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Chapter 1

Introduction

It is universally acknowledged that technology plays a vital role in the human life
and in many domains especially in science, so the development of technology gives
us many studies in different fields by modern and relevant measuring instruments.
In general, the observations of data in the majority of applied sciences have a
functional properties (the data are surfaces or curves for instance : electricity con-
sumption data, the spectrometric data, ...) therefore, the functional data analysis
appears to model and treat such kind of data, for an updated of references, we can
lead the reader to the monographs by Ramsay and silverman (2002, 2005), Bosq
(2000) and Ferraty and Vieu (2006).

Conditional mode, conditional quantiles and conditional median are the most
popular tools which have the feature of summarizing data. These last predictors
have a strong relationship with conditional distribution and its derivatives. In
nonprametric estimating and for functional data, Ferraty et al.(2006) introduced
the estimator model of conditional distribution and its derivatives, the authors
established the rate of convergence (almost complete convergence). This study
seems like the starting point of many studies (eg., Lacksaci et al.(2008), Ezzahrioui
and Ould-Saïd (2008), Lacksaci et al.(2012),...).

For more than decades, many papers relied on the kernel method to esti-
mate the nonparametric regression function (see : Rosenblatt (1969), Ramsay
and Dalzell (1991) and Hastie and Mallows (1993)), then Ferraty and Vieu (2000)
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generalized the kernel regression estimator of Nadaraya-Watson familiar function
where this model was adopted in many studies to find more asymptotic results
such as : the k-nearest-neighbours (k-NN) estimator is investigated by Burba et
al.(2009), convergence in L2 norm (see : Dabo-Niang and Rhomani (2003)) which
is generalized in the α-mixing case (see Delsol (2007)) and recently, Kara-Zaitri et
al. (2017) stated the uniform in bandwidth for kernel regression estimator.

When the derivatives estimator of regression come down to providing us about
the behaviour of both regression shape and regression mode, Mack and Müller
(1989) used the Nadaraya-Watson kernel estimator of the v-th (v ≥ 0) deriva-
tive of a regression function to establish some consistency results for instance :
the asymptotic normality, the asymptotic mean squared error (AMSE) also the
choice of bandwidth was discussed. M convergence of regression function estima-
tor and its derivatives was studied by Boularan et al. (1995) and we point out
that the reader can find important results in ρ-mixing case and α-mixing case by
taking the monograph by Györfi et al. (1989). In mode regression aspect, Lee
(1993) introduced the mode regression with quadratic kernel (QME)in the case
of a truncated dependent variable and Ziegler (2002) established the probability
convergence and the normality asymptotic of mode regression, this study is based
on Nadaraya-Watson kernel estimator for scalar explanatory variable X and for
the higher derivatives of regression estimator. For recent studies, we can see :
Kemp and Santos Silva (2012) and Chen et al. (2017).

However, the previous literatures used the Nadaraya-Watson techniques as es-
timation method which has some drawbacks, mainly, in the bias term. Hence, in
the functional data setup, the local linear method comes to generalize and amelio-
rate the kernel method. Actually, Baíllo and Grané (2009) proposed the first local
linear estimator model of the regression operator when the explanatory variable
takes values in a Hilbert space. When the regressors take values in semi-metric
space, Barrientos-Marin et al. (2010) introduced another version of the local lin-
ear estimator of the regression operator. This last method has been extended to
estimate the conditional distribution and its derivatives (Demongeot el al.(2013),
Rachdi et al. (2014), Demongeot el al.(2014) and Messaci et al. (2015)).

This thesis which sheds more light on the uniform asymptotic behaviours of
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both the local linear estimation of conditional cumulative distribution function and
the local linear mode regression for functional data (without forgetting the kernel
estimation of mode regression), has been organized in the following chapters :

• Chapter 2 "Statistical background and general notations for nonparametric
functional data"
In this chapter, we will deal on the statistical background and general no-
tations for nonparametric functional data so, we attempt to investigate dif-
ferent aspects which are related to join the nonparametric statistics with
functional data, as well as, the definition of nonparametric statistics for
functional data also we provide a brief definition, aims of functional data
analysis (FDA) in addition, the distinction between functional variable and
functional datasets. Moreover, to make the previous vocabulary more clear,
we selected two statistical problems (spectrometric data and phonetic data)
for more explanation and clarification we refer to the monograph of Ramsay
and Silverman (2002) and Ferraty and Vieu (2006). As the asymptotic prop-
erties need some tools and notations, we took the semi-metric as better space,
small ball probabilities as important measure in the different hypotheses on
rate of convergence (see Ferraty and Vieu (2006)). Furthermore, we use the
complete convergence notion as a tool to obtain our asymptotic results and
Bernstein’s inequality as the easiest inequality. At the end of chapter, we
present some operator models and provide them by their estimators using
local linear method and kernel method.

• Chapter 3 "Some asymptotic results linked with nonparametric estimation
for functional covariates "
What we are mainly concerned here in this chapter is the study of some
results of many papers and gives some asymptotic results. Based on the
same notations and models of previous chapter and by using two kinds of
estimation methods (the kernel method and the local linear method), the
present chapter consists of three sections; the first one tackles the main re-
lated information about the regression operator, the first part of this section
highlights the importance of the kernel method theory. More accurately,
we concentrate on the asymptotic behaviour of kernel regression estimator
for instant: the pointewise almost complete convergence, the rate of con-
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vergence and also the p-mean convergence. On the other side, the second
part gives a brief summary of main results linked with the local linear re-
gression estimator, we adopt the model of Barrientos et al.(2010) (which we
rely heavily on the last chapter) to bring the principal findings like : the rate
of pointewise almost complete convergence, the mean-squared convergence
and the asymptotic normality. For the same kind of consistency results of
the first section, we discuss the second section for the conditional cumula-
tive distribution function and the conditional density function for the last
section.

• Chapter 4 "Local linear estimation of c.d.f in the functional data: Uniform
consistency with convergence rates"
Through this chapter, we intend to spotlight on the nonparametric estima-
tion of conditional cumulative distribution function when the explanatory
variable X has a functional nature and for scalar response Y . We try to ex-
tend the results of Demongeot et al.(2014) and bearing in mind the outcome
of Demongeot et al.(2013) to get the rate of the uniform pointwise almost
complete convergence of our estimator. Hence, we adopt the model and the
estimators of Demongeot et al.(2014), also under some technical assumptions
and topological structure we state our main theorem which can be deduced
from three lemmas and one corollary. Furthermore, we provide our results by
studying the conditional mode estimation and of course the appendix section
is devoted to the lemmas’ proofs.

• Chapter 5 "Kernel estimation of mode regression for functional data"
In this chapter, we deal with the functional mode regression in order to
highlight the relationship between an explanatory functional variable X and
a scalar response Y in iid setting, moreover, we attempt to establish the
pointwise almost complete convergence and the almost complete convergence
rate of mode regression estimator by using kernel method for functional data.

The structure of this chapter is as follows : in section 1, we present our
models and estimators, under some conditions, section 2 is devoted to state
the main results. A simulation study carried out in section 3 and proofs can
be found in the last section.
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• Chapter 6 "Uniform almost complete convergence of local linear mode re-
gression"
this chapter aims to joint the merits of mode with regression function. So,
we study the derivatives of regression operator to identify the behaviour of
mode. In i.i.d. setting and for functional data, the present chapter is pro-
vided to establish the rate of uniform almost complete convergence of mode
regression by using local linear method. In this study, we attempt to extend
the results of Barrientos et al.(2010), therefore, we take the same model of
earlier authors and try to estimate the first derivative of regression operator.
Under ten conditions which are commonly used in many studies of the local
linear method for functional data we establish the main result, the theo-
rem’s proof can be deduced directly from three lemmas which proved in the
appendix section.

• Chapter 7 "Conclusion and perspectives"
The final chapter is putted forward to sum up some results gained from
our investigation and followed by some perspectives in order to improve our
research.
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Chapter 2

Statistical background and general
notations for nonparametric
functional data

In recent years, there has been an increasing interest in functional nonparamet-
ric statistics, this field of research rely mainly on some mathematical vocabulary
statistics, basic definitions and notations. So, in the sequel, we are going to fix
some notations and tools that are crucial to state the asymptotic results of the
remaining chapters. At the end of this chapter, we will introduce some model of
operators in both methods : the kernel and local linear.

2.1 Nonparametric statistics for functional data

There is general agreement that the ability of technolology developpement to col-
lect and store data leads the staticians to look at the necessity to improve statistical
methods or models ( models that are suited for curves) in order to take into account
the functional structure of this kind of data.

The appellation of functional nonparametric statistics refers to the form and
the nature of the set of constraints and the data respectively.
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In short, nonparametric derives frome the infinite dimensional feature of the
object to be estimated and functional designation comes from the infinite dimen-
sional feature of the data. For more clearly, we give the following definitions

Definition 2.1 (Ferraty and Vieu (2006))
Let X be a random vector valued in Rp and let ϕ be a function defined on Rp and
depending on the distribution of X. A model for the estimation of ϕ consists in
introducing some constraint of the form

ϕ ∈ C.

The model is called a parametric model for the estimation of ϕ if C is indexed by
a finite number of elements of R. Otherwise, the model is called a nonparametric
model.

It is clear that the previous definition makes the difference between parametric and
nonparametric models, and by extending this definition to the functional frame-
work, we can get the following definition :

Definition 2.2 (Ferraty and Vieu (2006))
Let Z be a random variable valued in some infinite dimensional space F and let ϕ
be a mapping defined on F and depending on the distribution of Z. A model for
the estimation of ϕ consists in introducing some constraint of the form

ϕ ∈ C.

The model is called a functional parametric model for the estimation of ϕ if C
is indexed by a finite number of elements of F . Otherwise, the model is called a
functional nonparametric model.

2.2 Functional data analysis (FDA)

Historically, the functional extension of the principal component analysis (PCA)
to stochastic processes is the Karhunen-Loève expansion which contributed to
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solve many problems in the engineering field for more than decade and it seems
to be the started point for all the further development of FDA. However in the
seventies, Deville (1974), Saporta (1981) and Ramsay (1982) gave the real meaning
of the actual approximation to FDA also they provided it by many applications in
many fields such as : econometrics, psychology, biology, astronomy and others (see
Valderrama (2007)) and we refer to the monographs by : Ramsay and Silverman
(1997, 2002 and 2005) also Ferraty and Vieu (2006) for an overview of this topic.
According to Ramsay and Silverman (2002 and 2005), the analysis of functional
data aims to:

1. formulate the problem at hand in a way amenable to statistical thinking and
analysis

2. develop ways of presenting the data that highlight interesting and important
features

3. build models for the data observed

4. explain variation in an outcome or dependent variable by using input or
independent variable information

In brief, functional data analysis (FDA) aims to model and treat datasets where
observations are of functional nature (i.e.FDA has the feature to extend the clas-
sical statistical models designed for vectors to the situation when the data are
functions or curves ( as indicated in Mas (2012))).

2.3 Functional variable and Functional datasets

In many different fields of applied sciences, the collected data are curves which
the computing tools, both in terms of memory and computational capacities allow
treating a large sets of data. In particular, we can observe a very large set of
variables for a single phenomenon (this was pointed out by Ferraty and Vieu
(2006)).
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To look at the above explanation in another way, a random variable X is
called functional variable (f.v) if it takes values in an infinite dimensional space
(or functional space). An observation x of X is called a functional data and the
observation x1, ..., xn of n functional variables X1, ..., Xn (identically distributed
as X) is called a functional dataset.

Obviously, Functional data are a natural extension of multivariate data from fi-
nite dimensional to infinite dimensional. “In practice, functional data are obtained
by observing a number of subjects over time, space or other continua. The result-
ing functional data can be curves (including : audiology, biology, environmentology
...), surfaces, or other complex objects”(see Zhang (2014)).

2.4 Functional data : applications on real data

Here, we will try to cover many applied statistics fields by selecting two statistical
problems (spectrometric data and phonetic data). For more extensive presentation
and a deep explanation, the interested reader can easily refer to : Ramsay and
Silverman (2002) and Ferraty and Vieu (2006).

2.4.1 Functional Chemometric data

In many types of chemical problems and for analyzing the chemical composition of
any substance, the chemical tools employed to analyze and produced data observa-
tion by chemometricians are costly, waste time and sometimes less well known to
statisticians in contrary to the spectrometry, that’s why; chemometrics appeared to
be a field of chemistry that studies the application of statistical methods to chem-
ical data analysis by providing many techniques and several new data-analytical
method to the staticians and also the engineers.

When we talk about the problem of quality control in the food industry, it is
worth mentioning the first study of Borghard and Tudberg (1992) that used the
optimal minimal neural network interpretation of spectra method (OMNIS)which
based on principal component analysis as preprocessor to a neural network. The
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partial least squares and the principal component regression are the most popular
methods used to analyze such kind of data.

The following figure plots 215 pieces of finely chopped meat (by random se-
lection), for each curve we represent the observed absorbance as function of the
wavelength, these data were obtained from recordings of a Tecator Infractec Food
and Feed Analyzer working in the wavelength range of 850-1050 nm by the near-
infrared transmission principle. These spectrometric curves are used to predict
some chemical properties for instance : the fat content and the percentage of
moisture in piece of meat.
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Figure 2.1: The Spectrometric Curves

2.4.2 Speech Recognition data

The observed data in speech recognition have a functional nature, in which they
were extracted from the TIMIT database ( as pointed out by Zue et al. (1990),
“the TIMIT database is the result of a joint effort among researchers at MIT, SRI
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International, and Texas Instruments (TI)”). In this study, we concern with five
phonemes which are transcribed as follows :

• "sh" as in "she";

• "iy" as the vowel in "she";

• "dcl" as in "dark";

• "aa" as the vowel in "dark";

• "ao" as the first vowel in "water".

