v(s)); (0, v) ∈ V }))ds

≤
∫ T

a

|G(t, s)|(p1(s) + q1(s) + p2(s) + q2(s))µ(V (s))ds

≤ G̃(p∗1 + q∗1 + p∗2 + q∗2)‖v‖c.

Thus
‖v‖c ≤ G̃(p∗1 + q∗1 + p∗2 + q∗2)‖v‖c.

From (3.22 ), we get ‖v‖c = 0, that is µ(V (t)) = 0 for each t ∈ I.
For t ∈ [a− r, a], we have

v(t) = µ((φ1(t), φ2(t)))

= 0.

Also for t ∈ [T, T + β] we have

v(t) = µ(ψ1(t), ψ2(t))

= 0,
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then V (t) is relatively compact in E. In view of Ascoli-Arzela theorem V is weakly
relatively compact in C. Applying Theorem 1.6.5, we conclude that N has a fixed point
which is a solution of the problem (3.19)− (3.20).

3.5 An Example

Let

E = l1 =

{
u = (u1, u2, . . . , un, . . .),

∞∑
k=1

|un| <∞

}
,

be the Banach space with the norm

‖u‖E =
∞∑
k=1

|un|.

Consider the boundary value problem of implicit Caputo type modification of the Erdélyi-
Kober fractional differential equation

(u(t), v(t)) = (1
2
t, t2 + t), t ∈ [−1, 0],

1
cD

3
2

0+un(t) = f(t, utn, v
t
n,

1
c D

3
2

0+un(t),1c D
3
2

0+un(t)), t ∈ I = [0, 1]

1
cD

3
2

0+vn(t) = g(t, utn, v
t
n,

1
c D

3
2

0+un(t),1c D
3
2

0+un(t)), t ∈ I = [0, 1]

(u(t), v(t)) = (t− 1, t2 − t), t ∈ [1, 2],

(3.25)

here T = 1, a = 0, α =
3

2
, ρ = 1.

Set
y = (y1, y2, . . . , yn, . . .), f = (f1, f2, . . . , fn, . . .)

f(t, ut, vt,1c D
3
2

0+u(t),1c D
3
2

0+v(t))

=
sin(t)(‖ut‖C([−1,1]) + ‖vt‖C([−1,1]))

8(t+ 1)
(

1 + ‖ut‖C([−1,1]) + ‖vt‖C([−1,1]) + ‖3
cD

3
2

0+u‖E + ‖3
cD

3
2

2+v‖E
) .

and
g(t, ut, vt,1c D

3
2

0+u(t),1c D
3
2

0+v(t))

=
cos(t)(‖ut‖C([−1,1]) + ‖vt‖C([−1,1]))

8(t2 + 1)
(

1 + ‖ut‖C([−1,1]) + ‖vt‖C([−1,1]) + ‖1
cD

3
2

0+u‖E + ‖1
cD

3
2

0+v‖E
) .

For each y ∈ E and t ∈ [0, 1] , we have
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‖f(t, ut, vt,1c D
3
2

0+u(t),1c D
3
2

0+v(t))‖E ≤
sin(t)

8(t+ 1)

and

‖g(t, ut, vt,1c D
3
2

0+u(t),1c D
3
2

0+v(t))‖E ≤
cos(t)

8(t2 + 1)
.

Hence (H2) is satisfied with P ∗i = q∗i = 1
8
, i = 1, 2 .

For each t ∈ I we have

∫ T

a

|G(t, s)|ds ≤ 1

Γ(α)

(
tρ − aρ

T ρ − aρ

)∫ T

a

∣∣∣∣∣
(
T ρ − sρ

ρ

)α−1

sρ−1

∣∣∣∣∣ ds
+

1

Γ(α)

∫ t

a

∣∣∣∣∣
(
tρ − sρ

ρ

)α−1

sρ−1

∣∣∣∣∣ ds
≤ 2

Γ(α + 1)

(
T ρ − aρ

ρ

)α
.

Therefore

G̃ ≤ 2

Γ(α + 1)

(
T ρ − aρ

ρ

)α
.

Condition (3.22) holds, indeed,

G̃(p∗1 + q∗1 + p∗2 + q∗2) ≤ 1

Γ(3
2

+ 1)

≈ 0.7522527778

< 1.

Hence all conditions of Theorem 3.4.1 are satisfied. It follows that the problem (3.25) has
at least one solution.



Chapter 4

Random Coupled Fractional
Differential Systems in Generalized
Banach Spaces

1

4.1 Introduction

This chapter generalizes the previous chapter so that we study the existence and unique-
ness of random solutions to the following coupled system of nonlinear implicit fractional
differential equations (CSIFD for short) involving both retarded and advanced arguments
see [43]:{

(ρcD
α1

a+u)(t, w) = f1(t, ut(w), vt(w), (ρcD
α1

a+u)(t, w), w)

(ρcD
α2

a+v)(t, w) = f2(t, ut(w), vt(w), (ρcD
α2

a+v)(t, w), w)
t ∈ I := [a, T ], w ∈ Ω, (4.1)

{
(u(t, w), v(t, w)) = (φ1(t, w), φ2(t, w)), t ∈ [a− r, a], r > 0

(u(t, w), v(t, w)) = (ψ1(t, w), ψ2(t, w)), t ∈ [T, T + β], β > 0,
;w ∈ Ω (4.2)

where αi ∈ (1, 2], ρ
cD

αi
a+ , i = 1, 2 is the Caputo type modification of the Erdélyi-Kober

fractional derivative and fi : I × C([−r, β], IRn)2 × IRn × Ω → IRn is a given function,
φi ∈ C([a − r, a], IRn) with φi(a, w) = 0 and ψi ∈ C([T, T + β], IRn) with ψi(T,w) = 0,
i = 1, 2.
We denote by ut the element of C([−r, β]) defined by:

ut(s) = u(t+ s) : s ∈ [−r, β].

1M. Boumaaza, M. Benchohra and J. Henderson, Random coupled Caputo-type modification of
Erdélyi-Kober fractional differential systems in generalized Banach spaces with retarded and advanced
arguments, Commun. Optim. Theory, 2021(2021), 1-14.
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4.2 Existence Results

Lemma 4.2.1 Let 1 < α ≤ 2, φ ∈ C([a− r, a], IR) with φ(a) = 0, ψ ∈ C([T, T + β], IR)
with ψ(T ) = 0 and h : I → IR be a continuous function. Then the linear problem

ρ
cD

α
a+u(t) = h(t), for a.e. t ∈ I := [a, T ], 1 < α ≤ 2, (4.3)

u(t) = φ(t), t ∈ [a− r, a], r > 0, (4.4)

u(t) = ψ(t), t ∈ [T, T + β], β > 0, (4.5)

has a unique solution, which is given by

u(t) =



φ(t), if t ∈ [a− r, a],

−
∫ T

a

G(t, s)h(s)ds, if t ∈ I,

ψ(t), if t ∈ [T, T + β],

(4.6)

where

G(t, s) =
ρ1−α

Γ(α)


(tρ − aρ)(T ρ − sρ)α−1sρ−1

(T ρ − aρ)
− sρ−1(tρ − sρ)α−1, a ≤ s ≤ t ≤ T,

(tρ − aρ)(T ρ − sρ)α−1sρ−1

(T ρ − aρ)
, a ≤ t ≤ s ≤ T.

(4.7)
Here G(t, s) is called the Green function of the boundary value problem (4.3)-(4.5).

Proof. From (1.4), we have

u(t) = c0 + c1

(
tρ − aρ

ρ

)
+ρ Iαa+h(s), c0, c1 ∈ IR. (4.8)

Therefore,

u(a) = c0 = 0,

u(T ) = c1

(
T ρ − aρ

ρ

)
+
ρ1−α

Γ(α)

∫ T

a

(T ρ − sρ)α−1sρ−1h(s)ds,

and

c1 = − ρ2−α

(T ρ − aρ)Γ(α)

∫ T

a

(T ρ − sρ)α−1sρ−1h(s)ds.
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Substitute the values of c0 and c1 into equation (4.8), and we get equation (4.6), that is,

u(t) =


φ(t), if t ∈ [a− r, a],

−
∫ T

a

G(t, s)h(s)ds, if t ∈ I,

ψ(t), if t ∈ [T, T + β],

where G is defined by equation (4.7), and the proof is complete. 2

Lemma 4.2.2 Let fi : I ×C([−r, β], IRn)×C([−r, β], IRn)× IRn×Ω→ IRn, i = 1, 2 be
continuous functions. A functions (u, v) ∈ C2 is a random solution of system (4.1)-(4.2)
if and only if (u, v) satisfies the following random coupled system integral equations,

u(t, w) =


φ1(t, w), if t ∈ [a− r, a],

−
∫ T

a

Gα1(t, s)h1(s, w)ds, if t ∈ I,

ψ1(t, w), if t ∈ [T, T + β],

w ∈ Ω,

v(t, w) =


φ2(t, w), if t ∈ [a− r, a],

−
∫ T

a

Gα2(t, s)h2(s, w)ds, if t ∈ I,

ψ2(t, w), if t ∈ [T, T + β],

w ∈ Ω,

where hi(·, w) ∈ C(I), w ∈ Ω, satisfies the system of functional equations,{
h1(t, w) = f1(t, ut(w), vt(w), h1(t, w)),

h2(t, w) = f2(t, ut(w), vt(w), h2(t, w)),
w ∈ Ω,

and the Green function Gαi , i = 1, 2 is given by

Gαi(t, s) =
ρ1−αi

Γ(αi)


(tρ − aρ)(T ρ − sρ)αi−1sρ−1

(T ρ − aρ)
− sρ−1(tρ − sρ)αi−1, a ≤ s ≤ t ≤ T,

(tρ − aρ)(T ρ − sρ)αi−1sρ−1

(T ρ − aρ)
, a ≤ t ≤ s ≤ T.

