
République Algérienne Démocratique et Populaire
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique
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Abstract

This Thesis deals with some existence, uniqueness and Ulam-Hyers-Rassias stability re-
sults for a class of implicit fractional q-difference equations. Some applications are made
of some fixed point theorems in Banach spaces for the existence and uniqueness of so-
lutions, next we prove that our problem is generalized Ulam-Hyers-Rassias stable. In
this thesis we discuss the existence of weak solutions for a class of implicit fractional q-
difference equations. The results are based on the fixed point theory and the concept of
measure of weak noncompactness. The tools used include a generalization of the classical
Darbo fixed point theorem for Fréchet spaces associated with the concept of measure of
noncompactness. Also this thesis deals with some results about the existence of solutions
and bounded solutions and the attractivity for a class of fractional q-difference equations.
Some applications are made of Schauder fixed point theorem in Banach spaces and Darbo
fixed point theorem in Fréchet spaces. We use some technics associated with the concept
of measure of noncompactness and the diagonalization process. We study in this thesis a
class of Caputo fractional q-difference inclusions in Banach spaces. We obtain some ex-
istence results by using the set-valued analysis, the measure of noncompactness, and the
fixed point theory (Darbo and Mönch’s fixed point theorems). in the last of this thesis
we study some existence of weak solutions for a class of Caputo fractional q-difference
inclusions and a coupled system of Caputo fractional q-difference inclusions by using the
set-valued analysis and the Pettis integration.
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sure of weak noncompactness, weak solution, measure of noncompactness, attractivity,
diagonalization, bounded solution, Banach space, Fréchet space, fixed point, Fractional
q-difference inclusion, Pettis q-difference inclusion, Caputo fractional derivative, coupled
system.
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Introduction

Fractional differential equations have recently been applied in various areas of engi-
neering, mathematics, physics, and other applied sciences [74]. For some fundamental
results in the theory of fractional calculus and fractional differential equations we refer
the reader to the monographs [9, 14, 13, 72, 52, 80], the paper [75] and the references
therein. Recently, considerable attention has been given to the existence of solutions of
initial and boundary value problems for fractional differential equations and inclusions
with Caputo fractional derivative; [14, 20]. Implicit fractional differential equations were
analyzed by many authors see for instance [7, 9, 8, 11, 14, 28, 29, 30] and the references
therein.

q-difference calculus or quantum calculus was first introduced by F.H Jackson in
1908 − 1910 [47, 48],in these articls Jackson defined q-differential operator, q-calculus
became a bridge between mathematics and physics, basic definitions and properties of q-
difference calculus can be found in the book of V.Kac and P.Cheung [51]. Then the theory
of q-calculs was extented to fractional q-difference calculus by W.A.Al-Salam [23] who in-
troduced the concept of q-calculus, starting from the q-analogue of Cauchy’s formula and
Agrawal [16] who studied certain fractional q-integral operators and q-derivatives where
he prouved the semi-group properties for Riemann-Liouville type fractional integral op-
erators. Further, Rajkovic et al in [64, 65] generalized the notion of the left fractional
q-integral operators and fractional q-derivatives by introducing variable lower limit and
proved the semi-group properties.Also F.M.Atici and P.Eloe in [24] studied the fractional
q-calculus on a time scale, they have developed some properties of fractional q-calculus
of q-Laplace transform that they used to solve fractional q-difference equations. More
recently maybe due to the explosion in research within the fractional differential calculus
siting,new developments in this theory of fractional q-difference calculus were made,for
example,q-analogue of the integral and differential fractional operators propreties such as
Mittag Leffler function [64, 65], the q-Taylor’s formula and the q-Laplace transform [24].
Due to its various applications in many subject,including quantum mechanics,particle
physics and hypergeometric series,many researchers devoted their efforts to develop the
theory in this field and many results were made. However,most of the work on the topic is
based on Riemann-Liouville and Caputo type fractional differential equations (see Ahmad
et al [17, 18, 19], q-analogue of this operators is defined in [23] and applications of this
operators in investigated by M.H.Annaby [25]and T.Zhang [79].
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2 INTRODUCTION

During the last few years, the study of solutions for fractional boundary value problems
as well as their its various applications in physics and engineering flourished many results
were obtained by applying Caputo derivative and standard Riemann-Liouville fractional
derivative (see,[35, 78, 80], and references therein), but for fractional q-difference boundary
value problems are few.

