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Chapter 1

Introduction

The thesis is devoted to the study of local existence and asymptotic behavior in time of
solutions with the presence of an external force (polynomial source) to nonlinear of the wave
equations . This polynomial source causes to prevent the global existence of solutions of
the problem unless additional conditions have been used. More precisely, the solution of the
problem tends to infinity when t tends to a finite value T. For this reason, the source term
is called a blow up term. On the other hand, the terms of dissipation are terms that tend
to stabilize the solution of the problem. There are several types of stabilization, we mention
the most famous of them
1) Strong stabilization: lim FE(t) = 0.

t—3+00
2 ) Uniform stabilization: if E(t) < Cexp(—dt), ¥t > 0, (C,d > 0).
3 ) Polynomial stabilization: if E(t) < Ct=°, Vt > 0, (C,§ > 0).
4) Logarithmic stabilization: if E(t) < C (In(¢))™, ¥t > 0, (C, 8 > 0).
5 ) Weak Stabilization: (u(t),u/(t)) — (0,0) when ¢ — +o00 in an Hilbert space.

So, the central question is ”which term wins over the other (term of dissipation or source
term)”? This central question has been in many works and is still important. The interaction
between the linear damping and the source terms was first considered by Levine [28, 30].
He proved that the solution blows up in finite time if the initial energy is negative. This
interaction has been extended to the nonlinear-damping by many researchers, we mention
them: Georgiev and Todorova [17], Messaoudi [22], Feng et al. [16], Guo et al. [19], Levine
and Serrin [29], Vitillaro [47], Kafini et al. [23].

In this thesis, we will establish the existence, the uniqueness of solution using the semi-
group theory .In order to prove the asymptotic behavior of the solution, we will introduce
suitable Lyapunov functionals. Finally, to show the blow-up of the solution in finite time,
we will use two methods: a diract methode in[32] and Georgiev and Todorova methode’s in
[17].

This Thesis is divided into 4 chapters.
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CHAPTER 1: PRELIMINARIES

This Chapter contends to present some well known results on functional spaces and some
basic definitions in addition to theorems. Furthermore, it intends to recall some results on
Maximal monotone operators and semigroup. Moreover, it aims to display a brief historical
introduction to fractional derivatives and define the fractional derivative operator as well as
present some physical interpretations. Finally, the study attempts to present an appendix
that contains almost all the secondary calculations used in this thesis.

CHAPTER 2: DECAY AND BLOW-UP OF SOLU-
TION FOR A NONLINEAR WAVE EQUATION WITH
A FRACTIONAL BOUNDARY DAMPING

In this Chapter, we consider the following nonlinear wave equation with fractional derivative
boundary and source terme:

Uy — Au + auy = |u|P~u, €N t>0,

u _ _ paon

81/ bat U, s E Fo,t > 07 (1‘1>
u =0, rzely,t>0,

w(z,0) =up(x), w(zr,0)=wu(z), xe€Q,

where a,b > 0, p > 2, and €2 is a bounded domain in R",n > 1 with a smooth boundary
00 of class C? and v is the unit outward normal to 9Q . We assume that 0 = I'o U I'y,
where Ty and T'; are closed subsets of 9Q2 with TN T’y = (). The notation 9, stands for the
generalized Caputo’s fractional derivative of order a (0 < av < 1), with respect to the time
variable(see [10, 11]). It is defined by the following formula:

1

¢
0y Mu(t) = m/o (t —s) "% "y (s)ds, 1 > 0.

Under suitable conditions on the initial data , we establish the existence and uniqueness of
solutions of the problem (1.1) and we prove a decay rate estimate for the energy. We also
prove that the solution blows up in finit time.

7
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CHAPTER 3:BLOW-UP AND ASYMPTOTIC BEHAV-
IOR FOR A WAVE EQUATION WITH A TIME DE-
LAY CONDITION OF FRACTIONAL TYPE

In this Chapter, we consider the following wave equation with a time delay condition of
fractional type and source terms:

(

v — Ay + a0 y(t — ) + agyy = [ylP Py, T€Q, t>0
y =0, red, t>0
(1.2)
y(@,0) = yo(z), we(x,0) = v (), z €,
L w(z,t—s) = folz,t —s), reQ, te(0,s),

where (2 is a bounded domain in R™ with a smooth boundary 0f2, a; and ay are positive
real numbers. The constant s > 0 is the time delay and p > 2. Moreover, (yo,y1, fo) the
initial data belong to a suitable function space. The notation 9}" P stands for the generalized
Caputo’s fractional derivative (see [10] and [11]) defined by the following formula:

1 t
O Pu(t) = ) /0 (t —s) % Py (s)ds, 0<a<1,p>0.

['(1—«

Under appropriate conditions on a; and as and suitable conditions on the initial data, we
establish the existence of solutions of the problem (1.2). Furthermore, we prove a decay rate
estimate for the energy. Finally, we show that the solution blows up in finite time.

CHAPTER 4: BLOW -UP OF SOLUTION FOR ELAS-
TIC MEMBRANE EQUATION WITH FRACTIONAL
BOUNDARY DAMPING

In this Chapter, we consider the following Kirchhoff equation with Balakrishnan-Taylor
damping, fractional boundary condition and source terms:

[ uy — (S0 + & || VUl + &(Vu, Vug)) Au = [ulP~lu, € Q,t >0,
(50 + 51HVUH3 + 52(vu>vut)> g_z = _ba?ﬂ?u, T € FOat > 07
(1.3)
u =0, zely,t>0,
[ w(@,0) =up(x), w(z,0)=ui(z), x € ),
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where  is a regular and bounded domain in R™, (n > 1) with smooth boundary 02 such
that 0Q =Ty UTy, [oNTy = 0 and I'y, I’y have positive measure. dv denotes the unit outer
normal and (.,.) the inner product with its corresponding norml||.||s. The functions u(z,t) is
the plate transverse displacement. The viscoelastic structural damping terms &y +&; || Vul|3+
& (Vu, Vu,) is the nonlinear stiffness of the membrane. &y, &1, & and b are positive constants.
The initial data (ug,u;) are given functions. From the physical point of view, problem (5.1)
is related to the panel flutter equation and to the spillover problem. The notation d}" P stands
for the generalized Caputo’s fractional derivative (see [10] and [11]) defined by the following
formula:

1 t
O Pu(t) = ) /0 (t —s) e Py (s)ds, 0<a<1,B>0.

I'l—«

Under suitable conditions on the initial data, we establish the blow up result.



Chapter 2

Preliminaries

In this chapter, we will introduce and state without proofs some important materials needed
in the proof of our results.

2.1 Functional Spaces

2.1.1 L*(Q2) Spaces

Definition 2.1.1 Let 1 < p < oo and let Q be an open domin in R"n € N; we set
LP(Q) = {f : Q — R is measurable and / |f(z)|Pdx < oo} . (2.1)
Q

Definition 2.1.2 We set

LOO(Q):{f:Q—HR

f is measurable and there is a constant C }

such that |f(z)] < C a.e On .

Lemma 2.1.1 The space LP(QY) equipped with the norm

hSAl

I llry = (Jo If (@) Pda)

[fllze@ = inf{C; [f(z)] < C aein Q}, forp=+o0

for p < 400

and

is a Banach space. In particular, the space L*(Q)) is a Hilbert space with respect to the inner
product

(f,9) 20 Z/Qf(x)g(x)dx.

Definition 2.1.3 We set
L () ={f:Q—=R: feL'(A) for all compact A C Q}.

10



Chapter 2 Preliminaries

2.1.2 L”(a,b; X) Spaces
Let X be a Banach space and a,b € R where a < b.

Definition 2.1.4 Let 1 < p < oo; we set
b
LP(a,b; X) = {f la, b[— X is mesurable and / I fI% dt < oo}

Definition 2.1.5 We set

[°(a,b; X) = {f Ja, b X’ f is measurable and there is a constant C }

such that sup,e(, ess| fllx < C

Lemma 2.1.2 The space LP(a,b; X) equipped with the norm

1
,, ;
Iy = (1A de)", Jorp < +oo
and

[fllze@nx) = SUD¢¢/q,b] ess|| fllx, forp=+4o0

is a Banach space. In particular, the space L*(a,b; X) is a Hilbert space with respect to the
inner product

(f, 9)r2@apx) 2/ (f(t),9(t)y dt.

Notation 2.1.1 Let 1 < p < 0o; we denote by q the conjugate exposent,

1 1
S4 =1
P q

Notation 2.1.2 We note that L>(a,b; X) = (L'(a, b; X))".

2.1.3 W"P(Q) Spaces

Definition 2.1.6 (Weak Derivative) A function f € L}, .(Q) has a weak derivative g =
Df € Lipe() 4f

/ggzﬁdm =— / fD%¢dz, for any ¢ € C;°(2).
Q Q

Definition 2.1.7 Let k € N, 1 < p < 00; we set
j=n

WHP(Q) = {f € LP(Q) such that 0*f € LP(Q) for all « € N¥, such that |a| = Zai < k} ,
i=1

where 0%u = 07" 05°...05u.

11
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Lemma 2.1.3 The Sobolev space W*?(Q) equipped with the norm

1/p
Wlwrre = (Sagm 10 ley) > forp < +oo
and

koo = > tal<m 0% fll L= (9), Jor p=+o0
1s @ Banach space. In particular, the Sobolev space
Wh2(Q) = HH(9)

18 a Hilbert space with respect to the inner product

(f.9)mry = Y (D*f,Dg)120) Vf, g € H* ().

| <k

Theorem 2.1.1 (Sobolev Embedding Theorem) Let Q) a bounded domain in R"™, (n > 1),
with smooth boundary 052, and 1 < p < 0.

L5 (Q) p<n
Whr(Q) C § LU(Q),q € [p, ), p=n
L=(Q) N CO(Q),a =22 p>n.

Furthermore, those embeddings are continuous in the following sense: there exists C'(n,p, <)

such that for u € Wt?(Q)

[l e < C|\Vull o), Vp < n
supglu| < C’.Vol(Q)%.HauHm(Q), Vp > n.

2.1.4 W*?(a b; X) Space
Let X be a Banach space and a,b € R where a < b.
Definition 2.1.8 Let k € N, 1 < p < oo ; we set

WHP(a,b; X) = {v € LP(a,b; X); g”

€ LP(a,b; X) Vi< k} .

7

Lemma 2.1.4 The Sobolev space W*?(a,b; X) equipped with the norm

1/p
k 0
W lwisene = (ol Zl) o+ forp <-+oo
and
k 0
HfHkaoo(a,b;X) = Zi:(] Ha_g{;

12

L>(a,b;X)> fOT p =+
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1s a Banach space. In particular, the Sobolev space
Wh2(a,b; X) = H*(a,b; X)

1s a Hilbert space with respect to the inner product

(f+ 9) rt (as ) Z/ (0352 axl(x))th.

2.2 Some Inequalities

We will give here some important inequalities. These inequalities play an important role in
applied mathematics and also, itis very useful in our next chapters.

Lemma 2.2.1 (Young’s inequality) For p,q € R and for all p,q € [1, 00| with %%—% =1, we
have: , )
<l b
p q

Remark 2.2.1 A simple case of Young’s inequality is the inequality for p = q = 2:

(@, (”
lab| < ~— 5T

which also gives Young’s inequality for all 6 > 0 :
b 2
lab| < §(a)? + %

Lemma 2.2.2 (Holder’s inequality) Assume that f € LP and g € L? with 1 < p < +o0.
Then fg € L' and

19l < 1 llzellgll Lo
when p =q = 2 one finds the Cauchy-Schwarz inequality.

Lemma 2.2.3 Letlﬁpﬁrﬁq,%Z%ﬂLl_Ta and 0 < a < 1. Then

1£gllz < AN Ngllze™.

2.3 Maximal Monotone Operators

In this section we recall some basic facts concerning bounded and unbounded linear operators
acting in a Hilbert space.

Let (E;||.|lg) and (F;||.||r) be two Banach spaces over C, and H will always denote a
Hilbert space equipped with the scalar product (.,.), and the corresponding norm ||.| z.

13
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Definition 2.3.1 A linear operator T : E — F' is a transformation which maps linearly E
m F, that is
T(au+ pv) = T (u) + T (v),Yu,v € E and o, € C.

Definition 2.3.2 A linear operator T' : E — F s said to be bounded if there exists C' > 0
such that
|Tul|r < Cllu||lg Yu € E.

The set of all bounded linear operators from E into F is denoted by L(E,F).
Moreover, the set of all bounded linear operators from E into E is denoted by L(E).

Definition 2.3.3 An unbounded linear operator T from E into F is a pair (T,D(T)), con-
sisting of a subspace D(T) C E (called the domain of T' ) and a linear transformation.

T:D(T)CE—F.

In the case when E = F then we say (T, D(T)) is an unbounded linear operator on E. If
D(T)=FE thenT € L(E,F).

Definition 2.3.4 Let T : D(T) C E — F be an unbounded linear operator. The graph of T
is defined by
G(T)={(u,Tu):ue D(T)} C E x F.

Definition 2.3.5 The unbounded operator T : D(T) C E — F is closed if its graph G(T)
is closed in E x F'.

Remark 2.3.1 The closedness of an unbounded linear operator T can be characterize as
following if u, € D(T) such that u, — u in E and Tu, — v in F, then v € D(T) and
Tu=nv.

Definition 2.3.6 An unbounded linear operator A : D(A) C E — F is said to be monotone
(or accretive) if it satisfies

(Av,v) >0 Yv e D(A).
Remark 2.3.2 A is a monotone operator < -A is a dissipative operator

Definition 2.3.7 An unbounded linear operator A : D(A) C E — F is said to be mazimal
monotone if

e A is a monotone operator.

o Vfe H Jue D(A) such that u+ Au= f.
The first properties of maximal monotone operators are given in the result below.
Proposition 2.3.1 Let A be a maximal monotone operator. Then

e D(A) is dense in H,

e A is a closed operator,

o For every A > 0, (I + NA) is bijective from D(A) onto H, (I + NA)™! is a bounded
operator, and
I+ AA) Ml < 1.