(4.9)

The following hypotheses will be used in the sequel:

(H1) The functions fi, i = 1, 2, are random Carathéodory.

(H2) There exist continuous functions pi, qi, ri : I −→ L∞(Ω, IR+), with
‖ri(·, w)‖[a,T ] < 1 such that

‖fi(t, u, v, x, w)− fi(t, ū, v̄, x̄, w)‖ ≤ pi(t, w)‖u− ū‖[−r,β] + qi(t, w)‖v − v̄‖[−r,β]

+ ri(t, w)‖x− x̄‖

for any u, ū, v, v̄ ∈ C([−r, β]) and x, x̄ ∈ IRn, i = 1, 2.
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(H3) There exist measurable functions ai, bi, ci, di : I −→ L∞(Ω, IR+); i = 1, 2, with
d∗i (·, w) < 1, such that

‖fi(t, u, v, x, w)‖ ≤ ai(t, w) + bi(t, w)‖u‖[−r,β] + ci(t, w)‖v‖[−r,β] + di(t, w)‖x‖,

for a.e. t ∈ I, w ∈ Ω, and each u, v ∈ C[−r,β], x ∈ IRn.

Set
a∗i (·, w) = ess sup

t∈I
ai(t, w), b∗i (·, w) = ess sup

t∈I
bi(t, w),

c∗i (·, w) = ess sup
t∈I

ci(t, w), d∗i (·, w) = ess sup
t∈I

di(t, w), i = 1, 2

G̃αi = sup

{∫ T

a

|Gαi(t, s)|ds, t ∈ I
}
.

Now, we state and prove our existence and uniqueness of random solutions result for of
the problem (4.1)-(4.2)

Theorem 4.2.1 Assume (H1) and (H2) hold. If for every w ∈ Ω, the matrix

M(w) :=


G̃α1‖p1(·,w)‖[a,T ]

1−‖r1(·,w)‖[a,T ]

G̃α1‖q1(·,w)‖[a,T ]

1−‖r1(·,w)‖[a,T ]

G̃α2‖p2(·,w)‖[a,T ]

1−‖r2(·,w)‖[a,T ]

G̃α2‖q2(·,w)‖[a,T ]

1−‖r2(·,w)‖[a,T ]


converges to 0, then the problem (4.1)-(4.2) has a unique solution.

Proof: Let the operator N : C2 × Ω 7−→ C2 be defined by

N(u, v)(t, w) = (N1(u, v)(t, w), N2(u, v)(t, w))

=


(φ1(t, w), φ2(t, w)), if t ∈ [a− r, a],

−
(∫ T

a

G1(t, s)h1(s, w)ds,

∫ T

a

G2(t, s)h2(s, w)ds

)
, if t ∈ I,

(ψ1(t, w), ψ2(t, w)), if t ∈ [T, T + β].

(4.10)

By Lemma 4.2.2 it is clear that the fixed points of N are solutions (4.1)-(4.2).
Let (u1, v1), (u2, v2) ∈ C2 and w ∈ Ω. If t ∈ [a− r, a] or t ∈ [T, T + β]. Then

‖N(u2, v2)(t, w)−N(u1, v1)(t, w)‖ = 0.

For t ∈ I, we have

‖N1(u2, v2)(t, w)−N1(u1, v1)(t, w)‖ ≤
∫ T

a

|G(t, s)|‖h1(t, w)− h̄1(t, w)‖ds, (4.11)

where hi(·, w), h̄i(·, w) ∈ C(I) for w ∈ Ω are given by
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hi(t, w) = fi(t, u
t(w), vt(w), hi(t, w)), i = 1, 2,

h̄i(t, w) = fi(t, ūt(w), v̄t(w), h̄i(t, w)), i = 1, 2,

and by (H2) we have

‖h1(t, w)− h̄1(t, w)‖ ≤ pi(t, w)‖u− ū‖[−r,β] + qi(t, w)‖v − v̄‖[−r,β]

+ ri(t, w)‖h1(t, w)− h̄1(t, w)‖
≤ ‖pi(·, w)‖[a,T ]‖u− ū‖[−r,β] + ‖qi(·, w)‖[a,T ]‖v − v̄‖[−r,β]

+ ‖ri(·, w)‖[a,T ]‖h1(t, w)− h̄1(t, w)‖.

Then

‖h1(t, w)− h̄1(t, w)‖ ≤
‖pi(·, w)‖[a,T ]

1− ‖ri(·, w)‖[a,T ]

‖u− ū‖[−r,β]

+
‖qi(·, w)‖[a,T ]

1− ‖ri(·, w)‖[a,T ]

‖v − v̄‖[−r,β],

from which we conclude,

‖N1(u, v)(t, w)−N1(ū, v̄)(t, w)‖ ≤
‖p1(·, w)‖[a,T ]

1− ‖r1(·, w)‖[a,T ]

∫ T

a

|G1(t, s)|‖u− ū‖[−r,β]ds

+
‖q1(·, w)‖[a,T ]

1− ‖r1(·, w)‖[a,T ]

∫ T

a

|G1(t, s)|‖v − v̄‖[−r,β]ds

≤
G̃1‖p1(·, w)‖[a,T ]

1− ‖r1(·, w)‖[a,T ]

‖u− ū‖[−r,β]

+
G̃1‖q1(·, w)‖[a,T ]

1− ‖r1(·, w)‖[a,T ]

‖v − v̄‖[−r,β].

Therefore, for each t ∈ I, and w ∈ Ω

‖N1(u, v)(·, w)−N1(ū, v̄)(·, w)‖C ≤
G̃1‖p1(·, w)‖[a,T ]

1− ‖r1(·, w)‖[a,T ]

‖u− ū‖C

+
G̃1‖q1(·, w)‖[a,T ]

1− ‖r1(·, w)‖[a,T ]

‖v − v̄‖C.

Also, for any w ∈ Ω and each (u, v), (ū, v̄) ∈ C2 and t ∈ I, we get

‖N2(u, v)(·, w)−N2(ū, v̄)(·, w)‖C ≤
G̃2‖p2(·, w)‖[a,T ]

1− ‖r2(·, w)‖[a,T ]

‖u− ū‖C

+
G̃2‖q2(·, w)‖[a,T ]

1− ‖r2(·, w)‖[a,T ]

‖v − v̄‖C.
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Thus,

d(N(u, v)(·, w), N(ū, v̄)(·, w)) ≤M(w)d((u(·, w), v(·, w)), (ū(·, w), v̄(·, w)),

where

d((u(·, w), v(·, w)), (ū(·, w), v̄(·, w))) =

 ‖u(·, w)− v(·, w)‖C

‖ū(·, w)− v̄(·, w)‖C

 .

Since for every w ∈ Ω, the matrix M(w) converges to zero, then by Theorem 1.6.1, N
has a unique random fixed point which is a solution to problem (4.1)-(4.2). 2

Theorem 4.2.2 Suppose that (H1) and (H3) hold. Then problem (4.1)-(4.2) has at least
one solution.

Proof: The proof will be established in steps.

Step 1: N(·, ·, w) is continuous. Let {(un, vn)} be a sequence such that (un, vn) →
(u, v) in C × C, for any w ∈ Ω. If t ∈ [a− r, a] or t ∈ [T, T + β] then

‖(N(un, vn))(t, w)− (N(u, v))(t, w)‖ = 0.

For t ∈ I, we have

‖(Ni(un, vn)(t, w))− (Ni(u, v))(t, w)‖ ≤
∫ T

a

|Gαi(t, s)|‖fi(t, ut,n(w), vt,n(w), hi,n(t, w))

−fi(t, ut(w), vt(w), hi(t, w))‖ds
≤ G̃αi‖fi(·, un(·, w), vn(·, w), hi,n(·, w))

−fi(·, ut(w), v(·, w), hi(·, w))‖C, i = 1, 2,

where
hi(t, w) = fi(t, u

t(w), vt(w), hi(t, w)).

Since fi is Carathéodory, we have:

‖(Ni(un, vn))(·, w)− (Ni(u, v))(·, w)‖C −→ 0 as n −→∞, i = 1, 2,

and hence
‖N(un, vn)(·, w)−N(u, v)(·, w)‖C −→ 0 as n −→∞.

Consequently, N is continuous.

Let the constant R(w) be such that,

R(w) ≥ max{L1(w) + L2(w), ‖φ1(·, w)‖[a−r,a] + ‖φ2(·, w)‖[a−r,a], ‖ψ1(·, w)‖[T,T+β]
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+‖ψ2(·, w)‖[T,T+β]},

and define

DR(w) = {(u, v) ∈ C × C : ‖u‖C ≤ R(w) and ‖v‖C ≤ R(w)}.

It is clear that DR is a bounded, closed and convex subset of C.

Step 2: N(DR(w)) ⊂ DR(w).

Let (u, v) ∈ DR(w). We show that N(u, v) = (N1(u, v), N2(u, v)) ∈ DR(w).
For any w ∈ Ω, if t ∈ [a− r, a], then

‖N(u, v)(t, w)‖ ≤ ‖φ1(·, w)‖[a−r,a] + ‖φ2(·, w)‖[a−r,a] ≤ R(w),

and if t ∈ [T, T + β], then

‖N(u, v)(t, w)‖ ≤ ‖ψ1(·, w)‖[T,T+β] + ‖ψ2(·, w)‖[T,T+β] ≤ R(w).

For any w ∈ Ω and each t ∈ I, we have

‖(Ni(u, v))(t, w)‖ ≤
∫ T

a

|Gαi(t, s)|‖hαi(s, w)‖ds, i = 1, 2.

By (H3) we have for any w ∈ Ω and each t ∈ I

‖hi(t, w)‖ ≤ ai(t, w) + bi(t, w)‖u‖[−r,β] + ci(t, w)‖v‖[−r,β] + di(t, w)‖hi(t, w)‖
≤ a∗i (·, w) + b∗i (·, w)‖u‖[−r,β] + c∗i (·, w)‖v‖[−r,β] + d∗i (·, w)‖hi(t, w)‖,

where

hi(t, w) = fi(t, u
t(w), vt(w), hi(t, w)), i = 1, 2.

