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Introduction

This thesis deals with the existence and multiplicity of solutions to the class of

the following elliptic nonlocal problems

(P)�;�;p;N

8>><>>:
�M (u)

�
div
�
jrujp�2
jxjp� ru

�
+ � jujp�2

jxjp(�+1)u
�
= jujp��2

jxjp�� u+ �f (x) in RN

u 2 W 1;p
�;�

�
RN
�

with M (u) =
�
a kukp�;� + b

�
; N � 3; 1 < p < N; a > 0; b � 0 ; 0 � � < (N � p) =p;

� � � < � + 1; �1 < � < � := [(N � (�+ 1) p) =p]p ; f 6� 0; � � 0 is a parameter,

p� = pN= [N � p (1 + �� �)] is the critical Ca¤arelli-Kohn-Nirenberg exponent and

kukp�;� :=
Z
RN

 
jrujp

jxjp� � �
jujp

jxjp(�+1)

!
dx

The problem (P)�;�;p;N is related to the following well known Ca¤arelli-Kohn-Nirenberg

inequality [16] Z
RN

jujp
�

jxjp��
dx

!1=p�
� C�;�;p;N kukp�;� for all u 2 C10

�
RN
�
; (1)

for some positive constant C�;�;p;N .

If � = 1 in (1), then p� = p; C�;�;p;N = 1=� and we have the following weighted

Hardy inequalityZ
RN

jujp

jxjp(�+1)
dx � 1

�

Z
RN

jrujp

jxjp� dx; for all u 2 C
1
0

�
RN
�
:

5
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We shall work with the space W 1;p
�;� := W

1;p
�;�

�
RN
�
for �1 < � < � endowed with the

norm k:k�;� which is equivalent to the norm k:k�;0, that is, we have the continuous

embedding of W 1;p
�;� in L

p�
�
RN ; jxj�p

��
�
; where Lp

�
�
RN ; jxj�p

��
�
is the weighted

Lp
� �RN� space equipped with the norm

kukLp�(RN ;jxj�p��) =
 Z

RN

jujp
�

jxjp��
dx

!1=p�
:

We also use W � to denote the dual space of W 1;p
�;�:

This class of elliptic equations is called nonlocal because of the presence of the

integral over the entire domain RN , which implies that the equation in (P)�;�;p;N is

no longer a pointwise identity. It is also called non-degenerate if a > 0 and b � 0,

while it is named degenerate if a = 0 and b > 0.

In the regular case (� = � = � = 0), (P)0;0;p;N is the elliptic version related to

the stationary analog of the Kirchho¤ equation introduced by Kirchho¤ [31] as an

extension of the classical D�Alembert wave equation for free vibrations of elastic

strings. Kirchho¤�s model takes into account the changes in length of the strings

produced by transverse vibrations.

It is pointed out that regular nonlocal problems model several physical and also

biological systems, so for their various motivations, it calls attention of many re-

searchers.

The problem (P)�;�;p;N has variational form. So, we should �nd solutions as critical

points of the associated energy. In recent decades, a great attention was devoted to

this approach, we precise that the presence of the critical Ca¤arelli-Kohn-Nirenberg

exponent or the unboundedness of the domain are among the reasons to lack the
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compactness. Thus we cannot use the standard variational argument directly.

Here, we quote various results which we obtained.

The �rst chapter is devoted to the basic de�nitions and useful inequalities which

we use frequently in this thesis.

In chapter two, we investigate the following elliptic problem with Hardy term and

critical Sobolev exponent:

(P)0;0;2;3

8>><>>:
�
�
a kuk20;� + b

��
�u+ �

u

jxj2

�
= u5 + �f (x) in R3

u 2 W 1;2
0;� :

Let V" solution of

�V" + �
V"
jxj2 = V

5
" in R3n f0g ;

The main results of this chapiter are given in the following theorems.

Theorem 2.1 Let a > 0; b � 0; � < 1=4 and f 2 W �n f0g. Then there exists

a constant �1 > 0 such that problem (P)0;0;2;3 has at least one solution for any

� 2 (0; �1).

Theorem 2.2 Let a > 0; b � 0; � < 1=4 and f 2 W �n f0g such that
R
R3 f (x)V"dx 6=

0. Then there exists a constant �2 > 0 with �2 � �1 such that problem (P)0;0;2;3 has

at least two solutions for any � 2 (0; �2) :

To prove the existence of two distinct critical points of the associated energy

functional, we �rst minimize the functional in a neighborhood of zero and use the

Ekeland variational principle to �nd the �rst critical point which achieves a local

minimum. Moreover, the level of this local minimum is negative. Next around the

zero point, using the Mountain Pass Theorem we also obtain a critical point whose

level is positive.
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In chapter three, we generalize the results of the previous problem, more pre-

cisely, we study the existence of multiple solutions for the following elliptic Kirchho¤

equation

(P)�;�;2;N

8>><>>:
�
�
a kuk2�;� + b

��
div
�
ru
jxj2�

�
+ � u

jxj2(�+1)

�
= jujp��2

jxjp�� u+ �f (x) in RN

u 2 W 1;2
�;�

�
RN
�

with the following assumptions.

(Hf) f 2 W �n f0g and
R
RN f (x)V"dx 6= 0:

(H1) 3 � N � 4; � � � = 1� N
4
; 0 < a < (S�)

�2 ; b > 0:

(H2) N = 3; � � � < 1

4
; a > 0; b = 0:

(H3) N = 3; � � � = 0; a > 0; b > 0:

The main result in this chapter is the following.

Theorem 3.1 Suppose that f satis�es (Hf) and assume that one of the hypothe-

ses (Hi) holds for i = 1; 3; then, there exists a constant �� > 0 such that the problem

(P)�;�;2;N has at least two nontrivial solutions in W 1;2
�;� for any � 2 ]0; ��[.

The last chapter is centered on a singular elliptic quasilinear problem, we study the

existence, the nonexistence and multiplicity of solutions for the following Kirchho¤

type problem:

(P)�;�;p;N

8>><>>:
�
�
a kukp�;� + b

��
div
�
jrujp�2
jxjp� ru

�
+ � jujp�2

jxjp(�+1)u
�
= jujp��2

jxjp�� u+ �f (x) in RN

u 2 W 1;p
�;�

�
RN
�

When � = 0, we show that the nonexistence of solutions for the above problem are

related to N , �, �, a, and b:When � > 0, by using Ekeland�s variational principle and

the Mountain Pass Theorem, we show the existence of a �rst solution with negative

energy and the existence of a second solution with positive energy.



Chapter 1

Preliminaries

In this chapter, we will introduce and state without proofs some important materials

needed in the proof of our results (see [4] ; [13] ; [16] ; [24]).

1.1 Critical point and critical value

Let X be a Banach space, X� the dual of X and I : X ! R:

De�nition 1.1 A function I is called Fréchet di¤erentiable at u 2 X if there exists

a bounded linear operator A 2 X� such that

lim
kvkX!0

jI (u+ v)� I (u)� hA; vij
kvkX

= 0:

If there exists a such operator A, it is unique, so we write I 0 (u) = A and call it the

Fréchet derivative of I at u. A function I that is Fréchet di¤erentiable for any point

of X is said to be C1 if the function I 0 is continuous.

9
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De�nition 1.2 We call that u 2 X is a critical point of I if I 0 (u) = 0; otherwise u

is called a regular point.

Let c 2 R; we say that c is a critical value of I if there exists a critical point u in

X such that I (u) = c, otherwise c is called regular.

1.2 Palais-Smale sequence, Palais-Smale condition

The notion of critical point can be de�ned as a local minima, but in general it needs

that a certain compactness property holds, for example I (u) = exp (�u) ; the value

c = 0 is never attained. For this we will require the so called Palais-Smale condition

to be satis�ed by I. For this, we introduce the following de�nitions.

De�nition 1.3 We call a sequence (un) 2 X a Palais-Smale sequence on X if

I(un)! c and kI 0(un)kX� ! 0 as n! +1.

We can now with the help of the above de�nition de�ne the Palais-Smale condition.

De�nition 1.4 Let c 2 R: We say that I satis�es the Palais-Smale condition at level

c ((PS)c for short), if any Palais-Smale sequence contains a convergent subsequence

in X:

Let us observe that if I 2 C1(X;R) satis�es the Palais-Smale condition, any point

of accumulation u of a Palais-Smale sequence un, is a critical point of I. We have

implicitly I 0(u) = 0 and I(u) = c:
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1.3 Mountain Pass Theorem and Ekeland�s varia-

tional principle

A powerful tool for proving the existence of a critical point of a functional, is given

by the following theorem.

Theorem 1.5 [24] Let (V; d) be a complete metric space, and I : V ! (�1;+1]

a lower semicontinuous functional, not identically equal to +1 (I 6= +1) which is

bounded from below (infV I > �1). Then, for all " > 0; there exists " 2 V such that

inf
2V

I () � I (") � inf
2V

I () + ";

I (") < I () + "d (; ") ; 8 2 V; such that  6= ":

Corollary 1.6 [24] If V is a Banach space and I 2 C1(V;R) is bounded from below,

then there exists a minimizing sequence (un) for I in V such that

I (un)! inf
V
I and I 0(un)! 0 in V � as n! +1:

Remark 1.7 The Theorem 1:5 and the Corollary 1:6 show the possibility of �nding

minimizing sequences under certain conditions on the functional.

Theorem 1.8 [4] Let I 2 C1(X;R) satisfying (PS) condition. Assume that

(1) I (0) = 0;

(2) there exists two numbers � and � such that I(u) � � for every u 2 X with

kukX = �;

(3) there exists v 2 X such that I(v) < � and kvkX � �.
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De�ne

� := f 2 C ([0; 1] ; X) ;  (0) = 0;  (1) = vg ;

then

c := inf
2�

max
u2([0;1])

I(u) � �

is a critical value.

Remark 1.9 The Mountain Pass Theorem of Ambrosetti and Rabinowitz has been

frequently applied in order to establish the existence of critical points for functionals.

1.4 Useful inequalities and Sobolev embedding

Theorem 1.10 (Sobolev-Gagliardo-Nirenberg)

Let 1 � p < N , Sobolev embedding gives

W 1;p
�
RN
�
,! Lp

� �RN�
where

1

p�
=
1

p
� 1

N
: Moreover there exists a constant C = C(p;N) such that

kukp� � C krukLp(RN ) ; 8u 2 W 1;p
�
RN
�
:

Corollary 1.11 Let 1 � p < N , then

W 1;p
�
RN
�
,! Lq

�
RN
�
; 8q 2 [p; p�]

with continuous embedding.

