N° dordre -

REPUBLIQUE ALGERIENNE DEMOCRATIQUE & POPULAIRE

MINISTERE DE L’ENSEIGNEMENT SUPERIEUR & DE LA RECHERCHE
SCIENTIFIQUE

UNIVERSITE DJILLALI LIABES
FACULTE DES SCIENCES EXACTES
SIDI BEL ABBES

Université
DJILLALI LIABES

THESE

DE DOCTORAT

Présentée par

MOHAMED MELLAH
Spécialité : MATHEMATIQUES
Option : EQUATIONS AUX DERIVEES PARTIELLES

Intitulée QD

O Etude de lexistence globale et de la stabilisation de
certains problemes d’évolution de type hyperbolique

Soutenue le 02/02/2021
Devant le jury composé de :

Président : Abbes BENAISSA Professeur a I’Université de Sidi Bel Abbes
Examinateurs : Kacem BELGHABA  Professeur a I'Université d’Oran 1
Sofiane MOKEDDEM  Professeur a I"Université de Sidi Bel Abbes
Mama ABDELLIT Professeur a 1’Université de Mascara
Mounir BAHLIL MCA a I’Université de Mascara
Directeur de thése : HAKEM Al Professeur a I’Université de Sidi Bel Abbes

Année universitaire : 2020/2021




Remerciements

Cette these a été éffectuée au sein du Laboratoire d’Analyse et Controle des
Equations aux Dérivées Partielles Université De Sidi Bel Abbes.

Tout d’abord et en premier lieu je remercie vivement mon directeur de these
Professeur Ali Hakem pour m’avoir intégré dans son équipe, d’avoir dirigé
ce travail, pour son aide constante, ses encouragements, sa disponibilité et les
moyens mis a ma disposition, ses qualités scientifiques et humaines et ses pré-
cieuses remarques ont permis 'accomplissement et I’aboutissement de ce tra-
vail durant ces années de these.

J’ai le plaisir de remercier infiniment le Professeur Abess BENAISSA de l'université
de Sidi Bel Abbés qui a bien voulu présider le jury de cette these.

Je tiens a remercier beaucoup le Professeur Kacem BELGHABA de 1"université
d’Oran 1, pour ’honneur qu’il m’a fait en acceptant d’évaluer ce travail.

Mes grands remerciements vont aussi a Monsieur Soufiane MOKEDDEM Pro-
fesseur a I'université de Sidi Bel Abbés, d’avoir accepté de faire partie du jury.
Je remercie Mama ABDELLI Professeur a 1’'Université de Mascara, d’avoir ac-
cepté d’examiner ma thése et faire partie du jury.

Je tiens a remercier aussi Monsieur Mounir BAHLIL (Maitre de coférences a
I"université de Mascara), d’avoir accepté de juger ce travail.

Je veux remercier du fond du coeur ma femme, mes enfants Mohamed Islam,
Soumia et Abderrahmane, pour leur présence continue et leur soutien indé-

fectible.

M. MELLAH



Contents

[ INTRODUCTION | 6
A Preliminaties 9
[ PRELIMINARIES | 9
(.1 Hilbert and Banach Spaces|. . . . . . ... ... ... ....... 9
(1.2 Dualspaces| . ......... ... ... ... .. . ... ... 10
[1.2.1 weak and weak star convergence. . . . .. ... ... ... 11

(I.5 LPspaces|........................... .. ... 11
1.4 Distributions|. . . . . .. .. ... 13
(1.5 Sobolevspaces|. . .. ... ... ... ... ... .00 0 . 14
(151 Gronwalllemmal . . ... ... ... ... .. ........ 17

[L.5.2  Nonlinear Generalisation of Gronwall’s inequality|. . . . . 17

1.6 Existen hods| . . ... ... .. .. ool 18
(1.6.1 Faedo-Galerkinmethod| . . ... ... ............ 18

062 Generalmethod. . .. ... ... ... . ... ....... 19

[1.6.3 A priori estimation and convergence|. . . . . ... ... .. 19

2 Exponential Decay of the Viscoelastic Wave Equation of Kirchhoff |
[ Type with a Nonlocal Dissipation| 21
R.1 Introductionl . . . ... ... .. ... . o 21



CONTENTS

R.2 Preliminaries. . . .. ... ... ... ... ... L 24
Local Existence of Solutionf. . . . . .. ... ... ... ..... 25
2.4 Global Existence and Energy Decay| . . . ... ... ........ 43

[3 Global Existence, Uniqueness, and Asymptotic Behavior of Solution |

[  for the Euler-Bernoulli Viscoelastic Equation| 55
B.1 Introduction| . . . .. ... ... ... 55
reliminaries and mainresults| . . ... ... ... ... ... ... 58
B.3__Existence of Solutions|. . . . .. ... ... ... . ..., . 60
B.4 Asymptotic Behaviour| . . . ... ... ... o 00000 67




CONTENTS

Notation-Guide to the reader

|| Absolute value or the norm of a vector.

0 Bounded domain in R?, d € N*.

01 Topological boundary of €.

x = (x1,21,...,2x5) Generic point of R%.

dr = dxidx,...dzy Lebesgue measuring on 2.

Oy Partial derivatives 0;1092...05¢ with a multi-index o = (a1, g, ..., aq) ,

where «; isnonnegative forall i =1,2,...,d.

A Laplace operator in R?,ie, A =02 + 02, + ...+ 02,

Vu(z) = (g; (x))lgigd'

C3°(2) (or D(§2))  Space of infinitely differentiable functions having compact support.

D'(Q2) Distribution space.
C*(Q) Space of functions k-times continuously differentiable in Q.
a.e. Almost everywhere.

LP(2)  Space of functions p — th power integrated on 2 with measure of dz.

Jaly = (Jalu(@)l)”
Wir(Q) = {ue LP(Q), 2+ € LP(Q),i = 1,...,d} .
lullap = (lullz + | Vulz)”.
WyP(Q)  The closure of D(Q) in W'?(Q).
H Hilbert space.
HY(Q) = Wh2(Q).
H}(2)  The closure of D(Q) in W2(Q).
If X is a Banach space
LP(0,T; X) = {f :]0, T[~ X is measurable; [; ||f(t)|/%dt < co}.
L>(0,T;X) ={f:[0,T] — X is measurable; sup ess||f(t)|%}-
t€[0,T]
C*([0,T]; X) Space of functions k-times continuously differentiable for

0,7] — X.
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D([0;T]; X) Space of functions continuously differentiable with compact support in [0, 7).
Bx ={x € X;||z|| <1} unitball.




Introduction

Problems of global existence and stability in time of Partial Differential Equa-
tions made object, recently, of many work. In this thesis we were interested in
study of the global existence and the stabilization of some evolution equations.
The purpose of stabilization is to attenuate the vibrations by feedback, thus it
consists in guaranteeing the decrease of energy of the solutions to 0 in a more
or less fast way by a mechanism of dissipation.
More precisely, the problem of stabilization consists in determining the asymp-

totic behaviour of the energy by E(t), to study its limits in order to determine if
this limit is null or not and if this limit is null, to give an estimate of the decay

rate of the energy to zero.

This problem has been studied by many authors for various systems. In our
study, we obtain severals type of stabilization
1 Strong stabilization: E(t) — 0, as t — oo.
2 Logarithmic stabilization: E(t) < c¢(log(t))™%,Vt > 0, (c,d > 0).
3 polynomial stabilization: E(t) < ct=°,Vt > 0, (¢,§ > 0)
4 uniform stabilization: E(t) < ce %Vt > 0, (c,d > 0).

In this thesis, the main objective is to give a global existence and stabiliza-
tion results.

This work consists in three chapters,



Introduction

e The chapter 1

This chapter is devoted to some notations and preliminaries, especially we re-

call some basic knowledge in functional analysis.

e The chapter 2

we consider the initial boundary value problem for the following integro-differential

problem

uy — ¥ (|Vul3) Au — aAu, + g * Au+ M (|[Vull3) uy = f(u), 2 € Q, t >0,

u(z,0) = ug(x), uz,0)=u(z), z€q,

u(z,t) =0, x€0Q, t>0,
where ) is a bounded domain in R? (d > 1) with smooth boundary 9. (r)
is a positive locally Lipschitz function satisfying ¢ (r) > mg > 0, for » > 0 like
Y(r) = mg+br?, b > 0and v > 1. M(r) is a C'[0,00) -function satisfying
M(r) > my > 0 forr > 0, f is a non-linear function as similar to |u|P"2u, p > 2
and a > 0. The scalar function g(s) (so-called relaxation kernel) is assumed to
satisfy (2.1) and

g Aalt) = [ glt = )du(r)dr

Firstly, we prove the local existence of solutions by using the Faedo-Galerkin
approximation method and Contraction Mapping Theorem. By virtue of the
potential well theory, we then prove that if the initial data enter into the stable
set, then the solution globally exists. Furthermore, we study the asymptotic
behavior of solution using a perturbed energy method.
e The chapter 3
This chapter is concerned with the study of the global existence and asymptotic

behavior of solution for the Euler-Bernoulli viscoelastic equation:

utt+A2u—g1*A2u+gg*Au+ut:0, IEQ,t>O,
u(z,0) = up(x), w(x,0)=u(z), z€Q,

u=0, %=0,2€00 t>0,

7
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where Q is a bounded domain of R? with a smooth boundary 952, and v is the
unit outer normal on Jf2. Here g; and ¢, are positive functions satisfying some

conditions to be specified later, and

g * x(t) = /Ot gi(t —71)x(r)dr, i=1,2.

We study the existence of both strong and weak solutions of problem (1) for a

bounded domain, then for £ : RT — R™ a increasing C? function such that

£0)=0, €(0)>0, lim &t =+oo, £(t)<0 Vt>0. (1)

t—4o00

the solution features the asymptotic behavior

E(t) < E(0)e™™*® vt >0,




Chapter 1

Preliminaries

In this chapter we introduce some definitions and notations which will often be
used in the sequel. For a complete presentation we refer the interested reader
to, e.g., Yosida (1974) or Brezis (1983) (see also Brezzi and Gilardi (1987) for a

comprehensive and easy-to read proofless presentation).

1.1 Hilbert and Banach Spaces

Let V be a (real) linear space. A scalar product on V' is a bilinear map
(,-) : V xV — R that (w,v) = (v, w) for each w,v € V (symmetry),
(v,v) > 0 for each v € V (positivity),

(v,v) = 0if and only if v = 0.

A semi-normisamap | - || : V — Rsuch that ||v|| > 0 foreach v € V,
||cv]] = |¢]||v|| for each ¢ € Rand v € V,

|lw+v| < ||w| + ||v|| for each w,v € V (triangular inequality).

A norm on V is a semi-norm satisfying the additional property that
(l[o]l = 0) & (v=0)

Twonorms ||-||and |||-||| on V are equivalent if there exist two positive constants

9
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M, and M, such that
Mi||lv]| < |[]v]|]] < Ms|v|| foreachwv e V.

It is readily verified that at any scalar product it is associated a norm through
the following definition: ||v|| = (v, v)z. Moreover, at any norm we can associate
a distance: d(w,v) = ||lw — v||.

A linear space V' endowed with a scalar (respectively, a norm) is called pre-
hilbertian (respectively, normed) space. A sequence (v,)en is a Cauchy se-
quence in a normed space V if it is a Cauchy sequence with respect to the dis-
tance d(w,v) = ||w — v||. If any Cauchy sequence in a pre-hilbertian (normed)
space V' is convergent, the space V is called a Hilbert (respectively, Banach)
space.