Then

‖hi(t, w)‖ ≤ a∗i (·, w) + (b∗i (·, w) + c∗i (·, w))R

1− d∗i (·, w)
= A(w). (4.12)

By (4.12), for any w ∈ Ω and t ∈ I, we have

‖(Ni(u, v))(t, w)‖ ≤ A(w)

∫ T

a

|Gαi(t, s)|ds

≤ A(w)G̃αi

= Li(w),

from which it follows that for each t ∈ [a− r, T + β], we have

‖Ni(u, v)(t, w)‖ ≤ Li(w),
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which implies that ‖Ni(u, v)(·, w)‖C ≤ Li(w), hence we get

‖N(u, v)(·, w)‖C ≤ L1(w) + L2(w)

≤ R(w).

Consequently,
N(DR(w)) ⊂ DR(w).

Step 3: N(DR(w)) is bounded and equicontinuous.
By Step 2 we have N(DR(w)) is bounded. For t1, t2 ∈ I = [a, T ], t1 < t2,

(u, v) ∈ DR(w), w ∈ Ω, we have

‖(Ni(u, v))(t2, w)− (Ni(u, v))(t1, w)‖ ≤
∫ T

a

|Gαi(t2, s)−Gαi(t1, s)|‖hi(s, w)‖ds

≤ A(w)

∫ T

a

|Gαi(t2, s)−Gαi(t1, s)|ds.

As t1 −→ t2 the right hand side of the above inequality tends to zero.Therefore, the
operator N(u, v)(·, w) is equicontinuous. As consequence of Step 1 to Step 3, together
withe the Arzela-Ascoli theorem, we can conclude that N is continuous and completely
continuous. Theorem 4.2.2 implies that the operator equation N(u, v)(·, w) = (u, v) has a
random solution. This shows that the random system (4.1)-(4.2) has a random solution.

2

4.3 An Example

We equip the space IR∗− := (−∞, 0) with the usual σ-algebra consisting of Lebesgue
measurable subsets of IR∗−. Consider the boundary value problem of implicit Caputo type
modification of the Erdélyi-Kober fractional differential equation:

(u(t, w), v(t, w)) = (et−1 − 1, 2t− 2), t ∈ [0, 1],

1
cD

3
2

1+u(t, w) =
1
2
t

(w2 + 10)
(

1 + ‖ut(·, w)‖+ ‖vt(·, w)‖+ |1cD
3
2

1+u(t, w)|
) , t ∈ I = [1, 2]

1
cD

3
2

1+v(t, w) =
(t− 1) cos(t)

(w2 + 10)
(

1 + ‖ut(·, w)‖+ ‖vt(·, w)‖+ |1cD
3
2

1+v(t, w)|
) , t ∈ I = [1, 2]

(u(t, w), v(t, w)) = (ln(t− 1), t− 2), t ∈ [2, 3].

(4.13)
Set

f1(t, u, v, ū, w) =
1
2
t

(w2 + 10) (1 + |ut|+ |vt|+ |ū|)
, t ∈ [1, 2], u, v ∈ C([−1, 1]), ū ∈ IRn

f2(t, u, v, v̄, w) =
(t− 1) cos(t)

(w2 + 10) (1 + |ut|+ |vt|+ |v̄|)
, t ∈ [1, 2], u, v ∈ C([−1, 1]), v̄ ∈ IRn
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and α1 = α2 = 3
2
, ρ = 1, r = 1, β = 1. Indeed for each u, v, ū, v̄ ∈ C([−1, 1]), x, x̄ ∈ IRn

and t ∈ [1, 2], we have

‖f1(t, u, v, x, w)− f1(t, ū, v̄, x̄, w)‖ ≤ 1

(w2 + 10)
(‖u− ū‖[−r,β] + ‖v − v̄‖[−r,β]

+ ‖x− x̄‖),

and

‖f2(t, u, v, x, w)− f2(t, ū, v̄, x̄, w)‖ ≤ 1

(w2 + 10)
(‖u− ū‖[−r,β] + ‖v − v̄‖[−r,β]

+ ‖x− x̄‖).

Therefore, (H2) is verified with

‖pi(·, w)‖[−r,β] = ‖qi(·, w)‖[−r,β] = ‖ri(·, w)‖[−r,β] =
1

w2 + 10
.

For each t ∈ I, i = 1, 2 we have∫ T

a

|Gαi(t, s)|ds ≤
1

Γ(αi)

(
tρ − aρ

T ρ − aρ

)∫ T

a

∣∣∣∣∣
(
T ρ − sρ

ρ

)αi−1

sρ−1

∣∣∣∣∣ ds
+

1

Γ(αi)

∫ t

a

∣∣∣∣∣
(
tρ − sρ

ρ

)αi−1

sρ−1

∣∣∣∣∣ ds
≤ 2

Γ(αi + 1)

(
T ρ − aρ

ρ

)αi
.

Therefore

G̃αi ≤
2

Γ(αi + 1)

(
T ρ − aρ

ρ

)αi
.

Furthermore, for every w ∈ Ω, the matrix

1

(w2 + 9)3
4

√
π

(
1 1
1 1

)
,

converges to 0. Hence, Theorem 4.2.1 implies that the system (4.13) has a unique random
solution defined on [1, 2].
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Chapter 5

Caputo type modification of the
Erdélyi-Kober Fractional Differential
Inclusions

5.1 Introduction

This chapter generalizes the second chapter, we establish, in Section 5.2, the existence of
solutions for a class of problem for nonlinear Caputo type modification of the Erdélyi-
Kober fractional differential inclusions (FDI for short) involving both retarded and ad-
vanced arguments see [45]. An extension of this problem is given in Section 5.5. More
precisely, we shall present a result of existence the existence of solutions of Caputo type
modification of the Erdélyi-Kober fractional differential inclusions in Banach spaces. with
retarded and advanced arguments see [41].

5.2 Fractional Differential Inclusions with Retarded

and Advanced Arguments

1

This section is concerned with the existence of solutions for a class of problem for
nonlinear fractional differential inclusions (FDI for short) involving both retarded and
advanced arguments given by:

ρ
cD

α
a+y(t) ∈ F (t, yt), for t ∈ I := [a, T ], 1 < α ≤ 2, (5.1)

y(t) = φ(t), t ∈ [a− r, a], r > 0 (5.2)

y(t) = ψ(t), t ∈ [T, T + β], β > 0, (5.3)

1M. Boumaaza, M. Benchohra, Caputo type modification of the Erdélyi-Kober fractional differential
inclusions with retarded and advanced arguments, Adv. Dyn. Syst. Appl. 15 (2) (2020), 63-78.
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where ρ
cD

α
a+ is the Caputo type modification of the Erdélyi-Kober fractional derivative,

F : I×C([−r, β], IR)→ P(IR) is a given function, φ ∈ C([a− r, a], IR) with φ(a) = 0 and
ψ ∈ C([T, T + β], IR) with ψ(T ) = 0. We denote by yt the element of C([−r, β]) defined
by:

yt(s) = y(t+ s) : s ∈ [−r, β].

5.3 Existence Results

Lemma 5.3.1 Let 1 < α ≤ 2, φ ∈ C([a− r, a], IR) with φ(a) = 0, ψ ∈ C([T, T + β], IR)
with ψ(T ) = 0 and h : I → IR be a integrable function. Then the linear problem

ρ
cD

α
a+y(t) = h(t), for a.e. t ∈ I := [a, T ], 1 < α ≤ 2, (5.4)

y(t) = φ(t), t ∈ [a− r, a], r > 0 (5.5)

y(t) = ψ(t), t ∈ [T, T + β], β > 0, (5.6)

has a unique solution, which is given by

y(t) =



φ(t), if t ∈ [a− r, a],

−
∫ T

a

G(t, s)h(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β],

(5.7)

where

G(t, s) =
ρ1−α

Γ(α)


(tρ − aρ)(T ρ − sρ)α−1sρ−1

(T ρ − aρ)
− sρ−1(tρ − sρ)α−1, a ≤ s ≤ t ≤ T,

(tρ − aρ)(T ρ − sρ)α−1sρ−1

(T ρ − aρ)
, a ≤ t ≤ s ≤ T.

(5.8)

Here G(t, s) is called the Green function of the boundary value problem (5.4)-(5.6).
Proof. From (1.4), we have

y(t) = c0 + c1

(
tρ − aρ

ρ

)
+ρ Iαa+h(s), c0, c1 ∈ IR, (5.9)

therefore

y(a) = c0 = 0,
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y(T ) = c1

(
T ρ − aρ

ρ

)
+
ρ1−α

Γ(α)

∫ T

a

(T ρ − sρ)α−1sρ−1h(s)ds,

and

c1 = − ρ2−α

(T ρ − aρ)Γ(α)

∫ T

a

(T ρ − sρ)α−1sρ−1h(s)ds.

Substitute the value of c0 and c1 into equation (5.9), we get equation (5.7).

y(t) =



φ(t), if t ∈ [a− r, a],

−
∫ T

a

G(t, s)h(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β],

where G is defined by equation (5.8), the proof is complete.

Lemma 5.3.2 Let F : I × C[−r, β] −→ P(IR) be a Carathéodory multivalued map. A
function y ∈ C is a solution for the inclusion problem (5.1)− (5.3) if and only if y satisfies
the following integral equation

y(t) =



φ(t), if t ∈ [a− r, a],

−
∫ T

a

G(t, s)h(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β],

where h ∈ L1(I) with

h(t) ∈ F (t, yt) a.e. t ∈ I,

G̃ = sup

{∫ T

a

|G(t, s)|ds, t ∈ I
}
.

