N° d'ordre :

REPUBLIQUE ALGERIENNE DEMOCRATIQUE & POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR & DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE DJILLALI LIABES FACULTE DES SCIENCES EXACTES SIDI BEL ABBES

THESE DE DOCTORAT DE 3^{ème} CYCLE

Présentée par

FILALI Siham

Domaine : Sciences de la matière

Filière : Physique

Intitulé de la formation : Concepts théoriques et techniques de modélisation en sciences des matériaux

Intitulée

ETUDE DU PREMIER PRINCIPE DE LA STRUCTURE ELECTRONIQUE ET MAGNETIQUE DES MATERIAUX PEROVSKITES DE LA FORME ABF3

Soutenue le 11/11/2020

Devant le jury composé de :

Présidente :	Pr. BENKABOU Khadidja	Pr, Université de Sidi Bel Abbes
Examinateurs :	Pr. BOUABDALLAH Badra	Pr, Université de Sidi Bel Abbes
	Dr. HARMEL Meriem Pr. NABL Zakia	MC(A), Université de l'USTO, Oran Pr. Université de Sidi Bel
Directeur de thèse	Dr. HAMDAD Noura	MC(A), Université de Sidi Bel Abbes
Co-Directeur de thèse	e : Pr. BENHELLAL Omar	Pr, Université de Sidi Bel Abbes

Année universitaire 2019-2020

Dédicace

Dédicace

Je dédie ce travail

A ma mère et à mon père

A mon marie et à mes enfants (Amdjed et

Ibtihel)

A mes frères et à mes sœurs

A mes beaux parents

A mon encadreur et à mes professeurs

A toutes les personnes qui me sont chères

A toute ma famille grande et petite

et à mes amis

Je dédie ce travail qui n'aura jamais pu voir le jour sans le soutien indéfectible et sans limite de mes proches qui ne cessent de donner avec amour et fournir le nécessaire pour que je puisse arriver à ce que je

suis aujourd'hui, que dieu vous protège.

Tout d'abord je remercie **ALLAH** le tout-puissant qui m'a offert santé, volonté et patience, me permettant de mener à terme ce présent travail, et je le remercie aussi de m'avoir offert l'opportunité de travailler avec **Docteur HAMDAD Noura**.

Ce travail a été effectué au Laboratoire de la Matière Condensée et Développement Durable (LMCDD) de la faculté des sciences exactes de l'université de Sidi-Bel-Abbès UDL, dirigé par Docteur HAMDAD Noura. Je tiens à la remercier en tout premier lieu de m'avoir encadré et proposé un sujet aussi passionnant et intéressant, et pour avoir dirigé cette thèse. Je la remercie également pour ses qualités humaines et pour ses conseils qui m'ont été d'un grand secours. Les mots ne suffisent pas pour décrire les qualités humaines d'une telle personnalité.

Mes sincères remerciements vont ainsi à mon Co-Encadreur **Professeur Benhellal Omar**, pour sa disponibilité et sa gratitude qui ont souligné l'intérêt qu'il porte à mes travaux de recherche. Qu'il retrouve ici mes sentiments de haute estime.

*Je remercie vivement le **Professeur Chahed Abbes**, Directeur du laboratoire de la Matière Condensée et Développement Durable(**LMCDD**) de la faculté des sciences exactes de l'université de Sidi-Bel-Abbès pour m'avoir accueilli dans son laboratoire tout au long de ces années de recherche. Je vous exprime mes remerciements et je vous témoigne ma reconnaissance et mon respect. Je tiens également à remercier le **professeur Rozale Habib** membre du Laboratoire (**LMCDD**).

I e remercie infiniment Madame **BENKABOU Khadidja** Professeur à l'université Djillali Liabes et Présidente de ma soutenance pour l'intérêt qu'elle a porté à mon travail, et d'avoir accepté de juger mon travail, croyez Madame à mon profond respect

A Mes remerciements vont aussi à tous les membres du jury. Que les **Professeurs BOUABDALLAH Badra**, et **Professeur NABI Zakia** et **Docteur HARMEL Meriem** trouvent ici toute ma gratitude pour avoir accepté d'évaluer et juger ma thèse de Doctorat. Merci vivement d'avoir honoré ma soutenance de Doctorat.

Enfin, je remercie infiniment tous ceux qui m'ont aidé de prés ou de loin durant la réalisation de ce travail et en particulier les membres de notre équipe de recherche. J'ai eu le privilège de profiter de vos connaissances ainsi que de vos conseils précieux.

RESUME

Cette thèse présente une étude ab-initio des propriétés structurales, électroniques et magnétiques des pérovskites fluorures (Fluoro-perovskite) de la forme ABF3. Les calculs ont été effectués en utilisant la méthode linéaire des ondes planes augmentées et linéarisées (FP-LAPW) basée sur la théorie de la fonctionnelle de la densité (DFT). Différentes approximations (GGA, L(S)DA, GGA-PBE, WC-GGA, GGA+U, LSDA+U et TB-mBJ-GGA) ont été utilisées pour l'énergie d'échange-corrélation. Dans le but de bien exploiter tous les propriétés physiques des Fluorures étudiés (CsFeF3, NaFeF3, RbFeF3, KCoF3, KNiF₃, KFeF₃, TiFeF₃, et TlFeF₃), et de bien comprendre leurs comportement magnétique, nous avons calculés tout d'abord leurs paramètres d'équilibres en étudiant les deux configurations : Non-Ferromagnétiques (NF), et Ferromagnétiques (FM). L'étude de la structure électronique de ces composés a été effectuée en plusieurs étapes (La structure de bande, Les densités d'état total et partiel (TDOS et PDOS), et la densité de charge) pour différentes structures cristallines. Nous avons calculé tout d'abord la structure cubique avec le groupe d'espace (Pm-3m) pour les huit matériaux Fluorures traités, ensuite la structure hexagonale-4H avec le groupe d'espace (P6/mmc), et en fin de compte nous avons calculé les deux structures orthorhombiques avec les groupes d'espaces (Pnma et Pbnm). Pour cela, différentes approximations ont été introduite dans un contexte comparatif. Les résultats obtenus s'accordent parfaitement bien avec plusieurs résultats théoriques et expérimentaux

Les mots clés : Pérovskites Fluorides ABF₃, Ab-Initio, DFT, GGA+U, TB-mBJ-GGA, Ferromagnétique (FM).

ABSTRACT

Ab-Initio calculation was performed using the linear method of the augmented plane wave and **linearized (FP-LAPW)** based on the Density Functional Theory (**DFT**) description. Different crystal structure (Cubic (**Pm-3m**), Hexagonal-4H (**P6/mmc**), Orthorhombic (**Pnma**) and Orthorhombic (**Pbnm**)) for different perovskite Fluorides (**CsFeF3**, **NaFeF3**, **RbFeF3**, **KCoF3**, **KNiF3**, **KFeF3**, **TiFeF3**, and **TIFeF3**) have been calculated within different approximations (**GGA**, **L(S)DA**, **GGA-PBE**, **WC-GGA**, **GGA+U**, **LSDA+U** et **TB-mBJ-GGA**) in order to introduce the exchange and correlation potential. We discussed the structural, electronic (Band structure, Total (**TDOS**) and Partial Densities (**PDOS**), and Charge densities). Also we investigated the magnetic properties. Our results agree very well with other theoretical and experimental data.

<u>Key words:</u> Perovskites Fluorides ABF3, Ab-Initio, DFT, GGA+U, TB-mBJ-GGA, Ferromagnetic (FM).

. تقدم هذه الأطروحة دراسة مبتكرة للخصائص الهيكلية والإلكترونية والمغناطيسية الفلوريدات أجريت الحسابات باستخدام طريق (FP-LAPW) الموجة الخطية المعززة الخطية استنادا إلى النظرية الوظيفية الكثافة تم حساب البنية البلورية المختلفة (مكعب مسدس الشكل معيني الشكل ضمن تقديرات تقريبية مختلفة من أجل إدخال التبادل محساب البنية البلورية المختلفة (مكعب مسدس الشكل معيني الشكل ضمن تقديرات تقريبية مختلفة من أجل إدخال التبادل تم تفيز دراسة البروية المختلفة (مكعب مسدس الشكل معيني الشكل ضمن تقديرات تقريبية مختلفة من أجل إدخال التبادل ووجثافة الشحنة التركيب الإلكتروني لهذه المركبات على عدة مراحل (بنية النطاق ، كثافات الدولة الكلية والجزئية .(GGA, L(S)DA, GGA-PBE, WC-GGA, GGA+U, LSDA) وإمكانات الارتباط وكثافة الشحنة النتائج التي تم الحمول عليها تثقق تماما مع العديد من النتائج النظرية والتجريبية

كلمة مفتاحية

مغنطيسي FM غير مغنطيسية و NF وGGA-TB-MBJ و GGA + U و GGA المغناطيسية

Nomenclature

Les Abréviations les plus utilisées dans cette thèse :

ZB: Zone de Brillouin (Brillouin Zone).

<u>DFT</u>: Théorie de la Fonctionnelle de la **D**ensité (**D**ensity Functional Theory).

<u>DFT+U :</u> Théorie de la Fonctionnelle de la Densité avec le potentiel de correction U-Hubbard (Density Functional Theory plus U-Hubbard correction).

LDA : Approximation de la Densité Locale (Local Density Approximation).

L(S)DA : Approximation de la Densité Locale de Spin (Local Spin Density Approximation).

<u>L(S)DA+U</u>: Approximation de la Densité Locale de Spin avec le potentiel de correction U-Hubbard (Local Spin Density Approximation plus U-Hubbard correction).

<u>GGA</u>: Approximation du Gradient Généralisée (Generalized Gradient Approximation).

WC-GGA : Approximation du Gradient Généralisée (Generalized Gradient Approximation).

<u>PBE-GGA</u>: Perdew-Burke-Ernzerhor-Approximation du Gradient Généralisée (Perdew-Burke-Ernzerhor- Generalized Gradient Approximation).

<u>PBEsol-GGA</u> : Perdew-Burke-Ernzerhor pour les Solides - Approximation du Gradient Généralisée (Perdew-Burke-Ernzerhor Solides - Generalized Gradient Approximation).

<u>GGA+U</u>: Approximation du Gradient Généralisée avec le potentiel de correction U-Hubbard (Generalized Gradient Approximation plus U-Hubbard correction).

<u>**TB-GGA-mBJ:</u>** Approximation du Gradient Généralisée avec le potentiel **m**odifié de Becke– Johnson (Generalized Gradient Approximation and the **m**odified Becke-Johnson potential.).</u>

<u>U-Hubbard</u>: Le potentiel de correction U-Hubbard qui est un Hamiltonian (Correction potential or Hamiltonian).

PP: Pseudo-Potentiel (Pseudo-Potential).

FP: Potentiel-Total (Full-Potential).

<u>FP-LAPW</u>: Approximation des ondes Planes Augmentées Linéarisées (FP-LAPW) avec un potentiel total (FP) (Full-Potential-Linearized Augmented Plane Wave).

<u>E</u>_F : Niveau de Fermi (Fermi Level)

<u>Wien2K:</u> Code (Package) utilisé pour la Simulation Ab-initio (Calcul du premier Principe). <u>DOS:</u> Densité d'états (Density of States).

TDOS: Densité d'états Totale (Total Density of States).

PDOS: Densité d'états Partielle (Partiel Density of States).

<u>B</u>: Module de compressibilité (**B**ulk modulus).

<u>NF:</u> Non-Ferromagnétique (Non-Ferromagnetic).

<u>FM</u>: Ferromagnétique (Ferromagnetic).

- AFM : Anti-Ferromagnétique (Anti-Ferromagnetic).
- A-AFM : Anti-Ferromagnétique type-A (A-type Anti-Ferromagnetic).
- G-AFM : Anti-Ferromagnétique type-G (G-type Anti-Ferromagnetic).

TABLE DE MATIERE

INTRODUCTION GENERALE		4
-----------------------	--	---

PARTIE I : ETUDE BIBLIOGRAPHIQUE

<u>CHAPITRE I :</u> Calcul Ab-Initio

9
9
10
10
11
11
12

<u>CHAPITRE II :</u> Les matériaux pérovskites fluorures ABF₃

II.1. Introduction	16
I.2. La structure pérovskite ABO ₃	17
I.3. La structure cubique idéale	18
I.4. Critère de stabilité d'une structure pérovskite	20
I.4.1. Iconicité des liaisons	20
I.4.2. Facteur de Tolérance (Goldschmidt)	21
I.5. Les propriétés physiques des pérovskites	22
I. 5. 1 La ferroélectricité	22
I.5.2. La piézoélectricité	23
I.5. 3. Le ferromagnétisme	24
I.5. 4. Le Multiferroisme	25
I.6. Les pérovskites fluorures ABF ₃	25
Réference	27

REFERENCES DE LA PARTIE I

PARTIE II : METHODES DE CALCUL - RESULTATS ET DISCUSSION

<u>CHAPITRE I :</u> Les méthodes de calcul

I.1.Introduction	29
I.2. Généralités de L'équation de la fonctionnelle de la densité DFT	29
I.2)-1. Résolution de L'équation de Schrödinger et la fonction d'onde	29
I.1)-2. Approximation de Born-Oppenheimer	30
I.1)-3. Approximation Hartree (des électrons libres)	31
I.3) La théorie de la fonctionnelle de la densité (DFT)	32
I.3).a). Théorèmes de Hohenberg-Kohn	32
I.3).b). Les équations de Kohn-Sham	34
I.3).c). Traitement de terme d'échange et corrélation	35
I.4) L'introduction des approximations	36
I.4.a). Approximation de la densité locale (LDA)	36
I.4.b). Approximation du gradient généralisé (GGA)	37
I – 4.c) Emploi du terme d'Hubbard	38
I - 4.d) Les fonctionnelles hybrides	39
I.4.e). Résolution des équations de Kohn-Sham	39
I.4.f).Limite de la DFT (systèmes électroniques fortement corrélés)	42
I.4.).Succès de la DFT	42
I.5)- La méthode des ondes planes linéairement augmentées (FP-LAPW)	43
I.5)-a).Introduction.	43
I.5).b. La méthode des ondes planes augmentées (APW)	43
I.5).c. La méthode LAPW	45
I.5).d. Principe de la méthode FP-LAPW	46
I.5)-e. Les rôles des énergies de linéarisation(El)	47
I.5)-f). Construction des fonctions radiales	48
I.5)-i). Les fonctions radiales non relativistes	48
I.5)-j). Les fonctions radiales relativistes	49
I.5)-k). Détermination des coefficients Alm et Blm	53
I.5)-l). Détermination des potentiels	54
I.5)-l).1. La résolution de l'équation de Poisson	54
I.5)-l).2. Potentiel d'échange et de corrélation	56
I.6) Amélioration de la méthode FP-LAPW	57
I.6)-a). Les fenêtres d'énergie multiple	58
I.6)-b). Le développement en orbitales locales	58
I.6)-c). Densité de charge de valence	59
I.7)- Le code Wien2k	60
I.7)-a).L'initialisation	60
I.7)-b).Calcul auto-cohérent	61
I.7)-c).Calcul des propriétés	62
I.7)-d).La fonctionnelle de Tran et Blaha	63

éférence	64
----------	----

<u>CHAPITRE II :</u> Résultats et discussions

I. Introduction	67
1).1 Le Fluorure CsFeF ₃ :	68
1).2 Le Fluorure RbFeF ₃	68
1).3 Le Fluorure NaFeF ₃	69
1).4 Le Fluorure KNiF ₃	69
1).5 Le Fluorure KCoF ₃	70
1).6 Le Fluorure KFeF ₃	70
1).7 Le Fluorure TlFeF ₃	71
1).8 Le Fluorure TiFeF ₃	71
I).2. Détails de calcul	72
I).3 L'optimisation du volume	73
II). Le Calcul des propriétés structurales	73
II).1.Les différentes structures cristallines des Fluorures	73
II).1.1 La phase Cubique	73
II).1.2 La phase hexagonale-4H	76
II).1.3 La phase orthorhombique (Pnma)	78
II).1.4 La phase orthorhombique (Pbnm)	80
II).2 L'optimisation des paramètres de mailles	81
II).2.1 La phase cubique	81
II).2.2 La structure Hexagonale 4H	104
II).2.3 La structure Orthorhombique (Pnma)	111
II).2.3 L'optimisation des trois structures cristallines Cubique (Pm-3m), Hexagonale-4H	
(P63/mmc) et l'Orthorhombique (Pnma)	118
II).3. Les propriétés électroniques et magnétiques	124
II).3.1. Les propriétés magnétiques	124
II).3.1.1 Le calcul du moment magnétique	124
II).3.2. Les propriétés Electroniques	135
II).3.2.1. Les structures de bande	135
II).3.2.1. Les densités d'état	162
II).3.2.1. Les densités de charge	180
Référence	204

REFERENCES DE LA PARTIE II

PARTIE I : ETUDE BIBLIOGRAPHIQUE

<u>CHAPITRE II</u> : Les Matériaux Pérovskites Fluorures (Fluoro-Pérovskites)

Figure I.1: La pérovskite Titanate de Calcium (CaTiO3)	16
Figure I.2 : Structure pérovskite ABX ₃	17
Figure I.3 : Schématisation de la structure pérovskite ABX3	17
Figure I.4 : Propriétés des pérovskites ABO ₃ en fonction des substitutions des cations	18
A et B	19
Figure I.5 :(a)Une des représentations de la structure pérovskite	10
(b)Maille élémentaire de la structure pérovskite ABO3	19
Figure I.6: Directions de déformations privilégiées dues au déplacement de l'ion B dans	20
l'octaèdre des ions d'oxygènes.	
Figure I.7 : Maille de la Pérovskite simple	21
Figure I.8: Les matériaux ferroélectriques parmi les matériaux cristallins	23
Figure I.9: Ordre magnétique :	24
a) Ferromagnétique	24
b) Antiferromagnétique	24
c) Ferrimagnétique.	24
Figure I.10 : La structure cristalline cubique du Fluorure avec le groupe d'espace (Pm-	26
3 m)	

PARTIE II : METHODES DE CALCUL

CHAPITRE I : La théorie de la fonctionnelle de la densité (DFT)

Figure I.1 : interdépendance des équations de Kohn-Sham	35
Figure I.2 : le schéma du calcul self consistant de la fonctionnelle de densité	41
Figure I.3: Représentation du potentiel Muffin Tin « MT »	44
Figure I.4: L'organigramme des programmes du code wien2k	63

<u>CHAPITRE II :</u> Résultats & discussions

Figure II.1 : la structure cristalline cubique avec le groupe d'espace (Pm-3m) respectivement des péroviskites FluoruresCsFeF3, NaFeF3, RbFeF3, KCoF3, KFeF3, KNiF3, TiFeF3et TIFeF3adoptées pour les deux configurations (NF) et (FM).....

Figure II.3: la structure cristalline orthorombique avec le groupe d'espace (Pnma)	78
respectivement des péroviskites FluoruresCsFeF3, NaFeF3, RbFeF3, KFeF3,KCoF3, KNiF3,,et	
TiFeF ₃	
Figure II.4: la structure cristalline orthorombique avec le groupe d'espace (Pbnm)	80
respectivement des péroviskites Fluorures CsFeF ₃ , NaFeF ₃ et RbFeF ₃	
Figure II.5: Optimisation du volume du Fluoro-perovskiteCsFeF ₃ dans la phase cubique en	
utilisant la L(S)DA, GGA, L(S)DA+U, et GGA+U approches respectivement pour la	96
configuration Non-Ferromagnétique (NF)et Ferromagnétique (FM)	
Figure II.6: Optimisation du volume du Fluoro-perovskiteNaFeF3 dans la phase cubique en	
utilisant la L(S)DA, GGA, L(S)DA+U, et GGA+U approches respectivement pour la	97
configuration Non-Ferromagnétique (NF)et Ferromagnétique(FM)	
Figure II.7 : Optimisation du volume du Fluoro-perovskiteRbFeF3 dans la phase cubique en	
utilisant la L(S)DA, GGA, L(S)DA+U, et GGA+U approches respectivement pour la	98
configuration Non-Ferromagnétique (NF)et Ferromagnétique (FM)	
Figure II.8: Optimisation du volume du Fluoro-perovskiteKFeF ₃ dans la phase cubique en	
utilisant la L(S)DA, GGA, L(S)DA+U, et GGA+U approches respectivement pour la	99
configuration Non-Ferromagnétique (NF)et Ferromagnétique (FM)	
Figure II.9: Optimisation du volume du Fluoro-perovskiteKCoF ₃ dans la phase cubique en	
utilisant la $L(S)DA$, GGA , $L(S)DA+U$, et $GGA+U$ approches respectivement pour la	100
configuration Non-Ferromagnétique (NF)et Ferromagnétique (FM)	
Figure 11.10: Optimisation du volume du Fluoro-perovskiteKNiF ₃ dans la phase cubique en	101
utilisant la $L(S)DA$, GGA , $L(S)DA+U$, et $GGA+U$ approches respectivement pour la	101
configuration Non-Ferromagnétique (NF)et Ferromagnétique (FM)	
Figure 11.11: Optimisation du volume du Fluoro-perovskite l'IFeF3 dans la phase cubique en	100
utilisant la $L(S)DA$, GGA, $L(S)DA+U$, et GGA+U approches respectivement pour la	102
Configuration Non-Ferromagnetique (NF)et Ferromagnetique (FM)	
Figure 11.12: Optimisation du volume du Fluoro-perovskite lifeF ₃ dans la phase cubique en	102
utilisant la $L(S)DA$, GGA , $L(S)DA+U$, et $GGA+U$ approches respectivement pour la surficience (NE) et Economica (IEM)	103
Eigene II 12 Optimisation du valume du Elucas persuelite CaFaF. dans la phase Usuasanale AI	
<u>Figure 11.15</u> : Optimisation du volume du Fluoro-perovskite CsFeF ₃ dans la phase Hexagonale-4 H	
en utilisant la L(S)DA, GGA, L(S)DA+U, et GGA+U approches respectivement pour la configuration Non Exprementatique (NE) et Exprementatique (EM)	104
Figure II 14 : Optimisation du volume du Elucro percustrite NaFaF dans la phase Havagonale 4	104
<u>rigure 11.14</u> . Optimisation du volume du Fluoro-perovskitel varer 3 dans la phase Hexagonale-4 H	105
configuration Non Entromagnétique (NE) at Entromagnétique (EM)	105
Figure II.15 :Optimisation du volume du Fluoro-perovskiteRbFeF ₃ dans la phase Hexagonale-	106
4H en utilisant la L(S)DA, GGA, L(S)DA+U, et GGA+U approches respectivement pour la	100
configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM)	
Figure II.16 : Optimisation du volume du Fluoro-perovskiteKFeF3 dans la phase Hexagonale-4H	107
en utilisant la L(S)DA, GGA, L(S)DA+U, et GGA+U approches respectivement pour la	107
configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM)	
Figure II.17 : Optimisation du volume du Fluoro-perovskiteKCoF ₃ dans la phase Hexagonale-4H	
en utilisant la L(S)DA, GGA, L(S)DA+U, et GGA+U approches respectivement pour la	108
configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM)	100
Figure II.18 : Optimisation du volume du Fluoro-perovskiteKNiF ₃ dans la phase Hexagonale-4H	
en utilisant la L(S)DA, GGA, L(S)DA+U, et GGA+U approches respectivement pour la	109
configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM)	

Figure II.19 : Optimisation du volume du Fluoro-perovskiteTiFeF ₃ dans la phase Hexagonale-4H	
en utilisant la L(S)DA, GGA, L(S)DA+U, et GGA+U approches respectivement pour la	
configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM)	110
Figure II.20: Optimisation du volume du Fluoro-perovskiteCsFeF3 dans la phase	
Orthorhombique-Pnma en utilisant la L(S)DA, GGA, L(S)DA+U, et GGA+U approches	
respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM)	111
Figure II.21 : Optimisation du volume du Fluoro-perovskite NaFeF ₃ dans la phase	
Orthorhombique- Pnma en utilisant la $L(S)DA$, GGA , $L(S)DA+U$ et $GGA+U$ approches	
respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM)	112
Figure II 22 Optimisation du volume du Eluoro-perovskite RhFeF , dans la phase	114
Orthorhombique Prme an utilisant la L(S)DA CCA L(S)DA U at CCA U approches	
respectivement pour le configuration Non Ecomomognétique (NE) et Ecomomognétique (EM)	112
E H 22 O <i>d d d d</i> d d d d d d d d d d	115
Figure 11.23: Optimisation du volume du Fluoro-perovskiteKFeF3 dans la phase	
Orthorhombique-Pnma en utilisant la L(S)DA, GGA, L(S)DA+U, et GGA+U approches	
respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM)	114
Figure II.24 : Optimisation du volume du Fluoro-perovskiteKCoF ₃ dans la phase	
Orthorhombique-Pnma en utilisant la L(S)DA, GGA, L(S)DA+U, et GGA+U approches	
respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM)	115
Figure II.25 : Optimisation du volume du Fluoro-perovskiteKNiF3 dans la phase	
Orthorhombique-Pnma en utilisant la L(S)DA, GGA, L(S)DA+U, et GGA+U approches	
respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM)	116
Figure II.26 :Optimisation du volume du Fluoro-perovskiteTiFeF ₃ dans la phase	
Orthorhombique-Pnma en utilisant la $L(S)DA$. GGA, $L(S)DA+U$, et GGA+U approches	
respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM)	117
Figure II.27 : Optimisation du volume en fonction de l'énergie du Eluoro-perovskite CsFeF 2pour	
la phase Cubique (Pm-3m) la phase Hexagonale- 4H(P63/mmc) et la phase Orthorhombique	
(Pnma)	110
Eigune II 28 : Optimisation du volume on fonction de l'énergie du Eluere perceptite No For pour	110
Figure 11.28: Optimisation du volume en fonction de l'energie du Fidolo-perovskiervar er 3pour	
la phase Cubique (Pm-3m), la phase Hexagonale-4H(Po/mmc) et la phase Orthornombique	110
	118
Figure 11.29: Optimisation du volume en fonction de l'énergie du Fluoro-perovskite RbFeF ₃ pour	
la phase Cubique (Pm-3m), la phase Hexagonale-4H(P63/mmc) et la phase Orthorhombique	
(Pnma)	119
Figure II.30: Optimisation du volume en fonction de l'énergie du Fluoro-perovskiteKFeF ₃ pour	
la phase Cubique (Pm-3m), la phase Hexagonale-4H(P63/mmc) et la phase Orthorhombique	
(Pnma)	119
Figure II.31 : Optimisation du volume en fonction de l'énergie du Fluoro-perovskiteKCoF ₃ pour	
la phase Cubique (Pm-3m), la phase Hexagonale-4H(P63/mmc) et la phase Orthorhombique	
(Pnma)	120
Figure II.32: Optimisation du volume en fonction de l'énergie du Fluoro-perovskite KNiF ₃ pour	
la phase Cubique (Pm-3m), la phase Hexagonale- 4H (P63/mmc) et la phase Orthorhombique	
(Pnma)	120
Figure II 33: Optimisation du volume en fonction de l'énergie du Eluoro-perovskite TiFeF 2pour	120
la phase Cubique (Pm.3m) la phase Heyagonale- 4H(P63/mme) et la phase Orthorhombique	
(Pnma)	121
Element II 24 : Structure de hande du Elucrute CaEcE dans la shase subisme (Des 2 m)	141
<u>Figure 11.34</u> : Structure de bande du Fluorure USFEF 3dans la phase cubique (FM-3M) en utilisant	
ia LDA, GGA approches respectivement pour la configuration Non-Ferromagnetique (NF)	10-
	135

Figure II.35 : Structure de bande du FluorureNaFeF3dans la phase cubique (Pm-3m) en utilisant	
la LDA, GGA approches respectivement pour la configuration Non-Ferromagnétique (NF)	135
Figure II.36 : Structure de bande du Fluorure RbFeF ₃ dans la phase cubique (Pm-3m) en utilisant	136
la LDA, GGA approches respectivement pour la configuration Non-Ferromagnétique (NF)	
Figure II.37 : Structure de bande du Fluorure KFeF ₃ dans la phase cubique (Pm-3m) en utilisant	136
la LDA, GGA approches respectivement pour la configuration Non-Ferromagnétique (NF)	
Figure II.38: Structure de bande du FluorureKCoF ₃ dans la phase cubique (Pm-3m) en utilisant	
la LDA, GGA approches respectivement pour la configuration Non-Ferromagnétique (NF)	137
Figure II.39: Structure de bande du FluorureKNiF ₃ dans la phase cubique (Pm-3m) en utilisant la	
LDA, GGA approches respectivement pour la configuration Non-Ferromagnétique (NF)	137
Figure II.40: Structure de bande du FluorureTiFeF ₃ dans la phase cubique (Pm-3m) en utilisant	
la LDA, GGA approches respectivement pour la configuration Non-Ferromagnétique (NF)	138
Figure II.41: Structure de bande du Fluorure TIFeF ₃ dans la phase cubique (Pm-3m) en utilisant	
la LDA, GGA approches respectivement pour la configuration Non-Ferromagnétique (NF)	138
Figure II.42 : Structure de bande du Fluorure CsFeF ₃ dans la phase cubique (Pm-3m) en utilisant	
la LSDA, GGA, LSDA+U, GGA+U et TB-GGA-mBJ approches respectivement pour la	139
configuration Ferromagnétique (FM) pour les deux états (Spin Up) et (Spin Dn)	
Figure II.43 : Structure de bande du Fluorure NaFeF ₃ dans la phase cubique (Pm-3m) en utilisant	
la LSDA, GGA, LSDA+U, GGA+U et TB-GGA-mBJ approches respectivement pour la	
configuration Ferromagnétique (FM) pour les deux états (Spin Up) et (Spin Dn)	140
Figure II.44 : Structure de bande du Fluorure RbFeF ² dans la phase cubique (Pm-3m) en utilisant	1.10
la LSDA, GGA, LSDA+U, GGA+U et TB-GGA-mBJ approches respectivement pour la	
configuration Ferromagnétique (FM) pour les deux états (Spin Up) et (Spin Dn)	141
Figure II 45 • Structure de bande du Eluorure KFeF ² dans la phase cubique (Pm-3m) en utilisant	
la LSDA GGA LSDA+U GGA+U et TB-GGA-mBI approches respectivement pour la	
configuration Ferromagnétique (FM) nour les deux états (Snin Un) et (Snin Dn)	1/2
Figure II 46 · Structure de hande du Elucrure KCoE 2dans la phase cubique (Pm-3m) en utilisant	174
12 I SDA CCA I SDA+U CCA+U et TB-CCA-mBI approches respectivement pour la	
configuration Ferromagnátique (FM) pour les deux átats (Spin Un) et (Spin Dn)	1/13
Figure II 47 • Structure de bande du Elucrure KNiE-dans la phase cubique (Pm-3m) en utilisant	143
<u>12</u> ISDA CCA ISDA+U CCA+U at TB-CCA-mBI approches respectivement pour la	
configuration Forromagnétique (FM) pour les doux états (Spin Un) et (Spin Dn)	144
Figure II 48 : Structure de bande du Elucrure TiFeF -dans la phase subigue (Pm 3m) en utilisent	144
<u>rigure 11.46</u> : Structure de bande du Fluorure IFFF 3dans la phase cubique (FIII-5III) en utilisant	
la LSDA, GGA,LSDA+U, GGA+U et IB-GGA-IBBJ approches respectivement pour la configuration Economication (EM) nour los doux états (Spin Un) at (Spin Dn)	145
Eigune II 40 : Structure de bande du Elucrore TIE e dens la chase subigue (Der 2 -2) a subigue (Der 2 -2)	143
<u>Figure 11.47</u> ; Structure de bande du Fiuorure Lifef ₃ dans la phase cubique (Fm-3m) en utilisant	
ia LSDA, GGA,LSDA+U, GGA+U et IB-GGA-mBJ approches respectivement pour la	144
configuration Ferromagnetique (FM) pour les deux etats (Spin Up) et (Spin Dn)	146
<u>Figure 11.50</u> : Structure de bande du Fluorure UsFeF ₃ dans la phase hexagonale (4H) en utilisant	
la GGA+U et IB-GGA-mBJ approches respectivement pour la configuration Ferromagnétique	a 4=
(FM) pour les deux états (Spin Up) et (Spin Dn)	147

Figure II.51 : Structure de bande du Fluorure NaFeF ₃ dans la phase hexagonale (4H) en utilisant	
la GGA+U et TB-GGA-mBJ approches respectivement pour la configuration Ferromagnétique	
(FM) pour les deux états (Spin Up) et (Spin Dn)	148
Figure II.52 : Structure de bande du Fluorure RbFeF ₃ dans la phase hexagonale (4H) en utilisant	
la GGA+U et TB-GGA-mBJ approches respectivement pour la configuration Ferromagnétique	
(FM) pour les deux états (Spin Up) et (Spin Dn)	149
Figure II.53: Structure de bande du Fluorure KFeF ₃ dans la phase hexagonale (4H) en utilisant la	
GGA+U et TB-GGA-mBJ approches respectivement pour la configuration Ferromagnétique	
(FM) pour les deux états (Spin Up) et (Spin Dn)	150
Figure II.54 : Structure de bande du Fluorure KCoF ₃ dans la phase hexagonale (4H) en utilisant	200
la GGA+U et TB-GGA-mBI approches respectivement pour la configuration Ferromagnétique	
(FM) nour les deux états (Snin Un) et (Snin Dn)	151
Figure II 55 · Structure de bande du Elucrure KNiF adans la phase bevagonale (4H) en utilisant la	151
<u>Figure 11.55</u> . Structure de bande du l'hubrare Krith suans la phase nexagonale (41) en utilisant la CCA Li at TB CCA mBL approchas respectivement pour la configuration Forromagnétique	
(FM) nour los doux átata (Snin Un) at (Snin Dn)	150
(FWI) pour les deux étais (Spin Op) et (Spin Di)	152
<u>Figure 11.56</u> : Structure de bande du Fluorure 11FeF ₃ dans la phase nexagonale (4H) en utilisant	
la GGA+U et TB-GGA-mBJ approches respectivement pour la configuration Ferromagnétique	
(FM) pour les deux états (Spin Up) et (Spin Dn)	153
Figure II.57: Structure de bande du Fluorure CsFeF ₃ dans la phase orthorhombique (Pnma) en	
utilisant la GGA+U et TB-GGA-mBJ approches respectivement pour la configuration	
Ferromagnétique (FM) pour les deux états (Spin Up) et (Spin Dn)	154
Figure II.58: Structure de bande du Fluorure NaFeF3 dans la phase orthorhombique (Pnma) en	
utilisant la GGA+U et TB-GGA-mBJ approches respectivement pour la configuration	
Ferromagnétique (FM) pour les deux états (Spin Up) et (Spin Dn)	155
Figure II.59: Structure de bande du Fluorure RbFeF ₃ dans la phase orthorhombique (Pnma) en	
utilisant la GGA+U et TB-GGA-mBJ approches respectivement pour la configuration	
Ferromagnétique (FM) pour les deux états (Spin Up) et (Spin Dn)	156
Figure II.60: Structure de bande du Fluorure CsFeF ₃ dans la phase orthorhombique (Pbnm) en	
utilisant la GGA+U et TB-GGA-mBJ approches respectivement pour la configuration	
Ferromagnétique (FM) pour les deux états (Spin Up) et (Spin Dn)	157
Figure II 61: Structure de hande du Elucrure NaFeF ² dans la phase orthorhombique (Phnm) en	107
utilisant la GGA+I et TB-GGA-mBI approches respectivement pour la configuration	
Ferromagnétique (FM) nour les deux états (Snin Un) et (Snin Dn)	158
Eigure II 62: Structure de hande du Elucrure DEEE dans la phase orthornhombique (Dhnm) an	130
righte 11.02. Subclure de bande du Fuordie Korer guais la phase ormonomorphe (1 binn) en	
Expression in GGA+O et TB-GGA-IIIDJ approches respectivement pour la configuration	150
Ferromagnetique (FM) pour les deux états (Spin Up) et (Spin Dn)	159
Figure.11.65: Densite d etat DOS du Fluoro- perovskite CSF eF ₃ non-terromagnetique (NF) dans	1 (0
Ta phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et IB-GGA-mBJ	162
Figure.11.64 : Densité d'état DOS du Fluoro- pérovskite NaFeF3non-terromagnétique (NF) dans	
la phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ	162
<u>Figure.11.65 :</u> Densité d'état DOS du Fluoro- pérovskite RbFeF ₃ non-ferromagnétique (NF) dans	
la phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ	163
Figure.11.66: Densité d'état DOS du Fluoro- pérovskite KFeF3non-ferromagnétique (NF) dans	
la phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBj	163
Figure.11.67 : Densité d'état DOS du Fluoro- pérovskite KNiF3non-ferromagnétique (NF) dans	
la phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ	164
Figure.11.68: Densité d'état DOS du Fluoro- pérovskite KCoF3non-ferromagnétique (NF) dans	
la phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ	164

la phase cubique (Pn-3 m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ Figure.11.70 : Densité d'état DOS du Fluoro- pérovskite TIFEF , Ferromagnétique (FM) dans la phase cubique (Pm-3 m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ [16] phase cubique (Pm-3 m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ [17] Figure.11.72 : Densité d'état DOS du Fluoro- pérovskite RbFe ₃ Ferromagnétique (FM) dans la phase cubique (Pm-3 m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ [17] Figure.11.73 : Densité d'état DOS du Fluoro- pérovskite RbFe ₃ Ferromagnétique (FM) dans la phase cubique (Pm-3 m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ [18] Figure.11.74 : Densité d'état DOS du Fluoro- pérovskite KVFe ₃ Ferromagnétique (FM) dans la phase cubique (Pm-3 m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ [18] Figure.11.73 : Densité d'état DOS du Fluoro- pérovskite KVFe ₃ Ferromagnétique (FM) dans la phase cubique (Pm-3 m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ [18] phase cubique (Pm-3 m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ [19] Figure.11.75 : Densité d'état DOS du Fluoro- pérovskite KVFe ₃ Ferromagnétique (FM) dans la phase cubique (Pm-3 m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ [19] Figure.11.75 : Densité d'état DOS du Fluoro- pérovskite TIFeF ₃ Ferromagnétique (FM) dans la phase cubique (Pm-3 m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ [19] Figure.11.79 : Densité d'état DOS du Fluoro- pérovskite TIFeF ₃ Ferromagnétique (FM) dans la phase cubique (Pm-3 m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ [19] Figure.11.79 : Densité d'état DOS du Fluoro- pérovskite TFeF ₃ Ferromagnétique (FM) dans la phase hexagonale (HH) en utilisant les deux approximations GGA+U et TB-GGA-mBJ [19] Figure.11.80 :]Densité d'état DOS du Fluoro- pérov	Figure.11.69 : Densité d'état DOS du Fluoro- pérovskite TiFeF3non-ferromagnétique (NF) dans	165
Figure.11.70: Densité d'état DOS du Fluoro- pérovskite TIFeF aon-ferromagnétique (FM) dans la 165 la phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ 166 phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ.pour les 167 rétars Spin Up et Spin Dn	la phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ	
la phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les états Spin Up et Spin Dn	Figure.11.70 : Densité d'état DOS du Fluoro- pérovskite TlFeF3non-ferromagnétique (NF) dans	165
Figure.II.71: Densité d'état DOS du Fluoro- pérovskite CSFeF3/Ferromagnétique (FM) dans la 166 phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les 161 fats Spin Up et Spin Dn. 162 Figure.II.72: Densité d'état DOS du Fluoro- pérovskite NaFeF3/Ferromagnétique (FM) dans la 166 phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les 163 états Spin Up et Spin Dn. 164 Figure.II.72: Densité d'état DOS du Fluoro- pérovskite KNFeF3/Ferromagnétique (FM) dans la 167 phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les 163 états Spin Up et Spin Dn. 167 Figure.II.75: Densité d'état DOS du Fluoro- pérovskite KNFa/Ferromagnétique (FM) dans la 168 phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les 164 états Spin Up et Spin Dn. 169 Figure.II.76: Densité d'état DOS du Fluoro- pérovskite KNFa/Ferromagnétique (FM) dans la 168 états Spin Up et Spin Dn. 161 Figure.II.77: Densité d'état DOS du Fluoro- pérovskite TIFeF3/Ferromagnétique (FM) dans la 164 phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les 164 états Spin Up et Spin Dn. 162	la phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ	
phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les états Spin Up et Spin Dn	Figure.11.71: Densité d'état DOS du Fluoro- pérovskite CsFeF ₃ Ferromagnétique (FM) dans la	166
 états Spin Up et Spin Dn. Figure.II.72; Densité d'état DOS du Fluoro- pérovskite RbFeFsFerromagnétique (FM) dans la phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les états Spin Up et Spin Dn. Figure.II.74; Densité d'état DOS du Fluoro- pérovskite KbFeFsFerromagnétique (FM) dans la phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les états Spin Up et Spin Dn. Figure.II.75; Densité d'état DOS du Fluoro- pérovskite KNFsFerromagnétique (FM) dans la phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les états Spin Up et Spin Dn. Figure.II.76; Densité d'état DOS du Fluoro- pérovskite KCoFsFerromagnétique (FM) dans la phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les états Spin Up et Spin Dn. Figure.II.77; Densité d'état DOS du Fluoro- pérovskite TiFeFsFerromagnétique (FM) dans la phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les états Spin Up et Spin Dn. Figure.II.77; Densité d'état DOS du Fluoro- pérovskite TiFeFsFerromagnétique (FM) dans la phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les états Spin Up et Spin Dn. Figure.II.79; Densité d'état DOS du Fluoro- pérovskite TiFeFsFerromagnétique (FM) dans la phase chexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les états Spin Up et Spin Dn. Figure.II.80; Densité d'état DOS du Fluoro- pérovskite CSFeFsnon-ferromagnétique (NF) dans la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ. Figure.II.81; Densité d'état DOS du Fluoro- pérovskite RbFeFsnon-ferromagnétique (NF) dans la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ. Figure.II.82; Densité d'état DOS du Fluoro- pérovskite KFeFsnon-ferromagnétique (NF) dans la phase hexa	phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les	
Figure.II.72: Densité d'état DOS du Fluoro- pérovskite NaFeF3Ferromagnétique (FM) dans la 166 phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les 167 états Spin Up et Spin Dn	états Spin Up et Spin Dn	
phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les états Spin Up et Spin Dn	Figure.II.72: Densité d'état DOS du Fluoro- pérovskite NaFeF3Ferromagnétique (FM) dans la	166
 états Spin Up et Spin Dn	phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les	
Figure.II.73: Densité d'état DOS du Fluoro- pérovskite RbFeF ₃ Ferromagnétique (FM) dans la 167 phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les 167 états Spin Up et Spin Dn	états Spin Up et Spin Dn	
phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les états Spin Up et Spin Dn	Figure.II.73: Densité d'état DOS du Fluoro- pérovskite RbFeF ₃ Ferromagnétique (FM) dans la	167
 états Spin Up et Spin Dn	phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les	
Figure,II.74: Densité d'état DOS du Fluoro- pérovskite KFeF ₃ Ferromagnétique (FM) dans la 167 phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les 168 états Spin Up et Spin Dn	états Spin Up et Spin Dn	
phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les états Spin Up et Spin Dn	Figure.II.74: Densité d'état DOS du Fluoro- pérovskite KFeF3Ferromagnétique (FM) dans la	167
 états Spin Up et Spin Dn	phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les	
Figure.II.75: Densité d'état DOS du Fluoro- pérovskite KNiF ₃ Ferromagnétique (FM) dans la 168 phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les états Spin Up et Spin Dn	états Spin Up et Spin Dn	
phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les états Spin Up et Spin Dn.	Figure.II.75: Densité d'état DOS du Fluoro- pérovskite KNiF ₃ Ferromagnétique (FM) dans la	168
 états Spin Up et Spin Dn	phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les	
Figure.II.76: Densité d'état DOS du Fluoro- pérovskite KCoF3Ferromagnétique (FM) dans la phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les états Spin Up et Spin Dn	états Spin Up et Spin Dn	
phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les 168 états Spin Up et Spin Dn	Figure.II.76: Densité d'état DOS du Fluoro- pérovskite KCoF ₃ Ferromagnétique (FM) dans la	
 états Spin Up et Spin Dn	phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les	168
Figure.II.77: Densité d'état DOS du Fluoro- pérovskite TiFeF ₃ Ferromagnétique (FM) dans la phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les états Spin Upet Spin Dn	états Spin Up et Spin Dn	
phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les 169 états Spin Upet Spin Dn	Figure.II.77: Densité d'état DOS du Fluoro- pérovskite TiFeF ₃ Ferromagnétique (FM) dans la	
 états Spin Upet Spin Dn	phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les	169
Figure.II.78: Personagnétique (Pm-3m)en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les états Spin Up et Spin Dn	états Spin Upet Spin Dn	
phase cubique (Pm-3m)en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour169les états Spin Up et Spin Dn	Figure.II.78: Densité d'état DOS du Fluoro- pérovskite TIFeF ₃ Ferromagnétique (FM) dans la	
 les états Spin Up et Spin Dn	phase cubique (Pm-3m) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour	169
Figure.11.79 : Densité d'état DOS du Fluoro- pérovskite CsFeF3non-ferromagnétique (NF) dans170la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ170Figure.11.80 :Densité d'état DOS du Fluoro- pérovskite NaFeF3non-ferromagnétique (NF) dans170la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ170Figure.11.81 :Densité d'état DOS du Fluoro- pérovskite RbFeF3non-ferromagnétique (NF) dans171la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ	les états Spin Up et Spin Dn	
la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ170Figure.11.80 :Densité d'état DOS du Fluoro- pérovskite NaFeF3non-ferromagnétique (NF) dans170la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ170Figure.11.81 :Densité d'état DOS du Fluoro- pérovskite RbFeF3non-ferromagnétique (NF) dans171la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ171Figure.11.82 :Densité d'état DOS du Fluoro- pérovskite KFeF3non-ferromagnétique (NF) dans171la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ171Figure.11.83 :Densité d'état DOS du Fluoro- pérovskite KCoF3non-ferromagnétique (NF) dans172la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ172Figure.11.83 :Densité d'état DOS du Fluoro- pérovskite KNiF3non-ferromagnétique (NF) dans172la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ172Figure.11.85 :Densité d'état DOS du Fluoro- pérovskite TiFeF3 non-ferromagnétique (NF) dans174la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ173Figure.11.85: Densité d'état DOS du Fluoro- pérovskite CsFeF3 ferromagnétique (FM) dans la174phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les174figure.11.86: Densité d'état DOS du Fluoro- pérovskite NaFeF3 ferromagnétique (FM) dans la174phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les174figure.11.87	Figure.11.79 : Densité d'état DOS du Fluoro- pérovskite CsFeF3non-ferromagnétique (NF) dans	
Figure.11.80 :Densité d'état DOS du Fluoro- pérovskite NaFeF3non-ferromagnétique (NF) dans170la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ171Figure.11.81 :Densité d'état DOS du Fluoro- pérovskite RbFeF3non-ferromagnétique (NF) dans171la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ171Figure.11.82 :Densité d'état DOS du Fluoro- pérovskite KFeF3non-ferromagnétique (NF) dans171la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ171Figure.11.83 :Densité d'état DOS du Fluoro- pérovskite KCoF3non-ferromagnétique (NF) dans172la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ172Figure.11.84 : Densité d'état DOS du Fluoro- pérovskite KNiF3non-ferromagnétique (NF) dans172la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ172Figure.11.85 :Densité d'état DOS du Fluoro- pérovskite TiFeF3 non-ferromagnétique (NF) dans173la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ173Figure.11.85 :Densité d'état DOS du Fluoro- pérovskite TiFeF3 non-ferromagnétique (NF) dans174la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ173Figure.11.86: Densité d'état DOS du Fluoro- pérovskite CsFeF3 ferromagnétique (FM) dans la174phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les174deux états Spin Up et Spin Dn	la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ	170
la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ	Figure.11.80 :Densité d'état DOS du Fluoro- pérovskite NaFeF3non-ferromagnétique (NF) dans	
Figure.11.81 : Densité d'état DOS du Fluoro- pérovskite RbFeF3non-ferromagnétique (NF) dans la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ171Figure.11.82 : Densité d'état DOS du Fluoro- pérovskite KFeF3non-ferromagnétique (NF) dans la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ171Figure.11.83 : Densité d'état DOS du Fluoro- pérovskite KCoF3non-ferromagnétique (NF) dans la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ172Figure.11.84 : Densité d'état DOS du Fluoro- pérovskite KNiF3non-ferromagnétique (NF) dans la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ172Figure.11.85 : Densité d'état DOS du Fluoro- pérovskite KNiF3non-ferromagnétique (NF) dans la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ173Figure.11.85 : Densité d'état DOS du Fluoro- pérovskite TiFeF3 non-ferromagnétique (NF) dans la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ173Figure.11.86: Densité d'état DOS du Fluoro- pérovskite CsFeF3 ferromagnétique (FM) dans la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les174deux états Spin Up et Spin Dn174174Figure.11.87: Densité d'état DOS du Fluoro- pérovskite NaFeF3 ferromagnétique (FM) dans la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les174deux états Spin Up et Spin Dn174174Giute Atta Sonin Un et Spin Dn174Giute Atta Sonin Un et Spin Dn.174Giute Att	la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ	170
 la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ	Figure.11.81 : Densité d'état DOS du Fluoro- pérovskite RbFeF3non-ferromagnétique (NF) dans	
Figure.11.82 :Densité d'état DOS du Fluoro- pérovskite KFeF3non-ferromagnétique (NF) dansla phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ171Figure.11.83 :Densité d'état DOS du Fluoro- pérovskite KCoF3non-ferromagnétique (NF) dans172la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ172Figure.11.84 :Densité d'état DOS du Fluoro- pérovskite KNiF3non-ferromagnétique (NF) dans172Ia phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ172Figure.11.85 :Densité d'état DOS du Fluoro- pérovskite TiFeF3 non-ferromagnétique (NF) dans173la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ173Figure.11.85 :Densité d'état DOS du Fluoro- pérovskite TiFeF3 non-ferromagnétique (NF) dans174la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ174etaux états Spin Up et Spin Dn174Figure.11.87:Densité d'état DOS du Fluoro- pérovskite NaFeF3 ferromagnétique (FM) dans laphase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les174deux états Spin Up et Spin Dn174Figure.11.87:Densité d'état DOS du Fluoro- pérovskite NaFeF3 ferromagnétique (FM) dans laphase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les174deux états Spin Up et Spin Dn174deux états Spin Un et Spin Dn174deux états Spin Un et Spin Dn174deux états Spin Un et Spin Dn174 </td <td>la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ</td> <td>171</td>	la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ	171
 la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ	Figure.11.82 : Densité d'état DOS du Fluoro- pérovskite KFeF3non-ferromagnétique (NF) dans	
Figure.11.83 :Densité d'état DOS du Fluoro- pérovskite KCoF3non-ferromagnétique (NF) dansla phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ172Figure.11.84 :Densité d'état DOS du Fluoro- pérovskite KNiF3non-ferromagnétique (NF) dans172la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ172Figure.11.85 :Densité d'état DOS du Fluoro- pérovskite TiFeF3 non-ferromagnétique (NF) dans172la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ173Figure.11.86:Densité d'état DOS du Fluoro- pérovskite CsFeF3 ferromagnétique (FM) dans la174phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les174deux états Spin Up et Spin Dn	la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ	171
 la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ Figure.11.84 : Densité d'état DOS du Fluoro- pérovskite KNiF₃non-ferromagnétique (NF) dans la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ Figure.11.85 :Densité d'état DOS du Fluoro- pérovskite TiFeF₃ non-ferromagnétique (NF) dans la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ Figure.11.86: Densité d'état DOS du Fluoro- pérovskite CsFeF₃ ferromagnétique (FM) dans la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les figure.11.87: Densité d'état DOS du Fluoro- pérovskite NaFeF₃ ferromagnétique (FM) dans la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les 174 deux états Spin Up et Spin Dn	Figure.11.83 : Densité d'état DOS du Fluoro- pérovskite KCoF3non-ferromagnétique (NF) dans	
Figure.11.84 :Densité d'état DOS du Fluoro- pérovskite KNiF3non-ferromagnétique (NF) dansla phase hexagonale (4H)en utilisant les deux approximations GGA+U et TB-GGA-mBJ172Figure.11.85 :Densité d'état DOS du Fluoro- pérovskite TiFeF3 non-ferromagnétique (NF) dans173la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ173Figure.11.86:Densité d'état DOS du Fluoro- pérovskite CsFeF3 ferromagnétique (FM) dans la174phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les174deux états Spin Up et Spin DnFigure.11.87:Densité d'état DOS du Fluoro- pérovskite NaFeF3 ferromagnétique (FM) dans laphase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les174deux états Spin Up et Spin DnFigure.11.87:Densité d'état DOS du Fluoro- pérovskite NaFeF3 ferromagnétique (FM) dans laphase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les174deux états Spin Up et Spin DnFigure.11.87:Densité d'état DOS du Fluoro- pérovskite NaFeF3 ferromagnétique (FM) dans la174phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les174deux états Spin Up et Spin Dn174	la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ	172
 la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ 172 Figure.11.85 :Densité d'état DOS du Fluoro- pérovskite TiFeF₃ non-ferromagnétique (NF) dans la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ 173 Figure.11.86: Densité d'état DOS du Fluoro- pérovskite CsFeF₃ ferromagnétique (FM) dans la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les 174 deux états Spin Up et Spin Dn	Figure.11.84 : Densité d'état DOS du Fluoro- pérovskite KNiF3non-ferromagnétique (NF) dans	
Figure.11.85 :Densité d'état DOS du Fluoro- pérovskite TiFeF3 non-ferromagnétique (NF) dansla phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ173Figure.11.86: Densité d'état DOS du Fluoro- pérovskite CsFeF3 ferromagnétique (FM) dans la174phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les174deux états Spin Up et Spin DnFigure.11.87: Densité d'état DOS du Fluoro- pérovskite NaFeF3 ferromagnétique (FM) dans laphase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les174deux états Spin Up et Spin Dn174Figure.11.87: Densité d'état DOS du Fluoro- pérovskite NaFeF3 ferromagnétique (FM) dans la174phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les174deux états Spin Up et Spin Dn174	la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ	172
la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ.173Figure.11.86: Densité d'état DOS du Fluoro- pérovskite CsFeF3 ferromagnétique (FM) dans la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les174deux états Spin Up et Spin Dn.Figure.11.87: Densité d'état DOS du Fluoro- pérovskite NaFeF3 ferromagnétique (FM) dans la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les174deux états Spin Up et Spin Dn.Figure.11.87: Densité d'état DOS du Fluoro- pérovskite NaFeF3 ferromagnétique (FM) dans la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les174deux états Spin Up et Spin Dn.174	Figure.11.85 :Densité d'état DOS du Fluoro- pérovskite TiFeF ₃ non-ferromagnétique (NF) dans	
Figure.11.86:Densité d'état DOS du Fluoro- pérovskite CsFeF3 ferromagnétique (FM) dans la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les174 deux états Spin Up et Spin DnFigure.11.87:Densité d'état DOS du Fluoro- pérovskite NaFeF3 ferromagnétique (FM) dans la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les174deux états Spin Up et Spin Dn174174deux états Spin Up et Spin Dn174	la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ	173
phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les 174 deux états Spin Up et Spin Dn Figure.11.87: Densité d'état DOS du Fluoro- pérovskite NaFeF3 ferromagnétique (FM) dans la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les 174 deux états Spin Un et Spin Dn	Figure.11.86: Densité d'état DOS du Fluoro- pérovskite CsFeF ₃ ferromagnétique (FM) dans la	
deux états Spin Up et Spin Dn Figure.11.87: Densité d'état DOS du Fluoro- pérovskite NaFeF ₃ ferromagnétique (FM) dans la phase hexagonale (4H) en utilisant les deux approximations GGA +U et TB-GGA-mBJ pour les 174 deux états Spin Up et Spin Dn	phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les	174
Figure.11.87: Densité d'état DOS du Fluoro- pérovskite NaFeF ₃ ferromagnétique (FM) dans la phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les 174 deux états Snin Un et Snin Dn	deux états Spin Up et Spin Dn	
phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les 174 deux états Spin Un et Spin Dn	Figure.11.87: Densité d'état DOS du Fluoro- pérovskite NaFeF ₃ ferromagnétique (FM) dans la	
deux états Snin Un et Snin Dn	phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les	174
deux etats opin op et opin on	deux états Spin Up et Spin Dn	