14
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2.4 Semigroups

Let (X;]|.||x) be a Banach spaces and H be a Hilbert space equipped with the inner product
(.,.)y and the induced norm ||| .

Definition 2.4.1 . Let X be a Banach space. and let I : X — X its identity operator.
1.A one parameter family (S(t))i>0 of bounded linear operators from X into H is a
semigroup of bounded linear operator on X if

e S(0)=1;
o S(t+s)=S5(t).S(s) for every t,s > 0.
2-A semigroup (S(t))i>o0 of bounded linear operators is uniformly continuous if

Lim [|S(t) — || = 0.

3. A semigroup (S(t))i>0 of bounded linear operators is a strongly continuous semigroup
(or a Cy-semigroup) if
lim S(t) = x.

t—0

4.A strongly continuous contraction semigroup (S(t))>0 on X is a strongly continuous

semigroup on X such that
1S®#) = Illex) <1 VWt >0.

5. The linear operator A defined by

Az = limm, Vax € D(A)
t—0 t
where s
D(A) = {x € X; ézng% em'sts}

is the infinitesimal generator of the semigroup (S(t))i>o-

Theorem 2.4.1 (Hille-Yosida Theorem: Lumer-Phillips from in Hilbert spaces)
Let A: D(A) C H — H be a linear operator. Then A is maximal monoton if and only if -A
1s the infinitesimal generator of a Cy semigroup of contraction on H.

Corollary 2.4.1 Let H be a Hilbert space and let A be a linear operator defined from A :
D(A) C H— H. If A is mazimal monotone then the initial value problem

u(t) + Au(t) =0, t >0,
(2.2)
u(0) = uyg

has a unique solution

such that

15
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e ifuy € H thenu e C([0,00), H);
e if ug € D(A) then u € C (|0,00), H) N C* ([0, 00), D(A)).

Corollary 2.4.2 Let H be a Hilbert space and let f : H x H — H be locally Lipschitz
continuous in u. If A is maximal monotone then 3T, € [0,00) such that the initial value
problem uy € D(A) the initial value problem

w(t) + Au(t) = f(t,u(t)), t>0,
(2.3)
u(0) = ug

has a unique solution u on
t
u(t) = S(t)ug —|—/ S(t—s)f(s)ds ¥Vt € [0,T,]
0
. such that

e ifuy€ H thenu e C([0,T)),H);
o ifug € D(A) thenu € C([0,T,), H)NC*([0,T.), D(A)).

2.5 Lax-Milgrame Theorem
Let H be a Hilbert space equipped with the inner product (., .),; and the induced norm ||. || 5.
Definition 2.5.1 A bilinear form

a:HxH—R

18 said to be

e continuous if there is a constant C such that

la(u, )| < Cllulllloll, Yu,v e H.

e coercive if there is a constant o > 0 such that

ja(u, w)] < allull?, Yue H.

Theorem 2.5.1 (Lax-Milgrame Theorem) Assume that a(., .) is a continuous coercive bi-
linear form on H. Then, given any L € L(H,C), there exists a unique element u € H such
that

a(u,v) = L(v), Yv € H.

16
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2.6 Fractional Derivative Control

In this part, we introduce the necessary elements for the good understanding of this manuscript.
It includes a brief reminder of the basic elements of the theory of fractional computation.
The concept of fractional computation is a generalization of ordinary derivation and inte-
gration to an arbitrary order. Derivatives of non-integer order are now widely applied in
many domains, for example in economics, electronics, mechanics, biology, probability and
viscoelasticity. A particular interest for fractional derivation is related to the mechanical
modeling of gums and rubbers. In short, all kinds of materials that preserve the memory of
previous deformations in particular viscoelastic. Indeed, the fractional derivation is intro-
duced naturally. The fractional calculus is an important developing field in both pure and
applied mathematics. Many real world problems have been investigated within the fractional
derivatives, particularly Caputo fractional derivative is extensively and successfully used in
many branches of sciences and engineering.

2.6.1 Some history of fractional calculus:

In a letter dated September 30th, 1695 L’Hospital wrote to Leibniz asking him about the
meaning of Z;—}{ if n = %, that is what if n is fractional?. Leibniz response: An apparent

paradox, from which one day useful consequences will be drawn In 1819 S. F. Lacroix , was the
first to mention in some two pages a derivative of arbitrary order.Thus for y = 2%, a € IR,,
he showed that

et €T 2
drz  D(1+3)
In particular he had
d 1 i
— )z =24/ —.
(dx)zx s

In 1822 J. B. J. Fourier derived an integral representation for f(x),

fla) = 5= [ f(@yda [ cospla =)y

obtained (formally) the derivative version
dl/
dzv

@) = 5= [ fteyda [ pcoslpla ) + Flap

where "the number v will be regarded as any quantity whatever, positive ornegative”.
In 1823 Abel resolved the integral equation arising from the brachistochrone problem, namely

L R/ C) N
)/0( =f(z), 0<a<l,

N r—u)t-e
with the solution ) 4 )
u
- - e[ W g4,
9(@) 'l —«)dx /0 (x — u)™ "

17
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Abel never solved the problem by fractional calculus but, in 1832 Liouville , did solve this
integral equation. Perhaps the first serious attempt to give a logical definition of a fractional
derivative is due to Liouville; he published nine papers on the subject between 1832 and 1837,
the last in the field in 1855. They grew out of Liouville’s early work on electromagnetism.
There is further work of George Peacock (1833), D. F. Gregory (1841), Augustus de Morgan
(1842), P. Kelland (1846), William Center (1848). Especially basic is Riemann’s student
paper of 1847 . After the participation of Riemann and the work of Cayley in 1880 |,
among the mathematicians spearheading research in the broad area of fractional calculus
until 1941 were S.F. Lacroix, J.B.J. Fourier, N.H. Abel, J. Liouville, A. De Morgan, B.
Riemann, Hj. Holmgren, K. Griinwald, A.V. Letnikov, N.Ya. Sonine, J. Hadamard, G.H.
Hardy, H. Weyl, M. Riesz, H.T. Davis, A. Marchaud, J.E. Littlewood, E.L. Post, E.R.
Love, B.Sz.-Nagy, A. Erdelyi and H. Kober. Fractional calculus has developed especially
intensively since 1974 when the first international conference in the field took place.lt was
organized by Bertram Ross . Samko et al in their encyclopedic volume state and we cite:
”"We pay tribute to investigators of recent decades by citing the names of mathematicians
who have made a valuable scientific contribution to fractional calculus development from
1941 until the present (1990). These are M.A. Al- Bassam, L.S. Bosanquet, P.L. Butzer,
M.M. Dzherbashyan, A. Erdelyi, T.M. Flett, Ch. Fox, S.G. Gindikin, S.L. Kalla, LA.
Kipriyanov, H. Kober, P.I. Lizorkin, E.R. Love, A.C. McBride, M. Mikolas, S.M. Nikol’skii,
K. Nishimoto, LI. Ogievetskii, R.O. O’Neil, T.J. Osier, S. Owa, B. Ross, M. Saigo, [.N.
Sneddon, H.M. Srivastava, A.F. Timan, U. Westphal, A. Zygmund and others”. To this
list must of course be added the names of the authors of Samko et al and many other
mathematicians, particularly those of the younger generation. Books especially devoted to
fractional calculus include K.B. Oldham and J. Spanier , S.G. Samko, A.A. Kilbas and
O.I. Marichev , V.S. Kiryakova , K.S. Miller and B. Ross , B. Rubin . Books containing
a chapter or sections dealing with certain aspects of fractional calculus include H.T. Davis
, A. Zygmund , M.M.Dzherbashyan , I.LN. Sneddon , P.L. Butzer and R.J. Nessel , P.L.
Butzer and W. Trebels , G.O. Okikiolu , S. Fenyo and H.W. Stolle, H.M. Srivastava and
H.L. Manocha , R. Gorenfio and S. Vessella.

2.6.2 Various approaches of fractional derivatives

There exists a many mathematical definitions of fractional order integration and derivation.

These definitions do not always lead to identical results but are equivalent for a wide large of

functions. We introduce the fractional integration operator as well as the two most definitions

of fractional derivatives, used, namely that Riemann-Liouville, Caputo and Hadamard.
From the classical fractional calculus, we recall

Definition 2.6.1 The left Riemann-Liouville fractional integral of order o > 0 starting
from a has the following form

(I F)(2) = / (o — 0 ().
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Definition 2.6.2 The left Riemann-Liouville fractional derivative of order a > 0 ending at
b > a is defined by

(2 f) () = / (z — oL F (1)t

Definition 2.6.3 The left Riemann-Liouville fractional derivative of order o > 0 starting

at a is given below ;
(D*f)(2) = (7)"(al"*f)(2), n=[a] + 1.

Definition 2.6.4 The right Riemann-Liouville fractional derivative of order a > 0 ending
at b becomes

(D3 £)(x) = (—o)" (I ) (x).

Definition 2.6.5 The left Caputo fractional of order o > 0 sarting from a has the following
form

(D)) = (1" f ") (2), n=lo] + 1.
Definition 2.6.6 The right Caputo fractional derivative of order e > 0 ending at b becomes
(Dpf) (@) = (L= (=1)" ) ().
The Hadamard type fractional integrals and derivatives were introduced in [?] as:

Definition 2.6.7 The left Hadamard fractional integral of order o > 0 starting from a has
the following form
1 X
(If)(z) = m/a (Inz — Int)* " f(t)dL.
Definition 2.6.8 The right Hadamard fractional integral of order o > 0 ending at b > a 1is
defined by

(1) () = ﬁ / (Int — Inz)™ f(£)dt.

Definition 2.6.9 The left Hadamard fractional derivative of orderr o > 0 starting at a is

given below

(D)) = (a4 (@l f) (), = [a] + 1.

Definition 2.6.10 The right Hadamard fractional derivative of order o > 0 ending at b
becomes

(D3 £)(&) = (=40 (1~ ) ().

Definition 2.6.11 the fractional derivative of order o, 0 < a < 1, in sense of Caputo, is
defined by
1 t df
D~ e t—s) “—(s)ds.
(D)) = ey | = oG
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Definition 2.6.12 The fractional integral of order o, 0 < «a < 1, in sense Riemann-

Liouwille, 1s defined by

1 t
I1°f)(x :—/ t— )21 f(s)ds.
1N = 7 | =970
Remark 2.6.1 From the above definitions, clearly
D*f=I"'Df, 0 < < 1.
Lemma 2.6.1
I°D*f = f(t) — f(0), 0 << 1.
Lemma 2.6.2 [f
DPf(0) = 0.

then
D*DPf =D*Pf 0<a<1, 0<pB <1,

Now, we give the definitions of the generalized Caputo’s fractional derivative and the
generalized fractional integral. These exponentially modified fractional integro-differential.

Definition 2.6.13 The generalized Caputo’s fractional derivative is given by

(D*f)(z) = L /t(t — s)_o‘e_”(t_s)ﬁ(s)ds, O<a<l n>0.
) Jo

I'l —« ds

Remark 2.6.2 The operators D and D™" differ just by their kernels.

Definition 2.6.14 The generalized fractional integral is given by
1

(If)(z) = 5 /Ot(t —5)* e f(s)ds, 0 << 1, >0,

(o)

2.7 Appendix

Lemma 2.7.1 Let § >0 and B (t) € C*(0,00) ba a nonnegative function satisfying

B"(t)—4(6+ 1)B' (t)+4(6 + 1)B (t) > 0.
If
B'(0) > ryB (0) + o,

then
B’ (t) > l()7

(2.4)

(2.5)

for t > 0, where ly is a constant, ro = 2(§ + 1) — 2,/(0 + 1)d, is the smallest root of the

equation
r? =46+ )r+4(5+1) =0.
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Proof Let rq be the largest root of r* —4 (6 + 1) 7 +4 (6 + 1) = 0. Then (2.4) is equivalent

(% _ 7“1) <% _ 7«2) B(t) > 0. (2.6)

By integrating (2.6) from 0 to ¢, we get
B' (t) > ryB (t) + (B'(0) — r,B(0))e"™.

By (2.5), we get
B'(t) > Iy for t > 0.