The following hypotheses will be used in the sequel:

(H1) The multivalued map F : I × C([−r, β])→ Pcp,c(IR) is Carathéodory,
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(H2) There exist p ∈ L∞(I,R+), and Ω : [0,∞) −→ (0,∞) continuous and nondecreasing
such that

‖F (t, u)‖P = sup{‖v‖C : v(t) ∈ F (t, u)} ≤ p(t)Ω(‖v‖[−r,β]),

for a.e. t ∈ I, and each u ∈ C([−r, β]),

(H3) there exists l ∈ L1(I, IR), such that

Hd(F (t, ut), F (t, ūt)) ≤ l(t)‖u− ū‖[−r,β] for every u, ū ∈ C([−r, β]),
and

d(0, F (0, ut)) ≤ l(t) a.e. t ∈ I.

(H4) There exists a number K1 > 0 such that

K1

G̃p∗Ω(K1)
> 1, (5.10)

where
p∗ = ess sup

t∈I
p(t)

Now, we state and prove our existence result for problem (5.1)-(5.3) based on a nonlinear
alternative for Kakutani maps.

Theorem 5.3.1 Assume that (H1), (H2) and (H4) hold. Then the problem (5.1)-(5.3)
has at least one solution.

Proof: Let the operator N : C 7−→ P(C) defined by

(Ny)(t) =



h : I −→ C :

h(t) =



φ(t), if t ∈ [a− r, a],

−
∫ T

a

G(t, s)v(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β],


(5.11)

where
v ∈ SF◦y = {v : Ω −→ L1(I) : v(t) ∈ F (t, yt) a.e. t ∈ I}.

By Lemma 5.3.2 it is clear that the fixed points of N are solutions (5.1)-(5.3) .
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Step 1. N(u) is convex for each u ∈ C(I).
Indeed, if h1, h2 belong to N(u), then there exist v1, v2 ∈ SF◦u such that for each t ∈ I
we have

hi(t) =

∫ T

a

G(t, s)vi(s)ds; i = 1, 2.

Let 0 ≤ λ ≤ 1. Then, for each t ∈ I, we have

(λh1 + (1− λ)h2)(t) =

∫ T

a

G(t, s)(λv1(s) + (1− λ)v2(s))ds.

Since SF◦u is convex (because F has convex values), we have λh1 + (1− λ)h2 ∈ N(u).

Let the constant R be such that:

R ≥ max
{
p∗Ω(R))G̃, ‖φ‖[a−r,a], ‖ψ‖[T,T+β]

}
, (5.12)

and define
DR = {u ∈ C : ‖u‖C ≤ R}.

It is clear that DR is a bounded, closed and convex subset of C.

Step 2. N(DR) ⊂ DR.

Let u ∈ DR Then for each h ∈ N(u), there exists v ∈ SF◦u such that

h(t) =

∫ T

a

G(t, s)v(s)ds; i = 1, 2.

If t ∈ [a− r, a], then
|h(t)| ≤ ‖φ‖[a−r,a] ≤ R,

and if t ∈ [T, T + β], then
|h(t)| ≤ ‖ψ‖[T,T+β] ≤ R.

For each t ∈ I, we have

|h(t)| ≤
∫ T

a

|G(t, s)||v(s)|ds.

By (H2), we have

|h(t)| ≤
∫ T

a

|G(t, s)|p(t)Ω(‖u‖[−r,β])ds

≤ p∗Ω(R)

∫ T

a

|G(t, s)|ds

≤ p∗Ω(R))G̃

≤ R,
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from which it follows that for each t ∈ [a − r, T + β], we have |h(t)| ≤ R, which implies
that ‖h‖C ≤ R, and so N(DR) ⊂ DR.

Step 3: N maps bounded sets in C into equicontinuous sets.
We consider DR is bounded set in C. By Step 2 we have N(DR) ⊂ DR. Now let
t1, t2 ∈ I = [a, T ], t1 < t2, and let u ∈ DR, h ∈ N(u). Then, there exists v ∈ SF◦u such
that

|h(t2)− h(t1)| ≤
∫ T

a

|G(t2, s)−G(t1, s)||v(s)|ds

≤ p∗Ω(R)

∫ T

a

|G(t2, s)−G(t1, s)|ds.

As t1 −→ t2 the right hand side of the above inequality tends to zero. As consequence
of Step 1 to Step 3, together withe the Arzela-Ascoli theorem, we can conclude that N is
completely continuous multi-valued operator.

Step 4. The graph of N is closed.
Let (un, hn) ∈ graph(N), n ≥ 1, with (‖un−u‖, ‖hn−h‖)→ (0, 0), as n→∞. We have to
show that (u, h) ∈ graph(N). (un, hn) ∈ graph(N) means that hn ∈ N(un), which implies
that there exists vn ∈ SF◦un , such that for each t ∈ I,

hn(t) =

∫ T

a

G(t, s)vn(s)ds.

Consider the continuous linear operator Θ : L1(I)→ C,

Θ(v)(t) 7→ hn(t) =

∫ T

a

G(t, s)vn(s)ds.

Clearly, ‖hn(t) − h(t)‖ → 0 as n → ∞. From Lemma 1.4.1 it follows that Θ ◦ SF is a
closed graph operator. Moreover, hn(t) ∈ Θ(SF◦un). Since un → u, then

h(t) =

∫ T

a

G(t, s)v(s)ds,

for some v ∈ SF◦u.

Step 5: A priori bounds on solutions.
Let u ∈ C be such that u ∈ λN(u) for all λ ∈ (0, 1). Then, there exists v ∈ SF◦u such that
for each t ∈ I, we have

u(t) = −λ
∫ T

a

G(t, s)v(s)ds, (5.13)
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This implies, by (5.13) that for each t ∈ I we have

|u(t)| ≤
∫ T

a

|G(t, s)|p(t)Ω(‖u‖[−α,β])ds

≤ G̃p∗Ω(‖u‖[−α,β]).

Thus

‖u‖C
G̃p∗Ω(‖u‖C)

≤ 1

By (H4), we have ‖u‖C 6= K1. Set

U = {u ∈ C : ‖u‖C < K1 + 1}

From the choice of U there is no u ∈ ∂U such that u ∈ λN(u) for some λ ∈ (0, 1).
As a consequence of Lemma 1.6.2, we deduce that N has a fixed point u in U which is a
solution of (5.1)− (5.3).

We now prove an existence result for (5.1)-(5.3) with non-convex valued right hand
side. Our considerations are based on the fixed point theorem for contraction multivalued
maps given by Covitz and Nadler.

Theorem 5.3.2 Assume that (H3) and
(H5) F : [a, T ]× C([−r, β], IR) −→ Pcp(IR) such that
F (·, u) : [a, T ] −→ Pcp(IR) is measurable for each u ∈ C([−r, β], IR) and,
If

G̃‖l‖[a,T ] < 1, (5.14)

then problem (5.1)-(5.3) has at least one solution.

Proof. We shall show that N , as defined in the proof of Theorem 5.3.1, satisfies the
assumptions of Lemma 1.6.3. The proof will be given in two steps.
Step 1. N(·) is closed valued.
N(u) ∈ Pcl(DR) for each u ∈ DR. Let {un}n≥0 ∈ N(u) such that un −→ ũ in C. Then,
ũ ∈ DR and there exists gn ∈ SF◦u be such that, for each t ∈ I, we have

un(t) =

∫ T

a

G(t, s)gn(s)ds.

Using (H5) together with the fact that F has compact values, we may pass to a subse-
quence to see that gn converges to g in L1(I), and hence g ∈ SF◦u. Then, for each t ∈ I,
we get

un(t) −→ ũ(t) =

∫ T

a

G(t, s)g(s)ds.
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So, ũ ∈ N(u).

Step 2. There exist γ < 1 such that Hd(N(u), N(ū)) ≤ γ‖u− ū‖C for each u, ū ∈ C.
Let u, ū ∈ C and h1 ∈ N(u). Then, there exists v1 ∈ F (t, ut) such that for each t ∈ I

u1 =

∫ T

a

G(t, s)v1(s)ds.

From (H3) it follows that

Hd(F (t, ut), F (t, ūt)) ≤ l(t)‖ut − ūt‖

Hence, there exists w ∈ F (t, ūt) such that

|v1 − w| ≤ l(t)‖ut − ūt‖ t ∈ I.

Consider U : I −→ P(IR) given by

U(t) = {w ∈ IR : |v1 − w| ≤ l(t)‖ut − ūt‖}

Since the multivalued operator V (t) = U(t)
⋂
F (t, ūt) is measurable, there exists a func-

tion v2(t) which is measurable selection for V. So, v2 ∈ F (t, ūt), and for each t ∈ I

|v1 − v2| ≤ l(t)‖ut − ūt‖.

Let us define for each t ∈ I
u2 =

∫ T

a

G(t, s)v2(s)ds.

For t ∈ I, we have

|h1(t)− h2(t)| ≤
∫ T

a

|G(t, s)||v1(s)− v2(s)|ds

≤
∫ T

a

|G(t, s)|l(t)‖us − ūs‖ds

≤
∫ T

a

|G(t, s)|l(t)‖u− ū‖[−r,β]ds

≤ G̃‖l‖[a,T ]‖u− ū‖C.

Thus
‖h1 − h2‖C ≤ G̃‖l‖[a,T ]‖u− ū‖C.

Analogously, interchanging the roles of u and ū, we obtain

Hd(N(u), N(ū)) ≤ G̃‖l‖[a,T ]‖u− ū‖C.

Since N is a contraction, it follows by Lemma 1.6.3 that N has a fixed point u which is
a solution of (5.1)-(5.3). This completes the proof.
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5.4 An Example

Consider the boundary value problem of Caputo type modification of the Erdélyi-Kober
fractional differential inclusion:

y(t) = et−2 − 1, t ∈ [1, 2],

1
2
cD

3
2

2+y(t) ∈ F (t, ut), t ∈ [2, 4]

y(t) = t− 4, t ∈ [4, 6].

