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Introduction

Stabilization of evolution problems

Problems of global existence and stability in time of Partial Differential Equations made
object, recently, of many work. In this thesis we were interested in study of the global
existence and the stabilization of some evolution equations.

The purpose of stabilization is to attenuate the vibrations by feedback, thus it consists
in guaranteeing the decrease of energy of the solutions to 0 in a more or less fast way by a
mechanism of dissipation.

More precisely, the problem of stabilization consists in determining the asymptotic be-
haviour of the energy denoted by E(t), to study its limits in order to determine if this limit
is null or not and if this limit is null, to give an estimate of the decay rate of the energy to
ZEro.

This problem has been studied by many authors for various systems. In our study, we
obtain several type of stabilization

1) Strong stabilization: E(t) — 0, as t — oc.

2) Logarithmic stabilization: E(t) < c(log(t))™%,Vt > 0, (¢,d > 0).

3) polynomial stabilization: E(t) < ct=°,Vt > 0, (¢,d > 0)

4) uniform stabilization: E(t) < ce™® Vt > 0, (¢,d > 0).

For wave equation with dissipation of the form u” — A,u + g(u’) = 0, stabilization problems
have been investigated by many authors:
When g : IR — IR is continuous and increasing function such that g(0) = 0, global existence
of solutions is known for all initial conditions (ug,u1) given in H3 () x L?(2). This result
is, for instance, a consequence of the general theory of nonlinear semi-groups of contractions
generated by a maximal monotone operator (see Brézis [10]).

Moreover, if we impose on the control the condition YA # 0,g(A) # 0, then strong
asymptotic stability of solutions occurs in Hj () x L*(Q), i.e.,

(u,u') — (0,0) strongly in Hy(Q) x L*(9),

5



6 Introduction

without speed of convergence. These results follows, for instance, from the invariance princi-
ple of Lasalle (see for example C. M. Dafermos [14], A. Haraux [17], , F. Conrad, M. Pierre
[13]). If the solution goes to 0 as time goes to oo, how to get energy decay rates?

Dafermos has written in 1978 7 Another advantage of this approach is that it is so sim-
plistic that it requires only quite weak assumptions on the dissipative mechanism. The
corresponding drawback is that the deduced information is also weak, never yielding, for
example, decay rates of solutions.”

Many authors have worked since then on energy decay rates. First results were obtained
for linear stabilization, then for polynomial stabilization (see M. Nakao A. Haraux [17], E.
Zuazua and V. Komornik [19]) and then extended to arbitrary growing feedbacks (close to
0). In the same time, geometrical aspects were considered.

By combining the multiplier method with the techniques of micro-local analysis, Lasiecka
et al [12], [20] have investigated different dissipative systems of partial differential equations
(with Dirichlet and Neumann boundary conditions) under general geometrical conditions
with nonlinear feedback without any growth restrictions near the origin or at infinity. The
computation of decay rates is reduced to solving an appropriate explicitly given ordinary
differential equation of monotone type. More precisely, the following explicit decay estimate
of the energy is obtained:

(1) E(t) < h(tt S1), V>,

where ¢y > 0 and h is the solution of the following differential equation:
(2) h'(t) +q(h(t)) =0, Vt>0 and h(0)= E(0)

and the function ¢ is determined entirely from the behavior at the origin of the nonlinear
feedback by proving that E satisfies

(Id = q) 7' (E((m + 1)ty)) < E(mto), ¥m € IN.

In this thesis, the main objective is to give a global existence and stabilization results.
This work consists in two chapter.

Chapter 1: Well-posedeness and asymptotic behavior
of Timoshenko beam system with dynamic boundary
dissipative feedback of fractional derivative type

In this chapter, we consider the Timoshenko beam system with dynamic controls of fractional
derivative type, that is,

p2tfu (2, 1) = bibaa (2, 8) + K (0 + ) (2, 1) =0 in (0,



where (x,t) € (0, L) x (0, +00). This system is subject to the boundary conditions

¢(0,¢) =0, (0,¢) =0, in (0,400),
mieu(L,t) + K(op + ¢)(L, ) = =m0;"¢(L,t)  in (0, +00),
mett(La t) + wa(La t) = _7281,‘&’771/}([17 t) in (07 +OO>7

We prove a global existence result using the semi-group theory based on maximum monotone
method. Furthermore, we show that our system is not uniformly stable in general, since it
is the case of the interval, more precisely we show that an infinite number of eigenvalues
approach the imaginary axis. Also, we look for a polynomial decay rate for smooth initial
data for our system by applying a frequency domain approach combining with a multiplier
method.

Chapter 2:Energy decay of solutions to a Timoshenko
beam system with dynamic boundary feedbacks of frac-
tional derivative type

In this chapter, we consider the same system as above

(P) {puptt(x, t) = K(ps +1)a(z,1) =0 in (0, L)

where (z,t) € (0,L) x (0,+00). This system is subject to the boundary conditions

(0, +00),

X
x (0, +00),

©(0,t) =0, ¥(0,t) =0, in (0, +00),
ml(ptt(L’ t) + K<90$ + ¢)(L7 t) = _’7181?77790([/7 t) n (07 +OO))
Mmothy (L, t) + bipe (L, t) = —20;""1)(L, t) in (0, +00),

By an explicit representation of the resolvant associated to the operator semi-group, we
prove different optimal energy decay estimate following the speeds of propagation of coupled
system.
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Chapter 1

Preliminaries

1.1 Sobolev spaces

We denote by 2 an open domain in IR",n > 1, with a smooth boundary I' = 9€). In general,
some regularity of {2 will be assumed. We will suppose that either

Q is Lipschitz,
i.e., the boundary I' is locally the graph of a Lipschitz function, or
Qisof classC",r > 1,

i.e., the boundary I" is a manifold of dimension n > 1 of class C". In both cases we assume
that 2 is totally on one side of I'. These definitions mean that locally the domain € is
below the graph of some function ), the boundary I" is represented by the graph of ¢ and
its regularity is determined by that of the function ). Moreover, it is necessary to note that
a domain with a continuous boundary is never on both sides of its boundary at any point of
this boundary and that a Lipschitz boundary has almost everywhere a unit normal vector v.

We will also use the following multi-index notation for partial differential derivatives of
a function:

i oku ‘
Ofu = 9oF forall ke INandi=1,...,n,
i
aa1+~--+anu
DYy =0 05% ... 0% = ————),
b2 " Ozt ...0xon
a=(ag,ag,...,0p,) EIN" o] =1 + ... + .

We denote by C(D) (respectively C¥(D),k € IN or k = +o00) the space of real continuous
functions on D (respectively the space of k times continuously differentiable functions on
D), where D plays the role of Q or its closure 2. The space of real C* functions on €
with a compact support in €2 is denoted by C5°(£2) or D(£2) as in the distributions theory
of Schwartz.The distributions space on 2 is denoted by D’(2), i.e., the space of continuous
linear form over D(1).



10 Preliminaries

For 1 < p < oo, we call LP(Q2) the space of measurable functions f on 2 such that

1/p
1flw = ([ f@Pde) " <+00 for p<-+oc
Ifllzoe@y = sup|f()] < +o0 for p= oo

The space LP(Q2) equipped with the norm f — ||f||z» is a Banach space: it is reflexive and
separable for 1 < p < oo (its dual is LT (€2)), separable but not reflexive for p = 1 (its dual
is L>(Q)), and not separable, not reflexive for p = oo (its dual contains strictly L*(€2)). In
particular the space L*(Q) is a Hilbert space equipped with the scalar product defined by

(f,9) 2@ Z/Qf(a:)g(x)dzz:.

We denote by L7 (£2) the space of functions which are LP on any bounded sub-domain of €.
Similar space can be defined on any open set other than 2, in particular, on the cylinder
set Q2 x ]a, b] or on the set I X ]a, b[, where a,b € IR and a < b.
Let U be a Banach space, 1 < p < +00 and —oo < a < b < +o00, then LP(a,b;U) is the
space of LP functions f from (a,b) into U which is a Banach space for the norm

b 1/p
sy = ([ W@ ) <00 for <o
and for the norm

1| zos @ity = sup If(@)]lv <400 for p=+400
te(a,

Similarly, for a Banach space U, k € IN and —oo0 < a < b < 400, we denote by C(a, b]; U)
(respectively C*([a,b]; U)) the space of continuous functions (respectively the space of k
times continuously differentiable functions) f from [a,b] into U, which are Banach spaces,
respectively, for the norms

o' f
ot

k
1 flle@pry = sup [f@)lo, 1 fllek@pr) = D
te(a,b) i=0 C(a,b;U)

1.1.1 Definition of Sobolev Spaces

Now, we will introduce the Sobolev spaces: The Sobolev space W#?() is defined to be the
subset of LP such that function f and its weak derivatives up to some order k have a finite
L? norm, for given p > 1.

WhI(Q) = {f € L/(Q); D°f € LP(Q). Vai|a] <k} |
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With this definition, the Sobolev spaces admit a natural norm,

1/p
F = 1oy = (Z HD“fH’Zp(Q)) | for p < +00

laf<m
and
f—= fllweee@y = D2 1D fllze(@) , for p=+o0
laj<m
Space WHP(Q) equipped with the norm || . ||yyx» is a Banach space. Moreover is a reflexive

space for 1 < p < oo and a separable space for 1 < p < oco. Sobolev spaces with p = 2 are
especially important because of their connection with Fourier series and because they form
a Hilbert space. A special notation has arisen to cover this case:

() = ()
the H” inner product is defined in terms of the L? inner product:

(f, 9 mre) = > (Df,D%9)r2(q) -
| <k

The space H™(Q2) and W*P(Q) contain C>*(2) and C™(). The closure of D(2) for the
H™(Q) norm (respectively W™?(Q) norm) is denoted by H'(Q) (respectively Wi (Q)).

Now, we introduce a space of functions with values in a space X (a separable Hilbert
space).

The space L?(a,b; X) is a Hilbert space for the inner product

b

(f,9)r2@px) = / (f(t),qg(t))x dt

We note that L>(a,b; X) = (L'(a,b; X))’
Now, we define the Sobolev spaces with values in a Hilbert space X
For k € IN, p € [1, 00], we set:

ov

8@»

Wk’p(a,b;X):{UELp(a,b;X); € LP(a,b; X). ‘v’igk} ,

The Sobolev space W*?(a,b; X) is a Banach space with the norm

k af p 1/p
[fllwer@px)y = (Z Oz ) , for p < 400
=0 1 9% [ Lp (0,b;x)
k
v
”f“W’“vOo(a,b;X) = Z 7 ) for p =+
i=0 1 9% || oo (a,b;X)

The spaces W*?2(a, b; X) form a Hilbert space and it is noted H*(0,T; X). The H*(0,T; X)
inner product is defined by:

orb(ou Ov
(u7 U)H (a,b,X) ; /a <8$Z Y 63;'1 > X
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Theorem 1.1.1 Let 1 < p <n, then
WHP(IR™) C LP (IR™)

1 1 1
where p* is given by — = — — — (where p = n,p* = o). Moreover there exists a constant
* n

C = C(p,n) such that Y
[ull o < ||Vl oarmy Yu € WHP(IR™).
Corollary 1.1.1 Let 1 < p < n, then
WH(IR") € L(IR") Vg € [p,p’]
with continuous imbedding.
For the case p = n, we have
Wt™(IR") c LY(IR"™) VYq € [n, +oo|
Theorem 1.1.2 Let p > n, then
WHP(IR") C L®(IR")
with continuous imbedding.

Corollary 1.1.2 Let Q a bounded domain in IR™ of C' class with ' = 09Q and 1 < p < oo.
We have 1 11
if 1<p<oo, then WHP(Q) C L¥" () where — = — — —.
p p n
if p=mn, then WP(Q) C L1(),Vq € [p, +o0l.
if p>n, then WHP(Q) C L>(Q)
with continuous imbedding.

Moreover, if p > n, we have: Yu € WHP(Q),

u(z) —u(y)| < Cle = y[*lullwir@) a.ex,y €O

with a = 1 — n > 0 and C is a constant which depend on p,n and €. In particular
D
Whr(Q) C C().

Corollary 1.1.3 Let Q a bounded domain in IR™ of C' class with T’ = 09 and 1 < p < oo.
We have

1 1 1
if p<mn, then W'P(Q) C LI(Q)Vq € [1,p*[ where — = — — —.
p b n
if p=mn, then W'(Q) C LI(Q),Vq € [p, +o0l.
if p>mn, then WP (Q) C C(Q)

with compact imbedding.



1.1. SOBOLEV SPACES
Remark 1.1.1 We remark in particular that

Whe(Q) C LYQ)
with compact imbedding for 1 < p < oo and for p < q < p*.

Corollary 1.1.4

1 11
Zf L T > O, then Wm,p(n:{n) C Lq(]Rn> where — = — — m
pon g p n
i % =0, then W™P(IR") C LY(IR"),Vq € [p, +oc.
1
if - <0, then WTH(IR") C L (IR")

with continuous imbedding.

13



14 Preliminaries

1.2 Weak convergence

Let (E;|.]|g) a Banach space and E’ its dual space, i.e., the Banach space of all continuous
linear forms on E endowed with the norm ||.||%; defined by

1l = sup 2!

w20l

; where (f, x); denotes the action of f onx, i.e.(f,z) := f(z). In the same way, we can define
the dual space of £’ that we denote by E”. (The Banach space E” is also called the bi-dual
space of E.) An element x of E can be seen as a continuous linear form on E’ by setting
x(f) := (x, f), which means that £ C E":

Definition 1.2.1 The Banach space E is said to be reflexive if E = E”.

Definition 1.2.2 The Banach space E s said to be separable if there exists a countable
subset D of E which is dense in E, i.e. D = E.

Theorem 1.2.1 (Riesz). If (H;(.,.)) is a Hilbert space, (.,.) being a scalar product on H,
then H' = H in the following sense: to each f € H' there corresponds a unique x € H such
that f = (x,.) and |[f|}y = l|lz|la

Remark : From this theorem we deduce that H” = H. This means that a Hilbert space is
reflexive.

Proposition 1.2.1 If E is reflexive and if F is a closed vector subspace of E, then F is
reflezive.

Corollary 1.2.1 The following two assertions are equivalent: (i) E is reflexive; (ii) E' is
reflezive.

1.2.1 Weak, weak star and strong convergence

Definition 1.2.3 (Weak convergence in E). Let x € E and let {x,} C E. We say that {x,}
weakly converges to x in E, and we write x,, — x in F, if

<f>$n> - <f7$>
forall f € E'.

Definition 1.2.4 (weak convergence in E'). Let f € E' and let {f,} C E'. We say that
{fn} weakly converges to fin E', and we write f, — f in E', if

(frz) = ([, 2)
for all x € E".
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Definition 1.2.5 (weak star convergence). Let f € E' and let {f,} C E'. We say that { f,}
weakly star converges to fin E', and we write f, — xf in E' if;

(fn,x) = (f, @)
forallz € F.

Remark As £ C E” we have f,, — fin E' imply f, — *f in E'. When E is reflexive, the last
definitions are the same, i.e, weak convergence in £’ and weak star convergence coincide.

Definition 1.2.6 (strong convergence). Let x € E(resp. f € E') and let {x,} C E (resp
{fu} C E'). We say that {x,} (resp. {f.}) strongly converges to x (resp. f), and we write
Ty, —xin E (resp. f, — fin E'), if

lim ||z, — ||g = 0; (resp. lim ||, — flIp = 0)
Proposition 1.2.2 Letx € E, let {x,} C E, let f € E' and let {f,} C E'.
i. If x, — x in E then x, — x in E.
it. If x,, = x in E then {x,} is bounded.

iii. If xn — @ in E then lim inf lznlle > |zl e

w. If fo — fin E' then f, — f inE' (and so f, = f in E').
v. If fo, — fin E' then {f.} is bounded.

vi. If fo — fin E' then then lim inf I fulle = 1S

Proposition 1.2.3 (finite dimension). If dimE < oo then strong, weak and weak star
convergence are equivalent.

1.2.2 Weak and weak star compactness

In finite dimension, i.e, dim F < oo, we have Bolzano-Weierstrass’s theorem (which is a
strong compactness theorem).

Theorem 1.2.2 (Bolzano-Weierstrass). If dim E < oo and if {x,} C E) is bounded, then
there ezist € E and a subsequence {x,, } of {x,} such that {z,,} strongly converges to z.

The following two theorems are generalizations, in infinite dimension, of Bolzano- Weier-
strass’s theorem.

Theorem 1.2.3 (weak star compactness, Banach-Alaoglu-Bourbaki). Assume that E is sep-
arable and consider {f,} C E') . If {z,} is bounded, then there exist f € E' and a subse-
quence { fn,} of {fn} such that {f,,} weakly star converges to fin E'.
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Theorem 1.2.4 (weak compactness, Kakutani-Eberlein). Assume that E is reflexive and
consider {x,} C E). If {x,} is bounded, then there exist x € E and a subsequence {x,, } of
{z,} such that {x,, } weakly converges to z in E.

Weak, weak star convergence and compactness in L?((2).

