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General Introduction

The analysis of experimental data that have been observed at different points in time leads to new
and unique problems in statistical modeling and inference. The obvious correlation introduced by
the sampling of adjacent points in time can severely restrict the applicability of the many
conventional statistical methods traditionally dependent on the assumption that these adjacent
observations are independent and identically distributed. The systematic approach by which one
goes about answering the mathematical and statistical questions posed by these time correlations
is commonly referred to as time series analysis.
Time series modeling is a dynamic research area which has attracted attentions of researchers
community over last few decades. The main aim of time series modeling is to carefully collect
and rigorously study the past observations of a time series to develop an appropriate model which
describes the inherent structure of the series. This model is then used to generate future values for
the series, i.e. to make forecasts. Time series forecasting thus can be termed as the act of
predicting the future by understanding the past [36]. Due to the indispensable importance of time
series forecasting in numerous practical fields such as business, economics, finance,science and
engineering, etc. [55], [56], [43], proper care should be taken to fit an adequate model to the
underlying time series. It is obvious that a successful time series forecasting depends on an
appropriate model fitting. A lot of efforts have been done by researchers over many years for the
development of efficient models to improve the forecasting accuracy. As a result, various
important time series forecasting models have been evolved in literature.
A time series is non-deterministic in nature, i.e. we cannot predict with certainty what will occur
in future. Generally a time series {{Xt}, t = 0, 1, 2, ...} is assumed to follow certain probability
model [13] which describes the joint distribution of the random variable Xt. The mathematical
expression describing the probability structure of a time series is termed as a stochastic process
[15]. Thus the sequence of observations of the series is actually a sample realization of the
stochastic process that produced it.
A usual assumption is that the time series variables Xt are independent and identically distributed
(i.i.d) following the normal distribution. However as mentioned in [13], an interesting point is
that time series are in fact not exactly i.i.d; they follow more or less some regular pattern in long
term. For example if the temperature today of a particular city is extremely high, then it can be
reasonably presumed that tomorrow's temperature will also likely to be high. This is the reason
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General Introduction

why time series forecasting using a proper technique, yields result close to the actual value.
In general models for time series data can have many forms and represent different stochastic
processes. There are two widely used linear time series models in literature, viz. Autoregressive
(AR) [4], [23], [15] and Moving Average (MA) [4], [15] models. Combining these two, the
Autoregressive Moving Average (ARMA) [4], [23], [15] and Autoregressive Integrated Moving
Average (ARIMA) [4],[15] models have been proposed in literature.The Autoregressive
Fractionally Integrated Moving Average (ARFIMA) [35], [17] model generalizes ARMA and
ARIMA models. For seasonal time series forecasting, a variation of ARIMA, the Seasonal
Autoregressive Integrated Moving Average (SARIMA) [4], [15] model is used. ARIMA model
and its different variations are based on the famous Box-Jenkins principle [4],[23], [15] and so
these are also broadly known as the Box-Jenkins models.
The concept of independence for event systems or for collections of variables random concepts is
among the main concepts in probability theory. There are many results for independent random
variables. It can be said that such results form a nucleus of modern probability theory.
Particularly in the 20th century, the emergence of stochastic models and dependent random
variables was striking. The phenomena studied in physics, chemistry, biology, economics and
reliability were main sources for these models. Thus, the theory of stochastic processes and fields
randomness has emerged and evolved intensively. As a result, control of dependency between
random variables has always been a topic of interest and concern for probabilists statisticians.
Several ways of controlling this dependence have been introduced and this work concerns the
notion of the association of random variables. The association and a few other concepts
dependence were introduced in the 1960s. Lehman [24] introduced the concept of positive
quadrant dependence between two random variables, as a result of Esary and Proschan Walkup
[5] have generalized this notion and introduced the notion of association. Interest in these notions
of dependence has come from models where monotonous transformations were considered.At
first, this notion received little attention from the probability community. statistics, but interest
has increased in recent years due to their applicability in the different engineering sciences.
There are many concepts of dependence between them. A notion of dependence is the so called
extended negatively dependent (END) introduced by Liu [25], the random variables are said to be
END if they are at the same time upper extended negatively dependent (UEND) and lower
extended negatively dependent(LEND). The independent random variables and the NOD random
variables are END, but the END random variables are much smaller than the independent random
variables. Another notion of dependence is this one called widely orthant dependent (WOD) was
defined by Wang, Wang and Gao [49], the random variables are said to be WOD when both are
widely upper orthant dependent (WUOD) and widely lower orthant dependent (WLOD). WOD
random variables are lower than NA random variables, NSD random variables, NOD random
variables and END random variables.
Our aim is to give performant technical tools to Mathematicians or Statisticians which are
interested in weak conditional dependence. Sometimes we will give more general results. In
view of the important role played by conditioning and dependence in the models used to describe
many situations in the applied sciences, the concepts and results in the aforementioned paper are
extended herein to the case of randomly weighted sums of dependent random variables when a
sequence of conditioning sigma-algebras is given. The dependence conditions imposed on the
random variables (conditional negative quadrant dependence and conditional strong mixing) as
well as the convergence results obtained are conditional relative to the conditioning sequence of
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Chapter 0 General Introduction

sigma-algebras.
A concrete example where conditional limit theorems are useful is the study of statistical

inference for non-ergodic models as discussed in Basawa and Prakasa Rao [1] and Basawa and
Scott [2]. For instance, if one wants to estimate the mean off spring θ for a Galton Watson
branching process, the asymptotic properties of the maximum likelihood estimator depend on the
set of non-extinction.

In the past few decades, a lot of efforts have been dedicated to prove limit theorems and
statistics applications for dependent random variables, and large numbers of sharp and elegant
results are available, for example, Newman [29] established the central limit theorem, Matula
[28] derived the functional central limit theorem, Wang and Zhang [50] provided uniform rates of
convergence in the central limit theorem, Wang et al[51] obtained some exponential inequalities,
complete convergence and almost sure convergence. However, nothing is available for
conditional LNQD random variables. Yuan and Wu [47] extended many results from negative
association to asymptotically negative association, Yuan and Yang [44] extended many results
from association conditional association, Yuan et al. [45] extended many results from negative
association to conditional negative association, and these motivate our original interest in
conditional LNQD.
This memoire contains five chapters, which are organized as follows: Chapter 1 gives an
introduction to the basic concepts of time series modeling and the tools used on the stochastic
processes, and in particular, we recall the definition of the processes AR(p), MA(q), ARMA
(p,q), ARIMA(p,d,q), ARCH(q) and GARCH(p,q), etc. Chapter 2 is designed to discuss about
the concept of conditional independence and conditional association for sequences of random
variables. We discuss some stochastic inequalities and limit theorems for such sequences of
random variables, etc. In Chapter 3 is devoted to prove new exponential inequality for a new case
of dependence WOD for the distributions of sums of widely orthant dependent (WOD, in short)
random variables. Using these inequality and obtain of complete convergence for kernel
estimators of density and hazard functions, under some suitable conditions. This work was
published in International Journal of International Journal of Applied Mathematics and Statistics.
In the fourth chapter, We prove a new tail probability inequality for the distributions of sums of
conditionally linearly negative quadrant dependent (F-LNQD, in short) random variables, and
obtain a result dealing with conditionally complete convergence of first-order autoregressive
processes with identically distributed (F-LNQD) innovations. The last chapter is devoted to
prove new exponential inequality for the distributions of sums of conditional extended acceptable
random variables. Using these inequality. The results are applied to the first-order autoregressive
processes AR(1) model.
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Chapter 1 Chapter1

Introduction

In this chapter we introduce some basic ideas of time series analysis and stochastic processes. Of
particular importance are the concepts of stationarity and the autocovariance and sample
autocovariance functions.
The main objective of this chapter is examined, all the important destinations of the analysis of
the autoregressive processes and we present to ourselves an integrated view of the explanation of
the frequently used AR, MA, ARMA, ARIMA and ARCH/GARCH models after we quote
properties and important results.

1.1 Time serie and basic concept on stochastic processes

1.1.1 Time Series and Example

The first definition clarifies the notion of time series analysis.

Definition 1.1.1 (Time Series) Let yt = {..., yt−1, yt, yt+1, ...} denote a sequence of random
variables indexed by some time subscript t. Call such a sequence of random variables a time
series. Some real examples of time series are (see Figure 1.1):

− We analyze the series F data set in Box, Jenkins, and Reinsel, 1994. A plot of the 70 raw
data points is shown below. shows a time series consisting of the yields from 70 consecutive
batches of a chemical process.

Figure 1.1: Yields of 70 consecutive batches from a chemical process.

− The gas furnace data from Box, Jenkins, and Reinsel, 1994 is used to illustrate the analysis
of a bivariate time series. Inside the gas furnace, air and methane were combined in order to
obtain a mixture of gases containing CO2 (carbon dioxide). The input series xt is the
methane gas feedrate and the CO2 concentration is the output series yt.
In this experiment 296 successive pairs of observations (xt, yt) were collected from
continuous records at 9-second intervals.
The plots of the input and output series are displayed below.

6
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Figure 1.2: Input Series.

Figure 1.3: Output Series.

1.2 Notions on stochastic processes

The notion of a stochastic processes is very important both in mathematical theory and its
applications in science, engineering, economics, etc. It is used to model a large number of
various phenomena where the quantity of interest varies discretely or continuously through time
in a non-predictable fashion.

Definition 1.2.1 Let T be a subset of [0,∞]. A family of random variables {Xt}t ∈ T , indexed by
T , is called a stochastic (or random) process. When T = N(orT = N0), {Xt}t ∈ T is said to be a
discrete-time process, and when T = [0,∞], it is called a continuous-time process.

1.2.1 Stationarity

Definition 1.2.2 (Joint Distribution) The joint distribution function of X1, ..., XT is given by

FX1,X2,...,XT
(X1, X2, ..., XT ) = P(X1 ≤ x1, X2 ≤ x2, ..., Xn ≤ xT )

Definition 1.2.3 (Strict Stationarity) A process is said to be strictly stationary if the joint
distribution of X1, X2, ..., Xk is the same as the joint distribution of Xt+1, Xt+2, ..., Xt+k,

evaluated at the same set of points x1, x2, ..., xk, i.e.

FX1,X2,...,Xk
(X1, X2, ..., Xk) = FXt+1,Xt+2,...,Xt+k

(X1, X2, ..., Xk)

for all t and for all k.

7
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Definition 1.2.4 (Wide Sense Stationarity) A process is said to be second order (or wide sense)
stationary if

E(Xt) = µ and V ar(Xt) = σ2

or all t and, for all k,

Cov(Xt, Xt+k) = Cov(Xt, Xt+1+k) = Cov(Xt, Xt+2+k) + ...

is a function of the time lag k only and does not depend on time t.

1.2.2 Autocovariance function and autocorrelation function

the autocovariance is a function that gives the covariance of the process with itself at pairs of time
points. Autocovariance is closely related to the autocorrelation of the process in question.

Definition 1.2.5 (ACF) Similarly, we define so called autocorrelation function (ACF) as

ϕ(t) =
µ(T )

µ(0)
= Cor(Xt+T , Xt) for all t, T.

Definition 1.2.6 (ACVF) The sequence {µk, k ∈ Z} is called the autocovariance function (ACVF),

Cov(Xt, Xt+k) = µk for all t, k

Remark 1.2.1 1. A strictly stationary process is weakly stationary.

2. If the process is Gaussian, that is (Xt1 , ..., Xtk) is multivariate normal, for all t1, ..., tk, then
weak stationarity implies strong stationarity.

3. ϕ0 = V ar(Xt) > 0, assuming Xt is genuinely random.

4. By symmetry, ϕk = ϕ−k, for all k.

Definition 1.2.7 Let (εt)t∈Z a stochastic process, (εt)t∈Z is said to be a white noise if the following
three properties are verified:

a. E(εt) = 0 ∀t ∈ Z

b. V ar(εt) = σ2 ∀t ∈ Z

c. Cov(εt, εs) = E(εt, εs) = 0 for all t ̸= s.

Remark 1.2.2 • If {εt, t ≥ 0} is a weak white noise, we will denote by εt ∼WN(0, σ2)

• If {εt, t ≥ 0} is a strong white noise, we will denote by εt ∼ iid(0, σ2)

• If {εt, t ≥ 0} is a Gaussian white noise, we will denote by εt ∼ N(0, σ2).

8



Chapter 1 Chapter1

1.2.3 Linear model

The linear process is a stochastic process formed by a linear combination (no necessarity finite) of
strong white noises, and when they are weak the linear process is general.

Definition 1.2.8 The time series Xt is a linear process if it has the representation

Xt =
∞∑

j=−∞
ϕjZt−j , (1.1)

for all t, where {Zt,WN(0, σ2)} and ϕj is a sequence of constants with
∞∑

j=−∞
ϕj <∞.

In terms of the backward shift operator B (1.1) can be written more compactly as

Xt = ϕ(B)Zt, (1.2)

where ϕ(B) =
∞∑

j=−∞
ϕjB

j . A linear process is called a moving average orMA(∞) if ϕj = 0 for all

j < 0, i.e., if

Xt =
∞∑
j=0

ϕjZt−j

1.2.4 AR process

In many practical situations the value in an instant t of a time series can be written as the sum of a
linear combination of previous values series and a term of white noise. Such a model is known as
a process AR (AutoRegressive).

Definition 1.2.9 An autoregressive process of order p is written as

Xt = ϕ1Xt−1 + ϕ2Xt−2 + ...+ ϕpXt−p + Zt, (1.3)

where {Zt} is white noise, i.e., {Zt} ∼WN(0, σ2), and {Zt}is uncorrelated with Xs for each s < t.

Remark 1.2.3 We assume(for simplicity of notation) that the mean of (Xt) is zero. If the mean is
E(Xt) = µ ̸= 0, then we replace Xt by Xt − µ to obtain

Xt − µ = ϕ1(Xt−1 − µ) + ϕ2(Xt−2 − µ) + ...+ ϕp(Xt−p − µ) + Zt

what can be written as

Xt = α+ ϕ1Xt−1 + ϕ2Xt−2 + ...+ ϕpXt−p + Zt,

where

α = µ(1− ϕ1 − ...− ϕp)

Other ways of writing AR(p) model use:

Vector notation: Denote
ϕ = (ϕ1, ϕ2, ..., ϕp)

T

9
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Xt−1 = (Xt−1, Xt−2, ..., Xt−p)
T

Then the formula (1.3) can be written as

Xt = ϕTXt−1 + Zt

Backshift operator: Namely, writing the model (1.3) in the form

Xt − ϕ1Xt−1 − ϕ2Xt−2 − ...− ϕpXt−p = Zt,

and applying BXt = Xt−1 we get

(1− ϕ1B − ϕ2B
2 − ...− ϕpB

p)Xt = Zt

or, using the concise notation we write

ϕ(B)Xt = Zt, (1.4)

where ϕ(B) denotes the autoregressive operator

ϕ(B) = 1− ϕ1B − ϕ2B
2 − ...− ϕpB

p.

Then the AR(p) can be viewed as a solution to the equation(1.4), i.e.,

Xt =
1

ϕ(B)
Zt. (1.5)

Corollary 1.2.1 says that an infinite combination of white noice variables is a stationary process.
Here, due to the recursive of the TS we can write AR(1) in such a from. Namely

Xt = ϕXt−1 + Zt

= ϕ(ϕXt−2 + Zt−1) + Zt

= ϕ2Xt−2 + ϕZt−1 + Zt

.

.

.

= ϕkXt−k +
k−1∑
j=0

ϕjZt−j .

This can be rewritten as

ϕkXt−k = Xt −
k−1∑
j=0

ϕjZt−j

1.2.5 Invertibility and Causality

Definition 1.2.10 (Invertibility) A linear process {Xt} is invertible (strictly, an invertible function
of {Wt}) if there is a

π(B) = π0 + π1B + π2B + ...

with
∞∑
j=0

|πj | <∞

andWt = π(B)Xt.

10
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Theoreme 1.2.1 (Causality) A (unique) stationary solution to ϕ(B)Xt = Wt exists if the roots of
ϕ(z) avoid the unit circle:

|z| = 1 =⇒ ϕ(z) = 1− ϕ1z − ...− ϕpz
p ̸= 0,

This AR(p) process is causal iff the roots of ϕ(z) are outside the unit circle:

|z| ≤ 1 =⇒ ϕ(z) = 1− ϕ1z − ...− ϕpz
p ̸= 0,

Example 1.2.1 (AR Processes) Figure 1.4 displays two AR(1) processes with respective
parameters ϕ1 = −0.9 (left) and ϕ1 = 0.8 (middle) as well as an AR(2) process with parameters
ϕ1 = −0.5 and ϕ2 = 0.3.

Figure 1.4: Realizations of three autoregressive processes.

1.2.6 Moments of an process AR(1)

To calculate the different moments of an AR process (1), namely its hope, variance, self-variance
and self-corrosion, one will assume that white noises are independently and similarly distributed,
of zero expectancy and variance σ2 that we note (ϵi ∼ iid(0, σ2)).

Expectation:

E[Xt] = φtX0 + c
t−1∑
i=0

φi

Proof (reasoning by recurrence:)

• P (0) (initialization):
E[X0] = X0, because X0 is deterministic. The expression is:

φ0X0 + c
−1∑
i=0

φi = 1X0 + 0 = X0

• P (t+ 1) (heredity):
E[Xt+1] = E[c+ φXt + ϵt],

Since E is a linear operator:
E[Xt+1] = c+ φE[Xt]

11



Chapter 1 Chapter1

With the induction hypothesis:

E[Xt+1] = c+ φ(φtX0 + c

t−1∑
i=0

φi)

E[Xt+1] = c+ φt+1X0 + c

t−1∑
i=0

φi+1,

By a change of variables in the sum, i→ i− 1:

E[Xt+1] = φt+1X0 + c+ c

t∑
i=1

φi,

And, with c = c
0∑

i=0

φi :

E[Xt+1] = φt+1X0 + c
t∑

i=0

φi

Variance:
Var[Xt] =

∞∑
i=0

φ2iσ2

Proof
Var[Xt] = E

[
(Xt − E[Xt])

2
]

= E

(c ∞∑
i=0

φi +
∞∑
i=0

φiεt−i − c
∞∑
i=0

φi

)2


According to the results obtained in the previous page

= E

( ∞∑
i=0

φiεt−i

)2


= Var
[ ∞∑
i=0

φiεt−i

]
because E

(
X2
)
= Var(X) + E(X)2 and

E
[ ∞∑
i=0

φiεt−i

]
=

∞∑
i=0

φi E[εt−i] = 0

and by hypothesisE[εt] = 0

=
∞∑
i=0

Var
[
φiεt−i

]
by independence εt

=
∞∑
i=0

φ2i Var[εt−i] andVar[aX] = a2 Var[X]

=
∞∑
i=0

φ2iσ2

Autocovariance: Cov[Xt, Xt−j ] = φj
∑∞

i=0 φ
2iσ2

12
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Proof
Cov[Xt, Xt−j ] = E [(Xt − E[Xt])(Xt−j − E[Xt−j ])]

= E
[
(
∞∑
i=0

φiεt−i)(
∞∑
k=0

φkεt−k−j)

]

= E
[ ∞∑
i=0

∞∑
k=0

φi+kεt−iεt−k−j

]

=
∞∑
i=0

∞∑
k=0, k+j ̸=i

φi+k E [εt−iεt−k−j ] +
∞∑
k=0

φ2k+j E
[
ε2t−k−j

]
=

∞∑
k=0

φ2k+j Var[εt−k−j ] by the assumption of independence εl,

E [εt−iεt−k−j ] = E[εt−i]E[εt−k−j ] = 0,
and E

[
ε2t−k−j

]
= Var[εt−k−j ] + E[εt−k−j ]

2 = Var[εt−k−j ]

= φj
∞∑
i=0

φ2iσ2

Autocorrélation

Corr[Xt, Xt−j ] ≡
Cov[Xt, Xt−j ]√

Var(Xt)Var(Xt−j)
= φj

√
1− φ2(t−j)+2

1− φ2t+2

1.2.7 Stationarity conditions

The φ setting determines whether the AR(1) process is stationary or not:

|φ| =


< 1 the process is stationary.
= 1 Marche aléatoire : the process is therefore non-stationary.
> 1 the process is explosive.

• φ < 1

The following results come from the fact that if q1 then the geometric series
∞∑
n=0

aqn =
a

1− q
.

if |φ| < 1:

E[Xt] =
c

1− φ

Var[Xt] =
σ2

1− φ2

Cov[Xt, Xt−j ] =
φj

1− φ2
σ2

13
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Corr[Xt, Xt−j ] = φj

We can see that the function of autocovariance decreases with a rate of τ − 1/ ln(φ). We see
here that hope and variance are constant and that autocovariance does not depend on time:
the process is therefore stationary.

