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Introduction

Stabilization of evolution problems

Problems of global existence and stability in time of Partial Differential Equations made
object, recently, of many work. In this thesis we were interested in study of the global
existence and the stabilization of some evolution equations.

The purpose of stabilization is to attenuate the vibrations by feedback, thus it consists
in guaranteeing the decrease of energy of the solutions to 0 in a more or less fast way by a
mechanism of dissipation.

More precisely, the problem of stabilization consists in determining the asymptotic be-
haviour of the energy denoted by E(t), to study its limits in order to determine if this limit
is null or not and if this limit is null, to give an estimate of the decay rate of the energy to
zero.

This problem has been studied by many authors for various systems. In our study, we
obtain several type of stabilization

1) Strong stabilization: E(t)→ 0, as t→∞.

2) Logarithmic stabilization: E(t) ≤ c(log(t))−δ,∀t > 0, (c, δ > 0).

3) polynomial stabilization: E(t) ≤ ct−δ,∀t > 0, (c, δ > 0)

4) uniform stabilization: E(t) ≤ ce−δt,∀t > 0, (c, δ > 0).

For wave equation with dissipation of the form u′′−∆xu+ g(u′) = 0, stabilization problems
have been investigated by many authors:
When g : IR→ IR is continuous and increasing function such that g(0) = 0, global existence
of solutions is known for all initial conditions (u0, u1) given in H1

0 (Ω) × L2(Ω). This result
is, for instance, a consequence of the general theory of nonlinear semi-groups of contractions
generated by a maximal monotone operator (see Brézis [10]).

Moreover, if we impose on the control the condition ∀λ 6= 0, g(λ) 6= 0, then strong
asymptotic stability of solutions occurs in H1

0 (Ω)× L2(Ω), i.e.,

(u, u′)→ (0, 0) strongly in H1
0 (Ω)× L2(Ω),
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6 Introduction

without speed of convergence. These results follows, for instance, from the invariance princi-
ple of Lasalle (see for example C. M. Dafermos [14], A. Haraux [17], , F. Conrad, M. Pierre
[13]). If the solution goes to 0 as time goes to ∞, how to get energy decay rates?

Dafermos has written in 1978 ”Another advantage of this approach is that it is so sim-
plistic that it requires only quite weak assumptions on the dissipative mechanism. The
corresponding drawback is that the deduced information is also weak, never yielding, for
example, decay rates of solutions.”

Many authors have worked since then on energy decay rates. First results were obtained
for linear stabilization, then for polynomial stabilization (see M. Nakao A. Haraux [17], E.
Zuazua and V. Komornik [19]) and then extended to arbitrary growing feedbacks (close to
0). In the same time, geometrical aspects were considered.

By combining the multiplier method with the techniques of micro-local analysis, Lasiecka
et al [12], [20] have investigated different dissipative systems of partial differential equations
(with Dirichlet and Neumann boundary conditions) under general geometrical conditions
with nonlinear feedback without any growth restrictions near the origin or at infinity. The
computation of decay rates is reduced to solving an appropriate explicitly given ordinary
differential equation of monotone type. More precisely, the following explicit decay estimate
of the energy is obtained:

E(t) ≤ h(
t

t0
− 1), ∀t ≥ t0,(1)

where t0 > 0 and h is the solution of the following differential equation:

h′(t) + q(h(t)) = 0, ∀t ≥ 0 and h(0) = E(0)(2)

and the function q is determined entirely from the behavior at the origin of the nonlinear
feedback by proving that E satisfies

(Id− q)−1
(
E((m+ 1)t0)

)
≤ E(mt0), ∀m ∈ IN.

In this thesis, the main objective is to give a global existence and stabilization results.
This work consists in two chapter.

Chapter 1: Well-posedeness and asymptotic behavior

of Timoshenko beam system with dynamic boundary

dissipative feedback of fractional derivative type

In this chapter, we consider the Timoshenko beam system with dynamic controls of fractional
derivative type, that is,

(P )
{
ρ1ϕtt(x, t)−K(ϕx + ψ)x(x, t) = 0 in (0, L)× (0,+∞),
ρ2ψtt(x, t)− bψxx(x, t) +K(ϕx + ψ)(x, t) = 0 in (0, L)× (0,+∞),
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where (x, t) ∈ (0, L)× (0,+∞). This system is subject to the boundary conditions

ϕ(0, t) = 0, ψ(0, t) = 0, in (0,+∞),
m1ϕtt(L, t) +K(ϕx + ψ)(L, t) = −γ1∂

α,η
t ϕ(L, t) in (0,+∞),

m2ψtt(L, t) + bψx(L, t) = −γ2∂
α,η
t ψ(L, t) in (0,+∞),

We prove a global existence result using the semi-group theory based on maximum monotone
method. Furthermore, we show that our system is not uniformly stable in general, since it
is the case of the interval, more precisely we show that an infinite number of eigenvalues
approach the imaginary axis. Also, we look for a polynomial decay rate for smooth initial
data for our system by applying a frequency domain approach combining with a multiplier
method.

Chapter 2:Energy decay of solutions to a Timoshenko

beam system with dynamic boundary feedbacks of frac-

tional derivative type

In this chapter, we consider the same system as above

(P )
{
ρ1ϕtt(x, t)−K(ϕx + ψ)x(x, t) = 0 in (0, L)× (0,+∞),
ρ2ψtt(x, t)− bψxx(x, t) +K(ϕx + ψ)(x, t) = 0 in (0, L)× (0,+∞),

where (x, t) ∈ (0, L)× (0,+∞). This system is subject to the boundary conditions

ϕ(0, t) = 0, ψ(0, t) = 0, in (0,+∞),
m1ϕtt(L, t) +K(ϕx + ψ)(L, t) = −γ1∂

α,η
t ϕ(L, t) in (0,+∞),

m2ψtt(L, t) + bψx(L, t) = −γ2∂
α,η
t ψ(L, t) in (0,+∞),

By an explicit representation of the resolvant associated to the operator semi-group, we
prove different optimal energy decay estimate following the speeds of propagation of coupled
system.



8 Introduction



Chapter 1

Preliminaries

1.1 Sobolev spaces

We denote by Ω an open domain in IRn, n ≥ 1, with a smooth boundary Γ = ∂Ω. In general,
some regularity of Ω will be assumed. We will suppose that either

Ω is Lipschitz,

i.e., the boundary Γ is locally the graph of a Lipschitz function, or

Ω is of class Cr, r ≥ 1,

i.e., the boundary Γ is a manifold of dimension n ≥ 1 of class Cr. In both cases we assume
that Ω is totally on one side of Γ. These definitions mean that locally the domain Ω is
below the graph of some function ψ, the boundary Γ is represented by the graph of ψ and
its regularity is determined by that of the function ψ. Moreover, it is necessary to note that
a domain with a continuous boundary is never on both sides of its boundary at any point of
this boundary and that a Lipschitz boundary has almost everywhere a unit normal vector ν.

We will also use the following multi-index notation for partial differential derivatives of
a function:

∂ki u =
∂ku

∂xki
for all k ∈ IN and i = 1, ..., n,

Dαu = ∂α1
1 ∂α2

2 . . . ∂αnn u =
∂α1+...+αnu

∂xα1
1 . . . ∂xαnn

,

α = (α1, α2, . . . , αn) ∈ INn, |α| = α1 + . . .+ αn.

We denote by C(D) (respectively Ck(D), k ∈ IN or k = +∞) the space of real continuous
functions on D (respectively the space of k times continuously differentiable functions on
D), where D plays the role of Ω or its closure Ω. The space of real C∞ functions on Ω
with a compact support in Ω is denoted by C∞0 (Ω) or D(Ω) as in the distributions theory
of Schwartz.The distributions space on Ω is denoted by D′(Ω), i.e., the space of continuous
linear form over D(Ω).

9



10 Preliminaries

For 1 ≤ p ≤ ∞, we call Lp(Ω) the space of measurable functions f on Ω such that

‖f‖Lp(Ω) =
(∫

Ω
|f(x)|pdx

)1/p

< +∞ for p < +∞

‖f‖L∞(Ω) = sup
Ω
|f(x)| < +∞ for p = +∞

The space Lp(Ω) equipped with the norm f −→ ‖f‖Lp is a Banach space: it is reflexive and

separable for 1 < p <∞ (its dual is L
p
p−1 (Ω)), separable but not reflexive for p = 1 (its dual

is L∞(Ω)), and not separable, not reflexive for p =∞ (its dual contains strictly L1(Ω)). In
particular the space L2(Ω) is a Hilbert space equipped with the scalar product defined by

(f, g)L2(Ω) =
∫

Ω
f(x)g(x)dx.

We denote by Lploc(Ω) the space of functions which are Lp on any bounded sub-domain of Ω.
Similar space can be defined on any open set other than Ω, in particular, on the cylinder

set Ω× ]a, b[ or on the set Γ× ]a, b[, where a, b ∈ IR and a < b.
Let U be a Banach space, 1 < p < +∞ and −∞ ≤ a < b ≤ +∞, then Lp(a, b;U) is the

space of Lp functions f from (a, b) into U which is a Banach space for the norm

‖f‖Lp(a,b;U) =

(∫ b

a
‖f(x)‖pU dt

)1/p

< +∞ for p < +∞

and for the norm

‖f‖L∞(a,b;U) = sup
t∈(a,b)

‖f(x)‖U < +∞ for p = +∞

Similarly, for a Banach space U, k ∈ IN and −∞ < a < b < +∞, we denote by C([a, b];U)
(respectively Ck([a, b];U)) the space of continuous functions (respectively the space of k
times continuously differentiable functions) f from [a, b] into U , which are Banach spaces,
respectively, for the norms

‖f‖C(a,b;U) = sup
t∈(a,b)

‖f(x)‖U , ‖f‖Ck(a,b;U) =
k∑
i=0

∥∥∥∥∥∂if∂ti
∥∥∥∥∥
C(a,b;U)

1.1.1 Definition of Sobolev Spaces

Now, we will introduce the Sobolev spaces: The Sobolev space W k,p(Ω) is defined to be the
subset of Lp such that function f and its weak derivatives up to some order k have a finite
Lp norm, for given p ≥ 1.

W k,p(Ω) = {f ∈ Lp(Ω);Dαf ∈ Lp(Ω). ∀α; |α| ≤ k} ,
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With this definition, the Sobolev spaces admit a natural norm,

f −→ ‖f‖Wk,p(Ω) =

 ∑
|α|≤m

‖Dαf‖pLp(Ω)

1/p

, for p < +∞

and
f −→ ‖f‖Wk,∞(Ω) =

∑
|α|≤m

‖Dαf‖L∞(Ω) , for p = +∞

Space W k,p(Ω) equipped with the norm ‖ . ‖Wk,p is a Banach space. Moreover is a reflexive
space for 1 < p < ∞ and a separable space for 1 ≤ p < ∞. Sobolev spaces with p = 2 are
especially important because of their connection with Fourier series and because they form
a Hilbert space. A special notation has arisen to cover this case:

W k,2(Ω) = Hk(Ω)

the Hk inner product is defined in terms of the L2 inner product:

(f, g)Hk(Ω) =
∑
|α|≤k

(Dαf,Dαg)L2(Ω) .

The space Hm(Ω) and W k,p(Ω) contain C∞(Ω) and Cm(Ω). The closure of D(Ω) for the
Hm(Ω) norm (respectively Wm,p(Ω) norm) is denoted by Hm

0 (Ω) (respectively W k,p
0 (Ω)).

Now, we introduce a space of functions with values in a space X (a separable Hilbert
space).

The space L2(a, b;X) is a Hilbert space for the inner product

(f, g)L2(a,b;X) =
∫ b

a
(f(t), g(t))X dt

We note that L∞(a, b;X) = (L1(a, b;X))′.
Now, we define the Sobolev spaces with values in a Hilbert space X
For k ∈ IN, p ∈ [1,∞], we set:

W k,p(a, b;X) =

{
v ∈ Lp(a, b;X);

∂v

∂xi
∈ Lp(a, b;X). ∀i ≤ k

}
,

The Sobolev space W k,p(a, b;X) is a Banach space with the norm

‖f‖Wk,p(a,b;X) =

 k∑
i=0

∥∥∥∥∥ ∂f∂xi
∥∥∥∥∥
p

Lp(a,b;X)

1/p

, for p < +∞

‖f‖Wk,∞(a,b;X) =
k∑
i=0

∥∥∥∥∥ ∂v∂xi
∥∥∥∥∥
L∞(a,b;X)

, for p = +∞

The spaces W k,2(a, b;X) form a Hilbert space and it is noted Hk(0, T ;X). The Hk(0, T ;X)
inner product is defined by:

(u, v)Hk(a,b;X) =
k∑
i=0

∫ b

a

(
∂u

∂xi
,
∂v

∂xi

)
X

dt .
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Theorem 1.1.1 Let 1 ≤ p ≤ n, then

W 1,p(IRn) ⊂ Lp
∗
(IRn)

where p∗ is given by
1

p∗
=

1

p
− 1

n
(where p = n, p∗ = ∞). Moreover there exists a constant

C = C(p, n) such that

‖u‖Lp∗ ≤ C‖∇u‖Lp(IRn)∀u ∈ W 1,p(IRn).

Corollary 1.1.1 Let 1 ≤ p < n, then

W 1,p(IRn) ⊂ Lq(IRn) ∀q ∈ [p, p∗]

with continuous imbedding.

For the case p = n, we have

W 1,n(IRn) ⊂ Lq(IRn) ∀q ∈ [n,+∞[

Theorem 1.1.2 Let p > n, then

W 1,p(IRn) ⊂ L∞(IRn)

with continuous imbedding.

Corollary 1.1.2 Let Ω a bounded domain in IRn of C1 class with Γ = ∂Ω and 1 ≤ p ≤ ∞.
We have

if 1 ≤ p <∞, then W 1,p(Ω) ⊂ Lp
∗
(Ω) where

1

p∗
=

1

p
− 1

n
.

if p = n, then W 1,p(Ω) ⊂ Lq(Ω), ∀q ∈ [p,+∞[.
if p > n, then W 1,p(Ω) ⊂ L∞(Ω)

with continuous imbedding.
Moreover, if p > n, we have: ∀u ∈ W 1,p(Ω),

|u(x)− u(y)| ≤ C|x− y|α‖u‖W 1,p(Ω) a.e x, y ∈ Ω

with α = 1 − n

p
> 0 and C is a constant which depend on p, n and Ω. In particular

W 1,p(Ω) ⊂ C(Ω).

Corollary 1.1.3 Let Ω a bounded domain in IRn of C1 class with Γ = ∂Ω and 1 ≤ p ≤ ∞.
We have

if p < n, then W 1,p(Ω) ⊂ Lq(Ω)∀q ∈ [1, p∗[ where
1

p∗
=

1

p
− 1

n
.

if p = n, then W 1,p(Ω) ⊂ Lq(Ω),∀q ∈ [p,+∞[.
if p > n, then W 1,p(Ω) ⊂ C(Ω)

with compact imbedding.
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Remark 1.1.1 We remark in particular that

W 1,p(Ω) ⊂ Lq(Ω)

with compact imbedding for 1 ≤ p ≤ ∞ and for p ≤ q < p∗.

Corollary 1.1.4

if
1

p
− m

n
> 0, then Wm,p(IRn) ⊂ Lq(IRn) where

1

q
=

1

p
− m

n
.

if
1

p
− m

n
= 0, then Wm,p(IRn) ⊂ Lq(IRn),∀q ∈ [p,+∞[.

if
1

p
− m

n
< 0, then Wm,p(IRn) ⊂ L∞(IRn)

with continuous imbedding.
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1.2 Weak convergence

Let (E; ‖.‖E) a Banach space and E ′ its dual space, i.e., the Banach space of all continuous
linear forms on E endowed with the norm ‖.‖′E defined by

‖f‖E′ =: sup
x 6=0

|〈f, x〉|
‖x‖

; where 〈f, x〉; denotes the action of f onx, i.e.〈f, x〉 := f(x). In the same way, we can define
the dual space of E ′ that we denote by E ′′. (The Banach space E ′′ is also called the bi-dual
space of E.) An element x of E can be seen as a continuous linear form on E ′ by setting
x(f) := 〈x, f〉, which means that E ⊂ E ′′:

Definition 1.2.1 The Banach space E is said to be reflexive if E = E ′′.

Definition 1.2.2 The Banach space E is said to be separable if there exists a countable
subset D of E which is dense in E, i.e. D = E.

Theorem 1.2.1 (Riesz). If (H; 〈., .〉) is a Hilbert space, 〈., .〉 being a scalar product on H,
then H ′ = H in the following sense: to each f ∈ H ′ there corresponds a unique x ∈ H such
that f = 〈x, .〉 and ‖f‖′H = ‖x‖H

Remark : From this theorem we deduce that H ′′ = H. This means that a Hilbert space is
reflexive.

Proposition 1.2.1 If E is reflexive and if F is a closed vector subspace of E, then F is
reflexive.

Corollary 1.2.1 The following two assertions are equivalent: (i) E is reflexive; (ii) E ′ is
reflexive.

1.2.1 Weak, weak star and strong convergence

Definition 1.2.3 (Weak convergence in E). Let x ∈ E and let {xn} ⊂ E. We say that {xn}
weakly converges to x in E, and we write xn ⇀ x in E, if

〈f, xn〉 → 〈f, x〉

for all f ∈ E ′.

Definition 1.2.4 (weak convergence in E ′). Let f ∈ E ′ and let {fn} ⊂ E ′. We say that
{fn} weakly converges to f in E ′, and we write fn ⇀ f in E ′, if

〈fn, x〉 → 〈f, x〉

for all x ∈ E ′′.
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Definition 1.2.5 (weak star convergence). Let f ∈ E ′ and let {fn} ⊂ E ′. We say that {fn}
weakly star converges to f in E ′, and we write fn ⇀ ∗f in E ′ if;

〈fn, x〉 → 〈f, x〉

for all x ∈ E.

Remark As E ⊂ E ′′ we have fn ⇀ f in E ′ imply fn ⇀ ∗f in E ′. When E is reflexive, the last
definitions are the same, i.e, weak convergence in E ′ and weak star convergence coincide.

Definition 1.2.6 (strong convergence). Let x ∈ E(resp. f ∈ E ′) and let {xn} ⊂ E (resp
{fn} ⊂ E ′). We say that {xn} (resp. {fn}) strongly converges to x (resp. f), and we write
xn → x in E (resp. fn → f in E ′), if

lim
n
‖xn − x‖E = 0; (resp. lim

n
‖fn − f‖′E = 0)

Proposition 1.2.2 Let x ∈ E, let {xn} ⊂ E, let f ∈ E ′ and let {fn} ⊂ E ′.

i. If xn → x in E then xn ⇀ x in E.

ii. If xn ⇀ x in E then {xn} is bounded.

iii. If xn ⇀ x in E then lim inf
n→∞

‖xn‖E ≥ ‖x‖E

iv. If fn → f in E ′ then fn ⇀ f inE ′ (and so fn
∗
⇀ f in E ′).

v. If fn ⇀ f in E ′ then {fn} is bounded.

vi. If fn ⇀ f in E ′ then then lim inf
n→∞

‖fn‖′E ≥ ‖f‖′E

Proposition 1.2.3 (finite dimension). If dimE < ∞ then strong, weak and weak star
convergence are equivalent.

1.2.2 Weak and weak star compactness

In finite dimension, i.e, dimE < ∞, we have Bolzano-Weierstrass’s theorem (which is a
strong compactness theorem).

Theorem 1.2.2 (Bolzano-Weierstrass). If dimE < ∞ and if {xn} ⊂ E) is bounded, then
there exist ∈ E and a subsequence {xnk} of {xn} such that {xnk} strongly converges to x.

The following two theorems are generalizations, in infinite dimension, of Bolzano- Weier-
strass’s theorem.

Theorem 1.2.3 (weak star compactness, Banach-Alaoglu-Bourbaki). Assume that E is sep-
arable and consider {fn} ⊂ E ′) . If {xn} is bounded, then there exist f ∈ E ′ and a subse-
quence {fnk} of {fn} such that {fnk} weakly star converges to f in E ′.
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Theorem 1.2.4 (weak compactness, Kakutani-Eberlein). Assume that E is reflexive and
consider {xn} ⊂ E). If {xn} is bounded, then there exist x ∈ E and a subsequence {xnk} of
{xn} such that {xnk} weakly converges to x in E.

Weak, weak star convergence and compactness in Lp(Ω).

Definition 1.2.7 ( weak convergence in Lp(Ω) with 1 ≤ p <∞ ). Let Ω an open subset of
IRn .We say that the sequence {fn} of Lp(Ω) weakly converges to f ∈ Lp(Ω), if

lim
n

∫
Ω
fn(x)g(x)dx =

∫
Ω
f(x)g(x)dx for all g ∈ Lq; (

1

p
+

1

q
= 1)

Definition 1.2.8 (weak star convergence in L∞(Ω) ). We say that the sequence {fn} ⊂
L∞(Ω) weakly star converges to f ∈ L∞(Ω) , if

lim
n

∫
Ω
fn(x)g(x)dx =

∫
Ω
f(x)g(x)dx for all g ∈ L1(Ω)

Theorem 1.2.5 (weak compactness in Lp(Ω)) with 1 < p < ∞. Given {fn} ⊂ Lp(Ω) ,
if {fn} is bounded, then there exist f ∈ Lp(Ω) and a subsequence {fnk} of {fn} such that
fn ⇀ f in Lp(Ω).

Theorem 1.2.6 (weak star compactness in L∞(Ω).
Given {fn} ⊂ L∞(Ω), if {fn} is bounded, then there exist f ∈ L∞(Ω) and a subsequence
{fnk} of {fn} such that fn

∗
⇀ f in L∞(Ω).

Generalities. In what follows, Ω is a bounded open subset of IRN with Lipschitz boundary
and 1 ≤ p ≤ ∞.
Weak and weak star convergence in Sobolev spaces
For 1 ≤ p ≤ ∞, W 1;p(Ω) is a Banach space. Denote the space of all restrictions to Ω of
C1-differentiable functions from IRN to IR with compact support in RN by C1(Ω).

Theorem 1.2.7 for every 1 ≤ p ≤ ∞ C1(Ω) ⊂ W 1;p(Ω) ⊂ Lp(Ω) , and, for 1 < p < ∞,
C1(Ω) is dense in W 1;p(Ω).

Definition 1.2.9 (weak convergence in W 1;p(Ω) with 1 ≤ p <∞).)
We say the {fn} ⊂ W 1;p(Ω) weakly converges to f ∈ W 1;p(Ω), and we write fn ⇀ f in
W 1;p(Ω) , if fn ⇀ f in Lp(Ω) and ∇fn ⇀ ∇f in Lp(Ω; IRN)

Definition 1.2.10 (weak convergence in W 1;∞(Ω)
. We say the {fn} ⊂ W 1;∞(Ω) weakly star converges to f ∈ W 1;∞(Ω), and we write fn

∗
⇀ f

in W 1;∞(Ω) , if fn
∗
⇀ f in Lp(Ω) and ∇fn ∗

⇀ ∇f in L∞(Ω; IRN)

Theorem 1.2.8 (Rellich). Let 1 ≤ p ≤ ∞ , {fn} ⊂ W 1;p(Ω) and f ∈ W 1;p(Ω); if fn ⇀ f in
W 1;p(Ω) when 1 ≤ p <∞ (resp.fn

∗
⇀ f in W 1;∞(Ω)) when p =∞) then fn → f in Lp(Ω)),

which means that for every 1 ≤ p ≤ ∞, the weak convergence in W 1;p(Ω) imply the strong
convergence in Lp(Ω).
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Theorem 1.2.9 Let 1 < p ≤ ∞ and let {fn} ⊂ W 1;p(Ω) . If {fn} is bounded, then there
exist f ∈ W 1;p(Ω) and a subsequence {fnk} of {fn} such that fnk ⇀ f in W 1;p(Ω) when
1 < p <∞ (resp. fnk

∗
⇀ f in W 1;∞(Ω))

As a consequence of this theorem we have

Corollary 1.2.2 Let 1 < p ≤ ∞and let {fn} ⊂ W 1;p(Ω) . If {fn} is bounded, then there
exist f ∈ W 1;p(Ω) and a subsequence {fnk} of {fn} such that fnk → f in Lp(Ω) and ∇fnk ⇀
∇f in Lp(Ω) when 1 < p <∞ (resp.∇fnk

∗
⇀ ∇f in L∞(Ω))

Theorem 1.2.10 . IfN < p ≤ ∞ and if {fn} ⊂ W 1;p(Ω) is bounded, then there exist
f ∈ W 1;p(Ω) and a subsequence {fnk} of {fn} such that {fnk} converges uniformly to f, and
∇fnk ⇀ ∇f in W 1;p(Ω) when N < p <∞ (resp. ∇fnk

∗
⇀ ∇f in W 1;∞)

1.2.3 Gronwall lemma

Lemma 1.2.1 Let T > 0, g ∈ L1(0, T ), g ≥ 0 a.e and c1, c2 are positives constants.Let
ϕ ∈ L1(0, T ) ϕ ≥ 0 a.e such that gϕ ∈ L1(0, T ) and

ϕ(t) ≤ c1 + c2

∫ t

0
g(s)ϕ(s)ds a.e in (0, T ).

then, we have

ϕ(t) ≤ c1exp (c2

∫ t

0
g(s)ds) a.e in (0, T ).