Definition 1.2.7 ( weak convergence in LP() with 1 < p < oo ). Let  an open subset of
IR™ . We say that the sequence {f,} of LP(Q) weakly converges to f € LP(Q), if

1 1
lzm/fn dx—/f x)dx for all g € LY (—+—=1)
p q
Definition 1.2.8 (weak star convergence in L>*(Q2) ). We say that the sequence {f,} C
L>(Q) weakly star converges to f € L>(Q) , if

lim / fol2)g(z)dz = / F(@)g(x)dz for all g € LY(Q)

Theorem 1.2.5 (weak compactness in LP(2)) with 1 < p < oo. Gwen {f,} C LP(Q) ,
if {fn} is bounded, then there exist f € LP(Q) and a subsequence {f..} of {f.} such that

fo— f in LP(Q).

Theorem 1.2.6 (weak star compactness in L>®(€2).
Given {f,} C L>®(Q), if {fn} is bounded, then there exist f € L*°(Q) and a subsequence

{fur} of {fn} such that f, = f in L=(Q).

Generalities. In what follows, 2 is a bounded open subset of IR™ with Lipschitz boundary
and 1 < p < o0.

Weak and weak star convergence in Sobolev spaces

For 1 < p < oo, WHP(Q) is a Banach space. Denote the space of all restrictions to € of
C'-differentiable functions from IRY to IR with compact support in RN by C*(Q).

Theorem 1.2.7 for every 1 < p < oo CH(Q) € WHP(Q) C LP(Q) , and, for 1 < p < oo,
CH(Q) is dense in WLP(Q).

Definition 1.2.9 (weak convergence in W'P(Q) with 1 < p < 0).)
We say the {f,} C WHP(Q) weakly converges to f € WYP(Q), and we write f, — [ in
WEP(Q) | if fo — f in LP(Q) and V f,, — Vf in LP(Q; IRY)

Definition 1.2.10 (weak convergence in W™ (£2)
. We say the {f,} C WHE®(Q) weakly star converges to f € W1®(Q), and we write f,, = f
in WU (Q) | if f, = f in LP(Q) and Vf, = Vf in L=(Q; RY)

Theorem 1.2.8 (Rellich). Let1 <p <oo, {f,} C W' (Q) and f € W'P(Q); if f, = [ in
WLP(Q) when 1 < p < oo (resp.fn — f in WE=(Q)) when p = o) then f,, — f in LP(R)),
which means that for every 1 < p < oo, the weak convergence in W5HP(Q) imply the strong
convergence in LP(£2).
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Theorem 1.2.9 Let 1 < p < oo and let {f,} € WH(Q) . If {f.} is bounded, then there
exist [ € W'P(Q) and a subsequence {f,,} of {fn} such that f, — f in WHP(Q) when
1<p<oo (resp. fn, — f in WE=(Q))

As a consequence of this theorem we have

Corollary 1.2.2 Let 1 < p < ocoand let {f,} € W¥P(Q) . If {f.} is bounded, then there
exist f € WYP(Q) and a subsequence { f,,} of {fn} such that f,, — f in LP(Q) and V f,, —
Vf in LP(Q) when 1 < p < oo (resp.N f,, — Vf in L=(Q))

Theorem 1.2.10 . IfN < p < oo and if {f.} C W'P(Q) is bounded, then there exist
[ € WH(Q) and a subsequence { fn, } of {fn} such that {f,.} converges uniformly to f, and
Vfp, = Vf in WEP(Q) when N < p < oo (resp. Vfn, — Vf in WE>)

1.2.3 Gronwall lemma

Lemma 1.2.1 Let T > 0, g € L'(0,T), g > 0 a.e and ¢1, ¢y are positives constants.Let
p e LY0,T) ¢ >0 a.e such that gp € L'(0,T) and

o(t) <+ e /Otg(s)go(s)ds a.e in (0,7).

then, we have
¢
o(t) < crexp (02/ g(s)ds) a.e in (0,7T).
0

1.2.4 Aubin -Lions lemma

The Aubin Lions lemma is a result in the theory of Sobolev spaces of Banach space-valued
functions. More precisely, it is a compactness criterion that is very useful in the study of
nonlinear evolutionary partial differential equations. The result is named after the French
mathematicians Thierry Aubin and Jacques-Louis Lions. We complete the preliminaries by
the useful inequalities of Gagliardo-Nirenberg and Sobolev-Poincaré.

Lemma 1.2.2 LetXy, X and X; be three Banach spaces with Xo C X C X;. Assume thatX
1s compactly embedded in X and that X s continuously embedded in Xi; assume also that
Xo and X are reflexive spaces. For 1 < p,q < 400, let

W = {ue L*([0,T]; Xo)/ @€ LU[0,T]; X1)}
Then the embedding of W into LP([0,T]; X) is also compact.

Lemma 1.2.3 (Gagliardo-Nirenberg) Let 1 < r < ¢ < 400 and p < q. Then, the
inequality
ullwma < Cllullfympllull=0  for we W™ L



18 Preliminaries

(k 1 1) (m 1 1)1
f=(-4+--—=)[—+=-=
n T q n T p

provided that 0 < 6 <1 (we assume 0 < 0 <1 if ¢ = +00).

holds with some C > 0 and

Lemma 1.2.4 (Sobolev-Poincaré inequality) Let g be a number with2 < q¢ < +o00 (n =
1,2) or2<q<2n/(n—2) (n>3), then there is a constant c, = c(£2,q) such that

lully < ellVulla for  u € Hy(€).

1.3 Semigroup and spectral analysis theories

As the analysis done in this P.H.D thesis local on the semigroup and spectral analysis
theories, we recall, in this chapter, some basic definitions and theorems which will be used
in the following chapters.

1.3.1 Bounded and Unbounded linear operators

In this chapter we give some well known results abound bounded and undounded operators.
We are not trying to give a complete development, but rather review the basic definitions
and theorems, mostly without proof. Let (F, ||.||g) and (F, ||.||r) be two Banach spaces over
C, and H will always denote a Hilbert space equipped with the scalar product < .,. > and
the corresponding norm ||.||g. A linear operator T': E — F' is a transformation which
maps linearly E in F, that is

T(ou+ pv) = aT(u) + T (v), Vu,v € Eanda, 3 €C.

Definition 1.3.1 An operator T : E — I is said to be bounded if there exists C' > 0 such
that
ITul|r < Cllul|lp Yu € E.

The set of all bounded linear operators from E into F is denoted by L(E, F'). Moreover, the
set of all bounded linear operators from E into E is denoted by L(F).

Definition 1.3.2 A bounded operator T € L(E, F) is said to be compact if for each sequence
(Tn)new € E with ||x,||g = 1 for each n € IN, the sequence (Txy,)new € E has a subsequence
which converges in F. The set of all compact operators from E into F is denoted by K(E, F).
For simplicity one writes IK(E, E) = K(E).

Definition 1.3.3 Let T € L(E, F), we define



1.3. SEMIGROUP AND SPECTRAL ANALYSIS THEORIES 19

e Range of T by
R(T)={Tu: weEFE}CF

e Kernel of T by
ker(T)={ue E: Tu=0}CE.

Theorem 1.3.1 (Fredholm alternative) if T € K(E), then
e ker(I —T) is finite dimension, (I is the identity operator on E ).
o R(I —1T) is closed.
o ker(I-T)=0&R(I-T)=E.
Definition 1.3.4 Let T : D(T) C E — F be an unbounded linear operator.
e The range of T is defined by

R(T)={Tu: weDT)}CF

e The Kernel of T is defined by

ker(T)={ue D(T): Tu=0}CE.

e The graph of T is defined by

G(T)={(u,Tu): weD(T)} CExFE

Definition 1.3.5 A map T is said to be closed if G(T) is closed in E x F. The closedness

of an unbounded linear operator T can be characterize as following if u, € D(T) such that
U, — u in E and Tu, — v in F, then uw € D(T') and Tu = v.

Definition 1.3.6 Let T': D(T) C E — F be a closed unbounded linear operator.

o The resolvent set of T is defined by

p(T)={ eC: XN —T isbijectivefrom D(T) onto F}.

o The resolvent of T is defined by

RONT)={(M\[-T)"': Xe&p(T)}.

o The spectrum set of T' is the complement of the resolvent set inC, denoted by

o(T) =T/p(T).
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Definition 1.3.7 Let T : D(T) C E — F be a closed unbounded linear operator. we can
split the spectrum o(T) of T into three disjoint sets, given by

e The ponctuel spectrum of T s define by
o,(T) ={NeC: ker(\ -T)#0}
in this case A is called an eigenvalue of T.

e The continuous spectrum of T is define by

o0 (T)={NeC: ker(\N[-T)=0,RI\N[-T)=F andA\~-T)"Yis not bounded}.

o The residual spectrum of T is define by

o (T)={NeC: ker(Al =T) =0andR(A —T) is not dense in F}.

Definition 1.3.8 Let T : D(T) C E — F be a closed unbounded linear operator and let
A be an eigevalue of A. non-zero element e € E is called a generalized eigenvector of T
associated with the eigenvalue value X, if there exists n € IN* such that

M —-T)'e=0 and (M —T)" e#0.

if n =1, then e is called an eigenvector.

Definition 1.3.9 Let T : D(T) C E — F be a closed unbounded linear operator. We say
that T has compact resolvent, if there exist \g € p(T) such that (\gI —T)™' is compact.

Theorem 1.3.2 Let (T, D(T)) be a closed unbounded linear operator on H then the space
(D(T), ||.llpery) where ||ul|pry = |Tul|g + ||ullg  Yu € D(T) is banach space .

Theorem 1.3.3 Let (T, D(T)) be a closed unbounded linear operator on H then, p(T') is an
open set of C.

1.3.2 Semigroups, Existence and uniqueness of solution

In this section, we start by introducing some basic concepts concerning the semigroups. The
vast majority of the evolution equations can be reduced to the form

Ut:AU, t>0,

(1.1)
U(0) = Uy

where A is the infinitesimal generator of a Cy-semigroup S(t) over a Hilbert space H. Lets
start by basic definitions and theorems. Let (X ||.||x) be a Banach space, and H be a Hilbert
space equipped with the inner product < .,. >y and the induced norm ||.|| 5.
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Definition 1.3.10 A family S(t);>0 of bounded linear operators in X is called a strong
continous semigroup (in short, a Cy-semigroup) if

i) S(0) = 1.
ii) S(s+1t)=95(s)S(t), Vt>0Vs>D0.
iii) For each w € H, S(t)u is continous in t on [0, 4+00].

Sometimes we also denote S(t) by et

Definition 1.3.11 For a semigroup S(t);>0, we define an linear operator A with domain
D(A) consisting of points u such that the limit

Au = lim M
t—0t

Vu € D(A)

exists. Then A is called the infinitesimal generator of the semigroup S(t)i>o.

Proposition 1.3.1 Let S(t)i>0 be a Co-semigroup in X. Then there exist a constant M > 1
and w > 0 such that
1S(0)]|zx) < Me*'. ¥Vt >0

If w = 0 then the corresponding semigroup is uniformly bounded. Moreover, if M = 1 then
S(t)i>0 is said to be a Cy-semigroup of contractions.

Definition 1.3.12 An unbounded linear operator (A, D(A)) on H, is said to be dissipative

of
R < Au,u ><0,Yu € D(A).

Definition 1.3.13 An unbounded linear operator (A, D(A)) on X, is said to be m-dissipative
of

e A is a dissipative operator.
e J)\o such that R(A\l — A) =X
Theorem 1.3.4 Let A be a m-dissipative operator, then
e Rl —A)=X, VA>0
e ]0,00[C p(A).

Theorem 1.3.5 ( Hille-Yosida )An unbounded linear operator (A, D(A)) on X, is the in-
finitesimal generator of a Cy-semigroup of contractions S(t)i>o if and only if

o A is closed and D(A) = X.
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o The resolvent set p(A) of A contains IRT, and for all A > 0,

AL = A) ey <A1

Theorem 1.3.6 (Lumer-Phillips) Let (A, D(A)) be an unbounded linear operator on X,
with dense domain D(A) in X. A is the infinitesimal generator of a Cy-semigroup of con-
tractions if and only if it is a m-dissipative operator.

Theorem 1.3.7 Let (A, D(A)) be an unbounded linear operator on X. If A is dissipative
with R(I — A) = X, and X is reflexive then D(A) = X.

Corollary 1.3.1 Let (A, D(A)) be an unbounded linear operator on H. A is the infinitesimal
generator of a Cy-semigroup of contractions if and only if A is a m-dissipative operator.

Theorem 1.3.8 Let A be a linear operator with dense domain D(A) in a Hilbert space H.
If A is dissipative and 0 € p(A) then A is the infinitesimal generator of a Cy-semigroup of
contractions on H.

Theorem 1.3.9 ( Hille-Yosida ) Let (A, D(A)) be an unbounded linear operator on H.
Assume that A is the infinitesimal generator of a Cy-semigroup of contractions S(t)i>o.

1. For Uy € D(A), the problem (1.1) admits a unique strong solution

U(t) = S(t)Us € C([0, 00[; H) N C([0, 00[; D(A))

2. For Uy € D(A), the problem (1.1) admits a unique weak solution

U(t) € C°([0, 00[; H).

1.3.3 Stability of semigroup

In this section we start by itroducing some definion about strong, exponential and polynomial
stability of a Cjy-semigroup. Then we collect some results about the stability of Cy-semigroup.
Let (X, ||.||x be a Banach space, and H be a Hilbert space equipped with the inner product
< .,.>p and the induced norm ||.||x.

Definition 1.3.14 Assume that A is the generator of a strongly continuous semigroup of
contractions S(t)i>o on X. We say that the Cy-semigroup S(t)i>o is

e Strongly stable if
thTw |S(t)ul|x =0, YueX.
o Uniformly stable if
tim_|1S(t)lecx) = 0

t—+o00
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e Fxponentially stable if there exist two positive constants M and € such that

1S(t)ullx < Me™|lullx, Vt>0, YuelX.

e Polynomially stable if there exist two positive constants C' and o such that

IS(Eullx < Ct=|lullx, ¥t>0, VueX.

Proposition 1.3.2 Assume that A is the generator of a strongly continuous semigroup of
contractions S(t)i>o on X. The following statements are equivalent
o S(t)i>o is uniformly stable.

o S(t)i>0 is exponentially stable.

First, we look for the necessary conditions of strong stability of a Cy-semigroup. The result
was obtained by Arendt and Batty.

Theorem 1.3.10 (Arendt and Batty) Assume that A is the generator of a strongly contin-
uous semigroup of contractions S(t);>o on a reflexive Banach space X . If

o A has no pure imaginary eigenvalues.
e g(A)Ni IR is countable.

Then S(t) is strongly stable.

Remark 1.3.1 If the resolvent (I — T)™' of T is compact, then o(T) = o,(T). Thus,
the state of Theorem 1.3.10 lessens to o,(T) Ni IR = () Next, when the Cy-semigroup is
strongly stabe, we look for the necessary and suffient conditions of exponential stability of a
Co-semagroup. In fact, exponential stability results are obtained using different methods like
: multipliers method, frequency domain approach, Riesz basis approach, Fourier analysis or
a combination of them . In this thesis we will review only two methods. The first method is
a frequency domain approach method was obtained by Huang- Pruss.

Theorem 1.3.11 (Huang-Pruss) Assume that A is the generator of a strongly continuous
semigroup of contractions S(t);>o on H. S(t) is uniformly stable if and only if

e i IR C p(A).
o supger (181 — A) 7 oo < +oo.

The second one, is a classical method based on the spectrum analysis of the operator A.

Definition 1.3.15 Let (A, D(A)) be an unbounded linear operator on H. Assume that A is
the infinitesimal generator of a Cy-semigroup of contractions S(t)¢>o.
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e The growth bound of A is define by

wo(A) =inf{w € R : IN,, € Rsuchthat¥t > Owehave||S(t)| < N,e**}.

e The spectral bound of A is define by

s(A) = sup{R(\): Aead(A)}.

Proposition 1.3.3 Let (A, D(A)) be an unbounded linear operator on H. Assume that A
is the infinitesimal generator of a Cy-semigroup of contractions S(t)i>o. Then S(t)i>o is
uniformly exponentially stable if and only if its growth bound wy(A) < 0.

Proposition 1.3.4 Let (A, D(A)) be an unbounded linear operator on H. Assume that A
is the infinitesimal generator of a Cy-semigroup of contractions S(t)i>o. Then, we have

Corollary 1.3.2 Let (A, D(A)) be an unbounded linear operator on H. Assume that s(A) =
0, then S(t)i>o is not uniformly exponentially stable.

In the case when the Cy-semigroup is not exponentialy stable we look for a polynomial
one. In general, polynomial stability results also are obtained using different methods like :
multipliers method, frequency domain approach, Riesz basis approach, Fourier analysis or a
combination of them . In this thesis we will review only one method. The first method is a
frequency domain approach method was obtained by Batty, A.Borichev and Y.Tomilov, Z.
Liu and B. Rao.

Theorem 1.3.12 (Batty , A.Borichev and Y.Tomilov, Z. Liu and B. Rao.) Assume that
A is the generator of a strongly continuous semigroup of contractions S(t)i>o on H. If
i IR C p(A), then for a fized | > 0 the following conditions are equivalent

: 1 1
1. |/\|liToo supﬁH(/\] — A) 72y < Foo.

2. 1S Uollu < 7% ||UslIp(ay ¥Vt > 0, Uy € D(A), for some C > 0.