The dataset of this study is extracted from 2000 speech frames of 32 ms dura-
tion, each speech frame is represented by 400 samples at a 16-kHz sampling rate,
from each speech frame, we use log-periodogram as method for casting speech data
in a suitable form for speech recognition, our data consist of 2000 log-periodograms
of length 150. For more details, we can see : Ferraty and Vieu (2006) (paragraph
2.2).

The following figure shows only 10 log-periodograms curves for each class
phoneme.
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Figure 2.2: A Sample of 10 Log-Periodograms (Curves Data) for each of the Five
Phoneme Classes

2.5 Tools and some notations

2.5.1 Semi-metric

During the last decades, distance’s notion takes an important place in all statistical
methods. Generally, the choice of the metric is not crucial in a finite dimensional
space because all the metrics are equivalent rather than in an infinite dimensional
space(“the equivalence between metrics fails ”see Ferraty and Vieu (2006)). In other
words, in the functional statistics, the metric spaces can be too restrictive and the
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choice of the metric becomes crucial. Many studies have postulated the functional
variables as random variables with values in L2([0, 1]) (e.g., Crambes et al. (2007)),
more extensively in Hilbert space (see Preda (2007), Attaoui et al.(2011), Ling and
Xu (2012)), Banach (see Cuevas and Fraiman (2004)) or metric (see Dabo-Niang
and Rhomari (2003)).

According to madani (2012) (paragraph : 1.2) : in the case of our datasets, it
seems that semi-metric spaces are better adapted than metric spaces. Indeed, we
can define a semi-metric from a projection of our functional data in low-dimensional
spaces either by realizing a functional principal component analysis of our data
(Dauxois et al. (1982), Hall and Hosseini-Nasab (2006) and Yao and Lee (2006))
or by projecting them on finite basis (wavelets, splines, ...). These reduce the
dimension of the data and thus increase the speed of convergence of the methods
used while preserving the functional nature of the data. It is well known that the
knowledge of the nature of the data function makes it possible to choose the most
appropriate basis on which we project our data. For example, we can choose the
Fourier basis if we assume that functional variable observed is periodic we refer
to the monographs by Ramsay and Silverman (1997, 2005) and Ferraty and Vieu
(2006) for an overview on the different approximation methods by projection of
functional data and for more discussion about the value of using different types of
semi-metric.

2.5.2 Small ball probabilities

The appellation small ball probabilities refers to the behaviour of the smooth-
ing parameter h (also called the bandwidth) when n tends to ∞. In fact, the
bandwidth h decreases with the size of the sample of functional variables . More
precisely, when we take n very large, h is close to zero and then B(X, h) is con-
sidered as a small and P(X ∈ B(X, h)) is a small ball probability.

In nonparametric statistics for functional variables and precisely in this dis-
sertation, we will show the importance of small ball probabilities in different hy-
potheses and on rates of convergence. Small ball probabilities are defined by

φx(h) = P(X ∈ B(X, h)),
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this function depends on the topological structure existing on the functional semi-
metric space and which is induced by the semi-metric itself. When d is a norm,
there are many probabilistic results in the literature that study these probabilities
of small balls tend to 0 (for instance : Li and Shao (2001) and Gao and Li (2007))
or in the case of seminorm (Aurzada and Simon (2007) and Laksaci (2007)), and
for further explanation and discussion about the role of small ball probabilities we
can take for instance : Ferraty et al.(2006) (paragraph : 5.1 ) also Ferraty and
Vieu (2006) (paragraph : 13.2) as references.

2.5.3 The convergence’s notions and Bernstein’s inequality

In 1947, the complete convergence conception was introduced by Hsu and Robbins
whom proved that the sequence of arithmetic means of i.i.d. random variables
(this last have a finite variance) convergences completely to the expected value of
the variables and they generalized this result for multivariate random variables.
For an updated list of references we refer to : Erdös (1949), Colomb (1984) and
Ferraty and Vieu (2006). In this thesis, we will take the almost complete conver-
gence notion as a tool to prove our asymptotic results because this tool is very
popular in nonparametric also it implies both the almost sure convergence and the
convergence in probability. Therefore, we introduce the following basic definitions

Definition 2.3 (Ferraty and Vieu (2006)
Saying (Xn)n∈N converges almost completely to some r.r.v. X, if and only if

∀ε > 0,
∑
n∈N

P(|Xn −X| > ε) <∞,

and the almost complete convergence of (Xn)n∈N to X is denoted by

lim
n→∞

Xn = X, a.co.

Definition 2.4 (Ferraty and Vieu (2006))
we say that the rate of almost complete convergence of (Xn)n∈N to X is of order
un if and only if

∃ε0 > 0,
∑
n∈N

P(|Xn −X| > ε0un) <∞,
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and we write
Xn −X = Oa.co.(un).

From many different exponential inequalities and according to our framework
study (on functional statistics), we adopt the easiest inequality which is called
Bernstein’s inequality. Let Z1, ..., Zn be independent r.r.v. with zero mean, the
next Corollary present the Bernstein’s inequality

Corollary 2.1 (Ferraty and Vieu (2006))

(i) If ∀m ≥ 2,∃Cm > 0,E|Zm
1 | ≤ Cma

2(m−1), we have

∀ε ≥ 0,P
(∣∣∣ n∑

i=1

Zi

∣∣∣ > εn
)
≤ 2 exp

{
− ε2n

2a2(1 + ε)

}
.

(ii) Assume that the variables depend on n (that is, assume that Zi = Zi,n).
If ∀m ≥ 2,∃Cm > 0,E|Zm

1 | ≤ Cma
2(m−1)
n and if un = n−1a2

n log n verifies
lim
n→∞

un = 0, we have :

1

n

n∑
i=1

Zi = Oa.co.(
√
un).

2.6 Kernel and local linear estimators

In nonparametric and for functional data, this section is devoted to introduce
some operators for instance : the regression, the conditional cumulative distribu-
tion function and the conditional density function also to provide them by their
estimators by using both the kernel method and the local linear method, further-
more we provide these operators by two functional predictors : mode regression
and conditional mode.

First of all, we try to clarify our notations by observing n independent pairs of
(Xi, Yi) for i = 1, ..., n identically distributed as (X, Y ), this last is valued in F×R,
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where F is a semi-metric space equipped with a semi-metric d ( d = |δ|). Let SF
(resp.SR) be subset of F (resp.R), and we assume that there exists a regular version
of the conditional probability of Y given X = x, which is absolutely continuous
with respect to the Lebesgue measure on R.

The regression m of Y on X is defined by :

m(x) = E[Y |X = x],

the conditional cumulative distribution function (c.d.f.) of Y given X is
defined by :

∀y ∈ R, F x(y) = P(Y ≤ y|X = x),

the conditional density function of Y given X is defined by :

∀y ∈ R, fx(y) =
∂

∂y
F x(y).

the mode regression function θ on F is

θ(x) = sup
x∈F

m(x),

and the conditional mode θf (x) is defined by :

θf (x) = arg sup
y∈SR

fx(y)

2.6.1 The regression operator

kernel regression estimator

For functional data, Delsol (2008) (paragraph : 3.2.3.1) considered that the linear
regression model as the first model was introduced and studied by : Ramsay and
Dalzell (1991), Hastie and Mallows (1993). Moreover, the "partial least square"
method of regression is generalized to functional case by Preda (1999) then Prada
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and Saporta (2002, 2004, 2005a and 2005b). In (2000), Ferraty and Vieu intro-
duced the following kernel regression estimator for being a functional extension of
Nadaraya-Watson familiar function.

m̂(x) =

n∑
i=1

YiK(h−1||x−Xi||)

n∑
i=1

K(h−1||x−Xi||)
,

as soon as ||.|| defines a seminorm
for more asymptotic results and more details about the uses of kernel method we
can refer to Ferraty and Vieu (2004, 2006). Burba et al (2009) investigated the
k-nearest-neighbors(k-NN) estimator. Dabo-Niang and Rhomani (2003) : con-
vergence in Lp norm, the asymptotic normality in the α-mixing case(see Masry
(2005)) and Delsol (2007a, 2007b) is generalized the results in Dabo-Niang and
Rhomani (2003) to dependent samples.

Local linear regression estimator

local linear regression has drawn much attention and date back to more than 20
years (for more details see : Wand and Jones (1995) for univariate or multivariate
explanatory variables). local linear regression models have been carried out when
the explanatory variable is a functional predictor by Boj et al. (2008) and Aneiros-
Pérez et al. (2011) and when the explanatory variable takes values in a Hilbert
space, the L2-convergence rate of the local linear estimate of the regression function
is stated by Baíllo and Grané (2009). However, in a semi-metric space, Barrientos-
Marinet al. (2010) propose an alternative simplified version of the local linear
estimator of the regression operator in the i.i.d. setting and they establish the rate
of the almost complete convergence of the proposed estimate. In the remainder
of this thesis, we adopt the locally modelled regression estimator of Barrientos-
Marin et al. (2010). Therefore, to construct a functional local linear estimator of
the regression operator, we consider the following minimization problem :

min
(a,b)∈R2

n∑
i=1

(Yi − a− bβ(Xi, x))2K

(
|δ(Xi, x)|

hK

)
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where : β(., .) and δ(., .) are two functions defined from F × F to R, such that:
∀ξ ∈ F , β(ξ, ξ) = 0, and d(., .) = |δ(., .)|. K is Kernel and hK = hK,n is chosen as
a sequence of positive real numbers which converges to 0 when n → ∞. Here we
denote : â by m̂ and b̂ by m̂(1) (as the estimator of the first order derivative of m).
By simple algebra, we get the following explicit solution :

m̂(x) =

n∑
i,j=1

Wi,j(x)Yj

n∑
i,j=1

Wi,j(x)

whith

Wi,j(x) = β(Xi, x)(β(Xi, x)− β(Xj, x))K(h−1
K δ(Xi, x))K(h−1

K δ(Xj, x))

More recently, findings have emerged that offers many asymptotic properties like,
the asymptotic normality of the functional local linear regression estimate (see
Zhou and Lin (2015)) and the strong convergence (with rates) uniformly in band-
width (UIB) consistency of local linear regression estimate (see Attouch et al.
(2018)), just to name a few.

2.6.2 The conditional cumulative distribution function

Kernel estimator of conditional cumulative distribution function

In the last two decades and in infinite dimensional spaces, the behaviour of kernel
type estimation of the conditional cumulative distribution function had received a
lot of attention . In (2006), Ferraty et al. have introduced the kernel type estima-
tion of some characteristics of the conditional cumulative distribution function also
the successive derivatives of the conditional density and the asymptotic properties
are established for each of these estimates. Recently, the uniform in bandwidth
consistency of conditional distribution kernel estimator has been proved by Kara-
Zaitri et al.(2017).
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The kernel conditional c.d.f. estimator is defined as follows :

F̂ x(y) =

n∑
i=1

K(h−1d(x,Xi))H(h−1
H (y − Yi))

n∑
i=1

K(h−1d(x,Xi))

,

where : H is a c.d.f and hH is a strictly positive real number (depending on n)

Local linear estimator of conditional cumulative distribution function

The trick of obtaining the estimator of conditional cumulative distribution function
by local linear method is to take the function F x(.) as a regression model with
the response variable H(h−1

H (. − Yi)), where H is some cumulative distribution
function and (hH = hH,n)is a sequence of positive real numbers (see Fan and
Gijbels (1996)and Demongeot et al.(2014)). we can summarize this idea by the
following motivation :

E[H(h−1
H (y − Yi))|Xi = x]→ F x(y) as hH → 0

the construction of functional local linear estimator of the conditional distribution
function was based on the minimization of the following equation

min
(a,b)∈R2

n∑
i=1

(H(h−1
H (y − Yi))− a− bβ(Xi, x))2K

(
δ(Xi, x)

h

)
then, our estimator is explicitly defined by :

F̂ x(y) =

n∑
i=1

Wi,j(x)H(h−1
H (y − Yi))

n∑
i=1

Wi,j(x)

,

where

Wi,j(x) = β(Xi, x)(β(Xi, x)− β(Xj, x))K(h−1
K δ(Xi, x))K(h−1

K δ(Xj, x)).

In this context, Demongeot et al.(2014) stated the almost-complete and L2-consistency
of F̂ x(y) (with rates) and they invested their asymptotic results to discuss some
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statistical problems such as the choice of the smoothing parameters and the deter-
mination of confidence intervals. Until lately, Bouanani et al.(2019) considered the
asymptotic normality of the local linear estimator of the conditional cumulative
distribution in the i.i.d. setting.

2.6.3 The conditional density function

Kernel estimator of conditional density function

In statistical analysis for functional data and in the independent and identically
distributed (i.i.d.) case, the first detailed study of conditional density and its
derivatives was introduced by Ferraty et al. (2006). They established the asymp-
totic properties (the almost complete consistency ) of the kernel estimator of the
conditional density function and the asymptotic normality was stated by Ezzahri-
oui and Ould Saïd (2008).These results have been extended to dependent data by
Ezzahrioui and Ould Saïd (2010). The kernel type estimator of conditional density
is introduced by

f̂x(y) =

h−1
H

n∑
i=1

K(h−1d(x,Xi))H(h−1
H (y − Yi))

n∑
i=1

K(h−1d(x,Xi))

this kernel model has been employed to establish the rate of the uniform almost
complete convergence (see Ferraty et al.(2010)).Furthermore, the previous estima-
tor has been extended when the observations are linked with a single-index struc-
ture such as the pointwise and the uniform almost complete convergence (with the
rate) (see Attaoui et al.(2011)) and in the α-mixing functional data (see Ling and
Xu (2012)).