Lemma 2.7.2 If J(t) is a non-creasing function on [ty,00), to > 0 and satisfies the
differential inequality
J (1) > a+0bJ (t)*T5 fort > t, (2.7)

where a > 0, b € R, then there exist a finite time T™ such that

lim J(t) =0,

t—T*—

and the upper bound of T™ is estimated, respectively, by the following cases :

i) ifb<0 and J(ty) < min{l,\/a/(—b)} then

1 vV
T <ty+ In — . (2.8)
RV V55— J(to)
it ) If b= 10, then
J(t
T <ty+ \(/g). (2.9)
@i ) If b> 0, then
7 < Jt)
T Va
or 5
c 1
T* <ty + 23%1% (1 [+ cJ(tO)]z«s) , (2.10)
where
b\ 9/(2+9)
c= (_) |
a
Proof
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i)

i)

iii )

Since /2 — d?> > ¢ —d for ¢ > d > 0, we have from (2.7),
J (t) < —va+V=bJ (t) for t > t,.
Thus we get

J(t) < (J(to) - \/—7%) e(tto)V=h o _T“

Hance there exists a positive T* < oo such that lim J(t) = 0, and an upper bound
t—T*—
of T* is given by (2.8)

When b = 0, from (2.7), we get
J(t) < J(tg) — Va(t —ty) for t > t.
Thus there exists 7™ < oo such that li;n J (t) = 0, and an upper bound of T* is
t—T*—
given by (2.9)

When b > 0, we get from (2.7)

7)< ol + (e (1),
1
where ¢ = (%)2+5 .
By using the inequality
m? 4+ n? > 2'79m +n)? form, n>0and ¢ > 1,

with ¢ =2 + %, we obtain

T (1) < —va2 "5t (14 e (1)) (2.11)

By solving the differential inequality (2.11), we get

—26
J(t) < l {_1 + {(1_{_&] (to))%al + g2(2‘5§+1) (t—to)] }

Cc c

Hance there exists 7% < oo such that lim J(t) = 0, and an upper bound of 7% is
t—T*—
given by (2.10)

Lemma 2.7.3 We set the constant

2sin (am)T(5 + 1)
+1

0= 1
T2
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and p be the function:

(2a—1)
2

w(€) = [¢] , EeR, 0<ax<. (2.12)

Then the relationship between the "input” U and the "output” O of the system

p(E, 1) + (E2+m)o(€,1) —U)u(€) =0, E€R, £>0, n >0, (2.13)
$(£,0) =0, £ €R, (2.14)
0t) = o [ o(é. o6t (2.15)
R
18 given by
O=1""U. (2.16)

Proof  Solving equation (2.13), we obtain

t
ole.t) = [ e Iy (2.17)
0
If follows from (2.15) that
t 2
O(t) = /0 U(r) /R €2 em ISPt ¢ qr. (2.18)
_ sin(am) 1 1 3 _
Now using the fact that T T@Ti—a) and I'(1 + 3) = %, we obtain
Ot) = e / U / Pt e dedr
()1 —a) Jo R
1 t .
e /0 U(r)(t — 1) e 77 (with &2t — 1) =) >19)
= [Ny (t).
This completes the proof [ |

Lemma 2.7.4 Letn > 0. For any real number A\ > —n,we have

e .o o
/_OO )\+n—|—§2d£_sin(om)()\+n) E
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Proof A direct computation gives

f+°° 1 (€) d¢ :f+°° g2t d¢

=00 An+E? oo A+n+E?

_ (oo aod e
= Jo /\+v7+rdx with & =«

=(A+n)ot 1+oo y N (y—1)"1dy (with y= ﬁ? +1)

a1 (1l —a a— - _
=A+n)* [y 21— 2)*ldz (Wlthz-%)
=A+n) 7Bl -a,a)

= A +n)>'T(1 — a)l(«a)

=+ sin(am)
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Chapter 3

General decay and blow-up of solution for a nonlinear
wave equation with a fractional boundary damping

3.1 Introduction

Fractional calculus for partial differential equations has received great attention during the
last two decades. Too many physical phenomena are successfully modeled by initial bound-
ary value problems with fractional boundary conditions. Boundary dissipations of fractional
order can be encountered in many fields of sciences and are widely applied in most instances
chemical engineering, biological, ecological and physical phenomena related to electromag-
netism. See Magin [34], Tarasov [42], and Valério et al [46].

In fact, most of the problems related to boundary dissipations of fractional order are about
asymptotic stability by using the LaSalle’s invariance principle and multiplier techniques
combined with the frequency domain method, see [34, 3, 2, 14, 38]. Of course, the first step
to do this is to write the equations as an augmented system as in [38]. In this context, Akil
and Wehbe [3], discussed the following problem:

Uy — Au =0, re, t>0,
ou oy, zely, t>0, 120, 0O<a<l,
u =0, rely, t>0,

u(z,0) = ug(x), u(x,0) =uy(z), x €.

They proved the stability using the semigoup theory of linear operators and a result obtained
by Borichev and Tomilov.

In this work [38], Mbodje studies the decay rate of the energy for the same problem.
Using the energy methods, he proved the strong asymptotic stability under the condition
n = 0 and a polynomial type decay rate E(t) < %, if n > 0. In this paper we first consider
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the following nonlinear wave equation

g — Au + auy = |ul|Pu, x €N t>0,

ou __ o

W —bat nu, T € Fo,t > 0, (31>
u =0, zely,t>0,

u(z,0) = ug(x), u(x,0)=ui(z), =€,

where a,b > 0, p > 2, and 2 is a bounded domain in R™",n > 1 with a smooth boundary
0 of class C? and v is the unit outward normal to 92 . We assume that 9Q = 'y U Ty,
where Ty and T'; are closed subsets of 92 with ToNT'y = (). The notation 9,7 stands for the
generalized Caputo’s fractional derivative of order «, (0 < o < 1), with respect to the time
variable (see [10, 11]). It is defined as follows:

1 t
0y "Mu(t) = ] /0 (t —s) e "y (s)ds, n >0,

Nl -«

We recall some results related to wave equation with a mild internal dissipation

u(x,t) — Au(z, t) + aug(x, t) = g(x,t), xeQt>0,
Su(x,t) + f(f K(z,t — s)us(z, s)ds = h(x,t), = €Tyt >0,
up(z,t) =0 xely,t>0,
u(z,0) = ug(x) u(x,0) =uy(z) x €.

In their study, Kirane and Tatar [24] considered and proved the above equation, the global
existence and Exponential decay of the problem. In other work, the authors proved the global
non-existence of the problem [26]. In particular Alabau and al [5]. studied the homogeneous
case and established a polynomial stability result of the problem. Exponential decay of the
problem was showed in Alabau [4]. When f(f K(z,t — s)us(x, s)ds is replaced by 0fu(x,t)
and h(z,t) is replaced by |u|™ 'u(z,t) , Dai and Zhang [14] proved the exponential growth
of the problem. According to our last Knowledge, we are the first to prove the exponential
stability and the blow up of solutions in finite time for the case of nonlinear wave equation
with fractional boundary damping by suing the augment system.

In this paper, we prove under suitable conditions on the initial data the stability of wave
equation with fractional damping we have based on the construction of a Lyapunov function.
This technique of proof was recently used by Draifia and al [15] to study the exponential
decay of a system of nonlocal singular viscoelastic equations. For some restrictions on the
initial data that nonlinear source of polynomial type is able to force solutions to blow-up in
finite time, here are three different cases on the sign of the initial energy are considered that
have been recently used by Zarai and al [52] to study the blow up for a system of nonlocal
singular viscoelastic equations.

The paper is organized as follows. In Sect. 2, we reformulate our problem (3.1) into an
augmented system and give some lemmas and notations. In Section 3, we prove the existence
and uniqueness of weak solutions using the Hille-Yosida Theorem. In Section 4, we prove
the global existence using the potential well theory. In Sect. 4 we prove the general decay
result. In Sect. 5, we state and prove blow up result that is also based on a direct method.
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3.2 Preliminaries

In this section we give various notations and lemmas which will be desired in the proof of
our results.
We introduce the set

HE () = {ue H(Q),ulr, =0},
where u|r, is in the trace sense. And
N = {w e Hy|I(w) >0} U{0}.

Lemma 3.2.1 ( Sobolev-Poincaré Inequality.See [35]). If either 1 < q < 400 (N=2) or

1<¢g< %, (N > 3). Then there is a constant C, such that

[ullgs < CullVulla, — for  w € Hy(Q).

Where

_ [l g+1 |
C, = sup { Vull,’ \ue Hy(Q),u#0,,

is positive and finite.
Lemma 3.2.2 (See [1]) The trace -Sobolev embedding is given for

2(n—1)

2<p<
P> n—2

(3.2)
by

H} () < LP(Ty).
It this case, the embedding constant is denoted by By, i.e.,

[ullpre < Byllull2-
Lemma 3.2.3 (See[32]) Let § > 0 and B(t) € C?(0,00) be a nonnegative function satisfying
B"(t) —4(6 +1)B'(¢t) + 4(6 + 1)B(¢t) > 0.

If
B/(O) > TgB(O) + lo,
then
B'(t) > lo.

For t > 0, where ko is a constant, 1o = 2(0 + 1) — 2,/(d + 1)d, is the smallest root of the
equation
72— 45+ 1)r+ (6 +1) = 0.
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Lemma 3.2.4 (See[32)) If J (t) is a non-creasing function on [tg,00), to > 0 and satisfies
the differential inequality

T 0> a+bJ ()7, t> 1,

where a > 0, b € R, then there exist a finite time T such that

lim J(t) =0,

t—=T*—

and the upper bound of T™* is estimated, respectively, by the following cases :

(i) if b < 0 and J(t;) < min {1, a/(—b)} then

\/_I

i 1
Fstot s om T
(ii) If b =0, then
T <ty+ Jf/tg)'
(iii) If b > 0, then
or
T <ty + 23523’1% (1 -1+ CJ(tO)]%> ’

where

b 5/(249)
=(2)
Q

Definition 3.2.1 A solution u of (3.1) is called blow-up if there exists a finite time T* such
that

lim (||Vu|2) ™ = 0.
Lim ([[Vull)
Theorem 3.2.1 (See [38]) We set the constant

o= (m) 'sin (ar),

and p be the function:

(2a—1)
2

n(&) = [€] , £€R, O<a<l
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Then the relationship between the “input” U and the "output” O of the system

Q&) + (€ +m(&, 1) — UL, )u(§) =0, Rt > 0,7 >0, (3.3)
$(£,0) =0, { eR, (3.4)
+oo

O(t) = e O, )u(€)ds, § €R,t >0,

18 given by
O = I,

1 t
"0 = —/ t— ) Le =)y (s)ds.
o) J, (t—s) (

where

Lemma 3.2.5 [2] Let n > 0. For any real number A\ > —n,we have

o o -
/_OO )\+7]+§2d£_sin(om)()\+n) -

We are now in a position to reformulate system (3.1). Indeed, by using Theorem 3.2.1,
system (3.1) may be recast into the augmented model:

(g — Au+ auy = |JulP?u, r €N t>0,
P&, 1) + (€ + )€ 1) — wi(w,t)u(§) =0, x €T, & € Rt >0,
b = —bi 1T (& Du(E)de, r€lgEERE>0, o
u =0, $€F1,t>0,
u(z,0) = ug(x), u(z,0)=wu(x), x €€,
\ ¢(§70):07 £ eR,

where by = pb. We define the energy associated to the solution of the problem (3.5) by the
following formula:

1 1 1 b teo
B(O) = 5luld+ 5IValg—ulp+ 2 [ [ o€ orad. o)
2 2 p 2 I'yg J—o0

Lemma 3.2.6 Let (u,¢) be a regular solution of the problem (3.5). Then, the energy func-
tional defined by (3.6) satisfies

d

+oo
B0 =—aluli=b [ [ miotenPasdp <o 1)

Proof Multiplying the first equation in (3.5) by wu, integrating over €2 and using integration
by parts, we get

1d

5%”%”3—/Auutdx+a||ut||gz/|u|p_2uutd:v.
Q Q

29



Chapter 3 General decay and blow-up of solution

Then
& [Yual + 319wl - Lulz]
(3.8)
+al|ut|’g + bl fFo ut(xat) fj_oooo M(£)¢<€7t)d£dp =0.

Multiplying the second equation in (3.5) by b1¢ and integrating over I'y X (—o0, +00), to

obtain: .

B [o SO N t)Pdedp + by [ [17 (€2 4 m)|o(€, 1) 2dEdp

(3.9)

~b1 fr, il t) [13 (€)e(E, )dédp = 0.
From (3.6), (3.8) and (3.9) we get

d too

B0 =l =t [ [ miote nasdp <o
This completes the proof of the lemma. |

3.3 Well-posedness

In this section, we give an existence and uniqueness result for problem(3.5) using the
semigroup theory. In traducing the vector function U = (u,v,$)’ where v = u; and let
J(U) = (0, |uP~2u,0)", system (3.5) is equivalent to:

Ue(t) + AU(t) = J (U (1)) ,
(")
Up = (uo, u1, ¢0)T7

where the operator A is defined by
—v

AU = | —Au+av : (3.10)

(& +me(z, &) — v(z)u()
We denote by H the energy space associated to system:

H = HE (Q) x L*(Q) x L*(Ty x (—o00, +00)),

where
Hp () ={ue H(Q),u/T1 =0}.
For U = (u,v,¢)" € H and U = (4,9, $)" € H, we define the following inner product in H

“+oo

<U,U>H:/Q [Vu.Vi + v da:+b1/ oz, &) d(x, €)dEdp.
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The domain of the operator A is then
UeH:ue H(Q)NH.(Q), veH (Q),
(&% +n)¢ — v(z)p(§) € L*(Ty x (—00, +00)),
D(A) = . 0 : 3.11
W=Y 0 2 b [ (e nue)ds =0, on T, (3.1)
|€]¢p € L3(Ty x (—o0, +00)).
Then, we have the following local existence result.

Theorem 3.3.1 Suppose that (3.2) holds. Then for any Uy € H, problem (3.5) has a unique
weak solution U € C ([0,T),H), where T is small.