• φ = 1

When φ = 1, the process is written : Xt = c + Xt−1 + εt and, therefore, considering the
Xt = ct+X0 +

∑t−1
i=0 εt−i contrary to before t0 = 0,

if |φ| = 1 :

E[Xt] = ct+ E[X0],

Var[Xt] = tσ2,

Cov[Xt, Xt−j ] = (t− j)σ2,

1.2.8 Moments of an AR(p)process

In general, an AR(p) process is a process that depends on the p previous values:

Xt = c+ φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + εt.

or εt is a white noise.

The different moments in a stationary process (see next section) are

E(Xt) =
c

1−φ1−φ2−...−φp

Var(Xt) = φ1γ1 + φ2γ2 + ...+ φpγp + σ2

Cov(Xt, Xt−j) = φ1γj−1 + φ2γj−2 + ...+ φpγj−p

The formulas of variance and covariance correspond to the so-called Yule and walker equations
(see below).

1.2.9 Condition of stationarity

Theoreme 1.2.2 An AR process (p) is stationary if the solution module (roots) of its characteristic
equation is strictly greater than 1 in absolute terms each time.

The condition is frequently formulated differently, according to which the roots must be outside
the unitary complex circle.
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Example 1.2.2 The polynomial of the backshift of a process AR(1) Xt = φXt−1 + εt

is written: (1− φL)Xt = εt

Its resolution (replacing the Backshift operator B by the simple value x) gives 1−φx = 0 ⇒ x = 1
φ .

The condition that the solution is greater than 1 is equivalent to | 1φ | > 1 ⇒ |φ| < 1

Example 1.2.3 The characteristic polynomial of the backshift of a process AR(2) Xt = φ1Xt−1 +

φ2Xt−2 + εt is written: (1− φ1L− φ2L
2)Xt = εt. The resolution of the characteristic equation of

the second degree (1− φ1x− φ2x
2) leads to the following conditions:

• φ1 + φ2 < 1

• φ1 − φ2 < 1

• |φ2| < 1

Example 1.2.4 The characteristic polynomial of the backshift of a process AR(p)
Xt = φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + εt is written: (1− φ1L− φ2L

2 − ...− φpL
p)Xt = εt.

The resolution of the characteristic equation (1− φ1x− φ2x
2 − ...− φpx

p) leads to the following
necessary (but not sufficient) conditions:

• φ1 + φ2 + ...+ φp < 1

• |φp| < 1

1.3 Fitting the Data to the Model

We will focus on the estimation of the autoregressive parameter of the first order with Gaussian
innovations. We consider the model

Xk = ρXk−i + εk, k = 1, 2, ...

This will be accomplished using the least squares estimation. The error term is εk . We want to
minimize the sum of the square of errors for our observed values with respect to ρ. We take the
derivative of the sum of squares to get

∂

∂ρ

n∑
k=1

(Xk − ρXk−1)
2 = 2

n∑
k=1

(Xk − ρXk−1)(−Xk−1)

We set the derivative equal to 0 and obtain the following:

2

n∑
k=1

(Xk − ρXk−1)(−Xk−1) = 0

n∑
k=1

(−XkXk−1 + ρX2
k−1) = 0

−
n∑

k=1

XkXk−1 + ρ
n∑

k=1

X2
k−1 = 0

ρ
n∑

k=1

ρX2
k−1 =

n∑
k=1

XkXk−1 (1.6)
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Hence, we obtain our least squares estimator for ρ :

ρ̂ =

n∑
k=1

XkXk−1

n∑
k=1

X2
k−1

(1.7)

1.3.1 Estimation for AR(p) process

Yule Walker equations

The Yule-Walker equations, named for Udny Yule and Gilbert Walker,[48], [52] are the following
set of equations.[42]

γm =

p∑
k=1

φkγm−k + σ2εδm,0,

where m = 0, ..., P, yielding p + 1 equations. Here γm is the autocovariance function Xtσε is
the standard deviation of the input noise process, and δm,0 is the kronecher delta function.
Because the last part of an individual is non-zero only if m = 0, the set of equations can be solved
by representing the equations for m > 0 in matrix form, thus getting the equation

γ1

γ2

γ3
...
γp


=



γ0 γ−1 γ−2 . . .

γ1 γ0 γ−1 . . .

γ2 γ1 γ0 . . .
...

...
... . . .

γp−1 γp−2 γp−3 . . .





φ1

φ2

φ3

...
φp


which can be solved for all {φm;m = 1, 2, · · · , p}. The remaining equation for m = 0 is

γ0 =

p∑
k=1

φkγ−k + σ2ε ,

which, once {φm;m = 1, 2, · · · , p} are known, can be solved for σ2ε .
An alternative formulation is in terms of the autocorrelation function. The AR parameters are

determined by the first p + 1 elements ρ(τ) of the autocorrelation function.The full
autocorrelation function can then be derived by recursively calculating

ρ(τ) =

p∑
k=1

φkρ(k − τ)

Examples for some Low-order AR(p) processes

γ1 = φ1γ0γ1 = φ1γ0

- p = 1

γ1 = φ1γ0

Hence
ρ1 = γ1/γ0 = φ1
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- p = 2

- The-Yule Walker equations for an AR(2) process are

γ1 = φ1γ0 + φ2γ−1

γ2 = φ1γ1 + φ2γ0

- Using the first equation yields ρ1 = γ1/γ0 =
φ1

1− φ2

- Using the recursion formula yields ρ2 = γ2/γ0 =
φ2
1 − φ2

2 + φ2

1− φ2

Example 1.3.1 [AR(1)]
For an AR(1) process, one has:

γj = φγj−1 ∀j = 1, . . . , p

We notice that we quickly find, with j = 1, the result obtained above:

ρ1 =
γ1
γ0

= φ

Var[Xt] =
σ2

1− φ2
taking the extra equation to γ0 = φγ1 + σ2ε , which then becomes

γ0 = φγ0φ+ σ2ε = φ2γ0 + σ2ε ⇒ (1− φ2)γ0 = σ2 ⇒ γ0 =
σ2

1− φ2
.

Example 1.3.2 [AR(p)] 

γ1 = φ1γ0 + φ2γ−1 + . . .+ φpγ−(p−1)

γ2 = φ1γ1 + φ2γ0 + . . .+ φpγ−(p−2)

...
γp = φ1γp−1 + φ2γp−2 + . . .+ φpγ0

That can be written in matrix form:
γ1

γ2

γ3
...

 =


γ0 γ−1 γ−2 . . .

γ1 γ0 γ−1 . . .

γ2 γ1 γ0 . . .
... ... ... . . .



φ1

φ2

φ3

...


Proof: The defining equation of the AR process is

Xt =

p∑
i=1

φiXt−i + εt.

By multiplying the two members by Xt−j and taking hope, one obtains

E[XtXt−j ] = E

[
p∑

i=1

φiXt−iXt−j

]
+ E[εtXt−j ].
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However, it turns out that E[XtXt−j ] = γj + E[Xt]E[Xt−j ].

In the event that X the process is considered to be zero-average (c = 0),E[XtXt−j ] comes down to
the self-correlation function. The terms of white noise are independent of each other and, moreover,
Xt−j is independent of εt where j is larger than zero. For j > 0,E[εtXt−j ] = 0. for j = 0,

E[εtXt] = E

[
εt

(
p∑

i=1

φi, Xt−i + εt

)]
(1.8)

=

p∑
i=1

φi,E[εt, Xt−i] + E[ε2t ] = 0 + σ2ε ,E[εtXt]

= E

[
εt

(
p∑

i=1

φi, Xt−i + εt

)]

=

p∑
i=1

φi, E[εt, Xt−i] + E[ε2t ] = 0 + σ2ε ,

Now we have got for j ≤ 0,

γj = E

[
p∑

i=1

φiXt−iXt−j

]
+ σ2εδj .

On the other hand,

E

[
p∑

i=1

φiXt−iXt−j

]
=

p∑
i=1

φiE[XtXt−j+i] =

p∑
i=1

φi γj−i,

that gives the equations of Yule-Walker

γj =

p∑
i=1

φiγj−i + σ2εδj .

for j < 0,

γj = γ−j =

p∑
i=1

φiγ|j|−i + σ2εδj .

1.3.2 MA process

Definition 1.3.1 The notationMA(q) refers to the moving average model of order q:

Xt = µ+ εt + θ1εt−1 + · · ·+ θqεt−q

where µ is the mean of the series, the θ1, · · · , θq are the parameters of the model and the
εt, εt−1, . . . , εt−q are white noise error terms. The value of q is called the order of the MA model.
This can be equivalently written in terms of the backshift operator B as

Xt = µ+ (1 + θ1B + · · ·+ θqB
q)εt.

Proposition 1.3.1 The mean of an MA(q) process is µ.

Proof:

E[Xt] = µ+ E[εt] + θ1E[εt−1] + · · ·+ θqE[εt−q] = µ+ 0 + θ1.0 + · · ·+ θq.0 = µ

18



Chapter 1 Chapter1

Proposition 1.3.2 The variance of an MA(q) process is

V ar(Xt) = σ2(1 + θ21 + · · ·+ θ2q)

Proof

V ar(Xt) = 0 + V ar(εt) + θ21V ar(εt−1) + · · ·+ θ2qV ar(εt−k)

= σ2 + θ21σ
2 + θ2qσ

2

= σ2(1 + θ21 + · · ·+ θ2q)

Proposition 1.3.3 The autocorrelation function of anMA(1) process is

ρ1
θ1

1 + θ21
ρh = 0 for h > 1

Proof

Cov(Xi, Xi−h) = E[(Xi − µ)(Xi−h − µ)]

= E[(εi + θ1εi−1)(εi−h + θ1εi−h−1)]

= E[εi + εi−h] + θ1E[εi−1 + εi−h] + θ1E[εi + εi−h−1] + θ21E[εi−1 + εi−h−1]

when h = 1

Cov(Xi, Xi−h) = θ1E[εi−1 + εi−1] = θ1σ
2

since E[εi−1] = 0. When h > 1

Cov(Xi, Xi−h) = 0

Thus for h = 1, by Proppsition 2

ρ1 =
Cov(Xi, Xi−h)

V ar(Xi)
=

θ1σ
2

σ2(1 + θ21)
=

θ1
1 + θ21

and for h > 1

ρ1 =
Cov(Xi, Xi−h)

V ar(Xi)
=

0

V ar(Xi)
= 0

1.4 The ARMA model(Mixed model)

In the statistical analysis of time series, autoregressive moving-average (ARMA) models provide a
parsimonious description of a (weakly) stationary stochastic process in terms of two polynomials,
one for the autoregression (AR) and the second for the moving average (MA). The general ARMA
model was described in the 1951 thesis of Peter Whittle, Hypothesis testing in time series analysis,
and it was popularized in the 1970 book by George E. P. Box and Gwilym Jenkins [4]. Given
a time series of data Xt , the ARMA model is a tool for understanding and, perhaps, predicting
future values in this series. The AR part involves regressing the variable on its own lagged (i.e.,
past) values. The MA part involves modeling the error term as a linear combination of error terms
occurring contemporaneously and at various times in the past. The model is usually referred to as
the ARMA(p,q) model where p is the order of the AR part and q is the order of the MA part (as
defined below).
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Definition 1.4.1 The notation ARMA(p,q) refers to the model with p autoregressive terms and q
moving-average terms. This model contains the AR(p) andMA(q) models,(short for ARMA (p,q))

Xt = εt +

p∑
i=1

φiXt−i +

q∑
i=1

θiεt−i (1.9)

where the φi and θi are the parameters of the model and the εi the terms of error.

• An autoregressive model AR(p) is a ARMA(p, 0).

• A moving average modelMA(q) is a ARMA(0, q).

1.4.1 Causality and Invertibility

While a moving average process of order (q) will always be stationary without conditions on the
coefficients (θ1), (...), (θq), some deeper thoughts are required in the case of AR(p) and ARMA(p,q)
processes. For simplicity, we start by investigating the autoregressive process of order one, which
is given by the equations (Xt = ϕXt−1 + Zt) (writing (ϕ = ϕ1)). Repeated iterations yield that

Xt = ϕXt−1 + Zt = ϕ2Xt−2 + Zt + ϕZt−1 = ... = ϕNXt−N +
N−1∑
j=0

ϕjZt−j .

Letting N → ∞, it could now be shown that, with probability one,

Xt =

∞∑
j=0

ϕjZt−j

is the weakly stationary solution to the AR(1) equations, provided that |ϕ| < 1.These
calculations would indicate moreover, that an autoregressive process of order one can be
represented as linear process with coefficients ψj = ϕj .

Definition 1.4.2 An ARMA(p,q) process is causal if there is a sequence (ψj : j ∈ N0) such that

(
∞∑
j=0

|ψj | <∞) and [Xt =
∞∑
j=0

ψjZt−j , t ∈ Z.]

Causality means that an ARMA time series can be represented as a linear process. It was seen
earlier in this section how an AR(1) process whose coefficient satisfies the condition (|ϕ| < 1) can
be converted into a linear process.
It was also shown that this is impossible if (|ϕ| > 1).
The conditions on the autoregressive parameter (ϕ) can be restated in terms of the corresponding
autoregressive polynomial (ϕ(z) = 1− ϕ(z)) as follows. It holds that

(|ϕ| < 1) if and only if(ϕ(z) ̸= 0) for all(|z| ≤ 1, )

(|ϕ| > 1) if and only if (ϕ(z) ̸= 0) for all (|z| ≥ 1).

It turns out that the characterization in terms of the zeroes of the autoregressive polynomials
carries over from the AR(1) case to the general ARMA(p,q) case. Moreover, the (ψ)-weights of the
resulting linear process have an easy representation in terms of the polynomials (ϕ(z)) and (θ(z)).
The result is summarized in the next theorem.
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Theoreme 1.4.1 Let (Xt : t ∈ Z) be an ARMA(p,q) process such that the polynomials (ϕ(z)) and
(θ(z)) have no common zeroes. Then (Xt : t ∈ Z) is causal if and only if (ϕ(z) ̸= 0) for all (z ∈ C)
with (|z| ≤ 1). The coefficients (ψj : j ∈ N0) are determined by the power series expansion

ψ(z) =

∞∑
j=0

ψjz
j =

θ(z)

ϕ(z)
, |z| ≤ 1.

Definition 1.4.3 An ARMA(p,q) process given by (1.9) is invertible if there is a sequence (πj : j ∈

N0) such that (
∞∑
j=0

|πj | <∞) and

Zt =
∞∑
j=0

πjXt−j , t ∈ Z.

Theoreme 1.4.2 Let (Xt : t ∈ Z) be an ARMA (p,q) process such that the polynomials ϕ(z) and
θ(z) have no common zeroes. Then (Xt : t ∈ Z) is invertible if and only if θ(z) ̸= 0 for all z ∈ C
with |z| ≤ 1. The coefficients (πj)j∈N0 are determined by the power series expansion

π(z) =

∞∑
j=0

πjz
j =

ϕ(z)

θ(z)
, |z| ≤ 1.

From now on it is assumed that all ARMA sequences specified in the sequel are causal and
invertible unless explicitly stated otherwise. The example of this section highlights the usefulness
of the established theory. It deals with parameter redundancy and the calculation of the causality
and invertibility sequences (ψj : j ∈ N0) and (πj : j ∈ N0).

Example 1.4.1 Consider the ARMA equations

Xt = 0.4Xt−1 + 0.21Xt−2 + Zt + 0.6Zt−1 + 0.09Zt−2,

which seem to generate an ARMA (2,2) sequence. However, the autoregressive and moving
average polynomials have a common zero:

ϕ̃(z) = 1− 0.4z − 0.21z2 = (1− 0.7z)(1 + 0.3z),

θ̃(z) = 1 + 0.6z + 0.09z2 = (1 + 0.3z)2.

Therefore, one can reset the ARMA equations to a sequence of order (1, 1) and obtain
Xt = 0.7Xt−1 + Zt + 0.3Zt−1.

Now, the corresponding polynomials have no common roots. Note that the roots of ϕ(z) =

1 − 0.7z and θ(z) = 1 + 0.3z are 10/7 > 1 and −10/3 < −1, respectively. Thus Theorems (1.4.1)
and (1.4.2) imply that causal and invertible solutions exist. In the following, the corresponding
coefficients in the expansions

Xt =
∑∞

j=0 ψjZt−j and Zt =
∞∑
j=0

πjXt−j , t ∈ Z,

are calculated. Starting with the causality sequence (ψj : j ∈ N0). Writing, for |z| ≤ 1,
∞∑
j=0

ψjz
j = ψ(z) =

θ(z)

ϕ(z)
=

1 + 0.3z

1− 0.7z
= (1 + 0.3z)

∞∑
j=0

(0.7z)j ,

it can be obtained from a comparison of coefficients that
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ψ0 = 1 and ψj = (0.7 + 0.3)(0.7)j−1 = (0.7)j−1, j ∈ N.
Similarly one computes the invertibility coefficients (πj : j ∈ N0) from the equation

∞∑
j=0

πjz
j = π(z) =

ϕ(z)

θ(z)
=

1− 0.7z

1 + 0.3z
= (1− 0.7z)

∞∑
j=0

(−0.3z)j

(|z| ≤ 1) as

π0 = 1 and πj = (−1)j(0.3 + 0.7)(0.3)j−1 = (−1)j(0.3)j−1.

Together, the previous calculations yield to the explicit representations

Xt = Zt +
∞∑
j=1

(0.7)j−1Zt−j and Zt = Xt +
∞∑
j=1

(−1)j(0.3)j−1Xt−j .

In the remainder of this section, a general way is provided to determine the weights (ψj : j ≥ 1)

for a causal ARMA (p, q) process given by ϕ(B)Xt = θ(B)Zt, where ϕ(z) ̸= 0 for all z ∈ C such
that |z| ≤ 1. Since ψ(z) = θ(z)/ϕ(z) for these z, the weight ψj can be computed by matching the
corresponding coefficients in the equation ψ(z)ϕ(z) = θ(z), that is,

(ψ0 + ψ1z + ψ2z
2 + . . .)(1− ϕ1z − . . .− ϕpz

p) = 1 + θ1z + . . .+ θqz
q.

Recursively solving for ψ0, ψ1, ψ2, . . . gives

ψ0 = 1,

ψ1 − ϕ1ψ0 = θ1,

ψ2 − ϕ1ψ1 − ϕ2ψ0 = θ2,

and so on as long as j < max{p, q + 1}. The general solution can be stated as

ψj −
j∑

k=1

ϕkψj−k = θj , 0 ≤ j < max{p, q + 1}, (1.10)

ψj −
p∑

k=1

ϕkψj−k = 0, j ≥ max{p, q + 1}, (1.11)

if we define ϕj = 0 if j > p and θj = 0 if j > q. To obtain the coefficients ψj one therefore has to
solve the homogeneous linear difference equation (1.11) subject to the initial conditions specified
by (1.10).

1.4.2 Parameter Estimation

Let (Xt : t ∈ Z) be a causal and invertible ARMA(p,q) process with known orders p and q, possibly
with mean µ. This section is concerned with estimation procedures for the unknown parameter
vector

β = (µ, ϕ1, . . . , ϕp, θ1, ..., θq, σ
2)T . (1.12)

To simplify the estimation procedure, it is assumed that the data has already been adjusted by
subtraction of the mean and the discussion is therefore restricted to zero mean ARMA models.
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In the following, three estimation methods are introduced. The method of moments works best
in case of pure AR processes, while it does not lead to optimal estimation procedures for general
ARMAprocesses. For the latter, more efficient estimators are provided by themaximum likelihood
and least squares methods which will be discussed subsequently.

1.4.3 Method1(Method of Moments)

Since this method is only efficient in their case, the presentation here is restricted to AR(p)
processes

Xt = ϕ1Xt−1 + ...+ ϕpXt−p + Zt, t ∈ Z,

where (Zt : t ∈ Z) ∼ WN(0, σ2). The parameter vector β consequently reduces to (ϕ, σ2)T with
ϕ = (ϕ1, . . . , ϕp)

T and can be estimated using the Yule-Walker equations

Γpϕ = γp and σ2 = γ(0)− ϕTγp, (1.13)

whereΓp = (γ(k−j))k,j=1,...,p and γp = (γ(1), ..., γ(p))T . Observe that the equations are obtained
by the same arguments applied to derive the Durbin-Levinson algorithm in the previous section.
The method of moments suggests to replace every quantity in the Yule-Walker equations with their
estimated counterparts, which yields the Yule-Walker estimators

ϕ̂ = Γ̂−1
p γ̂p = R̂−1

p ρ̂p (1.14)

σ̂2 = γ̂(0)− γ̂Tp Γ̂
−1
p γ̂p = γ̂(0)

[
1− ρ̂Tp R̂

−1
p ρ̂p

]
. (1.15)

There in, R̂p = γ̂(0)−1Γ̂p and ρ̂p = γ̂(0)−1γ̂p.
Using γ̂(h) as estimator for the ACVF at lag h, a dependence on the sample size n is obtained in

an implicit way. This dependence is suppressed in the notation used here. The following theorem
contains the limit behavior of the Yule-Walker estimators as n tends to infinity.