(5.15)

Set

F (t, ut) = {v ∈ IR : 0 ≤ v ≤ 1

t+ 1
(‖u‖[−r,β] + 1)}, t ∈ [2, 4], u ∈ C([−r, β]),

and

α =
3

2
, ρ =

1

2
, r = 1, β = 2.

For each u ∈ C([−r, β]), t ∈ [2, 4], we have

‖F (t, ut)‖ ≤ 1

t+ 1
(‖u‖[−r,β] + 1).

Therefore, (H2) is verified with p∗ = 1
3

For each t ∈ I we have∫ T

a

|G(t, s)|ds ≤ 1

Γ(α)

(
tρ − aρ

T ρ − aρ

)∫ T

a

∣∣∣∣∣
(
T ρ − sρ

ρ

)α−1

sρ−1

∣∣∣∣∣ ds
+

1

Γ(α)

∫ t

a

∣∣∣∣∣
(
tρ − sρ

ρ

)α−1

sρ−1

∣∣∣∣∣ ds.
Then ∫ T

a

|G(t, s)|ds ≤ 2

Γ(α + 1)

(
T ρ − aρ

ρ

)α
.

Therefore

G̃ ≤ 2

Γ(α + 1)

(
T ρ − aρ

ρ

)α
.

The condition (5.10)is satisfied. Indeed, we have

G̃p∗ ≤ 2

3Γ(3
2

+ 1)

(
4

1
2 − 2

1
2

1
2

) 3
2

≈ 0.6359551731

< 1,
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with T = 4, a = 2 and α = 3
2
. Hence all conditions of Theorem 5.3.1 are satisfied, and F

is compact, convex valued, and upper semi-continuous. It follows that the problem (5.15)
admit a unique solution defined on I.

5.5 Existence of solutions in Banach Space

2

In this section we discuss the existence of solutions for a class of problem for nonlin-
ear fractional differential inclusions involving both retarded and advanced arguments in
Banach space given by:

ρ
cD

α
a+y(t) ∈ F (t, yt), for t ∈ I := [a, T ], 1 < α ≤ 2, (5.16)

y(t) = φ(t), t ∈ [a− r, a], r > 0 (5.17)

y(t) = ψ(t), t ∈ [T, T + β], β > 0, (5.18)

where ρ
cD

α
a+ is the Caputo type modification of the Erdélyi-Kober fractional derivative,

F : I × C([−r, β], E)→ P(E) is a given function, φ ∈ C([a− r, a], E) with φ(a) = 0 and
ψ ∈ C([T, T + β], E) with ψ(T ) = 0. We denote by yt the element of C([−r, β]) defined
by:

yt(s) = y(t+ s) : s ∈ [−r, β].

Definition 5.5.1 A function y ∈ C, is said to be a solution of (5.16)-(5.18) if there exist
a function v ∈ L1(I) with v(t) ∈ F (t, yt), for a.e. t ∈ I, such that ρ

cD
ν
a+y(t) = v(t) and

the conditions y(t) = φ(t), φ(a) = 0 on [a− r, a] and y(t) = ψ(t), ψ(T ) = 0 on [T, T + β].
is satisfied.

To prove the existence of solutions to (5.16)–(5.18), we need the following auxiliary
Lemma.

Lemma 5.5.1 Let F : I × C[−r, β] −→ P(E) be a Carathéodory. A function y ∈ C is
a solution for the inclusion problem (5.16)− (5.18) if and only if y satisfies the following
integral equation

y(t) =



φ(t), if t ∈ [a− r, a],

−
∫ T

a

G(t, s)h(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β],

2M. Boumaaza, M. Benchohra, and C. Tunç, Erdélyi-Kober fractional differential inclusions in Banach
spaces with retarded and advanced arguments, Discus. Mathem. Differ. Incl., Contr. Optim. 40 (2020),
75-92.
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where h ∈ L1(I) with
h(t) ∈ F (t, yt) a.e. t ∈ I.

and

G(t, s) =
ρ1−α

Γ(α)


(tρ − aρ)(T ρ − sρ)α−1sρ−1

(T ρ − aρ)
− sρ−1(tρ − sρ)α−1, a ≤ s ≤ t ≤ T,

(tρ − aρ)(T ρ − sρ)α−1sρ−1

(T ρ − aρ)
, a ≤ t ≤ s ≤ T.

(5.19)
Set

G̃ = sup

{∫ T

a

|G(t, s)|ds, t ∈ I
}
.

The following hypotheses will be used in the sequel:

(H1) The multivalued map F : I × C([−r, β])→ Pcp,c(E) is Carathéodory,

(H2) There exist p ∈ L∞(I,R+), such that

‖F (t, u)‖P = sup{‖v‖C : v(t) ∈ F (t, u)} ≤ p(t)(‖v‖[−r,β] + 1),

for a.e. t ∈ I, and each u ∈ C([−r, β]),

(H3) For each bounded set B ⊂ C([−r, β]) and for each t ∈ I, we have

µ(F (t, B(t)) ≤ p(t) sup
s∈[−r,β]

µ(B(s)),

where B(t) = {u(t) : u ∈ B},

(H4) The function Φ ≡ 0 is the unique solution in C(I) of the inequality

Φ(t) ≤ 2p∗
∫ T

a

G(t, s)Φ(s)ds,

where
p∗ = ess sup

t∈I
p(t)

Theorem 5.5.1 Assume that (H1)− (H3) hold. If

L := 2p∗G̃ < 1, (5.20)

then the problem (5.16)-(5.18) has at least one solution.
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Proof: Let the operator N : C 7−→ P(C) defined by

(Nu)(t) =



h : I −→ C :

h(t) =



φ(t), if t ∈ [a− r, a],

−
∫ T

a

G(t, s)v(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β],


(5.21)

where
v ∈ SF◦u = {v : Ω −→ L1(I) : v(t) ∈ F (t, ut) a.e. t ∈ I}.

Let the constant R be such that:

R ≥ max
{
p∗(R + 1))G̃, ‖φ‖[a−r,a], ‖ψ‖[T,T+β]

}
, (5.22)

and define
DR = {u ∈ C : ‖u‖C ≤ R}.

It is clear that DR is a bounded, closed and convex subset of C.

Step 1. N(DR) ⊂ DR.

Let u ∈ DR Then for each h ∈ N(u), there exists v ∈ SF◦u such that

h(t) =

∫ T

a

G(t, s)v(s)ds; i = 1, 2.

If t ∈ [a− r, a], then
‖h(t)‖ ≤ ‖φ‖[a−r,a] ≤ R,

and if t ∈ [T, T + β], then
‖h(t)‖ ≤ ‖ψ‖[T,T+β] ≤ R.

For each t ∈ I, we have

‖h(t)‖ ≤
∫ T

a

|G(t, s)||v(s)|ds.

By (H2), we have

‖h(t)‖ ≤
∫ T

a

|G(t, s)|p(t)(‖u‖[−r,β] + 1)ds

≤ p∗(R + 1)

∫ T

a

|G(t, s)|ds

≤ p∗(R + 1))G̃

≤ R,
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from which it follows that for each t ∈ [a− r, T + β], we have ‖h(t)‖ ≤ R, which implies
that ‖h‖C ≤ R, and so N(DR) ⊂ DR.

Step 2. N(·) is upper semicontinuous.
N(u) ∈ Pcl(DR) for each u ∈ DR. Let {un}n≥0 ∈ N(u) such that un −→ ũ in C. Then,
ũ ∈ DR and there exists gn ∈ SF◦u be such that, for each t ∈ I, we have

un(t) =

∫ T

a

G(t, s)gn(s)ds.

Using (H1) together with the fact that F has compact values, we may pass to a subse-
quence to see that gn converges to g in L1(I), and hence g ∈ SF◦u. Then, for each t ∈ I,
we get

un(t) −→ ũ(t) =

∫ T

a

G(t, s)g(s)ds.

So, ũ ∈ N(u).
Step 3. N satisfies the Darbo condition.
The operator N : DR 7−→ DR is a L- set contraction.
Let U ⊂ DR if t [a− r, a], then

µ(N(U)(t)) = µ(N(y)(t), y ∈ U)

= α(φ(t))

= 0,

also if t [T, T + β], then

µ(N(U)(t)) = µ(N(y)(t), y ∈ U)

= µ(ψ(t))

= 0.

If t ∈ I, we have
µ((NU)(t)) = µ({(Nu)(t) : u ∈ U}).

For each h ∈ N(u), there exists f ∈ SF◦u such that

h(t) =

∫ T

a

G(t, s)f(s)ds.

By Theorem 1.4.1 and the fact that U ⊂ DR ⊂ C, we obtain

µ((NU)(t)) ≤ 2

∫ T

a

µ ({G(t, s)f(s) : u ∈ U}) ds.

Now, since f ∈ SF◦u and u(s) ∈ U(s), we have

µ({G(t, s)f(s)}) = |G(t, s)|p(s)µ(U(s)).
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It follows that

µ((NU)(t)) ≤ 2

∫ T

a

µ ({G(t, s)f(s)}) ds.

Thus

µ((NU)(t)) ≤ 2p∗
∫ T

a

G(t, s)µ(U(s))ds.

Hence
µ((NU)(t)) ≤ 2p∗G̃µ(U).

Therefore,
µ(N(U)) ≤ Lµ(U),

So by (5.20) the operator N is a L− set contraction. and thus, by Theorem 1.6.6 , N has
a fixed point, which is solution to problem (5.16)− (5.18) .

We now prove an another existence result for (5.16)-(5.18) by using Mönch’s fixed
point theorem.

Theorem 5.5.2 Assume that (H1)-(H4) hold. If

p∗G̃ < 1, (5.23)

then problem (5.16)-(5.18) has at least one solution.

Proof. We shall show in five steps that the multivalued operator N satisfies all assump-
tions of Theorem 1.6.7.

Step 1. N(u) is convex for each u ∈ C.
If h1, h2 belong to N(u), then there exist v1, v2 ∈ SF◦u such that for each t ∈ I we have

hi(t) =

∫ T

a

G(t, s)vi(s)ds; i = 1, 2.