In a Hilbert space the Schwarz inequality holds:

|(w,v)| < ||w|||]v]| foreach w,v e V. (1.1)

1.2 Dual spaces

If (V,||-1lv)and (W.] - |lw) are normed spaces, we denote by £(V, W) the set
of linear continuous functionals from V into W, and for L € L(V, W) we define

the norm

Lv
LN cvwy -= sup” lw (1.2)

ey Tollv
Thus £(V,W) is a normed space; if W is a Banach space, then L£(V,W) is a
Banach space, too. If W = R, the space £(V, R) is called the dual space of V" and
is denoted by V.

The bilinear form (-, -) from V'’ x V into R defined by (L, v) := L(v) is called the

duality pairing between V' and V. As a consequence of the Riesz representation

10
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theorem, if V' is a Hilbert space, the dual V' is a Hilbert space which can be

canonically identified to V.

1.2.1 weak and weak star convergence

In a normed space V it is possible to introduce another type of convergence,

which is called weak convergence.

Definition 1.1. A sequence v, is called weakly convergent tov € V if L(v,,) converges

to L(v) foreach L € V.

It can be proven that the weak limit v, if it exists, is unique. Clearly, converse

is not true unless V is finite dimensional.

Definition 1.2. A sequence of functionals L,, € V' is called weakly star convergent to

L e V'if L,(v) converges to L(v) for eachv € V.

Also the weak star limit L, if it is exists, it is unique. Moreover, it can be

shows that the weak convergence in V' implies the weak star convergence.

1.3 L spaces

We now introduce some spaces of functions which are the basis for the modern
theory of partial differential equations. Let ) be an open set contained in R,
d > 1, and consider in (2 the Lebesgue measure. A very important family of
Banach spaces is the following one. Let 1 < p < oo, and consider the set of

measurable functions u such that
/ lu(x)|Pdr < 0o, 1<p< o0, (1.3)
Q

or, when p = oo,

sup {|u(z)],z € Q}. (1.4)

11
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These spaces are usually denoted by L”(2) and the associated norm is

||l e (o) = (/Q |u(x)|pdx>p , 1 <p<oo, (1.5)

or, when p = oo,
[ull oo (@) := sup {|u(z)], x € Q} . (1.6)

More precisely, LP((2) is indeed the space of classes of equivalence of measur-
able functions, satisfying (1.3) or (1.4) with respect to the equivalence relation:
u = v if v and v are different on a subset having zero measure.

The space L*((2) is indeed a Hilbert space, endowed with the scalar product

(w,v) 20 :/Qw(x)v(x)dx.

For reasons which will be clear in the sequel, the norm in L?(2) is denoted || - | .
Moreover, the scalar product (-, -) 2 is often indicated by (-, -).

If 1 <p < oo, the dual space LP(12) is given by L?((2), where % + % =1

(and ¢ = oo if p = 1). Moreover, the Holder inequality holds:

‘/ﬂ w(z)v(x)dx

< wllzr@ vl La(e- (1.7)

Notice that for p = 2 the Holder inequality is the Schwarz inequality (1.1) for
the Hilbert L*(Q).
Moreover, from (1.7) it easily follows that L(2) C LP(Q2) if p < ¢ and 2 has
finite measure.
Similarly, for a Banach space V,k € N and —oco < a < b < +00, we denote by
C(la,b]; V) (respectively C*([a, b]; V)) the space of continuous functions (respec-
tively the space of k times continuously differentiable functions) v from |[a, 0]
into V/, which are Banach spaces, respectively, for the norms

k

[vlle@pvy = sup [lo(t, Ilv,  [vller@pvy =D
te(a,b) =0

v
o

C(a,b;V)

12
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1.4 Distributions

Let us recall that C§°(€2) (or D(£2)) denotes the space of infinitely differentiable
functions having compact support. The topology on D({2) corresponds to the
following notion of convergence of test functions: v, € D(2) converges to v €
D(?) if exists a compact set K C 2 such that supp v, C K for every n € N
and for every non-negative multi-index « the derivative D”v,, converges to D°v
uniformly in Q. We recall that if 5 = (1, ...., 84), ; non-negative integers, then

o8y

DPy = 55
Oxi*...0z )"

where || := 51 + ... + Sq is the length of .

Definition 1.3. The space of linear functionals on D(S2) which are continuous with
respect to the convergence introduced above is denoted by D’ (Q2) and its elements are

called distribution.

If L € D'(2) and v € D(2), we usually denote L(v) by the duality pairing
(L,v).
If L e D'(Q2) and f € C>(N2), we define fL € D'(12) by

(fL,v) = (L, fv).
If 5 € N¢ is any multi-index, we define the derivative 9°L € D'(Q2) by
(0°L,v) = (=1)PI{L, 9%).

We say that a sequence of distributions (L,) converges to a distribution L in

D'(Q2), written L — L, if

(Lp,v) = (L,v) foreveryv e D().

13
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Proposition 1.1. The distribution L € D'(QY) is in LP(2) if there exists a function
¢ € LP(Q) such that

(Loo) = [ o@)e(e)de, forall o € D(Q)

where 1 < p < oo and it’s well-known that ¢ is unique.

1.5 Sobolev spaces

We finally introduce another class of functions, which will be most often used in
the sequel, since they furnish the natural environment for the variational theory
of partial differential equations. A comprehensive presentation of these spaces
can be found in Adams (1975).

The Sobolev space W™?(2), m a non-negative integer and 1 < p < oo, is the
space of functions v € WLP(Q) such that all the distributional derivatives of v

of order up to m are a function of L?((2). In short
Wm™r(Q) .= {v e LP(Q), D’v € LP(Q), VB € N, || < m}.

Clearly, for each p, 1 < p < oo, W(Q) = LP(Q) and W™2P(Q) C W™P(Q)
when m; < my. For 1 < P < oo, W™P(Q) is a Banach space with respect to the

norm

8 1 1/p
follwensiey = (3 1D%0lEug))

18|<m

On the other hand, W™>({2) is a Banach space with respect to the norm

[V wrm.o (o) = max ||D/3v||Loo(Q).
|B|=m

Sobolev spaces with p = 2 are especially important because of their connection
with Fourier series and because they form a Hilbert space. A special notation

has arisen to cover this case:

W™2(Q) = H™(Q)

14
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the H™ inner product is defined in terms of the L? inner product:

(w,v)gm) = Z (Dﬁw,D'B/U)L2(Q).

[B]<m

The space H™(2) and W™?(Q) contain C*(Q2) and C™(12). The closure of D(f2)
for the H™(2) norm (respectively WP (€2) norm) is denoted by H["(f2) (respec-
tively Wy™"(Q2)).
Now, we introduce a space of functions with values in a space V' (a separable
Hilbert space).
The space L?(a, b; V) is a Hilbert space for the inner product
b

(w,0) 20wy = [ (w(t),o(0))vat

We note that L>(a,b; V) = (L'(a,b;V))'.
Now, we define the Sobolev spaces with values in a Hilbert space V'

Form € N, p € [1, 00|, we set:

W™ (a,b; V) = {v € LP(a,b; V); 2;! € LP(a,b; V). Vi <m},

The Sobolev space W™P(a, b; V') is a Banach space with the norm

m i, ||P 1/p
d'v
V]| wmp(a,pv) = Z BrE , for p < 400
=0 LP(a,b;V)
UE | FORY
[v][wm.ee(a,pv) = Z ot ’ for p = +o0.
i=0 L (a,b;V)

The spaces W™?(a,b; V) form a Hilbert space and it is noted H™(a,b; V). The
H™(a,b; V) inner product is defined by:

b (9w Ol
(U);U)Hm(a,b;v) = / ( ; 7i> dt.
2 ), e o),

Theorem 1.1. (Sobolev embedding theorem). Assume that 2 is a (bounded or un-

bounded) open set of R? with a Lipschitz continuous boundary, and that 1 < p < oo.

15
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Then the following continuous embeddings hold:
a. If0 <mp < d, then W™ (Q) C LV (Q) for p* = 7%

b. If mp = d, then W™»(Q) C L) for any q such that p < q < oc;
c. If mp > d, then W™Pr(Q) C C°(Q).

Theorem 1.2. (Rellich-Kondrachov compactness theorem). Assume that ) is a bounded
open set of R? with a Lipschitz continuous boundary, and that 1 < p < co. Then the
following embeddings are compact:

a. If 0 < mp < d, then W™P(Q) C L4(Q) for any q such that 1 < g < p* = dfzw;

b. If mp = d, then W™P(Q2) C L4(Q) for any q such that 1 < q < oo,

c. If mp > d, then W™r(Q) C C°(Q);

d. Ifp > 2%, then LP(Q) C H ().

In particular, H™(Q) is compactly embedded into H™'(Q), m a non-negative integer.

We will introduce some basic results on the L?(0, T, V') space. These results,

will be very useful in the other chapters of this thesis.

Lemma 1.1. . Let u € LP(0,T,V) and %3¢ € LP(0,T,V), (1 < p < o0), then the

function w is continuous from [0, T] — V.i.e. u e C*(0,T,V).

Lemma 1.2. . Let Q =0, T[x) an open bounded domain in R x R?, and v, v are two

functions in L9(]0,T'[, L9(2)), 1 < q < oo such that
||Uﬂ||LQ(]07T[7Lq(Q)) < C,Vu €, (1.8)
andv, —v in Q, thenv, = v in LI(Q).

Theorem 1.3. . L?(0,T, V') equipped with the norm || - || oo rpvy, 1 < p < 00

is a Banach space.

Proposition 1.2. . Let V be a reflexive Banach space, V' it’s dual, and 1 < p,q < oo,
}D + % = 1. Then the dual of L*(0,T, V) is identify algebraically and topologically with
L0, T, V).

16
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Proposition 1.3. Let Vi, Vs be Banach space, Vi C Vi with continuous embedding,

then we have with continuous embedding
LP(0,T,Vy) C LP(0,T,V4),

The following compactness criterion will be useful for nonlinear evolution

problem, especially in the limit of the nonlinear terms.

Proposition 1.4. Let By, B, By be Banach spaces with By C B C B;. Assume that
the embedding By — B is compact and B — B is continuous. Let 1 < p,q < oo.

Assume further that By and B, are reflexive. Define
W= {u € I7(0,T, By) : ' € L9(0,T, Bl)}.

Then, the embedding W — LP(0,T, B) is compact.

1.5.1 Gronwall lemma

Lemma 1.3. Let [ € L'(ty,T) be a non-negative function, g and ¢ be continuous

functions on [ty, T)|. If y satisfies

o) < 9(t)+ [ F(rg(dr V€ 10, T],

then
t

o) < 9+ [ Fs)(s) e ([ 7r)dr) vt e o, T)

to

If moreover g is non-increasing, then

o(t) < g(t) exp (/t f(T)dT) Yt € [to, T).

to

1.5.2 Nonlinear Generalisation of Gronwall’s inequality

We can consider various nonlinear generalisations of Gronwall’s inequality. The

following theorem is proved in Perov [24]:

17
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Theorem 1.4. Let u(t) be a nonnegative function that satisfies the integral inequality

u(t) <c+ t(a(s)u(s) +b(s)u?(s))ds ¢>0,0 >0,

to

where a(t) and b(t) are continuous nonnegative functions for t > t,.

For 0 < a < 1 we have

1

u(t) < {cl" exp [(1 —0) /ta(s)ds} +(1—-o0) /t b(s)exp [(1 —0) /:a(r)dr} ds} o

to to

1.6 Existence Methods

1.6.1 Faedo-Galerkin method

We consider the Cauchy problem abstract’s for a second order evolution equa-
tion in the separable Hilbert space with the inner product (-, -) and the associ-
ated norm || - ||

{ w () + A()u(t) = f(), t € [0,T], w9)

u(z,0) = up(x), u'(x,0)=uy(z);

where u and f are unknown and given function, respectively, mapping the
closed interval [0,7] C R into a real separable Hilbert space H ,A(t) (0 <t < T
) are linear bounded operators in H acting in the energy space V' C H.
Assume that (A(t)u(t),v(t)) = a(t;u(t),v(t)), for all u,v € V; where a(t; ., .) is a
bilinear continuous in V.