1.3.4 Fractional Derivative Control

In this part, we introduce the necessary elements for the good understanding of this manuscript.
It includes a brief reminder of the basic elements of the theory of fractional computation
as well as some examples of applications of this theory in this scientific field. The concept
of fractional computation is a generalization of ordinary derivation and integration to an
arbitrary order. Derivatives of non-integer order are now widely applied in many domains,
for example in economics, electronics, mechanics, biology, probability and viscoelasticity. A
particular interest for fractional derivation is related to the mechanical modeling of gums and
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rubbers. In short, all kinds of materials that preserve the memory of previous deformations
in particular viscoelastic. Indeed, the fractional derivation is introduced naturally. There
exists a many mathematical definitions of fractional order integration and derivation. These
definitions do not always lead to identical results but are equivalent for a wide large of func-
tions. We introduce the fractional integration operator as well as the two most definitions of
fractional derivatives, used, namely that Riemann-Liouville and Caputo, by giving the most
important properties of the notions. Fractional systems appear in different fields of research.
However, the progressive interest in their applications in the basic and applied sciences. It
can be noted that for most of the domains presented ( automatic, physics, mechanics of
continuous media). The fractional operators are used to take into account memory effects.
We can mention the works that reroute various applications of fractional computation. In
physics, on of the most remarkable applications of fractional computation in physics was in
the context of classical mechanics. Riewe, has shown that the Lagrangien of the motion of
temporal derivatives of fractional orders leads to an equation of motion with friction forces
and nonconservative are essential in macroscopic variational processing such as friction. This
result are remarkable because friction forces and non conservative forces are essential in the
usual macroscopic variational processing and therefore in the most advances methods clas-
sical mechanics. Riewe, has generalized the usual Lagrangian variation which depends on
the fractional derivatives in order to deal with the usual non-conservative forces. On the
another hand, several approaches have been developed to generalize the principle of least
action and the Euler-Lagrange equation to the case of fractional derivative. The definition
of the fractional order derivation is based on that of a fractional order integration, a frac-
tional order derivation takes on a global character in contrast to an integral derivation. It
turns out that the derivative of a fractional order of a function requires the knowledge of f(t)
over the entire interval |a, b[, where in the whole case only the local knowledge of f around
t is necessary. This property allows to interpret fractional order systems as long memory
systems, the whole systems being then interpretable as systems with short memory. Now,
we give the definition of the fractional derivatives in the sense of Riemann-Liouville as well
as some essential properties.

Definition 1.3.16 The fractional integral of order o > 0, in sense Riemann-Liouville is
given

I f () = FSOC)/:(t S f(s)ds, > a.

Definition 1.3.17 The fractional integral of order o > 0, in sense Riemann-Liouville of a
function f defined on the interval [a,b] is given by
1 dr

Dy o f(t) =D Iy f(t) = ORI

t
/ (t—s)"" " 'f(s)ds, n=la]+1, t>a.
In particular, if « =0, then

Dipaf(t) = I0f(t) = f(t)
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if o =n € 1IN, then

Diyof (8) = F™(t)
Moreover, if 0 < a < 1, then n =1, then

1

D3 f(t) = m_a)f/:(t s f(s)ds,  t>a.

Example:

Let a > 0,y > —1 and f(t) = (t — a)?, then

) = =0
Dl (0) = o (e = 0,

In particular, if ¥ = 0 and > 0, then D, ,(C) = C (t;gl:)a . The derivatives of Riemann-
Liouville have certain disadvantages when attempting to model real world phenomena. The
problems studied require a definition of the fractional derivatives allowing the use of the
physically interpretable initial conditions including y(0), 3/(0), etc. There shortcomings led
to an alternative definition of fractional derivatives that satisfies these demands in the last
sixties. It was introduced by Caputo. In fact, Caputo and Minardi used this definition in
their work on viscoelasticity. Now, we give the definition of the fractional derivatives in the

sense of Caputo as well as some essential properties.

1.3.5 Geometric Condition

In this section, we present two different types on the geometric conditions.

Definition 1.3.18 We say that the multiplier control condition MGC holds if there exist
zo € IR and a positive constant mg > 0 such that

murv <0 on Iy and mwv>myg on T},
whith m(z) = x — xg, for all z € TR?

We recall the Geometric Control condition GCC introduced by Bardos, Lebeau and Rauch
[13] :

Definition 1.3.19 We say that I' satisfies the geometric condition named GCC, if every
ray of geometrical optics, starting at any point x € Q at time t = 0, hits 'y in finite time T'.
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Remark 1.3.2 In [13], Bardos et al. proved that (H) holds if I is smooth (of class C™),
[oNT; =0 and the GCC condition. For less reqular domains, namely of class C2, (H)
holds if the vector field assumptions described in [33] (see (i), (i7), (iii) of Theorem 1 in [33])
hold. Moreover, in Theorem 1.2 of [34] the authors prove that (H) holds for smooth domains
under weaker geometric conditions than in [33] (without (i7) of Theorem 1). Finally, it is easy

to see that the multiplier control condition MCC implies that the vector field assumptions
described in [33] are satisfied and therefore the condition (H) holds if MCC holds.

1.3.6 Appendix
Theorem 1.3.13 (see [26]) Let u be the function defined by

2a—d

(1.2) p@ =€z, ¢€€R? and 0<a<l.

The relation between the “imput” U and the "output” O of the following system

(13)  Qw(&t) + (IEP + nw(&t) = UM)uE) =0, ¢eR teR" and >0,

(1.4) w(,0) =0,
2sin(am)(4 + 1)
(15) O(1) = =gt [ m€)le, 1)t
s given by
(1.6) O = I'"*"U = D*"U.

Lemma 1.3.1 For all A € IR andn > 0, we have

200—d
A :/ €] :
R A+ 7+ [€]

=

_ a—1 _ ’5‘2a—d 2~ a_q
a = c(\+m)* ! and Ay = ([ e epX)” =)

where ¢, ¢ are two positive constants given by

dﬂ'%+1 d +o0 (y _ 1)04 1
— d p g d7|'72/ d 2 '
¢ QF(% + 1) sin(am) ana ¢ <2F(%+1) 1 Y2 y)

Lemma 1.3.2 if \e D={A€C, A +n>0}U{X €C, F(A\) # 0}, then

oo M2(£) _ Q0 a—1
[oo A1+ £2d§ B Sin(om)()\ T
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Chapter 2

WELL-POSEDENESS AND
ASYMPTOTIC BEHAVIOR OF
TIMOSHENKO BEAM SYSTEM
WITH DYNAMIC BOUNDARY
DISSIPATIVE FEEDBACK OF
FRACTIONAL DERIVATIVE TYPE

2.1 Introduction

In this chapter we investigate the existence and decay properties of solutions for the initial
boundary value problem of the linear Timoshenko beam system of the type

(P) {plgptt(xat) _K<¢x+w)x(x>t) =0 n (0>L) X (07+OO>>
pathu(@,t) — bua(@,t) + Koy + ¥)(2,8) =0 in (0,L) x (0,400),

where (x,t) € (0, L) x (0,+00). This system is subject to the boundary conditions

©(0,t) =0, 9(0,t) =0, in (0, +00),
mlgptt(La t) + K(SOZ + ¢)(L7 t) = _’ylata’n(p([/a t) in (07 +OO>7
Moty (L, t) + 0ipy (L, t) = —0;"")(L, t) in (0, +00),

where v; > 0,7 = 1,2. The notation 9;"" stands for the generalized Caputo’s
fractional derivative of order «a,0 < o < 1, with respect to the time variable. It is defined
as follows

Fut) =

1 t dw
e nlt—s) S
r'il—a) /0 (t=s)e ds (s) ds, 1 2 0.

In other words, we investigate two dissipative effects at the boundary. The system is finally
completed with initial conditions

{@(Ivo) :SOO(x)’ gﬁt(l',()) :901(:[)7 w(xao) :%(f),
(,0) =y (x), x € (0,L),

29
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where the initial data (¢o, ©1,%0,%1) belong to a suitable function space.
A simple model describing the transverse vibration of a beam, which was developed in
[39], is given by a system of coupled hyperbolic equations of the form

{putt(xat) = (K(ux - ¢))x in (O: L) X (07 +OO>7
pbu(x,t) = (Ely)s + K(uy — @) in (0, L) x (0, 400),

where t denotes the time variable, x is the space variable along the beam of length L, in its
equilibrium configuration, u is the transverse displacement of the beam and ¢ is the rotation
angle of the filament of the beam. The coefficients p,p, E,I and K are respectively the
density (the mass per unit length), the polar moment of inertia of a cross section, Young’s
modulus of elasticity, the moment of inertia of a cross section, and the shear modulus.

There are a number of publications concerning the stabilization of Timoshenko system
with different kinds of damping (see [1], [18], [30], [31], [33] and [36]). Raposo et al. [36]
proved the exponential decay of the solution for the following linear system of Timoshenko-
type beam equations with linear frictional dissipative terms:

prow — K(pe +10)s + p10r = 0
Ptht - bw:c:(: + K(SD:(: + w) + Mlet =0.

Messaoudi and Mustafa [30] (see also [33]) considered the stabilization for the following
Timoshenko system with nonlinear internal feedbacks:

prew — K(pe + )+ g1(1) =0
P2 — bipyy + K(Q% + ¢) + gQ(wt) =0.

Recently, Park and Kang [33] considered the stabilization of the Timoshenko system with
weakly nonlinear internal feedbacks.
Kim and Renardy [18] considered (P) together with two boundary controls of the form

K(@z + wa: t) = _'YlatSO(La t) in (Oa +OO)
wa(L7 t) = _72at¢(L7 t) in (07 +OO)

and used the multiplier techniques to establish an exponential decay result for the natural
energy of (P). In addition, a polynomial decay result was established by Yan [43] when
considering two boundary frictional damping terms with polynomial growth near the origin.
We also recall the result by G. Q. Xu, D. X. Feng [42], where the authors proved a result
similar to the one in [18] by adopting the spectral analysis approach.

L. Zietsman, N.F.J. van Rensburg and A.J. van der Merwe [44] considered a one-
dimensional hybrid structure consisting of a Timoshenko beam system (P) with a tip load
attached to one free end. The beam is clamped at x = 0 while the tip load is fixed to the
end x = L in such a manner that the center of mass of the load is coincident with its point
of attachment to the beam. We assume interaction between the beam and the load. Thus
the forces and moments within the vibrating beam are transmitted to the tip load which
moves in accordance with Newton’s law. Dissipation is introduced into the coupled model
by applying feedback boundary moment and force controls on the shear and displacement
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velocities ¢, and ¢; at = L. Hence the system (P) is subject to the following boundary

conditions _
m(L,t) + K(pz + ) (L,t) = —0ip(L,t)  in (0, +00),

Imwtt(Lv t) + b,lva(Lv t) = _7281?770([17 t) in (07 +OO)7
where the coefficients m and I,,, denote respectively the mass and the rotary inertia of the tip
load. It is established an efficiency and accuracy of the finite element method for calculating
the eigenvalues and eigenmodes.

In [32] J. E. Muiioz Rivera and Andrés I. Avila, studied the same problem as in [44].
They proved that the decay of the energy is not exponential, but polynomial. They used
the Weyls Theorem for lack of exponential stability and Borichev-Tomilov Theorem for
establishing decay rate E(t) < ¢/t,t > 0.

Very recently in [28] D. Mercier and V. Régnier studied a more general problem than
[32] (with constants k; and k3 instead of K and b in boundary conditions). They proved
that the decay of the energy is not exponential, but polynomial that is E(t) < ¢/t,t > 0.
They used a semigroup theory with a frequency domain approach and Riesz basis property
of the generalized eigenvector of the system.

The boundary feedback under the consideration here are of fractional type and are de-
scribed by the fractional derivatives

1 ¢ dw
P = 57— |t ) ds
The order of our derivatives is between 0 and 1. Very little attention has been paid to this
type of feedback. In addition to being nonlocal, fractional derivatives involve singular and
nonintegrable kernels (t7%,0 < a < 1). Therefore, the employment of mathematical analysis
tools, such as stability analysis is very difficult.

It is well known (see [27]) that, as Oy, the fractional derivative 05 forces the system
to become dissipative and the solution to converge the equilibrium state. Therefore, when
applied on the boundary, we can consider them as controllers which help to suppress or
attenuate the undesirable vibrations.

Nowadays, fractional calculus is a well-established theory with strong mathematical bases
and its application has become a new interest in research areas such as electrical circuits,
chemical processes, signal processing, bioengineering, viscoelasticity and obviously control
systems (see [34]).

Control of fractional order type is not only important from the theoretical point of view
but also for applications. It is the generalization of the classical integer order control theory,
which could lead to a more adequate modeling and more robust control performance. Indeed,
it has been observed by experiments that many concepts cannot be described in Newtonian
terms. For example, in viscoelasticity, due to the nature of the material microstructure, both
elastic solid and viscous fluid like response qualities are involved. More precisely, the stress
at each point and at each instant does not depend only on the present value of the strain
but also on the entire temporal prehistory of the motion from 0 up to time ¢. Viscoelastic
response occurs in a variety of materials, such as soils, concrete, rubber, cartilage, biological
tissue, glasses, and polymers (see [4], [5], [6] and [24]).
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Our purpose in this chapter is to give a global solvability in Sobolev spaces and energy
decay estimates of the strong solutions to the problem (P) for damping of fractional derivative
type. To obtain global solutions to the problem (P), we use the argument combining the
semigroup theory ([10]) with the energy estimate method. To prove decay estimates, we use
a frequency domain approach and a Theorem of A. Borichev and Y. Tomilov.

2.2 Augmented model

This section is concerned with the reformulation of the model (P) into an augmented system.
For that, we need the following claims.

Theorem 2.2.1 (see [26]) Let u be the function:
(2.1) (&) = €| V2 ) oo <€ < 400, 0<a<1.
Then the relationship between the ‘“input’ U and the ‘output’™ O of the system

(22) at¢(£7 t) + £2¢(€7t) + U¢(§at) - U(t),u(f) = 07 —00 < é < +00,7 > O,t > 07

(2.3) ¢(£,0) =0,
2.4 O(t) = (x) sintam) [ pl€)o(€, 1) de
s given by
(25) 0 = 1oy,
where . .
10710 = prgy ) (=D ()

Lemma 2.2.1 I[fAe€ D={\e€C: ReA+n>0}U{X €C:ImA# 0} then

I R Ul (9 VS -
Fu(A)i/—oo mdéisinaﬂoﬂ_n) -

Proof Let us set

A9
We have )
) u(€) or
’ p(E) | _ ) Reh+n+¢
An+&2|— 12 (€)

|[ImA| +n + &2
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Then the function f) is integrable. Moreover

2
£
‘ M2(€) 770—’:{77(—?_52 for all ReX Z Mo > -
A+ 7| #(©)

P sfor all [ImA| > 7o > 0
0

From Theorem 1.16.1 in [41], the function

FE, : D —(C is holomorphic.

For a real number A > —n, we have

400 |£|2a71 B +oo Iail . B

/Oo A 417 +€2£ /OO X+ +§2 5—/0 de(WIth§2—x)
(A+n)o‘1/1 y 'y —1)*dy (withy =z/(A+n) +1)

= A +n)t /01 271 — 2)*tdz ((with z = 1/y)

= (4B = ava) = (A+ ) T(1 = )l (@) = (A7)

sinTa’

Both holomorphic functions F, and A — (A4n)* "t —— 4 coincide on the half line | —n, ool,
sin
hence on D following the principle of isolated zeroes.

We are now in a position to reformulate system (P). Indeed, by using Theorem 2.2.1,
system (P) may be recast into the augmented model:

prow — Koz + ), =

Opp1 (&, 1) + (& +md1 (&, 1) — i L, )p(€) = 0
at¢2(57 t) + (§2 + 77)¢2(£7 t) - 77Z}15(L7 t):u(g) =0
y @(07t> =0, w(O,t) =0,

(F) ) el2,0) = po(@),  @ulz,0) = p1(a),

¢(9€;0) :%(95)7 ¢t(x70) =¢1(x),

(L) + K(oe +0)(L0) = —G [ w@r(€,0)dE G =m(m) ™ sin(ar)
matu(L0) + ba(Lt) = =G [ p(O6aE 06, G = ) sin(am).

We define the energy associated to the solution of the problem (P’) by the following formula:

p1 P2 b K
B(t) = 5“%”3 + 5”%”3 + 5”%”% + 5“% + 9|3

2
m m . i [T
+ Lt + S LD + () sin(am) 3o 4

i=1 o

(2.6)
(6i(&,1))* de.
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Lemma 2.2.2 Let (p, ¢1,1, ¢2) be a regular solution of the problem (P'). Then, the energy
functional defined by (2.6) satisfies

(2.7) E'(t) = —(r)~ maﬂZ%/ (€ +m)(su(€. 1) dE < 0.

=1

Remark 2.2.1 For an initial datum in D(A) (see Theorem 2.3.1 below), we known that
(0, 1,0, @) is of class C in time, thus we can derive the energy E(t).

Proof of Lemma 2.2.2. Multiplying the first equation in (P’) by ¢; and the third equation
by 14, integrating over (0, L) and using integration by parts, we get

1
Sl =K [ (o + vhpdr =0,

Srrall = [ ptrdr + K [ (o + phrdz =0

Then

d P2 2 b 2 K 2 mq 9 Mo 9
b K my ma o
. 8dt< el + Sl + Sz + S llee + 0l + oleul Ly OF + (L, 1))

FCpn(Lo t) [235 1(€)1(€, 1) dE + Goun( L, t) [255 n(€) (€, 1) d€ = 0.

