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Résumé

Dans cette thèse, nous proposons d’étudier quelques paramètres fonctionnels.
Premièrement nous proposons d’étudier le problème de la modélisation non
paramétrique lorsque les variables statistiques sont des courbes. Plus préci-
sément, nous nous intéressons à des problèmes de prévisions à partir d’une
variable explicative à valeurs dans un espace de dimension infinie (espace
fonctionnel). et nous cherchons à développer des alternatives à la méthode
de régression.

En effet, nous supposons qu’on dispose d’une variable aléatoire réelle (ré-
ponse), souvent notée Y et d’une variable fonctionnelle (explicative), souvent
notée X. Le modèle non paramétrique utilisé pour étudier le lien entre X et
Y concerne la distribution conditionnelle dont la fonction de répartition (res-
pectivement la densité), notée F (respectivement f), est supposée appartenir
à un espace fonctionnel approprié.
Deuxièment lorsque les données sont générées à partir d’un modèle de ré-
gression à indice simple. Nous étudions deux paramètres fonctionnels.
Dans un premier temps nous nous sommes intéressés à l’estimation de la
fonction du hasard conditionnelle ainsi que le taux du hasard maximal, dont
nous donnons nos premiers résultats lorsque l’échantillon considéré est non
nécessairement i.i.d.
Dans un second temps nous supposons que la variable explicative est à va-
leurs dans un espace semi métrique (dimension infinie) et nous considérons
l’estimation de la fonction de hasard conditionnelle par la méthode de noyau.
Nous traitons les propriétés asymptotiques de cet estimateur dans le cas dé-
pendant. Pour le cas où les observations sont dépendantes, nous obtenons la
convergence ponctuelle et uniforme presque complète avec vitesse de l’esti-
mateur construit. Comme application nous discutons l’impact de ce résultat
en prévision non paramétrique fonctionnelle à partir de l’estimation du risque
maximal.
Nos résultats asymptotiques exploitent bien la structure topologique de l’es-
pace fonctionnel de nos observations et le caractère fonctionnel de nos mo-
dèles. En effet, toutes nos vitesses de convergence sont quantifiées en fonction
de la concentration de la mesure de probabilité de la variable fonctionnelle
et du degré de régularité des modèles.



Abstract

In this thesis, we study the problem of nonparametric modelization when
the data are curves. Indeed, we consider real random variable (named res-
ponse variable) X and a functional variable (explanatory variable) Z. The
nonparametric model used to study the relation between Z and X is the
conditional distribution function noted F which has a density f . Both F
and f are supposed to belong to some suitable functional spaces.
Secondly we propose to study some functional parameters when the data are
generated from a model of regression. We study two functional parameters.
Firstly, we are interested in the conditional hazard function estimation as the
asymptotic normality, the results are given in the case when the variables
are dependent.
Secondly, we suppose that the explanatory variable is valued in metric space
(infinite dimension) and we consider the conditional hazard function estima-
tion via kernel approach. We establish its asymptotic properties ; pointwise
and almost surely convergence (with rate) in dependent case. As an ap-
plication we discuss the impact of this result in functional non parametric
prediction from the estimation maximum of the conditional hazard function.
In the case, we establish the pointwise and almost surely convergence (with
rate) of the kernel estimator of the conditional hazard function.
The maximum of the conditional hazard function is a parameter of great
importance in seismicity studies, because it constitutes the maximum risk
of occurrence of an earthquake in a given interval of time. using the kernel
nonparametric estimates of the first derivative of the conditional hazard func-
tion, we establish uniform convergence properties and asymptotic normality
of an estimate of the maximum in the context of strong mixing dependence.
Our asymptotic results exploit the topological structure of functional space
for the observations. Let us note that all the rates of convergence are based on
an hypothesis of concentration of the measure of probability of the functional
variable on the small balls.
As far as we know, the problem of estimating the conditional hazard in
the functional single index parameter for censored data was not attacked.
In general the nonparametric estimation under censored data is new in the
statistical literature. What doubtless makes, the originality of this thesis.
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Chapitre 1

Introduction

This chapter is devoted to the presentation of asymptotic notations and
results, then at the end a short description of the thesis will be given.

1.1 Nonparametric conditional models and functio-
nal variables

The functional statistics is a field of current research where it now oc-
cupies an important place in statistical research. It has experienced very
important development in recent years in which mingle and complement se-
veral statistical approaches to priori remote This branch of statistics aims to
study data that, because of their structure and the fact that they are collec-
ted on very fine grids,can be equated with curves or surfaces, eg functions
of time or space. The need to consider what type of data, now frequently
encountered under the name of functional data in the literature, is above all
a practical need. This is the statistical modeling of data that are supposed of
curves observed on all their trajectories. This is practically possible because
of the precision of modern measuring devices and large storage capacity of-
fered by current computer systems. It is easy to obtain a discretization very
fine of mathematical objects such as curves, surfaces, temperatures observed
by satellite images.... This type of variables can be found in many areas, such
as meteorology, quantitative chemistry, biometrics, econometrics or medical
imaging. Among the reference books on the subject, there may be mentio-
ned the monographs (1997, 2002) for the applied aspects, Bosq (2000) for
the theoretical aspects, Ferraty and Vieu (2006) for non-parametric studyet
Ferraty and Romain (2011) for recent developments. In the same context, we
refer to Manteiga and Vieu (2007) well as Ferraty (2010). The objective of
this section is to make a bibliographic study on conditional nonparametric



10 Introduction

models considered in this thesis. The objective of this section is to make a
bibliographic study on conditional nonparametric models considered in this
thesis, allowing to compare our results with those that already exist. Ho-
wever, given the extent of the available literature in this area, we can not
make a exhaustive exposed. Thus, we will restrict our bibliographical study
to nonparametric models. we refer to Bosq and Lecoutre (1987), Schimek
(2000), Sarda and Vieu (2000) anf Ferraty and Vieu (2003, 2006) for a wide
range of references.

Give an exhaustive list of situations where of such data are encountered
is not envisaged, but specific examples of functional data will be addressed in
this thesis. However, beyond this practical aspect, it is necessary to provide
a theoretical framework for the study of these data. Although functional
statistics have the same objectives as the other branches of statistics (data
analysis, inference...), the data have this peculiarity to take their values in
infinite dimensional spaces, and the usual methods of multivariate statistics
are here set default.

The all earliest works in which we find this idea of the functional data
are finally relatively "ancient" Rao (1958) and Tucker (1958) are considering
thus the principal components analysis and factor analysis for functional
data and even are considering explicitly the functional data as a particular
data type.Thereafter, Ramsay (1982) gives off the concept of functional data
and raises the issue of adapting the methods of multivariate statistics in this
functional frame.

From there, the work to explore the functional statistics begin to multiply,
eventually leading today to works making reference on the subject, such as
for example monographs Ramsay and Silverman (2002 et 2005), Ferraty and
Vieu (2006)...

The estimated hazard rate, because of the variety of its possible appli-
cations, is an important issue in statistics. This subject can (and should)
be approached from several angles according to on the complexity of the
problem : eventual presence of censorship in the observed sample (common
phenomenon in medical applications, for example), présence éventuelle de
dépendance entre les variables observées (phénomène commun dans les ap-
plications sismiques ou économétriques, par exemple) or else presence of
explanatory variables.

Thus, the estimation of a hazard rate with the presence of an explanatory
variable functional to single functional index is a current issue to which this
work proposes to provide an answer elements.
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1.2 Bibliographical context

The problem of the forecast is a very frequent question in statistics. In
nonparametric statistics, the principal tool to answer to this question is the
regression model. This tool took a considerable rise from the number of
publications which are devoted to him, that the explanatory variables are
linked, multi or infinity dimension. However, this tool of forecast is not very
adapted for some situation. As example, let us quote the case of conditional
density dissymmetrical or the case where it comprises several peaks with one
of the peaks strictly more important than the others. In these various cases,
one can hope that the conditional mode, median or quantiles envisage better
than the regression.

1.2.1 On the regression model

The first results in functional nonparametric statistics were developed by
Ferraty and Vieu (2000) and they relate to the estimation of the regression
function in an explanatory variable of fractal dimension. They established
the almost complete convergence of a kernel estimator of the nonparametric
model in the i.i.d case. By building on recent developments in the theory of
probabilities of small balls, Ferraty and Vieu (2004) have generalized these
results to the α-mixing case and they exploited the importance of nonpara-
metric modeling of functional data by applying their studies problems such
as time series prediction and curves discrimination. In the context of functio-
nal observations α-mixing, Masry (2005) has proved asymptotic normality
of the estimator of Ferraty et Vieu (2004) for the regression function. The
reader can find in the book of Ferraty and Vieu (2006), a wide range of
applications of the regression function in functional statistics. Convergence
in mean square was investigated by Ferraty et al. (2007). Specifically, they
have explained the exact asymptotic term of the quadratic error. This result
was used by Rachdi and Vieu (2007) for determine a criterion for automatic
to selection of the smoothing parameter based on cross-validation. The local
version of this criterion has been studied by Benhenni et al. (2007). We find
in this article a comparative study between the local and global approach.
As works recents bibliographic in regression, we refer the reader to Ferraty
and Vieu (2011) well as Delsol (2011). Results on uniform integrability were
established by Delsol (2007,2009) andt Delsol et al. (2011). Other works were
interested to estimating the regression function using different approaches :
the method of k nearest neighbors by Burba et al. (2008), robust technical
by Azzidine et al. (2008) and Crambes et al. (2008), the estimate by the
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simplified method of local polynomial by Barrientos-Marin et al. (2010).

1.2.2 On data and functional variable

The statistical problems involved in the modeling and the study of func-
tional random variables for a long time know large advantage in statistics.
The first work is based on the discretization of these functional observations
in order to be able to adapt traditional multivariate statistical techniques.
But, thanks to the progress of the data-processing tool allowing the recovery
of increasingly bulky data, an alternative was recently elaborate consisting
in treating this type of data in its own dimension, i.e. by preserving the func-
tional character. Indeed, since the Sixties, the handling of the observations
in the form of trajectories was the object of several studies in various scien-
tific disciplines such Obhukov (1960), Holmstrom (1963) in climatic, Deville
(1974) in econometric, Molenaar and Boosma (1987) and then Kirkpatrick
and Heckman (1989) in genetic.

The functional models of regression (parametric or not parametric) are
topics which were privileged these last years. Within the linear framework,
the contribution of Ramsay and Silverman, (1997, 2002) presents an impor-
tant collection of statistical methods for the functional variables. In the same
way, note that Bosq (2000) significantly contributed to the development of
statistical methods within the framework of process of auto-regression li-
near functional. By using functional principal components analysis, Cardot
et al. (1999) built an estimator for the model of the Hilbertien linear re-
gression similar to Bosq estimator (1991) in the case of Hilbertien process
auto-regressive. This estimator is defined using the spectral properties of the
empirical version of variance-covariance operator of the functional explana-
tory variable. They obtained convergence of probability for some cases and
almost complete convergence of the built estimator for other cases. Norm
convergence in L2 for a regularized version (spline) of the preceding estima-
tor was established by the same authors in 2000.

Recently, Cardot et al. (2004) introduced, by a method of regularization,
an estimator for the conditionals quantiles, saw as continues linear forms in
Hilbert space. Under conditions on the eigenvalues of the covariance operator
of the explanatory variable and on the density of conditional law, they gave
the speed of norm convergence in L2 of the built estimator. We return to
Cardot et al. (2003) and to Cuevas et al. (2004) for the problem of the test
in the functional linear model. Several authors are interested also the answer
variable is qualitative, for example, Hastie et al. (1995), Hall et al. (2002),....

The study of the nonparametric models of regression is much more than
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that of the linear case. The results were provided by Ferraty and Vieu (2000).
These result were prolonged by Ferraty et al. (2002)..., with the problems of
the regression such forecast in the context of time series. By taking again the
estimator of Ferraty and Vieu (2004) and by using the property of concentra-
tion of the measurement of probability of the functional explanatory variable,
Niang and Rhomari (2003) studied norm convergence in LP of regression es-
timator. They applied their result to the discrimination and the classification
of the curves. Other authors were interested if the answer variable is func-
tional using linear model (Bosq and Delecroix (1985), Besse et al. (2000)).
Recently, of the first work relating to model presenting at the same time
linear and nonparametric aspects were realized by Ferraty et al. (2003), Aït-
Saïd et al. (2005, 2008), Ferré and Villa Ferr(2005)... The first work on the
functional variables of distribution estimate was given by Geffroy (1974).
More recently, Gasser et al. (1998) then Hall and Heckman (2002) were in-
terested in the nonparametric estimate of the distribution mode a functional
variable.

The estimate of the median of a random variable distribution which takes
its values in a Banach space was studied by Cadre (2001). Niang (2002) gives
an estimator of the density in a space of infinite dimension and established
asymptotic results of this estimator, such convergence on average quadratic,
almost sure convergence and the asymptotic normality of an estimator of the
histogram type.

We will also find in this article an application giving the expression of
convergence speed in the case of the estimate of the density of a diffusion
process relatively to Wiener measure. Ferraty et al. (2004) studied the non-
parametric estimator of the mode of the density of a random variable with
values in a semi-norm vector space of infinite dimension. They establish its
almost sure convergence and they also apply this result if the measurement
of probability of the variable checks a condition of concentration. Several au-
thors were interested in the application of statistical modeling by functional
variables on real data.

As example, Ferraty and Vieu (2002, 2003) were interested in spectro-
metric data and with vocal recordings, Besse et al. (2000) with weather
data, Gasser et al. (1998) considered medical data, Ferraty, Rabhi and Vieu
(2005) considered environmetric and meteorology data where they have gave
an example of application to the prediction via the conditional median, to-
gether with the determination of prediction intervals...
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1.2.3 Concrete problem in statistics for functional variables

In this part we mention a few areas wherein appear the functional data
to give an idea of the type of problems that functional statistics solves.
• In biology, we find the first precursor work of (1958) concerning a study

of growth curves. More recently, another example is the study of variations
of the angle of the knee during walking (Ramsay and Silverman, 2002) and
knee movement during exercise under constraint (Abramovich and Angelini
(2006), and Antoniadis and Sapatinas (2007). concerning animal biology,
studies of the oviposition of medfly were made by several authors (Chiou,
Müller, Wang and Carey (2003), Chiou, Müller and Wang (2003), Cardot
(2007) and Chiou et Müller (2007)). The data consist of curves giving the
spawn for each quantity of eggs over time.
• Chemometrics is part of the fields of study that promote the use of me-

thods for functional statistical. Of many existing work on the subject, include
Frank and Friedman (1993) , Hastie and Mallows (1993) who have commen-
ted on the article by Frank and Friedman (1993) providing an example of the
measuring curves log-intensity of a laser radius refracted depending on the
angle of refraction. In 2002, Ferraty and Vieu were interested in the study
of the percentage of fat in the piece of meat (reponse variable) given the ab-
sorption curves of infrared wavelengths of these pieces of meat (explanatory
variable). D’autres articles parmi lesquels Ferraty and Vieu (2002), Ferré and
Yao (2005), Ferraty et al. (2006), Ferraty and Vieu (2006), Aneiros-Pérez and
Vieu (2007), Ferraty, Mas and Vieu (2007) and Mas and Pumo (2007) they
proposed and applied other methods to meet this problematic.
• Of environment-related applications have been particularly studied by

Aneiros-Perez, Cardot, Estevez-Perez and Vieu (2004) who have worked on
a forecasting problem of pollution. These data consist of measurements of
peak ozone pollution every day (variable interest) given curves pollutants
and meteorological curves before (explanatory variables).
• Climatology is an area where functional data appear naturally. A study

of the phenomenon El Niño (hot current in Pacific Ocean) has been realized
by Besse Cardot and Stephenson (2000) ; Ramsay and Silverman (2005),
Ferraty et al. (2005) and Hall and Vial (2006).
• In linguistics, the works have also been realized, particularly concerning

voice recognition. Mention may be made, for example Hastie Buja and Tib-
shirani (1995), Berlinet Biau and Rouvière (2005) or again Ferraty and Vieu
(2003, 2006). This works are strongly related to methods of classification
when the explanatory variable is a curve. Briefly, the data curves corres-
ponding to records of phonemes spoken by different individuals.A label is
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associated with each phoneme (reponse variable) and the goal is to establish
a classification of these curves using as explanatory variable the recorded
curve.
• In the field of graphology, the contribution of functional statistical

techniques has again found application. The works on this problem are for
example those of Hastie Buja and Tibshirani (1995) and Ramsay (2000). The
latter for example modelize the pen position (abscissa and ordinate versus
time) using differential equations.
• The applications to economics are also relatively many. Works have

been realized especially by Kneip and Utikal (2001), and rerecently by Benko,
Härdle and Kneip (2005), based in particular on an analysis of functional
principal components.