Figure.11.88: Densité d'état DOS du Fluoro- pérovskite RbFeF ₃ ferromagnétique (FM) dans la	175
phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les	
deux états Spin Up et Spin Dn	
Figure.11.89: Densité d'état DOS du Fluoro- pérovskite KFeF3 ferromagnétique (FM) dans la	
phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les	175
deux états Spin Up et Spin Dn	
Figure.11.90: Densité d'état DOS du Fluoro- pérovskite KCoF ₃ ferromagnétique (FM) dans la	
phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les	176
deux états Spin Up et Spin Dn	
Figure.1I.91: Densité d'état DOS du Fluoro- pérovskite KNiF ₃ ferromagnétique (FM) dans la	
phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les	176
deux états Spin Up et Spin Dn	
Figure.1L92: Densité d'état DOS du Fluoro- pérovskite TiFeF ³ ferromagnétique (FM) dans la	
phase hexagonale (4H) en utilisant les deux approximations GGA+U et TB-GGA-mBI pour les	177
deux états Snin Un et Snin Dn	1,,
Figure 11 93: Densité d'état DOS du Elucro- pérovskite CsFeF, ferromagnétique (FM) dans la	
righternisse orthorhombique (Pnme) on utilisent les deux approximations CCA U et TB CCA mBL	177
pliase orthorhomolique (1 mila) en utilisant les deux approximations GGA+U et 1D-GGA-mDJ	1//
Figure 11.04: Densité d'état DOS du Elucare, nérosselite NoEsE, formemognétique (EM), dans le	
Figure.11.94: Densite d etal DOS du Fluoro- perovskite NaFeF3 terromagnetique (FM) dans la	150
phase orthornombique (Pnma) en utilisant les deux approximations GGA+U et IB-GGA-mBJ	1/8
pour les deux états Spin Up et Spin Dn	
Figure.11.95: Densite d'état DOS du Fluoro- pérovskite RbFeF ₃ ferromagnétique (FM) dans la	
phase orthorhombique (Pnma) en utilisant les deux approximations GGA+U et TB-GGA-mBJ	
pour les deux états Spin Up et Spin Dn	178
<u>Figure II.96</u> : Densité de charge du Fluoro-perovskite CsFeF ₃ dans la phase cubique en utilisant	
différentes approximations LDA, GGA pour la configuration Non-Ferromagnétique (NF)	
	180
Figure II.97 : Densité de charge du Fluoro-perovskite NaFeF ₃ dans la phase cubique en utilisant	
différentes approximations LDA, GGA pour la configuration Non-Ferromagnétique (NF)	180
Figure II.98 : Densité de charge du Fluoro-perovskiteRbFeF3dans la phase cubique en utilisant	181
différentes LDA, GGA approximations pour la configuration Non-Ferromagnétique (NF)	
Figure II.99 : Densité de charge du Fluoro-perovskiteKFeF3dans la phase cubique en utilisant	181
différentes approximations LDA, GGA pour la configuration Non-Ferromagnétique (NF)	
Figure I.100: Densité de charge du Fluoro-perovskiteKCoF ₃ dans la phase cubique en utilisant	
différentes approximations LDA. GGA pour la configuration Non-Ferromagnétique (NF)	182
Figure II.101: Densité de charge du Fluoro-perovskite KNiF 2dans la phase cubique en utilisant	
différentes approximations LDA GCA pour la configuration Non-Ferromagnétique (NF)	182
uniciences approximations LDA, GGA pour la configuration roll-refrontagienque (ref)	102
Figure 102: Dansité de charge du Elucre percuskite TiFeF dans la phase cubique en utilisent	
différentes approximations LDA CCA nour la configuration Non Economicantérica.	192
uniciences approximations LDA, GGA pour la configuration non-remonagnetique (NF)	103
Figure II 102 · Densité de change du Fluces reconstité TESE deux le stresse du file (""	
<u>Figure 11.105</u> : Densite de charge du Fluoro-perovskite IIF eF 3 dans la phase cubique en utilisant	
differences approximations LDA, GGA pour la configuration Non-Ferromagnétique (NF)	400
	183

Figure II.104 : Densité de charge du Fluoro-perovskiteCsFeF3dans la phase cubique en utilisant	
différentes approximations LSDA, GGA, LSDA+U, GGA+U et TB-GGA-mBJ pour la	
configuration Ferromagnétique (FM)	184
Figure II.105 : Densité de charge du Fluoro-perovskiteNaFeF3 dans la phase cubique en utilisant	
différentes approximations LSDA, GGA, LSDA+U, GGA+U et TB-GGA-mBJ pour la	
configuration Ferromagnétique (FM)	185
Figure II 106 · Densité de charge du Eluoro-perovskite RhFeF 2 dans la phase cubique en utilisant	100
différentes approximations I SDA CCA I SDA II CCA II at TP CCA mPI pour la	
differences approximations LSDA, GGA, LSDA+O, GGA+O et TB-GGA-mBJ pour la	107
Configuration Ferromagnetique (FM)	190
<u>Figure II.107</u> : Densité de charge du Fluoro-perovskite KFeF ₃ dans la phase cubique en utilisant	
différentes approximations LSDA, GGA, LSDA+U, GGA+U et TB-GGA-mBJ pour la	
configuration Ferromagnétique (FM)	187
Figure II.108 : Densité de charge du Fluoro-perovskiteKCoF3dans la phase cubique en utilisant	
différentes approximations LSDA, GGA, LSDA+U, GGA+U et TB-GGA-mBJ pour la	
configuration Ferromagnétique (FM)	188
Figure II.109 : Densité de charge du Fluoro-peroyskite KNiF ₃ dans la phase cubique en utilisant	
différentes approximations LSDA GGA LSDA+U GGA+U et TB-GGA-mBI pour la	
configuration Forromagnátique (FM)	100
Eigene H 110 - Densité de change de Flager generalite TE-E dens le change en time en stillionst	109
Figure 11.110 : Densite de charge du Fluoro-perovskite lifer adans la phase cubique en utilisant	
differentes approximations LSDA, GGA, LSDA+U, GGA+U et TB-GGA-mBJ pour la	
configuration Ferromagnétique (FM)	190
Figure II.111 : Densité de charge du Fluoro-perovskiteTlFeF ₃ dans la phase cubique en utilisant	
différentes approximations GGA, GGA+U et TB-GGA-mBJ pour la configuration	
Ferromagnétique (FM)	191
Figure II.112: Densité de charge du Fluoro-perovskiteCsFeF3 dans la phase Hexagonal-4H en	192
utilisant deux approximations LDA et GGA pour la configuration Non-Ferromagnétique (NF)	
Figure II.113: Densité de charge du Fluoro-perovskiteNaFeF ₃ dans la phase Hexagonal-4H en	192
utilisant deux approximations LDA et GGA pour la configuration Non-Ferromagnétique (NF)	1/2
Figure II.114: Densité de charge du Fluoro-perovskiteRbFeF3dans la phase Hexagonal-4H en	40.0
utilisant deux approximations LDA et GGA pour la configuration Non-Ferromagnétique (NF)	193
Figure II.115: Densité de charge du Eluoro-peroyskite KFeF ³ dans la phase Hexagonal- 4H en	
utilisant deux approximations LDA et GGA pour la configuration Non-Ferromagnétique (NF)	193
utilisant deux approximations LDA et GGA pour la configuration fron-i erromagnetique (ivr)	
	194
Figure 11.116: Densite de charge du Fluoro-perovskite KCoF3 dans la phase Hexagonal-4H en	
utilisant deux approximations LDA et GGA pour la configuration Non-Ferromagnétique (NF)	
	10/
Figure II.117: Densité de charge du Fluoro-perovskiteKNiF3dans la phase Hexagonal-4H en	174
utilisant deux approximations LDA et GGA pour la configuration Non-Ferromagnétique (NF)	
Figure II.118: Densité de charge du Fluoro-perovskiteTiFeF3 dans la phase Hexagonal-4H en	
utilisant deux approximations LDA et GGA pour la configuration Non-Ferromagnétique (NF)	195
Figure II.119: Densité de charge du Eluoro-perovskite CsFeF 2dans la phase Heyagonal- 4H en	
utilisant différentes approvimations CCA III at TR CCA mRI nour la configuration	195
unisant unicientes approximations GGA+U et 1D-GGA-indj pour la configuration	

Ferromagnétique (FM)	
Figure II.120: Densité de charge du Fluoro-perovskiteNaFeF3dans la phase Hexagonal-4H en	196
utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration	
Ferromagnétique (FM)	
Figure II.121: Densité de charge du Fluoro-perovskiteRbFeF3dans la phase Hexagonal-4H en	196
utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration	
Ferromagnétique (FM)	
Figure II.122: Densité de charge du Fluoro-perovskiteKFeF3dans la phase Hexagonal-4H en	197
utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration	
Ferromagnétique (FM)	
Figure II.123: Densité de charge du Fluoro-perovskiteKCoF3dans la phase Hexagonal-4H en	197
utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration	
Ferromagnétique (FM)	
Figure II.124: Densité de charge du Fluoro-perovskiteKNiF3dans la phase Hexagonal-4H en	
utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration	198
Ferromagnétique (FM)	
Figure II.125: Densité de charge du Fluoro-perovskiteTiFeF3dans la phase Hexagonal-4H en	
utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration	198
Ferromagnétique (FM)	
Figure II.126: Densité de charge du Fluoro-perovskiteCsFeF3dans la phase Orthorombique-	
Pnma en utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration	199
Ferromagnétique (FM)	
Figure II.127: Densité de charge du Fluoro-perovskiteNaFeF3 dans la phase Orthorombique-	
Pnma en utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration	199
Ferromagnétique (FM)	
Figure II.128: Densité de charge du Fluoro-perovskiteRbFeF3 dans la phase Orthorombique-	
Pnma en utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration	200
Ferromagnétique (FM)	
Figure II.129: Densité de charge du Fluoro-perovskiteCsFeF3dans la phase Orthorombique-	
Pbnm en utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration	
Ferromagnétique (FM)	201
Figure II.130: Densité de charge du Fluoro-perovskiteNaFeF3 dans la phase Orthorombique-	
Pbnm en utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration	
Ferromagnétique (FM)	201
Figure II.131: Densité de charge du Fluoro-perovskiteRbFeF3 dans la phase Orthorombique-	
Pbnm en utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration	
Ferromagnétique (FM)	202

PARTIE II

CHAPITRE II : Résultats et discussions

 Tableau II.15 : les paramètres d'équilibre de la structure Hexagonale-4H (P63/mmc) : (a₀ et c en Å), le volume V en \dot{A}^3 , le module de compressibilité B en GPa et sa dérivée B' pour le fluorure Tableau II.16 : les paramètres d'équilibre de la structure Orthorhombique (Pnma) : (a₀, b et c en Å), le volume V en $Å^3$, le module de compressibilité B en GPa et sa dérivée B' pour le Fluorure **Tableau II.17 :** les paramètres d'équilibre de la structure Orthorhombique (**Pnma**) : (**a**₀, **b** et c en Å), le volume V en Å³, le module de compressibilité B en GPa et sa dérivée B' pour le fluorure **Tableau II.18 :** Les paramètres d'équilibre de la structure Orthorhombique (**Pnma**) : (**a**₀, **b** et c en Å), le volume V en Å³, le module de compressibilité B en GPa et sa dérivée B' pour le Fluorure Tableau II.19 : Les paramètres d'équilibre de la structure Orthorhombique (Pnma) : (a₀, b et c en Å), le volume V en Å³, le module de compressibilité B en GPa et sa dérivée B' pour le Fluorure Tableau II.20: Les paramètres d'équilibre de la structure Orthorhombique (Pnma) : (a₀, b et c en Å), le volume V en Å³, le module de compressibilité B en GPa et sa dérivée B' pour le Fluorure **Tableau II.21 :** Les paramètres d'équilibre de la structure Orthorhombique (**Pnma**) : $(\mathbf{a}_0, \mathbf{b} \text{ et c en } \mathbf{A})$, le volume V en Å³, le module de compressibilité B en GPa et sa dérivée B' pour le Fluorure **Tableau II.22**: Les paramètres d'équilibre de la structure Orthorhombique (**Pnma**) : (**a**₀, **b** et c en Å), le volume V en Å³, le module de compressibilité B en GPa et sa dérivée B' pour le Fluorure Tableau II.23 : les paramètres d'équilibre de la structure Orthorhombique (Pbnm) : (a₀, b et c en Å), le volume V en Å³, le module de compressibilité B en GPa et sa dérivée B' pour le fluorure CsFeF₃. Tableau II.24 : Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE -GGA, PBEsol -GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA, µB, µF, µ interstitie etl µCell pour la structure Cubique (Pm-3m) du Fluorure Tableau II.25 : Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE -GGA, PBEsol -GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA, µB, µF, µ interstitiel et µCell pour la structure Cubique (Pm-3m) du Fluorure Tableau II.26 : Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE-GGA, PBEsol -GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA, µB, µF, µ interstitiel et µCell pour la structure Cubique (Pm-3m) du Fluorure Tableau II.27 : Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE -GGA, PBEsol -GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA, µB, µF, µ interstitiel et µCell pour la structure Cubique (Pm-3m) du Fluorure Tableau II.28 : Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE-GGA, PBEsol -GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA, µB, µF, µ interstitiel et µCell pour la structure Cubique (Pm-3m) du Fluorure Tableau II.29 : Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE -GGA, PBEsol -GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA, µB, µF, µ interstitiel et µCell pour la structure Cubique (Pm-3m) du Fluorure Tableau II.30 : Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE -GGA, PBEsol -GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA, µB, µF, µ interstitiel et µCell pour la structure Cubique (Pm-3m) du Fluorure Tableau II.31 : Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE -GGA, PBEsol -GGA et GGA+U respectivement du moment magnétique total, les moments magnétiques partiels en µA, µB, µF, µ interstitiel et µCell pour la structure Cubique (Pm-3m) du Fluorure Tableau II.32 : Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE-GGA, PBEsol -GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA1, µA2, µB, µF1, µF2, µ interstitiel et µcell pour la structure Hexagonale- 4H (P63/mmc) du Tableau II.33 : Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE -GGA, PBEsol -GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA1, µA2, µB, µF1, µF2, µ interstitiel et µCell pour la structure Hexagonale- 4H(P63/mmc) du Fluorure Tableau II.34 : Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE-GGA, PBEsol -GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA1, µA2, µB, µF1, µF2, µ interstitiel et µCell pour la structure Hexagonale- 4H(P63/mmc) du Fluorure **RbFeF**₃.....128 Tableau II.35 : Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE -GGA, PBEsol -GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA1, µA2, µB, µF1, µF2, µ interstitiel et µCell pour la structure Hexagonale- 4H(P63/mmc) du Fluorure KFeF3..... ..128 Tableau II.36 : Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE-GGA, PBEsol -GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA1, µA2, µB, µF1, µF2, µ interstitiel et µCell pour la structure Hexagonale- 4H(P63/mmc) du Fluorure Tableau II.37 : Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE-GGA, PBEsol -GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA1, µA2, µB, µF1, µF2, µ interstitiel et µCell pour la structure Hexagonale- 4H(P63/mmc) du Fluorure Tableau II.38 : Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE-GGA, PBEsol -GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA1, µA2, µB, µF1, µF2, µ interstitiel et µCell pour la structure Hexagonale- 4H(P63/mmc) du Fluorure Tableau II.39 : Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE-GGA, PBEsol -GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA, µB, µF1, µF2, µ interstitiel et µCell pour la structure Orthorhombique (Pnma) du Fluorure Tableau II.40 : Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE-GGA, PBEsol -GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA, µB, µF1, µF2, µ interstitiel et µCell pour la structure Orthorhombique (Pnma) du Fluorure

Tableau II.41 : Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE-GGA, PBEsol -GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA, µB, µF1, µF2, µ interstitiel et µCell pour la structure Orthorhombique (Pnma) du Fluorure Tableau II.42 : Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE-GGA, PBEsol -GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA, µB, µF1, µF2, µ interstitiel et µCell pour la structure Orthorhombique (Pnma) du Fluorure Tableau II.43 : Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE-GGA, PBEsol -GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA, µB, µF1, µF2, µ interstitiel et µCell pour la structure Orthorhombique (Pnma) du Fluorure Tableau II.44 : Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE-GGA, PBEsol -GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA, µB, µF1, µF2, µ interstitiel et µCell pour la structure Orthorhombique (Pnma) du Fluorure Tableau II.45 : Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE-GGA, PBEsol -GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA, µB, µF1, µF2, µ interstitiel et µCell pour la structure Orthorhombique (Pnma) du Fluorure Tableau II.46 : Les valeurs calculées à l'aide de (PBE-GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA, µB, µF1, µF2, µ interstitiel et Orthorhombique (Pbnm) μCell pour la structure du Fluorure Tableau II.47: Les valeurs calculées à l'aide de (PBE-GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA, µB, µF1, µF2, µ interstitiel µCell et la polarisation de spin pour la structure Orthorhombique (Pbnm) du Fluorure NaFeF3......132 Tableau II.48 : Les valeurs calculées à l'aide de (PBE-GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en µA, µB, µF1, µF2, µ interstitiel et pour structure Orthorhombique (Pbnm) du Fluorure *uCell* la RbFeF3......132

Introduction Générale

La physique du solide a connu au cours des dernières décennies un essor impressionnant. Cela est dû principalement à plusieurs facteurs : La science qui a fait de grands pas pour devenir ce qu'elle est aujourd'hui, les nouvelles techniques de calcul [1-5] qui ont permis l'obtention d'une meilleure qualité, ainsi que la rapidité grâce au formidable progrès de l'outil informatique et des simulations numériques [6-12]. Tout cela a facilité la tâche à la recherche scientifique, spécialement le domaine de la physique de la matière condensée [13-15] qui permet jour en jour la découverte de nouveaux matériaux avec de nouvelles propriétés physiques, chimiques, mécaniques, électroniques, ect.... Très spécifiques [16-20]. En effet, ces matériaux sont à l'origine de la percée de nombreuses technologies modernes.

Ce changement radical de la science physique a permis une bonne exploitation des matériaux solides, une bonne compréhension de leurs comportements à l'échelle microscopique ou même à l'échelle Nano [21-23] beaucoup plus que l'échelle macroscopique. Car, l'étude des interactions électroniques est toujours présente sur la base de l'étude théorique des lois fondamentales de la mécanique et l'électromagnétique (Utilisation de la théorie de la fonctionnelle de la densité (DFT) à titre d'exemple) [24-30]. Il est bien connu que la résolution des équations classiques liées à ces lois est cependant très complexe, parfois même impossible. La raison pour laquelle la physique de la matière condensée a connu plusieurs années une période de stagnation. Elle est restée empirique très longtemps où les paramètres microscopiques étaient ajustés sur les observations expérimentales [31-35].

La modélisation et la simulation numérique **[36-41]** ont ouvert de nouvelles opportunités à cette nouvelle recherche, ou cette nouvelle science avec ses nouvelles bases. Plusieurs chercheurs ont investi dans l'inconnu, ils ont traité de nouveaux matériaux sans avoir a priori les données expérimentales, sans ajuster leurs paramètres en terme expérimental. C'est une nouvelle exploitation du système spintronique **[42-45]** avec des progrès substantiels qui ont permis la fabrication des matériaux qui n'existent pas dans la nature avec de nouvelles propriétés, faisant ainsi la naissance de la prédiction des matériaux solides que ce soit : prédire un nouveau matériau non connu, ou prédire de nouvelles propriétés d'un matériau déjà étudié. Ces nouvelles techniques de calcul sont basées en général sur des méthodes **Ab-initio [46-50]** qui sont devenues aujourd'hui un outil de base pour le calcul des propriétés structurales, électroniques optique, thermique ou magnétiques des systèmes les plus complexes.

Les méthodes **Ab-initio** ou de **Premier Principe** qui font le sujet de notre thèse sont basées sur les méthodes fonctionnelles de la densité (**DFT**), qui est basée elle-même sur une description thématique de la fonction d'onde (avec un seul déterminant de **Slater**) ou l'échange est traité exactement mais les effets de corrélation sont ignorés par définition. Elle traite les effets d'échange et de corrélation approximativement. Cette introduction permet désormais de régler les équations qui étaient sans solution. Le problème de **N** électrons en interactions est simplifié en un système d'équations à un seul électron appelées équations de **kohn-sham [51-55]**. Dans ce cadre plusieurs méthodes ont été développées, dans ce travail nous allons investir la plus connue et la plus utilisée dans un calcul **Ab-Initio**, il s'agit bien de la méthode des ondes planes augmentées linéarisées (**FP-LAPW**) avec un potentiel total (**FP**) qui est implémentée dans le code **Wien2K**. Cette méthode est la plus exacte et la plus efficace.

Les matériaux pérovskites de la forme **ABX₃** [56-60] ont souligné un intérêt particulier dans la recherche contemporaine des matériaux solides. Les matériaux pérovskites Fluorures **ABF₃** [61-70] qui dérivent de cette famille eux aussi ont prouvé leur importance récemment.

Cet intérêt est dû spécialement à leurs propriétés physiques spécifiques car on les retrouve dans différent domaines de recherche. Leur application technologique a envahi l'électronique moderne ainsi que le domaine magnétique donnant naissance à un domaine plus important qui est le spintronique (Electro-Magnétique). Ce dernier a permis l'exploitation d'une variété de propriétés électroniques et magnétiques en parallèle selon leur grille cristalline choisies au paravent précisément.

Notre travail est développé en deux parties principales :

La première partie illustre la recherche bibliographique faite tout au long de ce parcours. Elle contient deux chapitres : Le premier est une vision générale sur **« Le calcul Ab-Initio »** qui est le thème de cette recherche. Le deuxième chapitre est une étude approfondie sur **« Les matériaux pérovskites Fluorure ABF3 »** ou bien dit les **« matériaux Fluoro-pérovskite »** dans un concept de découverte de nouvelles informations, de nouvelles recherches, de nouvelles propriétés en tenant compte de décrire clairement notre investissement qui est l'étude magnétique, où nous avons eu l'opportunité de bien décrire le comportement magnétique de huit matériaux pérovskites Fluorures de la forme **ABF3**.

La deuxième partie représente aussi deux chapitres. Le premier représente la théorie sur laquelle sont basés nos calculs de la structure électronique et les propriétés magnétiques des Fluorures **ABF3**. C'est un aperçu sur la théorie de la fonctionnelle de la densité (**DFT**) vis-àvis de la (**DFT+U**) où la correction de l'Hamiltonian **U-Hubbard** joue le rôle le plus important, et aux différentes approximations introduites lors du calcul. On s'est intéressé à employer différentes approximations dans un concept comparatif, nous avons utilisé l'approximation de la densité locale (**L(S)DA**), (**L(S)DA+U**), l'approximation du gradient généralisé et ces différentes formes (**GGA**), (**GGA+U**), (**WC-GGA**), (**PBE-GGA**), (**PBEsol-GGA**) et le potentiel de **Becke-Johnson modifié** (**TB-GGA-MBJ**) sous le contexte de la méthode des ondes planes augmentées linéarisées (**FP-LAPW**). Et en dernier chapitre nous avons illustré les étapes de notre travail et les résultats obtenus.

Nous avons calculé les matériaux pérovskites Fluorures de la forme (ABF₃). Différentes structures cristallines ont été utilisé selon la nature du Fluorure lui-même. L'étude a englobé huit Fluorures CsFeF3, NaFeF3, RbFeF3, KCoF3, KNiF3, KFeF3, TiFeF3, et TlFeF3. Nous avons étudié en premier lieu les propriétés structurales à l'aide de l'optimisation de leurs paramètres de maille, ensuite les propriétés électroniques (La structure de bande, les densités d'états totales (TDOS) et partielles (PDOS) et enfin la densité de charge). Le but de cette étude est de donner une bonne interprétation des résultats obtenus ainsi qu'une bonne compréhension de leurs interactions et leur système (Effet de spin, Interactions et Echanges interatomiques, La stabilité cristalline, et le comportement magnétique). Pour cela l'étude des propriétés magnétiques était indispensable, elle nous a permis l'étude des moments magnétiques de chaque matériau et pour chaque structure cristalline investie. Nous avons étudié la structure cubique avec le groupe d'espace (Pm-3m), et la structure hexagonale-4H avec le groupe d'espace (P6/mmc) pour les huit Fluorures et avec différentes approximations, tandis que nous avons utilisé les deux structures orthorhombiques respectivement avec les deux groupes d'espace (Pnma) et (Pbnm) seulement pour les trois matériaux CsFeF3, NaFeF3, et RbFeF3. Finalement, nous avons achevé notre travail par une conclusion générale qui englobe les principaux résultats obtenus de cette thèse.

REFERENCES

[1]: R. I. Eglitis, S. Piskunov, Computational Condensed Matter, 7, 1 (2016).

[2]: R. I. Eglitis, International Journal of Modern Physics **B 28**, 1430009, (2014).

[3]: doardo Mosconi, Jon M. Azpiroz, and Filippo De Angelis, Chem. Mater. 27, 4885, (2015).

[4]: Sabine Körbel, Miguel A. L. Marques⁻ and Silvana Botti, J. Mater. Chem. C4, 3157, (2016).

[5]: Jean-Luc Fattebert, Marco Buongiorno Nardelli, Journal of chemical theory and computational, **11**, 12, (2015).

[6] : Jun Zhao, Songshan Yuan, Wei Li, Yuqiang Ji, Kai Liu, Journal of Petroleum Science and Engineering, **176**, 132, (2019).

[7]: Han, Xu, Liu, Jie, Numerical Simulation-based Design, Science Press, Beijing and Springer Nature Singapore Pte Ltd, (2020).

[8]: Edwin C. Kan, Zhiping Yu and Robert W. Dutton, Datong Chen, Umberto Ravalio, Semiconductor Device Simulation, **3**, 211, (1995).

[9]: Numerical Simulation of Physical and Engineering Processes, Intech (2011).

[10]: Guillaume Dubois, La Simulation Numérique Enjeux et bonnes pratiques pour l'industrie, Dunod, (2016).

[11]: Mariya G.Ganchenkova, Irina A.Supryadkina, Karine K.Abgaryan, Dmitriy I.Bazhanov, Ilya V.Mutigullin, Vladimir A.Borodin, Modern Electronic Materials, 1, 103, (2015).

[12] : FrançoisGygi^{ab}GiuliaGalli, Materialstoday, **8**, 26, (2005).

[13]: Jacky Even, Laurent Pedesseau, Claudine Katan, Mikaël Kepenekian, Jean-Sébastien Lauret, Daniel Sapori, Emmanuelle Deleporte, J. Phys. Chem. C119, 10161, (2015).

[14]: Thomas Wolfram, Sinasi Ellialtioglu, Electronic and Optical Properties of d-Band Perovskites (2006).

[15]: Yağmur Aksu Korkmaz, CeyhunBulutay, and CemSevik, Physica B: Condensed Matter 584, 411959, (2020).

[16] :MuhammadAsif, MubasharNadeem, MuhammadImran, SajjadAhmad, SaraMusaddiq, WaseemAbbas, Zaheer AbbasGilani, Muhammad KashifSharif, Muhammad FarooqWarsi, Muhammad AzharKhan, Physica B: Condensed Matter, **552**, 11, (2019).

[17] : MuhammadRizwan, AdnanAli, ZahidUsman, N.R.Khalid, H.B.Jin, C.B.Cao, Physica B: Condensed Matter, **552**, 52, (2019).

[18] : M. E. Lines, A. M. Glass: Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford 1977)

[19]: M. Dawber, K. M. Rabe, J. F. Scott: Physics of thin film ferroelectric oxides, Rev. Mod. Phys. 77, 1083 (2005).

[20]: C. H. Ahn, K. M. Rabe, J.-M. Triscone: Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures, Science 303, 488 (2004)

[21] : Michel Wautelet et coll., Les Nanotechnologies, 3e édition Dunod, Paris, (2006), pour la nouvelle édition (2014) ISBN 978-2-10-070609-9.

[22]: Nada M. Čitaković, Military Technical Courier, 67, 159, (2019).

[23]: Juh Tzeng Lue, Physical Properties of Nanomaterials, X, 1, (2007).

[24]: Philip J. Hasnip, Keith Refson, Matt I. J. Probert, Jonathan R. Yates, Stewart J. Clark and Chris J. Pickard, 372, 1471, (2014).

[25]: Karlheinz Schwarz, Journal of Solid State Chemistry, 176, 319, (2003).

[26] : Karlheinz Schwarz, Peter Blaha, DFT Calculations for Real Solids, Handbook of Solid State Chemistry, (2017).

[27]: E. Pavarini, E. Koch, Dieter Vollhardt, and Alexander Lichtenstein, The LDA+DMFT approach to strongly correlated materials Modeling and Simulation 1, (2011).

[28] : John P. Perdew, Supplement: Proceedings of the International Symposium on Quantum Biology and Quantum Pharmacology, 28, 497, (1985).

[29]: Aron J. Cohen, *Paula Mori-Sánchez*, and Weitao Yang, Chem. Rev., 112, 289, (2012).

[30]: Alhamami, M., Doan, H., and Chen, C.-H. *Materials (Basel)* 7, 3198, (2014).

[**31**]: Ghanshyam Pilania, P. V. Balachandran, J. E. Gubernatis, Turab Lookman, Acta Crystallographica Section B, (2015).

[32] : D.S.L. Pontes, W.B. Bastos, A.J. Chiquito, E. Longo, F.M. Pontes, Journal of Alloys and Compounds 702, 327, (2017).

[33]: Peng Zuo,Synthesis, structural and physical studies of doubly ordered perovskite NaLnCoWO₆: pursuing new multiferroics based on hybrid improper ferroelectricity (2018).

[34] : H. Wang, J. Wen, D.J. Miller, Q. Zhou, M. Chen, H.N. Lee, K.M. Rabe, X. Wu, Phys. Rev. X 8, 011027, (2016).

[35]: C. He, Z.-J. Ma, B.-Z. Sun, R.-J. Sa, K. Wu, J. Alloys Compd. 623, 393, (2015).

[**36**] : R.E. Cohen, Nature, **358**, 136 (1992).

[37]: S. Lazaro, E. Longo, J.R. Sambrano, A. Beltran, Surf. Sci. 552, 149, (2004).

[38]: Y. Xu Wang, M. Arai, T. Sasaki, C.L. Wang, W.L. Zhong, Surf. Sci. 585, 75, (2005).

[**39**]: Sean M. Babiniec, Eric N. Coker, Andrea Ambrosini, and James E. Miller, AIP Conference Proceedings **1734**, 050006, (2016).

[40]: D. de Ligny and P. Richet, Physical Review B 53, 3013, (1996).

[41]: D. Lee, H. Lu, Y. Gu, S.-Y. Choi, S.-D. Li, S. Ryu, T.R. Paudel, K. Song, E. Mikheev,

S. Lee, S. Stemmer, D.A. Tenne, S.H. Oh, E.Y. Tsymbal, X. Wu, L.-Q. Chen, A. Gruverman, C.B. Eom, Science, **349**, 1314, (2015).

[42] : Jiwuer Jilili, Manganites in Perovskite Superlattices: Structural and Electronic Properties (2016).

[43]: J.-H. Kim, S. Khartsev, A.M. Grishin, Epitaxial colossal magnetoresistive $La_{0.67}$ (Sr, $Ca)_{(0.33)}$ MnO₃ films on Si, Applied physics letters, **82**, 4295, (2003).

[44]: S.T. Hsu, T. Li, F. Zhang, W. Pan, W.-W. Zhuang, D.R. Evans, M. Tajiri, Buffered-layer memory cell, in, Google Patents, (2006).

[45]: H. Lu, G. Yang, Z. Chen, S. Dai, Y. Zhou, K. Jin, B. Cheng, M. He, L. Liu, H.

Guo, Positive colossal magnetoresistance in a multilayer p–n heterostructure of Srdoped LaMnO₃ and Nb-doped SrTiO₃, work, **15**, 16, (2004).

[46] : Hlinka, P. Ondrejkovic, M. Kempa, E. Borissenko, M. Krisch, X. Long, Z.G. Ye,

Phys. Rev. B Condens. Matter Mater. Phys. 83, 140101, (2011).

[47]: C.T. Lee, W.T. Yang, R.G. Parr, Phys. Rev. B 37, 785, (1988).

[48]: A.D. Becke, J. Chem. Phys. 98, 5648, (1993).

[49] : R.I. Eglitis and A.I. Popov, International Scientific and Practical Conference "Electronics and Information Technologies" **B1**, (2018).

[50]: Roberts Eglitis, Anatoli Popov, Journal of Nano and Electronic Physics, 11, 1001, (2019).

[51] : Fabio Finocchi, Density Functional Theory for Beginners Basic Principles and Practical Approaches, (2011).

[52]: Varun Kapoor, Michael Ruggenthaler, D. Bauer, Physical Review, A 87, 4, (2013).

[53]: John M. Wills, Mebarek Alouani, Per Andersson, Anna Delin, Olle Eriksson, Oleksiy Grechnyev, Full-Potential Electronic Structure Method 167, 7, (2010).

[54] : Nektarios N. Lathiotakis, Nicole Helbig, Angel Rubio, and Nikitas I. Gidopoulos, Phys. Rev. A 90, 032511, (2014).

[55]: M. Freyss, Density functional theory, NEA/NSC/ R5, (2015).

[56]: Simon A T Redfern, J. Phys.: Condens. Matter 8, 8267, (1996).

[57]: Kittel C Introduction to Solid State Physics (NewYork: Wiley1971).

[58]: A.S. Bhalla, R. Guo and R. Roy, Mat. Res. Innovat. 4, 3, (2000).

[59]: A.F. Wells, Structural Inorganic Chemsitry, Oxford Science publications (1995).

[60]: For structural details of the discussed perovskites we refer to the Inorganic Crystallographic structure database (ICSD), (2005).

[61]: A. S. Verma, Vijay K Jindal, Journal of Alloys and Compounds 485, 514, (2009).

[62]: N. L. Allan, M. J. Dayer, D. T. Kulp, and W. C. Mackrodt, J., Mater. Chem. 1, 1035 (1991).

[63]: Osamu Fukunaga, and Taketoshi Fujita, Journal of Solid State Chemistry, 8, 331 (1973).

[64]: David P. Dobson, Simon A. Hunt, Alexander Lindsay-Scott, and Ian G. Wood, Physics of the Earth and Planetary Interiors, **189**, 171, (2011).

[65]: Li-Li Li, Shao-Yi Wu, and Min-Quan Kuang, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, **79**, 82, (2011).

[66]: John M. Winfield, Fluorine Chemistry at the Millennium, 539, (2000).

[67]: J. L. Sommerdijk, A. Bril, Journal of Luminescence, 11, 363, (1976).

[68]: R. Leckebusch, Journal of Crystal Growth, 23, 74, (1974).

[69] : M. W. Shafer, Materials Research Bulletin, 4, 905, (1969).

[70] : Sandra Dimitrovska-Lazova, Slobotka Aleksovska, Igor Kuzmanovski, Central European Journal of Chemistry, **3**, 198, (2005).

Chapitre 1

Le calcul Ab-Initio

Une personne quí n'a jamais commis d'erreurs n'a jamais tenté d'innover

d'erreurs n'a jamaistente d'innover

I.1.Introduction :

Les simulations numériques ont acquis depuis quelques années une place de choix dans les sciences physiques [1-4]. Elles se présentent comme étant un outil très efficace pour la modélisation des systèmes naturels en physique, chimie, biologie, mais aussi des systèmes humains en économie et en science sociale. Elles offrent un aperçu de développement des systèmes trop complexes, elles servent à simuler, et à prédire à l'aide de simples formules mathématiques. Elles servent à déterminer les valeurs numériques des paramètres en traitant une infinité de valeurs avec des équations très compliquées [5-10], donc le nombre d'opérations nécessaires devient alors abordable pour un ordinateur qui fera l'action de simuler sans avoir des connaissances auparavant.

Les simulations numériques peuvent prendre des formes diverses et présenter des propriétés extrêmement variées [11-15]. Dans le cas de la physique de la matière condensée [16-20], l'étude de ces propriétés revient à décrire le comportement d'un ensemble d'électrons et de noyaux en interaction [21-23]et à essayer de comprendre leurs structures cristallines (arrangement des atomes) [24-29] et la manière dont ils peuvent interagir entre eux. Aujourd'hui les simulations empiriques [30-33] explorent les propriétés physiques d'une manière plus fiable et plus exacte.

I.2.a. Les calculs Ab-initio :

Elles se basent principalement sur des lois fondamentales de la mécanique quantique [34-39], de l'électromagnétisme [40-42] et de la physique statistique [43-44]. Ce qui permet d'établir un lien entre la structure à l'échelle atomique (ou même à l'échelle Nano) [45-46] d'une part et les propriétés macroscopiques d'autre part [47-49]. Ce qui donne naissance à des procédures numériques appelées des méthodes de premiers principes (First-principles study) ou techniques Ab-initio [50-58]. Les études théoriques à base de la théorie de fonctionnelle de densité (DFT) [59-60] connues il y'a très longtemps dites aussi les méthodes ab-initio et les méthodes empiriques ont connues récemment un développement considérable et très important dans le but de reproduire et comprendre la formation des structures compliquées de la matière condensée [61-62] avec des mesures nouvelles beaucoup plus performantes.

Calculer en utilisant un calcul **Ab-Initio** ou bien dit du premier principe les propriétés physiques (Diélectrique, Piézoélectrique, Electrique, structurales, thermiques, mécanique, élastiques, électroniques, optiques, magnétiques, Ferromagnétiques, Ferrimagnétiques ect...[63-65] d'un matériau quelques soit, et quelques soit sa structure cristalline consiste à observer ou de prévoir des comportements inattendus, ce qui parfois suggère des expériences et fait donc progresser la connaissance de la physique. Ce genre de calcul donne une nouvelle prise sur le réel (Des structures inconnues, des comportements inconnues, des échelles non investies (Nano)). Le calcul **Ab-Initio** consiste donc à reproduire par le calcul le fonctionnement d'un système préalablement décrit par des modèles. Ces modèles s'expriment à travers d'équations mathématiques.

I.2.b. Exploitation de la matière condensée à l'aide du calcul Ab-initio :

Aujourd'hui, il est possible d'affronter plusieurs domaines et de calculer à l'aide des principes **Ab-initio** (**Calcul du Premier Principe**) avec des précisions croissantes et de traiter des systèmes de plus en plus larges avec des **N** grandeurs à la fois ce qui était une tache périlleuse auparavant. Les méthodes **Ab-initio** ont ouvert de nouvelles issues, aussi une large voie devant les chercheurs scientifiques pour pouvoir explorer diverses grandeurs physiques de plusieurs matériaux mis en question. Le calcul **Ab-Initio** a permis de bien simuler, ou même de prédire plusieurs facteurs et différentes propriétés **[66-73]** qui étaient stagnées de nombreuses années, on peut citer à titre d'exemple :

- ✓ La densité des états et la structure de bande électronique.
- ✓ La structure cristallographique ou moléculaire la plus stable de n'importe quel matériau.
- ✓ La dureté du matériau en question.
- ✓ La ténacité et les transformations de phase.
- ✓ Les paramètres structuraux (paramètre de maille).
- ✓ Les constantes élastiques et le module de compressibilité.
- ✓ La nature des liaisons chimiques.
- ✓ Les propriétés magnétiques en volume et en surface.
- ✓ Les fréquences de vibration du réseau cristallographique (phonons).
- ✓ La configuration atomique d'un défaut cristallographique ponctuel.

I.2.c. Prédiction des nouveaux matériaux à l'aide du calcul Ab-initio :

Les méthodes ou algorithmes numériques permettent une bonne compréhension de la matière condensée et ses comportements qui varient selon les circonstances (Agitation thermique, pression, ect...) [74-76]. L'absence des valeurs expérimentales handicapait l'analyse du comportement de n'importe quel matériau auparavant, mais la performance de l'outil informatique qui est devenu indispensable a permis de rendre ces tâches aussi faciles qu'elles paraient en réalité. La stratégie des méthodes de **Premier-Principes** dites approches **Ab-initio** est basé principalement sur l'amélioration des approximations [77-82] utilisées pour traiter ces interactions avec des fonctionnelles universelles et avec lesquelles toutes les limités déjà citées n'apparaissent pas d'une façon qualitative que quantitative. Ce qui met le chercheur devant un grand choix de plusieurs approximations pour gagner plus de temps et pour obtenir des résultats beaucoup plus meilleur.

A ce moment l'utilisation de plusieurs approches à la fois est une étape importante si on veut avoir une bonne compréhension sur le système des interactions électroniques ou bien interaction magnétiques si on parle de leurs spin (**Interaction Electromagnétique**), ce qui est le cas dans notre thèse et qui justifie l'utilisation de plusieurs approches dans un cadre comparatif. L'une d'entre elles permet une bonne compréhension des propriétés électroniques tandis que l'autre permet une bonne compréhension des propriétés magnétiques. L'autre sert à prédire des paramètres de mailles qui s'absentent en terme expérimentale, et ainsi de suite. Alors chacune fait bien sa tâche. La prédiction de nouveaux matériaux, ou de nouveaux paramètres n'est plus difficile, au contraire cela a vraiment facilité la tâche pour les chercheurs. Ce qui est le cas pour nous dans ce précieux travail, où nous avons eu l'opportunité de prédire un nouveau matériau qui est le **TiFeF3** pour la première fois traité théoriquement sans avoir a priori des connaissances expérimentales, ou mêmes des données théoriques des autres travaux.
I.3.a. La science technologique entre la théorie et l'expérience :

Récemment, la science a fait de grands progrès, et elle a marqué de grands buts. Car, on est arrivé à améliorer l'exploration de nombreux matériaux avec de nouvelles perspectives utilisées généralement en électronique (semi-conducteurs) **[83-85]**, en magnétisme (traitement des spin) **[86-88]**, faisant naissance à de nouveaux domaines comme le domaine du spintronique. Aussi dans l'optique et la diffraction, ect.... La science a pu envahir différents champs grâce à la robustesse de l'outil informatique qui se développe de jour en jour, aussi des procédés et des méthodes (**Algorithmes**) utilisées qui traitent un nombre plus large avec une performance considérable.

La science technologique entre la théorie et l'expérience ne se perd jamais, elle connaît parfaitement son cheminement qui s'élargit de jour en jour vers de nouvelles voies non affrontées auparavant. Son succès réside dans la pertinence des approches théoriques malgré l'absence des données expérimentales du système traité sous le cadre d'un calcul du **Premier Principe** ou dit **Ab-initio** qui a prouvé que ces méthodes sont très prometteuses dans tous les domaines. Aujourd'hui, il n'est plus nécessaire de faire appel à l'expérience si on cherche à simuler n'importe quel matériau en question.

I.3.b. Les avantages du calcul Ab-initio :

L'objectif des études **Ab-initio** ou dites (**du Premier Principe**) est de permettre la bonne compréhension des systèmes beaucoup plus complexes des différents matériaux mis en question juste par un calcul numérique sans avoir des connaissances expérimentales, ce qui était impossible auparavant est devenu aujourd'hui possible.

Les simulations numériques et les méthodes de calculs ont aidé à comprendre les données expérimentales, ont servi de guide pour l'expérimentation et elles ont fait des prédictions pour des nouveaux matériaux ou même de nouvelles propriétés. En physique spécialement, ces formalismes forment la base du calcul **Ab-initio**, ils font appel à la description théorique de la théorie de la fonctionnlle de la densité (**DFT**), qui elle-même fait appel au théorème de **Hohenberg-Kohn** et les équations de **Kohn-Sham** qui étaient une tâche périlleuse si longtemps. Les différentes approximations physiques qui sont en réalité une expression approchée de la fonctionnelle **d'échange-corrélation** ont permis la bonne exploitation des systèmes beaucoup plus complexes et de plus en plus petits de l'échelle macroscopique vers l'échelle microscopique, et maintenant à l'échelle du **Nano**.

Le présent travail était une bonne occasion pour s'en servir de ces simulations numériques, une bonne occasion aussi pour traiter plusieurs matériaux (pérovskites Fluorures de la forme ABF3) en utilisant différentes approches, et pour plusieurs structures cristallines, basées sur le formalisme de la théorie de la fonctionnelle de la densité (DFT) vis-à-vis la description de la (DFT+U) qui fait appel) à l'Hamiltonian U-Hubbard implémenté dans le code Wien2K en traitant différentes propriétés physiques telle que : Les propriétés structurales, électroniques et magnétiques des huit matériaux Fluorures de la forme pérovskite ABF3 mis en questions dans cette thèse.

REFERENCES

[1]: Arif Widiyatmoko, The Effectiveness of Simulation in Science Learning on Conceptual Understanding : A Literature Review, (2018).

[2] : Juan M Durán, Computer simulations in science and engineering: Concepts - Practices – Perspectives (2016).

[3] : Zhanli Guo, Richard Turner, Alisson D. Da Silva, Nigel Sauders, Florian Schroeder

, P. R. Cetlin, Jean Philippe Schillé, Materials Science Forum, 762, 266, (2013).

[4]: Gerbrand Ceder, Modelling and Simulation in Materials Science and Engineering (2000).

[5]: Yves Papegay, De la modélisation littérale à la simulation numérique certifiée (2013).

[6]: Un logiciel d'aide à la conception et à l'évaluation des performances d'instruments optiques. Rapport Technique, aérospatiale, INRIA, (1995).

[7] : ypama : un assistant à la modélisation, analyse dimensionnelle et coh´erence des unit´es. Rapport d'´etude, INRIA/Airbus France, (2004).

[8]: The Mosela Modeling and Simulation Environment. Rapport d'étude, INRIA Airbus France, (2007).

[9] : ypama : un assistant à la modélisation, comment implémenter la d'désorientation des modèles. Rapport d''étude, INRIA/Airbus France, (2003).

[10] : Rodolphe Turpault, Modélisation, analyse numérique et simulations de phénomènes complexes pour des systèmes hyperboliques de lois de conservation avec termes sources raides et en électro cardiologie (2016).

[11] : A. Fakhim Lamrani, M. Ouchri, A. Benyoussef, M. Belaiche and M. Loulidi Half metallic antiferromagnetic behavior of double perovskite Sr2OsMoO6: First principle calculations. Journal of Magnetism and Magnetic Materials ,**345**, 195, (2013).

[12] : Alain Fourmigue, Méthode de Clacul Numérique pour la Simulation Thermique Des Circuits Intégrés (2014).

[13] : Abdelmajid FAKHIM LAMRANI, Thèse de Doctorat « Modélisation et Simulation par la DFT des Propriétés Magnétiques et Structures Electroniques des Oxydes Magnétiques Dilués » (2015).

[14]: A. Fakhim Lamrani, M. Ouchri, M. Belaiche, A. El Kenz, M. Loulidi, A. Benyoussef. Thin Solid Films, **570**, 45, (2014).

[15]: Fukumura T, Yamada Y, Toyosaki T, Hasegawa T, Koinuma H and Kawasaki M Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronicsAppl. Surf. Sci. 223, 62, (2004).

[16]: Leonard Sander, Advanced Condensed Matter Physics (2009).

[17] : A. Makhlou, Y. Aouesa, I. Nisteaa, A. El-hami, 20 ^{ème} Congres Français de Mécanique (2011).

[18]: J.B. Gibson, A.N. GolandO, G.H. Vineyard, Phys. Rev., 120, 1229 (1960),

[19]: L.H. Thomas, Proc.Cambridge Phil. Soc., 23 542, (1927).

[20]: E. Fermi, Rend. Accad. Naz. Lincei, 6, 602, (1927).

[21] :. D.M. Ceperley et B. J. Alder, Physical Review Letters, 45, 566, (1980).

[22] : J.JullienH.Stahl-Lariviere, Tetrahedron, **29**, 1023, (1973).

[23] : W. Kohn, Review of Modern Physics, 71, 1253, (1999).

[24] : Anandh Subramaniam, Structure Of Materials The Key to its Properties A Multiscale Perspective, (2009).

[25]: Murakami M, Ohishi Y, Hirao N, Hirose K Nature 485, 90, (2012).

[26]: Marina R. Filipa,1 and Feliciano Giustino, PNAS Latest Articles j 1, (2017).

[27]: 25. Galasso FS Structure and Properties of Inorganic Solids (Pergamon, Oxford) (1970)

[28] : Roman V. Shpanchenko,* Viktoria V. Chernaya, Alexander A. Tsirlin, Pavel S. Chizhov, Dmitry E. Sklovsky, and Evgeny V. AntipovChem. Mater. 16, 3267, (2004).

[29] : E A Kotomin *et* al, J. Phys.: Conf. Ser. 117, 012019, (2008).

[**30**]: Kohn, K., Inoue, K., Horie, O. and Akimoto, S. Journal of Solid State Chemistry, **18**, 27, (1976).

[31]: Liu, L. Physics of the Earth and Planetary Interiors, 11, 289, (1976).

[32]: M. Tokonami, Acta Crystallographica, 19, 486. (1965).

[33]: SarosHr Sasart, CnenI-es T. Pnnwnr exo Ronenr C. L tesen MANN, American Mineralogist, 68, 1189, (1983).

[34] : Jonne BAKER, 50 clés pour comprendre la physique quantique, DUNOD.

[35]: Auteur Jacques Weyers, Physique Geenerale III, Mécanique quantique, (2007).

[**36**] : Claude Fabre Charles Antoine et Nicolas Treps, Introduction à la physique moderne : relativité et physique quantique. Dunod, (2015).

[37] : Alice Sinatra, Introduction `a la m´mécanique quantique, (2008).

[**38**] : Jean-Louis Basdevant, Jean Dalibard, "M'mécanique Quantique, Editions de l' Ecole Polytechnique.

[39]: Robert Eisberg, Robert Resnick, "Quantum Physics", 'édite par John Wiley.