Proof  First, for all U € D(A), using (3.10)and (3.7), we have

+oo
AUV = alll+b [ 6+ n)lota,o)Pdedp >

Therefore, A is a monotone operator.
To show that A is maximal operator, we prove that for each F' = (fy, fo, f3)© € H, there
exists U = (y,u, »)T € D(A) such that (I + A)U = F. That is,

U—v= fl)
(14 a)v — Au = fo, (3.12)

¢+ (& +m)e — v(@)u&) = f5(8).
Using equations (3.12)3, (3.12); and the fact that n > 0, we have

f3() w@)p(§) — filz)pE)
€2+77+1+€2+n+1_£2+n+1’vwero‘ (3.13)

¢(§) =

Inserting the equation (3.12); into (3.12)y, we get
(14+a)u—Au= fo+ (1 +a)fi, (3.14)
Now, solving equation (3.14) is equivalent to finding u € H*(Q) N H{ () such that
/ (14 a)u — Au]wdz = / [fo+ (14 a)fi] wdz, (3.15)
Q Q
for all w € H} (Q). By using (3.15),(3.11)3 and (3.13) the function u satisfying the following

system
Jo [+ a)uw + VuVw]dz + by [ uwdp

= Jo(f2+ (1 +a)fi) wdz + b fr‘o Jrwdp (3.16)
+o00
—b fro w7 ’22+{73+51)d£dp,
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where by = by [~ +;O gé‘ +£7€J)r1 d¢. Consequently, problem (3.16) is equivalent to the problem

B(u,w) = L(w). (3.17)

where the sesquilinear form B : H}\ (Q) x Hf (€2) — R and the antilinear form L : H} () —
R are defined by

B(u,w) = / [(1+ a)uvw + VuVw] dz + by / uwdp
Q

o

and
Jo (f2 + (14 a) fr) wdz + by fl“o frwdp

—b, fFO wf+°° (&) f3(8) dfdp

oo 4+l

It is easy to verify that B is continuous and coercive, and L is continuous. Consequently, So
applying the Lax-Milgram theorem, we deduce that for all w € H{. () system (3.17) admits
a unique solution u € H[. (Q). In particular, setting w € D(Q2) in (3.17), we get

(I4+a)u—Au=fo+ (1+a)f; € D'(Q), (3.18)
As fo+ (1 +a)f; € L*(Q),using (3.18), we deduce that
(1+a)u—Au= fo+ (1+a)fi € L*(Q).

Due to the fact that u € H}. () we get Au € L*(Q2), and we deduce tha v € H} (Q)NH?*(Q).
Consequently, defining v = u — f; € Hp () and ¢ by (3.13), we deduce that U € D(A).
Consequently, I + A is surjective and then A is maximal.

Finally, we show that J : H — H is locally Lipschitz. So,

| J(U) - = [|(0, ululP~2 — alal*=2,0)|3,

I
= ||ululr~2 — afulP~|| g,
= [o [JuP~%u — |alP~af” da.
As a consequence of the mean value theorem, we have, for 0 < 0 <1
17(U) = JO)I3; = [T (Ou+ (1 = O)a)(u — @)]7.
=(p—1)? [, |0u+ (1 — 0)a®H|u — u|*dx.

Using Holder’s inequality, we have

Hﬂvwnxwuisuwwf([yu—MMQi(AWu+u—ﬂmﬂ%mMﬁé,§+§=1
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with v = —#5 and J = 3. So,

|J(U) = J(O)|],, <(@-1)? (fg u — a7z ) (f,, 16w + (1 — 0)a["=2da) *
<= 1=l L, 110u+ (1= 0)a [ty (3.19)

_ 2(p—2)

As u,u € H}l(Q), then by using the Sobolev embedding, we get

| — ﬂ”ﬁ%m) < C|Vu— Vil g <CU-T|,. (3.20)

2(n—1

since p < 2),then we have n(p — 2) < 2% So, by using the Sobolev embedding, we get

||u||Ln(P*2)(Q) <C ||u||H%1(Q) : (3.21)
Therefore, by combining (3.19)—(3.21), we obtain
l7@) = 2[5, < Clllullag, @) + lll gy (@)~ U = U1l -

Therefore, J is locally Lipchitz. Thanks to the theorems in Komornik [27] (See also Pazy
[41]), the proof is completed. |

3.4 Global existence

This section is concerned with the proof of the global existence of the solution of problem
(3.5). We introduce the following functionals:

+oo
1) = IVall =l +00 [ [ ot o dsap (3.22)

1 o Lo, b +eo 9
J(t) = SIVully = —flull; + = |6, 1) ddp.
2 p 2 T'g J—00

Lemma 3.4.1 Suppose that (3.2) holds. Then for any (ug,u1, o) € D(A), satisfying

and

p—2
2

](U‘O) > 07
we get u(t) € N, Vt e [0,T).
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Proof  Because I(ug) > 0, then there exists 7% < T', such that I(u) > 0, for all ¢ € [0, 7).
This implies:
IVull3 < 55J(1), Vte[0,T7)

= p-2
(3.24)
< 2 E(0).
Using (3.23), (3.24) and the Poincare inequality, we get
lullp < C2[Vully
(3.25)

p—2
s

<Cr (ZE0) 7 [Vl

Hence [|[Vul|3 — [lul[} > 0,¥t € [0,T*) this shows that u € R, V¢ € [0,7*). By repeating this
procedure, T* is extended to T. [ |
We are now ready to prove our global existence result.

Theorem 3.4.1 Suppose that (3.2) holds. Then for any (ug,ui,¢g) € D(A), satisfying
(8.23), the solution of system (3.5) is bounded and global.

Proof By (3.7), we have

E(0) 2 E(t) = jllwll3+ 51Val3 = Lluls+ % fi, SO o6 6)Pdsdp

(3.26)
= Yl + B2Vl + 2100 + 202 L [T [6(&, 1) *dedp.
Since I(t) > 0, therefore
“+oo
Jull+ el + 00 [ [ ot OPdedp < 1B,
I'g J—00
where C} = max{2, p%, %}. [

3.5 Decay of solutions

In order to establish the energy decay result. Let us constructing a suitable Lyapunov

functional as follows:
6261

L(t) = e1B(t) + exu(t) + —~4(?), (3.27)

where €; and €, are positive constants and

Pi(t) = [ uude,

Ualt) = i, 1€ + ) (i 006 9)ds) dedp
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Lemma 3.5.1 Let (u,®) be a regular solution of the problem (3.5). Then the equality

oy T2+ m)o(&.1) [y (&, s)dsdEdp =

Jog ula,t) [72 o6 &) dedp — [, [72716(&, 1)|Pdédp,
holds.
Proof It is clear that by using (3.5),, we get
(& + (1) = w(z, (&) — dhp(€,t), Vo €Ty, (3.28)

A simple integration of ( 3.28) between 0 and t, and use the equation 3 and 6 of the system
(3.5), leads to

/0 (€ 1 n)d(E, 5)ds = ulw, yul€) — $(€,1), Y € Ty,

thus,

€+ 0) [ 0lesds = ule Ou(©) ~ 96,0, VaeTy (3.29)
Multiplying (3.29) by ¢ and integrating over I'g X (—00, +00), we obtain

o JE2(E +m)d(&.1) [y (&, s)dsdEdp =

ooz, t) [77 (& &) dedp — [ [ 168, 1) *dedp.
[ ]

Lemma 3.5.2 Let (u,¢) be a regular solution of the problem (3.5), then there exists two
positive constants C,Cy such that

+oo
a(t)] < / / 16(6,1)Pdedp + G| Vul 2 (3.30)

Proof  Using (3.29), we get
[ o s = HED MmO
0

&+ £+
Then ) ) .
(& O | Julz, O p(€)  o(& Dulz, t)uE)
= -2 . 3.31
([oteom) =@+ R 331
Multiplying (3.31) by £* + 1 and integrating over T'y X (—o0, +00), we easily get

[at)] < Jp, JO3 AR dedp + fi, lur D [ e dedp (3.32)

+o00 |p(&,H)u(x,t
+2fF0f |#( )5 +77)H ‘dﬁdp
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To estimate the last term in (3.32), we use Young’s inequality, we arrive to:

+oo [$(& ) u(z,t)u(8)| Foo 1660 [u@.Hu@)l 4
fFo f 24 dfdp fFof (£2+7l)% (§2+,7)2 fdp

< L T B 3.33)

oo E24n

3 Jo lu(z O 12 g2fnd5dp

Inserting (3.33) in (3.32), we get

+oo +oo 2
|9 (1) |<2/F / 19 5’ dfdp+2 A |u(cc,t)|2/ ;f;d{dp. (3.34)

< ;. Then (3.34), becomes

()] < 2 //m £t\d£dp+2/ u(z, 1) /OO g(g)dédp

Applying Lamma 3.2.2 and Lemma 3.2.5 we have

+o0o
()] < Co / / (¢, D)2 dedp + Col| Vull.

Lemma 3.5.3 For €; large and e small enough, we have

%1 E(t) < L(t) < 26, E(t). (3.35)

Proof Using Young’s inequality and Poincaré’s inequality, we obtain

€ € Ca%
L(t) < aB(t) + s + =3

bies +00 /2 t 2
i o [T+ 8) (Jy o6 5)ds) dgdp.
Using (3.6) and Lemma 3.5.2, we get
Lt) < g{er+ e}t luelld — ull

+3 (&1 + €201C) || Vul|3

+4 (e + e0h) fi, [10 16(¢, ) Pdédp.
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So, by using (3.22), we get

261 E(t) — L(t) > 5{er — e} w3 + 21(2)
{22 b Gy} |Vl

+u {29 g0} [ [T 16 DIPdgdp.
Similarly, we have

L(t) - ) > 3519 e w3+ 551(t)

_|_

{
{029 b6y} |Vl

#y {29 — o0} [ 13 N0, 0)dedp

By fixing €; small and ¢, large enough, we obtain L(t) — $E(t) > 0 and 2¢, E(t) — L(t) > 0.
The proof is completed. [ |
Now, we state and prove our main theorem.

Theorem 3.5.1 Suppose that (3.2) and (3.23) holds. Then there exist positive constants k
and K such that the global solution of (3.5) satisfies

E(t) < Ke ™. (3.36)
Proof  We differentiate (3.27) to obtain

L'(t) =eF(t)+ ellul3 + e [ upude

+eaby fr f (&2 +n)9(&,t) fo s)dsd&dp.

Using problem (3.5), we have

L'(t) =eabB'(t) +e [[ulld | Vulld + [ulls - a f, wuda]
—bueg [y, ulz,t) [ n(€)(E, t)dédp

+b1€9 frof (&2 +n)p(&,t) fo s)dsd&dp.

Applying Lemma 3.5.1 we obtain:

L'(t) =eaB't)+ el — el Vull3 + eaf[ull?
(3.37)
—biey [, [ |6(&, 1) Pddp — aes [ uuda.
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Using Young’s inequality and Poincare-type inequality to estimate the last term in (3.37) as

follows, for any ¢’ > 0

4’
Inserting (3.38) into (3.37), and by (3.7), we obtain:

L(t) < [—aer +ex(l+ )] wll3 + 2 [-1 + 8C2a) |Vl

1
/ wudr < —HutHS + 035’|!VuH§-
Q

tellulls — bies i, [727 168, 1)PdEdp.
By (3.25), we get:

L) < [-aer+e(l+ )] lwld+e |1+ 5C2a+ C2(:2)" | |[Vul3
—bies [, 710G D dedp.
From (3.23), we have
2 —2
—14+CP(——=) 2 <0.
p
Now, we choose ¢’ such that:

2p b=
148 C% + (L= <,
p—2
Then we find d > 0, which depends only on ¢’ such that:

Lt ) < [~ae +ex(1+ )] lucll3 - exd| Vil

—biea [, [ |6(E, 1) PdEdp.

For any positive constant M, (3.39) is equivalent to:

L'(t) <[—ae+e(l+ 5% +3)] w3+ e [ —d] [|[Vul3

+hies [5 — 1] fi, J77 10(€, 1) PdEdp — Mes (1)
At this point we choose M < min{2,2d}, and €; such that

e(l+ %+ %
> 2( 45 2)'
a

€1

Consequently (3.40) yields
—M€2
€1

L'(t) < —MeE(t) < L(t),

by virtue of (3.35). A simple integration of (3.41) then the last inequality becomes:

L(t) < L(0)e ™,
where k = Y€ Again using (3.35) we have (3.36).

2€e1
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3.6 Blow up

In this section, we consider the property of blowing up of the solution of problem (3.5).

Remark 3.6.1 A simple integration of (3.7) over (0,t) leads to
E(t) = E(0) —a Jg llusl3ds

=by [y Jpy JOZ(E2 4+ m)[o(E, 5)|*dEdpds.

Now, introduce the functional F defined as follows:

t
F(t) = Jul3 +a / lul2ds + by H(E),

Ht) = /0 t / 0 / :0(52 ) ( /O ol z)dz>2d5dpds.

Lemma 3.6.1 Suppose that (3.2) holds. Then we have:
F(t) = (p+ 2)[Juell3

where

+2p { = B(0) + a fy llusli3ds + by [y [, (6 +m)Io(&, 5)|2dSdpds }
Proof  Differentiating relation (3.43) with respect to t, we have
F'(t) =2 [, uwds + allull3

+2by fy fo J(E + m)G(E 5) [ 6(E, 2)dzdedpds.
By (3.5) and divergence theorem, we get

F'(t) = 2lludll3 — 2 Vul3 + 2[lullz + 2by [, u(z,t) [T p(€)o(E, t)dedp

+2by [ [T2(E 4+ m)p(E.t) [y B, s)dsddp.

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

To estimate the third term, we use the definition of the energy (3.6), and by (3.42) we have

2lully, = plluels + plIVulls +pbi i, [ 166, t)[*dédp — 2pE(0)

+2p |a fy lusllgds + by fy fo, J72(E + m)lo(e, ) Pddpds)

It’s clear that using Lemma 3.5.1, the last term in (3.46) can be evaluated as follows:

Joo T2 +m)(&,t) [ (€, s)dsdedp =
Sy ulz,t) [T @€, () dedp — [ [T [6(E, 1) dEdp.
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By combining (3.47) and (3.48) in (3.46), we obtain

F'(8) = (p+2)luell3 + (0 = 2 Vull3 +b1(p = 2) [, [7 |6(E.8)Pdédp

20 [ B(0) + a fy lfugllBds + by fy fo, [ €2+ n)lo(€, s)Pdedpds]
Now, choosing p > 2 we get:

F(t) = (p+2)luell3

+2p {=B(0) +a [y usl3ds + by Jy fr, [ €2+ m)Io(6, 5) Pdgdpds

[ |
Now, we prove the following lemma.

Lemma 3.6.2 Suppose that (3.2) holds and that either one the following conditions is sat-
isfied

(i)E(0) < 0.