Theoreme 1.4.3 If (Xt : t ∈ Z) is a causal AR(p) process, then

√
n(ϕ̂− ϕ)

D−→ N(0, σ2Γ−1
p ) and σ̂2

P−→ σ2

as n→ ∞, where →P indicates convergence in probability.

A proof of this result is given in Section 8.10 of Brockwell and Davis (1991) [6].

Corollary 1.4.1 If (Xt : t ∈ Z) is a causal AR(p) process, then

√
nϕ̂hh

D−→ Z (n→ ∞)

for all h > p, where Z stands for a standard normal random variable.

Example 1.4.2 (Yule-Walker estimates for AR(2) processes) Suppose that n = 144 values of
the autoregressive process Xt = 1.5Xt−1 − 0.75Xt−2 + Zt have been observed, where (Zt : t ∈ Z)
is a sequence of independent standard normal variates.Assume further that
γ̂(0) = 8.434, ρ̂(1) = 0.834 and ρ̂(2) = 0.476 have been calculated from the data. The Yule-Walker
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estimators for the parameters are then given by

ϕ̂ =

(
ϕ̂1

ϕ̂2

)
=

(
1.000 0.834

0.834 1.000

)−1(
0.834

0.476

)
=

(
1.439

−0.725

)
and

σ̂2 = 8.434

[
1− (0.834, 0.476)

(
1.439

−0.725

)]
= 1.215.

To construct asymptotic confidence intervals using Theorem (1.4.3), the unknown limiting
covariance matrix σ2Γ−1

p needs to be estimated. This can be done using the estimator

σ̂2Γ̂−1
p

n = 1
144

1.215
8.434

(
1.000 0.834

0.834 1.000

)−1

=

(
0.0572 −0.003

−0.003 0.0572

)
.

Then, the 1− α level confidence interval for the parameters ϕ1 and ϕ2 are computed as
1.439± 0.057z1−α/2 and − 0.725± 0.057z1−α/2,

respectively, where z1−α/2 is the corresponding normal quantile.

Example 1.4.3 Consider the invertible MA(1) process Xt = Zt + θZt−1, where |θ| < 1. Using
invertibility, each Xt has an infinite autoregressive representation

Xt =
∞∑
j=1

(−θ)jXt−j + Zt

that is nonlinear in the unknown parameter θ to be estimated. The method of moments is here
based on solving

ρ̂(1) =
γ̂(1)

γ̂(0)
=

θ̂

1 + θ̂2
.

for θ̂. The foregoing quadratic equation has the two solutions

θ̂ =
1±

√
1− 4ρ̂(1)2

2ρ̂(1)
,

of which we pick the invertible one. Note moreover, that |ρ̂(1)| is not necessarily less or equal
to 1/2 which is required for the existence of real solutions. (The theoretical value |ρ(1)|, however,
is always less than 1/2 for any MA(1) process, as an easy computation shows). Hence, θ can not
always be estimated from given data samples.

1.4.4 Method 2(Maximum Likelihood Estimation)

The innovations algorithm of the previous section applied to a causal ARMA(p,q)
process (Xt : t ∈ Z) gives

X̂i+1 =
i∑

j=1

θij(Xi+1−j − X̂i+1−j), 1 ≤ i < max{p, q},

X̂i+1 =

p∑
j=1

ϕjXi+1−j +

q∑
j=1

θij(Xi+1−j − X̂i+1−j), i ≥ max{p, q},

with prediction error
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Pi+1 = σ2Ri+1.

In the last expression, σ2 has been factored out due to reasons that will become apparent from the
form of the likelihood function to be discussed below. Recall that the sequence (Xi+1−X̂i+1 : i ∈ Z)
consists of uncorrelated random variables if the parameters are known. Assuming normality for
the errors, we moreover obtain even independence. This can be exploited to define the Gaussian
maximum likelihood estimation(MLE) procedure. Throughout, it is assumed that (Xt : t ∈ Z) has
zero mean (µ = 0). The parameters of interest are collected in the vectors β = (ϕ, θ, σ2)T and
β′ = (ϕ, θ)T , where ϕ = (ϕ1, ...., ϕp)

T and θ = (θ1, ..., θq)
T . Assume finally that we have observed

the variables X1, ..., Xn. Then, the Gaussian likelihood function for the innovations is

L(β) =
1

(2πσ2)n/2

(
n∏

i=1

R
1/2
i

)
exp

− 1

2σ2

n∑
j=1

(Xj − X̂j)
2

Rj

 .

Taking the partial derivative of lnL(β) with respect to the variable σ2 reveals that the MLE for
σ2 can be calculated from

σ̂2 =
S(ϕ̂, θ̂)

n
, S(ϕ̂, θ̂) =

n∑
j=1

(Xj − X̂j)
2

Rj
.

Therein, ϕ̂ and θ̂ denote the MLEs of ϕ and θ obtained from minimizing the profile likelihood
or reduced likelihood

ℓ(ϕ, θ) = ln
(
S(ϕ, θ)

n

)
+

1

n

n∑
j=1

ln(Rj).

Observe that the profile likelihood ℓ(ϕ, θ) can be computed using the innovations algorithm.
The speed of these computations depends heavily on the quality of initial estimates. These are
often provided by the non-optimal Yule-Walker procedure.

The limit distribution of the MLE procedure is given as the following theorem. Its proof can
be found in Section 8.8 of Brockwell and Davis (1991) [6].

Theoreme 1.4.4 Let (Xt : t ∈ Z) be a causal and invertible ARMA(p,q) process defined with an
iid sequence (Zt : t ∈ Z) satisfying E[Zt] = 0 and E[Z2

t ] = σ2. Consider the MLE β̂′ of β′ that is
initialized with the moment estimators of Method 1.Then,

√
n(β̂′ − β′)

D−→ N(0, σ2Γ−1
p,q) (n→ ∞).

The result is optimal. The covariance matrix Γp,q is in block form and can be evaluated in terms
of covariances of various autoregressive processes.

1.4.5 Method 3 (Least Squares Estimation)

An alternative to the method of moments and the MLE is provided by the least squares estimation
(LSE). For causal and invertible ARMA(p,q) processes, it is based on minimizing the weighted
sum of squares

S(ϕ, θ) =

n∑
j=1

(Xj)− X̂j
2

Rj
(1.16)
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with respect to ϕ and θ, respectively. Assuming that ϕ̃ and θ̃ denote these LSEs, the LSE for σ2

is computed as

σ̃2 =
S(ϕ̃, θ̃)

n− p− q
.

The least squares procedure has the same asymptotics as the MLE.

1.5 The ARIMA model

ARIMA(p,d,q) forecasting equation: ARIMA models are, in theory, the most general class of
models for forecasting a time series which can be made to be stationary by differencing (if
necessary), perhaps in conjunction with nonlinear transformations such as logging or deflating (if
necessary). A random variable that is a time series is stationary if its statistical properties are all
constant over time. A stationary series has no trend, its variations around its mean have a
constant amplitude, and it wiggles in a consistent fashion, i.e., its short-term random time
patterns always look the same in a statistical sense.The latter condition means that its
autocorrelations (correlations with its own prior deviations from the mean) remain constant over
time, or equivalently, that its power spectrum remains constant over time. A random variable of
this form can be viewed (as usual) as a combination of signal and noise, and the signal (if one is
apparent) could be a pattern of fast or slow mean reversion, or sinusoidal oscillation, or rapid
alternation in sign, and it could also have a seasonal component. An ARIMA model can be
viewed as a filter that tries to separate the signal from the noise, and the signal is then
extrapolated into the future to obtain forecasts.

The ARIMA forecasting equation for a stationary time series is a linear (i.e., regression-type)
equation in which the predictors consist of lags of the dependent variable and/or lags of the
forecast errors. That is:
Predicted value of Y = a constant and/or a weighted sum of one or more recent values of Y
and/or a weighted sum of one or more recent values of the errors.
If the predictors consist only of lagged values of Y , it is a pure autoregressive (self-regressed)
model, which is just a special case of a regression model and which could be fitted with standard
regression software. For example, a first-order autoregressive (AR(1)) model for Y is a simple
regression model in which the independent variable is just Y lagged by one period (LAG(Y, 1) in
Statgraphics or YLAG1 in RegressIt). If some of the predictors are lags of the errors, an ARIMA
model it is a linear regression model, because there is no way to specify last period's error? as an
independent variable: the errors must be computed on a period-to-period basis when the model is
fitted to the data. From a technical standpoint, the problem with using lagged errors as predictors
is that the model's predictions are not linear functions of the coefficients, even though they are
linear functions of the past data. So, coefficients in ARIMA models that include lagged errors
must be estimated by nonlinear optimization methods (hill-climbing) rather than by just solving a
system of equations.
The acronym ARIMA stands for Auto-Regressive Integrated Moving Average. Lags of the
stationarized series in the forecasting equation are called "autoregressive" terms, lags of the
forecast errors are called "moving average" terms, and a time series which needs to be
differenced to be made stationary is said to be an "integrated" version of a stationary series.
Random-walk and random-trend models, autoregressive models, and exponential smoothing
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models are all special cases of ARIMA models.
A nonseasonal ARIMA model is classified as an ”ARIMA(p, d, q)” model, where:

• p is the number of autoregressive terms,

• d is the number of nonseasonal differences needed for stationarity, and

• q is the number of lagged forecast errors in the prediction equation.

1.6 ARCH/GARCH Models

Autoregressive integrated moving average (ARIMA) models that allow modeling of volatility are
unable to deal with volatility over time.
Monetary and financial series are characterized by volatility clustering means period of high
volatility alternate with periods of low volatility. This phenomenon is called conditional
heterocedents that is particularly common in stock market data, ....
From an empirical point of view, we can note the presence of nonlinear phenomena in the time
series such as the presence of non-constant variability, the presence of the evolution cycle of
volatility
In order to highlight the persistence of volatility, Engle [11] proposed a new model called
Heteroscedastic Conditional Autoregressive (ARCH) able to capture the behavior of volatility as
a function of time.
This takes into account the numeber of stylized facts that characterize the majority of financial
series such as persistence, volatility clusters and leptokuretic behavior of data.
GARCH modeling has becom an essential tool in finance for analyzing and predicting volatility.
It was introduced to correct the weaknesses of the ARCH model at the estimation level with a
high number of parameters.
In order to highlight the long memory of volatility Bollerslev [3] generalized the ARCH(q) model
by proposing the GARCH model (p,q) which consists in adding the delayed variance in its
equation.

1.6.1 ARCH(1): Definition and Properties

The ARCH model of order 1, ARCH(1), is defined as follows:

Definition 1.6.1 The process εt, t ∈ Z, is ARCH(1), if E[εt | Ft−1] = 0,

σ2t = ω + αε2t−1 (1.17)

with ω > 0, α ≥ 0 and

• Var(εt | Ft−1) = σ2t and Zt = εt/σt is i.i.d. (strong ARCH)

• Var(εt | Ft−1) = σ2t (semi-strong ARCH),

• P(ε2t | 1, εt−1, εt−2, . . . , ε
2
t−1, ε

2
t−2, . . .) = σ2t (weak ARCH),

Theoreme 1.6.1 Assume that the process εt is a weak ARCH(1) process with Var(εt) = σ2 < ∞.
Then it follows that εt is white noise.

Proof: From E[εt | Ft−1] = 0 it follows that E[εt] = 0 and Cov(εt, εt−k) = ...εt−kE(εt | Ft−1) =

0. �
Note that εt is not an independent white noise.
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Figure 1.5: Conditional likelihood function of a generated ARCH(1) process with n = 100. The
true parameter is α = 0.5

1.6.2 ARCH(q):[Definition and Properties]

The definition of an ARCH(1) model will be extended for the case that q > 1 lags, on which the
conditional variance depends.

Definition 1.6.2 The process (εt), t ∈ Z, is ARCH(q), when E[εt | Ft−1] = 0,

σ2t = ω + α1ε
2
t−1 + ...+ αqε

2
t−q (1.18)

with ω > 0, α1 ≥ 0, ..., αq ≥ 0 and

• Var(εt | Ft−1) = σ2t and Zt = εt/σt is i.i.d. (strong ARCH)

• Var(εt | Ft−1) = σ2t (semi-strong ARCH), or

• P(ε2t | 1, εt−1, εt−2, ..., ε
2
t−1, ε

2
t−2, ...) = σ2t (weak ARCH)

The conditional variance σ2t in an ARCH(q) model is also a linear function of the q squared lags.

Theoreme 1.6.2 Let εt be a semi-strong ARCH(q) process with Var(εt) = σ2 <∞. Then

σ2 =
ω

1− α1 − ...− αq

with α1 + ...+ αq < 1

Proof:
If instead α1 + ... + αq ≥ 1, then the unconditional variance does not exist and the process is not
covariance-stationary.

1.6.3 Generalized ARCH (GARCH)

The ARCH(q) model can be generalized by extending it with autoregressive terms of the volatility.

Definition 1.6.3 ( GARCH(p,q)) The process (εt), t ∈ Z, is GARCH(p,q), if E[εt | Ft−1] = 0,

σ2t = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j , (1.19)

and
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• Var(εt | Ft−1) = σ2t and Zt = εtσt is i.i.d. (strong GARCH)

• Var(εt | Ft−1) = σ2t (semi-strong GARCH), or

• P(ε2t | 1, εt−1, εt−2, ..., ε
2
t−1, ε

2
t−2, . . .) = σ2t (weak GARCH).

The sufficient but not necessary conditions for

σ2t > 0 a.s., (P[σ2t > 0] = 1) (1.20)

ω > 0, αi ≥ 0, i = 1, ..., q and βj ≥ 0, j = 1, ..., p. In the case of the GARCH(1,2) model

σ2t = σ2t

=
ω

1− β
+ α1

∞∑
j=0

βj1ε
2
t−j−1 + α2

∞∑
j=0

βj1ε
2
t−j−2

=
ω

1− β
+ α1ε

2
t−1 + (α1β1 + α2)

∞∑
j=0

βj1ε
2
t−j−2

with 0 ≤ β1 < 1.ω > 0, α1 ≥ 0 and α1β1 + α2 ≥ 0 are necessary assuming that the sum
∞∑
j=0

βj1ε
2
t−j−2 converges.

Theoreme 1.6.3 Let εt be a semi-strong GARCH(1,1) process with Var(εt) = σ2 < ∞ and Zt ∼
N(0, 1). Then E[ε4t ] < ∞ holds if and only if 3α2

1 + 2α1β1 + β21 < 1. The Kurtosis Kurt(εt) is given
as

Kurt[εt] =
E[ε4t ](
E[ε2t ]

)2 = 3 +
6α2

1

1− β21 − 2α1β1 − 3α2
1

. (1.21)

Proof

It can be proved that E[ε4t ] = 3E[(ω + α1ε
2
t−1 + β1σ

2
t−1)

2] and the stationarity of εt.

Figure 1.6: Kurtosis of a GARCH(1,1) process. The left axis shows the parameter β1, the right
α1
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Figure 1.7: Likelihood function of a generated GARCH(1,1) process with n = 500. The left axis
shows the parameter β, the right α. The true parameters are ω = 0.1, α = 0.1and β = 0.8

1.7 Simulate processes

1.7.1 Simulations and Correlograms

AR(1)

Let's begin with an AR(1) process. This is similar to a random walk, except that ϕ1 does not
have to equal unity. Our model is going to have ϕ1 = 0.6. The R code for creating this simulation
is given as follows:

x <- w <- rnorm(100)
for (t in 2:100) x[t]<- 0.6*x[t-1] + w[t]

Notice that our for loop is carried out from 2 to 100, not 1 to 100, as x[t − 1] when t = 0 is not
indexable. Similarly for higher order AR(p) processes, t must range from p to 100 in this loop.
We can plot the realisation of this model and its associated correlogram using the layout function:

layout(1:2)
plot(x, type="l")
acf(x)
pacf(x)

AR(2)

Let's add some more complexity to our autoregressive processes by simulating a model of order 2.
In particular, we will set ϕ1 = 0.666, but also set ϕ2 = 0.333. Here's the full code to simulate and
plot the realisation, as well as the correlogram for such a series:

x <- w <- rnorm(100)
for (t in 3:100) x[t] <- 0.666*x[t-1] - 0.333*x[t-2] + w[t]
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Figure 1.8: Realisation of AR(1) Model, with ϕ1 = 0.6 and Associated Correlogram

layout(1:2)
plot(x, type="l")
acf(x)
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Figure 1.9: Realisation of AR(2) Model, with ϕ1 = 0.666, ϕ2 = 0.333. and Associated
Correlogram

1.7.2 Simulate a MA process

MA(1)
Let's start with a MA(1) process. If we set θ1 = 0.6 we obtain the following model:

xt = ϵt + 0.6ϵt−1

Aswith the AR(p) models, we can useR to simulate such a series and then plot the correlogram.

x <- w <- rnorm(100)
for (t in 2:100) x[t] <- w[t] + 0.6*w[t-1]
layout(1:2)
plot(x, type="l")
acf(x)

MA(3)

Let's run through the same procedure for a MA(3) process. This time we should expect
significant peaks at k ∈ {1, 2, 3}, and insignificant peaks for k > 3.

We are going to use the following coefficients: θ1 = 0.6, θ2 = 0.4 and θ3 = 0.2. Let's simulate
a MA(3) process from this model. I've increased the number of random samples to 1000 in this
simulation, which makes it easier to see the true autocorrelation structure, at the expense of
making the original series harder to interpret:

x <- w <- rnorm(1000)
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for (t in 4:1000) x[t] <- w[t] + 0.6*w[t-1] + 0.4*w[t-2] + 0.3*w[t-3]
layout(1:2)
plot(x, type="l")
acf(x)

The output is as follows:

Figure 1.10: Realisation of MA(1) Model, with θ1 = 0.6 and Associated Correlogram
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Figure 1.11: Realisation of MA(3) Model and Associated Correlogram

1.7.3 Simulation of an ARMA process

Aswith the autoregressive andmoving averagemodels wewill now simulate various ARMA series
and then attempt to fit ARMA models to these realisations. We carry this out because we want to
ensure that we understand the fitting procedure, including how to calculate confidence intervals
for the models, as well as ensure that the procedure does actually recover reasonable estimates for
the original ARMA parameters.
In Part 1 and Part 2 we manually constructed the AR and MA series by drawing n samples from a
normal distribution.
However, there is a more straightforward way to simulate AR, MA, ARMA and even ARIMA
data, simply by using the arima.sim method in R.
Let's start with the simplest possible non-trivial ARMA model, namely the ARMA(1,1) model.
That is, an autoregressive model of order one combined with a moving average model of order
one. Such a model has only two coefficients, α and β, which represent the first lags of the time
series itself and the "shock" white noise terms. Such a model is given by:

xt = αxt + wt + βwt−1

We need to specify the coefficients prior to simulation. Let's take α = 0.5 and β = −0.5 :

x <- arima.sim(n=1000, model=list(ar=0.5, ma=-0.5))
plot(x)

The output is as follows:
Let's also plot the correlogram:
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Figure 1.12: Realisation of an ARMA(1,1) Model, with α = 0.5 and β = −0.5

acf(x)

Figure 1.13: Correlogram of an ARMA(1,1) Model, with α = 0.5 and β = −0.5

Let's now try an ARMA(2,2) model. That is, an AR(2) model combined with a MA(2) model.
We need to specify four parameters for this model:α1, α2, β1 and β2. Let's take
α1 = 0.5, α2 = −0.25β1 = 0.5 and β2 = −0.3:

x <- arima.sim(n=1000, model=list(ar=c(0.5, -0.25), ma=c(0.5, -0.3)))
plot(x)

The output of our ARMA(2,2) model is as follows:
And the corresponding autocorelation:

35



Chapter 1 Chapter1

Figure 1.14: Realisation of an ARMA(2,2) Model,with α1 = 0.5, α2 = −0.25β1 = 0.5 and β2 = −0.3

Figure 1.15: Correlogram of an ARMA(2,2) Model,with α1 = 0.5, α2 = −0.25β1 = 0.5andβ2 = −0.3
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Chapter 2Conditional independence, conditional central limit theorem and conditional association

abstract: Our aim in this chapter is to review the concept of conditional independence and
introduce the notions of conditional strong mixing and conditional association for sequences of
random variables. We discuss some stochastic inequalities and limit theorems for such sequences
of random variables. Earlier discussions on the topic of conditional independence can be found in
[3] and more recently in [10].

2.1 Conditional independence of events

Let (Ω,A,P) be a probability space. A set of events A1, A2, ..., An are said to be independent if

P

 k⋂
j=1

Aij

 =

k∏
j=1

(Aij ) (2.1)

for all 1 ≤ i1 < i2 < ... < ik ≤ n, 2 ≤ k ≤ n.