Theorem 1.12 [13] Let m � 1 and 1 � p <1: We have
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if
1

p
� m
N
> 0; then Wm;p

�
RN
�
,! Lq

�
RN
�
where

1

q
=
1

p
� m
N
;

Corollary 1.13 If
1

p
� m
N
= 0; then Wm;p

�
RN
�
,! Lq

�
RN
�
; 8q 2 [p;+1[ ;

if
1

p
� m
N
< 0; then Wm;p

�
RN
�
,! L1

�
RN
�
;

with continuous embedding.

1.4.1 Some integral inequalities

We will give here some important integral inequalities. These inequalities play an

important role in applied mathematics and also, they are very useful in our next

chapters.

Theorem 1.14 [13] Let q and q0 such that 1 < q; q0 <1 and 1
q
+ 1

q0 = 1: If f 2 L
q

and g 2 Lq0 ; then

fg 2 L1 and
Z
jfgj dx �

�Z
jf jq dx

� 1
q
�Z

jgjq
0
dx

� 1
q0

:

Lemma 1.15 [13] Let 0 � s � 1. Then

kukLr � kuk
s
Lt kuk

1�s
Lq ;

valid for u 2 Lq with 1 � t � r � q, 1
r
=
s

t
+
1� s
q

Theorem 1.16 [16] (Ca¤arelli-Kohn-Nirenberg inequality) Z
RN

jujp
�

jxjp��
dx

!1=p�
� C�;�

�Z
RN

jrujp

jxjp� dx
�1=p

for all u 2 C10
�
RN
�
; (1)

for some positive constant C�;�.
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If � = � + 1 in (1), then p� = p; C�;� =
1

�
=

�
p

N � (�+ 1) p

�p
and we have the

following weighted Hardy inequality

Z
RN

jujp

jxjp(�+1)
dx � 1

�

Z
RN

jrujp

jxjp� dx; for all u 2 C
1
0

�
RN
�
:

1.4.2 Some algebraic inequalities

Since our study is based on some known algebraic inequalities, we want to recall few

of them here.

Lemma 1.17 [13] For all a; b 2 R+, we have

ab � �a2 + 1

4�
b2

where � is any positive constant.

Lemma 1.18 [13] For all a; b 2 R+, the following inequality holds

ab � ap

p
+
bq

q

where
1

p
+
1

q
= 1:

1.5 Modes of convergence

De�nition 1.19 [13] If (xn) is a sequence in X, then xn converges weakly to x if

hf; xni ! hf; xi as n! +1 for all f 2 X�;

we write, xn * x:
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De�nition 1.20 [13] Let (un) be a sequence in X:

Then un converges strongly to u in X if and only if

lim
n!+1

kun � ukX = 0:



16



Chapter 2

Elliptic Kirchho¤ problem with

Sobolev exponent

2.1 Introduction

In this chapter, we are concerned with the existence and multiplicity of solutions to

the following Kirchho¤ problem with the critical Sobolev exponent

(P1)

8>><>>:
�M

�
kuk2�

��
�u+ �

u

jxj2

�
= u5 + �f (x) in R3

u 2 H� (R3)

where M (t) = at + b, a and b are two positive constants; � is a positive parameter,

�1 < � < 1=4;

kuk2� :=
Z
R3

 
jruj2 � � juj

2

jxj2

!
dx

is the norm in H� (R3) and f belongs to H�1
� (R3) ; (H�1

� (R3) is the dual of H� (R3)).

Such problems are frequently called nonlocal because the function M contains an

17
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integral over the domain R3 which implies that the equation in (P1) is no longer a

pointwise identity.

The original one-dimensional Kirchho¤ equation was �rst introduced by Kirchho¤

[31] in 1883, he take into account the changes in length of the strings produced by

transverse vibrations.

The problem (P1) is also related to the stationary analogue of the following evo-

lutionary higher order problem which can been considered as an extension of the

classical D�Alembert wave equation for free vibrations of elastic strings :8>>>>>><>>>>>>:

utt �
�
a

Z



jruj2 dx+ b
�
�u = h (x; u) ; in 
� (0; T ) ;

u = 0 on @
� (0; T ) ;

u (x; 0) = u0 (x) ; ut (x; 0) = u1 (x) :

where 
 � RN is an open bounded domain (N � 1), T is a positive constant, u0;

u1 are given functions. In such problems, u denotes the displacement, h (x; u) the

external force, b is the initial tension and a is related to the intrinsic properties of the

strings (such as Young�s modulus).

It is well known that the Kirchho¤ type problem has mechanical and biological

motivations, for example when an elastic string with �xed ends is subjected to trans-

verse vibrations. They also serve as model in biological systems where u describes

a process depending on the average of itself as population density. The presence of

the nonlocal term makes the theorical study of these problems so di¢ cult, then they

have attracted the attention of many researchers in particular after the work of Lions

[33], where a functional analysis approach was proposed to attack them.

In recent years, the existence and multiplicity of solutions for stationary problems
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of Kirchho¤ type were also investigated in some papers, via variational methods like

the Ekeland variational principle and the Mountain Pass Theorem. Some interesting

results in bounded domains can be found in ([5] ; [7] ; [9] ; [12] ; [34]).

In the regular case and in the unbounded domain RN , some earlier classical in-

vestigations of the following Kirchho¤ equations

(PV;g)
�
�M

�Z
R3
jruj2 dx

�
�u+ V (x)u = g (x; u) ; in R3

have been done, where N � 3; M(t) = at + b; a > 0; b is a positive constants,

V 2 C
�
RN ;R

�
and g 2 C

�
RN � R;R

�
is subcritical and satis�es su¢ cient condi-

tions to ensure the boundedness of any Palais-Smale or Cerami sequence. Such prob-

lems become more complicated since the Sobolev embedding
�
H1
�
RN
�
; k:k�

�
,!�

Lp
�
RN
�
; j:jp

�
is not compact for all p 2 [2; 2�(N)], where kuk =

�Z
RN
jruj2 dx

� 1
2

is the standard norm in H1
�
RN
�
; jujp =

�Z
RN
jujp dx

� 1
p

is the norm in Lp
�
RN
�
and

2�(N) is the critical Sobolev exponent.

To overcome the lack of compactness of the Sobolev embedding, many authors

imposed some conditions on the potential function V (x) for example in [41], Wu

used the following assumption:

(�) inf V (x) � c > 0 and for all d > 0, meas
�
x 2 RN : V (x) � d < 1

	
< 1 to

show the existence of nontrivial solutions to (PV;g). On the other hand, Chena and

Li in [21] studied (PV;g) where g(x; u) = h(x; u) + k(x); h satis�es the Ambrosetti-

Rabinowitz type condition, k 2 L2 (R3) and V veri�es (�). They proved the existence

of multiple solutions by using Ekeland�s variational principle and the Mountain Pass

Theorem. Recently, Li and al. [17] studied (PV;g) where V � 0, they proved the
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existence of a constant a0 > 0 such that (P0;g) admits a positive solution for all

a 2 (0; a0).

However, from the results mentioned above, there are very few existence results

for singular nonlocal type problems (when � > 0) in particular for those who contain

singularity in the diverge operator. This is a more di¢ cult and interesting situation

comparing with the regular case (when � = 0). Moreover, the main di¢ culties in

such problem appear in the fact that for nonlocal problems with critical exponent, to

overcome the lack of compactness, we need to determine a good level of the Palais-

Smale and have to verify that the critical value is contained in the range of this

level.

Let V" solution of

�V" + �
V"
jxj2 = V

5
" in R3n f0g :

The main results of this chapter are given in the following theorems.

Theorem 2.1 Let a > 0; b � 0; � < 1=4; and f 2 H�1
� (R3) n f0g. Then there exists

a constant �1 > 0 such that problem (P1) has at least one solution for any � 2 (0; �1).

Theorem 2.2 Let a > 0; b � 0; � < 1=4; and f 2 H�1
� (R3) n f0g such thatR

R3 f (x)V"dx 6= 0. Then there exists a constant �2 > 0 with �2 � �1 such that

problem (P1) has at least two solutions for any � 2 (0; �2) :

Here we give a brief sketch of the way how we get two distinct critical points of

the energy functional. First, we minimize the functional in a neighborhood of zero

and use the Ekeland variational principle to �nd the �rst critical point which achieves
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a local minimum. Moreover, the level of this local minimum is negative. Next around

the zero point, using the Mountain Pass Theorem we also obtain a critical point whose

level is positive.

2.2 Auxiliary results

To start this section, we need to introduce the following notations.

k:k� denotes the norm in H�1
� (R3), B� is the ball centred at 0 and of radius �,

and �n (1) denotes �n (1)! 0 as n! +1.

De�ne the constant

S� := inf

�Z
R3

�
jruj2 � � u

2

jxj2
�
dx : u 2 H�

�
R3
�
;

Z
R3
u6dx = 1

�
;

It is well known that the embeddingH� (R3) ,! L6 (R3) is continuous but not compact

and S� is achieved by a family of functions

V"(x) :=

�
12"

�
1
4
� �

�� 1
4h

" jxj1�2
p

1
4
�� + jxj1+2

p
1
4
��
i 1
2

, " > 0;

see [40]. Moreover, there holds

�V" + �
V"
jxj2 = V

5
" in R3n f0g ;

and

kV"k2� =
Z
R3
V 6" dx = (S�)

3
2 :

Since our approach is variational, we de�ne the energy functional associated to the

problem (P1) by:

I�(u) =
a

4
kuk4� +

b

2
kuk2� �

1

6

Z
R3
u6dx� �

Z
R3
f (x)u dx; for all u 2 H� (R3) :
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It is clear that I� is well de�ned in H� (R3) and belongs to C1 (H� (R3) ;R).

u 2 H� (R3) is said to be a weak solution of problem (P1) if it satis�es

�
a kuk2� + b

�Z
R3

�
rurv � � uvjxj2

�
dx�

Z
R3
(u5v � �f (x) v) dx = 0; 8v 2 H� (R3) :

In order to prove our main results, we give the following lemmas.

Lemma 2.3 Let (un) � H� (R3) be a Palais-Smale sequence of I� for some c 2 R.

