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fonde gratitude. Ses explications sont toujours passionnantes et éclairantes, j’ai pu en profiter
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cœur mes parents pour tout l’amour qu’ils me portent, qui ont eu la lourde tâhe de me sup-
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Abstract

Title : Stabilization of some linear evolution problems with spectral analysis.

This thesis is devoted to the study of the stabilisation of some linear evolution problems,
In particular, the the Lamé system under some dissipations of fractional derivative type. First,
we consider a Lamé system damped by a fractional boundary feedback of Neumann type, we
prove stabilization by using multipliers method and Rellich type relation combined with the
frequency domain method. Next, we consider a Lamé system with internal fractional delay
and a dissipative damping, we prove that the frictional damping is strong enough to uniformly
stabilize the system even in the presence of time delay. Lastly, our interest is to analyse the
asymptotic behaviour of a Lamé system with an internal fractional delay and a boundary
damping of Neumann type, we introduce a Lyapunov functional that gives the exponential
decay.

Keywords:
Lamé system, Fractional feedback, Polynomial stability, Semigroup theory, Fractional delay
term, Uniform stability, Optimal decay rate, Bessel functions.
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Résumé

Titre : Etude de Stabilité de certains problèmes d’évolution linéaires par analyse
spectrale.

Cette thèse est consacrée à l’étude de la stabilisation de certains problèmes d’évolution
linéaires, en particulier le système Lamé en présence de termes dissipatifs de type fraction-
naires. Nous considérons, d’abord, un système de Lamé avec un contrôle au frontière de type
fractionnaire au sens de Caputo, nous établissons un taux de décroissance polynomiale de
l’énergie du système. Ensuite, nous nous intéressons à l’étude de la stabilisation du système
de Lamé avec un retard interne de type fractionnaire et un terme dissipatif, nous concentrons
notre étude sur le comportement asymptotique des solutions où le terme dissipatif est suffisam-
ment fort pour stabiliser le système, même en présence d’un retard. Enfin, notre intérêt est
d’analyser le comportement asymptotique du système de Lamé avec un retard fractionnaire
interne et un terme dissipatif au frontière, nous introduisons une fonction de Lyapunov qui
donne la décroissance exponentielle.

Mots Clés:
Système de Lamé, Contrôle aux limites du type fractionnaire, Stabilité forte, Stabilité polyno-
miale, théorie des semi-groupes, Taux de décroissance optimale, Fonctions de Bessel.
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Introduction

Many physical phenomena in nature can be described by partial differential equations and the
control of such equations is a quite recent and very active field of investigation. The aim of this
dissertation is to survey several issues related to the study of the Lamé system under fractional
controls.

The problem of well-posedness and stability for elasticity systems in general, and the Lamé
system in particular, has attracted considerable attention in recent years, where diverse types
of dissipative mechanisms have been introduced and several stability and boundedness results
have been obtained. The main problem concerning the stability of solutions is to determine
and estimate the best decay rate for solutions.

Real progress has been realized during the last three decades, Let us recall here some known
results addressing problems of existence, uniqueness and asymptotic behavior of solutions.

In particular, in the works of Guesmia [23], [24], considering the problem of observabil-
ity, exact controllability and stability of general elasticity systems with variable coeffcients
depending on both time and space variables in bounded domains, the results hold under lin-
ear or nonlinear, global or local feedbacks, and they generalize and improve, in some cases,
the decay rate obtained by Alabau and Komornik [4]. In [28], Lagnese proved some uniform
stability results of elasticity systems with linear feedback under some technical assumptions
on the elasticity tensor. In particular, these results do not hold in the linear homogeneous
isotropic case for which the elasticity tensor depends on two parameters called Lamé constants.
In [30], Lagnese obtained uniform stability estimates for linear homogeneous isotropic and
bidimensional elasticity systems under a linear boundary feedback. Martinez [36] generalized
the results of Komornik [30] to the case of elasticity systems of cubic crystals under a non-
linear boundary feedback. For these systems, the elasticity tensor depends on three parameters.

Let Ω be a bounded domain in IR
n with smooth boundary ∂Ω of class C2. We assume

that Γ = Γ0 ∪ Γ1, where Γ0 and Γ1 are closed subsets of Γ with Γ = Γ0 ∩ Γ1 = ∅. ν is the
unit outward normal to Γ and u = (u1, u2, ..., un)

T . µ, λ are Lamé constants which satisfy the
conditions: µ > 0, and µ+ λ ≥ 0.. u = (u1, u2, ..., un)

T .

This thesis focuses on fractional calculus which has been applied successfully in various
areas to modify many existing models of physical processes such as heat conduction, diffusion,
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viscoelasticity, wave propagation, electronics etc. Caputo and Mainardi [10] have established
the relation between fractional derivative and theory of viscoelasticity. The feedback under
consideration here is of fractional type and is described by the following fractional derivative:

∂α,η
t w(t) =

1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s)dw

ds
(s) ds, η ≥ 0. (1)

The order of the derivative is between 0 and 1. In addition to being nonlocal, fractional
derivative involves singular and non-integrable kernels (tα, 0 < α < 1). It has been shown (see
[12]) that, as ∂t, the fractional derivative ∂α

t forces the system to become dissipative and the
solution to approach the equilibrium state.

Furthermore, This thesis intended also to state the well-posedness result for the Lamé sys-
tem using the theory of semigroups. Linear semigroup theory received considerable attention in
the 1930s as a new approach in the study of linear partial differential equations. Note that the
linear semigroup theory has been later developed as an independent theory, with applications
in some other fields, such as ergodic theory, the theory of Markov processes, etc.

Outline: This dissertation is split into four chapters.

CHAPTER 1: PRELIMINARIES

In this chapter, we present some well known results, definitions, properties and theorems
that are used throughout the dissertation. Firstly, we recall some basic knowledge on linear
operators and semigroups without proofs, including some theorems on strong, exponential and
polynomial stability of C0-semigroups. Next, we display a brief historical introduction to frac-
tional derivatives and we define the fractional derivative operator in the sense of Caputo. After
that, we introduce some preliminary facts on the Bessel functions and lastly, we define two
different types of geometric conditions.

CHAPTER 2: ASYMPTOTIC STABILITY FOR THE LAMÉ SYSTEM WITH
FRACTIONAL BOUNDARY DAMPING

This Chapter is devoted to the study of following the Lamé system damped by a fractional
boundary feedback of Neumann type:

(P1)





utt − µ∆u− (µ+ λ)∇(div u) = 0 in Ω× (0,+∞)
u = 0 in Γ0 × (0,+∞)

µ
∂u

∂ν
+ (µ+ λ)(div u)ν = −γ∂α,η

t u in Γ1 × (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω
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where γ is a positive constant.

We start by stating the well-posedness result for problem (P1) using the theory of semigroups.
Next, we show the lack of exponential stability by spectral analysis. Moreover, we prove that
the stability of our system holds with fractional damping, indeed, regarding the strong asymp-
totic stability of solutions, we use a recent result of Borichev and Tomilov which relate resolvent
bounds and decay rates. Lastly, we obtain an almost optimal polynomial energy decay rate
depending on parameter α using multipliers method and Rellich type relation combined with
the frequency domain method.

CHAPTER 3: STABILITY RESULT OF THE LAMÉ SYSTEM WITH A DELAY
TERM IN THE INTERNAL FRACTIONAL FEEDBACK:

In this Chapter, we consider the initial boundary value problem for the Lamé system with
a delay term in the internal fractional feedback. The system is given by:

(P2)





utt − µ∆u− (µ+ λ)∇(div u) + a1∂
α,η
t u(x, t− τ) + a2ut(x, t) = 0 in Ω× (0,+∞),

u = 0 in Γ× (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,
ut(x, t− τ) = f0(x, t− τ) in Ω× (0, τ),

where a1 > 0, a2 > 0 and the constant τ > 0 is the time delay.

We state a well-posedness result for problem (P2) by means of the semigroup theory under a
certain condition between the weight of the delay term in the fractional feedback and the weight
of the term without delay, then, we prove the strong asymptotic stability of solutions. Further-
more, we obtain the exponential stability using the classical theorem of Gearhart, Huang and
Pruss.

CHAPTER 4: EXPONENTIAL DECAY FOR THE LAMÉ SYSTEM WITH FRAC-
TIONAL TIME DELAY AND BOUNDARY FEEDBACK:

This chapter focuses on the study of well-posedness and boundary stabilization of the fol-
lowing Lamé system :
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(P3)





utt − µ∆u− (µ+ λ)∇(div u) + a1∂
α,η
t u(x, t− τ) = 0 in Ω× (0,+∞),

u = 0 in Γ0 × (0,+∞),

µ
∂u

∂ν
+ (µ+ λ)(div u)ν = −a2ut(x, t) in Γ1 × (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,
ut(x, t− τ) = f0(x, t− τ) in Ω× (0, τ).

where a1 > 0, a2 > 0 and the constant τ > 0 is the time delay.

The idea here is to prove that a damping with time delay does not destroy the stability
if there is another boundary dissipative damping in which contrasts appropriately with the
previous one. (i.e., by giving the control in the feedback form −a2ut(x, t, ) x ∈ Γ1, t > 0). We
will show that system (P3) is exponentially stable for a1 sufficiently small.

First, we deal with the well-posedness result of the problem (P3) using the semigroup the-
ory. Moreover, we obtain exponential stability results by constructing an appropriate Lyapunov
functional as in [5].



Chapter 1

PRELIMINARIES

1.1 Linear operators

Definition 1.1.1 Let X and Y be two Banach spaces. A linear mapping: A : D(A)(⊂ X) → Y
is called a linear operator. The D(A) ⊂ X is called the domain of A and R(A) ⊂ Y is called
the range of A:

R(A) = {Ax | x ∈ D(A)} .
A is said to be invertible (or injective) if Ax = 0 if and only if x = 0; A is said to be onto (or
surjective) if R(A) = Y ; A is said to be densely defined if D(A) = X.

Definition 1.1.2 A linear operator A is said to be closed if for any xn ∈ D(A), n ≥ 1,

xn → x, Axn → y, as n → ∞,

it must have x ∈ D(A) and Ax = y. A is said to be bounded if D(A) = X and A maps
a bounded set of X into a bounded set of Y . A linear operator is bounded if and only if it is
continuous, that is,

xn → x0 ∈ X =⇒ Axn → Ax0 ∈ Y

for any xn ⊂ X.

Obviously, any operator which has bounded inverse must be closed. All the bounded opera-
tors from X to Y are denoted by L(X, Y ). In particular, when X = Y, L(X, Y ) is abbreviated
as L(X).

Theorem 1.1.1 Let X and Y be Banach spaces. Then L(X, Y ) is a Banach space with the
norm

‖A‖ = sup {‖Ax‖ | x ∈ X, ‖x‖ = 1} .

13



14 PRELIMINARIES

Definition 1.1.3 Let X be a Banach space. If Y = IR or Y = IC, then the operator in L(X, Y )
is called a linear functional on X. A bounded functional is also denoted by f .

By Theorem 1.1.1, all linear bounded functionals on X consist of a Banach space which is
called the dual of the space X, denoted by X∗.

A bounded operator is called compact operator if A maps any bounded set into a relatively
compact set which is a compact set but not necessarily closed. For a closed operator A, we can
define the graph space [D(A)] where the norm is defined by

‖x‖[D(A)] = ‖x‖+ ‖Ax‖, ∀x ∈ D(A). (1.1)

Theorem 1.1.2 [Open mapping theorem]
Let X and Y be Banach spaces and let A be a bounded operator from X to Y . If R(A) = Y ,
then A maps an open set of X into an open set of Y .

Theorem 1.1.3 [Closed graph theorem]
Suppose that A is a closed operator in a Banach space X. Then A must be bounded provided
D(A) = X.

Theorem 1.1.4 [Lax Milgram theorem]
Let a(x, y) be a bilinear form, that is, it is linear in x and conjugate linear in y, and satisfies

• there is an M > 0 such that |a(x, y)| ≤ M‖x‖‖y‖ for all x, y ∈ H;

• there is a δ > 0 such that for any x ∈ H, |a(x, x)| ≥ δ‖x‖2.

Then there exists a unique A ∈ L(H) which is bounded invertible and satisfies

a(x, y) = 〈x,Ay〉, ∀x, y ∈ H.

Definition 1.1.4 A linear operator in a Hilbert space is said to be symmetric if

A∗ = A on D(A) and D(A∗) ⊇ D(A)

A symmetric operator is said to be self-adjoint, if A∗ = A.

For bounded operators, the symmetric and self-adjoint are the same. But for unbounded
operators, they are different.

Definition 1.1.5 A linear operator B in a Hilbert space H is said to be A-bounded if

• D(B) ⊃ D(A), and

• there are a, b > 0 such that

‖Bx‖ ≤ a‖Ax‖+ b‖x‖, ∀x ∈ D(A).
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Definition 1.1.6 Let A ∈ L(H) be a self-adjoint operator in a Hilbert space H. A is said to
be positive if

〈Ax, x〉 ≥ 0, ∀x ∈ H. (1.2)

A positive operator is denoted by A ≥ 0; A is said to be positive definite if the equality in
1.2 holds true only if x = 0, which is denoted by A > 0; A positive operator A is said to be
strictly positive if there exists an m > 0 such that

〈Ax, x〉 ≥ m‖x‖2, ∀x ∈ D(A). (1.3)

1.2 The spectrum of linear operators

Definition 1.2.1 Suppose that X is a Banach space and A : D(A)( ⊂ X) → X is a linear
operator. The resolvent set ρ(A) of A is an open set in the complex plane, which is defined by

ρ(A) =
{
λ ∈ IC | (λ−A)−1 ∈ L(X)

}
.

when λ ∈ ρ(A), the operator R(λ,A) = (λ − A)−1 is called the resolvent of A. If one
of resolvents is compact, then any of the resolvents must be compact. This comes from the
following resolvent formula:

(λ−A)−1 − (µ−A)−1 = (µ− λ)(λ−A)−1(µ−A)−1, ∀λ, µ ∈ ρ(A).

The spectrum σ(A) of A is the supplement set of the resolvent set in the complex plane,
that is,

σ(A) = IC \ ρ(A).

Generally, the spectrum σ(A) is decomposed into three parts:

σ(A) = σp(A) ∪ σc(A) ∪ σr(A)

where

• the point spectrum

σp(A) = {λ ∈ IC | there exists a 0 6= x ∈ X so that Ax = λx} ;

• the continuous spectrum

σc(A) =
{
λ ∈ IC | (λ−A) is invertible and R(λ−A) = X

}
;

• the residual spectrum

σr(A) =
{
λ ∈ IC | (λ−A) is invertible and R(λ−A) 6= X

}
;

When λ ∈ σp(A), any nonzero vector x satisfying Ax = λx is said to be an eigenvector (it
is also called eigenfunction if the space is the function space) of A. For a matrix in IC

n, the
spectrum is just the set of eigenvalues.
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1.3 Semigroups of linear operators

Definition 1.3.1 Semigroup theory is aiming to solve the following linear differential equation
in Banach space X:

{
u̇(t) = Au(t), t > 0,
u(0) = x ∈ X,

(1.4)

where A : D(A)( ⊂ X) → X is a linear operator.

Eq (1.4) is said to be well-posed (for bounded A) If:

• for any initial value x ∈ D(A) = X, there exists a solution u(x, t) to (1.4) which is
differentiable for t > 0, continuous at t = 0 and u(x, t) satisfies (1.4) for t > 0,

• u(x, t) depends continuously on the initial condition x, that is:

x → 0 implies u(x, t) → 0 for each t > 0;

• u(x, t) is unique for each x ∈ D(A) = X.

We can then define an operator T (t) by T (t)x = u(x, t) for each t ≥ 0. From the existence
and uniqueness of the solution u(x, t), we know that T (t), t ≥ 0 is well defined on X.

Definition 1.3.2 Let X be a Banach space and T (t) : X → X be a family of linear bounded
operators, for t ≥ 0, T (t) is called a semigroup of linear bounded operators, or simply a semi-
group, on X if

• T (0) = I;

• T (t+ s) = T (t)T (s), ∀t ≥ 0, s ≥ 0

A semigroup T (t) is called uniformly continuous if

lim
t→0

‖T (t)− I‖ = 0,

and is called strongly continuous, ( or C0-semigroup for short), if

lim
t→0

T (t)x− x = 0, ∀x ∈ X

Definition 1.3.3 Let T (t) be a C0-semigroup on a Banach space X. The operator A is defined
as





Ax = lim
t−→0

T (t)x− x

t
, ∀x ∈ D(A),

D(A) =

{
x ∈ X | lim

t−→0

T (t)x− x

t
exists

}

is called the infinitesimal generator of the C0-semigroup T (t).



1.3. SEMIGROUPS OF LINEAR OPERATORS 17

Theorem 1.3.1 Let X be a Banach space. For any bounded linear operator A on X, T (t) =
eAt is a uniformly continuous semigroup and A is the infinitesimal generator of T (t) with
D(A) = X.

Theorem 1.3.2 Let T (t) be a C0-semigroup on a Banach space X, then the following holds

• There exists constants M > 1 and ω ≥ 0 such that

‖T (t)‖ ≤ Meωt, ∀t ≥ 0

• Suppose that A is the generator of T (t). Then

{λ ∈ IC | Re(λ) > ω} ⊂ ρ(A).

• In addition, if Re(λ) > ω, then

R(λ,A)x = (λ−A)−1x =
∫ ∞

0
e−λtT (t)xdt, ∀x ∈ X.

• T (t) is strongly continuous on X. i.e. for any x ∈ X, the map t → T (t)x is continuous.

Theorem 1.3.3 Let A be the generator of a C0-semigroup T (t) on a Banach space X. we
have the following

• D(A) is dense in X

• A is a closed operator.

• For any n ≥ 1, D(An) is dense in X. The set D =
∞⋂

n=1

D(An) is also dense in X and

is invariant under T (t). i.e. for x ∈ D, T (t)x ∈ D for t ≥ 0. Moreover, if we define
D∞ = {x ∈ X|t → T (t)x ∈ C∞}. then we have D = D∞

Theorem 1.3.4 [Hille-Yosida]
Let X be a Banach space and let A be a linear (not necessirely bounded) operator in X. Then,
A is the infinitesimal generator of a C0-semigroup of contractions T (t) on X, if and only if

• A is closed and D(A) is dense in X

• There exist positive constants M and ω verifying the property: for all λ > ω, λ ∈ ρ(A),
the following holds

‖R(λ,A)n‖ ≤ M

(λ− ω)n
, n = 1, 2, ...

Definition 1.3.4 Let T (t) be a C0-semigroup on a Banach space X and let M ≥ 1 and ω ≥ 0.

If ω = 0, then we have ‖T (t)‖ ≤ M for t ≥ 0 and T (t) is called uniformly bounded.

Moreover, if we have M = 1, then T (t) is called a contraction.
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Corollary 1.3.1 Let X be a Banach space and let A be a linear (not necessirely bounded)
operator in X. Then, A is the infinitesimal generator of the C0-semigroup of contractions T (t)
on X, if and only if the following holds.

• A is closed and D(A) is dense in X

• For any λ > 0, λ ∈ ρ(A) and

‖R(λ,A)‖ ≤ 1

λ
.

Definition 1.3.5 Let X be a Banach space and let F (x) be the duality set. A linear operator
A in X is said to be dissipative if for every x ∈ D(A) there is an x∗ ∈ F (x) such that

Re〈Ax, x∗〉 ≤ 0

Definition 1.3.6 A linear operator A in a Banach space X is called m-dissipative if A is
dissipative and R(λ−A) = X, for some λ > 0.

Remark 1.3.1 In a Hilbert space H, the dissipativity of A simply means that

Re〈Ax, x〉 ≤ 0, ∀x ∈ D(A).

Theorem 1.3.5 [Lümer-Phillips]
Let A be a linear operator in a Banach space X. Then A generates a C0-semigroup of contrac-
tions on X if and only if

• D(A) = X.

• A is dissipative.

Remark 1.3.2 When X is reflexive, the condition D(A) = X can be removed in the Lümer-
Phillips theorem.

1.4 Stability of C0-semigroups.

Definition 1.4.1 Let T (t) be a C0-semigroup on a Banach space X.

• T (t) is said to be exponentially stable, if there exist two positive constants M,ω > 0 such
that

‖T (t)‖ ≤ Me−ωt, ∀t ≥ 0.

• T (t) is said to be strongly or asymptotically stable, if

lim
t→+∞

‖T (t)x‖ = 0 ∀x ∈ X.
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• T (t) is said to be weakly stable, if

〈T (t)x, y〉 → 0 as t → ∞, ∀x ∈ X, y ∈ X∗.

• T (t) is said to be Polynomially stable if there exist two positive constants C and α such
that

‖T (t)‖ ≤ Ct−α ∀t > 0, ∀x ∈ X.

Theorem 1.4.1 [Spectral mapping theorem]
Let T (t) be a C0-semigroup on a Banach space X and A be its infinitesimal generator. Then

etσp(A) ⊂ σp(T (t)) ⊂ etσ(A) ∪ {0} .

More precisely, if λ ∈ σp(A). then eλt ∈ σp(T (t)). and if eλt ∈ σp(T (t)) then there exists an
integer k such that λk = λ+ 2πik/t ∈ σp(A).

Theorem 1.4.2 Let T (t) be a C0-semigroup on a Banach space with generator A. Then

etσ(A) ⊂ σ(T (t)).

Proposition 1.4.1 Let X = H be a Hilbert space. Suppose that T (t) is a weakly stable C0-
semigroup on H. i.e. 〈T (t)x, y〉 → 0 as t → ∞ for all x, y ∈ H. If its infinitesimal generator
A has compact resolvent, then T (t) is asymptotically stable. i.e. ‖T (t)z‖ → 0 as t → ∞ for
all z ∈ H.