Local estimator of conditional density function

In this part, we adopt the fast functional local modelling by minimizing the fol-
lowing quantity to estimate the conditional density of a scalar response variable



2.6. KERNEL AND LOCAL LINEAR ESTIMATORS 30

given a random variable taking values in a semi-metric space

min
(a,b)∈R2

n∑
i=1

(h−1
H H(h−1

H (y − Yi))− a− bβ(Xi, x))2K

(
δ(Xi, x)

h

)
and we get the following expression :

f̂x(y) =

n∑
i=1

Wi,j(x)H(h−1
H (y − Yi))

hH

n∑
i=1

Wi,j(x)

,

where

Wi,j(x) = β(Xi, x)(β(Xi, x)− β(Xj, x))K(h−1
K δ(Xi, x))K(h−1

K δ(Xj, x))

this model was introduced by Demongeot et al.(2013) also they established both
the pointwise and the uniform almost-complete consistencies with convergence
rates of the conditional density estimator.Moreover, the quadratic error in the
local linear estimation of the conditional density was introduced by Rachdi et
al. (2014)( with some comments and discussions like bandwidths selection and
confidence intervals.), recently, the joint asymptotic normality of the estimators of
the conditional density and its derivative is established in the α-mixing setup by
Xiong et al. (2018) and in the i.i.d. setting by Bouanani et al.(2019).
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Chapter 3

Some asymptotic results linked with
nonparametric estimation for
functional covariates

To date, the asymptotic properties take an important attention to clarify the
asymptotic behaviour of many model estimates. The current chapter is mainly
focuses on nonparametric functional data framework in which we attempt to sum-
marize some results of many papers for each of : regression, conditional cumula-
tive distribution function and conditional density, also we provide them by their
stochastic mode of convergence, this latter comes under technical assumptions.

3.1 Regression

To update our information and give a right image of regression, this section is
devoted to give some important results for both methods : kernel and local linear
which help us to describe the asymptotic behaviour of our operator.
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3.1.1 Kernel regression

Through this paragraph, we adopt the following kernel regression estimator of the
regression operator m

m̂(x) =

n∑
i=1

YiK(h−1d(x,Xi))

n∑
i=1

K(h−1d(x,Xi))

,

for making the previous model more flexible and easy to treat, Ferraty and Vieu(2006)
putted forward the next technical conditions
Assumptions and asymptotic behaviour :

(H1) for all ε > 0, P(X ∈ B(x, ε)) = φx(ε) > 0.

To introduce the pointewise almost complete convergence, we need the fol-
lowing continuity-type hypothesis :

(H2C) m ∈
{
f : F → R, lim

|δ(x,x′)|→0
f(x′) = f(x)

}
,

furthermore, the next Lipschitz-type constraint allows us to find the rate of
convergence

(H2L) m ∈
{
f : F → R,∃C ∈ R+, x

′ ∈ F , |f(x)− f(x′)| < C|δ(x, x′)|β
}
,where β ≥

0.

(H3) the bandwidth h is a positive sequence such that
lim
n→∞

h = 0 and lim
n→∞

log n/nφx(h) = 0

(H4) K is a kernel of type I
or K is a kernel of type II and φx(.) satisfies

∃C3 > 0, ∃ε0, ∀ε < ε0,

∫ ε

0

φx(u)du > C3εφx(ε).

(H5) ∀m ≥ 2,E[|Y m||X = x] < σm(x) <∞ with σm(.) continuous at x.
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Theorem 3.1 Ferraty and Vieu(2006)
under (H1), (H2C) and (H3)-(H5), we get

lim
n→∞

m̂(x) = m(x), a.co.

Theorem 3.2 Ferraty and Vieu(2006)
Under assumptions (H1), (H2L) and (H3)-(H5), we obtain

m̂(x)−m(x) = O(hβ) +Oa.co.

(√
log n

nφx(h)

)
.

By using an easy changes in our notations like Bx
hn

is the closed ball and µ is the
law of the functional variable X, for p ≥ 1 and under general assumptions, the
next paragraph is tackled to study the p-mean convergence (of m̂) that is realized
by Dabo-Niang and Rhomari (2003).

Assumptions and asymptotic behaviour :

(M1) There exists r, a and b > 0 such that

a1{|u|≤r} ≤ K(u) ≤ b1{|u|≤r}.

(M2) hn → 0 and lim
n→∞

nµ(Bx
rhn) =∞,

(M3) lim
h→0

1

µ(Bx
h)

∫
Bxh

|m(w)−m(x)|pdµ(w) = 0.

(M4) E
[
|Y −m(X)|p|X ∈ Bx

rhn

]
= o([nµ(Bx

rhn
)]p/2).

(M5) We suppose that m is "p-mean Lipschitzian ", of parameters 0 < τ = τx ≤ 1

and cx > 0, in a neighborhood of x :

1

µ(Bx
h)

∫
Bxh

|m(w)−m(x)|pdµ(w) ≤ cxh
pτ , when h→ 0.
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Theorem 3.3 the p-mean convergence (Dabo-Niang and Rhomari (2003))
(i) under (M1)-(M4) and if E(|Y |p) <∞, we have

E(|m̂(x)−m(x)|p) −−−→
n→∞

0

(ii) In addition, if E
[
|Y −m(X)|p|X ∈ Bx

rhn

]
= O(1), E(|Y |p) < ∞ with p ≥ 2

and (M1), (M2) and (M5) are fulfilled, then we have

E (|m̂(x)−m(x)|p) = O

(
hpτn +

(
1

nµ(Bx
rhn

)

)p/2)
.

3.1.2 Local linear regression

In Hilbertian space, Baíllo and Grané (2009) considered the regression problem
with an explanatory functional variable X taking values in L2[0, 1] and a scalar
response Y . Let (Xi, Yi)i=1,...,n be n independent pairs, identically distributed as
(X, Y ). Baíllo and Grané (2009) presented the following minimization to get m̂ :

n∑
i=1

(Yi − (a+ < b,Xi − x >))2Kh(||Xi − x||). (3.1)

Where : Kh(.) := h−1K(./h), h = hn, b = b(x) ∈ L2[0, 1]and <,> is the L2[0, 1]

inner product.
Once the value â of a minimizing (3.1) is the local linear estimator (m̂LL(x)) of
m(x).
In order to reduce the dimension of parameter b, they used an orthonormal basis
{φj}j≥1 of L2[0, 1],

b =
J∑
j=1

bjφj and Xi − x =
J∑
j=1

cijφj

with
bj =< b, φj > and cij =< Xi − x, φj > .

the local linear estimator of m(x) is :

m̂LL(x) = â =t e1(tCWC)−1 tCWY (3.2)
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where : e1 is the (J + 1)× 1 vector having 1 in the first entry and 0’s in the rest,
Y =t (Y1, ..., Yn), W = diag(Kh(||X1 − x||), ..., Kh(||Xn − x||)) and

C =


1 c11 ... c1J

1 c21 ... c2J

...
...

1 cn1 ... cnJ

 .

In order to study the asymptotic behaviour of m̂LL(x) and to establish the next
theorem, Baíllo and Grané (2009) introduced the following conditions
Assumptions and asymptotic behaviour :

(A1) The kernel K : R→ R+ satisfying
∫
K = 1 is a kernel of type I

(A2) ∀ε > 0, the small ball probability φx(.) satisfies φx(ε) := P(||X−x|| < ε) > 0.

(A3) With probability one, any trajectory X(., ω) of X has derivative of ν-th
order which is uniformly bounded on [0, 1] by a constant independent of ω.

(A4) The ν-th order derivative of the element x exists and is uniformly bounded
on [0, 1].

(A5) The regression function m is differentiable in a neighbourhood of x and twice
differentiable at x with continuous second derivative,and also the bandwidth
h satisfies :
h→ 0 and lim

n→∞
nφx(h) =∞

Theorem 3.4 Baíllo and Grané (2009)
Let the assumptions (A1)-(A5) hold, then

E[(m̂LL(x)−m(x))2|X] =
(
O(J−ν) +Op(h

2)
)2

+Op

(
(nφx(h))−1

)
.

However, in a semi-metric space, Barrientos et al.(2010) putted forward another al-
ternative version of the local linear estimator of the regression operator (as pointed
out in previous chapter paragraph : 1.6.1).
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Assumptions and asymptotic results
In the i.i.d. setting, Barrientos et al.(2010) stated the pointewise almost complete
convergence and the rate of convergence of the proposed estimate, for this reason,
they gave these a crucial hypotheses which are :

(H1) φx(u1, u2) := P(u1 ≤ δ(X, x) ≤ u2), and ∀u > 0, φx(u) := φx(0, u) > 0.

Where : φx(u) is the probability of a ball of F centered at x and of radius
u, when u tends to 0, it is clear that φx(u) is called small ball probability
function.
To introduce the rate of pointewise almost complete convergence, we need
the following Lipschitz-type constraint

(H2) m ∈ {f : F → R,∃C ∈ R+, x
′ ∈ F , |f(x)− f(x′)| < C|δ(x, x′)|v} ,where v ≥

0.

(H3) there exists 0 < M1 < M2 and ∀x′ ∈ F ,

M1|δ(x, x′)| ≤ |β(x, x′)| ≤M2|δ(x, x′)|.

(H4) The kernel function K : is a positive function and differentiable on its
support[0, 1].

(H5) lim
n→∞

h = 0 and lim
n→∞

log n/nφx(h) = 0.

(H6) The behaviour of the bandwidth h is :

∃n0,∀n > n0,
1

φx(h)

∫ 1

0

φx(zh, h)
d

dz
(z2K(z))dz > C > 0

(H7) The local expectation of β satisfies : h
∫
B(x,h)

β(u, x)dP (u) = o
( ∫

B(x,h)
β2(u, x)dP (u)

)
.

(H8) For all k ≥ 2, σk : x→ E[Y k|X = x] is a continuous operator.

Theorem 3.5 Barrientos et al.(2010)
Under (H1)-(H8), we get

m̂(x)−m(x) = O(hv) +Oa.co.

(√
log n

nφx(h)

)
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In the same framework of locally modelled regression estimator for functional data,
Zhou and Lin (2015) established the mean-squared convergence and asymptotic
normality for the estimator. Hence, they adopted the following regression estima-
tor :

m̂(x) =

n∑
i=1

n∑
j=1

wijYj

n∑
i=1

n∑
j=1

wij

=

n∑
j=1

WjKjYj

n∑
j=1

WjKj

,

with
wij = βi(βi − βj)KiKj,Wj =

∑n
i=1(wij/Kj) =

∑n
i=1 β

2
iKi − (

∑n
i=1 βiKi)βj

Assumptions and asymptotic results
for any fixed x ∈ F , Zhou and Lin (2015) imposed these conditions :

(H.1) ∀r > 0, φx(r) = P(|δ(X, x)| ≤ r). Furthermore, there exists a function Φx(u)

such that
lim
h→0

φx(uh)

φx(h)
= Φx(u),∀u ∈ [0, 1].

(H.2) m and σ2 are both in the set{
f : F → R, lim

|δ(x′,x)|→0
f(x′) = f(x)

}
.

(H.3) Denoting that B(x, r) = {x′ ∈ F : |δ(x, x′)| ≤ r} and Px(z) is the probability
distribution of x. The bi-functional operator β is such that :

(H.3.1) ∃0 < C1 < C2,∀x′ ∈ F , C1|δ(x, x′)| ≤ |β(x, x′)| ≤ C2|δ(x, x′)|;

(H.3.2) sup
x∈B(x,r)

|β(u, x)− δ(u, x)| = o(r);

(H.3.3) h
∫
B(x,h)

β(u, x)dPx(u) = o(
∫
B(x,h)

β2(u, x)dPx(u)).

(H.4) The kernelK is supported on [0, 1] and has a continuous derivativeK ′(s) < 0

for s ∈ [0, 1) and K(1) > 0.

(H.5) lim
n→∞

h = 0 and lim
n→∞

nφx(h) =∞.
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Before giving the asymptotic results, authors gave us some notations; so, they
denoted that:

Mj = Kj(1)−
∫ 1

0

(Kj(u))′Φx(u)du, where j = 1, 2;

N(a, b) = Ka(1)−
∫ 1

0

(ubKa(u))′Φx(u)du, ∀a > 0 and b = 2, 4;

on the other hand , we can take m̂ as :

m̂(x) = m̂1(x)/m̂0(x) with m̂l(x) =
1

nE(W1K1)

n∑
j=1

WjKjY
l
j , for l = 0, 1;

and
Bn(x) = E[m̂1(x)]−m(x) =

E(W1K1Y1)

E(W1K1)
−m(x)

=
E(β2

1K1).E[K1(m(x1)−m(x))]− E(β1K1).E[β1K1(m(x1)−m(x))]

E(β2
1K1).E(K1)− E2(β1K1)

.