The problem (1.9) can be formulated as: Found the solution u(¢) such that

(S C([OvT};V)vut € C([O,T];H),
(un(t),v) + a(t;u(t),v) = (f,v) in D'(]0, TY), (1.10)
ug €V, ug € H.

This problem can be resolved with the approximation process of Fadeo-Galerkin.

18
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1.6.2 General method

Let V" a sub-space of VV with the finite dimension d”, and let {w}'} one basis of
V™ such that.

we define the solution u" of the approximate problem

u(t) = S gitywy,

u™ € C([0,T); V™), up € C([0,T]; V™) ,u™ € L*(0,T;V™),

! (1.11)
(up(t), wi') + a(t;u" (@), w') = (f,wi), 1<i<d",
u(0) = 5 &(t)wf , up(0) = 3, mi(t)wy.
where
d'n/
> &Gt)w! — ugin Vasn —s oo (1.12)
=1
dTL
> ni(t)w! — uyinVasn — oo (1.13)
=1

1. V' C V(dimV" < 00),Vn € N

2. V™ — V such that, there exist a dense subspace ¥ in V and for all v € ¥ we
can get sequence (u"),eny € V" and u™ — uin V.

3. VcVrland U,y V= V.

By virtue of the theory of ordinary differential equations, the system (1.11)
has unique local solution which is extend to a maximal interval [0, ¢,,[ by Zorn
lemma since the non-linear terms have the suitable regularity. In the next step,
we obtain a priori estimates for the solution, so that can be extended outside

[0, t,,[ to obtain one solution defined for all ¢ > 0

1.6.3 A priori estimation and convergence

Using the following estimation

T
||um||2+||u;n||2sc*<||um<o>||2+|ru:n<o>||2+ / |f(s)|2ds> 0<t<T (114

19
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and the Gronwall lemma we deduce that the solution u,, of the approximate
problem (1.11) converges to the solution u of the initial problem (1.9).The unique-

ness proves that u is the solution.
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Chapter 2

Exponential Decay of the
Viscoelastic Wave Equation of

Kirchhoff Type with a Nonlocal

Dissipation

2.1 Introduction

In this chapter, we shall consider the initial boundary value problem for the

following integro-differential problem

uy — U (||Vul3) Au — aAu; + g x Au

+M (|[Vu|?)us = f(u), z€Q, t >0,
uw(z,0) =up(x), w(z,0)=u(x), z €,
u(z,t) =0, x € 0Q, t >0,

(2.1)

where Q is a bounded domain in R? (d > 1) with smooth boundary 02. Here,

g is a positive function that represents the kernel of the memory term, 1 (r)
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is a positive locally Lipschitz function satisfying (r) > mg > 0, for r > 0
like ¥(r) = mo + b7, b > 0,7 > 1, M(r) is a C*[0,00) -function satisfying
M(r) > my > 0 forr > 0, f is a non-linear function as similar to |u["~%u, p > 2.

Here, o > 0 and
t
g% Au(t) = / gt — )A(7)dr.
0

The non-linear vibration of the elastic string are written in the forme of partial
integro-differential equations:

0%u ou Eh L (ou\? 0%u
gu s S gu 22
ph +0 {p0+2L ; (830) dﬂ?}ax2+f, (2.2)

for0 <z < Landt > 0, where

u = u(x,t) is the lateral deflection,

x is the space coordinate variable while ¢ denotes the time variable,
E represents the Young’s modulus,

p designates the mass density,

0 designates the resistance modulus,

L indicates the string’s length,

h represents the cross section,

po denotes the axial tension,

f the external force.

Whend = f =0, Kirchhoffﬂ [11] first introduced (2.2) in the study of oscillations
of stretched string and plates.

In the absence of the term M (||Vul|3)u;. Wu and Tsai [32] studied (2.1) with
a = 1. The authors established the global existence and energy decay under
the assumption ¢'(t) < —rg(t), Vt > 0 for some r > 0. Recently, this decay

estimate of the energy function was improved by Wu in [33] under a weaker

!Gustav Kirchhoff Physicien Allemand 1824-1887
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conditionon gi.e. ¢'(t) <0, Vt>D0.
If we consider (2.1) with [y = 1, f = a = 0] and the the bi-harmonic instead of

Laplace operator one we get the model
t
Uy + Au — / g(t — 7)A*u(7)dT + M (||Vul3)u; = 0. (2.3)
0

Cavalcanti et al. [6] investigated the global existence, uniqueness and stabi-
lization of energy of (2.3). By taking a bounded or unbounded open set (2, the
authors showed in [6] that the energy goes to zero exponentially provided that
g goes to zero at the same form.

The main interest of the present thesis is to examine whether there exists a
global solution u of (2.1) under the presence of the nonlinear and nonlocal dis-
sipation represented by M ([, |Vu(z,t|*dz) v, and the real-value function

M : [0, +00) — [mq, +00), where m; > 0 will be considered of class C'.

This kind of damping effect was firstly introduced by H. Lange and G. Perla

Menzala [12] for the beam equation where the following model was considered
Uy + A%u+ M (/ |Vu(x,t]2dx> u, =0 in R?Yx RT. (2.4)
Q

The nonlocal nonlinearity M ([ |Vu(z,t|*dx) u; is indeed a damping term. It
models a frictional mechanism acting on the body that depends on the average
of u itself. Moreover, if such u does exist, we intend to investigate its asymptotic
behavior as t — oo.

In this chapter we show that under some conditions the solution is global in
time and the energy decays exponentially. We first use Faedo-Galerkin method
to study the existence of the simpler problem (2.5). Then, we obtain the local ex-
istence Theorem 2.1 by using contraction mapping principle. We obtain global
existence of the solutions of (2.1) given in Theorem 2.2. Our technique of proof

is similar to the one in [30] with some necessary modifications due the nature of
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the problem treated here. Moreover, the asymptotic behavior of global solutions

is investigated under some assumptions on the initial data.

2.2 Preliminaries

In this section, we introduce some notations and some technical lemmas to be
used throughout this chapter. Also, we give a local existence theorem. In order
to state and prove our result, we formulate the following assumptions:

(H1) g : Rt — R* is a bounded C"! function satisfying

1—[Cg(r)dr =1, >0,
9(0) = Ky [~ g(m)dT =13 > 0,
—Kig(t) < g'(t) < —Kag(1).

Here K, and K, are positive constants.

(H2) f(0) = 0 and there is a positive constant K3 such that
‘f(u) — f(v)’ < Kg‘u — v‘(‘u‘p_Q + ’v‘p_2> for u,v € R,

and

2(d—1
2<p<oo if d=1,2 and 2<p< (d—2> if d>3.

(H3) The function M (r) for r > 0 belongs to the class C''[0, 00) and satisfies

M(r)>m; >0 for r>0.

Lemma 2.1. (Sobolev-Poincaré inequality [17])
If2<p< 2L then

lull, < BillVulls,

for u € H}(2) holds with some constant By.
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Lemma 2.2. Forany h € C' and k € H*(0,T), we have

2 [ [ (e = r)hadadr = —jt{mok)m - /Oth<s>ds||k||§}

+(he 0 k)(t) — h(t) |1 K]I2,

where

(hot)(®) = [ bt =)k - k()|

2.3 Local Existence of Solution

In this section, we shall discuss the local existence of solutions for (2.1) by using
contraction mapping principle. An important step in the proof of local existence

Theorem 3.1 below is the study of the following simpler problem:

uy — p(t)Au — aAuy + g x Au

+x(t)ug = fi(z,t), inQ x (0,7),

u(z,0) = up(x), w(z,0)=uy(z), =€,
u(z,t) =0, z€dQ, t>0.

(2.5)

Here, ' > 0, a > 1, f; is a fixed forcing term in Q x (0,7), u(t) is a positive
locally Lipschitz function on [0, 00) with u(t) > mg > 0 for ¢ > 0 and x(t) is
C!-function on [0, c0) such that y(¢) > 0 for ¢ > 0.

Lemma 2.3. Suppose that (H1) holds, and that ug € H*(Q) N H} (), uy € H(Q)
and f, € LQ([O, T} Lz(Q)) be given. Then the problem (2.5) admits a unique solution
w such that
u € O([0, T]; H*(Q) N Hy (),
up € C([0,T; L*()) N L*([0, T]; Hy (),

uy € L*([0,T); L*(Q)).
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Proof. Let (wy,)nen be abasis in H%(Q) N Hj(2) and V™ be the space generated by

Wiy ey W, =1,2,...... Let us consider
u'(t) = di(t)wy,
k=1

be the weak solution of the following approximate problem corresponding to

(2.5)

/Qu?t(t)wdx + pu(t) /Q Vu"(t) - Vwdr — /Ot gt —1) /Q Vu"(7) - Vwdxdr
—|—a/QVu?(t) - Vwdz + X(t)/ﬂu?(t)wdm

_ /Q fi(e, wdz for we V", (2.6)

with initial conditions

u"(0) = uy = Z/ upwpdrwy, — ug in  H(Q) N Hy(Q), (2.7)
f=1"%
uy (0) = uf = Z/ﬂulwkd;ﬂwk — uy in Hy(Q). (2.8)
k=1

By standard methods in differential equations, we prove the existence of solu-
tions to (2.6) — (2.8) on some

interval [0,¢,), 0 < t,, < T. In order to extend the solution of (2.6) — (2.8) to the
whole interval [0, 7|, we need the following a priori estimate.

Step1 (The first priori estimate) Replacing w by 2u} () in (2.6), we have
[l (D13 + p@Vu (O3] + 20V (8)][3 + 2x(8) a7 (0113
! n 2 n ¢ n n
=/ (O)|Vu" ()5 + Q/Qfl(x,t)ut (t)dzr + 2/0 g(t—1) /Q Vu" (1) - Vui(t)dzdr

t
< W OIVu O3 + Vg @)1 + |!9||L1/0 g(t = 7)IVu"(7)|3d7
HIANE + Nl @13 (2.9)

Sl
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Then, integrating (2.9) from 0 to ¢, we get
t
I (013 + OV @) + (20 = 1) [ [Vux(r)ll3dr

§q+(:P+Mé)®Nﬂme&ﬂ[M%ﬂ%+uhmvwﬁmﬂw

er = g1 + wO)I T 3 + [ 14115

Taking into account (2.7) and (2.8), we obtain from Gronwall’s Lemma the first

priori estimate
t
Jug ()13 + u(@)[Vu" ()13 +/0 IVui (7)|[3d7 < La, (2.10)

for all t € [0,7]. Here L, is a positive constant independent of n € N and
te0,7].
Step2: (The second priori estimate) Replacing w by uj,(¢) in (2.6), we have

o n 2 X(t) n 2

IOl + 5 |ato) [ 9r)- Voo + 1T+ X o)

X'(t)
2

/Vu Vg (t)da + p(t)[|Vur (@113 + =57l (0113

(/ (t —7) /Vu vl ( )dmd¢>—/ (t = 1) /Vu Yl (t)dadr

—4(0 /Vu Vul(t dx+/ iz, Dul (£))de. .11)

\&t

+

By (H1), Holder inequality and Young's inequality, we have

/ (t—1) /Vu -Vuy (t)dzdr

<wwn+ S o v @)

Since ;(t) > mp and from (2.10) we obtain

Lion 9(0)* o n
o0) [ Vur(t) - Ve < LIV + L0 v )

9(0)*L,
2m0 .