Theorem 1.4.3 Let T (t) be a uniformly bounded C0-semigroup on a Banach space X and let
A be its generator. Then

• If T (t) is asymptotically stable then σ(A) ∩ iIR ⊂ σc(A).

• If σ(A) ∩ iIR ⊂ σc(A). and σc(A) is countable. then T (t) is asymptotically stable.

• If R(λ,A) is compact, then T (t) is asymptotically stable if and only if Reλ < 0 for all
λ ∈ σ(A).

Corollary 1.4.1 Let T (t) be a C0-semigroup on a Banach space X and A be its generator.
Suppose that σ(A)∩ iIR ⊂ σc(A) and σc(A) is countable. then T (t) is weakly stable if and only
if T (t) is asymptotically stable.

Theorem 1.4.4 Let A be the infinitesimal generator of a C0-semigroup T (t) on a Banach
space X. If for some p ≥ 1

∫ ∞

0
‖T (t)x‖pdt < ∞, for every x ∈ X,

then T (t) is exponentially stable.
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Remark 1.4.1 We say that T (t) is exponentially asymptotically stable if for every x ∈ X,
there exist Mx, ωx > 0 depending on x such that

‖T (t)x‖ ≤ Mxe
−ωxt

Theorem 1.4.4 shows that a linear C0-semigroup is exponentially asymptotically stable if
and only if it is exponentially stable.

Theorem 1.4.5 Let T (t) be a C0-semigroup with infinitesimal generator A. The following
statements are equivalent.

• T (t) is exponentially stable, i.e. ‖T (t)x‖ ≤ Me−ωt. for M ≥ 1. ω > 0;

• lim
t→∞

‖T (t)‖ = 0

• there exists a t0 > 0 such that
‖T (t0)‖ < 1.

We assume, that X = H is a Hilbert space with the inner product 〈., .〉 and the induced
norm ‖.‖. Recall that if A generates a C0-semigroup T (t) on H with ‖T (t)‖ ≤ Mewt, then for
all λ with Reλ > ω,

R(λ,A)x =
∫ ∞

0
e−λtT (t)x dt

Theorem 1.4.6 Let T (t) be a C0-semigroup on a Hilbert space H with generator A. Then
T (t) is exponentially stable if and only if {λ, |, Reλ ≥ 0} , ⊂ σ(A) and

‖R(λ,A)‖ ≤ M

for all λ with Reλ ≥ 0 and some constant M > 0.

1.5 Bessel functions

The second order differential equation given as

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = 0

is known as Bessel′s differential equation which is often encountered when solving boundary
value problems, especially when working in cylindrical or spherical coordinates. The constant
ν, determines the order of the Bessel functions found in the solution to Bessel′s differential
equation and can take on any real numbered value. For cylindrical problems the order of the
Bessel function is an integer value (ν = n) while for spherical problems the order is of half
integer value (ν = n+ 1/2).
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Since Bessel′s differential equation is a second-order equation, there must be two linearly
independent solutions. Typically the general solution is given as:

y = AJν(x) + BYν(x)

where A and B are arbitrary constants and the special functions Jν(x) and Yν(x) are:

• Bessel functions of the first kind, Jν(x), which are finite at x = 0 for all real values of ν

• Bessel functions of the second kind, Yν(x), (also known as Weber or Neumann functions)
which are singular at x = 0.

The Bessel function of the first kind of order ν can be determined using an infinite power
series expansion as follows:

Jν(x) =
∞∑

κ=0

(−1)κ(x/2)ν+2κ

κ!Γ(ν + κ+ 1)

=
1

Γ(1 + ν)

(
x

2

)ν
{
1− (x/2)2

1(1 + ν)

(
1− (x/2)2

2(2 + ν)

(
1− (x/2)2

3(3 + ν)
(1− ...)

))}

or by noting that Γ(ν + κ+ 1) = (ν + κ)!, we can write

Jν(x) =
∞∑

κ=0

(−1)κ(x/2)ν+2κ

κ!(ν + κ)!

Bessel Functions of the first kind of order 0, 1, 2 are shown in Fig. 1.1.

Figure 1.1: Plot of the Bessel Functions of the First Kind, Integer Order.
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The Bessel function of the second kind, Yν(x) is sometimes referred to as a Weber function
or a Neumann function (which can be denoted as Nν(x)). It is related to the Bessel function
of the first kind as follows:

Yν(x) =
Jν(x)cos(νπ)− J−ν(x)

sin(νπ)

where we take the limit ν → n for integer values of ν.

For integer order ν, Jν , J−ν are not linearly independent:

J−ν(x) = (−1)νJν(x)

Yν(x) = (−1)νYν(x)

in which case Yν is needed to provide the second linearly independent solution of Bessel’s
equation. In contrast, for non-integer orders, Jν and J−ν are linearly independent and Yν is
redundant.

The Bessel function of the second kind of order ν can be expressed in terms of the Bessel
function of the first kind as follows:

Yν(x) =
2

π
Jν(x)

(
ln

x

2
+ γ

)
− 1

π

ν−1∑

κ=0

(ν − κ− 1)!

κ!

(
x

2

)2κ−ν

+

+
1

π

∞∑

κ=0

(−1)κ−1

[(
1 +

1

2
+ ...+

1

κ

)
+
(
1 +

1

2
+ ...+

1

κ+ ν

)]

κ!(κ+ ν)!

(
x

2

)2κ+ν

Bessel Functions of the second kind of order 0, 1, 2 are shown in Fig. 1.2.
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Figure 1.2: Plot of the Bessel Functions of the Second Kind, Integer Order.

Theorem 1.5.1 ([33]) Asymptotic representations for the Bessel Functions for large |z| of the
first and second kinds:

Jν(z) =
(

2

πz

)1/2

cos
(
z − 1

2
νπ − 1

4
π
) [ n∑

κ=0

(−1)κ(ν, 2κ)(2z)−2κ +O(|z|−2n−2)

]

−
(

2

πz

)1/2

sin
(
z − 1

2
νπ − 1

4
π
) [ n∑

κ=0

(−1)κ(ν, 2κ+ 1)(2z)−2κ−1 +O(|z|−2n−3)

]
,

|argz| ≤ π − δ

and

Yν(x) =
(

2

πz

)1/2

cos
(
z − 1

2
νπ − 1

4
π
) [ n∑

κ=0

(−1)κ(ν, 2κ+ 1)(2z)−2κ−1 +O(|z|−2n−3)

]

+
(

2

πz

)1/2

sin
(
z − 1

2
νπ − 1

4
π
) [ n∑

κ=0

(−1)κ(ν, 2κ)(2z)−2κ +O(|z|−2n−2)

]
,

|argz| ≤ π − δ

1.6 Caputo’s fractional derivative

There are various ways of defining the fractional derivative, but we will focus primarily on
the Caputo fractional derivative defined by Podlubny [40] (chapter 2.4) who gave few formal
definitions and theorems.
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The approach suggested by Caputo is very useful for the formulation and solution of applied
problems and their transparency. It allows the formulation of initial conditions for initial-value
problems for fractional-order differential equations in a form involving the limit values of integer-
order derivatives at the lower terminal (initial time) t = a , such as y

′

(a), y
′′

(a) etc.

The definition of the fractional derivative of the Reimann-Liouville type played an impor-
tant role in the development of the theory of fractional derivatives and integrals and for its
applications in pure mathematics (solution of integer-order differential equations, definitions of
new function classes, summation of series, etc.). We define it by

aD
α
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

a
(t− s)n−α−1f(s) ds, (n− 1 ≤ α < n)

or

aD
α
t f(t) =

dn

dtn

(
aD

−(n−α)
t f(t)

)
, (n− 1 ≤ α < n)

Moreover, we see that for α = n ≥ 1 and t > a

aD
α
t f(t) =

dn

dtn

(
aD

0
t f(t)

)
=

dnf(t)

dtn
= fn(t)

which means that for t > a the Riemann-Liouville fractional derivative of order α = n > 1
coincides with the conventional derivative of order n.

However, there have appeared a number of works, especially in the theory of viscoelasticity
and in solid mechanics, where fractional derivatives are used for a better description of material
properties. Mathematical modeling naturally leads to differential equations of fractional order,
and to the necessity of the formulation of initial conditions to such equations. This means that
the Riemann-Liouville is not the best definition to take when solving some problems, their solu-
tions are practically useless because there is no known physical interpretation for such types of
initial conditions, it is better to use a different definition, such as the Caputo definition which
makes initial conditions for differential equations nicer.

Caputo’s definition can be written as

C
a D

α
t f(t) =

1

Γ(1− n)

∫ t

a

f (n)(s) ds

(t− s)α+1−n
, (n− 1 < α < n).

Under natural conditions on the function f(t), for α → n the Caputo derivative becomes a
conventional nth derivative of the function f(t). Indeed, let us assume that 0 ≤ n− 1 < α < n
and that the function f(t) has n + 1 continuous bounded derivatives in [a, t] for every t > a,
then
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lim
α→n

C
a D

α
t f(t) = lim

α→n

(
f (n)(a)(t− a)n−α

Γ(n− α + 1)
+

1

Γ(n− α + 1)

∫ t

a
(t− s)n−αf (n+1)(s) ds

)

= f (n)(a) +
∫ t

a
f (n+1)(s) ds

= fn(t) n = 1, 2, ...

The main advantage of Caputo’s approach is that the initial conditions for fractional differ-
ential equation with Caputo derivatives take on the same form as for integer-order differential
equations, i.e. contain the limit values of integer-order derivatives of unknown functions at the
lower terminal t = a.

Definition 1.6.1 The fractional derivative of order α, 0 < α < 1, in sense of Caputo, is
defined by

Dαf(t) =
1

Γ(1− α)

∫ t

0
(t− s)−α df

ds
(s)ds.

Definition 1.6.2 The fractional integral of order α, 0 < α < 1, in sense Riemann-Liouville,
is defined by

Iαf(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds.

Remark 1.6.1 From the above definitions, clearly

Dαf = Iα−1Df, 0 < α < 1.

Now, we give the definitions of the generalized Caputo’s fractional derivative and the gen-
eralized fractional integral.

Definition 1.6.3 The generalized Caputo’s fractional derivative is given by

Dα,ηf(t) =
1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s) df

ds
(s) ds, 0 < α < 1, η ≥ 0.

Definition 1.6.4 The generalized fractional integral in sense Riemann-Liouville, is given by

Iα,ηf(t) =
1

Γ(α)

∫ t

0
(t− s)α−1e−η(t−s)f(s) ds, 0 < α < 1, η ≥ 0.

Remark 1.6.2 We have

Dα,ηf = I1−α,ηDf, 0 < α < 1, η ≥ 0.
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1.7 Geometric control condition

Definition 1.7.1 We say that the geometric control condition GCC holds if there exist x0 ∈
IR

n and a positive constant m > 0 such that:

m · ν ≤ 0 on Γ0, and m · ν ≥ 0 on Γ1,

with m(x) = x− x0.

Figure 1.3: This model satisfies the usual geometric control condition

Figure 1.4: This model satisfies the GCC without Γ0 ∩ Γ1 = ∅.
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Figure 1.5: This model does not satisfy the usual geometric control condition
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Chapter 2

ASYMPTOTIC STABILITY FOR
THE LAMÉ SYSTEM WITH
FRACTIONAL BOUNDARY
DAMPING

2.1 Introduction

We consider the initial boundary value problem for the Lamé system given by:

(P1)





utt − µ∆u− (µ+ λ)∇(div u) = 0 in Ω× (0,+∞)
u = 0 in Γ0 × (0,+∞)

µ
∂u

∂ν
+ (µ+ λ)(div u)ν = −γ∂α,η

t u in Γ1 × (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω

where µ, λ are Lamé constants, γ is a positive constant, u = (u1, u2, ..., un)
T . Here Ω is a

bounded domain in IR
n with smooth boundary ∂Ω of class C2 and ν is the unit outward

normal to Γ. We assume that Γ = Γ0 ∪ Γ1, where Γ0 and Γ1 are closed subsets of Γ with
Γ = Γ0 ∩ Γ1 = ∅. The notation ∂α,η

t stands for the generalized Caputo’s fractional derivative of
order α (0 < α < 1) with respect to the time variable (see [12]). It is defined as follows

∂α,η
t w(t) =

1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s)dw

ds
(s) ds η ≥ 0.

This problem has its origin in the mathematical description of memory-type elastic mate-
rials. It is well known that memory-type elastic materials exhibit nature damping, which is
due to the special property of these materials to retain memory of their past history. From the
mathematical point of view, these damping effects are modeled by integro-differential opera-
tors. Therefore, dynamics of memory-type elastic materials are very important and interesting
as they have wide applications in natural sciences. From the physical point of view, the problem
(P1) describes the position u(x, t) of the material particle x = (x1, x2, . . . , xn) at time t, which

29
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is clamped in the portion Γ0 of its boundary and its portion Γ1 is supported by elastic bearings
with fractional boundary responses, represented by the function ∂α,η

t u.

The problem of well-posedness and stability for the Lamé system has attracted a lot of
attention in recent years, where diverse types of damping mechanisms have been introduced
and many energy estimates have been obtained (polynomial, exponential or logarithmic decay).

Let us mention here some works concerning the stabilization of Lamé system of waves with
different types of dampings.

In [30], Lagnese obtained uniform stability estimates for linear homogeneous isotropic and
bidimensional elasticity systems under a linear boundary damping. Komornik [27] proved the
same estimates for the homogeneous isotropic system in 1-dimension and 2-dimension and un-
der a linear boundary damping. Martinez [36] generalized the results of Komornik [27] to the
case of elasticity systems of cubic crystals under a nonlinear boundary damping.

We should mention here that, to the best of our knowledge, there is no result concerning
the Lame system with the presence of a fractional damping. In addition to being nonlocal,
fractional derivatives involve singular and nonintegrable kernels (t−α, 0 < α < 1). This makes
the problem very delicate.

Noting that the case of the one-dimensional wave and plate equations with boundary frac-
tional damping has treated in [2] and [38] where it is proven the strong stability and the lack
of uniform stabilization.

Very recently, Benaissa and Rafa [11] (see also [3]) extended the result in [38] to higher-
space dimension and boundary control of diffusive type and established a less precise decay
estimate by adopting the multiplier method.

Our aim in this work is to prove that the stability of our system holds with fractional damp-
ing and to obtain an almost optimal polynomial decay.

This chapter is organized as follows. In Section 2, we take advantage of the complete mono-
tonicity of the power function integral kernel to represent it as a superposition of exponentials
and derive what we call the ”augmented model”. In section 3, we state a well-posedness result
for problem (P1). In section 4, we show the lack of exponential stability by spectral analysis.
Section 5 is devoted to results regarding strong asymptotic stability of solutions, and in Section
6, we show an almost optimal polynomial energy decay rate depending on parameter α. We
use a recent result of Borichev and Tomilov which relate resolvent bounds and decay rates.
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2.2 Preliminaries

This section is concerned with the reformulation of the model (P1) into an augmented system.
For that, we need the following claims.

Theorem 2.2.1 (see [38]) Let µ be the function:

µ(ξ) = |ξ|(2α−1)/2, −∞ < ξ < +∞, 0 < α < 1. (2.1)

Then the relationship between the ’input’ U and the ’output’ O of the system

∂tφ(ξ, t) + (ξ2 + η)φ(ξ, t)− U(t)µ(ξ) = 0, −∞ < ξ < +∞, η ≥ 0, t > 0, (2.2)

φ(ξ, 0) = 0, (2.3)

O(t) = (π)−1 sin(απ)
∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ (2.4)

is given by
O = I1−α,ηU = Dα,ηU (2.5)

where

[Iα,ηf ](t) =
1

Γ(α)

∫ t

0
(t− τ)α−1e−η(t−τ)f(τ) dτ.

Proof. From (2.2) and (2.3), we have

φ(ξ, t) =
∫ t

0
µ(ξ)e−(ξ2+η)(t−τ)U(τ)dτ (2.6)

Hence, by using (2.4), we get

O(t) = (π)−1sin(απ)e−ηt
∫ t

0

[
2
∫ +∞

0
|ξ|2α−1e−ξ2(t−s)dξ

]
eητU(τ)dτ (2.7)

Thus,

O(t) = (π)−1sin(απ)e−ηt
∫ t

0

[
(t− s)−αΓ(α)

]
eητU(τ)dτ

= (π)−1sin(απ)
∫ t

0

[
(t− s)−αΓ(α)

]
e−η(t−τ)U(τ)dτ

(2.8)

Which completes the proof. Indeed, we know that (π)−1sin(απ) =
1

Γ(α)Γ(1− α)

Lemma 2.2.1 (see [2]) If λ ∈ Dη = IC\]−∞,−η] then

∫ +∞

−∞

µ2(ξ)

λ+ η + ξ2
dξ =

π

sinαπ
(λ+ η)α−1.
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Proof. Let us set

fλ̃(ξ) =
µ2(ξ)

λ̃+ η + ξ2
.

We have
∣∣∣∣∣

µ2(ξ)

λ̃+ η + ξ2

∣∣∣∣∣ ≤





µ2(ξ)

Reλ̃+ η + ξ2
or

µ2(ξ)

|Imλ̃|+ η + ξ2

Then the function fλ̃ is integrable. Moreover

∣∣∣∣∣
µ2(ξ)

λ̃+ η + ξ2

∣∣∣∣∣ ≤





µ2(ξ)

η0 + η + ξ2
for all Reλ̃ ≥ η0 > −η

µ2(ξ)

η̃0 + ξ2
for all |Imλ̃| ≥ η̃0 > 0

From Theorem 1.16.1 in [47], the function

fλ̃ : D → IC is holomorphic.

For a real number λ̃ > −η, we have
∫ +∞

−∞

µ2(ξ)

λ̃+ η + ξ2
dξ =

∫ +∞

−∞

|ξ|2α−1

λ̃+ η + ξ2
dξ =

∫ +∞

0

xα−1

λ̃+ η + x
dx ( with ξ2 = x)

= (λ̃+ η)α−1
∫ +∞

1
y−1(y − 1)α−1 dy ( with y = x/(λ̃+ η) + 1)

= (λ̃+ η)α−1
∫ 1

0
z−α(1− z)α−1 dz ( with z = 1/y)

= (λ̃+ η)α−1B(1− α, α) = (λ̃+ η)α−1Γ(1− α)Γ(α) = (λ̃+ η)α−1 π

sin πα
.

Both holomorphic functions fλ̃ and λ̃ 7→ (λ̃+ η)α−1 π

sin πα
coincide on the half line ]− η,+∞[,

hence on Dη following the principe of isolated zeroes.

We are now in a position to reformulate system (P1). Indeed, by using Theorem 2.2.1,
system (P1) may be recast into the augmented model:

(P ′1)





utt − µ∆u− (µ+ λ)∇(div u) = 0 in Ω× (0,+∞)
∂tφ(x, ξ, t) + (ξ2 + η)φ(x, ξ, t)− u(x, t)µ(ξ) = 0 in Γ1 × (−∞,∞)× (0,+∞)
u(x, t) = 0 on Γ0 × (0,+∞)

µ
∂u

∂ν
+ (µ+ λ)(div u)ν = −ζ

∫ +∞

−∞
µ(ξ)φ(x, ξ, t) dξ in Γ1 × (−∞,∞)× (0,+∞)

u(x, 0) = u0(x), ut(x, 0) = u1(x) on Ω,
φ(x, ξ, 0) = 0 on Γ1 × (−∞,∞),

where ζ = γ(π)−1 sin(απ).
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We define the energy of the solution by:

E(t) =
1

2

n∑

j=1

(
‖ujt‖2L2(Ω) + µ‖∇uj‖2L2(Ω) + ζ

∫

Γ1

∫ +∞

−∞
|φj(x, ξ, t)|2 dξdΓ

)

+
(µ+ λ)

2
‖div u‖2L2(Ω)

(2.9)

Lemma 2.2.2 Let (u, φ) be a regular solution of the problem (P1). Then, the energy func-
tional defined by (2.9) satisfies

E ′(t) = −ζ
n∑

j=1

∫

Γ1

∫ +∞

−∞
(ξ2 + η)|φj(x, ξ, t)|2 dξ dΓ ≤ 0. (2.10)

Proof. Multiplying the first equation in (P1) by ujt, integrating over Ω and using integration
by parts, we get

1

2

d

dt
‖ujt‖22 − µℜ

∫

Ω
∆ujujt dx− (µ+ λ)ℜ

∫

Ω

∂

∂xj

(div u)ujt dx = 0.

Then

1

2

d

dt

n∑

j=1

(
‖ujt‖2L2(Ω) + µ‖∇uj‖2L2(Ω)

)
+

(µ+ λ)

2
‖div u‖2L2(Ω)

+ζℜ
n∑

j=1

∫

Γ1

ujt(x, t)
∫ +∞

−∞
µ(ξ)φj(x, ξ, t) dξ dΓ = 0

(2.11)

Multiplying the second equation in (P ′1) by ζφj and integrating over Γ1×(−∞,+∞), to obtain:

ζ

2

d

dt

n∑

j=1

‖φj‖2L2(Γ1×(−∞,+∞)) + ζ
n∑

j=1

∫

Γ1

∫ +∞

−∞
(ξ2 + η)|φj(x, ξ, t)|2 dξ dΓ

−ζℜ
n∑

j=1

∫

Γ1

ujt(x, t)
∫ +∞

−∞
µ(ξ)φj(x, ξ, t) dξ dΓ = 0.

(2.12)

From (2.9), (2.11) and (2.12) we get

E ′(t) = −ζ
n∑

j=1

∫

Γ1

∫ +∞

−∞
(ξ2 + η)|φj(x, ξ, t)|2 dξ dΓ.