[40]: Junzhuang Cong, Kun Zhai, Yisheng Chai1, Dashan Shang 1, Dmitry D. Khalyavin, Roger D. Johnson, Denis P. Kozlenko, Sergey E. Kichanov, Artem M. Abakumov, Alexander A. Tsirlin, Leonid Dubrovinsky, Xueli Xu, Zhigao Sheng, Sergey V. Ovsyannikov & Young Sun, Nature Communications, **9**, 2996, (2018).

[41] : Yingfen Wei, Hong Gui, Zhenjie Zhao, Junrui Li, Yong Liu, Shengwei Xin, Xiaohong Li,, a and Wenhui Xie, AIP Advanced, 4, 127134 (2014).

[42] : Serkan Güldal, Yasin Polat, Edge and surface antiferromagnetism in ABO₃ perovskite-type nanoparticle within the effective field theory Philosophical Magazine, (2019).

[43] : Josef Ashkenazi, Stewart E. Barnes, Fulin Zuo, Gary c; Vezzoli, and Barry M. Klei, Physical properties Microqscopic Theory Mechanisms. (1991).

[44]: Akinori Kidera, Yasuo Konishi, Masahito Oka, Tatsuo Ooi, and Harold A. Scheraga, Journal of Protein Chemistry, 4, 23, (1985).

[45]: Eric Gaffet, Nanomaterials : Synthesis, (2010).

[46]: Dieter Vollath, Nanomaterials, Second Edition. Dieter Vollath. Wiley-VCH Verlag GmbH & Co. KGaA. (2013).

[47]: Michael E Ries, Asanah Radhi, Stephen Mark Green, Jamie Moffat, and Tatiana Budtova The Journal of Physical Chemistry, **B 122**, 37, (2018).

[48]: Wayne M. Saslow, in Electricity, Magnetism, and Light, (2002).

[49] : Swarnava Ghosh, Phanish Suryanarayana, Mechanics Research Communications 99, 58, (2019).

[50]: Y.Pan, D. L. Pu, Y. Q. Li, Q. H. Zheng, Materials Science and Engineering: B 259, 114580, (2020).

[51]: Hidea kiIwaoka, Shoichi Hirosawa, Computational Materials Science, 174, 109479, (2020).

[52] : Lei Liu, Yanzhang Ma, Longxing Yang, Hong Liu, Li Yi, and Xiaoyu Gu, Physics of the Earth and Planetary Interiors, **300**, 106447, (2020).

[53]: Ruiqi Zhao Jiong Wang, Huimin Yuan, Biao Hu, Yong Du, Zhunli Tan, Calphad, 69, 101766, (2020).

[54] : Alexander J. Salkeld, Michael F. Reid, Jon-Paul R. Wells, Optical MaterialsVolume 106, 109998, (2020).

[55]: A. N. Filanovich, A. A. Povzner, Physica B: Condensed Matter, 575, 411693, (2019).

[56] :YuanYao, EnkeTian, BingchengLuo, YaoqiNiu[,] HongzhouSong, HaifengSong, BaiwenLi, ,Journal of Solid State Chemistry, 121477, (2020).

[57]: J. M. Matera, L. A. Errico, A. V. Gil Rebaza, V. I. Fernandez, C. A. Lamas, Computational Materials Science, 1781, 109628, (2020).

[58] : Tuan V.Vu, A.A.Lavrentyev, B.V.Gabrelian, O.V.Parasyuk, and O.Y.Khyzhun, Materials Chemistry and Physics, **219**, 162, (2018).

[**59**] **:** C.Wang, M. Wen, Y. D. Su, L. Xu, C. Q. Qu, Y. J. Zhang, L. Qiao, S. S. Yu, W. T. Zheng Q. Jiang, Solid State Communications, **149**, 725, (2009).

[60] : Mikito Fujinami, Ryo Kageyama, Junji Seino, Yasuhiro Ikabata, Hiromi Nakai, Chemical Physics Letters, 748, 137358 (2020).

[61]: RalphSetton, Journal of Physics and Chemistry of Solids, 71, 776, (2010).

[62]: H. Salehi, N. Mousa, vine zhad and P. Amiri, Computational Condensed Matter, 21, 00395, (2019).

[63]: P. H. Dederichs, R. Zeller H. Akai H. Ebert, Journal of Magnetism and Magnetic Materials, 100, 241, (1991).

[64]: J. Rufinus, Journal of Magnetism and Magnetic Materials, 322, 1182, (2010).

[65]: Jayita Chakraborty, Journal of Physics and Chemistry of Solids, 134, 182 (2019).

[66]: Yee Hui, Robin Chang, Tiem Leong Yoon, Thong Leng Lim, Moi Hua Tuh, Scripta Materialia, 178, 82, (2020).

[67]: A. Ney José Luiggi, Journal of Physics and Chemistry of Solids, 131, 196, (2019).

[68] : RahamZeb, ZahidAli, Iftikhar Ahmad, Imad Khan, Journal of Magnetism and Magnetic Materials, **388**, 143, (2015).

[69]: Venu Mankad, Sanjeev, K. Gupta Prafulla, K. Jha, Results in Physics, 2, 34, (2012).

[70]: Pancham Kumar, Amit Soni, K. C. Bhamu, Jagrati Sahariya, Materials Research Bulletin, 86, 131, (2017).

[71]: A. D. Drozdov J. de, C. Christiansen, Computational Materials Science, 53, 396, (2012).
[72]: C. H. Wong, V. Vijayara ghavan, Computational Materials Science, 53, 268, (2012).

[73]: G. Sudha Priyanga, R. Rajeswara palanichamy, K. Iyakutt, Journal of Rare Earths 33, 289, (2015).

[74]: D. M. Minić, R. Marković, Materials Chemistry and Physics, 48, 174, (1997).

[75]: V. Koncar, C. Vasseur, P. Bruniaux, D. Pinchon, IFAC Proceedings, 28, 503, (1995).

[76] : E. Chouliara, K. G. Georgogianni, N. Kanellopoulou, M. G. Kontominas, International Dairy Journal, 20, 307, (2010).

[77]: S. Nazir, Journal of Alloys and Compounds, 732, 187, (2018).

[78]: M. Musa Saad H.-E., Journal of Science: Advanced Materials and Devices, 2, 115, (2017).

[79]: Robina Ashraf, Tariq Mahmood, Saira Riaz, Shahzad Naseem, Chinese Journal of Physics, 55, 1135, (2017).

[80]: Jinping Li, Songhe Meng, Ling ling Li, Hantao Lu, Takami Tohyama, Computational Materials Science, 81, 397, (2014).

[81] : M. S. Abu-Jafar, A. M. Abu-Labdeh, M. El-Hasan[,] Computational Materials Science 50, 269, (2010).

[82]: Anissa Besbes, Radouan Djelti, Benaouda Bestani, Computational Condensed Matter 19, e00380, (2019),

[83]: Jun Zhao, Hui Zeng, Di Wang, Ge Yao, Applied Surface Science, 519, 146203, (2020),
[84]: Yuepeng Lv, Sibin Duan, Rongming Wang, Progress in Natural Science: Materials International, 30, 1, (2020).

[85]: Dong Cheng, Sha Cao, Shuimei Ding, Shiping Zhan, Yongyi Gao, Results in Physics, 17, 103143, (2020).

[86]: Guang qian Ding, Yong lan Hu, Deng feng Li, Xiao tian Wang, Dan Qin, Journal of Advanced Research, 24, 391, (2020).

[87]: Yong-Ping Fu, Fei-Jie Huang, Qi-Hui Chen, Physica B: Condensed Matter, 583, 15 412046, (2020).

[88]: Leonardo S. Lima, Journal of Magnetism and Magnetic Materials, 505, 166751, (2020).

Les matériaux pérovskites fluorures ABF₃

I.1.Inrodution :

La physique de la matière condensée a soulignée de grands progrès ces dernières décennies grâce à la performance de l'outil informatique d'une part, et l'exploitation des nouveaux matériaux inconnus auparavant sans avoir besoin des données expérimentales. Les matériaux pérovskites eux aussi ont subis ce grand changement en progressant de jour en jour. Plusieurs chercheurs scientifiques ont étudié différents matériaux **pérovskites** qui sont à la base des matériaux qui se cristallisent dans une structure appelée **pérovskite** de la forme **ABX3**.

Les pérovskites forment une catégorie de matériaux ayant la forme ABX₃, mais ce dernier qui est l'élément X peut être désigné par différents éléments chimique. Si le X est un oxygène O, les matériaux pérovskites sont appelées pérovskites oxydes de la forme ABO₃. Dans le cas, où le X est une fluorine F, les matériaux pérovskites sont appelés à ce moment-là des pérovskites Fluorides de la forme ABF₃. Le présent travail donne une vision plus large sur leur nature et leur comportement, car nous avons étudiés ici huit matériaux pérovskites Fluorides de la forme ABF₃, en exploitant différentes propriétés physiques interprétés dans le chapitre (Résultat & Discussions).

Les matériaux pérovskites sont issus principalement de la famille des oxydes cristallins. Leur nom provient du minéral CaTiO₃ qui présente une structure cristalline analogue. Ce minéral fut décrit pour la première fois en 1830 par le géologue Gustav Rose [1] qui l'a nommé en l'honneur d'un grand minéralogiste russe, le comte Lev Aleksevich von Perovski [2]. La pérovskite existe à l'état nature, elle est associée à plusieurs minéraux par exemple chlorite, talc, serpentine et mélilite.

(a) A. Von Perovski (1792 – 1856) était un russe noble et minéralogiste qui a également servi comme ministre de l'Intérieur sous Nicolas Ier de Russie.
(b) Gustav Rose (1798 – 1873) était un minéralogiste allemand. Le minéral rosélite [21], a été nommé en son honneur.

Figure I.1: La pérovskite Titanate de Calcium (CaTiO3)

A nos jours, ce terme est généralement utilisé pour **les oxydes** avec le même type d'arrangement d'atomes que ce **minéral** qui se cristallisent dans **la structure cubique** dite (**Structure Idéale**). La maille typique d'**une pérovskite** a une symétrie **cubique** dite **idéale** représentée par le groupe spatial (**Pm-3m**). Cette structure **idéale** correspondant à la formule **ABX3[3]**, où

A est typiquement un alcalino-terreux ou cation de terre rare.

B typiquement un cation de métal de transition.

X un anion qui peut être oxyde ou fluorure, et dans d'autres cas, Chlorure, Bromure, Iodure, Sulfure ou Hydrure.

I.2. La structure pérovskite ABO3 :

Les pérovskites oxydes de la forme ABO_3 [4] ont souligné un grand intérêt technologique, grâce à leurs propriétés physiques spécifiques cet intérêt s'accroit de plus en plus. Différents chercheurs scientifiques ont investi différents travaux de recherche à leur sujet. La figure (Figure I.3) décrit schématiquement en cas général la structure cristalline ABX₃. Qui est adoptée aussi par les matériaux oxydes. Elle montre clairement que les cations B sont situés dans les sites octaédriques créés par les anions X peut être (O, ou F) des couches adjacentes.

On note que cet **anion** peut être l'un **des ions** O^{2-} , S^{2-} , F^- , CI^- et **Br**⁻ **des pérovskites** les plus abondants. Cette famille structurale est importante en termes de diversité de composition et d'abondance. Les statistiques ont montré que plus de 50% du volume terrestre est composé **de minéraux pérovskites**.

Plusieurs travaux ont été publiés dans un cadre théorique en utilisant un calcul Ab-initio (Premier Principe) pour différents matériaux pérovskites de la forme ABO₃ [5- 10]. Leurs propriétés très remarquables ont poussé les chercheurs à les investir dans différents domaines. On site ici quelques propriétés telles que : la ferroélectricité (BaTiO₃) [11], l'anti ferroélectricité (PbZrO₃) [12], le magnétisme (CaMnO₃) [13], la supraconductivité (LaAlO₃) [14],... le Ferromagnétisme (SrFeO₃) [13-18], l'antiferromagnétisme (LaFeO₃) [19-], ect....L'élasticité [20-21].

I.3. La structure cubique idéale :

La structure cubique est dite idéale quand elle se cristallise dans une structure cubique de la forme ABX₃ avec un groupe d'espace (**Pm-3m**), à titre d'exemple le SrTiO₃. Cet arrangement permet d'avoir des propriétés spécifiques comme (diélectricité, ferroélectricité, Piézoélectricité, ferromagnétisme, multiferoisme, ect....

<u>L'atome A</u>: Il se retrouve avec une valence nominale variant entre +1 et +3, est un élément à caractère ionique (gros ion alcalin alcalinoterreux ou terre rare).

<u>L'atome B :</u> Il se retrouve avec une valence nominale variant entre +3 et +5, est un élément de transition à caractère plus covalent.

L'atome X : Il se retrouve regroupé avec trois oxygènes ou trois Fluorines (X=O, X=F).

A ce moment, **les pérovskites** peuvent donc être considérées comme la combinaison de **deux oxydes**, ou **de deux Florides**. **Un oxyde**, ou **un Floride** d'un élément à caractère **ionique** (**le cation A**) et **un oxyde** ou **un Floride d'élément de transition** à caractère plus covalent (**le cation B**).

- \checkmark Les atomes A occupent les sommets des cubes.
- \checkmark Les atomes **B** occupent les centres des cubes.
- ✓ Les atomes d'Oxygène O occupent les faces des cubes.

On peut également obtenir le même réseau par une répétition de la structure cubique ou les atomes **A** occupent le centre du cube, les atomes **B** les sommets et les atomes **d'Oxygènes** le milieu des arrêtes du **cube (Fig.I.5).**

Généralement en trouve deux types **pérovskites** suivant l'occupation des sites **A** et **B** : Les **pérovskites simples** dont les sites **A** et **B** sont occupés respectivement par un seul type de **cation (BaTiO₃, KNbO₃, NaTaO₃, PbTiO₃, CaTiO₃,)** et **les pérovskites complexes** dont l'un ou les deux sites **A** ou **B** est ou sont occupés par différents types de **cations (PbMg**_{1/3}Nb_{2/3}O₃, **PbSc**_{1/2}**Ta**_{1/2}O₃, ...). Dans la symétrie cubique (**Pm-3m**) **les pérovskites** sont non polaires. Les structures polaires correspondent à des symétries plus basses, leurs mailles présentent alors de légères déformations de type quadratique, orthorhombique où rhomboédrique dues à une très faible modification des paramètres de la maille cubique dans certains cas la maille peut être distordue mais non polaire ex: **CaSnO**₃.

Ces distordions correspondent à une déformation des octaèdres d'oxygène (avec décentrage de l'ion **B**) qui se produit suivant certaines directions privilégiées par les éléments de symétrie du nouveau système cristallin. Ces directions sont schématisées sur la (**figure I.6**):

- ✓ Les 3 axes d'ordre 4 (A4) dans la phase quadratique.
- \checkmark Les 6 axes d'ordre 2 (A2) dans la phase orthorhombique.
- ✓ Les 4 axes d'ordre 3 (A3) dans la phase rhomboédrique.

I.4. Critère de stabilité d'une structure pérovskite :

La stabilité d'**une structure pérovskite** dépend de plusieurs facteurs, on cite dans cette thèse les plus importants. Dans le cas **des pérovskites ABX**₃, la nature des atomes joue un rôle primordial. L'arrangement des atomes a aussi un impact sur leur stabilité. On peut dire que suivant le type des cations **A** et **B** impliqués, la symétrie cubique de **la structure pérovskite** prototype peut-être abaissée. En effet, dans la structure cubique dite idéale, les ions sont tangents entre eux. Les octaèdres **BO**₆ sont alors parfaitement alignés et forment un réseau tridimensionnel non déformé de symétrie cubique. La stabilité de cette structure idéale dépend des rayons ioniques respectifs des cations et des anions, ainsi que de la différence d'électronégativité entre les cations et les anions. Ce là fait appel à un autre facteur qui est l'iconicité des liaisons.

I.4.1. Iconicité des liaisons :

L'iconicité des liaisons qui se trouve entre **l'anion-cation** a aussi un rôle important dans la stabilité de la structure cristalline. Dans ce cas, la structure est d'autant plus stable en point de vue thermique. Le caractère ionique moyen de la structure **ABO**₃ est quantifié à partir des différences d'électronégativités données par l'échelle de **Pauling [15]** :

$$\bar{\chi} = \frac{\chi_{A-0} + \chi_{B-0}}{2} \quad (I.1)$$

Où $\chi_{(A-O)}$ et $\chi_{(B-O)}$ illustrent respectivement les différences d'électronégativité entre les cations A et B et les oxygènes associés. La structure pérovskite est reconnue plus stable quand les liaisons en question présentent un fort caractère ionique.

I.4.2. Facteur de Tolérance (Goldschmidt):

Un autre facteur peut intervenir pour assurer la stabilité de **la structure pérovskite**. C'est le facteur **de tolérance de Goldschmidt**, ce dernier permet de stabiliser **la structure pérovskite** en prenant en considération les rayons **des ions A**, **B** et **X** (**X** peut être **Oxygène O** ou **Fluorine F**). On sait que la taille **des cations A** et **B** joue un rôle essentiel pour qu'une maille **pérovskite** (**Figure I.7**) soit stable ou non et aussi pour l'existence des distorsions.

Dans le cas d'une structure cubique idéale, le cation **A** se trouve au centre de la maille, en coordinence **12** et les cations **B** sur les sommets. Pour le triangle rectangle isocèle (marqué sur la figure avec des lignes épaisses) la longueur du coté $\mathbf{r}_{B}+\mathbf{r}_{O}$ et celle de l'hypoténuse $\mathbf{r}_{A}+\mathbf{r}_{O}$ (r est rayon de chaque **ion**). Il est claire que le paramètre est géométriquement lié aux rayons ionique ($\mathbf{r}_{A},\mathbf{r}_{B}$ et \mathbf{r}_{O}), et cela s'exprime par l'équation suivante :

$$2(r_B + r_0)^2 = 2(r_A + r_0)^2$$
, soit $\sqrt{2}(r_B + r_0) = (r_A + r_0)$ (I.2)

Il est connu que le rapport $r = \frac{r_A + r_0}{\sqrt{2}(r_B + r_0)}$ vaut **1** veut dire que la structure est cubique. Les limites de stabilité de **la phase pérovskite** (plus ou moins distordue) étant définies par le facteur **t** compris entre **0.75** et **1.06** [**16**, **17**].

C'est en **1926** que **Goldschmit** a défini ainsi le facteur **de tolérance t** (**Facteur de Goldschmit**), comme:

$$\mathbf{t} = \frac{\mathbf{r}_{A} + \mathbf{r}_{0}}{\sqrt{2}(\mathbf{r}_{B} + \mathbf{r}_{0})}$$
(I.3)

r_A,**r**_B et **r**_O correspondent aux rayons ioniques des éléments des sites **A**, **B** et de **l'Oxygène**, cette relation n'étant valable que si la stœchiométrie en Oxygène est respectée. Ce facteur exprime un équilibre entre les longueurs des liaisons **A**-**O** et **B**-**O** et renseigne sur la distorsion que subit la structure telle que la déformation, la rotation, le basculement des octaèdres ou bien

la déformation du polyèdre de coordination de A liés aux phénomènes de dilatation thermique et de compressibilité des liaisons.

Dans le cas idéal où t = 1, la structure est dite cubique idéale. Dès que l'on s'éloigne de cette valeur, la maille subit les distorsions suivantes :

- ✓ t > 1: distorsion **Hexagonale** (exemple : **BaTiO**₃).
- ✓ 0.95 <t< 1 : structure Cubique (exemple : BaZrO₃).
- ✓ 0.9 <t< 0.95 : distorsion Rhomboédrique (exemple : RbTaO₃).
- ✓ 0.8 <t< 0.9 : distorsion orthorhombique (exemple : PbTiO₃).

I.5. Les propriétés physiques des pérovskites :

Plusieurs propriétés physiques peuvent justifier le grand intérêt technologique que les matériaux **pérovskites** a connu ces dernières décennies. De jour en jour cet intérêt s'accroit, car les travaux théoriques ainsi que l'expérimentales ont prouvé que ce genre de matériaux subit plusieurs distorsions cristallines sous l'effet d'une agitation thermique ou bien sous l'effet d'une pression. Un même matériau peut adopter plusieurs structures cristallines à la fois. En faisant ainsi la naissance de nouvelles propriétés physiques beaucoup plus spécifiques. Les matériaux **pérovskites** sont connus par différentes propriétés, on cite ici les plus importantes :

- ✓ La ferroélectricité.
- ✓ La piézoélectricité.
- ✓ Le Ferromagnétisme.
- ✓ Le multiferroïsme.
- ✓ La semi conductivité.
- ✓ La Permittivité diélectrique élevée.
- ✓ La Corrélation électronique.
- ✓ Le caractère isolant.

I. 5. 1 La ferroélectricité:

Le phénomène de la ferroélectricité est analogue au phénomène du ferromagnétisme. Il a été observé pour la première fois dans **le sel de Rochelle** en **1920 [17]**. Les matériaux ferroélectriques présentent une polarisation électrique spontanée, et un cycle d'hystérésis relie la polarisation et le champ électrique. Généralement, on remarque ce phénomène en dessous d'une certaine température appelée point de Curie. Au-dessus de cette température, le matériau perd son caractère ferroélectrique et montre un comportement paraélectrique.

Pour rendre compte des propriétés macroscopiques des cristaux, ceux-ci peuvent être classés, en supprimant les translations fractionnaires, en **32** groupes de symétrie ponctuels. La (**figure I.8**) représente la classification des ferroélectriques parmi les **32** groupes ponctuels. Dans cette classification, **11** groupes ponctuels possèdent un centre de symétrie et sont par conséquent non polaires.

L'application d'un champ électrique sur ce type de matériau induit une déformation qui demeure inchangée si on inverse le sens de ce champ électrique. Cet effet est appelé l'électrostriction et concerne tous les matériaux qu'ils soient cristallins ou amorphes. Parmi les **21** groupes ponctuels ne possédant pas de centre de symétrie, **20** sont piézoélectriques, c'est à dire qu'il est possible d'induire une polarisation au sein de ces matériaux sous l'effet d'une contrainte, et inversement. Parmi ces classes piézoélectriques, **10** possèdent un axe polaire unique et peuvent donc présenter une polarisation spontanée le long de cet axe privilégié. Cette

polarisation spontanée est généralement dépendante de la température et ces matériaux sont appelés matériaux pyroélectriques. Enfin, parmi les matériaux pyroélectriques, un sous- groupe possède la particularité de présenter une polarisation spontanée pouvant être modifiée et renversée par l'application d'un champ électrique. Ce sont les matériaux ferroélectriques **[18, 19]**.

I.5.2. La piézoélectricité :

La piézoélectricité dérivée du nom grec **Piézein** est la propriété que possèdent certains corps qui peuvent se polariser électriquement sous l'action d'une contrainte mécanique et réciproquement de se déformer lorsqu'on leur applique un champ électrique. Les deux effets sont indissociables. Le premier est appelé effet piézoélectrique direct ; le second effet piézoélectrique inverse.

Les matériaux piézoélectriques sont très nombreux. Le plus connu est sans doute le quartz, toujours utilisé aujourd'hui dans les montres pour créer des impulsions d'horloge. mais ce sont des céramiques synthétiques, les **PZT** qui sont le plus largement utilisées aujourd'hui dans l'industrie. En **2010**, le marché des dispositifs piézoélectriques est estimé à **14,8** milliards de dollars.

La première démonstration de l'effet piézoélectrique direct est due à Pierre et Jacques Curie en **1880** qui ont combiné leurs connaissances de la pyroélectricité et de la structure cristalline, ils prédisent et vérifièrent l'existence de la piézoélectricité sur des cristaux de quartz, de tourmaline, de topaze, de sucre et de sel de Rochelle.

La première application de la piézoélectricité fut le sonar développé par **Paul Langevin** et ses collaborateurs pendant la Première Guerre mondiale. Ce sonar était composé de lames de quartz collées entre deux plaques d'acier et d'un hydrophone et permettait, par la mesure du temps écoulé entre l'émission d'une onde acoustique et la réception de son écho, de calculer la

distance à l'objet **[22]**. Peu de temps après, au début des années **1920**, le premier oscillateur à quartz est mis au point par **Walter Cady**, ouvrant ainsi la voie au contrôle de fréquence.

Au cours de la Seconde Guerre mondiale, la recherche de matériaux diélectriques plus performants amena différents groupes de recherche au **Japon**, aux **États-Unis** et en **Russie** à découvrir les propriétés piézoélectriques de céramiques de synthèse composées **d'oxydes à structure pérovskite** tel que: le Titanate de Baryum (**BaTiO**₃) puis un peu plus tard les Titano-Zirconate de Plomb (**PbZr_xTi**_{1-x}**O**₃, **abrégé en PZT**). La mise au point de ces matériaux représente une étape décisive dans le développement des dispositifs piézoélectriques [23]. En effet, leurs propriétés sont globalement bien meilleures ; ils ont des coefficients piézoélectriques de l'ordre de 100 fois supérieurs à ceux des cristaux naturels.

I.5. 3. Le ferromagnétisme:

Avant de parler **du phénomène Ferromagnétique**, il est indispensable de parler du **magnétisme** lui-même. **Le magnétisme** est un phénomène physique, par lequel se manifestent des forces attractives ou répulsives d'un élément sur un autre, il s'agit des interactions que les charges électriques en mouvement subissent. Ces objets sont susceptibles de réagir selon le **champ magnétique** qui leur entoure, par une réaction d'orientation et/ou de déplacement dépendante de la force et de l'orientation. Cette force s'effectue par l'intermédiaire du **champ magnétique**, et est produite par des charges en mouvement (des aimants). La présence d'un champ magnétique peut créer d'autres propriétés que **le Ferromagnétisme**, tels que ; **paramagnétisme**, **Ferrimagnétisme**, et l'**Antiferromagnétisme**. Ces phénomènes sont le résultat de l'orientation des spins comme la (**Figure I.9**) l'indique parfaitement bien.

Le phénomène magnétique est créé essentiellement par la présence d'un champ magnétique. Dans ce cas, les moments magnétiques de chaque atome s'alignent spontanément dans des régions appelées domaines et cela même en absence de champ magnétique externe. En général, le moment magnétique total est nul parce que les différents domaines ont des orientations différentes et leurs effets s'annulent. Tous les corps ferromagnétiques deviennent paramagnétiques au-dessus d'une température de transition, appelée température de Curie.

Figure I.9: Ordre magnétique :

a) Ferromagnétique, b) Antiferromagnétique, c) Ferrimagnétique.

Dans cette thèse, On s'intéresse seulement aux **propriétés magnétiques**, dans laquelle on prête attention au **moment magnétique** qui va être interpréter en détail dans la deuxième partie « **Résultats & Discussions** ».

I.5. 4. Le Multiferroisme :

Les matériaux **pérovskites multiferroïques** sont des matériaux multifonctionnels par définition. Ils présentent au moins deux ordres électrique, magnétique ou élastique. Le terme « **multiferroïque** » a été défini en premier lieu par **H. Schmid** en **1994** [**26**]. Les **multiferroïques** ce sont des matériaux dans lesquels il existe un couplage des propriétés au sein du même matériau (exemple de la coexistence entre **Ferroélectricité** et **Magnétisme**).

Le matériau **BiFeO₃** [30-35] est l'un des rares multiferroïques magnétoélectriques dont la ferroélectricité et le ferromagnétisme se développent simultanément dans les conditions ambiantes de température et de pression. Durant cette dernière décennie, le **BiFeO**₃ a connu toutefois un net regain d'intérêt depuis la mise en évidence en (2003) et d'une meilleure polarisation spontanée, supérieure à 150 μ C.cm⁻² lorsque le matériau est déposé en couches minces [36]. La découverte de cette propriété suscita un fort engouement au sein de la communauté scientifique désireuse d'expliquer l'origine d'un tel phénomène et surtout, d'explorer à nouveau ce genre de matériau.

Une autre grande famille de ferroelectromagnets [37] est celle des manganites Hexagonales de terre-rare **RMnO**₃ découverte par **F. Bertaut** [38]. On peut citer également la famille des composés polaires antiferromagnétiques bidimensionnels **BaMF**₄ où **M** est **un élément de transition** [39], [40]. Jusqu'à ce jour, la majeure partie de l'effort de conception des matériaux **multiferroïques** s'est portée sur les pérovskites **ABO**₃ pour différentes raisons, on peut citer les plus importantes c'est la grande sensibilité de **ces pérovskites** à des instabilités structurales polaires [37], une stratégie éprouvée est de partir d'un matériau qui présente, par exemple, du ferromagnétisme, et de trouver un moyen d'induire la ferroélectricité. Deux approches qui ont connu un certain succès ont captivé l'attention des chercheurs au cours de la dernière décennie: l'ingénierie de contrainte Epitaxiale et la substitution chimique sélective d'un cation stéréochimiquement inactif par un cation actif grâce à sa paire isolée, tel **Bi**³⁺ dans **BiFeO**₃ [37, 41], [37, 42] ainsi que pour le **BiCrO**₃ et **PbVO**₃.

I.6. les pérovskites fluorures ABF3 :

Les matériaux pérovskites adoptent une structure dite de la forme ABX₃ (X peut être un élément d'oxygène O, ou un élément de Fluorine F). Quand il s'agit d'un élément de Fluorine F, une nouvelle appellation est donné à ces matériaux pérovskites, ils sont appelées dans ce cas « des matériaux pérovskites Fluorures » ou bien dits « Fluoro-Pérovskites ». Ces fluorures se cristallisent dans la structure pérovskite appelé Fluoro-pérovskites, ils possèdent des propriétés physiques remarquables en raison de la simplicité de leur structure.

Ce genre de matériau peuvent adopter la structure cristalline **Cubique (Pm-3m) (Figure I.10)**, la structure **Hexagonale-4H (P6/ mmc)**, les deux structures **Orthorhombiques (Pnma)** et (**Pbnm**) qui ont été traitées en profondeur pour les différents matériaux étudiés dans ce travail, ou même la structure **Rhombohédrale**.

Figure I.10 : La structure cristalline cubique du Fluorure avec le groupe d'espace (Pm-3m).

Ce genre de pérovskites est connu généralement par un large gap, ainsi qu'avec une transparence dans le domaine ultraviolet **[37]**. Ceci leur permet d'avoir une grande potentialité pour être employés ensuite dans des applications technologiques diversifiées tel que :

- ✓ L'optoélectronique.
- ✓ La lithographie optique.
- ✓ La supraconductivité.
- ✓ La spintronique.
- ✓ La radiothérapie.
- ✓ La magnétorésistance colossale.
- ✓ La mémoire de haute capacité.
- ✓ Les dispositifs photovoltaïques.
- ✓ Les catalyseurs hétérogènes
- ✓ Les cellules solaires fabriqué à base des structures pérovskite (**PSC**).

Ces matériaux possédant une structure pérovskite très importante, elles sont sensibles à la température, et à la pression qui font naitre différents changements de phase. Elle leur offre un grand intérêt technologique en raison de leurs propriétés physiques qui sont vraiment très spécifiques tels que :

- ✓ Les propriétés électriques.
- ✓ Les propriétés magnétiques.
- ✓ Les propriétés thermiques.
- ✓ Les propriétés mécaniques.
- ✓ Les propriétés élastiques.
- ✓ Les propriétés électroniques.
- ✓ Les propriétés optiques.

On citera les propriétés physiques de chaque matériau **Fluorure** parmi **les huit matériaux pérovskites Fluorures** investit dans ce travail en détail dans le chapitre « **Résultats & Discussions** ».

REFERENCES :

[1]: Site web : fr.wikipedia.org/wiki/Gustav_Rose.

[2]: F.C. Hawthorne et R.B. Ferguson, The Canadian Mineralogist, 15, 36 (1977).

[3]: O. Muller, R. Roy, The Major Ternay Structural Famillies, Springer, NewYork-Heidelberg-Berlin, (1974).

[4]: B. Ilschner et Ch.janot, Matériaux émergents, 19,118, (2001).

[5]: P.Coeuré, Solid State Communications, 2, 129 (1968).

[6]: P. Charoonsuk et al. Céramic International, **39**, S107, (2013).

[7]: Le Paven et al. Couches Minces dans les Solides, 28, 76 (2014).

[8]: P.Dougier et al. Journal de Chimie du Solide, 3, 247 (1975).

[9]: Qixiang SONG et al. Article de recherche originale, 6, 821 (2008).

[10]: Q. Huang et al. Nature, **54**, 411, (2001).

[11]: P.Tong, Y. P. Sun, X. B. Zhu, and W.H. Song, Phys. Rev. B 74, 224 (2006).

[12]: N. Tsuda, K. Nasu, A. Fujimori, and K. Siratori. Electronic conduction un oxides. Springer-Verlag, Berlin, (2000).

[13]: D.M. Smyth. Defects and Order in Perovskite-Related Oxides. Annu.

Rev. Mater. Sci., 15, 329, (1985).

[14]: A. Ayadi, Thèse de doctorat, Faculté des Sciences de Sfax, (2005).

[15]: M.Sonnati, La Chimie Orga en 3 mois, 6, 47 (2011).

[16]: T. R. Shrout, A. Halliyal, Am. Ceram. Soc. Bull., 66,704 (1987).

[17]: J. Valasek, Piezoelectric and Allied Phenomena in Rochelle Salt, The American Physical Society, 15, 537, (1920).

[18]: F. Jona and G. Shirane, Ferroelectric Crystals, edited by P.P. Inc, (1962).

[19]: M. E. Lines, A.M. Glass, Principles and Application of Ferroelectrics and Related Materials, edited by O.U. Press, (1977).

[20]: M. Nemoz, Thèse de doctorat, Université de Joseph Fourier, Grenoble, (2004).

[21] : F. Pockels, A. Winkelmann Pyro-und piezoelektrizitat, Elektrizitat und Magnetismus, 4, Leipzig, 766, (1905).

[22]: P. Warren, Mason, J. Acoustical Society of America, 70, 1561, (1981).

[23]: Fred S. Hickernell, IEEE 52, 737, (2005).

[24] : C. Huber, « Synthése et caractérisation de nouveaux matériaux ferroélectiques accordables pour applications hyperfréquences » Thése, Univesité Bordeaux I, (2003).

[25]: Jaffe, B., W.R. Cook, and H. Jaffe, *Piezoelectric Ceramics*.: London and New York: Academic Press (1971).

[26]: H.Schmid, Bulletin of Materials Science, 17, 1411, (1994).

[27]: Fiebig M., Journal of Physics D: Applied Physics, 38, R.123, (2005).

[28]: N.A.Spaldin and M.Fiebig, Science, 309, 391, (2005).

[29]: D.Khomskii, Physics, 2, 20, (2009).

[30]: P.Singh, M. and W.Prellier, Philosophical Magazine Letters, 87, 211, (2007).

[**31**] : Teague, J.R., R. Gerson, and W.J. James, Dielectric hysteresis in single crystal BiFeO₃. Solid State Communications, **8**, 1073, (1970).

[32] : Kiselev, D.A., R.P. Ozerov, and G.S. Zhdanov, Detection of magnetic order in ferroelectric BiFeO₃ by neutron diffraction. Soviet Physics - Doklady, *7*, 742, (1963).

[33] : Wang, J., J.B. Neaton, and H. Zeng, Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science, 299, 1719, (2003).

[34] : Fiebig, M., Revival of the magnetoelectric effect. Journal of Physics D: Applied Physics,. **38**, R123, (2005).

- [35]: Atsushi Okazaki, Yasutaka Suemune, 16, 671, (1961).
- [36]: M. Rousseau, J.Nouet, A. Zarembowitch. Phys. Chem. Solids, 35, 1974, (1974).
- [37] : Claire V. Colin, Structure et propriétés magnétoélectriques de nouveaux oxydes (2017).
- [38]: F. Bertaut, F. Forrat, and P. Fang, C. R. Hebd. Seances Acad. Sci., 256, 1958, (1963).
- [39]: M. Eibschütz and H. J. Guggenheim, Solid State Commun., 6, 737, (1968).
- [40]: V. Dvořák, Phys. status solidi, 71, 269, (1975).
- [41]: N. a. Hill, J. Phys. Chem. B 104, 6694, (2000).
- [42]: A. a. Belik, J. Solid State Chem., 195, 32, (2012).
- [43]: K. Hirakawa, Journal of the Physical Society of Japan 19,1678, (1964).

PARTIE II : METHODES DE CALCUL

Chapitre 1

Les méthodes de calcul

I.1. Introduction :

La physique de la matière condensée et la science des matériaux sont concernées fondamentalement par la compréhension et l'exploitation des propriétés des systèmes d'électrons et des noyaux atomiques interagissant. Ceci est bien connu depuis le développement de la mécanique quantique. Toutes les propriétés des matériaux peuvent être étudiées par des outils de calcul convenable pour résoudre ce problème particulier de la mécanique quantique. Malheureusement, les électrons et les noyaux qui composent les matériaux constituent un système à plusieurs corps fortement interagissant et ceci rend la résolution de l'équation de **Schrödinger** extrêmement difficile, et comme l'a déclaré **Dirac** (en 1929) [1] le progrès dépend du développement des techniques approximées suffisamment précises.

Ainsi le développement de la théorie de la fonctionnelle de densité (**DFT**) avec l'approximation de la densité locale (**LDA**) et l'approximation du gradient généralisé (**GGA**) ont joué un rôle important dans la physique de la matière condensée.

I.2. <u>Généralités de L'équation de la fonctionnelle de la densité DFT :</u> **I.2)-1.** <u>Résolution de L'équation de Schrödinger et la fonction d'onde :</u>

Les solides sont constitués par une association de particules élémentaires : Les ions et les électrons. Le problème théorique fondamental de la physique des solides est de comprendre l'organisation intime de ces particules à l'origine de leurs propriétés. Toute l'information que l'on peut obtenir sur un système composé de **N** ions et **n** électrons, est contenue dans la fonction d'onde du système ; elle est une fonction de coordonnées des noyaux et des électrons, obtenue par la mécanique quantique dont la base est résolvant l'équation de **Schrödinger** indépendante du temps qui s'écrit sous la forme :

$$\mathbf{H}\Psi = \mathbf{E}\Psi \qquad (\mathbf{I.1})$$

Où : **E** est l'énergie totale du système, Ψ sa fonction d'onde et **H** est l'opérateur hamiltonienne.

Le problème général peut être posé sous la forme d'une équation du mouvement de toutes les particules présentes dans le cristal. L'hamiltonien exact du cristal (non relativiste) résulte de la présence des forces électrostatiques d'interaction : Répulsion ou attraction suivant la charge des particules (ions, électrons) **[2]**.

$$H_{total} = T_e + T_n + V_{e-e} + V_{e-n} + V_{n-n}$$
(I.2)

Avec :

 $T_{e} = -\sum_{i} \frac{\hbar^{2}}{2m} \nabla_{i}^{2} : L'$ énergie cinétique des électrons. $T_{n} = -\sum_{I} \frac{\hbar^{2}}{2M} \nabla_{I}^{2} : L'$ énergie cinétique des noyaux. $V_{n-n} = \frac{1}{2} \sum_{I < j} \frac{Z_{I} Z_{J} e^{2}}{|\vec{R}_{I} - \vec{R}_{j}|} : L'$ énergie potentielle d'interaction entre les noyaux. $V_{e-n} = -\sum_{I,i} \frac{Z_{I} e^{2}}{|\vec{r}_{i} - \vec{R}_{I}|} : L'$ énergie potentielle d'attraction noyaux-électrons. $V_{e-e} = \frac{1}{2} \sum_{i < j} \frac{e^{2}}{|\vec{r}_{i} - \vec{r}_{j}|} : L'$ énergie potentielle de répulsion entre les électrons.

Donc on peut écrire l'équation de Schrödinger sous la forme suivante :

$$H\Psi = -\sum_{i}^{N} \frac{h^{2}}{2m} \nabla_{i}^{2} - \sum_{I}^{A} \frac{h^{2}}{2M} \nabla_{I}^{2} - \sum_{i,I} \frac{Z_{I}e^{2}}{|\vec{r}_{i} - \vec{R}_{I}|} + \frac{1}{2} \sum_{i < j} \frac{e^{2}}{|\vec{r}_{i} - \vec{r}_{j}|} + \frac{1}{2} \sum_{I < J} \frac{Z_{I}Z_{J}}{|\vec{R}_{I} - \vec{R}_{j}|}$$
(I.3)

La solution de l'équation (**I.3**) conduit à la résolution d'un problème à **N** corps qui n'est accessible qu'au prix de certaines approximations. Ces dernières doivent refléter une certaine réalité physique.

I.1)-2. Approximation de Born-Oppenheimer :

Dans l'approximation de **Born** et **Oppenheimer** [3], on commence par négliger le mouvement des noyaux par rapport à celui des électrons. Elle est justifiée par le fait que la masse des noyaux est plus de trois ordres de grandeur supérieure à celle des électrons. Alors les électrons se déplacent donc plus rapidement que les noyaux atomiques. On néglige ainsi l'énergie cinétique T_n des noyaux et l'énergie potentielle noyaux-noyaux V_{n-n} devient une constante qu'on peut choisir comme la nouvelle origine des énergies. L'hamiltonien total (I.2) peut alors être remplacé par l'hamiltonien électronique suivante [3] :

$$H_{\text{total}} = T_e + V_{e-e} + V_{e-n} \qquad (I.4)$$

L'équation de Schrödinger est donc réécrite de la façon suivante :

$$H_e \Psi_e = E_e \Psi_e \qquad (I.5)$$

Avec \mathbf{E}_e et $\boldsymbol{\Psi}_e$: l'état propre et l'énergie propre du système de \mathbf{N}_e électrons. \mathbf{E}_{totale} : l'énergie totale du système est alors donnée par :

$$\mathbf{E}_{\text{total}} = \mathbf{E}_{e} + \mathbf{E}_{\text{noy}} \qquad (\mathbf{I.6})$$

Bien que le problème soit grandement simplifie, la résolution exacte de **(I.5)** est toujours impossible. Cependant il est possible d'accéder à l'état fondamental du système, l'énergie associée répondant à un principe variationnel. En effet l'état fondamental du système de N_e électrons est par définition l'état qui minimise l'énergie E_e . C'est dans la recherche de minimum d'énergies que les techniques ab-initio vont intervenir.

I.1)-3. Approximation Hartree (des électrons libres) :

L'approximation de **Hartree** [4] consiste à chercher les fonctions propres de l'hamiltonien **H** sous la forme approchée :

$$\Psi_{\text{approchée}} = \Psi_1(\mathbf{r}_1). \ \Psi_2(\mathbf{r}_2)....\Psi_N(\mathbf{r}_N) \tag{I.7}$$

Cette approximation est basée sur l'hypothèse d'électrons libres ce qui revient à ne pas tenir compte des interactions entre les électrons et des états de spin. Ceci a deux conséquences importantes :

- \clubsuit La répulsion coulombienne totale V_{ee} du système électronique est surestimée.
 - Le principe d'exclusion de Pauli n'est pas pris en compte.

Cette seconde conséquence étant plus grave que la première, l'approximation de «**Hartree-Fock** » **[5]** a été introduite pour prendre en compte le spin des électrons pour la résolution de l'équation de **Schrödinger**.

L'énergie moyenne électronique est obtenue par minimalisation de la valeur moyenne de l'opérateur hamiltonien par la méthode variationnelle:

$$\langle \mathbf{H} \rangle = \frac{\langle \Psi | \mathbf{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle} \tag{I.8}$$

Le calcul variationnel montre que chaque fonction d'onde $\Psi_i(\mathbf{r})$ doit, pour rendre minimale l'énergie moyenne (H), être elle-même solution d'une équation différentielle du second ordre qui a la forme d'une équation de Schrödinger à une particule :

$$[-\nabla^{2} + W(r) + U_{i}(r)]\Psi_{i}(r) = E_{i}\Psi_{i}(r)$$
(1.9)

Le premier terme potentiel $W(\mathbf{r})$ d'équation (**I.9**) est issu directement du hamiltonien **H**. Il représente l'interaction coulombienne de l'électron avec tous les noyaux du cristal, et il possède la périodicité du réseau de Bravais.

Le second terme potentiel U_i (**r**) de l'équation (**I.9**) appelé potentiel moyen autocohérent représente la répulsion coulombienne exercée sur l'électron *i* par tous les autres électrons $j \neq i$, chacun étant dans son état Ψ_j :

$$U_{i}(r) = \iiint \frac{q^{2}\rho_{i}(r')}{|r-r'|} d^{3}r'$$
 (I.10)

$$\boldsymbol{\rho}_i(\boldsymbol{r}') = \sum_{j \neq i} |\boldsymbol{\Psi}_i(\boldsymbol{r}')|^2$$
 (I.11)

Pour chaque densité électronique au point \mathbf{r}' , il existe \mathbf{N} équations de la forme (**I.9**), toutes différentes et couplées entre elles par les différents potentiels $\mathbf{U}(\mathbf{r})$. Le calcul est donc sans solution en pratique si l'on ne procède pas à des approximations supplémentaires. Par conséquent, il faut résoudre l'équation par approximations successives, jusqu'à ce qu'il y ait auto-cohérence des solutions trouvées.

I.3) La théorie de la fonctionnelle de la densité (DFT) :

Résoudre l'équation de Schrödinger avec **N** électrons doit utiliser des méthodes approximatives qui permettent de reproduire le plus exactement les quantités physiques contenant le plus d'informations. La théorie de la fonctionnelle de la densité (**DFT**) offre ainsi des perspectives intéressantes puisque, en principe, elle permet d'obtenir la densité électronique ρ et l'énergie totale du système exactement.

La méthode est basée sur le postulat proposé par **Thomas** et **Fermi [6,7]** à la fin des **années 30**. Il stipule que les propriétés électroniques peuvent être décrites en terme de fonctionnelles de la densité électronique ρ définie sur l'espace usuel \mathbb{R}^3 .

La densité électronique $\rho(\mathbf{r})$ étant la probabilité de présence un électron dans un volume unitaire en \mathbf{r} . Cette quantité est définie de la façon suivante **[8]**:

$$\rho(\vec{r}_1) = N \int_{\text{tout } l' \text{éspace}} \dots \int_{\text{tout } l' \text{éspace}} \Psi^*(\vec{r}_1 \dots \vec{r}_N) \Psi(\vec{r}_1 \dots \vec{r}_N) d\vec{r}_1 \dots d\vec{r}_N$$
(I.12)

Et :

$$\mathbf{N} = \int_{\text{tout } l' \text{éspace}} \rho(\vec{\mathbf{r}}_1) \mathbf{d} \, \vec{\mathbf{r}}$$
 (I.13)

Cette propriété, sur laquelle se base les techniques du calcul **DFT**, a été démontré par **Pierre Hohenberg** et **Walter Kohn** (prix Nobel de chimie en **1998**).

I.3).a). Théorèmes de Hohenberg-Kohn :

Le formalisme de base de la **DFT** est basé sur le théorème de **Hohenberg-Kohn** (1964) [9]. Cette approche s'applique pour tout système à plusieurs particules en interaction évoluant dans un potentiel externe. Elle repose sur deux théorèmes :

Ou :

<u>Théorème 1:</u> Ce théorème montre que la densité électronique $\rho(\mathbf{r})$ est la seule fonction nécessaire pour obtenir toutes les propriétés électroniques d'un système quelconque. En d'autres termes, il existe une correspondance biunivoque entre la densité électronique de l'état fondamental $\rho_0(\mathbf{r})$ et le potentiel externe V_{ext} (\mathbf{r}) et donc entre $\rho_{fond}(\mathbf{r})$ et la fonction d'onde de l'état fondamental Ψ_{fond} .

$$E = E[\rho_{fond}] = F_{HK}[\rho_{fond}] + \int V_{e-n}(r)\rho(r)dr \quad (I.14)$$

Avec :

$$\mathbf{F}_{\mathrm{HK}}[\rho_{\mathrm{fond}}] = \mathbf{T}[\rho] + \mathbf{V}[\rho] \tag{I.15}$$

 $O\hat{u}$: $F_{HK}[\rho_{fond}]$ La fonctionnelle de Hohenberg et Kohn.

Τ[ρ] : L'énergie cinétique. **V[ρ]:** L'interaction électron-électron.

Nous savons que la densité électronique de l'état fondamental est suffisante pour obtenir toutes les propriétés de cet état mais comment savoir si une densité quelconque est celle de l'état fondamental. Ceci est l'objet du deuxième théorème de **Hohenberg** et **Kohn**.

<u>Théorème</u> 2: Ce théorème montre que la fonctionnelle d'énergie $E[\rho]$ est minimum quand une densité électronique quelconque $\rho[\mathbf{r}]$ correspond à la densité électronique de l'état fondamental $\rho_{fond}(\mathbf{r})$.

$$E(\rho_{fond}) = MinE(\rho) \qquad (I.16)$$

C'est-à-dire, d'après le premier théorème, une densité électronique d'essai ρ_{test} définit son propre hamiltonien et de même sa propre fonction d'onde d'essai Ψ_{test} . A partir de là, nous pouvons avoir une correspondance entre le principe variationnel dans sa version fonction d'onde et dans sa version densité électronique telle que :

$$\langle \Psi_{test} | H | \Psi_{test} \rangle = E | \rho_{test} | \ge E_{fond} = \langle \Psi_{test} | H | \Psi_{test} \rangle$$
(I.17)

En résumé : toutes les propriétés d'un système défini par un potentiel externe **Vext** peuvent être déterminées à partir de la densité électronique de l'état fondamental.

L'énergie du système $E(\mathbf{r})$ atteint sa valeur minimale si et seulement si la densité électronique est celle de l'état fondamental. Cependant, il reste un problème de taille à régler, comment réécrire une formulation analytique exacte de la fonctionnelle $F_{H.K}[\rho]$ pour un système à N électrons interagissant.

I.3).b). Les équations de Kohn-Sham :

En (1965) Walter Kohn et Lu Sham [10] proposent une méthode pratique permettant d'utiliser la théorie de la fonctionnelle de la densité. Tout d'abord ils supposent qu'il existe un système fictif de N électrons indépendants ayant la densité dans son état fondamental ρ_{fond} (r). L'intérêt vient du fait que les expressions de l'énergie cinétique et de l'énergie potentiel pour ce système fictif sont connues. Puis, ils montrent que pour qu'il en soit ainsi, ces électrons doivent être plongés dans un potentiel extérieur effectif, c'est la première équation de Kohn-Sham (K.S) V_{eff} [$\rho(\mathbf{r})$] :

$$V_{eff}[\rho(\vec{r})] = V_{e-n}(\vec{r}) + V_{Hatree}(\vec{r}) + V_{xc}[\rho(\vec{r})]$$
 (I.18)

Avec : V_{Hartree}(**r**) le potentiel de Hartree qui est définie par :

$$\mathbf{V}_{\text{Hatree}(\vec{\mathbf{r}})} = \int \frac{\rho(\vec{\mathbf{r}}') d\vec{\mathbf{r}}'}{|\vec{\mathbf{r}} - \vec{\mathbf{r}}'|}$$
(I.19)

Et : $V_{xc}[\rho(r)]$ le potentiel d'échange et corrélation :

$$V_{xc}[\rho(\vec{r})] = \frac{\delta E_{xc}[\rho]}{\delta \rho(\vec{r})}$$
(I.20)

Dans cette expression (**I.20**) E_{xc} est l'énergie d'échange-corrélation, qui regroupe tout ce qui n'est pas connu dans le système, à savoir les effets de corrélations dues à la nature quantique des électrons. Ce terme définie par :

$$E_{xc}[\rho] = F_{HK}[\rho] - \frac{e^2}{8\pi\epsilon_0} \int d^3r' \frac{\rho(\vec{r}')\rho(\vec{r})}{|\vec{r}-\vec{r}'|} - T_{fond}[\rho]$$
(I.21)

 $T_0[\rho]$ est l'énergie cinétique des électrons de Kohn-Sham et le second terme le terme électrostatique de Hartree.

Pour calculer la densité électronique et l'énergie E du système, ils ont ainsi remplacé le problème de départ :

$$E \begin{cases} H\Psi_{j} = E_{j}\Psi_{j} \\ \rho_{fond}(\vec{r}) = \int d^{3}r_{2} \dots d^{3}r_{N} |\Psi_{fond}(\vec{r}, \vec{r}_{2}, \dots, \vec{r}_{N}| \end{cases}$$
(I.22)

Par le problème plus simple :

$$\mathbf{E}' \begin{cases} \mathbf{H}_{\mathrm{KS}} \boldsymbol{\varphi}_{j}(\vec{\mathbf{r}}) = \boldsymbol{\varepsilon}_{j} \boldsymbol{\varphi}_{j}(\vec{\mathbf{r}}) \leftrightarrow \left(-\frac{\hbar^{2}}{2m} \nabla^{2} + V_{\mathrm{eff}}\right) \boldsymbol{\varphi}_{j}(\vec{\mathbf{r}}) = \boldsymbol{\varepsilon}_{j} \boldsymbol{\varphi}_{j}(\vec{\mathbf{r}}) \\ \boldsymbol{\rho}_{\mathrm{fond}}(\vec{\mathbf{r}}) = \sum_{j=1}^{N} \left| \boldsymbol{\varphi}_{j}(\vec{\mathbf{r}}) \right| 2 \end{cases}$$
(I.23)

Le problème E' est plus simple que le problème E car :

- On a résoudre une équation de **Schrödinger** à une seule particule (monoélectronique) utilisant le potentiel V_{eff} qui permet d'obtenir la seconde équation de Kohn-Sham à N_e états $\phi_{j..}$
- On donne l'expression de la densité électronique en fonction des N_e fonctions d'onde ϕ_j . C'est la troisième équation de **Schrödinger**.