1
< IV I3+ (213)
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Local Existence of Solution

Since x(t) is C*'-function on [0, c0) and using (2.10) we infer that

X' (t) 2 Ay

Doy < L)
< /;ILl (2.14)
Moreover,
W0 [ V@ -V < LvaoR+ 2w
< JIva I+ 5, 215)

0<t<T

where M; = sup {|¢/(t)|} and A; = max {|x(¢)|}. Then, by using (2.12) —
0<t<T
(2.15), we obtain from (2.11)

1 «Q " Xt .
IO+ 5 [u) [ vur(0)- Tt + SVl + Pl

gm(g%) IVar o]+ 51”3'“ [ st = ) vur ) ar

T (/ (t—r1 / Vu' (1) - Vui(t )dde) , (2.16)

2 2 m
where ¢ = (O )y L) £ |2 and My = sup {[pu(t)[}-
<t<

2myo

Thus, integrating (2.16) over (0, ¢), we obtain

v+ 5 [ o+ < oy

/Vu ) - Vui(t)dz| + p(0

/ Yl - Vuldz

< ez + p(t)

—i—/ (t—71) /Vu - Vuy (t)dzdr

+ <M2 + 2) /0 IV (7)|2dr, 2.17)

where (c5 = ¢ + & lglF: L1) T + § [Vt |5 + 252t |3
We note that using the inequality ab < j.a® + 7b?, where n > 0 is arbitrary, it
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follows that
/ (t—r /Vu ) - Vuy (t)dxdr
< 477||9||L1<o,oo)||§/||Lo<>(o,oo)/0 V" (7)|[5dr
+1|Vuy (1)l
gl llgll e
< |2 4+ e T
< allVap ()1 + 1 ST,
and

M2
p(0)| [, Vo (0) - V)] < a9 )13+ IV )1

M22

Ly.
dnmy

< Ve @)l +

Putting (2.18) and (2.19) in (2.17) with 0 < n < ¢, we obtain from x(t) >
that

o n 2 Lt n 2
(5 - 20) 19w O+ 5 [ Nz (7) e
0
3 t
et (Ma+3) [ IVae)iBar,

where

lollslgloz ; o

M3
_ 0)[| V|2 | Vs L
¢y = ez + p(0)[[Vug|2[[ Vur |2 + 4nmy i 4nmy

(2.18)

(2.19)

0

(2.20)

(2.21)

Taking into account (2.7) — (2.8), we obtain from Gronwall’s Lemma the second

priori estimate

t
IV @13 + [ (li3dr < L,

(2.22)

for all t € [0,T]. Here L, is a positive constant independent of n € N and

t€0,7].

29



Local Existence of Solution

Step3. (The third priori estimate) Replacing w by —Au"(t) in (2.6), we have
& |- [uoae s Slaeor+ X2 we o
—[IVui )15 + p®) | Au ()13
( (t)||3 +/ (t—1) / Au"( u™(t)dxdr
—i—/ﬂfl z,t)(—Au"(t))dx

Ao . 1
< 71|qu O3+ 2nllAu™(B)]13 + %Hfl“g

gl [ n
gl o myaun ) ar (223)

where 0 < n < %¢ is some positive constant. From p(t) > mo > 0, we deduce

by integration

Q n 2 t n 2
SIAW O3 + (mo — 2n) [ || A (7)|3ar
0
X(t n
X0 g
< [ Ivus)Bar + 5 [ v oliar
+‘/Qut () Au"(t)dx +‘/Qut (0)Au"(0)dx

Lot a e, X0 o
b ) Il Sl Aug 3+ X3

”g“Ll/ HA ||2d7'
<c5—|—’/ u (t) Au"( ’ ”g”“/ |Au"(7)||2dr, (2.24)
where
n n Q ni|l2 ]' t 2
cs = ||u1HzHAuoH2+2||Auo|\z+4n/0 | f1llzdT

0 A
2 mo

We note that using the inequality ab < 1a® + V?, it follows that

[ o dr iz < {18 @) + (9] (2.25)
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Local Existence of Solution

Putting (2.25) in (2.24), we obtain from x(¢) > m; > 0 that

(g_iwmwwm%%mrﬂméwAﬂﬁW%f+%?WMWW@

lgllze ! 2
< cg+ | Aw,y, (T)]5dT, (2.26)
4n  Jo

where

cg =c5+ L.

Taking into account (2.7) — (2.8), we obtain from Gronwall’s Lemma the third

priori estimate,

t
lau" @3+ [ 1au"(r) [3dr < Lo, 227)

forallt € [0,7] and L; is a positive constant independent of n € Nand ¢ € [0, T].
Step4. Let j > n be two natural numbers, and consider 2" = «/ — u™. Then,
applying the same way as in the estimate step 1 and step 3 and observing that
{ug} and {u}} are Cauchy sequence in H}(Q) N H*(Q2) and H (1), respectively,
we deduce for all ¢ € [0, 7]

t
12 @112 + n@®V2" 013 +/0 IV22(r)ll2dr — 0, (2.28)

and

t
|Mﬂ@%+/”&ﬂﬂ@h%&asn%w. (2.29)
0

Therefore, (2.10), (2.22), (2.27), (2.28) and (2.29), we see that

u" — u strongly in C(0,T; Hy(Q2)), (2.30)
up — u; stronglyin C(0,7T; L*(9)). (2.31)
ul' — u; strongly in  L*(0,7T; Hy(9)), (2.32)
up, — uy weaklyin L*(0,T; L*(9)). (2.33)
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Then (2.30) — (2.33) are sufficient to pass the limit in (2.6) to obtain
t
e — (t)Au + /0 g(t — T)Au(T)dT — aAuy + x(t)uy
= fi(z,t) in L*(0,T; H1(Q)). (2.34)

Next, we want to show the uniqueness of (2.5). Let u") and u(? be two solutions

of (2.5). Then y = u(!) — u® satisfies

t
/Qytt(t)wd:c + () /Q Vy(t) - Vwdx — /0 g(t—r1) /Q Vy(7) - Vwdxdr
—i-a/ Vuy(t) - Vwdz + X(t)/ y,(twdr =0 for w e Hy (), (2.35)
Q Q
y(ﬂf,O) :Oa yt(x,o) :O, ZL'EQ,
y(x, t) =0, x€0Q, t>0.

Setting w = 2y,(t) in (2.35), then as in deriving (2.10), we see that
2 2 t 2
gDz + nOVy @O + (200 = 1) /0 IVy- () l3d

t 1
<) '
—Jo

(7)

Thus employing Gronwall’s Lemma, we conclude that

L+ —— (/o) + ||guil)] [y (713 + (D) Vy(7)[Z] dr. (2.36)

IOl = IVy(®)]ls =0 forall ¢ [0,7]. (2.37)
Therefore, we have the uniqueness. This finishes the proof of Lemma 2.3. [

Now, let us prove the local existence of the problem (2.1).

Theorem 2.1. Assume that (H1), (H2) and (H3) are fulfilled. Suppose that
ug € H2(Q) N HF(Q), uy € HY(Q) be given. Then there exists a unique solution u of
(2.1) satisfying
we C([0, T); H3(Q) N HY(®)
and

up € C([0, T); L*(Q)) N L*(0, T; Hy (),
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and at least one of the following statements is valid:

(i) T = .
(2.38)
(i1) e(u(t)) = (I3 + | Au(t)]} » 00 as ¢ T

Proof. Define the following two-parameter space:

v € C([0,T]; Hy (@) N H*(2)),

v € C([0,T]; L*(2)) N L2(0,T; Hy (2)) :
e(v(t)) < R, te|0,T],

with v(0) = ug, v:(0) = u.

forT > 0, Ry > 0. Then X7 g, is a complete metric space with the distance

N |=

d(y, z) = sup e(y(t) — =(t))?, (2.39)

0<t<T

where y, z € X7 p,. Given v € X1 ,, we consider the following problem

uy — V(| V||2)Au — aAu; + g * Au
+M([Vol[3)ur = f(v),in @ x (0,T), (2.40)
U(QT,O) - u0($)7 Ut(l‘,O) = Ul(l'), 2SS Qa

u(z,t) =0, x € 09, t > 0.

By (H2), we see that f(v) € L? (0, T; LQ(Q)>. Thus, by Lemma 2.3, we derive
that problem (2.40) admits a unique solution u € C([0,T}; H*(Q) N H;(2)) and
u, € C([0,T); L*(2)) N L*(0, T; HY(Q2)). Then, we define the nonlinear mapping
Sv = u, and we would like to show that there exist 7" > 0 and Ry > 0 such that
S is a contraction mapping from Xy r, into itself. For this, we multiply the first

equation of (2.40) by 2u,, integrate it over 2 and using Lemma 2.2, we get

=113 + (19013 - [ 9y} 1961 + (970 Tu))
+20][ V()3 + 2M (I Vel [u( ) = (9" 0 Vu)(®) + 9() IVu(t)}

d 9 2
: (dtwnwna) IVu(t)|g+2 | f(eyude. 241)
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Next, multiplying the first equation of (2.40) by —2Au, and integrating it

over (2, we have

ol au(®l - 2 [ wuds -+ (T IVu()):
200l | Au(t) — 2T (1)

= (TR 19t -2 f 7o) At
+2/ (t — 7)Au(r) - Au(t)dxdr. (2.42)

Multiplying (2.42) by ¢, 0 < ¢ < 1, adding (2.41) together and taking into ac-
count (H1), (H3), we obtain

o) + 20— ITuIE + 260(IVolD) I Au(t) 3

dt
<L +L+1, (2.43)
where
) = Tu®lE + (p070l8) - [ g(ryar ) [Vulo)]B
(g0 Vu)(t) + ea]| Au(t)|)? — Qe/QutAudx
+eM([[Vol[5) [ V()3 (2.44)
11—2/f —eAu)
L= (Lyqv L rr(vol2) ) Va2
= (G oI9ol) + < MATOIR) ) IVl
and

=2 [ "ot — 1) Au(r) - Au(t)dwdr.

Estimate for I1 = 2 [, f(v)(u; — eAu)dzx.
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Local Existence of Solution

From (H2) and making use of Holder’s inequality and Lemma 2.1, we have

L =2 /Qf(v)(ut—eAu)dx

< 2/9|f(v)ut|dat+26/ﬂ|f(v)Au|d:B

< 2K3/Q|v|p_1|ut|dx+26K3/Q|v|p_1|Au|drp

< 2K BTV Ao |5 w2 + 26K BTV [ Av ][5 | Al
< 2K3BYPTURELe(u(t))2 + 2¢ K3 BXP TV RE e (u(t))2

2K5(1+ ) BYP VR e (u(t))z. (2.45)

Estimate for I, = (44| Voll3) + e M([|Vv]3)) [ Vu(t)|3.

First of all, we observe that

d /
S0Vl = 20/(IVol) | Vo Vud
< 20y Avlls )

< 2M3RZ, (2.46)
where M3 = sup {|¢/(s)|; 0 < s < B{R3}, and

d
e M(|Vol3) = 2(—:M’(||VU||§)/QVU~VUtdx

IA

2eAz||Av]a[or]l2

< 2eAyRZ (2.47)

where A; = max {|M'(s)]; 0 < s < B{R3}. Then, from (2.46) ,(2.47) and using

(2.38) we arrive at

I, < 2BYR3 (M3 + eAz)e(u(t)). (2.48)

Estimate for I3 = 2¢ [§ g(t — 7)Au(7) - Au(t)dwdr.