Definition 2.1.1 The set of events A1, A2, ..., An are said to be conditionally independent given an
event B with P(B) > 0 if

P

 k⋂
j=1

Aij |B

 =
k∏

j=1

(Aij |B) (2.2)

for all 1 ≤ i1 < i2 < ... < ik ≤ n, 2 ≤ k ≤ n.

The following examples [10] show that the independence of events does not imply conditional
independence and that the conditional independence of events does not imply their independence.

2.2 Conditional independence of random variables

We will be working on a fixed probability space (Ω,A,P) and let F be a sub-σ-field such that
F ⊂ A.

Definition 2.2.1 Random events A1, A2, ..., An are F-independent if

∧
1≤k≤n

∧
1≤i1<i2<...<ik≤n

EF
k∏

s=1

IAis =
k∏

s=1

EFIAis (2.3)

If F = (∅,Ω) we obtain the definition of independence of random variables events.
Note that, if F = A, then all random events are A-independent.
A sequence of families A1,A2, ...,An,Ak ⊂ A for k = 1, ..., n, is F-independent, if each sequence
A1, A2, ..., An such that Ai ∈ Ai, i = 1, 2, ..., n is the sequence of F-independent random events.

If X : Ω → R is a random variable, then by FX we denote the smallest σ-field with respect to
which the random variable X is measurable. Thus FX is σ-field generated by random variable X.
The random variables X1, X2, ..., Xn are F-independent if σ-fields FX1 ,FX2 , ...,FXn are
F-independent.
Note that conditional independence does not not imply independence, the opposite implication is
also not true, as incorrectly given in the book [16]. The broad considerations of the independence
and the F-independence are contained in [10].
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2.3 Conditional Borel-Cantelli Lemma

Let (Ω,A,P) be a probability space and F nonempty sub-σ-field A. The first lemma of Borel-

Cantelli states that if {An, n ≥ 1} is an arbitrary sequence
∞∑
n=1

P(An) < ∞, then with probability

one only finite number of events of the sequence {An, n ≥ 1} holds. The second lemma of Borel-

Cantelli shows that if the sequence of independent random events such that
∞∑
n=1

P(An) = ∞, then

probability that infinity many events of the sequence {An, n ≥ 1} holds equals one.

Theoreme 2.3.1 Let {An, n ≥ 1} be a sequence of random eventssuch that
∞∑
n=1

P(An) < ∞, then
∞∑
n=1

P(An|F) <∞ a.s

Proof. Obviously

∞∑
n=1

EIAn =
∞∑
n=1

E(EFIAn) = lim
n→∞

∞∑
n=1

E(EFIAn) = lim
n→∞

E(
∞∑
n=1

EFIAn)

By the Lebesgue's Monotone Convergence Theorem we have that

lim
n→∞

(
n∑

k=1

EFIAn) = E( lim
n→∞

∞∑
n=1

EFIAn) = E(
n∑

k=1

EFIAn) = ∞

if

P

(
n∑

k=1

EFIAn

)
= ∞ > 0

The opposite implication is not true by Example 1 in [9]

Lemma 2.3.1 (Conditional Lemma of Borel-Cantelli I) Let {An, n ≥ 1} be a sequence of

random events such that A = {ω :

∞∑
n=1

P(An|F) < ∞},P(A) < 1, then only finitely many events

from the sequence {An
⋂
A,n ≥ 1} hold with probability one.

Proof. Let
U =

∞⋂
n=1

∞⋃
k=n

Ak

⋂
A,

then

P(U |F) = P

( ∞⋂
n=1

∞⋃
k=n

[Ak

⋂
A]|F

)
= lim

n→∞
P

( ∞⋃
k=n

[Ak

⋂
A]|F

)

= lim
n→

EFI⋃∞
k=n[Ak

⋂
A] ≤ lim

n→∞

( ∞∑
k=n

EFI[Ak
⋂

A]

)
= 0 a.s.

Hence P(U) = E[P(U)|F ] = 0 a.s.

Lemma 2.3.2 (Conditional Lemma of Borel-Cantelli II) Let {An, n ≥ 1} be a sequence of F-

independent events and let A = {ω :

∞∑
n=1

P(An|F) = ∞}. Then P(lim supAn) = P(A)
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Proof. Let E = (
⋂∞

n=1

⋃∞
k=nAk)

c =
⋃∞

n=n

⋂∞
k=1A

c
k. Properties of conditional expectation imply

P(E|F) = lim
n→∞

P(
∞⋂
k=1

Ac
k|F) = lim

n→∞
( lim
k→∞

P(
k⋂

i=n

Ac
i |F))

= lim
n→∞

( lim
k→∞

k∏
i=n

P(Ac
i |F)) = lim

n→∞
lim
k→∞

[

k∏
i=n

(1− P(Ai|F))]

= lim
k→∞

[

∞∏
i=n

(1− P(Ai|F))] ≤ lim
n→∞

exp(−
∞∑
i=n

(1− P(Ai|F))) a.s.

Thus for almost every ω ∈ A we have

0 ≤ P(E|F)(ω) ≤ lim
n→∞

exp(−
∞∑
i=n

P(Ai|F)(ω) = 0 a.s.

Thus
P(E) =

∫
Ω
P(E|F)dP =

∫
A
P(E|F)dP +

∫
Ac

P(E|F)dP ≤ P(Ac)

so P(Ec) ≥ P(A).
On the other hand, following the teasoning given in Lemma (2.3.1) , we state that on the set Ac

only finitely many events from the sequence {An, n ≥ 1} hold, so P(Ec) ≤ P(A).

2.4 Conditional complete convergence

Complete convergence results are well known for independent random variables(see,e.g.,Gut
[8]). The classical results of Hsu, Robbins, Erdés, Baum, and Katz were extended to certain
dependent sequences. We will need the following definition of conditional comlete convergence
(see Christofides and Hadjikyriakou [4] for details).

Definition 2.4.1 A sequence of random variables {Xn, n ∈ N} is said to converge completely given
F to a random variable X if

∞∑
i=1

PF (|Xi −X| > ϵ) <∞ a.s.

for any F-measurable random variable ϵ such that ϵ > 0 a.s.

The following set of sequence, which serves purposes of brevity, was first defined by Shen et
al.[17]:

H =

{
bn :

∞∑
n=1

hbn <∞ for every 0 < h < 1

}
.

2.5 Conditional central limit theorem

The central boundary theorems are at the heart of every probability model, so it is not surprising that
this problem was one of the first to be addressed in the literature for associated random variables.
Indeed, after the first developments, mainly concernedwith the dependency structure itself, the first
asymptomatic result was a central theorem limit and a proven principle of invariance in Newman
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and Wright [11] for associated and stationary random variables.
The following conditional version of the classical limit theorem has been stated in Prakasa Rao
[14] without a proof. Although Grzenda and Zieba [7] gave a proof, it was not completly stringent.

Lemma 2.5.1 Let X and Y be F-identically distributed random variables, and let ξ be an F
measurable random variable. Then for arbitrary B2-measurable function f(x, y),

EFf(X, ξ) = EFf(Y, ξ) a.s.,

and similarly for any finite number of random variables.

Theoreme 2.5.1 Let {Xn, n ≥ 1} be a sequence of F-independent and F-identically distributed
random variables with σ2F = EF (X1 − EFX1)

2 <∞ a.s.

Then

EF exp
(
Sn − EFSn√

nσF

)
→ e−

t2

2 a.s. (2.4)

as n→ ∞ for every t ∈ R. In particular,

Sn − EFSn√
nσF

→ N(0, 1) in distrribution. (2.5)

Proof Relation (2.5) follows from 2.4 by using the dominated convergence theorem and the
continuity theorem for characteristic functions. So we need only to prove (2.4). In view of the
F-independence of X1, X2, ..., Xn and Lemma (2.5.1), we conclude that

EF exp
(
it
Sn − EFSn√

nσF

)
= EF

{
n∏

k=1

exp
[

it√
nσF

(Xk − EFXk)

]}

=

n∏
k=1

EF exp
[

it√
nσF

(Xk − EFXk)

]
In view F-identical distribution and Lemma 2.5.1, EFX1 = EFX2 = ... = EFXn a.s. and

EF exp
(

itX1√
nσF

)
= EF exp

(
itX2√
nσF

)
= ... = EF exp

(
itXn√
nσF

)
a.s. so that

n∏
k=1

EF exp
[

it√
nσF

(Xk − EFXk)

]
=

n∏
k=1

EF
[
exp

(
itXk√
nσF

. exp
(
− itE

FXk√
nσF

))]

=
n∏

k=1

[
EF exp

(
itXk√
nσF

. exp
(
− itE

FXk√
nσF

))]
=

[
EF exp

(
itX1√
nσF

)
. exp

(
− itE

FX1√
nσF

)]n
=

[
EF exp

(
it√
n

X1 − EFX1

σF

)]n
=

[
ϕF

(
t√
n

)]n
where ϕF (t) is the F-characteristic function corresponding to (X1 − EFX1)/σF .
However,

ϕF

(
t√
n

)
= 1− t2

2n
− t2

2n
ϵF2

(
t√
n

)
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where ϵF2 (t) satisfies ϵF2 (t/n) → 0 a.s.n→ ∞ for every t ∈ R, and therefore

EF
[
exp

(
it
Sn − EFSn√

nσF

)]
=

[
1− t2

2n
− t2

2n
ϵF2

(
t√
n

)]n
→ e−

t2

2 a.s.

an n→ ∞ for fixed t ∈ R.

2.6 Conditional association

Let X and Y be random variables defined on a probability space (Ω,A,P) with E(X2) < ∞ and
E(Y 2) <∞. Let F-be a sub algebra of A.We define the conditional covariance of X and Y given
F or F-covariance as

CovF (X,Y ) = EF [(X − EFX)(Y − EFY )]. (2.6)

It easy to see that F-covarinace reduces to the ordinary concept of covariance when F = {∅,Ω}.
A set of random variables {Xk, 1 ≤ k ≤ n} is said to be F-associated if for any coordinatewise

non-decreasing functions h, g defined on Rn,

CovF (h(X1, ..., Xn), g(X1, ..., Xn)) ≥ 0 a.s. (2.7)

A sequence of random variables Xn, n ≥ 1 is said to be F-associated if every finite subset of the
sequence Xn, n ≥ 1 is F-associated.

An example of a F-associated sequence Xn, n ≥ 1 is obtained by defining Xn = Z + Yn, n ≥ 1

whereZ and Yn, n ≥ 1 areF-independent random variables. It can be shown by standard arguments
that

CovF (X,Y ) =

∫ ∞

−∞

∫ ∞

−∞
HF (X,Y )dxdy a.s.

where
HF (X,Y ) = EF [I(X≤x,Y≤y)]− EF [I(X ≤ x)]EF [I(Y ≤ y)].

Proofs of these results can be obtained following the methods used for the study of associated
random variables. As a consequence of these covariance inequalities, it should be possible to
obtain a central limit theorem for conditionally associated sequences of random variables
following the methods in [11]. Note that F-association does not imply association and vice versa.
For results on associated random variables, see [13] and [15].
The natural question of relation between the two concepts of association and conditional
association arises. The following examples show that the association of random variables does
not imply the conditional association, and that the conditional association does not imply the
association.

Example 2.6.1 Let Ω = {1, 2, 3, 4} and pi = 1/4 be the probability assigned to the event {i}. If the
events A1 and A2 are defined by A1 = {1, 2} and A2 = {2, 3} and the random variables X1 and X2

as follows X1 = IA1 and X2 = IA2 where IA denotes the indicator function of an event A, then X1

and X2 are independent, so that the family {X1, X2} is associated by Theorem 2.1 in [5]
LetB = {4} and letF = {Ω, B,Bc, ∅} be the sub-σ-algebra generated by the eventB. We will show
that {X1, X2} is not F-associated. In fact, let f(X1,X2) = X1 and g(X1,X2) = X2, then functions f
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and g are both coordinatewise nondecreasing.
Some simple calculations show that

EF [f(X1, X2)] =

{
f(0, 0), ω ∈ B,
1
3 [f(0, 1) + f(1, 0) + f(1, 1)], ω ∈ Bc,

=

{
0 ω ∈ B,
2
3 , ω ∈ Bc,

EF [g(X1, X2)] =

{
g(0, 0), ω ∈ B,
1
3 [g(0, 1) + g(1, 0) + g(1, 1)], ω ∈ Bc,

=

{
0 ω ∈ B,
2
3 , ω ∈ Bc,

and

EF [f(X1, X2)g(X1, X2)] =

{
f(0, 0)g(0, 0), ω ∈ B,
1
3 [f(0, 1)g(0, 1) + f(1, 0)g(1, 0) + f(1, 1)g(1, 1)], ω ∈ Bc,

=

{
0, ω ∈ B,
1
3 , ω ∈ Bc,

So that EF [f(X1, X2)g(X1, X2)] < EF [f(X1, X2)].EF [g(X1, X2)] on Bc with P(Bc) = 3
4 > 0, this

indicates that X1, X2 is not F-associated.

Example 2.6.2 Let Ω and pi be defined as in Example (2.6.1). Define the events A1 and A2 by
A1 = {1, 2, 3} and A2 = {3, 4}, and the random variables X1 and X2 by X1 = IA1 and X2 = IA2 .

Let B = {3, 4} and let F = {Ω, B,Bc, ∅} be the sub-σ-algebra generated by the event B. Some
simple calculations show that

EF (IA1) =

{
E(IA1 |B), ω ∈ B,

E(IA1 |Bc), ω ∈ Bc,
=

{
1
2 ω ∈ B,

1, ω ∈ Bc,

EF (IA2) =

{
E(IA2 |B), ω ∈ B,

E(IA2 |Bc), ω ∈ Bc,
=

{
1 ω ∈ B,

0, ω ∈ Bc,

and

EF (IA1A2) =

{
E(IA1A2 |B), ω ∈ B,

E(IA1A2 |Bc), ω ∈ Bc,
=

{
1
2 ω ∈ B,

0, ω ∈ Bc,

so that EFIA1A2 < EFIA1 .EFIA2 , further

EFI(X1 ≤ X1, X2 ≤ X2) a.s.

for all real numbers X1 and X2, this indicates thatX1 andX2 are F-independent, and therefore
{X1, X2} is F-associated.
We claim that the family {X1, X2} is not associated. For this purpose, let functions f and g be
defined as in Example (2.6.1), we have

E[f(X1, X2)] =
1

4
[f(0, 1) + 2f(1, 0) + f(1, 1)] =

3

4
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E[g(X1, X2)] =
1

4
[g(0, 1) + 2g(1, 0) + g(1, 1)] =

1

2

and
E[f(X1, X2)g(X1, X2)] =

1

4
[f(0, 1)g(0, 1) + 2f(1, 0)g(1, 0) + f(1, 1)g(1, 1)] =

1

4

so that
E[f(X1, X2)g(X1, X2)] = E[f(X1, X2)].E[g(X1, X2)]

which indicates that {X1, X2} is not associated. The association of random variables may be
inherited by the conditional association, the following is such an example.

Example 2.6.3 Let Ω, pi, X1, X2 be defined as in Example (2.6.1). We have shown that {X1, X2}
is associated.
Let B = {3, 4} and let F = {Ω, B,Bc, ∅} be the sub-σ-algebra generated by the event B. For every
pair of coordinatewise nondecreasing f and g defined on R2 with E[(X1, X2)] finite, some simple
calculations show that

EF [f(X1, X1)] =

{
1
2 [f(0, 0) + f(0, 1)], ω ∈ B,

, 12 [f(1, 0) + f(1, 1)] ω ∈ Bc,

}
,

EF [g(X1, X1)] =

{
1
2 [g(0, 0) + g(0, 1)], ω ∈ B,
1
2 [g(1, 0) + g(1, 1)], ω ∈ Bc,

and

EF [f(X1, X1)g(X1, X1)] =

{
1
2 [f(0, 0)g(0, 0) + f(0, 1)g(0, 1)], ω ∈ B,

, 12 [f(1, 0)g(1, 0) + f(1, 1)g(1, 1)] ω ∈ Bc,

}
,

It is easy to see that

EF [f(X1, X1)g(X1, X1)] ≥ EF [f(X1, X1)]EF [g(X1, X1)]

since [f(0, 0) − f(0, 1)][g(0, 0) − g(0, 1)] ≥ 0 and [f(1, 0) − f(1, 1)][g(1, 0) − g(1, 1)] ≥ 0, and
hence {X1, X2} is F-associated.

Remark 2.6.1 As it was pointed out earlier, conditional independence does not imply
independence and vice versa. Hence one does have to derive limit theorems under conditioning if
there is a need for such results even though the results and proofs of such results may be
analogous to those under the non-conditioning set up. This was one of the reasons for developing
results for conditional sequences in the earlier sections.A concrete example where
conditionallimit theorems are useful is in the study of statistical inference for non-ergodic models
as discussed in [1] and [2].For instance, if one wants to estimate the mean off-spring θ for a
Galton-Watson Branching process, the asymptotic properties of the maximum likelihood
estimator depend on the set of non-extinction.Conditional limit theorems under a martingale set
up have been used for the study of asymptotic properties for maximum likelihood estimators of
parameters in a stochastic process framework where the Fisher information need not be additive
and might not increase to infinity or might even increase to infinity at an exponential rate (cf.
[1]; [12];[6]).
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Chapter 3
New tail probability inequalities for widely orthant dependent random variables sequence,

application to hazard estimator

abstract: Tail probability inequalities have be an important tool in probability and statistics.
Version of Bernstein type inequalities have proved for independent and for some dependence
structure. We prove a new Tail probability inequality for the distributions of sums of widely
orthant dependent (WOD, in short) random variables, and obtain of complete convergence for
kernel estimators of density and hazard functions, under some suitable conditions.

3.1 Introduction

Hazard estimation is quite an important problem in several fields of applied statistics
(medicine,econometric, seismic risk, reliability, etc.). Nonparametric estimation of the hazard
function started with Watson and Leadbetter (1964a,b) who introduced the kernel estimator, and
from that time on, a lot of papers on this topic have come out in the nonparametric literature. The
estimation of the hazard function, in the nonparametric case, has been widely studied in the
literature when the variables are of finite dimensions.

Let {Xn, n ≥ 1} be a sequence ofWOD randomvariableswith an unknownmarginal probability
density function f(x) and distribution function F (x). Assume thatK(x) is a known kernel function,
the kernel estimate of f(x) and the empirical distribution function of F (x) are given by

f̃n(x) =
1

nhn

n∑
i=1

K

(
x−Xi

hn

)
, Fn(x) = n−1

n∑
i=1

I(Xi < x), (3.1)

where {hn, n ≥ 1} is a sequence of positive bandwidths tending to zero as n → +∞. The
function f̃n(.) is the well known kernel estimator of f(.) defined by Rosenblatt[6] and Parzen[5].
I(.) is the indicator of the event specified in the parentheses. The hazard rate of function can be
written as ration between the pdf f(.) and the survivor function S(.) = 1− F (.) as follows :

H(x) = f(x)/S(x),

and it can be estimated by

H̃n(x) =
f̃n(x)

1− Fn(x)
. (3.2)

In all these works, we establish the complete convergence of hazard function estimator based
on widely orthant dependent (WOD in short) random variables by using the new exponential
probability.It is well known that the probability limit theorem and its applications for independent
random variables have been studied by many authors, while the assumption of independence is
not reasonable in real practice.If the independent case is classical in the literature, the treatment
of dependent random variables is more recent.Widely orthant dependence (WOD) is one of
dependence structure. Now we recall the definition of WOD. The concept of widely orthant
dependent was introduced by Wang and Cheng [7] for risk model. They studied the basic renewal
theorems for random walks with WOD dependent increments.

By definition, r.v.s {Xi, i ≥ 1}, are said to be widely upper orthant dependent (WUOD) if for
each n ≥ 1, there exists a positive number gU (n) such that, for all xi ∈ (−∞,+∞), i = 1, ..., n

P(X1 > x1, X2 > x2, ..., Xn > xn) ≤ gU (n)Π
n
i=1P(Xi > xi); (3.3)

they are said to be widely lower orthant dependent (WLOD) if for each n ≥ 1, there exists some
finite positive number gL(n) such that, for all xi ∈ (−∞,+∞), i = 1, ..., n,

P(X1 ≤ x1, X2 ≤ x2, ..., Xn ≤ xn) ≤ gL(n)Π
n
i=1P(Xi ≤ xi); (3.4)
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and they are said to be widely orthant dependent (WOD) if they are both WUOD and WLOD.
WUOD, WLOD and WOD r.v.s. are called by a joint name widely dependent r.v.s. and gU (n) ≥
1, gL(n) ≥ 1, n ≥ 2, are called dominating coefficients.Clearly, we have gu(1) = gL(1) = 1.