Ces trois équations interdépendantes doivent être résolues de manière autocohérente afin de trouver la densité de l'état fondamental figure (I-1). Tous les calculs de type **DFT** sont basées sur la résolution itérative de ces équations. Notons que pour la **DFT**, seules l'énergie totale, l'énergie de fermi et la densité électronique ont un sens physique. Les états et les énergies de **Kohn-Sham** ne sont que des intermédiaires de calcul. Néanmoins, ils sont utilisés dans de nombreux travaux scientifiques, pour calculer certaines grandeurs comme les structures de bande.

Figure I.1 : interdépendance des équations de Kohn-Sham

I.3).c) .Traitement de terme d'échange et corrélation :

La théorie de la fonctionnelle de la densité appliquée dans le cadre de l'approche orbitalaire de **Kohn-Sham** demeure exacte dans son formalisme. Progressivement, la partie

inconnue dans la fonctionnelle $E[\rho]$ a été réduite à une fonctionnelle universelle $F_{HK}[\rho]$ et finalement à une énergie d'échange et corrélation $E_{xc}[\rho]$. A ce stade, il est nécessaire d'approcher l'expression de cette fonctionnelle d'échange et corrélation qui repose sur un certain nombre d'approximations :

I.4) L'introduction des approximations : **I.4.a)**. Approximation de la densité locale (LDA) :

L'approximation de la densité local ou LDA [11] considère le potentiel d'échange et corrélation comme une quantité locale, définie en un point r, dépendant faiblement des variations de la densité autour de ce point r [12,13]. Ainsi, en un point r auquel correspond une densité $\rho(\mathbf{r})$, il sera associé un potentiel d'échange et corrélation comparable à celui d'un gaz homogène d'électrons de même densité $\rho(\mathbf{r})$. L'énergie d'échange et corrélation $E_{\rm XC}^{\rm LDA}[\rho]$ s'exprime alors de la manière suivant :

$$\mathbf{E}_{xc}^{\text{LDA}}[\rho] = \int \rho(\mathbf{r}) \boldsymbol{\varepsilon}_{xc}[\rho(\vec{r})] \, d\vec{r} \qquad (I.24)$$

Où : ε_{xc} représente l'énergie d'échange et corrélation pour une particule d'un gaz homogène d'électrons de densité ρ . Elle peut-être considérer comme la somme d'une contribution d'échange et corrélation :

$$\mathbf{E}_{\mathbf{x}\mathbf{c}} = \boldsymbol{\varepsilon}_{\mathbf{x}}(\boldsymbol{\rho}) + \boldsymbol{\varepsilon}_{\mathbf{c}}(\boldsymbol{\rho}) \tag{I.25}$$

Le terme d'échange $\varepsilon_x(\rho)$, appelé échange de **Dirac [14]**, est connu exactement par la relation suivante :

$$E_{xc} = -\frac{3}{4} \left(\frac{3}{\pi} \rho(\vec{r})\right)^{\frac{3}{4}} \qquad (I.26)$$

La partie corrélation ε_c (ρ) ne peut être exprimée de manière exacte. L'approximation de ce terme est basée sur l'interpolation de résultats de calculs **Monte-Carlo** quantique de **Ceperley** et **Alder** (1980) [15]. Aujourd'hui, il existe dans la littérature des paramétrisations, numériques ou analytiques de ε_c (ρ) comme celle de

Hedin et Lundqvist (1971) [16] ou Perdew et al [17].

En utilisant la LDA (I.24) pour une molécule ou un solide on suppose implicitement que l'on peut obtenir l'énergie d'échange-corrélation pour un système inhomogène en considérant le gaz d'électrons comme homogène dans des portions infinitésimales de celui-ci. On peut alors appliquer localement à ces régions les résultats du gaz homogène et la sommation de ces contributions individuelles $\rho(\mathbf{r})\varepsilon_{xc}(\rho)$ dr donne une valeur approchée de l'échange-corrélation du système inhomogène.

Il va de soi que la validité de LDA suppose des systèmes où la densité électronique ne varie pas trop rapidement. L'efficacité de cette approximation est apparue à partir des années (1977) avec les travaux de Zunger et Freeman [18-19], ainsi que ceux de Moruzzi et al (1978) [20].

Enfin, notons qu'un précurseur de la LDA a été introduit par Slater en (1951) [21] où il proposa la méthode X_{α} comme une simplification de la méthode Hartree-Fock. Cette simplification aboutit à l'équation suivante :

$$\left[-\frac{\hbar^2}{2m_e}\overline{\nabla_j^2} + V_{e-n}(\vec{r}) + V_{Hartree}(\vec{r}) + V_{x\alpha}^{LDA}(\vec{r})\right]\phi_j(\vec{r}) = \varepsilon_j\phi_j(\vec{r}) \qquad (I.27)$$

Avec le potentiel local $V_{X\alpha}$:

$$V_{x\alpha}(\rho) = -\frac{3}{4} \alpha (\frac{3}{\pi} \rho(\vec{r}))^{\frac{1}{3}}$$
 (I.28)

Dans l'équation (I.28), α désigne un paramètre qui a été initialement pris comme étant égal à 1. Par la suite il a été évalué pour tous les atomes neutres par Schwarz [22]. Il faut aussi noter que Kohn et Sham ont réalisé que l'équation X_{α} était équivalente à la LDA, si la corrélation était ignorée et si en plus α =2/3. La méthode X_{α} peut donc être considérée comme un formalisme de fonctionnelle de densité, qui néglige la corrélation et dont l'énergie est donnée par ;

$$E_x^{LDA}[\rho] = -\frac{9}{8}\alpha[\frac{3}{4}]^{\frac{1}{3}}\int\rho(\vec{r})^{\frac{1}{3}}d\vec{r}$$
 (I.29)

I.4.b). Approximation du gradient généralisé (GGA) :

La plus grande source d'erreur de la LDA provient de l'énergie d'échange qui est souvent sous-estimée tandis que l'énergie de corrélation est souvent surestimée même si, en valeur absolue, sa contribution à l'énergie totale est plus petite. Ces deux erreurs ont tendance à s'annuler. Pour améliorer la précision des calculs DFT, nous avons besoin de meilleures approximations pour la fonctionnelle d'échange-corrélation. Certains auteurs ont eu l'idée de définir une fonctionnelle de la densité qu'ils ont associée à ses dérivées propres dans le but de prendre en compte l'inhomogénéité du système. Dans un premier temps, la LDA fut traitée comme le premier terme d'un développement en série de Taylor :

$$\mathbf{E}_{xc}^{\text{GEA}}[\rho] = \int \boldsymbol{\epsilon}_{xc}^{\text{GEA}}(\rho(\mathbf{r}))\rho(\mathbf{r})d\mathbf{r} + \int \mathbf{C}_{xc}(\rho(\mathbf{r}))\frac{|\nabla\rho(\mathbf{r})|}{\rho^{3/4}(\mathbf{r})}d\mathbf{r} + \cdots$$
(I.30)

Cette forme de fonctionnelle est l'approximation du gradient (GEA ou Gradient Expansion Approximation). Malheureusement, ceci donne de plus mauvais résultats que la LDA. En effet, le trou d'échange-corrélation ne satisfait plus les conditions qui assuraient à la LDA un certain sens physique. Afin de corriger ces problèmes, la fonctionnelle ci-dessus a été modifiée pour la forcer à respecter les principales conditions aux limites. Nous obtenons alors

l'approximation du gradient généralisé (GGA ou Generalized Gradient Approximation) à l'origine du succès de la DFT :

$$\mathbf{E}_{xc}^{\text{GEA}}[\rho; \nabla \rho] = \int \boldsymbol{\epsilon}_{xc}^{\text{GGA}}(\rho(\mathbf{r}), \nabla \rho(\mathbf{r})) d\mathbf{r} \qquad (\mathbf{I.31})$$

Souvent les contributions pour l'échange et la corrélation sont développées séparément :

$$\mathbf{E}_{xc}^{GEA}[\rho; \nabla \rho] = \boldsymbol{\varepsilon}_{x}^{GGA}(\rho, \nabla \rho) + \boldsymbol{\varepsilon}_{c}^{GGA}(\rho, \nabla \rho) \tag{I.32}$$

Le problème majeur de la LDA provenant de l'échange, une attention toute particulière fut portée sur le développement de cette partie :

$$\epsilon_{x}^{GGA}(\rho, \nabla \rho) = \epsilon_{x}^{LDA} - \int F(s(r)) \rho^{3/4}(r) dr \qquad (I.33)$$

Où *F* est une fonction du gradient de densité réduite (sans dimension) :

$$\mathbf{s}(\mathbf{r}) = \frac{|\vec{\nabla}\rho(\mathbf{r})|}{\rho^{3/4}(\mathbf{r})}$$
(I.34)

En revanche, il existe plusieurs façons d'inclure le gradient de la densité **[23, 24]**. Dans ce travail, on a systématiquement préféré la formulation de **Perdew**, **Burke** et **Ernzerhof** (**PBE**) **[25]** dont la construction est transparente et libre de paramètres.

<u>I-4.c) Emploi du terme d'Hubbard :</u>

Au sein de systèmes présentant des électrons f fortement localisés, l'interaction coulombienne de répulsion est telle que la **GGA** seule ne suffit pas à traiter correctement ces effets de corrélation, ce qui mène à une description erronée des propriétés électroniques du système. Par exemple, un matériau reconnu expérimentalement comme semi-conducteur peut être prédit comme isolant, d'après les calculs théoriques. Dans ce cas il convient d'ajouter un terme, dit term*e* d'Hubbard [86], au potentiel effectif de l'atome considéré : on parle alors de LDA+U ou de GGA+U. Différentes voies sont possibles pour inclure ce terme au formalisme de la DFT, menant toutes à des résultats similaires. Parmi celles-ci, l'approche décrite par Dudarev et al. [87] fait intervenir un potentiel d'Hubbard effectif, U_{eff}qui est la différence entre deux termes : le paramètre d'Hubbard U, et l'interaction d'échange J.

$$\mathbf{U}_{\mathrm{eff}} = \mathbf{U} - \mathbf{J} \tag{I.35}$$

Ces paramètres seront directement intégrés à l'expression de l'Hamiltonien telle que décrite précédemment. Des études systématiques ont été réalisées afin d'établir, pour chacun des

éléments de la classification périodique, le couple (**U**, **J**) donnant la description la plus précise des propriétés de l'atome concerné [**86**].

I - 4.d) Les fonctionnelles hybrides:

L'emploi de la **LDA**+U ou de la **GGA**+U dans le cadre de la **DFT** permet une description étonnamment précise de la plupart des solides et molécules. Cependant, l'utilisation de ces deux approximations génère encore quelques erreurs significatives notamment lors du calcul de l'énergie fondamentale de petites molécules et du gap énergétique de systèmes étendus.

Afin de compenser ces failles, une nouvelle génération de fonctionnelles a été récemment élaborée. Dans ces modèles, la fonctionnelle d'énergie d'échange-corrélation fait appel à la fois à des termes issus des méthodes Hartree-Fock et à d'autres issus du formalisme de la DFT (LDA ou GGA), d'où leur appellation de fonctionnelles hybrides. Actuellement, les fonctionnels hybrides les plus courantes sont PBE0, HSE03 et B3LYP [88-91]. Selon la proportion de termes HF/DFT utilisés pour générer une fonctionnelle, celle-ci sera plus ou moins adaptée au calcul d'une propriété précise [92]. Par exemple, les fonctionnelles PBE0 et HSE03 permettent un meilleur calcul des propriétés structurales, alors que B3LYP donne des résultats encore moins précis que ceux obtenus avec la fonctionnelle GGA couramment utilisée, PBE [25]. L'emploi de telles fonctionnelles en lieu et place de la GGA ou la LDA permet de se rapprocher encore des données expérimentales connues, tels que les paramètres de maille ou encore le gap énergétique de certains systèmes [92]. De manière générale, les fonctionnels hybrides sont particulièrement efficaces pour la description de molécules et de matériaux isolants, mais pas pour les systèmes métalliques. Leur inconvénient majeur est que de tels calculs sont généralement plus gourmands en ressources informatiques que pour les fonctionnels classiques, du fait de l'incorporation de termes Hartree-Fock.

I.4.e). Résolution des équations de Kohn-Sham:

La résolution des équations de **Kohn-Sham** (**I-23**) nécessite le choix d'une base pour les fonctions d'onde que l'on peut prendre comme une combinaison linéaire d'orbitales appelées orbitales de **Kohn-Sham** écrites sous fourme:

$$\Psi_{i}(\vec{r}) = \sum C_{i\alpha} \varphi_{\alpha} \qquad (I.36)$$

Où: les $\varphi_{\alpha}(\mathbf{r})$ sont les fonctions de base et les sont les fonctions de l'expansion.

Puisque l'énergie totale est variationelle dans la **DFT**, la solution auto-cohérente des équations de **KS** revient à déterminer les $C_{j\alpha}$ pour les orbitales occupées qui minimisent l'énergie totale. La résolution des équations de **KS** pour les points de symétrie dans la première zone de **Brillouin** permet de simplifier les calculs. Cette résolution se fait d'une manière

itérative en utilisant un cycle d'itération auto-cohérent illustré par l'organigramme de la figure **(I.2).** On commence par injecter la densité de charge initiale ρ_{in} pour diagonaliser l'équation séculaire:

$$(\mathbf{H} - \boldsymbol{\epsilon}_j \mathbf{S}) \mathbf{C}_j = \mathbf{0} \qquad (\mathbf{I}.\mathbf{37})$$

Avec : H représente la matrice hamiltonienne et S la matrice de recouvrement.

Ensuite, la nouvelle densité de charge ρ_{out} est construite avec les vecteurs propres de cette équation séculaire en utilisant la densité de charge totale qui peut être obtenue par une sommation sur toutes les orbitales occupées.

Si les calculs ne concordent pas, on mélange les deux densités ρ_{in} et ρ_{out} de la manière suivante:

$$\rho_{in}^{j+1} = (1-\alpha)\rho_{in}^j + \alpha_{out}^j \qquad (I.38)$$

j représente la $\mathbf{j}^{\text{éme}}$ itération et $\boldsymbol{\alpha}$ un paramètre de mixage. Ainsi la procédure itérative peut être poursuivie jusqu'à ce que la convergence soit réalisée.

Figure I.2 : le schéma du calcul self consistant de la fonctionnelle de densité.
I.4.f).Limite de la DFT (systèmes électroniques fortement corrélés) :

On peut définir les systèmes électroniques fortement corrélés comme les systèmes pour lesquels une approximation de champ moyen, telle que la **DFT**, ne donne pas de bons résultats. En effet, les corrélations électroniques jouent un role important dans un solide lorsque la répulsion coulombienne **U** entre deux électrons sur un méme atome est grande par rapport aux énergies associées à l'hybridation des orbitales d'atomes voisins, qui donne lieu aux bandes d'énergies de largeur **W** des électrons de conduction. Pour les systèmes qui possèdent des électrons 4f ou 5f très localisés, comme les terre rares, on s'attend à ce que (**U**/**W**) soit grand, méme des systèmes avec des électrons d peuvent aussi étre fortement corrélés [**53**].

Le système fortement corrélé le plus simple consiste en deux électrons distribués sur deux orbitales notées f et l (s,p,d ou autre orbitale hybride). L'orbitles f est supposée très localisée par rapport à l'orbitale l qui est plutôt étendue. Si les deux électrons se trouvent sur l'orbitale l, l'un avec *spin* U_p et l'autre avec *spin* D_n , l'énergie coulombienne est petite car les deux électrons peuvent se tenir à bonne distance l'un de l'autre de façon à la minimiser. De méme, si l'un des électrons est sur l'orbitale f et le second sur l, la distance entre les deux est assez grande et nous pouvons négliger l'interaction colombienne. Par contre, si les deux électrons sont sur l'orbitale f qui est très localisée,il y'a une forte répulsion colombienne U dont il faut tenir compte.

I.4.).Succès de la DFT :

La **DFT** permet souvent d'obtenir, à plus faible coût, des résultats d'une précision proche de celle obtenue avec des calculs post-**Hartee-Fock.** De plus, elle peut être utilisée pour étudier des systèmes relativement gros, contenant jusqu'à plusieurs centaines d'électrons, que les calculs post-**Hartree-Fock** ne peuvent pas traiter. Ceci explique que la **DFT** soit aujourd'hui très utilisée pour étudier les propriétés des systèmes moléculaires ou même biologiques, parfois en combinaison avec des méthodes classiques.

Les nombreux travaux effectués ses dernières années montrent que les calculs **DFT** donnent de bons résultats sur des systèmes très divers (métalliques, ioniques, organométalliques, métaux de transition ...) pour de nombreuses propriétés (les structures moléculaires, les fréquences de vibration, les potentiels d'ionisation, ...).

Toutefois, ces méthodes souffrent encore de plusieurs défauts. Ainsi il semblerait, jusqu'à preuve du contraire, que les forces de dispersion ne sont pas traitées correctement. Par ailleurs, on ne comprend pas toujours les bons ou les mauvais résultats de la **DFT** sur certains systèmes, et il n'existe aucun véritable critère pour choisir une fonctionnelle plutôt qu'une autre. Il est en outre difficile de trouver des critères permettant d'améliorer une fonctionnelle donnée, ce qui rend parfois l'utilisation de la **DFT** délicate.

Pour la résolution des équations de **Kohn-Sham** plusieurs méthodes sont utilisées comme la méthode du pseudo-potentiel, la méthode linéaire de l'orbital muffin-Tin (**LMTO**), et la méthode linéaire des ondes planes augmentées (**LAPW**) qui fait l'objet de notre étude.

I.5)- La méthode des ondes planes linéairement augmentées (FP-LAPW): I.5)-a).Introduction :

Différentes méthodes de calcul ont été développées, basées sur le formalisme de la **DFT**. Toute utilisent le fait qu'il est possible de séparer les états électroniques en deux: les états de cœur, très proches du noyau, fortement liés et les états de valence. Quelque que soit l'approche utilisée, ces états sont traités séparément. L'équation de Schrödinger est appliquée aux seuls états de valence. Les états de cœur sont traités soit par un calcul atomique ou bien leur contribution est introduite dans un potentiel effectif qui n'agit que sur les électrons de valence, les électrons de cœur étant ainsi éliminés. Par conséquent, les méthodes de la **DFT** sont classées en deux grandes catégories: les méthodes tout électrons et les approches dites pseudo-potentiels. De même pour les potentiels, il existe deux grandes classes: les potentiels tout électron est les pseudo-potentiels.

Dans la première catégorie, le potentiel peut être total (**Full potentiel**) dans le sens où aucune approximation n'est utilisée pour sa description. Si non, il peut être décrit par l'approximation Muffin Tin (**MT**) selon laquelle, le potentiel est supposé sphérique dans chaque atome du cristal.

Parmi les méthodes tout électron, on compte la méthode des ondes planes linéairement augmentées (**FP-LAPW**). Cette méthode est plus précise à l'heure actuelle malgré qu'elle soit relativement lourde. Elle est une modification fondamentale de la méthode des ondes planes augmentées (**APW**).

I.5).b. La méthode des ondes planes augmentées (APW):

Salter expose la méthode **APW** (**Augmented Plane Wave**) dans son article **[26, 27, 28]**. En **1937**, il introduisit des ondes planes augmentées (**APW**) **[29]** comme des fonctions de base pour résoudre les équations de **Kohn** *et* **Sham** à un électron.

L'idée de cette méthode (APW) est que la cellule primitive est divisée en deux types de régions:

- > Des sphères «Muffin-Tin» (MT) concentrées autour de tous les emplacements atomiques constitutifs et de rayons R_{α} .
- Une région interstitielle restante.

Au voisinage du noyau atomique, le potentiel et les fonctions d'onde sont de la forme **«Muffin-Tin»** (**MT**) présentant un symétrique sphérique à l'intérieur de la sphère **MT** de rayon \mathbf{R}_{a} . Entre les atomes, le potentiel et les fonctions d'onde peuvent être considérés comme étant lisse. En conséquence, les fonctions d'onde du cristal sont développées dans des bases différentes selon la région considérée: solutions radiales de l'équation de Schrödinger à l'intérieur de la sphère **MT** et ondes planes dans la région interstitielle Figure (**I.3**).

Figure I.3 : réprésentation de potentiel muffin Tin «MT».

Alors la fonction d'onde $\Phi(\mathbf{r})$ est la forme:

$$\phi(\mathbf{r}) = \begin{cases} \frac{1}{\Omega^{1/2}} \sum_{G} C_{G} e^{i(G+K)\mathbf{r}} & \mathbf{r} < R_{\alpha} \\ \sum_{lm} A_{lm} U_{l}(\mathbf{r}) Y_{lm}(\mathbf{r}) & \mathbf{r} > R_{\alpha} \end{cases}$$
(I.39)

Où :

 R_{α} représente le rayon de la sphère **MT** et Ω le volume de la cellule. C_G et A_{lm} les coefficients de développement en harmoniques sphériques Y_{lm}.

La fonction $U_l(\mathbf{r})$ est une solution de l'équation de **Schrödinger** pour la partie radiale qui s'écrit sous la forme :

$$\Bigl\{ -\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} V(r) - E_l \rbrace r U_l(r) = 0 \qquad (I.40)$$

 $V(\mathbf{r})$ représente le potentiel Muffin-tin et E_l l'énergie de linéarisation. Les fonctions radiales sont orthogonales à tout état propre du cœur. Cette orthogonalité disparait en limite de sphère [30] comme le montre l'équation de Schrödinger suivante :

$$(\mathbf{E}_2 - \mathbf{E}_1)\mathbf{r}\mathbf{U}_1\mathbf{U}_2 = \mathbf{U}_2 \frac{d^2 \mathbf{r} \mathbf{U}_1}{dr^2} - \mathbf{U}_1 \frac{d^2 \mathbf{r} \mathbf{U}_2}{dr^2}$$
(I.41)

Où U_1 et U_2 sont les solutions radiales pour les énergies E_1 et E_2 .

Slater justifie le choix de ces fonctions en notant que les ondes planes sont les solutions de l'équation de **Schrödinger** lorsque le potentiel est constant. Alors que les fonctions radiales sont des solutions dans le cas d'un potentiel sphérique, lorsque **E**₁ est une valeur propre.

Pour assurer la continuité de la fonction $\Phi(\mathbf{r})$ à la surface de la sphère **MT**, les coefficients A_{lm} doivent être développés en fonction du coefficient C_G des ondes planes existantes dans les régions interstitielles. Ainsi après les calculs :

$$\left\{ A_{lm} = \frac{4\pi i^2}{\Omega^{1/2} U_1(R_{\alpha})} \sum_G j_l(|K+G|R_{\alpha}) Y_{lm}^*(K+G) \right\}$$
(I.42)

L'origine est prise au centre de la sphère et les coefficients A_{lm} sont déterminés à partir de ceux des ondes planes CG. Les paramètres d'énergies E_l sont appelés coefficients varaitionnels de la méthode **APW**. Les fonctions individuelles étiquetées par **G** deviennent ainsi compatibles avec les fonctions radiales dans les sphères et on obtient des ondes planes augmentées (**APWs**). Les fonctions **APWs** sont solutions de l'équation de **Schrödinger** dans les sphères mais seulement pour l'énergie E_l , cette dernière doit être égale à celle de la bande d'indice **G**.

La méthode **APW** présente quelques difficultés liées à la fonction $U_l(\mathbf{R}_{\alpha})$ présente dans l'équation (**I.30**). Suivant la valeur du paramètre \mathbf{E}_l , la valeur de $U_l(\mathbf{R}_{\alpha})$ peut devenir nulle à la surface de la sphère **MT**, entrainant ainsi une séparation des fonctions radiales par rapport aux fonctions d'ondes planes. Plusieurs modifications à la méthode **APW** ont été apportées pour surmonter ce problème, notamment celles apportées par **Koelling [31]** et par Andersen **[32]**. Cette modification consiste à présenter les fonctions d'ondes radiales $U_l(\mathbf{r})$ et de leurs dérivées par rapport à l'énergie $\hat{\mathbf{U}}(\mathbf{r})$ donnant ainsi naissance à la méthode **LAPW**.

I.5).c. La méthode LAPW:

La méthode des ondes planes augmentées linéarisées (LAPW : Linearised Augmented Plane Wave), développée par Andersen [35], est fondamentalement une amélioration de la méthode dite des ondes planes augmentées (APW) élaborée par Slater [26], [31], [35], [54], [55], [56] (les détails de cette méthode peuvent être trouvés dans le livre de Loucks [40]). Une nouvelle technique pour résoudre l'équation de poisson [57] a été ajoutée à la méthode LAPW pour que nous puissions traiter l'absorption moléculaire sur la surface de la sphère muffin-tin (MT), développe le potentiel sous la forme suivante :

$$V = \begin{cases} \sum_{lm} V_{lm}(r) Y_{lm}(r) & \text{à l'intérieure de la sphère} \\ \sum_{k} V_{k} e^{i.k.r} & \text{à l'extérieure de la sphère} \end{cases}$$
(I.43)

I.5).d. Principe de la méthode FP-LAPW:

Dans la méthode **FP-LAPW**, les fonctions de base dans les sphères **MT** sont des combinaisons linéaires des fonctions radiales $U_l(\mathbf{r})$, $Y_{lm}(\mathbf{r})$ et de leurs dérivées $\hat{U}_l(\mathbf{r})$, $Y'_{lm}(\mathbf{r})$ par rapport à l'énergie. Les fonctions U_l sont définies dans la méthode **APW** et la fonction \hat{U}_l doit satisfaire la condition suivante :

$$\left\{-\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2}V(r) - E_l\right\} r U_l'(r) = r U_l(r)$$
(II.44)

Dans le cas non relativise ces fonctions radiales U_1 et \dot{U}_1 assurent, à la surface de la sphère **MT**, la continuité des ondes planes de l'extérieur. Alors les fonctions d'onde ainsi augmentées deviennent les fonctions de base (LAPWs) de la méthode **FP-LAPW** :

$$\varphi(r) = \begin{cases} \frac{1}{\Omega^{1/2}} \sum_{G} C_{G} e^{i(G+K)r} & r < R_{\alpha} \\ \sum_{lm} [A_{lm} U_{l}(r) + B_{lm} U_{l}(r)] Y_{lm}(r) & r > R_{\alpha} \end{cases}$$
(II.45)

Où : les coefficients B_{lm} correspondent à la fonction \hat{U}_l et sont de même nature que les coefficients A_{lm} . Les fonctions LAPWs sont des ondes planes uniquement dans les zones interstitielles. A l'intérieur des sphères, les fonctions LAPWs sont mieux adaptées que les fonctions APWs. Si l'énergie E_l diffère peu de l'énergie de bande E, une combinaison linéaire reproduira mieux la fonction radiale que les fonctions APWs. Par conséquent, la fonction U_l peut être développée en fonction de sa dérivée \hat{U}_l et de l'énergie E_l :

$$U_{l}(E,r) = U_{l}(E,r) + (E - E_{l})U_{l}'(E,r) + O(E - E_{l})^{2}$$
(II.46)

Où : **O**(**E**-**E**_l)² représente l'erreur quadratique énergétique.

La méthode **FP-LAPW** assure la continuité de la fonction d'onde à la surface de la sphère **MT**. Cependant dans cette procédure, les calculs perdent en précision, par rapport à la méthode APW qui reproduit les fonctions d'onde correctement, tandis que la méthode **FP-LAPW** entraine une erreur sur les fonctions d'onde de l'ordre de (**E-E**₁⁴). Malgré cet ordre d'erreurs, les fonctions **LAPWs** forment une bonne base qui permet, avec un seul **E**₁, d'obtenir toutes les bandes de valence dans une grande région d'énergie. Si **U**₁ est égale à zéro à la sphère, sa dérivée **Ù**₁ sera différente de zéro. Par conséquent, le problème de la discontinuité ne se posera pas dans la méthode **FP-LAPW**.

Takeda et **Kubler [33]** ont proposé une généralisation de la méthode **LAPW** dans laquelle **N** fonctions radiales et leurs **N-1** dérivées sont utilisées. Chaque fonction possédant son propre paramètre E_{li} de sorte que l'erreur liée à la linéarisation soit évitée. Malheureusement, l'utilisation de dérivées d'ordre élevé pour assurer la convergence nécessite un temps de calcul

beaucoup plus long que dans la méthode **FP-LAPW** standard. **Singh [34]** a modifié cette approche en ajoutant des orbitales locale à la base sans augmenter l'énergie de **Cuttof** des ondes planes.

I.5)-e. Les rôles des énergies de linéarisation (E1) :

Avant de détailler la méthode **LAPW**, il semble important de parler du rôle de la linéarisation des énergies **E**₁. La méthode dérive de la méthode **APW**, et se réduit à elle essentiellement lorsque **E**₁ est égale à l'énergie de bande ε , en plus les erreurs sur la fonction d'onde comme on l'a vu sont de l'ordre de $(\varepsilon - E_L)^2$, et sur les énergies de bande sont de l'ordre de $(\varepsilon - E_L)^2$. Donc, il semble nécessaire de poser E₁ simplement auprès des centres des bandes d'intérêt pour assurer des résultats raisonnables, et d'utiliser d'ordre connu des erreurs pour optimiser le choix de **E**₁. Alternativement, il peut être envisagé de calculer l'énergie la plus basse. Malheureusement, tandis que ces stratégies marchent bien dans plusieurs cas, elles ont échoué dans plusieurs autres, et la raison de cet échec est liée à la présence des états du cœur étendus appelés les états semi-cœur, dans plusieurs éléments, particulièrement, les métaux alcalins, les terres rares, les premiers métaux de transition, et les actinides.

Cependant, les fonctions augmentées $U_l(r)Y_{lm}$ et $U'_l(r)Y_{lm}$ sont orthogonales à n'importe quel état du cœur qui est strictement confiné dans les sphères. Malheureusement, cette condition n'est jamais satisfaite exactement sauf dans le cas où il n'y a pas des états du cœur avec la même *l*. Comme résultat, il y aura un composant des états du cœur d'étendus contenu dans les fonctions d'ondes de valence. Les effets de cette orthogonalité inexacte aux états du cœur étendus varient selon le choix de E_l . Dans le cas le plus critique, il y a un chevauchement entre les basses LAPW et l'état du cœur qu'un faux composant connu sous le nom de bande fantôme apparaît dans le spectre.

Ces bandes fantômes se produisent au-dessus de la valeur propre de l'état du cœur, et apparaissent souvent dans la partie valence du spectre car les fonctions radiales avec E_I ne sont pas adaptées à représenter la fonction d'onde semi-cœur. Malgré que, ces bandes fantômes soient facilement indentifiables, elles ont une petite dispersion, elles sont hautement localisées dans la sphère, et ont le caractère l de l'état du cœur. Mais toutefois, leur présence empêche les calculs d'aboutir sans la modification de E_I . La solution idéal pour les éliminer est d'utiliser une extension d'orbitales locales qui permet un traitement précis des états du cœur et des états de valence dans une seule fenêtre d'énergie, en ajoutant plus de liberté variationnelle pour un l sélectionné.

I.5)-f). Construction des fonctions radiales :

Les fonctions de base de la méthode **FP-LAPW** sont des ondes planes dans la zone interstitielle. Elles sont développées sous la forme de fonctions radiales numériques à l'intérieur des sphères **MT** à condition que les fonctions de base et leurs dérivées soient continues à la

surface de la sphère **MT**. Ainsi, la construction des fonctions de base de la méthode FP-LAPW revient à déterminer :

- Les fonctions radiales U₁ (r) et leurs dérivées par rapport à l'énergie U'₁ (r).
- > Les coefficients A_{lm} et B_{lm} qui satisfont aux conditions aux limites.

Les conditions aux limites fournissent un moyen simple pour la détermination du **Cutoff** du moment angulaire l_{max} et pour la représentation du **Cutoff** G_{max} des ondes planes dans la sphère de **MT** pour un rayon \mathbf{R}_{α} . Une stratégie raisonnable consiste à choisir ces **Cutoff**, tels que \mathbf{R}_{α} $G_{max}=l_{max}$, ce qui est réalisé en pratique puisque la convergence des calculs de **FP-LAPW** est assurée pour \mathbf{R}_{α} G_{max} compris entre 7 et 9.

I.5)-i). Les fonctions radiales non relativistes :

Dans le cas non relativiste, les fonctions radiales $U_1(\mathbf{r})$ sont des solutions de l'équation de Schrödinger avec un potentiel sphérique et pour une énergie de linéarisation \mathbf{E}_{l} .

$$\left[-\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + V(r) - E_l\right] r U_l \ (r) = 0 \qquad (I.47)$$

Où : $V(\mathbf{r})$ est la composante sphérique du potentiel dans la sphère **MT** pour $\mathbf{l} = \mathbf{0}$. La condition aux limites $\mathbf{rU}_l(\mathbf{0}) = \mathbf{0}$ ayant été appliquée. La dérivée par rapport à l'énergie **E***i* est :

$$\left[-\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + V(r) - E_l\right] r U_l'(r) = r U_l(r)$$
 (I.48)

Les solutions radiales doivent être normalisées dans la sphère MT.

$$\int_{0}^{R_{a}} r^{2} U_{l}^{2}(r) dr = 1 \qquad (I.49)$$

U₁ est une solution homogène de l'équation inhomogène (I.44) de la forme

$$\mathbf{h}_{\mathbf{l}} \, \acute{\mathbf{U}}_{\mathbf{l}} - \mathbf{E} \, \acute{\mathbf{U}}_{\mathbf{l}} = \mathbf{U}_{\mathbf{l}} \tag{I.50}$$

En utilisant la condition de normalisation (**I.45**), il apparaît immédiatement que la fonction **U**₁ et sa dérivée sont orthogonales :

$$\int_{0}^{R_{a}} r^{2} U_{l}(r) \dot{U}_{l}(r) dr = 0 \qquad (I.51)$$

La fonction UI est normalisée,

$$N_1 = \int_0^{R_a} r^2 \, \acute{\rm U}_l(r) dr \qquad (I.52)$$

∂E

Cette condition de normalisation dans la méthode FP-LAPW peut être remplacée par l'équation suivante :

$$\mathbf{R}_{\alpha}^{2} \begin{bmatrix} \dot{U}_{l}(\mathbf{R}_{\alpha}) \dot{U}_{l}(\mathbf{R}_{\alpha}) - U_{l}(\mathbf{R}_{\alpha}) \dot{U}'_{1}(\mathbf{R}_{\alpha}) \end{bmatrix} = \mathbf{1} \qquad (\mathbf{I.53})$$

Avec:
$$\begin{cases} U_{l}'(\mathbf{E}, \mathbf{r}) = \frac{\partial U_{l}(\mathbf{E}, \mathbf{r})}{\partial \mathbf{r}} \\ \dot{U}_{l}(\mathbf{E}, \mathbf{r}) = \frac{\partial U_{l}(\mathbf{E}, \mathbf{r})}{\partial \mathbf{E}} \end{cases}$$

Cette équation sert à déterminer numériquement les fonctions $U_1(\mathbf{r})$ et $\mathring{U}_1(\mathbf{r})$. Avec cette normalisation on peut développer UI sous la forme :

$$\mathbf{U}_{\mathbf{I}}(\mathbf{E} + \mathbf{\delta}) = \mathbf{U}_{\mathbf{I}}(\mathbf{E}) + \mathbf{\delta} \acute{\mathbf{U}}_{\mathbf{I}}(\mathbf{E}) + \cdots \qquad (\mathbf{I.54})$$

Avec ce choix, la norme de U₁ (r), soit $\| \mathring{U}_1 \|$, indique l'ordre de grandeur de l'énergie E₁. En particulier, les erreurs sur l'énergie de linéarisation sont acceptables selon Andersen [60] quand :

$$\|\dot{U}_{l}\||E_{l}-E| \le 1$$
 (I.55)

Si un tel choix n'est pas possible, plusieurs options sont disponibles :

- ✓ Diviser le domaine d'énergie en fenêtres, et traiter chaque fenêtre séparément avec une énergie E*i* appartenant à chaque état.
- ✓ Utiliser un développement sous la forme d'orbitales locales (méthode quadratique).

 \checkmark Réduire la taille des sphères, ce qui revient à réduire la norme de la dérivée de U₁(\mathbf{r}). Les deux premières options sont les plus utilisées et seront exposées dans la suite. La dernière n'est pas disponible dans tous les programmes et elle n'a été appliquée, à notre connaissance, que par Goedeker [58].

I.5)-j). Les fonctions radiales relativistes :

Les corrections relativistes sont importantes uniquement lorsque la vitesse de l'électron est du même ordre de grandeur que la vitesse de la lumière. Dans la méthode FP-LAPW, les effets relativistes sont pris en compte à l'intérieur de la sphère MT et sont négligés dans la région interstitielle. En effet, la vitesse de l'électron est limitée par le cut-off dans l'espace des **k** points [59].

La modification relativiste consiste à remplacer (I.47) et (I.48) par les équations de Dirac correspondantes et leurs dérivées par rapport à l'énergie. Koellin et Harmon [61] (voir aussi Rosicky [62], Wood et Boring [63], Takeda [64], Macdonald et al. [65]) ont présenté une technique pour résoudre ces équations de Dirac avec un potentiel sphérique dans lesquelles l'effet de spin-orbite est initialement négligé, mais peut être inséré ultérieurement.

L'hamiltonien de Dirac est donné par :

$$\mathbf{H}_{\mathrm{D}} = \mathbf{C}\alpha\mathbf{p} + (\beta - 1)\mathbf{m}\mathbf{c}^{2} + \mathbf{V}(\mathbf{r}) \tag{I.56}$$

Avec les deux matrices \mathbf{a} et $\mathbf{\beta}$:

$$\alpha = \begin{bmatrix} 0 & \sigma \\ \sigma & 0 \end{bmatrix}; \ \beta = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
(I.57)

Si I sont les vecteurs propres de HD, ils s'écrivent à l'aide des deux fonctions Φ et χ :

$$\Psi = \begin{pmatrix} \Phi \\ \chi \end{pmatrix} \tag{I.58}$$

 Φ est appelé la grande composante de la fonction d'onde et χ la petite. L'équation de Schrödinger conduit à :

$$c(\sigma p)\chi = (\varepsilon - V) \qquad (I.59)$$

$$c(\sigma p)\Phi = (\varepsilon - V + 2mc^2)\chi \qquad (I.60)$$

A partir de ces deux équations, il vient :

$$\frac{1}{2m}(\sigma \mathbf{p})(1 + \frac{\varepsilon - V}{2mc^2})^{-1}(\sigma \mathbf{p})\Phi + V\Phi = \varepsilon\Phi \qquad (I.61)$$

En utilisant l'approximation :

$$(1+\frac{\varepsilon-V}{2mc^2})^{-1}\approx 1-\frac{\varepsilon-V}{2mc^2} \qquad (I.62)$$

Avec:
$$\begin{cases} \mathbf{p}\mathbf{V} = \mathbf{V}\mathbf{p} - \mathbf{i}\hbar\nabla\mathbf{V} \\ (\boldsymbol{\sigma}\nabla\mathbf{V})(\boldsymbol{\sigma}|\mathbf{p}) = (\boldsymbol{\sigma}\nabla\mathbf{p}) + \mathbf{i}\boldsymbol{\sigma}[\nabla,\mathbf{p}] \end{cases}$$

On obtient l'équation différentielle vérifiée par Φ :

$$\left[\left(1-\frac{\epsilon-V}{2mc^2}\right)\frac{p^2}{2m}-V\right]\Phi-\frac{\hbar^2}{4m^2c^2}\left(\nabla V\nabla\Phi\right)+\frac{\hbar^2}{4m^2c^2}\left(\sigma[\nabla V,p]\Phi\right)=\epsilon\Phi\qquad(I.63)$$

Dans le cas où le potentiel possède une symétrie sphérique, l'équation (I.14) devient :

$$\left[\frac{p^2}{2m} + V - \frac{p^4}{8m^3c^2} - \frac{\hbar^2}{4m^2c^2}\frac{dV}{dr}\frac{\partial}{\partial r} + \frac{1}{2m^2c^2}\frac{1}{r}\frac{dV}{dr}(\vec{L},\vec{s})\right]\Phi = \epsilon\Phi \qquad (I.64)$$

Les deux premiers termes correspondent à l'équation de **Schrödinger** non relativiste, le troisième et le quatrième proviennent respectivement de la correction de masse et de **Darwin**.

Quant au dernier terme, il correspond au couplage spin-orbite. A cause de ce dernier terme, Ψ n'est plus une fonction propre du moment de spin.

La solution de l'équation de Dirac à l'intérieur de la sphère MT devient :

$$\Psi_{K\mu} = \begin{pmatrix} g_{k}\chi_{K\mu} \\ -if_{K}\sigma_{r}\chi_{K\mu} \end{pmatrix}$$
(I.65)

Et les fonctions \mathbf{f}_k et \mathbf{g}_k vérifient les équations radiales suivantes :

$$\frac{\mathrm{d}\mathbf{f}_k}{\mathrm{d}\mathbf{r}} \equiv \mathbf{f}'_k = \frac{1}{\mathrm{c}}(\mathbf{V} - \mathbf{E})\mathbf{g}_k + (\frac{\mathrm{k}-1}{\mathrm{r}})\mathbf{f}_k \tag{I.66}$$

$$\frac{d\mathbf{g}_k}{d\mathbf{r}} \equiv \mathbf{g}'_k = -\left(\frac{k-1}{r}\right)\mathbf{g}_k + 2\mathbf{M}\mathbf{c}\mathbf{f}_k \qquad (\mathbf{I.67})$$

Ou':

$$\mathbf{M} \equiv \mathbf{m} + \frac{1}{2c^2} (\mathbf{E} - \mathbf{V}) \tag{I.68}$$

k, est le numéro quantique relativiste donné par *l* et *j*.
χ_{kμ} l'opérateur de spin.
M et c la masse et la vitesse de la lumière.

Le traitement des deux équations couplées (I.63) et (I.64) donne :

$$\left(\frac{-1}{2M}\right)\left[\mathbf{g}_{k}^{\prime\prime}+\frac{2}{r}\mathbf{g}_{l}^{\prime}-\frac{l(l+1)}{r^{2}}\mathbf{g}_{k}\right]-\frac{V^{\prime}\mathbf{g}_{k}^{\prime}}{4M^{4}c^{2}}+V\mathbf{g}_{k}-\frac{\frac{k+1}{r}}{4M^{4}c^{2}}=E\mathbf{g}_{k} \tag{I.69}$$

Le dernier terme qui représente le couplage spin-orbite et qui dépend de la valeur de \mathbf{k} (\mathbf{k} =l ou \mathbf{k} =-(l+1)) est négligeable dans un premier temps et sera pris en compte par la suite.

Ainsi, Koelling et Harmon [61] (voir aussi Rosicky [62], Wood et Boring [63], Takeda [64], Macdonald et al. [65]) ont présenté une technique pour résoudre ces équations avec un potentiel sphérique et une nouvelle fonction :

$$\Phi_{\rm k} \equiv \frac{1}{2{\rm M}{\rm c}} {\rm g}_{\rm k}^{\prime} \qquad ({\rm I}.70)$$

Qui donne, compte tenu de l'équation (I.65)

$$f_k = \Phi_k + \frac{1}{2Mcr}(k+1)g_k$$
 (I.71)

A partir de l'équation (**I.67**), en négligeant le dernier terme et en remplaçant g'_k par sa valeur, on obtient l'expression :

$$\Phi_{l}' = -\frac{2}{r}\Phi_{l} + \left[\frac{l(l+1)}{2Mcr^{2}} + \frac{1}{c}(V-E)\right]g_{l}$$
(I.72)

Dans laquelle on a remplacé l'indice **k** par **l**. Les équations (**I.70**) et (**I.71**) forment un système d'équations couplées. On peut le résoudre de la même façon que pour l'équation radiale standard de **Dirac**.

L'équation (I.63) devient :

$$\Psi_{k\mu} \cong \begin{pmatrix} \tilde{\boldsymbol{\Phi}} \\ \tilde{\boldsymbol{\chi}} \end{pmatrix} = \begin{pmatrix} g_l \boldsymbol{\chi}_{k\mu} \\ -i(-\boldsymbol{\Phi}_l + \frac{(k+1)}{2Mcr^2} g_l) \boldsymbol{\chi}_{k\mu} \end{pmatrix}$$
(I.73)

Et l'équation (I.71) écrite avec les nombres quantiques *l*m :

$$\Psi_{k\mu} \cong \begin{pmatrix} \tilde{\Phi} \\ \tilde{\chi} \end{pmatrix} = \begin{pmatrix} g_l Y_{lm} \chi_s \\ \frac{i}{2Mc} \sigma_r (-g'_l + \frac{1}{r} g_l \sigma. L) Y_{lm} \chi_s \end{pmatrix}$$
(I.74)

Où : **X**s est l'opérateur de spin non relativiste (**Spin-haut, Spin-bas**). Pour faciliter la résolution des équations séculaires relativistes (**I.71**) et (**I.72**) **Louks [66]** définit les fonctions suivantes :

$$\begin{cases} \mathbf{P}_{l} = \mathbf{r}\mathbf{g}_{l} \\ \mathbf{Q}_{l} = \mathbf{r}\mathbf{c}\mathbf{\Phi}_{l} \end{cases} \Rightarrow \begin{cases} \mathbf{P}_{1}' = 2\mathbf{M}\mathbf{Q}_{l} + \frac{1}{r}\mathbf{P}_{1} \\ \mathbf{Q}_{l}' = -\frac{1}{r}\mathbf{Q}_{l} + \left[\frac{l(l+1)}{2\mathbf{M}r^{2}} + (\mathbf{V} - \mathbf{E})\right]\mathbf{P}_{l} \end{cases}$$
(I.75)

Ces équations peuvent être résolues numériquement de la même façon que pour **l'équation** de **Schrödinger non relativiste** à l'aide de la condition aux limites suivante :

$$\lim_{r \to 0} \frac{Q}{P} = c \frac{\left[l(l+1) + 1 - (\frac{2Z}{c})^2\right]^{1/2} - 1}{\frac{2Z}{c}}$$
(I.76)

Le terme de spin-orbite $\left(\frac{V'}{4M^2C^2}\right)(K+1)P$ est alors ajouté à l'équation (**I.75**). La dérivée par rapport à l'énergie conduit à des équations semblables à celles du cas non relativiste, soit :

$$\begin{cases} \dot{P}'_{l} = 2\left(\dot{M}Q_{l} + M\dot{Q}_{l}\right) + \frac{1}{r}\dot{P}_{l} \\ \dot{Q}'_{l} = -\frac{1}{r}\dot{Q}_{l} + \left[\frac{l(l+1)}{2Mr^{2}} + (V - E)\right]\dot{P}_{l} - \left[\frac{l(l+1)\dot{M}}{2M^{2}r^{2}} + 1\right]P_{l} \end{cases}$$
(I.77)

On détermine les composantes g_l et g_l à partir des solutions de P_l et Q_l . Ces mêmes composantes vont être utilisées pour le calcul de la densité de charge et de l'élément de matrice. Ainsi, la quantité U₂ est remplacée dans l'équation (I.75) par $g_l^2 + f_l^2$. Cependant, à la surface de la sphère, la composante f_l disparaît et il ne reste plus que la composante g_l et sa dérivée. Dans le cas où les effets de spin-orbite sont pris en compte, l'équation séculaire de l'hamiltonien s'écrit à l'aide des fonctions de base initiales sous la forme :

$$\langle \mathbf{lms}|\mathbf{H}|\mathbf{l'm's'}\rangle = \varepsilon_{\mathbf{lms}}\langle \mathbf{lms}|\mathbf{l'm's'}\rangle + \delta_{\mathbf{u'}}\int d^3r \frac{g_l^2}{(2Mc)^2} \left(\frac{1}{r}\mathbf{V'}\right) \left(\chi_s^+ \mathbf{Y}_{\mathbf{lm}}^* \sigma \cdot \mathbf{L}\mathbf{Y}_{\mathbf{l'm'}} \chi_{s'}\right) \quad (\mathbf{I.78})$$

Où : la matrice de recouvrement est :

$$\langle lms | l'm's' \rangle = \delta_{u'} (4\pi \delta_{mm'} \delta_{ss'} N_1 - S_1 \int d^2 r \chi_s^+ Y_{lm}^* \sigma. L Y_{l'm'} \chi_{s'})$$
 (I.79)

Avec:
$$\begin{cases} N_{l} \equiv \int drr^{2} \left\{ g_{l}^{2} + \frac{1}{(2Mc)^{2}} \left[g_{l}^{\prime 2} + \frac{l(l+1)}{r^{2}} g_{l}^{2} \right] \right\} \\ S_{l} \equiv \int drr^{2} (\frac{1}{(2Mc)^{2}})^{2} (2g_{l}g_{l}^{\prime} + \frac{1}{r^{2}}g_{l}^{2}) \end{cases}$$
(I.80)

En résumé, le deuxième terme dans les équations (**I.79**) et (**I.80**) provient de l'interaction **spin-orbite**, et ces deux équations ont été obtenues à partir d'un potentiel à symétrie sphérique indépendant du spin. Si on avait choisi un potentiel dépendant du spin, on aurait dû utiliser une expression semblable tout en gardant toutefois le signe des spins (**Spin-haut, Spin-bas**).

I.5)-k). Détermination des coefficients Alm et Blm :

Les coefficients A*lm* et B*lm* sont déterminés, pour chaque vecteur d'onde, et pour chaque atome, en imposant aux fonctions de base ainsi qu'à leurs dérivées premières d'être continues aux limites des sphères de MT.

Les fonctions de base sont des ondes planes dans la région interstitielle :

$$\Phi(\mathbf{k}_{n}) = \Omega^{-1/2} \exp i\mathbf{k}_{\dot{n}} \mathbf{r}$$
 (I.81)

Avec: $\mathbf{k}_n \equiv \mathbf{k} + \mathbf{K}_n$

Et s'écrivent sous la forme d'une combinaison linéaire de solutions sphériques dans les sphères **MT**.

$$\Phi(\mathbf{k}_{n}) = \sum [\mathbf{A}_{lm} \mathbf{U}_{l}(\mathbf{E}_{l}) + \mathbf{B}_{lm} \dot{\mathbf{U}}_{l}(\mathbf{E}_{l})] \mathbf{Y}_{lm}(\mathbf{r})$$
(I.8)

Dans cette équation, Ω est le volume de la cellule, k le vecteur d'onde, et K_n un vecteur du réseau réciproque.

- ✓ A l'opposé du formalisme de la méthode APW standard, dans laquelle l'énergie E*i* est constante, la méthode FP-LAPW permet de choisir des valeurs différentes du paramètre E*i* suivant la valeur du moment angulaire.
- ✓ La condition aux limites à la surface de la sphère de MT permet d'utiliser un développement en ondes planes de Rayleigh.

$$\Phi(\mathbf{k}_n, \mathbf{R}_\alpha) = 4\pi \Omega^{-1/2} \sum_{lm} i^l j_l (\mathbf{k}_n, \mathbf{R}_\alpha) Y_{lm}^*(\mathbf{k}_n) Y_{lm}(\mathbf{R}_\alpha) \qquad (I.83)$$

En tenant compte de la continuité du moment angulaire, on obtient :

$$A_{lm}(k_n) = 4\pi R_{\alpha}^2 \Omega^{-1/2} i^l Y_{lm}^*(k_n) a_{lm}(k_n) \tag{I.84}$$

$$a_{l}(\mathbf{k}_{n}) = \frac{\dot{U}_{l}\left(\frac{d}{dr}\right)j_{l}(\mathbf{k}_{n}\mathbf{R}_{\alpha}) - (\frac{d\dot{U}_{l}}{dr})j_{l}(\mathbf{k}_{n}\mathbf{R}_{\alpha})}{\mathbf{R}_{\alpha}^{2}\left[(\frac{dU_{l}}{dr})\dot{U}_{l} - U_{l}(\frac{d\dot{U}_{l}}{dr})\right]}$$
$$B_{lm}(\mathbf{k}_{n}) = 4\pi\mathbf{R}_{\alpha}^{2}\Omega^{-1/2}i^{l}Y_{lm}(\mathbf{k}_{n})b_{lm}(\mathbf{k}_{n})$$
$$(dU_{n}/dr)i_{n}(\mathbf{k}_{n}\mathbf{R}_{n}) = U_{n}(d/dr)i_{n}(\mathbf{k}_{n}\mathbf{R}_{n})$$

$$b_l(k_n) = \frac{(dU_l/dr)j_l(k_nR_\alpha) - U_l(d/dr)j_l(k_nR_\alpha)}{R_\alpha^2 \left[(\frac{dU_l}{dr}) \dot{U}_l - U_l(\frac{d\dot{U}_l}{dr}) \right]}$$

• Et, compte tenu de l'équation (I.53), (I.85) devient :

$$\begin{split} A_{lm}(k_n) &= 4\pi R_{\alpha}^2 \Omega^{-1/2} i^l Y_{lm}^*(k_n) a_l(k_n) \qquad (I.85) \\ a_l(k_n) &= \left[\dot{U}_l j_l'(n) - U_l' j_l(n) \right] \\ B_{lm}(k_n) &= 4\pi R_{\alpha}^2 \Omega^{-1/2} i^l Y_{lm}(k_n) b_l(k_n) \\ b_l(k_n) &= \left[U_l' j_l(n) - U_l j_l'(n) \right] \end{split}$$

Où : $j_l(k_n R_\alpha)$ est remplacé par $i_l(n)$.