Multiplying the second equation in (P’) by () !sin(am)¢;, the fourth equation in (P’)
by v2(m) ! sin(ar)p, and integrating over (—oo, +00), to obtain:

2dﬂ@m+@/ @+ u(6 02l ~ Gl L) [ ueyi(e 1 de =0,

—00
—+00

Gl + G [ (€ b n)oae ) d — L) [ m(Ehonte, tydg =0,

From (2.6), (2.8) and (2.9) we get

(2.9)

Zcz/ (€ + ) (6s(6, 1) de.

This completes the proof of the lemma.

2.3 Global existence

In this section we will give well-posedness results for problem (P’) using semigroup theory.
Let us introduce the semigroup representation of the Timoshenko system (P’). We consider
the following condition of the right end contour of wave

(2.10) oL, t) = 0(t), v (L,t) =0(t), fort >0
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were # and ¥ solve the system

(1) + Ko + )L+ G [ p(OB(E D dE=0,
(2.11) oo U7
madi(6) + ba(L,8) + G | p(€)oal€ 1) ds = 0.

Let U = (907 Pt, gbla 07 wa ¢t7 ¢27 19)T and rewrite (P/) as

(2.12) {U/ = AU,

U(O) = (9007%; ®o1, 0o, Yo, Y1, ¢02,790),

where the operator A is defined by

ﬁf«om —

—(&+n)p1 + u(@u(ﬁ)
~E ()0 - & [ a6 d
P2 P2

— (&2 + 1) g2 tg)(L)M(S)
— D) =& [ p(©)oa(e) d

(2.13) A

TS c eSS s

with domain

(o, u, ¢1,0,,v, 09,0 T in H:p,p € H}(0,L)N HL0,L),u,v € HX(0, L),
D(A) — 9779 G(Da _(52 + 77)¢1 + U(L)#(f)a _<52 + 77)¢2 + U(L)N(S) € LZ(_OO> —|—OO),
u(L) =0,v(L) =17, ’
|1, [€la € LP(—00, 400)
(2.14)

where the energy space H is defined as
H = (H!(0,L) x L*(0, L) x L*(—00,+00) xT)?

where

H,(0,L) = {¢ € H'(0,L) : ¢(0) = 0}.

For U = (¢, u, ¢1,0,%,v,¢9,0)T, U = (0,1, ¢, 0,10, 70, ¢y, 9)T, we define the following inner
product in H

U0 = [ (pra+ oo+ b B, + K e+ 0)(@s + )

“+o00

2
+2 G bi0; A€ + My 00 + myVD.
=1 —0o0



36

We show that the operator A generates a Cy- semigroup in H. In this step, we prove that
the operator A is dissipative. Let U = (¢, u, ¢1, 0,1, v, ¢o,9)". Using (2.12), (2.7) and the
fact that

(2.15) B(t) = 10N,
we get
(2.16) (AU, Uy, zcz IRGEDTGIES

Consequently, the operator A is d1881pat1ve. Now, we will prove that the operator A\ — A
is surjective for A\ > 0. For this purpose, let (f1, fo, f3, f1, f5, f6, fr, [s)T € H, we seek
U= (p,u,¢1,0,9,v,¢09,9)T € D(A) solution of the following system of equations

A@—%=ﬁ,

/\u_a(%c‘f'@b)x:f%

A1+ (& +n)d1 — U(L)M(f)+z I3,

N+ B (s + ) (L) + 5 [ nl€)6n(€) dé =
)\T/J—U*fs), P

AV — wm P — (2 +9) = fe,
A@+%€+UWT—N3 w(&) = fr,

N+ D)+ 5 [ u(©)a(€) de = fi

Suppose that we have found ¢ and 1. Therefore, the first and the fifth equations in (2.17)
give

(2.17)

U = )\(;0 - f )
(2.18) {U:A¢_ﬁ‘
It is clear that u € H!(0, L) and v € H}(0,L). Furthermore, by (2.17) we can find ¢; (i =
1,2) as
b O+l
(2.19) E+ntA
5 f2(&) + m&v(L)
? E+n+x

By using (2.17) and (2.18) the functions ¢ and 1 satisfying the following system

)‘2§0 - i(gpx +w)x - f? + )\fla
b

M= L+ B ) = fo+ A,
P2 P2

Solving system (2.20) is equivalent to finding (p,v) € (H*>N H(0, L))? such that

(2.21) [fv»vww——KK¢x+¢0ﬂwdx =:ALpﬂﬁ—%Aﬁﬁu¢u
’ L

L
| (02X2x = bsx + K(a + 000 do = [ palfo + Afs)x o,

(2.20)
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for all (w,x) € H}(0,L) x H}(0,L). By using (2.21) and (2.19) the functions ¢ and 1
satisfying the following system

S—
&

(mN 2w + K, + ¥)wy) do + (hmy + G )u(L)w(L)

(2.22) 0 pr(fa+ AfJwdr — Cl/ ) ¢2 _‘_(5)_'_ )\fS(f) dé w(L) + my faw(L),
: L

(P2 N2 + baXa + K (90 4+ 0)X) dz + (Mg + &)v(L)x(L)

—/ p2(fo + Afs)x dx — C2/ e —l—(f)—l— Af?(f) d§ x(L) +mafsx(L)

S~

- o0 2
where (; = (; /—; §2ﬁ_7(7£_)1_ ;

u(L) =
(2:23) {Uui — (L) —

Inserting (2.23) into (2.22), we get

d¢. Using again (2.18), we deduce that

Ap(L) = fi(L
fs(L

]
(PN pw + K (s +v)ws) da + Am + Q) (L)w(L)

— [Tt auds = [ s w(z) + O + QAL + (L),
[ o2 9x+ b + K (e )x) o+ A + E)Y(LIN(D)

= [ttt Afxdn = [ (€ de () + O+ QLX)+ mafex (D).
goiiquenﬂy, problem (2.24) is equivalent to the problem

(2.25) (0. ). (w.1)) = L(w, X),

where the bilinear form a : [H}(0, L) x H!(0,L)]*> — IR and the linear form
L:HN0,L)x H}(0,L) — TR are defined by

S—
h

(.8, (w)) = [ (Vo + K+ ) + )

4 [ oV 0x 4 b da 4 A + Q)p(L)(L) + AOwms + GIH(EIN(E)

and

L

i M de = [ 6 de () + o + 8 (D)

+my faw(L) + OLP2 (fo +Af5) def—Cz/ Oogjz(gl)\f (&) d& x(L)

+(Amg + o) f5(L)X(L) + mafsx(L).

0
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It is easy to verify that a is continuous and coercive, and L is continuous. So applying
the Lax-Milgram theorem, we deduce that for all (w,x) € H(0,L) x H!(0,L) problem
(2.25) admits a unique solution (¢,) € H!(0,L) x H!(0, L). Applying the classical elliptic
regularity, it follows from (2.24) that (p,1) € H?(0, L) x H?(0, L). Therefore, the operator
M — A is surjective for any A > 0. Consequently, using Hille-Yosida theorem, we have the
following results.

Theorem 2.3.1 (Existence and uniqueness)

(1) If Uy € D(A), then system (2.12) has a unique strong solution

UeC'(IRy,D(A)NCYIR,, H).

(2) If Uy € H, then system (2.12) has a unique weak solution

UeC'(IR,H).

2.4 Lack of exponential stability

We first state three well-known theorems.

Theorem 2.4.1 ([35]) Let S(t) = e be a Cy-semigroup of contractions on Hilbert space
H. Then S(t) is exponentially stable if and only if

p(A) D {ip: € R} =ilR

and
lim H(lﬂ]—A)flng(H) < 00.
|Bl—o00

Theorem 2.4.2 ([9]) Let S(t) = e be a Cy-semigroup on a Hilbert space H. If
iIR C p(A) and sup

1
il
181>1 B

for some L, then there exist ¢ such that

(@B — A) Hlepy <M

C
e Uol* < < 1UollBiay-
ti

Theorem 2.4.3 ([3]) Let A be the generator of a uniformly bounded Cy semigroup {S(t) }+>o
on a Hilbert space H. If:

(i) A does not have eigenvalues on i IR.
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(i1) The intersection of the spectrum o(A) with i IR is at most a countable set.

Then the semigroup {S(t)}i>0 is asymptotically stable, i.e, ||S(t)z||% — 0 as t — oo for any
zeH.

Our main result is the following
Theorem 2.4.4 The semigroup generated by the operator A is not exponentially stable.
Proof

We will examine two cases.
Case 1 n = 0: We shall show that ¢A = 0 is not in the resolvent set of the operator A.
Indeed, noting that (sinx,0,0,0,0,0,0,0,)" € H, and denoting by (p,u, ¢1, 0,1, v, s, )T
the image of (sinz,0,0,0,0,0,0,0)” by A~!, we see that ¢;(§) = |§]2L55 sin L. But, then
¢ & L*(—o00,+00), since a € (0,1) and so (p,u, ¢1, 0,10, v, ¢, 9)T & D(A).
Case 2 nn # 0: We aim to show that an infinite number of eigenvalues of A approach the
imaginary axis which prevents the Timoshenko system (P) from being exponentially stable.
Indeed We first compute the characteristic equation that gives the eigenvalues of A.

Let A be an eigenvalue of A with associated eigenvector U = (o, u, ¢1, 0,1, v, ¢a, 9)T.
Then AU = MU is equivalent to

Ap —u =0,
Au — f(‘ﬂx + 1), =0,
1
AdL+ (& + )by — u(L)u(§) =0,

M+ I (o)) + & [ e
)\'@ZJ — U= Oa

Av — Ewm + E(sz + w) =0,

P2 P2
Aa + (€ + ) — v(L)n(E) =
N+ (L) + 2 [ ul€)6(€) de.

From (2.26); — (2.26)2 and (2.26)5; — (2.26)¢ for such A, we find

(2.26)

K
N — —(px+ )2 =0,
(2.27) FL

N = D () = 0,
P2 P2
Since § = u(L) and ¥ = v(L), using (2.26)3 — (2.26)4 and (2.26)7 — (2.26)s, we get
et 0+ (A 0 ) delE) =0,
b
(L) + (A+ Z(t ™) (L) =0,
©(0) = ¥(0) = 0.

(2.28)
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We set }

(2.27) is equivalent to
K

)\QSO - FQOIE = 07
2.29
(2.29) ST

AP @/)x PR 0.

2
Then
K K b -~
(N4 )P — = Pap — — b = 0 ((2.29)12 + (2.29)5),

(2.30) P2 P1 P2

~ b - K _
)‘2¢ - 7¢zx + — Pz = 0.
P2 P2
From (2.29), we have

b ~

~ _ P2 _)\2 4+ N

@ o (TN p;: )

~ P2 2 7

@ 7o (TN e + p2¢ )
Replacing this in (2.30);, we get

K

231 " )\2 ( P2> " P1 P2 )\2 )\ - —0.
(2.31) Y 7 Vi )V

The characteristic polynomial of (2.31) is

4 (PL | P2 2 2y P1P2 2 5 _

st— (B B a4 2102 ()\ +p2> 0.
The solution 1 is given by
(2.32) Y(x) = et®

where ¢; €C for all 1 <43 <4 and

From (2.29); and (2.30), we have

K 1 pz 2

Thus the boundary conditions may be written as the followmg system:

=1

1 b
p(0)=0= > (—A% - p t;”) ¢ =0
i=1 2
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4

ﬂl%(LH(A + ;220\ + n)a—l) ML) = 0= (ﬂiz FO+ 2 L) 1)/\> ¢ile, = 0

=1

et 0+ (A O ) D) =0 —

f: (—1)\2 LS (A + n)a‘1> LA S <A+ LA )T 1) t3> e'ife; =0
i—1 my P1 my ' myp2 ! P1P2 A my ‘ ’
1 1 C1 0
. hl(tl) hl(tg) (t ) hl(t4) Co . 0
(233)'/\/{0()\) - h2(t1)et1L hZ(t2>€t2L ( ) tsL hQ(t4)€t4L 3 - 0
ha(t)et hy(ta)e"  hy(tz)e™"  ha(ts)e™” C4 0
where
hi(r) = =M+ L r3,
b
ho(r) = —r+ (A + —(A + 1) HA,
" " b b1
ha(r) = ——X——)\ <)\+%()\+77)“1>7"+ %+ <A+(/\+n) ) e,
my £1 my mip2 P1P2 A m

Set r} = £2,r3 = & and | = K/b. We will examine two cases.

Case 11, =17y
We start by the expansion of ¢; and ¢3:

i 1171 VI 1 5 12\ 1 7i 1241 1
2.H1IN) = riA+ ( =VI 3| 5
(2340 =n +<2\/>+8m (16 5 ) z (1287“%”) A3+<256 rf )A +O(A>

i 1171 i VI 1 5 12\ 1 7i 2V 1 1
(2'35“)‘7““‘(2ﬂ>+8m+<16 2 ) ¥ (128@)»’)_<256 = )NO(»)

Using (2.34) and (2.35), we find the asymptotic development of:

_ ~\fl2 1.1 VI (‘/) iVl ya —1=2i(1—a)Vinri ya—1 21
h3(t1) - ZE)\ ( 2p 1 + miri > )\+ 8Z p1 r +7 m1p1>\ +ry 2mip1ry = 1)\ + Em 2
( ) 128 p“A )\2 + ZlQ}\a 2ml’ZJllT‘2 + ZAQ ? 2\/_7 (Oé o 2) 72[1011 o 1)\C¥ 2l77’}/ malépllTl (A%) ’
2.36
_ V1 24 (11 VL 1; iVl ya —1-2i(1-a)Vinri ya—1 1 12 1
h3<t2) - _ZEA (2,0 1 + miri ) )\ o 72 2 _'_fy m1p1>\ -—N 2mip1r1 . 1)\ 16 plrl by
5
5 ~ 12 1 a—2 a—2,2 a—2 1 a—2 a—1
( | —i—@zpl v lez/\ mellr z)\ \/_7 (v —1) o AT - + 0( ) .
2.37
_ V12 1.1 - V1 1; z% iVl Yo —1+2i(1—a)Vinr: ya—1 21
h3<t3) - _ZEA + <_§p1r1 - Zm1r1> A 8 1m1p1)\ +mn 2m1pim1 TN + 16p1r 5l A
5
5 12 1 173 ya—2 a—2,.2 1ya—2 a—1
gl e — I L >\ VI (o= 2) S8 = At o ().

(2.38)
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hs(ts)
(2.39)
ha(t1)
(2.40)
ha(t2)
(2.41)
ha(ts)
(2.42)
ha(ts)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

= iﬂv+(1 L )A+§z/”

P1 §p11”1 miri1

5 . 1 a—2
128 p17‘1 A2 + 72[ A mJ)llrQ +
= A +bAr +Libd 4

_*b 122>\2+0<)\2).

= /\Q—birl
it ().

libﬂ
m2

= N +b2 ST —fzb‘/
SRR li%%—o(%).

= A —brr + L

—J=ib-t 2 A—ﬂ—l—o(%).

hat) = iVix? LA 112 1012 5 I3 +0<1)
=1 — =ttt = = =l —= |-

e 2 82 T 16T 128 a2 A3
ha(t2) VoI 1 1 F 42 1 +0<1>
= —1 ===t — ==+ == — -

he 2rr 812 16 M% 128 A%rd A3
h(t)——z‘ﬂAz—}zi—lzéJriF o i +O<1>
s 2r 812 16M3% 128 )\2 4 A3/

1A 11z 1012 5 I3 1
ha(ty) = iVIN 4~ 4o L2 ()

1(ta) = VIN + 3 S TsE T e 1wt TO\e

TN AT — gb

’}’2)\a+?7,.ya1)\a 1+ b

+ 2%+ n’ygo‘m—_;)\o"l — 1

TN
)\a 2 2\/_’)/1(06—1) a—2

mip1 N 2mip1r1

mi1p1

Smgr)\

mr/\

8 mari A

z\[ )\ —l+2i(1—a)\ﬂm‘1 )\a_l

T4 A2 (o — 1) 22

+3A 7P (a = 1)

3T (e = 1) 50

16p1r1

1/\a 217]7 _o—1 +o

mipiri

72 >\a+777 - 1)\0{ 1+ bm2T1)\+ 1)\04 277272 (Oz_l)i

2
m2

a=2
mo

a=2
ma

l21

(%),
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Using the asymptotic development (2.36)-(2.47)

f) = ettt (hl(t2) - (hl(tl)) (hz(t3)h3(t4) - h3(753)h2(t4))+
e+ (y (ty) — (ha(ta) ) (ha(t)ha(ts) — ha(t)ha(ts) )+
e 1 (hy (t) — (ha(ts) ) (ha(t)ha(ta) — ha(ta)ha(ts) )+
et (hy (ta) — (ha(tr) ) (ha(t2)hs(ts) — ha(ts)ha(t2) )+
e (hy (1) — (ha(ts) ) (ha(t2)ha(ta) — ha(t2)ha(ts) )+
et1+2 (hy (ta) = (ha(ts)) (ha(t)ha(tz) — ha(t2)hs(t1))

. eL(t1+t3) 4 eL(t2+t4) 9 6 L(t1+t3) _eL(ta+t4) \ 5
—4l ;1 AY =l (m2p1 + mlpz) ° m1m2/c;1m A
L(t1+t3) yeL(ta+ta) 9 4
—4l (y1mg + yamy) © g At
mimap1
12 eL(tl+t3)+eL(t1+t4)+6L(t2+t3)+eL(t2+t4)74 eL(t1+t3)+eL(t2+t4)+2
+ - P1T2 - 4bl m
1 11M2