This completes the proof of the lemma.

2.3 Well-posedness

We rewrite the problem (P ′1) as a first-order system for U = (u, v, φ)T , where v = ut.
Then U satisfies {

U ′ = AU, t > 0,
U(0) = (u0, u1, φ0).

(2.13)
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where the operator A is defined by

A



u
v
φ


 =




v
µ∆u+ (µ+ λ)∇(div u)
−(ξ2 + η)φ+ v(x)µ(ξ)


 , (2.14)

with domain

D(A) = {U ∈ H/AU ∈ H} (2.15)

where the energy space H is defined as:

H =
(
H1

Γ0
(Ω)

)n ×
(
L2(Ω)

)n ×
(
L2(Γ1 × (−∞,+∞))

)n

equipped with the inner product

< U, Ũ >H=
n∑

j=1

∫

Ω

(
vj ṽj + µ∇uj∇ũj

)
dx+ (µ+ λ)

∫

Ω
(div u)(div ũ) dx

+ζ
n∑

j=1

∫

Γ1

∫ +∞

−∞
φj(x, ξ, t)φ̃j(x, ξ, t)dξdΓ.

The domain of A is then

D(A) =





(u, v, φ)T in H : u ∈
(
H2(Ω) ∩H1

Γ0
(Ω)

)n
, ũ ∈

(
H1

Γ0
(Ω)

)n
,

−(ξ2 + η)φ+ v(x)µ(ξ) ∈ (L2(Γ1 × (−∞,+∞)))
n
,

µ
∂u

∂ν
+ (µ+ λ)(div u)ν + ζ

∫ +∞

−∞
µ(ξ)φ(x, ξ) dξ = 0, on Γ1

|ξ|φ ∈ (L2(Γ1 × (−∞,+∞)))
n





. (2.16)

Remark 2.3.1 The condition |ξ|φ(ξ) ∈ (L2(Γ1 × IR))n is imposed to insure the existence of

−ζ
n∑

j=1

∫

Γ1

∫ +∞

−∞
(ξ2 + η)|φj(x, ξ, t)|2 dξ dΓ and µ(ξ)φ(x, ξ) ∈ (L1(Γ1 × IR))n.

Our main result is giving by the following theorem.

Theorem 2.3.1 The operator A defined by (2.14) and (2.16) generates a C0-semigroup of
contractions etA in the Hilbert space H.

Proof. To prove this result we shall use the Lumer-Phillips’ theorem.
For any U = (u, v, φ) ∈ D(A), using (2.13), (2.10) and the fact that

E(t) =
1

2
‖U‖2H, (2.17)
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we have

ℜ〈AU,U〉H = −ζ
n∑

j=1

∫

Γ1

∫ +∞

−∞
(ξ2 + η)|φj(x, ξ, t)|2 dξ dΓ (2.18)

Then the operator A is dissipative.

Let λ̃ > 0, we prose that the operator (λ̃I −A) is a surjection.
In other words, we shall demonstrate that given any triplet F = (F1, F2, F3) ∈ H, there is an
other triplet U = (u, v, φ) ∈ D(A) such that

(λ̃I −A)U = F. (2.19)

Equation (2.19) is equivalent to




λ̃u− v = F1(x),
λ̃v − µ∆u− (µ+ λ)∇(div u) = F2(x),
λ̃φ+ (ξ2 + η)φ− v(x)µ(ξ) = F3(x, ξ),

(2.20)

Suppose u is found with the appropriate regularity. Then, (2.20)1 (2.20)2 yield

v = λ̃u− F1(x) ∈
(
H1

Γ0
(Ω)

)n
(2.21)

and

φ =
F3(x, ξ) + µ(ξ)v(x)

ξ2 + η + λ̃
. (2.22)

By using (2.20) and (2.21) it can easily be shown that u satisfies

λ̃2u− µ∆u− (µ+ λ)∇(div u) = F2(x) + λ̃F1(x). (2.23)

Solving system (2.23) is equivalent to finding u ∈
(
H2(Ω) ∩H1

Γ0
(Ω)

)n
such that

∫

Ω

(
λ̃2ujwj − µ∆ujwj

)
dx− (µ+ λ)

∫

Ω

∂

∂xj

(div u)wjdx =
∫

Ω
(F j

2 (x) + λ̃F j
1 (x))wjdx, (2.24)

For all w ∈
(
H1

Γ0
(Ω)

)n
. By using (2.24), the boundary condition (2.16)3 and (2.22) the function

u satisfying the following system




n∑

j=1

∫

Ω

(
λ̃2ujwj + µ∇uj∇wj dx

)
dx+ (µ+ λ)

∫

Ω
(div u)(div w) dx+ ζ̃

n∑

j=1

∫

Γ1

vjwj dΓ

=
n∑

j=1

∫

Ω
(F j

2 (x) + λ̃F j
1 (x))wj dx− ζ

n∑

j=1

∫

Γ1

wj

(∫ ∞

−∞

µ(ξ)F j
3 (x, ξ)

ξ2 + η + λ̃
dξ

)
dΓ.

(2.25)

where ζ̃ = ζ
∫ +∞

−∞

µ2(ξ)

ξ2 + η + λ̃
dξ.

Using again (2.21), we deduce that

v(x) = λ̃u(x)− F1(x), ∀x ∈ Γ1. (2.26)
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Inserting (2.26) into (2.25), we get




n∑

j=1

∫

Ω

(
λ̃2ujwj + µ∇uj∇wj dx

)
+ (µ+ λ)

∫

Ω
(div u)(div w) dx+ ζ̃ λ̃

n∑

j=1

∫

Γ1

ujwj dΓ

=
n∑

j=1

∫

Ω
(F j

2 (x) + λ̃F j
1 (x))wj dx− ζ

n∑

j=1

∫

Γ1

wj

(∫ ∞

−∞

µ(ξ)F j
3 (x, ξ)

ξ2 + η + λ̃
dξ

)
dΓ

+ζ̃
n∑

j=1

∫

Γ1

F j
1 (x)wj dΓ.

(2.27)

Problem (2.27) is of the form
B(u, w) = L(w), (2.28)

where B :
[(
H1

Γ0
(Ω)

)n ×
(
H1

Γ0
(Ω)

)n]→ IC is the sesquilinear form defined by

B(u, w) =
n∑

j=1

∫

Ω

(
λ̃2ujwj + µ∇uj∇wj dx

)
+ (µ+ λ)

∫

Ω
(div u)(div w) dx+ ζ̃ λ̃

n∑

j=1

∫

Γ1

ujwj dΓ

and L :
(
H1

Γ0
(Ω)

)n → IC is the antilinear form given by

L(w) =
n∑

j=1

∫

Ω
(F j

2 (x) + λ̃F j
1 (x))wj dx− ζ

n∑

j=1

∫

Γ1

wj

(∫ ∞

−∞

µ(ξ)F j
3 (x, ξ)

ξ2 + η + λ̃
dξ

)
dΓ

+ζ̃
n∑

j=1

∫

Γ1

F j
1 (x)wj dΓ.

Clearly L is continuous form on
(
H1

Γ0
(Ω)

)n
, while B is continuous and coercive form on

(
H1

Γ0
(Ω)

)n
. Hence by Lax-Milgram Lemma, problem (2.28) has a unique solution u ∈

(
H1

Γ0
(Ω)

)n
.

In particular, setting w ∈ (D(Ω))n in (2.28), we get

(∗) λ̃2u− µ∆u− (µ+ λ)∇(divu) = F2(x) + λ̃F1(x) in (D(Ω))n.

As F2(x) + λ̃F1(x) ∈ (L2(Ω))n, using (∗), we deduce that

(∗∗) λ̃2u− µ∆u− (µ+ λ)∇(div u) = F2(x) + λ̃F1(x) in (L2(Ω))n.

Due to the fact that u ∈
(
H1

Γ0
(Ω)

)n
, we get ∆u ∈ (L2(Ω))n and we deduce that u ∈ (H2(Ω))

n
.

Multiplying the conjugate of equalities (∗∗) by w ∈
(
H1

Γ0
(Ω)

)n
, integrating by parts on Ω, and

comparing with (2.28) we get

−
∫

Γ1

wj(µ
∂uj

∂ν
+ (µ+ λ)(div u)νj) dΓ + ζ̃ λ̃

∫

Γ1

uj(x)wj dΓ

−ζ̃
∫

Γ1

F j
1 (x)wj dΓ + ζ

∫

Γ1

wj

(∫ ∞

−∞

µ(ξ)F j
3 (x, ξ)

ξ2 + η + λ̃
dξ

)
dΓ = 0.
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Consequently, defining vj(x) = λ̃uj(x)− F j
1 (x), x ∈ Γ1 and φj as in (2.22), we deduce that

µ
∂u

∂ν
+ (µ+ λ)(div u)ν + ζ

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = 0 on Γ1.

It follows that v ∈
(
H1

Γ0
(Ω)

)n
. Moreover from (2.22), we have

‖φ‖
L2(Γ1×IR)

≤
∥∥∥∥∥

F3(x, ξ)

ξ2 + η + λ̃

∥∥∥∥∥
L2(Γ1×IR)

+

∥∥∥∥∥
µ(ξ)

ξ2 + η + λ̃

∥∥∥∥∥
L2(IR)

‖v‖L2(Γ1)

≤ 1

λ̃
‖F3(x, ξ)‖L2(Γ1×IR)

+
[
(1− α)

π

sinαπ

]1/2
(λ̃+ η)(α−2)/2‖v‖L2(Γ1)

and

‖|ξ|φ‖
L2(Γ1×IR)

≤
∥∥∥∥∥
|ξ|F3(x, ξ)

ξ2 + η + λ̃

∥∥∥∥∥
L2(Γ1×IR)

+

∥∥∥∥∥
|ξ|µ(ξ)

ξ2 + η + λ̃

∥∥∥∥∥
L2(IR)

‖v‖L2(Γ1)

≤ 1√
2λ̃

‖F3(x, ξ)‖L2(Γ1×IR)
+ c‖v‖L2(Γ1).

Hence φ, |ξ|φ ∈ (L2(Γ1 × IR))n.
Therefore, the operator (λ̃I −A) is surjective for any λ̃ > 0.

Consequently, using Hille-Yosida theorem, we have the following well-posedness result:

Theorem 2.3.2 (Existence and uniqueness)

(1) If U0 ∈ D(A), then system (2.13) has a unique strong solution

U ∈ C0(IR+, D(A)) ∩ C1(IR+,H).

(2) If U0 ∈ H, then system (2.13) has a unique weak solution

U ∈ C0(IR+,H).

2.4 Lack of uniform stabilisation

In this section we shall prove that the system is not uniformly stable in general, since it is
already the case for the unit disk B(0, 1) of IR2 and Γ0 = ∅ as shown below. This result is due
to the fact that a subsequence of eigenvalues of A which is close to the imaginary axis.

Our main result is the following.
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Theorem 2.4.1 The semigroup generated by the operator A is not exponentially stable.

Proof. We first compute the characteristic equation that gives the eigenvalues of A. Let λ̃ be
an eigenvalue of A with associated eigenvector U = (u, v, φ)T .
To solve AU = λ̃U is enough to solve





λ̃u− v = 0, x ∈ B(0, 1),
λ̃v − µ∆u− (µ+ λ)∇(div u) = 0 x ∈ B(0, 1),
λ̃φ+ (ξ2 + η)φ− v(x)µ(ξ) = 0, x ∈ ∂B(0, 1), ξ ∈ IR.

(2.29)

Next, by eliminating v from the above system we get the following system:

{
λ̃2u− µ∆u− (µ+ λ)∇(div u) = 0 x ∈ B(0, 1),
λ̃φ+ (ξ2 + η)φ− λ̃u(x)µ(ξ) = 0, x ∈ ∂B(0, 1), ξ ∈ IR.

(2.30)

with the following boundary condition

µ
∂u

∂ν
+ (µ+ λ)(div u)ν = −ζ

∫ +∞

−∞
µ(ξ)φ(x, ξ, t) dx. (2.31)

As a consequence of (2.30), (div u) verifies the scalar equation

λ̃2(div u)− (2µ+ λ)∆(div u) = 0 (2.32)

with the following boundary conditions (we use (2.29)1 and (2.31))

µ
∂u

∂ν
+ (µ+ λ)(div u)ν = −γλ̃(λ̃+ η)α−1u. (2.33)

Then (
3µ+ 2λ+ γλ̃(λ̃+ η)α−1

)
(div u) + (2µ+ λ)

∂

∂ν
(div u) = 0. (2.34)

From (2.32) and (2.34) we arrive at




λ̃2E − (2µ+ λ)∆E = 0 in B(0, 1)
(
3µ+ 2λ+ γλ̃(λ̃+ η)α−1

)
E + (2µ+ λ)

∂

∂ν
E = 0 in ∂B(0, 1),

(2.35)

where E = (div u).
We decompose E(r, .) in Fourier series with respect to 1, cos kϕ, sin kϕ, k ∈ IN :

E(r, ϕ) =
∞∑

k=0

ṽk(r)Φk(ϕ) with Φ0 = 1, Φ2k−1(ϕ) = cos kϕ, Φ2k(ϕ) = sin kϕ,

k ∈ IN :
∂2

∂ϕ2
Φk = τkΦk with τ0 = 0, τ2k = τ2k−1 = −k2, k ∈ IN.

Then the equation for E is equivalent to the system
{−(2µ+ λ)ṽ′′k(r) + (λ̃2 + (2µ+ λ)k

2

r
)ṽk(r) = 0, r ∈ B(0, 1),

(2µ+ λ)ṽ′k +
(
3µ+ 2λ+ γλ̃(λ̃+ η)α−1

)
ṽk = 0, r = 1, k ∈ IN.

(2.36)
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The theory of Bessel equations gives

ṽk(r) =




2

i λ̃√
2µ+λ




k

Jk

(
i

λ̃√
2µ+ λ

r,

)

where Jk is the Bessel functions of the first kind of order k

Jk(s) =
∞∑

j=1

(−1)j

Γ(k + j + 1)

(
s

2

)k+2j

.

Therefore, using the second equation of (2.36), we find that if λ̃ ∈ IC
∗ satisfies

1√
2µ+ λ

iλ̃J ′
k

(
i

λ̃√
2µ+ λ

)
+

(
3µ+ 2λ

2µ+ λ
+

γ

2µ+ λ
λ̃(λ̃+ η)α−1

)
Jk

(
i

λ̃√
2µ+ λ

)
= 0.

Then λ̃ is an eigenvalue of A. Our goal is to find large eigenvalues which are close to the
imaginary axis and to give their expansion.

Lemma 2.4.1 There exists N ∈ IN such that

{λm}m∈Z∗,|m|≥N ⊂ σ(A), (2.37)

where

λm = −i
√
2µ+ λ

(
m+

k

2
+

1

4

)
π+

α̃

m(1−α)
+

β

m(1−α)
+o

(
1

m(1−α)

)
,m ≥ N, α̃ ∈ iIR, β ∈ IR, β < 0.

λm = λ−m if m ≤ −N.

Moreover for all |m| ≥ N , the eigenvalues λk are simple.

Proof. For clarity, the proof is divided into three steps:

Step 1. We have

(
β + ̺λ̃(λ̃+ η)α−1

)
Jk

(
i

λ̃√
2µ+ λ

)
+ i

λ̃√
2µ+ λ

J ′
k

(
i

λ̃√
2µ+ λ

)
= 0, (2.38)

where β = (3µ+ 2λ)/(2µ+ λ) and ̺ = γ/(2µ+ λ). We know that

sJ ′
ν(s) = νJν(s)− sJν+1(s). (2.39)

Then (2.38) is equivalent to

f(λ) =
(
k + β + ̺λ̃(λ̃+ µ)α−1

)
Jk

(
i λ̃√

2µ+λ

)
− i

λ̃√
2µ+ λ

Jk+1

(
i

λ̃√
2µ+ λ

)

= −i
λ̃√

2µ+ λ

(
Jk+1

(
i

λ̃√
2µ+ λ

)
−

√
2µ+ λ

iλ̃

(
k + β + ̺λ̃(λ̃+ µ)α−1

)
Jk

(
i

λ̃√
2µ+ λ

))

= 0.
(2.40)
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We set

f̃(λ) = Jk+1

(
i

λ̃√
2µ+ λ

)
−

√
2µ+ λ

iλ̃

(
k + β + ̺λ̃(λ̃+ µ)α−1

)
Jk

(
i

λ̃√
2µ+ λ

)
. (2.41)

We will use the following classical asymptotic expansions of Bessels functions (see [33] p. 122,
(5.11.6)): for all δ > 0, the following development holds when |arg z| ≤ π − δ:

Jν(z) =
(

2

πz

)1/2

cos
(
z − ν

π

2
− π

4

)(
1 +O(

1

|z|2 )
)
−
(

2

πz

)1/2

sin
(
z − ν

π

2
− π

4

)
O

(
1

|z|2
)
.

(2.42)
Then

f̃(λ) =
(

2

πz̃

)1/2 e−iz

2i

˜̃
f(λ), (2.43)

where

z = i
λ̃√

2µ+ λ
− k

π

2
− π

4

z̃ = i
λ̃√

2µ+ λ

and
˜̃
f(λ) = (e2iz − 1)−

√
2µ+ λ̺

λ1−α
(e2iz + 1) + o

(
1

λ1−α

)

= f0(λ) +
f1(λ)

λ1−α
+ o

(
1

λ1−α

)
,

(2.44)

where
f0(λ) = e2iz − 1. (2.45)

f1(λ) = −
√
2µ+ λ̺

λ1−α
(e2iz + 1). (2.46)

Note that f0 and f1 remain bounded in the strip −α0 ≤ ℜ(λ) ≤ 0.

Step 2. We look at the roots of f0. From (2.45), f0 has one family of roots that we denote λ0
m.

f0(λ) = 0 ⇔ e2iz − 1 = 0

Hence

2i

(
i

λ̃√
2µ+ λ

− k
π

2
− π

4

)
= 2imπ, m ∈ Z,

i.e.,

λ0
m = −i

√
2µ+ λ

(
m+

k

2
+

1

4

)
π, m ∈ Z.

Now with the help of Rouché’s Theorem, we will show that the roots of f̃ are close to those
of f0. Let us start with the first family. Changing in (2.40) the unknown λ by u = 2iz then
(2.40) becomes

f̃(u) = (eu − 1) +O
(

1

u(1−α)

)
= f0(u) +O

(
1

u(1−α)

)
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The roots of f0 are um = −i
√
2µ+ λ

(
m+ k

2
+ 1

4

)
π,m ∈ Z, and setting:

u = um + reit, t ∈ [0, 2π], we can easily check that there exists a constant C > 0 independent
of m such that |eu + 1| ≥ Cr for r small enough. This allows to apply Rouché’s Theorem.

Consequently, there exists a subsequence of roots of f̃ which tends to the roots um of f0.
Equivalently, it means that there exists N ∈ IN and a subsequence {λm}|m|≥N of roots of f(λ),

such that λm = λ0
m + o(1) which tends to the roots −i

√
2µ+ λ

(
m+ k

2
+ 1

4

)
π of f0.

Finally, for |m| ≥ N, λm is simple since λ0
m is.

Step 3. From Step 2, we can write

λm = −i
√
2µ+ λ

(
m+

k

2
+

1

4

)
π + εm. (2.47)

Using (2.47), we get

e2izm = e
− 2√

2µ+λ
εk

= 1− 2√
2µ+ λ

εm +O(ε2m).
(2.48)

Substituting (2.48) into (2.44), using that
˜̃
f(λk) = 0, we get:

f̃(λm) = − 2√
2µ+ λ

εm − 2
√
2µ+ λ̺

(−√
2µ+ λimπ)1−α

+ o(εm) + o
(

1

m1−α

)
= 0 (2.49)

and hence

εm = − (2µ+ λ)̺

(−√
2µ+ λimπ)1−α

+ o
(

1

m1−α

)

=





−√
2µ+ λ

(α−1) γ

(mπ)1−α

(
cos(1− α)

π

2
− i sin(1− α)

π

2

)
+ o

(
1

m1−α

)
for m � 0,

−√
2µ+ λ

(α−1) γ

(−mπ)1−α

(
cos(1− α)

π

2
+ i sin(1− α)

π

2

)
+ o

(
1

m1−α

)
for m � 0.

(2.50)
From (2.50) we have in that case |m|1−αℜλm ∼ β̃, with

β̃ = −
√
2µ+ λ

(α−1) γ

π1−α
cos(1− α)

π

2
.

The operator A has a non exponential decaying branche of eigenvalues. Thus the proof is
complete.

2.5 Strong stability

One simple way to prove the strong stability of (2.13) is to use the following theorem due to
Arendt-Batty and Lyubich-Vũ (see [6] and [34]).
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Theorem 2.5.1 ([6]-[34]) Let X be a reflexive Banach space and (T (t))t≥0 be a
C0−semigroup generated by A on X. Assume that (T (t))t≥0 is bounded and that no eigen-
values of A lie on the imaginary axis. If σ(A) ∩ iR is countable, then (T (t))t≥0 is strongly
stable.

Our main result is the following theorem

Theorem 2.5.2 The C0-semigroup etA is strongly stable in H; i.e, for all U0 ∈ H, the
solution of (2.13) satisfies

lim
t→∞

‖etAU0‖H = 0.

For the proof of Theorem 2.5.2, we need the following two lemmas.

Lemma 2.5.1 A does not have eigenvalues on iIR.

Proof.
Case 1. For λ̃ 6= 0.
We will argue by contraction. Let us suppose that there λ̃ ∈ IR, λ̃ 6= 0 and U 6= 0, such that

AU = iλ̃U. (2.51)

Then, we get 



iλ̃u− v = 0, x ∈ Ω
iλ̃v − µ∆u− (µ+ λ)∇(div u) = 0, x ∈ Ω
iλ̃φ+ (ξ2 + η)φ− v(x)µ(ξ) = 0, x ∈ Γ1.