1.2.4 Aubin -Lions lemma

The Aubin Lions lemma is a result in the theory of Sobolev spaces of Banach space-valued
functions. More precisely, it is a compactness criterion that is very useful in the study of
nonlinear evolutionary partial differential equations. The result is named after the French
mathematicians Thierry Aubin and Jacques-Louis Lions. We complete the preliminaries by
the useful inequalities of Gagliardo-Nirenberg and Sobolev-Poincaré.

Lemma 1.2.2 LetX0,X and X1 be three Banach spaces with X0 ⊆ X ⊆ X1. Assume thatX0

is compactly embedded in X and that X is continuously embedded in X1; assume also that
X0 and X1 are reflexive spaces. For 1 < p, q < +∞, let

W = {u ∈ Lp([0, T ];X0)/ u̇ ∈ Lq([0, T ];X1)}

Then the embedding of W into Lp([0, T ];X) is also compact.

Lemma 1.2.3 (Gagliardo-Nirenberg) Let 1 ≤ r < q ≤ +∞ and p ≤ q. Then, the
inequality

‖u‖Wm,q ≤ C‖u‖θWm,p‖u‖1−θ
r for u ∈ Wm,p

⋂
Lr
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holds with some C > 0 and

θ =

(
k

n
+

1

r
− 1

q

)(
m

n
+

1

r
− 1

p

)−1

provided that 0 < θ ≤ 1 (we assume 0 < θ < 1 if q = +∞).

Lemma 1.2.4 (Sobolev-Poincaré inequality) Let q be a number with 2 ≤ q < +∞ (n =
1, 2) or 2 ≤ q ≤ 2n/(n− 2) (n ≥ 3), then there is a constant c∗ = c(Ω, q) such that

‖u‖q ≤ c∗‖∇u‖2 for u ∈ H1
0 (Ω).

1.3 Semigroup and spectral analysis theories

As the analysis done in this P.H.D thesis local on the semigroup and spectral analysis
theories, we recall, in this chapter, some basic definitions and theorems which will be used
in the following chapters.

1.3.1 Bounded and Unbounded linear operators

In this chapter we give some well known results abound bounded and undounded operators.
We are not trying to give a complete development, but rather review the basic definitions
and theorems, mostly without proof. Let (E, ‖.‖E) and (F, ‖.‖F ) be two Banach spaces over
IC, and H will always denote a Hilbert space equipped with the scalar product < ., . >H and
the corresponding norm ‖.‖H . A linear operator T : E −→ F is a transformation which
maps linearly E in F , that is

T (αu+ βv) = αT (u) + βT (v), ∀u, v ∈ Eandα, β ∈ IC.

Definition 1.3.1 An operator T : E −→ F is said to be bounded if there exists C ≥ 0 such
that

‖Tu‖F ≤ C‖u‖E ∀u ∈ E.

The set of all bounded linear operators from E into F is denoted by L(E,F ). Moreover, the
set of all bounded linear operators from E into E is denoted by L(E).

Definition 1.3.2 A bounded operator T ∈ L(E,F ) is said to be compact if for each sequence
(xn)n∈IN ∈ E with ‖xn‖E = 1 for each n ∈ IN, the sequence (Txn)n∈IN ∈ E has a subsequence
which converges in F. The set of all compact operators from E into F is denoted by K(E,F ).
For simplicity one writes K(E,E) = K(E).

Definition 1.3.3 Let T ∈ L(E,F ), we define
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• Range of T by
R(T ) = {Tu : u ∈ E} ⊂ F.

• Kernel of T by
ker(T ) = {u ∈ E : Tu = 0} ⊂ E.

Theorem 1.3.1 (Fredholm alternative) if T ∈ K(E), then

• ker(I − T ) is finite dimension, (I is the identity operator on E).

• R(I − T ) is closed.

• ker(I − T ) = 0⇔ R(I − T ) = E.

Definition 1.3.4 Let T : D(T ) ⊂ E −→ F be an unbounded linear operator.

• The range of T is defined by

R(T ) = {Tu : u ∈ D(T )} ⊂ F.

• The Kernel of T is defined by

ker(T ) = {u ∈ D(T ) : Tu = 0} ⊂ E.

• The graph of T is defined by

G(T ) = {(u, Tu) : u ∈ D(T )} ⊂ E × F.

Definition 1.3.5 A map T is said to be closed if G(T ) is closed in E × F . The closedness
of an unbounded linear operator T can be characterize as following if un ∈ D(T ) such that
un −→ u in E and Tun −→ v in F , then u ∈ D(T ) and Tu = v.

Definition 1.3.6 Let T : D(T ) ⊂ E −→ F be a closed unbounded linear operator.

• The resolvent set of T is defined by

ρ(T ) = {λ ∈ IC : λI − T isbijectivefrom D(T ) onto F}.

• The resolvent of T is defined by

R(λ, T ) = {(λI − T )−1 : λ ∈ ρ(T )}.

• The spectrum set of T is the complement of the resolvent set in IC, denoted by

σ(T ) = IC/ρ(T ).
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Definition 1.3.7 Let T : D(T ) ⊂ E −→ F be a closed unbounded linear operator. we can
split the spectrum σ(T ) of T into three disjoint sets, given by

• The ponctuel spectrum of T is define by

σp(T ) = {λ ∈ IC : ker(λI − T ) 6= 0}

in this case λ is called an eigenvalue of T .

• The continuous spectrum of T is define by

σc(T ) = {λ ∈ IC : ker(λI−T ) = 0, ¯R(λI − T ) = F and(λI−T )−1is not bounded}.

• The residual spectrum of T is define by

σr(T ) = {λ ∈ IC : ker(λI − T ) = 0andR(λI − T ) is not dense in F}.

Definition 1.3.8 Let T : D(T ) ⊂ E −→ F be a closed unbounded linear operator and let
λ be an eigevalue of A. non-zero element e ∈ E is called a generalized eigenvector of T
associated with the eigenvalue value λ, if there exists n ∈ IN∗ such that

(λI − T )ne = 0 and (λI − T )n−1e 6= 0.

if n = 1, then e is called an eigenvector.

Definition 1.3.9 Let T : D(T ) ⊂ E −→ F be a closed unbounded linear operator. We say
that T has compact resolvent, if there exist λ0 ∈ ρ(T ) such that (λ0I − T )−1 is compact.

Theorem 1.3.2 Let (T,D(T )) be a closed unbounded linear operator on H then the space
(D(T ), ‖.‖D(T )) where ‖u‖D(T ) = ‖Tu‖H + ‖u‖H ∀u ∈ D(T ) is banach space .

Theorem 1.3.3 Let (T,D(T )) be a closed unbounded linear operator on H then, ρ(T ) is an
open set of IC.

1.3.2 Semigroups, Existence and uniqueness of solution

In this section, we start by introducing some basic concepts concerning the semigroups. The
vast majority of the evolution equations can be reduced to the form

Ut = AU, t > 0,

U(0) = U0

(1.1)

where A is the infinitesimal generator of a C0-semigroup S(t) over a Hilbert space H. Lets
start by basic definitions and theorems. Let (X, ‖.‖X) be a Banach space, and H be a Hilbert
space equipped with the inner product < ., . >H and the induced norm ‖.‖H .
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Definition 1.3.10 A family S(t)t≥0 of bounded linear operators in X is called a strong
continous semigroup (in short, a C0-semigroup) if

i) S(0) = Id.

ii) S(s+ t) = S(s)S(t), ∀t ≥ 0 ∀s ≥ 0.

iii) For each u ∈ H, S(t)u is continous in t on [0,+∞[.

Sometimes we also denote S(t) by eAt.

Definition 1.3.11 For a semigroup S(t)t≥0, we define an linear operator A with domain
D(A) consisting of points u such that the limit

Au = lim
t→0+

S(t)u− u
t

∀u ∈ D(A)

exists. Then A is called the infinitesimal generator of the semigroup S(t)t≥0.

Proposition 1.3.1 Let S(t)t≥0 be a C0-semigroup in X. Then there exist a constant M ≥ 1
and ω ≥ 0 such that

‖S(t)‖L(X) ≤Meωt. ∀t ≥ 0

If ω = 0 then the corresponding semigroup is uniformly bounded. Moreover, if M = 1 then
S(t)t≥0 is said to be a C0-semigroup of contractions.

Definition 1.3.12 An unbounded linear operator (A,D(A)) on H, is said to be dissipative
if

< < Au, u >≤ 0,∀u ∈ D(A).

Definition 1.3.13 An unbounded linear operator (A,D(A)) on X, is said to be m-dissipative
if

• A is a dissipative operator.

• ∃λO such that R(λ0I − A) = X

Theorem 1.3.4 Let A be a m-dissipative operator, then

• R(λ0I − A) = X, ∀λ > 0

• ]0,∞[⊆ ρ(A).

Theorem 1.3.5 ( Hille-Yosida )An unbounded linear operator (A,D(A)) on X, is the in-
finitesimal generator of a C0-semigroup of contractions S(t)t≥0 if and only if

• A is closed and ¯D(A) = X.
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• The resolvent set ρ(A) of A contains IR+, and for all λ > 0,

‖(λI − A)−1‖L(X) ≤ λ−1

Theorem 1.3.6 (Lumer-Phillips) Let (A,D(A)) be an unbounded linear operator on X,
with dense domain D(A) in X. A is the infinitesimal generator of a C0-semigroup of con-
tractions if and only if it is a m-dissipative operator.

Theorem 1.3.7 Let (A,D(A)) be an unbounded linear operator on X. If A is dissipative
with R(I − A) = X, and X is reflexive then ¯D(A) = X.

Corollary 1.3.1 Let (A,D(A)) be an unbounded linear operator on H. A is the infinitesimal
generator of a C0-semigroup of contractions if and only if A is a m-dissipative operator.

Theorem 1.3.8 Let A be a linear operator with dense domain D(A) in a Hilbert space H.
If A is dissipative and 0 ∈ ρ(A) then A is the infinitesimal generator of a C0-semigroup of
contractions on H.

Theorem 1.3.9 ( Hille-Yosida ) Let (A,D(A)) be an unbounded linear operator on H.
Assume that A is the infinitesimal generator of a C0-semigroup of contractions S(t)t≥0.

1. For U0 ∈ D(A), the problem (1.1) admits a unique strong solution

U(t) = S(t)U0 ∈ C1([0,∞[;H) ∩ C([0,∞[;D(A))

2. For U0 ∈ D(A), the problem (1.1) admits a unique weak solution

U(t) ∈ C0([0,∞[;H).

1.3.3 Stability of semigroup

In this section we start by itroducing some definion about strong, exponential and polynomial
stability of a C0-semigroup. Then we collect some results about the stability of C0-semigroup.
Let (X, ‖.‖X be a Banach space, and H be a Hilbert space equipped with the inner product
< ., . >H and the induced norm ‖.‖H .

Definition 1.3.14 Assume that A is the generator of a strongly continuous semigroup of
contractions S(t)t≥0 on X. We say that the C0-semigroup S(t)t≥0 is

• Strongly stable if
lim
t→+∞

‖S(t)u‖X = 0, ∀u ∈ X.

• Uniformly stable if
lim
t→+∞

‖S(t)‖L(X) = 0
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• Exponentially stable if there exist two positive constants M and ε such that

‖S(t)u‖X ≤Me−εt‖u‖X , ∀t > 0, ∀u ∈ X.

• Polynomially stable if there exist two positive constants C and α such that

‖S(t)u‖X ≤ Ct−α‖u‖X , ∀t > 0, ∀u ∈ X.

Proposition 1.3.2 Assume that A is the generator of a strongly continuous semigroup of
contractions S(t)t≥0 on X. The following statements are equivalent

• S(t)t≥0 is uniformly stable.

• S(t)t≥0 is exponentially stable.

First, we look for the necessary conditions of strong stability of a C0-semigroup. The result
was obtained by Arendt and Batty.

Theorem 1.3.10 (Arendt and Batty) Assume that A is the generator of a strongly contin-
uous semigroup of contractions S(t)t≥0 on a reflexive Banach space X. If

• A has no pure imaginary eigenvalues.

• σ(A) ∩ i IR is countable.

Then S(t) is strongly stable.

Remark 1.3.1 If the resolvent (I − T )−1 of T is compact, then σ(T ) = σp(T ). Thus,
the state of Theorem 1.3.10 lessens to σp(T ) ∩ i IR = ∅ Next, when the C0-semigroup is
strongly stabe, we look for the necessary and suffient conditions of exponential stability of a
C0-semigroup. In fact, exponential stability results are obtained using different methods like
: multipliers method, frequency domain approach, Riesz basis approach, Fourier analysis or
a combination of them . In this thesis we will review only two methods. The first method is
a frequency domain approach method was obtained by Huang- Pruss.

Theorem 1.3.11 (Huang-Pruss) Assume that A is the generator of a strongly continuous
semigroup of contractions S(t)t≥0 on H. S(t) is uniformly stable if and only if

• i IR ⊂ ρ(A).

• supβ∈IR ‖(iβI − A)−1‖L(H) < +∞.

The second one, is a classical method based on the spectrum analysis of the operator A.

Definition 1.3.15 Let (A,D(A)) be an unbounded linear operator on H. Assume that A is
the infinitesimal generator of a C0-semigroup of contractions S(t)t≥0.
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• The growth bound of A is define by

ω0(A) = inf{ω ∈ IR : ∃Nω ∈ IRsuchthat∀t ≥ 0wehave‖S(t)‖ ≤ Nωe
ωt}.

• The spectral bound of A is define by

s(A) = sup{<(λ) : λ ∈ σ(A)}.

Proposition 1.3.3 Let (A,D(A)) be an unbounded linear operator on H. Assume that A
is the infinitesimal generator of a C0-semigroup of contractions S(t)t≥0. Then S(t)t≥0 is
uniformly exponentially stable if and only if its growth bound ω0(A) < 0.

Proposition 1.3.4 Let (A,D(A)) be an unbounded linear operator on H. Assume that A
is the infinitesimal generator of a C0-semigroup of contractions S(t)t≥0. Then, we have

s(A) ≤ ω0(A).

Corollary 1.3.2 Let (A,D(A)) be an unbounded linear operator on H. Assume that s(A) =
0, then S(t)t≥0 is not uniformly exponentially stable.

In the case when the C0-semigroup is not exponentialy stable we look for a polynomial
one. In general, polynomial stability results also are obtained using different methods like :
multipliers method, frequency domain approach, Riesz basis approach, Fourier analysis or a
combination of them . In this thesis we will review only one method. The first method is a
frequency domain approach method was obtained by Batty, A.Borichev and Y.Tomilov, Z.
Liu and B. Rao.

Theorem 1.3.12 (Batty , A.Borichev and Y.Tomilov, Z. Liu and B. Rao.) Assume that
A is the generator of a strongly continuous semigroup of contractions S(t)t≥0 on H. If
i IR ⊂ ρ(A), then for a fixed l > 0 the following conditions are equivalent

1. lim
|λ|→+∞

sup
1

λl
‖(λI − A)−1‖L(H) < +∞.

2. ‖S(t)U0‖H ≤ C
tl−1‖U0‖D(A) ∀t > 0, U0 ∈ D(A), for some C > 0.

1.3.4 Fractional Derivative Control

In this part, we introduce the necessary elements for the good understanding of this manuscript.
It includes a brief reminder of the basic elements of the theory of fractional computation
as well as some examples of applications of this theory in this scientific field. The concept
of fractional computation is a generalization of ordinary derivation and integration to an
arbitrary order. Derivatives of non-integer order are now widely applied in many domains,
for example in economics, electronics, mechanics, biology, probability and viscoelasticity. A
particular interest for fractional derivation is related to the mechanical modeling of gums and
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rubbers. In short, all kinds of materials that preserve the memory of previous deformations
in particular viscoelastic. Indeed, the fractional derivation is introduced naturally. There
exists a many mathematical definitions of fractional order integration and derivation. These
definitions do not always lead to identical results but are equivalent for a wide large of func-
tions. We introduce the fractional integration operator as well as the two most definitions of
fractional derivatives, used, namely that Riemann-Liouville and Caputo, by giving the most
important properties of the notions. Fractional systems appear in different fields of research.
However, the progressive interest in their applications in the basic and applied sciences. It
can be noted that for most of the domains presented ( automatic, physics, mechanics of
continuous media). The fractional operators are used to take into account memory effects.
We can mention the works that reroute various applications of fractional computation. In
physics, on of the most remarkable applications of fractional computation in physics was in
the context of classical mechanics. Riewe, has shown that the Lagrangien of the motion of
temporal derivatives of fractional orders leads to an equation of motion with friction forces
and nonconservative are essential in macroscopic variational processing such as friction. This
result are remarkable because friction forces and non conservative forces are essential in the
usual macroscopic variational processing and therefore in the most advances methods clas-
sical mechanics. Riewe, has generalized the usual Lagrangian variation which depends on
the fractional derivatives in order to deal with the usual non-conservative forces. On the
another hand, several approaches have been developed to generalize the principle of least
action and the Euler-Lagrange equation to the case of fractional derivative. The definition
of the fractional order derivation is based on that of a fractional order integration, a frac-
tional order derivation takes on a global character in contrast to an integral derivation. It
turns out that the derivative of a fractional order of a function requires the knowledge of f(t)
over the entire interval ]a, b[, where in the whole case only the local knowledge of f around
t is necessary. This property allows to interpret fractional order systems as long memory
systems, the whole systems being then interpretable as systems with short memory. Now,
we give the definition of the fractional derivatives in the sense of Riemann-Liouville as well
as some essential properties.

Definition 1.3.16 The fractional integral of order α > 0, in sense Riemann-Liouville is
given

Iαa f(t) =
1

Γ(α)

∫ t

a
(t− s)α−1f(s)ds, t > a.

Definition 1.3.17 The fractional integral of order α > 0, in sense Riemann-Liouville of a
function f defined on the interval [a, b] is given by

Dα
RL,af(t) = DnIn−αa f(t) =

1

Γ(n− α)

dn

tn

∫ t

a
(t− s)n−α−1f(s)ds, n = [α] + 1, t > a.

In particular, if α = 0, then

D0
RL,af(t) = I0

af(t) = f(t)
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if α = n ∈ IN, then

Dn
RL,af(t) = f (n)(t)

Moreover, if 0 < α < 1, then n = 1, then

Dα
RL,af(t) =

1

Γ(1− α)

d

t

∫ t

a
(t− s)−αf(s)ds, t > a.

Example:

Let α > 0,γ > −1 and f(t) = (t− a)γ, then

Iαa f(t) =
Γ(γ + 1)

Γ(γ + α + 1)
(t− a)γ+α,

Dα
RL,af(t) =

Γ(γ)

Γ(γ − α + 1)
(t− a)γ−α,

In particular, if γ = 0 and α > 0, then Dα
RL,a(C) = C (t−a)−α

Γ(1α)
. The derivatives of Riemann-

Liouville have certain disadvantages when attempting to model real world phenomena. The
problems studied require a definition of the fractional derivatives allowing the use of the
physically interpretable initial conditions including y(0), y′(0), etc. There shortcomings led
to an alternative definition of fractional derivatives that satisfies these demands in the last
sixties. It was introduced by Caputo. In fact, Caputo and Minardi used this definition in
their work on viscoelasticity. Now, we give the definition of the fractional derivatives in the
sense of Caputo as well as some essential properties.

1.3.5 Geometric Condition

In this section, we present two different types on the geometric conditions.

Definition 1.3.18 We say that the multiplier control condition MGC holds if there exist
x0 ∈ IRd and a positive constant m0 > 0 such that

m.ν ≤ 0 on Γ0 and m.ν ≥ m0 on Γ1,

whith m(x) = x− x0, for all x ∈ IRd

We recall the Geometric Control condition GCC introduced by Bardos, Lebeau and Rauch
[13] :

Definition 1.3.19 We say that Γ satisfies the geometric condition named GCC, if every
ray of geometrical optics, starting at any point x ∈ Ω at time t = 0, hits Γ1 in finite time T .
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Remark 1.3.2 In [13], Bardos et al. proved that (H) holds if Γ is smooth (of class C∞),
Γ̄0 ∩ Γ̄1 = ∅ and the GCC condition. For less regular domains, namely of class C2, (H)
holds if the vector field assumptions described in [33] (see (i), (ii), (iii) of Theorem 1 in [33])
hold. Moreover, in Theorem 1.2 of [34] the authors prove that (H) holds for smooth domains
under weaker geometric conditions than in [33] (without (ii) of Theorem 1). Finally, it is easy
to see that the multiplier control condition MCC implies that the vector field assumptions
described in [33] are satisfied and therefore the condition (H) holds if MCC holds.

1.3.6 Appendix

Theorem 1.3.13 (see [26]) Let µ be the function defined by

µ(ξ) = |ξ|
2α−d

2 , ξ ∈ IRd and 0 < α < 1.(1.2)

The relation between the ”imput” U and the ”output” O of the following system

∂tω(ξ, t) + (|ξ|2 + η)ω(ξ, t)− U(t)µ(ξ) = 0, ξ ∈ IRd, t ∈ IR+ and η ≥ 0,(1.3)

ω(ξ, 0) = 0,(1.4)

O(t) =
2 sin(απ)Γ(d

2
+ 1)

dπ
d
2

+1

∫
IRd
µ(ξ)ω(ξ, t)dξ,(1.5)

is given by

O = I1−α,ηU = Dα,ηU.(1.6)

Lemma 1.3.1 For all λ ∈ IR and η > 0, we have

A1 =
∫

IRd

|ξ|2α−d

|λ|+ η + |ξ|2
dξ = c(|λ|+η)α−1 and A2 =

( ∫
IRd

|ξ|2α−d

(|λ|+ η + |ξ|2)2
dξ
) 1

2 = c̃(|λ|+η)
α
2
−1

where c, c̃ are two positive constants given by

c =
dπ

d
2

+1

2Γ(d
2

+ 1) sin(απ)
and c̃ =

(
dπ

d
2

2Γ( d
2

+1)

∫ +∞

1

(y − 1)α

y2
dy
) 1

2 .