Cette procédure dans la méthode **FP-LAPW** a ainsi éliminé le problème de l'asymptote qui apparaissait dans la méthode **APW**.

I.5)-l). Détermination des potentiels : I.5)-l).1. La résolution de l'équation de Poisson :

Le potentiel utilisé dans les équations de **KS** comprend le terme d'échange et de corrélation, et le terme **coulombien** $V_e(\mathbf{r})$. Le terme **coulombien** est la somme du potentiel de **Hartree** ($V_{\mu}(\mathbf{r})$) et du potentiel nucléaire.

 $V_c(\mathbf{r})$ est déterminé par **l'équation de Poisson** à partir de la densité de charge (électronique et nucléaire) :

$$\nabla^2 \mathbf{V}_{\mathbf{c}}(\mathbf{r}) = 4\pi\rho(\mathbf{r}) \tag{I.86}$$

L'intégration de cette équation est seulement possible dans l'espace réciproque.

La méthode de résolution dite de la « pseudo-charge » due à Hamann [67] et Weinert [68] est basée sur deux observations :

- ✓ La densité de charge est continue et varie lentement dans la région interstitielle et beaucoup plus rapidement dans les sphères.
- ✓ Le potentiel coulombien dans la région interstitielle dépend à la fois de la charge interstitielle et du multipôle de la charge à l'intérieur de la sphère.

Dans la région interstitielle, la densité de charge est développée en série de Fourier :

$$\rho(\mathbf{r}) = \sum_{\mathbf{G}} \rho(\mathbf{G}) \mathbf{e}^{\mathbf{i}\mathbf{G}.\mathbf{r}}$$
 (I.87)

Et les ondes planes **e**^{iG.r} sont calculées à partir de la fonction de **Bessel** j*i* :

$$\int_{0}^{R} r^{l+2} j_{l}(Gr) dr = \begin{cases} \frac{R^{l+3} j_{l}(Gr)}{Gr} & G \neq 0\\ \frac{R^{3}}{3} \delta_{l,0} & G = 0 \end{cases}$$
(I.88)
$$e^{iG.r} = 4\pi e^{iG.r_{\alpha}} \sum_{lm} i^{l} j_{l}(|G||r - r_{\alpha}|) Y_{lm}^{*}(G) Y_{lm}(r - r_{\alpha})$$
(I.89)

Où : \mathbf{r} est la coordonnée radiale, \mathbf{r}_{a} la position de la sphère \mathbf{a} et \mathbf{R}_{a} son rayon.

$$\mathbf{V}_{\mathbf{c}}(\mathbf{G}) = \frac{4\pi\rho(\mathbf{G})}{\mathbf{G}^2} \tag{I.90}$$

Le potentiel interstitiel VPw a été trouvé directement par intégration de (I.90).

$$V_{PW} = \sum_{lm} V_{lm}^{PW}(\mathbf{r}) Y_{lm}(\mathbf{r}) = \sum_{v} V_{v}^{PW}(\mathbf{r}) K_{v}(\mathbf{r})$$
(I.91)

Soit :

Donc

 $K_v(r) = \sum_m C_{vm} Y_{lm}(r)$ (I.92) $V_v^{PW} = \sum_{lm} C_{v,m} V_v^{PW}(r)$

On détermine le potentiel à l'intérieur de la sphère MT par l'utilisation de la fonction de Green.

(I.93)

$$V_{v}(r) = V_{lm}^{PW}(r)(\frac{r}{R})^{l} + \frac{4\pi}{2l+1} \Big[\frac{1}{r^{l+1}} \int_{0}^{r} dr' r'^{l+2} \rho_{v}(r') - \frac{l^{l}}{R^{2l+1}} \int_{0}^{Rr} dr' r'^{l+2} \rho_{v}(r') \Big] \quad (I.94)$$

Où : les $\rho_v(\mathbf{r})$ sont les parties radiales de la densité de charge.

I.5)-I).2. Potentiel d'échange et de corrélation :

Dans l'approximation de la densité locale (**LDA**), le potentiel d'échange et de corrélation est linéaire contrairement au potentiel coulombien. Il doit donc être calculé dans l'espace réel où il est heureusement diagonal. La représentation de la charge interstitielle dans l'espace réel est obtenue directement à partir de **la transformation de Fourier [69,70]**.

Mattheiss [71] a utilisé la formule de Wigner [72] pour obtenir le potentiel interstitiel d'échange et de corrélation suivant :

$$V_{xc=} - \rho^{1/3} \left[0.984 + \frac{0.943656 + 8.8963\rho^{1/3}}{(1+12.57\rho^{1/3})^2} \right]$$
(I.95)

A l'intérieur des sphères, la même procédure est appliquée avec des valeurs différentes de ρ et un potentiel à symétrie sphérique.

I.5).l. Les équations variationnelles :

La méthode variationelle [73] utilise la solution la plus générale des orbitales de KS :

$$\Psi = \sum_{\mathbf{G}} C_{\mathbf{G}} \Phi_{\mathbf{G}}(\mathbf{k}_{\mathbf{G}}) \tag{I.96}$$

Ces fonctions de base satisfont à la fois les conditions aux limites des cellules et les conditions de liaison à la surface des sphères de **MT**. L'équation :

$$\mathbf{H}_{\mathbf{G}\mathbf{G}'} = \mathbf{E}\mathbf{S}_{\mathbf{G}\mathbf{G}'} \tag{I.97}$$

Revient à résoudre un simple déterminant séculaire dont les éléments de matrice, **S**GG' et **H**GG' (recouvrement et hamiltonien) sont :

$$\begin{cases} \mathbf{S}_{\mathbf{G}\mathbf{G}'} = \langle \mathbf{\Phi}_{\mathbf{G}} | \mathbf{\Phi}_{\mathbf{G}'} \rangle \\ \mathbf{H}_{\mathbf{G}\mathbf{G}'} = \langle \mathbf{\Phi}_{\mathbf{G}} | \mathbf{H} | \mathbf{\Phi}_{\mathbf{G}'} \rangle \end{cases}$$
(I.98)

Où :

$$\begin{cases} S_{GG'} = \frac{1}{\Omega} \int_{\Omega} d^3 r e^{i(G'-G).r} + \sum_{\alpha} S_{\alpha}(G,G') \\ H_{GG'} = \frac{1}{\Omega} \int_{\Omega} d^3 r \Theta(r) e^{i(G+K).r} [T+V_{PW}] e^{i(G'+K).r} + \sum_{\alpha} [H_{\alpha}(G,G') + V_{\alpha}^{NS}(G,G')] \end{cases}$$
(I.99)

Dans l'expression de SGG[,] les régions interstitielles sont prises en compte par le premier terme et la région à l'intérieur des sphères par le second de symétrie sphérique.

Dans l'expression de $H_{GG'}$, le premier terme représente les régions interstitielles où **T** est l'opérateur énergie cinétique et $\mathbf{n}(\mathbf{r})$ une fonction échelon dont la transformée de Fourier est égale à zéro à l'intérieur des sphères et à un dans les zones interstitielles. Le second est la somme de l'hamiltonien **H** et d'un potentiel non sphérique **V**NS.

Les fonctions de base dans la méthode **FP-LAPW** se transforment comme des ondes planes. Il est donc facile d'exploiter la symétrie d'inversion en choisissant l'origine de la maille primitive confondue avec le centre d'inversion. Avec ce choix, **H** et **S** deviennent des matrices symétriques réelles.

I.5).m). Traitement des effets de spin-orbite :

Le terme de spin-orbite (négligé dans l'approximation relativiste) est important pour le calcul de la structure de bandes et des propriétés électroniques des matériaux qui contiennent des éléments lourds ou les substances magnétiques.

Les éléments de la matrice de spin-orbite à l'intérieur d'une sphère peuvent être calculés, à priori, comme suit :

$$\left\langle \varphi_{G}^{\sigma} \middle| H^{SO} \middle| \varphi_{G'}^{\sigma'} \right\rangle =$$

$$\sum_{lml'm'} [A_{lm}^{*}(G)A_{l'm'}(G) \left\langle U_{lm}^{\sigma} \middle| H^{SO} \middle| U_{l'm'}^{\sigma'} \right\rangle B_{lm}^{*}(G)A_{l'm'}(G') \left\langle \dot{U}_{lm}^{\sigma} \middle| H^{SO} \middle| U_{l'm'}^{\sigma'} \right\rangle +$$

$$A_{lm}^{*}(G)B_{l'm'}(G') \left\langle U_{lm}^{\sigma} \middle| H^{SO} \middle| \dot{U}_{l'm'}^{\sigma'} \right\rangle + B_{lm}^{*}(G)B_{l'm'}(G') \left\langle \dot{U}_{lm}^{\sigma} \middle| H^{SO} \middle| \dot{U}_{l'm'}^{\sigma'} \right\rangle$$

$$(I.100)$$

Soit:
$$\left\langle U_{lm}^{\sigma} \middle| H^{SO} \middle| U_{l'm'}^{\sigma'} \right\rangle = 4\pi \delta_{ll'} (\chi_{\sigma}^+ Y_{lm}^* \sigma. LY_{l'm'} \chi_{\alpha'}) \int dr P_l P_{l'} (\frac{1}{2Mc})^2 \frac{1}{r} \frac{dV}{dr}$$
 (I.101)

 $O\hat{u}$: **P**₁ est la partie la plus importante de la fonction radiale U₁ et V la partie sphérique du potentiel.

I.6) Amélioration de la méthode FP-LAPW :

Le but de la méthode **FP-LAPW** est d'obtenir des énergies de bande précises au voisinage des énergies de linéarisation E_l [74]. Dans la plupart des matériaux, il suffit de choisir les énergies E_l au voisinage du centre des bandes. Cependant, ce n'est pas toujours possible et il existe de nombreux matériaux pour lesquels le choix d'une seule valeur de E_l n'est pas suffisant pour calculer toutes les bandes d'énergie : Par exemple, les matériaux avec des orbitales *4f* [75-76] et les éléments des métaux de transition [77-79]. C'est le problème fondamental de l'état de semi-cœur qui est un état intermédiaire entre l'état de valence et l'état de cœur. Il existe deux moyens pour traiter cette situation :

- ✓ L'usage des fenêtres d'énergie multiple A.
- ✓ L'utilisation d'un développement en orbitales locales.

I.6)-a). Les fenêtres d'énergie multiple :

La technique la plus utilisée pour traiter le problème du semi-cœur est celle qui consiste à diviser le spectre énergétique en fenêtres dont chacune correspond à une énergie E_i [71-76]. Dans ce traitement par le moyen de fenêtres, une séparation est faite entre l'état de valence et celui de semi-cœur où un ensemble de E_i est choisi pour chaque fenêtre pour traiter les états correspondants. Ceci revient à effectuer deux calculs par la méthode LAPW, indépendants, mais toujours avec le même potentiel.

La méthode **FP-LAPW** est basée sur le fait que les fonctions **U**₁ et **U**₁' sont orthogonales à n'importe quel état propre du cœur et, en particulier, à ceux situés à la surface de la sphère. Cependant, les états de semi-cœur satisfont souvent à cette condition, sauf s'il y 'a la présence de bandes « **fantômes** » entre l'état de semi-cœur et celui de valence.

I.6)-b). Le développement en orbitales locales :

Le développement de la méthode LAPW consiste en une modification des orbitales locales de sa base afin éviter l'utilisation de plusieurs fenêtres. L'idée principale est de traiter toutes les bandes avec une seule fenêtre d'énergie en particularisant l'état de semi-cœur. Plusieurs propositions ont été faites par Takeda [68], Smrcka [80], Petru [81] et Schanghnessy [82]. Récemment Singh [83] a proposé une combinaison linéaire de deux fonctions radiales correspondant à deux énergies différentes et de la dérivée par rapport à l'énergie de l'une de ces fonctions.

$$\Phi_{lm} = \left[A_{lm}U_l(r, E_{1,l}) + B_{lm}U_l(r, E_{1,l}) + C_{lm}U_l(r, E_{2,l})\right]Y_{lm}(r)$$
(I.102)

Où : les coefficients **C***l***m** sont de la même nature que les coefficients **A***l***m** et **B***l***m** précédemment définis. Par ailleurs, cette modification diminue l'erreur commise dans le calcul des bandes de conduction et de valence.

I.6)-c). Densité de charge de valence :

La fonction d'onde d'un électron de valence dans un cristal n'est pas une entité observable, mais elle permet d'obtenir la valeur de grandeurs physiques observables. La fonction d'onde obtenue à partir de la résolution de **l'équation de Schrödinger** est utilisée pour calculer la densité de charge électronique d'un matériau. Le carré de son module représente la probabilité de trouver l'électron dans un volume donné.

$$\sum_{nk} |\Psi_{n,k}(\mathbf{r})|^2 d\Omega \qquad (I.103)$$

Ce concept de probabilité de présence de l'électron a été envisagé pour la première fois dans l'étude de la molécule d'hydrogène : On a constaté que la distribution de charge des électrons dépend en grande partie de l'état considéré. De ce fait, l'orbitale liante dans les molécules présente toujours une densité de charge électronique maximale au centre de la liaison entre les deux atomes. Par contre, l'orbitale anti-liante se caractérise par un maximum de la densité de charge entre les noyaux.

La densité de charge totale est obtenue par une sommation sur toutes les orbitales occupées :

$$\rho(r) = 2e \sum_{nk} |\Psi_{n,k}(r)|^2 \qquad (I.104)$$

 $O\hat{u}: \Psi_{n,k}$ est la fonction d'onde de l'électron de valence, **n** l'indice de la bande et **k** le vecteur d'onde.

La densité de charge est calculée dans différentes directions et plans cristallographiques. La densité de charge de valence calculée par la méthode **LAPW** présente deux composantes [83] :

✓ La densité de charge interstitielle, développée en ondes planes, donnée par :

$$\rho(\mathbf{r}) = \sum_{kj} W(k, j) \sum_{GG'} \Phi^*_{G', k, j} \Phi_{G, k, j} e^{i(G-G').\mathbf{r}}$$
(I.105)

Où : le vecteur **r** est limité aux régions interstitielles, les $\Phi_{G,k,j}$ étant les coefficients du vecteur propre de la **j**^{ine} bande et **W**(**k**, **j**) représentant le poids associé au point **k**.

✓ Une densité de charge située dans la sphère, donnée par :

$$\begin{aligned} \rho(\mathbf{r}) &= \sum_{\mathbf{v}} \rho_{\mathbf{v}}(\mathbf{r}) \mathbf{K}_{\mathbf{v}}(\mathbf{r}) = \sum_{kj} W(k,j) \sum_{Glm} \sum_{G'l'm'} \left[\mathbf{b}_{lm}^{*}(G) \mathbf{a}_{l'm'}(G') \dot{\mathbf{U}}_{l}(\mathbf{r}) \mathbf{U}_{l'}(\mathbf{r}) + \mathbf{a}_{lm}^{*}(G) \mathbf{b}_{l'm'}(G') \dot{\mathbf{U}}_{l}(\mathbf{r}) \dot{\mathbf{U}}_{l'}(\mathbf{r}) + \mathbf{b}_{lm}^{*}(G) \mathbf{b}_{l'm'}(G') \dot{\mathbf{U}}_{l}(\mathbf{r}) \dot{\mathbf{U}}_{l'}(\mathbf{r}) \right] \end{aligned}$$
(I.106)

Avec:
$$\begin{cases} A_{lm} = \sum C_G a_{lm}(G) \\ B_{lm} = \sum C_G b_{lm}(G) \end{cases}$$
(I.107)

La sommation sur k doit être faite dans toute la zone de Brillouin.

La densité de charge dans les sphères est déterminée dans les mailles radiales à l'aide des coefficients harmoniques du réseau. Les densités de charge à l'intérieur des sphères sont construites à partir des vecteurs propres des bandes de la première **zone de Brillouin**.

I.7)- Le code Wien2k :

Historiquement, **Wien2k** a été développé par **Peter Balha** et **Karlheinz Schwartz** de l'institut de Chimie des matériaux d'Université Technique de **Vienne (Autriche).** Ce code a été distribué pour la première fois en **1990**. Les versions suivantes ont été **WIEN93**, **WIEN97 [44]**, **WIEN2K [84]**.

Une application réussie de la méthode **FP-LAPW** est le programme **Wien**, un code développé par **Blaha**, **Schwartz** et **Luitz [44]**. Il a été appliqué avec succès pour le gradient du champ électrique [45-46], les systèmes supraconducteurs à haute température **[47]**, les minéraux, les surfaces des métaux de transition **[49]**, les oxydes non ferromagnétiques **[50]** et même les molécules **[46]**. **Wien2k [84]** consiste en différents programmes indépendants qui sont liés par le **C-SHEL SCRIPT**. L'usage des différents programmes est présenté dans la **(figure I.4)**.

I.7)-a).L'initialisation :

Après avoir rentré dans un fichier de données la structure du cristal étudié, l'étape d'initialisation fait intervenir cinq programmes qui s'exécutent successivement. Elle permet de réunir l'ensemble des données nécessaires au calcul **auto-cohérent** :

<u>NN</u>: C'est un programme qui donne les distances entre plus proches voisins, qui aide à déterminer le rayon atomique de la sphère.

LSTART: Un programme qui génère les densités atomiques et détermine comment les différentes orbitales sont traitées dans le calcul de la structure de bande, comme des états du cœur avec ou sans orbitales locales, Il est utilisé dans la génération du potentiel atomique tronqué au rayon muffin-tin.

<u>SYMMETRY</u>: Il génère les opérations de symétrie du groupe spatial, détermine le groupe ponctuel des sites atomiques individuels, génère l'expansion **LM** pour les harmoniques du réseau et détermine les matrices de rotation locale.

KGEN : Il génère une maille k dans la zone de Brouillin.

<u>DSTART</u> : Il génère une densité de départ pour le cycle **SCF** par la superposition des densités atomiques générées dans **LSTART**.

I.7)-b).Calcul auto-cohérent :

Alors un cycle **auto-cohérent** est initialisé et répété jusqu'à ce que le critère de convergence soit vérifié. Ce cycle s'inscrit dans les étapes suivantes :

<u>LAPW0</u> : Génère le potentiel à partir de la densité.

LAPW1 : Calcul les bandes de valence, les valeurs propres et les vecteurs propres.

LAPW2 : Calcul les densités de valence.

LCORE : Calcul les états du cœur et les densités.

<u>MIXER</u> : Mélange la densité d'entré et de sortie, et vérifier le critère de convergence.

I.7)-c).Calcul des propriétés :

Le calcul des propriétés physique se fait à l'aide des programmes :

<u>OPTIMISE</u>: Détermine l'énergie totale en fonction du volume qui sert à calculer le paramètre du réseau, le module de compressibilité et sa dérivée.

TETRA : Calcule la densité d'état totale et partielle.

<u>SPAGHETTI</u>: calcule la structure de bande en utilisant les vecteurs propres générés par LAPW1.

OPTIC : Calcule les propriétés optiques.

<u>XSPEC</u> : calcule les structures des spectres d'absorption et émission des rayons **X**.

I.7)-d).La fonctionnelle de Tran et Blaha :

Cette partie a pour but de présenter de manière succincte et en se basant sur l'article de **Tran** et **Blaha** publié le **3 Juin 2009** dans **Physical Review Letters**, la nouvelle fonctionnelle mise au point par messieurs **Tran** et **Blaha**.

De Becke et **Johnson** à **Tran** et **Blaha**, description mathématique de la fonctionnelle : La fonctionnelle de **Tran** et **Blaha** notée (**mBJ**) est une version modifiée de la fonctionnelle de **Becke** et **Johnson**. Cette dernière a prouvé rapidement son efficacité par rapport aux modes de calculs le plus souvent utilisés tel que **LDA** [10] ou **PBE** (la version du **GGA** pour les solides) [**85**]. **Tran** et **Blaha** proposent dans leur article une version modifiée de la fonctionnelle de **Becke** et **Johnson**, sous la forme :

$$\mathbf{v}_{\mathbf{x};\sigma}^{\mathbf{mBJ}}(\mathbf{r}) = \mathbf{c}\mathbf{v}_{\mathbf{x};\sigma}^{\mathbf{BR}}(\mathbf{r}) + (3\mathbf{c}\cdot\mathbf{2})\frac{1}{\pi}\sqrt{\frac{5}{12}\sqrt{\frac{2\mathbf{t}_{\sigma}(\mathbf{r})}{\rho_{\sigma}(\mathbf{r})}}}$$
(I.108)

Avec : La densité électronique :

$$\rho_{\sigma}(r) = \left. \sum_{i=1}^{N_{\sigma}} \left| \phi_{i,\sigma} \right|^2 \qquad (I.109)$$

La densité d'énergie cinétique (Tran et Blaha fait partie des méta-GGA) :

$$\mathbf{t}_{\sigma}(\mathbf{r}) = \frac{1}{2} \sum_{i=1}^{N_{\sigma}} \left| \boldsymbol{\varphi}_{i,\sigma}^* \nabla \boldsymbol{\varphi}_{i,\sigma} \right|^2$$
(I.110)

Le potentiel de Becke-Roussel :

$$\mathbf{v}_{\mathbf{x};\sigma}^{\mathbf{BR}}(\mathbf{r})$$
 (I.111)

Le potentiel de Becke-Roussel proposé ici est, à peu près équivalent au potentiel **Becke** et **Johnson [52]**. Pour les atomes ils sont quasiment. **[51]**

La modification principale se trouve au niveau de l'apparition du paramètre dans la formule de la fonctionnelle. Notons que si prend on retomber sur la fonctionnelle de **Becke** et **Johnson** [52]. Ce paramètre a été choisi pour dépendre linéairement de la racine carrée de la moyenne $de \frac{|\nabla \rho(r)|}{\rho(r)}$.

La forme proposée pour est la suivante :

$$C = \alpha + \beta \left(\frac{1}{v_{cell}} \int_{cell} \frac{|\nabla \rho(\mathbf{r}')|}{\rho(\mathbf{r}')} d^3 \mathbf{r}'\right)^{1/2}$$
(I.112)

 α et β sont deux paramètres libre, v_{cell} le volume de la cellule unitaire du système.

Figure I.4: L'organigramme des programmes du code wien2k

REFERENCES:

- [1]: P. A. M. Dirac, Proc. Roy. Soc (London) 123, 714, (1929).
- [2]: E. Schrödinger, Ann.phys, 79, 489, (1926); E.Schrondinger, Ann.Phys., 79, 361, (1926).
- [3]: M. Born, R. Oppenheimer, Ann. Physik., 84, 457, (1927).
- [4]: D. R. Hartree, Proc. Combridge Philos. Soc. 24, 89, (1928).
- [5]: V. Fock, Z. Phys. 61, 126(1930).
- [6]: L. H. Thomas, The calculation of atomic fields, Proc. Cambridge Phil. Soc., 23, 542, (1927).
- [7]: E. Fermi, Un metodo satatistico per la determinazione di alcune priorieta dell'atome, Rend. Accad. Naz. Lincei, 6, 602, (1927).
- [8]: R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford Science Publication), (1989).
- [9]: P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864, (1964).
- [10]: W. Kohn, L. Sham, Phys. Rev, A1133, 140, (1965).
- [11]: R. M. Dreizler and J. da Provincia, Density Functional Methods in Physics, (Plenum, NewYork), (1985).
- [12]: A. D. Becke, Phys. Rev. A 38, 3098, (1988).
- [13]: J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Peederson, D. J. Singh and C. Fiolhais, Phys. Rev. B 46, 6671, (1992)
- [14]: P. A. M. Dirac, Proc. Cam. Phil. Soc. 23, 542, (1927).
- [15]: D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566, (1980).
- [16]: L. Hedin and B. I. Lundqvist, Explicit local exchange- correlation potential, J. Phys. C 4, 2064, (1971).
- [17]: J. P. Perdew and Wang, Accurate and simple analytic representation of the electron-gaz correlation energy, Phys. Rev. B 45, 13244, (1992).
- [18]: A. Zunger and A. J.freeman, Phys. Rev. B 16, 2901, (1977).
- [19]: A. Zunger and A. J.freeman, Phys. Rev. B 16, 4716, (1977).
- [20]: V. L. Moruzzi, J. F. Janak, and A. R. William, Calculated Electronic Properties of Metal, Pergamon, New York (1978).
- [21]: J. C. Slater, Phys. Rev. 81, 385, (1951).
- [22]: C. Fiolhais, F. Nogeria and M. Marque. A premire in Densty Fonctinnele Theory, Spring, (2003).
- [23]: J. P. Perdew, Phys. Rev. Lett. 55, 1665, (1985).
- [24]: J. P. Perdew, Physica B 1, 172 (1991).
- [25]: J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- [26]: J. C. Slater, Phys. Rev. 51, 846 (1937).
- [27]: J. C. Slater, Advances in Quantum Chemistry 1, 35, (1937).
- [28]: T. Loucks. The Augmented Plane Wave Method, Benjamin, New York (1967).
- [29]: Im Tsidilkovski, Band structure of semiconductors, 19, 35, (1982).
- [30]: O. K. Andersen, Phys. Rev. B 12, 2041, (1975).
- [31]: D. D. Koelling and G. O. Abrman, J. Phys. F5, 2041, (1975).
- [32]: O. K. Andersen, Phys. Rev. B12, 3060, (1975).
- [33]: T. Takeda and J. Kubler, J. Phys. F 5, 661, (1979).
- [34]: D. Singh, Phys. Rev. B 44, 6388, (1991).
- [35]: O.K. Andersen, Phys. Rev. B 12, 3060, (1975).
- [36]: D. J. Singh and H. Krakauer, Phys. Rev. B 43, 1441, (1991).
- [37]: D. J. Singh, K Schwarz and P. Blaha, Phys. Rev. B 46, 5849, (1992).

- [38]: D. J. Singh, Phys. Rev. B 44, 7451, (1991).
- [39] :S. Goedecker and K. Maschke, Phys. Rev. B 42, 8858, (1990).
- [40]: D. Singh, Phys. Rev. B 43, 6388, (1991).
- [41]: E. Sjösted, L. Nordström and D. J. Singh, Solid State Commun. 114, 15, (2000).
- [42] : G.H.K. Madsen, P. Blaha, K. Schwarz, E. Sjösted and L. Nordström, Phys. Rev. B. 64, 195134, (2001).
- [43]: D. R Hamann, Phys. Rev. Lett. 212, 662, (1979).
- [44]: P. Blaha, K. Schwarz, and J. Luitz, WIEN97. Technical University, Vienna, (1997).
- [45] : P. Blaha and K. Schwarz, Hyperf. Interact. 52, 153, (1989).
- [46]: P. Dufek, P. Blaha and K. Schwarz, Phys. Rev. Lett. 75, 3545, (1995).
- [47]: K. Schwarz, C. Ambrosch-Draxl, and P. Blaha, Phys. Rev. B 42, 2051, (1990).
- [48]: B. Winkler, P. Blaha and K. Schwarz, Am. Mineralogist 81, 545, (1996).
- [49]: B. kohler, P. Ruggerone, S. Wilke, and M. Scheffler, Phys. Rev. lett. 74, 1387, (1995).
- [50]: X.-G. Wang, W. Weiss, Sh. K. Shaikhutdinov, M. Ritter, M. Petersen, F. Wagner, R. Schlgl, and M. Scheffler, Phys. Rev. Lett. 81, 1038, (1998).
- [51]: F.Tran and P.Blaha, Phys Rev.Lett 102, 226401, (2009).
- [52]: A.D.Becke and E.R.Johnson, J.Chem. Phys. 124, 220110,1 (2006).
- [53]: Site web : www.inln.cnrs.fr/activites/ystèmes-fortement-corrélés-et-gaz-quantique.
- [54]: J. Korringa, Physica, 13,392, (1947).
- [55]: F.S. Ham and B. Segall, Phys. Rev, 124, 1786, (1961).
- [56]: J. C. Slater, Advences in Quantum Chemistry, 1, 35, (1964).
- [57]: E. Wimmer, H. Krakauer, M. Weinert and A. J. Freeman, Phys. Rev B 24, 864, (1981).
- [58]: S. Goedecker, Phys. Rev. B 47, 9881, (1993).
- [59]: D. D. Koelling and B.N. Harmon, J. Phys. C 10, 3107, (1977).
- [60]: M.Tanaka, Y. Katsuya, Y. Matsushita, Sakata, O. J. Ceram. Soc. Jpn, 121, 287, (2013).
- [61]: Arturas Vailionis et al. Appl. Phys. Rev. B 76, 126, (2007).
- [62] : J. C. Jiang et al. Phys. Rev B 74, 104, (2006).
- [63]: A. J. Williams et al, Physical Review, **B** 73, 409, (2006).
- [64]: J. M. Longo, P. M. Raccah and J. B. Goodenough, J. Appl. Phys. 39, 1327, (1968).
- [65]: A. J. Williams et al, Physical Review, **B** 73, 409, (2006).
- [66] : B. Pranoto, Int. J. Electrochem. Sci, 7,525, (2012).
- [67]: J.G. Zhao et al. Journal of Solid State Chemistry, 180, 2823, (2007).
- [68]: G. M. Leitus et al. Jouranal of Magnetic Materials, 206, 27, (1999).
- [69]: W. Bench, H. W. Schmalle, A. Reller, Solid State Ion. 43, 171, (1990).
- [70]: G.Santi, T.Jarlborg, J.Phys. Condens. Matter, 9, 9563, (1997).
- [71]: D.M. Hanetal, Physica B 405, 3117, (2010).
- [72]: A. Callaghan, C. W. Moeller, R. Ward, Inorg. Chem, 5, 1572, (1966).
- [73]: J.M. Longo, P.M. Raccah, J.B.Goodenough, J. Appl. Phys. 39, 1327, (1968).
- [74]: S.N. Bushmeleva, et al Mag. Materials, 205, 491, (2006).
- [75]: J.J. Randall, R. Ward, J. Am. Chem. Soc, 81, 2629, (1959).
- [76]: J.G. Zhaoetal, Journal of Solid State Chemistry, 1821, 524, (2009).
- [77]: Qasim et al, Journal of Solid State Chemistry, 206, 242, (2013).
- [78]: M. V.Rama Rao et al, Journal of Physics and Chemistry of Solids, 62,797, (2001).
- [79]: C. W. Jones, P.D. Battle, P. Lighfoot, W.T.A. Harisson, Acta Crystallogr. Sec. C45, 365, (1989).
- [80]: S.A. Grigera, P. Gegenwart, R.A. Borzi, F. Weickert, A.J. Schofield, R.S. Perry, T. Tayama, T.Sakakibara, Y.Maeno, A.G. Green, A.P. Mackenzie, Science, 306, 1154, (2004).
- [81]: Z.Q. Mao, T. He, M.M. Rosario, K.D. Nelson, D. Okuno, B. Ueland, I.G. Deac, Y. Liu,
- P. Schiffer, R.J. Cava, Phys. Rev. Lett. 90,601, (2003).

[82]: K. Yoshimura, T. Imai, T. Kiyama, T. Thurber, A.W.Hunt, K. Kosuge, Phys. Rev. Lett., 83, 4397, (1999).

[83]: L. Klein, J. S.Dodge, C.H. Ahn, J.W. Reiner, T.H. Geballe, M.R. Beasley, K. Kapitulnik, J. Phys. Condens. Matter, 8, 10111, (1996).

[84] : P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka and J. Luitz, WIEN2K, K. Schwarz, Techn. University at Wien, Austria, 3, 950131, (2001).

[85]: J. P. Perdew and K. Burke, Int. Quantum Chem. 57, 309 (1996).

[86]: Anisimov, V.I., J. Zaanen, and O.K. Andersen, Physical Review B44, 943, (1991).

[87]: Dudarev, S.L., et al., Physical Review B57, 1505, (1998).

[88]: Heyd, J. and G.E. Scuseria, The Journal of Chemical Physics, 121, 1187, (2004).

[89]: Paier, J., et al.,. The Journal of Chemical Physics, 124, 154709, (2006).

[90]: Paier, J., M. Marsman, and G. Kresse, Journal of Chemical Physics, 127, 024103, (2007).

[91]: Heyd, J., et al., The Journal of Chemical Physics, 123, 174101, (2005).

[92]: Marsman, M., et al., Journal of Physics Condensed Matter, 20, 064201, (2008).

Résultats & Discussions

I. Introduction :

Les matériaux pérovskites Fluorures de la forme ABF3 adoptent généralement la structure cubique désignée par le groupe d'espace (Pm-3m), comme ils peuvent adopter d'autres structures cristallines sous l'effet de la température ou bien sous l'effet de la pression. Dans le but d'avoir une meilleure compréhension sur leur comportement, nous avons étudié différentes structures cristalline (Cubique $(\mathbf{Pm-3m}),$ Hexagonal-**4H** (P63/mmc), Orthorhombic (Pnma) et Orthorhombic (Pbnm)) pour différents matériaux Fluorures de la forme ABF₃, en utilisant aussi différentes approximations (L(S)DA, WC-GGA, PBE-GGA, PBEsol -GGA, L(S)DA+U et GGA+U) pour introduire les effets d'échange et de corrélation, ainsi que l'approximation TB-GAA-mBj. Ces matériaux sont similaires aux matériaux pérovskite oxydes de la forme ABO₃ [1-20], où l'atome de l'oxygène O est remplacé par un atome de Floride F.

Les matériaux pérovskites ont beaucoup de caractéristiques très spécifiques, c'est la raison pour laquelle un grand nombre de chercheurs scientifiques ce sont investis dans différentes recherches scientifiques expérimentales ou théoriques [21-24] à leur sujet, on peut Diélectriques quelques-unes : piézoélectriques citer Ils sont [25-26], [27-28]. Semiconducteurs Ferromagnétique [33-37], Anti-Ferromagnétique [29-32], [38-44]. Multiferroique [45-49], Ferroélectrique [50-51], Supraconducteurs [52-53], Ferro-élastique [54-56], capteurs et catalyseurs [57], piles à combustible en céramique[58], magnétorésistance colossale [59], transition isolant-métal [60-62] y compris non volatile mémoires, systèmes microélectro-mécaniques (MEMS) [63-64], catalyseurs hétérogènes [65-66], ainsi que des applications spintronique [67-69], ect.....

Toutes ces propriétés ont permis d'avantage d'introduire les matériaux **Fluorures** dans différentes applications technologiques, ce qui a poussé les chercheurs scientifiques de les investir dans des travaux théoriques et expérimentaux très variés. Leurs structures cristallines, et l'arrangement des atomes a encore augmenté leur intérêt, car on distingue plusieurs structures cristallines pour chaque **Fluorure de type ABF**³ selon les transitions de phase qu'il puisse subir lors d'une agitation thermique ou bien d'une pression (contrainte) exercée sur lui.

Habituellement, ils forment un réseau cubique, Hexagonal, Tétragonal ou même orthorhombique. Où l'on retrouve que l'élément F entouré par les atomes **B** forment un octaèdre régulier dans les cristaux cubiques ou déformés des octaèdres dans les cristaux de symétrie inférieure. Une étude approfondie sur 56 matériaux Fluorures a été étudié par Liu Liang et ses collaborateurs [69], qui a mentionné la structure adoptée par chacun de ces Fluorures, nous citons ici seulement les matériaux que nous avons investis dans cette thèse : TIFeF3, RbFeF3, KNiF3, KCoF3, KFeF3 se cristallisent dans la structure perovskite « ideale ». La formation de la structure pérovskite « idéale » ce fait par la formation de octaèdres BX6 qui sont connectés l'un avec l'autre d'une part, et de l'autre on retrouve 12 ions F2 forment un cubo-octaèdre autour de l'ion A de telle sorte que la longueur de la liaison A – F soit presque égale à la somme de leurs rayons ioniques. C'est la structure adoptée par la plupart des matériaux pérovskites de la forme ABX3. Tandis qu'ils ont cité que le Fluorure NaFeF3 adopte la structure pérovskite orthorhombique,

1).1 Le Fluorure CsFeF₃ :

Ce matériau a été investi plusieurs fois dans différents travaux théoriques et expérimentales parce qu'il représente des propriétés physiques très intéressantes. En (1966) M. Kestigian and al. [70] ont démontré en utilisant la diffraction des rayons X que le **RbFeF**₃ est cubique avec (a= 4, 174 Å) tandis que le CsFeF₃ illustre la distorsion Hexagonal, cette distorsion est due à la symétrie cubique qui implique un raccourcissement d'une direction (111) qui se situe après dans la moitié de l'axe c de la cellule Hexagonale. La structure Hexagonale a était aussi confirmé par les travaux de S. J. Pickart et H. A. Alperin en (1971) [71] qui ont effectué des mesures de diffraction neutronique sur les Fluorures hexagonaux RbNiF3 et CsFeF3, pour étudier la magnétisation du spin pour ces deux Fluorures en disant que tous les deux ont une structure magnétique de type ferrimagnétique. D'un autre coté l'étude scientifique faite par J. MLongo et J. A Kafalas [72] sur les composés CsBF₃, (B = Mn, Fe, Co, Ni, Zn, Mg) montre que ces Fluorures apparaissent avec quatre structures en exerçant des pressions croissantes. Selon le diagramme de phases présenté, ils montrent l'effet combiné de la pression et de la taille des cations **B** sur l'apparition de ces structures. Ces structures présentent des proportions différentes d'empilement cubique et hexagonal de couches de CsF3 compactées et, dans tous les cas, la proportion d'empilement cubique augmente avec la taille de la pression et du cation **B**. On montre que ce résultat est compatible avec un mécanisme de stabilisation des structures intermédiaires impliquant un déplacement par forces électrostatiques des cations B des centres de symétrie de leurs interstices. Les phases sont identifiées à haute pression par la diffraction des rayons X à une température égale 700 ° C vers la température ambiante avant de réduire la pression.

1).2 Le Fluorure RbFeF₃ :

Ce Fluorure est considéré comme un matériau inhabituel, il est vraiment spécial, car les chercheurs scientifiques ont mené différents travaux à son sujet en considérant qu'il est cubique avec un groupe d'espace (Pm-3m). En étudiant sa structure électronique et magnétique on remarque différents comportements, car il réagit selon les conditions permises. D'après l'étude faite par N. N. Greenwood, T. C. Gibbs (1971) [73-74]. On retrouve qu'audessous de l'ordre de 103 K° un comportement Antiferromagnétique AF se produit et un spectre de six lignes est trouvé, où on remarque une petite interaction quadripolaire qui apparaît simultanément. Tandis qu'au-dessous de 87 K, il existe une autre transition qui conduit vers un état ferrimagnétique avec deux sites ferreux [11] inégaux et un spectre complexe à partir des deux modèles hyperfins à six lignes super-imposés. Aprés plusieurs années, une autre étude scientifique complémentaire a vraiment changé le point de vue des chercheurs envers ce mystérieux Fluorure. C'est en (2003) que le groupe de E. M. Gyorgy, et al. [75] a montré que Lors du refroidissement à 87 ° K, Le Fluorure RbFeF3 subit une transition de premier ordre d'une phase antiferromagnétique tétragonale à une phase ferromagnétique orthorhombique où c / a est supérieur à 1,003. Dans cette phase magnétique, lénergie magnétique obtenue à partir des mesures de couple et d'aimantation peut être décrite par une expression d'anisotropie cubique. Les axes faciles sont $\langle 100 \rangle$ (par rapport à la phase cubique à haute température). Les mesures de jauge de contrainte à 77 ° K indiquent que la structure cristalline ne se déforme pas, de sorte que l'axe c suit toujours la magnétisation. C'est le comportement attendu d'un cristal cubique déformé par la magnétostriction. A 40°K, le cristal subit une autre transition de phase. Le comportement magnétique est encore cubique ; les axes faciles changent simplement de $\langle 100 \rangle$ à $\langle 110 \rangle$. D'après eux, il s'agit du premier exemple d'un matériau dont la faible symétrie, déterminée par les rayons x, ne se reflète pas dans ses propriétés magnétiques et optiques. En (2015), d'après l'étude du premier principe faite par A. A. Mubarak et al. [76] sur les deux Fluorures RbFeF3 et RbNiF3, ils ont pu classifier ces deux matériaux perovskites comme étant ductiles temps qu'ils sont élastiquement stables. Le composé RbFeF3 a un comportement semi-métallique tandis que le composé RbNiF3 a un comportement semi-conducteur.

1).3 Le Fluorure NaFeF₃ :

L. Fabian et al. [77] en (2014) Ont effectué une étude théorique en utilisant l'approximation GGA+U sur la pérovskite NaFeF3 de type GdFeO3, qui se transforme en post-pérovskite de type CaIrO3 à des pressions aussi basses que 9 GPa. En prouvant qu'elle peut être considérée comme un isolant avec des structures antiferromagnétiques de type G et C respectivement qui est colinéaire magnétiques. Les mesures magnétiques sont conformes aux prévisions théoriques, où ils montrent que pour ces deux structures un comportement antiferromagnétique est aussi incliné. Richard J. D. Tilley en (2016) [78], dans son livre Pérovskites a noté que le Fluorure NaFeF3 adopte la structure orthorhombique Pnma avec les paramètres suivant (a= 0.48904nm, b= 0.52022nm, et c= 0.71403nm) d'un côté, et de l'autre en étudiant différant matériaux pérovskite de la forme GdFeO3, il montre que ce genre de matériau est pseudo-cubique avec (a= 0.38967nm) à une transition qui se fait à 1634°K, ensuite ils peuvent être orthorhombique (Pbnm) avec les paramètres suivant (a= 0.540359nm).

1).4 Le Fluorure KNiF₃ :

N. N. Greenwood [73] a aussi montré que le KNiF₃ est cubique, cette structure a été considérée pour le KFeF₃, KCoF₃, et KNiF₃ depuis très longtemps, selon les travaux menés par R.V. Pisarevet et al. (1972) [79], D. W. Clack et al. (1972) [80], P. Ganguly et al. (1973) [81]. Tandis que R. R. Alfano et al. (1976) [82] a montré que ce fluorure adopte la structure pérovskite cubique à toute température et il fait un caractère Antiferromagnétique AFM en dessous de la température 260°K, selon les observations (NLO) des effets optiques non-Linéaire qu'ils ont fait lors de leurs études. R. H. Petit et al. (1977) [83] a montré que ce fluorure est aussi Antiferromagnétique AFM à la température 264°K, leurs études était comparé à l'autre fluorure qui est le RbNiF₃ mais celui-ci adopte la structure hexagonale. L'étude faite par R.V. Pisarevet et al. (1967) [84], a montré que le Fluorure KNiF₃ est aussi Antiferromagnétique AFM à la température 275°K tandis que le RbNiF₃ est Ferrimagnétique à la température 139°K.

1).5 Le Fluorure KCoF₃ :

D'après Atsushi Okazaki et al. (1961) [85]. Les structures cristallines des antiferromagnétiques KMnF3, KFeF3, KCoF3, KNiF3 et KCuF3 ont été déterminées audessus de la température de Néel (T_N) par la diffraction des rayons X. À la température ambiante (supérieure à T_N), les structures de ces composés sont des pérovskites cubiques dites idéales à l'exception de celle du KCuF3 qui se cristallise sous la forme d'une modification tétragonale (a > c) du type pérovskite. À 78 ° K (en dessous de T_N), les symétries de réseau de KMnF3, KFeF3 et KCoF3 sont respectivement monocliniques et rhomboédriques. Tandis que les deux fluorures KNiF3 et KCuF3 conservent leurs propres symétries à la température ambiante. Cette région de température a été étendue jusqu'à 670 ° K pour le Fluorure KCuF3. Une autre étude très récente faite par Ibrir et al. (2015) [86] pour le composé KXF₃, où la structure électronique et les propriétés magnétiques ont été calculées à l'aide d'une étude du premier principe avec la méthode des ondes planes augmentées linéarisées à potentiel total (FPLAPW). Les calculs montrent que le comportement des Fluorures KMnF3, KVF3 KFeF3 et KCoF3 est isolant et prouvent aussi un caractère ferromagnétique (FM).

1).6 Le Fluorure KFeF3 :

Selon le travail mené par : MM. J. PORTIER, et al. en (1968) [87] KFeF3 est anti ferromagnétique AFM avec des points de Néel situés à~ 120°K. Ce groupe de chercheurs ont montré que le NaFeF3 présente une distorsion orthorhombique de type GdFeO3 [87-88], KFeF3 [87-89], RbFeF3 [87-90], NH4FeF3 [87-91], et TIFeF3 [87-88], possèdent une structure de type pérovskite cubique. CsFeF3 [87-90], est isotype de la variété hexagonale de BaTiO₃ et se différencie des Fluorures précédents par le fait que deux tiers des octaèdres possèdent une face commune. La structure cubique a était souvent étudié par différents chercheurs pour le Fluorure KFeF₃. Le travail expérimental fait par Jaeryeong Lee et al. en (2003) [91] a aussi confirmé cette structure. En contrepartie une autre étude a était faite par le chercheur PAUL HAGENMULLER [92] dans son livre « Recherches Récentes Sur Les Composés A Large Domaine D'existence Contenant Un Même Elément A Deux Degrés D'oxydation Différents » que ce genre de matériau peut avoir une distorsion hexagonale. En s'appuyant sur une étude expérimentale de d'autre chercheurs en disant que l'étude des systèmes FeF₃, FeF₂ MF (M = Li, Na, K, Rb, Cs, TI) a 700°C a permis à de Pape, Tressaud et Portier [92-95] de préparer des composes MFeF3 homologues des bronzes de tungstène, mais présentant une plus grande richesse de structures, sans doute à cause de la plus faible énergie réticulaire des composés Fluorés. Les trois phases hexagonale, quadratique et cubique pérovskite se retrouvent pour la série KFeF3 (en montrant la Figure qui illustre La phase hexagonale, qui comporte des tunnels de grande taille, se forme également pour le Rubidium, le Cesium et le Thallium. Mais pour ces derniers éléments la phase quadratique fait place à une phase de type pyrochiore, dont les tunnels en zig-zag comportent une section hexagonale: ce changement de structure résulte naturellement du volume élevé des ions inséré. Ces recherches nous ont inspiré de faire une étude théorique sur les matériaux Fluorures KFeF₃, KCoF₃, et KNiF₃ en étudiant les deux structures cristallines cubiques (Pm-3m) et hexagonale-4H en utilisant différentes approximations qui a était publié récemment [96] dans laquelle nous avons montré que le KFeF3 est beaucoup plus magnétique que les deux autres Fluorures études est cela pour les deux structures cristallines étudiées dans ce travail.

1).7 Le Fluorure TlFeF₃ :

Le fluorure TLFeF₃ a était aussi reconnu par son caractère antiferromagnétique AFM depuis très longtemps, là aussi le même groupe de chercheurs MM. J. PORTIER, et al. en (1968) [87] ont démontré qu'il est AFM avec des points de Néel situés à 100°K. Ce Fluorure a était souvent associé dans différents travaux scientifiques à l'autre Fluorure TlCoF3 dans la structure cubique (Pm-3m) [87], avec une petite différence entre leurs paramètres de maille 4.138Å (TICoF₃), 4.188 Å (T1FeF₃) [97-99]. Le Fluorure T1FeF₃ a aussi était investi dans différents travaux scientifiques et associé à deux autres matériaux Fluorure qui est le T1NiF3 et le TICoF₃ en (2015) par des chercheurs Raham Ali et al. [100] qui ont effectué une étude théorique en utilisant la description de la DFT pour calculer les propriétés structurelles, mécaniques et magnéto-électroniques des pérovskites TITF₃ (T = Fe, Co et Ni) en utilisant les approximations GGA, GGA + U et la théorie de la densité hybride. Leurs calculs montrent que pour le TIFeF3, l'élément Fe a plus de caractère ionique avec l'élément F que les autres. Les propriétés mécaniques expliquent la dureté de ces composés et montrent que le TIFeF3 est plus ductile. Tandis que leurs structures de bande dépendant du spin et montrent que TIFeF3 et TICoF3 sont métalliques, alors que TINiF3 est un semi-conducteur pseudo direct avec une bande interdite large considérablement. Les optimisations de phase magnétique stables et la susceptibilité magnétique calculée confirment que TIFeF3 et TINiF3 sont ferromagnétiques alors que TICoF3 est un matériau antiferromagnétique. Nous aussi, nous avons investi une étude théorique sur le comportement de ce Fluorure T1FeF3 dans la structure cubique qui était comme une base pour effectuer une autre étude en parallèle qui n'a jamais était faite auparavant sur un matériau fluorure similaire qui est le TiFeF3 dans la même structure cubique dans un cadre comparatif.

1).8 Le Fluorure TiFeF3 :

Le Fluorure TiFeF₃ n'a jamais été étudié auparavant par aucun chercheur scientifique. Il n'a jamais été investi dans une étude théorique ou expérimentale auparavant. Notamment, c'est la première fois qu'il est étudié, c'est une prédiction de ses propriétés. L'idée a commencé en étudiant le Fluorure TIFeF₃ qui a était souvent étudié, et même depuis très longtemps dans une structure cubique. Notre travail étudie les propriétés Electromagnétique et l'effet de spin pour ce Fluorure dans un contexte comparatif entre les deux matériaux Fluorures TiFeF₃ et TIFeF₃ en utilisant les deux approximations GGA+U et TB-GGA-mBJ (La structure électronique et magnétique), tandis que la partie des propriétés structurales a était investi en utilisant différentes approximations (WC-GGA, PBE-GGA, PBEsol-GGA, et GGA+U). Cette étude nous a permis de découvrir de nouvelles propriétés magnétiques qui sont très importantes (Nous allons les citer ci-dessoous dans la partie dans laquelle nous discutons le moment magnétique, les structures de bande ainsi que les densités d'état et les densités charge).

I.2. Détails de calcul

Nous avons effectué un calcul **Ab-Initio** de la structure électronique et magnétique de huit matériaux dits **pérovskites Fluorures de la forme ABF**₃, les calculs de cette thèse ont été faits à l'aide du code **WIEN2K** [101]. Il est implémenté dans le cadre de la théorie de la fonctionnelle de la densité (**DFT**) qui se base sur la méthode des ondes planes augmentées linéarisées avec un potentiel total (**FP-LAPW**) [102]. Cette procédure nous permet de prendre en considération toutes les interactions interatomiques, en particulier elle permet de déterminer le potentiel d'échange-corrélation. Le terme d'échange –corrélation a était introduit dans notre travail par plusieurs approximations dans un concept comparatif.

- L'approximation de la densité locale avec polarisation du spin (LSDA : Local Density Approximation) implémentée par Perdew et Wang [103].
- L'approximation de la densité locale avec polarisation du spin avec les corrections U-Hubbard (LSDA+U).
- L'approximation du gradient généralisé (GGA-11 : Generalized Gradient Approximation), implémentée par Wu et Cohen [104].
- L'approximation du gradient généralisé (GGA-13 : Generalized Gradient Approximation), implémentée par Perdew, Berke et Erenzehop [105].
- L'approximation du gradient généralisé (GGA-19 : Generalized Gradient Approximation), implémentée par Perdew [106].
- L'approximation du gradient généralisé avec les corrections U-Hubbard (GGA+U) [107-108].

Les fonctions d'ondes, les densités électroniques et le potentiel sont développées en combinaison harmoniques sphériques autour des sites atomiques c'est-à-dire dans les sphères Muffin-tin avec un **Cutoff** (rayon de coupure), et en série de **Fourier** dans la région interstitielle avec un **Cutoff** (rayon de coupure) $R_{mt}^{min} * K_{max}$

Où : $\begin{cases} \mathbf{R}_{mt}^{min} \text{ est le plus petit rayon de la sphère MT.} \\ \mathbf{K}_{max} \text{ est le cutoff du vecteur d'onde pour les ondes planes).} \end{cases}$

<u> 1^{ere} </u> étape : consiste à préciser les valeurs des paramètres importants qui influent sur le temps et la précision du calcul :

Les rayons de Muffin-tin (R_{mt}) , donnés en unités atomiques (u.a).

Les valeurs de R^{min}_{mt} que nous avons utilisées pour (Cs, Na, Rb, K, Ni, Co, Fe et F).

Représentent un bon choix pour notre calcul, ce qui a facilité le calcul. Pour tous nos calculs le rayon de la sphère "muffin-tin" de tous les atomes est le même avec les valeurs suivantes $RMT_A=2.2$ unité atomique, $RMT_B=1.9$ unité atomique et $RMT_F=1.7$ unité atomique.

Le paramètre de coupure $R.K_{max} = R_{mt}^{min} * K_{max}$.

 R_{mt}^{min} est le plus petit rayon de la sphère MT

 K_{max} la norme du plus grand vecteur d'onde utilisé pour le développement en ondes planes des fonctions propres.