(2.52)

Next, a straightforward computation gives

ℜ(AU,U) = −ζ
n∑

i=1

∫

Γ1

∫ ∞

−∞
(ξ2 + η)|φi(x, ξ, t)|2 dξ dΓ. (2.53)

Then, from (2.53) we have
φ = 0 on Γ1 × (−∞,∞). (2.54)

From (2.52)3, we have
v(x) = 0, on Γ1. (2.55)

Hence, from (2.52)1 and (2.16)3 we obtain

u(x) = 0 on Γ and µ
∂u

∂ν
(x) + (µ+ λ)(div u)(x)ν = 0 on Γ1. (2.56)

Thus, by eliminating v, the system (2.52) implies that





λ̃2u+ µ∆u+ (µ+ λ)∇(div u) = 0 in Ω,
u = 0 on Γ,

µ
∂u

∂ν
+ (µ+ λ)(div u)ν = 0 on Γ1.

(2.57)
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Therefore, using Holmgren’s theorem, we deduce that u = 0 and consequently, U = 0.

Case 2. λ̃ = 0. The system (2.52) becomes




v = 0, x ∈ Ω
µ∆u+ (µ+ λ)∇(div u) = 0, x ∈ Ω
(ξ2 + η)φ− v(x)µ(ξ) = 0, x ∈ Γ1

(2.58)

Multiplying the second equation of (2.58) by ū, integrating by parts over Ω and using the
boundary conditions u = 0 on Γ0, we get

µ
n∑

j=1

∫

Γ

∂uj

∂ν
ūj dΓ−µ

n∑

j=1

∫

Ω
|∇uj|2 dx+(µ+λ)

n∑

j=1

∫

Γ
(div u)νjūj dΓ− (µ+λ)

∫

Ω
|(div u)|2 dx = 0

Now, from (2.58)3 and (2.16)3 , we deduce that

−µ
n∑

j=1

∫

Ω
|∇uj|2 dx− (µ+ λ)

∫

Ω
|(div u)|2 dx = 0.

Hence u is constant in the whole domain Ω. Therefore as Γ0 is non empty, we have

u = 0, on Ω

It follows that U = 0.Consequently, A does not have purely imaginary eigenvalues.

The second condition of Theorem 2.5.1 will be satisfied if we show that σ(A) ∩ {iIR} is at
most a countable set. We have the following lemma.

Lemma 2.5.2 We have
iIR ⊂ ρ(A) if η 6= 0,
iIR∗ ⊂ ρ(A) if η = 0

where IR
∗ = IR− {0}.

Proof. We will prove that the operator (iλ̃I −A) is surjective for λ̃ 6= 0.
For this purpose, let F = (F1, F2, F3)

T ∈ H, we seek X = (u, v, φ)T ∈ D(A) solution of the
following equation

(iλ̃I −A)X = F. (2.59)

Equivalently, we have




iλ̃u− v = F1(x),
iλ̃v − µ∆u− (µ+ λ)∇(div u) = F2(x),
iλ̃φ+ (ξ2 + η)φ− v(x)µ(ξ) = F3(x, ξ).

(2.60)

From (2.60)1 and (2.60)2, we have

−λ̃2u− µ∆u− (µ+ λ)∇(div u) =
(
F2(x) + iλ̃F1(x)

)
(2.61)
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with u|Γ0 = 0. Solving system (2.61) is equivalent to finding u ∈
(
H2(Ω) ∩H1

Γ0
(Ω)

)
such that





n∑

j=1

∫

Ω

(
−λ̃2ujwj + µ∇uj∇wj

)
dx+

∫

Ω
(µ+ λ)(div u)(div w) dx+ iλ̃ζ̃

n∑

j=1

∫

Γ1

ujwj dΓ

=
n∑

j=1

∫

Ω
(F j

2 (x) + iλ̃F j
1 (x))wj dx− ζ

n∑

j=1

∫

Γ1

wi

(∫ ∞

−∞

µ(ξ)F j
3 (x, ξ)

ξ2 + η + iλ̃
dξ

)
dΓ

+ζ̃
n∑

j=1

∫

Γ1

F j
1 (x)wj dΓ,

(2.62)

For all w ∈
(
H1

Γ0
(Ω)

)n
, where ζ̃ = ζ

∫ +∞

−∞

µ2(ξ)

ξ2 + η + iλ̃
dξ.

We can rewrite (2.62) as

−(Lλ̃u, w)((H1
Γ0

(Ω))n,((H1
Γ0

(Ω))′ )n) + a(HΓ0
1(Ω)(u, w) = l(w) (2.63)

with the bilinear form defined by

a(H1
Γ0

(Ω))(u, w) = µ
n∑

i=1

∫

Ω
∇ui∇wi dx+ (µ+ λ)

∫

Ω
(div u)(div w) dx+ iλ̃ζ̃

n∑

j=1

∫

Γ1

ujwj dΓ

and

(Lλ̃u, w)H1
Γ0

=
n∑

i=1

∫

Ω
λ̃2ujwj dx.

Using the compactness embedding from L2(Ω) into H−1(Ω) and from H1
Γ0
(Ω) into L2(Ω) we

deduce that the operator Lλ̃ is compact from (L2(Ω))
n
into (L2(Ω))

n
. Consequently, by Fred-

holm alternative, proving the existence of u solution of (2.63) reduces to proving that there is
not a nontrivial solution for (2.63) for l ≡ 0. Indeed if there exists u 6= 0, such that

(Lλ̃u, w)((H1
Γ0

(Ω))n,((H1
Γ0

(Ω))
′
)n) = a(H1

Γ0
(Ω))(u, w), ∀w ∈ H1

Γ0
(Ω). (2.64)

This means that iλ̃ is an eigenvalue of A. Therefore from Lemma 2.5.1 we deduce that u = 0.

Now, if λ̃ = 0 and η 6= 0, the system (2.60) is reduced to the following system




v = −F1(x),
µ∆u+ (µ+ λ)∇(div u) = −F2(x),
(ξ2 + η)φ− v(x)µ(ξ) = F3(x, ξ).

(2.65)

Solving system (2.65) is equivalent to finding u ∈
(
H2(Ω) ∩H1

Γ0
(Ω)

)n
such that





n∑

j=1

∫

Ω
µ∇uj∇wjdx+ (µ+ λ)

∫

Ω
(div u)(div w)dx =

n∑

j=1

∫

Ω
F j
2wjdx+ ζ̃

n∑

j=1

∫

Γ1

F j
1wj dΓ

−ζ
n∑

j=1

∫

Γ1

wj

(∫ ∞

−∞

µ(ξ)F j
3 (x, ξ)

ξ2 + η
dξ

)
dΓ

(2.66)
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For all w ∈ (H1
Γ0
(Ω))n.

Consequently, problem (2.66) is equivalent to the problem

B(u, w) = L(w), (2.67)

where B :
[(
H1

Γ0
(Ω)

)n ×
(
H1

Γ0
(Ω)

)n]→ IC, is the bilinear form defined by

B(u, w) =
n∑

i=1

∫

Ω
µ∇ui∇wi dx+ (µ+ λ)

∫

Ω
(div u)(div w) dx (2.68)

and L :
(
H1

Γ0
(Ω)

)n → IC is the linear form defined by

L(w) =
n∑

j=1

∫

Ω
F j
2wj dx+ ζ̃

n∑

j=1

∫

Γ1

F j
1wj dΓ− ζ

n∑

j=1

∫

Γ1

wj

(∫ ∞

−∞

µ(ξ)F j
3 (x, ξ)

ξ2 + η
dξ

)
dΓ.

It is easy to verify that B is continuous and coercive, and L is continuous. So applying the

Lax-Milgram theorem, we deduce that for all w ∈
(
H1

Γ0
(Ω)

)n
problem (2.67) admits a unique

solution u ∈
(
H1

Γ0
(Ω)

)n
. Applying the classical elliptic regularity, it follows from (2.66) that

u ∈ (H2(Ω))
n
. Therefore, the operator A is surjective.

Residual spectrum of A

Lemma 2.5.3 Let A be defined by (2.14). Then

A∗



u
v
φ


 =




−v
−µ∆u− (µ+ λ)∇( div u)
−(ξ2 + η)φ− v(x)µ(ξ)


 (2.69)

with domain

D(A∗) =





(u, v, φ)T in H : u ∈
(
H2(Ω) ∩H1

Γ0
(Ω)

)n
, v ∈

(
H1

Γ0
(Ω)

)n
,

−(ξ2 + η)φ− v(x)µ(ξ) ∈ (L2(Γ1 × (−∞,+∞)))
n
,

µ
∂u

∂ν
+ (µ+ λ)( div u)ν + ζ

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = 0, onΓ1

|ξ|φ ∈ (L2(Γ1 × (−∞,+∞)))
n





. (2.70)
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Proof. Let U = (u, v, φ)T and V = (ũ, ṽ, φ̃)T . We have: < AU, V >H=< U,A∗V >H.

< AU, V >H=
n∑

j=1

∫

Ω
(µṽj∆uj + (µ+ λ)ṽj∇( div u) + µ∇ũj∇uj) dx+ (µ+ λ)

∫

Ω
( div v)( div ũ)dx

+ζ
n∑

j=1

∫

Γ1

∫ +∞

−∞
[−(ξ2 + η)φ+ v(x)µ(ξ)]φ̃ dξ dΓ

= µ
n∑

j=1

∫

Γ1

ṽj
∂u

∂ν
dx− µ

n∑

j=1

∫

Ω
∇uj∇ṽj dx+ (µ+ λ)

n∑

j=1

∫

Γ1

ṽj( div u)ν dx

−(µ+ λ)
∫

Ω
( div u)( div ṽ) dx+ µ

n∑

j=1

∫

Γ1

v
∂ũ

∂ν
dΓ− µ

n∑

j=1

∫

Ω
vj∆ũj dx

+(µ+ λ)
n∑

j=1

∫

Γ1

vj( div ũ)ν dΓ− (µ+ λ)
n∑

j=1

∫

Ω
vj∇( div ũ) dx

−ζ
∫

Γ1

∫ +∞

−∞
(ξ2 + η)φφ̃ dξ dΓ + ζ

∫

Γ1

v(x)
∫ +∞

−∞
µ(ξ)φ̃ dξ dΓ

If we set

µ
∂ũ

∂ν
= −ζ

∫ +∞

−∞
µ(ξ)φ̃(x, t) dξ − (µ+ λ)( div u)ν,

we get

< AU, V >H= −µ
n∑

j=1

∫

Ω
∇uj∇ṽj dx− (µ+ λ)

∫

Ω
( div u)( div ṽ) dx− µ

n∑

j=1

∫

Ω
vj∆ũj dx

−(µ+ λ)
n∑

j=1

∫

Ω
vj∇( div ũ) dx− ζ

∫

Γ1

∫ +∞

−∞
[(ξ2 + η)φ̃+ ṽ(x)µ(ξ)] dξ dΓ

Theorem 2.5.3 σr(A) = ∅, where σr(A) denotes the set of residual spectrum of A. It is
defined as

σr(A) = {λ̃ ∈ IC : ker(λI −A) = 0 and Im(λ̃I −A) is not dense in H}.

Proof. Since λ̃ ∈ σr(A), λ ∈ σr(A∗) the proof will be accomplished if we can show that
σr(A) = σr(A∗). This is because obviously the eigenvalues of A are symmetric on the real axis.
From (2.69), the eigenvalue problem A∗Z = λZ for λ ∈ IC and 0 6= Z = (u, v, φ) ∈ D(A∗) we
have 




λ̃u+ v = 0,
λ̃v + µ∆u+ (µ+ λ)∇( div u) = 0,
λ̃φ+ (ξ2 + η)φ+ v(x)µ(ξ) = 0.

(2.71)

From (2.71)1 and (2.71)2, we find

λ̃2u− µ∆u− (µ+ λ)∇( div u) = 0. (2.72)

As v|Γ1 = −λ̃u|Γ1 , we deduce from (2.71)3 and (2.70)3 that

µ
∂u

∂ν
+ (µ+ λ)( div u)ν = −ζλ̃

∫ +∞

−∞

µ2(ξ)

λ+ η + ξ2
dξu(x), ∀x ∈ Γ1 (2.73)
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with the following conditions
u|Γ1 = 0. (2.74)

Hence A∗ has the same eigenvalues with A, and this completes The proof.

Remark 2.5.1 When η = 0, then λ̃ = 0 is in the continuous spectrum.

Indeed, let uk ∈ H1
Γ0
(Ω) be an eigenfunction of the following problem




−µ∆uk − (µ+ λ)∇( div uk) = ω2
kuk

uk = 0 on Γ0

µ
∂uk

∂ν
+ (µ+ λ)(div uk)ν = 0

such that
‖uk‖2H1

Γ0

=
∫

Γ0

|∇uk|2 dΓ.

Now, we define the vector F = (uk, 0, 0) ∈ H. we suppose that there exists U = (u, v, φ) ∈ D(A)
such that

−AU = F.

It follows that

(EV ) v = −uk in Ω, |ξ|2φ+ µ(ξ)v = 0 on Γ1

and 



−µ∆u− (µ+ λ)∇( div u) = 0 on Ω
u = 0 on Γ0

µ
∂u

∂ν
+ (µ+ λ)(div u)ν = 0 on Γ1

From (EV ), we deduce that φ(x, ξ) = |ξ| 2α−5
2 uk|Γ1 . Clearly, for α ∈ (0, 1), φ 6∈ LΓ1×IR.

2.6 Polynomial stability (for η 6= 0)

In order to establish the polynomial energy decay rate, let us consider the usual geometrical
control condition: there exists a point x0 ∈ IR

n such that

m · ν ≤ 0 on Γ0, m · ν > 0 on Γ1, (2.75)

where m = x− x0.

Moreover, we use a recent result by Borichev and Tomilov [13]. Accordingly, if we consider a
bounded C0-semigroup SA(t) = eAt on a Hilbert space. If

iIR ⊂ ρ(A) and sup
|β|≥1

1

βδ
‖(iβI −A)−1‖L(H) < M

for some δ > 0, then there exist c such that

‖eAtU0‖2 ≤
c

t
2
δ

‖U0‖2D(A).
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Our main result is as follows.

Theorem 2.6.1 If ε > 0, then the semigroup SA(t)t≥0 is polynomially stable and

E(t) = ‖SA(t)U0‖2H ≤ 1

t
2

(1−α)+ ε
2

‖U0‖2D(A).

Proof. We will need to study the resolvent equation (iλ̃−A)U = F , for λ ∈ IR, namely





iλ̃u− v = F1,
iλ̃v − µ∆u− (µ+ λ)∇( div u) = F2,
iλ̃φ+ (ξ2 + η)φ− v(x)µ(ξ) = F3,

(2.76)

where F = (F1, F2, F3)
T . Taking inner product in H with U and using (2.18) we get

|ℜ〈AU,U〉| ≤ ‖U‖H‖F‖H. (2.77)

This implies that

ζ
∫

Γ1

∫ +∞

−∞
(ξ2 + η)|φj(x, ξ, t)|2 dξ dΓ ≤ ‖U‖H‖F‖H. (2.78)

Moreover, from the boundary condition (P )3, we have

∫

Γ1

∣∣∣∣∣µ
∂uj

∂ν
+ (µ+ λ)(div u)νj

∣∣∣∣∣

2

dΓ

≤ ζ2
∫

Γ1

∣∣∣∣
∫ +∞

−∞
µ(ξ)φj(x, ξ) dξ

∣∣∣∣
2

dΓ

≤ ζ2
(∫ +∞

−∞
(ξ2 + η)−1|µ(ξ)|2 dξ

) ∫

Γ1

∫ +∞

−∞
(ξ2 + η)|φj(x, ξ)|2 dξ dΓ

≤ c‖U‖H‖F‖H.

(2.79)

From (2.76)3, we obtain

v(x)µ(ξ) = (iλ̃+ ξ2 + η)φ(x, ξ)− F3(x, ξ), ∀x ∈ Γ1. (2.80)

By multiplying (2.80) by (iλ̃+ ξ2 + η)−1|ξ| 1−ε
2 , we get

(iλ̃+ ξ2 + η)−1v(x)|ξ| 1−ε
2 µ(ξ) = |ξ| 1−ε

2 φ− (iλ̃+ ξ2 + η)−1|ξ| 1−ε
2 F3(x, ξ), x ∈ Γ1. (2.81)

Hence, by taking absolute values of both sides of (2.81), integrating over the interval ]−∞,+∞[
with respect to the variable ξ, applying Cauchy-Schwartz inequality, we obtain

1√
2
S|vj(x)| ≤ U

(∫ +∞

−∞
(ξ2 + η)|φj(x, ξ)|2 dξ

) 1
2

+
√
2V

(∫ +∞

−∞
|F j

3 (x, ξ)|2 dξ
) 1

2

, (2.82)
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where

S =
∫ +∞

−∞
(|λ̃|+ ξ2 + η)−1|ξ| 1−ε

2 |µ(ξ)| dξ =
π

| sin(α+2
2

− ε
4
)π|

(
|λ̃|+ η

)α+2
2

− ε
4 ,

U =
(∫ +∞

−∞
(ξ2 + η)−1|ξ|1−ε dξ

) 1
2

,

V =
(∫ +∞

−∞
(|λ̃|+ ξ2 + η)−2|ξ|1−ε dξ

) 1
2

=

(
ε

2

π

sin(2−ε
2
)π

(
|λ̃|+ η

)− ε
2
−1
) 1

2

.

Thus, by using again the inequality 2PQ ≤ P 2 +Q2, P ≥ 0, Q ≥ 0, we get

S2
∫

Γ1

|vj(x)|2 dΓ ≤ 4U2
∫

Γ1

∫ +∞

−∞
(ξ2 + η)|φj|2 dξ dΓ + 8V2

∫

Γ1

∫ +∞

−∞
|F j

3 (x, ξ)|2 dξ dΓ. (2.83)

We conclude that
∫

Γ1

|vj(x)|2 dΓ ≤ c|λ̃|1−α+ ε
2‖U‖H‖F‖H + c|λ̃|1−α‖F‖2H. (2.84)

Let us introduce the following notation

Iu(x) =
n∑

j=1

(
|vj(x)|2 + µ|∇uj(x)|2

)
+ (µ+ λ)|div u(x)|2

and
Eu =

∫

Ω
Iu(x) dx.

Lemma 2.6.1 We have that

Eu ≤ c‖F‖2H + c′
n∑

j=1

∫

Γ1

∣∣∣∣∣µ
∂uj

∂ν
+ (µ+ λ)(div u)νj

∣∣∣∣∣

2

dΓ + c′′
n∑

j=1

∫

Γ1

(m · ν)|vj|2 dΓ (2.85)

for positive constants c, c′ and c′′.

Proof. Multiplying (2.76)2 by ū,integrating on Ω we obtain

−
∫

Ω
vj(iλ̃uj) dx+ µ

∫

Ω
|∇uj|2 dx+ (µ+ λ)

∫

Ω
(div u)

∂ūj

∂xj

dx− µ
∫

Γ1

uj
∂uj

∂ν
dΓ

−(µ+ λ)
∫

Γ1

νjūj(div u) dΓ =
∫

Ω
ūF j

2 dx.
(2.86)

From (2.76)1, we have iλ̃uj = vj + F j
1 . Then

−
∫

Ω
|vj|2 dx+ µ

∫

Ω
|∇uj|2 dx+ (µ+ λ)

∫

Ω
(div u)

∂ūj

∂xj

dx− µ
∫

Γ1

uj
∂uj

∂ν
dΓ

−(µ+ λ)
∫

Γ1

νjūj(div u) dΓ =
∫

Ω
ūjF

j
2 dx+

∫

Ω
vjF

j
1 dx.

(2.87)
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Hence

−
n∑

j=1

∫

Ω
|vj|2 dx+ µ

n∑

j=1

∫

Ω
|∇uj|2 dx+ (µ+ λ)

∫

Ω
|div u|2 dx− µ

n∑

j=1

∫

Γ1

uj
∂uj

∂ν
dΓ

−(µ+ λ)
n∑

j=1

∫

Γ1

νjūj(div u) dΓ =
n∑

j=1

∫

Ω
ūjF

j
2 dx+

n∑

j=1

∫

Ω
vjF

j
1 dx.

(2.88)

Multiplying (2.76)2 by (2m · ∇ū), integrating on Ω we obtain

−2
∫

Ω
vj(m · iλ̃∇uj) dx− 2µ

∫

Ω
∆uj(m · ∇ūj) dx− 2(µ+ λ)

∫

Ω

∂(div u)

∂xj

(m · ∇ūj) dx

= 2
∫

Ω
F j
2 (m · ∇ūj) dx.

(2.89)
From (2.76)2, we have iλ̃∇u−∇v = ∇F1, then

−2
∫

Ω
vj(m · ∇v̄j) dx− 2µ

∫

Ω
∆uj(m · ∇ūj) dx− 2(µ+ λ)

∫

Ω

∂(div u)

∂xj

(m · ∇ūj) dx

= 2
∫

Ω
F j
2 (m · ∇ūj) dx+ 2

∫

Ω
vj(m · ∇F

j
1) dx.

(2.90)

For u ∈ H2(Ω), we have the following Rellich’s identity
∫

Ω
∆uj(m · ∇ūj) dx =

∫

Γ
(m · ∇ūj)

∂uj

∂ν
dΓ−

∫

Ω
∇uj · ∇(m · ∇ūj) dx.