The concept of complete convergence was introduced by Hsu and Robbins[3] as follows: a
sequence Xn, n ≥ 1 of random variables converges completely to a constant ϑ if for all ε > 0,

n∑
i=1

P(|Xi − ϑ| ≥ ε) < +∞.

By the Borel.Cantelli lemma, this implies that Xn → ϑ a.s., and so complete convergence is a
stronger concept than a.s. convergence.

In this paper,we attempt to establish a new probability inequality and to derive the complete
convergence for the estimators of the probability density estimator (3.1) and hazard functions
under strictly stationary WOD random variables. The results obtained in the paper improve and
extend the corresponding ones of Li and Yang [4] for NA samples. We will also study the
complete consistency for the estimator (3.1) under some mild conditions. The main results are
presented in Section 2. Some lemmas are provided in Section 3. The proofs are given in Section
4. C(f) denotes all the continuity points of function f and C2(f) stands for a point set in where the
second-order derivative f ′′ �exists and is bounded and continuous.

3.2 Some lemmas

To prove the main results of the paper, we need the following important lemmas. The first one is
a basic property for WOD random variables, which was obtained by Wang et al. [4].

Lemma 3.2.1

(i) Let {Xn, n ≥ 1} be WLOD (WUOD) with dominating coefficients gL(n), n ≥ 1(gU (n), n ≥ 1),

• if {fn(.), n ≥ 1} are nondecreasing, then {fn(Xn), n ≥ 1} are still WLOD (WUOD) with
dominating coefficients gL(n), n ≥ 1(gU (n), n ≥ 1);

• if {fn(.), n ≥ 1} are nonincreasing, then {fn(Xn), n ≥ 1} are WUOD (WLOD) with
dominating coefficients gL(n), n ≥ 1(gU (n), n ≥ 1).

(ii) If {Xn, n ≥ 1} are nonnegative and WUOD with dominating coefficients gU (n), n ≥ 1, then
for each n ≥ 1,

E
n∏

i=1

Xi ≤ gU (n)

n∏
i=1

EXi.

In particular, if {Xn, n ≥ 1} are WUOD with dominating coefficients gU (n), n ≥ 1, then for
each n ≥ 1 and any λ > 0,

Eexp{λ
n∑

i=1

Xi} ≤ gU (n)

n∏
i=1

Eexp{λXi}.

By Lemma (3.2.1), we can get the following corollary immediately.

Corollary 3.2.1 Let {Xn, n ≥ 1} be a sequence of WOD random variables.

(i) If {fn(.), n ≥ 1} are all nondecreasing (or all nonincreasing), then {fn(Xn), n ≥ 1} are still
WOD.
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(ii) For each n ≥ 1 and any λ ∈ R,

Eexp{λ
n∑

i=1

Xi} ≤ g(n)
n∏

i=1

Eexp{λXi}.

Proof. For λ > 0, it is easy to see that λXi and λ
n∑

j=i+1

Xj are WOD by the definition. Which

implies that exp(λXi) and exp(λ
n∑

j=i+1

Xj) are also WOD for i = 1, 2, . . . , n− 1, by Lemma 3.2.1 (i).

It follows from corollary (3.2.1) we obtain

E(
n∏

i=1

eλXi) = E(exp(λX1)exp(λ
n∑

j=2

Xj)),

≤ g1(n)E[exp(λX1)]E[exp(λ
n∑

j=2

Xj)],

= g1(n)E[exp(λX1)]E[exp(λX2)exp(λ
n∑

j=3

Xj)],

≤ g1(n)g2(n)E[exp(λX1)]E[exp(λX2)]E[exp(λ
n∑

j=3

Xj)],

≤
n−1∏
i=1

gi(n)

n∏
i=1

(EeλXi),

= g(n)

n∏
i=1

(EeλXi),

where g(n) =
n−1∏
i=1

gi(n).

The following lemma is very useful in the proof of Lemma (3.2.3).

Lemma 3.2.2 [8] For any x ∈ R, we have

exp(x) ≤ 1 + x+ |x|1+α exp(2|x|), 0 < α ≤ 1.

Lemma 3.2.3 Let {Xn, n ≥ 1} be a sequence of WOD random variables with EXn = 0 for each
n ≥ 1. If there exists a sequence of positive numbers {an, n ≥ 1} such that |Xi| ≤ ai for each i ≥ 1,
then for any λ > 0 and 0 < α ≤ 1,

E exp
{
λ

n∑
i=1

Xi

}
≤ g(n) exp

{
λ1+α

n∑
i=1

e2λaiE|Xi|1+α

}
. (3.5)

Proof. By lemma (3.2.2), for all x ∈ R and 0 < α ≤ 1, exp(x) ≤ 1 + x+ |x|1+α exp(2|x|). Thus, by
E(Xi) = 0 and |Xi| ≤ ai for each i ≥ 1, we have

E exp(λXi) ≤ E
{
1 + λXi + |λXi|1+α exp(2|λXi|)

}
= 1 + λE(Xi) + λ1+αE

{
|Xi|1+α exp(2|λXi|)

}
= 1 + λ1+αE

{
|Xi|1+α exp(2|λXi|)

}
≤ 1 + λ1+αE

{
|Xi|1+α exp(2λai)

}
= 1 + λ1+α exp(2λai)E

{
|Xi|1+α

}
≤ exp

{
λ1+α exp(2λai)E

{
|Xi|1+α

}}
(3.6)
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(using 1 + y ≤ exp(y) for all y ∈ R) for any λ > 0. By lemma (3.2.1) and (3.6), we have can see
that

E exp
{
λ

n∑
i=1

Xi

}
≤ g(n)

n∏
i=1

E exp {λXi} (3.7)

≤ g(n) exp
{
λ1+α

n∑
i=1

e2λaiE|Xi|1+α

}
. (3.8)

The lemma is thus proved.

Lemma 3.2.4 Let {Xn, n ≥ 1} be a sequence of WOD random variables with EXn = 0 for each
n ≥ 1. If there exists a sequence of positive numbers {an, n ≥ 1} such that |Xi| ≤ ai for each i ≥ 1,
then for any λ > 0, 0 < α ≤ 1 and ϵ > 0

P(|
n∑

i=1

Xi| ≥ ϵ) ≤ 2g(n) exp
{
−λϵ+ λ1+α

n∑
i=1

e2λaiE|Xi|1+α

}
. (3.9)

Proof. By Markov's inequality and lemma (3.2.3), we can see that

P(
n∑

i=1

Xi ≥ ϵ) ≤ exp(−λϵ)E exp
{
λ

n∑
i=1

Xi

}

≤ exp(−λϵ)g(n)
n∏

i=1

E exp {λXi}

≤ g(n) exp
{
−λϵ+ λ1+α

n∑
i=1

e2λaiE|Xi|1+α

}
. (3.10)

The desired result follos by remplacingXi by−Xi in (3.10). This completes the proof of the lemma.

Lemma 3.2.5 Suppose that (H1) holds, then for all x ∈ C2(f),

lim
h→0

∫
R
K(u)f(x− hu) du = f(x).

Lemma 3.2.6 Suppose that (H1) holds, then for all x ∈ C2(f),

h−2
n |Ef̃n(x)− f(x)| ≤ C < +∞.

Proof. By Taylor's expansion and (H1)− (H2), for any 0 < θ < 1 we can see that

Ef̃n(x) = E(
1

nhn

n∑
i=1

K(
x−Xi

hn
))

=
1

nhn

n∑
i=1

EK(
x−Xi

hn
)

=
1

nhn

n∑
i=1

∫
R
K(u)f(x− hnu) du

=
1

nhn

n∑
i=1

∫
R
K(u)[f(x)− f

′
(x)hnu+

f
′′
(x− θhnu)

2
(hnu)

2] du

= f(x) +
h2n
2

∫
R
K(u)f

′′
(x− θhnu)u

2 du→ f(x) +
h2n
2
f

′′
(x)

∫
R
K(u)u2 du. (3.11)

By assumption (H1) and (3.11), we get the result.
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Lemma 3.2.7 Let {Xn;n ≥ 1} be a sequence of WOD random variables with unknown
distribution function F (x) and bounded probability density function f(x). Let Fn(x) be the

empirical distribution function. If ξ̃n = log
p(1+α)−1
p(1+α) (ng(n))

n
α

(1+α)
→ 0 for some p > 1 and 0 < α ≤ 1, then

sup
x

|Fn(x)− F (x)| = O(ξ̃n), completely.

In particular, if g(n) = O(nδ) for somme δ ≥ 0, then

sup
x

|Fn(x)− F (x)| = O(
log

p(1+α)−1
p(1+α) n

n
α

(1+α)

), completely.

Proof. Let F (xni) = i/n for n ≥ 3 and 1 ≤ i ≤ n− 1. By lemma 2 in Yang [4] we have that

sup
x∈R

|Fn(x)− F (x)| ≤ max
1≤j≤n−1

|Fn(xnj)− F (xnj)|+ 2/n. (3.12)

Noting that nξ̃n → ∞, then for any positive constant B1, we have that 2/n < B1ξ̃n/2 for all n
large enough. Then if follows from 3.12 that

P(sup
x

|Fn(x)− F (x)| ≥ B1ξ̃n) ≤ P( max
1≤j≤n−1

|Fn(xnj)− F (xnj)| ≥ B1ξ̃n/2)

≤
n−1∑
j=1

P(|Fn(xnj)− F (xnj)| ≥ B1ξ̃n/2).

(3.13)

Let Ỹi = I(Xi < xnj)−EI(Xi < xnj). By Lemma 3.2.1, {Ỹi; i ≥ 1} is still a sequence of WODwith

EỸi = 0, |Ỹi| ≤ 2.Thus by choosing λ =
(

B1bp
2p(1+α)+1(1+α)

) 1
p(1+α)−1

(
ξ̃n

np−1

) 1
p(1+α)−1 in Lemma (3.2.4)

we have that for all n large enough,

P(|Fn(xnj)− F (xnj)| ≥ B1ξ̃n/2) ≤ P(|
n∑

j=1

Ỹi| ≥ B1ξ̃n/2)

≤ 2g(n) exp
{
−λB1ξ̃n/2 + λ1+α

n∑
i=1

e2λaiE|Ỹi|1+α

}
≤ 2g(n) exp

{
−λB1ξ̃n/2 + λ1+αne2λmax1≤i≤n aiE|Ỹi|1+α

}
≤ 2g(n) exp{−λB1ξ̃n/2 + λ1+αne2λmax1≤i≤n ai

2α(E(I(Xi < xnj)
1+α) + (EI(Xi < xnj))

1+α)}

(using the inequality (a+ b)α+1 ≤ max(2α, 1)(aα+1 + bα+1))

≤ 2g(n) exp{−λB1ξ̃n/2 + λ1+αne2λmax1≤i≤n ai

2α2E(I(Xi < xnj)
1+α)}

(using the Hölder's inequality (E(Z))1+α ≤ E(Z1+α)

≤ 2g(n) exp{−λB1ξ̃n/2 + λ1+αne2λmax1≤i≤n ai2α+1}.

Let p > 1. It is well known that

uv = inf
b>0

{
1

pb
up +

1

q
bq/pvq

}
foru > 0, v > 0 and 1/p+ 1/q = 1.
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This yields the inequality

λ1+αne2λmax1≤i≤n ai2α+1 ≤ 1

pb
λp(1+α)np2p(α+1) +

1

q
bq/pe2qλmax1≤i≤n ai . (3.14)

We can thus conclude that for every p > 1 and 0 < α ≤ 1, there for all λ > 0, such that

P(|Fn(xnj)− F (xnj)| ≥ B1ξ̃n/2) ≤ 2g(n) exp{−λB1ξ̃n/2 +
1

pb
λp(1+α)np2p(α+1)}

× exp{1
q
bq/pe2qλmax1≤i≤n ai}

= 2g(n) exp{1
q
bq/pe2qλmax1≤i≤n ai} exp(Φ(λ, n)).

(3.15)

The equation ∂Φ(λ,n)
∂λ = 0 has the unique solution

λ =

(
B1bp

2p(1+α)+1(1 + α)

) 1
p(1+α)−1

(
ξ̃n
np−1

) 1
p(1+α)−1

(3.16)

which minimizes Φ(λ, n). Then from (3.15),(3.16) and taking 2qλmax1≤i≤n ai ≤ 1 it follows that

P(|Fn(xnj)− F (xnj)| ≥ B1ξ̃n/2) ≤ 2 exp{1
q
bq/pe}g(n) exp{−µ1n

pα
p(1+α)−1 ξ̃n

p(1+α)
p(1+α)−1 }

≤ 2 exp{1
q
bq/pe}g(n) exp{−µ1C0 log(ng(n))}

= 2 exp{1
q
bq/pe}g(n) 1

(ng(n))µ1C0

(3.17)

Where µ1 = (1− 1
p(1+α))

B

p(1+α)
p(1+α)−1
1

2
2p(1+α)
p(1+α)−1

(bp/(1 + α))
1

p(1+α)−1 Recall that g(n) ≥ 1. Taking µ1 sufficiently

large such that µ1C0 > 2 by (3.13) and ((3.17)) we have that

∞∑
n=1

P( sup
−∞<x<+∞

|Fn(x)− F (x)| ≥ B1ξ̃n) ≤ 2 exp{1
q
bq/pe}

∞∑
n=1

n−1∑
i=1

g(n)
1

(ng(n))µ1C0

= 2 exp{1
q
bq/pe}

∞∑
n=1

(n− 1)g(n)
1

(ng(n))µ1C0

≤ 2 exp{1
q
bq/pe}

∞∑
n=1

(ng(n))
1

(ng(n))µ1C0

= 2 exp{1
q
bq/pe}

∞∑
n=1

1

(ng(n))µ1C0−1

< +∞.

This complete the proof of the lemma.

3.3 Main Results and Proofs

In this section, we will present the complete convergence for kernel estimators of density and
hazard functions. We adopt the following assumptions.
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(H1)
∫ +∞
−∞ K(u)du = 1,

∫ +∞
−∞ uK(u)du = 0,

∫ +∞
−∞ u2K(u)du <∞,K(u) ∈ L1;

(H2) The bandwidths hn satisfy that hn ↓ 0 and nhn → ∞ as n → ∞. Now we state our main
results as follows.

Theoreme 3.3.1 Suppose that (H1) − (H2) hold. Let {Xn;n ≥ 1} be a sequence of strictly
stationary of WOD random variables with g(n) = O(nδ) for some δ ≥ 0. Suppose that the kernel
K(.) is a bounded monotone density function and the bandwidth hn = O(n

− α
3(1+α) log

p(1+α)−1
3p(1+α) n)

for some p > 1 and 0 < α ≤ 1. Then for any x ∈ C2(f).

|f̃n(x)− f(x)| = O

 log
p(1+α)−1
p(1+α) n

n
α

(1+α)hn

 , completely. (3.18)

Proof. Set Yi = h−1
n

[
K(x−Xi

hn
)− EK(x−Xi

hn
)
]
for 1 ≤ i ≤ n. Since K(.) is a bounded monotone

density function, then {Yi, i ≥ 1} is still a sequence of WOD random variables. Moreover, it
follows from 0 < hn ↓ 0 that there exists some positive constant C̃ such that max1≤i≤n |Yi| ≤ C̃h−1

n .
By lemma (3.2.4) and elementary inequality (a+ b)1+α ≤ max(2α, 1)(a1+α + b1+α) we have that

n∑
i=1

E|Yi|1+α =

n∑
i=1

E
∣∣∣∣h−1

n

[
K

(
x−Xi

hn

)
− EK

(
x−Xi

hn

)]∣∣∣∣1+α

≤
n∑

i=1

2α

h1+α
n

E

[(
K

(
x−Xi

hn

))1+α

+

(
EK

(
x−Xi

hn

))1+α
]

=
2α

h1+α
n

n∑
i=1

[
E
(
K

(
x−Xi

hn

))1+α

+

(
EK

(
x−Xi

hn

))1+α
]

≤ 2α+1

h1+α
n

n∑
i=1

E
(
K

(
x−Xi

hn

))1+α

(by hölder's inequality)

=
2α+1

h1+α
n

nE
(
K

(
x−Xi

hn

))1+α

=
2α+1

h1+α
n

n

∫
R

(
K

(
x− u

hn

))1+α

f(u) du

=
2α+1

h1+α
n

n

∫
R
K(u)f(x− hnu) du

≤ C̃n
2α+1

h1+α
n

.

Set ζn = log
p(1+α)−1
p(1+α) n

n
α

(1+α) hn

. Applying lemma 3.2.4 with λ =

(
A1nζnh

p(1+α)
n

C̃2npp(1+α)

) 1
p(1+α)−1

, where A1 is some
positive constant, for all n large enough, then we get that

P(|f̃n(x)− Ef̃n(x)| ≥ A1ζn) ≤ P(|
n∑

j=1

Yi| ≥ A1nζn)

≤ 2g(n) exp
{
−λA1nζn + λ1+α

n∑
i=1

e2λaiE|Yi|1+α

}
≤ 2g(n) exp

{
−λA1nζn + λ1+αe2λmax1≤i≤n aiE|Yi|1+α

}
≤ 2g(n) exp{−λA1nζn + λ1+αn21+αC̃h−(1+α)

n e2λmax1≤i≤n ai}.
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Let p > 1. It is well known that

uv = inf
b>0

{
1

pb
up +

1

q
bq/pvq

}
foru > 0, v > 0 and 1/p+ 1/q = 1.

This yields the inequality

λ1+αne2λmax1≤i≤n ai2α+1C̃h−(1+α)
n ≤ 1

pb
λp(1+α)np2p(α+1)C̃ph−p(1+α)

n +
1

q
bq/pe2qλmax1≤i≤n ai . (3.19)

We can thus conclude that for every p > 1 and 0 < α ≤ 1, there for all λ > 0, such that

P(|f̃n(x)− Ef̃n(x)| ≥ A1ζn) ≤ 2g(n) exp{−λA1nζn +
1

pb
λp(1+α)np2p(1+α)C̃ph−p(1+α)

n }.

× exp{1
q
bq/pe2qλmax1≤i≤n ai}

= 2g(n) exp{1
q
bq/pe2qλmax1≤i≤n ai} exp(Ψ(λ, n)).

(3.20)

The equation ∂Ψ(λ,n)
∂λ = 0 has the unique solution

λ =

(
A1ζnbp

2p(1+α)(1 + α)np−1C̃ph
−p(1+α)
n

) 1
p(1+α)−1

(3.21)

whichminimizesΦ(λ, n). Then from (3.20),(3.21) and noting 2qλmax1≤i≤n ai ≤ 1, we obtain upper
bound for the tail probability as

P(|
n∑

j=1

Yi| ≥ A1nζn) ≤ 2g(n) exp{1
q
bq/pe} exp

−

(
A1ζnbp

2p(1+α)(1 + α)np−1C̃ph
−p(1+α)
n

) 1
p(1+α)−1

A1nζn(1−
1

p(1 + α)
)

}
≤ 2g(n) exp{1

q
bq/pe} exp{−M̃n

pα
p(1+α)−1 ζ

p(1+α)
p(1+α)−1
n h

p(1+α)
p(1+α)−1
n (1− 1

p(1 + α)
)}

≤ 2M1 exp{1
q
bq/pe}nδ exp{−M̃(1− 1

p(1 + α)
) logn}

= 2M1 exp{1
q
bq/pe}nδ−M̃(1− 1

p(1+α)
)
.

Taking M̃ = (1− 1
p(1+α))A1

p(1+α)
p(1+α)−1

bp

C̃p2p(1+α)
large enough such that δ− M̃(1− 1

p(1+α)) < −1, then
we have that

n∑
j=1

P(|f̃n(x)− Ef̃n(x)| ≥ A1ζn) < +∞, (3.22)

that is

|f̃n(x)− Ef̃n(x)| = O

 log
p(1+α)−1
p(1+α) n

n
α

(1+α)hn

 , completely. (3.23)

By lemma(3.2.6) that
h−2
n |Ef̃n(x)− f(x)| ≤ C < +∞.

Which implies that

|Ef̃n(x)− f(x)| = O

 log
p(1+α)−1
p(1+α) n

n
α

(1+α)hn

 . (3.24)
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Note that

|f̃n(x)− f(x)| = |f̃n(x)− Ef̃n(x) + Ef̃n(x)− f(x)|

≤ |f̃n(x)− Ef̃n(x)|+ |Ef̃n(x)− f(x)|.

Therefore, the desired result ((3.18)) follows immediately by (3.23)-(3.24). The proof is completed.