There are other areas where the functional statistics was employed such as
for example processing of sound signals (Lucero, 1999) or recorded by a radar
(Hall et al (2001)), the demographic studies (Hyndman and Ullah (2007)),...
and the applications in fields as varied as criminology (how to model and
compare the evolution of the crime of an individual during time ?) Paleo
pathology (can you tell an individual if suffering arthritis from the shape of
his femur ?) The results study in school tests,...

Finally, one may be led to study the functional random variables even
if it has available actual initial data independent or multivariate. This is
the case when one wants to compare or study functions that can be esti-
mated from the data. Among Typical examples of this type of situation one
can evoke comparison of different density functions (see Kneip and Utikal
(2001), Ramsay and Silverman (2002), Delicado (2007) and Nerini Ghat-
tas (2007)), functions regressions (Härdle and Marron (1990), Heckman and
Zamar (2000)), the study of the function representing the probability that
an individual has to respond to a test according on its "qualities" correctly
Ramsay and Silverman (2002)),...

One can imagine that in the future the use of statistical methods func-
tional will be extended to other areas.

1.2.4 On the conditional distribution

Nonparametric estimation of the conditional density has been widely
studied, when the data is real The First related result in nonparametric
functional statistic was obtained by Ferraty et al et al. (2006). They esta-
blished the almost complete consistency in the independent and identically
distributed (i.i.d.) random variables of the kernel estimator of the conditional
distribution and the successive derivatives of conditional probability density.
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These results have been extend to dependent data by Ferraty et al. (2005)
and Ezzahrioui and Ould Saïd (2010). we send back to Cardot et al. (2004)
for one approach for linear the conditional quantile statistical functional.
The contribution of the thesis on this model is the study of the squared
error and the uniform convergence on arguments to simple functional index
of the estimator of the conditional distribution function and the conditional
density. The asymptotic results (with rates) are precised. The results ob-
tain The results are detailed in Chapter 2 of this thesis. These are the first
consistent results available in the literature of estimating the conditional dis-
tribution function and conditional hazard function in the functional single
index parameter for complete (uncensored) data and/or censored.

1.2.5 On the conditional hazard function

The literature on estimating the conditional hazard function is relatively
restricted into functional statistics. The article by Ferraty et al. (2008) is
precursor work on the subject, the authors introduced a nonparametric es-
timate of the conditional hazard function, when the covariate is functional.
We prove consistency properties (with rates) in various situations, including
censored and/or dependent variables. The α-mixing case was handled by
Quintela-Del-Rio (2010). The latter established the asymptotic normality of
the estimator proposed by Ferraty et al. (2008).

The author has illustrated these asymptotic results by an application
on seismic data. We can also look at the recent work of Laksaci et Mechab
(2010) on estimating of conditional hazard function for functional data spa-
tially dependent. In this thesis, we deal the nonparametric estimate of the
conditional hazard function, when the covariate is functional and the obser-
vations are linked with a single-index structure. We establish the pointwise
almost complete convergence and the uniform almost complete convergence
(with the rate) of the kernel estimate of this model in various situations,
including censored and non-censored data. These first uniform results are
detailed in the chapter 3.

1.2.6 On analysis of survival data

Survival analysis is the name of a collection of statistical techniques that
is concerned with the modeling of lifetime data. These methods are used to
describe, quantify and understand the stochastic behavior of time-to-events.
In survival analysis we use the term "failure" for the occurrence of the event
of interest (even though the event may actually be a "success", such as reco-
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very from therapy). On the other hand the term "survival time" specifies the
length of time taken for failure to occur, usually denoted T , that is assumed
to be a positive random variable. Survival analysis methods have been used
in a number of applied fields, such as medicine, public health, biology, epi-
demiology, engineering, economics, finance, social sciences, psychology and
demography. The analysis of failure time data usually means addressing one
of three problems : the estimation of survival functions, the comparison of
treatments or survival functions, and the assessment of covariate effects or
the dependence of failure time on explanatory variables.

The survival function at time t is defined as

S(t) = P(T > t) =

∫ ∞

t
f(u)du = 1− F (t) (1.1)

where f and F are the density and distribution function of T , respectively,
and it can be interpreted as the proportion of the population that survives
up to time t. The empirical survival function is a non-parametric estimator
of the unconditional survival function for complete data and is given by

Ŝ(t) =
1

n

n∑

i=1

1{ti>t} = 1− F̂ (t)

The conditional survival function is the probability that the individual
will be alive at time t given a time-fixed covariate, z0 :

S(t|z0) = P(T > t|Z = z0)

where Z is the covariate and z0 is a fixed value. Not only are the lifetime and
its covariate random variables unknown, but usually the conditional survival
function is also unknown and needs to be estimated. There are many reasons
that make it difficult to get complete data in studies involving survival times.
A study is often finished before the death of all patients, and we may keep
only the information that some patients are still alive at the end of the
study, not observing when they really die. In the presence of censored data,
the time to event is unknown, and all we know is that the survival time has
occurred before, between or after certain time points. This obviates the need
for inference methods for censored data.

When the failure time is observed completely, there are numerous me-
thods to make non parametric inference on its conditional distribution. For
instance Nadaraya (1964) and Watson (1964) proposed a nonparametric es-
timator (NW) to estimate the conditional expectation µ(z0) = E(T |Z = z0)
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as as a locally weighted average using a kernel function. Beran (1981) exten-
ded the Kaplan-Meier estimator and proposed a method for non-parametric
estimation (generalized Kaplan-Meier) of the conditional survival function
for right-censored data. Turnbull (1976) proposed a nonparametric estimator
of the unconditional survival function under interval-censoring.

Our objectives in this thesis are mainly to present simple non-parametric
or semiparametric approaches to estimate the conditional hazard function
when the data are generated from a model of regression to a single index
under complete and/or censored data.

1.2.7 On The Hazard Function

An alternative characterization of the distribution of T is given by the
hazard function, or instantaneous rate of occurrence of the event, defined as

h(t) = lim
∆t→0

P(t < T ≤ t+ ∆t , T ≥ t)
∆t

[t > 0]

The numerator of this expression is the conditional probability that the
event will occur in the interval (t, t + ∆t) given that it has not occurred
before, and the denominator is the width of the interval. Dividing one by the
other we obtain a rate of event occurrence per unit of time. Taking the limit
as the width of the interval goes down to zero, we obtain an instantaneous
rate of occurrence.

The conditional probability in the numerator may be written as the ratio
of the joint probability that T is in the interval (t, t+ ∆t) and T > t (which
is, of course, the same as the probability that t is in the interval), to the
probability of the condition T > t. The former may be written as f(t)∆t for
small ∆t, while the latter is S(t) by definition. Dividing by ∆t and passing
to the limit gives the useful result

h(t) =
f(t)

S(t)
(1.2)

which some authors give as a definition of the hazard function. In words, the
rate of occurrence of the event at duration t equals the density of events at t,
divided by the probability of surviving to that duration without experiencing
the event.

Note from Equation (1.1) that −f(t) is the derivative of S(t). This sug-
gests rewriting Equation (1.2) as

h(t) = − d

dt
logS(t). (1.3)
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If we now integrate from 0 to t and introduce the boundary condition
S(0) = 1 (since the event is sure not to have occurred by duration 0), we
can solve the above expression to obtain a formula for the probability of
surviving to duration t as a function of the hazard at all durations up to t :

S(t) = exp

{
−
∫ t

0
h(u)du

}
. (1.4)

This expression should be familiar to demographers. The integral in curly
brackets in this equation is called the cumulative hazard ( or cumulative risk)
and is denoted

H(t) =

∫ t

0
h(u)du. (1.5)

You may think of H(t) as the sum of the risks you face going from
duration 0 to t.

These results show that the survival and hazard functions provide alter-
native but equivalent characterizations of the distribution of T . Given the
survival function, we can always differentiate to to obtain the density and
then calculate the hazard using Equation (1.2). Given the hazard, we can
always integrate to obtain the cumulative hazard and then exponentiate to
obtain the survival function using Equation (1.4). An example will help fix
ideas.

Example 1.2.1 The simplest possible survival distribution is obtained by
assuming a constant risk over time, so the hazard is

h(t) = λ

for all t. The corresponding survival function is

S(t) = exp(λt).

This distribution is called the exponential distribution with parameter λ.
The density may be obtained multiplying the survivor function by the hazard
to obtain

f(t) = λ exp(−λt).

The mean turns out to be 1/λ. This distribution plays a central role in
survival analysis, although it is probably too simple to be useful in applications
in its own right.
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1.2.8 Convergence notions

All through this party, (Xn)n∈N and (Yn)n∈N are sequences of real random
variables, while (un)n∈N is a deterministic sequence of positive real numbers.
We will use the notation (Zn)n∈N for a sequence of independent and centered
r.r.v.

Definition 1.2.1 One says that (Xn)n∈N converges almost completely (a.co.)
to some r.r.v. X, if and only if

∀ε > 0,
∑

n∈N
P (|Xn −X| > ε) <∞,

and the almost complete convergence of (Xn)n∈N to X is denoted by

lim
n→∞

Xn = X, a.co.

Definition 1.2.2 One says that the rate of almost omplete convergence of
(Xn)n∈N to X is of order un if and only if

∃ε0 > 0,
∑

n∈N
P (|Xn −X| > ε0un) <∞,

and we write
Xn −X = Oa.co.(un)

Proposition 1.2.1 Assume that lim
n→∞

un = 0, Xn = Oa.co.(un) and lim
n→∞

Yn =

l0, a.co., where l0 is a deterministic real number.
i) We have XnYn = Oa.co.(un) ;

ii) We have
Xn

Yn
= Oa.co.(un) as long as l0 6= 0.

Remark 1.2.1 The almost convergence of Yn to l0 implies that there existe
some δ > 0 such that ∑

n∈N
P (|Yn| > δ) <∞.

Now, one suppose Z1, . . . , Zn will be independent r.r.v. with zero mean.
As can be seen throughout this party, the statement of almost complete
convegence properties needs to find an upper bound for some probabilities
involving sum of r.r.v. such as

P

(∣∣∣
n∑

i=1

Zi

∣∣∣ > ε

)
,
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where, eventually, the positive real ε decreases with n. In this context, there
exists powerful probabilistic tools, generically called Exponential Inequa-
lities. The literature contains various versions of exponential inequalities.
These inequalities differ according to the various hypotheses checked by the
variables Zi’s. We focus here on the so-called Bernstein’s inequality. This
choice was made because the from of Bernstein’s inequality is the easiest for
the theoretical developments on functional statistics that have been stated
throughout our thesis. Other forms of such exponential inequality can be
found in Fuk-Nagaev (1971) (see also Nagaev (1997) and (1998))

Proposition 1.2.2 Assume that

∀m ≥ 2, |EZmi | ≤ (m!/2)(ai)
2bm−2,

and let (An)2 = (a1)2 + . . .+ (an)2. Then, we have :

∀ε ≥ 0, P

(∣∣∣
∞∑

i=1

Zi

∣∣∣ ≥ εAn
)
≤ 2 exp



−

ε2

2
(

1 + εb
An

)



 .

Corollary 1.2.1 i) If ∀m ≥ 2, ∃Cm > 0, E|Zm1 | ≤ Cma2(m−1), we have

∀ε ≥ 0, P

(∣∣∣
∞∑

i=1

Zi

∣∣∣ ≥ nε
)
≤ 2 exp

{
− nε2

2a2(1 + ε)

}
.

ii) Assume that the variables depend on n (that is, Zi = Zi,n). If ∀m ≥
2, ∃Cm > 0, E|Zm1 | ≤ Cma

2(m−1), and if un = n−1a2
n log n verifies

lim
n→∞

un = 0, we have :

1

n

n∑

i=1

Zi = Oa.co. (
√
un) .

Remark 1.2.2 By applying Proposition 1.2.2 with An = a
√
un, b = a2 and

taking ε = ε0
√
un, we obtain for some C ′ > 0 :

P

(
1

n

∣∣∣
∞∑

i=1

Zi

∣∣∣ > ε0
√
un

)
≤ 2 exp

{
− ε2

0 log n

2(1 + ε0
√
un)

}
≤ 2n−C

′ε20 .

Corollary 1.2.2 i) If ∃M < ∞, |Z1| ≤ M , and denoting σ2 = EZ2
1 ,

we have

∀ε ≥ 0, P

(∣∣∣
∞∑

i=1

Zi

∣∣∣ ≥ nε
)
≤ 2 exp

{
− nε2

2σ2(1 + εM
σ2 )

}
.
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ii) Assume that the variables depend on n (that is, Zi = Zi,n) and are
such that ∃M = Mn < ∞, |Z1| ≤ M and define σ2

n = EZ2
1 . If un =

n−1σ2
n log n verifies lim

n→∞
un = 0, and if M/σ2

n < C < ∞, then we
have :

1

n

n∑

i=1

Zi = Oa.co. (
√
un) .

Remark 1.2.3 By applying Proposition 1.2.2 with a2
i = σ2, An = nσ2, and

by choising ε = ε0
√
un, we obtain for some C ′ > 0 :

P

(
1

n

∣∣∣
∞∑

i=1

Zi

∣∣∣ > ε0
√
un

)
≤ 2 exp

{
− ε2

0 log n

2(1 + ε0
√
vn)

}
≤ 2n−C

′ε20 .

Where vn = Mun
σ2
n

1.3 Local Weithing of Functional Variables

In the finite dimensional case, the local weighting techniques are very
popular in the community of nonparametricians because they are very well
adapted to nonparametric models. Clearly, local approaches need to have
at hand some topological ways for measuring proximity between functional
data.

In the finite dimensional case, one of the most common approaches among
these local weighting methods is certainly the kernel one. It is impossible
to give an exhaustive bibliography about nonparametric methods for finite
dimensional variables, but the state of art in this field is well summarized
in Schimek (2000) and Akritas and Politis(2003) while a large number of
references can be found in Sarda, and Vieu (2000) concerning the kernel
methods especially. We will see in this section how kernel smoothing ideas
can be adapted to infinite dimensional variables.

1.3.1 Why Use Kernel Methods for Functional Data ?

Kernel methods are well-known and intensively used by the community
of nonparametricians because they are a useful way to do local weithing.
We start by recalling shortly what is kernel local weighting in the real and
multivariate cases before extending it to the functional context.