Lemma 1.3.2 if λ ∈ D = {λ ∈ IC, λ+ η > 0} ∪ {λ ∈ IC,F(λ) 6= 0}, then

∫ +∞

−∞

µ2(ξ)

λ+ η + ξ2
dξ =

π

sin(απ)
(λ+ η)α−1.
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Chapter 2

WELL-POSEDENESS AND
ASYMPTOTIC BEHAVIOR OF
TIMOSHENKO BEAM SYSTEM
WITH DYNAMIC BOUNDARY
DISSIPATIVE FEEDBACK OF
FRACTIONAL DERIVATIVE TYPE

2.1 Introduction

In this chapter we investigate the existence and decay properties of solutions for the initial
boundary value problem of the linear Timoshenko beam system of the type

(P )
{
ρ1ϕtt(x, t)−K(ϕx + ψ)x(x, t) = 0 in (0, L)× (0,+∞),
ρ2ψtt(x, t)− bψxx(x, t) +K(ϕx + ψ)(x, t) = 0 in (0, L)× (0,+∞),

where (x, t) ∈ (0, L)× (0,+∞). This system is subject to the boundary conditions

ϕ(0, t) = 0, ψ(0, t) = 0, in (0,+∞),
m1ϕtt(L, t) +K(ϕx + ψ)(L, t) = −γ1∂

α,η
t ϕ(L, t) in (0,+∞),

m2ψtt(L, t) + bψx(L, t) = −γ2∂
α,η
t ψ(L, t) in (0,+∞),

where γi > 0, i = 1, 2. The notation ∂α,ηt stands for the generalized Caputo’s
fractional derivative of order α, 0 < α < 1, with respect to the time variable. It is defined
as follows

∂α,ηt w(t) =
1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s)dw

ds
(s) ds, η ≥ 0.

In other words, we investigate two dissipative effects at the boundary. The system is finally
completed with initial conditions{

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), ψ(x, 0) = ψ0(x),
ψt(x, 0) = ψ1(x), x ∈ (0, L),

29
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where the initial data (ϕ0, ϕ1, ψ0, ψ1) belong to a suitable function space.
A simple model describing the transverse vibration of a beam, which was developed in

[39], is given by a system of coupled hyperbolic equations of the form{
ρutt(x, t) = (K(ux − φ))x in (0, L)× (0,+∞),
ρ̃φtt(x, t) = (EIψx)x +K(ux − φ) in (0, L)× (0,+∞),

where t denotes the time variable, x is the space variable along the beam of length L, in its
equilibrium configuration, u is the transverse displacement of the beam and φ is the rotation
angle of the filament of the beam. The coefficients ρ, ρ̃, E, I and K are respectively the
density (the mass per unit length), the polar moment of inertia of a cross section, Young’s
modulus of elasticity, the moment of inertia of a cross section, and the shear modulus.

There are a number of publications concerning the stabilization of Timoshenko system
with different kinds of damping (see [1], [18], [30], [31], [33] and [36]). Raposo et al. [36]
proved the exponential decay of the solution for the following linear system of Timoshenko-
type beam equations with linear frictional dissipative terms:

ρ1ϕtt −K(ϕx + ψ)x + µ1ϕt = 0
ρ2ψtt − bψxx +K(ϕx + ψ) + µ̃1ψt = 0.

Messaoudi and Mustafa [30] (see also [33]) considered the stabilization for the following
Timoshenko system with nonlinear internal feedbacks:

ρ1ϕtt −K(ϕx + ψ)x + g1(ψt) = 0
ρ2ψtt − bψxx +K(ϕx + ψ) + g2(ψt) = 0.

Recently, Park and Kang [33] considered the stabilization of the Timoshenko system with
weakly nonlinear internal feedbacks.

Kim and Renardy [18] considered (P ) together with two boundary controls of the form

K(ϕx + ψ)(L, t) = −γ1∂tϕ(L, t) in (0,+∞)
bψx(L, t) = −γ2∂tψ(L, t) in (0,+∞)

and used the multiplier techniques to establish an exponential decay result for the natural
energy of (P ). In addition, a polynomial decay result was established by Yan [43] when
considering two boundary frictional damping terms with polynomial growth near the origin.
We also recall the result by G. Q. Xu, D. X. Feng [42], where the authors proved a result
similar to the one in [18] by adopting the spectral analysis approach.

L. Zietsman, N.F.J. van Rensburg and A.J. van der Merwe [44] considered a one-
dimensional hybrid structure consisting of a Timoshenko beam system (P ) with a tip load
attached to one free end. The beam is clamped at x = 0 while the tip load is fixed to the
end x = L in such a manner that the center of mass of the load is coincident with its point
of attachment to the beam. We assume interaction between the beam and the load. Thus
the forces and moments within the vibrating beam are transmitted to the tip load which
moves in accordance with Newton’s law. Dissipation is introduced into the coupled model
by applying feedback boundary moment and force controls on the shear and displacement
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velocities ψt and ϕt at x = L. Hence the system (P ) is subject to the following boundary
conditions

mϕtt(L, t) +K(ϕx + ψ)(L, t) = −γ1∂tϕ(L, t) in (0,+∞),
Imψtt(L, t) + bψx(L, t) = −γ2∂tψ(L, t) in (0,+∞),

where the coefficients m and Im denote respectively the mass and the rotary inertia of the tip
load. It is established an efficiency and accuracy of the finite element method for calculating
the eigenvalues and eigenmodes.

In [32] J. E. Muñoz Rivera and Andrés I. Ávila, studied the same problem as in [44].
They proved that the decay of the energy is not exponential, but polynomial. They used
the Weyls Theorem for lack of exponential stability and Borichev-Tomilov Theorem for
establishing decay rate E(t) ≤ c/t, t ≥ 0.

Very recently in [28] D. Mercier and V. Régnier studied a more general problem than
[32] (with constants k1 and k3 instead of K and b in boundary conditions). They proved
that the decay of the energy is not exponential, but polynomial that is E(t) ≤ c/t, t ≥ 0.
They used a semigroup theory with a frequency domain approach and Riesz basis property
of the generalized eigenvector of the system.

The boundary feedback under the consideration here are of fractional type and are de-
scribed by the fractional derivatives

∂α,ηt w(t) =
1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s)dw

ds
(s) ds

The order of our derivatives is between 0 and 1. Very little attention has been paid to this
type of feedback. In addition to being nonlocal, fractional derivatives involve singular and
nonintegrable kernels (t−α, 0 < α < 1). Therefore, the employment of mathematical analysis
tools, such as stability analysis is very difficult.

It is well known (see [27]) that, as ∂t, the fractional derivative ∂αt forces the system
to become dissipative and the solution to converge the equilibrium state. Therefore, when
applied on the boundary, we can consider them as controllers which help to suppress or
attenuate the undesirable vibrations.

Nowadays, fractional calculus is a well-established theory with strong mathematical bases
and its application has become a new interest in research areas such as electrical circuits,
chemical processes, signal processing, bioengineering, viscoelasticity and obviously control
systems (see [34]).

Control of fractional order type is not only important from the theoretical point of view
but also for applications. It is the generalization of the classical integer order control theory,
which could lead to a more adequate modeling and more robust control performance. Indeed,
it has been observed by experiments that many concepts cannot be described in Newtonian
terms. For example, in viscoelasticity, due to the nature of the material microstructure, both
elastic solid and viscous fluid like response qualities are involved. More precisely, the stress
at each point and at each instant does not depend only on the present value of the strain
but also on the entire temporal prehistory of the motion from 0 up to time t. Viscoelastic
response occurs in a variety of materials, such as soils, concrete, rubber, cartilage, biological
tissue, glasses, and polymers (see [4], [5], [6] and [24]).



32

Our purpose in this chapter is to give a global solvability in Sobolev spaces and energy
decay estimates of the strong solutions to the problem (P ) for damping of fractional derivative
type. To obtain global solutions to the problem (P ), we use the argument combining the
semigroup theory ([10]) with the energy estimate method. To prove decay estimates, we use
a frequency domain approach and a Theorem of A. Borichev and Y. Tomilov.

2.2 Augmented model

This section is concerned with the reformulation of the model (P ) into an augmented system.
For that, we need the following claims.

Theorem 2.2.1 (see [26]) Let µ be the function:

µ(ξ) = |ξ|(2α−1)/2, −∞ < ξ < +∞, 0 < α < 1.(2.1)

Then the relationship between the ‘input’ U and the ‘output’ O of the system

∂tφ(ξ, t) + ξ2φ(ξ, t) + ηφ(ξ, t)− U(t)µ(ξ) = 0, −∞ < ξ < +∞, η ≥ 0, t > 0,(2.2)

φ(ξ, 0) = 0,(2.3)

O(t) = (π)−1 sin(απ)
∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ(2.4)

is given by

O = I1−α,ηU.(2.5)

where

[Iα,ηf ](t) =
1

Γ(α)

∫ t

0
(t− τ)α−1e−η(t−τ)f(τ) dτ

Lemma 2.2.1 If λ ∈ D = {λ ∈ IC : Reλ+ η > 0} ∪ {λ ∈ IC : Imλ 6= 0} then

Fµ(λ) =
∫ +∞

−∞

µ2(ξ)

λ+ η + ξ2
dξ =

π

sinαπ
(λ+ η)α−1.

Proof Let us set

fλ(ξ) =
µ2(ξ)

λ+ η + ξ2
.

We have ∣∣∣∣∣ µ2(ξ)

λ+ η + ξ2

∣∣∣∣∣ ≤


µ2(ξ)

Reλ+ η + ξ2
or

µ2(ξ)

|Imλ|+ η + ξ2
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Then the function fλ is integrable. Moreover

∣∣∣∣∣ µ2(ξ)

λ+ η + ξ2

∣∣∣∣∣ ≤


µ2(ξ)

η0 + η + ξ2
for all Reλ ≥ η0 > −η

µ2(ξ)

η̃0 + ξ2
for all |Imλ| ≥ η̃0 > 0

From Theorem 1.16.1 in [41], the function

Fµ : D → IC is holomorphic.

For a real number λ > −η, we have

∫ +∞

−∞

µ2(ξ)

λ+ η + ξ2
dξ =

∫ +∞

−∞

|ξ|2α−1

λ+ η + ξ2
dξ =

∫ +∞

0

xα−1

λ+ η + x
dx ( with ξ2 = x)

= (λ+ η)α−1
∫ +∞

1
y−1(y − 1)α−1 dy ( with y = x/(λ+ η) + 1)

= (λ+ η)α−1
∫ 1

0
z−α(1− z)α−1 dz ( with z = 1/y)

= (λ+ η)α−1B(1− α, α) = (λ+ η)α−1Γ(1− α)Γ(α) = (λ+ η)α−1 π

sin πα
.

Both holomorphic functions Fµ and λ 7→ (λ+η)α−1 π

sin πα
coincide on the half line ]−η,∞[,

hence on D following the principle of isolated zeroes.

We are now in a position to reformulate system (P ). Indeed, by using Theorem 2.2.1,
system (P ) may be recast into the augmented model:

(P ′)



ρ1ϕtt −K(ϕx + ψ)x = 0
∂tφ1(ξ, t) + (ξ2 + η)φ1(ξ, t)− ϕt(L, t)µ(ξ) = 0
ρ2ψtt − bψxx +K(ϕx + ψ) = 0
∂tφ2(ξ, t) + (ξ2 + η)φ2(ξ, t)− ψt(L, t)µ(ξ) = 0
ϕ(0, t) = 0, ψ(0, t) = 0,
ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x),
ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x),

m1ϕtt(L, t) +K(ϕx + ψ)(L, t) = −ζ1

∫ +∞

−∞
µ(ξ)φ1(ξ, t) dξ, ζ1 = γ1(π)−1 sin(απ)

m2ψtt(L, t) + bψx(L, t) = −ζ2

∫ +∞

−∞
µ(ξ)φ2(ξ, t) dξ, ζ2 = γ2(π)−1 sin(απ).

We define the energy associated to the solution of the problem (P ′) by the following formula:

E(t) =
ρ1

2
‖ϕt‖2

2 +
ρ2

2
‖ψt‖2

2 +
b

2
‖ψx‖2

2 +
K

2
‖ϕx + ψ‖2

2

+
m1

2
|ϕt(L, t)|2 +

m2

2
|ψt(L, t)|2 + (π)−1 sin(απ)

2∑
i=1

γi
2

∫ +∞

−∞
(φi(ξ, t))

2 dξ.
(2.6)
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Lemma 2.2.2 Let (ϕ, φ1, ψ, φ2) be a regular solution of the problem (P ′). Then, the energy
functional defined by (2.6) satisfies

E ′(t) = −(π)−1 sin(απ)
2∑
i=1

γi

∫ +∞

−∞
(ξ2 + η)(φi(ξ, t))

2 dξ ≤ 0.(2.7)

Remark 2.2.1 For an initial datum in D(A) (see Theorem 2.3.1 below), we known that
(ϕ, φ1, ψ, φ2) is of class C1 in time, thus we can derive the energy E(t).

Proof of Lemma 2.2.2. Multiplying the first equation in (P ′) by ϕt and the third equation
by ψt, integrating over (0, L) and using integration by parts, we get

1

2
ρ1
d

dt
‖ϕt‖2

2 −K
∫ L

0
(ϕx + ψ)xϕtdx = 0,

1

2
ρ2
d

dt
‖ψt‖2

2 − b
∫ L

0
ψxxψt dx+K

∫ L

0
(ϕx + ψ)ψtdx = 0.

Then

d

dt

(
ρ1

2
‖ϕt‖2

2 +
ρ2

2
‖ψt‖2

2 +
b

2
‖ψx‖2

2 +
K

2
‖ϕx + ψ‖2

2 +
m1

2
|ϕt(L, t)|2 +

m2

2
|ψt(L, t)|2

)
+ζ1ϕt(L, t)

∫+∞
−∞ µ(ξ)φ1(ξ, t) dξ + ζ2ψt(L, t)

∫+∞
−∞ µ(ξ)φ2(ξ, t) dξ = 0.

(2.8)

Multiplying the second equation in (P ′) by γ1(π)−1 sin(απ)φ1, the fourth equation in (P ′)
by γ2(π)−1 sin(απ)φ2 and integrating over (−∞,+∞), to obtain:

ζ1
2

d

dt
‖φ1‖2

2 + ζ1

∫ +∞

−∞
(ξ2 + η)(φ1(ξ, t))2 dξ − ζ1ϕt(L, t)

∫ +∞

−∞
µ(ξ)φ1(ξ, t) dξ = 0,

ζ2
2

d

dt
‖φ2‖2

2 + ζ2

∫ +∞

−∞
(ξ2 + η)(φ2(ξ, t))2 dξ − ζ2ψt(L, t)

∫ +∞

−∞
µ(ξ)φ2(ξ, t) dξ = 0.

(2.9)

From (2.6), (2.8) and (2.9) we get

E ′(t) = −
2∑
i=1

ζi

∫ +∞

−∞
(ξ2 + η)(φi(ξ, t))

2 dξ.

This completes the proof of the lemma.

2.3 Global existence

In this section we will give well-posedness results for problem (P ′) using semigroup theory.
Let us introduce the semigroup representation of the Timoshenko system (P ′). We consider
the following condition of the right end contour of wave

ϕt(L, t) = θ(t), ψt(L, t) = ϑ(t), for t > 0(2.10)
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were θ and ϑ solve the system

m1θt(t) + k(ϕx + ψ)(L, t) + ζ1

∫ +∞

−∞
µ(ξ)φ1(ξ, t) dξ = 0,

m2ϑt(t) + bψx(L, t) + ζ2

∫ +∞

−∞
µ(ξ)φ2(ξ, t) dξ = 0.

(2.11)

Let U = (ϕ, ϕt, φ1, θ, ψ, ψt, φ2, ϑ)T and rewrite (P ′) as

{
U ′ = AU,
U(0) = (ϕ0, ϕ1, φ01, θ0, ψ0, ψ1, φ02, ϑ0),

(2.12)

where the operator A is defined by

A



ϕ
u
φ1

θ
ψ
v
φ2

ϑ


=



u
K

ρ1

(ϕx + ψ)x

−(ξ2 + η)φ1 + u(L)µ(ξ)

− K
m1

(ϕx + ψ)(L)− ζ1
m1

∫ +∞

−∞
µ(ξ)φ1(ξ) dξ

v
b

ρ2

ψxx −
K

ρ2

(ϕx + ψ)

−(ξ2 + η)φ2 + v(L)µ(ξ)

− b
m2
ψx(L)− ζ2

m2

∫ +∞

−∞
µ(ξ)φ2(ξ) dξ



(2.13)

with domain

D(A) =


(ϕ, u, φ1, θ, ψ, v, φ2, ϑ)T in H : ϕ, ψ ∈ H2(0, L) ∩H1

∗ (0, L), u, v ∈ H1
∗ (0, L),

θ, ϑ ∈ IC,−(ξ2 + η)φ1 + u(L)µ(ξ),−(ξ2 + η)φ2 + v(L)µ(ξ) ∈ L2(−∞,+∞),
u(L) = θ, v(L) = ϑ,
|ξ|φ1, |ξ|φ2 ∈ L2(−∞,+∞)

 ,
(2.14)
where the energy space H is defined as

H = (H1
∗ (0, L)× L2(0, L)× L2(−∞,+∞)× IC)2

where

H1
∗ (0, L) = {ϕ ∈ H1(0, L) : ϕ(0) = 0}.

For U = (ϕ, u, φ1, θ, ψ, v, φ2, ϑ)T , U = (ϕ, u, φ1, θ, ψ, v, φ2, ϑ)T , we define the following inner
product in H

〈U,U〉H =
∫ L

0

(
ρ1uu+ ρ2vv + bψxψx +K(ϕx + ψ)(ϕx + ψ) dx

+
2∑
i=1

ζi

∫ +∞

−∞
φiφi dξ +m1θθ +m2ϑϑ.
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We show that the operator A generates a C0- semigroup in H. In this step, we prove that
the operator A is dissipative. Let U = (ϕ, u, φ1, θ, ψ, v, φ2, ϑ)T . Using (2.12), (2.7) and the
fact that

E(t) =
1

2
‖U‖2

H,(2.15)

we get

〈AU,U〉H = −
2∑
i=1

ζi

∫ +∞

−∞
(ξ2 + η)(φi(ξ))

2 dξ.(2.16)

Consequently, the operator A is dissipative. Now, we will prove that the operator λI − A
is surjective for λ > 0. For this purpose, let (f1, f2, f3, f4, f5, f6, f7, f8)T ∈ H, we seek
U = (ϕ, u, φ1, θ, ψ, v, φ2, ϑ)T ∈ D(A) solution of the following system of equations

λϕ− u = f1,

λu− K

ρ1

(ϕx + ψ)x = f2,

λφ1 + (ξ2 + η)φ1 − u(L)µ(ξ) = f3,

λθ + K
m1

(ϕx + ψ)(L) + ζ1
m1

∫ +∞

−∞
µ(ξ)φ1(ξ) dξ = f4.

λψ − v = f5,

λv − b

ρ2

ψxx +
K

ρ2

(ϕx + ψ) = f6,

λφ2 + (ξ2 + η)φ2 − v(L)µ(ξ) = f7,

λϑ+ b
m2
ψx(L) + ζ2

m2

∫ +∞

−∞
µ(ξ)φ2(ξ) dξ = f8.

(2.17)

Suppose that we have found ϕ and ψ. Therefore, the first and the fifth equations in (2.17)
give {

u = λϕ− f1,
v = λψ − f5.

(2.18)

It is clear that u ∈ H1
∗ (0, L) and v ∈ H1

∗ (0, L). Furthermore, by (2.17) we can find φi (i =
1, 2) as 

φ1 =
f3(ξ) + µ(ξ)u(L)

ξ2 + η + λ
,

φ2 =
f7(ξ) + µ(ξ)v(L)

ξ2 + η + λ
.

(2.19)

By using (2.17) and (2.18) the functions ϕ and ψ satisfying the following system
λ2ϕ− K

ρ1

(ϕx + ψ)x = f2 + λf1,

λ2ψ − b

ρ2

ψxx +
K

ρ2

(ϕx + ψ) = f6 + λf5,
(2.20)

Solving system (2.20) is equivalent to finding (ϕ, ψ) ∈ (H2 ∩H1
∗ (0, L))2 such that

∫ L

0
(ρ1λ

2ϕw −K(ϕx + ψ)xw) dx =
∫ L

0
ρ1(f2 + λf1)w dx,∫ L

0
(ρ2λ

2ψχ− bψxxχ+K(ϕx + ψ)χ) dx =
∫ L

0
ρ2(f6 + λf5)χdx,

(2.21)
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for all (w, χ) ∈ H1
∗ (0, L) × H1

∗ (0, L). By using (2.21) and (2.19) the functions ϕ and ψ
satisfying the following system

∫ L

0
(ρ1λ

2ϕw +K(ϕx + ψ)wx) dx+ (λm1 + ζ̃1)u(L)w(L)

=
∫ L

0
ρ1(f2 + λf1)w dx− ζ1

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξ w(L) +m1f4w(L),∫ L

0
(ρ2λ

2ψχ+ bψxχx +K(ϕx + ψ)χ) dx+ (λm2 + ζ̃2)v(L)χ(L)

=
∫ L

0
ρ2(f6 + λf5)χdx− ζ2

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f7(ξ) dξ χ(L) +m2f8χ(L)

(2.22)

where ζ̃i = ζi

∫ +∞

−∞

µ2(ξ)

ξ2 + η + λ
dξ. Using again (2.18), we deduce that

{
u(L) = λϕ(L)− f1(L),
v(L) = λψ(L)− f5(L).

(2.23)

Inserting (2.23) into (2.22), we get

∫ L

0
(ρ1λ

2ϕw +K(ϕx + ψ)wx) dx+ λ(λm1 + ζ̃1)ϕ(L)w(L)

=
∫ L

0
ρ1(f2 + λf1)w dx− ζ1

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξ w(L) + (λm1 + ζ̃1)f1(L)w(L) +m1f4w(L),∫ L

0
(ρ2λ

2ψχ+ bψxχx +K(ϕx + ψ)χ) dx+ λ(λm2 + ζ̃2)ψ(L)χ(L)

=
∫ L

0
ρ2(f6 + λf5)χdx− ζ2

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f7(ξ) dξ χ(L) + (λm2 + ζ̃2)f5(L)χ(L) +m2f8χ(L).

(2.24)
Consequently, problem (2.24) is equivalent to the problem

a((ϕ, ψ), (w, χ)) = L(w, χ),(2.25)

where the bilinear form a : [H1
∗ (0, L)×H1

∗ (0, L)]2 → IR and the linear form
L : H1

∗ (0, L)×H1
∗ (0, L)→ IR are defined by

a((ϕ, ψ), (w, χ)) =
∫ L

0
(ρ1λ

2ϕw +K(ϕx + ψ)(wx + χ)) dx

+
∫ L

0
(ρ2λ

2ψχ+ bψxχx) dx+ λ(λm1 + ζ̃1)ϕ(L)w(L) + λ(λm2 + ζ̃2)ψ(L)χ(L)

and

L(w, χ) =
∫ L

0
ρ1(f2 + λf1)w dx− ζ1

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξ w(L) + (λm1 + ζ̃1)f1(L)w(L)

+m1f4w(L) +
∫ L

0
ρ2(f6 + λf5)χdx− ζ2

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f7(ξ) dξ χ(L)

+(λm2 + ζ̃2)f5(L)χ(L) +m2f8χ(L).
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It is easy to verify that a is continuous and coercive, and L is continuous. So applying
the Lax-Milgram theorem, we deduce that for all (w, χ) ∈ H1

∗ (0, L) × H1
∗ (0, L) problem

(2.25) admits a unique solution (ϕ, ψ) ∈ H1
∗ (0, L)×H1

∗ (0, L). Applying the classical elliptic
regularity, it follows from (2.24) that (ϕ, ψ) ∈ H2(0, L)×H2(0, L). Therefore, the operator
λI − A is surjective for any λ > 0. Consequently, using Hille-Yosida theorem, we have the
following results.

Theorem 2.3.1 (Existence and uniqueness)

(1) If U0 ∈ D(A), then system (2.12) has a unique strong solution

U ∈ C0(IR+, D(A)) ∩ C1(IR+,H).