G_{max} est la norme du plus grand vecteur d'onde utilisé pour le développement en ondes planes de la densité de charges.

Le nombre de points k considéré dans la zone irréductible de Brillouin.

I.3. Optimisation du volume

Pour effectuer le calcul, nous avons utilisés une valeur de **2000 Kpts**. Cette valeur va être injectée aussi dans le calcul des propriétés par la suite. Dans cette méthode il existe deux paramètres essentiels qui doivent être raffinés afin de décrire parfaitement les systèmes étudiées.

Le premier paramètre est le produit entre **le rayon** *muffin-tin* **moyen** (\mathbf{R}_{mt}) et le vecteur \mathbf{K}_{max} ($\mathbf{R}_{mt} \times \mathbf{K}_{max}$, noté $\mathbf{R}\mathbf{K}_{max}$). Ce produit représente le plus grand vecteur des K_n dans l'extension des ondes planes décrivant la région interstitielle.

Avec :

$$\varphi_I^{K_n} = \sum_{K_n}^{K_{max}} \frac{1}{\sqrt{\Omega}} C K_n e^{K_n} . r \qquad (\text{II. 1})$$
$$K_n = G_n + K$$

Où : G_n sont des vecteurs du réseau de point K utilisés pour l'intégration dans la zone de Brillouin.

Les solutions aux équations de Kohn-Sham sont développées dans cet ensemble combiné de la base à la FP-LAPW selon la méthode variationnelle linéaire. Le deuxième paramètre est le nombre de point spéciaux K utilisés pour l'intégration dans la zone de Brillouin. Cette intégration consiste en l'évaluation de la somme sur les états occupés en utilisant les opérations de symétrie pour réduire le nombre d'intégrale nécessaire au calcul des quantités physiques qui nous intéressent (densité électronique, énergie totale.....). Les équations de Kohn-Sham vont être résolues dans l'espace réciproque en prélevant des points spéciaux K discrets dans la zone de Brillouin. Le choix des points K doit être désigné.

II. Le Calcul des propriétés structurales :

Pour un calcul **Ab-initio**, la détermination des propriétés structurales d'un matériau à étudier est une étape indispensable. Pour cela, on doit tout d'abord avoir quelques données à partir des travaux théoriques ou expérimentaux, la connaissance des paramètres de maille nous facilite la tâche, mais ça n'empêche qu'on peut prédire les paramètres s'ils sont inconnus (Une nouvelle étude qui n'a jamais était faite auparavant comme il est le cas dans notre étude pour le Fluorure **TiFeF3** qui n'a jamais était étudié par qui que ce soit, on a eu l'opportunité de la traiter dans ce travail). Les paramètres d'équilibres nous permettent d'accéder par la suite à d'autres propriétés physiques (électroniques, élastiques, magnétiques, thermiques, optiques, etc....).

Notre avons étudié les huit matériaux **pérovskites Fluorures de la forme ABF**₃ pour les différentes sructures cristallines investie ici (Cubique (**Pm-3m**), Hexagonale-**4H (P63/mmc)**, Orthorhombique (**Pnma**) et Orthorhombique (**Pbnm**)) dans deux configurations différentes :

- Non ferromagnétique (NF).
- Ferromagnétique (FM).

Les positions atomiques de chaque structure cristalline étudiée sont données ci-dessous accompagnés des figures qui illustrent parfaitement bien la structure cristalline avec son groupe d'espace pour chaque matériau étudié :

<u>II.1.Les différentes structures cristallines des Fluorures :</u> <u>II.1.1 La phase Cubique :</u>

La phase cubique est dite idéale, elle est de la forme ABX_3 désignée par le groupe d'espace (Pm-3m) (Figure II. 1) :

A = (Cs, Na Rb, K, Ti et Tl) prennent les positions en (0.5, 0.5, 0.5) (1b) (centre des cubes). B = (Fe, Co, Ni) en (0, 0, 0) (1a) (sommets des cubes).

 \mathbf{F} en (0.5, 0, 0) (3d) (milieu des arrêtes des cubes).

Figure II.1 : la structure cristalline cubique avec le groupe d'espace (Pm-3m) respectivement des péroviskites Fluorures CsFeF3, NaFeF3, RbFeF3, KCoF3, KFeF3, KNiF3, TiFeF3 et TlFeF3 adoptées pour les deux configurations (NF)et (FM).

Pm-3m

II.1.2 La phase hexagonale-4H :

La deuxième structure qui est la structure **Hexagonale-4H**, elle est désignée par le groupe d'espace (P63/mmc) (Figure II. 2) : $A_1 = (Cs, Na, Rb, K, Ti, et Tl) en (0, 0, 0).$ $A_2 = (Cs, Na, Rb, K, Ti, et Tl) en (1/3, 1/3, 1/4).$ B = (Fe, Co, et Ni) en (1/3, 2/3, 0.6142). $F_1 en (0, 0, 1/2) (3d).$ $F_2 en (-0.6129, -1.2258, 1/4).$

Figure II.2: la structure cristalline Hexagonal-4H avec le groupe d'espace (P63/mmc) respectivement des pérovskites Fluorures CsFeF3, NaFeF3, RbFeF3, KCoF3, KFeF3, KNiF3, et TiFeF3 adoptées pour les deux configurations (NF) et (FM).

II.1.3 La phase orthorhombique (Pnma):

Pour la structure orthorhombique, nous avons investi deux différentes structures. La première s'agit d'une structure orthorhombique désignée par le groupe d'espace (**Pnma**) (**Figure II. 3**) :

 $A_1 = (Cs, Na, Rb, K, Ti, et Tl) en (0.0304, 0.25, 0.99).$ B = (Fe, Co, et Ni) en (0, 0, 0.5). $F_1 en (0.449, 0.25, 0.0587)$ $F_2 en (0.2825, 0.0366, 0.7088)$

<u>Figure II.3</u>: la structure cristalline orthorombique avec le groupe d'espace (Pnma) respectivement des pérovskites Fluorures CsFeF3, NaFeF3, RbFeF3, KFeF3, KCoF3, KNiF3, , et TiFeF3.

II.1.4 La phase orthorhombique (Pbnm):

Tandis que la deuxième **structure orthorhombique** étudiée, s'agit d'une structure orthorhombique désignée par le groupe d'espace (**Pbnm**) (**Figure II. 4**) : A = (Cs, Na, Rb, K, Ti, et Tl) en (0.0261, 0.5, 0.25). B = (Fe, Co, et Ni) en (0, 0, 0). $F_1 en (0.9312, 0.2862, 0.047).$ $F_2 en (0.2058, 0.2862, 0.047).$

Figure II.4: la structure cristalline orthorombique avec le groupe d'espace (Pbnm) respectivement des pérovskites Fluorures CsFeF3, NaFeF3 et RbFeF3.

II.2 L'optimisation des paramètres de mailles :

Les calculs effectués dans ce travail, sont basés sur les principes de la théorie de la fonctionnelle de la densité (DFT) [102] ou (DFT+U) avec (U: Hamiltonian de Hubbard) [103] et à l'aide du code Wien2K [104-106] nous avons utilisé la méthode des ondes planes augmentées et linéarisées (FP-LAPW) [107], nous avons pu utiliser différentes approximations L(S)DA, L(S)DA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U dans un concept comparatif entre ces approches dans le but de retrouver les paramètres d'équilibres les plus proches des paramètres théoriques et expérimentaux publiés dans les différents travaux scientifiques.

Pour déterminer les paramètres structuraux : (a, b et c en Å), leur volume V en Å³, le module de compressibilité B en GPa et sa dérivée B', on doit optimiser le volume en fonction de l'énergie totale. La courbe obtenue est ensuite ajustée à l'équation d'état de Murnaghan [108] qui est donnée par l'expression suivante :

$$V = V_0 \left(1 + \frac{B'P}{B}\right)^{-1/B'}$$
 (II. 2)

La constante du réseau de l'équilibre est donnée par le minimum de la courbe $E_{tot}(a)$ et le module de compressibilité **B** est déterminé par :

$$\mathbf{B} = \mathbf{V} \quad \frac{\partial^2 \mathbf{E}}{\partial \mathbf{V}^2} \qquad (\mathbf{II}.3)$$

Tandis que la dérivée du module de compressibilité B' est déterminé par :

$$E(V) = E_0 + \frac{B}{B'(B'-1)} \left[V \left(\frac{V_0}{V} \right)^{B'} - V_0 \right] + \frac{B}{B'} (V - V_0)$$
(II.4)

Les principaux résultats obtenus pour les différentes structures cristallines (Cubique (**Pm-3m**), Hexagonale-4H (**P6 /mmc**), Orthorhombique (**Pnma**) et Orthorhombique (**Pbnm**)) en utilisant les différentes approximations L(S)DA, L(S)DA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U implémentées dans le code Wien2K sont illustrés dans les tableaux ci-dessous :

II.2.1 La phase cubique :

Les tableaux (II.1, II.2, II.3, II.4, II.5, II.6, II.7 et II.8) illustrés ci-dessous rassemblent les paramètres d'équilibre telles que la constante du réseau a (Å), le volume V(Å³) le module de compressibilité B (GPa) et sa dérivé B', calculés en utilisant différentes approches L(S)DA, L(S)DA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U pour la structure pérovskite cubique idéale (Pm-3m) respectivement des pérovskites Fluorures (CsFeF₃, NaFeF₃ RbFeF₃, KFeF₃, KCoF₃, KNiF₃, TiFeF₃ et TIFeF₃), les résultats sont comparés avec d'autres valeurs théoriques et expérimentales.

D'après les tableaux illustrés ici, il apparait clairement que nos résultats sont en bon accord avec les autres travaux expérimentaux et théoriques trouvés par d'autres chercheurs scientifiques calculés par des approximations comme celles qu'on a utilisées ou par d'autres approximations. On remarque aussi d'après les tableaux de l'optimisation du volume en fonction de l'énergie totale, que les paramètres de maille des huit matériaux calculés respectivement s'accroissent dans l'ordre suivant : L(S)DA, WC-GGA, PBEsol –GGA, PBEsol –GGA, ensuite LSDA+U et GGA+U pour les deux configurations Non Ferromagnétique (NF), et Ferromagnétique (FM). Tandis que le module de compressibilité B(GPa) et sa dérivée B' calculés décroisent par le même ordre pour tous les matériaux Fluorures étudiés dans cette thèse.

<u>**Tableau II.1**</u>: les paramètres d'équilibre de la structure cubique (**Pm-3m**) : (a_0 en Å), le volume V en Å³, le module de compressibilité **B** en (**GPa**) et sa **dérivée B'** pour le **Fluorure CsFeF**₃.

		Structure	Cubique (I	Pm-3m)		
Matériau	Approche	Configuration	a0(Å)	B (GPa)	B '	Vol(Å ³
	LDA		3.928	113.88	4.77	60.61
	LDA+U		3.930	117.34	4.16	60.69
	WC-GGA	NF	4.092	90.09	4.73	68.53
	PBE -GGA		4.186	76.35	4.68	73.36
CsFeF ₃	PBEsol –GGA		4.093	90.89	4.60	68.59
	GGA+U		4.190	75.427	4.00	79.19
	LSDA		4.062	98.28	3.09	67.04
	LSDA+U		4.079	92.53	4.45	67.86
	WC-GGA	FM	4.221	76.80	4.62	79.77
	PBE -GGA		4.306	72.14	3.87	81.34
	PBEsol –GGA		4.222	79.88	4.23	79.79
	GGA+U		4.316	64.45	3.59	81.57
		Travaux Théori	ques			
		FM	- 4.28 ^a			

<u>**Tableau II.2**</u>: les paramètres d'équilibre de la structure cubique (**Pm-3m**) : (\mathbf{a}_0 en Å), le volume V en Å³, le module de compressibilité **B** en **GPa** et sa **dérivée B'** pour le **Fluorure NaFeF**₃

		Structure	Cubique (Pm-3m)							
Matériau	Approche	Configuration	a ₀ (Å)	B (GPa)	В'	Vol(Å ³)					
	LDA		3.880	113.53	5.07	58.42					
	LDA+U		3.883	113.97	4.68	58.54					
	WC-GGA	NF	3.870	101.76	5.07	58.20					
	PBE -GGA		3.920	90.38	4.43	60.62					
NaFeF ₃	PBEsol –GGA		3.874	101.98	4.84	58.17					
	GGA+U		3.931	94.54	3.98	74.35					
	LSDA		3.888	113.61	4.86	58.45					
	LSDA+U		3.947	99.84	4.88	61.48					
	WC-GGA	FM	4.037	79.13	3.78	65.83					
	PBE -GGA		4.099	71.12	4.25	68.87					
	PBEsol –GGA		4.044	80.04	3.25	66.13					
	GGA+U		4.113	70.17	4.61	77.78					

		Structure	Cubique (1	P m-3 m)						
Matériau	Approche	Configuration	a ₀ (Å)	B (GPa)	B'	Vol(Å ³				
	LDA		3.809	118.36	4.77	55.21				
	LDA+U		3.825	118.90	3.14	55.96				
	WC-GGA	NF	3.995	94.64	4.72	63.76				
	PBE -GGA		4.075	82.42	4.67	67.66				
RbFeF ₃	PBEsol –GGA		3.996	94.08	4.82	63.80				
	GGA+U		4.076	80.61	4.72	67.71				
	LSDA		3.969	87.84	3.18	62.53				
	LSDA+U		3.986	92.14	4.66	63.33				
	WC-GGA	FM	4.138	76.96	4.34	70.85				
	PBE -GGA		4.218	68.97	4.14	75.04				
	PBEsol –GGA		4.143	78.78	3.71	71.11				
	GGA+U		4.236	67.19	4.29	76.00				
		Travaux Théori	ques							
			4.10 ^b	-	-	68.92				
			4.08 ^c	-	-	67.91°				
			4.17 ^d	-	-	72.51				
			4.172 ^e	-	-	72.61 ^e				
			$4.174^{\rm f}$	-	-	72.72				
			$4.152^{\rm f}$	-	-	71.57				
			4.174 ⁱ	-	-	72.72				

<u>**Tableau II.3**</u>: les paramètres d'équilibre de la structure cubique (**Pm-3m**) : (a_0 en Å), le volume V en Å³, le module de compressibilité **B** en (**GPa**) et sa **dérivée B'** pour le **Fluorure RbFeF**³

a:Ref[114]. b: Ref[115], c: Ref[116], d: Ref[117], e: Ref[118], f: Ref[119], i: Ref[120].

		Structure	Cubique (1	Pm-3m)							
Matériau	Approche	Configuration	a0(Å)	B (GPa)	B '	Vol(Å ³					
	LDA		3.863	116.41	4.97	57.64					
	LDA+U		3.873	117.19	4.00	58.09					
	WC-GGA	NF	3.960	96.20	4.91	62.14					
	PBE -GGA		4.005	84.18	4.54	64.24					
	PBEsol –GGA		3.937	97.01	4.91	61.02					
	GGA+U		4.015	95.30	2.46	75.87					
	LSDA		4.010	93.67	4.37	64.49					
	LSDA+U		4.033	90.89	4.67	65.59					
	WC-GGA	FM	4.093	78.70	4.39	68.59					
	PBE -GGA		4.166	68.93	4.40	72.31					
KFeF3	PBEsol –GGA		4.097	77.06	3.70	68.78					
	GGA+U		4.184	67.51	4.40	79.12					
		Travaux Théori	ques								
			4.121 ^b								
			4.124 ^c								
			4.120 ^a								
			4.061 ^d								
			4.170 ^e								
			4.124 ^f								
			4.122 ⁱ								
		Travaux Expéri	mentales								
			4.12 ^j								

<u>**Tableau II.4**</u>: les paramètres d'équilibre de la structure cubique (**Pm-3m**) : (a_0 en Å), le volume V en Å³, le module de compressibilité **B** en (**GPa**) et sa **dérivée B'** pour le **Fluorure KFeF**³

a: Ref[116],b: Ref[117], c: Ref[118], d: Ref[119], e: Ref[120], f: Ref[121], i: Ref[122], et j: Ref[123].

		Structure Cubique (Pm-3m)							
Matériau	Approche	Configuration	a ₀ (Å)	B (GPa)	В'	Vol(Å ³			
	LDA		3.841	116.21	4.85	57.53			
	LDA+U		3.879	117.24	4.09	58.26			
	WC-GGA	NF	3.933	94.58	5.22	60.85			
	PBE -GGA		4.010	82.83	4.69	64.50			
	PBEsol –GGA		3.933	95.82	5.11	60.85			
	GGA+U		4.014	85.44	3.03	75.85			
	LSDA		4.013	93.69	4.40	64.52			
	LSDA+U		4.035	90.70	4.69	65.62			
	WC-GGA	FM	4.036	81.06	3.84	65.74			
	PBE -GGA		4.110	74.07	3.83	69.46			
CoF ₃	PBEsol –GGA		4.039	78.68	3.37	65.90			
	GGA+U		4.129	71.14	4.33	78.11			

<u>**Tableau II.5**</u>: les paramètres d'équilibre de la structure cubique (**Pm-3m**) : (\mathbf{a}_0 en Å), le volume **V** en Å³, le module de compressibilité **B** en (**GPa**) et sa dérivée **B**' pour le **Fluorure KCoF**³

Comparaison Théorique Et Expérimentale Travaux Théoriques

 $\begin{array}{c} 4.069^{\circ} \\ 4.069^{p} \\ 4.071^{f} \\ 4.070^{f} \\ 4.069^{e} \\ 4.041^{j} \\ 4.125^{j} \\ 4.095^{\circ} \\ 4.076^{\circ} \\ 4.058^{s} \\ 4.069^{\circ} \\ 4.069^{p} \end{array}$

Travaux Expérimentaux

4.08 ⁿ
4.070^{q}
4.069 ^r
4.006 ^r

o: Ref[129, 130],n: Ref[125],p: Ref[131], f: Ref[132], e: Ref[121], j: Ref[122], q: Ref[133], r: Ref[134], s: Ref[135].

	Structure Cubique (Pm-3m)						
Matériau	Approche	Configuration	a ₀ (Å)	B (GPa)	В'	Vol(Å	
	LDA		3.863	115.73	5.04	57.6	
	LDA+U		3.861	116.89	4.73	57.5	
	WC-GGA	NF	3.960	90.68	4.88	62.1	
	PBE –GGA		4.013	84.91	4.54	64.6	
	PBEsol –GGA		3.937	92.40	4.97	61.0	
	GGA+U		4.031	83.29	4.51	76.1	
	LSDA		3.954	91.02	2.39	61.8	
	LSDA+U		3.974	97.73	4.83	62.7	
	WC-GGA	FM	4.009	86.61	5.32	64.2	
	PBE –GGA		4.087	75.27	4.64	67.9	
KNiF3	PREsol –GGA		4 004	86.61	5 32	64.2	
	GGA+U		4.101	70.91	4.76	77.5	
	Compara	uson Théorique Et Travaux Théori	Expérim	entale			
		Travaux Theory	4 000s				
			4.000				
			4.014				
			4.001 ^r				
			4.014 ^v				
			4.014 ^r				
			4.070 ^q				
			4.012 ^e				
			4.012^{j}				
			4 054 ⁱ				
			1.03 Ik				
			4.034 4.011 ¹				
			4.011 4.012k				
			4.015 4.000k				
			4.009				
			4.002°				
			4.014				
			4.013				
			4.012^{2}				
			4.0132				
			4.000 ^s				
		Travaux Expéri	mentaux				
			4.000 ^s				
			4.000 ^s				
			4.000 ^s				
			4 02 ⁿ				
			4 11 /				
			4.02 4.011y				

<u>**Tableau II.6**</u>: les paramètres d'équilibre de la structure cubique (**Pm-3m**) : (\mathbf{a}_0 en Å), le volume **V** en Å³, le module de compressibilité **B** en (**GPa**) et sa dérivée **B**' pour le **Fluorure KNiF**³

Ref[135], t: Ref[133], v: Ref[134], r: Ref[130], q: Ref[129], e: Ref[121], j: Ref[124], k: Ref[136], l: Ref[126], f: Ref[127], u: Ref[137], w: Ref[138], n: Ref[128], y: Ref[139], z: Ref[140].

		Structure	Cubique (Pm-3m)						
Matériau	Approche	Configuration	a ₀ (Å)	B (GPa)	В'	Vol(Å				
	LDA		4.027	105.35	4.97	65.32				
	LDA+U		4.034	108.12	4.56	65.64				
	WC-GGA	NF	3.887	114.18	4.72	58.76				
	PBE -GGA		3.954	97.83	4.17	61.86				
TiFeF 3	PBEsol –GGA		3.887	115.19	4.84	58.76				
	GGA+U		3.958	101.268	4.16	74.80				
	LSDA		4.150	92.45	4.05	71.47				
	LSDA+U		4.144	92.49	4.40	71.16				
	WC-GGA	FM	4.052	83.99	3.60	66.57				
	PBE -GGA		4.136	76.16	3.59	70.77				
	PBEsol –GGA		4.062	83.98	3.83	67.04				
	GGA+U		4.200	71.14	4.33	78.11				

<u>**Tableau II.7**</u>: les paramètres d'équilibre de la structure cubique (**Pm-3m**) : (\mathbf{a}_0 en Å), le volume **V** en Å³, le module de compressibilité **B** en (**GPa**) et sa dérivée **B**' pour le **Fluorure TiFeF**₃

<u>**Tableau II.8:**</u> les paramètres d'équilibre de la structure cubique (**Pm-3m**) : (a_0 en Å), le volume V en Å³, le module de compressibilité **B** en (**GPa**) et sa dérivée **B**' pour le **Fluorure TlFeF**₃

a [141], b [142], c [143] d [144], e[145] et f [146].

		Structure Cubique (Pm-3m)								
Matériau	Approche	Configuration	a0(Å)	B (GPa)	B '	Vol(Å ³)				
	LDA		3.952	130.98	3.066	61.72				
	LDA+U		3.950	134.29	3.614	61.62				
	WC-GGA	NF	4.107	98.12	4.229	69.27				
	PBE -GGA		4.111	91.893	4.154	69.47				
TlFeF3	PBEsol –GGA		4.109	98.77	4.053	69.37				
	GGA+U		4.122	97.12	4.191	70.03				
	LSDA		4.071	106.33	2.979	67.46				
	LSDA+U		4.082	102.55	3.706	68.01				
	WC-GGA	FM	4.224	72.24	4.125	75.36				
	PBE -GGA		4.226	69.39	3.676	75.47				
	PBEsol –GGA		4.229	75.97	3.999	75.63				
	GGA+U		4.233	71.89	4.060	75.84				
	Compar	raison Théorique	Et Expér	imentale						
		Travaux Théo	oriques							
	GGA		4.144 ^a							
	GGA+U		4.15 ^a							
	HF		4.18 ^a							
			4.18 ^{b.c.}							
			4.144 ^d							
		Travaux Expér	imentale							
			4.188 ^{a,d}							
			4.188 ^{e,r}							

		Structure Hexa	gonale-41	H(P63/mm	<i>c</i>)		
Matériau	Approche	Configuration	$a_0(\AA)$	c ₀ (Å)	B (GPa)	B'	Vol(Å ³)
CsFeF3	LDA LDA+U WC-GGA PBE -GGA PBEsol –GGA GGA+U	NF	5.684 5.686 5.782 5.909 5.782 5.929	9.018 9.019 9.175 9.374 9.174 9.375	101.60 102.98 77.0 73.2 78.9 75.7	4.82 4.65 3.8 4.3 3.9 4.1	250.56 250.76 263.79 281.48 263.76 283.42
	LSDA LSDA+U WC-GGA PBE -GGA PBEsol –GGA GGA+U	FM	5.862 5.866 5.790 6.067 5.970 6.165	9.300 9.306 9.472 9.626 9.473 9.634	88.72 87.29 75.1 79.5 76.5 78.8	4.32 4.48 4.0 3.2 3.9 3.5	274.83 275.38 273.08 304.71 290.35 314.89

<u>**Tableau II.9**</u>: les paramètres d'équilibre de la structure Hexagonale-**4H** (**P63/mmc**) : (\mathbf{a}_0 et c en Å), le volume V en Å³, le module de compressibilité B en (GPa) et sa dérivée B' pour le Fluorure

<u>**Tableau II.10 :**</u> les paramètres d'équilibre de la structure Hexagonale-**4H (P63/mmc)** : (a_0 et c en Å), le volume V en Å³, le module de compressibilité B en (GPa) et sa dérivée B' pour le Fluorure NaFeF₃

	Structure Hexagonale-4H(P63/mmc)								
Matériau	Approche	Configuration	$a_0(\AA)$	c ₀ (Å)	B (GPa)	В'	Vol(Å ³		
	LDA		5.446	8.641	109.73	3.69	220.40		
	LDA+U		5.448	8.645	104.72	4.47	220.66		
	WC-GGA	NF	5.548	8.802	78.8	3.9	232.99		
	PBE -GGA		5.627	8.928	85.5	3.9	243.11		
NaFeF ₃	PBEsol –GGA		5.539	8.788	84.1	3.9	231.87		
	GGA+U		5.629	8.931	89.5	3.3	243.36		
	LSDA		5.671	8.998	80.12	5.82	248.86		
	LSDA+U		5.675	9.005	83.42	4.67	249.41		
	WC-GGA	FM	5.783	9.176	72.2	4.7	263.91		
	PBE -GGA		5.861	9.300	73.4	4.4	274.74		
	PBEsol –GGA		5.774	9.162	75.9	4.1	262.68		
	GGA+U		5.863	9.303	73.9	4.3	275.01		

Structure Hexagonale-4H(P63/mmc)									
Matériau	Approche	Configuration	a0(Å)	co(Å)	B (GPa)	В'	Vol(Å ³)		
	LDA		5.565	8.829	106.06	4.739	235.14		
	LDA+U		5.566	8.828	107.69	4.60	235.20		
	WC-GGA	NF	5.670	8.997	96.3	4.0	248.74		
	PBE -GGA		5.784	9.177	98.7	3.3	264.03		
RbFeF ₃	PBEsol –GGA		5.666	8.990	95.9	4.1	248.20		
	GGA+U		5.785	9.179	75.7	4.1	264.18		
	LSDA		5.764	9.146	86.25	4.62	261.32		
	LSDA+U		5.780	9.171	87.74	4.23	263.49		
	WC-GGA	FM	5.885	9.337	62.0	4.8	278.09		
	PBE -GGA		5.992	9.507	74.3	3.0	293.55		
	PBEsol –GGA		5.879	9.327	73.4	4.2	277.23		
	GGA+U		5.994	9.510	70.7	3.2	293.84		

<u>**Tableau II.11**</u>: les paramètres d'équilibre de la structure Hexagonale-**4H** (**P63/mmc**) : (\mathbf{a}_0 et c en Å), le volume V en Å³, le module de compressibilité B en (GPa) et sa dérivée B' pour le Fluorure

<u>**Tableau II.12 :**</u> les paramètres d'équilibre de la structure Hexagonale-4H (P63/mmc) : $(a_0 \text{ et c en } \text{\AA})$, le volume V en \AA^3 , le module de compressibilité B en (GPa) et sa dérivée B' pour le Fluorure KFeF₃

				<i>nc)</i>		
Approche	Configuration	a ₀ (Å)	c ₀ (Å)	B (GPa)	В'	Vol(Å ³)
LDA		5.499	8.726	109.82	4.49	226.92
LDA+U		5.500	8.727	106.86	4.82	227.03
WC-GGA	NF	5.611	8.903	91.25	4.39	241.05
PBE -GGA		5.714	9.066	92.82	3.39	254.56
PBEsol –GGA		5.603	8.890	93.31	4.36	240.01
GGA+U		5.715	9.068	82.24	4.16	254.70
LSDA		5.714	9.067	112.90	1.23	254.59
LSDA+U		5.727	9.086	87.39	4.20	256.28
WC-GGA	FM	5.838	9.262	88.83	4.21	271.47
PBE -GGA		5.933	9.414	67.21	3.93	284.98
PBEsol –GGA		5.828	9.247	58.53	5.89	270.10
GGA+U		5.936	9.419	70.04	3.64	285.42
	LDA LDA+U WC-GGA PBE -GGA PBE -GGA GGA+U LSDA LSDA LSDA+U WC-GGA PBE -GGA PBE -GGA GGA+U	ApprocheConjigurationLDALDA+UWC-GGANFPBE -GGAGGA+ULSDALSDA+UWC-GGAFMPBE -GGAFMPBE -GGAGGA+U	Approche Conjiguration $a_0(A)$ LDA 5.499 LDA+U 5.500 WC-GGA NF PBE -GGA 5.714 PBEsol -GGA 5.603 GGA+U 5.715 LSDA 5.714 LSDA 5.717 WC-GGA FM SBB 9BE -GGA PBE -GGA 5.933 PBE sol -GGA 5.828 GGA+U 5.936	Approche Conjiguration a ₀ (A) c ₀ (A) LDA 5.499 8.726 LDA+U 5.500 8.727 WC-GGA NF 5.611 8.903 PBE -GGA 5.714 9.066 PBEsol -GGA 5.603 8.890 GGA+U 5.715 9.068 LSDA 5.714 9.067 LSDA+U 5.727 9.086 WC-GGA FM 5.838 9.262 PBE -GGA 5.933 9.414 PBEsol -GGA 5.828 9.247 GGA+U 5.936 9.419	Approche Conjiguration a ₀ (A) c ₀ (A) B (GFa) LDA 5.499 8.726 109.82 LDA+U 5.500 8.727 106.86 WC-GGA NF 5.611 8.903 91.25 PBE -GGA 5.714 9.066 92.82 PBEsol -GGA 5.603 8.890 93.31 GGA+U 5.715 9.068 82.24 LSDA 5.714 9.067 112.90 LSDA+U 5.727 9.086 87.39 WC-GGA FM 5.838 9.262 88.83 PBE -GGA 5.933 9.414 67.21 PBEsol -GGA 5.828 9.247 58.53 GGA+U 5.936 9.419 70.04	Approche Conjiguration ad(A) Co(A) B (GFa) B LDA 5.499 8.726 109.82 4.49 LDA+U 5.500 8.727 106.86 4.82 WC-GGA NF 5.611 8.903 91.25 4.39 PBE -GGA 5.714 9.066 92.82 3.39 PBEsol -GGA 5.603 8.890 93.31 4.36 GGA+U 5.715 9.068 82.24 4.16 LSDA 5.714 9.067 112.90 1.23 LSDA 5.727 9.086 87.39 4.20 WC-GGA FM 5.838 9.262 88.83 4.21 PBE -GGA 5.933 9.414 67.21 3.93 PBE sol -GGA 5.828 9.247 58.53 5.89 GGA+U 5.936 9.419 70.04 3.64

<u>**Tableau II.13**</u>: les paramètres d'équilibre de la structure Hexagonale-4H (P63/mmc) : (a_0 et c en Å), le volume V en Å³, le module de compressibilité B en (GPa) et sa dérivée B' pour le Fluorure KCoF₃

.

		Structure Hex	agonale-4	4H(P63/m)	mc)		
Matériau	Approche	Configuration	a0(Å)	co(Å)	B (GPa)	В'	Vol(Å ³)
	LDA		5.517	8.754	113.39	3.937	229.14
	LDA+U		5.518	8.756	104.81	4.58	229.28
	WC-GGA	NF	5.633	8.937	89.10	4.21	243.87
	PBE -GGA		5.734	9.098	86.34	3.71	257.25
KCoF3	PBEsol –GGA		5.625	8.925	88.52	4.35	242.85
	GGA+U		5.735	9.099	86.29	3.71	257.37
	LSDA		5.635	8.941	58.58	7.929	244.15
	LSDA+U		5.647	8.960	97.41	6.640	245.72
	WC-GGA	FM	5.758	9.135	93.97	3.18	260.46
	PBE -GGA		5.857	9.293	74.43	3.13	274.16
	PBEsol –GGA		5.749	9.122	76.56	4.25	259.28
	GGA+U		5.865	9.306	66.14	4.45	275.29

<u>**Tableau II.14 :**</u> les paramètres d'équilibre de la structure Hexagonale-4H (P63/mmc) : (a_0 et c en Å), le volume V en Å³, le module de compressibilité B en (GPa) et sa dérivée B' pour le Fluorure KNiF₃

		Structure He	xagonale-	4H(P63/m	ımc)		
Matériau	Approche	Configuration	a0(Å)	co(Å)	B (GPa)	В'	Vol(Å ³)
	LDA		5.549	8.804	110.36	3.64	233.13
	LDA+U		5.550	8.805	110.45	3.63	233.24
	WC-GGA	NF	5.667	8.992	90.35	3.92	248.34
	PBE -GGA		5.765	9.150	112.29	2.40	261.52
KNiF3	PBEsol –GGA		5.658	8.978	90.38	3.94	247.17
	GGA+U		5.767	9.151	117.22	2.21	261.73
	LSDA		5.596	8.880	93.97	4.492	239.14
	LSDA+U		5.607	8.897	93.40	4.54	240.54
	WC-GGA	FM	5.719	9.074	90.34	3.55	255.23
	PBE -GGA		5.818	9.232	105.55	2.39	268.74
	PBEsol –GGA		5.711	9.061	90.39	3.71	254.15
	GGA+U		5.865	9.245	66.94	4.59	273.48

		Structur	re Hexago	nale-4H			
Matériau	Approche	Configuration	$a_0(\AA)$	c ₀ (Å)	B (GPa)	В'	Vol(Å ³)
	LDA		5.443	8.636	123.08	4.41	220.03
	LDA+U		5.445	8.639	121.52	5.22	220.27
TiFeF3	WC-GGA	NF	5.535	8.781	70.47	3.13	231.35
	PBE -GGA		5.635	8.940	103.73	3.36	239.59
	PBEsol –GGA		5.530	8.774	105.62	3.09	230.75
	GGA+U		5.631	8.934	92.42	4.36	243.62
	LSDA		5.656	8.975	101.84	1.55	246.91
	LSDA+U		5.662	8.986	88.95	4.25	247.74
	WC-GGA	FM	5.771	9.157	115.38	1.47	266.99
	PBE -GGA		5.875	9.322	92.82	3.39	276.70
	PBEsol –GGA		5.761	9.141	106.16	2.07	260.90
	GGA+U		5.922	9.397	73.43	3.19	283.41

<u>**Tableau II.15**</u>: les paramètres d'équilibre de la structure Hexagonale-4H (P63/mmc) : $(a_0 \text{ et c en } \text{\AA})$, le volume V en \AA^3 , le module de compressibilité B en (GPa) et sa dérivée B' pour le Fluorure TiFeF₃

<u>**Tableau II.16 :**</u> les paramètres d'équilibre de la structure Orthorhombique (**Pnma**) : (a_0 , b et c en Å), le volume V en Å³, le module de compressibilité **B** en (**GPa**) et sa dérivée **B'** pour le **Fluorure CsFeF**₃

		Orthorhombique						
Matériau	Approche	(<i>Pnma</i>) Configuration	Α	b	С	B(GPa)	В'	Vol(Å ³
	LDA		5.816	8.042	5.789	102.14	4.5	270.76
	LDA+U		5.943	8.058	5.909	100.7	4.7	282.97
	GGA-WC		5.736	8.201	5.733	86.7	4.6	269.68
	GGA-PBE	NF	6.030	8.370	5.996	78.5	3.6	302.62
	GGA-PBEsol		5.849	8.305	5.834	99.2	3.3	283.39
CsFeF3	GGA+U- PBE		5.986	8.499	5.950	79.4	3.3	302.70
	LSDA		5.741	8.993	5.651	87.6	4.4	291.75
	LSDA+U		6.233	8.903	5.867	85.9	4.4	325.57
	GGA-WC		5.982	8.719	5.945	70.6	4.4	310.07
	GGA-PBEsol	FM	5.983	8.273	5.945	57.8	4.6	294.26
	GGA-PBE		5.925	8.569	5.820	68.5	4.4	295.48
	GGA+U- PBE		6.298	8.441	6.140	72.2	4.3	326.41

		Orthorhombique (Pnma)						
Matériau	Approche	Configuration	А	b	С	B(GPa)	В'	Vol(Å ³)
	LDA		5.346	7.527	5.266	123.3	4.9	211.90
	LDA+U		5.570	7.887	5.321	123.1	4.9	233.75
	GGA-WC		5.465	7.466	5.308	120.2	3.9	216.57
	GGA-PBE	NF	5.309	7.613	5.230	92.3	4.4	211.38
	GGA-PBEsol		5.381	7.917	5.224	105.1	4.9	222.54
NaFeF ₃	GGA+U-PBE		5.574	7.882	5.324	94.2	3.8	233.90
	LSDA		5.590	7.744	5.535	116.0	3.5	239.60
	LSDA+U		5.703	8.192	5.684	94.4	4.2	265.55
	GGA-WC		5.679	8.108	5.512	94.9	3.4	253.80
	GGA-PBE	FM	5.653	7.8258	5.474	63.3	5.1	242.14
	GGA-PBEsol		5.670	7.989	5.412	89.5	4.0	245.15
	GGA+U-PBE		5.948	7.973	5.816	68.8	4.8	275.81

<u>**Tableau II.17**</u>: les paramètres d'équilibre de la structure Orthorhombique (**Pnma**) : (\mathbf{a}_0 , \mathbf{b} et c en Å), le volume V en Å³, le module de compressibilité **B** en (**GPa**) et sa dérivée **B'** pour le **Fluorure NaFeF**₃

<u>**Tableau II.18 :**</u> Les paramètres d'équilibre de la structure Orthorhombique (**Pnma**) : (**a**₀, **b** et c en Å), le volume V en Å³, le module de compressibilité B en (GPa) et sa dérivée B' pour le Fluorure **RbFeF**₃

		Orthorhombique						
		(Pnma)						
Matériau	Approche	Configuration	Α	b	С	B(GPa)	В'	Vol(Å ³)
	LDA		5.598	7.780	5.588	114.6	4.4	243.37
	LDA+U		5.805	8.209	5.734	113.1	4.5	273.24
	GGA-WC		5.678	7.951	5.623	96.3	4.5	253.85
	GGA-PBE		5.573	7.863	5.563	85.1	4.0	243.77
	GGA-PBEsol	NF	5.678	8.021	5.632	94.9	4.6	256.49
RbFeF ₃	GGA+U-PBE		5.583	7.894	5.472	123.8	2.6	241.16
	LSDA		5.784	8.071	5.727	110.5	3.1	267.35
	LSDA+U		5.959	8.592	5.950	91.3	4.2	304.63
	GGA-WC		5.927	8.441	5.894	69.8	5.2	294.87
	GGA-PBE		5.858	8.254	5.742	62.4	4.6	277.63
	GGA-PBEsol	FM	5.890	8.336	5.791	68.8	4.9	284.33
	GGA+U-PBE		6.044	9.009	6.023	61.6	4.6	327.95

Matériau	Approche	Configuration	Α	В	с	B(GPa)	B'	Vol(Å ³)
		Orthorhomb	bique- Pr	ıma				
	LDA		5.490	7.690	5.398	118.5	4.8	227.89
	LDA+U		5.845	8.289	5.483	118.5	4.8	265.64
	GGA-WC		5.575	7.884	5.280	106.5	4.1	232.07
	GGA-PBE		5.396	7.898	5.325	98.6	4.5	226.93
	GGA-PBEsol	NF	5.376	7.951	5.332	108.2	4.0	227.91
KFeF3	GGA+U-PBE		5.680	8.056	5.586	99.1	4.7	255.60
	LSDA		5.706	7.970	5.591	98.4	4.3	254.26
	LSDA+U		5.828	8.594	5.691	95.8	4.1	285.03
	GGA-WC		5.821	8.113	5.644	78.8	4.4	266.54
	GGA-PBE		5.808	7.949	5.707	79.1	3.0	263.47
	GGA-PBEsol	FM	5.762	7.981	5.747	116.7	3.5	264.28
	GGA+U-PBE		5.877	8.173	5.733	64.5	4.4	275.37

<u>**Tableau II.19 :**</u> Les paramètres d'équilibre de la structure Orthorhombique (**Pnma**) : $(a_0, b \text{ et c en } \text{Å})$, le volume **V** en Å^3 , le module de compressibilité **B** en (**GPa**) et sa dérivée B' pour le **Fluorure KFeF**₃

<u>**Tableau II.20:**</u> Les paramètres d'équilibre de la structure Orthorhombique (**Pnma**) : $(\mathbf{a}_0, \mathbf{b} \text{ et c en } \mathbf{A})$, le volume **V** en \mathbf{A}^3 , le module de compressibilité **B** en(**GPa**) et sa dérivée **B'** pour le **Fluorure KCoF**₃

Matériau	Approche	Configuration	а	b	c	B(GPa)	В'	Vol(Å ³)
		Orthorhomb	oique- Pr	ıma				
	LDA		5.486	7.628	5.475	117.3	4.6	229.11
	LDA+U		5.430	7.794	5.419	117.4	4.6	229.33
	GGA-WC		5.570	7.830	5.497	107.9	3.7	239.74
	GGA-PBE		5.703	8.012	5.639	82.2	4.7	257.65
	GGA-PBEsol	NF	5.585	7.869	6.108	95.5	4.0	268.43
KCoF ₃	GGA+U-PBE		5.729	8.048	5.588	82.4	4.6	257.64
	LSDA		5.630	7.822	5.532	104.9	3.4	243.61
	LSDA+U		6.150	8.544	5.684	96.2	4.3	298.66
	GGA-WC		5.742	7.958	5.548	71.8	4.6	253.51
	GGA-PBE		5.686	8.037	5.376	73.0	3.9	245.67
	GGA-PBEsol	FM	5.675	7.938	5.637	115.7	3.4	253.93
	GGA+U-PBE		6.205	8.743	6.178	78.3	3.0	335.15

Matériau	Approche	Configuration	a	b	с	B(GPa)	B'	Vol(Å ³)	
		Orthorhom	oique- Pr	ıma					
	LDA		5.512	7.734	5.465	112.4	4.7	232.97	
	LDA+U		5.721	8.092	5.467	112.2	4.7	253.09	
	GGA-WC		5.625	7.925	5.542	92.7	4.5	247.05	
	GGA-PBE		5.603	7.736	5.662	78.3	4.6	245.41	
	GGA-PBEsol	NF	5.513	7.914	5.560	93.2	4.6	242.58	
	GGA+U-PBE		5.734	8.130	5.619	87.2	3.7	261.94	
KNiF3									
	LSDA		5.584	7.868	5.427	104.7	4.3	238.43	
	LSDA+U		5.787	8.079	5.771	102.1	4.5	269.81	
	GGA-WC		5.701	8.010	5.586	87.4	4.5	255.08	
	GGA-PBE		5.609	7.904	5.508	75.1	4.3	244.18	
	GGA-PBEsol	FM	5.639	7.936	5.468	81.4	4.7	244.69	
	GGA+U-PBE		6.181	8.794	6.042	71.4	4.5	328.41	

<u>**Tableau II.21**</u>: Les paramètres d'équilibre de la structure Orthorhombique (**Pnma**) : $(\mathbf{a}_0, \mathbf{b} \text{ et c en } \mathbf{\dot{A}})$, le volume **V** en $\mathbf{\dot{A}}^3$, le module de compressibilité **B** en (**GPa**) et sa dérivée **B'** pour le **Fluorure KNiF**₃

<u>**Tableau II.22**</u>: Les paramètres d'équilibre de la structure Orthorhombique (**Pnma**) : (\mathbf{a}_0 , \mathbf{b} et c en Å), le volume V en Å³, le module de compressibilité B en (**GPa**) et sa dérivée B' pour le Fluorure **TiFeF**₃

Materiau	Approche	Configuration	a	b	c	B(GPa)	В'	Vol(Å ³)
		Orthorhomb	oique- Pr	ıma				
	LDA		5.387	7.464	5.395	139.3	4.9	216.92
	LDA+U		5.574	7.625	5.339	141.0	4.7	226.91
	GGA-WC		5.272	8.522	5.076	165.7	3.2	228.05
	GGA-PBE		5.331	7.989	5.414	104.5	3.5	230.57
	GGA-PBEsol	NF	5.434	7.778	5.398	130.2	3.8	228.14
	GGA+U-PBE		5.582	7.842	5.509	116.7	4.9	241.15
TiFeF ₃								
	LSDA		5.387	8.197	5.347	105.4	3.3	236.10
	LSDA+U		5.793	8.240	5.778	89.5	3.8	275.80
	GGA-WC		5.674	8.073	5.632	104.4	2.5	257.98
	GGA-PBE		5.413	8.136	5.359	85.2	3.2	236.01
	GGA-PBEsol	FM	5.618	8.021	5.520	102.8	4.9	248.74
	GGA+U-PBE		5.953	8.359	5.960	90.7	4.7	296.57

<u>Tableau II.23 :</u> les paramètres d'équilibre de la structure Orthorhombique (Pbnm) : (a ₀ , b et c en Å),
le volume V en $Å^3$, le module de compressibilité B en (GPa) et sa dérivée B' pour le fluorure
CsFeF3, NaFeF3, et RbFeF3,

Orthorhombique (Pbnm)								
Matériau	Approche	Configuration	a	b	с	B(GPa)	В'	Vol(Å ³)
CsFeF3	GGA+U		5.745	5.847	8.001	71.7	3.9	268.76
NaFeF ₃	GGA+U		5.349	5.453	7.652	69.8	4.2	223.19
RbFeF 3	GGA+U		5.500	5.657	7.861	67.2	4.5	244.58

Nous avons étudié deux configurations Non-ferromagnétiques (NF) et Ferromagnétique (FM) pour tous les matériaux Fluorures étudiés dans cette thèse. La figure (figure II.6) représente l'optimisation du volume de la structure Cubique (Pm-3m) en fonction de l'énergie totale pour chaque Fluorure respectivement pour les deux configurations (NF) et (FM) en utilisant les approximations L(S)DA, L(S)DA+U, GGA et GGA+U pour tous les matériaux Fluorures traités dans cette thèse et aussi pour les différentes structures cristallines choisies (Cubique (Pm-3m), Hexagonale-4H (P63/mmc), Orthorhombique (Pnma) et Orthorhombique (Pbnm)). Les figures représentées ci-dessous illustrent clairement que les matériaux pérovkites Fluorures de la forme ABF3 ont tous un caractère Ferromagnétique (FM).

<u>Figure II.5</u>: Optimisation du volume du **Fluoro-perovskite CsFeF3** dans la phase cubique en utilisant la **LDA**, **GGA**, **LDA**+U, et **GGA**+U approches respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM).

<u>Figure II.6</u>: Optimisation du volume du Fluoro-perovskite NaFeF₃ dans la phase cubique en utilisant la LDA, GGA, LDA+U, et GGA+U approches respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM).

<u>Figure II.7</u>: Optimisation du volume du Fluoro-perovskite RbFeF₃ dans la phase cubique en utilisant la LDA, GGA, LDA+U, et GGA+U approches respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM).

<u>Figure II.8</u>: Optimisation du volume du Fluoro-perovskite KFeF3 dans la phase cubique en utilisant la LDA, GGA, LDA+U, et GGA+U approches respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM).

<u>Figure II.9</u>: Optimisation du volume du **Fluoro-perovskite KCoF**₃ dans la phase cubique en utilisant la LDA, GGA, LDA+U, et GGA+U approches respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM).

<u>Figure II.10</u>: Optimisation du volume du Fluoro-perovskite KNiF₃ dans la phase cubique en utilisant la LDA, GGA, LDA+U, et GGA+U approches respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM).

<u>Figure II.112</u>: Optimisation du volume du Fluoro-perovskite TiFeF₃ dans la phase cubique en utilisant la LDA, GGA, LDA+U, et GGA+U approches respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM).

<u>Figure II.12</u>: Optimisation du volume du Fluoro-perovskite TIFeF3 dans la phase cubique en utilisant la LDA, GGA, LDA+U, et GGA+U approches respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM).

II.2.2 La structure Hexagonale 4H :

<u>Figure II.13</u>: Optimisation du volume du Fluoro-perovskite CsFeF₃ dans la phase Hexagonale-4H en utilisant la LDA, GGA, LDA+U, et GGA+U approches respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM).

<u>Figure II.14</u>: Optimisation du volume du Fluoro-perovskite NaFeF₃ dans la phase Hexagonale-4H en utilisant la LDA, GGA, LDA+U, et GGA+U approches respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM).

Figure II.15 : Optimisation du volume du Fluoro-perovskite RbFeF3 dans la phase Hexagonale-4H en utilisant la LDA, GGA, LDA+U, et GGA+U approches respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM).

Figure II.16 : Optimisation du volume du Fluoro-perovskite KFeF3 dans la phase Hexagonale-4H en utilisant la LDA, GGA, LDA+U, et GGA+U approches respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM).

<u>Figure II.17</u>: Optimisation du volume du Fluoro-perovskite KCoF3 dans la phase Hexagonale-4H en utilisant la LDA, GGA, LDA+U, et GGA+U approches respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM).

<u>Figure II.18</u>: Optimisation du volume du Fluoro-perovskite KNiF₃ dans la phase Hexagonale-4H en utilisant la LDA, GGA, LDA+U, et GGA+U approches respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM).

<u>Figure II.19</u>: Optimisation du volume du Fluoro-perovskite TiFeF₃ dans la phase Hexagonale-4H en utilisant la LDA, GGA, LDA+U, et GGA+U approches respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM).

II.2.3 La structure Orthorhombique (Pnma):

<u>Figure II.20</u>: Optimisation du volume du Fluoro-perovskite CsFeF₃ dans la phase Orthorhombique-Pnma en utilisant la LDA, GGA, LDA+U, et GGA+U approches respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM).

<u>Figure II.21</u>: Optimisation du volume du Fluoro-perovskite NaFeF₃ dans la phase Orthorhombique-Pnma en utilisant la LDA, GGA, LDA+U, et GGA+U approches respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM).

Figure II.22: Optimisation du volume du Fluoro-perovskite RbFeF₃ dans la phase Orthorhombique-Pnma en utilisant la LDA, GGA, LDA+U, et GGA+U approches respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM).

<u>Figure II.23</u>: Optimisation du volume du Fluoro-perovskite KFeF3 dans la phase Orthorhombique-Pnma en utilisant la LDA, GGA, LDA+U, et GGA+U approches respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM).

<u>Figure II.24</u>: Optimisation du volume du Fluoro-perovskite KCoF₃ dans la phase Orthorhombique-Pnma en utilisant la LDA, GGA, LDA+U, et GGA+U approches respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM).

<u>Figure II.25</u>: Optimisation du volume du Fluoro-perovskite KNiF₃ dans la phase Orthorhombique-Pnma en utilisant la LDA, GGA, LDA+U, et GGA+U approches respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM).

<u>Figure II.26</u>: Optimisation du volume du Fluoro-perovskite TiFeF₃ dans la phase Orthorhombique-Pnma en utilisant la LDA, GGA, LDA+U, et GGA+U approches respectivement pour la configuration Non-Ferromagnétique (NF) et Ferromagnétique (FM).

II.2.3 L'optimisation des trois structures cristallines Cubique (Pm-3m), Hexagonale-4H (P63/mmc) et l'Orthorhombique (Pnma) :

Figure II.27: Optimisation du volume en fonction de l'énergie du Fluoro-perovskite CsFeF₃ pour la phase Cubique (Pm-3m), la phase Hexagonale-4H (P63/mmc) et la phase Orthorhombique (Pnma).

<u>Figure II.28 :</u> Optimisation du volume en fonction de l'énergie du Fluoro-perovskite NaFeF₃ pour la phase Cubique (**Pm-3m**), la phase Hexagonale-4H (**P63/mmc**) et la phase Orthorhombique (**Pnma**).

Figure II.29 : Optimisation du volume en fonction de l'énergie du Fluoro-perovskite RbFeF3 pour la phase Cubique (Pm-3m), la phase Hexagonale-4H (P63/mmc) et la phase Orthorhombique (Pnma).

Figure II.30: Optimisation du volume en fonction de l'énergie du Fluoro-perovskite KFeF3 pour la phase Cubique (Pm-3m), la phase Hexagonale-4H (P63/mmc) et la phase Orthorhombique (Pnma).

Figure II.31 : Optimisation du volume en fonction de l'énergie du Fluoro-perovskite KCoF₃ pour la phase Cubique (Pm-3m), la phase Hexagonale-4H (P63/mmc) et la phase Orthorhombique (Pnma).

Figure II.32: Optimisation du volume en fonction de l'énergie du Fluoro-perovskite KNiF₃ pour la phase Cubique (Pm-3m), la phase Hexagonale-4H (P63/mmc) et la phase Orthorhombique (Pnma).

Figure II.33: Optimisation du volume en fonction de l'énergie du Fluoro-perovskite TiFeF₃ pour la phase Cubique (Pm-3m), la phase Hexagonale-4H (P63/mmc) et la phase Orthorhombique (Pnma).