1. Real Case
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As it well known, kernel local weighting is based on a kernel function
(classically denoted by K) and on a smoothing parameter, which is
called bandwidth and usually denoted by h. If is a fixed real num-
ber, the kernel local weithing transforms n r.r.v. X1, X2, . . . , Xn into
∆1,∆2, . . . ,∆n such that :

∆i = ∆i(x, h,K) =
1

h
K

(
x−Xi

h

)
.

The main ideas of the local weithing around x is to attribute at each
r.r.v. Xi a weight taking into account the distance between x and Xi ;
the more Xi is distant from x, the smaller is the weighting.
Before going on, let us recall what is a kernel function exactly in this
simplest situation. In fact, there exists a large variety of kernels. Any
density function can be considered as a kernel, but even unnecessary
positive functions can be used Gasser and Müller (1979). To simplify
our purpose, we consider at this stage only positive and symmetrical
kernels which are the most classical ones.
To precise the notion of kernel local weighting, let us consider the Box
kernel and rewrite the ∆i’s as follows :

∆i =
1

h
1[x−h,x+h](Xi).

In this situation, the local feature of the weighting appears obvious
since the r.r.v. outside the rang [x− h, x+ h] are ignored. In addition,
the normalization 1/h is proportional to the size of the set [x−h, x+h]
on which the Xi’s are taken into account. These points are not only
true for the Box kernel, but are shared by any compactely supported
kernels.

2. Multivariate Case

In multivariate situations one is observing n random vectors X1, . . . ,Xn

valued in Rp. The previous kernel local weighting can be extended ea-
sily to this situation. To that end, it suffices to consider a multivariate
kernel K∗ which will be a functions from Rp into R. The first (natural)
way to do that is to define K∗ as a product of p real kernel functions
K1,K2, . . . ,Kp :

∀u =t (u1, . . . , up) ∈ Rp, K∗(u) = K1(u1)×K2(u2)× . . .×Kp(up).
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As pointed out in Härdle and Müller (2000), a second way consists in
combining a real kernel function H with a norm (denoted by ‖.‖) in
Rp as follows :

∀u ∈ Rp, K∗(u) = K(‖u‖).

Note that if K1 = K2 = . . . = Kp = 1[−1,1] and if ‖ · ‖ is the supremum
norm, both approaches coincide by taking K = 1[−1,1]. Moreover, be-
cause ‖u‖ is always a positive quantity, the real kernel K should have
a positive support (i.e., {v ∈ R such that K(v) > 0} ⊂ R+). This
leads to use asymmetrical functions for the kernel K.
Now, let us discuss how this can be interpreted in terms of local weigh-
ting. Indeed, what happens is very similar to the real case. Let x be a
fixed vector of Rp. The multivariate kernel local weighting consists in
transforming the n random vectors X1,X2, . . . ,Xn into the n variables
∆1,∆2, . . . ,∆n :

∆i =
1

hp
K∗
(

x−Xi

h

)
.

If we consider compactly supported kernels, it appears clearly that
the ∆i are locally weighted transformations of the variables Xi is out
of some neighborhood of x. Moreover, the normalization 1/hp is pro-
portional to the volume of the set on which the Xi’s are taken into
account.

3. Functional Case

The background presented above is sufficient to introduce the kernel
local weighting in the functional case. Let X1, X2, . . . , Xn be n f.r.v.
valued in F and let x be a fixed element of E . A naive functional exten-
sion of multivariate kernel local weighting ideas would be to transform
the n f.r.v. x1, x2, . . . , xn into the n quantities

1

V (h)
K

(
d(x,Xi)

h

)
,

where d is a semi-metric on F , K is a real (asymmetrical) kernel. In
this expression V (h) would be the volume of

B(x, h) = {x′ ∈ E, d(x, x′) ≤ h},

which is the ball, with respect to the topology induced by d, centered
at x and of radius h. However, this naive approach requests to define
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V (h). In other words, this needs to have at hand a measure on F . This
is the main difference with real and multivariate cases for which the
Lebesgue measure is implicitly used whereas in the functional space
F we do not have such a universally accepted reference measure (see
Dabo-Niang (2003) for deeper discussion).
Therefore, in order to free oneself of a choice of particular measure, we
build the normalization by using directly the probability distribution
of the f.r.v. The functional kernel local weighted variables are defined
by :

∆i =
K
(
d(x,Xi

h

)

E
(
K
(
d(x,Xi

h

)) . (1.6)

If we go back quickly to the multivariate case we have, for some constant
C depending on K and on the norm ‖.‖ used Rp,

EK(‖x−Xi‖/h) ∼ Cf(x)hp,

as long as Xi has a density f with respect to Lebesgue measure which
is continuous and such that f(x) > 0 (this kind resultis known in the
literature as the Bochner’s type theorem and Collomb (1976) gives a
large scope on such results). So, it is clear now that (1.6) is an extension
of the multivariate kernel local weighting in the functional framework.
Note that the kernel functions K to be used here necessarily the asym-
metrical ones described in multivariate case above. For the sake of
simplicitly, in the remainder of this work, we will consider only two
kinds of kernel for weighting functional variables.

Definition 1.3.1
i) A function K from R into R+ such that

∫
K = 1 is called a kernel of

type I if there exist two real constants 0 < C1 < C2 <∞ such that :

C11[0,1] ≤ K ≤ C21[0,1].

ii) A function K from R into R+ such that
∫
K = 1 is called a kernel

of type II if its support is [0, 1] and if its derivative K ′ exists on [0, 1]
and satisfies for two real constants −∞ < C2 < C1 < 0 :

C2 ≤ K ′ ≤ C1.
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The first kernel family contains the usual discontinuous kernels such as
the asymmetrical box one while the second family contains the standard
asymmetrical continuous ones (as the triangle, quadratic, ...). Finally, to be
in harmony with this definition and simplify our purpose, for local weighting
of real random variables we just consider the following kernel-type.

Definition 1.3.2 A function K from R into R+ such that
∫
K = 1 with

compact support [−1, 1] and such that ∀u ∈ (0, 1), K(u) > 0 is called a
kernel of type 0.

We can now build the bridge between local weighting and the notation of
small ball probabilities. To fix the ideas, consider the simplest kernel among
those of type I namely the asymmetrical box kernel. Let x be f.r.v. valued
in F and x be again a fixed element of F . We can write :

E
(

1[0,1]

(
d(x,X)

h

))
= E(1B(x,h)(X)) = P(X ∈ B(x, h)).

Keeping in mind the functional kernel local weighted variables (1.6), the
probability of the ball B(x, h) appears clearly in the normalization. At this
stage it is worth telling why we are saying small ball probabilities. In fact, as
we will see later on, the smoothing parameter h (also called the bandwith)
decreases with the size of the sample of the functional variables (more pre-
cisely, h tends to zero when n tends to ∞). Thus, when we take n very
large, h is close to zero and then B(x, h) is considered as a small ball and
P (X ∈ B(x, h)) as a small ball probability.

From now, for all x in F and for all positive real h, we will use the
notation :

φx(h) = P(X ∈ B(x, h)).

This notion of small ball probabilities will play a major role both from
theoretical and pratical points of view. Because tne notion of ball is strongly
linked with the semi-metric d, the choice of this semi-metric will become an
important stage.

Now, let X be a f.r.v. taking its values in the semi-metric space (F , d),
let x be a fixed element of F , let h be a real positive number and let K be
a kernel function.

Lemma 1.3.1 If K is a kernel of type I, then there exist nonnegative finite
real constant C and C ′ such that :

Cφx(h) ≤ EK
(
d(x,X

h

)
≤ C ′φx(h).
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Lemma 1.3.2 If K is a kernel of type II and if φx(.) satisfies

∃C3 > 0, ∃ε0, ∀ε < ε0,

∫ ε

0
φx(u)du > C3εφx(ε),

then there exist nonnegative finite real constant C and C ′ such that, for h
small enough :

Cφx(h) ≤ EK
(
d(x,X

h

)
≤ C ′φx(h).

1.4 Various Approaches to the Prediction Problem

Let us start by recalling some notation. Let (Xi, Yi)i = 1, . . . n be n inde-
pendent pairs, identically distributed as (X,Y ) and valued in E × R, where
(E , d) is a semi-metric space (i.e. X is a f.r.v. and d a semi-metric). Let x
(resp. y) be a fixed element of E (resp. R), let Nx ⊂ E be a neighboorhood
of x and S be a fixed compact subset of R. Given x, let us denote by ŷ a
predicted value for the scalar response.

We propose to predict the scalar response Y from the functional predic-
tor X by using various methods all based on the conditional distribution
of Y given X. This leads naturally to focus on some conditional features
such as condition expectation, median, mode and quantiles. The regression
(nonlinear) operator r of Y on X is defined by

r(x) = E(Y |X = x),

and the condition cumulative distribution function (c.d.f) of Y given X is
defined by :

∀y ∈ R, FXY (x, y) = P(Y ≤ y|X = x).

In addition, if the probability distribution of Y given X is absolutely
continuous with respect to the Lebesgue measure, we note fXY (x, y) the value
of the corresponding density function at (x, y). Note that under a differen-
tiabillity assumption on FXY (x, .), this functional conditional density can be
written as

∀y ∈ R, fXY (x, y) =
∂

∂y
FXY (x, y). (1.7)

For these two last definitions, we are implicitly assuming that there exists
a regular version of this conditional probability. This assumption will be done
implicitly as long as we will need to introduce this condional cdf FXY (x, y)
or the conditional density fXY (x, y).
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It is clear that each of these nonlinear operators gives information about
the link betweenX, Y and thus can be useful for predicting method. The first
way to construct such a prediction is obtained directly from the regression
operator by putting :

ŷ = r̂(x),

r̂ being an estimator of r. The second one consists of considering the median
m(x) of the conditional c.f.d. FXY :

m(x) = inf{y ∈ R, FXY (x, y) ≥ 1/2},

and to use as predictor :
ŷ = m̂(x),

where m̂(x) is an estimator of this functional conditional median m(x). Note
that such a conditional median estimate will obviously depend on some pre-
vious estimation of the nonlinear operator FXY . Finally, the third predictor
is based directly on the mode θ(x) of the conditional density of Y given X :

θ(x) = arg sup
y∈S

fXY (x, y).

This definition assumes implicitly that θ(x) exists on S. The predictor is
defined by :

ŷ = θ̂(x),

where θ̂(x) is an estimator of this functional conditional mode θ(x). Once
again note that this conditional mode estimate will directly depend on some
previous estimation of the nonlinear operator fXY .

1.5 Kernel Estimators

Once the nonparametric modelling has been introduced, we have to find
ways to estimate the various mathematical objects exhibited in the previous
models, namely the (nonlinear) operator r, FXY and fXY .

– Estimating the regression. We propose for the nonlinear operator
r the following functional kernel regression estimator :

r̂(x) =

n∑

i=1

YiK
(
h−1d(x,Xi)

)

n∑

i=1

K
(
h−1d(x,Xi)

) ,
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where K is an asymmetrical kernel and h (depending on n) is a strictly
positive real. It is a functional extension of the familiar Nadaraya-
Watson estimate (see Nadaraya (1964) and Watson (1964) which was
previously introduced for finite dimensional nonparametric regression
(see Härdle (1990) for extensive discussion). The main change comes
from the semi-metric d which measures the proximity between func-
tional objects. To see how such an estimator works, let us consider the
following quantities :

wi,h =
K
(
h−1d(x,Xi)

)
n∑

i=1

K
(
h−1d(x,Xi)

) .

Thus, it is easy to rewrite estimator r̂(x) as follows :

r̂(x) =

n∑

i=1

wi,h(x)Yi.

Which is really a weighted average because :

n∑

i=1

wi,h(x) = 1.

The behavior of the wi,h(x)’s can be deduced from the shape of the
asymmetrical kernel function K.

– Estimating the conditional c.d.f.. We focus now on the estimator
F̂XY of the conditional c.d.f. FXY , but let us first explain how we can
extend the idea previously used for the construction of the kernel re-
gression estimator. Clearly, FXY = P (Y ≤ y|X = x) can be expressed
in terms of conditional expectation :

FXY = E
(
1(−∞,y](Y )|X = x

)

and by analogy with the functional regression context, a naive kernel
conditional c.d.f. estimator could be defined as follows :

F̃XY (x, y) =

n∑

i=1

K
(
h−1d(x,Xi)

)
1(−∞,y](Yi)

n∑

i=1

K
(
h−1d(x,Xi)

) .
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By following the ideas previously developed by Roussas (1969) and
Samanta (1989) in the finite dimensional case, it is easy to construct a
smooth version of this naive estimator. To do so, it suffices to change
the basic indicator function into a smooth c.f.d. Let K0 be an usual
symmetrical kernel, let H be defined as :

∀u ∈ R, H(u) =

∫ u

−∞
K0(v)dv,

and define the kernel conditional c.f.d. estimator as follows :

F̂XY (x, y) =

∑n
i=1K

(
h−1d(x,Xi)

)
H(g−1(y − Y i)∑n

i=1K (h−1d(x,Xi))
, (1.8)

where g is a strictly positive real number (depending on n). To fix the
ideas, let us consider K0 as a kernel of type 0 see Definition (1.3.2). In
this case, H is a c.f.d. and the quantity H(g−1(y− Yi)) acts as a local
weighting : when Yi is less than y the quantity H(g−1(y− Yi)) is large
and the more Yi is above y, the smaller the quantity H(g−1(y − Yi)).
Moreover.
It is clear that the parameter g acts as the bandwidth h. The smooth-
ness of the function F̂XY (x, .) is controled both by the smoothing para-
meter g and by the regularity of the c.d.f. H. The idea to build such
a smooth c.d.f. estimate was introduced by Azzalini and Reiss (1981).
The roles of the other parameters invoved in this functional kernel
c.d.f. estimate (i.e. the roles of K and h) are the same as in the regres-
sion setting. From this conditional c.d.f. estimate (1.8), one can attack
the prediction problem by defining a kernel estimator of the funvtional
conditional median m(x) as follows :

m̂(x) = inf{y ∈ R, F̂XY (x, y) ≥ 1/2}.

More generally, we can also define from (1.8) a kernel estimator of the
functional conditional quantiles tα(x), for any α in [1, 1/2], as follows :

t̂α(x) = inf{y ∈ R, F̂XY (x, y) ≥ α}.

– Estimating the conditional density. It is know that, under some
differentiability assumption, the conditional density function can be
obtained by derivating the conditional c.d.f. (see (1.7)). Since we have
now at hand some estimator F̂XY of FXY , it is natural to propose the
following estimate :

f̂XY (x, y) =
∂

∂y
F̂ xY .
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Assuming the differentiability of H, we have

∂

∂y
F̂ xY =

n∑

i=1

K
(
h−1d(x,Xi)

) ∂
∂y
H(g−1(y − Yi))

n∑

i=1

K
(
h−1d(x,Xi)

) ,

and this is motivating the following expression for the kernel functional
conditional density estimate :

f̂XY (x, y) =

∑n
i=1K

(
h−1d(x,Xi)

)
1
gH
′(g−1(y − Yi))∑n

i=1K (h−1d(x,Xi))
.

More generally, we can state for any kernelK0 the following definition :

f̂XY (x, y) =

n∑

i=1

K
(
h−1d(x,Xi)

) 1

g
HK0(g−1(y − Yi))

n∑

i=1

K
(
h−1d(x,Xi)

) .

This kind of estimate has been widely studied in the un-functional set-
ting, that is, in the setting when X is changed into a finite dimensional
variable. Concerning the parameters involved in the functional part of the
estimate (namely, the roles of K and h) are the same as in the regression
setting discussed just before while those involved in the un-functional part
(namely, K0 and g) are acting exactly as K and h, respectively as a weight
function and as a smoothing factor.