Then

un * u in H�
�
R3
�
;

for some u with I 0� (u) = 0:

Proof. We have

c+ on (1) = I� (un) and on (1) = hI 0� (un) ; uni ;

then

c+ on (1) = I� (un)�
1

6
hI 0� (un) ; uni

= a
1

12
kuk4� + b

1

3
kuk2� � �

5

6

Z
R3
f (x)undx

� a

12
kunk4� +

b

3
kunk2� � �

5

6
kfk� kunk� :

Hence (un) is bounded in H� (R3). Up to a subsequence if necessary, we obtain

un * u in H�
�
R3
�
;

un ! u a.e. in R3;

un * u in L6
�
R3
�
.
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and Z
R3
f (x)undx!

Z
R3
f (x)udx

thus hI 0� (un) ; 'i = 0 for all ' 2 C10 (R3) ; which means that I 0� (u) = 0:

This completes the proof of Lemma 2.3.

Lemma 2.4 Let f 2 W �n f0g Then there exist positive numbers �1; �1and �1 such

that for all � 2 ]0; �1[ we have

(i) I� (u) � �1 > 0; with kuk� = �1;

(ii) I� (u)jB�1 � �
1
2

�
�
3
4 kfk�

�2
:

Proof. Let u 2 H� (R3) n f0g and � = kuk� : We have by the de�nition of S�

I�(u) �
a

4
�4 +

b

2
�2 � (S�)

�3

6
�6 � � kfk� �;

� a

4
�4 +

b

2
�2 � (S�)

�3

6
�6 �

�
�
3
4 kfk�

��
�
1
4�
�
;

by the elementary inequality

AB � A2

2
+
B2

2

we have that

I�(u) �
a

4
�4 � (S�)

�3

6
�6 +

b

2
�2 � 1

2

�
�
3
4 kfk�

�2
� 1
2

�
�
1
4�
�2
;

� a

4
�4 +

b� � 1
2

2
�2 � (S�)

�3

6
�6 � 1

2

�
�
3
4 kfk�

�2
:

� a

4
�4 � (S�)

�3

6
�6 � 1

2

�
�
3
4 kfk�

�2
; for all � � b2:

Now, we consider the function

	(�) =
a

4
�4 � (S�)

�3

6
�6:
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It is easy to see that

	(�) � 0 for all � � �1

max
��0

	(�) = 	 (�1) =
1

12
(S�)

6 a3 � 0

with

�1 =
�
a (S�)

3�12 :
So, for kuk� = �1 and � �

 
1

12 kfk2�

! 2
3

(S�)
4

a2; we have

I�(u) � 	(�1)�
1

2

�
�
3
4 kfk�

�2
� 1

2
	 (�1) +

1

2
	 (�1)�

1

2

�
�
3
4 kfk�

�2
� 1

2
	 (�1)

� 1

24
(S�)

6 a3:

Therefore,

I�(u) � �
1

2

�
�
3
4 kfk�

�2
; for kuk� � �1;

and then we can choose �1; �1 and �1 such that

�1 =
1

24
(S�)

6 a3

�1 =
�
a3 (S�)

� 1
2

�1 = min

8<:
 

1

12 kfk2�

! 2
3

(S�)
4 a2; b2

9=; ;
the conclusion holds.

Lemma 2.5 Let (un) � H� (R3) be a (PS)c sequence of I� for some c 2 R such that

un * u in H� (R3), then

either un ! u or c � I� (u) + C�;
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where

C� =
a

12

�
a (S�)

3 +
�
a2 (S�)

6 + 4b (S�)
3� 12�2

+
b

6

�
a (S�)

3 +
�
a2 (S�)

6 + 4b (S�)
3� 12� :

Proof. By the proof of Lemma 2.3 we have (un) is a bounded sequence inH� (R3) :

Furthermore, if we write vn = un � u, we derive that vn * 0 in H (R3). Then by

Brezis-Lieb Lemma [14] we have8>><>>:
kunk2� = kvnk

2
� + kuk

2
� + on (1) ;Z

R3
u6ndx =

Z
R3
v6ndx+

Z
R3
u6dx+ on (1) :

(2.1)

By (2:1), we obtain

on (1) = a kvnk4� + b kvnk
2
� + 2a kvnk

2
� kuk

2
� �

Z
R3
v6ndx (2.2)

and

c+ on (1) = I�(u) + a
1

4
kvnk4� +

b

2
kvnk2� +

a

2
kvnk2� kuk

2
� �

1

6

Z
R3
v6ndx:

Therefore,

c+ on (1) = I�(u) + a
1

12
kvnk4� +

b

3
kvnk2� +

a

6
kvnk2� kuk

2
� : (2.3)

Using the hypothesis that (vn) is bounded in H� (R3) ; there exists l > 0 such that

kvnk� ! l > 0, then by (2:2) and the Sobolev inequality we obtain

l2 � S
��
bl2 + al4

��1=3
:

Therefore,

S�3l6 � bl2 � al4 � 0;
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this implies that

l2 � aS3 +
p
a2S6 + 4bS3

2
:

From the above inequality and (2:3), we conclude

c � I� (u) +
a

12
l4 +

b

3
l2

� I� (u) +
a

48

�
a (S�)

3 +
�
a2 (S�)

6 + 4b (S�)
3� 12�2

+
b

6

�
a (S�)

3 +
�
a2 (S�)

6 + 4b (S�)
3� 12�

= I� (u) + C�:

This �nishes the proof of Lemma 2.5.

2.3 Proof of the main results

2.3.1 Existence of the �rst solution

First, by Lemma 2.4 we can de�ne

c1 = inf
�
I� (u) ; u 2 �B�1 (0)

	
:

For t > 0 we have

I�(t�) =
a

4
t4 k�k4� +

b

2
t2 k�k2� �

t6

6

Z
R3
�6 dx� �t

Z
R3
f (x) � dx:

Since f 6� 0; we can choose � 2 C10 (R3n f0g) such that
R
R3 f (x) � dx > 0: Hence,

for a �xed � 2 ]0; �1[, there exists t0 > 0 small enough such that kt0�k� < �1 and

I�(t�) < 0 for t 2 ]0; t0[ :
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Hence, c1 < I�(0) = 0. Using the Ekeland�s variational principle, for the complete

metric space �B�1 (0) with respect to the norm of H� (R3) ; we obtain the result that

there exists a Palais-Smale sequence un 2 �B�1 (0) at level c1; and from Lemma 2.3 we

have un * u1 in H� (R3) for some u1 with ku1k� � �1.

Now, we shall show that un ! u1 in H� (R3). Assume un 9 u1 in H� (R3) ; then

it follows from Lemma 2.5 that

c1 � I� (u) + C�

� c1 + C�

> c1;

which is a contradiction. Thus u1 is a critical point of I� i.e. u1 is a solution of (P1)

with negative energy.

2.3.2 Existence of the Second Solution

The existence of the second solution follows immediately from the following lemma.

Lemma 2.6 Let �2 > 0 such that

C� �
1

2

�
�
3
4 kfk�

�2
> 0 for all � 2 (0; �2) :

Then there exists z" 2 H� (R3) and �� 2 ]0; �2] such that

sup
t�0
I�(tz") < C� + c1 for all � 2 (0; ��) :

Proof. Let z" (x) = �V" (x) such thatZ
R3
f (x) z" (x) dx > 0:
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We have

I�(tz") =
at4

4
kz"k4� +

bt2

2
kz"k2� �

t6

6

Z
R3
z6"dx� �t

Z
R3
f (x) z"dx:

We put

h (t) =
at4

4
kz"k4� +

bt2

2
kz"k2� �

t6

6

Z
R3
z6"dx

From the de�nition of S�; we have

jjz"jj2� =
Z
R3
z6"dx = (S�)

3
2 :

Then

h (t) =
at4

4
(S�)

3 +
bt2

2
(S�)

3
2 � t

6

6
(S�)

3
2 ;

and

h0 (t) = (S�)
3
2 t
�
�t4 + a (S�)

3
2 t2 + b

�
:

Thus, the function h (t) attains its maximum at

t20 =
a (S�)

3
2 +

�
a2 (S�)

3 + 4b
�1=2

2
:

By the above estimates on h (t), we deduce that

max
t�0

h (t) = C�:

Then we have

sup
t�0
I�(tz") � C� � �t

Z
R3
f (x) z"dx:

There exists t1 2 (0; t0) small enough such that

�c1 � �t1
Z
R3
f (x) z"dx < 0;
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this implies that

c1 > ��t1
Z
R3
f (x) z"dx:

On the other hand, using Lemma 2.4 we see that

c1 � �
1

2

�
�
3
4 kfk�

�2
for all � 2 (0; �1) :

We choose �2 such that for any � 2 (0; �2) we have

C� + c1 � C� �
1

2

�
�
3
4 kfk�

�2
> 0;

then

C� >
1

2

�
�
3
4 kfk�

�2
;

this implies that

� � �2 = kfk�
4
3

� (2C�)
2
3 ;

and we choose �3 such that for any � 2 (0; �3) we have

��t1
Z
R3
f (x) z"dx � �

1

2

�
�
3
4 kfk�

�2
;

this implies that

� � �3 = 4 kfk�4�
�
t1

Z
R3
f (x) z"dx

�2
:

Taking

�� = min (�1; �2; �3) ;

then we deduce that

sup
t�0
I�(tz") < c1 + C� for all � 2 (0; ��) .

This concludes the proof of Lemma 2.6.
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Note that I�(0) = 0 and the fact that

lim
t!1

I� (tz") = �1 ;

then I�(Tz") < 0 for T large enough; also from Lemma 2.4, we know that

I� (u)j@B�1 � �1 > 0 for all � 2 (0; �1):

Then, by the Mountain Pass Theorem, there exists a Palais-Smale sequence (un) at

level c2, such that

I� (un)! c2 and I 0� (un)! 0 as n! +1

with

c2 = inf
2�

max
t2[0;1]

I�( (t));

where

� =
�
 2 C

�
[0; 1] ; H�

�
R3
��
;  (0) = 0;  (1) = Tz"

	
:

Using Lemma 2.3 we have (un) has a subsequence, still denoted by (un), such that

un * u2 in H� (R3), for some u2 2 H� (R3) : Furthermore, we know by Lemma 2.6

that

sup
t�0
I�(tz") < C� + c1; for all � 2 (0; ��);

then from Lemma 2.5 we deduce that un ! u2 in H� (R3) : Thus we obtain a critical

point u2 of I� satisfying I� (u2) > 0; which achieves the proof of Theorem 2.2.