(i) E(0) =0, and

F'(0) > alluol3. (3.49)
(111)E(0) > 0, and
F'(0) > 7 [F(0) + lo] + alluoll3, (3.50)
where
r=2p—2p>*—p
and

lo = allugl|? + 2E(0).

Then F'(t) > a||lug||3, for t > to, where

# > max {o, F'(O;p—];z(\l;io!b] } | (3.51)

where ty = t* in case(i), and toy = 0 in case(ii) and (iii)
Proof (i) If E(0) < 0, then from (3.44), we get

we easily obtain :

’

F'(t) > F'(0) — 2pE(0)t.

Then
F'(t) > aljul|?, ¥t >t

where t*, is defined in (3.51).
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(ii) If £(0) = 0 then from (3.44) we fined
F'(t) >0, Vt>0.

We easily obtain :

Using (3.49) we have
F'(t) > alluoll3, ¥t >0.

(iii) For the last case of E(0) > 0 then from (3.45) we have

F'(t) = 2fQ uupdzr + al|u|3

(3.52)
+2b1 fy o 2D (2 4+ m)b(E, ) [y 0(8, 2)dzdEdpds.
Applying Young’s inequality to estimate the last term in (3.52) we get
Jo Jr J23(€ +m)0 (€, 9) [§ 6(6, 2)d=dédpds
<3 o Joy JED(E ol ) Pdedpds (3.53)
00 s 2
5 Jo Jr S22 (€ ) (J 9(6, 2)dz)" dédpds
and we note that
t t d
2 [ [ wudeds = [ 2l = ul} ~ ol
0 JQ 0o @s
Applying Young’s inequality
t t
Jully < [ lis+ [ s + (3.54)
By combining (3.53) and(3.54) in (3.52), we obtain
F(t) < Jlull3 + udll3 + a fy llusl3ds +a [y l[ul3ds + alluol3
by o [T2(E + o€, 5)Pdedpds (3.55)

1 fy Joo S (€ 4 0) (fy 6(E,2)dz)" dgdpds.

Using the definition of the function F in (3.43), then (3.55) becomes
F'(t) S F@) + lwnlld + b1 [y fr, 73 +mlo(&, ) Pdsdpds
a fy llusll5ds + alluo 3
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Hence by (3.44), we obtain

F'(t) = p{F'(t) = F(t)} = 2|lufll3 + ap [ llus|I3ds — palluoll3 — 2pE(0)

+pby [y Jry [T (€2 4 0)Io(E, 5) Pdedpds.

Thus, we get
F"(t) — pF'(t) + pF(t) + plo = 0,
where
lo = allugl|? + 2E(0).
Now let

Then B(t) satisfies
B"(t) — pB'(t) + pB(t) > 0. (3.56)
Using Lemma 3.2.3 in (3.56) for p = § + 1 then if

B'(0) > (2p — 2/p* — p)B(0) + al|uo 3.

Then
F’(t) = B’(t) > aHung Yt > 0.

Theorem 3.6.1 Suppose that (3.2) holds and that either one of the following conditions is
satisfied

(1)E(0) < 0.

(i) E(0) =0 and (3.49) holds.

2 1
(iii) 0 < E(0) < Cr-0)(F (to)_lgluo‘b) ™ ind (3.50) holds. Then the solutions (u, @) blows

up in finite time T* in the sense of (3.2.1).

In case (i):
J(to)
T <ty — .
Furthermore, if J(ty) < min {1, \ /_ib} , then we have
T* S t() + ! In > _ib .
V=b /5~ J(t)

In case (ii):

J(to)
T <ty —
> U0 J/(to)’
or It
T <t L7
< to + T'(to)
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In case (iii):
J(to)

T <
_\/57

or

T < to+2 % LE0 1 = ed(ty)] 1)
S o Y1 — — C 0 Y1 s
Vo

o

where ¢ = (3)21171 , =52, and J(t), o and b are given in (3.57) and (3.66) respectively.

Note that in case (i), to = t* is given in (3.51) and to = 0 in case (i) and (iii).

Proof Let
J(t) = [F(t) +a(T — t)HuOHg} Tte [t T). (3.57)

Differentiating J(t) twice, we obtain

/

T (t) = = (&) [F(t) — alfuo||2]

and

1

J' () = —nJ ()G, (3.58)

where

1

G(t) = F'(0) [F(0) + o7~ unld] — (0 +30) {F () —alluolB} . (359
We get, from (3.44)
Fi(t) > (p+2) 3
+2p { =B (0) + a fy lus[3ds + by fy Jr, [ (€2 4+ mlo(€, 5)|dedpds

Therefore, we find

F"(t) = —2pE(0)

(3.60)
p{ el + a i sl + 0 i Jo, J235(68 + m)lo(s, s) Pdedpds |
and since ||ul|3 — ||uol|3 = 2f(;€ Jq usudzds Then, from (3.45) we get
F'(t) — alluol} =2 [, uwdr + 2a [ [, usudzds
(3.61)

+2by [y fro SO 4 m)B(E, ) [y (€, 2)dzdEdpds.
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By combining (3.60) and (3.61) in (3.59), we get

G(t) > —2pE(0)J (1)
p el a i sl 4 b [ fo, J22 (68 4+ m)l(&, s) Pdedpds |
o lullg =+ a fi llalBds + br fy fr, J22 (€ + ) (f; 66 2)d2)” dfdpds}

—4(14+~) {fQ uudx + a fot Jq usudzds + by f(f fFo ff§(§2 +0)o(E,s) [y & dzdf’dpds} .
For simplicity of calculations, we make the notations
= Ilull3 +a fy llull3ds + b fo fr, J25E +m) (Jy 66, 2)dz)" dédpds,
= Jouwdzr +a f) [ouaudrds +by [ [ [T+ 0)d(E,s) [y S, 2)dzdédpds,

= llwll3 + a [y [lusll3ds + by fy fr, [0+ n)|o(&, 5)Pddpds.

Thus, we obtain
G(t) > —2pE(0)J(t)" +p{AC — B?}. (3.62)
Now we observe that, for all w € R and t > 0,

Aw? +2Bw + C = [w|[ull} + 2w [ uude + ||ug]3]

+af0t [ 2||ul|3 + 2w fQ uugdr + Hu5||2} ds

+blfo frof+oo (& +mn) [ (fo )

+2wh(E,8) [} S(E,2)dz + |6(E, 5)[2] dedpds.

Then t
Aw? +2Bw+ C = [[wu + w3 + a [, |wu + ul3ds

by fy o [0 4 ) [w [ 6(E, 2)dz + |o(€, 5)|]” dedpds.

It is easy to see that
Aw’+2B+C >0

and
B* - AC<0. (3.63)

Hence, by (3.62) and (3.63), we get

G(t) = —2pE(0) ()7, t>t. (3.64)
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Therefore, by (3.58) and (3.64), we get

2 _
<P 4p
- 2

J"(t) EO)J) 5, >t (3.65)
Note that using Lemma 3.6.2, J'(t) < 0 for t > t,. Multiplying (3.6) by J'(t) and integrating
it from ty to t, we have
’ 1
J (1) > o+ bJ(t)

where

—4)2 ’ 2 _4)2 =1 2
o = |5 (F(to) — lluollg)” — P& B(0) I (t0) 7 | J(to)* "

(3.66)
b =2l ).

2p—4
Then by Lemma 3.2.4 the proof of theorem is completed.

Hence, there exists a finite time T such that lim J(t) = 0 and the upper bounds of T* are
t—T*~

estimated according to the sign of F(0) (see Lemma 3.2.4).
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Chapter

Blow up and asymptotic behavior for a wave equation
with a time delay condition of fractional type

4.1 Introduction

In this Chapter, we consider the following wave equation with a time delay condition of
fractional type and source terms:

(Y — Ay + a1 08 y(t — s) + agy = |y[P 2y, 2€Q, t>0
y =0, red, t>0
(P)
y(x,0) = yo(x), w(x,0) =y (x), x €,
L yi(x,t —s) = folz,t —s), x e te(0,s),

where € is a bounded domain in R™ with a smooth boundary 02, a; and as are positive real
numbers such that a; 37! < ay. The constant s > 0 is the time delay and p > 2. Moreover,
(Yo, Y1, fo) the initial data belong to a suitable function space. The notation 9, P stands
for the generalized Caputo’s fractional derivative (see [10] and [11]) defined by the following
formula:

1 t
O Pu(t) = ) /0 (t —s) e Py (s)ds, 0<a<1,8>0.

I'l -«

In the absence of the fractional time delay term (a; = 0), problem (P) has been extensively
studied and many results concerning well-posedness and stability or instability have been
established. For instance, for the equation

Y — Ay(t) + h(ye) = y[" %y, in Q x (0, 00),

it is well known that, when h = 0, the source term |y[P~2y, (p > 2) causes finite time blow up
of solutions with negative initial energy (see [7]). The interaction between the damping and
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the source terms was first considered by Levine [28, 30] in the linear damping case h(y:) = y:.
Using a concavity argument, he proved that solutions with negative initial energy blow up
in finite time. For hA(y;) = |y¢|™ 2y;, (m > 2) and F(0) < 0, Georgiev and Todorova in [17]
introduced a different method and proved the global existence when p < m and the blow-up
properties when p > m with negative initial energy. The different method of Georgiev and
Todorova has become an important to prove the blow-up in finite time for nonlinear evolu-
tion equations (see[16, 19, 22]).

When h(y;) = 0y, problems related to (P) have been treated by several authors. In
[25], Kirane and Tatar studied the following problem:

yu — Dy + 0y = [y, in £ % (0, 00),

y =0, on 0N x (0, 00),

y(:L', O) = yo(l'), yt(xv O) = yl(x)v in €.
They proved the exponential growth in the L,-norm by using some techniques based on
Fourier transforms and some inequalities such as the Hardy-Littlewood inequality. Later,
Tatar [44] extended this result for larger initial energy. A blow-up result for sufficiently large
data has been obtained in [43].

On the other hand, in the presence of the time delay with a = 1 the equation

Yoo — Dy + a1y, (t — s) + agyr = f(y), (4.1)

has been considered by Nicaise and Pignotti [39] for f = 0. The authors proved that the
energy is exponentially stable when ay < a;. Later, Kafini and Messaoudi in [23], investi-
gated (4.1) for f(u) = |y["~%yIn |y|*. Under the same conditions in [39], They established the
local existence result using the semi-group theory and they proved the blow-up properties
of solutions for negative initial energy.

In [38], by describing the fractional damping by means of a suitable diffusion equation,
we can transform the problem (P) into an augmented model which can be easily tackled by
the energy method.

To the best of our knowledge, the decay estimates of energy and blow-up of solutions for
wave equations with the presence of a time delay condition of fractional type in the internal
feedback have not been studied yet.

In the present paper, we shall consider the problem (P). Under a suitable condition on
the damping, the delay functions and the initial data, we give several results concerning the
well-posedness, the decay estimates of energy and blow-up of solutions to problem (P).

The paper is organized as follows. In Section 2, we reformulate the problem (P) into
an augmend system. In Section 3, the local existence result is proved. In Section 4, global
existence and decay estimates of energy are discussed. Finally, in Section 5, we prove the
blow-up of solutions for negative initial energy.
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4.2 Preliminaries

This section is concerned with the reformulation of the problem (P) into an augmend system.
For that, we need the following claims.

Lemma 4.2.1 [38] Let n be the function:

(2a—1)

nE) =12, £€R, 0<a<l.

Then the relationship between, the "input” U and the "output” O of the system
$u(x,86,t) + (& + B)o(x,§,1) = Uz, t)n(§) =0, £€Rt>0,8>0,
¢(z,€,0) =0, (4.2)
O(t) := (m) " sin (am) [ ¢(x, & t)n(€)dE

1S given by
O :=I1'"*"(,

where

1

Ia’ﬂu(t) = m/o (t — 3)“_16_ﬁ(t_3)u(s)d$.

Lemma 4.2.2 [9] Let n > 0. For any real number A\ > —n,we have

R (YN PO ar
[ et ma o

We make the following hypotheses on the damping and the delay functions:
a1t < as. (4.3)
Now, we introduce, as in [13], the new variable
2(z,p,t) = y(z,t —sp), ze€, pe(0,1), teR,. (4.4)
Then, we have
zi(x, p,t) = %zp(x,p, t), z€Q, pe(0,1), teR,. (4.5)
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Therefore, by (4.4)-(4.5) and using Lemma 4.2.1, problem (P) is equivalent to

(g — Ay +b 7 b, & On(E)dE + asye = |yP 2y, € Qt >0,
$(2,8,1) + (& + B)o(x,§,1) — 2(2,1,t)n(§) =0, 7 €QEER, t>0,
szi(z, p,t) + z,(z, p,t) =0, reQ,pe(0,1),t>0,
y =20, r € 0Q,t >0,

(P')

2(2,0,t) = y(z,t), xeQt>0,
y(@,0) =wo(x), wi(x,0) = y1(2), z €,
¢(z,£,0) =0, zeNER,

L 2(2,p,0) = fo(z, —ps), repe(0,1),

where b := (7) "' sin (am)a;.

Lemma 4.2.3 For z € L*(Q) and £¢ € L*(Q x (—00, +00)), we have
o 2@, 0.0) [ m(©)0(w, €, Odda| < Ag [y 2w, p,0)Pde

4 Jo SIS (€ 4 8|6, & 1) Pdéde
for a positive constant Ay .

Proof  Applying the Cauchy-Schwarz inequality, we get

'/:o T)ms, t)dg' = (/:O o ) % (f GEIe i)

Using Young’s inequality, we have

-

‘fg 2w, p,t) [T n(f)aﬁ(w,é“,t)dfd:v‘ < Ag Jq |2(z, p, t)|Pda

H T+ B bl &, 1) Pdeda

[T R

This completes the proof. [

with
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We define the energy associated to the solution of the problem (P’) by
B®): = slwli+ 5 Jo [23 |6(z & DPdede + 3| Vyl3

(4.6)

1

—slwlis +vs [y fo 12(2, p, ) Pdpda,
where v is a positive constant verifying

bAo <v<ap— bAO (47)

Lemma 4.2.4 Assume that (4.3) holds and

" ifn>3. (4.8)

2<p<oo, ifn=1,2; 2<p<——
n—2

Then, the energy functional defined by (4.6) satisfies

TS —=C fo (=@ 1,0 + |2(e,0,0)) da

(4.9)
=5 o ST (€ 4 B)lo (e, & 1) Pdedr,
for a positive constant C.