To end, note that we can easily get the following kernel functional condi-
tional mode estimator of θ(x) :

θ̂(x) = arg sup
y∈S

f̂XY (x, y).

1.6 Description of the thesis

The first thematic of this thesis focuses on the study of quadratic error in
statistical nonparametric functional. Recall that one of the main reasons for
the craze of nonparametric functional statistical is the solution it offers to
the problem of the curse of dimensionality. This well-known non-parametric
statistical phenomenon relates to the significant deterioration of the quality



32 Introduction

of the estimate when the dimension increase. Our study highlights the pheno-
menon of concentration properties on small balls of the probability measure
of the functional variable.

The second problematic addressed is devoted to the study of some func-
tional parameters in models to revelatory index.We treat the conditional
hazard function considering two types of data namely full data and censored
right into a type of correlation which is none other than the i.i.d case.The ex-
planatory variable for functional parameter which is the conditional hazard
function is of infinite dimension.

The uniform convergence in functional nonparametric statistic engenders
an another problem of dimensionality. Indeed, in a general way the processing
of uniform convergence on a given set is related to the number of balls which
cover the whole. In finite dimension for a compact set, this number is of the
order of rd where r is the radius of the balls, d is est the dimension of the
space. From probabilistic point of view, this relationship is justified by the
fact that the probability of the set is bounded above by the number of balls
multiplied by rd which is the Lebesgue measure of a ball of radius r. So, we
can say that there is a relationship between the number of balls, the size of
the space and the probability measure used. Thus, it is natural to wonder
about the uniform convergence rate of the estimators when the dimension is
infinite. Of course, this number depends on the topological structure of the
space of functional variable considered but the most important issues are :

1. Can we find a compromise between the radius of the ball and the
number of balls to ensure uniform convergence of estimators built ?

2. Can we optimize the speed of convergence based on considered the
topological structure ?

The study conducted in the third part of this thesis is an answer to this
question and the concept of entropy plays a key role in our approach.

1.6.1 Plan of the thesis

After devoting the first part of the presentation of the asymptotic no-
tations and results as well as the short description of the thesis. Then, this
thesis is divided into two parts. The first part interested only on a real re-
ponse variable and the case of i.i.d observations. In this context, we study the
mean square convergence of kernel estimators of the conditional distribution
function and the conditional density. Then, we derive results on the estima-
tor of the conditional hazard function. In the second part, we examine the
conditional hazard function and we focus on the situation where the covariate



1.7 Short presentation of the results 33

is uncensored and/or right-censored and always in case of i.i.d observations.
We build in this case a kernel estimator for this functional parameter.We
establish the pointwise almost complete convergence and the uniform almost
complete convergence (with the rate) of this estimator. The interest of our
study is to show how the estimation of the conditional density can be used to
obtain an estimate of the simple functional index if it is unknown. More spe-
cifically, this parameter can be estimated by the method pseudo-maximum
the likelihood which is based on the preliminary estimation of the conditional
density.

We will finish this section with some prospects research.

1.7 Short presentation of the results

We give hereafter a short presentation of the results obtained in the
thesis.

1.7.1 Notations

Let (X,Y ) a random pair where Y is valued in R and X is valued in
some semi-normed vector space (F , d(.; .)) which can be of infinite dimension.
We will say that X is a functional random variable and we will use the
abbreviation frv.

For x ∈ F , we will denote the cond-cdf of Y given X = x (respect. the
conditional survival function) by

∀y ∈ R, F x(y) = P(Y | ≤ y|X = x).

(resp. Sx(y) = 1− F x(y))

If this distribution is absolutely continuous with respect to the Lebesgues
measure on R, then we will denote by fx the conditional density of Y given
X = x.

Let (Xi, Yi)i=1,...,n be the be the statitical sample of pairs which are
identically distributed like (X,Y ), but not necessarily independant.

We introduce a kernel type estimators for the conditional cumulative
distribution function F̂ x of F x and the conditional density f̂x) of fx as
follows :

F̂ x(y) =

n∑

i=1

K
(
h−1
K d(x,Xi)

)
H
(
h−1
H (y − Yi)

)

n∑

i=1

K
(
h−1
K d(x,Xi)

) ,
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f̂x(y) =

h−1
H

n∑

i=1

K
(
h−1
K d(x,Xi)

)
H ′
(
h−1
H (y − Yi)

)

n∑

i=1

K
(
h−1
K d(x,Xi)

) .

where K is a kernel, H is a cdf and hK = hK,n (resp. hH = hH,n) is a
sequence of positive real numbers.

In the following (x, y) will be a fixed point in R × F and Nx × Ny will
denote a fixed neighborhood of (x, y), S will be a fixed compact subset of R,
and we will use the notation B(x, h) = {x′ ∈ F/d(x′, x) < h}.

1.8 The model

We consider a random pair (X,Y ) where Y is valued in R and X is
valued in some infinite dimensional semi-metric vector space (F , d(., .)). Let
(Xi, Yi), i = 1, . . . , n be the statistical sample of pairs which are identically
distributed like (X,Y ), but not necessarily independent. From now on, X is
called functional random variable f.r.v. Let x be fixed in F and let FX|Y (·, x)
be the conditional cumulative distribution function (cond-cdf) of Y given
X = x, namely :

∀y ∈ R, FY |X(x, y) = P(Y ≤ y|X = x).

Let QY |X(γ) be the γ−order quantile of the distribution of Y given X =
x. From the cond-cdf FY |X(., x), it is easy to give the general definition of
the γ-order quantile :

Q(γ|X = x) ≡ QY |X(γ) = inf
{
t : FY |X(t, x) ≥ γ

}
, 0 ≤ γ ≤ 1 (1.9)

Then, the definition of conditional quantile implies that

FY |X
(
QY |X(γ)

)
= γ.

On differentiating partially w.r.t. γ we get

fY |X
(
QY |X(γ)

)
=

1
∂
∂γ

(
QY |X(γ)

) .

Thus, the condition quantile density function can be written as follows
(see Xiang (1995) )

q(γ|X = x) ≡ qY |X(γ) =
∂

∂γ

(
QY |X(γ)

)

=
1

fY |X
(
QY |X(γ)

) (1.10)
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Let us now, define the kernel estimator F̂Y |X(., x) of FY |X(., x)

F̂Y |X(x, y) =

n∑

i=1

K
(
h−1
K d(x,Xi)

)
H
(
h−1
H (y − Yi)

)

n∑

i=1

K
(
h−1
K d(x,Xi)

) (1.11)

where K is a kernel function, H a cumulative distribution function and
hK = hK,n (resp. hH = hH,n) a sequence of positive real numbers. Note that
using similar ideas, Roussas (1969) introduced some related estimate but in
the special case when X is real, while Samanta (1989) produced previous
asymptotic study. It is easy to derive an estimator Q̂Y |X of QY |X :

Q̂Y |X(γ) = inf
{
t : F̂Y |X(t, x) ≥ γ

}
= F̂−1

Y |X
(
QY |X(γ)

)
(1.12)

Let

F̂
(j)
Y |X(x, y) =

h−jH

n∑

i=1

K
(
h−1
K d(x,Xi)

)
H(j)

(
h−1
H (y − Yi)

)

n∑

i=1

K
(
h−1
K d(x,Xi)

) (1.13)

be the jth successive derivative of F̂Y |X(x, y), fY |X(x, y) is conditional den-
sity function, such that fY |X(x, y) = F

(1)
Y |X(x, y).

The kernel type quantile density estimatorK(·). The kernel is satisfying
the following properties :

The smooth estimator of the conditional quantile density functional de-
fined as follows :

q̂Y |X(γ) =
1

f̂Y |X

(
Q̂Y |X(γ)

) . (1.14)

where f̂Y |X(x, y) is a conditional kernel density estimator of fY |X(x, y) and
Q̂Y |X(γ) is the conditional empirical estimator of the conditional quantile
function QY |X(γ). Let

f̂Y |X(x, y) =

h−1
H

n∑

i=1

K
(
h−1
K d(x,Xi)

)
H(1)

(
h−1
H (y − Yi)

)

n∑

i=1

K
(
h−1
K d(x,Xi)

) ,
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and

f̂ jY |X(x, y) =

h−j−1
H

n∑

i=1

K
(
h−1
K d(x,Xi)

)
H(j+1)

(
h−1
H (y − Yi)

)

n∑

i=1

K
(
h−1
K d(x,Xi)

)

hK = hK,n (resp. hH = hH,n) is a sequence of positive real numbers which
goes to zero as n tends to infinity, and with the convention 0/0 = 0.

Theorem 1 Let qY |X(γ) be the conditional density function corresponding
to a density function fY |X

(
QY |X(γ)

)
and q̂Y |X(γ) denote the estimator of

qY |X(γ). Then as n tends to infinity, we have

sup
γ

∣∣q̂Y |X(γ)− qY |X(γ)
∣∣ −→ 0 a.co.

Theorem 2 Let qY |X(γ) be the conditional density function corresponding
to a density function fY |X

(
QY |X(γ)

)
and q̂1

Y |X(γ) the proposed estimator
of qY |X(γ), the conditional quantile density function. Then as n tends to
infinity, we have

sup
γ

∣∣∣q̂1
Y |X(γ)− qY |X(γ)

∣∣∣ −→ 0 a.co.

Theorem 3 Suppose that F is continuous. For 0 < γ < 1, we have
√
nφx(hK)

(
q̂1
Y |X(γ)− qY |X(γ)

)

is asymptotically normal with mean zero and variance σ2(γ) where

σ2(γ) =
nφx(hK)

h4
H

E
(∫ 1

0
dH∗(γ, v)F̂Y |X

(
Q̂Y |X(v)

))2

.

1.8.1 Dependance structure

We assume the sample data (Xi, Zi)1≤i≤n to be dependent and to satisfy
the strong mixing condition (α-mixing), introduced by Rosenblatt (1956),
defined as : let N∗ denotes the set of positive integers, and for any i and
j in N∗ ∪ ∞, (i ≤ j), define F ji to be σ algebra spanned by the variables
(zi, xi) · · · (zj , xj). The sequence (Zi, Xi) is said to be α mixing if there exist
mixing coefficients α(k) such that |P(A ∩ B) − P(A)P(B)| ≤ α(k), for any
sets A and B, that are, respectively, Fmi measurable F∞m+k measurable (k,m
positive integers), and α(k) ↓ 0.
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1.8.2 The functional kernel estimates

Following in Ferraty et al. (2008), the conditional density operator fz(·)
is defined by using kernel smoothing methods

f̂z(x) =

n∑

i=1

h−1
n K

(
h−1
n d(z, Zi)

)
H
(
h−1
n (x−Xi)

)

n∑

i=1

K
(
h−1
n d(z, Zi)

) ,

where K and H are kernel functions and hn is sequence of smoothing para-
meter. The conditional distribution operator F z(·) can be estimated by

F̂ z(x) =
n∑

i=1

Wni(z)1{Xi≤x}, ∀x ∈ R

with 1{·} being the indicator function and whereWni(z) = h−1
n K(h−1

n d(z,Zi))∑n
j=1K(h−1

n d(z,Zj))
,

K is a kernel function and hn is a sequence of positive real numbers which
goes to zero as n goes to infinity.

Consequently, the conditional hazard operator is defined in a natural way
by

ĥz(x) =
f̂z(x)

1− F̂ z(x)
.

For z ∈ F , we denote by hz(·) the conditional hazard function of X1

given Z1 = z. We assume that hz(·) is unique maximum and its high risk
point is denoted by θ(z) := θ, which is defined by

hz(θ(z)) := hz(θ) = max
x∈S

hz(x). (1.15)

A kernel estimator of θ is defined as the random variable θ̂(z) := θ̂ which
maximizes a kernel estimator ĥz(·), that is,

ĥz(θ̂(z)) := ĥz(θ̂) = max
x∈S

ĥz(x) (1.16)

where hz and ĥz are defined above.
Note that the estimate θ̂ is note necessarily unique. We point out that

we can specify our choice by taking

θ̂(z) = inf

{
t ∈ S such that ĥz(t) = max

x∈S
ĥz(x)

}
.
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As in any non-parametric functional data problem, the behavior of the
estimates is controlled by the concentration properties of the functional va-
riable Z = z.

φz(h) = P(Z ∈ B(z, h)),

where B(z, h) being the ball of center z and radius h, namely B(z, h) =
P (f ∈ F , d(z, f) < h) (for more details, see Ferraty and Vieu (2006), Chapter
6 ).

In the following, z will be a fixed point in F , Nz will denote a fixed
neighborhood of z, S will be a fixed compact subset of R+.

1.9 Maximum of the conditional hazard function

Let us assume that there exists a compact S with a unique maximum θ
of hz on S. We will suppose that hz is sufficiently smooth ( at least of class
C2) and verifies that h′z(θ) = 0 and h′′ z(θ) < 0.

We can write an estimator of the first derivative of the conditional hazard
function through the first derivative of the estimator of conditional hazard
function. Our maximum estimate is defined by assuming that there is some
unique θ̂ on S such that 0 = ĥ′(θ̂) < |ĥ′z(x)| for all x ∈ S and x 6= θ̂

Furthermore, we assume that θ ∈ S◦, where S◦ denotes the interior
of S, and that θ satisfies the uniqueness condition, that is ; for any ε >
0 and µ(z), there exists ξ > 0 such that |θ(z) − µ(z)| ≥ ε implies that
|hz(θ(z))− hz(µ(z))| ≥ ξ.

We can write an estimator of the first derivative of the hazard function
through the first derivative of the estimator. Our maximum estimate is de-
fined by assuming that there is some unique θ̂ on S◦.

The kernel estimator of the derivative of the function conditional random
functional hz can therefore be constructed as follows :

ĥ′
z
(x) =

f̂ ′
z
(x)

1− F̂ z(x)
+ (ĥz(x))2, (1.17)

the estimator of the derivative of the conditional density is given in the
following formula :

f̂ ′
z
(x) =

n∑

i=1

h−2
n K(h−1

n d(z, Zi))H
′(h−1

n (x−Xi))

n∑

i=1

K(h−1
n d(z, Zi))

. (1.18)
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Later, we need assumptions on the parameters of the estimator, ie on
K,H,H ′ and hn are little restrictive. Indeed, on one hand, they are not
specific to the problem estimate of hz (but inherent problems of F z, fz and
f ′z estimation), and secondly they consist with the assumptions usually made
under functional variables.

Theorem 4 We have
θ̂ − θ → 0 a.co. (1.19)

Lemma 1 We have

sup
x∈S
|ĥ′z(x)− h′z(x)| → 0 a.co. (1.20)

Theorem 5 We have

sup
x∈S
|θ̂ − θ| = O

(
hb1n

)
+Oa.co.

(√
log n

nh3
nφz(hn)

)
(1.21)

Lemma 2 We have

sup
x∈S
|ĥ′z(x)− h′z(x)| = O

(
hb1n

)
+Oa.co.