Let 0 ≤ λ ≤ 1. For each t ∈ I, we have

(λh1 + (1− λ)h2)(t) =

∫ T

a

G(t, s)(λv1(s) + (1− λ)v2(s))ds.

Since SF◦u is convex (because F has convex values), we have λh1 + (1− λ)h2 ∈ N(u).

Step 2. For each compact M ⊂ C, N(M) is relatively compact.
let M ⊂ C be a compact set and let (hn) be any sequence of elements of N(M). We
show that (hn) has a convergent subsequence by using the Arzéla-Ascoli criterion of non-
compactness in C. Since (hn) ∈ N(M) there exist (un) ∈ M and vn ∈ SF◦un , such
that

hn(t) =

∫ T

a

G(t, s)vn(s)ds.
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Using Theorem 1.4.1 and the properties of the Kuratowski measure of noncompactness,
we have

µ({hn(t)}) ≤ 2

∫ T

a

µ ({G(t, s)vn(s)}) ds. (5.24)

On the other hand, since M is compact, the set {vn(s) : n ≥ 1} is compact. Consequently,
µ({vn(s) : n ≥ 1}) = 0 for a.e. s ∈ I. Furthermore

µ({G(t, s)vn(s)}) = |G(t, s)|µ({vn(s) : n ≥ 1}) = 0.

for a.e. t, s ∈ I. Now (5.24) implies that {hn(t) : n ≥ 1} is relatively compact for each
t ∈ I. In addition, for each t1 and t2 from I, with t1 < t2, we have

‖h(t2)− h(t1)‖ ≤
∫ T

a

|G(t2, s)−G(t1, s)|‖v(s)‖ds

≤ p∗(R + 1)

∫ T

a

|G(t2, s)−G(t1, s)|ds.
(5.25)

As t1 −→ t2 the right hand side of the above inequality tends to zero. This shows that
{hn : n ≥ 1} is equicontinuous. Consequently, {hn : n ≥ 1} is relatively compact in C.

Step 3. The graph of N is closed.
Let (un, hn) ∈ graph(N), n ≥ 1, with (‖un−u‖, ‖hn−h‖)→ (0.0), as n→∞. We have to
show that (u, h) ∈ graph(N). (un, hn) ∈ graph(N) means that hn ∈ N(un), which implies
that there exists vn ∈ SF◦un , such that for each t ∈ I,

hn(t) =

∫ T

a

G(t, s)vn(s)ds.

Consider the continuous linear operator Θ : L1(I)→ C,

Θ(v)(t) 7→ hn(t) =

∫ T

a

G(t, s)vn(s)ds.

Clearly, ‖hn(t) − h(t)‖ → 0 as n → ∞. From Lemma 1.4.1 it follows that Θ ◦ SF is a
closed graph operator. Moreover, hn(t) ∈ Θ(SF◦un). Since un → u, Lemma 1.4.1 implies

h(t) =

∫ T

a

G(t, s)v(s)ds,

for some v ∈ SF◦u.

Step 4. M is relatively compact in C.

Suppose M ⊂ U , M ⊂ conv({0} ∪ N(M)), and M = C for some countable set
C ⊂ M. Using an estimation of type (5.25), we see that N(M) is equicontinuous. Then
from M ⊂ conv({0} ∪ N(M)), we deduce that M is equicontinuous, too. To apply the
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Arzéla-Ascoli theorem, it remains to show that M(t) is relatively compact in E for each
t ∈ I. Since C ⊂ M ⊂ conv({0} ∪ N(M)), and C is countable, we can find a countable
set H = {hn : n ≥ 1} ⊂ N(M) with C ⊂ conv({0} ∪H). Then, there exist un ∈ M and
vn ∈ SF◦un such that

hn(t) =

∫ T

a

G(t, s)vn(s)ds.

Taking into account Theorem 1.4.1 and the fact that M ⊂ C ⊂ conv({0}∪H)), we obtain

µ(M(t)) ≤ µ(C(t)) ≤ µ(H(t)) = µ({hn(t) : n ≥ 1}).

Using (5.24), we obtain

µ(M(t)) ≤ 2

∫ T

a

µ ({G(t, s)vn(s)}) ds.

Now, since vn ∈ SF◦un and un(s) ∈M(s), we have

µ(M(t)) ≤ 2

∫ T

a

µ ({G(t, s)vn(s) : n ≥ 1}) ds.

Also, since vn ∈ SF◦un and un(s) ∈M(s), then from (H3) we have

µ({G(t, s)vn(s); n ≥ 1}) = G(t, s)p(s)µ(M(s)).

It follows that

µ(M(t)) ≤ 2p∗
∫ T

a

G(t, s)µ(M(s))ds.

Consequently, by (H4), the function Φ given by Φ(t) = µ(M(t)) satisfies Φ ≡ 0, that is,
µ(M(t)) = 0 for all t ∈ I. Now, by the Arzéla-Ascoli theorem, M is relatively compact in C.

Step 5: A priori bounds on solutions.
Let u ∈ C be such that u ∈ λN(u) for all λ ∈ (0, 1). Then, there exists v ∈ SF◦u such that
for each t ∈ I, we have

u(t) = −λ
∫ T

a

G(t, s)v(s)ds. (5.26)

This implies, by (5.26) that for each t ∈ I we have

‖u(t)‖ ≤
∫ T

a

|G(t, s)|p(t)(‖u‖[−α,β] + 1)ds

≤ G̃p∗(‖u‖[−α,β] + 1),
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then

‖u(t)‖[−α,β] ≤ G̃p∗(‖u‖[−α,β] + 1).

Thus by (5.23), we have

‖u‖C ≤
p∗G̃

1− p∗G̃
= d.

Set

U = {u ∈ C : ‖u‖C < 1 + d}.

Condition (1.6) is satisfied by our choice of the open set U. From the above steps and The-
orem 1.6.7, we deduce that N has a fixed point u in U which is a solution of (5.16)−(5.18).

5.6 An Example

Let

E = l1 =

{
u = (u1, u2, . . . , un, . . .),

∞∑
n=1

|un| <∞

}
be the Banach space with the norm

‖u‖E =
∞∑
n=1

|un|.

We consider the problem

u(t) = et−2 − 1, t ∈ [1, 2],

1
2
cD

3
2

2+u(t) ∈ F (t, ut), t ∈ [2, 4]

u(t) = t− 4, t ∈ [4, 6].

(5.27)

Set

Fn(t, ut) =

{
vn ∈ E : 0 ≤ vn ≤

1

et + 1
(‖un‖[−r,β] + 1)

}
, t ∈ [2, 4], u ∈ C([−r, β])

Set

u = (u1, u2, . . . , un, . . .), F = (F1, F2, . . . , Fn, . . .).
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and

α =
3

2
, ρ =

1

2
, r = 1, β = 2.

For each u ∈ C([−r, β]), t ∈ [2, 4], we have

‖F (t, ut)‖P ≤
1

et + 1

(
‖u‖[−r,β] + 1

)
.

Therefore, (H2) is verified with p∗ = 1
e2+1

.
For each t ∈ I we have∫ T

a

|G(t, s)|ds ≤ 1

Γ(α)

(
tρ − aρ

T ρ − aρ

)∫ T

a

∣∣∣∣∣
(
T ρ − sρ

ρ

)α−1

sρ−1

∣∣∣∣∣ ds

+
1

Γ(α)

∫ t

a

∣∣∣∣∣
(
tρ − sρ

ρ

)α−1

sρ−1

∣∣∣∣∣ ds.
Then ∫ T

a

|G(t, s)|ds ≤ 2

Γ(α + 1)

(
T ρ − aρ

ρ

)α
.

Therefore

G̃ ≤ 2

Γ(α + 1)

(
T ρ − aρ

ρ

)α
.

The condition (5.23)is satisfied. Indeed, we have

G̃p∗ ≤ 2

(e2 + 1)Γ(3
2

+ 1)

(
4

1
2 − 2

1
2

1
2

) 3
2

≈ 0.2274231447

< 1,

with T = 4, a = 2 and α = 3
2
. Hence from Theorem 5.5.2 the problem (5.27) admits at

least one solution.



Chapter 6

Weak Solutions of Coupled Systems
Fractional Differential Inclusions

1

6.1 Introduction

This chapter generalizes the previous chapter, so that we study the existence of weak so-
lutions to the coupled system fractional differential inclusions (CSFDI for short) involving
both retarded and advanced arguments in Banach space see [46].

{
(ρcD

α1

a+u)(t) ∈ F1(t, ut, vt)

(ρcD
α2

a+v)(t) ∈ F2(t, ut, vt)
; t ∈ I := [a, T ], (6.1)

{
(u(t), v(t)) = (φ1(t), φ2(t)), t ∈ [a− r, a], r > 0

(u(t), v(t)) = (ψ1(t), ψ2(t)), t ∈ [T, T + β], β > 0,
(6.2)

where β > 0, αi ∈ (1, 2] (E, ‖·‖) is a real Banach space and ρ
cD

α
a+ is the Caputo type modi-

fication of the Erdélyi-Kober fractional derivative, F : I×C([−r, β], E)×C([−r, β], E)→
P(E) is a given function, φi ∈ C([a − r, a], E) with φi(a) = 0 and ψi ∈ C([T, T + β], E)
with ψi(T ) = 0, i = 1, 2. We denote by yt the element of C([−r, β]) defined by:

yt(s) = y(t+ s) : s ∈ [−r, β].