Proof Multiplying the first equation of (P’) by y,, integrating over {2 and using integration
by parts, we get

4 L4 ll3 + SIV I3 — Syl } + eallul
(4.10)

+b o ue [T 0(E) (@, € t)dedr = 0.
Multiplying the second equation of (P') by b¢ and integrating over 2 x (—oo,+00), we
obtain:

45 o 7T 0w, € ) Pdgdn |+ b [, [T+ Blo(, € DIPdeda .

=b Jo 2w, 1,) [2 T 0(€)¢(x, &, t)dédz = 0.
Multiplying the third equation of (P’) by 2vz and integrating over 2 x (0, 1), we get:

1
a {sy/ / |2(z, p, t)]dedx} + 1// [2(z,1,8)]> — |2(2,0,1)|*] dz = 0. (4.12)
dt 2 Jo Q

By summing (4.10), (4.11), (4.12) and using y; = z(z,0,t), we arrive at

WO — _(ay —v) [, |2(2,0,8)2dx — v [, |2(x,1,)]2dx

—b [, [T + B) g, &, 1)[2dEd
(4.13)
—b [, 2(2,0,8) [T n(&)p(x, €, t)dEdw

+b [y (2, 1,8) [T n(€)¢(x, &, t)déda.
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Using Lemma 4.2.3, we get

B < [ (|2(2, 1,802 + | 2(x,0,)[?) da

=3 Jo JIZ(E + B)lo(a. &, 1)Pdeds
with
C' = min {(v — bAy), (ay — bAy —v)}. (4.14)

Since v is chosen satisfying assumption (4.7), the constant C is positive. The proof is

completed
|

4.3 Well-posedness

In this section, we give an existence and uniqueness result for problem(P’) using the semi-
group theory. In traducing the vector function U = (y,u,¢,z)’ where u = g, and let
J(U) = (0, |y|P~2y,0,0)T, system (P’) is equivalent to:

Ult)+ AU(t) = J (U(t)),
(4.15)
Uo = (Y0, 41,0, fo(—ps))T,

where the operator A is defined by:

—U
Ay +b [T ¢(x, On(€)dE + azu

(6% + B)d(w, &) — z(x, (&)

AU =

22, p)
We denote by H the energy space associated to system:
H = Hy(Q) x L*(Q) x L*(Q x (=00, +0x)) x L*(2 x (0,1)).
For U = (y,u,¢,2)T € H and U = (3,4, ¢, 2)T € H, we define the following inner product

in H ~ ~
(U,0), = [o[Vy.Vy+ut]de+b [, [T ¢(x,&)d(x,&)dédx

+2vs [, fol z(z, p)z(x, p)dxdp.
The domain of the operator A is then
UeH: ye H(Q), wue HQ), =z,€L*(Qx(0,1)),
D(A) - w==(,0), €€ LA(Q x (—o0,+0)),
(& + B)d — z(z, L, t)n(§) € L*(Q x (—o0, +00)).

Then, we have the following local existence result.
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Theorem 4.3.1 Assume that (4.7) and (4.8) hold. Then for any Uy € H, problem (4.15)
has a unique weak solution U € C'([0,T),H), where T is small.

Proof  First, for all U € D(A), using (4.15) and (4.9), then
(AU U)y = C [o (2, 1) + [2(z, 0)]"] do
+5 o IS+ B)|o(x, €)Pdeda.
Therefore, A is a monotone operator.

To show that A is maximal operator, we prove that for each F' = (f1, f2, f3, f4)T € H,
there exists U = (y, u, ¢, 2)T € D(A) such that (I + A)U = F. That is,

( Yy—u= f17
(14 as)u — Ay +b [ d(x, E)n(€)dE = fo,
$(&) + (€2 + B)o(&) — 2(x, (&) = f5(6),

L 2(p) + 22,(p) = fa(p).

(4.16)

Suppose y is found with the appropriate regularity. Therefore, the first and third equations
in (4.16) give

u=y— fi (4.17)
. f3(8) + 2(1)n(€)
_ J3(&) +z2(1)n
o= a1 0 CER (4.18)

On the other hand, the fourth equation of (4.16) with z(z,0) = y — f; has a unique solution

2(p) =(y— fr)e * +se*f /Op e’ fu(r)dr, pe(0,1). (4.19)

Substituting (4.17) in the second equation of (4.16), we get
+oo

(1+a)y — Ay +0b P(E)N(E)dE = fo+ (1 +az) fr. (4.20)

Solving equation (4.20) is equivalent to finding y € H*(Q2) such that

Jo (1 + az)y — Ayl wdz + b [y w [T ¢(€)n(€)déda
(4.21)

= [o[fo+ (1 + a2) il wdz, w e Hj(Q).
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By using (4.21), (4.19) and (4.18), we have

f (oy — Ay)w fQ (fo+ of1) wdx
—b fquw [73 8O agde. (4.22)

—bse Ay [yw [ e fa(T)drdr, w e HY(Q),

where . 2(6)
_ /S
=1 be A A = — (€.
o + as + 0€ 1>0, 1 /_OO §2+5+1£
Consequently, problem (4.22) is equivalent to the problem
B(y,w) = L(w), (4.23)

where the bilinear from B : Hj(Q2) x Hj(2) — R defined by

B(y,w) = 0/ ywdzr + / Vy.Vwdzx
Q Q
and the linear form L : H}(Q) — R by

= Jo(htof)wds—b fouw [T {0 ded

—bse Ay [w fol e’ f4(T)drdx.

It is easy to verify that B is continuous and coercive, and L is continuous. Consequently,
So applying the Lax-Milgram theorem, we deduce that for all w € H} (Q) system (4.23)
admits a unique solution y € H} (). Applying the classical elliptic regularity, it follows
from (4.23) that y € HZ(Q). Using the second equation of (4.16) and Green’s formulla, we

get
“+oo

/Q {(1+a2)”_Ay+b ¢(§)77(5)d§—f2} w=0, we HQ).

Hence,
+oo
(1 ayu—ny+b [ sEmede = f, e I2©).
Using the third equation of (4.16), we get
+oo
|| 100+ + 8)016) = (€)= £(6)] wit =0, w € T,

Hence,

$(€) + (6% + B)o(€) — 2(x, 1)n(€) = f3(€) € L*(Q x (—00, +00)).
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Therefore,
U e D(A).

So, the operator I + A is surjective.
Finally, we demonstrate that J : H — H is locally Lipschitz. For U € H, we have
_ 9 i ipe 2
1 () = J(@)5, = [0, yly["~* = glgl*=2,0,0)|I3,

Zo =22
= [lylylP~2 = glgl* >l -
It is easilly to verify that

lulyP=2 = gl || < Clly = 7143 0

Therefore, J is locally Lipchitz. Thanks to the theorems in Komornik [27] (See also Pazy
[41]), the proof is completed. |

4.4 Global existence

This section is concerned with the proof of the global existence of the solution of problem
(P’). We introduce the following functionals:

I(t) =bf, [T o(x,& t)2dedx + || Vyll3

(4.24)
~lylly +vs Jo Jy |z, p, 1) Pdpda
and , . ,
J(t) =3 Jo J73 |6, & O)Pded + 5| Vyl3
(4.25)
1
=5 lylip +vs [o Jo 12(x, p,t)|*dpda.
Lemma 4.4.1 Assume that (4.3) and (4.8) hold. Then, for Uy € H satisfying
p—2
B:=Cr(Z5E0) © <1,
<“’ ? ) (4.26)

1(0) > 0,

we have
I(t) >0, Vt>D0.

Proof  Since 1(0) > 0, then there exists (by continuity of y(t)) T* < T such that
I(t) >0, for all t € [0, 7%]. This implies:
IVyll3 < 25J(t), Vtelo.T7)
(4.27)
< 2 F(0).
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Using (4.26), (4.27) and the Poincare inequality, we get

vl <ceivyly o
<0 (ZHEO) * IVl |

(p—2)

Whereupon
I(t) =b [ [T ]6(x,& ) Pdédz + | Vyl[3

—Nyllz +vs [;, [ 12(z, p,t) Pdpdz > 0, Vvt € [0,T7].

By repeating this procedure and using the fact that
p—2

) 2p 2
p
tl”{f* Cr ((p 2) E(O)) <1,

we can take 7" =T. |
We are now ready to prove our global existence result.

Theorem 4.4.1 Assume that (4.7), (4.8) hold and Uy € D(A) satisfying (4.26). Then the
solution of system (P') is bounded and global.

Proof  Using (4.10), we have
E©0) > E®)=slwli+J(1)

> w3 + S22V yll3.
Therefore,
lyellz + IVyll2 < &E(0),
where &; is a positive constant, which depends only on the parameter p. [

4.5 Decay of solutions

In order to establish the energy decay result. For N > 0 and ¢; > 0, we define a perturbed
modified energy by

L(t) .= NE(t) + e1 K1 (t) + K(1), (4.29)
where ; .
ki) = [wda 5 [ [+ 0) (a6 0 ded (1.30)
Ky(t) = s/ /1 e |z(x, p, t)|*dpdz, (4.31)
aJo
where

¢ 1
M(z,€,t) = /0 oz, &, 7)dr — éﬁf)ﬁ/o fola, —ps)dp + yog—l’?(ﬁé).
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Lemma 4.5.1 Let (y, ¢, z) be a reqular solution of the problem (P'), then
Jo JZ3(& + B)o(a, & )M (. €, t)déda

= [oy(@.t) [T ¢(x, & t)n()déda

(4.32)
=5 Jo Jo 2@, 0,0) [23 0(&)(x, &, )ddpda
= Jo I23 10, &, 1) Pdéda
Proof  Using the second equation in (P’), to obtain
(& + B)d(z,&,t) = 2(z, L, )n(§) — (&, 1)
= 77(5) [2(33, 1, t) - Z('Tu O7t)]
+yt(x7 t)ﬁ(f) - ¢t(x7 57 t)
Observe that
1 1
ﬂAzMWﬁ@=AzNwﬁ@=4%U%%@Qﬂ
Whereupon
(& + D)l &.1) = —sn(€) [y z(z,p.)dp
Integrating the last equality over [0, ], to get
[y (€ + B)o(a.& 7)dr = —sn(&) fy 2(x. p.1)
—an(f)tﬁfjb(x,——pS)dp
+y(, n(€) — yo(x)n(§) — ¢(, &, 1).
Therefore,
(52 +ﬁ) (x f t _377 fo ey /)a
(4.33)
Multiplying (4.33) by ¢ and integrating over §2 X (—o0,+00), we obtain (4.32) . |
Lemma 4.5.2 Let (y, ¢, z) be a regular solution of the problem (P’), then
o I3 + 8) M (&, 0)* deda
< 3s%Ao [, fol |2(x, p, t)|*dpdx + 3A,C?||Vyl|3 (4.34)

+% Ja fj;o |p(x, &, t)|*déd.
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Proof Invoking (4.33), to obtain
o JI2(& +8)|M (€, 1) Pdgdal
2
< s*Ay [, <f01 z(z, p, t)dp) dx

+Aollyll3 + fiy [12 eI gedy

oo

+92 fg f:r:: |¢(m,£72)2y$,t)n(£)ldgdx

+2s40 [, ’y(a:,t) fol 2(z, p, t)dp‘ dx

0o T z(z,p,t)d,
42 [y [ AN Jo 00l ge gy

(4.35)

Now, we will estimate the right hand side of (4.35). First by Holder’s inequality, we get

1 1 1
/ z(x,p,wdps( / |z<x,p,t>|2dp) |
0 0

For the fourth and fifth terms, we use Young’s inequality to obtain

+o0 o(x,&,0)y(z,t)n(€)
fﬂf—oo |#( 5)2+5 n( ldfdx

o0 T 2
< Lllyl3+ 5 fo J7o 25t deda

and

S/Q y(x,t) /01 z(x, p,t)dp

For the last term, we use Young’s inequality, (4.36) and Lemma 4.2.3 to get

0o z,£,t)n z(z,p,t)d,
SJ"Q fj‘oo |p(@.&:t) 62{05( Ps p|d§dl’

2 1
< = fo fo [2(a p )Pdpda

+o0 T
5 Jo JO3 aSg déda.
Consequently, we arrive at
o J22(€ + B)| M (2, € 1) Paéd
<352 [, Jy |2z, p, t)Pdpda + 3 Aoy 3
+oo |p(m,E,t
+3 [y 120 LeLIE gedy.

o7

82 1 ) 1 )
dr< / / (. . 1) Pdpd + 1l
QJOo

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)
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Using the fact that and Poincaré’s inequality, then (4.34) is established. n

5 = ﬂ
Lemma 4.5.3 For €1 small and N large enough, we have

N
5E(t) < L(t) <2NE(t), Vt>0. (4.41)
Proof  Using Young’s inequality and Poincaré’s inequality, we obtain
L) < NE@)+ $wl3+s Jo fy eIz, p.0) Pdpda

610

+ 05 Jo L€ + B)IM (2,6, 1) Pdéda.
Using (4.6) and Lemma 4.5.2, we get
L)< LN+ e} I3 — Xyl

+s{Nv+ 3l [ fol |z(z, p, t)|*dpdx
+s fol e *P|z(x, p,t)|*dpdx

+3 (N +aC2{1+3v}) [ Vyl3

5 (N +22) fo 7106, 6)Pded.
So, by using (4.24), we get
2NE(t) — L(t) > 3{N —ea}llyl3 + 51(t)

—1v SVE 1
e { g [ e Pdpda
w32y ez gan ) vyl

e {2 sad [ [T (e DlPdgdr.
Similarly, we have

L(t) = 5B =5 {5 - e}l + 510)
s {(p—21;VN e 3SV61}fQ fo (z, p,t)|2dpdx
3 {2 o2t} O3

+p {2 e d [ (e, €, ) PdEda.
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By fixing €; small and N large enough, we obtain L(t) — S E(t) > 0 and 2NE(t) — L(t) > 0.