(√
log n

nh3
nφz(hn)

)
(1.22)

The following result gives the asymptotic normality of the maximum of
the conditional hazard function. Let

A = {(z, x) : (z, x) ∈ S × R, ax2F z(x) (1− F z(x)) 6= 0}

Theorem 6 Under conditions, we have (θ ∈ S/fz(θ), 1− F z(θ) > 0)

(
nh3

nφz(hn)
)1/2 (

ĥ
′z(θ)− h′z(θ)

)
D→N

(
0, σ2

h′(θ)
)

where D→ denotes the convergence in distribution,

axl = K l(1)−
∫ 1

0

(
K l(u)

)′
ζx0 (u)du for l = 1, 2

and
σ2
h′(θ) =

ax2h
z(θ)

(ax1)2 (1− F z(θ))

∫
(H ′(t))2dt.
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The asymptotic normality of
(
nh3

nφz(hn)
)1/2 (

ĥ′
z
(θ)− h′z(θ)

)
can be

deduced from both following lemmas,

Lemma 3 Under Assumptions, we have

(nφz(hn))1/2
(
F̂ z(x)− F z(x)

)
D→N

(
0, σ2

F z(x)
)

(1.23)

where

σ2
F z(x) =

ax2F
z(x) (1− F z(x))

(ax1)2

Lemma 4 We have

(nhnφz(hn))1/2
(
ĥz(x)− hz(x)

)
D→N

(
0, σ2

hz(x)
)

(1.24)

where

σ2
hz(x) =

ax2h
z(x)

(ax1)2 (1− F z(x))

∫

R
H2(t)dt

Lemma 5 Under Assumptions, we have

(
nh3

nφz(hn)
)1/2 (

f̂ ′
z
(x)− f ′z(x)

)
D→N

(
0, σ2

f ′z(x)
)

(1.25)

where
σ2
f ′z(x) =

ax2f
z(x)

(ax1)2

∫

R
(H ′(t))2dt

Theorem 7 Under conditions ; we have (θ ∈ S/fz(θ), 1− F z(θ) > 0)

(
nh3

nφz(hn)
)1/2 (

θ̂ − θ
)
D→N

(
0,

σ2
h′(θ)

(h′′z(θ))2

)

with σ2
h′(θ) = hz(θ) (1− F z(θ))

∫
(H ′(t))2dt.
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Abstract: The aim of this paper is to estimate nonparametrically the conditional quantile density function. A non-parametric
estimator of a conditional quantile function density is presented, its asymptotic properties are derived via the estimation of the
conditional distribution, as of the conditional quantile in the case of dependent data. To obtain the asymptotic properties we consider
some concentration hypotheses acting on the distribution of the conditional functional variable.

Keywords: Conditional quantile, Conditional quantile density function, Functional variable, Kernel density estimators,α-mixing

The problem of quantile estimation has a very long history, estimating quantiles of any distribution is an important part
of Statistics. This allows to derive many applications in various fields as chemistry, geophysics, medicine, meteorology,....
On the other hand, functional random variables are becomingmore and more important. The recent literature in this
domain shows the great potential of these new functional statistical methods. The most popular case of functional random
variable corresponds to the situation when we observe random curve on different statistical units. Such data are called
Functional Data. Many multivariate statistical technics,mainly parametric in the functional model terminology, have been
extended to functional data and good overviews on this topiccan be found in Ramsay [21,22] and or Bosq [3].

More recently, nonparametric methods taking into account functional variables have been developed with very
interesting practical motivations dealing with environmetrics (see Damon and Guillas [5], Fernandez et al. [7], Aneiros et
al. [1]), chemometrics (see Ferraty and Vieu [9]), meteorological sciences (see Besse et al. [2], Hall and Heckman [15]),
speech recognization problem (see Ferraty and Vieu [10]), radar range profile (see Hall et al. [16], Dabo-Niang et al. [4]),
medical data (see Gasser et al. [14]), ...

Estimating the conditional quantile constitutes an important statistical topic. It is used to build predictive intervals,
as a prediction method by the conditional median and to determine reference curves, predictive intervals etc. It has been
widely studied, when the explanatory variable lies within afinite-dimension space (see, e.g., Gannoun et al. [13] and the
references therein).
Jones [17] estimated the quantile density function by kernel means, via two alternative approaches. One is the derivative of
the kernel quantile estimator, the other is essentially thereciprocal of the kernel density estimator, he gave ways in which
the former method has certain advantages over the latter. Inhis paper, Jones discussed various closely related smoothing
issues.

Soni et al. [20] defined a new nonparametric estimator of quantile density function and studied its asymptotic
properties are studied. The comparison of the proposed estimator has been made with estimators given in [17].

The goal of this paper is to estimate nonparametrically the conditional quantile density function. A non-parametric
estimator of a conditional quantile function density is presented, its asymptotic properties are derived via the estimation
of the conditional distribution, as of the conditional quantile in dependent data. In a nonparametric context, it is known
that the rate of convergence decreases with the dimension ofthe space in which the conditional variable is valued. But
here, the conditional variable takes its values in an infinite dimensional space. So to override this problem is to consider

∗ Corresponding author e-mail:rabhi abbes@yahoo.fr
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some concentration hypotheses acting on the distribution of the conditional functional variable which allows to obtain the
asymptotic properties.

1 The model

We consider a random pair(X,Y) whereY is valued inR andX is valued in some infinite dimensional semi-metric vector
space(F ,d(., .)). Let (Xi ,Yi), i = 1, . . . ,n be the statistical sample of pairs which are identically distributed like(X,Y),
but not necessarily independent. From now on,X is called functional random variable f.r.v. Letx be fixed inF and let
FY|X(·,x) be the conditional cumulative distribution function (cond-cdf) of Y givenX = x, namely:

∀y∈ R,FY|X(x,y) = P(Y ≤ y|X = x).

Let QY|X(γ) be theγ−order quantile of the distribution ofY givenX = x. From the cond-cdfFY|X(.,x), it is easy to give
the general definition of theγ-order quantile:

Q(γ|X = x)≡ QY|X(γ) = inf
{
t : FY|X(t,x)≥ γ

}
, 0≤ γ ≤ 1 (1)

Then, the definition of conditional quantile implies that

FY|X
(
QY|X(γ)

)
= γ.

On differentiating partially w.r.t.γ we get

fY|X
(
QY|X(γ)

)
=

1
∂

∂γ
(
QY|X(γ)

) .

Parzen [19] and Jones [17] defined the quantile density function as the derivative ofQ(γ), that is,q(γ) = Q′(γ). Note
that the sum of two quantile density functions is again a quantile density function. Thus, the conditional quantile density
function can be written as follows (see [26] )

q(γ|X = x)≡ qY|X(γ) =
∂
∂γ
(
QY|X(γ)

)

=
1

fY|X
(
QY|X(γ)

) (2)

Let us now, define the kernel estimatorF̂Y|X(.,x) of FY|X(.,x)

F̂Y|X(x,y) =

n

∑
i=1

K
(
h−1

K d(x,Xi)
)

H
(
h−1

H (y−Yi)
)

n

∑
i=1

K
(
h−1

K d(x,Xi)
) (3)

whereK is a kernel function,H a cumulative distribution function andhK = hK,n (resp.hH = hH,n) a sequence of positive
real numbers. Note that using similar ideas, Roussas [23] introduced some related estimate but in the special case when
X is real, while Samanta [24] produced previous asymptotic study. As a by-product of (1) and (3), it is easy to derive an
estimatorQ̂Y|X of QY|X :

Q̂Y|X(γ) = inf
{

t : F̂Y|X(t,x)≥ γ
}
= F̂−1

Y|X
(
QY|X(γ)

)
(4)

Let

F̂ ( j)
Y|X(x,y) =

h− j
H

n

∑
i=1

K
(
h−1

K d(x,Xi)
)

H( j) (h−1
H (y−Yi)

)

n

∑
i=1

K
(
h−1

K d(x,Xi)
) (5)

be thejth successive derivative of̂FY|X(x,y), fY|X(x,y) is conditional density function, such thatfY|X(x,y) = F(1)
Y|X(x,y).
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Nair and Sankaran [18] defined the hazard quantile function as follows:

H(γ) = h(Q(γ)) =
f (Q(γ))
S(Q(γ))

= ((1− γ)q(γ))−1 .

Thus hazard rate of two populations would be equal if and onlyif their corresponding quantile density functions are
equal. This has been used to construct tests for testing equality of failure rates of two independent samples. Now, from
this definition, let us introduce theγ-order conditional quantile of the conditional hazard function

HY|X(γ) = hY|X
(
QY|X(γ)

)
=

fY|X
(
QY|X(γ)

)

SY|X
(
QY|X(γ)

) =
(
(1− γ)qY|X(γ)

)−1
.

The smooth estimator of the conditional quantile density functional defined as follows:

q̂Y|X(γ) =
1

f̂Y|X
(

Q̂Y|X(γ)
) . (6)

where f̂Y|X(x,y) is a conditional kernel density estimator offY|X(x,y) andQ̂Y|X(γ) is the conditional empirical estimator
of the conditional quantile functionQY|X(γ). Let

f̂Y|X(x,y) =

h−1
H

n

∑
i=1

K
(
h−1

K d(x,Xi)
)

H(1) (h−1
H (y−Yi)

)

n

∑
i=1

K
(
h−1

K d(x,Xi)
) ,

and

f̂ ( j)
Y|X(x,y) =

h− j−1
H

n

∑
i=1

K
(
h−1

K d(x,Xi)
)

H( j+1) (h−1
H (y−Yi)

)

n

∑
i=1

K
(
h−1

K d(x,Xi)
)

hK = hK,n (resp.hH = hH,n) is a sequence of positive real numbers which goes to zero as ntends to infinity, and with the
convention 0/0= 0.

Let’s now derive the asymptotic properties of our conditional quantile density function.

(H1)∀h> 0, P(d(x,X)≤ h) = P(X ∈ B(x,h)) = φx(h)> 0, (with B(x,h) the ball of centerx and radiush)
(H2)sup

i 6= j
P((Xi ,Xj) ∈ B(x,h)×B(x,h)) = P(Wi ≤ h,Wj ≤ h)≤ ψx(h), whereψx(h)→ 0 ash→ 0. Furthermore, we assume

thatψx(h) = O(φ2
x (h)).

(H3)H is such that, for all(y1,y2) ∈ R2, |H(y1)−H(y2)| ≤C|y1− y2|
and its first derivativeH(1) verifies

∫
|t|b2H(1)(t)dt < ∞,

(H4)K is a function with support(0,1) such that 0<C1 < K(t)<C2 < ∞,

(H5) lim
n→∞

hK = 0 with lim
n→∞

logn
nφx(hK)

= 0

(H6)∃ j > 0, ∀l , 1≤ l < j, f (l)Y|X
(
QY|X(γ)

)
= 0 and

∣∣∣ f ( j)
Y|X
(
QY|X(γ)

)∣∣∣> 0

2 Main result

2.1 Estimation of conditional quantile density function

Theorem 1.Let qY|X(γ) be the conditional density function corresponding to a density function fY|X
(
QY|X(γ)

)
andq̂Y|X(γ)

denote the estimator of qY|X(γ). Then under the assumptions (H1)-(H6) and as n tends to infinity, we have

sup
γ

∣∣q̂Y|X(γ)−qY|X(γ)
∣∣−→ 0 a.co.
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Proof. At first let us consider

q̂Y|X(γ) =
1

f̂Y|X(Q̂Y|X(γ))

=
1

f̂Y|X
(

Q̂Y|X(γ)
)
− fY|X

(
QY|X(γ)

)
+ fY|X

(
QY|X(γ)

)

=
1

fY|X
(
QY|X(γ)

)




1

1+
f̂Y|X(Q̂Y|X(γ))− fY|X(QY|X(γ))

fY|X(QY|X(γ))




Then, we get

q̂Y|X(γ) =
1

fY|X
(
QY|X(γ)

)


1−

f̂Y|X
(

Q̂Y|X(γ)
)
− fY|X

(
QY|X(γ)

)

fY|X
(
QY|X(γ)

)




+
1

fY|X
(
QY|X(γ)

)




(
f̂Y|X

(
Q̂Y|X(γ)

)
− fY|X

(
QY|X(γ)

))2

f 2
Y|X
(
QY|X(γ)

)




− 1

fY|X
(
QY|X(γ)

)




(
f̂Y|X

(
Q̂Y|X(γ)

)
− fY|X

(
QY|X(γ)

))3

f 3
Y|X
(
QY|X(γ)

) + . . .


 ,

hence

q̂Y|X(γ)−qY|X(γ) =
− f̂Y|X

(
Q̂Y|X(γ)

)
+ fY|X

(
QY|X(γ)

)

f 2
Y|X
(
QY|X(γ)

)

+

(
f̂Y|X

(
Q̂Y|X(γ)

)
− fY|X

(
QY|X(γ)

))2

f 3
Y|X
(
QY|X(γ)

)

−

(
f̂Y|X

(
Q̂Y|X(γ)

)
− fY|X

(
QY|X(γ)

))3

f 4
Y|X
(
QY|X(γ)

) + . . .

With

f̂Y|X
(

Q̂Y|X(γ)
)
= f̂Y|X

(
QY|X(γ)

)
+
(

Q̂Y|X(γ)−QY|X(γ)
)

f̂ ′Y|X
(
QY|X(γ)

)
+

(
Q̂Y|X(γ)−QY|X(γ)

)2
f̂ ′′Y|X(QY|X(γ))

2!
+

(
Q̂Y|X(γ)−QY|X(γ)

)3
f̂ (3)Y|X(QY|X(γ))

3!
+ . . .

Therefore

f̂Y|X
(

Q̂Y|X(γ)
)
− fY|X

(
QY|X(γ)

)
= f̂Y|X

(
QY|X(γ)

)
− fY|X

(
QY|X(γ)

)
+

(
Q̂Y|X(γ)−QY|X(γ)

)
f̂ ′Y|X

(
QY|X(γ)

)
+

(
Q̂Y|X(γ)−QY|X(γ)

)2
f̂ ′′Y|X

(
QY|X(γ)

)

2!
+

(
Q̂Y|X(γ)−QY|X(γ)

)3
f̂ (3)Y|X

(
QY|X(γ)

)

3!
+ . . . (7)

c© 2015 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.4, No. 1, 13-21 (2015) /www.naturalspublishing.com/Journals.asp 17

Now, it rests to show the following convergence

sup
γ

∣∣∣Q̂Y|X(γ)−QY|X(γ)
∣∣∣−→

n→∞
0 a.co.

sup
γ
| f̂Y|X

(
QY|X(γ)

)
− fY|X

(
QY|X(γ)

)
|−→
n→∞

0 a.co.

It was shown in [8] the following results

sup
γ
|Q̂Y|X(γ)−QY|X(γ)|−→n→∞

0 a.co.

Q̂Y|X(γ)−QY|X(γ) = O

(
h

b1
j

K +h
b2
j

H

)
+Oa.co.

(
logn

nφx(hK)

) 1
2 j

,

and

|F̂ ( j)
Y|X(x,y)−F( j)

Y|X(x,y)|= O
(

hb1
K +hb2

H

)
+Oa.co.

(√
logn

nh2 j−1
H φx(hK)

)
(8)

Note that,f̂Y|X = F̂(1)
Y|X, so applying (8) for j = 1, we get

| f̂Y|X
(
QY|X(γ)

)
− fY|X

(
QY|X(γ)

)
|= O

(
hb1

K +hb2
H

)
+Oa.co.

(√
logn

nhHφx(hK)

)
, (9)

Based on dataX1,X2, . . . ,Xn, we propose a smooth estimator of the conditional quantile density function, Ferratyet al.
[8] proposed a kernel-type estimator of conditional quantilewhich is is a conditional version of Parzen’s estimator in the
univariate case (see Parzen [19]).

For an appropriate kernel functionH ′ and a bandwidth sequencehH . We suggest an estimator ofqY|X(γ);

q̂1
Y|X(γ) =

1
hH

∫ 1

0

H ′ (h−1
H (v− γ)

)

f̂Y|X
(

Q̂Y|X(v)
) dv (10)

The next theorem proves consistency of the proposed estimator of the conditional quantile density function.