Theorem 3.6 Mean-squared convergence (Zhou and Lin (2015) )
under (H.1)-(H.5), we have that

E[m̂(x)]−m(x) = Bn(x) +O

(
1

nφx(h)

)
and

Var[m̂(x)] =
1

nφx(h)

M2

M2
1

σ2(x) + o

(
1

nφx(h)

)

Theorem 3.7 Asymptotic normality (Zhou and Lin (2015))
under (H.1)-(H.5), we have that√

nφx(h)(m̂(x)−m(x)−Bn(x))
d−→ N

(
0,
M2

M2
1

σ2(x)

)
.

3.2 Conditional distribution function

To open more our appetite about the uses of kernel method and local method,
this section provides an overview about the behaviour of conditional cumulative
distribution function which has great statistical merits.
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3.2.1 Kernel conditional distribution function estimator

We mainly spotlight on the study of Ferraty et al.(2006) to introduce the rate of
pointwise almost complete convergence of the functional kernel estimator of the
conditional cumulative distribution function F x(y), which was defined in previous
chapter paragraph (1.6.2).
For x ∈ F and ∀y ∈ R, the conditional cumulative distribution function of Y given
X = x is defined by :

F x(y) = P(Y ≤ y|X = x),

moreover, we assume that F x is absolutely continuous with respect to the Lebesgues
measure on R.

Hereinafter, we denote by : Nx is a fixed neighborhood of x and SR is a fixed
compact subset of R and we introduce the following conditions to give the rate of
pointwise almost complete convergence of our estimator (see Ferraty et al.(2006)).

Assumptions and asymptotic results

(H1) for all ε > 0,P(X ∈ B(x, ε)) = φx(ε) > 0.

(H2) ∀(x1, x2) ∈ N2
x , ∀(y1, y2) ∈ S2

R,

|F x1(y1)− F x2(y2)| ≤ Cx(d(x1, x2)b1 + |y1 − y2|b2)

(H3)

∀(y1, y2) ∈ R2, |H(y1)−H(y2)| ≤ C|y1 − y2|,∫
|t|b2H(1)(t)dt <∞.

(H4) The kernel K is a function with support (0, 1) such that

0 < C1 < K(t) < C2 <∞.

(H5) hK is a positive sequence such that

lim
n→∞

hK = 0 and lim
n→∞

log n/nφx(hK) = 0

(H6) hH is positive sequence such that

lim
n→∞

hH = 0 with lim
n→∞

nαhH =∞, for some α > 0
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Theorem 3.8 (Ferraty et al.(2006))
under (H1)-(H6), we obtain that

sup
y∈SR

|F x(y)− F̂ x(y)| = O(hb1K) +O(hb2H) +Oa.co.

(√
log n

nφx(hK)

)

3.2.2 Local linear estimation of conditional distribution func-
tion

We are going to adopt the model of the conditional cumulative distribution func-
tion estimator with local linear estimation method which is proposed by Demon-
geot et al.(2014) (see the previous chapter paragraph (1.6.2)). In what follows,
we are going to give some asymptotic results that related to the behaviour of our
estimator.

Assumptions and asymptotic results

(H1) ∀r > 0, φx(r) := φx(−r, r) > 0.

(H2) The conditional cumulative distribution function F x satisfies : there exist
b1 > 0, b2 > 0, ∀(y1, y2) ∈ SR × SR,∀(x1, x2) ∈ Nx ×Nx

|F x1(y1)− F x2(y2)| ≤ C(db1(x1, x2) + |y1 − y2|b2).

(H3) The function β(., .) is such that:

∀z ∈ F , C1d(x, z) ≤| β(x, z) |≤ C2d(x, z)

where C1 > 0, C2 > 0, and d(x, z) = |δ(x, z)|.

(H4) K is a positive, differentiable function with support (−1, 1).

(H5) The kernel H is a differentiable function, such that:∫
|t|b2H(1)(t)dt <∞.
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(H6) The bandwidth hk is such that : there exists a positive integer n0, such that
∀n > n0

− 1

φx(hK)

∫ 1

−1

φx(zhK , hK)
d

dz
(z2K(z))dz > C3 > 0

lim
n→∞

log n

nφx(hK)
= 0;

and
hK

∫
B(x,hK)

β(u, x)dP (u) = o

(∫
B(x,hK)

β2(u, x)dP (u)

)
where B(x, r) denotes the closed-ball and dP (x) is the cumulative distribu-
tion of X.

Theorem 3.9 The rate of almost complete convergence(Demongeot et al.(2014))
under (H1)-(H6), we obtain that:

|F̂ x(y)− F x(y)| = O(hb1k + hb2H) +Oa.co

(√
log n

nφx(hK)

)

In this part, we are going to introduce the study of Demongeot et al.(2014), in
which they studied the L2-consistency of F̂ x(y), to do that, they proposed for any
l ∈ {0, 2} :

ψl(x, y) =
∂lF x(y)

∂yl
and Ψl(s) = E[ψl(X, y)− ψl(x, y)|β(x,X) = s],

BH(x, y) =
1

2

∂2F x(y)

∂y2

∫
t2H(1)(t)dt,

BK(x, y) =
1

2
Ψ2

0(0)

(
K(1)−

∫ 1

−1
(u2K(u))′τx(u)du

)
(
K(1)−

∫ 1

−1
K ′(u)τx(u)du

) + o(h2
K),

and

VHK(x, y) = F x(y)(1− F x(y))


(
K2(1)−

∫ 1

−1
(K2(u))′τx(u)du

)
(
K(1)−

∫ 1

−1
(K(u))′τx(u)du

)2

 .
and they set the following hypotheses
Assumptions and asymptotic results
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(M1) The hypothesis (H1) is fulfilled and there exists a function τx(.) such that :

∀t ∈ (−1, 1), lim
hK→0

φx(thK , hK)

φx(hK)
= τx(t).

(M2) For any l ∈ {0, 2}, the quantities Ψ
(2)
l (0) exist, where Ψ

(k)
l denotes the kth

order derivative of Ψl.

(M3) The function β(., .) satisfies (H3) and :

sup
u∈B(x,r)

|β(u, x)− δ(u, x)| = o(r).

(M4) The condition (H4) holds, and the first derivative of the kernel K satisfies :

K2(1)−
∫ 1

−1

(K2(u))
′
τx(u)du > 0.

(M5) The kernel H satisfies (H5) and its first derivative H(1) is symmetric and
such that: ∫

t2H(1)(t)dt <∞

Theorem 3.10 Demongeot et al.(2014) Under assumptions (M1)-(M5) and (H6),
we have that

E
[
F̂ x(y)− F x(y)

]2

= B2
H(x, y)h4

H+B2
Kh

4
K+

VHK(x, y)

nφx(hK)
+o(h4

H+h4
K)+o

(
1

nφx(hK)

)
.

Under the previous assumptions and notations, Bouanani et al (2019) established
the asymptotic normality of the local linear estimator of the conditional cumulative
distribution function in iid case.

Theorem 3.11 Bouanani et al (2019)
Assume that : hK → 0, hH → 0. Under (M1), (H2), (M3),(M4), (H5) and (H6)
we have √

nφx(hK)
(
F̂ x(y)− F x(y)−Bn(x, y)

)
D−→ N (0, VHK(x, y))
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where

Bn(x, y) =
E[F̂ x

N(y)]

E[F̂ x
D]
− F x(y),

F̂ x
N(y) =

1

nE(∆1K1)

n∑
j=1

∆jKjHj and F̂ x
D =

1

nE(∆1K1)

n∑
j=1

∆jKj,

with

∆j =
n∑
i=1

β2
iKi −

(
n∑
i=1

βiKi

)
βj

3.3 The conditional density

To satisfy our curiosity and show more asymptotic results, this present section is
organized to present the conditional density function’s results.

3.3.1 Kernel conditional density function estimator and its
derivatives

Through this paragraph, we will study the problem of the conditional density func-
tion estimator’s behaviour; therefore, in this investigation we can be based on the
results of Ferraty et al.(2006) and Laksaci (2007).
Ferraty et al.(2006) introduced the following Kernel type estimators for the suc-
cessive derivatives of the conditional density :

f̂x(j)(y) =
h−j−1
H

∑n
i=1K

(
h−1
K d(x,Xi)

)
H(j+1)

(
h−1
H (y − Yi)

)∑n
i=1K

(
h−1
K d(x,Xi)

) .

Assumptions and asymptotic results
To get the rate of almost-complete convergence of the functional kernel estimator
f̂x(j), the previous model satisfies these conditions (see Ferraty et al.(2006)) :

(H1) for all ε > 0,P(X ∈ B(x, ε)) = φx(ε) > 0.
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(H2) ∀(x1, x2) ∈ N2
x ,∀(y1, y2) ∈ S2

R,

|fx1(j)(y1)− fx2(j)(y2)| ≤ Cx(d(x1, x2)b1 + |y1 − y2|b2)

(H3)

∀(y1, y2) ∈ R2, |H(y1)−H(y2)| ≤ C|y1 − y2|,∫
|t|b2H(1)(t)dt <∞.

(H4) The kernel K is a function with support (0, 1) such that

0 < C1 < K(t) < C2 <∞.

(H5) hK is a positive sequence such that

lim
n→∞

hK = 0 and lim
n→∞

log n

nh2j+1
H φx(hK)

= 0.

(H6) hH is positive sequence such that
lim
n→∞

hH = 0 with lim
n→∞

nαhH =∞, for some α > 0

(H7)


∀(y1, y2) ∈ R2, |H(j+1)(y1)−H(j+1)(y2)| ≤ C|y1 − y2|,

∃ν > 0,∀j′ ≤ j + 1, lim
y→∞
|y|1+ν |H(j+1)(y)| = 0,

H(j+1)is bounded

Theorem 3.12 the rate of almost-complete convergence (Ferraty et al.(2006))
Under the hypotheses (H1)-(H7), we get

sup
y∈SR

|f̂x(j)(y)− fx(j)(y)| = O(hb1K) +O(hb2H) +O

(√
log n

nh2j+1
H φx(hK)

)
, a.co.

And for more statistic results, Laksaci (2007) stated the mean square convergence
from next additional hypotheses
Assumptions and asymptotic results

(M1) ∀r > 0, the random variable Z = r−1(x −X) is absolutely continuous with
respect to the measure µ. Its density g(r, x, v) is strictly positive on B(0, 1)

such that :

g(r, x, v) = φ(r)h(x, v) + o(φ(r)) for all v ∈ B(0, 1),
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where : φ is an increasing function within R+, h : F × F → R+ and

0 <

∫
B(0,1)

h(x, v)dµ(v) <∞.

(M2) The kernel H is a positive, bounded, integrable, symmetric and :∫
H(t)dt = 1 and

∫
t2H(t)dt <∞.

(M3) lim
n→∞

hK = 0, lim
n→∞

hH = 0 and lim
n→∞

nhHφ(hK) =∞.

Theorem 3.13 mean square convergence (Laksaci (2007))
if fx ∈ C2

B(F × R) and under hypotheses (M1)-(M3) and (H4), we have that

E
[
f̂x(y)− fx(y)

]2

= B2
H(x, y)h4

H +B2
K(x, y)h4

K + VHK(x,y)
nhHφx(hK)

+o(h4
H + h2

K) + o
(

1
nhHφx(hK)

)
with

BH(x, y) = 1
2
∂2fx(y)
∂y2

∫
t2H(t)dt, BK(x, y) =

∫
B(0,1)

K(||v||)Dxf
x(y)[v]h(x, v)dµ(v)∫

B(0,1)

K(||v||)h(x, v)dµ(v)

VHK(x, y) = (fx(y))

(∫
B(0,1)

K(||v||)h(x, v)dµ(v)

)−2(∫
B(0,1)

K2(||v||)h(x, v)dµ(v)

)∫
H2(t)dt

where Dx is the derivative with respect to x.

3.3.2 Local linear estimation of conditional density

According to Demongeot et al.(2013), we will present both the pointwise and the
uniform almost-complete consistencies with convergence rates of the conditional
density estimator.
Assumptions and asymptotic results
At the beginning of this part, we try to introduce the rate of almost-complete
convergence which established by Demongeot et al.(2013) under the following con-
straints :
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(H1) ∀r > 0, φx(r) := φx(−r, r) > 0.

(H2) The conditional distribution function fx is such that : there exist b1 >

0, b2 > 0, ∀(y1, y2) ∈ SR × SR, ∀(x1, x2) ∈ Nx ×Nx

|fx1(y1)− fx2(y2)| ≤ Cx(d
b1(x1, x2) + |y1 − y2|b2),

Cx is a positive constant depending on x.

(H3) The function β(., .) is such that :

∀z ∈ F , C1d(x, z) ≤ |β(x, z)| ≤ C2d(x, z),

where C1 > 0 C2 > 0, and d(x, z) = |δ(x, z)|.

(H4) K is a positive, differentiable function with support (−1, 1).

(H5) The kernel H is a positive, bounded and Lipschitzian continuous function,
such that : ∫

|t|b2H(t)dt <∞ and
∫
H2(t)dt <∞.

(H6) The bandwidth hk satisfies : ∃n0 ∈ N , such that :

∀n > n0,−
1

φx(hK)

∫ 1

−1

φx(zhK , hK)
d

dz
(z2K(z))dz > C3 > 0,

and

hK

∫
B(x,hK)

β(u, x)dP (u) = o

(∫
B(x,hK)

β2(u, x)dP (u)

)
,

where B(x, r) denotes the closed-ball and dP (x) is the cumulative distribu-
tion of X.