The proof is completed. [ |
Lemma 4.5.4 Assume that (4.3) and (4.8) hold. Then, the functional K, defined by (4.30)
satisfies
Ki(t) < Cillwill3 = 3IVyl3 = b fo 72 16(2, & )P déda
+1 Jo JL2(E + Pl & D) deda (4.42)

1
+5%v [, [y 12(@, p,)[Pdpdz + ||y|2,
for some positive constant C'.

Proof A direct differentiation of K; using Lemma 4.5.1, gives
Ki(t) = llwill3 + fouuyde +b fo [75(€ + B)(w, & 1) M (x, &, t)dEdx

= llwell3 = IVl = bs [, f, 2(z, p.t) [T n(€) (. &, t)dedpdz (4.43)

Hlylly = b Jo [T 10, ) Pdedr — as [, yryda.
Using Young’s inequality and Lemma 4.2.3, we get

i) < (1 man)l — (1-22) |yl
O[T + B ol &, t)|Pdeda
520 [ [ (@, p, 1) Pdpda + ||y

—b [ [T o, €, 1) Pdéda.

By choosing 7 := aQC* , then (4.42) is established. |
Lemma 4.5.5 Assume that (4.3) and (4.8) hold. Then the functional Ky defined by (4.31)
satisfies
1
(0) < —se [ [ et pt)Pdpde + (1.44)
aJo
Proof By taking a time derivative of K3 and using the third equation in (P’), we arrive at
Ky(t) = =25 [, [, e z(x, p,t)z(x, p,t)dpdz
2fQ fo 'CE ' P )Zp(xvpvt)dpdx
(4.45)

fQ Odp e |2(2, p, 1)) dpdx — SfoO e=*|2(z, p,t)|*dpdx

sz fo e *P|2(z, p,t)|Pdpdx — e~ fQ 2(z, 1,8)|2dx + |y |3

59



Chapter 4 Blow-up and asymptotic behavior

Then (4.44) is established. |

Theorem 4.5.1 Assume that (4.3), (4.8) hold and Uy € H satisfying (4.26). Then any
solution of (P') satisfies

E(t) < Ke™, t>0, (4.46)
for some positive constants K and w independent of t.
Proof By using (4.42) and (4.44), we get, for all ¢ > 0,

L'(t) < —=(NC=Cia = D]wlz = 31Vyll3

tellylls — ber [ [ |6, & ) Pdéd
(4.47)

—5{N = 3} o S22 (€ + Blo(, &, )Pdgdx
—s(e™* —vser) [, fol |z(z, p, t)|2dpdz.
At this point, we choose €; small enough such that
e ® —wvsep >0,

then pick N large enough such that

1
N>ma:z:{01€1—+ 6—1}.

c 2

Consequently, from the above, we deduce that there exists a positive constant m such that
(4.47) becomes

L'(t) < —mE(t), forallt>0. (4.48)

By using (4.41), we have
L'(t) < —wL(t), forallt>0. (4.49)

A simple integration of (4.49) over (0,t) leads to
L(t) < L(0)e ™, t>0.
As L(t) and E(t) are equivalent, we obtain

E(t) <ke™, t>0. (4.50)
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4.6 blow-up result

In this section, we consider the property of blowing up of the solution of problem (P’). Let
(y, ¢, z) be a solution of (P’) and define

H(t):==B(t) = lylp = 3llwl3 = 5 Jo S [@(x, &, 1) Pdéda
(4.51)

1
—IVylz —vs [, [y |2(z, p,t)Pdpda.

Lemma 4.6.1 Suppose that (4.8) holds. Then there ezists a positive constant Co > 1,
depending on €2 only, such that

lylli, < Co [llyllh + [ Vyll2]
for any y € HY(Q) and 2 <1 < p.

Proof If |lyll, < 1 then [ly|l} < [lyllZ < C.[|Vyll3 by Sobolev embedding theorems.
If [lyll, = 1 then [[yll;, < [lyll5. u
Therefore the result follows.

Theorem 4.6.1 Let the conditions of the Theorem 4.5.1 be fulfilled. Assume further that

1 1 1 !
B0) = ol = 5l = 51Vml3 =vs [ [ UoGe.=ps)Pdpdz <0 (452)
QJO

Then the solution of system (P') blows up in finite time.
Proof From (4.51), we have

b too
Hi) = -E0) 23 [ [ @+ o)lotwe 0Pt 2 0 (4.59)
QJ—-c0
hence )
0< H()<H() < EHyﬂg (4.54)
We then define
Qo€
A() = ' (0) + € [ yuda + |yl (4.55)
Q
for € > 0 small to be chosen later and
p—2
_ 4.
0<y< N (4.56)

By taking a derivative of (4.55), using Eq. (P’) and Using Young’s inequality, we obtain for
0 >0,
— Jou [T (&)l & t)deda
(4.57)
> —6Allyll3 — 45 Jo T2 (€ + B)lo(x, & t)Pdédz,
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which yields, by substitution in (4.57),

At) > (L= NHH )+ e|lwl3 — el Vyll3 - dvellyl3
(4.58)
e [T+ B) (. €, 1) [PdEda + €|yl

Using (4.53), we have

A1) > [(L—)H™ — 5] H(1)
(4.59)
telluells — el Vol3 — dvellyl + el

Therefore by taking d so that % = kH~7(t), for large k to be specified later, and substituting
n (4.59) we arrive at

A't) = [(1 =) — ek H () H'(t) + ellyel3
(4.60)
—el|Vyll3 — s @O llyl3 + ellylls.

Consequently, using (4.51), we have for some 0 < r < 1
A(t) > [(1—7) — ekl H () H' (1) + 255222 |y 3

+e25022 | Wy |3 — Ly 3H (1) + erlly]
(4.61)

p(1 —r)eH (t) + 211 [ [\ o(x, €, 1) Pdeda

+ep(l —r)vs [, fol |2(z, p, t)|*dpdz.
By exploiting (4.54) and the inequality ||y||2 < C.|ly||,, we obtain

1 Y
H@)lyl2 < (5) I Iyl2 < Callglir ™.
Exploiting (4.56), we have
2<py+2<p.

So, Lemma 4.6.1 yields
H @)llyllz < C[IVyllz +llylp] - (4.62)
Inserting (4.62) in (4.61), we obtain

A(t) > [(1—) — ek] H(6)H'(t) + 255272 |y, |13

e P2 — G VI3 + e [r— G vl
(4.63)

p(1 —r)eH (t) + 21T [ [\ o(x, €, 1) Pdeda

+ep(1 —r)vs [, fol |2(z, p, t)|Pdpdz.
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At this point, we choose r small enough such that
p(l—r)—2>0
and k large enough such that
Cyv p(l—r)—2 Cyw

7’—%>0, 5 _2]{; > 0.

When r and k are fixed, we pick € small enough such that

(1—7)—¢€k >0, H(O)+6/y0y1dx>0.
0

So, (4.63) becomes, for some C5 > 0
A'l(t) > Cs [H() + w3 + VYl + [lyll2
1 (4.64)
b fo [ 0, & ) Pded + vs [, [y |2z, p,t) Pdpde ]

and
A(t) > A(0) >0, t>0. (4.65)
On the other hand, by Hélder’s inequality and the embedding Li|y|2 < Cil|y||,, we get

/yytdx < llyllallgell2 < Cullyllplly:ll2-
Q

Using Young’s inequality and Lemma 4.6.1, we have

1
(Joyyedz) ™= < Co [llyll, + llwell3]

(4.66)
< Cr [llyell3 + 1IVylE + llllz]
where Cg, C'; are positive constants and 2 < [ = ﬁ <np.
Therefore,
AT () < CLH®) + (Joyyede) ™ + lylls™
(4.67)

< Cs [H) + I3+ IVyl3 + [lyllz] . ¢ >0,

where Cs is a positive constant. Combining (4.66) and (4.67), we arrive at
At) > CoATH (1), t>0. (4.68)
A simple integration of (4.68) over (0,t), we get

L1y
Alt) > |AT5(0) — —L—cgt| . (4.69)
-
So, A(t) blows up in time
1—
This completes the proof. |
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Chapter 5

Blow-up of solution for elastic membrane equation
with fractional boundary damping

5.1 Introduction

Partial differential equations with a fractional derivatives have attracted the attention of
many researchers in mathematical, biological and physical fields ([34, 42, 46]). In the recent
years, they have been widely applied in electronics , relaxation vibrations and viscoelasticity
etc.e.g.,[18, 33].

In this paper, we consider the following Kirchhoff equation with Balakrishnan-Taylor
damping, fractional boundary condition and source terms:

([ uy — (S0 + &I Vull5 + &(Vu, V) Au = [ulP~u, =€ Q,t>0,
(& + & Vull3 + &(Vu, Vi) 34 = —b0 ", r €Ty, t>0,
(5.1)
u =0, rely,t>0,
\ u(x,()) = Uo(@» Ut(xao) = ul(x)> VS Qa

where  is a regular and bounded domain in R"”, (n > 1) with smooth boundary 92 such
that 0Q =Ty UTy, [oNT; = 0 and I'y, I’y have positive measure. Ov denotes the unit outer
normal and (.,.) the inner product with its corresponding norml||.||s. The functions u(zx,t) is
the plate transverse displacement. The viscoelastic structural damping terms & +&; || Vul|3 +
& (Vu, Vuy) is the nonlinear stiffness of the membrane. &y, &, &> and b are positive constants.
The initial data (ug, u;) are given functions. From the physical point of view, problem (5.1)
is related to the panel flutter equation and to the spillover problem. The notation 9;"" stands
for the generalized Caputo’s fractional derivative (see [10] and [11]) defined by the following
formula:

1 t
07 u(t) = ] /o (t —s) "% "y (s)ds, 1 >0,

Nl -«
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Chapter 5 Blow-up and asymptotic behavior

where I is the usual Euler gamma function and 0 < o < 1. We recall some results related
to Kirchhoff equation with Balakrishnan-Taylor damping

t
Up — (&) + &1 Vul3 + &(Va, Vut)) Au + / h(t — s)Auds = |ulPu.
0

In [54], Tatar and Zarai considered the above equation and proved the global existence
and polynomial decay of the problem. Exponential decay and blow up of solution to the
problem were established in Tatar and Zarai [45]. Park [40] studied the homogeneous case,
and established a general decay result of the problem without imposing the usual relation
between the relaxation function h and its derivative. Recently, Ha [20] proved a general
decay result of energy without imposing any restrictive growth assumption on the damping
term and weakening the usual assumptions on the relaxation function. Balakrishnan-Taylor
damping & (Vu, Vi), was initially proposed by Balakrishnan and Taylor in 1989 [6] and
Bass and Zes [8]. For more results concerning Kirchhoff equation with Balakrishnan-Taylor
damping, one can refer to Clark [12], Ha[20, 21|, Tatar and Zarai [54, 55, 53], Wu [48, 49, 50]
and You [51].

Since very little attention has been paid to boundary condition of fractional derivative
type with source term, motivated by above scenario, we prove under suitable conditions
on the initial data that the nonlinear source of polynomial type is able to force solutions
to blow-up in finite time. Here, three different cases on the sign of the initial energy are
considered.

In [38], by redescribing the fractional boundary condition by means of a suitable diffusion
equation, we can be transformed the problem (5.1) into an augmented model which can be
easily tackled.

In the present paper, we shall consider the problem (5.1). Under a suitable condition on
the initial data, we give a several results concerning the blow up results to problem (5.1) for
both positive and nonpositive initial energy.

The paper is organized as follows. In Section 2, we Present the preliminaries and some
lemmas.In section 3, we prove the blow-up of solutions on different cases of the sing of the
initial energy.

5.2 Preliminaries

In this section, we provide some materails for the proof of our results.

Lemma 5.2.1 [38] Let pu be the function:

(2a—1)

p§) =1, (eER, O0<a<l
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Chapter 5 Blow-up and asymptotic behavior

Then the relationship between the “input” U and the "output” O of the system
0ip(&,1) + (€2 +md(&, 1) = U, )u(§) =0, £E€Rt>0,n7>0,
¢(¢,0) =0,

O(t) := (m)~"sin (am) [ 6(&, t)p(&)d¢

s given by
O :=I'"*",

where

IMy(t) = ﬁ/o (t — s)“‘le_"(t_s)u(s)ds.

Definition 5.2.1 A solution u of (P) is called a blow-up solution, if there exists a finit time
T* > 0, such that

im (|Vu(t)2)~ =0,

T~
Lemma 5.2.2 [32] Let § > 0 and B € C?(0,00) be a nonnegative function satisfying
B"(t) —4(0 + 1)B'(t) + 4(6 + 1)B(t) > 0.

If
B'(0) > roB(0) + Ko, with ro:=2(6 +1) —24/(6 + 1)4,

then
B'(t) > Ky fort > 0, where Ky is a constant.