D'après les résultats obtenus à partir de l'optimisation du volume en fonction de l'énergie qui ont été calculé pour les deux configurations (Non-Ferromagnétique (NF), et Ferromagnétique (FM)) en utilisant quatre approximations respectivement : LDA, GGA, LDA+U, et GGA+U, on peut dire que tous les matériaux Fluorures (Fluoro-perovskites) CsFeF3, NaFeF3, RbFeF3, KFeF3, KCoF3, KNiF3, TiFeF3, et TlFeF3, étudiés dans cette thèse prouvent un comportement Ferromagnétique (FM). Ces résultats étaient les mêmes pour les quatre structures cristallines (Cubique (Pm-3m) (Figure II.6, II.7, II.8, II.9, II.10, II.11, II.12, et II.13), Hexagonal-4H (P63/mmc) (Figure II.14, II.15, II.16, II.17, II.18, II.19, et II.20), Orthorhombique (Pnma) (Figure II.21, II.22, II.23, II.24, II.25, II.26, et II.27), et Orthorhombique (Pbnm) investis dans cette thèse.

Tandis que les (Figure II.28, II.29, II.30, II.31, II.32, II.33, et II.34), illustrent l'optimisation du volume en fonction de l'énergie totale des matériaux Fluorures respectivement CsFeF3, NaFeF3, RbFeF3, KFeF3, KCoF3, KNiF3, et TiFeF3, en utilisant trois structures cristallines différentes (Cubique (Pm-3m), Hexagonal-4H (P63/mmc) et Orthorhombique (Pnma)). Les résultats de cette optimisation sont en bon accord avec plusieurs travaux théoriques et expérimentaux de d'autres chercheurs scientifiques.

Les résultats illustrés ci montrent que **le Fluorure CsFeF**₃ est plus stable dans la structure Hexagonale-**4H**, Le Fluorure **NaFeF**₃ adopte la structure Orthorhombique **Pnma**. Le Fluorure **RbFeF**₃ est plus stable dans la structure Hexagnale-**4H**. Tandis que pour les **Fluorures KFeF**₃, **KCoF**₃, et **KNiF**₃, il est remarquable qu'il existe un intervalle d'intersection entre les deux structures cristallines (Cubique et Hexagonale-4H), ensuite on voit très bien qu'ils adoptent la structure Hexagonale-4H. Pour le Fluorure TiFeF₃, c'est une prédiction à son comportement qu'il adopte la structure Orthorhombique Pnma.

C'est depuis (1966) que le groupe de chercheurs scientifiques M. Kestigian and al. [70] ont démontré en utilisant la diffraction des rayons X que le CsFeF₃ illustre la distorsion hexagonal. On note que la structure Hexagonale a était aussi confirmé par les travaux de S. J. Pickart et H. A. Alperin en (1971) [71] comme nous avons cité ci-dessus en définissant le Fluorure CsFeF₃. Le résultat que nous avons obtenu s'accorde parfaitement aux travaux faits auparavant.

Pour le Fluorure NaFeF₃ il est vraiment remarquable qu'il adopte la structure orthorhombique Pnma, c'est la structure où il est plus stable. Là aussi le résultat que nous avons obtenu est en bon accord avec les autres travaux. Le chercheur scientifique Richard J. D. Tilley en (2016) [78], a mentionné dans son livre « Perovskites » que le Fluorure NaFeF₃ adopte la structure orthorhombique Pnma avec les paramètres suivant (a= 0.48904nm, b= 0.52022nm, et c= 0.71403nm). Mais il a aussi noté qu'en étudiant différant matériaux pérovskites de la forme GdFeO₃, ces matériaux Fluoro-pérovskite sont pseudo-cubique avec (a= 0.38967nm) à une transition qui se fait à 1634°K, ensuite ils peuvent être orthorhombique (Pbnm) avec les paramètres suivant (a= 0.788006nm, et c= 0.540359nm).

Le Fluorure RbFeF₃ est considéré comme un matériau inhabituel, puisqu'il a un caractère un peu différent des autres Fluorures. Plusieurs chercheurs scientifiques N. N. Greenwood, T. C. Gibbs (1971) [73-74], E. M. Gyorgy, et al. [75] ont considéré qu'il est cubique avec un groupe d'espace (Pm-3m). Les chercheurs ont démontré qu'il était Antiferromagnétique (AFM) mais au-dessous de 87 K, il existe une autre transition qui conduit vers un état Ferrimagnétique avec deux sites ferreux [11] inégaux et un spectre complexe à partir des deux modèles hyperfins à six lignes super-imposés.

A prés plusieurs années, c'est juste en (2003) que le groupe de E. M. Gyorgy, et al. [75] a montré que lors du refroidissement à 87 ° K, le Fluorure RbFeF3 subit une transition de premier ordre d'une phase Antiferromagnétique tétragonale à une phase Ferromagnétique orthorhombique où c / a est supérieur à 1,003. Ce que nous avons trouvé s'accorde aussi parfaitement bien avec ces résultats, puis qu'on remarque deux phases. La première phase La structure Orthorhombique Pnma est en dessous de la structure Hexagonale-4H, ce qui signifie dans cet intervalle ce fluorure est plus stable dans la structure orthorhombique, ensuite dans la deuxième phase il est claire que c'est tout à fait le contraire.

On retrouve que la structure Hexagonale-**4H** est en dessous de la structure Orthorhombique **Pnma**, qui explique que dans cet intervalle notre **Fluorure** devient plus stable dans la structure Hexagonal-**4H**. Il est vraiment clair que le **Fluorure RbFeF3** subit des transitions de phase selon la gamme de température donnée, et cela influe directement sur son comportement électronique et magnétique.

Concernant les trois Fluorures KFeF3, KCoF3, et KNiF3, la plupart des anciens travaux fait par les chercheurs suggèrent la structure cubique (Pm-3m) pour ces trois Fluorures comme nous avons déjà cité auparavant. N. N. Greenwood [73] a montré que le KNiF3 est cubique, cette structure a été considérée similaire pour le KFeF3, KCoF3, et KNiF3 depuis très longtemps. Les travaux faits par R.V. Pisarevet et al. (1972) [79], D. W. Clack et al. (1972) [80], P. Ganguly et al. (1973) [81] confirment aussi cette structure.

Tandis que R. R. Alfano et al. (1976) [82] a montré que ce Fluorure adopte la structure pérovskite cubique à toute température, et il est Antiferromagnétique AFM en dessous de la température 260°K. D'un autre coté les travaux du groupe chercheurs Atsushi Okazaki et al. (1961) [85] montrent que les structures cristallines des antiferromagnétiques KMnF3, KFeF3, KCoF3, KNiF3 et KCuF3 ont été déterminées au-dessus de la température de Néel (T_N) par la diffraction des rayons X. À la température ambiante (supérieure à T_N), les structures de ces composés sont des pérovskites cubiques dites idéales à l'exception de celle du KCuF3 qui se cristallise sous la forme d'une modification tétragonale (a> c) du type pérovskite. À 78 ° K (en dessous de T_N), les symétries de réseau de KMnF3, KFeF3 et KCoF3 sont respectivement monocliniques et rhomboédriques.

En contrepartie l'étude faite par le chercheur **Paul HAGENMULLER [92]** et publiée dans son livre « **Recherches Récentes Sur Les Composés A Large Domaine D'existence Contenant Un Même Elément A Deux Degrés D'oxydation Différents** » prouve que ce genre de matériau peut avoir une distorsion Hexagonale.

En parallèle une autre étude expérimentale de d'autre chercheurs en disant que l'étude des systémes FeF3, FeF2 MF (M = Li, Na, K, Rb, Cs, TI) a 700°C a permis à de Pape, Tressaud et Portier [92-95] de préparer des composes MFeF3 homologues des bronzes de tungstène, mais présentant une plus grande richesse de structures, sans doute à cause de la plus faible énergie réticulaire des composes Fluorés. Les trois phases hexagonale, quadratique et cubique perovskite se retrouvent pour la série KFeF3 (en montrant la Figure qui illustre La phase hexagonale. L'optimisation que nous avons illustrée pour ces trois fluorures montre bien qu'ils adoptent la structure Hexagonale 4H, ce qui est en bon accord avec les travaux représentés ci-dessous

L'étude des propriétés structurales des matériaux Fluorures considérés pour cette thèse nous a permis d'avoir beaucoup de résultats qui sont de grand intérêt qualitatif et quantitatif. Les tableaux (II.1, II.2, II.3, II.4, II.5, II.6, II7, et II.8,) rassemblent tous les paramètres d'équilibre telles que la constante du réseau a(Å), le volume V(Å³), le module de compressibilité B et sa dérivé B', calculés en utilisant la L(S)DA, la L(S)DA+U, la WC-GGA, la PBE-GGA et la PBE-sol-GGA pour la structure pérovskite cubique idéale respectivement des Fluoro- pérovskites (CsFeF3, NaFeF3, RbFeF3, KFeF3, KCoF3, KNiF3, TiFeF3 et TIFeF3) Les résultats représentés dans ces tableaux sont comparés avec d'autres valeurs théoriques et expérimentales obtenues.

Les tableaux (II.9, II.10, II.11, II.12, II.13, II.14, et II.15) rassemblent tous les paramètres d'équilibre telles que la constante du réseau a(Å), le volume V(Å³), le module de compressibilité B et sa dérivé B', calculés en utilisant la L(S)DA, la L(S)DA+U, la WC-GGA, la PBE-GGA et la PBE-sol-GGA pour la structure pérovskite cubique idéale

respectivement **des Fluoro- pérovskites** (CsFeF3, NaFeF3, RbFeF3, KFeF3, KCoF3, KNiF3, et TiFeF3). Les résultats représentés ici dans ces tableaux sont aussi comparés avec d'autres valeurs théoriques et expérimentales obtenues.

Les tableaux (II.16, II.17, II.18, II.19, II.20, II.21, et II.22) rassemblent tous les paramètres d'équilibre telles que la constante du réseau a(Å), le volume V(Å³), le module de compressibilité B et sa dérivé B', calculés en utilisant la L(S)DA, la L(S)DA+U, la WC-GGA, la PBE-GGA et la PBE-sol-GGA pour la structure pérovskite cubique idéale respectivement des Fluoro- pérovskites (CsFeF₃, NaFeF₃, RbFeF₃, KFeF₃, KCoF₃, KNiF₃, et TiFeF₃). Là aussi nos résultats sont comparés avec d'autres valeurs théoriques et expérimentales obtenues.

A partir de tous ces tableaux que nous avons illustrés dans cette thèse. On remarque que les paramètres de maille de tous les matériaux **Fluorures** calculés en utilisant les deux configurations (**NF** et **FM**) respectivement par les approximations **L**(**S**)**DA**, **L**(**S**)**DA**+**U**, **WC**-**GGA**, **PBE-sol-GGA**, **PBE-GGA** ensuite **GGA**+**U** ont des valeurs croissantes à cet ordre-là. Il est clair que l'approximation **GGA**+**U** donne les meilleures valeurs. Cela a était trouvé pour les quatre structures cristallines considérées dans ce travail (Cubique (**Pm-3m**), Hexagonal-4H (**P63/mmc**), Orthorhombique (**Pnma**) et Orthorhombique (**Pbnm**))

II.3. Les propriétés électroniques et magnétiques

II.3.1.1 Les propriétés magnétiques :

II.3.1.1 Le calcul du moment magnétique :

La structure cubique (Pm-3m):

<u>Tableau II.24 :</u> Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en μ A, μ B, μ F, μ interstitie et μ Cell pour la structure Cubique (Pm-3m) du Fluorure CsFeF3

Structure Cubique (Pm-3m)											
Matériau	Approches	μА	μΒ	μF	µ interstitiel	μCell					
CsFeF3	LSDA	-0.0005	3.335	0.083	0.415	3.832					
	LSDA+U	-0.0029	3.539	0.054	0.291	3.882					
	WC-GGA	-0.0015	3.341	0.078	0.406	3.822					
	PBE –GGA	-0.0003	3.352	0.074	0.425	3.850					
	PBEsol –GGA	-0.0048	3.342	0.071	0.331	3.739					
	GGA+U	-0.0023	3.547	0.046	0.314	3.905					

<u>Tableau II.25</u>: Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en μ A, μ B, μ F, μ interstitie et μ Cell pour la structure Cubique (Pm-3m) du Fluorure NaFeF3.

Structure Cubique (Pm-3m)										
Matériau	Approches	μА	μΒ	μΓ	µ interstitiel	μCell				
NaFeF3	LSDA	-0.0012	3.334	0.090	0.387	3.810				
	LSDA+U	-0.0006	3.553	0.088	0.247	3.888				
	WC-GGA	-0.0013	3.344	0.075	0.400	3.818				
	PBE –GGA	-0.0004	3.355	0.071	0.431	3.857				
	PBEsol –GGA	-0.0010	3.345	0.081	0.400	3.825				
	GGA+U	0.0021	3.592	0.048	0.352	3.994				

Tableau II.26 : Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en μA, μB, μF, μ interstitie etl μCell pour la structure **Cubique (Pm-3m)** du **Fluorure RbFeF3**.

	Structure Cubique (Pm-3m)											
Matériau	Approches	μА	μΒ	μF	µ interstitiel	μCell						
	LSDA	-0.0016	3.332	0.091	0.375	3.794						
	LSDA+U	-0.0010	3.532	0.055	0.307	3.893						
RbFeF3	WC-GGA	-0.0013	3.333	0.101	0.362	3.795						
	PBE –GGA	-0.0005	3.353	0.072	0.430	3.855						
	PBEsol –GGA	-0.0034	3.344	0.069	0.363	3.773						
	GGA+U	-0.0010	3.542	0.043	0.332	3.916						

<u>Tableau II.27 :</u> Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en μA, μB, μF, μ interstitie etl μCell pour la structure Cubique (Pm-3m) du Fluorure KFeF3.

Structure Cubique (Pm-3m)										
Matériau	Approches	μΚ	μM	μΓ	µ interstitiel	μCell				
KFeF3	LSDA	-0.0014	3.333	0.088	0.392	3.812				
	LSDA+U	-0.0024	3.522	0.068	0.272	3.860				
	WC-GGA	-0.0008	3.342	0.079	0.418	3.838				
	PBE –GGA	-0.0007	3.353	0.074	0.423	3.850				
	PBEsol –GGA	-0.0006	3.347	0.075	0.427	3.848				
	GGA+U	-0.0007	3.546	0.043	0.337	3.925				

<u>Tableau II.28 :</u> Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en μA, μB, μF, μ interstitie et μCell pour la structure Cubique (Pm-3m) du Fluorure KCoF3.

Structure Cubique (Pm-3m)										
Matériau	Approches	μΚ	μM	μΓ	µ interstitiel	µCell				
KCoF ₃	LSDA	-0.0016	2.345	0.093	0.139	2.575				
	LSDA+U	-0.0014	2.663	0.079	0.102	2.843				
	WC-GGA	-0.0006	2.533	0.087	0.206	2.825				
	PBE –GGA	-0.0005	2.539	0.082	0.214	2.835				
	PBEsol –GGA	-0.0005	2.533	0.083	0.216	2.832				
	GGA+U	-0.0003	2.670	0.053	0.170	2.893				

<u>Tableau II.29 :</u> Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en μA, μB, μF, μ interstitie etl μCell pour la structure Cubique (Pm-3m) du Fluorure KNiF3.

	Structure Cubique (Pm-3m)												
Matériau	Approches	μΚ	μM	μΓ	µ interstitiel	μCell							
KNiF3	LSDA	-0.0012	1.411	0.076	0.050	1.536							
	LSDA+U	-0.0005	1.773	0.054	0.064	1.891							
	WC-GGA	-0.0010	1.670	0.087	0.067	1.823							
	PBE –GGA	-0.0010	1.677	0.088	0.060	1.824							
	PBEsol –GGA	0.0011	1.671	0.088	0.063	1.823							
	GGA+U	-0.0007	1.777	0.056	0.053	1.885							

<u>**Tableau II.30 :**</u> Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en μ A, μ B, μ F, μ interstitie et μ Cell pour la structure Cubique (Pm-3m) du Fluorure TiFeF3.

	Structure Cubique (Pm-3m)											
Matériau	Approches	μА	μΒ	μF	µ interstitiel	μCell						
<i>TiFeF</i> 3	LSDA	1.995	2.468	0.105	0.725	5.293						
	LSDA+U	1.820	3.575	0.060	0.652	6.080						
	WC-GGA	2.029	3.192	0.116	0.976	6.313						
	PBE –GGA	2.041	3.224	0.090	1.028	6.383						
	PBEsol –GGA	2.026	3.239	0.077	1.040	6.382						
	GGA+U	2.042	3.217	0.100	1.017	6.376						

<u>Tableau II.31 :</u> Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en μ A, μ B, μ F, μ interstitie et μ Cell pour la structure Cubique (Pm-3m) du Fluorure TIFeF3.

		Structure	Cubique (Pn	n-3m)		
Matériau	Approches	μΚ	μΜ	μF	µ interstitiel	µ Cell
TlFeF3	LSDA	-0.001	3.330	0.095	0.384	3.808
	LSDA+U	-0.011	3.577	0.055	0.266	3.887
	WC-GGA	-0.011	3.588	0.052	0.231	3.860
	PBE –GGA	-0.011	3.587	0.053	0.232	3.862
	PBEsol –GGA	-0.011	3.588	0.052	0.231	3.861
	GGA+U	-0.001	3.347	0.083	0.405	4.001

a) La structure Hexagonale-4H (P63/mmc):

<u>Tableau II.32</u>: Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en μ A1, μ A2, μ B, μ F1, μ F2, μ interstitiel et μ _{Cell} pour la structure Hexagonale- 4H (P63/mmc) du Fluorure CsFeF3

	Structure Hexagonale- 4H (P63/mmc)										
Matériau	Approches	μΑ1	μA2	μΒ	μF_1	μF ₂	µ interstitiel	µCell			
CsFeF3	LSDA	0.0010	-0.001	3.409	0.095	0.101	1.182	4.788			
	LSDA+U	0.0010	-0.002	3.414	0.091	0.097	0.871	4.474			
	WC-GGA	0.0001	-0.001	3.427	0.081	0.087	1.125	4.719			
	PBE -GGA	-0.0010	-0.003	3.434	0.078	0.084	1.215	4.807			
	PBEsol –GGA	0.0001	-0.001	3.430	0.081	0.087	1.112	4.700			
	GGA+U	-0.001	-0.002	3.437	0.077	0.084	0.962	4.557			

<u>Tableau II.33</u>: Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en μ_{A1} , μ_{A2} , μ_{B} , μ_{F1} , μ_{F2} , μ interstitiel et μ_{Cell} pour la structure Hexagonale- 4H (P63/mmc) du Fluorure NaFeF3

	Structure Hexagonale- 4H (P63/mmc)									
Matériau	Approches	μA_1	μA_2	μΒ	μF_1	μF_2	µ interstitiel	µCell		
NaFeF3	LSDA	0.0021	-0.0004	3.395	0.108	0.107	1.119	4.749		
	LSDA+U	0.0011	-0.0005	3.404	0.098	0.100	1.185	4.787		
	WC-GGA	0.0003	-0.0010	3.411	0.098	0.098	0.994	4.600		
	PBE -GGA	0.0006	-0.0001	3.440	0.082	0.086	1.225	4.834		
	PBEsol –GGA	0.0004	-0.0010	3.412	0.098	0.098	0.990	4.597		
	GGA+U	0.0005	-0.0001	3.447	0.082	0.086	1.226	4.842		

<u>Tableau II.34 :</u> Les valeurs calculées à l'aide de Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en μA1, μA2, μB, μF1, μF2, μ interstitiel et μcel pour la structure Hexagonale- 4H (P63/mmc) du Fluorure RbFeF3

			Structure H	Iexagonale	- 4H (P63/	mmc)		
Matériau	Approches	μA_1	μA_2	μΒ	μF_1	μF ₂	µ interstitiel	μCell
<i>RbFeF</i> 3	LSDA	0.0006	-0.0002	3.417	0.086	0.093	1.248	4.844
	LSDA+U	0.0010	-0.0001	3.410	0.094	0.099	1.196	4.800
	WC-GGA	0.0001	-0.0001	3.429	0.082	0.088	1.256	4.855
	PBE -GGA	-0.0010	-0.0020	3.436	0.077	0.082	0.900	4.492
	PBEsol –GGA	0.0001	-0.0001	3.427	0.088	0.092	1.204	4.811
	GGA+U	-0.0020	-0.0020	3.438	0.089	0.095	0.978	4.560

<u>Tableau II.35 :</u> Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en μA1, μA2, μB, μF1, μF2, μ interstitiel et μCell pour la structure Hexagonale- 4H (P63/mmc) du Fluorure KFeF3

	Structure Hexagonale- 4H											
Matériau	Approches	μA_1	μA2	μΒ	μF_1	μF_2	µ interstitiel	μCell				
KFeF3	LSDA	0.0011	-0.0004	3.399	0.106	0.108	1.111	4.733				
	LSDA+U	0.0007	-0.0002	3.408	0.096	0.100	1.183	4.787				
	WC-GGA	-0.0001	-0.0011	3.412	0.097	0.098	0.995	4.601				
	PBE -GGA	-0.0011	-0.0020	3.438	0.076	0.081	0.919	4.511				
	PBEsol –GGA	-0.0001	-0.0021	3.413	0.097	0.099	0.984	4.591				
	GGA+U	-0.0010	-0.0021	3.436	0.079	0.084	0.960	4.556				

<u>Tableau II.36 :</u> Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en μ A1, μ A2, μ B, μ F1, μ F2, μ interstitiel et μ Cell pour la structure Hexagonale- 4H (P63/mmc) du Fluorure KCoF3

	Structure Hexagonale- 4H										
Matériau	Approches	μA_1	μA_2	μΒ	μF_1	μF_2	µ interstitiel	µCell			
KCoF3	LSDA	0.0020	0.0001	1.581	0.028	0.076	0.329	2.016			
	LSDA+U	0.0011	-0.0002	2.552	0.099	0.117	0.492	3.260			
	WC-GGA	-0.0002	-0.0013	2.564	0.092	0.109	0.380	3.144			
	PBE -GGA	0.0004	-0.0002	2.585	0.079	0.098	0.587	3.349			
	PBEsol –GGA	-0.0001	-0.0011	2.566	0.093	0.110	0.361	3.129			
	GGA+U	0.0004	-0.0001	2.582	0.082	0.101	0.569	3.334			

<u>Tableau II.37</u>: Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en μ_{A1} , μ_{A2} , μ_{B} , μ_{F1} , μ_{F2} , μ interstitiel et μ_{Cell} pour la structure Hexagonale- 4H (P63/mmc) du Fluorure KNiF3

			Stru	cture Hexa	agonale- 41	Ŧ		
Matériau	Approches	μA_1	μA_2	μΒ	μF_1	μF_2	µ interstitiel	μCell
KNiF3	LSDA	0.0022	-0.0006	1.634	0.085	0.131	0.002	1.853
	LSDA+U	0.0011	-0.0005	1.634	0.080	0.130	0.198	2.043
	WC-GGA	0.0011	-0.0015	1.655	0.074	0.117	0.080	1.926
	PBE -GGA	-0.0040	-0.0058	1.658	0.068	0.109	-0.474	1.361
	PBEsol –GGA	0.0001	-0.0016	1.654	0.075	0.119	0.064	1.911
	GGA+U	0.0006	-0.0002	1.668	0.069	0.112	0.234	2.084
KNiF3	LSDA LSDA+U WC-GGA PBE -GGA PBEsol –GGA GGA+U	0.0022 0.0011 0.0011 -0.0040 0.0001 0.0006	-0.0006 -0.0005 -0.0015 -0.0058 -0.0016 -0.0002	1.634 1.634 1.655 1.658 1.654 1.668	$\begin{array}{c} 0.085\\ 0.080\\ 0.074\\ 0.068\\ 0.075\\ 0.069\end{array}$	$\begin{array}{c} 0.131 \\ 0.130 \\ 0.117 \\ 0.109 \\ 0.119 \\ 0.112 \end{array}$	0.002 0.198 0.080 -0.474 0.064 0.234	1. 2. 1. 1. 1. 2.

<u>**Tableau II.38**</u>: Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en μ A1, μ A2, μ B, μ F1, μ F2, μ interstitiel et μ Cell pour la structure Hexagonale- 4H (P63/mmc) du Fluorure TiFeF3

		Structure Hexagonale- 4H											
Matériau	Approches	μA_1	μA2	μΒ	μF_1	μF_2	µ interstitiel	μCell					
TiFeF3	LSDA	1.893	1.902	3.264	0.115	0.101	3.993	11.268					
	LSDA+U	1.729	1.740	3.196	0.104	0.087	3.924	11.584					
	WC-GGA	1.938	1.939	3.288	0.111	0.094	4.020	11.390					
	PBE -GGA	1.956	1.953	3.319	0.108	0.094	3.878	11.308					
	PBEsol –GGA	1.912	1.930	3.296	0.111	0.095	4.067	11.411					
	GGA+U	1.750	1.754	3.271	0.085	0.074	4.870	11.804					

La structure Orthorhombique (Pnma):

<u>Tableau II.39 :</u> Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en μA, μB, μF1, μF2, μ interstitiel et μCell pour la structure Orthorhombique (Pnma) du Fluorure CsFeF3

	Structure Orthorhombique (Pnma)										
Mat <u>ériau</u>	Approche	μΑ	μB	μF1	μF2	µ interstitiel	<u>µC</u> ell				
	LSDA	-0.0001	3.411	0.066	0.094	1.282	4.853				
	LSDA+U	-0.0008	3.559	0.043	0.037	1.235	4.873				
CsFeF3	WC-GGA	0.0006	3.431	0.068	0.078	1.353	4.931				
	PBE -GGA	0.0008	3.444	0.062	0.074	1.365	4.946				
	PBEsol – GGA	-0.0021	3.422	0.080	0.088	1.116	4.704				
	PBE-GGA+U	-0.0010	3.576	0.033	0.024	1.202	4.834				

<u>Tableau II.40 :</u> Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en μ A, μ B, μ F1, μ F2, μ interstitiel et μ Cell pour la structure Orthorhombique (Pnma) du Fluorure NaFeF3

	Structure Orthorhombique (Pnma)											
Matériau	Approche	μA	μB	μFı	μF2	µ interstitiel	μCell					
	LSDA	-0.0010	3.408	0.104	0.095	1.132	4.738					
	LSDA+U	-0.0001	3.544	0.057	0.056	1.148	4.805					
NaFeF ₃	WC-GGA	-0.0021	3.421	0.083	0.089	1.093	4.684					
	PBE -GGA	-0.0011	3.438	0.074	0.082	1.222	4.815					
	PBEsol – GGA	-0.0001	3.408	0.110	0.111	1.033	4.662					
	PBE-GGA+U	-0.0001	3.570	0.043	0.032	1.285	4.930					

<u>Tableau II.41</u>: Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en μA, μB, μF1, μF2, μ interstitiel et μCell pour la structure Orthorhombique (Pnma) du Fluorure RbFeF3

Structure Orthorhombique (Pnma)											
Approche	μA	μB	μF1	μF2	µ interstitiel	µCell					
LSDA	-0.0041	3.410	0.095	0.089	1.034	4.624					
LSDA+U	-0.0011	3.549	0.048	0.048	1.130	4.774					
WC-GGA	-0.0002	3.431	0.073	0.077	1.358	4.939					
PBE -GGA	0.0001	3.442	0.068	0.077	1.338	4.925					
PBEsol – GGA	-0.0030	3.423	0.085	0.086	1.096	4.687					
PBE-GGA+U	0.0002	3.578	0.022	0.028	1.372	5.000					
	Approche LSDA LSDA+U WC-GGA PBE -GGA PBEsol – GGA PBE-GGA+U	Approche μA LSDA -0.0041 LSDA+U -0.0011 WC-GGA -0.0002 PBE -GGA 0.0001 PBEsol – GGA -0.0030 PBE-GGA+U 0.0002	Approche μA μB LSDA -0.0041 3.410 LSDA+U -0.0011 3.549 WC-GGA -0.0002 3.431 PBE -GGA 0.0001 3.442 PBEsol – GGA -0.0030 3.423 PBE-GGA+U 0.0002 3.578	Structure Orthorhombique (Pnma) Approche μA μB μF1 LSDA -0.0041 3.410 0.095 LSDA+U -0.0011 3.549 0.048 WC-GGA -0.0002 3.431 0.073 PBE -GGA 0.0001 3.442 0.068 PBEsol - GGA -0.0030 3.423 0.085 PBE-GGA+U 0.0002 3.578 0.022	Structure Orthorhombique (Pnma) Approche μA μB μF1 μF2 LSDA -0.0041 3.410 0.095 0.089 LSDA+U -0.0011 3.549 0.048 0.048 WC-GGA -0.0002 3.431 0.073 0.077 PBE -GGA 0.0001 3.442 0.068 0.077 PBEsol - GGA -0.0030 3.423 0.085 0.086 PBE-GGA+U 0.0002 3.578 0.022 0.028	Approche μA μB μF1 μF2 μ interstitiel LSDA -0.0041 3.410 0.095 0.089 1.034 LSDA+U -0.0011 3.549 0.048 0.048 1.130 WC-GGA -0.0002 3.431 0.073 0.077 1.358 PBE -GGA 0.0001 3.442 0.068 0.077 1.338 PBEsol - GGA -0.0030 3.423 0.085 0.086 1.096 PBE-GGA+U 0.0002 3.578 0.022 0.028 1.372					

<u>Tableau II.42</u>: Les valeurs calculées à l'aide de (*LSDA*, *LSDA+U*, *WC-GGA*, *PBE –GGA*, *PBEsol – GGA* et *GGA+U*) respectivement du moment magnétique total, les moments magnétiques partiels en μ_A , μ_B , μ_{F1} , μ_{F2} , μ interstitiel et μ Cell pour la structure Orthorhombique (Pnma) du Fluorure KFeF3

		Structure O	rthorhombio	que (Pnma)			
Matériau	Approche	μΑ	μB	μFı	μF2	µ interstitiel	μCell
		-0.0020	3 411	0 098	0.092	1 139	4 738
	LSDA LSDA+U	-0.0011	3.543	0.057	0.052	1.112	4.764
KFeF3	WC-GGA	-0.0001	3.425	0.087	0.085	1.265	4.862
	PBE -GGA	-0.0010	3.435	0.068	0.085	1.207	4.794
	PBEsol – GGA	-0.0030	3.420	0.098	0.088	1.049	4.652
	PBE-GGA+U	-0.0002	3.559	0.050	0.047	1.191	4.847

<u>Tableau II.43</u>: Les valeurs calculées à l'aide de (*LSDA*, *LSDA*+*U*, *WC*-*GGA*, *PBE* –*GGA*, *PBEsol* –*GGA* et *GGA*+*U*) respectivement du moment magnétique total, les moments magnétiques partiels en μA , μB , $\mu F1$, $\mu F2$, μ *interstitiel et \muCell* pour la structure **Orthorhombique (Pnma)** du Fluorure **KCoF**₃

Structure Orthorhombique (Pnma)										
Matériau	Approche	μΑ	μB	μF1	μF2	µ interstitiel	µCell			
	LSDA	-0.0006	2.568	0.102	0.096	0.545	3.310			
	LSDA+U	-0.0008	2.698	0.049	0.051	0.560	3.357			
KCoF ₃	WC-GGA	-0.0003	2.585	0.080	0.079	0.705	3.448			
	PBE -GGA	-0.0004	2.596	0.073	0.081	0.671	3.420			
	PBEsol – GGA	-0.0006	2.579	0.104	0.096	0.503	3.281			
	PBE-GGA+U	-0.0001	2.707	0.051	0.052	0.550	3.360			

<u>**Tableau II.44**</u>: Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en μ A, μ B, μ F1, μ F2, μ interstitiel et μ Cell pour la structure Orthorhombique (Pnma) du Fluorure KNiF₃

	Struct						
Matériau	Approche	μΑ	μB	μF1	μF2	µ interstitiel	μCell
	LSDA	-0.0001	1.642	0.094	0.101	0.188	2.025
	LSDA+U	-0.0006	1.802	0.046	0.047	0.181	2.076
KNiF3	WC-GGA	-0.0002	1.683	0.085	0.088	0.218	2.074
	PBE -GGA	-0.0002	1.691	0.080	0.083	0.239	2.093
	PBEsol – GGA	-0.0027	1.679	0.087	0.090	0.252	2.099
	PBE-GGA+U	-0.0001	1.805	0.048	0.049	0.187	2.090

Tableau II.45 :Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE –GGA, PBEsol-GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiquespartiels en μ A, μ B, μ F1, μ F2, μ interstitiel et μ Cell pour la structure Orthorhombique (Pnma) duFluorure TiFeF3

Structure Orthorhombique (Pnma)										
Matériau	Approche	μA	μΒ	μF1	μF ₂	µ interstitiel	µCell			
	LSDA	1.800	3.135	0.029	0.023	1.991	7.278			
	LSDA+U	1.822	3.374	0.072	0.095	2.024	7.387			
TiFeF 3	WC-GGA	1.976	3.195	0.080	0.084	3.341	8.676			
	PBE -GGA	1.995	3.213	0.078	0.077	3.266	8.629			
	PBEsol – GGA	1.989	3.215	0.077	0.075	3.261	8.617			
	PBE-GGA+U	1.835	3.579	0.047	0.049	2.708	8.218			

> <u>La structure Orthorhombique (Pbnm):</u>

<u>Tableau II.46 :</u> Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en μA, μB, μF1, μF2, μ interstitiel et μCell pour la structure Orthorhombique (Pbnm) du Fluorure CsFeF3

Structure Orthorhombique (Pbnm)											
Matériau	Approche	μΑ	μΒ	μFı	μF2	µ interstitiel	μCell				
CsFeF3	PBE -GGA PBE-GGA+U	-0.0021 -0.0076	2.753 3.173	0.015 0.038	0.012 0.043	1.207 0.857	3.985 4.103				

<u>Tableau II.47 :</u> Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE –GGA, PBEsol –GGA et GGA+U) respectivement du moment magnétique total, les moments magnétiques partiels en μA, μB, μF1, μF2, μ interstitiel et μCell pour la structure Orthorhombique (Pbnm) du Fluorure NaFeF3

	Structure Orthorhombique (Pbnm)											
Matériau	Approche	μA	μΒ	μFı	μF2	µ interstitiel	μCell					
NaFeF3	PBE -GGA PBE-GGA+U	-0.0040 -0.0090	3.187 3.575	0.093 0.179	0.092 0.180	0.515 0.340	3.883 4.265					

<u>Tableau II.48 :</u> Les valeurs calculées à l'aide de (LSDA, LSDA+U, WC-GGA, PBE –GGA, PBEsol –GGA et G GA+U) respectivement du moment magnétique total, les moments magnétiques partiels en μA, μB, μF1, μF2, μ interstitiel et μCell pour la structure Orthorhombique (Pbnm) du Fluorure RbFeF3

Structure Orthorhombique (Pbnm)							
Matériau	Approche	μΑ	μΒ	μF1	μF2	µ interstitiel	µCell
RbFeF 3	PBE -GGA PBE-GGA+U	-0.0031 -0.0090	2.740 3.147	-0.002 0.008	-0.004 0.084	1.116 0.502	3.847 3.732

Les tableaux (II.24, II.25, II.26, II.27, II.28, II.29, II.30, et II.31) rassemblent tous les résultats des moments magnétiques des atome A (μ_A) le moment magnétique de l'atome B (μ_B), le moment magnétique de l'atome F (μ_F) ainsi que les moments interstitiel ($\mu_{interstitiel}$) et celui de la cellule ($\mu_{cellulaire}$) pour tous les matériaux Fluorures de la forme ABF3 étudiés en utilisant les différentes approximations utilisées auparavant pour optimiser le volume et qui sont : la L(S)DA, L(S)DA+U, WC-GGA, PBE-sol-GGA-13, PBE-GGA et la GGA+U pour la structure cubique idéale (Pm-3m) pour la configuration Ferromagnétique (FM).

Les tableaux (II.32, II.33, II.34, II.35, II.36, II.37, et II.38) rassemblent tous les résultats des moments magnétiques des atome A₁ (μ A₁), le moment magnétique de l'atome A₂ (μ A₂) le moment magnétique de l'atome B (μ B), le moment magnétique de l'atome F₁ (μ F₁) le moment magnétique de l'atome F₂ (μ F₂) ainsi que les moments interstitiel (μ interstitiel) et celui de la cellule (μ cellulaire) pour tous les matériaux Fluorures de la forme ABF₃ étudiés en utilisant les différentes approximations utilisées auparavant pour optimiser le volume et qui sont : la L(S)DA, L(S)DA+U, WC-GGA, PBE-sol-GGA-13, PBE-GGA et la GGA+U pour la structure Hexagonale-4H idéale (P63/mmc) pour la configuration Ferromagnétique (FM).

Les tableaux (II.39, II.40, II.41, II.42, II.43, II.44, et II.45) rassemblent tous les résultats des moments magnétiques des atome A (μ_A) le moment magnétique de l'atome B (μ_B), le moment magnétique de l'atome F₁ (μ_{F1}) le moment magnétique de l'atome F₂ (μ_{F2}) ainsi que les moments interstitiel ($\mu_{interstitiel}$) et celui de la cellule ($\mu_{cellulaire}$) pour tous les matériaux Fluorures de la forme ABF₃ étudiés en utilisant les différentes approximations utilisées auparavant pour optimiser le volume et qui sont : la L(S)DA, L(S)DA+U, WC-GGA, PBE-sol-GGA-13, PBE-GGA et la GGA+U pour la structure Orthorhombique idéale (Pnma) pour la configuration Ferromagnétique (FM).

Les tableaux (II.46, II.47, et II.48) rassemblent tous les résultats des moments magnétiques des atome A (μ_A) le moment magnétique de l'atome B (μ_B), le moment magnétique de l'atome F₁ (μ_{F1}) le moment magnétique de l'atome F₂ (μ_{F2}) ainsi que les moments interstitiel ($\mu_{interstitiel}$) et celui de la cellule ($\mu_{cellulaire}$) pour tous les matériaux Fluorures de la forme ABF₃ étudiés en utilisant les différentes approximations utilisées auparavant pour optimiser le volume et qui sont : la L(S)DA, L(S)DA+U, WC-GGA, PBE-sol-GGA-13, PBE-GGA et la GGA+U pour la structure Orthorhombique (Pbnm) pour la configuration Ferromagnétique (FM).

Tout d'abord, on peut dire que l'approximation **GGA+U** donne les valeurs les plus élevés pour le moment magnétique de tous les matériaux **Fluorures** étudiés ainsi que pour leurs constituants. La même remarque a était faite en étudiant les propriétés magnétiques de chaque matériau considéré dans cette thèse. Nous avons obtenus là aussi le même ordre croissant des valeurs du moment magnétique : L(S)DA, L(S)DA+U, WC-GGA, PBE-sol-GGA-13, PBE-GGA et la GGA+U.

Ce qui est vraiment remarquable, c'est la différence des valeurs du moment magnétique des atomes **A**, **B**, et **F** qui constituants les **Fluoro-pérovskites** considéré ici. On remarque parfaitement bien que pour la structure cubique (**Pm-3m**) la contribution de l'élément **B** est beaucoup plus importante que les autres éléments chimiques. On retrouve à partir de ces tableaux que la contribution des éléments **A** (**Cs**, **Na**, **Rb**, **K**, **Ti et Tl**) est à peu près nulle, tandis que celle de l'atome **B** (**Fe, Co, Ni**) est très importante, mais les valeurs de l'atome **F**

sont infiniment petites. A l'exception du **Fluorure TiFeF3**, on remarque que l'atome **A** qui est le **Titanium** souligne des valeurs du moment magnétique très importantes, la chose qui influe directement sur son moment cellulaire, qui devient vraiment important. D'après les tableaux qui illustrent les valeurs du moment magnétique de la structure cubique (**Pm-3m**), on peut classifier les **Fluorures** étudiés selon l'ordre suivant : **KNiF3**, **KCoF3**, **CsFeF3**, **RbFeF3**, **KFeF3**, **NaFeF3**, **TIFeF3**, et enfin le **TiFeF3**.

Pour la deuxième structure Hexagonale-4H (P63/mmc) on remarque aussi la différence entre la contribution des éléments qui constituent le Fluorure. On retrouve que la contribution de l'élément **B** est beaucoup plus importante que les autres éléments chimiques. On retrouve à partir de ces tableaux que la contribution des éléments A₁ et A₂ (Cs, Na, Rb, K, et Ti) est à peu près nulle, tandis que celle de l'atome **B** (Fe, Co, Ni) sont importantes, mais celles des atomes F₁ et F₂ sont infiniment petites. D'après les tableaux qui illustrent les valeurs du moment magnétique de la structure cubique (Pm-3m), on peut classifier les Fluorures étudiés selon l'ordre suivant : KNiF₃, KCoF₃, KFeF₃, RbFeF₃, CsFeF₃, NaFeF₃, et enfin le TiFeF₃. L'exception est toujours pour le Fluorure TiFeF₃, on remarque là aussi que la contribution des deux atomes A₁ et A₂ qui représentent le Titanium souligne des valeurs du moment magnétique importantes et similaires en quelque sorte, ce qui influe directement sur le moment cellulaire du Fluorure, qui devient important.

Pour la deuxième structure Orthorhombique (**Pnma**), on remarque aussi la différence entre la contribution des éléments qui constituent le **Fluorure**. On retrouve que la contribution de l'élément **B** est beaucoup plus importante que les autres éléments chimiques. On retrouve à partir de ces tableaux que la contribution des éléments **A**₁ (**Cs, Na, Rb, K, et Ti**) est à peu près nulle, l'atome **B** (**Fe, Co, Ni**) souligne de grandes valeurs, tandis que celles des atomes **F**₁ et **F**₂ sont infiniment petites. L'exception est faite là aussi pour le **Fluorure TiFeF3**, on que la contribution de l'atome **A** qui représente le **Titanium** souligne des valeurs du moment magnétique importantes, ce qui influe directement sur le moment cellulaire du **Fluorure**, qui devient important. D'après les tableaux qui illustrent les valeurs du moment magnétique de la structure cubique (**Pm-3m**), on peut classifier les **Fluorures** étudiés selon l'ordre suivant : **KNiF3**, **KCoF3**, **CsFeF3**, **KFeF3**, **NaFeF3**, **RbFeF3**, et enfin le **TiFeF3**.

Pour la structure Orthorhombique (**Pnma**), nous avons illustré seulement les tableaux pour les trois **Fluorures CsFeF3**, **NaFeF3**, et **RbFeF3**. On remarque pour cette structure que la contribution de l'élément **B** est toujours beaucoup plus importante que les autres éléments chimiques. On retrouve aussi que la contribution des éléments **A** (**Cs**, **Na**, et **Rb**) est à peu près nulle, tandis que celle de l'atome **B** (**Fe**, **Co**, **Ni**) est vraiment importante, mais les valeurs des atomes **F1** et **F2** sont infiniment petites. D'après les tableaux, on peut classifier les fluorures étudiés selon l'ordre suivant : **RbFeF3**, **CsFeF3**, et enfin le **NaFeF3**.

D'après tous les tableaux illustrés dans cette thèse, on remarque bien que la contribution de l'élément **B** (Fe, Ni, Co) est la plus importante, ces valeurs soulignent des valeurs qui varient selon la structure cristalline étudiée, et selon le fluorure lui-même. Mais ce qui est vraiment remarquable, que seulement le Fluorure TiFeF₃ a souligné une contribution importante de l'atome **B** qui est le Titanium. C'est la présence de cet élément chimique qui renforce le fluorure, dans un autre travail de HAMDAD Noura et al. [147] En (2010), a montré que le TiB₂ qui représente la classe des matériaux Diborure de la forme AlB₂ est beaucoup plus cohésif que le NbB₂. La nature chimique de cet élément lui permet d'être spécifique, ce qui ajoute d'avantage l'intérêt du matériau Fluorure TiFeF₃ qui n'a jamais était investis auparavant, et nous avons eu l'opportunité à travers cette thèse d'illustrer ses propriétés physiques qui sont de grande importance.

II.3.2. Les propriétés Electroniques :

II.3.2.1. Les structures de bande :

<u>Figure II.34</u>: Structure de bande du Fluorure CsFeF₃ dans la phase cubique (Pm-3m) en utilisant la LDA et GGA approches respectivement pour la configuration Non-Ferromagnétique (NF).

<u>Figure II.35</u>: Structure de bande du Fluorure NaFeF₃ dans la phase cubique (Pm-3m) en utilisant la LDA et GGA approches respectivement pour la configuration Non-Ferromagnétique (NF).

<u>Figure II.36</u>: Structure de bande du Fluorure RbFeF3 dans la phase cubique (Pm-3m) en utilisant la LDA et GGA approches respectivement pour la configuration Non-Ferromagnétique (NF).

Figure II.37 : Structure de bande du Fluorure KFeF3 dans la phase cubique (Pm-3m) en utilisant la LDA et GGA approches respectivement pour la configuration Non-Ferromagnétique (NF).

Figure II.38: Structure de bande du **Fluorure KCoF**³ dans la phase cubique (**Pm-3m**) en utilisant la **LDA** et **GGA** approches respectivement pour la configuration Non-Ferromagnétique (**NF**).

<u>Figure II.39</u>: Structure de bande du Fluorure KNiF₃ dans la phase cubique (Pm-3m) en utilisant la LDA et GGA approches respectivement pour la configuration Non-Ferromagnétique (NF).

<u>Figure II.40 :</u> Structure de bande du Fluorure TiFeF₃ dans la phase cubique (Pm-3m) en utilisant la LDA et GGA approches respectivement pour la configuration Non-Ferromagnétique (NF).

Figure II.41: Structure de bande du Fluorure TlFeF₃ dans la phase cubique (Pm-3m) en utilisant la LDA et GGA approches respectivement pour la configuration Non-Ferromagnétique (NF).

Figure II.42 : Structure de bande du Fluorure CsFeF₃ dans la phase cubique (Pm-3m) en utilisant la LSDA, GGA, LSDA+U, GGA+U et TB-GGA-mBJ approches respectivement pour la configuration Ferromagnétique (FM) pour les deux états (Spin Up) et (Spin Dn).

TB-GGA-mB.I

Figure II.44 : Structure de bande du Fluorure RbFeF3 dans la phase cubique (Pm-3m) en utilisant la LSDA, GGA, LSDA+U, GGA+U et TB-GGA-mBJ approches respectivement pour la configuration Ferromagnétique (FM) pour les deux états (Spin Up) et (Spin Dn).

Figure II.45 : Structure de bande du Fluorure KFeF₃ dans la phase cubique (Pm-3m) en utilisant la LSDA, GGA, LSDA+U, GGA+U et TB-GGA-mBJ approches respectivement pour la configuration Ferromagnétique (FM) pour les deux états (Spin Up) et (Spin Dn).

Figure II.46: Structure de bande du **Fluorure KCoF**³ dans la phase cubique (**Pm-3m**) en utilisant la **LSDA, GGA, LSDA+U, GGA+U** et **TB-GGA-mBJ** approches respectivement pour la configuration Ferromagnétique (**FM**) pour les deux états (**Spin Up**) et (**Spin Dn**).

Figure II.47 : Structure de bande du Fluorure KNiF₃ dans la phase cubique (Pm-3m) en utilisant la LSDA, GGA, LSDA+U, GGA+U et TB-GGA-mBJ approches respectivement pour la configuration Ferromagnétique (FM) pour les deux états (Spin Up) et (Spin Dn).

0.0

-1.1

-2.0

-3.0 -4.0 -5.0 -6.0

-7.0 -8.0

-9.0

-10.0

-11.0

-12.0

-13.0

-14.0

FM

Δ

MBJ

Σ Δ

Energy (eV)

MBJ

ΝΣΓ Λ

0)

-1.0

-2.0

3.0

4.0 -5.0 -6.0

.7.0 -8.0 -9.0

10.0

-11.0 -12.0

-13.0

14.0

FN

Δ H

Energy (eV)

Figure II.48 : Structure de bande du Fluorure TiFeF3 dans la phase cubique (Pm-3m) en utilisant la LSDA, GGA, LSDA+U, GGA+U et TB-GGA-mBJ approches respectivement pour la configuration Ferromagnétique (FM) pour les deux états (Spin Up) et (Spin Dn).

E_F

40 -50 -70 -70 -90 -10.0 -11.0 -12.0

FM -13.0

Δ

Up

N Ε Λ

MBJ

EF

MBJ

Δ Ĥ N Σ Λ Figure II.59 : Structure de bande du Fluorure TlFeF₃ dans la phase cubique (Pm-3m) en utilisant la LSDA, GGA, LSDA+U, GGA+U et TB-GGA-mBJ approches respectivement pour la configuration Ferromagnétique (FM) pour les deux états (Spin Up) et (Spin Dn).

TB-GGA-mB.I

Figure II.50 : Structure de bande du Fluorure CsFeF3 dans la phase hexagonale (4H) en utilisant la GGA+U et TB-GGA-mBJ approches respectivement pour la configuration Ferromagnétique (FM) pour les deux états (Spin Up) et (Spin Dn).

Figure II.51 : Structure de bande du **Fluorure NaFeF**₃ dans la phase hexagonale (**4H**) en utilisant la **GGA+U** et **TB-GGA-mBJ** approches respectivement pour la configuration Ferromagnétique (FM) pour les deux états (**Spin Up**) et (**Spin Dn**).

Figure II.52 : Structure de bande du **Fluorure RbFeF**₃ dans la phase hexagonale (**4H**) en utilisant la **GGA+U** et **TB-GGA-mBJ** approches respectivement pour la configuration Ferromagnétique (**FM**) pour les deux états (**Spin Up**) et (**Spin Dn**).

Figure II.53: Structure de bande du **Fluorure KFeF**₃ dans la phase hexagonale (**4H**) en utilisant la **GGA+U** et **TB-GGA-mBJ** approches respectivement pour la configuration Ferromagnétique (**FM**) pour les deux états (**Spin Up**) et (**Spin Dn**).

Figure II.54 : Structure de bande du **Fluorure KCoF**₃ dans la phase hexagonale (**4H**) en utilisant la **GGA+U** et **TB-GGA-mBJ** approches respectivement pour la configuration Ferromagnétique (**FM**) pour les deux états (**Spin Up**) et (**Spin Dn**).

Figure II.55 : Structure de bande du **Fluorure KNiF**₃ dans la phase hexagonale (**4H**) en utilisant la **GGA+U** et **TB-GGA-mBJ** approches respectivement pour la configuration Ferromagnétique (**FM**) pour les deux états (**Spin Up**) et (**Spin Dn**).

Figure II.56 : Structure de bande du **Fluorure TiFeF**³ dans la phase hexagonale (**4H**) en utilisant la **GGA+U** et **TB-GGA-mBJ** approches respectivement pour la configuration Ferromagnétique (FM) pour les deux états (**Spin Up**) et (**Spin Dn**).

Figure II.57: Structure de bande du **Fluorure CsFeF**₃ dans la phase orthorhombique (**Pnma**) en utilisant la **GGA+U** et **TB-GGA-mBJ** approches respectivement pour la configuration Ferromagnétique (**FM**) pour les deux états (**Spin Up**) et (**Spin Dn**).

Figure II.58: Structure de bande du Fluorure NaFeF3 dans la phase orthorhombique (Pnma) en utilisant la GGA+U et TB-GGA-mBJ approches respectivement pour la configuration Ferromagnétique (FM) pour les deux états (Spin Up) et (Spin Dn).

-9.0

-10.0

-11.0

-12.0

-13.0

-14.0

Δ

Н

IBJ

Λ

In

N Σ

-8.0 -9.0

-10.0 -

-11.0 -

-12.0 -

-14.0 A

Δ

Ĥ

N Σ

-13.0

Figure II.59: Structure de bande du **Fluorure RbFeF**₃ dans la phase orthorhombique (**Pnma**) en utilisant la **GGA+U** et **TB-GGA-mBJ** approches respectivement pour la configuration Ferromagnétique (**FM**) pour les deux états (**Spin Up**) et (**Spin Dn**).

Figure II.60: Structure de bande du **Fluorure CsFeF**₃ dans la phase orthorhombique (**Pbnm**) en utilisant la **GGA+U** et **TB-GGA-mBJ** approches respectivement pour la configuration Ferromagnétique (**FM**) pour les deux états (**Spin Up**) et (**Spin Dn**).

Figure II.61: Structure de bande du **Fluorure NaFeF**₃ dans la phase orthorhombique (**Pbnm**) en utilisant la **GGA+U** et **TB-GGA-mBJ** approches respectivement pour la configuration Ferromagnétique (**FM**) pour les deux états (**Spin Up**) et (**Spin Dn**).

Figure II.62: Structure de bande du **Fluorure RbFeF**₃ dans la phase orthorhombique (**Pbnm**) en utilisant la **GGA+U** et **TB-GGA-mBJ** approches respectivement pour la configuration Ferromagnétique (**FM**) pour les deux états (**Spin Up**) et (**Spin Dn**).