Considerable attention has been given to the study of the Ulam stability of functional
differential and integral equations; one can see the monographs [11, 49], the papers [1, 2,
3, 50, 66, 69, 70] and the references therein.

The measure of noncompactness which is one of the fundamental tools in the theory
of nonlinear analysis was initiated by the pioneering articles of Alvàrez [22], Mönch [57]
and was developed by Bana’s and Goebel [27] and many researchers in the literature.
The applications of the measure of noncompactness (for the weak case, the measure of
weak noncompactenss developed by De Blasi [37]) can be seen in the wide range of ap-
plied mathematics: theory of differential equations (see [16, 59] and references therein).
Recently, in [13, 22, 26, 27] the authors applied the measure of noncompactness to some
classes of functional Riemann-Liouville or Caputo fractional differential equations in Ba-
nach spaces.

In [4, 5, 12], Abbas et al. presented some results on the local and global attractivity of
solutions for some classes of fractional differential equations involving both the Riemann-
Liouville and the Caputo fractional derivatives by employing some fixed point theorems.

Fractional differential equations and inclusions have attracted much more interest of
mathematicians and physicists which provides an efficiency for the description of many
practical dynamical arising in engineering, vulnerability of networks (fractional percola-
tion on random graphs) and other applied sciences [9, 13, 75, 72, 52, 74, 80]. Recently,
Riemann-Liouville and Caputo fractional differential equations with initial and boundary
conditions are studied by many authors [14, 52]. In [18, 20, 77] the authors present some
interesting results for classes of fractional differential inclusions.

Difference inclusions arise in the mathematical modeling of various problems in eco-
nomics, optimal control, stochastic analysis, see for instance [45, 53, 73]. However q-
difference inclusions are studied in few papers; see for example [18, 58].

Coupled differential and integro-differential equations appear in mathematical model-
ing of many biological phenomena and environmental issues. For further details on the
utility of coupled systems, see [6, 46, 63], and references therein.

In the following we give an outline of our thesis organization, which consists of six
chapters defining the contributed work.

Chapter 1: contains notation and preliminary results, definitions, theorems and
other auxiliary results which will be needed in this thesis, in the first section we give some
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notations and definitions, in section 2, we present some properties of the theory of Weak
solutions, in the third section, we give some properties of set-valued maps, in section 4,
we present some properties of Measures of noncompactness, in the last section we cite
some fixed point theorems.

Chapter 2: In chapter 2 we give some results of existence, uniqueness and Ulam-
Hyers-Rassias stability results for a class of implicit fractional q-difference equations.
Some applications are made of some fixed point theorems in Banach spaces for the exis-
tence and uniqueness of solutions, next we prove that our problem is generalized Ulam-
Hyers-Rassias stable. Two illustrative examples are given in the last section. we discuss
the existence, uniqueness and Ulam-Hyers-Rassias stability of solutions for the following
implicit fractional q-difference equation

(cDα
q u)(t) = f(t, u(t), (cDα

q u)(t)), t ∈ I := [0, T ], (1)

with the initiale condition

u(0) = u0, (2)

where q ∈ (0, 1), α ∈ (0, 1], T > 0, f : I × R × R → R is a given continuous function,
and cDα

q is the Caputo fractional q-difference derivative of order α.

Chapter 3: This chapter initiates the study of implicit Caputo fractional q-difference
equations,we discuss some rasults about the existence of solutions and weak solutions for
a class of implicit fractional q-difference equations. Some applications are made of Darbo
fixed point theorem in Banach spaces.