Lemma 5.2.3 [32/ If J is a nonincreasing function on [tg, o0) and satisfies the differential

imequality 1
J )2 >a+bJ (), t>t, (5.2)

where a > 0, b € R, then there exists a finite time T™ such that

lim J(t) =0. (5.3)
t—T*—
and T™* 1s such that:
(i) If b < 0, then
T* S to + 1 ln = %b .
V=b /5= J()

(ii) If b =0, then
J(to)

T <t .
St + T'(to)
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Chapter 5 Blow-up and asymptotic behavior

(iii) Ifb > 0, then

Vva

or

[~

L6
T <to+2°% 7% (1 — 1+ cJ(t)]?

>

)

where ¢ = (5)5/(2+5).

5.3 Blow up of solution

In this section, we use the method in [32] to consider the property of bolwing up of the
solution of problem (5.1). By using Lemma 5.2.1, system (5.1) can be rewritten as :

(uy — (&0 + &l Vull3 + &(Vu, Vi) Au = [ulP~u,
Dp(&,t) 4+ (&2 +m)p(&, 1) — w(z, t)u(§) = 0,

(o + & NVull3 + &(Vu, Vur)) 4 = =i [77 (&, (),

(5.4)
u =0,
u(z,0) = ug(x), uz,0)=u(x),
\ ¢(£7 O) =0,
where b; = (m) ! sin (am)b. The energy functional is then given by:
E(t) = glludlls + Va3 + §Vull3
(5.5)

— b+ % S, SO 166 0)2dgdp.

Lemma 5.3.1 Let (u,¢) be a regular solution of the problem (5.4). Then, the energy func-
tional defined by (5.5) satisfies

PO = by [ [T + )l 1) Pdedp
(5.6)
—& (4)vy|3)* <.

Proof  Multiplying the first equation in (5.4) by u;, integrating over €2 and using integration
by parts, we get

1
§||ut||§ — (& + & Vull3 + &(Vu, V) / Auudr = / |u|P L uade.
0 0
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Then

4 Bllull3 + IVl + §1Val — sl
(5.7)
00 2 2
by fp we(a,t) [17 n(€)@(E, t)dédp + 2 (4] Vul3)” = 0.

Now multiplying the second equation in (5.4) by b1¢ and integrating over 'y x (—o0, +00),
we get
bod [T e( ) Pdedp + by [, [T + )6 ) Pdedp

(5.8)
—by [, w(,t) [T p(€)d (&, t)dEdp = 0.
By combining (5.5), (5.7) and (5.8), we get (5.6). The Lemma is proved. [
Remark 5.3.1 After integration of (5.6) over (0,t), we get
E(t) = E(0) = by [y Jp, J23 (6 + mle(& s)dédpds
(5.9)
=5 Jy GEIVulp) ds.
Now, we define
H(t) = ||ul3+ % [y |Vullids
(5.10)
01y Joy JEX € + ) (f5 0(¢.2)dz)” dedpds.
Lemma 5.3.2 Let (u, ) be a reqular solution of the problem (5.4). Then
Joo 25 (€ 4 mo(&.1) fy (¢, s)dsdgdp =
(5.11)

ooz, t) [T (& u&)dedp — [ [77 168, 1) *dedp.

Proof  Using the second equation in (5.4), to obtain
(€ + (&) = wlw, (&) — Db (€, 1). (5.12)

Then, integrate the last equality over [0, t] to get

/ (€2 + (e, s)ds = ule, () — (6. 1), (5.13)

Multiplying (5.13) by ¢ and integrating over I'y X (—o0, +00), we obtien (5.11). |

Lemma 5.3.3 Assume that p > 3 then we have:

H'(t) — (p+3) w2 > —2(p+ 1) E(0) + & [T (4)17y)2)* ds
(5.14)

+2(p + Dby [y Jp, [T+ 0)|o(E, 5)|dEdpds.
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Proof  From (5.10), we have

H'(t) =2 [,uwdr + 2| Vull

(5.15)
+2by [y fro JTEE +0)0(E, 5) [ 0(E, 2)dzdEdpds,
and
H'(t) = 2llug|3 + 2 [o uugdr + 2&(Vu, V) || Vull3
+2b1 [, [T+ mo(E 1) fy 0(& s)dsdedp.
Employing the divergence theorem and Lamma 5.3.2 | we get
H"(t) = (p+3)llwll3 + & — DIVull3 + &% — 2)[[Vaull;
+oi(p— 1) fp, J2 2 0 1) Pdédp — 2(p + 1) E(0)
(5.16)
t o]
+2(p+ Dby [y Jr, [0 (€2 +0)|(&, 5)|*dEdpds
8t (7 )12)? g,
Since p > 3, then (5.14) holds. |

Lemma 5.3.4 Assume that p > 3 holds and that either one the following conditions is
satisfied

(1)E(0) <0,

(ii) E(0) =0, and

H'(0) > %Hvuoug. (5.17)
(ii)E(0) > 0, and
H(0) > 7 [H(0) + ko] + %Hvuong, (5.18)
where
_ et ) -Vt )20+ 1)
and !
ko = %Hvuoug +2E(0). (5.19)

Then H'(t) > 2| Vuolls, for t > to, fort > to where

/ N 4
# — max {07 2H (0) §2||VU0||2 } :

i(p+ 1) E(0) (5.20)

where tg = t* in cas(i), and to = 0 in case(ii) and (iii)
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Proof 1f E(0) <0, from (5.14), we have

H(t) = =2(p+ 1) E(0),

which gives

H'(t) > H (0) — 2(p + 1) E(0)t,
Thus, we obtain

(1) > 2| Vuglh, 121

where t* is defined in (5.20).
(ii) If £(0) = 0, then from (5.14), we obtien
H'(t)>0, t>0.
Furthermore, if (5.17) holds, then
() > 2 [Vull, >0

(iii) For the case that F(0) > 0, we first note that
' o d 2 4 4
2 [ IVul3 1 Tulids = |Vull - Vol
0

By Young’s inequality, we have

2
19l < [Vl + [ 19alias+ [ (G19013) ds
Combination of ( 5.15) and (5.22), shows that
H'(t) < |[ul3 + lluell3 + 1 Vuollf + % fy | Vullids
5 Jo (EIVul3) ds + by g Ji, [23€ + mlo (€ s)Pdedpds
b1 fy Jog o€ +n) (fy 6, 2)d2)” dédp.
By (5.10), (5.14) and (5.23), we get
H'(t)— (p+1)H'(t)+ (p+ 1) {H(t) + ko} > 0,
where kg is defined in (5.19). Now let
B(t) = H(t) + ko.
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Then B(t) satisfies
B'(t) — (p+ )B() + (p+ DB(t) > 0. (5.24)

Using Lemma 5.2.2 in (5.24) and (5.18), we get
/ 3 4
H'(t) > E”VUOH% t>0.

Theorem 5.3.1 Assume that p > 3. Then the solution (u, ) blows up in finit time T* in
the sense of (5.2.1). and T* is such that:

(i) If E(0) < 0, then

I (to)

J'(to)

Furthemore, if J(ty) < min {1 N } then we have

T <ty —

. Vo
T <t + \/7 T(to)
(i1) If E(0) =0 and (5.17) holds, then
.. J0)
T* < _
= TT0)
or 7(0)
=00
(iii) If
(0= 1) [H(to) = § | Vull]” T(t0)
0 < E(0) < T
and (5.18) holds, then
_J0)
T W

or
TS 2 EE TR [ e (0],

oy o= B2 and J(t), a and b’ are given in (5.25), (5.94) and (5.35)

where ¢ = (%) 245

respectively.
Proof Let
-
)= {#0)+ (T - 02 Ivuls} (5.25)
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Differentiating J(t) twice, we obtain

70 = =50 {0 - SIvul]. (5.26)
and . ,
T () = =nJ () Q), (5.27)
where ,
Q)= H'(t) {H(t) + (T - )3 Vuol3}
2 (5.28)
—(1+ ) {H'(t) = $lVuol3}
It follows from (5.15) that
H'(t) = $ | Vuoll3 = 2 fo wuda + & [y | Vull3 | Vull3ds
(5.29)
+2by [y oy [T+ m)b(E,s) [y G 2)dzdEdpds.
Hence, taking (5.10), (5.14), (5.28), and (5.29) into account, we obtain
Q(t) > —2(p+ 1)E(0)J ()7 + (p+1) {AC - B}, (5.30)

where

A =l + %[5 IIVulldds + 01 [y fr, [725E2 +n) (f5 6(&, 2)dz)” dedpds,
B = [uwdr + 2 [§ [|Vul3L]Vuldds + by [y fr, 72+ n)o(E,s) [y ¢, z)dzdédpds,

00 2
C = lluell3 + b1 fy Sy, S22 (€ + 06, s)Pddpds + F [ (]1Vull3)” ds.
Thus, we obtain Now we observe that, for all p; € R and t > 0,

Api +2Bp; + C = |[pru + wlf3
b fy Jo (€ + ) [or [ (€ 2)dz + |6(€, 5)[]” dedpds

2 [ [ Vull2 + (L] Val3) ds]”.

It is easy to see that
Ap? +2Bp, + C >0,

and
B?—- AC<0. (5.31)

Hence, taking (5.30) and (5.31) into account, we get

Q(t) > —2(p + DEO)J(t)7, t >t (5.32)
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Therefore, by (5.27), and (5.32), we get

p+1)(p—3)

7 < & . E(O)J) 5w, t >t (5.33)

Note that using Lemma 5.3.4, J'(t) < 0 for ¢ > to. Multiplying (5.33) by J'(¢) and integrating
it from ¢y to t, we have

J ()2 > a+bJt)

where . )
a= |95 (1 (1) = $Vuol3)
(5.34)
_9)2 -1 2
— O B(0) (o) 1 | (1)
and
p— @3t gy (5.35)

Alp—1)
Then by Lemma 5.2.3 the proof of theorem is completed.

Hence, there exists a finite time T such that lim J(t) = 0 and the upper bounds of T*
T~

are estimated according to the sign of £(0) (see Lemma 5.2.3).
|
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Conclusion

In this thesis, we study the interaction between the polynomial source and the term of
dissipation: Balakrishnan-Taylor or fractional dissipation. Several results of existence, global
existence, exponential decay and blow-up in finite time are proved. The methods used are
mainly: the semi-group theory, Lyapunov method the method of Georgiev and Todorova
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Résumé (en Frangais) :

Cette thése est consacrée a I'étude de I'existence et l'unicité de la solution et le comportement
asymptotique de quelques problemes aux dérivees partielles de type hyperbolique. Commencons alors
par la question la plus importante qui est le comportement asymptotique. Cela veut dire: est-ce quelle
explose en temps fini ? Est-ce qu'elle existe pour tout temps? Et quel est son comportement a temps
grand (non-existence de solutions, decroissance exponentielle, décroissance polyndmiale, décroissance
logarithmique, ...etc)? Mais avant d'étudier le comportement asymptotique, il faut prouver l'existence

et l'unicité de la solution.
Cette thése se compose de 4 chapitres dont:

Le premier chapitre est consacré pour les notions de la théorie des espaces fonctionnels et de certaines

notions utilisées tout au long de cette these.

Dans le deuxiéme chapitre, nous considérons une équation des ondes non-linéaire soumise a un
contréle frontiere de type fractionnaire. Nous montrons I'existence et l'unicité de la solution par la
théorie des semi-groupes et nous étudions la stabilité exponentielle et la stabilité polynémiale. La
preuve que nous avons établi est basée sur la construction d'une fonction de Lyapunov appropriée et
équivalente a I'énergie de la solution considérée. Enfin, sous quelques hypothéses sur les données

initiales et aux bords, nous avons prouveé lI'explosion de la solution en temps fini.

Dans le troisieme chapitre, nous considérons une équation des ondes non-linéaire avec condition retard
de type fractionnaire. Dans le méme contexte et moyennant les mémes méthodes du deuxieme
chapitre, nous prouvons l'existence locale et étudions la stabilité exponentielle ou stabilité

polyndmiale. Enfin, nous avons prouvé I'explosion de la solution en temps fini si I'énergie initiale est




negative.

Dans le quatrieme chapitre, nous considerons une équation non linéaire de Kirchhoff soumise a un
contrble frontiére de type fractionnaire. Dans le méme contexte et moyennant les mémes méthodes du

quatrieme chapitre, nous prouvons I'explosion de la solution en temps fini

Les mots clés : Equation des ondes non-linéaire, Equation non linéaire de
Kirchhoff, Dérivée Fractionnaire, Stabilité exponentielle, Stabilité polyndmiale, Explosion de

la solution en temps fini, C_0 semi-groupe, Fonction de Lyapunov.
CLASSIFICATION MSC: 93D15; 35L35; 35120

Abstract (en Anglais) :

After we prove the existence and uniqueness of the solution it crosses our minds the most important
question which is asymptotic behaviour. That means: does it blow up in finite time? Does it exist for all
time? And what is its behaviour in big time (non-existence of solutions, exponential decay, polynomial

decay, logarithmic decay, ... etc)?
This thesis is composed of four chapters including:

The first chapter is devoted to the notions of the theory of functional spaces and of certain notions used
throughout this thesis. In the second chapter, we consider a nonlinear wave equation with a fractional
boundary damping. Using the semi-group theory, we establish the existence of the solution and we
prove a decay rate estimate for the energy by introducing suitable Lyapunov functionals . We also
prove that the solution blows up in finite time if the initial energy is non-positive combined with a

positive initial energy.

The third chapter, we consider a nonlinear wave equation with a time delay condition of fractional

type.

In the same context, we will establish the existence of the solutions and we will prove a decay rate
estimate for the energy. We also prove that the solution blows up in finite time if the initial energy is

negative.

In fourth chapter, we consider the Kirchhoff equation with Balakrishnan-Taylor damping and
fractional boundary condition. Inthe same context, we will prove that the solution blows up in finite

time.




Keywords :Nonlinear wave equation, Kirchhoff equation,Fractional derivative,

Exponential decay, Polynomial decay, Blow up in finite time , C 0 semi-group,
Lyapunov functional.
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