Theorem 2.Let qY|X(γ) be the conditional density function corresponding to a density function fY|X
(
QY|X(γ)

)
andq̂1

Y|X(γ)
given by (10) the proposed estimator of qY|X(γ), the conditional quantile density function. Then under hypotheses (H1)-
(H6) as n tends to infinity, we have

sup
γ

∣∣∣q̂1
Y|X(γ)−qY|X(γ)

∣∣∣−→ 0 a.co.

Proof.
(10) gives the estimator of the conditional quantile density functionq(γ) as

q̂1
Y|X(γ) =

1
hH

∫ 1

0

H ′ (h−1
H (v− γ)

)

f̂Y|X
(

Q̂Y|X(v)
) dv.
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Hence

q̂1
Y|X(γ)−qY|X(γ) =

1
hH

∫ 1

0

H ′ (h−1
H (v− γ)

)

f̂Y|X
(

Q̂Y|X(v)
) dv−qY|X(γ)

=
1

hH

∫ 1

0

H ′ (h−1
H (v− γ)

)

f̂Y|X
(

Q̂Y|X(v)
) dv− 1

hH

∫ 1

0

H ′ (h−1
H (v− γ)

)

fY|X
(
QY|X(v)

) dv

+
1

hH

∫ 1

0

H ′ (h−1
H (v− γ)

)

fY|X
(
QY|X(v)

) dv− 1

fY|X
(
QY|X(γ)

)

= − 1
hH

∫ 1

0
H ′ (h−1

H (v− γ)
)

 1

fY|X
(
QY|X(v)

) − 1

f̂Y|X
(

Q̂Y|X(v)
)


dv

+
1

hH

∫ 1

0

H ′ (h−1
H (v− γ)

)

fY|X
(
QY|X(v)

) dv− 1

fY|X
(
QY|X(γ)

)

= − 1
hH

∫ 1

0
H ′ (h−1

H (v− γ)
)



f̂Y|X
(

Q̂Y|X(v)
)
− fY|X

(
QY|X(v)

)

f̂Y|X
(

Q̂Y|X(v)
)

fY|X
(
QY|X(v)

)


dv

+
1

hH

∫ 1

0

H ′ (h−1
H (v− γ)

)

fY|X
(
QY|X(v)

) dv− 1

fY|X
(
QY|X(γ)

) .

Using Theorem1, sup
γ

∣∣q̂Y|X(γ)−qY|X(γ)
∣∣−→

n→∞
0 a.co. Hence the above expression asymptotically reduces to

− 1
hH

∫ 1

0
H ′ (h−1

H (v− γ)
)(

qY|X(v)
)2
[

f̂Y|X
(

Q̂Y|X(v)
)
− fY|X

(
QY|X(v)

)]
dv+

1
hH

∫ 1

0

H ′ (h−1
H (v− γ)

)

fY|X
(
QY|X(v)

) dv− 1

fY|X
(
QY|X(γ)

)

=− 1
hH

∫ 1

0
H ′ (h−1

H (v− γ)
)
qY|X(v)

[
f̂Y|X

(
Q̂Y|X(v)

)
q̂Y|X(v)− fY|X

(
QY|X(v)

)
qY|X(v)

]
dv+

1
hH

∫ 1

0

H ′ (h−1
H (v− γ)

)

fY|X
(
QY|X(v)

) dv− 1

fY|X
(
QY|X(γ)

) .

SincedFY|X(
(
QY|X(v)

)
= f (

(
QY|X(v)

)
qY|X(v)dv, hence

q̂1
Y|X(γ)−qY|X(γ) = − 1

hH

∫ 1

0
H ′ (h−1

H (v− γ)
)
qY|X(v)

[
dF̂Y|X

(
Q̂Y|X(v)

)
−dFY|X

(
QY|X(v)

)]
dv

+
1

hH

∫ 1

0

H ′ (h−1
H (v− γ)

)

fY|X
(
QY|X(v)

) dv− 1

fY|X
(
QY|X(γ)

) .

Writing H∗(γ,v) = H ′ (h−1
H (v,γ)

)
qY|X(v) and integrating by parts in the first integral, we get

q̂1
Y|X(γ)−qY|X(γ) =

[
− 1

hH
(H∗(v,γ))

(
F̂Y|X

(
Q̂Y|X(v)

)
−FY|X

(
QY|X(v)

))]1

0

+
1

hH

∫ 1

0
dH∗(γ,v)

[
F̂Y|X

(
Q̂Y|X(v)

)
−FY|X

(
QY|X(v)

)]
dt

+
1

hH

∫ 1

0

H ′ (h−1
H (v− γ)

)

fY|X
(
QY|X(v)

) dv− 1

fY|X
(
QY|X(γ)

) .
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SinceFY|X
(
QY|X(0)

)
= F̂Y|X

(
Q̂Y|X(0)

)
andFY|X

(
QY|X(1)

)
= F̂Y|X

(
Q̂Y|X(1)

)
, the above expression transforms to

q̂1
Y|X(γ)−qY|X(γ) = − 1

hH

∫ 1

0
dH∗(γ,v)

[
FY|X

(
QY|X(v)

)
− F̂Y|X

(
Q̂Y|X(v)

)]
dt

+
1

hH

∫ 1

0

H ′ (h−1
H (v− γ)

)

fY|X
(
QY|X(v)

) dv− 1

fY|X
(
QY|X(γ)

) .

Puttingh−1
H (v− γ) = zand using (2),

1
hH

∫ 1

0

H ′ (h−1
H (v− γ)

)

fY|X
(
QY|X(v)

) dv− 1

fY|X
(
QY|X(γ)

) = 1
hH

∫ 1−γ/hH

−γ/hH

H ′(z)qY|X (γ + zhH)dz−qY|X(γ). (11)

Using Taylor series expansion, we can write

qY|X (γ + zhH)−qY|X(γ) =
j−1

∑
l=1

(zhH)
l

l !
q(l)Y|X(γ)+

(zhH)
j

j!
q( j)

Y|X(γ
∗)

whereγ < γ∗ < γ + zhH, assuming higher derivatives ofqY|X(γ) exist and are bounded.

Hence (11) can be written as

∫ 1−γ/hH

−γ/hH

H ′(z)

(
qY|X(γ)+

j−1

∑
l=1

(zhH)
l

l !
q(l)Y|X(γ)+

(zhH)
j

j!
q( j)

Y|X(γ
∗)

)
dv−qY|X(γ). (12)

Forn−→ ∞, hK −→ 0, (12) converges to
∫

R
H ′(z)qY|X(γ)dz−qY|X(γ) which equals zero as

∫

R
H ′(z) = 1.

This gives

q̂1
Y|X(γ)−qY|X(γ) =

1

h2
H

∫ 1

0
dH∗(γ,v)

[
F̂Y|X

(
Q̂Y|X(v)

)
−FY|X

(
QY|X(v)

)]
dv. (13)

Since sup
v

∣∣∣F̂Y|X
(

Q̂Y|X(v)
)
−FY|X

(
QY|X(v)

)∣∣∣−→
n→∞

0, hence sup
v

∣∣∣q̂1
Y|X(v)−qY|X(v)

∣∣∣−→
n→∞

0.

The following theorem proves asymptotic normality of the proposed estimator.

2.2 Asymptotic normality

In this section we give the asymptotic normality ofq̂1
Y|X(γ).

Theorem 3.Suppose that F is continuous. Assume that K(·) satisfies the conditions(H1)− (H6) given in section 2. For
0< γ < 1, we have √

nφx(hK)
(

q̂1
Y|X(γ)−qY|X(γ)

)

is asymptotically normal with mean zero and varianceσ2(γ) where

σ2(γ) =
nφx(hK)

h2
H

E
(∫ 1

0
dH∗(γ,v)F̂Y|X

(
Q̂Y|X(v)

))2

.

Proof.
Using (13), we have

√
nφx(hK)

(
q̂1

Y|X(γ)−qY|X(γ)
)
=

√
nφx(hK)

h2
H

∫ 1

0
dH∗(γ,v)

[
F̂Y|X

(
Q̂Y|X(v)

)
−FY|X

(
QY|X(v)

)]
dv.

Using the results of Ezzahrioui and Ould Saı̈d [6], for 0< γ < 1,
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(nφx(hK))
1/2
(

Q̂Y|X(γ)−QY|X(γ)
)

is asymptotically normal with mean zero and variance

ξ 2
(
x,QY|X(γ)

)
=

ax
2

(ax
1)

2

FY|X
(
QY|X(γ)

)(
1−FY|X

(
QY|X(γ)

))

f 2
Y|X
(
QY|X(γ)

) .

(nφx(hK))
1/2
(

F̂Y|X(x,y)−FY|X(x,y)
)

is asymptotically normal with mean zero and variance

σ2
F =

ax
1

(ax
1)

2 FY|X(x,y)
(
1−FY|X(x,y)

)
.

We have also,(nφx(hK)))
1/2
(

F̂Y|X(Q̂Y/X(t))−FY|X(QY/X(t))
)

is asymptotically normal with mean zero and variance

σ2(x).
With

σ2(x) =
γ(1− γ)ax

2(x)
( fy/x(QY|X(γ)))2ax

1(x)

ax
j(x) = K j(1)−

∫ 1

0
(K j)′(s)βx(s)ds j= 1,2.

and
∀s∈ [0,1], lim

h→0
φx(sh)/φx(h) = βx(s).

Since d
dγ FY|X

(
QY|X(γ)

)
= 1, (nφx(hK))

1/2
[
F̂Y|X

(
Q̂Y|X(γ)

)
−FY|X

(
QY|X(γ)

)]
is asymptotically normal with mean

zero and varianceξ 2
(
x,QY|X(γ)

)
.

Using Delta method and Slutsky’s theorem (Serfling [25]), we get that
√

nφx(hK)
(

q̂1
Y|X(γ)−qY|X(γ)

)
is

asymptotically normal with mean zero and varianceσ2(γ) =
nφx(hK)

h2
H

E
(∫ 1

0
dH∗(γ,v)F̂Y|X

(
Q̂Y|X(v)

))2

.

The expression ofσ2(γ) in the above theorem cannot be simplified analytically and one can estimate it using
bootstrapping.
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Abstract. The maximum of the conditional hazard function is a parameter of great impor-
tance in statistics, in particular in seismicity studies, because it constitutes the maximum
risk of occurrence of an earthquake in a given interval of time. Using the kernel nonparamet-
ric estimates based on convolution kernel techniques of the first derivative of the conditional
hazard function, we establish the asymptotic behavior of a hazard rate in the presence of a
functional explanatory variable and asymptotic normality of the maximum value in the case
of a strong mixing process.

Résumé. Le maximum ou encore le point à haut risque d’une fonction de risque condi-
tionnel est un paramètre d’un grand intérêt en statistique, notamment dans l’analyse de
risque séismique, car il constitue le risque maximal de survenance d’un tremblement de terre
dans un intervalle de temps donné. Au moyen d’estimations non paramétriques basés sur les
techniques de noyau de convolution de la première dérivée de la fonction de hasard condi-
tionnel, nous établissons le comportement asymptotique d’un taux de hasard d’une variable
explicative fonctionnelle ainsi que la normalité asymptotique de la valeur maximale pour un
processus mélangeant.
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1. Introduction

The statistical analysis of functional data studies the experiments whose results are gener-
ally the curves. Under this supposition, the statistical analysis focuses on a framework of
infinite dimension for the data under study. This field of modern statistics has received much
attention in the last 20 years, and it has been popularised in the book of Ramsay and Sil-
verman (2005). This type of data appears in many fields of applied statistics: environmetrics
(Damon and Guillas, 2002), chemometrics (Benhenni et al., 2007), meteorological sciences
(Besse et al., 2000), etc.

From a theoretical point of view, a sample of functional data can be involved in many dif-
ferent statistical problems, such as: classification and principal components analysis (PCA)
(1986,1991) or longitudinal studies, regression and prediction (Benhenni et al., 2007; Cardot
et al., 1999). The recent monograph by Ferraty et al. (2007) summarizes many of their con-
tributions to the non-parametric estimation with functional data; among other properties,
consistency of the conditional density, conditional distribution and regression estimates are
established in the i.i.d. case under dependence conditions (strong mixing). Almost complete
rates of convergence are also obtained, and different techniques are applied to several exam-
ples of functional data samples. Related work can be seen in the paper of Masry (2005), where
the asymptotic normality of the functional nonparametric regression estimate is proven, con-
sidering strong mixing dependence conditions for the sample data. For automatic smoothing
parameter selection in the regression setting, see Rachdi and Vieu (2007).

1.1. Hazard and conditional hazard

The estimation of the hazard function is a problem of considerable interest, especially to
inventory theorists, medical researchers, logistics planners, reliability engineers and seismol-
ogists. The non-parametric estimation of the hazard function has been extensively discussed
in the literature. Beginning with Watson. and Leadbetter (1964a), there are many papers
on these topics: Ahmad (1976), Singpurwalla and Wong (1983), etc.We can cite Quintela-
del-Rio, A. (2007) for a survey.

The literature on the estimation of the hazard function is very abundant, when observations
are vectorial. Cite, for instance, Watson. and Leadbetter (1964b), Roussas (1989), Lecoutre
and Ould-Säıd (1992), Estévez-Pérez et al. (2002) and Quintela-del-Rio (2006) for recent
references. In all these works the authors consider independent observations or dependent
data from time series. The first results on the nonparametric estimation of this model, in
functional statistics were obtained by Ferraty et al. (2008). They studied the almost complete
convergence of a kernel estimator for hazard function of a real random variable dependent
on a functional predictor and Laksaci and Mechab (2010) in the case of spatial variables.
Asymptotic normality of the latter estimator was obtained, in the case of α- mixing, by
Quintela-del-Rio, A. (2008). We refer to Ferraty et al. (2010) and Mahiddine et al. (2014)
for uniform almost complete convergence of the functional component of this nonparametric
model.

When hazard rate estimation is performed with multiple variables, the result is an estimate
of the conditional hazard rate for the first variable, given the levels of the remaining variables.
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Many references, practical examples and simulations in the case of non-parametric estimation
using local linear approximations can be found in Spierdijk (2008).

Our paper presents some asymptotic properties related with the non-parametric estima-
tion of the maximum of the conditional hazard function. In a functional data setting, the
conditioning variable is allowed to take its values in some abstract semi-metric space. In
this case, Ferraty et al. (2007) define non-parametric estimators of the conditional density
and the conditional distribution. They give the rates of convergence (in an almost complete
sense) to the corresponding functions, in a dependence (α-mixing) context. We extend their
results by calculating the maximum of the conditional hazard function of these estimates,
and establishing their asymptotic normality, considering a particular type of kernel for the
functional part of the estimates. Because the hazard function estimator is naturally con-
structed using these two last estimators, the same type of properties is easily derived for it.
Our results are valid in a real (one- and multi-dimensional) context.

If X is a random variable associated to a lifetime (ie, a random variable with values in R+,
the hazard rate of X (sometimes called hazard function, failure or survival rate ) is defined
at point x as the instantaneous probability that life ends at time x. Specifically, we have:

h(x) = lim
dx→0

P (X ≤ x+ dx|X ≥ x)

dx
, (x > 0).

When X has a density f with respect to the measure of Lebesgue, it is easy to see that the
hazard rate can be written as follows:

h(x) =
f(x)

S(x)
=

f(x)

1− F (x)
, for all x such that F (x) < 1,

where F denotes the distribution function of X and S = 1− F the survival function of X.