159

Dans cette partie, nous avons aussi étudié différentes structures cristallines (Cubique (**Pm-3m**), Hexagonanal-4H (**P63/mmc**), Orthorhombique (**Pnma**), et Orthorhombique (**Pbnm**)) en prenant en considération deux configurations magnétiques (**NF**, et **FM**) pour les matériaux **Fluorures** choisis dans cette thèse. Nous avons utilisé les deux approximations la **LDA**, et la **GGA** pour tracer les structures de bandes des configurations Non-ferromagnétique (**NF**). Tandis que pour tracer les structures de bandes des configurations Ferromagnétique (**FM**), nous avons utilisé cinq approximations différentes la **L(S)DA**, **L(S)DA+U**, la **GGA** la **GGA+U**, et **TB-GGA-mBJ** dans le but de prendre en considération les effets d'échange et de corrélation d'un côté, et de l'autre de montrer quelle est l'approximation la plus fiable qui peut nous permettre de bon résultats.

La différence entre les approximations choisies est claire. On remarque bien que la GGA illustre les niveaux énergétiques beaucoup meilleur que la LDA pour la configuration Non-Ferromagnétique (NF). D'après les figures (II.36, II.37, II.38, II.39, II.40, II.41, II.42, et II.43) qui représentent respectivement les structures de bande des Fluorures (CsFeF3, NaFeF3, RbFeF3, KFeF3, KCoF3, KNiF3, TiFeF3, et TlFeF3) pour la structure Cubique (Pm-3m), on remarque le caractère isolant est un facteur commun entre les Fluorures CsFeF3, NaFeF3, RbFeF3. Tandis que les autres Fluorures KFeF3, KCoF3, KNiF3, TiFeF3, et TlFeF3 ont tendance à être métalliques avec des petites différences du gap qui varie selon le Fuorure en question.

Les figures (II.42, II.43, II.44, II.45, II.46, II.47, II.48, et II.49) illustrent les structures de bandes pour la structure cristalline cubique (Pm-3m) pour la configuration Ferromagnétique (FM) des états Spin Up et Spin Dn respectivement pour les Fluoropérovskites (CsFeF3, NaFeF3, RbFeF3, KFeF3, KCoF3, KNiF3, TiFeF3, et TlFeF3) en introduisant cinq approximations différentes la L(S)DA, L(S)DA+U, la GGA la GGA+U, et TB-GGA-mBJ. D'après ces figures on remarque les valeurs du gap sont croissantes selon l'ordre suivant gap (L(S)DA) < gap (GGA) < gap (L(S)DA+U) < gap (GGA+U) < gap (TB-GGA-mBJ) pour les deux états Spin Up et Spin Dn. Le caractère isolant a été souligné par tous les Fuorures étudiés, mais toujours on remarque l'approximation GGA+U illustre bien les niveaux énergétique, et évalue le gap d'une manière exacte, mais toujours on retrouve que l'approximation TB-GGA-mBJ élargit encore plus les niveaux énergétiques de telle sorte que le gap devient encore plus grand et le caractère des fois semi-conducteur devient purement isolant. On note aussi qu'une différence remarquable existe entre les niveaux énergétiques des états Spin Up et celles des états Spin Dn, le gap retrouvé dans les états Spin Up est beaucoup plus important que celui qui se trouve dans les états Spin Dn.

D'après les figures (II.50, II.51, II.52, II.53, II.54, II.55, et II.56) qui représentent respectivement les structures de bande des Fuorures (CsFeF3, NaFeF3, RbFeF3, KFeF3, KCoF3, KNiF3, et TiFeF3) pour la structure Hexagonale-4H (P63/mmc), en utilisant les deux approximations GGA+U et TB-GGA-mBJ respectivement on remarque le caractère isolant est dominant, car tous les matériaux Fuorures étudiés pour cette structure ont illustré un caractère isolant avec des gaps importants dans les états Spin *Up* par rapport aux états Spin *Dn*. Nous remarquons que la GGA+U a bien évalué les gaps mais toujours la TB-GGA-mBJ révèle des gaps beaucoup plus importants, car elle élargit la bande interdite en faisant l'apparition d'un gap trop large.

D'après les figures (II.57, II.58, et II.59) qui représentent respectivement les structures de bande des Fuorures (CsFeF₃, NaFeF₃, et RbFeF₃) pour la structure Orthorhombique (Pnma), en utilisant les deux approximations GGA+U et TB-GGA-mBJ respectivement on remarque l'existence du caractère isolant beaucoup plus important dans les états Spin *Up* par

rapport aux états **Spin** *Dn*. Nous remarquons là aussi que la **GGA+U** a bien évalué les gaps mais toujours la **TB-GGA-mBJ** révèle des gaps encore plus grands, car elle élargit toujours la bande interdite encore plus en faisant apparaître un gap trop large.

D'après les figures (**II.60, II.61,** et **II.62**) qui représentent respectivement les structures de bande des **Fuorures** (**CsFeF3, NaFeF3, et RbFeF3**) pour la structure Orthorhombique (**Pbnm**), en utilisant les deux approximations **GGA+U** et **TB-GGA-mBJ** respectivement on retrouve toujours le caractère métallique qui est dominant.

II.3.2.1. Les densités d'état:

La structure Cubique (Pm-3m) :

<u>Figure.II.63 :</u> Densité d'état **DOS** du **Fluoro- pérovskite CsFeF**₃ non-ferromagnétique (NF) en utilisant les deux approximations GGA+U et TB-GGA-Mbj.

<u>Figure. II.64 :</u> Densité d'état **DOS** du **Fluoro- pérovskite NaFeF**³ non-ferromagnétique (NF) en utilisant les deux approximations **GGA**+**U** et **TB-GGA-mBJ**.

<u>Figure. II.65 :</u> Densité d'état **DOS** du **Fluoro- pérovskite RbFeF**³ non-ferromagnétique (NF) en utilisant les deux approximations GGA+U et TB-GGA-Mbj.

<u>Figure. II.66:</u> Densité d'état **DOS** du **Fluoro- pérovskite KFeF**³ non-ferromagnétique (NF) en utilisant les deux approximations GGA+U et TB-GGA-Mbj.

<u>Figure. II.68:</u> Densité d'état **DOS** du **Fluoro- pérovskite KCoF**₃ non-ferromagnétique (NF) en utilisant les deux approximations GGA+U et TB-GGA-mBJ.

<u>Figure. II.70 :</u> Densité d'état **DOS** du **Fluoro- pérovskite TlFeF**₃ non-ferromagnétique (NF) en utilisant les deux approximations GGA+U et TB-GGA-Mbj.

<u>Figure. II.71:</u> Densité d'état **DOS** du **Fluoro- pérovskite CsFeF**₃ Ferromagnétique (**FM**) en utilisant les deux approximations **GGA+U** et **TB-GGA-mBJ** pour les états **Spin Up** et **Spin Dn**

<u>Figure. II.72:</u> Densité d'état **DOS** du **Fluoro- pérovskite NaFeF**₃ Ferromagnétique (**FM**) en utilisant les deux approximations **GGA+U** et **TB-GGA-mBJ** pour les états **Spin Up** et **Spin Dn**

Figure. II.73: Densité d'état DOS du Fluoro- pérovskite RbFeF₃ Ferromagnétique (FM) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les états Spin Up et Spin Dn

<u>Figure. II.74:</u> Densité d'état **DOS** du **Fluoro- pérovskite KFeF**₃ Ferromagnétique (**FM**) en utilisant les deux approximations **GGA+U** et **TB-GGA-mBJ** pour les états **Spin Up** et **Spin Dn**

Figure. II.75: Densité d'état DOS du Fluoro-pérovskite KNiF₃ Ferromagnétique (FM) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les états Spin Up et Spin Dn

<u>Figure. II.76:</u> Densité d'état **DOS** du **Fluoro- pérovskite KCoF**₃ Ferromagnétique (**FM**) en utilisant les deux approximations **GGA**+U et **TB-GGA-mBJ** pour les états **Spin Up** et **Spin Dn**

<u>Figure. II.77:</u> Densité d'état **DOS** du **Fluoro- pérovskite TiFeF**₃ Ferromagnétique (**FM**) en utilisant les deux approximations **GGA+U** et **TB-GGA-mBJ** pour les états **Spin Up et Spin Dn**

<u>Figure. II.78:</u> Densité d'état **DOS** du **Fluoro- pérovskite TlFeF**₃ Ferromagnétique (**FM**) en utilisant les deux approximations **GGA**+**U** et **TB-GGA-mBJ** pour les états **Spin Up** et **Spin Dn**

➢ La structure Hexagonale 4H (P63/mmc) :

<u>Figure. II.79:</u> Densité d'état **DOS** du **Fluoro- pérovskite CsFeF3** non-ferromagnétique (NF) en utilisant les deux approximations **GGA+U** et **TB-GGA-mBJ**

<u>Figure. II.80</u> : Densité d'état **DOS** du **Fluoro- pérovskite NaFeF**³ non-ferromagnétique (NF) en utilisant les deux approximations **GGA**+**U** et **TB-GGA-mBJ**

<u>Figure. II.82</u> : Densité d'état **DOS** du **Fluoro- pérovskite KFeF**₃ non-ferromagnétique (NF) en utilisant les deux approximations GGA+U et TB-GGA-mBJ

<u>Figure. II.83 :</u> Densité d'état **DOS** du **Fluoro- pérovskite KCoF**₃ non-ferromagnétique (NF) en utilisant les deux approximations GGA+U et TB-GGA-mBJ

<u>Figure. II.84 :</u> Densité d'état **DOS** du **Fluoro- pérovskite KNiF**³ non-ferromagnétique (NF) en utilisant les deux approximations GGA+U et TB-GGA-mBJ

<u>Figure. II.85 :</u> Densité d'état **DOS** du **Fluoro- pérovskite TiFeF**³ non-ferromagnétique (**NF**) en utilisant les deux approximations **GGA**+U et **TB-GGA-mBJ**

<u>Figure. II.86:</u> Densité d'état DOS du Fluoro- pérovskite CsFeF₃ Ferromagnétique (FM) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les deux états Spin Up et Spin Dn

<u>Figure. II.87:</u> Densité d'état **DOS** du **Fluoro- pérovskite NaFeF**₃ Ferromagnétique (**FM**) en utilisant les deux approximations **GGA+U** et **TB-GGA-mBJ** pour les deux états **Spin Up et Spin Dn**

<u>Figure. II.88:</u> Densité d'état DOS du Fluoro- pérovskite RbFeF₃ Ferromagnétique (FM) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les deux états Spin Up et Spin Dn

<u>Figure. II.89:</u> Densité d'état **DOS** du **Fluoro- pérovskite KFeF3** Ferromagnétique (**FM**) en utilisant les deux approximations **GGA+U** et **TB-GGA-mBJ** pour les deux états **Spin Up et Spin Dn**

<u>Figure. II.90:</u> Densité d'état DOS du Fluoro- pérovskite KCoF₃ Ferromagnétique (FM) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les deux états Spin Up et Spin Dn

<u>Figure. II.91:</u> Densité d'état **DOS** du **Fluoro-pérovskite KNiF**₃ Ferromagnétique (**FM**) en utilisant les deux approximations **GGA+U** et **TB-GGA-mBJ** pour les deux états **Spin Up et Spin Dn**

<u>Figure. II.92:</u> Densité d'état DOS du Fluoro- pérovskite TiFeF₃ Ferromagnétique (FM) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les deux états Spin Up et Spin Dn

> <u>La structure Orthorhombique Pnma</u>

<u>Figure. II.93 :</u> Densité d'état **DOS** du **Fluoro- pérovskite CsFeF**₃ Ferromagnétique (**FM**) en utilisant les deux approximations **GGA+U** et **TB-GGA-mBJ pour les deux états Spin Up et Spin Dn**

<u>Figure. II.94 :</u> Densité d'état DOS du Fluoro- pérovskite NaFeF₃ Ferromagnétique (FM) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les deux états Spin Up et Spin Dn

<u>Figure. II.94 :</u> Densité d'état DOS du Fluoro- pérovskite RbFeF₃ Ferromagnétique (FM) en utilisant les deux approximations GGA+U et TB-GGA-mBJ pour les deux états Spin Up et Spin Dn

La partie du calcul des densités d'états **Total (TDOS)** et partielles (**PDOS**) et indispensable et complémentaire pour compléter notre compréhension du caractère Electromagnétique de ces **Fluorures** de la forme **ABF**₃.Pour cela nous avons tracé les densités d'états en utilisant seulement les deux approximations (**GGA+U**) et (**TB-GGA-mBj**), car ces deux approches ont montré des résultats meilleurs par rapport à la (**L(S)DA**), (**GGA**) et (**L(S)DA+U**).

Les figures (II.63, II.64, II.65, II.66, II.67, II.68, II.69, II.70) illustrent la densité d'état de la structure cubique (Pm-3m) pour la configuration Non-Ferromagnétique (NF) pour les Fluorures étudiés dans notre thèse. Les figures (II.71, II.72, II.73, II.74, II.75, II.76, II.77, II.78) illustrent la densité d'état de la structure cubique (Pm-3m) pour la configuration Ferromagnétique (FM). Les figures (II.86, II.87, II.88, II.89, II.90, II.91, II.92) illustrent la densité d'état de la structure 4H-Hexagonal (P63/mmc) pour la configuration Ferromagnétique (FM). Les figures (II.93, II.94, II.95) illustrent la densité d'état de la structure Orthorhombique (Pnma) pour la configuration Ferromagnétique (FM).

A partir de ces figures, on remarque que le niveau de Fermi est fixé à l'origine. L'introduction du potentiel U-Hubbard était important en appliquant les bases fondamentales de **la théorie (DFT)** vs à la **(DFT+U)** qui a souligné de très grands progrès.

Nous avons mentionné la différence entre les états **Spin-***Up* et **Spin-***Dn* en illustrant les figures des structures de bandes, cette remarque est aussi retrouvée dans cette partie pour les deux structures Cubique (**Pm-3m**) et **4H**-Hexagonal (**P63/mmc**). On remarque l'approximation (**TB-GGA-Mbj**) élargit le gap dans toutes les figures, chose qui était aussi retrouvée dans les structures de bande. Cet élargissement fait l'exclusivité de cette approximation.

A partir de ces figures, on remarque la contribution élevée des états d, spécialement pour l'atome **B** qui est **Fe**, tandis que la contribution de l'élément *d*-**F** est presque faible ou négligeable en comparaison avec les deux atomes **A** et **B** du **Fluorure**. La contribution de l'élément **A** est moyenne et dépend essentiellement de la nature de l'élément et sa configuration, elle croit selon ses niveaux énergétiques, où on retrouve la contribution des états *p*-**A**. Ces remarques ont déjà été mentionné en étudiant la partie magnétique qui a traité les moments magnétiques de chaque **Fluorure** avec attention, nous avons retrouvé d'après les tableaux illustrés dans cette partie que le moment magnétique le plus élevée était donné par l'élément **B** du Fluorure, spécialement le **Fe** qui a fait la grande contribution aux effets du spin

Le but de notre travail, c'est de comprendre le comportement de chaque **Fluorure de la forme ABF**₃, malgré la différence de la configuration électronique de chaque élément qui compose le **Fluorure**, et la diversité des approximations employées dans cette thèse, et de donner une analyse détaillé surtout sur le comportement électromagnétique qui va lui permettre de s'identifier et de se caractériser autant que des bons éléments pour l'application technologique qui ne cesse d'affronter le nouveau et le plus performant. D'après ces résultats obtenus, le **TiFeF**₃ malgré qu'il n'a jamais été étudié auparavant mais il a souligné des valeurs très importantes, une contribution des états *d*-**Fe** très remarquables par rapport aux autres **Fluorures**. Il beaucoup plus magnétique que les autres. Il pourra être un excellent outil pour les appareils électroniques, Optoélectroniques, les énergies renouvelables, ect…toutes les applications technologiques qui s'intéressent au stockage.

II.3.2.1. Les densités de charge:

La structure Cubique (Pm-3m):

<u>Figure II.96</u>: Densité de charge du Fluoro-perovskite CsFeF3 dans la phase cubique en utilisant différentes approximations LDA et GGA pour la configuration Non-Ferromagnétique (NF).

<u>Figure II.97</u>: Densité de charge du Fluoro-perovskite NaFeF₃ dans la phase cubique en utilisant différentes approximations LDA et GGA pour la configuration Non-Ferromagnétique (NF).

<u>Figure II.98</u> : Densité de charge du Fluoro-perovskite RbFeF3 dans la phase cubique en utilisant différentes LDA et GGA approximations pour la configuration Non-Ferromagnétique (NF).

Figure II.99 : Densité de charge du Fluoro-perovskite KFeF3 dans la phase cubique en utilisant différentes approximations LDA et GGA pour la configuration Non-Ferromagnétique (NF).

<u>Figure II.100</u>: Densité de charge du Fluoro-perovskite KCoF3 dans la phase cubique en utilisant différentes approximations LDA et GGA pour la configuration Non-Ferromagnétique (NF).

<u>Figure II.101</u>: Densité de charge du Fluoro-perovskite KNiF₃ dans la phase cubique en utilisant différentes approximations LDA et GGA pour la configuration Non-Ferromagnétique (NF).

<u>Figure II.102</u>: Densité de charge du Fluoro-perovskite TiFeF₃ dans la phase cubique en utilisant différentes approximations LDA et GGA pour la configuration Non-Ferromagnétique (NF).

<u>Figure II.103</u>: Densité de charge du Fluoro-perovskite TlFeF₃ dans la phase cubique en utilisant différentes approximations LDA et GGA pour la configuration Non-Ferromagnétique (NF).

<u>Figure II.104</u>: Densité de charge du Fluoro-perovskite CsFeF3 dans la phase cubique en utilisant différentes approximations LSDA, GGA, LSDA+U, GGA+U et TB-GGA-mBJ pour la configuration Ferromagnétique (FM).

<u>Figure II.105</u>: Densité de charge du Fluoro-perovskite NaFeF3 dans la phase cubique en utilisant différentes approximations LSDA, GGA, LSDA+U, GGA+U et TB-GGA-mBJ pour la configuration Ferromagnétique (FM).

<u>Figure II.106</u>: Densité de charge du Fluoro-perovskite RbFeF3 dans la phase cubique en utilisant différentes approximations LSDA, GGA, LSDA+U, GGA+U et TB-GGA-mBJ pour la configuration Ferromagnétique (FM).

<u>Figure II.107</u>: Densité de charge du Fluoro-perovskite KFeF₃ dans la phase cubique en utilisant différentes approximations LSDA, GGA, LSDA+U, GGA+U et TB-GGA-mBJ pour la configuration Ferromagnétique (FM).

<u>Figure II.108</u>: Densité de charge du Fluoro-perovskite KCoF₃ dans la phase cubique en utilisant différentes approximations LSDA, GGA, LSDA+U, GGA+U et TB-GGA-mBJ pour la configuration Ferromagnétique (FM).

<u>Figure II.109</u>: Densité de charge du Fluoro-perovskite KNiF₃ dans la phase cubique en utilisant différentes approximations LSDA, GGA, LSDA+U, GGA+U et TB-GGA-mBJ pour la configuration Ferromagnétique (FM).

<u>Figure II.110</u>: Densité de charge du Fluoro-perovskite TiFeF₃ dans la phase cubique en utilisant différentes approximations LSDA, GGA, LSDA+U, GGA+U et TB-GGA-mBJ pour la configuration Ferromagnétique (FM).

<u>Figure II.111 :</u> Densité de charge du Fluoro-perovskite TIFeF3 dans la phase cubique en utilisant différentes approximations GGA, GGA+U et TB-GGA-mBJ pour la configuration Ferromagnétique (FM).

> <u>La structure Hexagonale-4H (P63/mmc):</u>

<u>Figure II.112</u>: Densité de charge du Fluoro-perovskite CsFeF3 dans la phase Hexagonal-4H en utilisant deux approximations LDA et GGA pour la configuration Non-Ferromagnétique (NF).

<u>Figure II.113</u>: Densité de charge du **Fluoro-perovskite NaFeF**₃ dans la phase Hexagonal-**4H** en utilisant deux approximations **LDA** et **GGA** pour la configuration Non-Ferromagnétique (**NF**).

<u>Figure II.114</u>: Densité de charge du Fluoro-perovskite RbFeF3 dans la phase Hexagonal-4H en utilisant deux approximations LDA et GGA pour la configuration Non-Ferromagnétique (NF).

<u>Figure II.115</u>: Densité de charge du Fluoro-perovskite KFeF₃ dans la phase Hexagonal-4H en utilisant deux approximations LDA et GGA pour la configuration Non-Ferromagnétique (NF).

Figure II.116: Densité de charge du Fluoro-perovskite KCoF3 dans la phase Hexagonal-4H en utilisant deux approximations LDA et GGA pour la configuration Non-Ferromagnétique (NF).

<u>Figure II.117</u>: Densité de charge du Fluoro-perovskite KNiF₃ dans la phase Hexagonal-4H en utilisant deux approximations LDA et GGA pour la configuration Non-Ferromagnétique (NF).

<u>Figure II.118</u>: Densité de charge du Fluoro-perovskite TiFeF₃ dans la phase Hexagonal-4H en utilisant deux approximations LDA et GGA pour la configuration Non-Ferromagnétique (NF).

<u>Figure II.119</u>: Densité de charge du Fluoro-perovskite CsFeF₃ dans la phase Hexagonal-4H en utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration Ferromagnétique (FM).

GGA+U

<u>Figure II.120</u>: Densité de charge du Fluoro-perovskite NaFeF3 dans la phase Hexagonal-4H en utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration Ferromagnétique (FM).

<u>Figure II.121</u>: Densité de charge du Fluoro-perovskite RbFeF3 dans la phase Hexagonal-4H en utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration Ferromagnétique (FM).

FM

FM

GGA+U

Rb

R

Rb

Fe 🎤

4H

Up

4H

Dn

<u>Figure II.122</u>: Densité de charge du Fluoro-perovskite KFeF3 dans la phase Hexagonal-4H en utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration Ferromagnétique (FM).

Figure II.123: Densité de charge du Fluoro-perovskite KCoF₃ dans la phase Hexagonal-4H en utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration Ferromagnétique (FM).

GGA+U

<u>Figure II.124</u>: Densité de charge du Fluoro-perovskite KNiF₃ dans la phase Hexagonal-4H en utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration Ferromagnétique (FM).

<u>Figure II.125</u>: Densité de charge du Fluoro-perovskite TiFeF₃ dans la phase Hexagonal-4H en utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration Ferromagnétique (FM).

GGA+U

> <u>La structure Orthorhombique (Pnma):</u>

<u>Figure II.126</u>: Densité de charge du Fluoro-perovskite CsFeF3 dans la phase Orthorombique-Pnma en utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration Ferromagnétique (FM).

<u>Figure II.127</u>: Densité de charge du Fluoro-perovskite NaFeF₃ dans la phase Orthorombique-Pnma en utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration Ferromagnétique (FM).

<u>Figure II.128</u>: Densité de charge du Fluoro-perovskite RbFeF3 dans la phase Orthorombique-Pnma en utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration Ferromagnétique (FM).

> <u>La structure Orthorhombique (Pbnm):</u>

<u>Figure II.129</u>: Densité de charge du Fluoro-perovskite CsFeF3 dans la phase Orthorombique-Pbnm en utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration Ferromagnétique (FM).

<u>Figure II.130</u>: Densité de charge du Fluoro-perovskite NaFeF₃ dans la phase Orthorombique-Pbnm en utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration Ferromagnétique (FM).

<u>Figure II.131</u>: Densité de charge du Fluoro-perovskite RbFeF3 dans la phase Orthorombique-Pbnm en utilisant différentes approximations GGA+U et TB-GGA-mBJ pour la configuration Ferromagnétique (FM).

Pour compléter notre compréhension sur le comportement électronique et magnétique des matériaux **Fluorures** de la forme **ABF**₃, nous avons investi dans cette partie aussi les quatre structures cristallines choisies (Cubique (**Pm-3m**), Hexagonale-4H (**P63/mmc**), Orthorhombique (**Pnma**), et Orthorhombique (**Pbnm**)) pour les deux configurations magnétique (Non-Ferromagnétique (**NF**) et Ferromagnétique (**FM**)).

Les figures (**II.96**, **II.97**, **II.98**, **II.99**, **II.100**, **II.101**, **II.102**, **et II.103**) pour la structure cubique (**Pm-3m**) avec la configuration magnétique (**NF**), elles sont illustrées ci-dessus respectivement pour les **Fluorures** (**CsFeF3**, **NaFeF3**, **RbFeF3**, **KFeF3**, **KCoF3**, **KNiF3**, **TiFeF3**, **et TlFeF3**) montrent les contours de la densité de charge dans le plan (110) pour tous les **Fluorures** étudiés ici dans la structure cubique idéale désignée par le groupe d'espace (**Pm-3m**) à partir lequel on peut voir le comportement des trois éléments (**A**, **B et F**) qui les constituent. Les figures (**II.104**, **II.105**, **II.106**, **II.107**, **II.108**, **II.109**, **II.110**, **et II.111**) pour la même structure cubique (**Pm-3m**) avec la configuration magnétique (**FM**).

Les figures (**II.112, II.113, II.114, II.115, II.116, II.117, et II.118**) pour la structure Hexagonale-4H (**P63/mmc**) avec la configuration magnétique (**NF**), elles sont illustrées cidessus respectivement pour les **Fluorures** (**CsFeF3, NaFeF3, RbFeF3, KFeF3, KCoF3, KNiF3, TiFeF3, et TIFeF3**) montrent les contours de la densité de charge dans le plan (110) pour tous les fluorures étudiés ici dans la structure cubique idéale désignée par le groupe d'espace (**Pm-3m**) à partir lequel on peut voir le comportement des trois éléments (**A, B** et F) qui les constituent. Les figures (**II.119, II.120, II.121, II.122, II.123, II.124, et II.125**) pour la même structure Hexagonale-4H (**P63/mmc**) avec la configuration magnétique (**FM**). Les figures (**II.126, II.127, et II.128**) pour la même structure Orthorhombique (**Pnma**) avec la configuration magnétique (**FM**) pour les **Fluorures** (**CsFeF3, NaFeF3, RbFeF3**). Et en dernière étape les figures (**II.129, II.130, et II.131**) pour la même structure Orthorhombique (**Pbnm**) avec la configuration magnétique (**FM**) pour les **Fluorures** (**CsFeF3, NaFeF3, RbFeF3**). Et en dernière étape les figures (**II.129, II.130, et II.131**) pour la même structure Orthorhombique (**Pbnm**) avec la configuration magnétique (**FM**) pour les **Fluorures** (**CsFeF3, NaFeF3, NaFeF3, RbFeF3**). Et en

La densité de charge tracée ici par les deux approches **GGA+U** et **TB-GGA-mBJ** montrent la présence de trois types de liaisons chimiques qui dominent les **Fluorures** étudiés. Le caractère covalent existe entre les atomes **A-A**, une autre liaison covalente à caractère ionique qui lie les atomes **A** et Fluorine **F.** ainsi qu'une troisième est de type ionique qui est retrouvée entre les atomes Fluorine **F-F**. Ces trois types de liaisons sont retrouvés dans les quatre structures cristallines étudiées dans cette thèse.

A partir des figures représentées ci-dessus, on remarque que la charge sphérique entre **A-F** avec (**A : Cs, Na, Rb, K, Ti**, ou bien **Tl**) est beaucoup plus importante que celle du **B-F** avec (**B : Fe, Co**, ou bien **Ni**). La densité de charge est due essentiellement à l'hybridation entre les états **d-A** et **2p-F** ce qui s'accorde parfaitement bien avec l'interprétation révélée dans la partie densité d'état. Tandis qu'on remarque que la contribution de la charge sphérique des atomes Fluorines **F** est moins importante.

Là aussi on remarque la différence entre les cinq approximations utilisées pour la configuration Ferromagnétique (FM). Les figures montrent clairement que la TB-GGA-MBJ donne des charges sphériques beaucoup plus dense autour de chaque élément tandis que la GGA et la LDA c'est moins bien, et que les deux approximations L(S)DA+U et GGA+U illustrent bien les densités de charge, mais ça ne reste que la GGA+U est la meilleure.

REFERENCES

[1]: H. -J. Donnerberg, Atomic simulations of electrooptical and magnetooptical materials, Springer-Verlag, Berlin, 1999. And O. F. Schirmer, in: G. Borstel (Ed.), Defects and surfaceinduced effects in advanced perovskites, Kluwer, Dordrecht, **151**, 75, (2000).

[2]: Toyoto Satoa, Dag Nore´usa, Hiroyuki Takeshitab, Ulrich Haussermann, Journal of Solid State Chemistry **178**, 338, (2005).

[3]: J. W. Weenk and H. A. Harwi, Phys. Chrm. Solids. 38, 1055, (1977)

[4]: Syed Gibran Javeda, Asifullah Khan, Abdul Majid, Anwar M. Mirza, J. Bashir, Computational Materials Science **39**, 627, (2007).

[5]: R. A. Evarestov, A. V. Bandura, E. N. Blokhin, Surface Science 602, 3674 (2008).

[6]: D. Visser, A. R. Monteith, H. R. R+nnow, W. J. A. Maaskant, Physica B 276, 302 (2000).

[7]: Chun-Lan Ma, Xiao-Dan Wang, Xiao-Hui Song, Xiang Hao, Phys. Lett., A 374, 2388, (2010).

[8] : Kousuke Nishimura, Ikuya Yamada, Kengo Oka, Yuichi Shimakawa, Masaki Azuma, J. Phys. And Chem. Of Solids **75**, 710, (2014).

[9]: Hitoshi Yusa, Nagayoshi Sata, and Yasuo Ohishi, American Mineralogist, 92, 648, (2007).

[10]: Rune Sondena, Svein Stolen, and P. Ravindran, Tor Grande, Neil L. Allan, Phys. Rev. **B 75**, 184105 (2007).

[11]: F. Gingla, T. Vogtb, E. Akibac, K. Yvon, J. Alloys and Compounds 282, 125 (1999).

[12]: Benhua Luo, Xueye Wang, Peng Jiao, J. Comput. Mater; Scie. 62, 184 (2012).

[13]: Julien Varignon and Philippe Ghosez, Phys. Rev B. 87, 140403, (2013).

[14]: J. G. Zhao, L. X. Yang, Y. Yu, F. Y. Li, R. C. Yu, Z. Fang, L. C. Chen, C. Q. Jin, J. Solid State Chem. 180, 2816 (2007).

[15]: A. C. Garcia-Castro, N. A. Spaldin, A. H. Romero and E. Bousquet, Cond. Mat. Mtrl. Scie. 1, 1311, (2013).

[16] : C. -Q. Jin, J. -S. Zhou, J. B. Goodenough, Q. Q. Liu, J. G. Zhao, L. X. Yang, Y. Yu, R. C. Yu,, T. Katsura, A. Shatskiy, and E. Ito, Proc Natl Acad Sci U S A. 105, 7115, (2008).

[17]: Mazaheri, M., Fallahi, S., Akhavan, M. Physica B: Physics of Condensed Matter, 406, 3363, (2011).

[18]: E. Jager, physica status solidi (b) 51, 713, (1972).

[19]: MM. J. P o r t i e r, A. Tressaud, J-L. Dupin et R. de Pape., Mat. Res. Bull. 4, 45, (1969).

[20]: K. Knox, Acta Cryst. 14, 583, (1961).

[21]: R. Fatehally, G. K. Shenoy, N. P. Sastry and R. Nagarajan, Phys. Lett. 25A, 454, (1967)
[22]: E. N. Maslen, N. Spaldaccini, T. Ito, F. Marumo, K. Tanaka, Y. Satow, Acta Crystall. B 49, 632, (1993).

[23] : Rama Rao MV et al. J Phys Chem Solids, 62, 797, (2001).

[24] : Bertheville B, Fischer P, Yvon K. J Alliages Composés, 17, 156, (2002).

[25]: Chen Lei, Fan Huiqing, Zhang Miaohua, Yang Chao, Chen Xiuli. J Alloys Compd ;492, 313. (2010).

[26]: R.Wang, Y.Shimojo, T.Sekiya, M.Itoh, Solid State Communications, 134, 791, (2005).

[27]: Le Paven C, Lu Y, Nguyen HV, Benzerga R, Le Gendre L, Rioual S, Benzegoutta D,

Tessier F, Cheviré F, Sharaiha A, Delaveaud C, Castel X. Thin Solid Films ,76, 553, (2014).

[28]: Srdjan M. Bulatovic, in Handbook of Flotation Reagents: Chemistry, Theory and Practice, (2010).

[29]: Yamada Yasuhiro, Kanemitsu Yoshihiko. J Luminescence 2013;133:30.

[30]: Li-Qian Cheng, Jing-FengLi, Journal of Materiomics, 2, 25, (2016).

[31] : BoJiang, De-YeLin, TorGrande, Sverre M.Selbach, Acta Materialia, 177, 222, (2019).

[**32**]: [8] Topolov VYu. Solid State Commun 2013;170(1).

[**33**]: Jonker GH, Van Santen JH, Physica. 16 1950;337.

[**34**] : Radhakrishna P, Hammann J, Ocio M, Pari P, Allain Y. Solid State Commun, **37**,813 (1981).

[35] : MahebubAlamKalyanMandal, Journal of Magnetism and Magnetic Materials 512, 167062, (2020).

[36]: Noura HAMDAD, Physica, B 406, 1194, (2011).

[37]: Labdelli Abbes, Hamdad Noura, Results in Physics, 5, 38, (2015).

[38]: M. Musa SaadH.-E, Journal of Physics and Chemistry of Solids, 94, 1, (2016).

[**39**]: ArijitGhosh, Md.G.Masud, K.Dey, B.K.Chaudhuri, Journal of Physics and Chemistry of Solids, **75**, 374, (2014).

[40]: S.H.Chen, Z.R.Xiao, Y.P.Liu, P.H.Lee, Y.K.Wang, Journal of Magnetism and Magnetic Materials, **323**, 175, (2011).

[41] : E.JurčišinováM.Jurčišin, Journal of Magnetism and Magnetic Materials, 513, 167085, (2020).

[42]: KamleshYadav, H.K.Singh, G.D.Varma, , Physica B: Condensed Matter, 407, 1244, (2012).

[43] : R.C.Sahoo, Sananda Das, T. K. Nath, 11, 724, (2019).

[44] : JieXiong, Jiaqiang Yan, Adam A. Aczel, Patrick M. Wood ward, Journal of Solid State Chemistry, 258, 762, (2018).

[45] : Y.Du, Z. X. Cheng, H. Y. Zhao, H. Kimura, P. Zhang, Z. P. Guo, X. L. Wang, Current Applied Physics, 11, S236, (2011).

[46] : Humaira Safdar Bhatti Syed, Tajammul Hussain, Feroz, Alam Khan, Shahzad Hussain, Applied Surface Science, 367, 291, (2016).

[47]: L. M. Salah, A. F. Mabied, M. H. Abdellatif, Journal of Magnetism and Magnetic Materials, 458, 10, (2018).

[48]: S. Ravi, C. Senthil kumar, Ceramics International, 43, 14441, (2017).

[49]: Fang Qing-Long, Zhang Jian-Min, Xu Ke-Wei. Phys B Condens Matter, 424, 79, (2013).

[50]: Mahebub Alam, Kalyan Mandal, Gobinda GopalKhan, Journal of Alloys and Compounds, 822, 153540, (2020).

[51]: Sun Yin, Kun Gao, Shijie Xie, Avadh Saxena, Organic Electronics, 53, 96, (2018).

[52]: Avinash Daga, Smita Sharma, J. Modern Physics, 3, 1891, (2012).

[53]: Pierre J, Nossov A, Vassiliev V, Ustinov V. Phys Lett A, 250, 435, (1998).

[54] : Kumar A, Verma AS, Bhardwaj SR. The Open Appl Phys, 1, 11, (2008).

[55]: Galasso F. Perovskites and High-Tc Superconductors. London: Gordon and Breach Science Pub; (1990).

[56] : Mori T, Aoki K, Kamegashira N, Shishido T. Crystal structure of DyMnO₃. Mater Lett., **387**, 42, (2000).

[57] : Ho Truong Giang, Ha Thai Duy, Pham Quang Ngan, Giang Hong Thai, Thu Do Thi Anh, Nguyen Ngoc Toan. Adv Nat Sci Nanosci Nanotechnol, **2**, 015012, (2011).

[58] : Ding Hanping, Lin Bin, Jiang Yinzhu, Wang Songlin, Fang Daru, Dong Yingchao, Tao Shanwen, et al. J Power Sources 185, 937, (2008).

[59] : Ueda Yutaka, Nakajima Tomohiko. Progr Solid State Chem, 397, 35, (2007).

[60] : Breach Science Pub; (1990).

[61]: Kumar A, Verma AS, Bhardwaj SR. The Open Appl Phys, 1, 11 (2008).

[62] : Mori T, Aoki K, Kamegashira N, Shishido T. Crystal structure of DyMnO₃. Mater Lett.; **387**, 42, (2000).

- [63]: U.Koroglu, S.Cabuk, E.Deligoz, SolidStateSci.34, 1, (2014).
- [64] : J. Cui, W. Liu, Physica B 405, 4687, (2010).
- [65] : K.H. Kim, K.H. Yoom, J.S. Choi, J. Phys. Hem. Solids, 46, 1061, (1985).
- [66] : L.J. Hee, R. Karin, M. Phys. Rev. Lett. 104, 204, (2010).
- [66]: S. Chattopad hyay, T. K. Nath, Curr. Appl. Phys. 11, 1153, (2011).
- [67] : J.G. Banach, W. M. Temmerman, Phys. Rev. B 69, 054427, (2004).
- [68]: S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13, (2007).

[69] : Liu Liang, Lu Wencong, Chen Nianyi, Journal of Physics and Chemistry of Solids, 65, 855, (2004).

[70]: M. Kestigian, F. D. Leipziger, W. J. Croft, and R. Guidoboni, Inorganic Chemistry 5, 8, (1966).

[71]: S. J. Pickart and H. A. Alperin, Journal of Applied Physics 42, 1617,(1971).

[72]: J. MLongo J. A Kafalas, Journal of Solid State Chemistry, 1, 103, (1969).

[73]: N. N. Greenwood, T. C. Gibbs, Mossbauer Spectroscopy (1971).

[74] A. Ito, Y. Someya, S. Morimoto, Magnetic Properties Of The Perovskite Compound RbFeF₃ (1979).

[75]: E. M. Gyorgy, H. J. Levinstein, J. F. Dillon Jr., and H. J. Guggenheim, Journal of Applied Physics 40, 1599, (2003)

[76]: A. A. Mubarak, Saleh Al-Omari[,] Journal of Magnetism and Magnetic Materials, 15, 211, (2015).

[77]: Fabian L. Bernal, Kirill V. Yusenko, Jonas Sottmann, Christina Drathen, Jérémy Guignard, Ole Martin Løvvik, Wilson A. Crichton, and Serena Margadonna, Inorg. Chem. 53, 12205, (2014).

[78]: Richard J. D. Tilley, Perovskites, 328, ISBN: 978-1-118-93566-8, (2016).

[79]: R. V. Pisarev, J. Ferre, R. H. Petit, B. B. Kritchevtsov, and P. P. Syrnikov, J. Phys. ... Letters, 13, 533, (1972).

[80]: Clark, D. T., Feast, W. J., Kilcast, D., Adams, D. B., and Preston, W. E., J. Fluorine Chem., 2, 199, (1972).

[81]: 17. P. Ganguly and C.N.R. Rao, Mater. Res. Bull., 8, 405, (1973).

[82]: R. R. Alfano, S. L. Shapiro: Phys. Rev. Lett. Commun. 68, 1109, (1976).

[83] : R. H. Petit et al. (1977).

[84]: R. V. Pisarev, I. G. Sinii, N. N. Kolpakova, and Yu. M. Yakolev, W. Dixon, J. Appl. Phys., 38, 5149, (1967).

[85] : Atsushi Okazaki, and Yasutaka Suemune Journal of the Physical Society of Japan 16, 671, (1961).

[86] : Ibrir, S. Lakel and Saadi Berri, Revue science des matériaux, Laboratoire LARHYSS, 05, 07, (2015).

[87]: MM. J. Portier, A. Tressaud, R. de Pape et P. Hagenmuller Mat. Res. Bull. 3, 433, (1968).

[88]: A. Tressaud, R. de Pape, Hagenmuller, C.R. Acad.Sc. Z 66, 984, (1968).

[89]: K. Knox, Acta Cryst. 14, 583, (1961).

[90]: M. Kestigian, F.D. Leipziger, W.J. Croft et R. Guidoboni, Inorg. Chem. 5, 1462, (1966).

[91]: Jaeryeong Lee, Heeyoung Shin, Jaechun Lee, Hunsaeng Chung, Qiwu Zhang, and Fumio Saito, Materials Transactions, 4, 1457, (2003).

[92] : Paul Hagenmuller, « Recherches Récentes Sur Les Composés A Large Domaine D'existence Contenant Un Même Elément A Deux Degrés D'oxydation Différents »

[93]: S. Andersson, B. Cohen, U. Kuylenstierna et A. Magnéli, Acta Chem. Scand. 11, 1641 (1957).

[94] : j S. Anderson, 'Liversidge Lecture, Proc. Chein. Soc. 77, (1964).

[95]: D. J. M. Bevan et J. Kordis, J. Inorg. Nucl. Chem. 26, 1509 (1964).

[96]: Roberto L. Moreira, Anderson Dias, Journal of Physics and Chemistry of Solids, **68**, 1617 (2007).

[97]: Y. Tomioka, Y. Okimoto, J. H. Jung, R. Kumai, Y. Tokura, J. Phys. Chem. Solids 67, 2214, (2006).

[98]: L. Q. Jiang, J. K. Guo, H. B. Liu, M. Zhu, X. Zhou, P. Wu, C.H. Li, Journal of Physics and Chemistry of Solids, 67, 1531, (2006).

[99]: O. Muller, R. Roy, The Major Ternary Structural Families, Springer, NewYork-Heidelberg-Berlin, (1974).

[100] : Raham Ali, Zahid Ali, Iftikhar Ahmad, Journal of Magnetism and Magnetic Materials, 388, 143, (2015).

[101]: P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, K. Schwarz, Techn.University at Wien, Austria, **3**, 9501031 (2001).

[102]: J. P. Perdew and Y.Wang, Phys. Rev. B 45, 13244, (1992).

[103]: J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

[104] : Perdew JP, Zunger A. Phys Rev, B 23, 5048, (1981).

[105]: Ceperly DM, Alder BJ. Phys Rev Lett, B 23, 5048, (1980).

[106] : Tran F, Blaha P. Phys Rev Lett 102, 226401, (2009).

[107]: M. Cococcioni and S. de Gironcoli, Phys. Rev. B 71, 035105, (2005).

[108]: Kavan L, Grätzel M, Gilbert S E, Klemenz C and Scheel H J J. Am. Chem. Soc. 118, 6716, (1996).

[109] : A.S. Verma, A. Kumar, J. Alloy. Compd. 541, 210 (2012).

[110]: C. Cros, R. Feurer et M. Poucliard, J.Fluorinr Chem., 7, 605 (1976).

[111]: M M. J. P o r t i e r , A. Tressaud, J-L. Dupin et R. de Pape., Mat. Res. Bull. 4, 45, (1969).

[112] : Hayatullah, G. Murtaza, R. Khenata c, S. Muhammada, A.H. Reshak, Kin Mun Wong, Bin Omran, Z.A. Alahmed, Computational Materials Science **85**, 402 (2014).

[113] : E. G. Stew and D and H. P. Iooxsby, Acta Cryst. 6, 49(1953).

[114]: U. Ganiel, M. Kestigian, S. Shtrikman, Phys.Lett. 24A. (1967).

[115] : Donato E. Conte & Nicola Pinna, Materials for Renewable and Sustainable Energy 3, 37 (2014).

[116] : A. A. Mubarak, Saleh Al-Omari, Journal of Magnetism and Magnetic Materials 382, 211, (2015).

[117]: R.L. Moreira, A. Dias, J. Phys. Chem. Solids, 68, 1617 (2007).

[118] : A.S. Verma, A. Kumar, J. Alloy. Compd., 541, 210 (2012).

[119]: Ramesh Narayan, S. Ramaseshan, J. Phys. Chem. Solids, 39, 1287, (1978).

[120]: Hayatullah, G. Murtaza, R. Khenata. Muhammada, A.H. Reshak, Kin Mun Wong, S.

Bin Omran, Z.A. Alahmed, Computational Materials Science, 85, 402, (2014).

[121]: M. Abdul, S.L. Yeon, Adv. Inf. Sci. Serv. Sci. 2, 3, (2010).

[122]: M.P.J. Punkkinen, Solid State Communications, 111, 477, (1999).

[123]: A. Akande and S. Sanvito, arXiv:0704.1572v1 [cond-mat.mtrl-sci] (2007).

[124]: I. Cio_ni, F. Illas and C. Adamo, J. Chem. Phys. 120, 3811 (2004).

[125] : Rick Ubic, Journal of the Americain Ceramic Society, 90, 3326, (2010).

[126]: M. Wildner and G. Giester, Neues Jb. Miner. Abh. 184, 29, (2007).

[127]: Abdul Majid, Yeon Soo Lee, Predicting lattice constant of cubic perovskites using support vector regression (2010).

[128]: L. J. De Jongh, Physica B 79, 568 (1975).

[129]: A. Okazaki, Y. Suemune, T. Fuchikami, J. Phys. Soc. Jpn 14, 1823, (1959).

[130]: J. Becquerel, W. J. de Haas and J. van den Handel, Physica 1, 383 (1934).

[131]: R.W.G. Wyckoff, Crystal Structures, Interscience, NewYork, 2, 392, (1960).

[132]: Roberto L. Moreiraa, and Anderson Diasb, Comment on "Prediction of lattice constant in cubic perovskites

[133]: E. P. Maarchall, A. C. Botterman, S. Vega and A. R. Miedema, Physica 41, 473, (1969).

[134] : Abdul Majid, Asifullah Khan, Gibran Javed, Anwar Mirza, Computational Materials Science, (2010).

[135]: M. Abdul, S. L. Yeon, Adv. Inf. Sci. Serv. Sci. 2, 3 (2010).

[136]: J. Lee, H. Shin, H. Chung, Q. Zhang, F. Saito, Mater. Trans. 44, 1457, (2003).

[137]: Atsushi Okazaki, and Yasutaka Suemune, J. Phys. Soc. Jpn. 16, 671, (1961).

[138]: L.Q. Jiang, J.K. Guo, H.B. Liu, M. Zhu, X. Zhou, P.Wu, C.H. Li, J. Phys. Chem. Solids

67, 1531, (2006).

[139]: R.L. Moreira, A. Dias, J. Phys. Chem. Solids, 68, 1617, (2007).

[140] G.A. Geguzina, V.P. Sakhnenko, Crystall. Rep. 49, 15, (2004).

[141]: Raham Zeb, Zahid Ali, Iftikhar Ahmad, Imad Khan, Journal of Magnetism and Magnetic Materials **388**, 143, (2015).

[142]: L.Q. Jiang, J. K. Guo, H. B. Liu, M. Zhu, X. Zhou, P. Wu, C. H. Li, J. Phys. Chem. Solids, 67, 1531, (2006).

[143]: R.L. Moreira, A. Dias, J. Phys. Chem. Solids 68, 1617, (2007).

[144]: A. S.Verma, V. K. Jindal, J. Alloy. Compd. 485, 514, (2009).

[145]: W. Rudoff, G. Linck, D. Babel, Z. Anorg. Allg. Chem. 320, 150, (1963).

[146]: K. Kohn, R. Fukuda, S. Iida, J. Phys. Soc. Jpn. 22, 333, (1967).

CONCLUSION GENERALE

Conclusion Générale

L'imagination est plus importante que le savoir. Le savoir est limité alors que l'imagination englobe le monde entier, stimule le progrès suscite l'évolution

le progrès suscite l'évolution

Conclusion Générale

Les matériaux pérovskites Fluorides ont pris un grand intérêt technologique récemment, qui est dû principalement à leurs applications technologiques variées, ainsi que leurs propriétés spécifiques et uniques. Grâce à cette étude approfondie sur huit matériaux dits **pérovskites Fluorides de la forme ABF3** qui est le fruit de cette thèse, on a pu avoir une vision claire, une compréhension avisée, et un analyse détaillé sur le comportement physique de la structure Electromagnétique et la stabilité structurale de ce genre de matériaux, contribuant ainsi à affirmer et prédire des propriétés dans le cadre d'un calcul **Ab-Initio** théorique qui pourra être comparable à d'autres travaux théoriques ou expérimentaux. On a pu aussi comprendre leur mécanisme qui est influencé par leurs structures cristallines et par leurs configurations électroniques qui fait appel aux interactions entre les composants faisant apparaitre le rôle important de l'effet de spin. Ce travail a permis de bien appréhender leurs structures électroniques et magnétiques qui nous ont facilité la tâche.

Nous avons fait ici une étude **Ab-initio** sur huit matériaux **pérovskites Fluorides** (**Fluoroperovskite**) différent et qui sont respectivement :(**CsFeF3**, **NaFeF3**, **RbFeF3**, **KFeF3**, **KCoF3**, **KNiF3**, **TiFeF3**, **et TIFeF3**) à l'aide de la théorie de la fonctionnelle de la densité (**DFT**) vis à vis à la (**DFT+U**) basée sur description thématique des ondes planes augmentées et linéarisées (**FP-LAPW**) implémentée dans le code **Wien 2K**, en introduisant la correction de **U-Hubbard**. Le calcul **Ab-initio** sert à compléter la vision expérimentale ou théoriques déjà faite sur le matériau ou même nous de donner l'opportunité de conforter le nouveau sans données expérimentales ou théoriques qui est le cas ici pour le (**TiFeF3**) qui a était étudié pour la première fois, et ce travail a eu l'honneur d'être publié pour la première fois (**TiFeF3** n'a jamais était étudié auparavant ni expérimentalement ni théoriquement par qui que ce soit), c'était une prédiction de ses paramètres, et son comportement en faisant une comparaison entre lui et le (**TIFeF3**) qui était déjà étudié dans la structure cubique. C'est l'une parmi les avantages d'un calcul **Ab-initio** qui facilite la tâche aux chercheurs scientifiques à exploiter le mystère sans des données précédentes.

On a fait appel à différentes structures cristallines (Cubique (**Pm-3m**), Hexagonale-**4H** (**P6/mmc**), Orthorhombique (**Pnma**), et Orthorhombique (**Pbnm**)). Deux configurations magnétiques ont été prises en considération dans cette thèse, il s'agit de la configuration Non-Ferromagnétique (**NF**), et la configuration Ferromagnétique (**FM**). Pour cela, nous avons utilisés différentes approximations (**L(S)DA**, **L(S)DA+U**, **WC-GGA**, **PBE** –**GGA**, **PBEsol** – **GGA** et **GGA+U**) dans un concept comparatif qui sert à prendre en considération les interactions d'échange et de corrélation parfaitement bien et surtout l'effet de spin qui est exprimé par les valeurs du moment magnétique. Les résultats révèlent que la **GGA+U** est beaucoup plus efficace, elle nous offre des paramètres de mailles beaucoup plus grands. Nos résultats s'accordent parfaitement bien avec les autres travaux théoriques et expérimentaux.

Nous avons effectués un calcul des propriétés magnétiques, donc il était indispensable de calculer le moment magnétique de chaque matériau, aussi pour chaque structure cristalline considérée et pour chaque approximation utilisée. D'après les résultats obtenus, nous avons

remarqué que le moment magnétique de l'élément B (Fe, Co, Ni) est le plus grand par rapport aux moments magnétiques des autres atomes A (Cs, Na, Rb, K, Ti, et Tl), et même plus grand que l'élément F qui a souligné une très faible contribution. Les résultats révèlent que le Fluoride TIFeF3 est beaucoup plus magnétique que les autres.

Les structures de bandes données ainsi que les densités d'état total (TDOS) et partielle (PDOS) illustrées en utilisant les différentes approximations la (L(S)DA), (L(S)DA+U), (GGA), (GGA+U) et l'approximation modifiée Berck-Johnson (TB-GGA-MBJ) ont prévu un comportement semi-conducteur qui a tendance à être isolant pour les structures cubiques, hexagonales et Orthorhombiques (Pnma) de nos Fluorides, et un comportement métallique pour la structure orthorhombique (Pbnm) des trois fluorides CsFeF3, NaFeF3 et RbFeF3 ce qui est en bon accord avec les données expérimentaux et théoriques. On remarque parfaitement bien que l'approximation modifiée Berck-Johnson (TB-GGA-MBJ) élargit le gap.

La densité de charge plotée par huit matériaux **pérovskites Fluorides** en utilisant cinq approximations (LSDA), (LSDA+U), (GGA), (GGA+U) et (TB-GGA-mBJ) pour la configuration Ferromagnétique (FM), et les approximations (LDA), (GGA) pour la configuration Non-Ferromagnétique (NF) ont montré la présence de trois types de liaisons chimiques. Le caractère covalent (B-B), Ionique (F-F), et covalente à caractère ionique (A-F) et (B-F).

Les résultats obtenus montrent que ces matériaux **pérovskites Fluorides (Fluoropérovskites)** peuvent être utilisés dans des applications technologiques très performantes comme le stockage des mémoires, photoluminescence, le stockage de l'énergie renouvelable dans les panneaux pérovskite solaires (**PSCs**) et beaucoup d'autres due à leur comportement magnétique important trouvé. Ils sont très prometteurs pour l'avenir.