+22bl%< 1 _ 1 ) (eL(t1+t4) _ eL(tg-i—tg) )\4
mip2  map1
eL(t1+t3) L oL(to+ty) eL(t1+t3) _oL(to+ty) @
—41 (727 (yama + yamy) (o — 1) &= ‘:’m*mwf =2+ (y2p1 +71p2) 1m13m2p17‘12+ - ) AT
_1% 1 + 5 1 (eL(tl-i-ts) _ eLt2+Lt4) )\3
271 \myps map1

Yy Y172 (eL(t1+t3) L plltatta) 2))\2+2a i 8In(1 — a)v1e (eL(t1+t3) 4 lltatta) _ 2))\1+2a

mim mim

1 1712/)1 V2 2 5 2 2, 2 L1 v
|y Gy ) (A = 5 - Gl = 2 e R )

1 M1 Mo 71

2

+4lb<1 — 04)777"1 N + B)(eL(tl"‘tB) — el(tatta)y _ l n + 2)(€L(t1+t4) + elltatts) _ 2)

77;};712 1 P2 ripy my o my
oy ! (L4 2y (eltvts) _ eL(t2+t3))] A2+
mimg P11 P2

3
n l l74 (elliitts) 4 pLltatta) 4 oLltrtta) 4 oLita+ts) _ 4)

P17y
2
_pbl/r (eL(t1+t3) + eL(t2+t4) + eL(t1+t4) + 6L(tg+t3) + 4)
171
1052, 1 3\ Lipas Lot
—i— ( + )(e (titta) _ o (2+3)) )\2+0()\1+a)
4 r{ "mips  Mmaopr
L(t1+ts L(to+t
= _il)ﬁ [(eL(tﬁts) 4 eLlt2tta) _ 2) + (mapr +myipa) e (ti+ts) _ pL(tatta)
P1 mimeoTq A
(yima+y2mi) eL(t1+83) L L(ta+t4) 2
+ mims AQ*&
+ <l eL(t1+t3)+eL(t1+t4)Zig(t2+t3)+6L(t2+t4)_4 + bp1 eL(t1+t3)ni_le7i(2t2+t4)+2
. 1
—ibBH> (—mlpo — —mim) (eL(t1+t4) — eL(t2+t3)> >)\12

(2.48)
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L ) el( ) eL(t1+t3) _oL( )
+ (77 (’}/17712 + P)/le) (a - 1) - t1+t377—1_17f12t2+t4 2 - (’YZpl + 71p2) - t1+:r?1m2i1t2+t4 ) >\317a
+1blp1 ( 1 5 1 > <€L(t1+t3) . 6L152—|—Lt4) ig
8 ry \mipa  mapr A
V172 L(t1+ts) Lito+ts) o _ Y172 L(ti+ts) L(ta+ts) 1
+7m1m2 (e +e 2) iz 2n(1 oz)Tlm2 (e +e 2) 52

1 [
l4( 84! + V2 )( 477 v + 6d77 2d2772)<€L(t1+t3) + eL(t2+t4) _ 2)
mq mo

l
+b(1 — a)np, " (ﬂ + l)(eL(tlths) _ eL(t2+t4)) _ 7(& + E)(eL(tlm) 4 elltatts) _ 2)

. mimsg p1 P2 4ri my - my
1

. M2\ L(t1+ta) L(t2+ts) ] 1

—ib = 4 2)(e —e pr=

2
_ uzx(e”tlm) + elltetts) 4 elititta) o oLtatts) _ g
T
_bflél( Lltatts) 4 eLltatta) o pLltitta) 4 oLlt2tts) 4 4)
4r]
1 3% 1 3
_Tfﬂ 712/)1 (mlpz + m2p1)(€L(t1+t4) - eL(t2+t3)) +o <A5 “) ’
1
We set _ A 200 | fs) 1) | SsQ) | fo()
(2.49) FO) = foA) + 2 4+ 5O 4 B 4 BO) o S SO
‘|’>\4(2Z¢ + >\5(2()1 + f( ) +0(>\5 a
(2.50) Jo(A) = eHorHis) . obistte) _ g _ -l (ohinn o) _ )2
(2.51) [ = el il — etk
' — wg(tﬁtsw(e(tﬁtsw — 1) (etmtB)l 4 1)

mimanri
—  (umatyemi) (oL(ti+ts) 4 oL(t2+ts) _

(2.52) J2(\) mms (€ te 2)
= Qumadyamy) o—L(ti+ts) (eLiti+ts) _ 1)2

mi1msa
fg()\) _ (l eL(tl+t3)+€L(t1+t4>zif(t2+t3)+eL(t2+t4) _4 + bm 6L(t1+t3)njle:b(2t2+t4)+2
. 1
s —25%12(#@ _ ﬁpl) (eL(t1+t4) _ eL(t2+t3))>
2.53

47"1 mi1ma
. 1
—zb%h( 11 ) (€2Lt1 _ e2Lt3)>
mip2 map1

Fi(\) = o~ L(t1+t3) (77(04 — 1) (yama + y21) (eL(t1+t3) . 1) + (201 + 7102)( Lti4t3) 1)> .

mime mimeri

— 6—L(t1+t3) <12((6L(t1+t3) o 1)2 + (eLtl _ 6Lt3)2) + bp1 (eL(t1+t3) + 1)2

(2.54)
2
(2.55) fs(A) = Lo ( 1 +5 1 ) e~ L(ti+t3) (62L(t1+t3) _ 1)

211 \mip2 map1



2.4. LACK OF EXPONENTIAL STABILITY 45

1 [
f6<)\) = — 4(;;11 + ;;22)(_4772 _ p + 6d’l’}2 _ 2d2n2)(6L(t1+t3) . 1)2
1
"L 02y 2L(t+s) ooy Y2 mn Lty
2.56 b(1 — moy e ) _ )y L e _Lis
@50) - (2 e )= 22+ (et — )
l1/2 M V2 2L
—ib Ty D2y 2Lt _ 2Lt
p1 2m1m2(p1 p2)( )
(257) f7<)\) — T;Zi:;;eL(tl+t3)(eL(t1+t3) _ 1)2
(2.58) fs(A) = —2n(1 — a)ﬁe_j:(tﬁt?’)(eutﬁm) —1)?
mims
l2

fo(A) = —e~Hts)
(2:59) ,,

T A
4r]

F((eL(tl+t3) . 1)2 + <€Lt1 . eLtg)Q)
1

3/2
((H50) 1)y (o2 4 toyty - L0 L B

(6 . €2Lt3> )

16 7’% mip2  Map1

Lemma 2.4.1 (Asymptotic behavior of the large eigenvalues of A) The large eigenvalues of
A can be split into two families (N,)kez,jkj>kosJ = 1,2, (ko € IN chosen large enough). The
following asymptotic expansions hold:

1 1
(2.60) A = L—leﬂ +o(1), A= L—Tllm +o(1).

Either A\l = A2 and this root is of order 2, or A\i. # A\ and these two roots are simple.

Proof. The multiplicity of the roots of fy given by (2.60) is two and X is a root of f, if and
only if
(tl + t3>L = 2ikm.
, 11.1 1 .
Since t; +t3 = 2ri A + Z—ZX +0(X). we deduce that, for each k € 7Z, with |k| large enough,
1
corresponds a double root of fy; denoted by A? which satisfies
1 1
=" krt0 () .
TR

We will now use Rouché’s Theorem. Let By, = B(Likm, 1) be the ball of centrum ikm and
r1

radius 7, = k% and A\ € 0By, (i.e A = Lik‘?r + e 0 € [0,27]). Then we successively have:
4 ’[”1
1

L(t, +t3)(\) = 2ikm + 2Lrirpe®® + O (k)

pLltitts) () — 2Lk +0()
= 1+ 2Lrme? + O(r}).
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and

fo(A) = (1 —=2Lryre® + O(r?))(2Lrire + O(r?))?
(1 — 2Lryrpe® + O(r2))(4L* 2262 + O(r}))
= 4r?L%e? + O(r3).

It follows that there exists a positive constant ¢ such that

C

VYA € OBy, |fo(N)| > erf = T

1
Then we deduce from (2.49) that |f(A) — fo(A)| = O <)\

large enough

1
> =0 <k) It follows that, for |k

VA€ 9By, [f(N) = foW)I < [fo(N)].

Since the imaginary axis is an asymptote for the spectrum of A then system (2.33) is not
uniformly stable.
More information concerning the asymptotic behavior of the spectrum of A is given by:

Proposition 2.4.1 (Asymptotic expansions for the eigenvalues of A) Assume Condition

(H) LU P2 o LVI# 2%k, k€ IN*,

my ma

Then the large eigenvalues of the dissipative operator A are simple and can be split into
two families (X,,)kezz, k|>ko» J = 1,2, (ko € IN, chosen large enough). Moreover, we have the
following asymptotic expansions for the eigenvalues of A:

i 1q1 a%] 7 1
A= —km+ —=+ + +o
k ﬂ & k L3—a ‘k-|3—a (k3—a)
)\1 == )\1_k., k: S _kO'

, 1 €IR, a1 €R, g1 € IR, g1 <0,k > ko

i 142 g o 1
A= —km + —=
T e T TS +0(k3*a)

A=), k< —k.

» 42 6R7d2 67;IR,Q~2 GIRagZ <O7k2k0

Proof. Let A\, = X} with j = 1 or j = 2. It follows

1
2.61 A= —k .
( ) k T T+ €k
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Using (2.34)-(2.35), we get

L1 5 L% 1 1

ti+t3)L = 2lrA —

(b1 + 1) AP W >\3+ ()\3)
[L* 1

= 2ikm + 2Lrg;, — ZE +o0 (k:2> + o(eg)

IL 1 LivI 1
2t1L = 27’1>\k + ZL\/_ I+ — ! ;/_ @) <>
dri N, 8 r{ A2 A3
(262) lL2 i LAV 1
= 2ikm+ 2Lriep +iLV1 — 4k + 3 252 +o0 (l{?) + o(ex)

L1 QL1
UL = 2N — LI+ i LV 0<A3>

4ry Mg, T3 8 r2 A2

112 i L1 1
= 2ikm + 2Lrie — iLA\1 — 24]{% S 22 +o <k2> + o(ek)-

It follows that

IL? 214 [L3r) & 1
L _ .
MU= L 2ney i - 32m2k? _22 2k Jg,r e O<3k\)/+ o)
L [°L [L°ry e 1 L2V 1
2Lt GVI (1 L9 _ _ 1%k | % il il
‘ ( FoLnen =i = i g o)+ ol)
AL PLt o lme, LV e 1
2Lty _ LV 49T, _ g 1Sk 2 VY “k il
‘ ( Telne i e o ks e o) TR
(2.63)
Using (2.49), inserting (2.63) into f(Ax) and keeping only the terms greater than or equal to
1
O( k2) we obtain after calculations
fOw) = 4Lris? — <4f—mr1 + iL—lrl) Ep — (161#2 ing 212 = > lmry
(2.64) L2, v/ . 1
+ s (47 — 4Asin (55-) - Bsm(L\/Z))) o(e2) + o(Z* . ")+ o(;5) =0,
where
~ b l 1 1
L LT - TS R B:,,pl\/;< _ )
mymery 1 4ry mip2 Map1

Multiplying (2.64) by k? leads to:
40272 (kep)? —i (41L2m7°% + lL3l7”1) (key)

L2r? L/l
(f@iﬁi 1 L3lmr1 L ( — 4Asin ( ;/—> — Bsin(Lxﬁ))) + 0(1) + o(keg) + o(k*e3) = 0.

2
Thus ke, is bounded and
40213 (kep)? —1i (4L mr + L l”) (ker)

472 3lmr L*r2? L\/Z )
_ <f67lr2 + LQZFQ 14 W21( m — 4A sin? ( 5 > - Bsm(Lx/Z))) +0(1) = 0.
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The previous equation has two solutions

ke = ﬁ <4imr1 —4r \/4% — 2A 4 2Acos L\/1 — Bsin L1 — m? + iLl) or

ke, = ﬁ (4’imr1 + 47“1\/4% — 2A + 2Acos L\/1 — Bsin L/l — m?2 + iLl

It holds:

8nrik

€ = 5o <4imr1 - 4r1\/4% —2A +2Acos L\V1 — Bsin LV — m? + z’Ll) or

€k = m <4z'mr1 +47“1\/4% —2A + 2ACOSL\/Z— BsinL\/Z_ m2 + iLl

Set .
P = 4m—2A+2Acos(LV1) — Bsin(LV1) — m?

— 4m—m?—2A+2A cos(L\/Z) - B sin(L\/Z).

As r%zr%z%,we deduce that
4m—m2:—1<p1—p2>2
7’% ma meo
Then
L (m ,02)2 \/7</)1 /)2). Li 1l
P o= —— (PPN NI P2 Ga (VD) — = 4 = cos(LVI
2 (m1 m ol ma) sin(LV/1) 274%%—270%005( Vi)
1 (VI | P1 P2 [ 2
= (i@ + (2222} L (cos(LVD) — 1)
2 ( 5 sin( \/_)—|—<m1 m2> 4T%(COS( Vi) —1)
Hence
2
o = i <4mr1 _ 2\/ (VEsin(LvD +2 (25— 22)) s (cos(Lv) — 1)2 + Ll)
1 2
2
e = smiqk <4mr1 + 2\/<\/Zsin(L\/Z) +2 (S - :;)) + (cos(LV1) —1)2 + Ll)
1 2
Step 2. From Step 1, we can write
~ 1
I D Sk
Ay = Lrlkﬂ—i-zk—i-lg,
SN R
A= T

where ] = o(1).

,2r1qu+2r1Ls;; L2 1L 1L ; .5 2L
Z E—

(b +ts)L = i— TSy oy e s ey e

+0(%) or
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IV L 1¢L?2 112 L ; i L3V
Lty = kmi+i— +i—r S T i e —
1 + %/_—{_ k 1QJ 8 kQ 2k22 1q]+k k1+8 326;_
L/l L 17 L 1L L . 1 L°lV1
Lty = kmi—i— +i—rq ————l— =—=riq; + —e}r — < —5-
3 Ty NG T g T e G T s T g
. ; 4 ;
elitts)l 1 = 9;L £ 7145 ijQ (Sk) 7f1 - i%%l - 2L2 149 +2L5k7’1 3on 2i2 1 — 6%#173[2
25271'4 l® iz 51:7’%% + 307 i‘i PPrig; — llL*lgkrl + i slefr — ?Flrlqj
+aon k?lrl% 411;2 k3lr1qJ
iLV1 . i L2 4 i
et = (=1)ke™2 (1+Z%T1Qj_%;%l_%% rig} + £eir — ez el s lE +iteri
14 L3737 1 L3
—srazlegry + - 7=lr q)
8wk k'l 8r k2114
_M . 7 2 2 4 i
el = (=1)ke 3 (1+Z%T1Qj — st - 3ol + 5kﬂ"1 ezl — %pkfgl +@k25k7"1%
_1iL¥y °1
]S k2 6krl+ 8 k2 quy)

Using (2.49), Taylor series and simplification in the term of order 1/k? coming from Step 1,
we get

fw) = <4L2 rl) (1) + (8@'%7“%% 24k3 rlq] élfk—gmr1 s i§l2 — ,71 rn— %% L lmr?
+%i—;lr1q] + %%mrlqﬁ e + (4% k4 rlqj — 8tz quj 6—47%5173[3 — a7 izl:g + T {;j /4
"‘%wi*l mrL— ey k4l mry + 647r4 K L lPmry + 85;2 " l27“1q] %WLL Prig; + #174[27”1%’

- k4l r1q; + 3z Lt Hlrig + 8——3m7’1qj — —ijlrlqj — ;kjlri" — %%mrl%

§i—4mr1qj 25 kg lmrlqj + 3 k4 lmrlq] + 2 k4 lmrlqj — 8—3k—4l2mr1qj
+sa-a(52)770 (= 4k4Larl% 1617r2 k4L4al2 TR ioalriay) + s o( 5P (digtarigy — éjrkaal)
(B sy () s (B 4 s (B0 4 s (i rrng — B2 ED)(2)?