1M. Boumaaza, S. Abbas, M. Benchohra, Weak solutions of coupled systems Caputo type modification
of the Erdélyi-Kober fractional differential inclusions with retarded and advanced arguments, Abst. Anal.
Optim, (accepted).
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6.2 Existence of Weak Solutions

Lemma 6.2.1 Let 1 < α ≤ 2, φ ∈ C([a− r, a], IR) with φ(a) = 0, ψ ∈ C([T, T + β], IR)
with ψ(T ) = 0 and h : I → IR be a integrable function. Then the linear problem

ρ
cD

α
a+y(t) = h(t), for a.e. t ∈ I := [a, T ], 1 < α ≤ 2, (6.3)

y(t) = φ(t), t ∈ [a− r, a], r > 0 (6.4)

y(t) = ψ(t), t ∈ [T, T + β], β > 0, (6.5)

has a unique solution, which is given by

y(t) =



φ(t), if t ∈ [a− r, a],

−
∫ T

a

G(t, s)h(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β],

(6.6)

where

G(t, s) =
ρ1−α

Γ(α)


(tρ − aρ)(T ρ − sρ)α−1sρ−1

(T ρ − aρ)
− sρ−1(tρ − sρ)α−1, a ≤ s ≤ t ≤ T,

(tρ − aρ)(T ρ − sρ)α−1sρ−1

(T ρ − aρ)
, a ≤ t ≤ s ≤ T.

(6.7)

Here G(t, s) is called the Green function of the boundary value problem (6.3)-(6.5).
Proof. From (1.4), we have

y(t) = c0 + c1

(
tρ − aρ

ρ

)
+ρ Iαa+h(s), c0, c1 ∈ IR, (6.8)

therefore

y(a) = c0 = 0,

y(T ) = c1

(
T ρ − aρ

ρ

)
+
ρ1−α

Γ(α)

∫ T

a

(T ρ − sρ)α−1sρ−1h(s)ds,

and

c1 = − ρ2−α

(T ρ − aρ)Γ(α)

∫ T

a

(T ρ − sρ)α−1sρ−1h(s)ds.
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Substitute the value of c0 and c1 into equation (6.8), we get equation (6.6).

y(t) =



φ(t), if t ∈ [a− r, a],

−
∫ T

a

G(t, s)h(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β],

where G is defined by equation (6.7), the proof is complete.

Lemma 6.2.2 Let Fi : I × C[−r, β]× C[−r, β] −→ P(E), i = 1, 2 be such that SF◦u ⊂ C
for any u ∈ C and SF◦v ⊂ C for any v ∈ C Then solving the system (6.1) − (6.2) is
equivalent to the finding the solutions of the system of integral equations

u(t) =



φ1(t), if t ∈ [a− r, a],

−
∫ T

a

Gα1(t, s)w1(s)ds, if t ∈ I

ψ1(t), if t ∈ [T, T + β],

and

v(t) =



φ2(t), if t ∈ [a− r, a],

−
∫ T

a

Gα2(t, s)w2(s)ds, if t ∈ I

ψ2(t), if t ∈ [T, T + β],

where
w1 ∈ SF1◦u, w2 ∈ SF2◦v,

and

G̃αi = sup

{∫ T

a

|Gαi(t, s)|ds, t ∈ I
}
, i = 1, 2.

The following hypotheses will be used in the sequel:

(H1) F1, F2 : I × C([−r, β]) × C([−r, β]) → Pcp,cl,cv(E) have weakly sequentially closed
graph;

(H2) For all continuous functions u, v : [−r, β] → E, there exist measurable functions
w ∈ SF1◦u, z ∈ SF2◦v, a.e. on I and w, z are Pettis integrable on I;
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(H3) There exist p1, p2 ∈ L∞(I,R+) such that for all ϕ ∈ E∗, we have

‖F1(t, u, v)‖P ≤ p1(t), for a.e. t ∈ I, and each u, v ∈ C([−r, β]),

‖F2(t, u, v)‖P ≤ p2(t), for a.e. t ∈ I, and each u, v ∈ C([−r, β]);

(H4) For each bounded set Bi ⊂ C([−r, β]), i = 1, 2 and for each t ∈ I, we have

µ(F1(t, B1, B2) ≤ p1(t) sup
s∈[−r,β]

µ(B1(s)),

and
µ(F2(t, B1, B2) ≤ p2(t) sup

s∈[−r,β]

µ(B2(s)).

where
Bi(t) = {u(t) : u ∈ Bi}, i = 1, 2.

Set
p∗i = ess sup

t∈I
pi(t), i = 1, 2.

Now, we state and prove our existence result for Equations (6.1)-(6.2) based on the
Mönch’s fixed point.

Theorem 6.2.1 Assume that (H1)-(H4) hold. If

G̃α1p
∗
1 + G̃α2p

∗
2 < 1, (6.9)

then problem (6.1)-(6.2) has at least one solution.

Proof: Let the operator Ni : C 7−→ P(C), i = 1, 2 defined by

(N1u)(t) =



h1 : I −→ C :

h1(t) =



φ1(t), if t ∈ [a− r, a],

−
∫ T

a

Gα1(t, s)w1(s)ds, if t ∈ I

ψ1(t), if t ∈ [T, T + β].


, (6.10)

and

(N2v)(t) =



h2 : I −→ C :

h2(t) =



φ2(t), if t ∈ [a− r, a],

−
∫ T

a

Gα2(t, s)w2(s)ds, if t ∈ I

ψ2(t), if t ∈ [T, T + β].


(6.11)
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where
w1 ∈ SF1◦u = {u : Ω −→ L1(I) : w1(t) ∈ F1(t, ut, vt) a.e. t ∈ I},

and
w2 ∈ SF2◦v = {v : Ω −→ L1(I) : w2(t) ∈ F2(t, ut, vt) a.e. t ∈ I}.

Consider the multi-valued map N : C → P(C) defined by:

(N(u, v))(t) = ((N1u)(t), (N2v)(t)),

By Lemma 6.2.2 it is clear that the fixed points of N are solutions (6.1)-(6.2) .

Let the constant R be such that:

R ≥ max
{
L1 + L2, ‖φ1‖[a−r,a] + ‖φ2‖[a−r,a], ‖ψ1‖[T,T+β] + ‖ψ2‖[T,T+β]

}
, (6.12)

and define

Q =


(u, v) ∈ C × C :



‖(u, v)‖C ≤ R,

‖u(t2)− u(t1)‖E ≤ p∗1
∫ T
a
|Gα1(t2, s)−Gα1(t1, s)|ds,

‖v(t2)− v(t1)‖E ≤ p∗2
∫ T
a
|Gα2(t2, s)−Gα2(t1, s)|ds, t1, t2 ∈ I,


It is clear that Q is a bounded, closed and convex subset of C.
Step 1. N(u, v) is convex for each (u, v) ∈ C.

If (h1, d1), (h2, d2) belong to N(u, v), then there exist v1, v2 ∈ SF◦u and z1, z2 ∈ SF◦v such
that for each t ∈ I we have

hi(t) =

∫ T

a

Gα1(t, s)vi(s)ds; i = 1, 2,

and

di(t) =

∫ T

a

Gα2(t, s)zi(s)ds; i = 1, 2.

Let 0 ≤ λ ≤ 1. For each t ∈ I, we have

(λh1 + (1− λ)h2)(t) =

∫ T

a

Gα1(t, s)(λv1(s) + (1− λ)v2(s))ds.

Since SF◦u is convex (because F has convex values), we have λh1 + (1 − λ)h2 ∈ N1(u).
Also, for each t ∈ I, we have

(λd1 + (1− λ)d2)(t) =

∫ T

a

Gα2(t, s)(λz1(s) + (1− λ)z2(s))ds.
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Since SF◦v is convex (because F has convex values), we have λd1 + (1 − λ)d2 ∈ N2(v).
Hence λ(h1, d1) + (1− λ)(h2, d2) ∈ N(u, v).

Step 2. N maps Q into itself.

Let hi ∈ Ni(Q), i = 1, 2 then there exists u, v ∈ Q, such that h1 ∈ N1(u), h2 ∈ N2(v)
and there exists a Pettis integrable function w1 ∈ F1 ◦ u and w2 ∈ F2 ◦ v, assume that
hi(t) 6= 0 Then there exists ϕ ∈ E∗ such that ‖hi(t)‖E = |ϕ (hi(t)) | Thus, for any
i ∈ {1, 2} we have

‖hi(t)‖E = ϕ

(∫ T

a

Gαi(t, s)wi(s)ds

)
.

If t ∈ [a− r, a], then

‖h(t)‖E = ‖(h1(t), h2(t))‖E ≤ ‖φ1‖[a−r,a] + ‖φ2‖[a−r,a] ≤ R,

and if t ∈ [T, T + β], then

‖h(t)‖E = ‖(h1(t), h2(t))‖E ≤ ‖ψ1‖[T,T+β] + ‖ψ2‖[T,T+β] ≤ R.

For each t ∈ I, we have

‖hi(t)‖E ≤
∫ T

a

|Gαi(t, s)||ϕ(wi(s))|ds, i = 1, 2.

By (H3), we get

|ϕ(hi(t))| ≤ p∗i

Therefore

‖hi(t)‖E ≤ p∗i

∫ T

a

|Gαi(t, s)|ds

≤ p∗i G̃αi = Li

which implies that ‖hi(t)‖E ≤ Li,
hence we get

‖h(t)‖E ≤ L1 + L2

≤ R.

Now, suppose that h1 ∈ N1(u), h2 ∈ N2(v) and t1, t2 ∈ I = [a, T ] with t1 < t2 so that
(hi(t2)− (hi(t1) 6= 0, i = 1, 2 then, there exists ϕ ∈ E∗ such that
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‖h1(t2)− h1(t1)‖E = ϕ(h1(t2)− h1(t1)),

and ‖ϕ‖ = 1. Then, for any i ∈ {1, 2}, we get

‖h1(t2)− h1(t1)‖E = ϕ(h1(t2)− h1(t1))

≤ ϕ

(∫ T

a

|Gα1(t2, s)−Gα1(t1, s)|w1(s)

)
.

Thus, we have

‖h1(t2)− h1(t1)‖E ≤
∫ T

a

|Gα1(t2, s)−Gα1(t1, s)||ϕ(w1(s))|ds

≤ p∗1

∫ T

a

|Gα1(t2, s)−Gα1(t1, s)|ds.