Using the inequality ab < -a® + nb?, where ) > 0 is arbitrary,
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Local Existence of Solution

we get

I — % /Ot ot ~7) [ Dulr) - Au(t)ddr

2 ||g||L1 t . A Qd 24
2en|| Au(?)|z + €75 g(t = 7)[|Au(7)]]2dT. (2.49)
n 0

IN

llgll 1
2

Combining these inequalities with 0 < 7 < , we get

%e*(U(t)) +2(a — €) ||V (t)]|3 + 2¢ (w<||w|!§> - ?7) | Au(t)]l3
< 2B2R2(M; + eAs)e(u(t)) + 2K3(1 + €) BYP Y RE Ye(u(t))?
+e”92 ‘7’7” /0 "ot — )| Au(r)|2dr. (2.50)

When we take ¢ = 0 in (2.50), we see that

& N+ (6190l3) = [ g(r)ar) IVu@)+ (g Va)(t)
+20]| V(1)
< 2B2R2Mae(u(t)) + 2K3 BXP D RE e (u(t))z. (2.51)

By Young’s inequality, we get
2 [ wiBudz < 2efur]3 + | Au(t) 3

Hence

) 2 (1= 20wl +e (a - 5) lAu)3

+ (wuwvn%) - tg(r)dr) IVu®)l3
+(g 0 Vu)(t) + eM (| Voll3) | Vu(t)3.

Choosing ¢ = £ and taking into account (/1) and (H3), we have

" (u(t)) = ze(u(?)). (2.52)

| =
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and

* 1
() < (1420l + e (o 3 ) 1 Auol + (I Vuo ) Vool

+eM (|| Vuol[3) | Vuoll3

IN

1
2[5 + (v + )1 Auollz + ([ Vuoll3)] Vo3
+M([[Vuo|[3) I Vuoll3

= . (2.53)

Integrating (2.50) over (0,t), we get
4 2 t
)+ (mo =0 105} [ au(r)or

< e*(ug) + /Ot [Cle*(U(T)) + Cye*(u(r))

N

| ar, (2.54)

where Cy = 10B{R(M; + £4;) and Cp = Lg/gKle(pfl)Rgfl.
Taking n = % in (2.54), then from (H1), we deduce

t 1
e*(u(t)) < e*(ug) + /0 [Cre*(u(r) + Cae (u(r))?] dr
t 1
< &+ /0 [016*(u(7‘)) + Cye” (u(T))i} dr. (2.55)
Hence, by Gronwall’s inequality, we have
* 02 ? T
e*(u(t)) < (ﬁ 4 2T> (T, (2.56)
Then, by (2.52), we obtain
& ? C1T
e(u(t)) <5 <\/c_*+ 2T> e T (2.57)
for any t € (0, 7). Therefore, we see that for parameters 7" and R, satisfy
G\ T 2
5 (\/c_*—l— T) AT < B2, (2.58)
2
That means S maps X7 p, into itself. Moreover, by Lemma 2.3,

u € C°([0, T H*(Q) N Hy () N CH([0, T]; L*()).
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On the other hand, it follows from (2.51) and (2.57) that
uy € L*(0,T; Hy (Q)).

Next, we shall verify that S is a contraction mapping with respect to the metric
d(-,-). We take vy, v5 € X7 r,, and denote u") = Sv; and u® = Sv,. Hereafter we
suppose that (2.58) is valid, thus u", u® € Xr p,. Putting w(t) = (uV —u®)(2),

then w satisfies

wy — ¥ (||Vor]]3) Aw + g * Aw — aAw; + M (||[Vor]|3) w

= f(v1) = fv2) + [ ([Vr[3) = ¥ ([[V213)] Au®
+[M (| Vvall3) = M (|| Voul[3)] (2.59)
w(0) =0, w(0) =0,

w(z,t) =0, z € 00, t > 0.

We multiply the first equation of (2.59) by 2w, and integrate it over (2 to get

iDmxm§+@owmﬁ)—A}ﬁmﬁnvmn@+@ovm@)
+2a][Vur(8)|3

< I+ 15+ I + Ir. (2.60)

We now estimate I4-I7 (defined as below), respectively.

o= (geavald) I9elg

< 2M;3BiR3e(w(t)), (2.61)

I; = 2/ Ul Uz wtdx

Sz&/WW”+MWWw—MWM
< 26 [[[ol[f, ) + vallfipg)llor — 2| 2o [l
< AK3BMPTYRI26(0) — vy)Ze(w(t))?, (2.62)
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Local Existence of Solution

Is = 2[0(IVuild) - v(IVeal)] [ Au@ude
< 2L(|[Vorllz + [[Voal2)[[Vor — Voala | Au®||a]fw2
< ALB?RZe(vy — ) Ze(w(t))?, (2.63)
where L = L(R) is the Lipschitz constant of ¢(s) in [0, Ry).
Estimate for I; = 2 [M(||Vuy||2) — M(||Vor||2)] fo ulPw,da.
Assumption (H3) gives

|M([Vall3) = M(IVor[3)] = ‘/IIVUQQM,(T)dT

Vi ||§

IVoall
[ )] dr

Vv1||§

C

IN

IN

IV0al3 = [[Von 13

A

ColllVorllz + IVui]]2)[Vvr = V[, (2.64)
where C, is a positive constant. From (2.64) and (2.38), we have

Iro= 2 [M(IVwl) - MOVl [ ufwide

< 2C.(|Vurllz + [Vor )1V (02 — vi)[laflul® o]l

1

< 20,B2RZe(vy — va)Ze(w(t))?. (2.65)

Inserting (2.61) — (2.65) in (2.60), we get

d

=@l + (908 - [ gr)dr ) IVw@I+ (g0 Vu)o)

+2a]| V()3

N|=

< Cse(w(t)) + Che(vy — Ug)%e(w(t)) ; (2.66)

where C3 = 2M;B2R? and Cy = 4K3 B "V RP + AL B2R? + 2C, B2R2.
On the other hand, multiplying the first equation in (2.59) by —2Aw, and inte-
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Local Existence of Solution

grating it over €}, we get

jt{aHM( H2—2/ wAwdz + M(||Vodl|) [V ()l }

+20([[Vur [ 1 Aw(@)3 — 2/ Vw3

= ]8+Ig+110+111 +112.

We now estimate Is-1;, (defined as below), respectively.

(2.67)

Applying the similar arguments as in estimating /;, i = 2,3,5,6,7, we observe

that

o
I

d 2 2
(ﬁM(HVmHQ)) IVw®)ll2
< 24, R3Ble(w(t)),

Iy = —2/ f(v) ) Awdzx

[SIE
N|=

< AK;BIPTYRP2e(vy — vo)2e(w(t))?,

I, = [ ([[Vv1]13) = (|| Voel|3 Au® Awdz

1,
< ALB?R2e(v; — v2)2e(w(t))%

I = 2 [M([Vel) = M(IVarl)] | Au®Awda
< 20,B2RZe(vi — vo)2e(w(t))?,
and

I, = 2/ t—T/Aw t)dxdr

lgllz:
< 2 Aw(t)ll;+ 5 - /Og(t—T)HAw(T)!I%dT,

2n

where 7 > 0 is arbitrary. Combining these inequalities with 0 < 7 < %,

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)
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Local Existence of Solution

we get

d
SHalaw®l -2 [ wdwds + M(ITu3vw)B]

+2 (@/)(||Vv1||§) - 2n) [Aw(t)]l3
< Cse(w(t)) + Cae(vy — vo) 2e(w(t))?

1 t
; ”%'l}b [ ot = Pl Al + 2V, (2.73)

where C5 = 24, B?R?. Multiplying (2.73) by ¢, 0 < ¢ < 1, and adding (2.66)
together, we obtain

d %k

€7 (1) +2(a — ) Vw[l; + 2 ($(IVoil3) = 2n) |Aw ()l

< (Cs + eCs)e(w(t)) + (1 + €)Cae(vy — va)Ze(w(t))?

Lot
+e”92|7|7L | gt =m)law ()3, (2.74)

where

) = @B+ (60vald) - [ o0)dr) 17u]?
+(g o Vu)(t) + eal| Aw(t)||2 — QG/thAwd:v
+eM([[Vor [V () ]3. (2.75)

By using Young’s inequality on the fifth term of right hand side of (2.75), we get

e(w(t) = (1—20)[w(®)lf;+ el - ;)HAw(t)Hi

+ (0090l - [ o)ar) 19003
HgoVu)(t) + MV RITe@l @76

Choosing € = 2 and by (H1), (H3), we have

e (w(t) = -e(w(t)). (2.77)

(SR
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Local Existence of Solution

||9HL1

Then, applying the some way as in obtained (2.54) and taking n = =51,

we deduce

(D) < e wO)+ | t [5 (c5+ §05) e (w(®) + 7Y Cre(vn - Uz)%e**(w(t))%] i

5
(2.78)
Thus, applying Gronwall’s Lemma and noting that ¢**(w(0)) = 0, we have

4
e (w(t)) < 22C’ZT265(03+§C5)T sup e(vy — vg). (2.79)
0<t<T
By (2.39) and (2.77), we have

d(u™,u®) < C(T, Ro)zd(vy, va), (2.80)

where

N

mﬂ&)zfﬁﬂﬂwﬁﬂ. (2.81)

Hence, under inequality (2.58), S is a contraction mapping if C(7, Ry) < 1. In-
deed, we choose R, sufficient large and 7" sufficient small so that (2.58) and
(2.80) are satisfied at the same time. By applying Banach fixed point theorem,
we obtain the local existence result.

The second statement of the theorem is proved by a standard continuation ar-
gument. Indeed, let [0, T") be a maximal existence interval on which the solution
of (2.1) exists. Suppose that T < oo and lim; ,7— (|Jus(¢)]|3 + ||Au(?)]|3) < oo.
Then, there are a sequence {¢,} and a constant X > 0 such that ¢, — 7~ as
n — oo and ||u(t,) |3 + ||Au(t,)]|3 < K, n = 1,2, .... Since for all n € N, there
exists a unique solution of (2.1) with initial data (u(t,), u(t,)) on [t,, taip), p > 0
depending on K and independent of n € N. Thus, we can get T' < t,, + p for

n € Nlarge enough. It contradicts to the maximality of 7. The proof of theorem

2.1 is now completed. O
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Global Existence and Energy Decay

2.4 Global Existence and Energy Decay

In this section, we consider the global existence and energy decay of solutions

for a kind of the problem (2.1):

uy — (| Vul|3)Au — alAuy + g * Au + M(||Vul|3)u,

= |ulP7?u, z € Q, t >0,

(2.82)
u(z,0) = uo(x), u(z,0) =ui(z), x € Q,
u(z,t) =0, x € 0, t > 0,
where 2 < p < z(j__;),a >land ¢(r)=14+br",06>0,7v>1and r > 0.
Lemma 2.4. The energy for (2.82) is defined by
B = Sha@+5 (1= [ o) Va2
= Sllu@®lz+ 3 | g(r)dr u(t)||3
1 b 2(7+1)
+3(00 Tu)(®) + 55 [ V(o)
1
——[[u@®)5- (2.83)
p
and its derivative satisfies the following
d 1 / 2 2 2
S E@} = 59 oVu)(t) = M([Vully)llu()lz — allVu )]
1
—59@IVu(@)ll3
< 0, Vt>0. (2.84)

Proof. Multiplying the first equation in (2.82) by v, and integrating the result

over () and adding Green’s formula, we get

(wet, we) £2(0) — (w(HVUH%)AU,Ut)LQ(Q) — a(Aug, ur)r2 (o)

t
2
+ ([ gt = n)duryar, ut(t))LQ(Q) + (MOITulB)uw) o
= (|U|p_2ua Ut)L2(Q)- (2.85)
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By a direct calculation, it follows that

1d
(i, u) p2(0) = 57 lullz, (2.86)