(2) If U0 ∈ H, then system (2.12) has a unique weak solution

U ∈ C0(IR+,H).

2.4 Lack of exponential stability

We first state three well-known theorems.

Theorem 2.4.1 ([35]) Let S(t) = eAt be a C0-semigroup of contractions on Hilbert space
H. Then S(t) is exponentially stable if and only if

ρ(A) ⊇ {iβ : β ∈ IR} ≡ iIR

and
lim
|β|→∞

‖(iβI −A)−1‖L(H) <∞.

Theorem 2.4.2 ([9]) Let S(t) = eAt be a C0-semigroup on a Hilbert space H. If

iIR ⊂ ρ(A) and sup
|β|≥1

1

βl
‖(iβI −A)−1‖L(H) < M

for some l, then there exist c such that

‖eAtU0‖2 ≤ c

t
2
l

‖U0‖2
D(A).

Theorem 2.4.3 ([3]) Let A be the generator of a uniformly bounded C0 semigroup {S(t)}t≥0

on a Hilbert space H. If:

(i) A does not have eigenvalues on i IR.
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(ii) The intersection of the spectrum σ(A) with i IR is at most a countable set.

Then the semigroup {S(t)}t≥0 is asymptotically stable, i.e, ‖S(t)z‖H → 0 as t→∞ for any
z ∈ H.

Our main result is the following

Theorem 2.4.4 The semigroup generated by the operator A is not exponentially stable.

Proof
We will examine two cases.
Case 1 η = 0: We shall show that iλ = 0 is not in the resolvent set of the operator A.
Indeed, noting that (sinx, 0, 0, 0, 0, 0, 0, 0, )T ∈ H, and denoting by (ϕ, u, φ1, θ, ψ, v, φ2, ϑ)T

the image of (sinx, 0, 0, 0, 0, 0, 0, 0)T by A−1, we see that φ1(ξ) = |ξ| 2α−5
2 sinL. But, then

φ1 6∈ L2(−∞,+∞), since α ∈ (0, 1) and so (ϕ, u, φ1, θ, ψ, v, φ2, ϑ)T 6∈ D(A).
Case 2 η 6= 0: We aim to show that an infinite number of eigenvalues of A approach the
imaginary axis which prevents the Timoshenko system (P ) from being exponentially stable.
Indeed We first compute the characteristic equation that gives the eigenvalues of A.

Let λ be an eigenvalue of A with associated eigenvector U = (ϕ, u, φ1, θ, ψ, v, φ2, ϑ)T .
Then AU = λU is equivalent to

λϕ− u = 0,

λu− K

ρ1

(ϕx + ψ)x = 0,

λφ1 + (ξ2 + η)φ1 − u(L)µ(ξ) = 0,

λθ + K
m1

(ϕx + ψ)(L) + ζ1
m1

∫ +∞

−∞
µ(ξ)φ1(ξ) dξ,

λψ − v = 0,

λv − b

ρ2

ψxx +
K

ρ2

(ϕx + ψ) = 0,

λφ2 + (ξ2 + η)φ2 − v(L)µ(ξ) = 0,

λϑ+ b
m2
ψx(L) + ζ2

m2

∫ +∞

−∞
µ(ξ)φ2(ξ) dξ.

(2.26)

From (2.26)1 − (2.26)2 and (2.26)5 − (2.26)6 for such λ, we find
λ2ϕ− K

ρ1

(ϕx + ψ)x = 0,

λ2ψ − b

ρ2

ψxx +
K

ρ2

(ϕx + ψ) = 0.
(2.27)

Since θ = u(L) and ϑ = v(L), using (2.26)3 − (2.26)4 and (2.26)7 − (2.26)8, we get

K

m1

(ϕx + ψ)(L) +
(
λ+

γ1

m1

(λ+ η)α−1
)
λϕ(L) = 0,

b

m2

ψx(L) +
(
λ+

γ2

m2

(λ+ η)α−1
)
λψ(L) = 0,

ϕ(0) = ψ(0) = 0.

(2.28)
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We set
ϕ̃ = (ϕx + ψ), ψ̃ = ψx.

(2.27) is equivalent to 
λ2ϕ− K

ρ1

ϕ̃x = 0,

λ2ψ − b

ρ2

ψ̃x +
K

ρ2

ϕ̃ = 0.
(2.29)

Then 
(λ2 +

K

ρ2

)ϕ̃− K

ρ1

ϕ̃xx −
b

ρ2

ψ̃x = 0 ((2.29)1x+ (2.29)2),

λ2ψ̃ − b

ρ2

ψ̃xx +
K

ρ2

ϕ̃x = 0.
(2.30)

From (2.29)2 we have

ϕ̃ =
ρ2

K
(−λ2ψ +

b

ρ2

ψ̃x)

ϕ̃xx =
ρ2

K
(−λ2ψxx +

b

ρ2

ψ̃xxx).

Replacing this in (2.30)1, we get

ψ′′′′ − λ2
(
ρ1

K
+
ρ2

b

)
ψ′′ +

ρ1

K

ρ2

b
λ2

(
λ2 +

K

ρ2

)
ψ = 0.(2.31)

The characteristic polynomial of (2.31) is

s4 −
(
ρ1

K
+
ρ2

b

)
λ2s2 +

ρ1

K

ρ2

b
λ2

(
λ2 +

K

ρ2

)
= 0.

The solution ψ is given by

ψ(x) =
4∑
i=1

cie
tix(2.32)

where ci ∈ IC for all 1 ≤ i ≤ 4 and
t1(λ) = λ

√
( ρ1K +

ρ2
b )+

√
( ρ1K −

ρ2
b )

2
− 4ρ1
bλ2

2
, t2(λ) = −t1(λ),

t3(λ) = λ

√
( ρ1K +

ρ2
b )−

√
( ρ1K −

ρ2
b )

2
− 4ρ1
bλ2

2
, t4(λ) = −t3(λ).

From (2.29)1 and (2.30)2, we have

ϕ =
K

ρ1

1

λ2
ϕ̃x =

ρ2

ρ1

1

λ2

(
−λ2ψx +

b

ρ2

ψ̃xx

)
.

Thus the boundary conditions may be written as the following system:

ψ(0) = 0 =⇒
4∑
i=1

ci = 0

ϕ(0) = 0 =⇒
4∑
i=1

(
−λ2ti +

b

ρ2

t3i

)
ci = 0
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b

m2

ψx(L)+
(
λ+

γ2

m2

(λ+ η)α−1
)
λψ(L) = 0 =⇒

4∑
i=1

(
b

m2

ti + (λ+
γ2

m2

(λ+ η)α−1)λ

)
etiLci = 0

K

m1

(ϕx + ψ)(L) +
(
λ+

γ1

m1

(λ+ η)α−1
)
λϕ(L) = 0 =⇒

4∑
i=1

(
− 1

m1

λ2 − 1

ρ1

λ
(
λ+

γ1

m1

(λ+ η)α−1
)
ti +

b

m1ρ2

t2i +
b

ρ1ρ2

1

λ

(
λ+

γ1

m1

(λ+ η)α−1
)
t3i

)
etiLci = 0

MC(λ) =


1 1 1 1

h1(t1) h1(t2) h1(t3) h1(t4)
h2(t1)et1L h2(t2)et2L h2(t3)et3L h2(t4)et4L

h3(t1)et1L h3(t2)et2L h3(t3)et3L h3(t4)et4L



c1

c2

c3

c4

 =


0
0
0
0

(2.33)

where

h1(r) = −λ2r + b
ρ2
r3,

h2(r) =
b

m2

r + (λ+
γ2

m2

(λ+ η)α−1)λ,

h3(r) = − 1

m1

λ2 − 1

ρ1

λ
(
λ+

γ1

m1

(λ+ η)α−1
)
r +

b

m1ρ2

r2 +
b

ρ1ρ2

1

λ

(
λ+

γ1

m1

(λ+ η)α−1
)
r3.

Set r2
1 = ρ2

b
, r2

2 = ρ1
K

and l = K/b. We will examine two cases.

Case 1 r1 = r2:
We start by the expansion of t1 and t3:

t1(λ) = r1λ+
(
i

2

√
l
)

+
1

8

l

r1

1

λ
−
(
i

16

√
ll

r2
1

)
1

λ2
−
(

5

128

l2

r3
1

)
1

λ3
+

(
7i

256

l2
√
l

r4
1

)
1

λ4
+O

(
1

λ5

)
(2.34)

t3(λ) = r1λ−
(
i

2

√
l
)

+
1

8

l

r1

1

λ
+

(
i

16

√
ll

r2
1

)
1

λ2
−
(

5

128

l2

r3
1

)
1

λ3
−
(

7i

256

l2
√
l

r4
1

)
1

λ4
+O

(
1

λ5

)
(2.35)

Using (2.34) and (2.35), we find the asymptotic development of:

h3(t1) = i
√
l

ρ1
λ2 +

(
−1

2
l

ρ1r1
+ i

√
l

m1r1

)
λ+ 1

8
i
(
√
l)

3

ρ1r21
+ γ1

i
√
l

m1ρ1
λα + γ1

−l−2i(1−α)
√
lηr1

2m1ρ1r1
λα−1 + 1

16
l2

ρ1r31

1
λ

− 5
128
i l

5
2

ρ1r41

1
λ2

+ 1
8
il

3
2λα−2 γ1

m1ρ1r21
+ 1

2
iλα−2η2

√
lγ1 (α− 2) α−1

m1ρ1
− 1

2
λα−2lηγ1

α−1
m1ρ1r1

+ o
(

1
λ2

)
.

(2.36)

h3(t2) = −i
√
l

ρ1
λ2 +

(
1
2

l
ρ1r1

+ i
√
l

m1r1

)
λ− 1

8
i l

3
2

ρ1r21
+ γ1

−i
√
l

m1ρ1
λα − γ1

−l−2i(1−α)
√
lηr1

2m1ρ1r1
λα−1 − 1

16
l2

ρ1r31

1
λ

+ 5
128
i l

5
2

ρ1r41

1
λ2
− 1

8
il

3
2λα−2 γ1

m1ρ1r21
− 1

2
iλα−2η2

√
lγ1 (α− 1) α−2

m1ρ1
+ 1

2
λα−2lηγ1

α−1
m1ρ1r1

+ o
(

1
λ2

)
.

(2.37)

h3(t3) = −i
√
l

ρ1
λ2 +

(
−1

2
l

ρ1r1
− i

√
l

m1r1

)
λ− 1

8
i l

3
2

ρ1r21
− γ1

i
√
l

m1ρ1
λα + γ1

−l+2i(1−α)
√
lηr1

2m1ρ1r1
λα−1 + 1

16ρ1r31
l2 1
λ

+ 5
128
i l

5
2

ρ1r41

1
λ2
− 1

8
il

3
2λα−2 γ1

m1ρ1r21
− 1

2
iλα−2η2

√
lγ1 (α− 2) α−1

m1ρ1
− 1

2
λα−2lηγ1

α−1
m1ρ1r1

+ o
(

1
λ2

)
.

(2.38)
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h3(t4) = i
√
l

ρ1
λ2 +

(
1
2

l
ρ1r1
− i

√
l

m1r1

)
λ+ 1

8
i l

3
2

ρ1r21
+ γ1

i
√
l

m1ρ1
λα − γ1

−l+2i(1−α)
√
lηr1

2m1ρ1r1
λα−1 − 1

16ρ1r31
l2 1
λ

− 5
128
i l

5
2

ρ1r41

1
λ2

+ 1
8
il

3
2λα−2 γ1

m1ρ1r21
+ 1

2
iλα−2η2

√
lγ1 (α− 1) α−2

m1ρ1
+ 1

2
λα−2lηγ1

α−1
m1ρ1r1

+ o
(

1
λ2

)
.

(2.39)

h2(t1) = λ2 + b λ
m2
r1 + 1

2
ib
√
l

m2
+ γ2

m2
λα + ηγ2

α−1
m2
λα−1 + 1

8
b l
m2r1

1
λ

+ 1
2
λα−2η2γ2 (α− 1) α−2

m2

− 1
16
ib l

3
2

m2r21

1
λ2

+ o
(

1
λ2

)
.

(2.40)

h2(t2) = λ2 − b λ
m2
r1 − 1

2
ib
√
l

m2
+ γ2

m2
λα + ηγ2

α−1
m2
λα−1 − 1

8
b l
m2r1

1
λ

+ 1
2
λα−2η2γ2 (α− 1) α−2

m2

+ 1
16
ib l

3
2

m2r21

1
λ2

+ o
(

1
λ2

)
.

(2.41)

h2(t3) = λ2 + b λ
m2
r1 − 1

2
ib
√
l

m2
+ γ2

m2
λα + ηγ2

α−1
m2
λα−1 + 1

8
b l
m2r1

1
λ

+ 1
2
λα−2η2γ2 (α− 1) α−2

m2

+ 1
16
ib l

3
2

m2r21

1
λ2

+ o
(

1
λ2

)
.

(2.42)

h2(t4) = λ2 − b λ
m2
r1 + 1

2
ib
√
l

m2
+ γ2

m2
λα + ηγ2

α−1
m2
λα−1 − 1

8
b l
m2r1

1
λ

+ 1
2
λα−2η2γ2 (α− 1) α−2

m2

− 1
16
ib l

3
2

m2r21

1
λ2

+ o
(

1
λ2

)
.

(2.43)

h1(t1) = i
√
lλ2 − 1

2
l
λ

r1

+
1

8
i
l
3
2

r2
1

+
1

16

l2

λr3
1

− 5

128
i
l
5
2

λ2r4
1

+O
(

1

λ3

)
.(2.44)

h1(t2) = −i
√
lλ2 +

1

2
l
λ

r1

− 1

8
i
l
3
2

r2
1

− 1

16

l2

λr3
1

+
5

128
i
l
5
2

λ2r4
1

+O
(

1

λ3

)
.(2.45)

h1(t3) = −i
√
lλ2 − 1

2
l
λ

r1

− 1

8
i
l
3
2

r2
1

+
1

16

l2

λr3
1

+
5

128
i
l
5
2

λ2r4
1

+O
(

1

λ3

)
.(2.46)

h1(t4) = i
√
lλ2 +

1

2
l
λ

r1

+
1

8
i
l
3
2

r2
1

− 1

16

l2

λr3
1

− 5

128
i
l
5
2

λ2r4
1

+O
(

1

λ3

)
.(2.47)
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Using the asymptotic development (2.36)-(2.47)

f(λ) = et3+t4
(
h1(t2)− (h1(t1)

)(
h2(t3)h3(t4)− h3(t3)h2(t4)

)
+

et1+t3
(
h1(t2)− (h1(t4)

)(
h2(t1)h3(t3)− h3(t1)h2(t3)

)
+

et1+t4
(
h1(t2)− (h1(t3)

)(
h3(t1)h2(t4)− h2(t1)h3(t4)

)
+

et2+t3
(
h1(t4)− (h1(t1)

)(
h2(t2)h3(t3)− h2(t3)h3(t2)

)
+

et2+t4
(
h1(t1)− (h1(t3)

)(
h2(t2)h3(t4)− h3(t2)h2(t4)

)
+

et1+t2
(
h1(t4)− (h1(t3)

)(
h2(t1)h3(t2)− h2(t2)h3(t1)

)
= −4l e

L(t1+t3)+eL(t2+t4)−2
ρ1

λ6 − 4l (m2ρ1 +m1ρ2) eL(t1+t3)−eL(t2+t4)

m1m2ρ1r1
λ5

−4l (γ1m2 + γ2m1) eL(t1+t3)+eL(t2+t4)−2
m1m2ρ1

λ4+α

+
(
−l2 eL(t1+t3)+eL(t1+t4)+eL(t2+t3)+eL(t2+t4)−4

ρ1r21
− 4bl e

L(t1+t3)+eL(t2+t4)+2
m1m2

+2ibl
3
2 ( 1

m1ρ2
− 1

m2ρ1
)
(
eL(t1+t4) − eL(t2+t3)

))
λ4

−4l
(
η (γ1m2 + γ2m1) (α− 1) eL(t1+t3)+eL(t2+t4)−2

m1m2ρ1
+ (γ2ρ1 + γ1ρ2) eL(t1+t3)−eL(t2+t4)

m1m2ρ1r1

)
λ3+α

−1

2

bl2

r1

(
1

m1ρ2

+ 5
1

m2ρ1

)(
eL(t1+t3) − eLt2+Lt4

)
λ3

−4l
γ1γ2

m1m2ρ1

(eL(t1+t3) + eL(t2+t4) − 2)λ2+2α +
8lη(1− α)γ1γ2

m1m2ρ1

(eL(t1+t3) + eL(t2+t4) − 2)λ1+2α

+

[
1

ρ1

(
γ1

m1

+
γ2

m2

)(−4lη2 − l2

r2
1

+ 6ldη2 − 2ld2η2)(eL(t1+t3) + eL(t2+t4) − 2)

+
4lb(1− α)ηr1

m1m2

(
γ1

ρ1

+
γ2

ρ2

)(eL(t1+t3) − eL(t2+t4))− l2

r2
1ρ1

(
γ1

m1

+
γ2

m2

)(eL(t1+t4) + eL(t2+t3) − 2)

−2ib
l3/2

m1m2

(
γ1

ρ1

+
γ2

ρ2

)(eL(t1+t4) − eL(t2+t3))

]
λ2+α

+

[
l3

ρ1r4
1

(eL(t1+t3) + eL(t2+t4) + eL(t1+t4) + eL(t2+t3) − 4)

− bl2

ρ1r4
1

(eL(t1+t3) + eL(t2+t4) + eL(t1+t4) + eL(t2+t3) + 4)

−1

4
i
l5/2b

r2
1

(
1

m1ρ2

+
3

m2ρ1

)(eL(t1+t4) − eL(t2+t3))

]
λ2 + o(λ1+α)

= − 4l

ρ1

λ6

[
(eL(t1+t3) + eL(t2+t4) − 2) +

(m2ρ1 +m1ρ2)

m1m2r1

eL(t1+t3) − eL(t2+t4)

λ

+ (γ1m2+γ2m1)
m1m2

eL(t1+t3)+eL(t2+t4)−2
λ2−α

+

(
l e
L(t1+t3)+eL(t1+t4)+eL(t2+t3)+eL(t2+t4)−4

4r21
+ bρ1

eL(t1+t3)+eL(t2+t4)+2
m1m2

−ibρ1
2
l
1
2 ( 1

m1ρ2
− 1

m2ρ1
)
(
eL(t1+t4) − eL(t2+t3)

))
1
λ2

(2.48)
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+
(
η (γ1m2 + γ2m1) (α− 1) eL(t1+t3)+eL(t2+t4)−2

m1m2
− (γ2ρ1 + γ1ρ2) eL(t1+t3)−eL(t2+t4)

m1m2r1

)
1

λ3−α

+
1

8

blρ1

r1

(
1

m1ρ2

+ 5
1

m2ρ1

)(
eL(t1+t3) − eLt2+Lt4

) 1

λ3

+
γ1γ2

m1m2

(eL(t1+t3) + eL(t2+t4) − 2)
1

λ4−2α
− 2η(1− α)

γ1γ2

m1m2

(eL(t1+t3) + eL(t2+t4) − 2)
1

λ5−2α

−
[

1

4
(
γ1

m1

+
γ2

m2

)(−4η2 − l

r2
1

+ 6dη2 − 2d2η2)(eL(t1+t3) + eL(t2+t4) − 2)

+b(1− α)ηρ1
r1

m1m2

(
γ1

ρ1

+
γ2

ρ2

)(eL(t1+t3) − eL(t2+t4))− l

4r2
1

(
γ1

m1

+
γ2

m2

)(eL(t1+t4) + eL(t2+t3) − 2)

−ibρ1
l1/2

2m1m2

(
γ1

ρ1

+
γ2

ρ2

)(eL(t1+t4) − eL(t2+t3))

]
1

λ4−α

−
[
l2

4r4
1

(eL(t1+t3) + eL(t2+t4) + eL(t1+t4) + eL(t2+t3) − 4)

− bl

4r4
1

(eL(t1+t3) + eL(t2+t4) + eL(t1+t4) + eL(t2+t3) + 4)

− 1

16
i
l3/2bρ1

r2
1

(
1

m1ρ2

+
3

m2ρ1

)(eL(t1+t4) − eL(t2+t3))

]
1
λ4

]
+ o

(
1

λ5−α

)
.

We set
f̃(λ) = f0(λ) + f1(λ)

λ
+ f2(λ)

λ2−α
+ f3(λ)

λ2
+ f4(λ)

λ3−α
+ f5(λ)

λ3
+ f6(λ)

λ4−α

+ f7(λ)
λ4−2α + f8(λ)

λ5−2α + f9(λ)
λ4

+ o
(

1
λ5−α

)(2.49)

f0(λ) = eL(t1+t3) + eL(t2+t4) − 2 = e−L(t1+t3)(eL(t1+t3) − 1)2(2.50)

f1(λ) = (m2ρ1+m1ρ2)
m1m2r1

(e(t1+t3)L − e−(t1+t3)L)

= (m2ρ1+m1ρ2)
m1m2r1

e−(t1+t3)L(e(t1+t3)L − 1)(e(t1+t3)L + 1)
(2.51)

f2(λ) = (γ1m2+γ2m1)
m1m2

(eL(t1+t3) + eL(t2+t4) − 2)

= (γ1m2+γ2m1)
m1m2

e−L(t1+t3)(eL(t1+t3) − 1)2
(2.52)

f3(λ) =

(
l e
L(t1+t3)+eL(t1+t4)+eL(t2+t3)+eL(t2+t4)−4

4r21
+ bρ1

eL(t1+t3)+eL(t2+t4)+2
m1m2

−ibρ1
2
l
1
2 ( 1

m1ρ2
− 1

m2ρ1
)
(
eL(t1+t4) − eL(t2+t3)

))

= e−L(t1+t3)

(
l

4r21
((eL(t1+t3) − 1)2 + (eLt1 − eLt3)2) + bρ1

m1m2
(eL(t1+t3) + 1)2

−ibρ1
2
l
1
2 ( 1

m1ρ2
− 1

m2ρ1
)
(
e2Lt1 − e2Lt3

))
(2.53)

f4(λ) = e−L(t1+t3)

(
η(α− 1) (γ1m2 + γ2m1)

m1m2

(eL(t1+t3) − 1)2 +
(γ2ρ1 + γ1ρ2)

m1m2r1

(e2L(t1+t3) − 1)

)
.

(2.54)

f5(λ) = −1

2

bl2

r1

(
1

m1ρ2

+ 5
1

m2ρ1

)
e−L(t1+t3)

(
e2L(t1+t3) − 1

)
(2.55)
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f6(λ) = −
[

1

4
(
γ1

m1

+
γ2

m2

)(−4η2 − l

r2
1

+ 6dη2 − 2d2η2)(eL(t1+t3) − 1)2

+b(1− α)ηρ1
r1

m1m2

(
γ1

ρ1

+
γ2

ρ2

)(e2L(t1+t3) − 1)− l

4r2
1

(
γ1

m1

+
γ2

m2

)(eLt1 − eLt3)2

−ibρ1
l1/2

2m1m2

(
γ1

ρ1

+
γ2

ρ2

)(e2Lt1 − e2Lt3)

](2.56)

f7(λ) =
γ1γ2

m1m2

e−L(t1+t3)(eL(t1+t3) − 1)2(2.57)

f8(λ) = −2η(1− α)
γ1γ2

m1m2

e−L(t1+t3)(eL(t1+t3) − 1)2(2.58)

f9(λ) = −e−L(t1+t3)

[
l2

4r4
1

((eL(t1+t3) − 1)2 + (eLt1 − eLt3)2)

− bl

4r4
1

((eL(t1+t3) + 1)2 + (eLt1 + eLt3)2)− 1

16
i
l3/2bρ1

r2
1

(
1

m1ρ2

+
3

m2ρ1

)(e2Lt1 − e2Lt3)

]
.