2

+47{%([;:)2(2¢ sm(L;/z)) (mlfghqj = 411“1—;30
i (8145 — %%l)(%) +ﬁ<%) (41} — mgr il + %%lﬁ% sin(Lv/D)3 2 fal2

—dsin? (B (=3Lr3q2 — S L2+ L Lirgy) + 2 (— 128y ; 16”2 f,‘;;‘z? ﬂkml J)( 12
+2is5(£0)2 sin(LV1) (2i 11 q; — il%l) +2132(L”)2 sm(L\/_)( k4r1q] s £4 P+ i L lrig;)

™
+59 (L”)“L?'\/_l“jfﬁc}[ + Sp_a (B ) (—L 5 L lelry + 8irt= “elr2q;) + s3_ o(E)3- akjLaekrl

P2 0 sin2 (B 4 b (8t ) (L) 4 sg-a (L) (4R (2)202) + dis ok sin(Lv)el,
where
_ P1 1 MM + Y2my _ p1ma + pamy NP2 + 7201
S2 — _Zb \/_( )7 Soq =" """  MmMm=—"""", S3—q =
mip2 m2p1 \77/1_17712 m1meaTy mimary
1 ) 1 5 b
S3 =3 P + )7 S4—a = pl (71 ) IH(L\/_)
8 1y myips  mapy mims p1 P2
12 LV bi? LV bi?
n =g sin (;/_), S49 = %(COSQ(;/) +1), s43=— 87“?1 sin(LV/1).
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Considering only the dominant terms of %, the following is obtaining:

fw) = <4L2 7"1) (e])? + (8z Lr2g; — 41 8mr? — f—lrl) el — 8ikirig + L L L8

4Ll L® 34 L52 i L* i L*
gﬁfsl m7‘1 gﬂ.z ksl riq; + 37r = lrlqj + S;Fmrlq] —25% lmrlqy

2 4
Lry
(IT

l L’r‘1 i \/Z L 114 L2
- 4r1< ? <2zsm<7>> (mkgﬁqj - 4k35>
+ bp12(8ik—37“1q] — ;ﬁz)(m) + 2iso(E2)2 sin(LV1) (2i 51y — iﬁ%l)

mim

We remark that

i LS i LS i
—8iLs rlqj 6%1?%[3 %—S%F mry \}32{;3 I’rig; + 3% l riq; + 87Fmr1q]
Lr L1 L 1 i L?
—24 < k3 lmrlq] ( ! (2 l

2
) ( (T)) kgrlqﬂ 47ﬁ
+ b"lg(Sik%rlqj - %%l}( 71)2 245y (L21)2 sin(LV1) (2i 5 r1q; — iﬁ%l) = 0.

mim

Then &), satisfy

fOw) = (4L2 rl) (g{c)2 + (Sii—jrqu — 4££§mrf L L3lr1) 8i
(265) +82 a(m)Q a( 4k4LZa7"%CZJ - 16171'2 k£4al2 k4 alTIQJ)
2
+537a(L7)3 a(42k4 g — ;;J&L al> 34*a(iLﬁ)

Multiplying (2.65) by k* leads to:

s

— o L 4 L3y qy) + s3-a(E2)3 2k (4iLrig; — Wm) — 84_ok (L)t 4 o(1) = 0.

FOw) = (AL2r?) (kel)? + k (8iL2r3q; — 4L L2mr? — LL3ry ) (kel) + so—a(B22) 2 ke (—4L2r2q?

Hence ¢ and 3 satisfy

Lry ., ,L*r?

(4L2r7) (kep)? — 4k LQ\/_rl(k;ek) + k() o(1) =0
(4L2r7) (ke)® + 4k— L?frl(kgk) +ng”(L;1) L; +o(1) =0,
where L= 2 (m \/5) pa(m \/5)2 e
I = 283 o(m+V0) — sy a(m+ ﬁ)zjsH
0 = :1 (é_ sin(LV1) + (:;1 - ;Z)) + 4iﬁ%(cos(L\/i) —1)?
kel — —477_[\1/5 (L:)Q (cos(1 — )5 —icos(1 - a);T)kll 4 o(1)
ke = 4;;5 <L7:1>2_ (cos(1 — a)g —icos(1 — a)w)kl1 ~+o(1).
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Then

I Lri\>® T T, 1 1
£t o ( - ) (cos(1 — a) 5 icos(l —a)—= )k2 ztol

. _[2 LTl 2-a ™ 1 1
= /i (7?) (cos(l—oz)g—zcos(l—oz)Q)kQ a+0<k2_a)-

Since all the eigenvalues of A are on the left of the imaginary axis, necessarily I; > 0 and
IQ < 0. Note that, if Y1 = V2 = 0 then Il = IQ = 0.

™M
N

Remark 2.4.1 [f condition (H) does not hold, we can study the asymptotic behavior of the
spectrum of A but the calculation is long.

Case 2 r| # ryg:
We start by the expansion of ¢; and ¢3:

(2.66) tl—rl/\—iMi—ZM;%—O(;)
(267) =g LR Lo (1),
(2.68) ha(t1) = —Mrl(rf_@ - ;%Mi +0(55).
(2.69) Bats) = Mﬁ(r%@_@ T ;Z%Mi +0(55).
2700 (1) = <N (rE = 1) % ;erMA bl Tlgi?_—é;gz L+o(5)-
(2710 (ts) = N (13 —13) :g + ;lmr;(%r%_f”é) A ;z% Til;g (‘(j?__;irgi 0 (;) .
(2.72) ho(t1) = A + Z:A + ZZAQ + Xy O‘ﬂ;l — ;mm lzi;g_ Tg)i +0 (Aj_a)
(2.73) ha(t) = X2 — Z;)\ L R O‘n;l ;mm ?i”f_ r%)i\ +0(5)
(2.74) ha(ts) = A2 + ZiA R O‘m21 ;bz%(é?_rg)i +0 <A21a>
(2.75) ha(ts) = A2 — ZEA + ;22 A ALy 0‘7;21 _ ;blmg(r?—r%)/l\ +0 (A21_a>

ha(t) = = s h = oy — Ny

() () g (=2)

(2.76)

2
P1TY (Tl _7’2

_%Z2T§4T1+T2 )3>\+0< )
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lrg i r% a—1 r%
hg(tQ) p1T1 (7“2—7"3) A lmﬂ%(’“%—rg) +1i m mip1T1 (T%—Tg)
(277) —|—ll2 r1+r2 +o ( )
2 plrf(rf_rg)s > A
a r r2_—3r2
h3<t3) = _)\3 (Tl T%) Az (Tl T%) Al—i_ ( % - T%) ’m’zlpf’r‘% - %ZATQ plrfl(Tffzrg)
—nA%y7re (12 — 71 ) e rg — Loty iy
172 1 2 m1p1?‘f r%ml(r% r%) 2 1 2m1p17“§<rf—r§)
Ay (1 = 13) (o — 1) m £ o5t
(2.78)
ro r1+r 2*37"2
ha(ty) = N (r?—1r2) ez A2 (r? — T%) : Yre (r1 — 12) mllzlfg + ll)\rgm
a N a—1 T 1 _ r2—3r2
Xy (1Y = 13) TN rfml(f%—ra) ML e ey
A s (1 = 3) (0= 1) 40 (ks )
(2.79)

Using the asymptotic development (2.68)-(2.79)

FO) = 82 r3 (g — ra)2(ry + 1) 2[btita) _ oLlti+ta) _ oLltatta) | oLlt2tta))
p171
+)\7L(r1 —19)2(ry + 72)?[(mapr + bmyryry)(eltiFts) — oLltatta))
m1m2pl7"1

+(m2p1 - bm1T1T2)(eL(t1+t4) _ eL(t2+t3))]

+)\6+o¢ r%(’ylmQ + /Yle) (T% o T%)Q[GL(t1+t3) _ eL(t1+t4) o eL(t2+t3) _'_ eL(t2+t4)] + O(}\2>
m1m2,017’il
— )8 pT’?A (7”1 o 7“2)2(7“1 + 7“2)2 [(eL(tH—tg) _ eb(titta) _ L(t2+ts) + eL(t2+t4))
171
1
+((mapr + bmyryry) (eltitts) — eLFt)) 4 (myp) — bmyryry) (eFtitta) — elltatta))y  —
M1MaTa A
+(71m2 + Y2 (eL(t1+t3) _ ebltitta) _ oLita+ts) | eL(t2+t4)) 21 +0 (12)] '
(2.80) mimsa A2« A
e L) SO
= 1
2.81 A = fi(A) 4+ 2 0 ( >
2:81) FO = fo) + N L B o (4
where

(2.82)fo(N) = eltitts) _ pL(titta) _ oL(tatts) | Llta+ts) _ efL(t1+t3)<€2Lt1 _ 1)(62Lt3 —1)

) = (maps + brrirs) ehltitts) _ pLitatta)y 4 (mapy — bmyriry) (eltitta) _ oLltatta))
mi1msaTo M1MaTy
e L(t1+t3) (mapr + bmariry) (e2Lth+t) _ 1) 4 (map1 — bmyriry) e2lts _ (2Lta)]
2 83) mimaTrsa mimsaTo
(284) f2(/\) = (’YlmQ T fYle)e—L(h-i-t:s)(eQLtl . 1)(62Lt3 _ 1)

mims
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Lemma 2.4.2 (Asymptotic behavior of the large eigenvalues of A) The large eigenvalues of
A can be split into two families (N,)kez,jkj>kosJ = 1,2, (ko € IN chosen large enough). The
following asymptotic expansions hold:

and these two roots are simple.

Proof. From (2.85), f, has two families of roots that we denote A} and pj. Now, we prove
that
fo(A) = 0 if and only if 2t L = 2ikm and 2t3L = 2ik'n, k, k' € 7Z.

Indeed, Suppose that
t1L = ikm and t3L # ik'n, k, k' € 7.

Then
1 1 1

hl(tl) —ha(t1) ha(ts) —ha(ts)

ho(t)(=1)F  ho(ta)(=1)"  ha(ts)e"™  ho(te)e "
hg(tl)( 1)k h3<t2)(_1)k hg(tg)etSL h3(t4)67t3L
We can check that hy(t1) # 0 and hy(t3) # 0 for A large enough. Since t3L # ik'm for all
k' € 72, then using Gaussian elimination for M, we get

M:

cp=C =c3=1cq4=0.
which is a contradiction with ||U|ly = 1. Similarly if
t1L # ikm and t3L = ik'w, k, k' € 7.
we get U = 0. We conclude that
fo(A) =0 if and only if ¢, L = ikm and t3L = ik'm, k, k' € ZZ.

Then from (2.66) and (2.67), the large roots of fj satisfy the following asymptotic equations

1
No— ' rio () VIk| > ko
Lry
A= Lk’ﬂ+0< ) | > k.
We will now use Rouché’s Theorem. Let By = B(— L km,ri) be the ball of centrum ZL’” and
, 1
radius ry = k% and A € 0By, (i.e A = LL]{ZTI' +rre’? 0 € [0,27]). Then we successively have:
4 7”1

, 1
2Lt (N) = 2ikm + 2Lrrie® + O (k:)
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e2lti())  — €2L7"17'k€ig+o(%>
= 1+ 2Lrre? + O(rd).
and | |
foN) = @2Lrrke” +0(17)) ((2L7’2rkew +0 (%)))

= 4L%rirorie®® + O(r}).
It follows that there exists a positive constant ¢ such that
c

1 1
Then we deduce from (2.49) that |f(A) — fo(A)| = O (/\> =0 <k) It follows that, for |k|

large enough
VX € OBy, [f(A) = foWI < [fo(N)],

Since the imaginary axis is an asymptote for the spectrum of A then system (2.33) is not
uniformly stable.

2.5 Asymptotic stability

2.5.1 Strong stability of the system

In this part, we use a general criteria of Theorem 2.4.3 to show the strong stability of the
Cy-semigroup e associated to the wave system (P’) in the absence of the compactness of
the resolvent of A. Our main result is the following theorem:

Theorem 2.5.1 The Cy-semigroup e is strongly stable in H; i.e, for all Uy € H, the
solution of (2.12) satisfies
Jim |4 Uo]| 3 = 0.

Lemma 2.5.1 A does not have eigenvalues on i IR.

Proof
We will argue by contraction. Let us suppose that there A € IR, A # 0 and U # 0, such
that AU = i\U. Then, we get

1IAp —u =0,
(2 f(pr + w)ac = 07
1

iAp1 + (82 +n)dr — U(L)M(€)+§ 0,
N+ B+ W) L)+ [ p(©)6n(€) de = 0.
A —v =0,

P2 P2
iApa + (€2 + 1) 2 — v(L)p(§) =0,

+00

XD+ (L) + 2 [ a(€)6a(€) d = 0.

(2.86)
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Then, from (2.16) we have
(2.87) 6 =0, i=1,2.

From (2.86)3 and (2.86)7, we have
(2.88) u(L) =v(L) =0.
Hence, from (2.86)1, (2.86)s, (2.86), and (2.86)s we obtain

(2.89) o(L) = (L) = 0 and (L) = (L) = 0.
From (2.86), we have ,
(2:90) LNt~ b s R+ ) =0,

Consider X = (¢,v, ¢z, 1%,). Then we can rewrite (2.89) and (2.90) as the initial value
problem

d
(2.91) @X = AX
X(L)=0
where
0 0 1 0
0 0 0 1
A= X 0 0 -1
0 —paX’+K K 0

b b

By the Picard Theorem for ordinary differential equations the system (2.91) has a unique

solution X = 0. Therefore ¢ = 0,79 = 0. It follows from (2.86), that u = 0,v =0,0 = 0,9 =
0,ie.,U=0.

The condition (ii) of Theorem 2.4.3 will be satisfied if we show that o(A) N {i IR} is at

most a countable set. We will prove that the operator i\l — A is surjective for X\ # 0. For this

purpose, let (flaf27f3af47f57f6af77 fS)T € Ha we seek U= (¢7u7¢1707¢av7¢2719)T € D(A)
solution of the following equation

(iN— AU =F.
Equivalently, we have the following system
IAp —u = fi,
, K
i — p—(goz + ), = fo,
1
iIAp1 + (82 +n)dr — w(L)u(§) = fs,

D0+ Ko+ D)+ 8 [ n(©0(€) g =
(2.92) I — v = fs,

P2 P2

G+ (€2 m)én — o(L)u(E) = fr

X+ L (L) + 2 [ p(©)eal€) dé = fi.
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We get

{ N B ) = ot ML
(2.93) h

K .
Solving system (2.93) is equivalent to ﬁndmg (p,) € (H*N HL(0,L))? such that

L L
| oxow = K+ vpwyde = [ (o +idfiwd,
(2.94) oL °
| ot = b + Koo+ 0)X) de = [ palfo+ idf)xda,
for all (w,x) € HX(0,L) x H}(0,L). By using (2.21) and (2.19) the functions ¢ and 1
satisfying the following system

[ oo + e+ vhw) dz + (dms + G)u(Lyu(L)

:/ (o i) wdw—ﬁ/z@ %h(g)df w(L) + my faw(L),

¥ paN 0+ bt + K (s +6)x) da + (i + (D) (D)

= [ it inpe [ ) ) X(L) + mafix(L),
~ 00 2
where (; = (; /_; %

u(L) = i\p(L) — f1(L),
(2.96) { o(L) = ix\ZZ(L) — f5(L).

Inserting (2.96) into (2.95), we get

(2.95)

\

d¢. Using again (2.18), we deduce that

[ oo+ K+ vy do+ididm + e Lu(L)

— /OL p1(fo+idfl)wde — ¢ / N é%\f (&) d¢ w(L) + (iAmy + fl)fl(L)w(L) + my faw(L),

[ o oxt o + Kpe + 900 dz +idiAm, + SN

= [M oo+ s =G [ ) de () + (ma + GAIN(E) + mafix(D).

(2.97)

We can rewrite (2.97) as

(2.98) —(LaU, V), + (U, V), = U(V)
where

Hp(0,L) = H(0,L) x H(0,L),
with the inner product defined by

L
(Uv V)H}{ = /0 K(Spa: + ¢)(wx + X) + 0, dx
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uAUJoHé:A?AL@me+mwx+dm—@muxmy+@ymLﬁuLy+@Am2+@ymLM¢my

Using the compactness embedding from L?*(0,L) into H'(0,L) and from H!(0,L) into
L*(0, L) we deduce that the operator Ly is compact from L?(0,L) into L?(0,L). Conse-
quently, by Fredholm alternative, proving the existence of U solution of (2.98) reduces to
proving that 1 is not an eigenvalue of L,. Indeed if 1 is an eigenvalue, then there exists

U # 0, such that
(2.99) (LAU V) = (U, V), YV € Hp.

In particular for V' = U, it follows that

X2 [l 122000y + P2l lZz0ry] — IN((EAmy + COI(D) + (iAms + &) (L) 2)
= Kllw + a0, + Dl1¢ela0.r)-

Hence, we have

(2.100) o(L)=¢(L)=0.
From (2.99), we obtain

(2.101) va(L) =0
and

K
A2 — —(pz + 1)z =0,
P1

b K
N = —ag + — (0 +¢) = 0.

P2 P2
Consider X = (p, 1, ¢4, ;). Then we can rewrite (2.102), (2.100) and (2.101) as the initial
value problem

(2.102)

d
(2.103) X =BX
X(L)=0
where
0 0 1
0 0 0 1
B=| -x
Kpl — 92+K 2 .
O P2 : T O

By the Picard Theorem for ordinary differential equations the system (2.103) has a unique
solution X = 0. Therefore p = 0,7 = 0. It follows from (2.86), that u = 0,v = 0,0 = 0,9 =
0, i.e., U =0.

Lemma 2.5.2 Ifn # 0, we have
0 € p(A).
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Ko+ 0)(0)+ & [ (o6 de = fu

K et ) = fo.
P2

(&) p2(8) d§ = fs.

f3(f) d¢ w(L) + G fi(L)w(L) +my frw(L),

Proof
From (2.92)
_IIL(: J1,
_E(@x + w)z = f2a
(& + g1 — u(L)u(§) = fa,
(2.104) N
_E,@Dxa: +
P2
(€4 1)n = o(L)u€) = fr.
(L) + 2 [
L
/0 K(ps + Y)w, dx
oo pu(é)
= [ pifowdr —¢
(2.105) / - 1/ &+

/ (bbaxe + K (00 + b)) da

= p2fex dx — Gz
-/ /.

52

p(€)

f7(f) d¢ X(L) + G fs(L)x(L) + mafsx(L).