In section 3.2 we discuss some existence results for a class of implicit fractional q-
difference equations. The results are based on the fixed point theory in Banach spaces
and the concept of measure of noncompactness (Kuratowski measure). An illustrative
example is given in the last section.

we discuss the existence of solutions for the following implicit fractional q-difference
equation

(cDα
q u)(t) = f(t, u(t), (cDα

q u)(t)), t ∈ I := [0, T ], (3)

with the initiale condition

u(0) = u0, (4)

where q ∈ (0, 1), α ∈ (0, 1], T > 0, f : I × E × E → E is a given continuous function,
E is a real (or complex) Banach space with norm ‖ · ‖, and cDα

q is the Caputo fractional
q-difference derivative of order α.

In Section 3.3 we discuss some results about the existence of weak solutions for a
class of implicit fractional q-difference equations. The results are based on the fixed point
theory and the concept of measure of weak noncompactness. An illustrative example is
given in the last section.
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we discuss in this section the existence of weak solutions for the following fractional q-
difference equation

(cDα
q u)(t) = f(t, u(t), (cDα

q u)(t)); t ∈ I := [0, T ], (5)

with the initial condition
u(0) = u0, (6)

where q ∈ (0, 1), α ∈ (0, 1], T > 0, f : I × E × E → E is a given continuous function,
E is a real (or complex) Banach space with norm ‖ · ‖, and cDα

q is the Caputo fractional
q-difference derivative of order α.

Chapter 4: In this chapter we discuss some results about the existence of solutions
and bounded solutions and the attractivity for a class of fractional q-difference equations.
Some applications are made of Schauder fixed point theorem in Banach spaces and Darbo
fixed point theorem in Fréchet spaces. We use some technics associated with the concept of
measure of noncompactness and the diagonalization process. In this chapter we presented
some results on the local and global attractivity of solutions for some classes of fractional
differential equations involving both the Riemann-Liouville and the Caputo fractional
derivatives by employing some fixed point theorems.
In this chapter we discuss the existence and the attractivity of solutions for the following
functional fractional q-difference equation

(cDα
q u)(t) = f(t, u(t)); t ∈ R+ := [0,+∞), (7)

with the initiale condition
u(0) = u0, (8)

where q ∈ (0, 1), α ∈ (0, 1], f : R+ × R → R is a given continuous function, and cDα
q is

the Caputo fractional q-difference derivative of order α.

Next, by using a generalization of the classical Darbo fixed point theorem for Fréchet
spaces associated with the concept of measure of noncompactness, we discuss the existence
of solutions for the problem (7)-(8) in Fréchet spaces.

Finaly, we discuss the existence of bounded solutions for the problem (7)-(8) on R+,
by applying Schauder’s fixed point theorem associated with the diagonalization process.

This chapter initiates the study of Caputo fractional q-difference equations in Fréchet
spaces, the attractivity and the boundedness of the solutions of fractional q-difference
equations on the half line. Some illustrative examples are given in the last section.

Chapter 5: In this chapter, we study a class of Caputo fractional q-difference in-
clusions in Banach spaces. We obtain some existence results by using the set-valued
analysis, the measure of noncompactness, and the fixed point theory (Darbo and Mönch’s
fixed point theorems). Finally we give an illustrative example in the last section. We ini-
tiate the study of fractional q-difference inclusions on infinite dimensional Banach spaces.
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In this chapter we consider the Caputo fractional q-difference inclusion

(cDα
q u)(t) ∈ F (t, u(t)), t ∈ I := [0, T ], (9)

with the initial condition
u(0) = u0 ∈ E, (10)

where (E, ‖ · ‖) is a real or complex Banach space, q ∈ (0, 1), α ∈ (0, 1], T > 0, F :
I × E → P(E) is a multivalued map, P(E) = {Y ⊂ E : y 6= ∅}, and cDα

q is the Caputo
fractional q-difference derivative of order α.