(2.59)

Lemma 2.4.1 (Asymptotic behavior of the large eigenvalues of A) The large eigenvalues of
A can be split into two families (λjk)k∈ZZ,|k|≥k0 , j = 1, 2, (k0 ∈ IN chosen large enough). The
following asymptotic expansions hold:

λ1
k =

i

Lr1

kπ + o(1), λ2
k =

i

Lr1

kπ + o(1).(2.60)

Either λ1
k = λ2

k and this root is of order 2, or λ1
k 6= λ2

k and these two roots are simple.

Proof. The multiplicity of the roots of f0 given by (2.60) is two and λ is a root of f0 if and
only if

(t1 + t3)L = 2ikπ.

Since t1 + t3 = 2r1λ+
1

4

1

r1

l
1

λ
+ o(

1

λ
). we deduce that, for each k ∈ ZZ, with |k| large enough,

corresponds a double root of f0; denoted by λ0
k which satisfies

λ0
k =

i

Lr1

kπ +O
(

1

k

)
.

We will now use Rouché’s Theorem. Let Bk = B(
i

Lr1

kπ, rk) be the ball of centrum ikπ and

radius rk = 1

k
1
4

and λ ∈ ∂Bk (i.e λ =
i

Lr1

kπ + rke
iθ, θ ∈ [0, 2π]). Then we successively have:

L(t1 + t3)(λ) = 2ikπ + 2Lr1rke
iθ +O

(
1

k

)

eL(t1+t3)(λ) = e2Lr1rke
iθ+O( 1

k)

= 1 + 2Lr1rke
iθ +O(r2

k).
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and

f0(λ) = (1− 2Lr1rke
iθ +O(r2

k))(2Lr1rke
iθ +O(r2

k))
2

= (1− 2Lr1rke
iθ +O(r2

k))(4L
2r2

1r
2
ke

2iθ +O(r3
k))

= 4r2
1L

2r2
ke

2iθ +O(r3
k).

It follows that there exists a positive constant c such that

∀λ ∈ ∂Bk, |f0(λ)| ≥ cr2
k =

c√
k
.

Then we deduce from (2.49) that |f(λ)− f0(λ)| = O
(

1

λ

)
= O

(
1

k

)
. It follows that, for |k|

large enough

∀λ ∈ ∂Bk, |f(λ)− f0(λ)| < |f0(λ)|.

Since the imaginary axis is an asymptote for the spectrum of A then system (2.33) is not
uniformly stable.
More information concerning the asymptotic behavior of the spectrum of A is given by:

Proposition 2.4.1 (Asymptotic expansions for the eigenvalues of A) Assume Condition

(H)
ρ1

m1

6= ρ2

m2

or L
√
l 6= 2kπ, k ∈ IN∗.

Then the large eigenvalues of the dissipative operator A are simple and can be split into
two families (λjk)k∈ZZ,|k|≥k0, j = 1, 2, (k0 ∈ IN, chosen large enough). Moreover, we have the
following asymptotic expansions for the eigenvalues of A:

λ1
k =

i

Lr1

kπ +
iq1

k
+

α̃1

k3−α +
q̃1

|k|3−α
+ o(

1

k3−α ), q1 ∈ IR, α̃1 ∈ iIR, q̃1 ∈ IR, q̃1 < 0, k ≥ k0

λ1
k = λ1

−k, k ≤ −k0.

λ2
k =

i

Lr1

kπ +
iq2

k
+

α̃2

k3−α +
q̃2

|k|3−α
+ o(

1

k3−α ), q2 ∈ IR, α̃2 ∈ iIR, q̃2 ∈ IR, q̃2 < 0, k ≥ k0

λ2
k = λ2

−k, k ≤ −k0.

Proof. Let λk = λjk with j = 1 or j = 2. It follows

λk =
i

Lr1

kπ + εk.(2.61)
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Using (2.34)-(2.35), we get

(t1 + t3)L = 2lr1λk +
lL

4r1

1

λk
− 5

64

L2l2

r3
1

1

λ3
+O

(
1

λ3

)
= 2ikπ + 2Lr1εk − i

lL2

4kπ
+ o

(
1

k2

)
+ o(εk)

2t1L = 2r1λk + iL
√
l +

lL

4r1

1

λk
− i

8

Ll
√
l

r2
1

1

λ2
+O

(
1

λ3

)
= 2ikπ + 2Lr1εk + iL

√
l − i lL

2

4kπ
+
i

8

L3l
√
l

π2k2
+ o

(
1

k2

)
+ o(εk)

2t3L = 2r1λk − iL
√
l +

lL

4r1

1

λk
+
i

8

Ll
√
l

r2
1

1

λ2
+O

(
1

λ3

)
= 2ikπ + 2Lr1εk − iL

√
l − i lL

2

4kπ
− i

8

L3l
√
l

π2k2
+ o

(
1

k2

)
+ o(εk).

(2.62)

It follows that

eL(t1+t3) = 1 + 2Lr1εk − i
lL2

4kπ
− l2L4

32π2k2
− i lL

3r1

2π

εk
k

+ o(εk) + o(
εk
k

) + o(
1

k2
)

e2Lt1 = eiL
√
l

(
1 + 2Lr1εk − i

lL2

4kπ
− l2L4

32π2k2
− i lL

3r1

2π

εk
k

+
i

8

L3l
√
l

π2k2
+ o(

εk
k

) + o(
1

k2
)

)

e2Lt3 = e−iL
√
l

(
1 + 2Lr1εk − i

lL2

4kπ
− l2L4

32π2k2
− i lL

3r1

2π

εk
k
− i

8

L3l
√
l

π2k2
+ o(

εk
k

) + o(
1

k2
)

)
.

(2.63)
Using (2.49), inserting (2.63) into f(λk) and keeping only the terms greater than or equal to

O(
1

k2
), we obtain after calculations

f(λk) = 4L2r2
1ε

2
k −

(
4 i
π
L2

k
mr2

1 + i
π
L3

k
lr1

)
εk −

(
1

16π2
L4

k2
l2 + 1

2π2
L3

k2
lmr1

+
L2r2

1

π2k2

(
4˜̃m− 4A sin2(

L
√
l

2
)−B sin(L

√
l)
))

+ o(ε2
k) + o(

εk
k

) + o(
1

k2
) = 0,

(2.64)

where

m =
m2ρ1 +m1ρ2

m1m2r1

, ˜̃m =
bρ1

m1m2

, A =
l

4r2
1

, B = bρ1

√
l

(
1

m1ρ2

− 1

m2ρ1

)
.

Multiplying (2.64) by k2 leads to:

4L2r2
1(kεk)

2 − i
(
4 1
π
L2mr2

1 + 1
π
L3lr1

)
(kεk)

−
(
L4l2

16π2 + L3lmr1
2π2 +

L2r2
1

π2

(
4˜̃m− 4A sin2

(
L
√
l

2

)
−B sin(L

√
l)
))

+ o(1) + o(kεk) + o(k2ε2
k) = 0.

Thus kεk is bounded and

4L2r2
1(kεk)

2 − i
(
4
L2mr21
π

+ L3lr1
π

)
(kεk)

−
(
L4l2

16π2 + L3lmr1
2π2 +

L2r2
1

π2

(
4˜̃m− 4A sin2

(
L
√
l

2

)
−B sin(L

√
l)
))

+ o(1) = 0.
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The previous equation has two solutions

kεk = 1
8πr1

(
4imr1 − 4r1

√
4˜̃m− 2A+ 2A cosL

√
l −B sinL

√
l −m2 + iLl

)
or

kεk = 1
8πr1

(
4imr1 + 4r1

√
4˜̃m− 2A+ 2A cosL

√
l −B sinL

√
l −m2 + iLl

)
.

It holds:

εk = 1
8πr1k

(
4imr1 − 4r1

√
4˜̃m− 2A+ 2A cosL

√
l −B sinL

√
l −m2 + iLl

)
or

εk = 1
8πr1k

(
4imr1 + 4r1

√
4˜̃m− 2A+ 2A cosL

√
l −B sinL

√
l −m2 + iLl

)
.

Set
P = 4˜̃m− 2A+ 2A cos(L

√
l)−B sin(L

√
l)−m2

= 4˜̃m−m2 − 2A+ 2A cos(L
√
l)−B sin(L

√
l).

As r2
1 = r2

2 =
ρ2

b
, we deduce that

4˜̃m−m2 = − 1

r2
1

(
ρ1

m1

− ρ2

m2

)2

.

Then

P = − 1

r2
1

(
ρ1

m1

− ρ2

m2

)2

−
√
l

r2
1

(
ρ1

m1

− ρ2

m2

)
sin(L

√
l)− 1

2

l

r2
1

+
1

2

l

r2
1

cos(L
√
l)

= − 1

r2
1

(√
l

2
sin(L

√
l) +

(
ρ1

m1

− ρ2

m2

))2

− l

4r2
1

(cos(L
√
l)− 1)2.

Hence

εk = i
8πr1k

(
4mr1 − 2

√(√
l sin(L

√
l) + 2

(
ρ1

m1

− ρ2

m2

))2

+ (cos(L
√
l)− 1)2 + Ll

)
+ o

(
1
k

)
or

εk = i
8πr1k

(
4mr1 + 2

√(√
l sin(L

√
l) + 2

(
ρ1

m1

− ρ2

m2

))2

+ (cos(L
√
l)− 1)2 + Ll

)
+ o

(
1
k

)
.

Step 2. From Step 1, we can write

λ1
k =

i

Lr1

kπ + i
q1

k
+
ε1
k

k
,

λ2
k =

i

Lr1

kπ + i
q2

k
+
ε2
k

k
,

where εjk = o(1).

(t1 + t3)L = i
2r1Lqj
k

+
2r1Lε

j
k

k
− i lL

2

4kπ
+ i

lL3r1

4k3π2
qj +

lL3r1

4k3π2
εjk − i

5

64

l2L4

k3π3
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Lt1 = kπi+ i
L
√
l

2
+ i

L

k
r1qj −

1

8

i

π

L2

k
l − 1

2

L2

k2
r2

1q
2
j +

L

k
εjkr1 +

i

8

L3l
√
l

π2k2

Lt3 = kπi− iL
√
l

2
+ i

L

k
r1qj −

1

8

i

π

L2

k
l − 1

2

L2

k2
r2

1q
2
j +

L

k
εjkr1 −

i

8

L3l
√
l

π2k2

e(t1+t3)L − 1 = 2iL
k
r1qj + 2L

2

k2
(εjk)

2r2
1 − 1

4
i
π
L2

k
l − 2L

2

k2
r2

1q
2
j + 2L

k
εjkr1 − 1

32π2
L4

k2
l2 − 5

64
i
π3

L4

k3
l2

− 5
256π4

L6

k4
l3 + 4iL

2

k2
εjkr

2
1qj + 7

32π3
L5

k4
l2r1qj − 1

2
i
π
L3

k2
lεjkr1 + 1

4π2
L3

k3
lεjkr1 − 1

2π2
L4

k4
lr2

1q
2
j

+ 1
2π

L3

k2
lr1qj + 1

4
i
π2

L3

k3
lr1qj.

et1L = (−1)ke
iL
√
l

2

(
1 + iL

k
r1qj − 1

8
i
π
L2

k
l − 1

2
L2

k2
r2

1q
2
j + L

k
εjkr1 − 1

128π2
L4

k2
l2 + 1

16
i
π2

L3

k2
l
3
2 + iL

2

k2
εjkr

2
1qj

−1
8
i
π
L3

k2
lεjkr1 + 1

8π
L3

k2
lr1qj

)
et3L = (−1)ke−

iL
√
l

2

(
1 + iL

k
r1qj − 1

8
i
π
L2

k
l − 1

2
L2

k2
r2

1q
2
j + L

k
εjkr1 − 1

128π2
L4

k2
l2 − 1

16
i
π2

L3

k2
l
3
2 + iL

2

k2
εjkr

2
1qj

−1
8
i
π
L3

k2
lεjkr1 + 1

8π
L3

k2
lr1qj

)
.

Using (2.49), Taylor series and simplification in the term of order 1/k2 coming from Step 1,
we get

f(λk) =
(
4L

2

k2
r2

1

)
(εjk)

2 +
(
8iL

2

k2
r2

1qj − 24L
3

k3
r3

1q
2
j − 4 i

π
L2

k2
mr2

1 − 3
8π2

L5

k3
l2r1 − i

π
L3

k2
lr1 − 2

π2
L4

k3
lmr2

1

+ 6
π
L4

k3
lr2

1qj + 16
π
L3

k3
mr3

1qj
)
εjk + (4L

4

k4
r4

1q
4
j − 8iL

3

k3
r3

1q
3
j + 1

64
i
π3

L6

k3
l3 − 5

128π4
L6

k4
l3 + 1

1024π4
L8

k4
l4

+1
8
i
π3

L5

k3
l2mr1 − 5

32π4
L5

k4
l2mr1 + 1

64π4
L7

k4
l3mr1 + 3

8π2
L6

k4
l2r2

1q
2
j − 3

8
i
π2

L5

k3
l2r1qj + 7

16π3
L5

k4
l2r1qj

− 1
32π3

L7

k4
l3r1qj + 3 i

π
L4

k3
lr2

1q
2
j + 8 i

π
L3

k3
mr3

1q
2
j − 1

π2
L4

k4
lr2

1q
2
j − 2

π
L5

k4
lr3

1q
3
j − 4

π2
L3

k4
mr3

1q
2
j

− 8
π
L4

k4
mr4

1q
3
j − 2 i

π2
L4

k3
lmr2

1qj + 1
π3

L4

k4
lmr2

1qj + 3
π2

L5

k4
lmr3

1q
2
j − 3

8π3
L6

k4
l2mr2

1qj

+s2−α(Lr1
iπ

)2−α(−4 L2

k4−α
r2

1q
2
j − 1

16π2
L4

k4−α
l2 + 1

π
L3

k4−α
lr1qj) + s3−α(Lr1

iπ
)3−α(4i L

k4−α
r1qj − 1

2
i
π

L2

k4−α
l)

−s4−α(Lr1
ikπ

)4−α + s41(Lr1
ikπ

)4 + s42(Lr1
ikπ

)4 + s43(Lr1
ikπ

)4 + +s3(4i L
k4
r1qj − 1

2
i
π
L2

k4
l)(Lr1

iπ
)3

+
l

4r2
1

(
Lr1

iπ
)2(2i sin(

L
√
l

2
))2

(
2i
L

k3
r1qj −

1

4

i

π

L2

k3
l

)
+ bρ1
m1m2

(8i L
k3
r1qj − i

π
L2

k3
l)(Lr1

iπ
)2 + l

4r21
(Lr1
iπ

)2(−4L
2

k4
r2

1q
2
j − 1

16π2
L4

k4
l2 + 1

π
L3

k4
lr1qj − sin(L

√
l)1

2
1
π2

L3

k4
l
3
2

−4 sin2(L
√
l

2
)(−3L

2

k4
r2

1q
2
j − 1

32π2
L4

k4
l2 + 1

2π
L3

k4
lr1qj)) + bρ1

m1m2
(−12L

2

k4
r2

1q
2
j − 3

16π2
L4

k4
l2 + 3

π
L3

k4
lr1qj)(

Lr1
iπ

)2

+2is2(Lr1
π

)2 sin(L
√
l)(2i L

k3
r1qj − 1

4
i
π
L2

k3
l) + 2is2(Lr1

π
)2 sin(L

√
l)(−2L

2

k4
r2

1q
2
j − 1

32π2
L4

k4
l2 + 1

2π
L3

k4
lr1qj)

+s2(Lr1
iπ

)2 i
4
L3
√
ll cosL

√
l

π2k4
+ s2−α(Lr1

iπ
)2−α(− i

π
L3

k4−α
lεjkr1 + 8i L2

k4−α
εjkr

2
1qj) + s3−α(Lr1

iπ
)3−α 4L

k4−α
εjkr1

+2 L3l
π2k3

r1 sin2(L
√
l

2
)εjk + bρ1

m1m2
(8 L

k3
εjkr1)(Lr1

iπ
)2 + s2−α(Lr1

iπ
)2−α(4 L2

k4−α
(εjk)

2r2
1) + 4is2

L3r31
π2k3

sin(L
√
l)εjk,

where

s2 = −ibρ1

2

√
l(

1

m1ρ2

− 1

m2ρ1

), s2−α =
γ1m2 + γ2m1

m1m2

, m =
ρ1m2 + ρ2m1

m1m2r1

, s3−α =
γ1ρ2 + γ2ρ1

m1m2r1

,

s3 =
1

8

lbρ1

r1

(
1

m1ρ2

+
5

m2ρ1

), s4−α =
b
√
lρ1

m1m2

(
γ1

ρ1

+
γ2

ρ2

) sin(L
√
l)

s41 =
l2

r4
1

sin2(
L
√
l

2
), s42 =

bl2

r4
1

(cos2(
L
√
l

2
) + 1), s43 = −bl

2ρ1

8r2
1

sin(L
√
l).
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Considering only the dominant terms of 1
k
, the following is obtaining:

f(λk) =
(
4L

2

k2
r2

1

)
(εjk)

2 +
(
8iL

2

k2
r2

1qj − 4 i
π
L2

k2
mr2

1 − i
π
L3

k2
lr1

)
εjk − 8iL

3

k3
r3

1q
3
j + 1

64
i
π3

L6

k3
l3

+1
8
i
π3

L5

k3
l2mr1 − 3

8
i
π2

L5

k3
l2r1qj + 3 i

π
L4

k3
lr2

1q
2
j + 8 i

π
L3

k3
mr3

1q
2
j − 2 i

π2
L4

k3
lmr2

1qj

+s2−α(Lr1
iπ

)2−α(−4 L2

k4−α
r2

1q
2
j − 1

16π2
L4

k4−α
l2 + 1

π
L3

k4−α
lr1qj) + s3−α(Lr1

iπ
)3−α(4i L

k4−α
r1qj − 1

2
i
π

L2

k4−α
l)

−s4−α(Lr1
ikπ

)4−α +
l

4r2
1

(
Lr1

iπ
)2(2i sin(

L
√
l

2
))2

(
2i
L

k3
r1qj −

1

4

i

π

L2

k3
l

)
+ bρ1
m1m2

(8i L
k3
r1qj − i

π
L2

k3
l)(Lr1

iπ
)2 + 2is2(Lr1

π
)2 sin(L

√
l)(2i L

k3
r1qj − 1

4
i
π
L2

k3
l).

We remark that

−8iL
3

k3
r3

1q
3
j + 1

64
i
π3

L6

k3
l3 + 1

8
i
π3

L5

k3
l2mr1 − 3

8
i
π2

L5

k3
l2r1qj + 3 i

π
L4

k3
lr2

1q
2
j + 8 i

π
L3

k3
mr3

1q
2
j

−2 i
π2

L4

k3
lmr2

1qj +
l

4r2
1

(
Lr1

iπ
)2(2i sin(

L
√
l

2
))2

(
2i
L

k3
r1qj −

1

4

i

π

L2

k3
l

)
+ bρ1
m1m2

(8i L
k3
r1qj − i

π
L2

k3
l)(Lr1

iπ
)2 + 2is2(Lr1

π
)2 sin(L

√
l)(2i L

k3
r1qj − 1

4
i
π
L2

k3
l) = 0.

Then εjk satisfy

f(λk) =
(
4L

2

k2
r2

1

)
(εjk)

2 +
(
8iL

2

k2
r2

1qj − 4 i
π
L2

k2
mr2

1 − i
π
L3

k2
lr1

)
εjk

+s2−α(Lr1
iπ

)2−α(−4 L2

k4−α
r2

1q
2
j − 1

16π2
L4

k4−α
l2 + 1

π
L3

k4−α
lr1qj)

+s3−α(Lr1
iπ

)3−α(4i L
k4−α

r1qj − 1
2
i
π

L2

k4−α
l)− s4−α(Lr1

ikπ
)4−α

(2.65)

Multiplying (2.65) by k4 leads to:

f(λk) = (4L2r2
1) (kεjk)

2 + k
(
8iL2r2

1qj − 4 i
π
L2mr2

1 − i
π
L3lr1

)
(kεjk) + s2−α(Lr1

iπ
)2−αkα(−4L2r2

1q
2
j

− 1
16π2L

4l2 + 1
π
L3lr1qj) + s3−α(Lr1

iπ
)3−αkα(4iLr1qj − 1

2
i
π
L2l)− s4−αk

α(Lr1
iπ

)4−α + o(1) = 0.

Hence ε1
k and ε2

k satisfy

(
4L2r2

1

)
(kε1

k)
2 − 4k

i

π
L2
√
θr2

1(kε1
k) + I1k

α(
Lr1

iπ
)2−αL

2r2
1

π2
+ o(1) = 0

(
4L2r2

1

)
(kε2

k)
2 + 4k

i

π
L2
√
θr2

1(kε2
k) + I2k

α(
Lr1

iπ
)2−αL

2r2
1

π2
+ o(1) = 0,

where
I1 = 2s3−α(m−

√
θ)− s2−α(m−

√
θ)2 + s4−α

I2 = 2s3−α(m+
√
θ)− s2−α(m+

√
θ)2 + s4−α

θ =
1

r2
1

(√
l

2
sin(L

√
l) +

(
ρ1

m1

− ρ2

m2

))2

+
l

4r2
1

(cos(L
√
l)− 1)2

kε1
k = − I1

4π
√
θ

(
Lr1

π

)2−α
(cos(1− α)

π

2
− i cos(1− α)

π

2
)

1

k1−α + o(1)

kε2
k =

I2

4π
√
θ

(
Lr1

π

)2−α
(cos(1− α)

π

2
− i cos(1− α)

π

2
)

1

k1−α + o(1).
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Then

ε1
k = − I1

4π
√
θ

(
Lr1

π

)2−α
(cos(1− α)

π

2
− i cos(1− α)

π

2
)

1

k2−α + o
(

1

k2−α

)

ε2
k =

I2

4π
√
θ

(
Lr1

π

)2−α
(cos(1− α)

π

2
− i cos(1− α)

π

2
)

1

k2−α + o
(

1

k2−α

)
.

Since all the eigenvalues of A are on the left of the imaginary axis, necessarily I1 > 0 and
I2 < 0. Note that, if γ1 = γ2 = 0 then I1 = I2 = 0.

Remark 2.4.1 If condition (H) does not hold, we can study the asymptotic behavior of the
spectrum of A but the calculation is long.

Case 2 r1 6= r2:
We start by the expansion of t1 and t3:

t1 = r1λ−
l

2

r2
2

r1(r2
1 − r2

2)

1

λ
− l2

8

r4
2(5r2

1 − r2
2)

r3
1(r2

1 − r2
2)3

1

λ3
+O

(
1

λ5

)
.(2.66)

t3 = r2λ+
l

2

r2

(r2
1 − r2

2)

1

λ
+
l2

8

r2(5r2
2 − r2

1)

(r2
1 − r2

2)3

1

λ3
+O

(
1

λ5

)
.(2.67)

h1(t1) = −lλ r2
2

r1(r2
1 − r2

2)
− 1

2
l2r4

2

r2
1 + r2

2

r3
1 (r2

1 − r2
2)

3

1

λ
+O

(
1

λ3

)
.(2.68)

h1(t2) = lλ
r2

2

r1(r2
1 − r2

2)
+

1

2
l2r4

2

r2
1 + r2

2

r3
1(r2

1 − r2
2)3

1

λ
+O

(
1

λ3

)
.(2.69)

h1(t3) = −λ3(r2
1 − r2

2)
r2

r2
1

− 1

2
lr2

r2
1 − 3r2

2

r2
1 (r2

1 − r2
2)
λ+

1

8
l2r2

r4
1 + 9r4

2 − 2r2
1r

2
2

r2
1 (r2

1 − r2
2)

3

1

λ
+O

(
1

λ3

)
.(2.70)

h1(t4) = λ3
(
r2

1 − r2
2

) r2

r2
1

+
1

2
lr2

r2
1 − 3r2

2

r2
1 (r2

1 − r2
2)
λ− 1

8
l2r2

r4
1 + 9r4

2 − 2r2
1r

2
2

r2
1 (r2

1 − r2
2)

3

1

λ
+O

(
1

λ3

)
.(2.71)

h2(t1) = λ2 +
br1

m2

λ+
γ2

m2

λα + ηλα−1γ2
α− 1

m2

− 1

2

blr2
2

m2r1 (r2
1 − r2

2)

1

λ
+O

(
1

λ2−α

)
.(2.72)

h2(t2) = λ2 − br1

m2

λ+
γ2

m2

λα + ηλα−1γ2
α− 1

m2

+
1

2

blr2
2

m2r1 (r2
1 − r2

2)

1

λ
+O

(
1

λ2−α

)
.(2.73)

h2(t3) = λ2 +
br2

m2

λ+
γ2

m2

λα + ηλα−1γ2
α− 1

m2

+
1

2
bl

r2

m2 (r2
1 − r2

2)

1

λ
+O

(
1

λ2−α

)
.(2.74)

h2(t4) = λ2 − br2

m2

λ+
γ2

m2

λα + ηλα−1γ2
α− 1

m2

− 1

2
bl

r2

m2 (r2
1 − r2

2)

1

λ
+O

(
1

λ2−α

)
.(2.75)

h3(t1) = − lr22
ρ1r1(r21−r22)

λ− lr22
m1r21(r21−r22)

− lλα−1γ1
r22

m1ρ1r1(r21−r22)

−1
2
l2r4

2
r21+r22

ρ1r31(r21−r22)
3

1
λ

+ o
(

1
λ

)
.