Consequently, problem (2.105) is equivalent to the problem

(2.106)

an((gp’ 1[1), (w> X)) = Lﬂ(wa X)

where the bilinear form a,, : [H}(0,L) x H}(0,L)]* — IR and the linear form
L,: H(0,L) x H}(0,L) — IR are defined by

and

It is easy to verify that a, is continuous and coercive, and L, is continuous. So applying
the Lax-Milgram theorem, we deduce that for all (w,x,¢) € H}(0,L) x H(0, L) problem
(2.25) admits a unique solution (p,v) € HL(0, L) x H}(0, L). Applying the classical elliptic
regularity, it follows from (2.24) that (p,v) € H?(0, L) x H?(0, L). Therefore, the operator

an((p, ), (w, X)) = /OL K(ps + ) (w, + x) de + /OL by X dx.

Ly (w, ) /'mﬁwdn—g/
()

+/ P2f6Xd$—C2/

62

+my faw(L) + ma fsx(L).

A is surjective.

N He) fs(f) d¢ w(L) + G fi(L)w(L)

ﬁ@ma«>+@ﬁ@n@>
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2.5.2 Residual spectrum of A
Lemma 2.5.3 Let A be defined by (2.13). Then

—fjm )
—(&+n)pr — u(L)p(€)

(2.107) A mﬁl(gpr +¥)(L) + 7%1 /:)o (&)1 (§) d§

—v
_ﬁ@bm + 5(9090 + w)
P2 P2
—(& +n)d2 :OOU(L)M(@
Sn(L)+ 2 [ ul©)o(€) e

T eSS

with domain
(o, u, @1,0,0, v, pg) in H : 90 v e H*(0,L) N H0, L),u,v € HX0, L),
o ) 0,0eCu(l)==0,v(L)=
2108 = 3 e = + 1) — o(L(E) € L2(—oc-450),
€], [€]@2 € L*(—00, +00)

Proof o o
Let U = (p,u, ¢1,0,0,v, ¢, 9T and V = (@, @, ¢1, 0,9, 9, o, 9)T. We have
< AU,V >4=< U, A*V >4.

CAUV >y = K/OLﬁ(sﬁx+L/J)xdx+b/OLf1¢mdx—K/fﬂ%%—@b)dm
+K/L Ba + ) (g + v) du
40 [ e+ G [T 4 0o+ u(Du€)d de
4G [ (€ + mts + (L) de
b (=25 o0 - [ oo ae)
fm, (—%() = MGG 5)
= K [t 0o+ 0 e+ Ko+ )L~ [ it do
U (L)O(L) + K (B + D) (Lpu(L) ~ K [ wwxudwK/o (P + v da
b [ vz + b3 (D(E) + () [ :” (31 de + (L) [ p(e)dade

G [Tl + by + O e~ G [ 0al(€ +nd+ Dyl de
—K(pa + ¥)(L)0 = bioa ()7
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As 0 =u(L),9 = v(L) and if we set § = @(L),J = 9(L), we find

< AUV >3 = —K/OL(% + )y + ) dr — b/OL@Zsz dr — K/OL(@m + ) pude
4 [ bt Kt e
(L) (K@ + 90 + G [ (@b de) +o(L) (ball) + G [ pl€)nde)

G [Tl + b+ MM~ G [ all€ + s+ D(L)u(E)] de.

+oo

Theorem 2.5.2 o,(A) =0, where 0,(A) denotes the set of residual spectrum of A.

Since A € 0,(A),\ € 0,(A*) the proof will be accomplished if we can show that o,(A) =
o,(A*). This is because obviously the eigenvalues of A are symmetric on the real axis. From
(2.107), the eigenvalue problem A*Z = AZ for A €€ and 0 # Z = (p, u, ¢1,0,10,v,¢9,9) €
D(A*) we have
Ap+u =0,

K

1

Adr + (€ + m)dr + u(L)u() =0,
N = 5+ 0)(L) = & [ p(€)on() de = 0.
M) +v =0,

b K
At te = (b2 +10) =0,
Ag2 + (52 + )2 + v( +)M(§) =0,
N = (D) = & [ u(€)nle) dg = 0.

(2.109)

From (2.109); and (2.109)2, (2.109)5 and (2.109)s, we get

—\u + K(%Hﬁ)
,0

K
—>\2U + 71#;3‘2 - 7(@33 + 1/}) = 07
P2 P2

(2.110)

As 0 = u(L) = —X¢(L) and ¥ = v(L) = — (L), we deduce from (2.109)3 and (2.109)4,
(2.109); and (2.109)s that

(A Lo+ ) AplE) e+ 0(E) =0
(2.111) s
<>\ + e ) ML) + ~(L) = 0

System (2.110)-(2.111) is exactly the eigenvalue problem of A. Hence A* has the same
eigenvalues as A. The proof is complete.
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2.5.3 Polynomial Stability (for n # 0)
Theorem 2.5.3 The semigroup Sa(t),s, is polynomially stable and

1
1S4 Uoll2 < WHUOHD(A)

Proof

We will need to study the resolvent equation (i\ — A)U = F, for A € IR, namely
ZASO —u= fla

iAu — f)i(@pm + w>x = f27

N (8 4 1) = (L)~

N+ (o + ) (D) + % [ l€)6n(€) dE = fu
M@b - U - f5a

. K

AU — wm p — (e + ) = fs,

iAQy + (52 + )2 — v +) u(§) = fr,

N+ D)+ 5 [ u(©)a(€) de = fi

where F' = (f1, fo, f3, f1, f5, f6, fr, fs)T. Taking inner product in H with U and using (2.16)
we get

(2.112)

(2.113) [Re(AU, U)| < U]l
This implies that
2 +OO
(2.114) S [ (€ +meile )2 < U Pl
i=1 >

and, applying (3.1); 47, we obtain

Ae(L)| = 1AL P < Ju(L)[?.
We deduce that
IAPlp(L)[? < el fi(L)]P + e|u(L)]?.

Moreover, from (3.1)4, we have
Klga +0)(L) = —im(L) = G [ p€)r(€)d +m
Then

K2l (pa +0)(D)P < 208 N(L)P + 20873 + 262 | [ w€)6n(€)

—+00

BBt + 2017 + 262 ([ 7€+ P dg) [T €+ mlon(©) de
< 2 APIu(L)? + Ul Pl + ¢ TF I
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From (3.1)3, we obtain
(2.116) w(L)p(€) = (A + & +n)o1 — f3(6).
By multiplying (2.116); by (iA + &2 + 7))~ tu(€), we get

(2.117) (X + &+ ) u(L)p*(€) = p(€)dr — (A + & + ) u(&) f5(8).

Hence, by taking absolute values of both sides of (2.117), integrating over the interval | —
00, +00[ with respect to the variable £ and applying Cauchy-Schwartz inequality, we obtain

e shoisu ([ 7€ emrara) +v ([ Timors)

where

S= [0+ € 40 )P de

o0
—00

U= (7€ e de)

=

v= ([T s uera)
Thus, by using again the inequality 2PQ < P?+ Q* P > 0,Q > 0, we get
ey SumP <20 ([ @ nlopde) <22 ([ In©r ).

We deduce that
(2.120) [u(L)? < AP U | Fllae + el FII3,-

Similarly, we have

(2.121) b (L)) < 2ma AP (L) + cl|U | Fllae + < F I,
(2.122) [o(D)|* < A AP*NU | Flle + el F -
Let us introduce the following notation

Io(a) = pilu(@)]® + Klp.(o)?

Iy(a) = polv(a)]® + bYu(a)l®

L L
EAL) = [ a@) T (s)ds, Ex(L) = [ Tyls)ds.
Lemma 2.5.4 Let g € H'(0,L). We have that
L
(2.123) £,(L) = [qZ,)F + 2K Re /0 0.7, dv + Ry.

and

L o L
(2:124) E,(L) = [Lulf — Klalé)f — 2K Re [ o, do+ K [ q|vf do + R
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where R; satisfies
(B < CE(L)+ [la"*FI3,
[Ro| < CEWL) + [lg"2F |3,

for a positive constant C'.

Proof
To get (2.123), let us multiply the equation (3.1)s by ¢@, Integrating on (0, L) we obtain

L L L
or
L — L L L
—p1 [ wa@y) de — K | qpupodr — K [ quupde=pi | fogp, da.

Since tAp, = u, + f1, taking the real part in the above equality results in

d
—% d*IUIQde— */ qflsoxl dr = lee/ 1249, dl’ﬂhRe/ uqf, de

+K Re / Q. 9, dz.
0

Performing an integration by parts we get

L
| d@lpiluls) P + Klpa ()} ds
L
— [¢T,)E + 2K Re /O P, du + Ry

where

L L _
Ry = 2p1Re/O f2q9, dx + 2p1Re/0 uqfq, dz.

Similarly, multiplying equation (3.1)5 by ¢@,, integrating on (0, L) and taking the real part
we obtain

L L . L _ L
irps [ vql,dz—b [ gl de+ K [ (o0 +0)gb,da = pa | fugh, da

or

—p2 /OL vq(iNY,) d — b/OL (rathy do + K /OL Qi) dz
+K /OL Qi dz = ps /OL foq, de.
Since iA\Y, = v, + f5, taking the real part in the above equality results in
2 L an - 7/ q*l%l2 :v—sze/ foa, d

2 d
+p2 Re/ qufs, dv — K Re/ Gpat), d — */ Q*W\Qdﬂ@-
0 0 2 Jo “dx
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Performing an integration by parts we get
L
| @ lpafo() + bl ()] ds
L —
= [aZlf — KlaloP)f — 2K Re [, do

L
+K/O ¢'|[? dz + Ry

where . .

Ry = 2,02Re/ feq, dx + 2ps Re/ qufs, dx.
If we take q(z) = [ €™ ds = ©—L (Here n will be chosen large enough) in Lemma 2.5.4 we
arrive at

E,(L) + E4(L) )
= (L)L, (L) + 2K Re [ quup,da

A(DITL) ~ Ka(DP+ K [ @l de 2K Re [ ap, de
+R; + Ry

= (TL(L) + a(D)T, (L) ~ Ka(D(D)? + K [ o @)yl dr
+Ri+ Ry

Also, we have

Bl < 21 [ a@(P + el ds + 201 [ a@ U + iuls)) ds
(2.125) i y 0

< 7HFH7{+ 5( )

and

IS [ )+ [e(5)) s+ 20 [ @) 1al)? + a9 ds

7HF||H + &p( )

IN

Using Lemma 2.5.4 and the Young inequality we get
Eo(L) + Ey(L)
< DT+ o(DTAL) + K [ @)yl dr
+c|| FIf3%

for a positive constant C'. It results by (2.115), (2.120), (2.121) and (2.122) that we can find
a positive constant C' such that

£,(L) + £4(L)
<K [T de oA 4 P 1)
0

Ul Flle + e(IA* + DI FII3,
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for A # 0. Since that ¢ = %)\fl and ¥ = % we obtain

Eo(L) + (L)

C
< (A2 AP+ DUl Flla 4 c(IAP 4+ DIF)3, + s

[A?

C

U 2
|| ||H+ |/\|2

[FallP

Since that . .
[ @@rd<c [ @+ nole)d

for A #£ 0. If |\| > 1 we get
U153, < AP 1715,

It follows that

A2 IGAL = A)Hepp <C VAER,

for a positive constant C'. The conclusion then follows by applying Theorem 2.4.2.

Remark 2.5.1 1) By Proposition 2.4.1, the spectrum of A is at the left of the imaginary
axis, but approaches this axis. Hence, the decay of the energy depends on the asymptotic
behavior of the real part of these eigenvalues, since Proposition 2.4.1 shows a behavior like
k=B~ we can expect a decay rate (optimal) of the energy of order t=2/3=%)  We unfor-
tunately were not able to prove this optimal decay rate by Borichev-Tomilov Theorem. In
theorem 2.5.3, we obtain decay rate of order t=/ %= which is less better. But, it is interest-
ing to remark that both energy decay in Theorem 2.5.3 and Proposition 2.4.1 approach t=!
(as a — 1) which is the energy decay given in [32] and [28].

2) Estimation of decay rate in the case n = 0 is open. As A = 0 is a spectral value, both
technic used in [32] and [28] do not work. In the futur, we try other methods, in particular
some tools from observability theory. Amnother technic is the use of Laplace transform and
representation of solutions by Mittag-Leffler Functions.

3) It seems to be interesting to study a global decaying solutions of hyperbolic systems (strong
and weakly) under control of fractional derivative type. We think that the interaction of the
hyperbolicity (order of multiplicity) and the number of dissipative terms have an effect on
the result.
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Chapter 3

OPTIMAL ENERGY DECAY OF
SOLUTIONS TO A TIMOSHENKO
BEAM SYSTEM WITH DYNAMIC
BOUNDARY FEEDBACKS OF
FRACTIONAL DERIVATIVE TYPE

3.1 Introduction

In this chapter we investigate the decay properties of solutions for the initial boundary value
problem of the linear Timoshenko beam system of the type

0,400

(P) {plSOtt(xa t) — K(pz + 1) (z,1) =0 in ( ) 0: i

0,L) x
pau(x,t) — by (z,t) + K(pr + ) (x,t) =0 in (0,L) x

—~
~— —

Y

where (x,t) € (0, L) x (0, +00). This system is subject to the boundary conditions

©(0,t) =0, ¥(0,t) =0, in (0, 400),
mipu(L,t) + K(pz +9)(L,t) = —110;"0(L,t)  in (0, +o0),
Moy (L, t) + 0ipy (L, t) = —y200""(L, t) in (0, 4+00),

where 7; > 0,7 = 1,2. The notation 9;"" stands for the generalized Caputo’s
fractional derivative of order o, 0 < v < 1, with respect to the time variable.
The problem of stabilization for the initial boundary value problem

u — Au =0 on 2 x (0, +00),
u=0onTIp x (0,400),

P’ 0

(F) a—u—i—a(x)ut:()on 'y x (0, 400),

u(yx,O) =up(z), u(x,0)=uy(z)on Q,

67



68

was investigated by several authors. In Haraux [16], Bardos, G. Lebeau and J. Rauch [7],
Lebeau and Robbiano [7], Burq [11] and Xiaoyu Fu [15].

First, A. Haraux has shown that if a € L>(I'y),a # 0, then any solution of (P’) tends
to 0 in H!(Q) strong as t — +oc.

C. Bardos, G. Lebeau and J. Rauch [7] introduced a geometric control condition witch
is a necessary and sufficient condition for the uniform exponential decay rate of the energy.

Moreover, Lebeau and Robbiano (see [22]) have shown that, in the case where the Neu-
mann boundary condition is applied on the entire boundary, a weak condition on the feedback
(which does not satisfy Geometric Control Condition) provides logarithmic decay of regular
solutions. The optimal result without geometrical hypothesis is given in [11]. We also recall
the result by Fu [15], where the author proved a result similar to the one in [22] for less
regular conditions (92 € C?) by adopting the global Carleman estimate.

In [26] Mbodje studies the energy decay of the wave equation with a boundary control
of fractional derivative type (C'F). The major inconvenient associated to the fractional
operators is the hereditary behavior. Therefore, the employment of mathematical analysis
tools, such as stability analysis and numerical approximation is very difficult. He used
a new approach called ”diffusive representation” to reduce these difficulties. The original
model is transformed into an augmented system which can be more easily tackled by the
energy method. The author showed strong asymptotic stability of solutions when n = 0 and
polynomial type decay rate E(t) < C/t for t > 0 when n # 0.

Recently in [8], benaissa and Benkhedda considered the stabilization for the following
wave equation with dynamic boundary control of fractional derivative type (C'F):

Ut (2, 1) — Uy (2, 1) = 0 in |0, L[x]0, +o0[
(P) u(0,t) =0 in (0, +00)
mug (L, t) + u, (L, t) = —v0;""u(L,t) in (0, +00).

They proved that the decay of the energy is not exponential, but polynomial. They used
the spectrum method for lack of exponential stability and Borichev-Tomilov Theorem for
establishing polynomial decay rate &(t) < ¢/t!/(2=2).

Very recently in [8], benaissa and Benazzouz considered the problem (P). The author

showed strong asymptotic stability of solutions when 1 = 0 and polynomial type decay rate
E(t) < C/tY2=) for t > 0 when 1 # 0.