∫

Ω

∂(div u)

∂xj

(m · ∇ūj) dx =
∫

Γ
(m · ∇ūj)(div u)νj dΓ−

∫

Ω
(div u)

∂

∂xj

(m · ∇ūj) dx.
(2.91)

Moreover, using the following identity

2ℜ∇uj · ∇(m · ∇ūj) = 2|∇uj|2 +m · ∇(|∇uj|2)

and integration by parts, we get

2ℜ
∫

Ω
∇uj · ∇(m · ∇ūj) dx = (2− n)

∫

Ω
|∇uj|2 dx+

∫

Γ
m · ν|∇uj|2 dΓ

2
n∑

j=1

ℜ
∫

Ω
(div u)

∂

∂xj

(m · ∇ūj) dx = (2− n)
∫

Ω
|div u|2 dx+

∫

Γ
m · ν|div u|2 dΓ.

(2.92)

From (2.90), (2.91) and (2.92), we get

n
n∑

j=1

∫

Ω
|vj|2 dx+ (2− n)µ

n∑

j=1

∫

Ω
|∇uj|2 dx+ (2− n)(µ+ λ)

n∑

j=1

∫

Ω
|div u|2 dx

= 2
n∑

j=1

ℜ
∫

Ω
F j
2 (m · ∇ūj) dx+ 2

n∑

j=1

ℜ
∫

Ω
vj(m · ∇F

j
1) dx+

n∑

j=1

∫

Γ1

(m · ν)|vj|2 dΓ

+2µℜ
n∑

j=1

∫

Γ
(m · ∇ūj)

∂uj

∂ν
dΓ− µ

n∑

j=1

∫

Γ
(m · ν)|∇uj|2 dΓ

+2(µ+ λ)ℜ
n∑

j=1

∫

Γ
(m · ∇ūj)(div u)νj dΓ− (µ+ λ)

∫

Γ
(m · ν)|div u|2 dΓ.

(2.93)
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Noting that ∇uj =
∂uj

∂ν
ν on Γ0, it follows that

n
n∑

j=1

∫

Ω
|vj|2 dx+ (2− n)µ

n∑

j=1

∫

Ω
|∇uj|2 dx+ (2− n)(µ+ λ)

n∑

j=1

∫

Ω
|div u|2 dx

= 2
n∑

j=1

ℜ
∫

Ω
F j
2 (m · ∇ūj) dx+ 2

n∑

j=1

ℜ
∫

Ω
vj(m · ∇F

j
1) dx+

n∑

j=1

∫

Γ1

(m · ν)|vj|2 dΓ

+2µℜ
n∑

j=1

∫

Γ1

(m · ∇ūj)
∂uj

∂ν
dΓ + µ

n∑

j=1

∫

Γ0

(m · ν)|∇uj|2 dΓ

+2(µ+ λ)ℜ
n∑

j=1

∫

Γ1

(m · ∇ūj)(div u)νj dΓ + (µ+ λ)
∫

Γ0

(m · ν)|div u|2 dΓ.

−µ
n∑

j=1

∫

Γ1

(m · ν)|∇uj|2 dΓ− (µ+ λ)
∫

Γ1

(m · ν)|div u|2 dΓ

Multiplying (2.87) by (n − 1) and summing the result relation with the above inequality, we
get

n∑

j=1

∫

Ω
|vj|2 dx+ µ

n∑

j=1

∫

Ω
|∇uj|2 dx+ (µ+ λ)

∫

Ω
|div u|2 dx = 2

n∑

j=1

ℜ
∫

Ω
F j
2 (m · ∇ūj) dx

+2
n∑

j=1

ℜ
∫

Ω
vj(m · ∇F

j
1) dx+ (n− 1)




n∑

j=1

∫

Ω
ūjF

j
2 dx+

n∑

j=1

∫

Ω
vjF

j
1 dx




+
n∑

j=1

∫

Γ1

(m · ν)|vj|2 dΓ + (µ+ λ)
∫

Γ0

(m · ν)|div u|2 dΓ + µ
n∑

j=1

∫

Γ0

(m · ν)|∇uj|2 dΓ

+2ℜ
n∑

j=1

∫

Γ1

(m · ∇ūj)

(
µ
∂uj

∂ν
+ (µ+ λ)(div u)νj

)
dΓ− µ

n∑

j=1

∫

Γ1

(m · ν)|∇uj|2 dΓ

−(µ+ λ)
∫

Γ1

(m · ν)|div u|2 dΓ + (n− 1)
n∑

j=1

∫

Γ1

ūj

(
µ
∂uj

∂ν
+ (µ+ λ)(div u)νj

)
dΓ

Since Γ1 is compact and m, ν are sufficiently regular,
There exists δ > 0 such that m(x) · ν(x) ≥ δ > 0, for all x ∈ Γ1.
We deduce

n∑

j=1

∫

Ω
|vj|2 dx+ µ

n∑

j=1

∫

Ω
|∇uj|2 dx+ (µ+ λ)

∫

Ω
|div u|2 dx = 2

n∑

j=1

ℜ
∫

Ω
F j
2 (m · ∇ūj) dx

+2
n∑

j=1

ℜ
∫

Ω
vj(m · ∇F

j
1) dx+ (n− 1)




n∑

j=1

∫

Ω
ūjF

j
2 dx+

n∑

j=1

∫

Ω
vjF

j
1 dx




+
n∑

j=1

∫

Γ1

(m · ν)|vj|2 dΓ + (µ+ λ)
∫

Γ0

(m · ν)|div u|2 dΓ + µ
n∑

j=1

∫

Γ0

(m · ν)|∇uj|2 dΓ

+2ℜ
n∑

j=1

∫

Γ1

(m · ∇ūj)

(
µ
∂uj

∂ν
+ (µ+ λ)(div u)νj

)
dΓ− µδ

n∑

j=1

∫

Γ1

|∇uj|2 dΓ

−(µ+ λ)δ
∫

Γ1

|div u|2 dΓ + (n− 1)
n∑

j=1

∫

Γ1

ūj

(
µ
∂uj

∂ν
+ (µ+ λ)(div u)νj

)
dΓ

(2.94)
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We can estimate

2
∫

Γ1

(m · ∇ūj)

(
µ
∂uj

∂ν
+ (µ+ λ)(div u)νj

)
dΓ

≤ δµ

2

∫

Γ1

|∇uj|2 dΓ + 2
‖m‖2∞
δµ

∫

Γ1

∣∣∣∣∣µ
∂uj

∂ν
+ (µ+ λ)(div u)νj

∣∣∣∣∣

2

dΓ.

(2.95)

Moreover,

(n− 1)
∫

Γ1

ūj

(
µ
∂uj

∂ν
+ (µ+ λ)(div u)νj

)
dΓ

≤ ε

2

∫

Γ1

|uj|2 dΓ +
(n− 1)2

2ε

∫

Γ1

∣∣∣∣∣

(
µ
∂uj

∂ν
+ (µ+ λ)(div u)νj

)∣∣∣∣∣

2

dΓ

≤ ε

2
C(P )

∫

Ω
|∇uj|2 dx+

(n− 1)2

2ε

∫

Γ1

∣∣∣∣∣µ
∂uj

∂ν
+ (µ+ λ)(div u)νj

∣∣∣∣∣

2

dΓ,

(2.96)
where we have used trace inequality and Poincaré’s theorem.

Remark 2.6.1 In the above inequality C(P ) is the smallest positive constant such that

∫

Γ1

|ϑ|2 dΓ ≤ C(P )
∫

Ω
|∇ϑ|2 dx, ∀ϑ ∈ H1

Γ0
(Ω).

Indeed, we ca easily estimate

2ℜ
∫

Ω
F j
2 (m · ∇ūj) dx ≤ ε

2

∫

Ω
|∇uj|2 dx+

2

ε
‖m‖2∞‖F j

2‖2L2(Ω), (2.97)

2ℜ
∫

Ω
vj(m · ∇F

j
1) dx ≤ ε

2

∫

Ω
|vj|2 dx+

2

ε
‖m‖2∞‖∇F j

1‖2L2(Ω), (2.98)

(n− 1)
∫

Ω
F j
2 ūj dx ≤ ε

2

∫

Ω
|uj|2 dx+

(n− 1)2

2ε
‖F j

2‖2L2(Ω)

≤ ε

2
C(Ω)

∫

Ω
|∇uj|2 dx+

(n− 1)2

2ε
‖F j

2‖2L2(Ω),

(2.99)

(n− 1)
∫

Ω
vF

j
1 dx ≤ ε

2

∫

Ω
|vj|2 dx+

(n− 1)2

2ε
‖F j

1‖2L2(Ω). (2.100)

Then

(1− ε)
n∑

j=1

∫

Ω
|vj|2 dx+

(
µ− ε

2
C(P )− ε

2
− ε

2
C(Ω)

) n∑

j=1

∫

Ω
|∇uj|2 dx+ (µ+ λ)

∫

Ω
|div u|2 dx

≤ 2

ε
‖m‖2∞

n∑

j=1

(
‖F j

2‖2L2(Ω) + ‖∇F j
1‖2L2(Ω)

)
+

(n− 1)2

2ε

n∑

j=1

(
‖F j

2‖2L2(Ω) + ‖F j
1‖2L2(Ω)

)

+

(
2
‖m‖2∞
δµ

+
(n− 1)2

2ε

)∫

Γ1

∣∣∣∣∣µ
∂uj

∂ν
+ (µ+ λ)(div u)νj

∣∣∣∣∣

2

dΓ +
n∑

j=1

∫

Γ1

(m · ν)|vj|2 dΓ.
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Choosing ε small enough, we conclude (2.85).
For λ̃ 6= 0, we obtain

Eu ≤ c‖F‖2H + c′‖U‖H‖F‖H + c′′|λ̃|1−α+ ε
2‖U‖H‖F‖H + c′′′|λ̃|1−α‖F‖2H.

Since that ∫

Γ1

∫ +∞

−∞
|φ(x, ξ)|2 dξ dΓ ≤ C

∫

Γ1

∫ +∞

−∞
(ξ2 + η)|φ(x, ξ)|2 dξ dΓ

for λ̃ 6= 0. If |λ̃| > 1 we get
‖U‖2H ≤ |λ̃|2(1−α)+ε‖F‖2H.

The conclusion then follows by applying Theorem (2.6.1).
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Chapter 3

STABILITY RESULT OF THE LAMÉ
SYSTEM WITH A DELAY TERM IN
THE INTERNAL FRACTIONAL
FEEDBACK

3.1 Introduction

In this chapter, we consider the initial boundary value problem for the Lamé system given by:

(P2)





utt − µ∆u− (µ+ λ)∇(div u) + a1∂
α,η
t u(x, t− τ)

+a2ut(x, t) = 0 in Ω× (0,+∞),
u = 0 in Γ× (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,
ut(x, t− τ) = f0(x, t− τ) in Ω× (0, τ),

where µ, λ are Lamé constants, u = (u1, u2, ..., un)
T . Here Ω is a bounded domain in IR

n with
smooth boundary ∂Ω. Moreover, a1 > 0, a2 > 0 and the constant τ > 0 is the time delay. The
notation ∂α,η

t stands for the exponential fractional derivative operator of order α. It is defined
by

∂α,η
t w(t) =

1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s)dw

ds
(s) ds 0 < α < 1, η > 0.

Delay effects arise in many applications and pratical problems because, in most instances,
physical, chemical, biological, thermal, and economic phenomena naturally depend not only
on the present state but also on some past occurrences. In recent years, the control of PDEs
with time delay effects has become an active area of research, see for example [1], [46], and
references therein. In many cases it was shown that delay is a source of instability and even
an arbitrarily small delay may destabilize a system which is uniformly asymptotically stable in
the absence of delay unless additional conditions or control terms have been used.

55
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The stability issue of systems with delay is, therefore, of theoretical and practical im-
portance. In particular, consider the wave equation with homogeneous Dirichlet boundary
condition

(PW )





u′′(x, t)−∆xu(x, t) + µ1u
′(x, t) + µ2u

′(x, t− τ) = 0 in Ω× (0,+∞),
u(x, t) = 0 on Γ× (0,+∞),
u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω,
u′(x, t− τ) = f0(x, t− τ) in Ω× (0, τ).

For instance in [39], the authors studied the problem (PW ). They determined suitable re-
lations between µ1 and µ2, for which the stability or alternatively instability takes place. More
precisely, they showed that the energy is exponentially stable if µ2 < µ1 and they also found a
sequence of delays for which the corresponding solution of (P) will be instable if µ2 > µ1. The
main approach used in [39] is an observability inequality obtained with a Carleman estimate.

Noting that the case of the wave equation with internal fractional feedback (without delay)
have treated in [25] where it is proven global existence and uniqueness results. As far as we
are concerned, this is the first work in the literature that takes into account the uniform decay
rates for Lamé system with delay term in the internal fractional feedback.

The remainder of this chapter falls into five sections. In Section 2, we show that the above
system can be replaced by an augmented one obtained by coupling an equation with a suitable
diffusion, and we study of energy functional associated to system. In section 3, we state a
well-posedness result for problem (P2). In section 4, we prove the strong asymptotic stability
of solutions. In section 5 we show the exponential stability using the Gearhart-Huang-Pruss
theorem.

3.2 Preliminaries

This section is concerned with the reformulation of the model (P2) into an augmented system.
For that, we need the following claims.

Theorem 3.2.1 (see [38]) Let µ be the function:

µ(ξ) = |ξ|(2α−1)/2, −∞ < ξ < +∞, 0 < α < 1. (3.1)

Then the relationship between the ’input’ U and the ’output’ O of the system

∂tφ(ξ, t) + (ξ2 + η)φ(ξ, t)− U(t)µ(ξ) = 0, −∞ < ξ < +∞, η ≥ 0, t > 0, (3.2)

φ(ξ, 0) = 0, (3.3)

O(t) = (π)−1 sin(απ)
∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ (3.4)
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is given by
O = I1−α,ηU = Dα,ηU, (3.5)

where

[Iα,ηf ](t) =
1

Γ(α)

∫ t

0
(t− τ)α−1e−η(t−τ)f(τ) dτ.

Proof. From (3.2) and (3.3), we have

φ(ξ, t) =
∫ t

0
µ(ξ)e−(ξ2+η)(t−τ)U(τ)dτ. (3.6)

Hence, by using (3.4), we get

O(t) = (π)−1sin(απ)e−ηt
∫ t

0

[
2
∫ +∞

0
|ξ|2α−1e−ξ2(t−s)dξ

]
eητU(τ)dτ. (3.7)

Thus,

O(t) = (π)−1sin(απ)e−ηt
∫ t

0

[
(t− s)−αΓ(α)

]
eητU(τ)dτ

= (π)−1sin(απ)
∫ t

0

[
(t− s)−αΓ(α)

]
e−η(t−τ)U(τ)dτ

(3.8)

which completes the proof. Indeed, we know that (π)−1sin(απ) =
1

Γ(α)Γ(1− α)
.

Lemma 3.2.1 (see [10]) If λ ∈ Dη = IC\]−∞,−η] then

∫ +∞

−∞

µ2(ξ)

λ+ η + ξ2
dξ =

π

sinαπ
(λ+ η)α−1.

We make the following hypotheses on the damping and the delay functions:

a1η
α−1 < a2. (3.9)

We are now in a position to reformulate system (P2). As in [39], we introduce the new variable

z(x, ρ, t) = ut(x, t− ρτ), x ∈ Ω, ρ ∈ (0, 1), t > 0.

Then the above variable z satisfies

τzt(x, ̺, t) + z̺(x, ̺, t) = 0, ̺ ∈ (0, 1), t > 0.

Consequently, by using Theorem 3.2.1, the system (P2) is equivalent to
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(P ′2)





utt − µ∆u− (µ+ λ)∇(div u)

+ζ
∫ +∞

−∞
µ(ξ)φ(x, ξ, t) dξ + a2ut(t) = 0 in Ω× (0,+∞),

φt(x, ξ, t) + (ξ2 + η)φ(x, ξ, t)− z(x, 1, t)µ(ξ) = 0 in Ω× (−∞,∞)× (0,+∞),
τzt(x, ρ, t) + zρ(x, ρ, t) = 0 in Ω× (0, 1)× (0,+∞),
u(x, t) = 0 on Γ× (0,+∞),
z(x, 0, t) = ut(x, t), in Ω× (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on Ω,
φ(x, ξ, 0) = 0 on Ω× (−∞,∞),
z(x, ρ, 0) = f0(x,−ρτ) in Ω× (0, 1),

where ζ = (π)−1 sin(απ)a1.

We define the energy of the solution by:

E(t) =
1

2

n∑

j=1

(
‖ujt‖2L2(Ω) + µ‖∇uj‖2L2(Ω) + ζ

∫

Ω

∫ +∞

−∞
|φj(x, ξ, t)|2 dξdx

)

+
ν

2

n∑

j=1

∫

Ω

∫ 1

0
|zj(x, ρ, t)|2 dρdx+

(µ+ λ)

2
‖div u‖2L2(Ω).

(3.10)

where ν is a positive constant verifying

τζ

(∫ +∞

−∞

µ2(ξ)

ξ2 + η
dξ

)
< ν < τ

(
2a2 − ζ

(∫ +∞

−∞

µ2(ξ)

ξ2 + η
dξ

))
. (3.11)

Remark 3.2.1 Using Lemma 3.2.1, the condition (3.11) means that

τa1η
α−1 < ν < τ(2a2 − a1η

α−1).

Lemma 3.2.2 Let (u, φ, z) be a regular solution of the problem (P ′2). Then, the energy
functional defined by (3.10) satisfies

E ′(t) ≤ −C
n∑

j=1

∫

Ω

(
u2
t + z2(x, 1, t)

)
dx. (3.12)

Proof. Multiplying the first equation in (P2) by ujt, integrating over Ω and using integration
by parts, we get

1

2

d

dt
‖ujt‖22 − µℜ

∫

Ω
∆ujujt dx− (µ+ λ)ℜ

∫

Ω

∂

∂xj

(div u)ujt dx

+ζ
∫

Ω
ujt

∫ +∞

−∞
µ(ξ)φj(x, ξ, t) dξ dx+ a2

∫

Ω
u2
jt(t) = 0.
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Then

1

2

d

dt

n∑

j=1

(
‖ujt‖2L2(Ω) + µ‖∇uj‖2L2(Ω)

)
+

(µ+ λ)

2
‖div u‖2L2(Ω) + a2

n∑

j=1

‖ujt‖2L2

+ζℜ
n∑

j=1

∫

Ω
ujt

∫ +∞

−∞
µ(ξ)φ(x, ξ, t) dξ dx = 0.

(3.13)

Multiplying the second equation in (P ′2) by ζφj and integrating over Ω×(−∞,+∞), we obtain:

ζ

2

d

dt

n∑

j=1

‖φj‖2L2(Ω×(−∞,+∞)) + ζ
n∑

j=1

∫

Ω

∫ +∞

−∞
(ξ2 + η)|φj(x, ξ, t)|2 dξ dx

−ζℜ
n∑

j=1

∫

Ω
zj(x, 1, t)

∫ +∞

−∞
µ(ξ)φj(x, ξ, t) dξ dx = 0.

(3.14)

Multiplying the third equation in (P ′2) by νzj and integrating over Ω× (0, 1), we get:

1

2

d

dt

n∑

j=1

‖zj‖2L2(Ω×(0,1)) +
τ−1

2

n∑

j=1

∫

Ω

(
z2j (x, 1, t)− u2

jt(x, t)
)
dx = 0. (3.15)

From (3.10), (3.13) and (3.15) we get

E ′(t) = −a2
n∑

j=1

‖ujt‖2L2 − ζ
n∑

j=1

∫

Ω

∫ +∞

−∞
(ξ2 + η)|φj(x, ξ, t)|2 dξ dx

−ζℜ
n∑

j=1

∫

Ω
ujt

∫ +∞

−∞
µ(ξ)φj(x, ξ, t) dξ dx+ ζℜ

n∑

j=1

∫

Ω
zj(x, 1, t)

∫ +∞

−∞
µ(ξ)φj(x, ξ, t) dξ dx

+
ντ−1

2

n∑

j=1

∫

Ω
u2
t (x, t) dx − ντ−1

2

n∑

j=1

∫

Ω
z2j (x, 1, t) dx

.

(3.16)
Moreover, we have

∣∣∣∣
∫ +∞

−∞
µ(ξ)φj(x, ξ, t) dξ

∣∣∣∣ ≤
(∫ +∞

−∞

µ2(ξ)

ξ2 + η
dξ

) 1
2 (∫ +∞

−∞
(ξ2 + η)|φj(x, ξ, t)|2 dξ

) 1
2

.

Then
∣∣∣∣
∫

Ω
zj(x, 1, t)

∫ +∞

−∞
µ(ξ)φj(x, ξ, t) dξ dx

∣∣∣∣

≤
(∫ +∞

−∞

µ2(ξ)

ξ2 + η
dξ

) 1
2

‖zj(x, 1, t)‖L2(Ω)

(∫

Ω

∫ +∞

−∞
(ξ2 + η)|φj(x, ξ, t)|2 dx dξ

) 1
2

,

∣∣∣∣
∫

Ω
ujt(x, t)

∫ +∞

−∞
µ(ξ)φj(x, ξ, t) dξ dx

∣∣∣∣

≤
(∫ +∞

−∞

µ2(ξ)

ξ2 + η
dξ

) 1
2

‖uj(x, t)‖L2(Ω)

(∫

Ω

∫ +∞

−∞
(ξ2 + η)|φj(x, ξ, t)|2 dx dξ

) 1
2

.
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Applying the Cauchy-Schwarz inequality we obtain

E ′(t) ≤
(
−a2 +

ζI

2
+

ντ−1

2

)
n∑

j=1

∫

Ω
u2
jt(x, t) dx +

(
ζI

2
− ντ−1

2

)
n∑

j=1

∫

Ω
z2j (x, 1, t) dx ,

where I =
∫ +∞

−∞

µ2(ξ)

ξ2 + η
dξ, which implies

E ′(t) ≤ −C
n∑

j=1

∫

Ω

(
u2
jt(x, t) + z2j (x, 1, t)

)
dx

with

C = min

{(
a2 −

ζI

2
− ντ−1

2

)
,

(
−ζI

2
+

ντ−1

2

)}
.