(2.76)
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h3(t2) =
lr22

ρ1r1(r21−r22)
λ− l r22

m1r21(r21−r22)
+ lλα−1γ1

r22
m1ρ1r1(r21−r22)

+1
2
l2r4

2
r21+r22

ρ1r31(r21−r22)
3

1
λ

+ o
(

1
λ

)
.

(2.77)

h3(t3) = −λ3 (r2
1 − r2

2) r2
ρ1r21
− λ2 (r2

1 − r2
2) 1

m1r21
− λ1+α (r2

1 − r2
2) γ1r2

m1ρ1r21
− 1

2
lλr2

r21−3r22
ρ1r21(r21−r22)

−ηλαγ1r2 (r2
1 − r2

2) α−1
m1ρ1r21

+ l
r22

r21m1(r21−r22)
− 1

2
lλα−1γ1r2

r21−3r22
m1ρ1r21(r21−r22)

−1
2
η2λα−1γ1r2 (r2

1 − r2
2) (α− 1) α−2

m1ρ1r21
+ o

(
1

λ1−α

)
.

(2.78)

h3(t4) = λ3 (r2
1 − r2

2) r2
ρ1r21
− λ2 (r2

1 − r2
2) 1

m1r21
+ λ1+αγ1r2 (r1 − r2) r1+r2

m1ρ1r21
+ 1

2
lλr2

r21−3r22
ρ1r21(r21−r22)

+ηλαγ1r2 (r2
1 − r2

2) α−1
m1ρ1r21

+ l
r22

r21m1(r21−r22)
+ 1

2
lλα−1γ1r2

r21−3r22
m1ρ1r21(r21−r22)

+1
2
η2λα−1γ1r2 (r2

1 − r2
2) (α− 1) α−2

m1ρ1r21
+ o

(
1

λ1−α

)
.

(2.79)
Using the asymptotic development (2.68)-(2.79)

f(λ) = λ8 r2
2

ρ1r4
1

(r1 − r2)2(r1 + r2)2[eL(t1+t3) − eL(t1+t4) − eL(t2+t3) + eL(t2+t4)]

+λ7 r2

m1m2ρ1r4
1

(r1 − r2)2(r1 + r2)2[(m2ρ1 + bm1r1r2)(eL(t1+t3) − eL(t2+t4))

+(m2ρ1 − bm1r1r2)(eL(t1+t4) − eL(t2+t3))]

+λ6+α r
2
2(γ1m2 + γ2m1)

m1m2ρ1r4
1

(r2
1 − r2

2)2[eL(t1+t3) − eL(t1+t4) − eL(t2+t3) + eL(t2+t4)] +O(λ2)

= λ8 r2
2

ρ1r4
1

(r1 − r2)2(r1 + r2)2
[
(eL(t1+t3) − eL(t1+t4) − eL(t2+t3) + eL(t2+t4))

+((m2ρ1 + bm1r1r2)(eL(t1+t3) − eL(t2+t4)) + (m2ρ1 − bm1r1r2)(eL(t1+t4) − eL(t2+t3)))
1

m1m2r2λ

+
(γ1m2 + γ2m1)

m1m2

(eL(t1+t3) − eL(t1+t4) − eL(t2+t3) + eL(t2+t4))
1

λ2−α +O
(

1

λ2

)]
.

(2.80)
We set ˜̃

f(λ) = f0(λ) +
f1(λ)

λ
+
f2(λ)

λ2−α + +O
(

1

λ3

)
,(2.81)

where

f0(λ) = eL(t1+t3) − eL(t1+t4) − eL(t2+t3) + eL(t2+t4) = e−L(t1+t3)(e2Lt1 − 1)(e2Lt3 − 1)(2.82)

f1(λ) =
(m2ρ1 + bm1r1r2)

m1m2r2

(eL(t1+t3) − eL(t2+t4)) +
(m2ρ1 − bm1r1r2)

m1m2r2

(eL(t1+t4) − eL(t2+t3))

= e−L(t1+t3)[
(m2ρ1 + bm1r1r2)

m1m2r2

(e2L(t1+t3) − 1) +
(m2ρ1 − bm1r1r2)

m1m2r2

(e2Lt1 − e2Lt3)]

(2.83)

f2(λ) =
(γ1m2 + γ2m1)

m1m2

e−L(t1+t3)(e2Lt1 − 1)(e2Lt3 − 1)(2.84)
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Lemma 2.4.2 (Asymptotic behavior of the large eigenvalues of A) The large eigenvalues of
A can be split into two families (λjk)k∈ZZ,|k|≥k0 , j = 1, 2, (k0 ∈ IN chosen large enough). The
following asymptotic expansions hold:

λ1
k =

i

Lr1

kπ + o(1), λ2
k =

i

Lr2

kπ + o(1)(2.85)

and these two roots are simple.

Proof. From (2.85), f0 has two families of roots that we denote λ0
k and µ0

k. Now, we prove
that

f0(λ) = 0 if and only if 2t1L = 2ikπ and 2t3L = 2ik′π, k, k′ ∈ ZZ.

Indeed, Suppose that
t1L = ikπ and t3L 6= ik′π, k, k′ ∈ ZZ.

Then

M =


1 1 1 1

h1(t1) −h1(t1) h1(t3) −h1(t3)
h2(t1)(−1)k h2(t2)(−1)k h2(t3)et3L h2(t4)e−t3L

h3(t1)(−1)k h3(t2)(−1)k h3(t3)et3L h3(t4)e−t3L


We can check that h1(t1) 6= 0 and h1(t3) 6= 0 for λ large enough. Since t3L 6= ik′π for all
k′ ∈ ZZ, then using Gaussian elimination for M, we get

c1 = c2 = c3 = c4 = 0.

which is a contradiction with ‖U‖H = 1. Similarly if

t1L 6= ikπ and t3L = ik′π, k, k′ ∈ ZZ.

we get U ≡ 0. We conclude that

f0(λ) = 0 if and only if t1L = ikπ and t3L = ik′π, k, k′ ∈ ZZ.

Then from (2.66) and (2.67), the large roots of f0 satisfy the following asymptotic equations

λ0
k =

i

Lr1

kπ +O
(

1

k

)
∀|k| ≥ k0

λ1
k =

i

Lr2

k′π +O
(

1

k′

)
|k′| ≥ k′0.

We will now use Rouché’s Theorem. Let Bk = B(
i

Lr1

kπ, rk) be the ball of centrum ikπ
Lr1

and

radius rk = 1

k
1
4

and λ ∈ ∂Bk (i.e λ =
i

Lr1

kπ + rke
iθ, θ ∈ [0, 2π]). Then we successively have:

2Lt1(λ) = 2ikπ + 2Lr1rke
iθ +O

(
1

k

)
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e2Lt1(λ) = e2Lr1rke
iθ+O( 1

k)

= 1 + 2Lr1rke
iθ +O(r2

k).

and
f0(λ) = (2Lr1rke

iθ +O(r2
k))

(
(2Lr2rke

iθ +O
(

1
k

)
)
)

= 4L2r1r2r
2
ke

2iθ +O(r3
k).

It follows that there exists a positive constant c such that

∀λ ∈ ∂Bk, |f0(λ)| ≥ cr2
k =

c√
k
.

Then we deduce from (2.49) that |f(λ)− f0(λ)| = O
(

1

λ

)
= O

(
1

k

)
. It follows that, for |k|

large enough
∀λ ∈ ∂Bk, |f(λ)− f0(λ)| < |f0(λ)|,

Since the imaginary axis is an asymptote for the spectrum of A then system (2.33) is not
uniformly stable.

2.5 Asymptotic stability

2.5.1 Strong stability of the system

In this part, we use a general criteria of Theorem 2.4.3 to show the strong stability of the
C0-semigroup etA associated to the wave system (P ′) in the absence of the compactness of
the resolvent of A. Our main result is the following theorem:

Theorem 2.5.1 The C0-semigroup etA is strongly stable in H; i.e, for all U0 ∈ H, the
solution of (2.12) satisfies

lim
t→∞
‖etAU0‖H = 0.

Lemma 2.5.1 A does not have eigenvalues on i IR.

Proof
We will argue by contraction. Let us suppose that there λ ∈ IR, λ 6= 0 and U 6= 0, such
that AU = iλU . Then, we get

iλϕ− u = 0,

iλu− K

ρ1

(ϕx + ψ)x = 0,

iλφ1 + (ξ2 + η)φ1 − u(L)µ(ξ) = 0,

iλθ + K
m1

(ϕx + ψ)(L) + ζ1
m1

∫ +∞

−∞
µ(ξ)φ1(ξ) dξ = 0.

iλψ − v = 0,

iλv − b

ρ2

ψxx +
K

ρ2

(ϕx + ψ) = 0,

iλφ2 + (ξ2 + η)φ2 − v(L)µ(ξ) = 0,

iλϑ+ b
m2
ψx(L) + ζ2

m2

∫ +∞

−∞
µ(ξ)φ2(ξ) dξ = 0.

(2.86)
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Then, from (2.16) we have
φi ≡ 0, i = 1, 2.(2.87)

From (2.86)3 and (2.86)7, we have

u(L) = v(L) = 0.(2.88)

Hence, from (2.86)1, (2.86)5, (2.86)4 and (2.86)8 we obtain

ϕ(L) = ψ(L) = 0 and ϕx(L) = ψx(L) = 0.(2.89)

From (2.86), we have {−λ2ρ1ϕ−K(ϕx + ψ)x = 0,
−λ2ρ2ψ − bψxx +K(ϕx + ψ) = 0,

(2.90)

Consider X = (ϕ, ψ, ϕx, ψx). Then we can rewrite (2.89) and (2.90) as the initial value
problem

d

dx
X = AX

X(L) = 0
(2.91)

where

A =


0 0 1 0
0 0 0 1

−λ2ρ1
K

0 0 −1

0 −ρ2λ2+K
b

K
b

0


By the Picard Theorem for ordinary differential equations the system (2.91) has a unique
solution X = 0. Therefore ϕ = 0, ψ = 0. It follows from (2.86), that u = 0, v = 0, θ = 0, ϑ =
0, i.e., U = 0.

The condition (ii) of Theorem 2.4.3 will be satisfied if we show that σ(A) ∩ {i IR} is at
most a countable set. We will prove that the operator iλI−A is surjective for λ 6= 0. For this
purpose, let (f1, f2, f3, f4, f5, f6, f7, f8)T ∈ H, we seek U = (ϕ, u, φ1, θ, ψ, v, φ2, ϑ)T ∈ D(A)
solution of the following equation

(iλ−A)U = F.

Equivalently, we have the following system

iλϕ− u = f1,

iλu− K

ρ1

(ϕx + ψ)x = f2,

iλφ1 + (ξ2 + η)φ1 − u(L)µ(ξ) = f3,

iλθ + K
m1

(ϕx + ψ)(L) + ζ1
m1

∫ +∞

−∞
µ(ξ)φ1(ξ) dξ = f4.

iλψ − v = f5,

iλv − b

ρ2

ψxx +
K

ρ2

(ϕx + ψ) = f6,

iλφ2 + (ξ2 + η)φ2 − v(L)µ(ξ) = f7,

iλϑ+ b
m2
ψx(L) + ζ2

m2

∫ +∞

−∞
µ(ξ)φ2(ξ) dξ = f8.

(2.92)
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We get 
−λ2ϕ− K

ρ1

(ϕx + ψ)x = f2 + iλf1,

−λ2ψ − b

ρ2

ψxx +
K

ρ2

(ϕx + ψ) = f6 + iλf5.
(2.93)

Solving system (2.93) is equivalent to finding (ϕ, ψ) ∈ (H2 ∩H1
∗ (0, L))2 such that

∫ L

0
(−ρ1λ

2ϕw −K(ϕx + ψ)xw) dx =
∫ L

0
ρ1(f2 + iλf1)w dx,∫ L

0
(−ρ2λ

2ψχ− bψxxχ+K(ϕx + ψ)χ) dx =
∫ L

0
ρ2(f6 + iλf5)χdx,

(2.94)

for all (w, χ) ∈ H1
∗ (0, L) × H1

∗ (0, L). By using (2.21) and (2.19) the functions ϕ and ψ
satisfying the following system

∫ L

0
(−ρ1λ

2ϕw +K(ϕx + ψ)wx) dx+ (iλm1 + ζ̃1)u(L)w(L)

=
∫ L

0
ρ1(f2 + iλf1)w dx− ζ1

∫ +∞

−∞

µ(ξ)

ξ2 + η + iλ
f3(ξ) dξ w(L) +m1f4w(L),∫ L

0
(−ρ2λ

2ψχ+ bψxχx +K(ϕx + ψ)χ) dx+ (iλm2 + ζ̃2)v(L)χ(L)

=
∫ L

0
ρ2(f6 + iλf5)χdx− ζ2

∫ +∞

−∞

µ(ξ)

ξ2 + η + iλ
f7(ξ) dξ χ(L) +m2f8χ(L),

(2.95)

where ζ̃i = ζi

∫ +∞

−∞

µ2(ξ)

ξ2 + η + iλ
dξ. Using again (2.18), we deduce that

{
u(L) = iλϕ(L)− f1(L),
v(L) = iλψ(L)− f5(L).

(2.96)

Inserting (2.96) into (2.95), we get

∫ L

0
(−ρ1λ

2ϕw +K(ϕx + ψ)wx) dx+ iλ(iλm1 + ζ̃1)ϕ(L)w(L)

=
∫ L

0
ρ1(f2 + iλf1)w dx− ζ1

∫ +∞

−∞

µ(ξ)

ξ2 + η + iλ
f3(ξ) dξ w(L) + (iλm1 + ζ̃1)f1(L)w(L) +m1f4w(L),∫ L

0
(−ρ2λ

2ψχ+ bψxχx +K(ϕx + ψ)χ) dx+ iλ(iλm2 + ζ̃2)ψ(L)χ(L)

=
∫ L

0
ρ2(f6 + iλf5)χdx− ζ2

∫ +∞

−∞

µ(ξ)

ξ2 + η + iλ
f7(ξ) dξ χ(L) + (iλm2 + ζ̃2)f5(L)χ(L) +m2f8χ(L).

(2.97)
We can rewrite (2.97) as

−(LλU, V )H1
R

+ (U, V )H1
R

= l(V )(2.98)

where
H1
R(0, L) = H1

∗ (0, L)×H1
∗ (0, L),

with the inner product defined by

(U, V )H1
R

=
∫ L

0
K(ϕx + ψ)(wx + χ) + bψxχx dx
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(LλU, V )H1
R

= λ2
∫ L

0
(ρ1ϕw+ ρ2ψχ+ dx− iλ((iλm1 + ζ̃1)ϕ(L)w(L) + (iλm2 + ζ̃2)ψ(L)χ(L)).

Using the compactness embedding from L2(0, L) into H−1(0, L) and from H1
∗ (0, L) into

L2(0, L) we deduce that the operator Lλ is compact from L2(0, L) into L2(0, L). Conse-
quently, by Fredholm alternative, proving the existence of U solution of (2.98) reduces to
proving that 1 is not an eigenvalue of Lλ. Indeed if 1 is an eigenvalue, then there exists
U 6= 0, such that

(LλU, V )H1
R

= (U, V )H1
R
∀V ∈ H1

R.(2.99)

In particular for V = U , it follows that

λ2
[
ρ1‖ϕ‖2

L2(0,L) + ρ2‖ψ‖2
L2(0,L)

]
− iλ((iλm1 + ζ̃1)|ϕ(L)|2 + (iλm2 + ζ̃2)|ψ(L)|2)

= K‖ϕx + ψ‖2
L2(0,L) + b‖ψx‖2

L2(0,L).

Hence, we have

ϕ(L) = ψ(L) = 0.(2.100)

From (2.99), we obtain

vx(L) = 0(2.101)

and 
−λ2ϕ− K

ρ1

(ϕx + ψ)x = 0,

−λ2ψ − b

ρ2

ψxx +
K

ρ2

(ϕx + ψ) = 0.
(2.102)

Consider X = (ϕ, ψ, ϕx, ψx). Then we can rewrite (2.102), (2.100) and (2.101) as the initial
value problem

d

dx
X = BX

X(L) = 0
(2.103)

where

B =


0 0 1 0
0 0 0 1

−λ2ρ1
K

0 0 −1

0 −ρ2λ2+K
b

K
b

0


By the Picard Theorem for ordinary differential equations the system (2.103) has a unique
solution X = 0. Therefore ϕ = 0, ψ = 0. It follows from (2.86), that u = 0, v = 0, θ = 0, ϑ =
0, i.e., U = 0.

Lemma 2.5.2 If η 6= 0, we have

0 ∈ ρ(A).
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Proof
From (2.92) 

−u = f1,

−K
ρ1

(ϕx + ψ)x = f2,

(ξ2 + η)φ1 − u(L)µ(ξ) = f3,

K
m1

(ϕx + ψ)(L) + ζ1
m1

∫ +∞

−∞
µ(ξ)φ1(ξ) dξ = f4.

−v = f5,

− b

ρ2

ψxx +
K

ρ2

(ϕx + ψ) = f6,

(ξ2 + η)φ2 − v(L)µ(ξ) = f7,

b
m2
ψx(L) + ζ2

m2

∫ +∞

−∞
µ(ξ)φ2(ξ) dξ = f8.

(2.104)



∫ L

0
K(ϕx + ψ)wx dx

=
∫ L

0
ρ1f2w dx− ζ1

∫ +∞

−∞

µ(ξ)

ξ2 + η
f3(ξ) dξ w(L) + ζ̃1f1(L)w(L) +m1f4w(L),∫ L

0
(bψxχx +K(ϕx + ψ)χ) dx

=
∫ L

0
ρ2f6χdx− ζ2

∫ +∞

−∞

µ(ξ)

ξ2 + η
f7(ξ) dξ χ(L) + ζ̃2f5(L)χ(L) +m2f8χ(L).

(2.105)

Consequently, problem (2.105) is equivalent to the problem

aη((ϕ, ψ), (w, χ)) = Lη(w, χ)(2.106)

where the bilinear form aη : [H1
∗ (0, L)×H1

∗ (0, L)]2 → IR and the linear form
Lη : H1

∗ (0, L)×H1
∗ (0, L)→ IR are defined by

aη((ϕ, ψ), (w, χ)) =
∫ L

0
K(ϕx + ψ)(wx + χ) dx+

∫ L

0
bψxχx dx.

and

Lη(w, χ) =
∫ L

0
ρ1f2w dx− ζ1

∫ +∞

−∞

µ(ξ)

ξ2 + η
f3(ξ) dξ w(L) + ζ̃1f1(L)w(L)

+
∫ L

0
ρ2f6χdx− ζ2

∫ +∞

−∞

µ(ξ)

ξ2 + η
f7(ξ) dξ χ(L) + ζ̃2f5(L)χ(L)

+m1f4w(L) +m2f8χ(L).

It is easy to verify that aη is continuous and coercive, and Lη is continuous. So applying
the Lax-Milgram theorem, we deduce that for all (w, χ, ζ) ∈ H1

∗ (0, L) × H1
∗ (0, L) problem

(2.25) admits a unique solution (ϕ, ψ) ∈ H1
∗ (0, L)×H1

∗ (0, L). Applying the classical elliptic
regularity, it follows from (2.24) that (ϕ, ψ) ∈ H2(0, L)×H2(0, L). Therefore, the operator
A is surjective.
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2.5.2 Residual spectrum of A
Lemma 2.5.3 Let A be defined by (2.13). Then

A∗



ϕ
u
φ1

θ
ψ
v
φ2

ϑ


=



−u
−K
ρ1

(ϕx + ψ)x

−(ξ2 + η)φ1 − u(L)µ(ξ)

K
m1

(ϕx + ψ)(L) + ζ1
m1

∫ +∞

−∞
µ(ξ)φ1(ξ) dξ

−v
− b

ρ2

ψxx +
K

ρ2

(ϕx + ψ)

−(ξ2 + η)φ2 − v(L)µ(ξ)

b
m2
ψx(L) + ζ2

m2

∫ +∞

−∞
µ(ξ)φ2(ξ) dξ



(2.107)

with domain

D(A∗) =


(ϕ, u, φ1, θ, ψ, v, φ2) in H : ϕ, ψ ∈ H2(0, L) ∩H1

∗ (0, L), u, v ∈ H1
∗ (0, L),

θ, ϑ ∈ IC, u(L) = θ, v(L) = ϑ,
−(ξ2 + η)φ1 − u(L)µ(ξ),−(ξ2 + η)φ2 − v(L)µ(ξ) ∈ L2(−∞,+∞),
|ξ|φ1, |ξ|φ2 ∈ L2(−∞,+∞)

(2.108)

Proof
Let U = (ϕ, u, φ1, θ, ψ, v, φ2, ϑ)T and V = (ϕ̃, ũ, φ̃1, θ̃, ψ̃, ṽ, φ̃2, ϑ̃)T . We have
< AU, V >H=< U,A∗V >H.