In many practical situations, we may have an explanatory variable Z = z and the main issue
is to estimate the conditional random rate defined as

hz(x) = lim
dx→0

P (X ≤ x+ dx|X > x, Z = z)

dx
, for x > 0,

which can be written naturally as follows:

hz(x) =
fz(x)

Sz(x)
=

fz(x)

1− F z(x)
, once F z(x) < 1. (1)

Study of functions h(·) and hz(·) is of obvious interest in many fields of science ( biology,
medicine, reliability , seismology, econometrics, ... ) and many authors are interested in
construction of nonparametric estimators of h.

In this paper we propose an estimate of the maximum risk, through the nonparametric
estimation of the conditional hazard function.

The layout of the paper is as follows. Section 2 describes the non-parametric functional
setting: the structure of the functional data and the mixing conditions, the conditional
density, distribution and hazard operators, and the corresponding non-parametric kernel
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estimators. Section 3 states the almost complete convergence1 (with rates of convergence2)
for nonparametric estimates of the derivative of the conditional hazard and the maximum
risk. In Section 4, we calculate the variance of the conditional density, distribution and
hazard estimates, the asymptotic normality of the three estimators considered is developed
in this Section. Finally, Section 5 includes some proofs of technical Lemmas.

2. Nonparametric estimation with dependent functional data

Let {(Zi, Xi), i = 1, . . . , n} be a sample of n random pairs, each one distributed as (Z,X),
where the variable Z is of functional nature and X is scalar. Formally, we will consider that
Z is a random variable valued in some semi-metric functional space F , and we will denote by
d(·, ·) the associated semi-metric. The conditional cumulative distribution of X given Z = z
is defined for any x ∈ R and any z ∈ F by

F z(x) = P(X ≤ x|Z = z),

while the conditional density, denoted by fz(x) is defined as the density of this distribution
with respect to the Lebesgue measure on R. The conditional hazard is defined as in the
non-infinite case (1).

In a general functional setting, f , F and h are not standard mathematical objects. Because
they are defined on infinite dimensional spaces, the term operators may be a more adjusted
in terminology.

2.1. Dependance structure

We assume the sample data (Xi, Zi)1≤i≤n to be dependent and to satisfy the strong mixing
condition (α-mixing), introduced by Rosenblatt (1956), defined as:

let N∗ denotes the set of positive integers, and for any i and j in N∗ ∪∞, (i ≤ j), define F ji
to be σ algebra spanned by the variables (zi, xi) · · · (zj , xj). The sequence (Zi, Xi) is said to
be α mixing if there exist mixing coefficients α(k) such that |P(A∩B)−P(A)P(B)| ≤ α(k),
for any sets A and B, that are, respectively, Fmi measurable F∞m+k measurable (k,m positive
integers), and α(k) ↓ 0.

This is the weakest condition used in studies of dependent samples (for example, the ARMA
process, generated by a continuous white noise verifies it). The reader can see Doukhan
(1994) for a more complete discussion of the strong mixing condition.

1 Recall that a sequence (Tn)n∈N of random variables is said to converge almost completely to
some variable T , if for any ε > 0, we have

∑
n P(|Tn − T | > ε) < ∞. This mode of convergence

implies both almost sure and in probability convergence (see for instance Bosq and Lecoutre, 1987).
2 Recall that a sequence (Tn)n∈N of random variables is said to be of order of complete convergence

un, if there exists some ε > 0 for which
∑

n P(|Tn| > εun) <∞. This is denoted by Tn = O(un), a.co.
(or equivalently by Tn = Oa.co.(un)).
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2.2. The functional kernel estimates

Following in Ferraty et al. (2008), the conditional density operator fz(·) is defined by using
kernel smoothing methods

f̂z(x) =

∑n
i=1 h

−1
n K

(
h−1
n d(z, Zi)

)
H
(
h−1
n (x−Xi)

)
∑n
i=1K

(
h−1
n d(z, Zi)

) ,

where K and H are kernel functions and hn is sequence of smoothing parameter. The
conditional distribution operator F z(·) can be estimated by

F̂ z(x) =
n∑

i=1

Wni(z)1{Xi≤x}, ∀x ∈ R

with 1{·} being the indicator function and where Wni(z) =
h−1
n K(h−1

n d(z,Zi))∑n
j=1K(h−1

n d(z,Zj))
, K is a kernel

function and hn is a sequence of positive real numbers which goes to zero as n goes to
infinity.

Consequently, the conditional hazard operator is defined in a natural way by

ĥz(x) =
f̂z(x)

1− F̂ z(x)
.

For z ∈ F , we denote by hz(·) the conditional hazard function of X1 given Z1 = z. We
assume that hz(·) is unique maximum and its high risk point is denoted by θ(z) := θ, which
is defined by

hz(θ(z)) := hz(θ) = max
x∈S

hz(x). (2)

A kernel estimator of θ is defined as the random variable θ̂(z) := θ̂ which maximizes a kernel

estimator ĥz(·), that is,

ĥz(θ̂(z)) := ĥz(θ̂) = max
x∈S

ĥz(x) (3)

where hz and ĥz are defined above.

Note that the estimate θ̂ is note necessarily unique and our results are valid for any choice
satisfying (3). We point out that we can specify our choice by taking

θ̂(z) = inf

{
t ∈ S ; ĥz(t) = max

x∈S
ĥz(x)

}
.

As in any non-parametric functional data problem, the behavior of the estimates is controlled
by the concentration properties of the functional variable Z = z.

φz(h) = P(Z ∈ B(z, h)),

whereB(z, h) being the ball of center z and radius h, namelyB(z, h) = P (f ∈ F , d(z, f) < h)
(for more details, see Ferraty and Vieu, 2006, Chapter 6).

In the following, z will be a fixed point in F , Nz will denote a fixed neighborhood of z, S
will be a fixed compact subset of R+. We will led to the hypothesis below concerning the
function of concentration φz
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(H0) ∀h > 0, 0 < P (Z ∈ B(z, h)) = φz(h) and limh→0 φz(h) = 0
(H1) (Zi, Xi)i∈N is an α-mixing sequence whose the coefficients of mixture verify:

∃a > 0, ∃c > 0 : ∀n ∈ N, α(n) ≤ cn−a.

(H2) 0 < maxi 6=j ψi,j(h) = supi 6=j P ((Zi, Zj) ∈ B(z, h)×B(z, h)) = O
(

(φx(h))(a+1)/a

n1/a

)
.

Note that (H0) can be interpreted as a concentration hypothesis acting on the distribution
of the f.r.v. of Z, whereas (H2) concerns the behavior of the joint distribution of the pairs
(Zi, Zj). In fact, this hypothesis is equivalent to assume that, for n large enough

sup
i6=j

P ((Zi, Zj) ∈ B(z, h)×B(z, h))

P (Z ∈ B(z, h))
≤ C

(
φx(h)

n

)1/a

.

This is one way to control the local asymptotic ratio between the joint distribution and its
margin. Remark that the upper bound increases with a. In other words, more the dependence
is strong, more restrictive is (H2). The hypothesis (H1) specifies the asymptotic behavior of
the α-mixing coefficients.

Our nonparametric models will be quite general in the sense that we will just need the
following simple assumption for the marginal distribution of Z, and let us introduce the
technical hypothesis necessary for the results to be presented. The non-parametric model is
defined by assuming that

(H3)

{
∀(x1, x2) ∈ S2,∀(z1, z2) ∈ N 2

z , for some b1 > 0, b2 > 0
|F z1(x1)− F z2(x2)| ≤ Cz(d(z1, z2)b1 + |x1 − x2|b2),

(H4)

{
∀(x1, x2) ∈ S2,∀(z1, z2) ∈ N 2

z , for some j = 0, 1, ν > 0, β > 0
|fz1 (j)(x1)− fz2 (j)(x2)| ≤ Cz(d(z1, z2)ν + |x1 − x2|β),

(H5) ∃γ <∞, f ′z(x) ≤ γ, ∀(z, x) ∈ F × S,
(H6) ∃τ > 0, F z(x) ≤ 1− τ, ∀(z, x) ∈ F × S.
(H7) H is differentiable such that





(H7a) ∀(t1, t2) ∈ R2; |H(j)(t1)−H(j)(t2)| ≤ C|t1 − t2|, for j = 0, 1
and H(j)are bounded for j = 0, 1
(H7 b)

∫
R t

2H2(t)dt <∞,
(H7c)

∫
R |t|β(H ′2dt <∞

(H8) The kernel K is positive bounded function supported on [0, 1] and it is of class C1 on
(0, 1) such that ∃C1, C2, −∞ < C1 < K ′(t) < C2 < 0 for 0 < t < 1

(H9) There exists a function ζz0 (·) such that for all t ∈ [0, 1] limh→0
φz(th)
φz(h) = ζz0 (t).

(H10) The bandwidth hn, small ball probability φz(hn) and arithmetical α mixing coefficient
with order a > 3 satisfying





(H10a)∃C > 0, h2j+1
n φz(hn) ≥ C

n2/(a+1) , for j = 0, 1

(H1 0b)
(
φz(hn)
n

)1/a

+ φz(hn) = o
(

1
n2/(a+1)

)
, for j = 0, 1

(H10c) limn→∞ hn = 0, and limn→∞
logn

nh2j+1
n φx(hn)

= 0, j = 0, 1;
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Remark 1. Assumption (H0) plays an important role in our methodology. It is known as
(for small h) the ”concentration hypothesis acting on the distribution of X” in infi- nite-
dimensional spaces. This assumption is not at all restrictive and overcomes the problem of
the non-existence of the probability density function. In many examples, around zero the
small ball probabilityφz(h) can be written approximately as the product of two independent
functions ψ(z) and ϕ(h) as φz(h) = ψ(z)ϕ(h) + o(ϕ(h)). This idea was adopted by Masry
(2005) who reformulated the Gasser et al. (1998) one. The increasing proprety of φz(·)
implies that ζzh(·) is bounded and then integrable (all the more so ζz0 (·) is integrable).

Without the differentiability of φz(·), this assumption has been used by many authors where
ψ(·) is interpreted as a probability density, while ϕ(·) may be interpreted as a volume
parameter. In the case of finite-dimensional spaces, that is S = Rd, it can be seen that
φz(h) = C(d)hdψ(z) + ohd), where C(d) is the volume of the unit ball in Rd. Furthermore,
in infinite dimensions, there exist many examples fulfilling the decomposition mentioned
above. We quote the following (which can be found in Ferraty et al., 2007):

1. φz(h) ≈ ψ(h)hγ for som γ > 0.
2. φz(h) ≈ ψ(h)hγ exp {C/hp} for som γ > 0 and p > 0.
3. φz(h) ≈ ψ(h)/| lnh|.

The function ζzh(·) which intervenes in Assumption (H9) is increasing for all fixed h. Its
pointwise limit ζz0 (·) also plays a determinant role. It intervenes in all asymptotic properties,
in particular in the asymptotic variance term. With simple algebra, it is possible to specify
this function (with ζ0(u) := ζz0 (u) in the above examples by:

1. ζ0(u) = uγ ,
2. ζ0(u) = δ1(u) where δ1(·) is Dirac function,
3. ζ0(u) = 1]0,1](u).

Remark 2. Assumptions (H3) and (H4) are the only conditions involving the conditional
probability and the conditional probability density of Z given X. It means that F (·|·) and
f(·|·) and its derivatives satisfy the Hölder condition with respect to each variable. There-
fore, the concentration condition (H0) plays an important role. Here we point out that our
assumptions are very usual in the estimation problem for functional regressors (see, e.g.,
Ferraty et al. (2007)).

Remark 3. Assumptions (H7), (H8) and (H10) are classical in functional estimation for
finite or infinite dimension spaces.

3. Nonparametric estimate of the maximum of the conditional hazard function

Let us assume that there exists a compact S with a unique maximum θ of hz on S. We will
suppose that hz is sufficiently smooth ( at least of class C2) and verifies that h′z(θ) = 0 and
h
′′ z(θ) < 0.

We can write an estimator of the first derivative of the conditional hazard function through
the first derivative of the estimator (1). Our maximum estimate is defined by assuming that

there is some unique θ̂ on S such that 0 = ĥ′(θ̂) < |ĥ′z(x)| for all x ∈ S and x 6= θ̂.
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Furthermore, we assume that θ ∈ S◦, where S◦ denotes the interior of S, and that θ satisfies
the uniqueness condition, that is; for any ε > 0 and µ(z), there exists ξ > 0 such that
|θ(z)− µ(z)| ≥ ε implies that |hz(θ(z))− hz(µ(z))| ≥ ξ.

We can write an estimator of the first derivative of the hazard function through the first
derivative of the estimator. Our maximum estimate is defined by assuming that there is
some unique θ̂ on S◦.

It is therefore natural to try to construct an estimator of the derivative of the function hz on
the basis of these ideas. To estimate the conditional distribution function and the conditional
density function in the presence of functional conditional random variable Z = z.

The kernel estimator of the derivative of the function conditional random functional hz can
therefore be constructed as follows:

ĥ′
z
(x) =

f̂ ′
z
(x)

1− F̂ z(x)
+ (ĥz(x))2, (4)

the estimator of the derivative of the conditional density is given in the following formula:

f̂ ′
z
(x) =

∑n
i=1 h

−2
n K(h−1

n d(z, Zi))H
′(h−1

n (x−Xi))∑n
i=1K(h−1

n d(z, Zi))
. (5)

Later, we need assumptions on the parameters of the estimator, ie on K,H,H ′ and hn are
little restrictive. Indeed, on one hand, they are not specific to the problem estimate of hz

(but inherent problems of F z, fz and f ′z estimation), and secondly they consist with the
assumptions usually made under functional variables.

Remark 4. Generally, the hazard function has a global maximum in the time intervals with
values closest to zero, corresponding to the earthquakes with bigger intensity (Vere-Jones
(1970)).

Also, the hazard function can have several local maxima, indicating the times with the
highest risk in a certain period (see the examples in Estévez-Pérez et al. (2002)).

The hypothesis of uniqueness is only established for the sake of clarity. Following our
proofs, if several local estimated maxima exist, the asymptotic results remain valid for each
of them.

We state the almost complete convergence (withe rates of convergence) of the maximum
estimate by the following results:

Theorem 1. Under assumption (H0)-(H8) we have

θ̂ − θ → 0 a.co. (6)

Remark 5. The hypothesis of uniqueness is only established for the sake of clarity. Follow-
ing our proofs, if several local estimated maxima exist, the asymptotic results remain valid
for each of them.
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Proof. Because h′z(·) is continuous, we have, for all ε > 0. ∃ η(ε) > 0 such that

|t− θ| > ε⇒ |h′z(t)− h′z(θ)| > η(ε).

Therefore,

P{|θ̂ − θ| ≥ ε} ≤ P{|h′z(θ̂)− h′z(θ)| ≥ η(ε)}.

We also have

|h′z(θ̂)− h′z(θ)| ≤ |h′z(θ̂)− ĥ′z(θ̂)|+ |ĥ′z(θ̂)− h′z(θ)| ≤ sup
x∈S
|ĥ′z(x)− h′z(x)|, (7)

because ĥ′z(θ̂) = h′z(θ) = 0.

Then, uniform convergence of h′z will imply the uniform convergence of θ̂. That is why, we
have the following lemma.

Lemma 1. Under assumptions of Theorem 1, we have

sup
x∈S
|ĥ′z(x)− h′z(x)| → 0 a.co. (8)

The proof of this lemma will be given in Appendix.

Theorem 2. Under assumption (H1)-(H8) and (H10c) we have

sup
x∈S
|θ̂ − θ| = O

(
hb1n
)

+Oa.co.
(√

log n

nh3
nφz(hn)

)
(9)

Proof. By using Taylor expansion of the function h′z at the point θ̂, we obtain

h′z(θ̂) = h′z(θ) + (θ̂ − θ)h′′z(θ∗n), (10)

with θ∗ a point between θ and θ̂.