Chapter 3

Elliptic Kirchho¤ problem with

Ca¤arelli-Kohn-Nirenberg

exponent

3.1 Introduction and main result

In this chapter, we study the existence of multiple solutions for the following elliptic

Kirchho¤ equation

(P2)

8>><>>:
�
�
a kuk2�;� + b

��
div
�
ru
jxj2�

�
+ � u

jxj2(�+1)

�
= jujp��2

jxjp�� u+ �f (x) in RN

u 2 W 1;2
�;�

�
RN
�

with N � 3; a > 0; b � 0; 0 � � < (N � 2) =2; � � � < � + 1;�1 < � < � :=�
(N � 2 (�+ 1))

2

�2
; f 6� 0; � > 0 is a parameter, p� =

2N

N � 2 (1 + �� �) is the

31
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critical Ca¤arelli-Kohn-Nirenberg exponent and

kuk2�;� :=
Z
RN

 
jruj2

jxj2� � �
u2

jxj2(�+1)

!
dx:

The problem (P2) is related to the following well known Ca¤arelli-Kohn-Nirenberg

inequality Z
RN

jujp
�

jxjp��
dx

!1=p�
� C�;�

 Z
RN

jruj2

jxj2�
dx

!1=2
for all u 2 C10

�
RN
�
; (3.1)

for some positive constant C�;�.

If � = �+1 in (3:1), then p� = 2; C�;� = 1=� and we have the following weighted

Hardy inequality

Z
RN

u2

jxj2(�+1)
dx � 1

�

Z
RN

jruj2

jxj2�
dx; for all u 2 C10

�
RN
�
:

We shall work with the space W 1;2
�;� := W

1;2
�;�

�
RN
�
for �1 < � < � endowed with the

norm k:k�;� which is equivalent to the norm k:k�;0, that is, we have the continuous

embedding of W 1;2
�;� in L

p�
�
RN ; jxj�p

��
�
; where Lp

�
�
RN ; jxj�p

��
�
is the weighted

Lp
� �RN� space. We use W � to denote the dual space of W 1;2

�;�:

In the non-degenerate case (a > 0) with non singular terms (� = � = � = 0), the

problem (P2) is related to the stationary problem of a model introduced by Kirchho¤

[31].

For the degenerate case, much interest has grown on problems involving critical

exponents, starting from the celebrated paper by Brézis and Nirenberg [15]. After

that many authors were dedicated to investigate all kinds of elliptic equations with
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critical Sobolev, Hardy-Sobolev or Ca¤arelli-Kohn-Nirenberg exponents in bounded

or unbounded domain, (see [1] ; [3] ; [7] ; [8] ; [11] ; [17]). For � = 0 and b = 1; Kang in

[29] proved that the problem

�div
�
ru
jxjp�

�
� � u

jxj2(�+1)
=
jujp

��2

jxjp��
u in RN ,

has radial ground state solution U" in W 1;2
�;�, and the best constant

S� := inf
W 1;2
�;�nf0g

kuk2�;��R
RN

jujp�

jxjp��
dx
�2=p� ;

is achieved by a family of functions

V"(x) := "
�(N�22 ��)U"

�x
"

�
, " > 0:

Moreover, it holds

kV"k2�;� =
Z
RN

jV"jp
�

jxjp��
dx = (S�)

p�
p��2 :

Recently, the solvability or multiplicity of the Kirchho¤type equation with critical

exponent has attracted the attention of many authors, via variational methods like

the Ekeland variational principle and the Mountain Pass Theorem. See for example

([4] ; [13] ; [16] ; [20] ; [31]).

To state our result, we make the following assumptions.

(Hf) f 2 W �n f0g and
R
RN f (x)V"dx 6= 0:

(H1) 3 � N � 4; � � � = 1� N
4
; 0 < a < (S�)

�2 ; b > 0:

(H2) N = 3; � � � < 1

4
; a > 0; b = 0:

(H3) N = 3; � � � = 0; a > 0; b > 0:

The main result in this chapter is the following theorem.
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Theorem 3.1 Suppose that f satis�es (Hf) and assume that one of the hypotheses

(Hi) holds for i = 1; 3; then, there exists a constant �� > 0 such that the problem

(P2) has at least two solutions in W 1;2
�;� for any � 2 ]0; ��[.

3.2 Auxiliary results

The energy functional I� : W 1;2
�;� ! R; corresponding to the problem (P2) is given by

I�(u) =
a

4
kuk4�;� +

b

2
kuk2�;� �

1

p�

Z
RN

jujp�

jxjp�� dx� �
Z
RN
f (x)udx; 8u 2 W 1;2

�;�:

Notice that I� is well de�ned in W 1;2
�;� and belongs to C

1
�
W 1;2
�;�; R

�
. We say that

u 2 W 1;2
�;�n f0g is a weak solution of (P2), if for any v 2 W 1;2

�;�; there holds

�
a kuk2�;� + b

�Z
RN

�
rurv
jxj2� � � uv

jxj2(�+1)

�
dx�

Z
RN

�
jujp��2uv
jxjp�� � �f (x) v

�
dx = 0:

To prove our main results, we need the following lemmas.

Lemma 3.2 Let f 2 W �n f0g and suppose that one of the hypotheses (Hi) holds for

i = 1; 3: Then there exists positive numbers �1; �1and �1 such that for all � 2 ]0; �1[

we have

(i) I� (u) � �1 > 0; with kuk�;� = �1;

(ii) for all u 2 B�1 (0) we have

I� (u) �

8>>>><>>>>:
�1
2

 �
b

2

��1
2

� kfk�

!2
if (H1) is satis�ed,

�3
4

��a
2

��1
4
� kfk�

� 4
3

if (H2) or (H3) is satis�ed:
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Proof. Let u 2 W 1;2
�;�n f0g and � = kuk�;� : Under the hypotheses (H2) or (H3),

we have by the de�nition of S�

I�(u) �
a

4
�4 +

b

2
�2 � (S�)

�p�=2

p�
�p

� � � kfk� �;

� a

4
�4 � (S�)

�p�=2

p�
�p

� �
��a
2

��1
4
� kfk�

���a
2

� 1
4
�

�
:

By the elementary inequality

AB � As

s
+
Bt

t
for all A > 0; B > 0; s > 0 and t > 0 such that

1

s
+
1

t
= 1

we have

I�(u) �
a

4
�4 � (S�)

�p�=2

p�
�p

� � 3
4

��a
2

��1
4
� kfk�

� 4
3

� 1
4

��a
2

� 1
4
�

�4
;

� a

8
�4 � (S�)

�p�=2

p�
�p

� � 3
4

��a
2

��1
4
� kfk�

� 4
3

:

Now, we consider the function

h (�) =
a

8
�4 � (S�)

�p�=2

p�
�p

�

It is easy to see that

max
��0

h (�) = h (�0) =
p� � 4
4p�

(S�)
2p�
p��4

�a
2

� p�
p��4 � 0

with

�0 =
ha
2
(S�)

p�=2
i 1

p� � 4 :

So, for kuk�;� = �0 and

� �
�
p� � 4
4p�

(S�)
2p�
p��4

� 3
4p �a

2

� p��1
p��4 kfk�1� ;
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we have

I�(u) � h (�0)�
3

4

��a
2

��1
4
� kfk�

� 4
3

;

� 3

4
h (�0) +

1

4
h (�0)�

3

4

��a
2

��1
4
� kfk�

� 4
3

;

� p� � 4
16p�

(S�)
2p�
p��4

�a
2

� p�
p��4

:

Therefore,

I�(u) � �
3

4

��a
2

��1
4
� kfk�

� 4
3

; for kuk�;� � �0:

Now, under the condition (H1) and by the de�nition of S� we have

I�(u) �
b

2
�2 +

a

4
�4 � (S�)

�p�=2

p�
�p

� � � kfk� �;

� b

2
�2 � (S�)

�p�=2

p�
�p

� �
 �

b

2

��1
2

� kfk�

!�
b

2

� 1
2

�

� b

2
�2 � (S�)

�p�=2

p�
�p

� � 1
2

 �
b

2

��1
2

� kfk�

!2
� 1
2

 �
b

2

� 1
2

�

!2

� b

4
�2 � (S�)

�p�=2

p�
�p

� � 1
2

 �
b

2

��1
2

� kfk�

!2
:

Consider the function

~h (�) =
b

4
�2 � (S�)

�p�=2

p�
�p

�

and note that

max
��0

~h (�) = ~h (~�0) =
p� � 2
2p�

�
b

2
S�

� p�

p� � 2 � 0

with

~�0 =

�
b

2
(S�)

p�=2

� 1

p� � 2
:
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So, for kuk�;� = ~�0 and

� �

0B@p� � 2
2p�

(S�)

p�

p� � 2

1CA
1
2 �
b

2

�p� � 1
p� � 2 kfk�1�

we have

I�(u) �
p� � 2
2p�

�
b

2
S�

� p�

p� � 2 � 1
2

 �
b

2

��1
2

� kfk�

!2

� p� � 2
4p�

�
b

2
S�

� p�
p��2

+

264p� � 2
4p�

�
b

2
S�

� p�

p� � 2

�1
2

 �
b

2

��1
2

� kfk�

!235
� p� � 2

4p�

�
b

2
S�

� p�
p��2

:

Therefore,

I�(u) � �
1

2

 �
b

2

��1
2

� kfk�

!2
; for kuk�;� � ~�0:

Then we can choose �1; �1and �1 such that

�1 =

8>>>>><>>>>>:
p� � 2
4p�

�
b

2
S�

� p�
p��2

if (H1) is satis�ed,

p� � 4
16p�

(S�)
2p�
p��4

�a
2

� p�
p��4

if (H2) or (H3) is satis�ed;

�1 =

8>>>><>>>>:

�
b

2
(S�)

p�=2

� 1
p��2

if (H1) is satis�ed,

ha
2
(S�)

p�=2
i 1
p��4

if (H2) or (H3) is satis�ed;

�1 =

8>>>><>>>>:
�
p� � 2
2p�

(S�)
p�

p��2

� 1
2
�
b

2

� p��1
p��2

kfk�1� if (H1) is satis�ed,�
p� � 4
4p�

(S�)
2p�
p��4

� 3
4 �a
2

� p��1
p��4 kfk�1� if (H2) or (H3) is satis�ed:
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Lemma 3.3 Let f 2 W �n f0g and (un) � W 1;2
�;� be a Palais-Smale sequence for I� at

level c, then

un * u in W 1;2
�;�

for some u 2 W 1;2
�;� with I

0
� (u) = 0:

Proof. Let (un) � W 1;2
�;� be a Palais-Smale sequence for I� such that

I� (un)! c and I 0� (un)! 0:

We have

c+ on (1) = I� (un) and on (1) = hI 0� (un) ; uni ;

that is

c+ on (1) = I� (un)�
1

p�
hI 0� (un) ; uni

= a
p� � 4
4p�

kuk4�;� + b
p� � 2
2p�

kuk2�;� � �
p� � 1
p�

Z
RN
f (x)undx;

� ap
� � 4
4p�

kuk4�;� + b
p� � 2
2p�

kuk2�;� � �
p� � 1
p�

kfk� kuk�;� :

Then (un) is bounded in W 1;2
�;�. Up to a subsequence if necessary, we obtain

un * u in W 1;2
�;� and in L

p�
�
RN ; jxj�p

��
�
; un ! u a. e. in RN

and Z
RN
f (x)undx!