< AU, V >H = K
∫ L

0
ũ(ϕx + ψ)x dx+ b

∫ L

0
ṽψxx dx−K

∫ L

0
ṽ(ϕx + ψ) dx

+K
∫ L

0
(ϕ̃x + ψ̃)(ux + v) dx

+b
∫ L

0
ψ̃xvx dx+ ζ1

∫ +∞

−∞
[−(ξ2 + η)φ1 + u(L)µ(ξ)]φ̃1 dξ

+ζ2

∫ +∞

−∞
[−(ξ2 + η)φ2 + v(L)µ(ξ)]φ̃2 dξ

+m1

(
− K

m1

(ϕx + ψ)(L)− ζ1

m1

∫ +∞

−∞
µ(ξ)φ1(ξ) dξ

)
θ̃

+m2

(
− b

m2

ψx(L)− ζ2

m2

∫ +∞

−∞
µ(ξ)φ2(ξ) dξ

)
ϑ̃

= −K
∫ L

0
(ũx + ṽ)(ϕx + ψ) dx+K(ϕx + ψ)(L)ũ(L)− b

∫ L

0
ṽxψx dx

+bψx(L)ṽ(L) +K(ϕ̃x + ψ̃)(L)u(L)−K
∫ L

0
(ϕ̃x + ψ̃)xu dx+K

∫ L

0
(ϕ̃x + ψ̃)xv dx

−b
∫ L

0
ψ̃xxv dx+ bψ̃x(L)v(L) + ζ1u(L)

∫ +∞

−∞
µ(ξ)φ̃1 dξ + ζ2u(L)

∫ +∞

−∞
µ(ξ)φ̃2 dξ

−ζ1

∫ +∞

−∞
φ1[(ξ2 + η)φ̃1 + θ̃µ(ξ)] dξ − ζ2

∫ +∞

−∞
φ2[(ξ2 + η)φ̃2 + ϑ̃µ(ξ)] dξ

−K(ϕx + ψ)(L)θ̃ − bψx(L)ϑ̃
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As θ = u(L), ϑ = v(L) and if we set θ̃ = ũ(L), ϑ̃ = ṽ(L), we find

< AU, V >H = −K
∫ L

0
(ũx + ṽ)(ϕx + ψ) dx− b

∫ L

0
ṽxψx dx−K

∫ L

0
(ϕ̃x + ψ̃)xu dx

+
∫ L

0
(−bψ̃xx +K(ϕ̃x + ψ̃)x)v dx

+u(L)
(
K(ϕ̃x + ψ̃)(L) + ζ1

∫ +∞

−∞
µ(ξ)φ̃1 dξ

)
+ v(L)

(
bψ̃x(L) + ζ2

∫ +∞

−∞
µ(ξ)φ̃2 dξ

)
−ζ1

∫ +∞

−∞
φ1[(ξ2 + η)φ̃1 + ũ(L)µ(ξ)] dξ − ζ2

∫ +∞

−∞
φ2[(ξ2 + η)φ̃2 + ṽ(L)µ(ξ)] dξ.

Theorem 2.5.2 σr(A) = ∅, where σr(A) denotes the set of residual spectrum of A.

Since λ ∈ σr(A), λ ∈ σp(A∗) the proof will be accomplished if we can show that σp(A) =
σp(A∗). This is because obviously the eigenvalues of A are symmetric on the real axis. From
(2.107), the eigenvalue problem A∗Z = λZ for λ ∈ IC and 0 6= Z = (ϕ, u, φ1, θ, ψ, v, φ2, ϑ) ∈
D(A∗) we have 

λϕ+ u = 0,

λu+
K

ρ1

(ϕx + ψ)x = 0,

λφ1 + (ξ2 + η)φ1 + u(L)µ(ξ) = 0,

λθ − K
m1

(ϕx + ψ)(L)− ζ1
m1

∫ +∞

−∞
µ(ξ)φ1(ξ) dξ = 0.

λψ + v = 0,

λv +
b

ρ2

ψxx −
K

ρ2

(ϕx + ψ) = 0,

λφ2 + (ξ2 + η)φ2 + v(L)µ(ξ) = 0,

λϑ− b
m2
ψx(L)− ζ2

m2

∫ +∞

−∞
µ(ξ)φ2(ξ) dξ = 0.

(2.109)

From (2.109)1 and (2.109)2, (2.109)5 and (2.109)6, we get
−λ2u+

K

ρ1

(ϕx + ψ)x = 0,

−λ2v +
b

ρ2

ψxx −
K

ρ2

(ϕx + ψ) = 0,
(2.110)

As θ = u(L) = −λϕ(L) and ϑ = v(L) = −λψ(L), we deduce from (2.109)3 and (2.109)4,
(2.109)7 and (2.109)8 that(

λ+
γ1

m1

(λ+ η)α−1
)
λϕ(L) +

K

m1

(ϕx + ψ)(L) = 0(
λ+

γ2

m2

(λ+ η)α−1
)
λψ(L) +

b

m2

ψx(L) = 0
(2.111)

System (2.110)-(2.111) is exactly the eigenvalue problem of A. Hence A∗ has the same
eigenvalues as A. The proof is complete.
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2.5.3 Polynomial Stability (for η 6= 0)

Theorem 2.5.3 The semigroup SA(t)t≥0 is polynomially stable and

‖SA(t)U0‖H ≤
1

t1/(4−2α)
‖U0‖D(A)

Proof
We will need to study the resolvent equation (iλ−A)U = F , for λ ∈ IR, namely

iλϕ− u = f1,

iλu− K

ρ1

(ϕx + ψ)x = f2,

iλφ1 + (ξ2 + η)φ1 − u(L)µ(ξ) = f3,

iλθ + k
m1

(ϕx + ψ)(L) + ζ1
m1

∫ +∞

−∞
µ(ξ)φ1(ξ) dξ = f4.

iλψ − v = f5,

iλv − b

ρ2

ψxx +
K

ρ2

(ϕx + ψ) = f6,

iλφ2 + (ξ2 + η)φ2 − v(L)µ(ξ) = f7,

iλϑ+ b
m2
ψx(L) + ζ2

m2

∫ +∞

−∞
µ(ξ)φ2(ξ) dξ = f8.

(2.112)

where F = (f1, f2, f3, f4, f5, f6, f7, f8)T . Taking inner product in H with U and using (2.16)
we get

|Re〈AU,U〉| ≤ ‖U‖H‖F‖H.(2.113)

This implies that
2∑
i=1

ζi

∫ +∞

−∞
(ξ2 + η)(ϕi(ξ, t))

2 dξ ≤ ‖U‖H‖F‖H.(2.114)

and, applying (3.1)1,4,7, we obtain

||λ||ϕ(L)| − |f1(L)||2 ≤ |u(L)|2.

We deduce that
|λ|2|ϕ(L)|2 ≤ c|f1(L)|2 + c|u(L)|2.

Moreover, from (3.1)4, we have

K(ϕx + ψ)(L) = −im1λu(L)− ζ1

∫ +∞

−∞
µ(ξ)φ1(ξ) dξ +m1f4.

Then

K2|(ϕx + ψ)(L)|2 ≤ 2m2
1|λ|2|u(L)|2 + 2m2

1f
2
4 + 2ζ2

1

∣∣∣∣∫ +∞

−∞
µ(ξ)φ1(ξ) dξ

∣∣∣∣2
≤ 2m2

1|λ|2|u(L)|2 + 2m2
1f

2
4 + 2ζ2

1

(∫ +∞

−∞
(ξ2 + η)−1|µ(ξ)|2 dξ

) ∫ +∞

−∞
(ξ2 + η)|φ1(ξ)|2 dξ

≤ 2m2
1|λ|2|u(L)|2 + c‖U‖H‖F‖H + c′‖F‖2

H.

(2.115)
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From (3.1)3, we obtain
u(L)µ(ξ) = (iλ+ ξ2 + η)φ1 − f3(ξ).(2.116)

By multiplying (2.116)1 by (iλ+ ξ2 + η)−1µ(ξ), we get

(iλ+ ξ2 + η)−1u(L)µ2(ξ) = µ(ξ)φ1 − (iλ+ ξ2 + η)−1µ(ξ)f3(ξ).(2.117)

Hence, by taking absolute values of both sides of (2.117), integrating over the interval ] −
∞,+∞[ with respect to the variable ξ and applying Cauchy-Schwartz inequality, we obtain

S|u(L)| ≤ U
(∫ +∞

−∞
(ξ2 + η)|φ1|2 dξ

) 1
2

+ V
(∫ +∞

−∞
|f3(ξ)|2 dξ

) 1
2

(2.118)

where

S =
∫ +∞

−∞
(|λ|+ ξ2 + η)−1|µ(ξ)|2 dξ

U =
(∫ +∞

−∞
(ξ2 + η)−1|µ(ξ)|2 dξ

) 1
2

V =
(∫ +∞

−∞
(|λ|+ ξ2 + η)−2|µ(ξ)|2 dξ

) 1
2

.

Thus, by using again the inequality 2PQ ≤ P 2 +Q2, P ≥ 0, Q ≥ 0, we get

S2|u(L)|2 ≤ 2U2
(∫ +∞

−∞
(ξ2 + η)|φ1|2 dξ

)
+ 2V 2

(∫ +∞

−∞
|f3(ξ)|2 dξ

)
.(2.119)

We deduce that
|u(L)|2 ≤ c|λ|2−2α‖U‖H‖F‖H + c‖F‖2

H.(2.120)

Similarly, we have

b2|ψx(L)|2 ≤ 2m2
2|λ|2|v(L)|2 + c‖U‖H‖F‖H + c′‖F‖2

H.(2.121)

|v(L)|2 ≤ c|λ|2−2α‖U‖H‖F‖H + c‖F‖2
H.(2.122)

Let us introduce the following notation

Iϕ(α) = ρ1|u(α)|2 +K|ϕx(α)|2
Iψ(α) = ρ2|v(α)|2 + b|ψx(α)|2

Eϕ(L) =
∫ L

0
q(x)Iϕ(s) ds, Eψ(L) =

∫ L

0
Iψ(s) ds.

Lemma 2.5.4 Let q ∈ H1(0, L). We have that

Eϕ(L) = [qIϕ]L0 + 2K Re
∫ L

0
qψxϕx dx+R1.(2.123)

and

Eψ(L) = [qIψ]L0 −K[q|ψ|2]L0 − 2K Re
∫ L

0
qϕxψx dx+K

∫ L

0
q′|ψ|2 dx+R2.(2.124)
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where Ri satisfies
|R1| ≤ CEϕ(L) + ‖q1/2F‖2

H
|R2| ≤ CEψ(L) + ‖q1/2F‖2

H.

for a positive constant C.

Proof
To get (2.123), let us multiply the equation (3.1)2 by qϕx Integrating on (0, L) we obtain

iλρ1

∫ L

0
uqϕx dx−K

∫ L

0
(ϕx + ψ)xqϕx dx = ρ1

∫ L

0
f2qϕx dx

or

−ρ1

∫ L

0
uq(iλϕx) dx−K

∫ L

0
qϕxxϕx dx−K

∫ L

0
qψxϕx dx = ρ1

∫ L

0
f2qϕx dx.

Since iλϕx = ux + f1x taking the real part in the above equality results in

−ρ1

2

∫ L

0
q
d

dx
|u|2 dx− K

2

∫ L

0
q
d

dx
|ϕx|2 dx = ρ1Re

∫ L

0
f2qϕx dx+ ρ1Re

∫ L

0
uqf 1x dx

+K Re
∫ L

0
qψxϕx dx.

Performing an integration by parts we get∫ L

0
q′(s)[ρ1|u(s)|2 +K|ϕx(s)|2] ds

= [qIϕ]L0 + 2K Re
∫ L

0
qψxϕx dx+R1

where

R1 = 2ρ1Re
∫ L

0
f2qϕx dx+ 2ρ1Re

∫ L

0
uqf 1x dx.

Similarly, multiplying equation (3.1)5 by qϕx, integrating on (0, L) and taking the real part
we obtain

iλρ2

∫ L

0
vqψx dx− b

∫ L

0
ψxxqψx dx+K

∫ L

0
(ϕx + ψ)qψx dx = ρ2

∫ L

0
f6qψx dx

or

−ρ2

∫ L

0
vq(iλψx) dx− b

∫ L

0
qψxxψx dx+K

∫ L

0
qϕxψx dx

+K
∫ L

0
qψψx dx = ρ2

∫ L

0
f6qψx dx.

Since iλψx = vx + f5x taking the real part in the above equality results in

−ρ2

2

∫ L

0
q
d

dx
|v|2 dx− b

2

∫ L

0
q
d

dx
|ψx|2 dx = ρ2Re

∫ L

0
f6qψx dx

+ρ2 Re
∫ L

0
qvf 5x dx−K Re

∫ L

0
qϕxψx dx−

K

2

∫ L

0
q
d

dx
|ψ|2 dx.
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Performing an integration by parts we get∫ L

0
q′(s)[ρ2|v(s)|2 + b|ψx(s)|2] ds

= [qIψ]L0 −K[q|ψ|2]L0 − 2K Re
∫ L

0
qϕxψx dx

+K
∫ L

0
q′|ψ|2 dx+R2

where

R2 = 2ρ2Re
∫ L

0
f6qψx dx+ 2ρ2 Re

∫ L

0
qvf 5x dx.

If we take q(x) =
∫ x

0 e
ns ds = enx−1

n
(Here n will be chosen large enough) in Lemma 2.5.4 we

arrive at

Eϕ(L) + Eψ(L)

= q(L)Iϕ(L) + 2K Re
∫ L

0
qψxϕx dx

q(L)Iψ(L)−Kq(L)|ψ(L)|2 +K
∫ L

0
q′(x)|ψ|2 dx− 2K Re

∫ L

0
qϕxψx dx

+R1 +R2

= q(L)Iϕ(L) + q(L)Iψ(L)−Kq(L)|ψ(L)|2 +K
∫ L

0
q′(x)|ψ|2 dx

+R1 +R2

Also, we have

|R1| ≤ 2ρ1

∫ L

0
q(x)(|u(s)|2 + |ϕx(s)|2) ds+ 2ρ1

∫ L

0
q(x)(|f2(s)|2 + |f1x(s)|2) ds

≤ C
eLn

n
‖F‖2

H +
c′

n
Eϕ(L)

(2.125)

and

|R2| ≤ 2ρ2

∫ L

0
q(x)(|v(s)|2 + |ψx(s)|2) ds+ 2ρ1

∫ L

0
q(x)(|f6(s)|2 + |f5x(s)|2) ds

≤ C
eLn

n
‖F‖2

H +
c′

n
Eψ(L)

(2.126)

Using Lemma 2.5.4 and the Young inequality we get

Eϕ(L) + Eψ(L)

≤ q(L)Iϕ(L) + q(L)Iψ(L) +K
∫ L

0
q′(x)|ψ|2 dx

+c‖F‖2
H

for a positive constant C. It results by (2.115), (2.120), (2.121) and (2.122) that we can find
a positive constant C such that

Eϕ(L) + Eψ(L)

≤ K
∫ L

0
|ψ|2 dx+ c(|λ|4−2α + |λ|2−2α + 1)‖U‖H‖F‖H + c(|λ|2 + 1)‖F‖2

H
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for λ 6= 0. Since that ϕ = u+f1
iλ

and ψ = v+f4
iλ

we obtain

Eϕ(L) + Eψ(L)

≤ c(|λ|4−2α + |λ|2−2α + 1)‖U‖H‖F‖H + c(|λ|2 + 1)‖F‖2
H +

c

|λ|2
‖U‖2

H +
c

|λ|2
‖F‖2

H.

Since that ∫ +∞

−∞
(φi(ξ))

2 dξ ≤ C
∫ +∞

−∞
(ξ2 + η)(φi(ξ))

2 dξ

for λ 6= 0. If |λ| > 1 we get
‖U‖2

H ≤ |λ|8−4α‖F‖2
H.

It follows that
1

|λ|(4−2α)
‖(iλI −A)−1‖L(H) ≤ C, ∀λ ∈ IR,

for a positive constant C. The conclusion then follows by applying Theorem 2.4.2.

Remark 2.5.1 1) By Proposition 2.4.1, the spectrum of A is at the left of the imaginary
axis, but approaches this axis. Hence, the decay of the energy depends on the asymptotic
behavior of the real part of these eigenvalues, since Proposition 2.4.1 shows a behavior like
k−(3−α), we can expect a decay rate (optimal) of the energy of order t−2/(3−α). We unfor-
tunately were not able to prove this optimal decay rate by Borichev-Tomilov Theorem. In
theorem 2.5.3, we obtain decay rate of order t−1/(2−α) which is less better. But, it is interest-
ing to remark that both energy decay in Theorem 2.5.3 and Proposition 2.4.1 approach t−1

(as α→ 1) which is the energy decay given in [32] and [28].

2) Estimation of decay rate in the case η = 0 is open. As λ = 0 is a spectral value, both
technic used in [32] and [28] do not work. In the futur, we try other methods, in particular
some tools from observability theory. Another technic is the use of Laplace transform and
representation of solutions by Mittag-Leffler Functions.

3) It seems to be interesting to study a global decaying solutions of hyperbolic systems (strong
and weakly) under control of fractional derivative type. We think that the interaction of the
hyperbolicity (order of multiplicity) and the number of dissipative terms have an effect on
the result.
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Chapter 3

OPTIMAL ENERGY DECAY OF
SOLUTIONS TO A TIMOSHENKO
BEAM SYSTEM WITH DYNAMIC
BOUNDARY FEEDBACKS OF
FRACTIONAL DERIVATIVE TYPE

3.1 Introduction

In this chapter we investigate the decay properties of solutions for the initial boundary value
problem of the linear Timoshenko beam system of the type

(P )
{
ρ1ϕtt(x, t)−K(ϕx + ψ)x(x, t) = 0 in (0, L)× (0,+∞),
ρ2ψtt(x, t)− bψxx(x, t) +K(ϕx + ψ)(x, t) = 0 in (0, L)× (0,+∞),

where (x, t) ∈ (0, L)× (0,+∞). This system is subject to the boundary conditions

ϕ(0, t) = 0, ψ(0, t) = 0, in (0,+∞),
m1ϕtt(L, t) +K(ϕx + ψ)(L, t) = −γ1∂

α,η
t ϕ(L, t) in (0,+∞),

m2ψtt(L, t) + bψx(L, t) = −γ2∂
α,η
t ψ(L, t) in (0,+∞),

where γi > 0, i = 1, 2. The notation ∂α,ηt stands for the generalized Caputo’s
fractional derivative of order α, 0 < α < 1, with respect to the time variable.

The problem of stabilization for the initial boundary value problem

(P ′)



utt −∆u = 0 on Ω× (0,+∞),
u = 0 on ΓD × (0,+∞),
∂u

∂ν
+ a(x)ut = 0 on ΓN × (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) on Ω,
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was investigated by several authors. In Haraux [16], Bardos, G. Lebeau and J. Rauch [7],
Lebeau and Robbiano [7], Burq [11] and Xiaoyu Fu [15].

First, A. Haraux has shown that if a ∈ L∞(ΓN), a 6≡ 0, then any solution of (P ′) tends
to 0 in H1

∗ (Ω) strong as t→ +∞.

C. Bardos, G. Lebeau and J. Rauch [7] introduced a geometric control condition witch
is a necessary and sufficient condition for the uniform exponential decay rate of the energy.

Moreover, Lebeau and Robbiano (see [22]) have shown that, in the case where the Neu-
mann boundary condition is applied on the entire boundary, a weak condition on the feedback
(which does not satisfy Geometric Control Condition) provides logarithmic decay of regular
solutions. The optimal result without geometrical hypothesis is given in [11]. We also recall
the result by Fu [15], where the author proved a result similar to the one in [22] for less
regular conditions (∂Ω ∈ C2) by adopting the global Carleman estimate.

In [26] Mbodje studies the energy decay of the wave equation with a boundary control
of fractional derivative type (CF ). The major inconvenient associated to the fractional
operators is the hereditary behavior. Therefore, the employment of mathematical analysis
tools, such as stability analysis and numerical approximation is very difficult. He used
a new approach called ”diffusive representation” to reduce these difficulties. The original
model is transformed into an augmented system which can be more easily tackled by the
energy method. The author showed strong asymptotic stability of solutions when η = 0 and
polynomial type decay rate E(t) ≤ C/t for t ≥ 0 when η 6= 0.

Recently in [8], benaissa and Benkhedda considered the stabilization for the following
wave equation with dynamic boundary control of fractional derivative type (CF ):

(P )


utt(x, t)− uxx(x, t) = 0 in ]0, L[×]0,+∞[
u(0, t) = 0 in (0,+∞)
mutt(L, t) + ux(L, t) = −γ∂α,ηt u(L, t) in (0,+∞).

They proved that the decay of the energy is not exponential, but polynomial. They used
the spectrum method for lack of exponential stability and Borichev-Tomilov Theorem for
establishing polynomial decay rate E(t) ≤ c/t1/(2−α).

Very recently in [8], benaissa and Benazzouz considered the problem (P). The author
showed strong asymptotic stability of solutions when η = 0 and polynomial type decay rate
E(t) ≤ C/t1/(2−α) for t ≥ 0 when η 6= 0.

Our purpose in this chapter is to prove an optimal decay estimate following the wave
propagation speeds. We use an explicit representation of the resolvent associate to the
semi-group operator and an application of the recent theorem of Borichev-Tomilov.
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3.2 Optimality of energy decay when η > 0

We will need to study the resolvent equation (iλ−A)U = F , for λ ∈ IR, namely

iλϕ− u = f1,

iλu− K

ρ1

(ϕx + ψ)x = f2,

iλφ1 + (ξ2 + η)φ1 − u(L)µ(ξ) = f3,

iλθ + k
m1

(ϕx + ψ)(L) + ζ1
m1

∫ +∞

−∞
µ(ξ)φ1(ξ) dξ = f4.

iλψ − v = f5,

iλv − b

ρ2

ψxx +
K

ρ2

(ϕx + ψ) = f6,

iλφ2 + (ξ2 + η)φ2 − v(L)µ(ξ) = f7,

iλϑ+ b
m2
ψx(L) + ζ2

m2

∫ +∞

−∞
µ(ξ)φ2(ξ) dξ = f8.

(3.1)

where F = (f1, f2, f3, f4, f5, f6, f7, f8)T ∈ H. The first and fifth equations of (3.1) being
equivalent to

u = iλϕ− f1, v = iλψ − f5(3.2)

and by substitution in the second and sixth equations, we obtain the following system

λ2ρ1ϕ+Kϕxx +Kψx = −ρ1(f2 + iλf1)
λ2ρ2ψ + bψxx −Kϕx −Kψ = −ρ2(f6 + iλf5).
iλφ1 + (ξ2 + η)φ1 − u(1)µ(ξ) = f3,
iλφ2 + (ξ2 + η)φ2 − v(1)µ(ξ) = f7,

iλθ + k
m1

(ϕx + ψ)(L) + ζ1
m1

∫ +∞

−∞
µ(ξ)φ1(ξ) dξ = f4.

iλϑ+ b
m2
ψx(L) + ζ2

m2

∫ +∞

−∞
µ(ξ)φ2(ξ) dξ = f8.

(3.3)

Now the system (3.3)1 − (3.3)2 takes the form

U ′ = BU+F where U =


ϕ
ϕx
ψ
ψx

 , B =


0 1 0 0

−ρ1
K
λ2 0 0 −1

0 0 0 1
0 K

b
K
b
− ρ2

b
λ2 0

 and F =


0

−ρ1
K

(f2 + iλf1)
0

−ρ2
b

(f6 + iλf5)


The case r2

1 = r2
2

It is not restrictive to suppose ρ1 = ρ2 = K = b = 1. A simple computation shows that
the eigenvalues µi of the matrix B are the roots of the following equation

x4 + 2λ2x2 + λ2(λ2 − 1) = 0(3.4)

Thus (3.4) has only pure imaginary solutions when λ is large enough. Applying the classical
method of variation of constants formula, we obtain

U = eBxU(0) +
∫ x

0
eB(x−s)F (s) ds U(0) = (0, ϕx(0), 0, ψx(0))T ,(3.5)
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where eBx is the solution of the homogeneous equation

dY

dx
= BY, Y (0) = I.(3.6)

To obtain an explicit expression of (3.5), we consider the initial value problem
λ2ϕ+ ϕxx + ψx = 0
λ2ψ + ψxx − ϕx − ψ = 0
ϕ(0) = c1, ϕx(0) = c2, ψ(0) = c3, ψx(0) = c4

(3.7)

Then a straightforward computation gives that:
ϕ = Aeµ1x +Be−µ1x + Ceµ2x +De−µ2x

ψ = −A
(
λ2

µ1

+ µ1

)
eµ1x +B

(
λ2

µ1

+ µ1

)
e−µ1x − C

(
λ2

µ2

+ µ2

)
eµ1x +D

(
λ2

µ2

+ µ2

)
e−µ2x

(3.8)
where

µ1 = i
√
λ2 − λ, −µ1, µ2 = i

√
λ2 + λ, −µ2

are the roots of (3.4). Then

A+B + C +D = c1

µ1A− µ1B + µ2C − µ2D = c2

−
(
λ2

µ1

+ µ1

)
A+

(
λ2

µ1

+ µ1

)
B −

(
λ2

µ2

+ µ2

)
C +

(
λ2

µ2

+ µ2

)
D = c3

−(µ2
1 + λ2)A− (µ2

1 + λ2)B − (µ2
2 + λ2)C − (µ2

2 + λ2)D = c4.