Now, because h′z(θ) = ĥ′z(θ̂)

|θ̂ − θ| ≤ 1

h′′z(θ∗n)
sup
x∈S
|ĥ′z(x)− h′z(x)| (11)

The proof of Theorem will be completed showing the following lemma.

Lemma 2. Under the assumptions of Theorem 2, we have

sup
x∈S
|ĥ′z(x)− h′z(x)| = O

(
hb1n
)

+Oa.co.
(√

log n

nh3
nφz(hn)

)
(12)

The proof of lemma will be given in the Appendix.
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4. Asymptotic normality

To obtain the asymptotic normality of the conditional estimates, we have to add the following
assumptions:

(H7d)
∫
R(H ′2dt <∞.

(H11) 0 = ĥ′
z
(θ̂) < |ĥ′z(x)|),∀x ∈ S, x 6= θ̂.

The following result gives the asymptotic normality of the maximum of the conditional
hazard function. Let

A = {(z, x) : (z, x) ∈ S × R, ax2F z(x) (1− F z(x)) 6= 0}

Theorem 3. Under conditions (H0)-(H11) we have (θ ∈ S/fz(θ), 1− F z(θ) > 0)

(
nh3

nφz(hn)
)1/2 (

ĥ
′z(θ)− h′z(θ)

) D→N
(
0, σ2

h′(θ)
)

where →D denotes the convergence in distribution,

axl = Kl(1)−
∫ 1

0

(
Kl(u)

)′
ζx0 (u)du for l = 1, 2

and

σ2
h′(θ) =

ax2h
z(θ)

(ax1)
2

(1− F z(θ))

∫
(H ′2dt.

Proof. Using again (17), and the fact that

(1− F z(x))

(1− F̂ z(x)) (1− F z(x))
−→ 1

1− F z(x)

and
f̂ ′z(x)(

1− F̂ z(x)
)

(1− F z(x))
−→ f ′z(x)

(1− F z(x))
2 .

The asymptotic normality of
(
nh3

nφz(hn)
)1/2 (

ĥ′
z
(θ)− h′z(θ)

)
can be deduced from both

following lemmas,

Lemma 3. Under Assumptions (H0)-(H3) and (H7)-(H9), we have

(nφz(hn))
1/2
(
F̂ z(x)− F z(x)

) D→N
(
0, σ2

F z (x)
)

(13)

where

σ2
F z (x) =

ax2F
z(x) (1− F z(x))

(ax1)
2
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Lemma 4. Under Assumptions (H0)-(H4) and (H6)-(H10), we have

(nhnφz(hn))
1/2
(
ĥz(x)− hz(x)

) D→N
(
0, σ2

hz (x)
)

(14)

where

σ2
hz (x) =

ax2h
z(x)

(ax1)
2

(1− F z(x))

∫

R
H2(t)dt

Lemma 5. Under Assumptions of Theorem 3, we have

(
nh3

nφz(hn)
)1/2 (

f̂ ′
z
(x)− f ′z(x)

) D→N
(
0, σ2

f ′z (x)
)

(15)

where

σ2
f ′z(x) =

ax2f
z(x)

(ax1)
2

∫

R
(H ′2dt

The proofs of Lemma (3) can be seen in Laksaci et al. (2011).

Finally, by this last result and (10), the following theorem follows:

Theorem 4. Under conditions (H1)-(H11) we have (θ ∈ S/fz(θ), 1− F z(θ) > 0)

(
nh3

nφz(hn)
)1/2 (

θ̂ − θ
) D→N

(
0,

σ2
h′(θ)

(h′′z(θ))2

)

with σ2
h′(θ) = hz(θ) (1− F z(θ))

∫
H ′2dt.

5. Proofs of technical lemmas

Proof (Lemma 1 and Lemma 2). Let

ĥ′z(x) =
f̂ ′z(x)

1− F̂ z(x)
+ (ĥz(x))2, (16)

with

ĥ′z(x)− h′z(x) =

{(
ĥz(x)

)2

− (hz(x))
2

}

︸ ︷︷ ︸
Γ1

+

{
f̂ ′z(x)

1− F̂ z(x)
− f ′z(x)

1− F z(x)

}

︸ ︷︷ ︸
Γ2

(17)

for the first term of (17) we can write

∣∣∣
(
ĥz(x)

)2

− (hz(x))
2
∣∣∣ ≤

∣∣∣ĥz(x)− hz(x)
∣∣∣.
∣∣∣ĥz(x) + hz(x)

∣∣∣ (18)

because the estimator ĥz(·) converge a.co. to hz(·) we have

sup
x∈S

∣∣∣
(
ĥz(x)

)2

− (hz(x))
2
∣∣∣ ≤ 2

∣∣∣hz(θ)
∣∣∣ sup
x∈S

∣∣∣ĥz(x)− hz(x)
∣∣∣ (19)
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for the second term of (17) we have

f̂ ′z(x)

1− F̂ z(x)
− f ′z(x)

1− F z(x)
=

1

(1− F̂ z(x))(1− F z(x))

{
f̂ ′z(x)− f ′z(x)

}

+
1

(1− F̂ z(x))(1− F z(x))

{
f ′z(x)

(
F̂ z(x)− F z(x)

)}

− 1

(1− F̂ z(x))(1− F z(x))

{
F z(x)

(
f̂ ′z(x)− f ′z(x)

)}
.

Valid for all x ∈ S. Which for a constant C <∞, this leads

sup
x∈S

∣∣∣ f̂ ′z(x)

1− F̂ z(x)
− f ′z(x)

1− F z(x)

∣∣∣ ≤

C

{
supx∈S

∣∣∣f̂ ′z(x)− f ′z(x)
∣∣∣+ supx∈S

∣∣∣F̂ z(x)− F z(x)
∣∣∣
}

infx∈S
∣∣∣1− F̂ z(x)

∣∣∣
. (20)

Therefore, the conclusion of the lemma follows from the following results:

sup
x∈S
|F̂ z(x)− F z(x)| = O

(
hb1n
)

+Oa.co.
(√

log n

nφz(hn)

)
(21)

sup
x∈S
|f̂ ′z(x)− f ′z(x)| = O

(
hb1n
)

+Oa.co.
(√

log n

nh3
nφz(hn)

)
(22)

sup
x∈S
|ĥz(x)− hz(x)| = O

(
hb1n
)

+Oa.co.
(√

log n

nhnφz(hn)

)
(23)

∃δ > 0 such that
∞∑

1

P
{

inf
y∈S
|1− F̂ z(x)| < δ

}
<∞. (24)

The proofs of (21) and (22) appear in Ferraty et al. (2007) and (23) is proven in Ferraty et
al. (2008).

• Concerning (24) by equation (21), we have the almost complete convergence of F̂ z(x) to
F z(x). Moreover,

∀ε > 0

∞∑

n=1

P
{
|F̂ z(x)− F z(x)| > ε

}
<∞.

On the other hand, by hypothesis we have F z < 1, i.e.

1− F̂ z ≥ F z − F̂ z,
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thus,

inf
y∈S
|1− F̂ z(x)| ≤ (1− sup

x∈S
F z(x))/2⇒

sup
x∈S
|F̂ z(x)− F z(x)| ≥ (1− sup

x∈S
F z(x))/2.

In terms of probability is obtained

P
{

inf
x∈S
|1− F̂ z(x)| < (1− sup

x∈S
F z(x))/2

}
≤ P

{
sup
x∈S
|F̂ z(x)− F z(x)| ≥ (1− sup

x∈S
F z(x))/2

}
<∞.

Finally, it suffices to take δ = (1− supx∈S F
z(x))/2 and apply the results (21) to finish

the proof of the lemma.

Proof (Lemma 4). We can write for all x ∈ S

ĥz(x)− hz(x) =
f̂z(x)

1− F̂ z(x)
− fz(x)

1− F z(x)

=
1

D̂z(x)

{(
f̂z(x)− fz(x)

)
+ fz(x)

(
F̂ z(x)− F z(x)

)

− F z(x)
(
f̂z(x)− fz(x)

)}
,

=
1

D̂z(x)

{
(1− F z(x))

(
f̂z(x)− fz(x)

)

− fz(x)
(
F̂ z(x)− F z(x)

)}
(25)

with D̂z(x) = (1− F z(x))
(

1− F̂ z(x)
)

.

As a direct consequence of the Lemma 3, the result (26) (see Ezzahrioui and Ould-Säıd, 2010)
and the expression (25), permit us to obtain the asymptotic normality for the conditional
hazard estimator.

(nhnφz(hn))
1/2
(
f̂z(x)− fz(x)

) D→N
(
0, σ2

fz (x)
)

(26)

where

σ2
fz(x) =

ax2f
z(x)

(ax1)
2

∫

R
(H(t))2dt

Proof (Lemma 5). For i = 1, . . . , n, we consider the quantities Ki = K
(
h−1
n d(z, Zi)

)
,

H ′i(x) = H ′
(
h−1
n (x−Xi)

)
and let f̂ ′

Z

N (x) (resp. F̂ZD ) be defined as

f̂ ′
z

N (x) =
h−2
n

nEK1

n∑

i=1

KiH
′
i(x) (resp. F̂ zD =

1

nEK1

n∑

i=1

Ki).
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This proof is based on the following decomposition

f̂ ′
z
(x)− f ′z(x) =

1

F̂ zD

{(
f̂ ′
z

N (x)− Ef̂ ′
z

N (x)
)
−
(
f ′z(x)− Ef̂ ′

z

N (x)
)}

+

f ′z(x)

F̂ zD

{
EF̂ zD − F̂ zD

}
(27)

and on the following intermediate results.

√
nh3

nφz(hn)
(
f̂ ′
z

N (x)− Ef̂ ′
z

N (x)
) D→N

(
0, σ2

f ′z (x)
)

(28)

where σ2
f ′z (x) is defined as in Lemma 5.

lim
n→∞

√
nh3

nφz(hn)
(
Ef̂ ′

z

N (x)− f ′z(x)
)

= 0 (29)

√
nh3

nφz(hn)
(
F̂ zD(x)− 1

)
P→ 0, as n→∞. (30)

• Concerning (28). By the definition of f̂ ′
z

N (x), it follows that

√
nh3

nφz(hn)
(
f̂ ′
z

N (x)− Ef̂ ′
z

N (x)
)

=
n∑

i=1

√
φz(hn)√
nhnEK1

(KiH
′
i − EKiH

′
i) =

n∑

i=1

∆i,

which leads

n∑

i=1

E∆2
i =

φz(hn)

hnE2K1
EK2

1 (H ′1)2 − φz(hn)

hHE2K1
(EK1H

′
1)

2
= Π1n −Π2n. (31)

As for Π1n, by the property of conditional expectation, we get

Π1n =
φz(hn)

E2K1
E
{
K2

1

∫
H ′2(t) (f ′z(x− thn)− f ′z(x) + f ′z(x)) dt

}
.

Meanwhile, by (H0), (H4), (H8) and (H9), it follows that:

φz(hn)EK2
1

E2K1
−→
n→∞

ax2
(ax1)2

,

which leads

Π1n −→
n→∞

ax2f
z(x)

(ax1)2

∫
(H ′2dt, (32)

Regarding Π2n, by (H0), (H4) and (H7), we obtain

Π2n −→
n→∞

0. (33)

This result, combined with (31) and (32), allows us to get

lim
n→∞

n∑

i=1

E∆2
i = σ2

f ′z (x). (34)
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Secondly, by the boundedness of H ′, we have

E (|∆i∆j |) ≤
Cφz(hn)

nE2K1
(KiKj + EKiKj)

≤ C

nhn

{(
φz(hn)

n

)1/a

+ φz(x)(hn)

}
, ∀i 6= j.

Then, taking

δn = max
1≤i6=j≤n

{E (| ∆i∆j |)} =
C

nhn

((
φz(hn)

n

)1/a

+ φz(x)(hn)

)
.

Leads

nmnδn =
Cmn

hn

((
φz(hn)

n

)1/a

+ φz(x)(hn)

)
. (35)

Similarly, the boundedness of H ′ and K allows us to take Ci = O
(

1√
nh3

nφz(hn)

)
, which

implies that



∞∑

j=mn+1

α(j)




n∑

i=1

C2
i ≤

C

hnφz(hn)

∫

t≥mn

t−adt =
C

hnφz(hn)

m−a+1
n

a− 1
. (36)

Then, the sum of the right side of (35) and (36) is of type Amn + Bm−a+1
n , by talking

mn = (A/B)−1/a = {(a − 1)φz(hn)((φz(hn)
n )1/a + φz(hn))}−1/a → ∞, it is clear that,

under conditions (H10a) and (H10b), combining (35) and (36) allows us to get

nmnδn = o(1), (37)

and 


∞∑

j=mn+1

α(j)




n∑

i=1

C2
i = o(1), (38)

respectively. Finally, by choosing %n =
√

nh3
nφz(hn)
logn , under (H10a) again and a > 3, we

have
%n√
n

= o(1) (39)

and

n

%n
α(ε%n) ≤ C (log n)(a+1)/2

n(a−1)/2(h3
nφz(hn))(a+1)/2

≤ C (log n)(a+1)/2

n(a−3)/2
→ 0 as n→∞.

Therefore, combining (33)-(39) with Corollary 2.2 in Liebscher (2001), (28) is valid.
• Concerning (29). The proof is completed along the same steps as that of Π1n. We omit

it here.
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• Concerning (30). The idea is similar to that given by Ferraty et al. (2007).

By definition of F̂ zD(x), we have

√
nh3

nφz(hn)(F̂ zD(x)− 1) = Ωn − EΩn,

where Ωn =

√
nh3

nφz(hn)
∑n

i=1Ki

nEK1
. In order to prove (30), similar to Ferraty et al. (2007),

we only need to proov V ar Ωn → 0, as n→∞. In fact, since

V ar Ωn =
nh3

nφz(hn)

nE2K1


nV arK1 +

∑

1≤i

∑

j≤n
cov(Ki,Kj)




≤ nh3
nφz(hn)

E2K1
EK2

1 +
nh3

nφz(hn)

nE2K1

∑∑

0≤|i−j|≤vn
cov(Ki,Kj)

+
nh3

nφz(hn)

nE2K1

∑∑

0≤|i−j|≥vn
cov(Ki,Kj)

= Ψ1 + Ψ2 + Ψ3,

then, using the boundedness of function K allows us to get that:

Ψ1 ≤ Ch3
nφz(hn)→ 0, as n→∞.

Meanwhile, by (H0) and (H1), it follows that

Ψ2 ≤ vnh3
n

{(
φz(hn)

n

)1/a

+ φz(hn)

}
. (40)

Finally, using the Davydov-Rio’s inequality in Rio (2000) for mixing processes leads to

|cov(Ki,Kj | ≤ Cα(|i− j|),

for all i 6= j. Then, we have

Ψ3 ≤
h3
nφz(hn)

nE2K1
n2Cα(|i− j|) ≤ Ch

3
nφz(hn)

nE2K1
n2v−a+1

n

≤ Ch3
nnv

−a+1
n . (41)

Since the right side of (40) and (41) is also of type Avn + Bv−a+1
n , by choosing vn =

[n−1((φz(hn)
n )1/a + φz(hn))]−1/a → ∞ and simple calculations, we get that Ψ2 → 0 and

Ψ3 → 0 as n→∞, respectively. Therefore, the proof of this result is completed.

Therefore, the proof of this lemma is completed.
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