- Oé(AUt, ut)L2(Q) = oc(Vut, Vut)Lz(Q)

= oVl (2.87)
(MU ul)r0,1) 2 = VATl (2.88)
()P ) 2y =~ a2 (2.89)
) pdt P
and
2 _ 27y
- (¢(||Vu||2)Au,ut)L2(Q) = (1+b||Vu||2 )/QAuutdx

= <1+b||Vu||27 /VuVutdx

= (14 bVul?) th {/ ywy%}

- ;jt{uwwu b+ 2 Ivu@ I S {Ivul3)

b -
= eIV} + 05D )dt{n ul;7
b 2(y+1)
{ 19l + 5= IVl } 2.90)

Q.‘Q‘ 1\3\

Also using Lemma 2.2, we get

- /Ot g(t—1) /Q Vu(r)Vu(t)dzdr

- ;C‘llt{(gow)@) —/Otg(r)dTHVu(t)II%}
1
(

50 0 Vu)(®) + o) IVu(dl3  @91)

(/Otg(t — 7)Au(T)dT, ut(t)>

L*(Q)
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Global Existence and Energy Decay

By replacing (2.86) — (2.91) in (2.85), we get

o)+ 4 {pwulg + (f+1)||Vu||§“+”)

~ 5 {30 v - [[amarivuoi) - 4 { o]

2
V)3 + M(ITul)ln ()] - 5o o V)1
59O Tu(t)B) 292)

Then (2.92) inspires us to define the energy functional E(¢) as (2.83).
To obtain the results of this section, we now define some functionals as fol-

lows:

0@ = (1= [ o)) IVu(@ + (g0 Vu)®

o)l 2.93)
L(t) = Li(t) + b Vu(t)[37", (2.94)

10 = 5 (1= [ o)ar) Iu®l + 550 Va1
5y IVHOIET = Sl 2.95)

We define the energy of the solution u of (2.82) by
1
E®t) = gllw®lz+ ()

= g+ 1 (1= [ otrar) Ivu(o)

b 2(y+1)
Vu(t

)l (2.96)

Lemma 2.5. E(t) is a non-increasing function for t > 0, that is

, K 1
E'(t) < —|mllu ()5 + al[Vu(t)]l3 + 72(9 o Vu)(t) + 59()[Vu(®);
<0, Vt>0. (2.97)
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Global Existence and Energy Decay

Multiplying the differential equation in (2.82) by w,, integrating by parts

over (2 and using (H3), we obtain

I b
dt |2 2(v+1)

= —al V03 = MOVulB) @3 + [ [ ot =) Vu(r) - Tu(t)dudr

1 1
()13 + 5 Vu@)lls + Va7 - el

< —al|Vu (1)|)5 — ma||u(t)||3 + /Ot/gg(t — 7)Vu(r) - Vu(t)dzdr.

Exploiting Lemma 2.2 on the third term on the right hand side of the above
inequality and using (H1), we have the result. O

Lemma 2.6. Let u be the solution of (2.82). Assume the conditions of Theorem 2.1
hold. If I(0) > 0 and

|
™

By 2p =
o= <l1(p—2)E(0)> <1, (2.98)

then I5(t) > 0, for all t > 0.
Proof. Since 1;(0) > 0, it follows from the continuity of u(¢) that
L(t) >0, (2.99)

for some interval near ¢t = 0. Let ¢,,,, > 0 be a maximal time (possibly ¢,,,, = 1),
when (2.99) holds on [0, ¢4z )-
From (2.93) and (2.95), we have

a0 = 5 (1= [ ar)dr) IVl + 3o 0 Tu)©) — -l
> L2 (1= [ o) 190l + (g0 Tu)o)] + S h
> P2 (1= [gtryar) 19l
> <p;p2> L Vull3. (2.100)
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Using (2.96), (2.100) and E/(t) is non-increasing by (2.97), we get
WVull; < —=J()
< ——E(1)
< ——E(0).
Exploiting Lemma 2.1 and (2.98), we obtain from (2.101)
lully < BYIIVulls = B[ Vulls™||Vull
p=2

By 2p ) : 2 2
— | ——F(0 L||Vul|3 = ali||Vu
(g P0) T v =l v

< (1—/Otg(7')d7'> IVul2 on [0, ).

Thus

(2.101)

(2.102)

1) = (1= [ g(r)dr ) IVu(@ + (g0 Vu)t) = (O] > 0 on [0, ).

(2.103)

This implies that we can take t,,,,, = 7. But, from (2.93) and (2.94), we see that

L(t) > L(t) >0, tel0,T).

Therefore, we have I,(t) > 0, t € [0,T].

(2.104)

Next, we want to show that 7" = co. Multiplying the first equation in (2.82)

by —2Au, and integrating it over (2, we get

d
Salauiz -2 [ wauds + M(|vul)|Vul3}

+ (20(1Vull?) - 2n) (| Aul’3

IN

2n

d
(Al 19l

t
o T N

(2.105)
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where 0 < n < Hgl%. On the other hand, Multiplying the first equation in (2.82)
by 2u;, and integrating it over €2,

we get

d
T 2E®) +2a[Vu[l5 = (g"0 V) (£) = g(O)[Va(t) [5 = 2M (| Vaull3) e 5. (2.106)

Multiplying (2.105) by ¢, 0 < € < 1, and adding (2.106) together, we obtain

d .
70 + 20 = )|Vl |5 + 2¢ (01 V) — 20) || Aull3

d
< 26/ |l 2uAudx+e< M(||Vull3 )) | Vul|3

+26”f’2‘7|7“ [ ot = Dl du(r) 3 (2.107)
0
where

E(t) = 2B(1) — QG/QUtAudm +eal| Aul2 + eM(|VulP)|Vul2. (2.108)

By young’s inequality, we get

2¢ / u Audz
Q

€
< 2¢luelz + §HAUH§- (2.109)

Hence, choosing ¢ = Z and by (2.103), we see that

. 1
B (t) 2 = (Ilull3 + | Aul3). (2.110)

Let us estimate ;3 = ( (IIVull3 )) | Vu||3.

Since M € C* ([0, 00), using (2.101) and (2.110) we infer that

d
= (MO 19l

200 (|9ulf) ( [ V- Vude) [ Vull

IN

2As| Al |2 ]| V3

2p ¥(\
< 104, (h(p—?)) E(0)E*(t) = crE*(t), (2.111)
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where ¢; = 104; (l27p> E(0) and A3 = maX{M’(r), 0<r< ( 2p )E(O)}

1(p—2) l1(p—2)

Moreover, we note that

2 ‘/ lu|P~2uAudx
Q

< 2(p—1)/Q|u|p_2|Vu|2dx

< 2p = Dl 20, I Vull3g, (2.112)

where % + é =1, so that, we put §; = 1 and 0, = o0, if d = 1;
61 =1+ € (for arbitrary small ¢; > 0),if d = 2; and 0, = (%2, if d > 3.
Then, by Lemma 2.1, (2.101) and (2.110), we have

2| [ Julududs| < 2Bl(p~ 1)|Vull | Aul
Q
< e EX(D), (2.113)

p—2

where ¢s = 10B7(p—1) (=25 E(0)) 7 . Inserting (2.111) and (2.113) into (2.107),

l1(p—2)

and then integrating it over (0,t), we obtain

4 2\
B0+ 3 (mo == 1902) ["jaurlar
t
< E*(0) + / coE*(1)dr, (2.114)
0
where ¢y = c7 + ¢5. Taking n = % in (2.114), and by Gronwall’s Lemma, we
deduce
E*(t) < E*(0)e®", (2.115)
for any ¢ > 0. Therefore by Theorem 2.1, we have 7" = oo. O

Lemma 2.7. If u satisfies the assumptions of Lemma 2.5, then there exists B > 0 such

that

lull? < BE(?). (2.116)
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Proof. Using Lemma 2.1 and (2.101), we have

lully < BYIIVulls = B Vulls™ || Vul;

BY 2p
< B 2gmm) T uivdg = ol vul

< o (p%) Eb).

Let B=o (I%), then we have (2.116). O

Theorem 2.2. (Global existence and Energy decay) Suppose that (H1) and (H3) hold.
Assume I1(ug) > 0 and (2.98) holds, then the problem (2.82) admits a global solution
wifug € H*(Q) N Hy(Q) and uy; € H(Q). Moreover, we have the following decay
estimates

E(t) <ce™™ Vt>0 and €€ (0,¢],
where ¢, k and e, are positive constants.
Proof. Defining the perturbed energy by
E.(t) = E(t) + ep(t), (2.117)
where
o(t) = /Q w(t)uy(t)da, (2.118)

we can show that for € small enough, there exist two positive constants 3, and

(5 such that

BE(t) < E.(t) < BE(t). (2.119)
In fact
E(t) < E@)+5lul+ 3l
< (L+9EW) + 5B Vul?
€ 2p
< (1+e)FE(t)+ 533 (h(p—2)> E(t)
< BE(t), (2.120)
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and

S
=
%

E(t) 45||utH2 55”““3
E(t) — EHWH% — eéBfHVUH%. (2.121)

v

By choosing 0 small enough, we have

€
Et) > B(t) — sl
1 € 9

> () + (5 - 55 ) Il (2.122)

Once § is chosen, we take ¢ so small that

5
Bt > J(u(t)) + o

> BE(), (2.123)
where *81 < 1 — 5. Now taking the derivative of ¢(t) defined in (2.118) and

substituting

t
un = G(IVulPVu+adu — [ gt —7)Au(r)dr
—M([Vull3)u; + [ul"~?u, (2.124)

in the obtained expression, it results that

Pt = w2~ | Vul2 - b Vu ||2‘”+” a(Vug, Vu)
+/ t—T /Vu dxdT
M| Vul|2) (ug, 1) + [[ul . (2.125)

Adding and subtracting 2F/(¢), and taking (2.96) into account, from (2.125) we
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infer

40 = =280+ 2wl - ([ o) IVu()]2

1 2(7+1)
t) —b(l — —— K
+(g 0 Vu)(t) — b( 7+1)||VU||2

+(1 = g)Hu\lp — a(Vuy, V) = M([[Vul3) (ur, u)

v / (t—7 / Vu(r t)dadr. (2.126)
Estimate for J;, = a(Vu;, Vu). Considering Cauchy-Schwartz inequality, we
have
o’ o 1 2
[N = S IVa @)l + 5 [IVu@)]s. (2.127)
Let us estimate Jo, = M (||Vu||3) (us, u).