Z
RN
f (x)udx:

Then

hI 0� (un) ;�i = 0 for all � 2 C10
�
RN
�
;

thus I 0� (u) = 0: This completes the proof of Lemma 3.3.
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Now, we prove an important lemma which ensures the local compactness of the

Palais-Smale sequence for I�:

Let

C� =

8>>>>>>>>><>>>>>>>>>:

b2

4
�
(S�)

�2 � a
� if (H1) is satis�ed,

4 (1 + �� �)�N
4N

�
a (S�)

2� N
4(1+���)�N if (H2) is satis�ed,

a

48
z21 +

b

6
z1 if (H3) is satis�ed,

with

z1 = a (S�)
3 +

q
a2 (S�)

6 + 4b (S�)
3

Lemma 3.4 Let f 2 W �n f0g and (un) � W 1;2
�;� be a Palais-Smale sequence for I�

for some c 2 R+ such that un * u in W 1;2
�;�. If one of the hypothesis (Hi) ; i = 1; 3

occurs, then

either un ! u or c � I� (u) + C�:

Proof. By the proof of Lemma 3.3, the sequence (un) is bounded in W 1;2
�;� and as

f 2 W �n f0g we have Z
RN
f (x)undx!

Z
RN
f (x)udx: (3.2)

Furthermore, if we write vn = un � u, we derive that vn * 0 in W 1;2
�;�. Then by using

the Brezis-Lieb result [14] we have8>>><>>>:
kunk2�;� = kvnk

2
�;� + kuk

2
�;� + on (1) ;Z

RN

junjp
�

jxjp�� dx =
Z
RN

jvnjp
�

jxjp�� dx+
Z
RN

jujp�

jxjp�� dx+ on (1) :
(3.3)

Combining (3:2) and (3:3), we get

c+ on (1) = I� (u)+a
p� � 4
4p�

kvnk4�;�+ b
p� � 2
2p�

kvnk2�;�+a
p� � 4
2p�

kvnk2�;� kuk
2
�;� (3.4)
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and

on (1) = hI 0� (u) ; ui+ a kvnk
4
�;� + b kvnk

2
�;� + 2a kvnk

2
�;� kuk

2
�;� �

Z
RN

jvnjp
�

jxjp�� dx: (3.5)

Assume that kvnk�;� ! l > 0, then by (3:5) and the Ca¤arelli-Kohn-Nirenberg

inequality we obtain

l2 � S�
�
bl2 + al4

�2=p�
;

this implies that

(S�)
� p�

2 lp
� � al4 � bl2 � 0:

Therefore,

(S�)
� p�

2 lp
��2 � al2 � b � 0:

Now, we consider the functions g : R+ ! R; given by

g (y) = (S�)
� p�

2 yp
��2 � ay2 � b:

If (H1) is satis�ed, we get

g (y) =
�
(S�)

�2 � a
�
y2 � b;

that is,

g (y) � 0 if y2 � b

(S�)
�2 � a

:

From the above inequality and (3:4), we conclude that

c � I� (u) +
1

4

 
b2

(S�)
�2 � a

!

= I� (u) + C�:
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If (H2) is satis�ed, we get

g (y) = y2
�
(S�)

� 3
1�2(���) y

2(1+4(���))
1�2(���) � a

�
;

that is,

g (y) � 0 if y2 �
�
a (S�)

3
1�2(���)

� 1�2(���)
1+4(���)

;

and then

c � I� (u) +
4 (1 + �� �)� 3

12

�
a (S�)

2� 3
4(1+���)�3

= I� (u) + C�:

If (H3) is satis�ed, we get

g (y) = (S�)
�3 y4 � ay2 � b;

that is,

g (y) � 0 if y2 �
a (S�)

3 +
q
a2 (S�)

6 + 4b (S�)
3

2
:

Thus

c � I� (u) +
a

48
z21 +

b

6
z1

= I� (u) + C�:

This �nishes the proof of Lemma 3.4.

3.3 Proof of the main result

3.3.1 Existence of the �rst solution

Proposition 3.5 Let f 2 W �n f0g and assume that one of the hypotheses (Hi) holds

for i = 1; 3: For all � 2 ]0; �1[ ; there exists a solution u1 of (P2) with negative energy.
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Proof. By Lemma 3.2, we can de�ne

c1 = inf
�
I� (u) ; u 2 B�1 (0)

	
:

For t > 0 we have

I�(t') =
a

4
t4 k'k4�;� +

b

2
t2 k'k2�;� �

1

p�
tp
�
Z
RN

j'jp�

jxjp�� dx� �t
Z
RN
f (x)'dx:

By (Hf) we can choose ' 2 W 1;2
�;� such that

Z
RN
f (x)'dx > 0: Then, for a �xed

� 2 ]0; �1[, there exists t0 > 0 such that jjt0'jj�;� < �1 and

I�(t') < 0 for t 2 ]0; t0[ :

Hence, c1 < I�(0) = 0: Using the Ekeland�s variational principle, for the complete

metric space B�1 (0) with respect to the norm ofW
1;2
�;�, we obtain the result that there

exists a Palais-Smale sequence (un) 2 B�1 (0) at level c1; and from Lemma 3.3 we

have un * u1 in W 1;2
�;� for some u1 with ku1k�;� < �1.

Now, we shall show that un ! u1 in W 1;2
�;�: Assume that un 9 u1 in W 1;2

�;�; then, it

follows from Lemma 3.4 that

c1 � I� (u1) + C�

� c1 + C�

> c1;

which is a contradiction. Thus u1 is a critical point of I� i.e. u1 is a solution of

(P2): As I� (0) = 0 and I� (u1) < 0 then, u1 6= 0: Thus u1 is a solution of (P2) with

negative energy.
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3.3.2 Existence of a Mountain Pass type solution

Now, we proof the existence of the second solution.

Proposition 3.6 Suppose that f satis�es (Hf) and assume that one of the hypothe-

ses (Hi) holds for i = 1; 3: Then there exists �� > 0 such that the problem (P2) has a

solution u2 with positive energy.

We need the following lemma.

Lemma 3.7 Suppose that f satis�es (Hf) and assume that one of the hypotheses

(Hi) holds for i = 1; 3: Then there exists �� > 0 such that

sup
t�0
I�(tV") < C� + c1; for all � 2 ]0; ��[ :

Proof. We have

I�(tV") =
a

4
t4 kV"k4�;� +

b

2
t2 kV"k2�;� �

1

p�
tp
�
Z
RN

jV"jp
�

jxjp�� dx� �t
Z
RN
f (x)V"dx:

put

h (t) =
a

4
t4 kV"k4�;� +

b

2
t2 kV"k2�;� �

1

p�
tp
�
Z
RN

jV"jp
�

jxjp�� dx

From the de�nition of S�; we have

kV"k2�;� =
Z
RN

jV"jp
�

jxjp�� dx = (S�)
N

2(1+���) :

Then

h (t) =
a

4
t4 (S�)

N
1+��� +

b

2
t2 (S�)

N
2(1+���) � 1

p�
tp
�
(S�)

N
2(1+���) ;

and

h0 (t) = t (S�)
N

2(1+���)
�
�tp��2 + at2 (S�)

N
2(1+���) + b

�
:
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Thus, the function h (t) attains its maximum at

t0 =

8>>>>>>>><>>>>>>>>:

"
b

1� a (S�)2

# 1
2

if (H1) is satis�ed,h
a (S�)

3
2(1+���)

i 1�2(���)
8(���)+5

if (H2) is satis�ed,

1

2

�
a (S�)

3
2 +

q
a2 (S�)

3 + 4b

�
if (H3) is satis�ed.

The above estimate on h (t) yields that

max
t�0

h (t) = C�:

Then we have

sup
t�0
I�(tV") � C� � �t

Z
RN
f (x)V"dx:

Using Lemma 3.2 we see that

c1 �

8>>>><>>>>:
�1
2

 �
b

2

��1
2

� kfk�

!2
if (H1) is satis�ed;

�3
4

��a
2

��1
4
� kfk�

� 4
3

if (H2) or (H3) is satis�ed;

for all � 2 ]0; �1[ :

Let �2 > 0 such that

C� >

8>>>><>>>>:
p� 1
p

 �
b

2

��1
p

� kfk�

! p
p�1

if (H1) is satis�ed,

2p� 1
2p

��a
2

��1
2p
� kfk�

� 2p
2p�1

if (H2) or (H3) is satis�ed,

for any � 2 ]0; �2[ ; we choose �3 such that for any � 2 ]0; �3[ we have

��t1
Z
RN
f (x)V"dx �

8>>>><>>>>:
�1
2

 �
b

2

��1
2

� kfk�

!2
if (H1) is satis�ed

�3
4

��a
2

��1
4
� kfk�

� 4
3

if (H2) or (H3) is satis�ed,
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this implies that

� � �3 =

8>>><>>>:
t1b kfk�2�

Z
RN
f (x)V"dx if (H1) is satis�ed,

a

2
kfk�4�

�
4
3
t1

Z
RN
f (x)V"dx

�3
if (H2) or (H3) is satis�ed:

Taking

�� = min (�1; �2; �3) :

Thus for any � 2 ]0; ��[ we obtain

sup
t�0
I�(tV") < C� + c1.

This concludes the proof of Lemma 3.7.