(H7) The bandwidth hH is such that : for some γ > 0

lim
n→∞

nγhH =∞ and lim
n→∞

lnn

nhHφx(hK)
= 0.
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Theorem 3.14 rate of pointwise almost complete convergence(Demongeot et al.(2013))
Under (H1)-(H7), we obtain

sup
y∈SR

|f̂x(y)− fx(y)| = O(hb1k + hb2H) +O

(√
lnn

nhHφx(hK)

)
a.co.

As the uniform almost-complete convergence require some additional tools and
topological conditions,hence, Demongeot et al.(2013) exhibited the next conditions
Assumptions and asymptotic results

(H1′) There exists a differentiable function φ(.), such that:
∀x ∈ SF , 0 < Cφ(h) ≤ φx(h) ≤ C

′
φ(h) <∞ and ∃η0 > 0,∀η < η0, φ

(1)(η) <

C.

(H2′) The conditional density function fx is such that: ∀(y1, y2) ∈ SR×SR,∀(x1, x2) ∈
SF × SF

|fx1(y1)− fx2(y2)| ≤ C(db1(x1, x2) + |y1 − y2|b2),

C is strictly positive constant.

(H3′) Under condition (H3) and, for some strictly positive constant C ′ , the function
β(., .) satisfies the following Lipschitz’s condition:

∀(x1, x2) ∈ SF × SF : |β(x1, x
′
)− β(x2, x

′
)| ≤ C

′
d(x1, x2).

(H4′) The condition (H4) is satisfied and, for some strictly positive constant C,
the kernel K satisfies the following Lipschitz’s condition:

|K(x)−K(y)| ≤ C||x| − |y||.

(H5′) For rn = O
(

lnn
n

)
, and for some γ ∈ (0, 1), limn→∞ n

γhH = ∞ the sequence
dn satisfies :

(lnn)2

n1−γφ(hk)
< ln dn <

n1−γφ(hk)

lnn
,

and:
∞∑
n=1

n
(3γ+1)

2 d1−β
n <∞, for some β > 1.
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Theorem 3.15 rate of uniform almost complete convergence (Demongeot et al.(2013))
Under assumptions (H1′)-(H5′), (H5) and (H6), we have that

sup
x∈SF

sup
y∈SR

|f̂x(y)− fx(y)| = O(hb1k + hb2H) +Oa.co

(√
ln dn

n1−γφ(hK)

)
.

On the other side, Rachdi et al.(2014) set for some l ∈ {0, 2}

ψl(., y) =
∂lfx(y)

∂yl

and Ψl(s) = E[ψl(X)− ψl(x)|δ(x,X) = s].

Before giving the mean square convergence, we take care to our model by giving
the following hypotheses (see Rachdi et al.(2014))
Assumptions and asymptotic results

(M1) ∀r > 0, φx(r) := φx(−r, r) > 0 and there exists a functionτx(.)such that

∀t ∈ (−1, 1), lim
h→0

φx(−h, th)

φx(h)
= τx(t).

(M2) For l ∈ {0, 2}, the quantities Ψ′l(0) and Ψ′′l (0) exist.

(M3) The function β(., .) satisfies (H3), the second part of (H6) and the following
condition :

sup
u∈B(x,r)

|β(u, x)− δ(u, x)| = o(r).

(M4) K is a positive, differentiable function which is supported within (−1, 1).Its
derivative K ′ satisfies K ′(t) < 0, for −1 ≤ t < 1, and K(1) > 0.

(M5) The kernel H is a positive, integrable, bounded, symmetric and :∫
H(t)dt = 1 and

∫
t2H(t)dt <∞

(M6) The bandwidths hK and hH satisfy: lim
n→∞

hK = 0, lim
n→∞

hH = 0.

Moreover, lim
n→∞

nhHφ(hK) =∞.
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Theorem 3.16 mean square convergence (Rachdi et al.(2014))
Under hypotheses (M1)-(M6), we have that

E
[
f̂x(y)− fx(y)

]2

= B2
H(x, y)h4

H +B2
K(x, y)h4

K

+ VHK(x,y)
nhHφx(hK)

+ o(h4
H + h2

K) + o
(

1
nhHφx(hK)

)
with

BH(x, y) =
1

2
ψ2(x, y)

∫
t2H(t)dt

BK(x, y) =
1

2
Ψ′′0(0)

[
K(1)−

∫ 1

−1
(u2K(u))′τx(u)du

K(1)−
∫ 1

−1
(K(u))′τx(u)du

]

VHK(x, y) = fx(y)

(∫
H2(t)dt

)
(
K2(1)−

∫ 1

−1
(K2(u))′τx(u)du

)
(
K(1)−

∫ 1

−1
(K(u))′τx(u)du

)2


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we take the conditional mode as an application
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4.1 Introduction

Conditional estimation is an important field and useful in all domains of statistics,
such as time series, survival analysis and growth charts among others, for more
information see : Stone (1977) and Koenker (2000, 2005). There exists an ex-
tensive literature and various nonparametric approaches in conditional estimation
for independent samples and dependent non-functional or functional observations.
Among a lot of papers that are dealing with conditional estimation in finite di-
mension, one can refer for example to key works of Stute (1986), Portnoy (1991),
Koul and Mukherjee (1994), Honda (2000), Yu et al. (2003)

Noting that, these questions of the modelization statistic of functional data has
known a growing interest among theoretical and applied statisticians ( see Bosq
(2000), Ramsay and Silverman (2002-2005) also Ferraty and Vieu(2006)). In this
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context, the conditional cumulative distribution function and its derivative (the
conditional density function) have a great importance in many applications such
as reliability and survival analysis. Moreover, they provide information about the
relationship between X and Y furthermore, they lead to some prediction method,
such as the conditional mode, the conditional median or the conditional quantiles
(for more details see Ferraty et al. (2010) for a list of references). As is well known,
the local polynomial smoothing has various advantages over the kernel method (see
Fan and Gijbels (1996) for an extensive discussion on the comparison between both
methods, in the multivariate case). In the nonfunctional case, the local polynomial
fitting has been the subject of considerable study. Besides, there are valuable
references on this topic such as Fan (1992), Fan and Gijbels (1996) and Fan and
Yao (2003). However, only few results are available for local linear modelling in
functional statistics. Indeed, the first result in this topic was obtained by Baíllo and
Grané(2009). They studied the local linear estimator of the regression function
when the explanatory variable takes values in a Hilbert space. However, The
general case where regressors are not Hilbertian has been considered by Barrientos-
Marin et al. (2010). Recall that in the i.i.d setting, Barrientos-Marin et al.(2010)
introduced the local linear estimator of the regression operator of a scalar response
Y on an explanatory functional variable X, this method had sevral adventages
like making the estimator computation easy and fast while keeping good predictive
performance (see Xiong et al.(2017)). In this pioneering work, the authors obtained
the almost complete convergence (with rate) of the proposed estimate. We return
to Boj et al. (2010) for an other alternative version for the functional local linear
modelling. More recently, Demongeot et al. (2011) consider the local polynomial
modelling of the conditional density function when the explanatory variable is
functional and the quadratic error of this estimator has been treated by Rachdi
et al.(2014). Thereafter, the almost-complete convergence with rates of the local
linear estimator of the conditional cumultative distribution is stated by Demongeot
et al.(2014).
In the iid setting, our work focuses on the local linear estimation of the conditional
cumultative distribution for functional data. In section 2, we started by clarifing
our model and under some assumptions the main asymptotic results are stated
in section3. In section 4, we will exploit these results to the conditional mode
estimation.
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4.2 Model and assumptions

At this stage, we observe n pairs (Xi, Yi) for i = 1, ..., n identically distributed
as (X, Y ), this last is valude in F × R, where F is a semi-metric space equipped
with a semi-metric d. We suppose for x ∈ F that there exists a regular version
of conditional probability of Y given X = x, which is absolutely continous with
respect to the Lebesgue measure on R. the functional local linear estimator F̂ x(.)

is defined by :

F̂ x(y) =

∑n
i,j=1 Wi,j(x)H(h−1

H (y − Yi))∑n
i,j=1Wi,j(x)

(4.1)

where

Wi,j(x) = β(Xi, x)(β(Xi, x)− β(Xj, x))K(h−1
K δ(x,Xi))K(h−1

K δ(x,Xj))

β(., .) and δ(., .) are two functions defined from F × F to R, such that: ∀ξ ∈
F , β(ξ, ξ) = 0, and d(., .) = |δ(., .)|. K and H are Kernels, hK = hK,n (resp.
hH = hH,n) is chosen as a sequence of positive real numbers and each of them
converges to 0 when n→∞.
with the convention 0/0 = 0. We aim to state the uniform almost complete
convergence of F̂ on some subset SF of F , where:

SF ⊂ ∪dnk=1B(xk, rn)

where xk ∈ F and rn (resp dn) is a sequence of positive real numbers, φx(r1, r2) =

P(r2 ≤ δ(X, x) ≤ r1). We assume that our nonparametric model satisfies the
following conditions:

(H1) There exists a differentiable function φ(.), such that:
∀x ∈ SF , 0 < Cφ(h) ≤ φx(h) ≤ C

′
φ(h) <∞ and ∃η0 > 0,∀η < η0,

φ(1)(η) < C,

(H2) The conditional distribution function F x is such that:
there exists b1 > 0, b2 > 0,∀(y1, y2) ∈ SR × SR,∀(x1, x2) ∈ SF × SF

|F x1(y1)− F x2(y2)| ≤ C(db1(x1, x2) + |y1 − y2|b2)
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(H3) The function β(., .) is such that:

∀x′ ∈ F , C1d(x, x
′
) ≤| β(x, x

′
) |≤ C2d(x, x

′
) where C1 > 0 and C2 > 0

and, for some strictly positive constant C ′ , the following Lipschitz’s condi-
tion:

∀(x1, x2) ∈ SF × SF : |β(x1, x
′
)− β(x2, x

′
)| ≤ C

′
d(x1, x2)

(H4) K is a positive, differentiable function with support [−1, 1] and, for some
strictly positive constant C, the following Lipschitz’s condition:

| K(x)−K(y) |≤ C | | x | − | y | |

(H5) The kernel H is a differentiable, positive, bounded and Lipschizian function,
such that: H is of classe C2, of compact support and satisfies:∫

|t|b2H(1)(t)dt <∞

(H6) The bandwidth hk satisfies: there exists an integer n0, such that:

∀n > n0,− 1
Φx(hK)

∫ 1

−1

φx(zhK , hK)
d

dz
(z2K(z))dz > C3 > 0

and
hK

∫
B(x,hK)

β(u, x)dP (u) = o

(∫
B(x,hK)

β2(u, x)dP (u)

)
where B(x, r) denotes the clossed-ball and dP (x) is the cumultative distri-
bution of X

(H7) For rn = O
(

lnn
n

)
, and for some γ ∈ (0, 1), for n large enough the sequence

dn satisfies :
(lnn)2

n1−γh2
Hφ(hk)

< ln dn <
n1−γh2

Hφ(hk)

lnn

and:
∞∑
n=1

n
(3γ+1)

2 d1−β
n <∞, for some β > 1

Obviously, these conditions are commonly used in many studies of the local linear
method for functional data.
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4.3 Asymptotic results

Before given the asymptotic result,we introduce the following notations

F̂ x
N(y) =

1

n(n− 1)EW12

n∑
i,j=1

Wi,jHi(h
−1
H (y − Yi) and f̂xD =

1

n(n− 1)EW12

n∑
i,j=1

Wi,j

Theorem 4.1 under (H1)-(H7), we obtain that:

sup
x∈SF

sup
y∈SR

|F̂ x(y)− F x(y)| = O(hb1k + hb2H) +Oa.co

(√
ln dn

n1−γφ(hK)

)

Remark that, the theorem’s proof can be deduced directly from the following
decomposition :

F̂ x(y)− F x(y) = 1

f̂xD

{(
F̂ x
N(y)− E[F̂ x

N(y)]
)
−
(
F x(y)− E[F̂ x

N(y)]
)}

+ F̂x(y)

f̂xD

(
1− f̂xD

) (4.2)

in addition the following lemmas (for which the proofs are given in the Appendix)
lead us to get Theorem 4.1.

Lemma 4.1 Demongeot et al. (2013) under assumptions (H1), (H3), (H4), (H5)

and (H6), we obtain that :

sup
x∈SF

|f̂xD − 1| = Oa.co

(√
ln dn
nφ(hK)

)

Corollary 4.1 Demongeot et al. (2013) Under the assumptions of Lemma 6.1,
we have that :

∞∑
n=1

P
(

inf
x∈SF

f̂xD <
1

2

)
<∞

Lemma 4.2 Demongeot et al. (2014)Under assumptions (H1), (H2), (H4) and
(H5) we obtain that :

sup
x∈SF

sup
y∈SR

|F x(y)− E[F̂ x
N(y)]| = O(hb1K) +O(hb2H)
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Lemma 4.3 under the hypotheses (H1)− (H7) we obtain that:

sup
x∈SF

sup
y∈SR

|F̂ x
N(y)− EF̂ x

N(y)| = Oa.co.

(√
ln dn

n1−γφ(hK)

)

4.4 Application: Conditional mode estimation

The purpose of this section is to state the almost complete convergence of the
conditional mode of Y given X = x, denoted by θ(x). For this aim, we will need
the following assumptions :

(H2
′
) for all (x1, x2) ∈ SF × SF and (y1, y2) ∈ SR × SR, we have :

|fx1(y1)− fx2(y2)| ≤ C(db1(x1, x2) + |y1 − y2|b2)

for some positive constants b1 and b2 > 0, where C is a positive constant.