Chapter 6: This chapter deals with some existence of weak solutions for a class of
Caputo fractional q-difference inclusions and a coupled system of Caputo fractional q-
difference inclusions by using the set-valued analysis, and Mönch’s fixed point theorem
associated with the technique of measure of weak noncompactness. Two illustrative ex-
amples are given in the end.
In section 6.2 we discuss the existence of weak solutions for the following fractional q-
difference inclusion

(cDα
q u)(t) ∈ F (t, u(t)), t ∈ I := [0, T ], (11)

with the initial condition
u(0) = u0 ∈ E, (12)

where E is a real (or complex) Banach space with norm ‖ · ‖ and dual E∗, such that E
is the dual of a weakly compactly generated Banach space X, q ∈ (0, 1), α ∈ (0, 1], T >
0, F : I × E → P(E) is a multivalued map, P(E) is the family of all nonempty subsets
of E, cDα

q is the Caputo fractional q-difference derivative of order α.

Next in section 6.3 we consider the following coupled system of fractional q-difference
inclusions {

(cDα
q u)(t) ∈ F (t, v(t))

(cDα
q v)(t) ∈ G(t, u(t))

; t ∈ I, (13)

with the initial conditions

(u(0), v(0)) = (u0, v0) ∈ E × E, (14)

where F,G : I × E → P(E) are multivalued maps.

Finally we close our thesis with a conclusion and some perspectives
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Chapter 1

Preliminaries

In this chapter we review some fundamental concepts, notations, definitions, fixed
point theorems and properties required to establish our main results.

1.1 Notations and Definitions

Let I := [0, T ];T > 0. Consider the complete metric space C(I) := C(I,R) of
continuous functions from I into R equipped with the usual metric

d(u, v) := max
t∈I
|u(t)− v(t)|.

Notice that C(I) is a Banach space with the supremum (uniform) norm

‖u‖∞ := sup
t∈I
|u(t)|.

As usual, L1(I) denotes the space of measurable functions v : I → R which are Lebesgue
integrable with the norm

‖v‖1 =

∫
I

|v(t)|dt.

Let us recall some definitions and properties of fractional q-calculus. For a ∈ R, and
q ∈ (0, 1) we set

[a]q =
1− qa

1− q
.

The q analogue of the power (a− b)n is

(a− b)(0) = 1, (a− b)(n) = Πn−1
k=0(a− bqk); a, b ∈ R, n ∈ N.

In general,

(a− b)(α) = aαΠ∞k=0

(
a− bqk

a− bqk+α

)
; a, b, α ∈ R.

7



8 CHAPTER 1. PRELIMINARIES

Definition 1.1 [51] The q-gamma function is defined by

Γq(ξ) =
(1− q)(ξ−1)

(1− q)ξ−1
; ξ ∈ R− {0,−1,−2, . . .}

Notice that the q-gamma function satisfies Γq(1 + ξ) = [ξ]qΓq(ξ).

Definition 1.2 [51] The q-derivative of order n ∈ N of a function u : I → R is defined
by

(Dqu)(t) := (D1
qu)(t) =

u(t)− u(qt)

(1− q)t
; t 6= 0, (Dqu)(0) = lim

t→0
(Dqu)(t),

and
(Dn

q u)(t) = (DqD
n−1
q u)(t); t ∈ I, n ∈ {1, 2, . . .}.

Set It := {tqn : n ∈ N} ∪ {0}.

Definition 1.3 [51] The q-integral of a function u : It → R is defined by

(Iqu)(t) =

∫ t

0

u(s)dqs =
∞∑
n=0

t(1− q)qnf(tqn),

provided that the series converges.

We note that (DqIqu)(t) = u(t), while if u is continuous at 0, then

(IqDqu)(t) = u(t)− u(0).

Definition 1.4 [65] The Riemann-Liouville fractional q-integral of order α ∈ R+ :=
[0,∞) of a function u : I → R is defined by (I0

qu)(t) = u(t), and

(Iαq u)(t) =

∫ t

0

(t− qs)(α−1)

Γq(α)
u(s)dqs; t ∈ I.