Noting that || Vu(#)]|3 < ll(%g)E( ) = B3 for all t > 0, we have that
M(||Vull3) <€ Vt>0, (2.128)

where { = max {M(r); r € [0, 53]}. From (2.228) we conclude that

Ehn Ol + Sl

| J2] 5
& 1
< §||Ut(7f)||% + §Bf||Vu(t)||§. (2.129)

2

Estimate J; = [f g(t — 7) [, Vu(7) - Vu(t)drdr. From assumption (H1) and

making use of the Cauchy-Schwarz inequality, we have
Jy = / (t=) [ Vu(r) - Vu(t)dzdr
— / g(t—T)/Q[Vu( ) — Va(t) + Va(t)] - Vu(t)dedr
0

(

< /Utg(t—T)|Vu(t)—Vu(7')||Vu |dmdr+</ ar ) IVu(o)l}
(ot
g(r

IN

IVuOI [ g(t = DIVatt) = u()l3dr + [ o(ryar) 19uo)3
IV + 5 lgll 0000 0 Ve @) + ([ g )Hw<>||2
SIvu(o)+ ;<g o Va)(t) + [ g(r)dr ) [Vulb) . (2.130)

IN

IN
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Utilizing Lemma 2.7 and inserting (2.227), (2.229) and (2.130) in (2.226), we

have
c) < (§+2) g+ 0+ EhIvag+ o va

p

" [(1 - 2) B- 2] B() = b1 = — ) [Vul

a
+ 0 IVut)
Then, from (2.97), (2.117), (2.118) and (2.131) we arrive at

E(t) = E'(t)+eg(t)

—(m1 = M) |fuel 3 + Ao Va3

(%23 v - (a - C;) [Vu(0)

IN

1
(-2 5(0) - ve (1= 1 ) IVl

GOl

Where)\1:§—|—2>0)\2 71 +1>0

and)\gz(l—f) —2—( 2)(2P)a—2=20—2<0.

p) \p—2
On the other hand, since

then
t
—gOIVudl = ) IVu@l3 - ([ ¢'(r)ar ) [Vu(e)
From (H1) the last inequality yields

— IOV < o) Va3 + gl | Pt

Combining (2.133) and (2.132) we conclude that

(2.131)

(2.132)

(2.133)
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B0 < (B (m - ol — (52 - 2) tgo v
1 2(v+1)
- (= G I~ e (1= ) Il
2 [600) = Kallgluriome) — 2] V(03 (2134

From (H1) we have l; = g(0) — Ki||g||£1(0,00) > 0. Defining

mq Kg 2 lg
€1 = min -
e )\1 3 O/ 2)\2 ’

we conclude by taking e € (0, ¢;] in (2.134) that
E(t) < —e(=A3)E(t).
Thus, we see that

E(t) < —e(=A3)E(1)
—As

< 3 —€E(t), Vt>0 and €€ (0,¢].
2

By the Gronwall inequality, we see that

E(t) < E(0)e ™ Vt>0 and €€ (0,¢],

where x = ’5—23 Combining with (2.119), we obtain
BLE() < E(t) < E(0)e ", Vt>0 and €€ (0,¢],
and

Et)<ce ™™ Vt>0and €€ (0,¢],

where ¢ = £
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Chapter 3

Global Existence, Uniqueness, and
Asymptotic Behavior of Solution for
the Euler-Bernoulli Viscoelastic

Equation

3.1 Introduction

This chapter is concerned with the global existence, uniqueness, and asymptotic

behavior of solution for the Euler-Bernoulli viscoelastic equation

Uy + AN2u— g x A2u+gpxAut+u =0, €0, t>0,
u(x,0) = ug(x), u(x,0)=u(x), x € 9Q, (3.1)

u=0, %=02€00 t>0,

where () is a bounded domain of R? with a smooth boundary 0f2, and v is the

unit outer normal on 0€). Here ¢, and ¢, are positive functions satisfying some
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conditions to be specified later, and
t .
goex(®) = [ gt =rx()dr, i=1.2,
0
The Eulerﬂ-Bernoullﬂ equation
utt<x7 t) + AQU(£> t) + h(ut) = f(u)> (1'7 t) < Rd X (07 OO)? (32)

describes the deflection u(z,t) of a beam (when d = 1) or a plate (when d = 2).
Where

d /d
Ay = A(Au) = > < uzzuzz> ,
1 T;T;

j=1 \i=
h and f represent the friction damping and the source respectively.

H. Lange and G. Perla Menzala [12] considered
upe(w,t) + APu(a,t) + a(t)uy(z,t) = 0 (3.3)

where v € R4, t > 0, a(t) = m( HVU(-,t)H%Q(Rd) and the real-valued function
m : [0, +00) — [1, +00) will be assumed to be of class C" satisfying the condition
m(s) > 1+sforall s > 0. They remarked that the imaginary part of the solutions

of Schrodinger’s equation
iw; = Aw +im (”V([m'lU)H%2(Rd) Rew =0,

are precisely the solutions for (3.3). Then, using Fourier transform, the existence
of global classical solutions and algebraic decay rate were proved for initial data
whose regularity depends on the spacial dimension d. Messaoudi [20] studied

the equation

(T, t) + Azu(aj, t)+ a]ut|m_2ut = b\u]p_Qu, (3.4)

!Leonhard Euler 1707-1783 mathématicien et physicien suisse
?Daniel Bernoulli 1700-1782 physicien et mathématicien suisse
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where a,b > 0, p, m > 2 and established an existence result for (3.4) and showed
that the solution continued to exist globally if m > p. When we take the vis-

coelastic materials into consideration, the model (3.2) becomes
t
wale,t) + A%ule,t) = [ gt = $)A%u(z, 5)ds + h(w) = f(w),  (35)
0

where g is so-called viscoelastic kernel. The term [ g(t —s)A?u(x, s)ds describes
the hereditary properties of the viscoelastic materials [8]. It expresses the fact
that the stress at any instant ¢ depends on the past history of strains which the
material has undergone from time 0 up to ¢.

When h = f = 0, Tatar [28] obtained the property of the energy decay of the
model (3.5). And from this, we know that the term [ g(t —s)A%u(z, s)ds, similar
to the friction damping, can cause the inhibition of the energy.

Messaoudi and Mukiawa [22] studied the fourth-order viscoelastic plate equa-
tion

¢
uy(z,1) + A%u(x,t) — /0 g(t — 8)A*u(z, s)ds = 0,

in the bounded domain Q2 = (0,7) x (—1,1) C R? with nontraditional boundary
conditions. The authors established the well-posedness of the solution and a
decay result.

Rivera et al. [26] investigated the plate model:
t
gy + A%u — o Auy + / g(t — s)A%u(s)ds = 0,
0

in a bounded domain 2 C R? with mixed boundary condition, suitable geomet-
rical hypotheses on 0f). They established that the energy decays to zero with
the same rate of the kernel g such as exponential and polynomial decay. To do
so in the second case they made assumptions on g, ¢’ and ¢” which means that
g ~ (1 +1t)7? for p > 2. Then they obtained the same decay rate for the en-

ergy. However, their approach can not be applied to prove similar results for
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1<p<2.
Cavalcanti et al. [6] investigated the global existence, uniqueness and stabiliza-

tion of energy of
t
uy + A% — / g(t — s)A%u(s)ds + a(t)u, = 0
0
where
a(t) = M (/ |Vu(x,t)|2dx> with M € C'([0, +o0)).
0

By taking a bounded or unbounded open set 2 where M (s) > my > 0 for all
s > 0, the authors showed in [6] that the energy goes to zero exponentially pro-
vided that g goes to zero at the same form.

The aim of this work is to study the global existence of regular and weak solu-
tions of problem (1) for a bounded domain, then for £ : Rt — R™ a increasing

C? function such that
£(0)=0, ¢&(0) >0, tl}grn £(t) = +oo, £'(t) <0 Vt>0. (3.6)
the solution features the asymptotic behavior

E(t) < E(0)e "® vt >0,

where E/(t) is defined in (3.38) and & is a positive constant independent of the

initial energy E(0).

3.2 Preliminaries and main results

We begin by introducing some notation that will be used throughout this work.

We define the Hilbert space

X = {u e H}(Q); A% € L*(Q)}
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Then, X is a Hilbert space endowed with the natural inner product

(u7U)X = (U’v U)Hg + <A2u7 AQU)‘

Now let us precise the hypotheses on g; and g,.

(H1) g, : RT — R* is a bounded function satisfying
gi(t) € C*(RT)NLYRY),  ¢1(0) > 0.
(H2) There exist positive constants o, o and a3 such that
—a1g1(t) < g1(t) < —aaqi(t), Vi 20,

(H3)

0<g/(t) < asgi(t), Vt=0,
(H4) g, : RT — R* is a bounded function satisfying
g2(t) € CHRY) N LYRT), g2(0) > 0.
(H5) There exist positive constants 7, and 7, such that
—mg2(t) < g5(t) < —nm2g2(t), VL >0,

(He)

11— /Ot (gl(s) + Aflgg(s)) ds =1>0,

where \; > 0 is the first eigenvalue of the spectral Dirichlet problem

A*u=XM\u inQ, u=-—=01in 09,
ov
IValls < — || Au
u ——— u .
2_\/)\—1 2
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Theorem 3.1. Assume that (H1) — (H6) hold, and that {ug,u,} belong to H3(2) x

L*(Q). Then, problem (3.1) admits a unique weak solution u in the class
u € C°([0, 00); Hi(€2)) N C([0, 00); L*(Q2)).

Moreover, for & : Rt — R* aincreasing C* function satisfying (3.6) and, if ||g1|| 11 (0,00

is sufficiently small we have for k > 0

3.3 Existence of Solutions

In this section we first prove the existence and uniqueness of regular solutions to
problem (3.1). Then, we extend the same result to weak solutions using density
arguments.
Regular solutions. Let (w;) be a Galerkin basis in X, and let V" be the subspace
generated by the first n vectors wy, ..., w,,. We search for a function

u"(t) = Zn:k:‘(t)wl(x), n=12 ..

=1

satisfying the approximate Cauchy problem

(up(t),v) + (Au"(t), Av) — /Ot g1(t — s)(Au"(s), Av)ds

-/ " oalt — 8)(Vul(s), Volds + (ul($),0) =0, YweV",  (3.7)

u"(0) = uf — up in X and u(0) = u} — u; in HZ(Q). (3.8)

By standard methods in differential equations, we can prove the existence of
solutions to the problem (3.7) — (3.8) on [0,t,) with 0 < ¢, < T. In order to
extend the solution of (3.7) — (3.8) to the whole [0, 7|, we need the following a
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priori estimate.

Estimate 1. Taking v = 2u}(¢) in (3.7), we have

CZ [l (D13 + 1 Au" @)13] + 20l (D13

—2/0 g1(t — s)Au"(s) - Au(t)dzds

-2 /Ot g2(t — s)Vu"(s) - Vui'(t)dxds = 0. 3.9
Exploiting Lemma 2.2, we obtain

—2/ g1(t —s) /Au - Auy (t)dxds

= 2o aw)@) - ([ slds) 12w o)z}
~(gh 0 Au) (1) + g (Bl A" (D)3 (310

and
—2/ ga(t — s /Vu NVl (t)dxds
= @ o vy - ([ alo)as) 19013}
~(gh 0 V") () + g2(B) |V ()13, 311
Inserting (3.10) and (3.11) into (3.9) and integrating over [0,t] C [0,T], we obtain
a1 + (1= [ gu(s)ds) 180" @)1 + (g1 0 Au) (1)
([ at)ds ) IVw @1 + (920 Var)(0) +2 [ 1up(s) s
_/Ot(g; oAu”)(s)ds+/ot/ggl(s)|Au”(s)|2dxds

—/Ot(géoVu”)(s)ds+/Ot/Qgg(s)|Vu”(s)|2d:Uds
= [luf(t)|I5 + [|Aug]|3. (3.12)

By using the fact that
t / t /
(910 ) (1) + (g2 0 Vu)(t) = [ (g0 Du)(s)ds — [ (g4 0 Vur)(s)ds

+/ /91 )| Au" (s 2dazds+/ /92 )| Vu™(s)Pdzds > 0,
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and

t t
(1= [ auts)ds ) 1aa @)1 = ([ ga(s)ds ) IV (0}
t

> (1= [ [n(s) + X n(s)] ds ) 1" (1)1

> | Au"()])5,
estimate (3.12) yields

n 2 n 2 t n 2 n 2 n||2
[l (D] + U Auw™ ()] + 2/0 lu (s)ll2ds < [luy @)z + [[Augllz. (3-13)