(H5
′
) H is a positive, bounded, Lipschitizian continuous function, such that :∫

|t|b2H(t)dt <∞ and
∫
H2(t)dt <∞.

(H8) The sequence dn satisfies (H7) and, lim
n→+∞

nγhH =∞

(H9) we assume that ; fx ∈ C0
F×R∩Sxdens (the continuity-type functional nonpara-

metric model cf. Ferraty and Vieu (2006)), where

C0
F×R =


f : F × R→ R,∀x′ ∈ SF

lim
d(x,x′ )→0

f(x
′
, y) = f(x, y),

∀y′ ∈ R, lim
|y−y′ |→0

f(x, y
′
) = f(x, y)


and

Sxdens =


f : F × R→ R;

∃ζ > 0,∃!y0 ∈ SR, f(x, .)is strictly increasing on
(θf − ζ, θf )and strictly decreasing on(θf , θf + ζ)


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(H10) ∀ε0 > 0,∃η > 0,∀r : S → SR, we have that :

sup
x∈SF

|θf (x)− r(x)| ≥ ε0 ⇒ sup
x∈SF

|fx(r(x))− fx(θf (x))| ≥ η

(H11) there exists some integer j > 1 such that ∀x ∈ SF , the function fx is j-times
continuously differentiable on interior (SR) with respect to y, and :

fx(l)(θf (x)) = 0, if 1 ≤ l < j

andfx(j)(.)is uniformly continuous on SR

such that|fx(j)(θf (x))| > C > 0

where fx(j) denotes the jth order derivative of the conditional density fx.

The estimator of θf (x) is the random variable θ̂f (x) which defined by

θ̂f (x) = arg min
y∈SR

f̂x(y)

and from Theorem 3.4.1 in Demongeot et al. (2013), we can get the following
corollary

Corollary 4.2 Under the hypotheses (H1),(H2
′
) ,(H3), (H4), (H5

′
) and (H6)−

(H11), we get

sup
x∈SF

|θ̂f (x)− θf (x)|j = O(hb1K + hb2K) +Oa.co.

(√
ln dn

n1−γφ(hK)

)

4.5 Appendix

In what follows, when no confusion is possible, we put for any x ∈ F , and for all
i = 1, ..., n :

Ki(x) = K(h−1δ(x,Xi)), βi(x) = β(Xi, x) and Hi(y) = H(h−1
H (y − Yi))

Proof of Lemma 4.3. The proof of this lemma follows the same steps as in
[Demongeot et al. (2013), lemma 4.2] , where S2(x), S3(x) and S4(x) are replaced
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by : 

Mx
2 (y) =

1

n

n∑
j=1

Kj(x)Hj(y)

φx(hK)

Mx
3 (y) =

1

n

n∑
j=1

Kj(x)βj(x)Hj(y)

hKφx(hK)

Mx
4 (y) =

1

n

n∑
j=1

Kj(x)β2
j (x)Hj(y)

h2
Kφx(hK)

by using the compactness property of SR, we can write that: there exists a se-
quence of real numbers (tk)k=1,...,sn , such that: SR ⊂ ∪snk=1(tk − ln, tk + ln) where:
ln = n−

3
2
γ−1/2 and sn = O(l−1

n ).
Taking: ty = arg min

t∈{t1,...,tsn}
|y − t| and by j(x) = arg min

j∈{1,2,...,dn}
|δ(x, xk)| we con-

sider the following decomposition :
|Mx

i (y)− E[Mx
i (y)]| ≤ sup

x∈SF
sup
y∈SR

|Mx
i (y)−Mxj(x)

i (y)|︸ ︷︷ ︸
A1

+ sup
x∈SF

sup
y∈SR

|Mxj(x)
i (y)−Mxj(x)

i (ty)|︸ ︷︷ ︸
A2

+ sup
x∈SF

sup
y∈SR

|Mxj(x)
i (ty)− E[M

xj(x)
i (ty)]|︸ ︷︷ ︸

A3

+ sup
x∈SF

sup
y∈SR

|E[M
xj(x)
i (ty)]− E[M

xj(x)
i (y)]|︸ ︷︷ ︸

A4

+ sup
x∈SF

sup
y∈SR

|E[M
xj(x)
i (y)]− E[Mx

i (y)]|︸ ︷︷ ︸
A5

Similarly to the study of the term F1 in [Demongeot et al. (2013), Lemmma 4.2 ],
we obtain:

A1 = Oa.co.

(√
ln dn

n1−γφ(hK)

)
and A5 = Oa.co.

(√
ln dn

n1−γφ(hK)

)
(4.3)

To treat the term A2, we use the Lipschitz’s condition on the kernel H to show :
|Mxj(x)

i (y)−Mxj(x)
i (ty)|

≤ C
1

nhlKφ(hK)

n∑
i=1

Ki(xj(x))β
l
i(xj(x))|Hi(y)−Hi(ty)| ≤

ln
hH

Si(xj(x))
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where Si(.) for i = 2, 3, 4 are treated in [Demongeot et al. (2013), proof of Lemma
4.2]. Thus by using the facts that: ln = n−

3
2
γ−1/2 and (H7), we obtain:

A2 = Oa.co.

(√
ln dn

n1−γφ(hK)

)
and A4 = Oa.co.

(√
ln dn

n1−γφ(hK)

)
(4.4)

Finally, for the term A3, we have for all η > 0 that:
P
(
A3 > η

√
ln dn

n1−γφ(hK)

)
= P

(
max

j∈{1,2,...,sn}
max

k∈{1,2,...,dn}
|Mxk

i (tj)− E[Mxk
i (tj)]| > η

√
ln dn
nφ(hK)

)

≤ sndn max
j∈{1,2,...,sn}

max
k∈{1,2,...,dn}

P

(
|Mxk

i (tj)− E[Mxk
i (tj)]| > η

√
ln dn
nφ(hK)

)
To do this last probability, we use the classical Bernstein’s inequality such that,
we put: for l = 0, 1,

Z l
i =

1

hlKφ(hK)

(
Ki(xk)Hi(tj)β

l
i(xk)− E[Ki(xk)Hi(tj)β

l
i(xk)]

)
By the assumption (H3), we have that 1

hlK
(Kiβ

l
i) < C and since H < 1 then, we

can write:

|Z l
i | ≤

C

φx(hK)
and E|Z l

i | ≤
C
′

φx(hK)

So, the use of the classical Bernstein’s inequality (cf. Uspensky (1937), Page 205)
allows us to write for all η ∈ (0, C

′
/C) :

P

(
|

n∑
i=1

Z l
i | ≥ η

√
ln dn

nφx(hK)

)
≤ C

′
d−Cη

2

n

Therefore, the last inequality allows to get:

∀j ≤ sn,P

(
|Mxk

i (tj)− E[Mxk
i (tj)]| > η

√
ln dn
nφ(hK)

)
≤ 2 exp{−Cη2 ln dn}

since: sn = O(n
3
2
γ+1/2), ln dn

nφ(hK)
> 1

nφ(hK)
and by choosing Cη2 = β, one gets:

sndn max
j∈{1,2,...,sn}

max
k∈{1,2,...,dn}

P

(
|Mxk

i (tj)− E[Mxk
i (tj)]| > η

√
ln dn
nφ(hK)

)
≤ C

′′
snd

1−β
n
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By using the second part of condition (H7), we obtain

A3 = Oa.co.

(√
ln dn

n1−γφ(hK)

)
(4.5)

Thus, Lemma 4.3’s result can be deduced from (6.2), (6.3), (6.4)
Proof of Corollary 4.2.With a Taylor development of F x(1)(θ̂f (x)) around θf (x),
we get :

F x(1)(θ̂f (x)) =F x(1)(θf (x)) +

j−1∑
i=1

1

i!
(θ̂f (x)− θf (x))iF x(i+1)(θf (x))

+
1

j!
(θ̂f (x)− θf (x))jF x(j+1)(θ

′

f (x))

which implises that :

fx(θ̂f (x)) =fx(θf (x)) +

j−1∑
i=1

1

i!
(θ̂f (x)− θf (x))ifx(i)(θf (x))

+
1

j!
(θ̂f (x)− θf (x))jfx(j)(θ

′

f (x))

because of (H11), we have :

fx(θ̂f (x)) = fx(θf (x)) +
1

j!
(θ̂f (x)− θf (x))jfx(j)(θ

′

f (x))

where θ′f (x) is lying between θf (x) and θ̂f (x). Due to (H9), (H10) and (H11)

and by the same steps as in [Demongeot et al. (2013),corollary (5.1)] we get the
claimed result.
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Chapter 5

Kernel estimation of mode
regression for functional data.

For many years ago, a lot of papers are based on the Nadaraya-Watson kernel
method for estimating the nonparametric regression function, then Ferraty and
Vieu (2000) generalized the kernel regression estimator of Nadaraya-Watson fa-
miliar function to be more robust and flexible for functional data, this last model
was adopted in many studies to find more asymptotic results.

When the merit of the derivatives estimator of regression is to provide us about
the behaviour of both regression shape and mode regression, in view of that Mack
and Muller (1989) used the Nadaraya-Watson kernel type to establish some con-
sistency results such as : the asymptotic normality, the asymptotic mean squared
error (AMSE) and the choice of bandwidth was discussed. M convergence of regres-
sion function estimator and its derivatives was studied by Boularan et al. (1995)
and we point out that the reader can find important results in ρ-mixing case and
α-mixing case by taking the monograph of Györfi et al. (1989). In mode regres-
sion framework, Ziegler (2002) established the probability convergence and the
normality asymptotic of mode regression, this study is based on Nadaraya-Watson
kernel estimator for scalar explanatory variable X and for the higher derivatives
of regression estimator. For recent studies, we can see : Kemp and Santos Silva
(2012) and Chen et al. (2017), with local linear method and for functional data,
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Hebchi (2020) introduced the model of mode regression and established the uni-
form almost complete convergence rate of local linear mode regression.

5.1 Model and assumptions

At this stage, we observe n pairs (Xi, Yi) for i = 1, ..., n identically distributed as
(X, Y ), this last is valued in F ×R, where F is a semi-metric space equipped with
a semi-metric d. the functional kernel regression estimator m̂(.) is defined by :

m̂(x) =

∑n
i=1K(h−1|δ(x,Xi)|)Yi∑n
i=1K(h−1|δ(x,Xi)|)

(5.1)

where δ(., .) is function defined from F ×F to R, such that: d(., .) = |δ(., .)|. K is
Kernel and h = hK,n is chosen as a sequence of positive real numbers and converges
to 0 when n→∞.
with the convention 0/0 = 0.
this chapter deals with mode regression estimator θ̂ of θ , where:

θ̂(x) = sup
x∈F

m̂(x) (5.2)

whereas

θ(x) = sup
x∈F

m(x) (5.3)

and on some subset SF of F

SF ⊂ ∪dnk=1B(xk, rn)

where xk ∈ F and rn (resp dn) is a sequence of positive real numbers.
To identify the asymptotic behaviour of our estimator, we need to take the follow-
ing conditions:
the topological structure on the functional space F requires to use the following
small-ball probability :

∀ε > 0, P(X ∈ B(x, ε)) = φx(ε) > 0 (5.4)
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to establish pointwise convergence we assume thatm has the continuity-type which
defined by :

m ∈
{
f : F × R, lim

d(x,x′)→0
f(x′) = f(x)

}
(5.5)

The kernel K is a bounded and Lipschitz kernel on its support [0, 1] and if its
derivative K ′ exists on [0, 1], we have for two real constants −∞ < C2 < C1 < 0 :

C2 ≤ K ′ ≤ C1 (5.6)

And φx(.) satisfies :

∃C3 > 0,∃η0 > 0,∀0 < η < η0,

∫ η

0

φx(u)du > C3ηφx(η) (5.7)

the sequence of positive real numbers (hn)n∈N is such that

lim
n→+∞

h = 0, lim
n→+∞

log n

nφx(h)
= 0 (5.8)

the scalar response variable Y satisfies

∀k ≥ 2, E
(
|Y |k|X = x

)
< σk(x) <∞ with σk(.) continuous at x (5.9)

On the other side, the rate of convergence needs to add the following additional
hypotheses which allow to precise the behaviour of the bias
The function φ satisfies

∀x ∈ SF , 0 < Cφ(h) ≤ φx(h) ≤ C ′φ(h) <∞ (5.10)

The "Lipschitz-type" model is defined by : There exists b > 0 such that

∀x1, x2 ∈ SF , |m(x1)−m(x2)| ≤ Cdb(x1, x2) (5.11)

m(j) is j-times continuously differentiable around θ(x) with

m(l)(θ) = 0.(for all l = 1, ..., j − 1) and m(j)(θ) 6= 0 (5.12)

for n large enough,
(log n)2

nφ(h)
< log dn <

nφ(h)

log n
(5.13)

and
∞∑
n=1

exp{(1− β) log dn} <∞ for some β > 1. (5.14)
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5.2 Asymptotic results

Before given the asymptotic result,we introduce the following notations

m̂0(x) =
1

nE[K(h−1d(x,X1))]

n∑
i=1

K(h−1d(x,X1))

and

m̂1(x) =
1

nE[K(h−1d(x,X1))]

n∑
i=1

K(h−1d(x,X1))Yi

and also the two importants theorems

Theorem 5.1 under conditions (5.4)-(5.9)

lim
n→∞

sup
x∈SF
|m(x)− m̂(x)| = o(1), a.co.