Since ν is chosen satisfying assumption (3.11), the constant C is positive. This completes the
proof of the lemma.

3.3 Well-posedness

In this section, we give the existence and uniqueness result for system (P ′2) using the semigroup
theory. Let us denote U = (u, v, φ, z)T , where v = ut. The system (P ′2) can be rewrite as
follows: {

U ′ = AU, t > 0,
U(0) = (u0, u1, φ0, f0),

(3.17)

where A : D(A) ⊂ H → H is the linear operator defined by

A




u
v
φ
z


 =




v

µ∆u+ (µ+ λ)∇(div u)− ζ
∫ +∞

−∞
µ(ξ)φ(x, ξ) dξ − a2v

−(ξ2 + η)φ+ z(x, 1)µ(ξ)
−τ−1zρ(x, ρ)




(3.18)

and H is the energy space given by

H =
(
H1

0 (Ω)
)n ×

(
L2(Ω)

)n ×
(
L2(Ω× (−∞,+∞))

)n ×
(
L2(Ω× (0, 1))

)n

For any U = (u, v, φ, z)T ∈ H, Ũ = (ũ, ṽ, φ̃, z̃)T ∈ H, we equip H with the inner product defined
by

< U, Ũ >H=
n∑

j=1

∫

Ω

(
vj ṽj + µ∇uj∇ũj

)
dx+ (µ+ λ)

∫

Ω
(div u)(div ũ) dx

+ζ
n∑

j=1

∫

Ω

∫ +∞

−∞
φj(x, ξ)φ̃j(x, ξ)dξdx+ ν

n∑

j=1

∫

Ω

∫ 1

0
z(x, ρ)z̃j(x, ρ)dρdx.
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The domain of A is given by

D(A) =





(u, v, φ, z)T in H : u ∈ (H2(Ω) ∩H1
0 (Ω))

n
, v ∈ (H1(Ω))

n
,

−(ξ2 + η)φ+ z(x, 1)µ(ξ) ∈ (L2(Ω× (−∞,+∞)))
n
,

z ∈ (L2 (Ω;H1(0, 1)))
n
,

|ξ|φ ∈ (L2(Ω× (−∞,+∞)))
n
, v = z(., 0) in Ω




. (3.19)

We show that the operator A generates a C0 semigroup in H. We prove that A is a maximal
dissipative operator. For this we need the following two Lemmas.

Lemma 3.3.1 The operator A is dissipative and satisfies for any U ∈ D(A),

ℜ〈AU,U〉H ≤ −C
n∑

j=1

∫

Ω

(
v2 + z2(x, 1)

)
.dx (3.20)

Proof. For any U = (u, v, φ, z) ∈ D(A), using (3.17), (3.12) and the fact that

E(t) =
1

2
‖U‖2H, (3.21)

estimate (3.20) easily follows.

Lemma 3.3.2 The operator (λ̃I −A) is surjective for λ̃ > 0.

Proof. For any F = (F1, F2, F3, F4)
T ∈ H, where Fi = (f 1

i , f
2
i , ..., f

n
i )

T , we show that there
exists U ∈ D(A) satisfying

(λ̃I −A)U = F. (3.22)

Equation (3.22) is equivalent to




λ̃u− v = F1(x),

λ̃v − µ∆u− (µ+ λ)∇(div u) + ζ
∫ +∞

−∞
µ(ξ)φ(x, ξ) dξ + a2v = F2(x),

λ̃φ+ (ξ2 + η)φ− z(x, 1)µ(ξ) = F3(x, ξ),
λz(x, ρ) + τ−1zρ(x, ρ) = F4(x, ρ).

(3.23)

Suppose u is found with the appropriate regularity. Then, (3.23)1 (3.23)3 yield

v = λ̃u− F1(x) ∈
(
H1(Ω)

)n
(3.24)

and

φ =
F3(x, ξ) + µ(ξ)z(x, 1)

ξ2 + η + λ̃
. (3.25)

We note that the last equation in (3.23) with z(x, 0) = v(x) has a unique solution given by

z(x, ρ) = v(x)e−λ̃ρτ + τe−λ̃ρτ
∫ ρ

0
F4(x, σ)e

λ̃στdσ. (3.26)
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Inserting (3.24) in (3.26), we get

z(x, ρ) = λ̃u(x)e−λ̃ρτ − F1(x)e
−λ̃ρτ + τe−λ̃ρτ

∫ ρ

0
F4(x, σ)e

λ̃στdσ, x ∈ Ω, ρ ∈ (0, 1). (3.27)

In particular,

z(x, 1) = λ̃u(x)e−λ̃τ + z0(x), x ∈ Ω (3.28)

with z0 ∈ L2(Ω) defined by

z0(x) = −F1(x)e
−λ̃τ + τe−λ̃τ

∫ 1

0
F4(x, σ)e

λ̃στdσ, x ∈ Ω. (3.29)

Inserting (3.24) in (3.23)2, we get

(λ̃2 + λ̃a2)u− µ∆u− (µ+ λ)∇(div u) + ζ
∫ +∞

−∞
µ(ξ)φ(x, ξ) dξ

= F2(x) + (λ̃+ a2)F1(x).
(3.30)

Solving system (3.30) is equivalent to finding u ∈ (H2(Ω) ∩H1
0 (Ω))

n
such that

n∑

j=1

∫

Ω

(
(λ̃2 + λ̃a2)ujwj − µ∆ujwj

)
dx− (µ+ λ)

∫

Ω

∂

∂xj

(div u)wjdx

+ζ
n∑

j=1

∫

Ω
wj

∫ +∞

−∞
µ(ξ)φj(x, ξ) dξdx =

n∑

j=1

∫

Ω
(F j

2 (x) + (λ̃+ a2)F
j
1 (x))wjdx

(3.31)

for all w ∈ (H1
0 (Ω))

n
. Inserting (3.25) in (3.31), the function u satisfies the following system





n∑

j=1

∫

Ω

(
(λ̃2 + λ̃a2)ujwj + µ∇uj∇wj dx

)
dx+ (µ+ λ)

∫

Ω
(div u)(div w) dx

+θ
n∑

j=1

∫

Ω
wjz(x, 1) dξ dx =

n∑

j=1

∫

Ω
(F j

2 (x) + (λ̃+ a2)F
j
1 (x))wj dx

−ζ
n∑

j=1

∫

Ω
wj

(∫ ∞

−∞

µ(ξ)F j
3 (x, ξ)

ξ2 + η + λ̃
dξ

)
dx,

(3.32)

where θ = ζ
∫ +∞

−∞

µ2(ξ)

ξ2 + η + λ̃
dξ. Inserting (3.28) into (3.32), we get





n∑

j=1

∫

Ω

(
(λ̃2 + λ̃a2)ujwj + µ∇uj∇wj dx

)
+ (µ+ λ)

∫

Ω
(div u)(div w) dx

+λθ
n∑

j=1

∫

Ω
ujwje

−λτ dx =
n∑

j=1

∫

Ω

(
F j
2 (x) + (λ̃+ a2)F

j
1 (x)

)
wj dx

−ζ
n∑

j=1

∫

Ω
wj

(∫ ∞

−∞

µ(ξ)F j
3 (x, ξ)

ξ2 + η + λ̃
dξ

)
dx− θ

n∑

j=1

∫

Ω
wjz0(x) dx.

(3.33)
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Problem (3.33) is of the form

B(u, w) = L(w), (3.34)

where B :
[
(H1

0 (Ω))
n × (H1

0 (Ω))
n
]
→ IC is the sesquilinear form defined by

B(u, w) =
n∑

j=1

∫

Ω

(
(λ̃2 + λ̃a2)ujwj + µ∇uj∇wj dx

)
+ (µ+ λ)

∫

Ω
(div u)(div w) dx

+λθ
n∑

j=1

∫

Ω
ujwje

−λτ dx

and L : (H1
0 (Ω))

n → IC is the antilinear functional given by

L(w) =
n∑

j=1

∫

Ω

(
F j
2 (x) + (λ̃+ a2)F

j
1 (x)

)
wj dx− ζ

n∑

j=1

∫

Ω
wj

(∫ ∞

−∞

µ(ξ)F j
3 (x, ξ)

ξ2 + η + λ̃
dξ

)
dx

−θ
n∑

j=1

∫

Ω
wjz0(x) dx.

It is easy to verify that B is continuous and coercive, and L is continuous. Consequently, by
the Lax-Milgram theorem, we deduce that for all w ∈ (H1

0 (Ω))
n
, the system (3.34) has a unique

solution u ∈ (H1
0 (Ω))

n
. By the regularity theory for the linear elliptic equations, it follows that

u ∈ (H2(Ω))
n
. Therefore, the operator (λ̃I −A) is surjective for any λ̃ > 0.

Consequently, using Hille-Yosida theorem, we have the following well-posedness result:

Theorem 3.3.1 (Existence and uniqueness)

(1) If U0 ∈ D(A), then system (3.17) has a unique strong solution

U ∈ C0(IR+, D(A)) ∩ C1(IR+,H).

(2) If U0 ∈ H, then system (3.17) has a unique weak solution

U ∈ C0(IR+,H).

3.4 Strong stability

One simple way to prove the strong stability of (3.17) is to use the following theorem due to
Arendt-Batty and Lyubich-Vũ (see [6] and [34]).
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Theorem 3.4.1 ([6]-[34]) Let X be a reflexive Banach space and (T (t))t≥0 be a
C0−semigroup generated by A on X. Assume that (T (t))t≥0 is bounded and that no eigen-
values of A lie on the imaginary axis. If σ(A) ∩ iR is countable, then (T (t))t≥0 is strongly
stable.

Our main result is the following theorem

Theorem 3.4.2 The C0-semigroup etA is strongly stable in H; i.e, for all U0 ∈ H, the
solution of (3.17) satisfies

lim
t→∞

‖etAU0‖H = 0.

For the proof of Theorem 3.4.2, we need the following two lemmas.

Lemma 3.4.1 A does not have eigenvalues on iIR.

Proof. We will argue by contraction. Let us suppose that there λ̃ ∈ IR, λ̃ 6= 0 and U 6= 0, such
that

AU = iλ̃U. (3.35)

Then, we get




iλ̃u− v = 0,

iλ̃v − µ∆u− (µ+ λ)∇(div u) + ζ
∫ +∞

−∞
µ(ξ)φ(x, ξ) dξ + a2v = 0,

iλ̃φ+ (ξ2 + η)φ− z(x, 1)µ(ξ) = 0,
iλ̃z(x, ρ) + τ−1zρ(x, ρ) = 0.

(3.36)

Then, from (3.20) we have
v = 0, z(x, 1) = 0. (3.37)

Hence, from (3.36)3 and (3.37) we obtain

u ≡ 0, φ ≡ 0. (3.38)

Note that (3.36)4 gives us z = ve−iλ̃ρτ = 0 as the unique solution of (3.36)4. Hence U ≡ 0.
Now if λ̃ = 0, inserting (3.36)1 into (3.36)2, we deduce that

{−µ∆u− (µ+ λ)∇(div u) = 0,
u = 0 in Γ.

(3.39)

Multiplying by u, integrating over Ω we have

‖∇u‖2L2(Ω) + ‖div u‖2L2(Ω) = 0. (3.40)

Hence u = 0. Then U ≡ 0.
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Lemma 3.4.2 We have
iIR ⊂ ρ(A).

Proof. To prove this, we need the following generalization of the Lax-Milgram Lemma.

Lemma 3.4.3 (see [18])

Let V and H be Hilbert spaces such that the embedding V ⊂ H is compact and dense.
Suppose that aV : V × V → IC and aH : H ×H → IC are two bounded sesquilinear forms such
that aV is V -coercive and G : V → IC is a continuous conjugate linear form. The equation

aH(u, v) + aV (u, v) = G(v), ∀v ∈ V

has either a unique solution u ∈ V for all G ∈ V ′ or has a nontrivial solution for G = 0.

We will prove that the operator (iλ̃I − A) is surjective for λ̃ 6= 0. For this purpose, let
F = (F1, F2, F3, F4)

T ∈ H, we seek U = (u, v, φ, z)T ∈ D(A) of solution of the following
equation

(iλ̃I −A)U = F. (3.41)

Equivalently, we have





iλ̃u− v = F1,

iλ̃v − µ∆u− (µ+ λ)∇(div u) + ζ
∫ +∞

−∞
µ(ξ)φ(x, ξ) dξ + a2v = F2,

iλ̃φ+ (ξ2 + η)φ− z(x, 1)µ(ξ) = F3,
iλ̃z(x, ρ) + τ−1zρ(x, ρ) = F4.

(3.42)

From (3.42)1 and (3.42)2, we have

−λ̃2u− µ∆u− (µ+ λ)∇(div u) + ζ
∫ +∞

−∞
µ(ξ)φ(x, ξ) dξ + a2v(t) = (F2 + iλ̃F1) (3.43)

with u|Γ = 0. Solving system (3.43) is equivalent to finding u ∈ (H2 ∩H1
0 (Ω))

n such that





n∑

j=1

∫

Ω

(
(−λ̃2 + iλ̃a2)ujwj + µ∇uj∇wj dx

)
+ (µ+ λ)

∫

Ω
(div u)(div w) dx

+iλ̃θ
n∑

j=1

∫

Ω
ujwje

−λ̃τ dx =
n∑

j=1

∫

Ω

(
F j
2 (x) + (iλ̃+ a2)F

j
1 (x)

)
wj dx

−ζ
n∑

j=1

∫

Ω
wj

(∫ ∞

−∞

µ(ξ)F j
3 (x, ξ)

ξ2 + η + iλ̃
dξ

)
dx− θ

n∑

j=1

∫

Ω
wjz0(x) dx

(3.44)

for all w ∈ (H1
0 (Ω))

n. We can rewrite (3.44) as

−(Lλ̃u, w)((L2(Ω))n,((L2(Ω))′)n) + a(H1
0 (Ω))n(u, w) = l(w) (3.45)
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with the sesquilinear form defined by

a(H1
0 (Ω))n(u, w) = µ

n∑

j=1

∫

Ω
∇uj∇wj dx+ iλ̃a2

n∑

j=1

∫

Ω
uj wj dx+ iλ̃θ

n∑

j=1

∫

Ω
ujwje

−λ̃τ dx

and

(Lλ̃u, w)((L2(Ω))n,((L2(Ω))′)n) =
n∑

j=1

∫

Ω
λ̃2ujwj dx.

Using the compactness of the embedding from L2(Ω) into H−1(Ω) and from H1
0 (Ω) into L2(Ω)

we deduce that the operator Lλ̃ is compact from (L2(Ω))n into (L2(Ω))n. Consequently, by the
Fredholm alternative, proving the existence of a solution u of (3.45) reduces to proving that
there is not a nontrivial solution for (3.45) for l ≡ 0. Indeed if there exists u 6= 0, such that

(Lλu, w)((H1
0 (Ω))n,((H1

0 (Ω))′)n) = a(H1
0 (Ω))n(u, w) ∀w ∈ (H1

0 (Ω))
n, (3.46)

then iλ̃ is an eigenvalue of A. Therefore from Lemma 3.4.1 we deduce that u = 0.

Now, if λ̃ = 0, the system (3.42) is reduced to the following system





v = −F1,

−µ∆u− (µ+ λ)∇(div u) + ζ
∫ +∞

−∞
µ(ξ)φ(x, ξ) dξ + a2v = F2,

(ξ2 + η)φ− z(x, 1)µ(ξ) = F3,
τ−1zρ(x, ρ) = F4.

(3.47)

Solving system (3.47) is equivalent to finding u ∈ (H2 ∩H1
0 (Ω))

n such that

µ
n∑

j=1

∫

Ω
∇uj∇wj dx+ (µ+ λ)

∫

Ω
(div u)(div w) dx =

n∑

j=1

∫

Ω
F j
2wj dx

+

(
ζ
∫ ∞

−∞

µ2(ξ)

ξ2 + η
dξ + a2

)
n∑

j=1

∫

Ω
F j
1wj dx− τζ

∫ ∞

−∞

µ2(ξ)

ξ2 + η
dξ

n∑

j=1

∫

Ω

∫ 1

0
F j
4 (x, s) dswj dx

−ζ
n∑

j=1

∫

Ω
wj

∫ ∞

−∞

µ(ξ)F j
3 (x, ξ)

ξ2 + η
dξ dx.

(3.48)
for all w ∈ (H1

0 (Ω))
n.

Consequently, problem (3.48) is equivalent to the problem

B(u, w) = L(w), (3.49)

where B : [(H1
0 (Ω))

n × (H1
0 (Ω))

n] → IC is the sesquilinear form defined by

B(u, w) = µ
n∑

j=1

∫

Ω
∇uj∇wj dx+ (µ+ λ)

∫

Ω
(div u)(div w) dx (3.50)
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and L : (H1
0 (Ω))

n → IC is the antilinear form defined by

L(w) =
n∑

j=1

∫

Ω
F j
2wj dx+

(
ζ
∫ ∞

−∞

µ2(ξ)

ξ2 + η
dξ + a2

)
n∑

j=1

∫

Ω
F j
1wj dx

−τζ
∫ ∞

−∞

µ2(ξ)

ξ2 + η
dξ

n∑

j=1

∫

Ω

∫ 1

0
F j
4 (x, s) dswj dx− ζ

n∑

j=1

∫

Ω
wj

∫ ∞

−∞

µ(ξ)F j
3 (x, ξ)

ξ2 + η
dξ dx.

(3.51)

It is easy to verify that B is continuous and coercive, and L is continuous. So applying the
Lax-Milgram theorem, we deduce that for all w ∈ (H1

0 (Ω))
n problem (3.49) admits a unique

solution u ∈ (H1
0 (Ω))

n. Applying the classical elliptic regularity, it follows from (3.48) that
u ∈ (H2(Ω))n. Therefore, the operator A is surjective.

3.5 Exponential stability

The necessary and suficient conditions for the exponential stability of the C0- semigroup of
contractions on a Hilbert space were obtained by Gearhart [21] and Huang [26] independently,
see also Pruss [43]. We will use the following result due to Gearhart.

Theorem 3.5.1 ([43]- [26]) Let S(t) = eAt be a C0-semigroup of contractions on Hilbert
space H. Then S(t) is exponentially stable if and only if

ρ(A) ⊇ {iβ : β ∈ IR} ≡ iIR (3.52)

and
lim

|β|→∞
‖(iβI −A)−1‖L(H) < ∞. (3.53)

Our main result is as follows.

Theorem 3.5.2 The semigroup SA(t)t≥0 generated by A is exponentially stable.

Proof. We will need to study the resolvent equation (iλ̃−A)U = F , for λ ∈ IR, namely




iλ̃u− v = F1,

iλ̃v − µ∆u− (µ+ λ)∇(div u) + ζ
∫ +∞

−∞
µ(ξ)φ(x, ξ) dξ + a2v = F2,

iλ̃φ+ (ξ2 + η)φ− z(x, 1)µ(ξ) = F3,
iλ̃z(x, ρ) + τ−1zρ(x, ρ) = F4,

(3.54)

where F = (F1, F2, F3, F4)
T . Taking inner product in H with U and using (3.20) we get

|Re〈AU,U〉| ≤ ‖U‖H‖F‖H. (3.55)

This implies that
n∑

j=1

∫

Ω
v2j (x) dx,

n∑

j=1

∫

Ω
z2j (x, 1) dx ≤ C‖U‖H‖F‖H. (3.56)
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From (3.54)3, we obtain

φ =
z(x, 1)µ(ξ) + F3

iλ̃+ ξ2 + η
. (3.57)

Then

‖φ‖L2(Ω×(−∞,+∞)) ≤
∥∥∥∥∥

µ(ξ)

iλ̃+ ξ2 + η

∥∥∥∥∥
L2(−∞,+∞)

‖z(x, 1)‖L2(Ω) +

∥∥∥∥∥
F3

iλ̃+ ξ2 + η

∥∥∥∥∥
L2(Ω×(−∞,+∞))

≤
(
2(1− α)

π

sinαπ
(|λ̃|+ η)α−2

) 1
2 ‖z(x, 1)‖L2(Ω) +

√
2

|λ̃|+ η
‖F3‖L2(Ω×(−∞,+∞)).

(3.58)
Similarly, we have

‖ξφ‖L2(Ω×(−∞,+∞)) ≤
∥∥∥∥∥

ξµ(ξ)

iλ̃+ ξ2 + η

∥∥∥∥∥
L2(−∞,+∞)

‖z(x, 1)‖L2(Ω) +

∥∥∥∥∥
ξF3

iλ̃+ ξ2 + η

∥∥∥∥∥
L2(Ω×(−∞,+∞))

≤
(
2α

π

sinαπ
(|λ̃|+ η)α−1

) 1
2 ‖z(x, 1)‖L2(Ω) +

√
2

√
|λ̃|+ η

‖F3‖L2(Ω×(−∞,+∞)).

(3.59)
Let us introduce the following notation

Iu(x) =
n∑

j=1

(
|vj(x)|2 + µ|∇uj(x)|2

)
+ (µ+ λ)|div u(x)|2

and
Eu =

∫

Ω
Iu(x) dx.

Lemma 3.5.1 We have that

Eu ≤ c‖F‖2H + c′‖F‖H‖U‖H. (3.60)

for positive constants c and c′.