Theoreme 3.3.2 Suppose that (H1) − (H2) hold. βn =

(
log

p(1+α)−1
p(1+α) (ng(n))

n
α

(1+α) hn

)
→ 0. Let {Xn;n ≥ 1}

be a sequence of strictly stationary of WOD random variables. Suppose that the kernel K(.) is a
bounded monotone density function and the bandwidth satisfies that hn = O(n

− α
3(1+α) log

p(1+α)−1
3p(1+α) n)

for some p > 1 and 0 < α ≤ 1. Then for any x ∈ C2(f).

|f̃n(x)− f(x)| = O (βn) , completely. (3.25)

Proof. In view of the proof of Theorem (3.3.1), we only need to show that

|f̃n(x)− Ef̃n(x)| = O

 log
p(1+α)−1
p(1+α) (ng(n))

n
α

(1+α)hn

 , completely. (3.26)

and

|Ef̃n(x)− f(x)| = O

 log
p(1+α)−1
p(1+α) (ng(n))

n
α

(1+α)hn

 . (3.27)

Noting that g(n) ≥ 1 then (3.27) follows from (3.24) immediately and thus we only need to prove

(3.26). Similar to the proof of (3.23), set βn =

(
log

p(1+α)−1
p(1+α) (ng(n))

n
α

(1+α) hn

)
. Applying Lemma(3.2.4) with

λ =

(
A2nβnh

p(1+α)
n

C̃2npp(1+α)

) 1
p(1+α)−1

to obtain that for all n large enough,

P(|f̃n(x)− Ef̃n(x)| ≥ A2βn) ≤ P(|
n∑

j=1

Yi| ≥ A2nβn)

≤ 2g(n) exp
{
−λA2nβn + λ1+α

n∑
i=1

e2λaiE|Yi|1+α

}
≤ 2g(n) exp

{
−λA2nβn + λ1+αe2λmax1≤i≤n aiE|Yi|1+α

}
≤ 2g(n) exp{−λA2nβn + λ1+αn21+αC̃h−(1+α)

n e2λmax1≤i≤n ai}.

Let p > 1. It is well known that

uv = inf
b>0

{
1

pb
up +

1

q
bq/pvq

}
foru > 0, v > 0 and 1/p+ 1/q = 1.

This yields the inequality

λ1+αne2λmax1≤i≤n ai2α+1C̃h−(1+α)
n ≤ 1

pb
λp(1+α)np2p(α+1)C̃ph−p(1+α)

n +
1

q
bq/pe2qλmax1≤i≤n ai . (3.28)
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We can thus conclude that for every p > 1 and 0 < α ≤ 1, there for all λ > 0, such that

P(|f̃n(x)− Ef̃n(x)| ≥ A2βn) ≤ 2g(n) exp{−λA2nβn +
1

pb
λp(1+α)np2p(1+α)C̃ph−p(1+α)

n }.

× exp{1
q
bq/pe2qλmax1≤i≤n ai}

= 2g(n) exp{1
q
bq/pe2qλmax1≤i≤n ai} exp(Ψ̃(λ, n)).

(3.29)

The equation ∂Ψ̃(λ,n)
∂λ = 0 has the unique solution

λ =

(
A2βnbp

2p(1+α)(1 + α)np−1C̃ph
−p(1+α)
n

) 1
p(1+α)−1

(3.30)

whichminimizes Ψ̃(λ, n). Then from (3.29),(3.30) and noting 2qλmax1≤i≤n ai ≤ 1, we obtain upper
bound for the tail probability as

P(|
n∑

j=1

Yi| ≥ A2nβn) ≤ 2g(n) exp{1
q
bq/pe} exp

−

(
A2βnbp

2p(1+α)(1 + α)np−1C̃ph
−p(1+α)
n

) 1
p(1+α)−1

A2nβn(1−
1

p(1 + α)
)

}
≤ 2g(n) exp{1

q
bq/pe} exp{−M̃1n

pα
p(1+α)−1β

p(1+α)
p(1+α)−1
n h

p(1+α)
p(1+α)−1
n (1− 1

p(1 + α)
)}

≤ 2

n
(ng(n)) exp{1

q
bq/pe} exp{−M̃1(1−

1

p(1 + α)
) log(ng(n))}

= 2(ng(n)) exp{1
q
bq/pe}(ng(n))−M̃1(1− 1

p(1+α)
)

= 2 exp{1
q
bq/pe}(ng(n))1−M̃1(1− 1

p(1+α)
)
.

Taking M̃1 = (1− 1
p(1+α))A2

p(1+α)
p(1+α)−1

bp

C̃p2p(1+α)
large enough such that 1− M̃(1− 1

p(1+α)) < −1, then
we have that

n∑
j=1

P(|f̃n(x)− Ef̃n(x)| ≥ A2βn) < +∞, (3.31)

which is equivalent to (3.26). The proof is completed.
Furthermore, by relaxing the restriction on the bandwidth hn, we have the following result.

Theoreme 3.3.3 Suppose that (H1) − (H2) hold. Let {Xn;n ≥ 1} be a sequence of strictly
stationary of WOD random variables. Suppose that the kernel K(.) is a bounded monotone

density function and
(

log
p(1+α)−1
p(1+α) (ng(n))

n
α

(1+α) hn

)
→ 0. Then for any x ∈ C2(f),

f̃n(x)− f(x) → 0, completely. (3.32)

Proof. In view of the proof theorem3.3.2, by ((3.26)) and
(

log
p(1+α)−1
p(1+α) (ng(n))

n
α

(1+α) hn

)
→ 0 we have that

f̃n(x)− Ef̃n(x) → 0, completely.
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Therefore, we only need to show that

|Ef̃n(x)− f(x)| → 0 (3.33)

without the condition hn = O(n
− α

3(1+α) log
p(1+α)−1
3p(1+α) n) in theorem(3.3.2).Actually, by lemma(3.2.4)

we have that
lim

n→+∞
|Ef̃n(x)− f(x)| ≤ C lim

n→+∞
h2n = 0.

Consequently,(3.33) is proved and thus the proof of the theorem is completed.
Since the proofs of Theorems (3.3.4)-(4.4.1) are similar, we only present the proof of Theorem
(3.3.2) as follows.

As an application of the results above, we obtain the complete convergence and the complete
convergence for the hazard function estimator H̃n(x) as follows.

Theoreme 3.3.4 Suppose that (H1) − (H2) hold. Let {Xn;n ≥ 1} be a sequence of strictly
stationary of WOD random variables with g(n) = O(nδ) for some δ ≥ 0. Suppose that the kernel
K(.) is a bounded monotone density function and the bandwidth satisfies that
hn = O(n

− α
3(1+α) log

p(1+α)−1
3p(1+α) n) for some p > 1 and 0 < α ≤ 1. If there exists a point x0 such that

F (x0) < 1, then for any x ∈ C2(f) and x ≤ x0,

|H̃n(x)−H(x)| = O(n
− α

(1+α)h−1
n log

p(1+α)−1
p(1+α) n), completely. (3.34)

Proof. The proof of this theorem is based on the following decomposition:

|H̃n(x)−H(x)| ≤

∣∣∣∣∣ f̃n(x)

1− Fn(x)
− f(x)

1− F (x)

∣∣∣∣∣
≤

∣∣∣∣∣(1− Fn(x))(f̃n(x)− f(x)) + (Fn(x)− F (x))f(x)

(1− Fn(x))(1− F (x))

∣∣∣∣∣
≤ 1

1− Fn(x)
|f̃n(x)− f(x)|+ f(x)

(1− Fn(x))(1− F (x))
|Fn(x)− F (x)| (3.35)

From 0 ≤ F (x) ≤ F (x0) < 1 for all x ≤ x0, supx f(x) ≤ M < +∞, applying theorem 3.3.1 and

taking ξ̃n = log
p(1+α)−1
p(1+α) n

n
α

(1+α)
in lemma(3.2.7), we can see that

|f̃n(x)− f(x)| = O(n
− α

(1+α)h−1
n log

p(1+α)−1
p(1+α) n), completely. (3.36)

and
sup
x≤x0

|Fn(x)− F (x)| = O(n
− α

(1+α) log
p(1+α)−1
p(1+α) n), completely. (3.37)

On the other hand, from ((3.37)) one has that x ≤ x0 and all n large enough,

1− Fn(x) ≥ 1− F (x) ≥ 1− F (x0)

2
> 0. (3.38)

consequently, the desired result (3.34) follows from (3.35)-(3.38). The proof is completed. Since
the proof of theorems (3.3.4)-(4.4.1) are similar, we only present the proof of theorem (3.3.4) as
follows.
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Theoreme 3.3.5 Suppose that (H1) − (H2) hold. βn =

(
log

p(1+α)−1
p(1+α) (ng(n))

n
α

(1+α) hn

)
→ 0. Let {Xn;n ≥ 1}

be a sequence of strictly stationary of WOD random variables. Suppose that the kernel K(.) is a
bounded monotone density function and the bandwidth satisfies that hn = O(n

− α
3(1+α) log

p(1+α)−1
3p(1+α) n)

for some p > 1 and 0 < α ≤ 1. Then for any x ∈ C2(f) and x ≤ x0,

|H̃n(x)−H(x)| = O(βn), completely. (3.39)

Theoreme 3.3.6 Suppose that (H1) − (H2) hold. Let {Xn;n ≥ 1} be a sequence of strictly
stationary of WOD random variables. Suppose that the kernel K(.) is a bounded monotone

density function and log
p(1+α)−1
p(1+α) (ng(n))

n
α

(1+α) hn

→ 0. If there exists a point x0 such that F (x0) < 1, then for
any x ∈ C2(f) and x ≤ x0,

H̃n(x)−H(x) → 0, completely. (3.40)

Conclusion.

Our work consists in establishing some new exponential inequalities for the distribution of sums of
WOD random variables. Using these inequalities, we proved the complete convergence for kernel
estimators of density and hazard functions, under some suitable conditions.

60



Bibliography

[1] Chen, X. and Liu, F. (2017). Strong laws of large numbers for negatively dependent random
variables under sublinear expectations, Communications in Statistics - Theory and Methods
46 (24) :12387-12400.

[2] He, W., Cheng D. Y. and Wang, Y. B. (2013) Asymptotic lower bounds of precise large
deviations with nonnegative and dependent random variables. Stat Probab Lett 83: 331-
338.

[3] Hsu, P. L. and Robbins, H. (1947). Complete convergence and the law of large numbers.
Proceedings of the National Academy of Sciences of the United States of America 33: 25-
31.

[4] Li, Y. and Yang, S. (2005). Strong convergence rate of recursive probability density
estimator for NA sequences, Chinese J. Engineering Mathematics, 22(4): 659-665.

[5] Parzen,E. (1962). On estimation of a probability density function and mode, Ann. Math.
Statist. 33: 1065-1076.

[6] Rosenblatt, M. (1956). Remarks on some nonparametric estimates of density function, Ann.
Math. Statist. 27: 832-837.

[7] Wang, K. Y., Wang, Y. B. and Gao, Q. W. (2013). Uniform asymptotics for the finite-time
ruin probability of a new dependent risk model with a constant interest rate. Methodology
and Computing in Applied Probability 15: 109-124.

[8] Watson, G. S. and Leadbetter, M. R. (1964a). Hazard analysis, I. Biometrika 51: 175-184.

[9] Watson, G. S. and Leadbetter, M. R. (1964b). Hazard analysis, II.Sankhya A 26: 110-116.

61



Chapter 4

New exponential probability inequality and
complete convergence for conditional LNQD
random variables sequence, application to

AR(1)model general

Summary

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Some lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Main Results and Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Applications to the results to AR(1) model . . . . . . . . . . . . . . . . . 71

4.4.1 The AR(1) model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



Chapter 4
New exponential probability inequality and complete convergence for conditional LNQD random

variables sequence, application to AR(1)model general

abstract: The exponential probability inequalities have been important tools in probability
and statistics. In this paper, We prove a new tail probability inequality for the distributions of
sums of conditionally linearly negative quadrant dependent (F-LNQD, in short) random variables,
and obtain a result dealing with conditionally complete convergence of first-order autoregressive
processes with identically distributed (F-LNQD) innovations.

4.1 Introduction

The exponential inequality plays an important role in various proofs of limit theorems. In
particular, it provides a measure of the complete convergence for partial sums.
Firstly, we will recall the definitions of conditionally negative quadrant dependent, conditionally
negatively associated, and conditionally linearly negative quadrant dependent sequence.
Let (ω,A,P) be a probability space, and all random variables in this paper are defined on it unless
otherwise mentioned. Let F be a sub-algebra of A, two random variables ζ1 and ζ2 are said to be
conditionally negative quadrant dependent given F(F-NQD, in short) if, for all ϵ1, ϵ2 ∈ R

PF (ζ1 ≤ ϵ1, ζ2 ≤ ϵ2) ≤ PF (ζ1 ≤ ϵ1)PF (ζ2 ≤ ϵ2). (4.1)

One of the many possible multivariate generalizations of conditionally negative quadrant
dependence is conditionally negatively association introduced by Yuan et al.[6] .
A finite collection of random variables ζ1, ζ2, ..., ζn is said to be conditionally negatively
associated (F-NA, in short) if for every pair of disjoint subsets A,B of {1, 2, ..., n}

CovF (f(ζi : i ∈ A), g(ζj : j ∈ B)) ≤ 0,

whenever f and g are coordinatewise nondecreasing such that this covariance exists. An infinite
sequence {ζn, n ≥ 1} is F-NA if every finite subcollection is F-NA.
We now propose another multivariate generalization of conditionally negative quadrant
dependence called conditionally linearly negative quadrant dependence, which is weaker than
F-NA property.

Definition 4.1.1 A finite sequence of random variables {ζn, n ≥ 1} is said to be conditionally
linearly negative quadrant dependent given (F-LNQD, in short) if for any disjoint subsets A,BZ
and positive r′js, ∑

k∈A
rkζk and

∑
j∈B

rjζj are F −NQD.

As mentioned earlier, it can be shown that the concepts of linearly negative quadrant dependent
and conditional linearly negative quadrant dependent are not equivalent. See, for example, Yuan
and Xie [7], where various of counterexamples are given.

A concrete example where conditional limit theorems are useful is the study of statistical
inference for non-ergodic models as discussed in Bassawa and Prakasa Rao [1] and Basawa and
Scott [2]. For instance, if one wants to estimate the mean off-spring θ for a Galton-Watson
branching process, the asymptotic properties of the maximum likelihood estimator depend on the
set of non-extinction.

As it was pointed out earlier, the conditional LNQDproperty does not imply the LNQDproperty
and the opposite implication is also not true. Hence one does have to derive limit theorems under
conditioning if there is a need for such results even through the results and proofs of such results
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may be analogous to those under the non-conditioning setup. This one of the reasons for developing
results for sequences of F-LNQD random variables in this paper.
As mentioned earlier, large numbers of results for LNQD random variables have been achieved.
However, nothing is variable for conditional LNQD random variables. Yuan and Wu [9] extended
many results from negative association to asymptotically negative association, Yuan and Yang
[4] extended many results from association to conditional association, Yuan et al [6] extended
many results from negative association to conditional negative association, and these motivate our
original interest in conditional LNQD.

On the other hand, the concept of complet convergence of a sequence of random variables was
introduced by [4]. Note that complete convergence implies almost sure convergence in view of the
Borel-Cantelli lemma. Now we extend this concept a conditionally converge completely given F

to a constant a if
∞∑
i=1

P(|Xi − a| > ε/F) <∞ for every ε > 0, and we whrite Xn → a conditionally

completely given F .
The main purpose of this paper is to establish a new probability inequality and conditional

complete convergence for the F − LNQD random variables and to extend and improve the
results of Wang et al [5].

Throughout the paper, let Sn =
n∑

i=1

Xi for a sequence {Xn, n ≥ 1} of random variables defined on

a probability space (Ω,F ,P). Let F is a sub-σ-algebra of A, {Xn, n ≥ 1} will be called

F-centered if EFXn = 0 for every n ≥ 1. Denote Bn =
n∑

i=1

EF |Xi|2 for each 1 ≤ i ≤ n.

4.2 Some lemmas

Lemma 4.2.1 Let random variables X and Y be F-NQD. Then
(i) EF (XY ) ≤ EF (X)EF (Y );
(ii) PF (X > x, Y > y) ≤ PF (X > x)PF (Y > y);
(iii) If f and g are both nondecreasing (or both nonincreasing) functions, then f(X) and g(Y ) are
F-NQD.

Corollary 4.2.1 Let {Xn, n ≥ 1} be a sequence of F-LNQD random variables and t > 0, then for
each n ≥ 1,

EF

[
n∑

i=1

exp(tXi)

]
≤

n∏
i=1

EF (exp(tXi)) (4.2)

Proof. For t > 0, it is easy to see that tXi and t
n∑

j=i+1

Xj are F-NQD by the definition of F-LNQD,

which implies that exp(tXi) and exp(t
n∑

j=i+1

Xj) are also F-NQD for i = 1, 2, ..., n − 1 by Lemma
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(4.2.1)(iii). It follows from Lemma (4.2.1)(i) and induction that

EF

[
n∑

i=1

exp(tXi)

]
= EF

[
exp(tX1) exp (

n∑
i=2

tXi)

]

≤ EF [exp(tX1)]EF

[
exp (

n∑
i=2

tXi)

]

= EF [exp(tX1)]EF

[
exp(tX2) exp (

n∑
i=3

tXi)

]

≤ EF [exp(tX1)]EF [exp(tX2)]EF

[
exp (

n∑
i=3

tXi)

]

≤
n∏

i=1

EF (exp(tXi)).

This completes the proof of the lemma.

Lemma 4.2.2 [3] For any x ∈ R, we have

exp(x) ≤ 1 + x+
|x|
2

ln(1 + |x|) exp(2|x|).

Lemma 4.2.3 Let {Xn, n ≥ 1} be a sequence of F-LNQD random variables with EF (Xn) = 0 for
each n ≥ 1. If there exists a sequence of positiv e numbers {cn, n ≥ 1} such that |Xi| ≤ ci for each
i ≥ 1, then for any t > 0,

EF exp
{
t

n∑
i=1

Xi

}
≤ exp

{
t2

2

n∑
i=1

e2tciEF |Xi|2
}
. (4.3)

Proof. By lemma (4.2.2), for all x ∈ R , exp(x) ≤ 1 + x + |x|
2 ln(1 + |x|) exp(2|x|). Thus, by

EF (Xi) = 0 and |Xi| ≤ ci for each i ≥ 1, we have

EF exp(tXi) ≤ EF
{
1 + tXi +

t

2
|Xi| ln(1 + |tXi|) exp(2|tXi|)

}
= 1 + tEF (Xi) +

t

2
EF {|Xi| ln(1 + |tXi|) exp(2|tXi|)}

= 1 +
t

2
EF {|Xi| ln(1 + |tXi|) exp(2|tXi|)}

≤ 1 +
t

2
EF {|Xi| ln(1 + |tXi|) exp(2tci)}

= 1 +
t

2
exp(2tci)EF {t|Xi|2

}
= 1 +

t2

2
exp(2tci)EF {t|Xi|2

}
≤ exp

{
t2

2
exp(2tci)EF {|Xi|2

}}
( using 1 + y ≤ exp(y) for all y ∈ R)

(4.4)

for any t > 0. By Lemma (4.2.1) and (4.4), we have can see that

EF exp
{
t

n∑
i=1

Xi

}
≤

n∏
i=1

EF exp {tXi} (4.5)

≤ exp
{
t2

2

n∑
i=1

e2tciEF |Xi|2
}
. (4.6)

65



Chapter 4
New exponential probability inequality and complete convergence for conditional LNQD random

variables sequence, application to AR(1)model general

The lemma is thus proved.

Lemma 4.2.4 Let {Xn, n ≥ 1} be a sequence of F-LNQD random variables with EF (Xn) = 0 for
each n ≥ 1. If there exists a sequence of positive numbers {cn, n ≥ 1} such that |Xi| ≤ ci for each
i ≥ 1, then for any t > 0 and ε > 0

PF (|
n∑

i=1

Xi| ≥ ε) ≤ exp
{
−tε+ t2

2

n∑
i=1

e2tciEF |Xi|2
}
. (4.7)

Proof. By Markov's inequality and lemma (4.2.3), we can see that

PF (
n∑

i=1

Xi ≥ ε) ≤ exp(−tε)EF exp
{
t

n∑
i=1

Xi

}

≤ exp(tε)
n∏

i=1

EF exp {tXi}

≤ exp
{
−tε+ t2

2

n∑
i=1

e2tciEF |Xi|2
}
. (4.8)

The desired result follos by remplacingXi by−Xi in (4.8). This completes the proof of the lemma.

4.3 Main Results and Proofs

Theoreme 4.3.1 Let{Xn, n ≥ 1} be a sequence of F-LNQD random variables with EF (Xi) = 0.