Theorem 5.2 (Ferraty et al. (2010)) under conditions (5.4), (5.6)-(5.14)

sup
x∈SF
|m̂(x)−m(x)| = O(hb) +O

(√
ln dn
nφ(h)

)
a.co.

Theorem 5.3 under equations (5.4) to (5.9) , we obtain that:

lim
n→+∞

θ̂(x) = θ(x), a.co.

Theorem 5.4 under conditions (5.4), (5.6)-(5.14)

(θ̂(x)− θ(x))j = O(hb) +O

(√
ln dn
nφ(h)

)
a.co.
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5.3 A simulation study

In the sequel, we present a simulation study to see the performance of our estimator
for functional data. so, for n, we generate our data by :

Xi(tj) = sin[(1−Wi)tj] +

j∑
k=1

ϑik, for all t ∈ (0, π) i = 1, 2, ...n, and j = 1, ..., 100.

where : Wi is i.i.d. and follows the Normal distribution N (0, 1) and ϑik’s are i.i.d.
realizations of N (0, 0.1) . In the following figure, for n = 250, we discretized our
curves on the same grid which is composed of 100 equidistant values in (0, π).

Time

0 20 40 60 80 100

−
3

−
1

1
2

3

Figure 5.1: The curves Xi

The response sample is given by :

Yi = m(Xi) + εi

with : εi follows the Normal distribution N (0, 1). For the regression function, we
take :

m(x) =

∫ 1

0

dt

1 + |x(t)|
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and the mode regression is

θ(x) = m(x) =

∫ 1

0

dt

1 + |x(t)|

As our functional predictors are rough and for reducing dimensional space of data,
we use the classical Principal Components Analysis (PCA) as a semi-metrics tool
for computing proximities between curves (see Benhenni et al. (2007)). Then, we
adopted the quadratic kernel (i.e. K(u) = (3/4)(1−u2)1[0,1](u)) as an asymmetri-
cal kernel function. As is well known, the bandwidth selection plays a crucial role
for the performance of a kernel estimate, hereinafter, we use the k-NN method
with the same number of neighbours at any curve (h(x) := hkopt(x)), where the
optimal number of neighbours obtained by :

kopt = arg min
k

n∑
i=1

(
Yi − θkNN(−i) (Xi)

)2

where
θkNN(−i) (x) = sup

x∈SF
m̂kNN

(−i) (x)

with

m̂kNN
(−i) (x) =

n∑
j=1,j 6=i

K(h−1
k (x)|δ(x,Xj)|)Yj

n∑
j=1,j 6=i

K(h−1
k (x)|δ(x,Xj)|)

in order to examine the performance of mode regression estimator, we split ran-
domly our initial sample into two subsample :learning sample (L) and testing
sample (T ), where : L ∩ T = ∅ and we take : |L| = 200, |T | = 50. Then, we end
our study by computing the mean square errors (MSE) of prediction in order to
highlight the performance of our method :

MSE(L, T ) =
1

|T |
∑
i∈T

(m(Xi)− θ̂(Xi))
2 = 0.107.

Finally, we conclude that our estimator gives better estimation results.
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5.4 Appendix

Proof of theorem 5.1
Remark that, the theoreme’s proof can be deduced directly from the following
decomposition

m̂(x)−m(x) = 1
m̂0(x)

{(m̂1(x)− E[m̂1(x)]) + (E[m̂1(x)]−m(x))}
+ m(x)
m̂0(x)

(1− m̂0(x))
(5.15)

theorem 5.1 is a result of the following intermediate lemmas.

Lemma 5.1 under the conditions of theorem 5.1

lim
n→∞

sup
x∈SF
|m̂0(x)− 1| = O

(√
log n

nφx(h)

)
, a.co.

Corollary 5.1
∞∑
n=1

P
(

inf
x∈SF

m̂0(x) <
1

2

)
<∞

Lemma 5.2 under the conditions of theorem 5.1

lim
n→∞

sup
x∈SF
|m̂1(x)− E[m̂1(x)]| = O

(√
log n

nφx(h)

)
. a.co.

Lemma 5.3 under the conditions of theorem 5.1

lim
n→∞

sup
x∈SF
|E[m̂1(x)]−m(x)| = o(1), a.co.

As in Ferratyet al. (2010) ( see lemma 8 and lemma 11 ), we can prove lemma(5.1)
and lemma(5.2) such that we use the condition (5.5) instead of condition H2 in
Ferratyet al. (2010) and ΨSF

(
logn
n

)
= O (log n)

Proof of corollary 5.1

inf
x∈SF
|m̂0(x)| ≤ 1

2
=⇒ ∃x ∈ SF , 1− m̂0(x) ≥ 1

2
=⇒ sup

x∈SF
|1− m̂0(x)| ≥ 1

2
from lemma 5.1 we can deduce that

P
(

inf
x∈SF

m̂0(x) <
1

2

)
≤ P

(
sup
x∈SF
|1− m̂0(x)| > 1

2

)
<∞



5.4. APPENDIX 80

Proof of lemma 5.3

|E[m̂1(x)]−m(x)| = | 1

nE[K(h−1d(x,X1))]
E[

n∑
i=1

K(h−1d(x,X1))Yi]−m(x)|

= | 1

E[K(h−1d(x,X1))]
E[K(h−1d(x,X1))Y1]−m(x)|

≤ 1

E[K(h−1d(x,X1))]
E[K(h−1d(x,X1))|m(X1)−m(x)|]

≤ sup
x′∈SF

|m(x)−m(x′)|

by using (5.5) we get the claimed result.

Proof of theorem 5.3 if θ is the unique solution of (5.3), we have that ∀ε >
0,∃µ > 0, such that

|θ − x| ≥ ε =⇒ |r(θ)− r(x)| ≥ µ (for all x ∈ SF)

on the other hand, the definitions of θ(x) and θ̂(x) lead us to

|m(θ(x))−m(θ̂(x))| = |m(θ(x))− m̂(θ(x)) + m̂(θ(x))−m(θ̂(x))|
≤ |m(θ(x))− m̂(θ(x))|+ |m̂(θ(x))−m(θ̂(x))|
≤ 2 sup

x∈SF
|m(x)− m̂(x)|

by using theorem (5.1) we get

∀ε > 0,
∞∑
n=1

P(|θ̂(x)− θ(x)| > ε) <∞.

Proof of theorem 5.4 due to Taylor expanssion of oder j of the function m at
point θ(x) and from equation (5.12), we have

m(θ̂(x)) = m(θ(x)) +
1

j!
m(j)(θ′)(θ(x)− θ̂(x))j
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and as
|m(θ(x))−m(θ̂(x))| ≤ 2 sup

x∈SF
|m(x)− m̂(x)|

by combining the two latter results, we can write

m(j)(θ′)[θ(x)− θ̂(x)]j = O

(
sup
x∈SF
|m̂(x)−m(x)|

)
(5.16)

theorem (5.3) insures that

lim
n→∞

m(j)(θ′) = m(j)(θ(x)) 6= 0. (5.17)

by using (5.16), (5.17) and Proposition A.6-ii in Ferraty and Vieu (2006), we obtain

|θ(x)− θ̂(x)|j ≤ C sup
x∈SF
|m̂(x)−m(x)|, a.co.

this last inequality together with theorem 5.2, we get the claimed result.
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The aim of this paper is to join the advantages of mode with regression function
by using local linear method in order to establish the Uniform almost complete
convergence in iid setting and for functional data.
Key Words: functional data, locally modelled regression, mode regression.
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6.1 Introduction

The mode is a major contributor to study the link between a response variable
and preductors and also to provide an important summary of data. As the tech-
nolology’s advence easies and facilitates the collecting and storing data in high-
dimension, the mode has long been a question of great interest in a wide range of
fields such as : biology, astronomy and econometrics and others.

This paper is concerned with mode regression, for old studies and in regres-
sion framework we can see (Rousseeuw, 1984) and (Powell, 1986). In 1993, (Lee,
1993) generalized the mode regression with rectangular kernel (RME) to quadratic
kernel (QME) where RME and QME are suitable when the dependent variable is
truncated

Recently, (Kemp and Santos Silva, 2012) stated the probability convergence
and asymptotic normality of mode regression based on the standard normal density
kernel with (Parzen, 1962) regression version of mode estimator (semi-parametric
mode regression estimator). In nonparametric kernel estimation, (Yao and Li,
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2013) proposed the MEM (Modal Expectation Maximization) algorithm to es-
timate the modal regression parameter, furthermore, under some technical con-
ditions they estitablished convergence rate and the asymptotic normality of the
modal regression coefficient. In high-dimensional data with nonparametric kernel
estimation, (Chen, Ma and Zhou, 2017) used SCAD (Smoothly Clipped Absolute
Deviation) penalty for variables selection and by extending MEM, they proposed
PMEM (Penalized Model Expectation Minimization) algorithm to estimate the
parameters of mode regression and they exploited all these to prove the consis-
tency and the sparsity of the resultant estimator.

More than decade, researchers have shown an increased interest in functional
data analysis, we refer to the the monographs of (Ramsay and Silverman, 2002),
(Ramsay and Silverman, 2005), (Bosq, 2000) and (Ferraty and Vieu, 2006)for more
theories and applications and as method we use the local linear which has various
adventages see (Fan and Gijbels, 1992), (Baíllo and Grané, 2009) and (Barrientos-
Marin, Ferraty and Vieu, 2010).

In the iid setting, our work focus on the local linear estimation of the mode
regression for functional data. In section 2, This paper begins by clarifying our
model and proposing our estimators, under some assumptions the main results are
stated in section 3,Proofs can be found in section 4.

6.2 Model Framework And Conditions

6.2.1 Model

we consider n pairs (Xi, Yi)i=1,...,n identically and independently distributed as
(X, Y ), this last is valued in F ×R, where F is a semi-metric space equipped with
a semi-metric d
The mode of regression function θ on F is

θ(x) = sup
x∈F

m(x)
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whereas, the mode regression estimator θ̂ is defined by

θ̂(x) = sup
x∈F

m̂(x)

where : m and m̂ are regression and regression estimator respectively. To get the
estimator of local linear regression we minimise the following quantity :

min
(a,b)∈R2

n∑
i=1

|Yi − a− bβ(Xi, x))|2K(h−1
K δ(Xi, x)) (6.1)

where β(., .) and δ(., .) are two functions defined from F × F to R, such that:

∀ξ ∈ F , β(ξ, ξ) = 0, and d(., .) = |δ(., .)|.

K is Kernel and hK = hK,n is chosen as a sequence of positive real numbers. by
a simple algebra we define explicitly the regression function estimator m̂ and its
first derivative m̂(1) :(

m̂

m̂(1)

)
=

1∑n
i,j=1 βi(βi − βj)KiKj

( ∑n
i,j=1 βi(βi − βj)KiKjYj∑n
i,j=1(βj − βi)KiKjYj

)

6.2.2 Assumptions

our study aims to state the uniform almost-complete convergence of θ̂ on some
subset SF of F such that

SF ⊂ ∪dnk=1B(xk, rn)

where xk ∈ F and rn (resp dn) is a sequence of positive real numbers, and we
suppose that our estimator satisfies the following conditions :

(A1) For any r > 0, φx := P(x ∈ B(x, r)) and there is a function τx such that:

∀t ∈ [0, 1], lim
h→0

φ(th, h)

φ(h)
= τx(t)

φ(r1, r2) = P(r1 < |δ(x, x
′
)| < r2)

(A2) m is twice continuously differentiable on SF with bounded second order
derivatives.



6.3. ASYMPTOTIC RESULTS 88

(A3) m ∈ {f : F → R,∃C ∈ R+, x
′ ∈ F , |f(x)− f(x

′
)| < C|δ(x, x′)|b}

(A4) To control the shape of local functional object β we have :

∃0 < M1 < M2,∀x
′ ∈ F ,M1|δ(x, x

′
)| ≤ |β(x, x

′
)| ≤M2|δ(x, x

′
)|

(A5) The kernel function Ksatisfies : K is a positive, differentiable function with
support [0, 1]

(A6) The local expectation of β satisfies :

h

∫
B(x,h)

β(u, x)dP (u) = o(

∫
B(x,h)

β2(u, x)dP (u))

(A7) ∀k ≥ 1,E[|Y |k|X = x] < C

(A8) ∀x′ ∈ F : m(x
′
) = m(x) + β(x, x

′
)m(1)(x)

(A9) The behaviour of the bandwidth h is :

∃n0,∀n > n0,
1

φ(h)

∫ 1

0

φ(Zh, h)
d

dZ
(ZjK(Z))dZ > c > 0, j = 1, 2

(A10) for rn = O
(

lnn
n

)
the sequence dn statisfies :

(lnn)2

n
< ln dn <

nφx(h)

lnn

and

∃β > 1 :
∞∑
i=1

d1−β
n <∞

we remark that all of these conditions are commonly used in many studies of the
local linear method for functional data.

6.3 Asymptotic results

Theorem 6.1 under assumptions (A1)− (A10) we get

sup
x∈SF

|m̂(1)(x)−m(1)(x)| = O(hb) +Oa.co.