Proof of Proposition 3.6. We know by Lemma 3.2 and the fact that

lim
t!1

I� (tV") = �1;

that I� satis�es the geometrical conditions of the Mountain Pass Theorem. Then,

there exists a Palais-Smale sequence (un) at level c2, such that

I� (un)! c2 and I 0� (un)! 0 as n! +1

with

c2 = inf
2�

max
t2[0;1]

I�( (t));

where for T large enough

� =
�
 2 C

�
[0; 1] ;W 1;2

�;�

�
;  (0) = 0;  (1) = TV"

	
:

Using Lemma 3.4 we have (un) has a subsequence, still denoted by (un), such that

un ! u2 in W 1;2
�;�, for some u2 2 W 1;2

�;�; as c2 > 0 then u2 6= 0: Thus the existence
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of the solution with energy positive follows immediately from the preceding lemma

which achieves the proof of Proposition 3.6.

Proof of Theorem 3.1. It follows immediately from the combination of Propo-

sition 3.5 and Proposition 3.6.



Chapter 4

Quasilinear elliptic Kirchho¤

problem with

Ca¤arelli-Kohn-Nirenberg

exponent

4.1 Introduction and main results

In this chapter, we explore the existence and the multiplicity of nontrivial solutions

for the following quasilinear nonlocal elliptic equation

(P3)

8>><>>:
�
�
a kukp�;� + b

��
div
�
jrujp�2
jxjp� ru

�
+ � jujp�2

jxjp(�+1)u
�
= jujp��2

jxjp�� u+ �f (x) in RN

u 2 W 1;p
�;�

with N � 3; 1 < p < N; a > 0; b � 0; 0 � � < (N � p) =p; � � � < � +

1;�1 < � < � := [(N � (�+ 1) p) =p]p ; f 6� 0; � > 0 is a parameter and p� =

47
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pN= [N � p (1 + �� �)] is the critical Ca¤arelli-Kohn-Nirenberg exponent and

kukp�;� :=
Z
RN

 
jrujp

jxjp� � �
jujp

jxjp(�+1)

!
dx:

Also, we use W � to denote the dual space of W 1;p
�;�:

For the degenerate case, much interest has grown on problems involving criti-

cal exponents, many authors investigated all kinds of elliptic equations with critical

Sobolev or Ca¤arelli-Kohn-Nirenberg exponents in bounded or unbounded domain.

For a = � = 0 and b = 1; Kang in [29] proved that the problem

�div
 
jrujp�2

jxjp� ru
!
� � jujp�2

jxjp(�+1)
u =

jujp��2

jxjp��
u in RN ,

has radial ground state solution U" in W 1;p
�;�, and the best constant

S� := inf
W 1;p
�;�nf0g

kukp�;��R
RN

jujp�
jxjp�� dx

�p=p� ;
is achieved by a family of functions

V"(x) := "
�(N�pp ��)U"

�x
"

�
, " > 0:

Moreover, it holds

kV"kp�;� =
Z
RN

jV"jp�

jxjp��
dx = (S�)

p�
p��p :

It is worth to point out that Kang in [29] established an existence result however

in this work, we also prove a nonexistence results under some conditions on certain

parameters.
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The mathematical interest in equation (P3) lies in the fact that it involves non-

local singular and quasilinear operator and also critical singular nonlinearities so, it

becomes di¢ cult to apply variational methods directly moreover we never have com-

pact embedding in the unbounded domain RN . To deal with all these di¢ culties, we

attempt to use Mountain Pass Theorem as well as the Ekeland�s variational principle

to explore the existence of two distinct solutions.

To state our results, we make the following assumptions.

(H0) f 2 W �n f0g and
R
RN f (x)V"dx 6= 0:

(H1) 3 � N � 2p; � � � = 1� N

2p
; b = 0; a > (S�)

�2 :

(H2) 3 � N � 2p; � � � = 1� N

2p
; a � (S�)�2 ; b > 0:

(H3) N � 3; � � � 2 [0; 1[ \
�
1� N

2p
; 1

�
; a >

p� � p
p

(S�)
� p�
p��p ; b >

2p� p�
p

:

(H4) 3 � N � 2p; � � � = 1� N

2p
; 0 < a < (S�)

�2 ; b > 0:

(H5) 3 � N < 2p; � � � < 1� N

2p
; a > 0; b = 0:

(H6) 3 � N � 3

2
p; � � � = 1� 2N

3p
; a > 0; b > 0:

(H7) 3 � N � 4

3
p; � � � = 1� 3N

4p
; a > 0; b = 2

�a
3

� 3
2
(S�)

2 :

(H8) 3 � N � 4

3
p; � � � = 1� 3N

4p
; a > 0; b > 2

�a
3

� 3
2
(S�)

2 :

(H9) 3 � N � 4

3
p; � � � = 1� 3N

4p
; a > 0; 0 < b < 2

�a
3

� 3
2
(S�)

2.

(H10) 3 � N � 5

4
p; � � � = 1� 4N

5p
; a > 0; b > 0:

The main results in this chapter are the following theorems.

Theorem 4.1 Assume that one of the hypotheses (Hi) holds for 1 � i � 3. Then

problem (P3) has no solutions for � = 0.
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Theorem 4.2 Suppose that f satis�es (H0) and assume that one of the hypotheses

(Hi) holds for 4 � i � 10; then, there exists a constant �� > 0 such that the problem

(P3) has at least two solutions in W 1;p
�;� for any � 2 ]0; ��[.

4.2 Preliminaries

The energy functional I� : W 1;p
�;� ! R; corresponding to the problem (P3) is given by

I�(u) =
a

2p
kuk2p�;� +

b

p
kukp�;� �

1

p�

Z
RN

jujp�

jxjp�� dx� �
Z
RN
f (x)udx; 8u 2 W 1;p

�;�:

Notice that I� is well de�ned in W 1;p
�;� and belongs to C

1
�
W 1;p
�;�; R

�
. We say that

u 2 W 1;p
�;�n f0g is a weak solution of (P3), if for any v 2 W 1;p

�;� there holds

�
a kukp�;� + b

�Z
RN

�
jrujp�2rurv

jxjp� � � juj
p�2uv

jxjp(�+1)

�
dx�

Z
RN

�
jujp��2uv
jxjp�� � �f (x) v

�
dx = 0:

To prove our main results, we need the following lemmas.

Lemma 4.3 Let f 2 W �n f0g and suppose that one of the hypotheses (Hi) holds

for 4 � i � 10: Then there exists positive numbers �1; �1and �1 such that for all

� 2 ]0; �1[ we have

(i) I� (u) � �1 > 0; with kuk�;� = �1;

(ii) For all u 2 B�1 (0) we have

I� (u) �

8>>>>>>><>>>>>>>:

�p� 1
p

 �
b

2

��1
p

� kfk�

! p
p�1

if (H4) is satis�ed;

�2p� 1
2p

��a
2

��1
2p
� kfk�

� 2p
2p�1 if one of (Hi) is satis�ed

with 5 � i � 10.
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Proof. Let u 2 W 1;p
�;�n f0g and � = kuk�;� : Under one of hypotheses (Hi) with

5 � i � 10, we have by the de�nition of S�

I�(u) � a

2p
�2p +

b

p
�p � (S�)

�p�=p

p�
�p

� � � kfk� �;

� a

2p
�2p � (S�)

�p�=p

p�
�p

� �
��a
2

��1
2p
� kfk�

���a
2

� 1
2p
�

�
:

By the elementary inequality

AB � As

s
+
Bt

t
for all A > 0; B > 0; s > 0 and t > 0 such that

1

s
+
1

t
= 1

we have that

I�(u) � a

2p
�2p � (S�)

�p�=p

p�
�p

� � 2p� 1
2p

��a
2

��1
2p
� kfk�

� 2p
2p�1

� 1

2p

��a
2

� 1
2p
�

�2p
;

� a

4p
�2p � (S�)

�p�=p

p�
�p

� � 2p� 1
2p

��a
2

��1
2p
� kfk�

� 2p
2p�1

:

Now, we consider the function

h (�) =
a

4p
�2p � (S�)

�p�=p

p�
�p

�

It is easy to see that

max
��0

h (�) = h (�0) =
p� � 2p
2p:p�

(S�)
2p�

p��2p

�a
2

� p�
p��2p � 0

with

�0 =
ha
2
(S�)

p�=p
i 1

p� � 2p :

So, for kuk�;� = �0 and

� �
�
p� � 2p
2pp�

(S�)
2p�

p��2p

� 2p�1
2p �a

2

� p��1
p��2p kfk�1� ;
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we have

I�(u) � h (�0)�
2p� 1
2p

��a
2

��1
2p
� kfk�

� 2p
2p�1

;

� 2p� 1
2p

h (�0) +
1

2p
h (�0)�

2p� 1
2p

��a
2

��1
2p
� kfk�

� 2p
2p�1

;

� p� � 2p
4p2p�

(S�)
2p�

p��2p

�a
2

� p�
p��2p

:

Therefore,

I�(u) � �
2p� 1
2p

��a
2

��1
2p
� kfk�

� 2p
2p�1

; for kuk�;� � �0:

Now, under the condition (H4) and the de�nition of S� we have

I�(u) � b

p
�p +

a

2p
�2p � (S�)

�p�=p

p�
�p

� � � kfk� �;

� b

p
�p � (S�)

�p�=p

p�
�p

� �
 �

b

2

��1
p

� kfk�

!�
b

2

� 1
p

�

� b

p
�p � (S�)

�p�=p

p�
�p

� � p� 1
p

 �
b

2

��1
p

� kfk�

! p
p�1

� 1
p

 �
b

2

� 1
p

�

!p

� b

2p
�p � (S�)

�p�=p

p�
�p

� � p� 1
p

 �
b

2

��1
p

� kfk�

! p
p�1

:

We consider the function

~h (�) =
b

2p
�p � (S�)

�p�=p

p�
�p

�

notice that

max
��0

~h (�) = ~h (~�0) =
p� � p
pp�

�
b

2
S�

� p�

p� � p � 0

with

~�0 =

�
b

2
(S�)

p�=p

� 1

p� � p
:
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So, for kuk�;� = ~�0 and