Proof. Multiplying the equation (3.54)2 by ū, integrating on Ω we obtain

−
∫

Ω
vj(iλ̃uj) dx+ µ

∫

Ω
|∇uj|2 dx+ (µ+ λ)

∫

Ω
(div u)

∂ūj

∂xj

dx+ ζ
∫

Ω
ūj(
∫ +∞

−∞
µ(ξ)φj(x, ξ) dξ) dx

+a2

∫

Ω
ūjvj dx =

∫

Ω
ūF j

2 dx.

(3.61)
From (3.54)1, we have iλ̃uj = vj + F j

1 . Then

−
∫

Ω
|vj|2 dx+ µ

∫

Ω
|∇uj|2 dx+ (µ+ λ)

∫

Ω
(div u)

∂ūj

∂xj

dx+ ζ
∫

Ω
ūj(
∫ +∞

−∞
µ(ξ)φj(x, ξ) dξ) dx

+a2

∫

Ω
ūjvj dx =

∫

Ω
ūjF

j
2 dx+

∫

Ω
vjF

j

1 dx.

(3.62)
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Hence

−
n∑

j=1

∫

Ω
|vj|2 dx+ µ

n∑

j=1

∫

Ω
|∇uj|2 dx+ (µ+ λ)

∫

Ω
|div u|2 dx+ ζ

n∑

j=1

∫

Ω
ūj(
∫ +∞

−∞
µ(ξ)φj(x, ξ) dξ) dx

+a2
n∑

j=1

∫

Ω
ūjvj dx =

n∑

j=1

∫

Ω
ūjF

j
2 dx+

n∑

j=1

∫

Ω
vjF

j
1 dx.

(3.63)
We can estimate

∣∣∣∣
∫

Ω
ūj

(∫ +∞

−∞
µ(ξ)φj(x, ξ) dξ

)
dx

∣∣∣∣

≤ ‖uj‖L2(Ω)

(∫ +∞

−∞

µ2(ξ)

ξ2 + η
dξ

) 1
2 (∫

Ω

∫ +∞

−∞
(ξ2 + η)|φj(x, ξ)|2 dξ dx

) 1
2

≤ ε

2

(∫ +∞

−∞

µ2(ξ)

ξ2 + η
dξ

)
‖uj‖2L2(Ω) +

1

2ε

∫

Ω

∫ +∞

−∞
(ξ2 + η)|φj(x, ξ)|2 dξ dx

≤ ε

2
C(Ω)

(∫ +∞

−∞

µ2(ξ)

ξ2 + η
dξ

)
‖∇uj‖2L2(Ω) +

1

2ε

∫

Ω

∫ +∞

−∞
(ξ2 + η)|φj(x, ξ)|2 dξ dx,

∣∣∣∣
∫

Ω
ūjvj dx

∣∣∣∣ ≤ ‖uj‖L2(Ω)‖vj‖L2(Ω)

≤ ε

2
C(Ω)‖∇uj‖2L2(Ω) +

1

2ε
‖vj‖2L2(Ω),

∣∣∣∣
∫

Ω
ūjF

j
2 dx

∣∣∣∣ ≤
ε

2
C(Ω)‖∇uj‖2L2(Ω) +

1

2ε
‖F j

2‖2L2(Ω),

∣∣∣∣
∫

Ω
vjF

j
1 dx

∣∣∣∣ ≤
ε

2
‖vj‖2L2(Ω) +

1

2ε
‖F j

1‖2L2(Ω).

Choosing ε small enough, we conclude (3.60). Moreover, the equation (3.54)4 has a unique
solution

z(x, ρ) = e−iτ λ̃ρz(x, 0) + τe−iτ λ̃ρ
∫ ρ

0
e−iτ λ̃σF4(x, σ) dσ

= e−iτ λ̃ρv(x) + τe−iτ λ̃ρ
∫ ρ

0
e−iτ λ̃σF4(x, σ) dσ.

Then
‖z(x, ρ)‖L2(Ω×(0,1)) ≤ ‖v(x)‖L2(Ω) + τ‖F4(x, ρ)‖L2(Ω×(0,1)). (3.64)

Finally, (3.58), (3.60) and (3.64) imply that

‖U‖H ≤ C

for a positive constant C. The conclusion then follows by applying Theorem 3.5.1.

Remark 3.5.1 We can extend the results of this chapter to more general measure density
instead of (3.1), that is µ is an even nonnegative measurable function such that

∫ ∞

−∞

µ(ξ)2

1 + ξ2
dξ < ∞. (3.65)
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Chapter 4

EXPONENTIAL DECAY FOR THE
LAMÉ SYSTEM WITH
FRACTIONAL TIME DELAY AND
BOUNDARY FEEDBACK

4.1 Introduction

This chapter is devoted to the study of well-posedness and boundary stabilization of the Lamé
system in an bounded domain Ω of IRn with smooth boundary ∂Ω of class C2. We assume that
Γ = Γ0 ∪ Γ1, where Γ0 and Γ1 are closed subsets of Γ with Γ0 ∩ Γ1 = ∅.

The system is given by :

(P3)





utt − µ∆u− (µ+ λ)∇(div u) + a1∂
α,η
t u(x, t− τ) = 0 in Ω× (0,+∞),

u = 0 in Γ0 × (0,+∞),

µ
∂u

∂ν
+ (µ+ λ)(div u)ν = −a2ut(x, t) in Γ1 × (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,
ut(x, t− τ) = f0(x, t− τ) in Ω× (0, τ).

where µ, λ are Lamé constants, u = (u1, u2, ..., un)
T . Moreover, a1 > 0, a2 > 0 and the constant

τ > 0 is the time delay. ν stands for the unit normal vector of ∂Ω pointing towards the exterior

of Ω and
∂u

∂ν
is the normal derivative. The notation ∂α,η

t stands for the generalized Caputo’s

fractional derivative (see [12]) of order α with respect to the time variable and is defined by

∂α,η
t w(t) =

1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s)dw

ds
(s), ds 0 < α < 1, η ≥ 0.

One very active area of mathematical control theory has been the investigation of the delay
effect in the stabilization of hyperbolic systems. It is well known that an arbitrarily small delay

71
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can have a destabilizing effect to systems that are asymptotically stable in the absence of delay
(see [5], [16], [17], [22], [41], [39]).

In particular, the following boundary stabilization problem for the N-dimensional wave
equation with interior delay was studied In [5],

(PA)





utt(x, t)−∆u(x, t)− aut(x, t− τ) = 0 x ∈ Ω, t > 0,
u = 0 x ∈ Γ0, t > 0,
∂u

∂ν
= −kut(x, t) x ∈ Γ1, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ Ω,
ut(x, t) = g(x, t), x ∈ Ω, t ∈ (−τ, 0)

where the authors showed an exponential stability result under the usual Lions geometric con-
dition on the domain Ω, providing that the delay coefficient a is sufficiently small. However, if
the damping factor is larger than the delay factor then one can show exponential stability for
the wave equation.

In the absence of the delay in system (PA), that is for τ = 0, a large amount of literature
is available on this model, addressing problems of the existence, uniqueness and asymptotic
behavior in time when some damping effects are considered, such as: frictional damping, vis-
coelastic damping and thermal dissipation. Furthermore, in the case of absence of both of the
delay and danping, that is for a = 0 and k = 0, the asymptotic stability of (PA) has been
shown in [18] using the well-known Arendt-Batty- Lyubic-Vu Theorem. This is the best we
can obtain since it is possible to have eigenvalues arbitrarily close to the imaginary axis, see
for instance [19].

Moreover, the result in [5] was extended to the Timoshenko system in [44] (see also [20]),
where the authors studied a Timoshenko beam system given by two coupled hyperbolic equa-
tions, with delay terms in the first and second equation and two boundary controls, they proved
the exponential decay of the total energy.

To our best knowledge the Lamé system with internal fractional time delay terms is not
considered previously. Motivated by the above research, we will consider the Lamé with in-
ternal fractional time delays and boundary feedbacks (P ). The main objectives of the present
work are to establish the global well-posedness and exponential stability of system (P ).

The idea in this work is that a damping with time delay does not destroy the stability if
there is another boundary dissipative damping in which contrasts appropriately with the pre-
vious one. (i.e., by giving the control in the feedback form −a2ut(x, t) x ∈ Γ1, t > 0). We will
show that system (P3) is exponentially stable for a1 sufficiently small.

This chapter is organized as follows. In Section 2, we take advantage of the complete mono-
tonicity of the power function integral kernel to represent it as a superposition of exponentials
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and derive what we call the ”augmented model”, while in Section 3, we deal with the well-
posedness result of the problem using the semigroup theory. Lastly, in Section 4, we obtain
exponential stability results by constructing an appropriate Lyapunov functional as in [5].

4.2 Preliminaries

This section is concerned with the reformulation of the model (P3) into an augmented system.
For that, we need the following claims.

Theorem 4.2.1 (see [38]) Let µ be the function:

µ(ξ) = |ξ|(2α−1)/2, −∞ < ξ < +∞, 0 < α < 1. (4.1)

Then the relationship between the ’input’ U and the ’output’ O of the system

∂tφ(ξ, t) + (ξ2 + η)φ(ξ, t)− U(t)µ(ξ) = 0, −∞ < ξ < +∞, η ≥ 0, t > 0, (4.2)

φ(ξ, 0) = 0, (4.3)

O(t) = (π)−1 sin(απ)
∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ (4.4)

is given by
O = I1−α,ηU = Dα,ηU, (4.5)

where

[Iα,ηf ](t) =
1

Γ(α)

∫ t

0
(t− τ)α−1e−η(t−τ)f(τ) dτ.

Proof. From (4.2) and (4.3), we have

φ(ξ, t) =
∫ t

0
µ(ξ)e−(ξ2+η)(t−τ)U(τ)dτ. (4.6)

Hence, by using (4.4), we get

O(t) = (π)−1sin(απ)e−ηt
∫ t

0

[
2
∫ +∞

0
|ξ|2α−1e−ξ2(t−s)dξ

]
eητU(τ)dτ. (4.7)

Thus,

O(t) = (π)−1sin(απ)e−ηt
∫ t

0

[
(t− s)−αΓ(α)

]
eητU(τ)dτ

= (π)−1sin(απ)e−ηt
∫ t

0

[
(t− s)−αΓ(α)

]
e−η(t−τ)U(τ)dτ

(4.8)

which completes the proof. Indeed, we know that (π)−1 sin(απ) =
1

Γ(α)Γ(1− α)
.
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Lemma 4.2.1 (see [2]) If λ > 0 then

∫ +∞

−∞

µ2(ξ)

λ+ ξ2
dξ =

π

sinαπ
(λ+ η)α−1.

We are now in a position to reformulate system (P3). Indeed, by using Theorem 4.2.1,
system (P3) may be recast into the augmented model:

(P ′3)





utt − µ∆u− (µ+ λ)∇(div u)

+ζ
∫ +∞

−∞
µ(ξ)φ(x, ξ, t) dξ = 0 in Ω× (0,+∞),

∂tφ(x, ξ, t) + (ξ2 + η)φ(x, ξ, t)− z(x, 1, t)µ(ξ) = 0 in Ω× (−∞,∞)× (0,+∞),
τzt(x, ρ, t) + zρ(x, ρ, t) = 0 in Ω× (0, 1)× (0,+∞),
u(x, t) = 0 on Γ0 × (0,+∞),

µ
∂u

∂ν
+ (µ+ λ)(div u)ν = −a2ut(x, t) in Γ1 × (−∞,∞)× (0,+∞),

z(x, 0, t) = ut(x, t), in Ω× (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on Ω,
φ(x, ξ, 0) = 0 on Ω× (−∞,∞),
z(x, ρ, 0) = f0(x,−ρτ) in Ω× (0, 1),

where ζ = a1(π)
−1 sin(απ).

We define the energy of the solution by:

E(t) =
1

2

n∑

j=1

(
‖ujt‖2L2(Ω) + µ‖∇uj‖2L2(Ω) + ζ

∫

Ω

∫ +∞

−∞
|φj(x, ξ, t)|2 dξdx

)

+
ν

2

n∑

j=1

∫

Ω

∫ 1

0
|zj(x, ρ, t)|2 dρdx+

(µ+ λ)

2
‖div u‖2L2(Ω).

(4.9)

where ζ =
ν

2τI
, I =

∫ ∞

0

µ2(ξ)

ξ2 + η
dξ and ν is a strictly positive real number.

In order to establish the exponential energy decay rate, let us consider the usual geometrical
control condition: there exists a point x0 ∈ IR

n such that

m · ν ≤ 0 on Γ0 m · ν > 0 on Γ0,

where m = x− x0

The main result of this chapter is the following.
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Theorem 4.2.2 For any a2 > 0 there exist positive constants a0, C1, C2 such that

E(t) ≤ C1e
−C2tE(0), (4.10)

for any regular solution of problem (P3) with 0 ≤ a1 < a0. The constants a0, C1, C2 are
independent of the initial data but they depend on a2 and on the geometry of Ω.

4.3 Well-posedness

In this section, we give the existence and uniqueness result for system (P ′3) using the semigroup
theory. Let us denote U = (u, v, φ, z)T , where v = ut. The system (P ′3) can be rewrite as
follows: {

U ′ = AU, t > 0,
U(0) = (u0, u1, φ0, f0),

(4.11)

where A : D(A) ⊂ H → H is the linear operator defined by

A




u
v
φ
z


 =




v

µ∆u+ (µ+ λ)∇(div u)− ζ
∫ +∞

−∞
µ(ξ)φ(x, ξ) dξ

−(ξ2 + η)φ+ z(x, 1)µ(ξ)
−τ−1zρ(x, ρ)




(4.12)

and H is the energy space given by

H =
(
H1

Γ0
(Ω)

)n ×
(
L2(Ω)

)n ×
(
L2(Ω× (−∞,+∞))

)n ×
(
L2(Ω× (0, 1))

)n
.

where

H1
Γ0
(Ω) =

{
u ∈ H1(Ω) : u|Γ0 = 0

}
.

For any U = (u, v, φ, z)T ∈ H, Ũ = (ũ, ṽ, φ̃, z̃)T ∈ H, we equip H with the inner product defined
by

< U, Ũ >H=
n∑

j=1

∫

Ω
(vj ṽj + µ∇uj∇ũj) dx+ (µ+ λ)

∫

Ω
(div u)(div ũ) dx

+ζ
n∑

j=1

∫

Ω

∫ +∞

−∞
φj(x, ξ)φ̃j(x, ξ)dξdx+ ν

n∑

j=1

∫

Ω

∫ 1

0
z(x, ρ)z̃j(x, ρ)dρdx.

The domain of A is given by

D(A) =





(u, v, φ, z)T in H : u ∈
(
H2(Ω) ∩H1

Γ0
(Ω)

)n
, v ∈ (H1(Ω))

n
,

−(ξ2 + η)φ+ z(x, 1, t)µ(ξ) ∈ (L2(Ω× (−∞,+∞)))
n
,

z ∈ (L2 (Ω;H1(0, 1)))
n
,

µ
∂u

∂ν
+ (µ+ λ)(div u)ν + a2v = 0 on Γ1,

|ξ|φ ∈ (L2(Ω× (−∞,+∞)))
n
, v = z(., 0) in Ω





. (4.13)
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Remark 4.3.1 The condition |ξ|φ(ξ) ∈ (L2(Ω× IR))n is imposed to insure the existence of

−ζ
n∑

j=1

∫

Ω

∫ +∞

−∞
(ξ2 + η)|φj(x, ξ, t)|2 dξ dx and µ(ξ)φ(x, ξ) ∈ (L1(Ω× IR))n.

We show that there exists a positive constant c such that (A− cI) is dissipative.
Let U = (u, v, φ, z)T ∈ D(A), then

〈AU,U〉H = −a2
n∑

j=1

‖vj‖2L2(Γ1)
− ζ

n∑

j=1

∫

Ω
vj

∫ +∞

−∞
µ(ξ)φj(x, ξ) dξ dx

+ζ
n∑

j=1

∫

Ω
zj(x, 1)

∫ +∞

−∞
µ(ξ)φj(x, ξ) dξ dx− ζ

n∑

j=1

∫

Ω

∫ +∞

−∞
(ξ2 + η)|φj(x, ξ, t)|2 dξ dx

+
ν

2τ

n∑

j=1

‖vj‖2L2(Ω) −
ν

2τ

n∑

j=1

‖zj(x, 1)‖2L2(Ω)

≤ −a2
n∑

j=1

‖vj‖2L2(Γ1)
+

(
ζ2I

2ζ
+

ν

2τ

)
n∑

j=1

‖vj‖2L2(Ω)

≤
(
ζ2I

2ζ
+

ν

2τ

)
n∑

j=1

‖vj‖2L2(Ω)

This shows that (A− cI) is dissipative.

In the sequel, we claim that the operator A has the property R(λ̃I − A) = H for fixed
λ̃ > 0. Indeed, let F = (F1, F2, F3, F4)

T ∈ H, where Fi = (f 1
i , f

2
i , ..., f

n
i )

T , we must solve the
problem (λ̃I −A)U = F. for some U = (u, v, φ, z)T ∈ D(A). The equation becomes the system





λ̃u− v = F1(x),

λ̃v − µ∆u− (µ+ λ)∇(div u) + ζ
∫ +∞

−∞
µ(ξ)φ(x, ξ) dξ = F2(x),

λ̃φ+ (ξ2 + η)φ− z(x, 1)µ(ξ) = F3(x, ξ),
λz(x, ρ) + τ−1zρ(x, ρ) = F4(x, ρ).

(4.14)

Suppose u is found with the appropriate regularity. Then, (4.14)1 and (4.14)3 yield

v = λ̃u− F1(x) ∈
(
H1

Γ0
(Ω)

)n
(4.15)

and

φ =
F3(x, ξ) + µ(ξ)z(x, 1)

ξ2 + η + λ̃
. (4.16)

We note that the last equation in (4.14) with z(x, 0) = v(x) has a unique solution given by

z(x, ρ) = v(x)e−λ̃ρτ + τe−λ̃ρτ
∫ ρ

0
F4(x, r)e

λ̃rτdr. (4.17)

Inserting (4.15) in (4.17), we get

z(x, ρ) = λ̃u(x)e−λ̃ρτ − F1(x)e
−λ̃ρτ + τe−λ̃ρτ

∫ ρ

0
F4(x, r)e

λ̃rτdr, x ∈ Ω, ρ ∈ (0, 1). (4.18)
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In particular,

z(x, 1) = λ̃u(x)e−λ̃τ + z0(x), x ∈ Ω (4.19)

where for x ∈ Ω

z0(x) = −F1(x)e
−λ̃τ + τe−λ̃τ

∫ 1

0
F4(x, r)e

λ̃rτdr. (4.20)

In light of the above results, the function u satisfies the following equation

λ̃2u− µ∆u− (µ+ λ)∇(div u) + ζ
∫ +∞

−∞
µ(ξ)φ(x, ξ) dξ = F2(x) + λ̃F1(x). (4.21)

Then for any w ∈ (H1
Γ0
(Ω))n, it follows from problem (4.21) that such that

∫

Ω

(
λ̃2ujwj − µ∆ujwj

)
dx− (µ+ λ)

∫

Ω

∂

∂xj

(div u)wjdx+ ζ
n∑

j=1

∫

Ω
wj

∫ +∞

−∞
µ(ξ)φj(x, ξ) dξdx

=
∫

Ω
(F j

2 (x) + λ̃F j
1 (x))wjdx,

(4.22)
By using integration by parts, the boundary condition (4.13)4 and (4.16), we infer that





n∑

j=1

∫

Ω

(
λ̃2ujwj + µ∇uj∇wj

)
dx+ (µ+ λ)

∫

Ω
(div u)(div w) dx+ λ̃θ

n∑

j=1

∫

Ω
ujwje

−λ̃τ dx

+λ̃a2
n∑

j=1

∫

Γ1

ujwj dΓ =
n∑

j=1

∫

Ω

(
F j
2 (x) + λ̃F j

1 (x)
)
wj dx+ a2

n∑

j=1

∫

Γ1

F j
1 (x)wj dΓ

−ζ
n∑

j=1

∫

Ω
wj

(∫ ∞

−∞

µ(ξ)F j
3 (x, ξ)

ξ2 + η + λ̃
dξ

)
dx− θ

n∑

j=1

∫

Ω
wjz0(x) dx.

(4.23)

where θ = ζ
∫ +∞

−∞

µ2(ξ)

ξ2 + η + λ̃
dξ.

Problem (4.23) is of the form
B(u, w) = L(w), (4.24)

where B :
[
(H1

0 (Ω))
n × (H1

0 (Ω))
n
]
→ IC is the sesquilinear form defined by

B(u, w) =
n∑

j=1

∫

Ω

(
λ̃2ujwj + µ∇uj∇wj

)
dx+ (µ+ λ)

∫

Ω
(div u)(div w) dx

+λ̃θ
n∑

j=1

∫

Ω
ujwje

−λ̃τ dx+ λ̃a2
n∑

j=1

∫

Γ1

ujwj dΓ

and L : (H1
0 (Ω))

n → IC is the antilinear functional given by

L(w) =
n∑

j=1

∫

Ω

(
F j
2 (x) + λ̃F j

1 (x)
)
wj dx− ζ

n∑

j=1

∫

Ω
wj

(∫ ∞

−∞

µ(ξ)F j
3 (x, ξ)

ξ2 + η + λ̃
dξ

)
dx

−θ
n∑

j=1

∫

Ω
wjz0(x) dx+ a2

n∑

j=1

∫

Γ1

F j
1 (x)wj dΓ.
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It is easy to verify that B is continuous and coercive, and L is continuous. Consequently, by the
Lax-Milgram theorem, we conclude that for all w ∈ (H1

0 (Ω))
n
, the system (4.24) has a unique

solution u ∈ (H1
0 (Ω))

n
. By the regularity theory for the linear elliptic equations, it follows that

u ∈ (H2(Ω))
n
. Therefore, the operator (λ̃I −A) is surjective for any λ̃ > 0.