Taking the convergence in (3.8) into consideration, we arrive at

t
g ()13 + Ll Au™(B)]13 + 2/0 luf'(s)ll2ds < Li. (3.14)

where L; = ||u1||3 + || Auol|3.
Estimate 2. Firstly, we obtain an estimate for «},(0) in the L? norm. indeed,

setting v = u};(0) and ¢t = 0in (3.7), we obtain
g (O)113 < [1A%ug 1> + o] g (0)]]. (3.15)
From (3.8), (3.14) and (3.15), it follows that

|upp(0)]]2 < Ly, Vn €N, (3.16)
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where L, is a positive constant independent of n € N. Differentiating equation

(3.7) with respect to ¢, and setting v = u},(t), we obtain

dr1 1, . .
= Sl + S 1w @] + @)1

= —0u(0) [ A% @ de — [ [ (e = )% s 0)dsd
~02(0) [ A — [ [ gt — ) (s)u(t)dsd
— —g5(0) /Au” ()l (¢) dw—/ /tgé (t — 8)Au"(s)u(t)dsda
g OIS DI +91(0) 5 [ A(t)- du ()
jt{/ gi(t — ) /Au AUt d:z:ds} 4.0 /Au Al (t)dz

/g1 (t—s) /Au - Auy (t)dxds. (3.17)

By (H5), Holder’s inequality and Young's inequality give

¢ / Ay n <1 n 2 77%”92”[/1 ¢ Au” 2d
= Jo J, 2(t=s)Au(s)u(t)dsdr < Sllug(t)[a+—5"— | galt—s)[[Au"(s)]lzds.
(3.18)
From (3.14) we obtain

[92(0)* Ly

~0:0) [ A0yt < 3 (I + 2 (3.19)

and

i) [ ) dupdr < O (awe )3+ au0)3)

191(0)| Ly N 191(0)
= 2l 2

AR 620
From (H3) we deduce

} n 2 O%Hgl”[/l ! Au™ 2
91 (t=s)Au”(s) Ay (t)dsdw < S| Auy (t)ll+ =57 | g1(t=s)l|Au"(s)[l2ds
(3.21)
Then inserting (3.18) — (21) in (3.17) we infer that
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1 n 1 n n
Oz + 5 1Aa O < Jui(0)ll3 + |Aut]lz + Cs + 1(0 /Au - Ay (t)dx

+/ g1(t — s) /Au - Auy (t)dzds

Y NINARIE

where

2 2 /
o Amillgall | [92(0)]°Ly | [1(0)[Lq
G = [ > o Ty |t

4 [ﬂngzHLl(o,oo)ngHLOO(o,oo) 4 fX%HngLI(o,oo)|\91|\L°°(o,oo) LT

2 2 [

andC4:‘g/1¥+%.

Using Holder’s inequality, we know that, for any § > 0,

/Au ) - Au(t dx—i—/ gy (t —s) /Au - Aup(t)dzds

n [9: ()1 ( )] LA
< 28| Aup (1) + | Au ()H§+ZgHngLwo,oo)Hgll\Lw(o,oo)/O | Au”(

< 28] Awy (1)]3 +Cs,

where

. — l[gl(o)] i ] 121_

(6]
45 = HngLl 0,00) 191]] Lo (0,00) T
Combining (3.22) and (3.23) we conclude that
1 n 1 n n n
Sl @13 + (5 - 26) 18O < [ah(0)] + |Aut, 3+ Cs + Cs

! n 2
+Cy [ )1 aup(s) 3ds,

(3.22)

s)lzds

(3.23)

(3.24)

Fixing § > 0 sufficiently small so that  — 2§ > 0 in (3.24), and taking into

account (3.8) and (3.16), we get from Gronwall’s Lemma the second estimate,

(N3 + [|Aug ()] < La,

(3.25)
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where L3 is a positive constant independent of n € Nand ¢ € [0, 7.
Estimate 3. Let n; > ns be two natural numbers, and consider 2" = u™ — u"2.
Then, applying the same way as in the estimate 1 and observing that {u{ } and

{u}} are Cauchy sequence in X and HZ(Q2), respectively, we deduce
t
18 (112 + 1A="(B)]I2 + 2/0 128 (s)ll2ds — 0, as n — +o0, (3.26)

forall ¢t € [0,T].
Therefore, from (3.14), (3.25) and (3.26), we deduce that there exist a subse-

quence {u*} of {v"} and u such that

ul! — uy strongly in  C°([0,T]; L*(9)), (3.27)
u" — u strongly in  C°([0, T]; H3(2)), (3.28)
uly — uy weakly star in  L*°(0, T; L*(12)). (3.29)

The above convergences (3.27) — (3.29) are enough to pass to the limit in (3.7),

to obtain

Uy + A% — [ g1(t — s)A%u(s)ds + [3 g2(t — s)Au(s)ds +u; = 0 in  L=(0, 00; L2(R)),

uw(0) = up, u(0) = uy.

Next, we want to show the uniqueness of (3.7) — (3.8). Let u®), u(® be two
solutions of (3.7) — (3.8). Then z = u!) — u(? satisfies
t
(z1e(t),v) + (Az(t), Av) — /0 g1(t — s)(Az(s), Av)ds
t
- / gt — 8)(V2(s), Vo)ds + (z(t),0) =0, Voe HXQ), (3.30)
0
2(x,0) = z(x,0) =0, x€Q,
0z

2=0, L —0,0€00, t>0.
ov

Setting v = 22/(t) in (30), then as in deriving (3.14), we see that

Iz:(t)]l2 = | Az(t)]]2 = 0 forall ¢ e [0,T]. (3.31)
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Therefore, we have the uniqueness.
Weak solutions. Let (ugp,u;) € HZ(2) x L*(2). Then, since X x HZ() is dense
in H3(Q) x L*(2) there exists (ug,, u1,) C X x Hi($2) such that

ug, — up in HF(Q) and wy, — u; in L*(9). (3.32)

Then, for each 11 € N, there exists a unique regular solution u,, of problem (3.1)

in the class

u, € L%(0,00; H3 (), ), € L®(0,00; H3()), u), € L>(0,00; L*(12)).
(3.33)
In view of (3.33) and using an analogous argument to that in Estimate 1 and

Estimate 3, we find a sequence {u*} of solutions to problem (3.1) such that

ul — u' weak starin  L>(0,T; L*(2)), (3.34)
u” — u weak starin L>(0,T; H3 (%)), (3.35)
u" — u strongly in  C°([0, T); H3 (%)), (3.36)
ull — u; stronglyin C°([0, T]; L*(9)), (3.37)

The convergences (3.33) — (3.36) are sufficient to pass to the limit in order to

obtain a weak solution of (1) which satisfies

ug + A% — [ g1(t — s)A%u(s)ds + [i g2(t — s)Au(s)ds +u; = 0 in L?(0,00; H2(Q)),
w(0) = up, u(0) = uy.

The uniqueness of weak solutions requires a regularization procedure and can
be obtained using the standard method of Visik-Ladyzhenskaya, c.f. Lions and
Magenes [13, Chap. 3, Sec. 8.2.2].
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3.4 Asymptotic Behaviour

In this section, we discuss the asymptotic behavior of the above-mentioned

weak solutions. Let us define the energy associated to (3.1) as

Et) = ;Hut(t)Hg + ; (1 - /Ot gl(s)ds> |Au(t)||3 + ;(91 o Au)(t)
_; ( /Ot 92(5)d3> IVu(®)]3 + ;(92 o Vu)(t). (3.38)

To demonstrate our decay result, the lemmas below are essential.

Lemma 3.1. Foranyt >0

0= B < 3 lu®l + 12uOIE + (91 0 Au)(1) + (g2 0 (1)

proof. Using the fact that | Vu(t)[|2 < AT ||Au(t)]|2, we have

(1= [ o) 183 - ([ 02(r)ar ) IFu0)
> (1= [ foa(s) + X 5a(9)] ) [ Au(o)]

and according to (H6) we have E(t) > 0,

and

B = lu+ 5 18ud)l3+ 5010 Au)(t) + 3 (g2 0 Vu)(1)

_ ;{(/Otgl(s)ds> 1 Au(t)|2 + (/Ot gg(s)ds> ||Vu<t>\|3}

S [l + 18I + (01 0 M) 1) + (920 V) 1)

< =
- 2

Lemma 3.2. The energy E(t) satisfies

E(t) < a3~ goalg o Au)(t) ~ Jmg20 Vu)(t)
1

5 [91(0) = allgnll 0.} Au(D)]I5 < 0. (3.39)
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proof. Multiplying the first equation in (3.1) by u, integrating over €2, we

obtain

&[Sl + 180 ] + )13
= [ it~ D)l - A (t)dndr

t
+ [ oalt = 1)Vulr) - Vut)dudr
0
Exploiting (3.10) — (3.11) and by (H1) — (H5), we deduce

B = w3+ 560 Au)t) ~ Joa(e)|Au(t)]

45640 Vu)(t) — La(0) V(1)

IN

~n(t)1 ~ Jaalgr o Au)(t) — Sm(g2 0 V)1

~ o) Au(t) B (340)

From assumptions (H2) and since [ g} (7)dr = g1(t) — ¢1(0), we obtain

1 1 1/t
— S ®Is®IE = S @Idu - 5 ([ d)ds) [Au)?
0
1 o
< =50 O1Au(t)[3+ ll91llz .01 Au(t) 3
1
= =5 [9100) — aullgall o) 1 Au(t)]3 (3.41)

Combining (3.40) and (3.41) we conclude that

F(t) < a3~ joalg o Au)(t) ~ Smg20 Vu)(t)

1

—3 191(0) = aullgn |2 0.00) | 12813 < .
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Multiplying (3.39) by e"® (k > 0) and utilizing Lemma 3.1, we have

d 1

7 (en&(t)E(t)) < —eOB@)|Ju (1)) - 5 [91(0) — 041||gl||L1(0700)} OBt || Au(t)|)?
1 1

—§a2(gl o Au)(t)e" W E(t) — §n2(g2 o Vu)(t)e™WE(t)

+rE (t)e D E(t)

IN

L = R 0] OB (0

5 o — K€ (O] <O B() (g1 0 Au)(1)

1

— b — K ()] OB ()9 0 Tu)(¢)

1

—5 [910) = gl o) = K€ @O)] eXVE@D | Au)]3. (342)

Using the fact that ¢’ is decreasing we arrive at

C(OB0) <~ 2w (0)] S OBD) e
1

—5 [oa = wE(0)] O E(t) (g1 0 Au)(1)

5 b — K€ (O] SO B()(g2 0 Vu) (1

= [51(0) — o gt 13000) — RE(0)]

2
x e DB (t)]| Au(t)]|2. (3.43)
Choosing ||g1 |1 (0,0) sufficiently small so that

91(0) — arllgrll 1 0,00) = L > 0,
and choosing « sufficiently small in order to have
2—rE(0) >0, ar—~rE(0)>0, n—~rf0)> L—r&0)>0.

from (3.43) we arrive at
d
2 (rE()
b (eWE®) <0, t>0.

Integrating the above inequality over (0, ¢), it follows that

E(t) < E(0)e ™0 ¢ >0.
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Résumeé

Dans cette these, nous avons considéré le probleme aux dérivées partielles
de type hyperbolique (I’équation d’onde viscoélastique de Kirchhoff type et
I’équation d’Euler-Bernoulli viscoélastique) avec la présence de différents
mécanismes de dissipation. Sous quelques hypotheses sur les données
initiales, conditions sur les termes de dissipation et les termes
viscoélastiques, nous avons montré l'existence globale et le comportement

asymptotique des solutions.
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Abstract

In this thesis, we considered some hyperbolic type problems (the
viscoelastic wave equation of Kirchhoff type and the Euler-Bernoulli
viscoelastic equation) with the presence of different mechanisms of
dissipation. Under some assumptions on initial data, conditions on damping
and viscoelastic terms, we proved the global existence and asymptotic

behavior of the solutions.
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