� �

0B@p� � p
pp�

(S�)

p�

p� � p

1CA
p�1
p �

b

2

�p� � 1
p� � p kfk�1�

we have

I�(u) � p� � p
pp�

�
b

2
S�

� p�

p� � p � p� 1
p

 �
b

2

��1
p

� kfk�

! p
p�1

� 1

p

p� � p
pp�

�
b

2
S�

� p�
p��p

+

264p� 1
p

p� � p
pp�

�
b

2
S�

� p�

p� � p

�p� 1
p

 �
b

2

��1
p

� kfk�

! p
p�1
35

� p� � p
p2p�

�
b

2
S�

� p�
p��p

:

Therefore,

I�(u) � �
p� 1
p

 �
b

2

��1
p

� kfk�

! p
p�1

; for kuk�;� � ~�0:
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then we can choose �1; �1and �1 such that

�1 =

8>>>>>>>><>>>>>>>>:

p� � p
p2p�

�
b

2
S�

� p�
p��p

if (H4) is satis�ed,

p� � 2p
4p2p�

(S�)
2p�

p��2p

�a
2

� p�
p��2p if one of (Hi) is satis�ed

with 5 � i � 10;

�1 =

8>>>>>>>><>>>>>>>>:

�
b

2
(S�)

p�=p

� 1
p��p

if (H4) is satis�ed,

ha
2
(S�)

p�=p
i 1
p��2p if one of (Hi) is satis�ed

with 5 � i � 10;

�1 =

8>>>>>>>><>>>>>>>>:

�
p� � p
pp�

(S�)
p�

p��p

� p�1
p
�
b

2

� p��1
p��p

kfk�1� if (H4) is satis�ed,

�
p� � 2p
2pp�

(S�)
2p�

p��2p

� 2p�1
2p �a

2

� p��1
p��2p kfk�1�

if one of (Hi) is satis�ed

for 5 � i � 10:

Lemma 4.4 Let f 2 W �n f0g and (un) � W 1;p
�;� be a Palais-Smale sequence for I� at

level c, then

un * u in W 1;p
�;�

for some u 2 W 1;p
�;� with I

0
� (u) = 0:

Proof. Let (un) � W 1;p
�;� be a Palais-Smale sequence for I� such that

I� (un)! c and I 0� (un)! 0:

We have

c+ on (1) = I� (un) and on (1) = hI 0� (un) ; uni ;
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that is

c+ on (1) = I� (un)�
1

p�
hI 0� (un) ; uni

= a
p� � 2p
2pp�

kuk2p�;� + b
p� � p
pp�

kukp�;� � �
p� � 1
p�

Z
RN
f (x)undx;

� a
p� � 2p
2pp�

kuk2p�;� + b
p� � p
pp�

kukp�;� � �
p� � 1
p�

kfk� kuk�;� :

Then (un) is bounded in W 1;p
�;�. Up to a subsequence if necessary, we obtain

un * u in W 1;p
�;� and in L

p�
�
RN ; jxj�p

��
�
; un ! u a. e. in RN

and

Z
RN
f (x)undx!

Z
RN
f (x)udx:

Then

hI 0� (un) ;�i = 0 for all � 2 C10
�
RN
�
;

thus I 0� (u) = 0: This completes the proof of Lemma 4.4.

Now, we prove an important lemma which ensures the local compactness of the

Palais-Smale sequence for I�:
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Let

C� =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

1

2p

b2

(S�)
�2 � a

if (H4) is satis�ed,

2p (1 + �� �)�N
2pN

�
a (S�)

2� N
2p(1+���)�N if (H5) is satis�ed,

a

24p
z21 +

b

3p
z1 if (H6) is satis�ed,

a

4p
z22 +

3b

4p
z2 if (H7) is satis�ed,

a

4p
z23 +

3b

4p
z3 if (H8) is satis�ed,

a

4p
z2k+4 +

3b

4p
zk+4; k = 0 or k = 1 or k = 2 if (H9) is satis�ed,

3a

10p
z27 +

4b

5p
z7 if (H10) is satis�ed,

with

z1 = a (S�)
3 +

q
a2 (S�)

6 + 4b (S�)
3

z2 = 2

r
a

3
(S�)

2

z3 =
�
(S�)

4

2

� 1
3
h
(b+ �)

1
3 + (b� �)

1
3

i
� =

q
b2 � 4

�
a
3

�3
(S�)

4

zk+4 = 2

r
a

3
(S�)

2 cos �+2k�
3

with k 2 f0; 1; 2g ,

cos � =
b

2
�
a
3

� 3
2 (S�)

2
and sin � =

r
4
�a
3

�3
(S�)

4 � b2

2
�
a
3

� 3
2 (S�)

2

z7 =
1
2

�
2
1
3
p
! +

q
�2 23! + 2 23 (S�)5 a!�

1
2

�
! = !1 + !2

!1 =

"
a2

23
(S�)

10 �
r
a4

26
(S�)

20 +
4

33
b3 (S�)

15

# 1
3

!2 =

"
a2

23
(S�)

10 +

r
a4

26
(S�)

20 +
4

33
b3 (S�)

15

# 1
3

:
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Lemma 4.5 Let f 2 W �n f0g and (un) � W 1;p
�;� be a Palais-Smale sequence for I�

for some c 2 R+ such that un * u in W 1;p
�;�. If one of the hypotheses (Hi) ; 4 � i � 10

occurs, then

either un ! u or c � I� (u) + C�:

Proof. By the proof of Lemma 4.4 the sequence (un) is bounded in W 1;p
�;� and as

f 2 W �n f0g we have Z
RN
f (x)undx!

Z
RN
f (x)udx: (4.2)

Furthermore, if we write vn = un � u; we derive that vn * 0 in W 1;p
�;�. Then by using

the Brezis-Lieb result [14] we have8>>><>>>:
kunkp�;� = kvnk

p
�;� + kuk

p
�;� + on (1) ;Z

RN

junjp
�

jxjp�� dx =
Z
RN

jvnjp
�

jxjp�� dx+
Z
RN

jujp�

jxjp�� dx+ on (1) :
(4.3)

Combining (4:2) and (4:3), we get

c+ on (1) = I� (u) + a
p� � 2p
2pp�

kvnk2p�;� + b
p� � p
pp�

kvnkp�;� (4.4)

+a
p� � 2p
pp�

kvnkp�;� kuk
p
�;�

and

on (1) = hI 0� (u) ; ui+ a kvnk
2p
�;� + b kvnk

p
�;� + 2a kvnk

p
�;� kuk

p
�;� �

Z
RN

jvnjp
�

jxjp�� dx: (4.5)

Assume that kvnk�;� ! l > 0, then by (4:5) and the Ca¤arelli-Kohn-Nirenberg

inequality we obtain

lp � S�
�
blp + al2p

�p=p�
;

this implies that

(S�)
� p�

p lp
� � al2p � blp � 0:
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Therefore,

(S�)
� p�

p lp
��p � alp � b � 0:

Now, we consider the functions g : R+ ! R; given by

g (y) = (S�)
� p�

p yp
��p � ayp � b;

If (H4) is satis�ed, we get

g (y) =
�
(S�)

�2 � a
�
yp � b;

that is,

g (y) � 0 if yp � b

(S�)
�2 � a

:

From the above inequality and (4:4), we conclude that

c � I� (u) +
1

2p

 
b2

(S�)
�2 � a

!
= I� (u) + C�:

If (H5) is satis�ed, we get

g (y) = yp
�
(S�)

� N
N�p(1+���) y

p(2p(1+���)�N)
N�p(1+���) � a

�
;

that is,

g (y) � 0 if yp �
�
a (S�)

N
N�p(1+���)

� N�p(1+���)
2p(1+���)�N

:

and then

c � I� (u) +
2p (1 + �� �)�N

2pN

�
a (S�)

2� N
2p(1+���)�N

= I� (u) + C�:
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If (H6) is satis�ed, we get

g (y) = (S�)
�3 y2p � ayp � b;

that is,

g (y) � 0 if yp �
a (S�)

3 +
q
a2 (S�)

6 + 4b (S�)
3

2
:

Thus

c � I� (u) +
a

24p
z21 +

b

3p
z1

= I� (u) + C�:

If (H7) or (H8) or (H9) is satis�ed, we get

g (y) = (S�)
�4 y3p � ayp � b;

and we have to distinguish three cases:

Case 1: b = 2
�
a
3

� 3
2 (S�)

2 :

If yp � 2
�
a
3

� 1
2 (S�)

2 ; then g (y) � 0. So, by (4:4) we conclude

c � I� (u) +
a

4p
z22 +

3b

4p
z2

= I� (u) + C�;

Case 2: b > 2
�
a
3

� 3
2 (S�)

2 :

Since g (y) � 0 for yp � z3, we get by (4:4)

c � I� (u) +
a

4p
z23 +

3b

4p
z3

= I� (u) + C�:
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Case 3: b < 2
�
a
3

� 3
2 (S�)

2 :

In this case, g (y) � 0 for yp � zk+4; k 2 f0; 1; 2g.

Since cos � and sin � are positive, we have � 2
h
2K�;

�

2
+ 2K�

i
; K 2 Z:

Note that for � 2
�
6K�; �

2
+ 6K�

�
; K 2 Z; we have

cos
�

3
> 0; cos

� + 2�

3
< 0 and cos

� + 4�

3
< 0;

for � 2
h
2 (1 + 3K)�;

�

2
+ 2 (1 + 3K)�

i
; K 2 Z; we have

cos
� + 4�

3
> 0; cos

�

3
< 0 and cos

� + 2�

3
< 0;

and for � 2
h
2 (2 + 3K)�;

�

2
+ 2 (2 + 3K)�

i
; K 2 Z; we have

cos
� + 2�

3
> 0; cos

� + 4�

3
< 0 and cos

� + 4�

3
< 0:

So g (y) � 0 for

yp �

8>>>>>>><>>>>>>>:

2

r
a

3
(S�)

2 cos
�

3
if � 2

�
6K�; �

2
+ 6K�

�
;

2

r
a

3
(S�)

2 cos
� + 2�

3
if � 2

�
2 (2 + 3K)�; �

2
+ 2 (2 + 3K)�

�
;

2

r
a

3
(S�)

2 cos
� + 4�

3
if � 2

�
2 (1 + 3K)�; �

2
+ 2 (1 + 3K)�

�
;

for K 2 Z:

From the above inequality and (4:4), we conclude

c � I� (u) +
a

4p
z2k+4 +

3b

4p
zk+4; k 2 f0; 1; 2g

= I� (u) + C�:

If (H10) is satis�ed, we have

g (y) = (S�)
�5 y4p � ayp � b:
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Then g (y) � 0 for yp � y7: From the above inequality and (4:4), we conclude

c � I� (u) +
3a

10p
y27 +

4b

5p
y7

= I� (u) + C�:

This �nishes the proof of Lemma 4.5.