Consequently, using Hille-Yosida theorem, we have the following existence result:

Theorem 4.3.1 (Existence and uniqueness)

(1) If U0 ∈ D(A), then system (4.11) has a unique strong solution

U ∈ C0(IR+, D(A)) ∩ C1(IR+,H).

(2) If U0 ∈ H, then system (4.11) has a unique weak solution

U ∈ C0(IR+,H).

4.4 Proof of Theorem 4.2.2

The proof will be divided into the following several technique propositions.

Proposition 4.4.1 For any solution of problem (P3) the following estimate holds:

E ′(t) ≤ −a2
n∑

j=1

∫

Γ1

|ujt(x, t)|2 dΓ +
ζI + ντ−1

2

n∑

j=1

∫

Ω
u2
jt(x, t) dx

+
ζI − ντ−1

2I

n∑

j=1

∫

Ω

∫ +∞

−∞
(ξ2 + η)|φj(x, ξ, t)|2 dξ dx

(4.25)

Proof. Multiplying the first equation in (P3) by ujt, integrating over Ω and using integration
by parts, we get

1

2

d

dt
‖ujt‖22 − µℜ

∫

Ω
∆ujujt dx− (µ+ λ)ℜ

∫

Ω

∂

∂xj

(div u)ujt dx

+ζ
∫

Ω
ujt

∫ +∞

−∞
µ(ξ)φj(x, ξ, t) dξ dx = 0.

Then

1

2

d

dt

n∑

j=1

(
‖ujt‖2L2(Ω) + µ‖∇uj‖2L2(Ω)

)
+

(µ+ λ)

2
‖div u‖2L2(Ω) + a2

n∑

j=1

‖ujt‖2L2(Γ1)

+ζℜ
n∑

j=1

∫

Ω
ujt

∫ +∞

−∞
µ(ξ)φj(x, ξ, t) dξ dx = 0.

(4.26)
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Multiplying the second equation in (P ′3) by ζφj and integrating over Ω×(−∞,+∞), we obtain:

ζ

2

d

dt

n∑

j=1

‖φj‖2L2(Ω×(−∞,+∞)) + ζ
n∑

j=1

∫

Ω

∫ +∞

−∞
(ξ2 + η)|φj(x, ξ, t)|2 dξ dx

−ζℜ
n∑

j=1

∫

Ω
zj(x, 1, t)

∫ +∞

−∞
µ(ξ)φj(x, ξ, t) dξ dx = 0.

(4.27)

Multiplying the third equation in (P ′3) by νzj and integrating over Ω× (0, 1), we get:

ν

2

d

dt

n∑

j=1

‖zj‖2L2(Ω×(0,1)) +
ντ−1

2

n∑

j=1

∫

Ω

(
z2j (x, 1, t)− u2

jt(x, t)
)
dx = 0. (4.28)

From (4.9), (4.26) and (4.28) we get

E ′(t) = −a2
n∑

j=1

‖ujt‖2L2(Γ1)
− ζ

n∑

j=1

∫

Ω

∫ +∞

−∞
(ξ2 + η)|φj(x, ξ, t)|2 dξ dx

−ζℜ
n∑

j=1

∫

Ω
ujt

∫ +∞

−∞
µ(ξ)φj(x, ξ, t) dξ dx+ ζℜ

n∑

j=1

∫

Ω
zj(x, 1, t)

∫ +∞

−∞
µ(ξ)φj(x, ξ, t) dξ dx

+
ντ−1

2

n∑

j=1

∫

Ω
u2
jt(x, t) dx − ντ−1

2

n∑

j=1

∫

Ω
z2j (x, 1, t) dx.

(4.29)
Moreover, we have

∣∣∣∣
∫ +∞

−∞
µ(ξ)φj(x, ξ, t) dξ

∣∣∣∣ ≤
(∫ +∞

−∞

µ2(ξ)

ξ2 + η
dξ

) 1
2 (∫ +∞

−∞
(ξ2 + η)|φj(x, ξ, t)|2 dξ

) 1
2

.

Then
∣∣∣∣
∫

Ω
zj(x, 1, t)

∫ +∞

−∞
µ(ξ)φj(x, ξ, t) dξ dx

∣∣∣∣

≤
(∫ +∞

−∞

µ2(ξ)

ξ2 + η
dξ

) 1
2

‖zj(x, 1, t)‖L2(Ω)

(∫

Ω

∫ +∞

−∞
(ξ2 + η)|φj(x, ξ, t)|2 dξ dx

) 1
2

,

∣∣∣∣
∫

Ω
ujt(x, t)

∫ +∞

−∞
µ(ξ)φj(x, ξ, t) dξ dx

∣∣∣∣

≤
(∫ +∞

−∞

µ2(ξ)

ξ2 + η
dξ

) 1
2

‖uj(x, t)‖L2(Ω)

(∫

Ω

∫ +∞

−∞
(ξ2 + η)|φj(x, ξ, t)|2 dξ dx

) 1
2

.

Applying the Cauchy-Schwarz inequality we obtain (4.25).
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Proposition 4.4.2 For any regular solution of problem (P3) and for every ε > 0, we have

n∑

j=1

d

dt

{∫

Ω
[2m · ∇uj + (n− 1)uj] ujt dx

}

≤ −
n∑

j=1

∫

Ω

(
|ujt|2 + (µ− ε

2
C(P ))|∇uj|2

)
dx− (µ+ λ)

∫

Ω
|div u|2 dx

−ζ
n∑

j=1

∫

Ω
[2m · ∇uj + (n− 1)uj]

[∫ +∞

−∞
µ(ξ)φj(x, ξ) dξ

]
dx

+
n∑

j=1

∫

Γ1

((
‖m‖∞ +

(n− 1)2

2ε
a22 + 2

‖m‖2∞
δµ

a22

)
|ujt|2 −

(
µδ − δµ

2

)
|∇uj|2

)
dΓ

−(µ+ λ)δ
∫

Γ1

|div u|2 dΓ

where C(P ) is a sort of Poincaré constant, which is a positive constant depending on Ω and
independent of the solution u.

Proof. Differentiating and integrating over Ω we obtain

d

dt

{∫

Ω
[2m · ∇uj + (n− 1)uj] ujt dx

}
=
∫

Ω
[2m · ∇ujt + (n− 1)ujt] ujt dx

+
∫

Ω
[2m · ∇uj + (n− 1)uj]

[
µ∆uj + (µ+ λ)

∂

∂xj

(div u)− ζ
∫ +∞

−∞
µ(ξ)φj(x, ξ) dξ

]
dx

For u ∈ H2(Ω), we have the following Rellich’s identity

∫

Ω
∆uj(m · ∇uj) dx =

∫

Γ
(m · ∇uj)

∂uj

∂ν
dΓ−

∫

Ω
∇uj · ∇(m · ∇uj) dx.

∫

Ω

∂(div u)

∂xj

(m · ∇uj) dx =
∫

Γ
(m · ∇uj)(div u)νj dΓ−

∫

Ω
(div u)

∂

∂xj

(m · ∇uj) dx.
(4.30)

Hence

d

dt

{∫

Ω
[2m · ∇uj + (n− 1)uj] ujt dx

}
=
∫

Ω
[2m · ∇ujt + (n− 1)ujt] ujt dx

−ζ
∫

Ω
[2m · ∇uj + (n− 1)uj]

[∫ +∞

−∞
µ(ξ)φj(x, ξ) dξ

]
dx

2µ
∫

Γ
(m · ∇uj)

∂uj

∂ν
dΓ− 2µ

∫

Ω
∇uj · ∇(m · ∇uj) dx

+2(µ+ λ)
∫

Γ
(m · ∇uj)(div u)νj dΓ− 2(µ+ λ)

∫

Ω
(div u)

∂

∂xj

(m · ∇uj) dx

−(n− 1)µ
∫

Ω
|∇uj|2 dx+ (n− 1)µ

∫

Γ1

uj
∂uj

∂ν
dΓ

−(n− 1)(µ+ λ)
∫

Ω

∂uj

∂xj

(div u) dx+ (n− 1)(µ+ λ)
∫

Γ
uj(div u)νj dΓ

(4.31)
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Moreover, using the following identity

2∇uj · ∇(m · ∇uj) = 2|∇uj|2 +m · ∇(|∇uj|2)

and integration by parts, we get

2
∫

Ω
∇uj · ∇(m · ∇uj) dx = (2− n)

∫

Ω
|∇uj|2 dx+

∫

Γ
m · ν|∇uj|2 dΓ

2
n∑

j=1

∫

Ω
(div u)

∂

∂xj

(m · ∇uj) dx = (2− n)
∫

Ω
|div u|2 dx+

∫

Γ
m · ν|div u|2 dΓ.

(4.32)

Substituting (4.32) into (4.31), we get

n∑

j=1

d

dt

{∫

Ω
[2m · ∇uj + (n− 1)uj] ujt dx

}
=

n∑

j=1

∫

Ω
[2m · ∇ujt + (n− 1)ujt] ujt dx

−ζ
n∑

j=1

∫

Ω
[2m · ∇uj + (n− 1)uj]

[∫ +∞

−∞
µ(ξ)φj(x, ξ) dξ

]
dx

+2µ
n∑

j=1

∫

Γ
(m · ∇uj)

∂uj

∂ν
dΓ− µ

n∑

j=1

∫

Γ
m · ν|∇uj|2 dΓ

−(µ+ λ)
∫

Γ
m · ν|div u|2 dΓ + 2(µ+ λ)

n∑

j=1

∫

Γ
(m · ∇uj)(div u)νj dΓ

−µ
n∑

j=1

∫

Ω
|∇uj|2 dx− (µ+ λ)

∫

Ω
|div u|2 dx+ (n− 1)µ

n∑

j=1

∫

Γ1

uj
∂uj

∂ν
dΓ

+(n− 1)(µ+ λ)
n∑

j=1

∫

Γ
uj(div u)νj dΓ

(4.33)

Noting that ∇uj =
∂uj

∂ν
ν on Γ0, it follows that

n∑

j=1

d

dt

{∫

Ω
[2m · ∇uj + (n− 1)uj] ujt dx

}
= −

n∑

j=1

∫

Ω
|ujt|2 dx+

n∑

j=1

∫

Γ1

(m · ν)|ujt|2 dΓ

−ζ
n∑

j=1

∫

Ω
[2m · ∇uj + (n− 1)uj]

[∫ +∞

−∞
µ(ξ)φj(x, ξ) dξ

]
dx

+µ
n∑

j=1

∫

Γ0

m · ν|∇uj|2 dΓ + (µ+ λ)
∫

Γ0

m · ν|div u|2 dΓ

+2
n∑

j=1

∫

Γ1

(m · ∇uj)

(
µ
∂uj

∂ν
+ (µ+ λ)(div u)νj

)
dΓ− µ

n∑

j=1

∫

Γ1

m · ν|∇uj|2 dΓ

−(µ+ λ)
∫

Γ1

m · ν|div u|2 dΓ− µ
n∑

j=1

∫

Ω
|∇uj|2 dx− (µ+ λ)

∫

Ω
|div u|2 dx

+(n− 1)
n∑

j=1

∫

Γ1

uj

(
µ
∂uj

∂ν
+ (µ+ λ)(div u)νj

)
dΓ

(4.34)
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Since Γ1 is compact and m, ν are sufficiently regular,
there exists δ > 0 such that m(x) · ν(x) ≥ δ > 0, for all x ∈ Γ1. From (4.34) we deduce

n∑

j=1

d

dt

{∫

Ω
[2m · ∇uj + (n− 1)uj] ujt dx

}

≤ −
n∑

j=1

∫

Ω
|ujt|2 dx− µ

n∑

j=1

∫

Ω
|∇uj|2 dx− (µ+ λ)

∫

Ω
|div u|2 dx

−ζ
n∑

j=1

∫

Ω
[2m · ∇uj + (n− 1)uj]

[∫ +∞

−∞
µ(ξ)φj(x, ξ) dξ

]
dx

+‖m‖∞
n∑

j=1

∫

Γ1

|ujt|2 dΓ− µδ
n∑

j=1

∫

Γ1

|∇uj|2 dΓ− (µ+ λ)δ
∫

Γ1

|div u|2 dΓ

+2
n∑

j=1

∫

Γ1

(m · ∇uj)

(
µ
∂uj

∂ν
+ (µ+ λ)(div u)νj

)
dΓ

+(n− 1)
n∑

j=1

∫

Γ1

uj

(
µ
∂uj

∂ν
+ (µ+ λ)(div u)νj

)
dΓ

(4.35)
where we have used also m(x) · ν(x) < 0 on Γ0. We can estimate

2
∫

Γ1

(m · ∇uj)

(
µ
∂uj

∂ν
+ (µ+ λ)(div u)νj

)
dΓ

≤ δµ

2

∫

Γ1

|∇uj|2 dΓ + 2
‖m‖2∞
δµ

∫

Γ1

∣∣∣∣∣µ
∂uj

∂ν
+ (µ+ λ)(div u)νj

∣∣∣∣∣

2

dΓ

≤ δµ

2

∫

Γ1

|∇uj|2 dΓ + 2
‖m‖2∞
δµ

a22

∫

Γ1

|ujt|2 dΓ
(4.36)

Moreover,

(n− 1)
∫

Γ1

ūj

(
µ
∂uj

∂ν
+ (µ+ λ)(div u)νj

)
dΓ

≤ ε

2

∫

Γ1

|uj|2 dΓ +
(n− 1)2

2ε

∫

Γ1

∣∣∣∣∣

(
µ
∂uj

∂ν
+ (µ+ λ)(div u)νj

)∣∣∣∣∣

2

dΓ

≤ ε

2
C(P )

∫

Ω
|∇uj|2 dx+

(n− 1)2

2ε

∫

Γ1

∣∣∣∣∣µ
∂uj

∂ν
+ (µ+ λ)(div u)νj

∣∣∣∣∣

2

dΓ,

≤ ε

2
C(P )

∫

Ω
|∇uj|2 dx+

(n− 1)2

2ε
a22

∫

Γ1

|ujt|2 dΓ,
(4.37)

where we have used trace inequality and Poincaré’s theorem.

Remark 4.4.1 In the above inequality C(P ) is the smallest positive constant such that

∫

Γ1

|ϑ|2 dΓ ≤ C(P )
∫

Ω
|∇ϑ|2 dx, ∀ϑ ∈ H1

Γ0
(Ω).
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Then by using the Young inequality and the Sobolev-Poincaré inequality, we can easily get the
following corollary.

Corollary 4.4.1 For any regular solution of (P3)

n∑

j=1

d

dt

{∫

Ω
[2m · ∇uj + (n− 1)uj] ujt dx

}

≤ −
n∑

j=1

∫

Ω
|ujt|2 dx−

(
µ− ε

2
C(P )− ζ‖m‖2∞I − ζ

2
I(n− 1)2C(Ω)

)
n∑

j=1

∫

Ω
|∇uj|2 dx

−(µ+ λ)
∫

Ω
|div u|2 dx+

(
‖m‖∞ + 2

‖m‖2∞
δµ

a22 +
(n− 1)2

2ε
a22

)
n∑

j=1

∫

Γ1

|ujt|2 dΓ

+
3

2
ζ

n∑

j=1

∫

Ω

∫ +∞

−∞
(ξ2 + η)|φj(x, ξ, t)|2 dξ dx

−µδ

2

n∑

j=1

∫

Γ1

|∇uj|2 dΓ− (µ+ λ)δ
∫

Γ1

|div u|2 dΓ

Now, let us introduce the functional

S(t) =
n∑

j=1

∫

Ω

∫ 1

0
e−τρ|zj(x, ρ, t)|2d ρ dx

We can easily estimate

S ′(t) = 2
∫

Ω

∫ 1

0
e−τρzt(x, ρ, t)z(x, ρ, t)dρ dx

= −2

τ

∫

Ω

∫ 1

0
e−τρzρ(x, ρ, t)z(x, ρ, t)dρ dx

= −1

τ

∫

Ω

∫ 1

0
e−τρ d

dρ
|z(x, ρ, t)|2dρ dx

= −1

τ

∫

Ω
e−τ |z(x, 1, t)|2 dx+

1

τ

∫

Ω
|ut|2 dx−

∫

Ω

∫ 1

0
e−τρ|z(x, ρ, t)|2d ρ dx

≤ 1

τ

∫

Ω
|ut|2 dx− 1

τ
e−τ

∫

Ω
|z(x, 1, t)|2 dx− e−τ

∫

Ω

∫ 1

0
|z(x, ρ, t)|2d ρ dx

Let us introduce the Lyapunov functional

E(t) = E(t) + γ1
n∑

j=1

∫

Ω
[2m · ∇uj + (n− 1)uj]ujt dx+ γ2S(t).

where γ1, γ2 are suitable positive small constants that will be precised later on. Note that E(t)
is equivalent to the energy E(t) if γ1 is small enough. In particular, there exists a positive
constant C1 and suitable positive constants α1, α2 such that

α1E(t) ≤ E(t) ≤ α2E(t), ∀0 < γ1, γ1 ≤ C1. (4.38)
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Proposition 4.4.3 For every a2 > 0 there exist a0, c1, c2 such that for any solution of prob-
lem (P ) with 0 ≤ a1 < a0 we have

E(t) ≤ c1e
−c2t, t > 0. (4.39)

The constants a0, c1, c2 are independent of the initial data but they depend on a2 and on the
geometry of Ω.

Proof. Differentiating the Lyapunov functional E and using the propositions above we deduce

E ′(t) ≤
(
ζI + ντ−1

2
− γ1 +

γ2
τ

)
n∑

j=1

∫

Ω
|ujt|2 dx

−γ2e
−τ

n∑

j=1

∫

Ω

∫ 1

0
|zj(x, ρ, t)|2d ρ dx− γ2

τ
e−τ

n∑

j=1

∫

Ω
|zj(x, 1, t)|2 dx

+

(
ζI − ντ−1

2I
+

3

2
ζγ1

)
n∑

j=1

∫

Ω

∫ +∞

−∞
(ξ2 + η)|φj(x, ξ, t)|2 dξ dx

−γ1

(
µ− ε

2
C(P )− ζ‖m‖2∞I − ζ

2
I(n− 1)2C(Ω)

)
n∑

j=1

∫

Ω
|∇uj|2 dx

+

(
γ1‖m‖∞ + γ1a

2
2

(
2
‖m‖2∞
δµ

+
(n− 1)2

2ε

)
− a2

)
n∑

j=1

∫

Γ1

|ujt|2 dΓ

(4.40)

For a fixed a2 > 0 we want to choose ε, γ1, γ2 < C1 and a1 sufficiently small in order to obtain

E ′(t) ≤ −cE(t). (4.41)

Applying the second inequality of (4.38) estimate (4.39) easily follows. To show that (4.40)
implies (4.41) we simply need that

ζI + ντ−1

2
− γ1 +

γ2
τ

< 0,

ζI − ντ−1

2I
+

3

2
ζγ1 < 0,

µ− ε

2
C(P )− ζ‖m‖2∞I − ζ

2
I(n− 1)2C(Ω) > 0,

γ1‖m‖∞ + γ1a
2
2

(
2
‖m‖2∞
δµ

+
(n− 1)2

2ε

)
− a2 < 0.

For any a2 > 0 this last condition is satisfied for γ1 sufficiently small. It then remains to the
first and third conditions. For the first one, we need to assume that γ1 > γ2/τ 2, while for the
third equation we need to fix ε small enough such that

µ− ε

2
C(P ) > 0.

Then we now fix γ1, γ2 and ε and fulfilling the above requirements and look at the first equation
to the third equation as conditions on a1 and ν.



Conclusion

The summary provided below considers some problems for future research works that arise
from this dissertation.

The second chapter of this thesis, was devoted to study of the stabilization of the Lamé
system with fractional damping. The fractional velocity feedbacks considered has provided a
weaker damping than the velocity feedbacks. Therefore, no exponential decay was expected.
As for an interesting open problem, is to prove that the results obtained in this chapter hold
for the Lamé beam system with two boundary control conditions of fractional derivative type.

The study done in the third and the forth chapters can be approached from a different
angle under suitable conditions on the delay terms. Indeed, as to hyperbolic equations, like
ordinary differential equations, can have solutions that do not exist globally, these lasts are said
to ”blow-up” in finite time. Therefore, the interpretation of the blow-up of the solutions may
indicate a real phenomenon, or a failure of the physical model, this leads to physical problems
often posing more difficulties regarding the case of the instability of the system.

Although, the last chapter has dealt with the Lyapunov’s stability which is widely used
to control various systems and became nowadays, an indispensable tool for the study of all
systems. whether they are finite or infinite, linear or nonlinear, time-invariant or time varying,
continuous or discrete. Consequently, reproducing the result obtained in the forth chapter,
with a time-varying delay of fractional type would be very interesting.
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ary damping, Comput. Math. Appl, 77 (2019)-5, 1331-1346.

[11] A. Benaissa & S. Rafaa, Well-posedness and energy decay of solutions to a wave equation
with a general boundary control of diffusive type, Math. Nachr. 292 (2019)-8, 1644-1673.

[12] E. Blanc, G. Chiavassa & B. Lombard, Biot-JKD model: Simulation of 1D transient
poroelastic waves with fractional derivatives, J. Comput. Phys, 237 (2013), 1-20.

87



88 Bibliography

[13] A. Borichev & Y. Tomilov, Optimal polynomial decay of functions and operator semi-
groups, Math. Ann. 347 (2010)-2, 455-478.
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SIDI BEL ABBES, 14 - 15 Décembre 2019.

91