If there exists a positive numbers c such that |Xi| ≤ ci, i ≥ 1, where Bn =
n∑

i=1

EF |Xi|2, then for any

ε > 0 and n ≥ 1, then

PF (Sn/Bn ≥ ε) ≤ exp
{
1

q
bq/pe

}
exp

{
−
(
ε2p−1bp

Bp−1
n

) 1
2p−1

εBn

(
1− 1

p− 1

)}
(4.9)

Proof.By Markov's inequality, we have that for any t > 0,

PF (Sn/Bn ≥ ε) = PF (etSn ≥ etεBn),

≤ e−tεBnEF

(
n∏

i=1

etXi

)
,

≤ exp
{
−tεBn +

t2

2
e2tmax1≤i≤n ciBn

}
.

(4.10)

Let p > 1. It is well known that

uv = inf
b>0

{
1

pb
up +

1

q
bq/pvq

}
foru > 0, v > 0 and 1/p+ 1/q = 1.

This yields the inequality

t2

2
e2tmax1≤i≤n ciBn ≤ 1

pb

t2p

2p
Bp

n +
1

q
bq/pe2tq max1≤i≤n ci . (4.11)
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We can thus conclude that for every p > 1, there for all t > 0, such that

PF (Sn/Bn ≥ ε) ≤ exp
{
−tεBn +

1

pb

t2p

2p
Bp

n

}
× exp

{
1

q
bq/pe2tq max1≤i≤n ci

}
= exp

{
1

q
bq/pe2tq max1≤i≤n ci

}
exp(Φ(t, n)).

(4.12)

The equation ∂Φ(t,n)
∂t = 0 has the unique solution

t =

(
ε2p−1bp

Bp−1
n

) 1
2p−1

(4.13)

which minimizes Φ(t, n). Then from (4.12),(4.13) and taking 2tqmax1≤i≤n ci ≤ 1 we obtain
(4.9).

Theoreme 4.3.2 Let{Xn, n ≥ 1} be a sequence of F-LNQD random variables with EF (Xi) = 0.
If there exists a positive numbers c such that |Xi| ≤ ci, i ≥ 1, then for any ε > 0 and n ≥ 1,

PF (|Sn| ≥ ε) ≤ 2 exp
{
1

q
bq/pe

}
exp

{
−
(
ε2p−1bp

Bp−1
n

) 1
2p−1

ε

(
1− 1

p− 1

)}
(4.14)

Proof.From conditions EF (Xi) = 0 and |Xi| < ci for each i ≥ 1. By Markov's inequality and
Lemma (4.2.4), Corollary (4.2.1) with the fact that 1 + x ≤ ex, then

PF (Sn ≥ ε) = e−tεEF (etSn),

≤ e−tε
n∏

i=1

exp
(
t2

2
e2tciEF |Xi|2

)
,

≤ exp
{
−tε+ t2

2
e2tmax1≤i≤n ciBn

}
.

(4.15)

Let p > 1. It is well known that

uv = inf
b>0

{
1

pb
up +

1

q
bq/pvq

}
foru > 0, v > 0 and 1/p+ 1/q = 1.

This yields the inequality

t2

2
e2tmax1≤i≤n ciBn ≤ 1

pb

t2p

2p
Bp

n +
1

q
bq/pe2tq max1≤i≤n ci . (4.16)

We can thus conclude that for every p > 1, there for all t > 0, such that

PF (|Sn| ≥ ε) ≤ 2 exp
{
−tε+ 1

pb

t2p

2p
Bp

n

}
× exp

{
1

q
bq/pe2tq max1≤i≤n ci

}
= 2 exp

{
1

q
bq/pe2tq max1≤i≤n ci

}
exp(Φ(t, n)).

(4.17)
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The equation ∂Φ(t,n)
∂t = 0 has the unique solution

t =

(
ε2p−1bp

Bp
n

) 1
2p−1

(4.18)

which minimizes Φ(t, n). Then from (4.17),(4.18)) and taking 2tqmax1≤i≤n ci ≤ 1 we obtain
upper bound for the tail probability as

PF (|Sn| ≥ ε) ≤ 2 exp{1
q
bq/pe} exp

{
−
(
ε2p−1bp

Bp
n

) 1
2p−1

ε

(
1− 1

p− 1

)}
(4.19)

Since {−Xn, n ≥ 1} is also a sequense of F-LNQD random variables it follows from (4.19) that

PF (Sn ≤ −ε) = PF (−Sn ≥ ε) ≤ exp
{
1

q
bq/pe

}
× exp

{
−
(
ε2p−1bp

Bp
n

) 1
2p−1

ε

(
1− 1

p− 1

)}
(4.20)

From (4.19) and (4.20) we obtain

PF (|Sn| ≥ ε) = PF (Sn ≥ −ε) + PF (Sn ≤ ε) ≤ 2 exp
{
1

q
bq/pe

}
× exp

{
−
(
ε2p−1bp

Bp
n

) 1
2p−1

ε

(
1− 1

p− 1

)}
(4.21)

Theoreme 4.3.3 Let{Xn, n ≥ 1} be a sequence of F-LNQD random variables with mean zero and
finite variances. If there exists a positive numbers c such that |Xi| ≤ ci, i ≥ 1, where cn, n ≥ 1 is a
sequence of positive numbers. Then for any ε > 0 and n ≥ 1,

PF (|Sn − EFSn| ≥ ε) ≤ 2 exp
{
1

q
bq/pe

}
exp

{
−
(
ε2p−1bp

Bp−1
n

) 1
2p−1

εBn

(
1− 1

p− 1

)}
(4.22)

Proof.By Markov's inequality and Lemma (4.2.3), we have that for any t > 0,

PF (Sn − EFSn ≥ ε) ≤ e−tεEF [exp(t
n∑

i=1

(Xi − EFXi))],

≤ e−tεEF
n∏

i=1

[
et(Xi−EFXi)

]
,

≤ exp
{
−tε+ t2

2
e2tmax1≤i≤n ciBn

}
.

(4.23)

Let p > 1. It is well known that

uv = inf
b>0

{
1

pb
up +

1

q
bq/pvq

}
foru > 0, v > 0 and 1/p+ 1/q = 1.
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This yields the inequality

t2

2
e2tmax1≤i≤n ciBn ≤ 1

pb

t2p

2p
Bp

n +
1

q
bq/pe2tq max1≤i≤n ci . (4.24)

We can thus conclude that for every p > 1, there for all t > 0, such that

PF (|Sn − EFSn| ≥ ε) ≤ 2 exp
{
−tε+ 1

pb

t2p

2p
Bp

n

}
× exp

{
1

q
bq/pe2tq max1≤i≤n ci

}
= 2 exp

{
1

q
bq/pe2tq max1≤i≤n ci

}
exp(Φ(t, n)).

(4.25)

The equation ∂Φ(t,n)
∂t = 0 has the unique solution

By take t =
(
ε2p−1bp

Bp
n

) 1
2p−1 . Hence it follows from (4.23) that

PF (Sn − EFSn ≥ ε) ≤ exp
{
1

q
bq/pe

}
exp

{
−
(
ϵ2p−1bp

Bp−1
n

) 1
2p−1

εBn

(
1− 1

p− 1

)}
(4.26)

Let −Sn = Tn =
n∑

i=1

(−Xn). Since {−Xn, n ≥ 1} is also a sequence of F-LNQD random variables

we also have

PF (Sn − EFSn ≤ −ε) = PF (Tn − EFTn ≥ ε) ≤ exp
{
1

q
bq/pe

}
× exp

{
−
(
ε2p−1bp

Bp−1
n

) 1
2p−1

εBn

(
1− 1

p− 1

)}
(4.27)

by Combining (4.26) and(4.27) we get (4.22)

Corollary 4.3.1 Let{Xn, n ≥ 1} be a sequence of F-LNQD random variables. Assume that there
exists a positive integer n0 such that |Xi| ≤ cn, for each 1 ≤ i ≤ n, n ≥ n0, where {cn, n ≥ 1} is a
sequence of positive numbers. Then for any ε > 0

PF (|Sn − EFSn| ≥ nε) ≤ 2 exp
{
1

q
bq/pe

}
exp

{
−
(
nε2p−1bp

Bp
n

) 1
2p−1

nε

(
1− 1

p− 1

)}
(4.28)

Theoreme 4.3.4 Let{Xn, n ≥ 1} be a sequence of F-LNQD random variables with EF (Xi) = 0.
If there exists a positive numbers c such that |Xi| ≤ ci, i ≥ 1. Then for any r > 0

n−rSn → 0 completely, n→ ∞. (4.29)

Proof.Let B =

∞∑
n=1

EF (Xn)
2 ≤ ∞. For any ε > 0, it follows from Theoreme 4.3.2 we have
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∞∑
n=1

PF (|Sn| ≥ nrε) ≤ 2
∞∑
n=1

exp
{
1

q
bq/pe

}
exp

{
−
(
nrε2p−1bp

Bp
n

) 1
2p−1

εnr
(
1− 1

p− 1

)}

≤ 2

∞∑
n=1

exp
{
1

q
bq/pe

}
exp

{
−
(
ε2p−1bp

Bp
n

) 1
2p−1

ε

(
1− 1

p− 1

)}n
2rp
2p−1

≤ 2 exp
{
1

q
bq/pe

} ∞∑
n=1

[exp(−c)]n
2rp
2p−1

.

(4.30)

where C is positive number not depending on n. (by the inequality e−y ≤ ( a
ey )

a), choosing a = 2p−1
rp ,

since a > 0, x > 0. Then the right-hand side of (4.30) become

∞∑
n=1

PF (|Sn| ≥ nrε) ≤ 2 exp{1
q
bq/pe}

∞∑
n=1

( a
ec

)a( 1

n

)(
2rp
2p−1

)a

≤ 2 exp
{
1

q
bq/pe

}
aa

(ec)a

∞∑
n=1

1

n
2rpa
2p−1

≤ 2 exp
{
1

q
bq/pe

}
aa

(ec)a

∞∑
n=1

1

n2
,

= 2 exp
{
1

q
bq/pe

}
aa

(ec)a
π2

6
,

< ∞

(4.31)

Theoreme 4.3.5 Let{Xn, n ≥ 1} be a sequence of F-LNQD random variables. Assume that there
exists a positive integer n0 such that |Xi| ≤ cn, for each 1 ≤ i ≤ n, n ≥ n0, where {cn, n ≥ 1} is a
sequence of positive numbers.

∞∑
n=1

PF
(
1

n
|Sn − EFSn| ≥ εn

)
<∞. (4.32)

Theoreme 4.3.6 Let{Xn, n ≥ 1} be a sequence of F-LNQD random variables with EF (Xi) = 0.
If there exists a positive numbers c such that |Xi| ≤ ci, i ≥ 1. Then for any r > 0

n−r(Sn − EFSn) → 0 completely, n→ ∞. (4.33)

Proof. For any ε > 0, it follows from Corollary (4.3.1) that

∞∑
n=1

PF (|Sn − EFSn| ≥ nrε) ≤ 2
∞∑
n=1

exp
{
1

q
bq/pe

}
exp

{
−
(
nrε2p−1bp

Bp
n

) 1
2p−1

εnr
(
1− 1

p− 1

)}

≤ 2

∞∑
n=1

[
exp

{
1

q
bq/pe

}]

×

[
exp

{
−
(
ε2p−1bp

Bp
n

) 1
2p−1

ε

(
1− 1

p− 1

)}]n 2rp
2p−1

(4.34)
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After this result we get (4.33).

4.4 Applications to the results to AR(1) model

The basic object of this section is applying the results to first-order autoregressive
processes(AR(1)).

4.4.1 The AR(1) model

We consider an autoregressive time series of first order AR(1) defined by

Xn+1 = θXn + ζn+1, n = 1, 2, ..., (4.35)

where {ζn, n ≥ 0} is a sequence of identically distributed F-LNQD random variables with ζ0 =

X0 = 0, 0 < EFζ4k < ∞, k = 1, 2, ... and where θ is a parameter with |θ| < 1. Here, we can rewrite
Xn+1 in (4.35) as follows:

Xn+1 = θn+1X0 + θnζ1 + θn−1ζ2 + ...+ ζn+1. (4.36)

The coefficient θ is fitted least squares, giving the estimator

θ̂n =

n∑
j=1

XjXj−1

n∑
j=1

X2
j−1

(4.37)

It immediately follows from (4.35) and (4.37) that

θ̂n − θ =

n∑
j=1

ζjXj−1

n∑
j=1

X2
j−1

(4.38)

Theoreme 4.4.1 Let the conditions of Theorem 4.3.3 be satisfied then for any (EFζ21 )
1/2

ρ2
< ξ

positive, we have

PF (
√
n|θ̂n − θ| > ρ) ≤ 2 exp

{
−
(
(ρ2ξ2 − EFζ21 )n2

p−1bp

Bp−1
n

) 1
2p−1

(ρ2ξ2 − EFζ21 )nBn

(
1− 1

p− 1

)}

× exp
{
1

q
bq/pe

}
+ exp

{
−1

2
n
(K1 − nξ2)2

K2

}
(4.39)

where K1 = EF (X2
i ) <∞,K2 = EF (X4

i ) <∞.

Proof. Firstly, we notice that :

θ̂n − θ =

n∑
j=1

ζjXj−1

n∑
j=1

X2
j−1

.
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It follows that

PF (
√
n|θ̂n − θ| > ρ) = PF (

∣∣∣∣∣∣∣∣∣∣∣
1/
√
n

n∑
j=1

ζjXj−1

1/n

n∑
j=1

X2
j−1

∣∣∣∣∣∣∣∣∣∣∣
> ρ)

By virtue of the probability properties and Hölder's inequality, we have for any ξ positive

PF (
√
n|θ̂n − θ| > ρ) ≤ PF

1/n
n∑

j=1

ζ2j ≥ ρ2ξ2

+ PF

1/n2
n∑

j=1

X2
j−1 ≤ ρ2


= PF

 n∑
j=1

ζ2j ≥ (ρ2ξ2)n

+ PF

 n∑
j=1

X2
j−1 ≤ n2ξ2


= I1n + I2n.

Next we estimate I1n and I2n.

I1n = PF

 n∑
j=1

ζ2j ≥ (ρ2ξ2)n


= PF

 n∑
j=1

(ζ2j − EFζ2j + EFζ2j ) ≥ (ρ2ξ2)n


= PF

 n∑
j=1

(ζ2j − EFζ2j ) ≥ (ρ2ξ2 − EFζ21 )n


≤ PF

∣∣∣ n∑
j=1

(ζ2j − EFζ2j )
∣∣∣ ≥ (ρ2ξ2 − EFζ21 )n


(4.40)

By using the Theorem 4.3.3 the right hand side of (4.40) become

I1n = PF

 n∑
j=1

ζ2j ≥ (ρ2ξ2)n


≤ 2 exp

{
−
(
(ρ2ξ2 − EFζ21 )n2

p−1bp

Bp−1
n

) 1
2p−1

(ρ2ξ2 − EFζ21 )nBn

(
1− 1

p− 1

)}

× exp
{
1

q
bq/pe

}
(4.41)

We will bound now, the second probability of the right-hand side of the expression
I2n.According to the Markov's inequality, it follows for any t positive
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I2n = PF

(
1

n2

n∑
i=1

X2
i−1 ≤ ξ2

)

= PF

(
n2ξ2 −

n∑
i=1

X2
i−1 ≥ 0

)
= EF

(
I{nϵ2−∑n

i=1 X
2
i−1≥0}

)
≤ EF

(
exp t

(
n2ξ2 −

n∑
i=1

X2
i−1

))
(t > 0)

≤ etn
2ξ2EF

(
exp−t

n∑
i=1

X2
i−1

)

≤ etn
2ξ2

n∏
i=1

EF (exp−tX2
i−1

)
.

Since
I2n ≤ etn

2ξ2Πn
i=1EF (exp−tX2

i−1

)
.

we first claim that for x ≥ 0

e−x ≤ 1− x+
1

2
x2. (4.42)

To see this let ψ(x) = e−x and ϕ(x) = 1− x+ 1
2x

2, (ψ′(x) = −e−x) and recall that for every x

ex ≥ 1 + x ∀x, (4.43)

so that ψ′(x) = −e−x ≤ −1 + x = ϕ′(x). Since ψ(0) = 1 = ϕ(0) this implies ψ(x) ≤ ϕ(x) for aall
x ≥ 0 and (4.42) is claimed.
From (4.42) and (4.43) it follows that for t > 0

etnϵ
2
Πn

i=1EF (exp(−tX2
i−1)

)
≤ etn

2ξ2
(
1− tK1 +

t2

2
K2

)n

≤ etn
2ξ2
(

exp
(
−tK1 +

t2

2
K2

))n

≤ etn
2ξ2 exp

(
−ntK1 +

t2

2
nK2

)
where K1 = EF (X2

i ) <∞,K2 = EF (X4
i ) <∞.

Hence

I2n = PF

(
n∑

i=1

X2
i−1 ≤ n2ξ2

)
≤ exp

[
t
(
n2ξ2 − nK1

)
+
nt2K2

2

]
. (4.44)

With h(t) = n2ξ2 − nK1 + nt2K2
2 and t > 0, the equation h′

(t) = 0 has the unique solution
t = K1−nξ2

K2
which minimize h(t). Hence

PF

(
n∑

i=1

X2
i−1 ≤ n2ξ2

)
≤ exp

{
−1

2
n
(K1 − nξ2)2

K2

}
(4.45)

Then for every ρ > 0, K1 <∞, 2 <∞, and by the assumption

PF (
√
n|θ̂n − θ| > ρ) ≤ 2 exp

{
−
(
(ρ2ξ − EFζ21 )n2

p−1bp

Bp−1
n

) 1
2p−1

(ρ2ξ − EFζ21 )nBn

(
1− 1

p− 1

)}

× exp
{
1

q
bq/pe

}
+ exp

{
−1

2
n
(K1 − nξ2)2

K2

}
. (4.46)
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These complete the proof.

Corollary 4.4.1 The sequence (θ̂n)n∈N is completely converges to the parameter θ of
autoregressive process AR(1) model. Then we have

+∞∑
n=1

PF (
√
n|θ̂n − θ| > ρ) < +∞. (4.47)

Proof. By using Theorem 4.3.4 and EF (X2
i ) < ∞,EF (X4

i ) < ∞ we get the result of (4.47)
immediately.
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acceptable random variables and application to AR(1) model

abstract: In this paper, we present a new exponential inequality and conditional complete
convergence for conditional extended acceptable random variables and obtain a result dealing with
conditional complete convergence of first-order autoregressive processes AR(1).

5.1 Introduction

Chow and Teicher [2], Majerek et al.[6], Roussas [9] and Prakasa Rao [7] studied the concept
of conditionally independent random variables as well as the concept of conditional association
and provided several results. They include conditional versions of generalized Borel Cantelli
lemma, generalized Kolmogorov's inequality, generalized Hájek Rényi inequalities and further
related results.
Prakasa Rao [7] provides counterexamples where independent random variables lose their
independence under conditioning and dependent random variables become independent under
conditioning.
Conditional association is defined in analogy to (unconditional) association. All random
variables are defined on the probability space (ω,A,P). Following Prakasa Rao [7] for simplicity
we will use the notation EF (X) to denote E[X|F ] where F is sub-σ-algebra of A. In addition,
CovF (X,Y ) denotes the conditional covariance of X and Y given F , i.e.,

CovF (X,Y ) = EF (XY )− EF (X)EF (Y ).

Definition 5.1.1 A finite collection of random variables X1, . . . , Xn is said to be F-associated if

CovF (f(X1, . . . , Xn), g(X1, . . . , Xn)) ≥ 0,

for any real-valued componentwise nondecreasing functions f, g onRn such that the covariance
is defined. An infinite collection is F- associated if every finite subcollection is F-associated.
Roussas[9] introduced the concept of conditional negative association as follows.

Definition 5.1.2 A finite collection of random variables X1, . . . , Xn is said to be conditionally
negatively associated given F (F −NA) if

CovF (f(Xi : i ∈ A), g(Xj : j ∈ B)) ≤ 0 a.s.,

for any disjoint subsets A and B of {1, 2, . . . , n} and for any real-valued compenentwise
nondecreasing functions f, g on R|A| and R|B| respectively where |A| = card(A) provided that the
covariance is defined. An infinite collection is conditionally negatively associated given F if
every finite subcollection is F −NA

Yuang et al [5] provide examples where negative association does not imply conditional
negative association and vise versa.
Further, the concept of ENOD random variables was proposed by Liu [5] by extending the NOD.
In this note, we combine the concept of conditioning on a σ-algebra with the concept of ENOD
and define conditionally extended negative orthant dependent random variables as follows;

Definition 5.1.3 A sequence of random variables {Xi, i ≥ 1} is said to be conditional extended
negatively orthant dependent(F-ENOD) if there exists a constantM > 0 such that both

PF (X1 ≤ x1, . . . , Xn ≤ xn) ≤M
n∏

i=1

PF (Xi ≤ xi) (5.1)
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and
PF (X1 > x1, . . . , Xn > xn) > M

n∏
i=1

PF (Xi > xi) (5.2)

hold for each n = 1, 2, . . . and all x1, . . . , xn. Recall that the sequence {Xi, i ≥ 1} is said to be
conditional negatively orthant dependent(F-NOD) if both 5.1 and 5.2 hold when M = 1; it is
called conditional positively orthant dependent(F-POD) if 5.1 and 5.2 hold both in the reverse
direction whenM = 1.