(3.9)

Solving system (3.9), we find that

A = −1

2

µ2
2 + λ2

µ2
1 − µ2

2

c1 +
1

2

µ2
2 + λ2

(µ2
1 − µ2

2)λ2
µ1c2 +

1

2

µ2
2

(µ2
1 − µ2

2)λ2
µ1c3 −

1

2

c4

µ2
1 − µ2

2

B = −1

2

µ2
2 + λ2

µ2
1 − µ2

2

c1 −
1

2

µ2
2 + λ2

(µ2
1 − µ2

2)λ2
µ1c2 −

1

2

µ2
2

(µ2
1 − µ2

2)λ2
µ1c3 −

1

2

c4

µ2
1 − µ2

2

C =
1

2

µ2
2 + λ2

µ2
1 − µ2

2

c1 −
1

2

µ2
2 + λ2

(µ2
1 − µ2

2)λ2
µ1c2 −

1

2

µ2
2

(µ2
1 − µ2

2)λ2
µ1c3 +

1

2

c4

µ2
1 − µ2

2

D =
1

2

µ2
2 + λ2

µ2
1 − µ2

2

c1 +
1

2

µ2
2 + λ2

(µ2
1 − µ2

2)λ2
µ1c2 +

1

2

µ2
2

(µ2
1 − µ2

2)λ2
µ1c3 +

1

2

c4

µ2
1 − µ2

2

(3.10)

Setting (c1, c2, c3, c4) to be the unit vectors ei for i = 1, ..., 4, we obtain
ϕ1(x) = −µ

2
2 + λ2

µ2
1 − µ2

2

cosh(µ1x) +
µ2

1 + λ2

µ2
1 − µ2

2

cosh(µ2x)

ψ1(x) =
(µ2

1 + λ2)(µ2
2 + λ2)

µ1(µ2
1 − µ2

2)
sinh(µ1x)− (µ2

1 + λ2)(µ2
2 + λ2)

µ2(µ2
1 − µ2

2)
sinh(µ2x)

(3.11)


ϕ2(x) =

(µ2
2 + λ2)µ1

λ2(µ2
1 − µ2

2)
sinh(µ1x)− (µ2

1 + λ2)µ2

λ2(µ2
1 − µ2

2)
sinh(µ2x)

ψ2(x) = −(µ2
1 + λ2)(µ2

2 + λ2)

λ2(µ2
1 − µ2

2)
cosh(µ1x) +

(µ2
1 + λ2)(µ2

2 + λ2)

λ2(µ2
1 − µ2

2)
cosh(µ2x)

(3.12)
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ϕ3(x) =

µ2
2µ1

λ2(µ2
1 − µ2

2)
sinh(µ1x)− µ2

1µ2

λ2(µ2
1 − µ2

2)
sinh(µ2x)

ψ3(x) = −(µ2
1 + λ2)µ2

2

λ2(µ2
1 − µ2

2)
cosh(µ1x) +

(µ2
2 + λ2)µ2

1

λ2(µ2
1 − µ2

2)
cosh(µ2x)

(3.13)


ϕ4(x) = − 1

µ2
1 − µ2

2

cosh(µ1x) +
1

µ2
1 − µ2

2

cosh(µ2x)

ψ4(x) =
µ2

1 + λ2

µ1(µ2
1 − µ2

2)
sinh(µ1x)− µ2

2 + λ2

µ2(µ2
1 − µ2

2)
sinh(µ2x).

(3.14)

From (3.11), (3.12), (3.13) and (3.14), we have

eBx =


ϕ1 ϕ2 ϕ3 ϕ4

ϕ1x ϕ2x ϕ3x ϕ4x

ψ1 ψ2 ψ3 ψ4

ψ1x ψ2x ψ3x ψ4x

 .(3.15)

We deduce from (3.5) and (3.15) that


ϕ(x) = ϕx(0)ϕ2 + ψx(0)ϕ4 −

∫ x

0
((f2 + iλf1)ϕ2(x− s) + (f6 + iλf5)ϕ4(x− s)) ds,

ψ(x) = ϕx(0)ψ2 + ψx(0)ψ4 −
∫ x

0
((f2 + iλf1)ψ2(x− s) + (f6 + iλf5)ψ4(x− s)) ds.

(3.16)

Then
ϕx(x) = ϕx(0)ϕ2x + ψx(0)ϕ4x −

∫ x

0
((f2 + iλf1)ϕ2x(x− s) + (f6 + iλf5)ϕ4x(x− s)) ds,

ψx(x) = ϕx(0)ψ2x + ψx(0)ψ4x −
∫ x

0
((f2 + iλf1)ψ2x(x− s) + (f6 + iλf5)ψ4x(x− s)) ds.

(3.17)
With third and forth equations of (3.3), we get

φ1(ξ) =
u(L)µ(ξ) + f3(ξ)

iλ+ ξ2 + η
, φ2(ξ) =

v(L)µ(ξ) + f7(ξ)

iλ+ ξ2 + η
.(3.18)

Inserting (3.18) in last equations of (3.3), we get

b

m2

ψx(L) + (iλ+
γ2

m2

(iλ+ η)α−1)iλψ(L) = f8 + (iλ+
γ2

m2

(iλ+ η)α−1)f5(L)

−ζ2

∫ ∞
−∞

µ(ξ)f7(ξ)

iλ+ ξ2 + η
dξ,

(3.19)

K

m1

(ϕx + ψ)(L) + (iλ+
γ1

m1

(iλ+ η)α−1)iλϕ(L) = f4 + (iλ+
γ1

m1

(iλ+ η)α−1)f1(L)

−ζ1

∫ ∞
−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ.

(3.20)
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Using (3.16), we can rewrite (3.19) and (3.20) as equations in the unknowns ϕx(0)and ψx(0)

ϕx(0) [ψ2x(L) + (im2λ+ γ2(iλ+ η)α−1)iλψ2(L)] + ψx(0) [ψ4x(L) + (im2λ+ γ2(iλ+ η)α−1)iλψ4(L)]

= m2f8 + (im2λ+ γ2(iλ+ η)α−1)f5(L)− ζ2

∫ ∞
−∞

µ(ξ)f7(ξ)

iλ+ ξ2 + η
dξ

+(im2λ+ γ2(iλ+ η)α−1)iλ
∫ L

0
((f2 + iλf1)ψ2(L− s) + (f6 + iλf5)ψ4(L− s)) ds

+
∫ L

0
((f2 + iλf1)ψ2x(L− s) + (f6 + iλf5)ψ4x(L− s)) ds,

(3.21)

ϕx(0)
[
ϕ2x(L) + ψ2(L) + (im1λ+ γ1(iλ+ η)α−1)iλϕ2(L)

]
+ψx(0)

[
ϕ4x(L) + ψ4(L) + (im1λ+ γ1(iλ+ η)α−1)iλϕ4(L)

]
= m1f4 + (im1λ+ γ1(iλ+ η)α−1)f1(L)− ζ1

∫ ∞
−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ

+(im1λ+ γ1(iλ+ η)α−1)iλ
∫ L

0
((f2 + iλf1)ϕ2(L− s) + (f6 + iλf5)ϕ4(L− s)) ds

+
∫ L

0
((f2 + iλf1)ψ2(L− s) + (f6 + iλf5)ψ4(L− s)) ds

+
∫ L

0
((f2 + iλf1)ϕ2x(L− s) + (f6 + iλf5)ϕ4x(L− s)) ds.

(3.22)

Using (3.21) and (3.22), a linear system in ϕx(0) and ψx(0) is obtained(
m11 m12

m21 m22

)(
ϕx(0)
ψx(0)

)
=
(
I1

I2

)
(3.23)

where
m11 = ψ2x(L) + (im2λ+ γ2(iλ+ η)α−1)iλψ2(L)

= − 1
2λ

(z1 sin z1L− z2 sin z2L) + 1
2
(−m2λ+ γ2q)(cos z1L− cos z2L)

m12 = ψ4x(L) + (im2λ+ γ2(iλ+ η)α−1)iλψ4(L)
= 1

2
(cos z1L+ cos z2L) + (−m2λ+ γ2q)λ

1
2
( 1
z1

sin z1L+ 1
z2

sin z2L)

m21 = ϕ2x(L) + ψ2(L) + (im1λ+ γ1(iλ+ η)α−1)iλϕ2(L)
= 1

2λ2
(z2

1 cos z1L+ z2
2 cos z2L) + 1

2λ
(cos z1L− cos z2L) + (−m1λ+ γ1q)

1
2λ

(z1 sin z1L+ z2 sin z2L)
m22 = ϕ4x(L) + ψ4(L) + (im1λ+ γ1(iλ+ η)α−1)iλϕ4(L)

= 1
2λ

(z1 sin z1L− z2 sin z2L) + 1
2
( 1
z1

sin z1L+ 1
z2

sin z2L)− 1
2
(−m1λ+ γ1q)(cos z1L− cos z2L),

where z1 = =(µ1) =
√
λ2 − λ and z2 = =(µ2) =

√
λ2 + λ.

Let the determinant of the linear system given in (3.23) be denoted by D. Then the
following is obtained:

D = −1
2
x2m2m1 − 1

4
x2

z1
z2m2 (sin z1)m1 sin z2 − 1

4
x2 z1

z2
m2 (sin z2)m1 sin z1 + 1

2
x2m2 (cos z1)m1 cos z2

+1
4

z21
z2
m2 sin z2 cos z1 + 1

4z1
z2

2m2 sin z1 cos z2 + 1
4
z1 (cos z2 sin z1) (2m1 +m2)

+1
4
z2 (cos z1 sin z2) (2m1 +m2) + 1

2
xq (a2m1 +m2a1) + 1

4
x (sin z1) q (sin z2) (z2

2 + z2
1) a2m1+m2a1

z1z2

−1
2
xq (cos z1 cos z2) (a2m1 +m2a1)− 1

2
− 1

2
(cos z1 cos z2) + 1

2x2
z1z2 sin z1 sin z2

−1
2
q (sin z2 cos z1)

a2x2+z22a1
xz2

− 1
2
q (sin z1 cos z2)

a2x2+z21a1
xz1

−1
2
a2q

2a1 − 1
4
a2q

2 (sin z1) a1 (sin z2)
z22+z21
z1z2

+ 1
2
a2q

2 (cos z1) a1 cos z2 + 1
2

(sin z2 sin z1) 1
z1z2

,
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where q(λ) = i(iλ+ η)α−1. We can easily prove that

|D| ≥ C|λ|2(α−1) for |λ| large .(3.24)

This estimation is optimal. Indeed suppose that (3.24) is not optimal. This means that
there exists ε > 0 such that

|D| ≥ C|λ|2(α−1)+ε for |λ| large .(3.25)

This is a contradiction because, we can construct sequences λς large such that cos(z1+z2)L =
−1 and then sin(z1 + z2)L = 0 which implies that

|D| ≤ C|λς |2(α−1),

contradicting (3.25). As

ϕx(0) =
1

D
(m22I1 −m21I2)

ψx(0) =
1

D
(m11I2 −m12I1)

Then, we conclude that
|ϕx(0)|, |ψx(0)| ≤ c|λ|2(1−α).

From (3.16) and (3.17), we deduce that

‖ϕx+ψ‖L2(0,L), ‖ψx‖L2(0,L) ≤ c|λ|2(1−α)
(
‖f1‖H1(0,L) + ‖f2‖L2(0,L) + ‖f4‖H1(0,L) + ‖f5‖L2(0,L)

)
.

From (3.2), we get

‖u‖L2(0,L), ‖v‖L2(0,L) ≤ c|λ|2(1−α)
(
‖f1‖H1(0,L) + ‖f2‖L2(0,L) + ‖f4‖H1(0,L) + ‖f5‖L2(0,L)

)
.

From (3.18), we get

‖φ1‖L2(−∞,∞) ≤ |u(L)|
∥∥∥∥∥ µ(ξ)

iλ+ ξ2 + η

∥∥∥∥∥
L2(−∞,∞)

+

∥∥∥∥∥ f3(ξ)

iλ+ ξ2 + η

∥∥∥∥∥
L2(−∞,∞)

≤ c|λ|1− 3α
2

(
‖f1‖H1(0,L) + ‖f2‖L2(0,L) + ‖f4‖H1(0,L) + ‖f5‖L2(0,L)

)
+ c

1

|λ|
‖f3‖L2(−∞,∞)

Thus, we conclude that

‖(λI −A)−1‖H ≤ c|λ|2(1−α) as |λ| → ∞.

This estimation is optimal following (3.24). Then, we deduce that

E(t) ∼ 1

t
1

1−α
.

The case r2
1 6= r2

2
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We consider only the case r2
1 > r2

2, the case r2
1 < r2

2 is similar. It is not restrictive to
suppose ρ1 = ρ2 = K = 1 and then b < 1.

The eigenvalues µi of the matrix B are the roots of the following equation

x4 + (a+ 1)λ2x2 + aλ2(λ2 − 1) = 0,(3.26)

where a = 1/b.
Expansion of µi, i = 1, 2 for a > 1. We have

µ2
1,2 = −1

2
(a+ 1)λ2 ± 1

2

√
(a− 1)2λ4 + 4λ2.

It follows that

µ1 = iλ− 1

2(a− 1)λ
+ i

5− a
8(a− 1)3λ3

+ i
6a− a2 − 21

16(a− 1)5λ5
+O

(
1

λ7

)
.(3.27)

µ2 = i
√
aλ+

1

2
√
a(a− 1)λ

− i 5a− 1

8
√
aa(a− 1)3λ3

+ i
21a2 − 6a+ 1

16
√
aa2(a− 1)5λ5

+O
(

1

λ7

)
.(3.28)

Therefore

ϕ2(x) =
1

iλ
sinh(µ1x) +O

(
1

λ3

)
ψ2(x) =

(
1

(a− 1)λ2
− 2

(a− 1)3λ4

)
(cosh(µ1x)− cosh(µ2x) +O

(
1

λ6

)
ϕ4(x) =

−1

(a− 1)λ2
cosh(µ1x) +

1

(a− 1)λ2
cosh(µ2x) +O

(
1

λ2

)
ψ4(x) =

1

i(a− 1)2λ3
sinh(µ1x) +

1

i
√
aλ

sinh(µ2x) +O
(

1

λ5

)
(3.29)

We have

m11 = 1
a
ψ2x(L) + (im2λ+ γ2(iλ+ η)α−1)iλψ2(L)

∼ 1
a(a−1)λ

(− sin z1L+
√
a sin z2L) + (−m2λ+ γ2q)

1
(a−1)λ

(cos z1L− cos z2L)

m12 = 1
a
ψ4x(L) + (im2λ+ γ2(iλ+ η)α−1)iλψ4(L)

∼
a(a−1)2λ2

cos z1L+ 1
a

cos z2L+ (−m2λ+ γ2q)(
1

(a−1)2λ2
sin z1L+ 1√

a
sin z2L)

m21 = ϕ2x(L) + ψ2(L) + (im1λ+ γ1(iλ+ η)α−1)iλϕ2(L)
∼ cos z1 + 1

(a−1)λ2
(cos z1L− cos z2L) + (−m1λ+ γ1q) sin z1L

m22 = ϕ4x(L) + ψ4(L) + (im1λ+ γ1(iλ+ η)α−1)iλϕ4(L)

∼ 1
(a−1)λ

(sin z1L−
√
a sin z2L) + ( 1

(a−1)2λ3
sin z1L+ 1√

aλ
sin z2L)− (−m1λ+γ1q)

(a−1)λ
(cos z1L− cos z2L)

Then

D = −a cos z1L cos z2L−
q√
a

(a
√
aγ1 cos z2L sin z1L+γ2 cos z1L sin z2L)−γ1γ2√

a
q2 sin z1L sin z2L+o(q2).
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We remark that
|D| ≥ c q2 ⇔ cos z1L = 0 and cos z2L = 0.

Now, we solve system {
cos z1L = 0
cos z2L = 0

(3.30)

Then, using (3.2)-(3.28), it follows from (3.30) that there exist
λ− 1

2(a− 1)λ
=

1

L
(m+

1

2
)π +O

(
1

λ2

)
√
aλ+

1

2
√
a(a− 1)λ

=
1

L
(k +

1

2
)π +O

(
1

λ2

)(3.31)

Since m ∼ k ∼ λ, (3.31) can be written as
λ2 =

1

L
(m+

1

2
)2π2 +

1

(a− 1)
+O

(
1

λ2

)
,

aλ2 =
1

L
(k +

1

2
)2π2 − 1√

a(a− 1)
+O

(
1

λ2

)
.

(3.32)

Finally we obtain

a
(
m+

1

2

)2

−
(
k +

1

2

)2

= −L
2(a
√
a+ 1)√

a(a− 1)π2
+O

(
1

λ2

)
.(3.33)

Let us set

c = −L
2(a
√
a+ 1)√

a(a− 1)π2
.

Now, we assume that
√
a ∈ IQ. Then, a = p2

q2
for some p, q ∈ IN, we deduce

p
(
m+ 1

2

)
− q

(
k + 1

2

)
q2

=
c

p
(
m+ 1

2

)
+ q

(
k + 1

2

) +
o(1)

p
(
m+ 1

2

)
+ q

(
k + 1

2

) .(3.34)

If p
(
m+ 1

2

)
− q

(
k + 1

2

)
= 0 for an infinity number of pairs (m, k), then c = o(1) and this is

a contradiction.
Else p

(
m+ 1

2

)
− q

(
k + 1

2

)
6= 0 for λ large enough and then

1

q2
≤

∣∣∣∣∣∣ c

p
(
m+ 1

2

)
+ q

(
k + 1

2

)
∣∣∣∣∣∣+

∣∣∣∣∣∣ o(1)

p
(
m+ 1

2

)
+ q

(
k + 1

2

)
∣∣∣∣∣∣ .

which cannot be true. Then, if
√
a ∈ IQ, we have only the following possibilities:

cos z1L = 0 and cos z2L 6= 0 or cos z2L = 0 and cos z1L 6= 0.

In this case, we get
|D| ≥ c|q|.

Using (3.16) and (3.29), we conclude that

‖(λI −A)−1‖H ≤ c|λ|(1−α) as |λ| → ∞.

We deduce an optimal decay rate of the energy of order t−2/(1−α).
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3.3 Conclusions

1) In this paper we have studied the Timoshenko beam with two feedbacks of fractional
derivative type. We have considered two cases: η = 0 and η > 0.

For the case η = 0, we have prove only strong asymptotic stability. The decay rate is
polynomial but we did not obtain any exponent depending on parameter α. As λ = 0 is a
spectral value, the method based on multiplier technic and Borichev-Tomilov method do not
work. In the future, we try other technic as a representation of solution by Mittag-Leffler
Functions.

For the case η > 0, we have succeed to prove decay rate depending on parameter α using
multiplier technic and Borichev-Tomilov method. This tool is flexible and can be adapted to
the multi-dimensional case and other complex systems. But, in general do not give optimal
decay rate. In our case, we have prove the optimality of the energy decay when the wave
propagation speeds are equal (weakly hyperbolic case). However, in the natural physical case
when the speeds of propagation are different (strongly hyperbolic case), we obtain optimal

and better decay rate (if
√

1/b is a rational number) witch is consistent with the asymptotic
expansion of eigenvalues. This is a surprisely fact because Timoshenko beam system can
be stabilized uniformly by only one internal frictional feedback in the weakly hyperbolic case.

2) In the future, we will consider Timoshenko beam system with only one boundary feedback
of of fractional derivative type, that is

ρ1ϕtt(x, t)−K(ϕx + ψ)x(x, t) = 0 in (0, L)× (0,+∞),
ρ2ψtt(x, t)− bψxx(x, t) +K(ϕx + ψ)(x, t) = 0 in (0, L)× (0,+∞),
ϕ(0, t) = 0, ψ(0, t) = 0 in (0,+∞),
K(ϕx + ψ)(L, t) = 0 in (0,+∞),
bψx(L, t) = −γ2∂

α,η
t ψ(L, t) in (0,+∞).



Publications

The following results were published:

1. A. Benaissa and S. Benazzouz Energy decay of solutions to the Cauchy problem for a
nondissipative wave equation, Journal of Mathematical Physics. Vol. 51, 123504, 2010.

2. A. Benaissa and S. Benazzouz well-posedeness and asymptotic behavior of Timoshenko
beam system with dynamic boundary dissipative feedback of fractional derivative type
Z. Angew. Math.Phys. 68-94, 2017.

77



78



Bibliography

[1] F. Alabau-Boussouira, Asymptotic behavior for Timoshenko beams subject to a single
nonlinear feedback control , Nonlinear Diff. Equa. Appl., 14 (2007), 643-669.
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Résumé 

 

Ma thèse  de doctorat intitulé  " Etude de la stabilisation et d’existence globale  des  équations d’évolutions 
linaires et  non linéaires. 

Dans les préliminaires, on rappelle des définitions et des résultats utiles pour notre travail. 
Ces résultats concernent essentiellement la théorie de semi-groupe , 
. On rappelle aussi les types de stabilité et des résultats généraux connus dans la littérature et appliquées 
pour certaines équations dissipatives. Dans le chapitre deux, on considère un système Timoshenko de type 
dynamique avec un contrôle au frontière de type dérivée fractionnaire. On montre l’existence globale de la 
solution dans des espaces de Sobolev et on détermine  la vitesse de décroissance de l’énergie associée aux 
solutions. Dans le chapitre trois, on considère le même système que dans le chapitre un  

mots clés: système Timoshenko,  Existence globale, stabilisation, Méthode de semi groupe, Méthode des 
multiplicateurs. 

   

Abstract 

My thesis is devoted to the study of stabilization and global existence,  to linear and nonlinear evolutions 
equations. 
This work consists of three chapters: 
In chapter 1 we give some preliminaries about some functional spaces in particular semi groupe theory and 
the different result for the stabilization. 
 In chapter 2, we consider the Timoshenko beam system with dynamic controls of fractional 
derivative type We prove a global existence result using the semi-group theory, we show that our system is 
not uniformly stable in general,. Also, we look for a polynomial decay rate for smooth initial data for our 
system by applying a frequency domain approach combining with a multiplier method. 
In chapter 3, we consider the same system as above ,By an explicit representation of the resolvant 
associated to the operator semi-group, we prove different optimal energy decay  
Key words: Timoshenko beam system, global existence , stabilization , semi-group method,  
multiplier Method . 

 

 

الملخص 

 

 :  حُقضى إنى ثلاثت فصول "دراسة استقرار ووجود الحل لمعادلات التطور الخطية وغير الخطية": نشصانت انخي بيٍ أيذيكى ححًم عُواٌ ا

َظشياث انزيش انجزئيت ،وانُخائج انًخخهفت نذساصت :  َزكش بانخعاسيف و انُخائج انًضخعًهت في ْزا انعًم، ْزِ انُخائج حخص بالأصاس :في البذاية 

الاصخقشاس 

 َعخبش جًهت حيًوشُكو يع ضوابظ ديُاييكيت راث يشخقاث كضشيت ، أثبخُا وجود حم كهي باصخخذاو َظشياث انزيش انجزئيت ،أيا : في الفصل الثاني

. الاصخقشاس انجًهت غيش يضخقشة أصيا عًويا ، كًا حوصهُا إنى أٌ انطاقت يخُاقصت عهى شكم كثيش حذود 

 فإَُا َعخبش َفش انجًهت انًزكوسة أعلاِ ، يٍ خلال حًثيم صشيح نهحال انًشبوط إنى شبّ انًشغم ، فإَُا َثبج حبايٍ انطاقت : في الفصل الثالث

 الأيثم

.  جًهت حيًوشُكو ، انوجود انكهي ، الإصخقشاس ، طشيقت انزيش انجزئيت ، طشيقت انًضاعفاث:الكلمات المفتاحية 

 