Similarly,

‖h2(t2)− h2(t1)‖E ≤ p∗2

∫ T

a

|Gα2(t2, s)−Gα2(t1, s)|ds.

Consequently,

N(Q) ⊂ Q.

Step 3. N has weakly-sequentially closed graph.
Let (un, wn), (xn, yn) be a sequence in Q×Q, with{

un(t)→ u(t) in (E,ω),

xn(t)→ x(t) in (E,ω),
for each t ∈ I,

and {
wn ∈ N1(un),

yn ∈ N2(xn).
for n ∈ {1, 2, 3, . . .}, (6.13)

We shall show that {
w ∈ N1(u),

y ∈ N2(x).

By (6.13) there exist fn ∈ SF1◦un and gn ∈ SF2◦xn such that{
wn =

∫ T
a
Gα1(t, s)fn(s)ds,

yn =
∫ T
a
Gα2(t, s)gn(s)ds.
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We must show that there exist f ∈ SF1◦u and g ∈ SF2◦x such that for each t ∈ I

{
w =

∫ T
a
Gα1(t, s)f(s)ds,

y =
∫ T
a
Gα2(t, s)g(s)ds.

Since Fi, i = 1, 2 has compact values (so weakly compact), there exist a Pettis integrable
subsequence fnm , gnm such that

fnm(t) ∈ F1(t, utn, x
t
n) a.e. t ∈ I,

fnm(·)→ f(·) in (E,ω) as m→∞.

and

gnm(t) ∈ F2(t, utn, x
t
n) a.e. t ∈ I,

gnm(·)→ g(·) in (E,ω) as m→∞.

As Fi(t, ·, ·), i = 1, 2 has weakly sequentially closed graph, f(t) ∈ F1(t, ut, xt) and g(t) ∈
F2(t, ut, xt). Then by the Lebesgue Dominated Convergence Theorem for the Pettis inte-
gral, we obtain

ϕ(wn(t))→ ϕ

(∫ T

a

Gα1(t, s)fn(s)ds

)
,

i.e., wn(t)→ (N1u)(t) in (E,ω) for each t ∈ I, which implies that w ∈ N1(u),
and

ϕ(yn(t))→ ϕ

(∫ T

a

Gα2(t, s)gn(s)ds

)
,

i.e., yn(t)→ (N2u)(t) in (E,ω) for each t ∈ I, which implies that y ∈ N2(x).

Step 4. Now let V = V1 × V2 be a subset of Q such that V = conv(N(V ) ∪ {(0, 0)}).
Obviously

V (t) ⊂ conv(N(V )(t) ∪ {(0, 0)})

. Since V is bounded and equicontinuous, the function t 7−→ v(t) = µ(V (t)) is continuous
on [a− r, T +β]. By (H1)− (H4), Lemma 1.3.1, and the properties of measure µ, for each
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t ∈ I, we have

v(t) ≤ µ(N(V )(t) ∪ {(0, 0)})
≤ µ((NV )(t))

≤ µ ({((N1u)(t), (N2v)(t)) : (u, v) ∈ V })

≤ µ
{∫ T

a

|Gα1(t, s)|(d(s), 0)ds

+

∫ T

a

|Gα2(t, s)|(0, z(s))ds d(t) ∈ F1(t, ut, vt), z(t) ∈ F2(t, ut, vt), (u, v) ∈ V
}

≤
∫ T

a

|Gα1(t, s)|
(
p1(s)µ({(d(s), 0), d(t) ∈ F1(t, ut, vt), (u, v) ∈ V }ds

)
+

∫ T

a

|Gα2(t, s)|(p2(s)µ({(0, z(s)); z(t) ∈ F2(t, ut, vt), (u, v) ∈ V }ds)

≤
∫ T

a

|Gα1(t, s)|p1(s)µ(V (s))ds

+

∫ T

a

|Gα2(t, s)|p2(s)µ(V (s))ds

≤
(
G̃α1p

∗
1 + G̃α2p

∗
2

)
‖v‖c.

Thus
‖v‖c ≤

(
G̃α1p

∗
1 + G̃α2p

∗
2

)
‖v‖c.

From (6.9 ), we get ‖v‖c = 0, that is µ(V (t)) = 0 for each t ∈ I.
For t ∈ [a− r, a], we have

v(t) = µ((φ1(t), φ2(t)))

= 0.

Also for t ∈ [T, T + β] we have

v(t) = µ(ψ1(t), ψ2(t))

= 0,

then V (t) is weakly relatively compact in E. In view of Ascoli-Arzela theorem , V is
weakly relatively compact in C. Applying Theorem 1.6.5, we conclude that N has a fixed
point that is a weak solution of the problem (6.1)− (6.2).

6.3 An Example

Let

E = l1 =

{
u = (u1, u2, . . . , un, . . .),

∞∑
n=1

|un| <∞

}
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be the Banach space with the norm

‖u‖E =
∞∑
n=1

|un|.

As an application of the main results, we consider the Coupled System Caputo type
modification of the Erdélyi-Kober fractional differential inclusions with retarded and ad-
vanced arguments. 

(u(t), v(t)) = (et − 1, t2) t ∈ [−1, 0],

2
cD

3
2

0+u(t) ∈ Fn(t, ut, vt), t ∈ I = [0, 1]

2
cD

4
3

0+v(t) ∈ Gn(t, ut, vt), t ∈ I = [0, 1]

(u(t), v(t)) = (t− 1, et − e) t ∈ [1, 2].

(6.14)

where

Fn(t, ut, vt) =
e−3

1 + ‖u‖C([−1,1]) + ‖v‖C([−1,1])

[
utn − 1;utn

]
t ∈ [0, 1], u, v ∈ C([−r, β]),

and

Gn(t, ut, vt) =
e−t−6

1 + ‖u‖C([−1,1]) + ‖v‖C([−1,1])

[
vtn; vtn + 1

]
t ∈ [0, 1], u, v ∈ C([−r, β]).

Set

u = (u1, u2, . . . , un, . . .), F = (F1, F2, . . . , Fn, . . .)

and

v = (v1, v2, . . . , vn, . . .), G = (G1, G2, . . . , Gn, . . .),

with

α1 =
3

2
, α2 =

4

3
, ρ = 2, r = 1, β = 1.

For each u, v ∈ C([−1, 1]), t ∈ [2, 4], we have

‖F (t, ut, vt)‖P ≤ e−3,

and

‖G(t, ut, vt)‖P ≤ e−t−6,
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hence, (H2) is verified with p∗1 = e−3, p∗2 = e−6.
For each t ∈ I, i = 1, 2 we have∫ T

a

|Gαi(t, s)|ds ≤
1

Γ(αi)

(
tρ − aρ

T ρ − aρ

)∫ T

a

∣∣∣∣∣
(
T ρ − sρ

ρ

)αi−1

sρ−1

∣∣∣∣∣ ds

+
1

Γ(αi)

∫ t

a

∣∣∣∣∣
(
tρ − sρ

ρ

)αi−1

sρ−1

∣∣∣∣∣ ds.
Then ∫ T

a

|Gαi(t, s)|ds ≤
2

Γ(αi + 1)

(
T ρ − aρ

ρ

)αi
.

Therefore

G̃αi ≤
2

Γ(αi + 1)

(
T ρ − aρ

ρ

)αi
, i = 1, 2.

The condition (5.23)is satisfied. Indeed, we have

G̃α1p
∗
1 + G̃α2p

∗
2 ≤

2e−3

2
3
2 Γ(3

2
+ 1)

+
2e−6

2
4
3 Γ(4

3
+ 1)

≈ 0.02813526732

< 1.

with T = 1, a = 0 and α1 = 3
2
, α2 = 4

3
. Since all the conditions of Theorem 6.2.1 are

satisfied, problem (6.14) has at least one solution defined on I.
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Conclusion and Perspective

In this thesis, we have considered the following set of nonlinear fractional differ-
ential equations and inclusions with retarded and advanced arguments

(1) Fractional differential equations and inclusion

ρ
cD

α
a+u(t) = f(t, ut,ρc D

α
a+u(t)), for each t ∈ I := [a, T ], 1 < α ≤ 2,

ρ
cD

α
a+u(t) ∈ F (t, ut), for each t ∈ I := [a, T ], 1 < α ≤ 2.

(2) Coupled system nonlinear implicit and random coupled fractional differential sys-
tems problem{

ρ
cD

α
a+u(t) = f1(t, ut, vt,ρc D

α
a+u(t),ρc D

α
a+v(t))

ρ
cD

α
a+v(t) = f2(t, ut, vt,ρc D

α
a+u(t),ρc D

α
a+v(t))

t ∈ I, 1 < α ≤ 2,

{
ρ
cD

α1

a+u(t, w) = f1(t, ut(w), vt(w),ρc D
α1

a+u(t, w))
ρ
cD

α2

a+v(t, w) = f2(t, ut(w), vt(w),ρc D
α2

a+v(t, w))
t ∈ I, 1 < α ≤ 2.

(3) Coupled systems fractional differential inclusions{
ρ
cD

α1

a+u(t) ∈ F1(t, ut, vt)
ρ
cD

α2

a+v(t) ∈ F2(t, ut, vt)
t ∈ I := [a, T ], 1 < α ≤ 2,

Here ρ
cD

α
a+ is the Caputo type modification of the Erdélyi-Kober fractional derivative.

We established the existence, the uniqueness of the solution for fractional differential
equations and inclusions, coupled system of differential equations and inclusions, weak
solution for coupled systems of differential equations and inclusions and random solutions
for coupled systems of differential equations. The results are based on the measure of
noncompactness, suitable deterministe and radom fixed point theorems; in particular we
have used the theorems of Schauder, Schaefer, the nonlinear alternative for Kakutani
maps, Covitz-Nadler, Darbo, and Mönch.

In the futur, we plan to study the qualitative aspect of the solutions for the above
mentioned problems, in particular, we will look for the stability and controllability of the
above cited problems.
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