In this paper, we define the concept of conditional acceptability by combining the concept of
conditioning on a σ-algebra and the concept of acceptability see [4]. We therefore give the
following definition.

Definition 5.1.4 A finite family of random variables X1, X2 . . . , Xn is said to be F-acceptable for
δ > 0 if EF (exp(δ|Xi|)) <∞ for all i and such that for any real λ > 0 such that |λ| ≤ δ,

EF

(
exp

(
λ

n∑
i=1

Xi

))
≤

n∏
i=1

EF (exp(λXi))a.s.

A sequence of random variables {Xn, n ∈ N} is F-acceptable for δ > 0 if every finit subfamily
is F-acceptable for δ.

Remark 5.1.1 It can be easily verified that if random variablesX1, . . . , Xn are F-acceptable, then
the random variables X1 − EF (X1), X2 − EF (X2), . . . , Xn − EF (Xn) are also F-acceptable, and
−X1,−X2, . . . ,−Xn are also F-acceptable.

So in this work, we defined an conditional extended acceptability from the definitions of
conditional acceptability and conditional extended orthant dependence as follows.

Definition 5.1.5 A finite sequence {Xi, 1 ≤ i ≤ n} of random variables is said to be conditional
extended acceptable if there exists a constantM > 0 such that for any real λ

EF

(
exp

(
λ

n∑
i=1

Xi

))
≤M

n∏
i=1

EF (exp(λXi)). (5.3)

An infinite sequence {Xn, n ≥ 1} of random variables is conditional extended acceptable if every
finite subcollection is conditional extended acceptable.
A sequence {Xi, i ≥ 1} of random variables is obviously acceptable if 5.3 holds whenM = 1 and
hence an acceptable sequence must be an conditinal extended acceptable sequence. In addition,
5.1 and 5.2 obviously satisfy 5.3. Therefore, the F-ENOD random variables are conditional
extended acceptable random variables.
It is know that exponential inequalities played an important role in obtaining asymptotic results
for sums of independent random variables. Classical exponential inequalities were obtained, for
example, by Bernstein, Hoeffding, Kolmogrov, Fuk, and Nagaev (see the monograph of Petrov
[8]). The main goal of our paper is to establish a new probability inequality for conditional
extended acceptable random variables. This paper is organized as follows. In section 2, we
provide the establish the exponential in- equalities for sum of conditional extended acceptable
random variables and in section 3, we obtain a result dealing with the conditional complete
convergence for these random variables by using the exponential inequality. Finally, we obtain a
result dealing with conditional complete convergence of first-order autoregressive processes
AR(1).
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5.2 Some lemmas

Lemma 5.2.1 Let {Xn, n ≥ 1} be a sequence of F-extended acceptable random variables and
λ > 0, then for each n ≥ 1,

EF

[
n∑

i=1

exp(λXi)

]
≤M

n∏
i=1

EF (exp(λXi)) (5.4)

Proof. For λ > 0, it is easy to see that λXi and λ
n∑

j=i+1

Xj are F-extended acceptable by the

definition, which implies that exp(λXi) and exp(λ
n∑

j=i+1

Xj) are also F-extended acceptable for

i = 1, 2, ..., n− 1. Thus, by induction we have

EF

[
n∑

i=1

exp(λXi)

]
= EF

[
exp(λX1) exp (

n∑
i=2

λXi)

]

≤ M1EF [exp(λX1)]EF

[
exp (

n∑
i=2

λXi)

]

= M1EF [exp(λX1)]EF

[
exp(λX2) exp (

n∑
i=3

λXi)

]

≤ M1M2EF [exp(λX1)]EF [exp(λX2)]EF

[
exp (

n∑
i=3

λXi)

]

≤
n−1∏
i=1

Mi

n∏
i=1

EF (exp(λXi)).

whereM =
∏n−1

i=1 Mi.

Lemma 5.2.2 [1] For any x ∈ R, we have

exp(x) ≤ 1 + x+ |x|1+α exp(2|x|), 0 < α ≤ 1.

Lemma 5.2.3 Let X be a random variable with EFeδ|X| < ∞ for some δ > 0. Then for any
0 < λ ≤ δ/4,

EFeλ(X−EFX) ≤ exp(Kλ1+α). (5.5)

where K is defined as K = 2(2α+1)/2(EF |X|2(1+α))1/2EFeδ|X|

Proof. From the inequality exp(x) ≤ 1+x+ |x|1+α exp(2|x|), 0 < α ≤ 1 we have by the Hölder
inequality, the crinequality , and the Jensen inequality that for any 0 < λ ≤ δ/4
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EFeλ(X−EFX) ≤ EF{1 + λ(X − EFX) + (|λ(X − EFX)|)1+αe(2λ|X−EFX|)}

≤ 1 + λEF (X − EFX) + λ1+αEF
{
|X − EFX|1+αe(2λ|X−EFX|)

}
≤ 1 + λ1+αEF

{
|X − EFX|1+αe(2λ|X−EFX|)

}
≤ 1 + λ1+α(EF |X − EFX|2(1+α))1/2(EFe4λ|X−EFX|)1/2

≤ 1 + λ1+α
(
22α+1EF |X|2(1+α) +

∣∣EFX
∣∣2(1+α)

)1/2 (
EFe4λ|X|EFe4λ|X|

)1/2
≤ 1 + 2

2α+1
2 λ1+α

(
EF |X|2(1+α)

)1/2 (
EFe4λ|X|EFe4λ|X|

)1/2
≤ 1 + 2

2α+1
2 λ1+α

(
EF |X|2(1+α)

)1/2
EFe4λ|X|

≤ 1 + 2
2α+1

2 λ1+α
(
EF |X|2(1+α)

)1/2
EFeδ|X|

= 1 + λ1+αK

≤ exp(Kλ1+α)

Since 1 + x ≤ ex for all x ∈ R. Here K = 2(2α+1)/2(EF |X|2(1+α))
1
2EFeδ|X|

Hence the result is proved.

Theoreme 5.2.1 Let {Xn, n ≥ 1} be a sequence of identically distributed conditional extended
acceptable random variables with EFeδ|X1| < ∞ for some δ > 0. Then There exists a constant
M > 0 such that for any 0 < ϵ ≤ K(1 + α)(δ/2)α,

PF (∣∣(Sn − EFSn
)∣∣ > nϵ

)
≤ 2M exp

{
−
(

ϵ

K(1 + α)

)1/α

nϵ

(
1− 1

(1 + α)

)}
(5.6)

where Sn = X1 + · · ·+Xn.

Proof. Suppose that 0 < ϵ ≤ K(1 + α)(δ/2)α then by Markov's inequality, the definition of
conditional extended acceptable random variables and Lemma (5.2.3) that for any 0 < λ ≤ δ/4,

PF

(
n∑

i=1

(Xi − EFXi) > nϵ

)
= PF

(
exp

(
λ

n∑
i=1

(Xi − EFXi)

)
> exp(λnϵ)

)

≤ exp(λnϵ)EF exp
(
λ

n∑
i=1

(Xi − EFXi)

)

≤ M exp(λnϵ)
n∏

i=1

EF exp(λ(Xi − EFXi))

≤ M exp(λnϵ)
n∏

i=1

exp(Kλ(1+α))

= M exp(−λnϵ+Knλ(1+α))

Optimizing the exponent in the term of this upper bound, we find λ =
(

ϵ
(1+α)K

)1/α
. Note that

ϵ
(1+α)k ≤ (δ/2)α, by condition 0 < ϵ ≤ K(1 + α)(δ/2)α. Thus, we get that

PF

(
n∑

i=1

(Xi − EFXi) > nϵ

)
≤M exp

{
−
(

ϵ

K(1 + α)

)1/α

nϵ

(
1− 1

(1 + α)

)}
(5.7)
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Since {−Xn, n ≥ 1} are also conditional extended acceptable random variables, we can remplace
Xi by −Xi in the above statement. That is,

PF

(
−

n∑
i=1

(Xi − EFXi) > nϵ

)
≤M exp

{
−
(

ϵ

K(1 + α)

)1/α

nϵ

(
1− 1

(1 + α)

)}
(5.8)

It follows from (5.7) and (5.8) that

PF

(∣∣∣∣∣
n∑

i=1

(Xi − EFXi)

∣∣∣∣∣ > nϵ

)
≤ PF

(
n∑

i=1

(Xi − EFXi) > nϵ

)
+ PF

(
−

n∑
i=1

(Xi − EFXi) > nϵ

)

≤ 2M exp
{
−
(

ϵ

K(1 + α)

)1/α

nϵ

(
1− 1

(1 + α)

)}

Theoreme 5.2.2 Let {Xn, n ≥ 1} be a sequence of identically distributed conditional extended
acceptable random variables with EFeδ|X1| < ∞ for some δ > 0. Set ϵn =

(
logn
n

) α
1+α and K =

2(2α+1)/2(EF |X|2(1+α))
1
2EFeδ|X|. Then there exists a constantM > 0 such that

PF

(∣∣∣∣∣
n∑

i=1

(
Sn − EFSn

)∣∣∣∣∣ > nϵn

)
= 2M

n∑
i=1

exp
{
−M̃ logn

(
1− 1

1 + α

)}
(5.9)

Proof. Let ϵn =
(

logn
n

) α
1+α andK = 2(2α+1)/2(EF |X|2(1+α))

1
2EFeδ|X|. Then ϵn/(K(1+α)(δ/2)α) ≤

1 for all large n. By choosing M̃ =

{(
1

K(1+α)

)1/α (
1− 1

1+α

)}
.

Hence, the result follows directly from Theorem (5.2.1).

5.3 Conditionally complete convergence for conditional extended
acceptable

A sequence of random variables {Xn, n ≥ 1} is said to convergence completely to a constant ϑ if
for all ε > 0,

∞∑
i=1

P(|Xn − ϑ| ≥ ε) <∞.

This concept was defined by Hsu and Robbins [3] . Note that complete convergence implies almost
sure convergence in view of the Borel-Cantelli lemma. Now we extend this concept (also see
Definition 3 in Yaun et al.[10] )

Definition 5.3.1 A sequence of random variables {Xn, n ≥ 1} is said to conditionally convergence

completely given F to a constant a if
∞∑
n=1

PF (|Xn − ϑ| ≥ ε) < ∞ for every ε > 0, and we write

Xn → ϑ conditionally completely given F .

Theoreme 5.3.1 Let {Xn, n ≥ 1} be a sequence of identically distributed and conditional extended
acceptable random variables with EF (X1) = 0 and EFeδ|X1| < ∞ for some δ > 0. Then n−1(Sn −
EFSn) → 0 completely asn→ ∞.
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Proof By using Theorem (5.2.1), we can be obtained the result of Theorem 5.3.1 and the proof
is omitted.

Theoreme 5.3.2 Let {Xn, n ≥ 1} be a sequence of conditional extended acceptable random
variables with EFeδ|X1| < ∞ for some δ > 0 and |Xi| ≤ C < ∞ for each i ≥ 1, where C is a
positive constant. Then, for any s > 0

n−s(Sn − EFSn) → 0 completelyas n→ ∞ (5.10)

Proof. It follows from ((5.6)) that for any ϵ > 0 and some constantM > 0 we obtain
∞∑
n=1

PF (|Sn − EFSn| ≥ nsϵ) ≤ 2M
∞∑
n=1

[
exp

{
−
(

ϵ

K(1 + α)

)1/α

nsϵ

(
1− 1

(1 + α)

)}]

≤ 2M

∞∑
n=1

[
exp

{
−
(

ϵ

K(1 + α)

)1/α

ϵ

(
1− 1

(1 + α)

)}]ns

≤ 2

∞∑
n=1

[exp(−m)]n
s

<∞

which yields (5.10), where m is a positive number not depending on n.

5.4 Applications to the results to AR(1) model

The basic object of this section is applying the results to first-order autoregressive
processes(AR(1)).

5.4.1 The AR(1) model

We consider an autoregressive time series of first order AR(1) defined by

Xi = θXi−1 + ξi, i = 1, 2, · · · , (5.11)

where {ξi, i ≥ 0} is a sequence of identically distributed F-extended acceptable random variables
with ξ0 = X0 = 0, 0 < EFξ4k < ∞, k = 1, 2, ... and where θ is a parameter with |θ| < 1. Hence
(5.11) as follows:

ξi =

j=0∑
∞
θjξi−j . (5.12)

The coefficient θ is fitted least squares, giving the estimator

θ̂n =

n∑
j=1

XjXj−1

n∑
j=1

X2
j−1

(5.13)

from (5.11)and (5.13) we obtain that

θ̂n − θ =

n∑
j=1

XjXj−1

n∑
j=1

X2
j−1

(5.14)
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Theoreme 5.4.1 Let the conditions of Theorem (5.2.1) be satisfied then for any (EFX2
1 )

1/2

ρ2
< ξ

positive, we have

PF (
√
n|θ̂n − θ| > ρ) ≤ 2M exp

{
−
(
(ρ2ξ2 − EFX1)

K(1 + α)

)1/α

n(ρ2ξ2 − EFX2
1 )

(
1− 1

1 + α

)}

+ exp

−

(
−nϵ2 + EF (X2

j−1)

K ′(1 + α)

)1/α

n2ϵ2EF (X2
j−1)

(
1− 1

1 + α

)
Proof. Firstly, we notice that :

θ̂n − θ =

n∑
j=1

XjXj−1

n∑
j=1

X2
j−1

.

It follows that

PF (
√
n|θ̂n − θ| > ρ) = PF



∣∣∣∣∣∣∣∣∣∣∣
1/
√
n

n∑
j=1

XjXj−1

1/n

n∑
j=1

X2
j−1

∣∣∣∣∣∣∣∣∣∣∣
> ρ


By virtue of the probability properties and Hölder's inequality, we have for any ξ positive

PF (
√
n|θ̂n − θ| > ρ) ≤ PF

1/n
n∑

j=1

Xj ≥ ρ2ξ2

+ PF

1/n2
n∑

j=1

X2
j−1 ≤ ρ2


= PF

 n∑
j=1

Xj ≥ (ρ2ξ2)n

+ PF

 n∑
j=1

X2
j−1 ≤ n2ξ2


= I1n + I2n.

Next we estimate I1n and I2n.

I1n = PF

 n∑
j=1

Xj ≥ (ρ2ξ2)n


= PF

 n∑
j=1

(Xj − EFXj + EFXj) ≥ (ρ2ξ2)n


= PF

 n∑
j=1

(Xj − EFXj) ≥ (ρ2ξ2 − EFX1)n


≤ PF

∣∣∣ n∑
j=1

(Xj − EFXj)
∣∣∣ ≥ (ρ2ξ2 − EFX1)n


(5.15)

By using the Theorem (5.2.1) the right hand side of (5.15) become

In1 = PF

(
n∑

i=1

Xj ≥ (ρ2ξ2)n

)
≤M exp

{
−
(
(ρ2ξ2 − EFX1)

K(1 + α)

)1/α

n(ρ2ξ2 − EFX1)

(
1− 1

1 + α

)}
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We will bound now, the second probability of the right-hand side of the expression
I2n.According to the Markov's inequality, it follows for any λ positive

I2n = PF

(
1

n2

n∑
i=1

X2
i−1 ≤ ξ2

)

= PF

(
n2ξ2 −

n∑
i=1

X2
i−1 ≥ 0

)
= EF

(
I{nϵ2−∑n

i=1 X
2
i−1≥0}

)
≤ EF

(
expλ

(
n2ξ2 −

n∑
i=1

X2
i−1

))
(λ > 0)

≤ eλn
2ξ2EF

(
e(−λ

∑n
i=1 X

2
i−1)
)

≤ eλn
2ξ2EF

(
n∏

i=1

e−λX2
i−1

)
.

By using Lemma (5.2.1) and (5.2.3) the right hand side of the expression I2n become

I2n =Metn
2ϵ2

n∏
i=1

EF
(
e−λX2

i−1

)
≤Meλn

2ϵ2
n∏

i=1

EF (1− λX2
j−1 + (|λX2

j−1|)1+α exp(2|λX2
j−1|)

)
≤Meλn

2ϵ2
(
1− λX2

j−1 + (|λX2
j−1|)1+α exp(2|λX2

j−1|)
)n

≤Meλn
2ϵ2
(
1− λEF (X2

j−1) + λ1+αEF ((|X2
j−1|)1+α) exp(2λEF (X2

j−1)
))n

≤Meλn
2ϵ2
(
1− λEF (X2

j−1) + λ1+α
(
EF (|X2

j−1|)2(1+α)
)1/2 (

EFe4λ(|X
2
j−1|)

)1/2)n

≤Meλn
2ϵ2
(
1− λEF (X2

j−1) + λ1+α
(
EF (|X2

j−1|)2(1+α)
)1/2 (

EFeδ(|X
2
j−1|)

))n

≤M exp
(
λn2ϵ2 − n

{
λEF (X2

j−1) + λ1+α
(
EF (|X2

j−1|)2(1+α)
)1/2 (

EFeδ(|X
2
j−1|)

)})

≤M exp

−

(
−nϵ2 + EF (|X2

j−1|)
K ′(1 + α)

)1/α

n2ϵ2EF (X2
j−1)

(
1− 1

1 + α

)
By taking λ =

(
−nϵ2+EF (|X2

j−1|)
K′ (1+α)

)1/α

, K
′
is defined as k

′
= n(1 + α)EF (X2

j−1)
1+αEFeδX

2
j−1 .

Then for any ρ > 0

PF (
√
n|θ̂n − θ| > ρ) ≤ M exp

{
−
(
n(ρ2ξ2 − EFX1)

K(1 + α)

)1/α

(ρ2ξ2 − EFX1)

(
1− 1

1 + α

)}

+ exp

−

(
−nϵ2 + EF (X2

j−1)

K ′(1 + α)

)1/α

n2ϵ2EF (|X2
j−1|)

(
1− 1

1 + α

)
Corollary 5.4.1 The sequence (θ̂n)n∈N is completely converges to the parameter θ of
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autoregressive process AR(1) model. Then we have

+∞∑
n=1

PF (
√
n|θ̂n − θ| > ρ) < +∞. (5.16)

Proof. By using Theorem (5.3.2) we get the result of (5.16) immediately.
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Conclusion and Perspectives

Conclusion

We are interested in this thesis to establish a new tail probability inequality for the distributions of
sums of widely orthant dependent (WOD, in short) random variables with application to hazard
estimator. Then we sutdy the conditionally complete convergence of partial sums of random
variables with applicatin to AR(1) generated by the errors in the conditional dependent cases
(conditional linearly negative quadrant dependent, conditional extended acceptable)

Perspectives

In this section, we sketch some perspectives for possible future researches.

1. Consider the asymptotique distributions of the error density estimators in p order
autoregressive models

2. It is possible to study the conditional complete convergence for F −WOD random variables
and its applications in autoregressive AR(p) models.

3. Study the case of a process with ϕ− mixing functional variables.

4. study the cases of the models ARMA and GARCH.
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 المــــلــــخص
 

والحدود الشرطية النظرية لتسلسل  الشرطيفي هذه الأطروحة، نحن مهتمون في المقام الأول بدراسة الاحتمال الأسي 

هدفنا الرئيسي هو دراسة التقارب الكامل المشروط  تطبيقها على النموذج التراجعي الذاتي. المتغيرات العشوائية مع 

حالة اعتماد الخطأ )المرتبطة  على نطاق واسع، شرط الممتدة  للمقدر لعملية الانحدار الذاتي  من الدرجة الأولى في 

      .المقبول(
 

 

Résumé 

 

Dans cette thèse, nous sommes principalement intéressés à étudier des inégalités de 

probabilité conditionnelle et theorèmes limites conditionnelles de la séquence des 

variables aléatoires avec application au modèle autorégressif. Nous fixons comme 

objectif principal, l’étude de la convergence complète conditionnelle de l’estimateur 

d'un processus autorégressif de premier ordre dans le cas où l’erreur est dépendante 

(𝑾𝑶𝑫 , 𝓕 −𝑸𝑳𝑵𝑫, conditionnelle prolongée acceptable) . 

 

Summary 

In this thesis, we are primarily interested in studying the conditional exponential 

probability inequalities and Conditional limit theorem of the sequence of random 

variables with application to the autoregressive model.  We have identified the main 

objective, that the study of the conditional complete convergence of the estimator of  

first-order autoregressive process in the case where the error is dependent (WOD, 𝓕 −

𝑳𝑵𝑸𝑫, Conditional étendu acceptable).    
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