(√
ln dn
nφx(h)

)
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Proof of theorem6.1
with a Taylor development of m̂(1)(θ̂(x)) around θ(x), we get:

θ̂ − θ =
1

m̂2(θ∗)
(m̂(1)(θ)−m(1)(θ))

the unimodality of m and under the condition (A2) we have

m(1)(θ(x)) = m̂(1)(θ(x)) = 0 andm(2)(θ(x)) < 0

by using the result of Proposition 3.5 in (Pons, 2011), with the fact that : θ∗(x)

is lying between θ̂(x) and θ(x) and by : θ̂(x)− θ(x)→ 0a.co. ( see Theorem 6.6 in
book of (Ferraty and Vieu, 2006) and (Pons, 2011) p.68) , it follows that

m̂2(θ∗(x))−m2(θ(x))→ 0a.co.

Since, |m2(θ(x))| > 0, we can see :

∃C > 0, such that| 1

m̂2(θ∗(x))
| ≤ Ca.co.

by remarking that
m̂(1)(x)−m(1)(x) =

1

m̂
(1)
0 (x)

{(
m̂

(1)
1 (x)− E(m̂

(1)
1 (x))

)
−
(
m(1)(x)E(m̂

(1)
0 (x))− E(m̂

(1)
1 (x))

)}
−m(1)(x)

m̂
(1)
0 (x)

{
m̂

(1)
0 (x)− E(m̂

(1)
0 (x))

}
where:

m̂
(1)
1 (x) =

1

n(n− 1)E[β1K1K2]

n∑
i,j=1

(βj − βi)KiKjYj

m̂
(1)
0 (x) =

1

n(n− 1)E[β1K1K2]

n∑
i,j=1

βi(βj − βi)KiKj

the theoreme’s proof can be deduced directly from the following lemmas

Lemma 6.1 under (A1), (A2) and (A7) we have:

sup
x∈SF

|m(1)(x)E(m̂
(1)
0 (x))− E(m̂

(1)
1 (x))| = O(hb)
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Lemma 6.2 under the hypotheses (A1), (A3)− (A9) we obtain that:

sup
x∈SF

|m̂(1)
1 (x)− E(m̂

(1)
1 (x))| = Oa.co.

(√
ln dn
nφx(h)

)

Lemma 6.3 under (A1), (A3)− (A9) we obtain

sup
x∈SF

|m̂(1)
0 (x)− E(m̂

(1)
0 (x))| = Oa.co.

(√
ln dn
nφx(h)

)

Corollary 6.1 under conditoins of 6.3, ∃C3 > 0 such that

∞∑
n=1

P
(

inf
x∈SF

m̂
(1)
0 (x) < C3

)
<∞

6.4 Appendix

Proof of Lemma 6.1 first of all, we have :

|m(1)(x)E(m̂
(1)
0 (x))− E(m̂

(1)
1 (x))| = 1

|E(β1K1K2)|

∣∣∣E(β1(β1 − β2)K1K2m
(1)(x)

− (β2 − β1)K1K2m(X2))
∣∣∣

by using (A7) we can see:

m(x1)−m(x2) = (β1 − β2)m(1)(x)

and we obtain
|m(1)(x)E(m̂

(1)
0 (x))− E(m̂

(1)
1 (x))|
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= 1
|E(β1K1K2)|

∣∣∣E(β1(m(x1)−m(x2))K1K2 − (β2 − β1)m(x2)K1K2

)∣∣∣
= 1
|E(β1K1K2)|

∣∣∣E(β1m(x1)K1K2 − β2m(x2)K1K2

)∣∣∣
= 1
|E(β1K1K2)|

∣∣∣E(β1m(x1)K1K2 − β1m(x)K1K2 + β1m(x)K1K2

−β2m(x2)K1K2 + β2m(x)K1K2 − β2m(x)K1K2

)∣∣∣
≤ 1
|E(β1K1K2)|

∣∣∣E[β1(m(x1)−m(x))K1K2]
∣∣∣

+ 1
|E(β1K1K2)|

∣∣∣E[β2(m(x)−m(x2))K1K2]
∣∣∣

we are in position to use the assumption (A3): such that

1B(x,h)|m(x)−m(x1)| ≤ Chb

1B(x,h)|m(x)−m(x2)| ≤ Chb

and we get
sup
x∈SF

|m(1)(x)E(m̂
(1)
0 (x))− E(m̂

(1)
1 (x))| ≤ Chb

Proof of Lemma 6.2 one starts the proof by considering the following decompo-
sition

m̂
(1)
1 (x) =

n2hφ2

n(n− 1)E(β1K1K2)︸ ︷︷ ︸
T


(

1

n

n∑
j=1

βjKjYj
hφx(h)

)
︸ ︷︷ ︸

S1(x)

(
1

n

n∑
i=1

Ki

φx(h)

)
︸ ︷︷ ︸

S2(x)

−

(
1

n

n∑
j=1

KjYj
φx(h)

)
︸ ︷︷ ︸

S3(x)

(
1

n

n∑
i=1

Kiβi
hφx(h)

)
︸ ︷︷ ︸

S4(x)


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m̂
(1)
1 (x)−E[m̂

(1)
1 (x)] = T [S1(x)S2(x)−E(S1(x)S2(x))−(S3(x)S4(x)−E(S3(x)S4(x))]

it remains to prove:
T = O(1) (6.2)

sup
x∈SF

|Si − E[Si]| = Oa.co.

(√
ln dn
nφk(x)

)
for i = 1, 2, 3, 4 (6.3)

sup
x∈SF

|E[S1]E[S2]− E[S1S2]− E[S3]E[S4] + E[S3S4]| = oa.co.

(√
ln dn
nφx(h)

)
(6.4)

Proof of (6.2) : by using (A4), it is easy to see that :

E[K1β1] > M1E[K1d(x1, x)]

Moreover, we can write

E[K1
d(x1,x)
h

] =
∫ 1

0
tK1(t)dP

d(x1,x)
h (t)

=
∫ 1

0

[∫ t
0
( d
du

(uK1(u)))du
]
dP

d(x1,x)
h (t)

=
∫ 1

0

[
(
∫ 1

0
1[u,1](t)dP

d(x1,x)
h (t)) d

du
(uK1(u))

]
du

=
∫ 1

0
φx(uh, h) d

du
(uK(u))du

= φx(h)[ 1
φx(h)

∫ 1

0
φx(uh, h) d

du
(uK(u))du]

by using (A9), we get
E[K1β1] > M1hφx(h) (6.5)

which leads us to: T = O(1)

Proof of (6.3) : we note j(x) = arg min
j∈{1,2,...,dn}

|δ(x, xk)| to consider the following

decomposition
sup
x∈SF
|Si(x)− E[Si(x)]| ≤ sup

x∈SF
|Si(x)− Si(xj(x))|︸ ︷︷ ︸

T1

+ sup
x∈SF

|Si(xj(x))− E[Si(xj(x))]|︸ ︷︷ ︸
T2

+ sup
x∈SF

|E[Si(xj(x))]− E[Si(x)]|︸ ︷︷ ︸
T3

Treatment of T1 and T3 : by the same treatment of F k
1 in (Demongeot, Laksaci,

Madani and Rachdi, 2013) we get :

T1 = O

(√
ln dn
nφk(x)

)
, T3 = O

(√
ln dn
nφk(x)

)
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Treatment of T2 : we set:

Γk,li =
1

hkφx(h)

(
Kiβ

k
i Y

l
i − E[Kiβ

k
i Y

l
i ]
)
, for i = 1, 2, 3, 4, k = 0, 1 and l = 0, 1

By Newton’s binomial expansion, we obtain:

E
(
|Kiβ

k
i Y

l
i − E[Kiβ

k
i Y

l
i ]|m

)
= E|

m∑
d=0

Cd
m(Kiβ

k
i Y

l
i )d(E[Kiβ

k
i Y

l
i ])m−d(−1)m−1|

≤
m∑
d=0

Cd
mE(|Kiβ

k
i Y

l
i |d)|E[Kiβ

k
i Y

l
i ]|m−d

≤
m∑
d=0

Cd
mE|Kd

1β
kd
1 E[|Y l

1 |d|X1]||E[K1β
k
1E[|Y l

1 |d|X1]]|m−d

where Cd
m = m!/(d!(m− d)!)

The condition (A7) allows us to show that:
for i = 1, 2, 3, 4, k = 0, 1 and l = 0, 1

E|Γk,li |m = O(φ−m+1
x (h))

by using the classical Bernstein’s inequality, we get:

P

(
|

n∑
i=1

Γk,li | > η

√
ln dn
nφk(x)

)
≤ 2d−Cη

2

n

this last equation leads us to get:

∀j ≤ dn, P

(
|Si(xj)− E[Si(xj)]| > η

√
ln dn
nφk(x)

)
≤ 2 exp{−Cη2 ln dn}

Since, ln dn
nφk(x)

> 1
nφk(x)

and by choosing η such that: Cη2 = β we can see:

dn max
j∈{1,...,dn}

P

(
|Si(xj)− E[Si(xj)]| > η

√
ln dn
nφx(h)

)
≤ C

′
d1−β
n

and the second part of (A10) allows us to get the claimed result.



6.4. APPENDIX 94

Proof of (6.4) : to prove equation (6.4) we use the fact that the pairs (Xi, Yi)i=1,...,n

are identically distributed as (X, Y ), by using the Lemma A.1 in (Barrientos-Marin
et al., 2010) and (A7) we have: E[KiβiYi] = O(hφx(h))

which implies that:

sup
x∈SF

|E[S1]E[S2]− E[S1S2]− E[S3]E[S4] + E[S3S4]| = oa.co.

(√
ln dn
nφx(h)

)

Proof of Lemma 6.3 the definition of m̂(1)
0 leads us to the following decomposition

:

m̂
(1)
0 =

n2h2φ2

n(n− 1)E(β1K1K2)︸ ︷︷ ︸
T ′


(

1

n

n∑
j=1

Kj

φx(h)

)
︸ ︷︷ ︸

S
′
1(x)

(
1

n

n∑
i=1

Kiβ
2
i

h2φx(h)

)
︸ ︷︷ ︸

S
′
2(x)

−

(
1

n

n∑
j=1

Kjβj
hφx(h)

)
︸ ︷︷ ︸

S
′
3(x)

(
1

n

n∑
j=1

Kjβj
hφx(h)

)
︸ ︷︷ ︸

S
′
4(x)


all it remains to prove are the following equations :

T
′
= O(1) (6.6)

and ∀x ∈ SF and for i = 1, 2, 3, 4

sup
x∈SF

|S ′i − E[S
′

i ]| = Oa.co.

(√
ln dn
nφx(h)

)
and |E[S

′

i ]| = O(1) (6.7)

and, also that

sup
x∈SF

|E[S
′

1]E[S
′

2]− E[S
′

1S
′

2]− E[S
′

3]E[S
′

4] + E[S
′

3S
′

4]| = oa.co.

(√
ln dn
nφx(h)

)
(6.8)

due to (6.5) and h < 1 we get T ′ = O(1)

we remarque that equations (6.7) and (6.8) have the same arguments as in Lemma
3.4.1 of (Demongeot et al., 2013) which implies the same treatments
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Proof of Corollary 6.1 we know that : 0 < h < 1 and E[β1K1] ≤ Chφx(h)

under assumption (A4) we have : E[β2
1K1] ≥ E[δ2

1K1]

the same steps as in lemma A.1(ii) (see (Barrientos-Marin et al., 2010)) leads us
to obtain

E[β2
1K1]

h2φx(h)
> C > 0

at this stage we can show : there exists a real number C ′ such that

E[m̂
(1)
0 (x)] ≥ C

′
for all x ∈ SF

hence, inf
x∈SF

m̂
(1)
0 (x) ≥ C

′

2
=⇒ ∃x ∈ SFsuch that : |E[m̂

(1)
0 (x)]− m̂(1)

0 (x)| ≥ C
′

2
which leads to :

sup
x∈SF

|E[m̂
(1)
0 (x)]− m̂(1)

0 (x)| ≥ C
′

2

by using lemma 6.3 and for C3 = C
′

2
we get

∑
n

P
(

inf
x∈SF

(x) ≤ C3

)
≤
∑
n

P
(

sup
x∈SF

|E[m̂
(1)
0 ]− m̂(1)

0 | ≥ C3

)
<∞
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Chapter 7

Conclusion and perspectives

In this thesis, we have seen the local linear estimation method for two different
functions classes, the conditional distribution and the first derivative of regression
function. When the explanatory variable is functional with a scalar response and in
the iid setup, the uniform almost complete with convergence rates of two previous
estimator functions is established where the convergence rate expressions of the
conditional distribution function have the same as the conditional density function
while the first derivative of regression function have the same rate expressions as
the regression operator.

From several tools in nonparametric statistics, the conditional mode and the
mode regression are studied in this thesis. The estimators of two latter tools are
based on the bihaviour of conditional distribution function and regression function
(their derivatives) respectively. Unfortunately, we think that much less is known
about local linear mode regression for functional data, so this thesis is devoted to
introduce some results which may contribute to inderstand and clarify the local
linear mode regression estimator. However, these last results are not enough to
give the really asymptotic behaviour framework of this novel therefore, we can
propose the following perspectives :

• Studying the asymptotic normality of our estimtor in order to build confi-
dence intervals.
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• The mean squared error term of our estimator may contribute in the band-
widths choice (it may contribute to get an optimal bandwidth)

• When some experimental studies data are difficult to collect, we are looking
forward to establish the almost complete convergence, the mean squared
error and the asymptotic normality of our estimtor with responses missing
at random (MAR).

• We can also generalize our results to the spatial framework.

• It is worth to study the asymptotic beheviour of our estimator with functional
response.
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