4.3 Nonexistence Result

Proof of Theorem 4.1. Suppose that (H1) is satis�ed and that u 2 W 1;p
�;�nf0g is

a solution of the problem (P3). Then

a kuk2p�;� =
Z
RN

jujp�

jxjp�� dy: (4.6)

As a > (S�)
�2 and

Z
RN

jujp�

jxjp�� dy � (S�)
�2 kuk p

�

�;� , we have by (4:6)

(S�)
�2 kuk2p�;� < a kuk2p�;�

=

Z
RN

jujp�

jxjp�� dy

� (S�)
�2 kuk2p�;� ;

which leads to a contradiction.

Suppose now that (H2) is satis�ed and that u 2 W 1;p
�;�nf0g is a solution of (P3). Then

a kuk2p�;� + b kuk
p
�;� =

Z
RN

jujp�

jxjp�� dy:

From this last equality and because a � (S�)�2 ; b > 0 and the fact that

Z
RN

jujp�

jxjp�� dy � (S�)
�2 kukp

�

�;�
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we get

(S�)
�2 kuk2p�;� < a kuk2p�;� + b kuk

p
�;�

=

Z
RN

jujp�

jxjp�� dy

� (S�)
�2 kuk2p�;� ;

which is a contradiction.

In the same way as above, we suppose that under the condition (H3) we have the

existence of a solution u 2 W 1;p
�;�nf0g, that is,

a kuk2p�;� + b kuk
p
�;� =

Z
RN

jujp�

jxjp�� dy;

and then we get

Z
RN

jujp�

jxjp�� dy � (S�)
� p�

p kukp
�

�;�

� (S�)
� p�

p kuk2p
��2p

�;� kuk2p�p
�

�;�

� p� � p
p

�
(S�)

� p�
p kuk2p

��2p
�;�

� p
p��p

+
2p� p�
p

�
kuk2p�p

�

�;�

� p
2p�p�

� p� � p
p

(S�)
� p�
p��p kuk2p�;� +

2p� p�
p

kukp�;�

< a kuk2p�;� + b kuk
p
�;�

=

Z
RN

jujp�

jxjp�� dy;

which leads to a contradiction.
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4.4 Existence Result

4.4.1 Existence of a �rst solution

Proposition 4.6 Let f 2 W �n f0g and assume that one of the hypotheses (Hi) holds

for 4 � i � 10: For all � 2 ]0; �1[ ; there exists a solution u1 of (P3) with negative

energy.

Proof. By Lemma 4.3, we can de�ne

c1 = inf
�
I� (u) ; u 2 B�1 (0)

	
:

For t > 0 we have

I�(t') =
a

2p
t2pjj'jj2p�;� +

b

p
tpjj'jjp�;� �

1

p�
tp
�
Z
RN

j'jp�

jxjp�� dy � �t
Z
RN
f (x)'dx:

By (H0) we can choose ' 2 W 1;p
�;� such that

Z
RN
f (x)'dx > 0: Then, for a �xed

� 2 ]0; �1[, there exists t0 > 0 such that jjt0'jj�;� < �1 and

I�(t') < 0 for t 2 ]0; t0[ :

Hence, c1 < I�(0) = 0: Using the Ekeland�s variational principle, for the complete

metric space B�1 (0) with respect to the norm ofW
1;p
�;�, we obtain the result that there

exists a Palais-Smale sequence un 2 B�1 (0) at level c1; and from Lemma 4.4 we have

un * u1 in W 1;p
�;� for some u1 with jju1jj�;� < �1.
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Now, we shall show that un ! u1 in W 1;p
�;�: Assume that un 9 u1 in W 1;p

�;�; then, it

follows from Lemma 4.5 that

c1 � I� (u1) + C�

� c1 + C�

> c1;

which is a contradiction. Thus u1 is a critical point of I� i.e. u1 is a solution of

(P3): As I� (0) = 0 and I� (u1) < 0 then, u1 6= 0: Thus u1 is a solution of (P3) with

negative energy.

4.4.2 Existence of a second solution

Now, we proof the existence of a Mountain Pass type solution.

Proposition 4.7 Suppose that f satis�es (H0) and assume that one of the hypotheses

(Hi) holds for 4 � i � 10: Then there exists �� 2 ]0; �1] such that the problem (P3)

has a solution u2 with positive energy.

We need the following lemma.

Lemma 4.8 Suppose that f satis�es (H0) and assume that one of the hypotheses

(Hi) holds for 4 � i � 10: Then there exists �� > 0 such that

sup
t�0
I�(tV") < C� + c1; for all � 2 ]0; ��[ :

Proof. We have

I�(tV") =
a

2p
t2p kV"k2p�;� +

b

p
tp kV"kp�;� �

1

p�
tp
�
Z
RN

jV"jp
�

jxjp�� dy � �t
Z
RN
f (x)V"dx;
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put

h (t) =
a

2p
t2p kV"k2p�;� +

b

p
tp kV"kp�;� �

1

p�
tp
�
Z
RN

jV"jp
�

jxjp�� dy:

From the de�nition of S�; we have

kV"kp�;� =
Z
RN

jV"jp
�

jxjp�� dy = (S�)
N

p(1+���) :

Then

h (t) =
a

2p
t2p (S�)

2N
p(1+���) +

b

p
tp (S�)

N
p(1+���) � 1

p�
tp
�
(S�)

N
p(1+���) ;

and

h0 (t) = tp�1 (S�)
N

p(1+���)
�
�tp��p + atp (S�)

N
p(1+���) + b

�
:

Thus, the function h (t) attains its maximum at

t0 =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

"
b

1� a (S�)2

# 1
p

if (H4) is satis�ed,h
a (S�)

N
p(1+���)

i N�p(1+���)
2p2(1+���)�N if (H5) is satis�ed,

1
2

�
a (S�)

3
2 +

q
a2 (S�)

3 + 4b

�
if (H6) is satis�ed,"

1

2 (S�)
5
4

�
2
1
3
p
! +

q
�2 23! + 2 23a (S�)5 !�

1
2

�# 1
p

if (H10) is satis�ed.

In the other hand, if (H7) or (H8) or (H9) is satis�ed, the function h (t) attains its

maximum at

t0 =

8>><>>:
h
2
p

a
3
(S�)

2
3

i 1
p

if b = 2
�a
3

� 3
2
(S�)

2

2
�1
3p

h
(b+ �)

1
3 + (b� �)

1
3

i 1
p
if b > 2

�a
3

� 3
2
(S�)

2 ;
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with � =
q
b2 � 4

�
a
3

�3
(S�)

4; and if b < 2
�a
3

� 3
2
(S�)

2 ; the function h (t) attains its

maximum at

t0 =

8>>>>>><>>>>>>:

�
2
�
a
3

� 1
2 (S�)

2
3 cos �

3

� 1
p

if � 2
h
6K�;

�

2
+ 6K�

i
;�

2
�
a
3

� 1
2 (S�)

2
3 cos �+2�

3

� 1
p

if � 2
h
(4 + 6K)�;

�

2
+ (4 + 6K)�

i
;�

2
�
a
3

� 1
2 (S�)

2
3 cos �+4�

3

� 1
p

if � 2
h
(2 + 6K)�;

�

2
+ (2 + 6K)�

i
;

for K 2 Z:

The above estimate on h (t) yields

max
t�0

h (t) = C�:

Then we have

sup
t�0
I�(tV") � C� � �t

Z
RN
f (x)V"dx;

On the other hand, using Lemma 4.3 we see that for all � 2 ]0; �1[

c1 �

8>>>>>>><>>>>>>>:

�p� 1
p

 �
b

2

��1
p

� kfk�

! p
p�1

if (H4) is satis�ed

�2p� 1
2p

��a
2

��1
2p
� kfk�

� 2p
2p�1 if one of (Hi) is satis�ed

with i = 5; 10:

:

Let �2 > 0 such that

C� >

8>>>>>>><>>>>>>>:

p� 1
p

 �
b

2

��1
p

� kfk�

! p
p�1

if (H4) is satis�ed

2p� 1
2p

��a
2

��1
2p
� kfk�

� 2p
2p�1 if one of (Hi) is satis�ed

with i = 5; 10;
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for any � 2 ]0; �2[ ; we choose �3 such that for any � 2 ]0; �3[ we have

��t1
Z
RN
f (x)V"dx �

8>>>>>>><>>>>>>>:

�p� 1
p

 �
b

2

��1
p

� kfk�

! p
p�1

if (H4) is satis�ed

�2p� 1
2p

��a
2

��1
2p
� kfk�

� 2p
2p�1 if (Hi) is satis�ed

with i = 5; 10;

this implies that

� � �3 =

8>>>>>><>>>>>>:

b

2
kfk�p�

�
pt1
p�1

Z
RN
f (x)V"dx

�p�1
if (H4) is satis�ed

a

2
kfk�2p�

�
2pt1
2p�1

Z
RN
f (x)V"dx

�2p�1 if one of (Hi) is satis�ed

with i = 5; 10:

Taking

�� = min (�1; �2; �3) :

Thus for any � 2 ]0; ��[ we obtain

sup
t�0
I�(tV") < C� + c1.

This concludes the proof of Lemma 4.8.

Proof of Proposition 4.7. We know by Lemma 4.3 and the fact that

lim
t!1

I� (tV") = �1;

that I� satis�es the geometrical conditions of the Mountain Pass Theorem. Then,

there exists a Palais-Smale sequence (un) at level c2, such that

I� (un)! c2 and I 0� (un)! 0 as n! +1

with

c2 = inf
2�

max
t2[0;1]

I�( (t));
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where for T large enough

� =
�
 2 C

�
[0; 1] ;W 1;p

�;�

�
;  (0) = 0;  (1) = TV"

	
:

Using Lemma 4.5 we have that (un) has a subsequence, still denoted by (un), such

that un ! u2 in W 1;p
�;�, for some u2 2 W 1;p

�;�; as c2 > 0 then u2 6= 0:

Thus the existence of the solution with energy positive follows immediately from

the preceding lemma which achieves the proof of Proposition 4.7.

Proof of Theorem 4.2. It follows immediately from the combination of Propo-

sition 4.6 and Proposition 4.7.
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