Our purpose in this chapter is to prove an optimal decay estimate following the wave
propagation speeds. We use an explicit representation of the resolvent associate to the
semi-group operator and an application of the recent theorem of Borichev-Tomilov.
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3.2 Optimality of energy decay when n > 0

We will need to study the resolvent equation (i\ — A)U = F, for A € IR, namely

AP — QIL(: J1,
iApy + (2 4 )1 — U(L)M(@J; I35
N0+ (e O)(L) S [ (1) dé = fu
Z)\@/) — UV = f5,
P2 P2
iy + (€2 + )y — U([Q)/j(f) = fr,
i+ (L) + 52 [ p(€)0(€) d€ = fi

where F' = (f1, fa, f3, f1, f5: fo» f7, [s)T € H. The first and fifth equations of (3.1) being
equivalent to

(3.2) u=1i o — f1, v=1i\)— f;

and by substitution in the second and sixth equations, we obtain the following system
Np1p + Kppy + Kby = —pi(fo +iAf1)

N2t + bibyy — Ky — Kb = —py(fo + i\ f5).

iApy + (&2 + )1 — u(L)p(§) = fa,
(3.3) iAgy + (€2 +m)d2 —v(L)u(€) = fr,

D0+ o+ )0+ & [ Qi (€)dg = i

; b G2 oo
XD+ (L) + 2 [ ul€)6a(€) dE = fi
Now the system (3.3); — (3.3) takes the form

(3.1)

o 0 1 0 0 0
—%X 0 0 —1 —LL(fy 4+ iNf1)
U' = BU+F where U = | ?* | B=| K and F=| 7%
v | 0 0 0 1 0
Ve 0 £oE_r) o —B2(fs +1iAf5)

The case r? =13

It is not restrictive to suppose p; = po = K = b = 1. A simple computation shows that
the eigenvalues p; of the matrix B are the roots of the following equation

(3.4) ot 202+ N2 (V- 1) =0

Thus (3.4) has only pure imaginary solutions when A is large enough. Applying the classical
method of variation of constants formula, we obtain

(3.5) U = eP*U(0) + /Ox PEF(s)ds  U(0) = (0, ,(0),0,1,(0)7,
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where €5 is the solution of the homogeneous equation
3.6 — =BY, Y(0) =1
(36) =Y, Y0
To obtain an explicit expression of (3.5), we consider the initial value problem
(37) )\2w+¢m—%—¢=0
(,0(0) = (1, 9023(0) = (o, w(o) = (s, wr(o) =

Then a straightforward computation gives that:

= AeM® + Be MT 4 (Clet2® + De™H2®

)\2 . )\2 e /\2 e )\2 e
V=—Al—+m | +B|—Fpm e =C|—Fp | e+ D(—+p e
3.8) H1 H1 2 H2

where
= 1VA2 =N —py, e = VAN
are the roots of (3.4). Then
A+B+C+D=c¢
pr A S B + pC — %2D =C ) )
A A A A
(39) —<+,U1>A+<+M1>B—<+M2>O+<+M2>D203
H1 H1 H2 M2
(] + N)A = (1 + N)B = (3 + N*)C = (p3 + A)D = cu.

Solving system (3.9), we find that

A 1u2+)\2 1 p3+ N2 +1 I 1
= 501+ =g M s g M — 5
208 — 3 2(pf — )A2 2 (pf — p3)A? 23 — 13
B 1u3+ M\ 1 u+)\ 1 % 1 c4
= —5 5 50— ey — ST r g Mics —
(3.10) 2/¢ uz 2 (1 — p3) N2 2 (i — p3)A\? 242 — 113
C = ! 7”2 Ry 1 — LmEA £ /\ H1C2 — ! 7”3 H1C3 + 1764
24y — Kg 2(% in 20&—;@* 2 i — 43
13+ 1 1 s 1 o
D = 5C1 7#1 2t o oMt 55
203 — 3 2 (ud — p3)N 2 (pf — 13)N? 2 i — pih
Setting (c1, co, €3, ¢4) to be the unit vectors e; for ¢ =1, ..., 4, we obtain
2 1 \2 2 1 \2
+ A + A
p1(x) = _,ug 5 cosh () + ,u; 5 cosh(pipx)
811 F R RS PN SOV B0
() = L S sinh(pyz) — ~2 L sinh (o)
pa(pi = pi3) pa(py — pi3)
(13 + A*) (1f + A*)pa
po(r) = 25— Csinh(ue) — 5o sinh(uox
(3.12) (@) )‘2<(U1 /g))( ( 2) A2(pf — /E2> i)( ) )
' 3+ A (a3 + A p3 + M) (3 + M2
Pol(z) = — cosh(pyx) + cosh( oz
” IS NG ) )
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2 2
pa(a) = % sinh() — 153 sinh(jisa)
(3.13) MR YUs R,
pi+ A, f5 + N
Py(x) = —E 222 cosh(ua) + o201 cosh(pex
0T TN ) R g o
1 1
i) = ——5—cosh(pz)+ ———7 cosh(usx)
(3 14) M12—,U22 /h—/;Q )
y(z) = % sinh(pix) — % sinh (o).
pa (i — ) pa(pi — p3)
From (3.11), (3.12), (3.13) and (3.14), we have
Y1 P2 L3 P4
3.15 eBx — Pz P2z Pz Pax )
(3.15) bt s
77Z}lac 2,0230 w?)a: 77Z)4;B

We deduce from (3.5) and (3.15) that

s 30( ) = ¢a(0)p2 + ¥ (0)ps — /Ox((f2 +iM1)ea(x = s) + (fo + iAfs)pa( — s)) ds,
U(e) = o0z + 6 (O06s — [ ((fa+ M@ = 5) + (fo + N5l — ) ds.

Then

{ 02(7) = 02(0) P20 + V2 (0) sz — /Ox((fz + A f1) 2z (2 — 8) + (f6 + iMf5)Paz(z — 5)) ds,

V(@) = @o(O)n + U(O)as = [ (U + iMoo = 8) + (fo + NS5 oaa (@ — 5)) .
(3.17)
With third and forth equations of (3.3), we get

u(L)p(§) + f5(6)

v(L)p(§) + f(€)
iA+E2 4 '

(318) 51(6) = e,

) ¢2(§) =

Inserting (3.18) in last equations of (3.3), we get

Do)+ ixt ];uwmal)iw >— fs (i) + §;<M+n>a1>f5<m

(3.19) ™2
G / z)\+£2
K o)D) + (3 2o ir ) >w< > fut (4 2L ) A (D)
(3.20' my

C/ z)\+§2+77
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Using (3.16), we can rewrite (3.19) and (3.20) as equations in the unknowns ¢, (0)and v, (0)
02(0) [thox(L) + (ima + 720X +1)* 7 )ida(L)] 4+ ¥4(0) [Wae (L) + (imad + 32 (1A + 1)~ H)idpa(L)]

= mafut (imad a3+ ) (L) - o [ SEEE g

+(imaA + Y2 (iX + 1) 1)iA /OL((f2 +iAf1) (L — s) + (fo + iMfs)Ya(L — s)) ds

4 [+ M (L= 9) + o+ ML — 8)) ds,
(3.21)

2(0) [p2(L) + (L) + (imad + 7 (id + )2 V)idga(L)]
+1,(0) [90433(‘[’) + a(L) 4 (g A + 71 (G + n)a”)Mm(L)}

— mufit md+ G+ )AL~ G [ R >\+§2 d£
BB imx s nx i [ /0 s+ AR )+ o A en(E— )
[T+ ML = )+ s+ ML — 5)) ds

L
[+ i) paalL = 8) + (fo + M) pua (L = ) .
Using (3.21) and (3.22), a linear system in ¢,(0) and ,(0) is obtained

322 (o ) () = (1)

where
mu = Pa(L) + (ime + 72(iA + 1) )idy(L)
= —%(zl sin ?1L — 29 sig 2oL) + %1(—‘7’)12>\ + v2q)(cos z1 L — cos 23 L)
mig = w4x<L) + (ng)\ + Y2 (Z)\ + ﬁ)a_ )Z)\’QD4(L)
= 3(cosz L+ coszL) + (—mo) + 72(1))\%(% sinz L + i sin zo L)
mar = (L) + (L) + (ima A + 71 (iA + 1) )idga(L)
= z(zfcosziL + 23 cos 2 L) + 55(cos 21 L — cos 2o L) + (—muA + 71q) 55 (21 8in 21 L + 2y sin 2, L)
My = Paa(L) +ha(L) + (i A + 71 (A + 1) 1)”\@4@)

2/\(21 sinz; L — zgsin 2o L) + 5(— sin z; L —|— ~ sin 2oL) — 5( miA + 71q)(cos z1 L — cos zo L),

where z; = S(p1) = VA2 — X and 25 = S(pg) = VA2 + A\
Let the determinant of the linear system given in (3.23) be denoted by D. Then the
following is obtained:

D = —l$ mom, — f—ZQmQ (sin 21) my sin zg — 1:70221 ms (sin z5) my sin z; + $ ma (cos z1) My COS 23

+}1 it My sin 2 €O 21 + 3 z%mg sin 21 CoS 29 + ,21 (cos zg sin z1) (2my + M)

4322 (oS 21 sin 25) (2m1 Y my) + 57q (agmy + maay) + 1 (sin 1) q (sin zp) (25 + 27) 22mitmaa

—%xq (cos 21 cos 23) (agmy + m2a1) — % — % (cos z1 cos 22) + ﬁzlzg sin 2 sin 2o
. a :1:2+z2a . a :L‘2+z2a
—2q (sin 2 cos ;) B 2q (sin z; cos 22) 2T111
2+ 1

—502q°a1 — §a2q” (sin z1) ay (sin 25) 220 + Jagq? (cos 21) ay cos 23 +  (sin 2 sin ;)
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where ¢(\) = i(iA +1n)*"!. We can easily prove that
(3.24) |D| > CIA*@Y for |\ large .

This estimation is optimal. Indeed suppose that (3.24) is not optimal. This means that
there exists € > 0 such that

(3.25) |D| > C|A*@=DFe for |\ large .

This is a contradiction because, we can construct sequences A, large such that cos(z;+29)L =
—1 and then sin(z; + 22)L = 0 which implies that

|D| S C|)\€|2(a_1)7

contradicting (3.25). As .
SOJ;(O) = = (m2211 - m21]2)

¢z(0) = = (m11]2 - m12]1)

S| ~T

Then, we conclude that
|<‘093(O>|7 |77Dx(0)| < C‘)\|2(1—a)'

From (3.16) and (3.17), we deduce that
et lz20.n): 1all 2.y < AP (Lfillmon + I f2llzom + I il mon + 1 fsl o) -
From (3.2), we get

lull 20,5 1012200,y < € AP (HleHl(o,L) + [1f2llz20,0) + 1 fall o,y + ||f5||L2(o,L)) :
From (3.18), we get

p(§)
iIAN+ &2+

f3(6)

IAN+ &2+

[61][22(ws000) < [u(L)]

L2(—00,00)

_3a 1
< A' 2 (||f1||H1(o,L) + ([ fallz20,0) + [ fall o,y + ||f5||L2(o,L)) + Cm||f3||L2(—oo,oo)

L2(—00,00)

Thus, we conclude that
AT — A) "l < e AP0 as |A] — oo
This estimation is optimal following (3.24). Then, we deduce that

1

E(t) ~ T
tlfoz

2 4 .2
The case ] # r;3
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We consider only the case r? > r3, the case r? < r3 is similar. It is not restrictive to
suppose p; = py = K =1 and then b < 1.

The eigenvalues p; of the matrix B are the roots of the following equation
(3.26) 2t 4 (a + DN+ aX* (N2 —1) =0,

where a = 1/b.
Expansion of p;,2 = 1,2 for a > 1. We have

1 1
i, = —5((1 +1)A% £ 5\/(a — 1)2M1 + 42

It follows that

1 5—a 6a —a® — 21 1
2 =i\ — ) ) — .
(3:27) = S T T S 16— 1w O (A?)
1 5a — 1 21a® — 6a + 1 1
2 = iaA —1 ) — .
(3:28)p1z = in/ad + Sala—1n  svaala— 1PN T 16yaa(a— 1o O </\7>
Therefore
(@) = xsinh(uo)+0(55)
pala) = sinh(p;x 33
1 2 1
529 Po(x) = ((a e (s 1)3)\4> (cosh(pyz) — cosh(usx) + O ()\6)
: —1 1 1
p4(z) = CESYE cosh(pz) + Y cosh(poz) + O ()\2>
1 . 1 1
y(z) = a1 sinh(pix) + NG sinh(pox) + O ()\5)
We have
mu = 1¢2x L) + (imagX + 72 (iX +1)*~1)iXo(L)
~ a( o (—sinz L+ vasin zoL) + (—mae + ’ygq)( ryx (cos 21 L — cos 23 L)
miz = (L) + (imaX + Y2(iX +0)* 1 )ixey(L)
~ T 08 oL+ écos 2oL 4+ (—moX + ’ygq)((a e sin 21 L + f sin 2o L)
moq = ()021<L) + wg([;> + (’lml)\ —+ Y1 (Z)\ + n)a_l)iAQOQ(L)
~ cosz + ﬁ(cog 21 L — cos zoL) + (—maA + y1q) sin 21 L
Moo = (,04Q;<L) + 1D4(L) + (’Lm1>\ + 71 (Z)\ —+ n)a_l)i/\g04(L)
~ (=mi1A+7119)

ﬁ(sin 2L — \/asin L) + (m sinzi L+ iy sinzpL) — et (cos 2z L — cos zp L)

Then

D = —acos z; L cos sz—i(a\/ﬁfyl cos z L sin 2y L+y, cos z1 L sin sz)—qu sin 21 L sin 2y L+0(q?).

Va Va
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We remark that
|ID| > ¢ ¢* & cos 1L =0 and cos 2oL = 0.

Now, we solve system

cosnnL = 0
(3.30) {cos L = 0
Then, using (3.2)-(3.28), it follows from (3.30) that there exist
1 1 1 1
A ———— = — = —
20— L<m+2)”+0(v>
(3.31) \ 1 1 " 1 0 1
MW v W A GRS Yy ()\2)
Since m ~ k ~ A, (3.31) can be written as
1 1 1 1
2 _ 1 v o2, L +
A= L(m+2)7r +(a—1)+0<)\2>’
(3.32) o 1(k+1)22—1—|—0(1>
@ VT T e —1) N
Finally we obtain
1\? 1\? L*(av/a+1) 1
3.33 ) —lk+z) =———5+0 (= ).
(3.33) a(m+2> ( +2) Vala -1 T ()\2)
Let us set
_ L*(aya+1)
T Va1
Now, we assume that y/a € Q. Then, a = 5—; for some p, ¢ € IN, we deduce
p(m+s)—alk+s) c o(1)
(3.34) 5 = - P + - PR
q p(m+§)+q( +5) p(m+5)+q< +§)

If p (m + %) —q (k + %) = 0 for an infinity number of pairs (m, k), then ¢ = o(1) and this is
a contradiction.
Else p (m + %) —q (k + %) # 0 for X large enough and then
1 < c o(1)
q2_p(m+%)+q<k+%> p(m+%)+q<k+%)
which cannot be true. Then, if \/a € Q, we have only the following possibilities:
cosz1 L =0 and coszyL # 0 or cos 2oL =0 and cos z; L # 0.

In this case, we get
D] > clq].

Using (3.16) and (3.29), we conclude that
1AL = A) 2 < A as |A] = oo.

We deduce an optimal decay rate of the energy of order ¢=2/(1=),
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3.3 Conclusions

1) In this paper we have studied the Timoshenko beam with two feedbacks of fractional
derivative type. We have considered two cases: n =0 and n > 0.

For the case n = 0, we have prove only strong asymptotic stability. The decay rate is
polynomial but we did not obtain any exponent depending on parameter . As A =0 is a
spectral value, the method based on multiplier technic and Borichev-Tomilov method do not
work. In the future, we try other technic as a representation of solution by Mittag-LefHler
Functions.

For the case n > 0, we have succeed to prove decay rate depending on parameter o using
multiplier technic and Borichev-Tomilov method. This tool is flexible and can be adapted to
the multi-dimensional case and other complex systems. But, in general do not give optimal
decay rate. In our case, we have prove the optimality of the energy decay when the wave
propagation speeds are equal (weakly hyperbolic case). However, in the natural physical case
when the speeds of propagation are different (strongly hyperbolic case), we obtain optimal

and better decay rate (if 1/1/b is a rational number) witch is consistent with the asymptotic
expansion of eigenvalues. This is a surprisely fact because Timoshenko beam system can
be stabilized uniformly by only one internal frictional feedback in the weakly hyperbolic case.

2) In the future, we will consider Timoshenko beam system with only one boundary feedback
of of fractional derivative type, that is

prou(r,t) — K(ps + ). (2, 1) =0 in (
pathy (2, ) — bibyy(x,t) + K(goz +)(x,t) =0 in (
©(0,t) =0, (0, t) 0 in (
K(pz +¢)(L,t) = in (
b%(L t) = —723t %(L t) in (
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Résumé

Ma these de doctorat intitulé " Etude de la stabilisation et d’existence globale des équations d’évolutions
linaires et non linéaires.

Dans les préliminaires, on rappelle des définitions et des résultats utiles pour notre travail.

Ces résultats concernent essentiellement la théorie de semi-groupe,

. On rappelle aussi les types de stabilité et des résultats généraux connus dans la littérature et appliquées
pour certaines équations dissipatives. Dans le chapitre deux, on considere un systeme Timoshenko de type
dynamique avec un contréle au frontiére de type dérivée fractionnaire. On montre I'existence globale de la
solution dans des espaces de Sobolev et on détermine la vitesse de décroissance de I’énergie associée aux
solutions. Dans le chapitre trois, on considéere le méme systeme que dans le chapitre un

mots clés: systéme Timoshenko, Existence globale, stabilisation, Méthode de semi groupe, Méthode des
multiplicateurs.

Abstract
My thesis is devoted to the study of stabilization and global existence, to linear and nonlinear evolutions
equations.
This work consists of three chapters:
In chapter 1 we give some preliminaries about some functional spaces in particular semi groupe theory and
the different result for the stabilization.
In chapter 2, we consider the Timoshenko beam system with dynamic controls of fractional
derivative type We prove a global existence result using the semi-group theory, we show that our system is
not uniformly stable in general,. Also, we look for a polynomial decay rate for smooth initial data for our
system by applying a frequency domain approach combining with a multiplier method.
In chapter 3, we consider the same system as above ,By an explicit representation of the resolvant
associated to the operator semi-group, we prove different optimal energy decay
Key words: Timoshenko beam system, global existence , stabilization , semi-group method,
multiplier Method .
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