Lemma 1.5 [64] For α ∈ R+ := [0,∞) and λ ∈ (−1,∞) we have

(Iαq (t)(λ))(t) =
Γq(1 + λ)

Γ(1 + λ+ α)
(t)(λ+α); 0 < t < T.

In particular,

(Iαq 1)(t) =
1

Γq(1 + α)
t(α).

Definition 1.6 [65] The Riemann-Liouville fractional q-derivative of order α ∈ R+ of a
function u : I → R is defined by (D0

qu)(t) = u(t), and

(Dα
q u)(t) = (D[α]

q I [α]−α
q u)(t); t ∈ I,

where [α] is the integer part of α.
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Definition 1.7 [65] The Caputo fractional q-derivative of order α ∈ R+ of a function
u : I → R is defined by (CD0

qu)(t) = u(t), and

(CDα
q u)(t) = (I [α]−α

q D[α]
q u)(t); t ∈ I.

Lemma 1.8 [65] Let α ∈ R+. Then the following equality holds:

(Iαq
CDα

q u)(t) = u(t)−
[α]−1∑
k=0

tk

Γq(1 + k)
(Dk

qu)(0).

In particular, if α ∈ (0, 1), then

(Iαq
CDα

q u)(t) = u(t)− u(0).

Definition 1.9 [21, 71] Let (M,d) be a metric space. A map T : M → M is said to be
Lipschitzian if there exists a constant k > 0 (called Lipschitz constant) such that

d(T (x), T (y)) ≤ kd(x, y); for all x, y ∈M.

A Lipschitzian mapping with a Lipschitz constant k < 1 is called a contraction.

Definition 1.10 ([21, 71]) A nondecreasing function φ : R+ → R+ is called a comparison
function if it satisfies one of the following conditions:

(1) For any t > 0 we have
lim
n→∞

φ(n)(t) = 0,

where φ(n) denotes the n-th iteration of φ.

(2) The function φ is right-continuous and satisfies

∀t > 0 : φ(t) < t.

Remark 1.11 The choice φ(t) = kt with 0 < k < 1 gives the classical Banach contraction
mapping principle.

1.2 Theory of Weak Solutions

Consider the Banach space CE(I) := C(I, E) of continuous functions from I into E
equipped with the usual supremum (uniform) norm

‖u‖∞ := sup
t∈I
‖u(t)‖.

As usual, L1(I) denotes the space of measurable functions v : I → E which are Bochner
integrable with the norm

‖v‖1 =

∫ T

0

‖v(t)‖dt.

Let (E,w) = (E, σ(E,E∗)) be the Banach space E with its weak topology.
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Definition 1.12 [59, 61] A Banach space X is called weakly compactly generated (WCG,
for short) if it contains a weakly compact set whose linear span is dense in X.

Definition 1.13 [59, 61] A function h : E → E is said to be weakly sequentially contin-
uous if h takes each weakly convergent sequence in E to a weakly convergent sequence in
E (i.e., for any (un) in E with un → u in (E,w) then h(un)→ h(u) in (E,w)).

Definition 1.14 [59, 60] A function F : Q → Pcl,cv(Q) has a weakly sequentially closed
graph, if for any sequence (xn, yn) ∈ Q × Q, yn ∈ F (xn) for n ∈ {1, 2, . . .}, with xn → x
in (E,ω), and yn → y in (E,ω), then y ∈ F (x).

Definition 1.15 [62] The function u : I → E is said to be Pettis integrable on I if
and only if there is an element uJ ∈ E corresponding to each J ⊂ I such that φ(uJ) =∫
J
φ(u(s))ds for all φ ∈ E∗, where the integral on the right hand side is assumed to exist

in the sense of Bochner, (by definition, uJ =
∫
J
u(s)ds).

Let P (I, E) be the space of all E−valued Pettis integrable functions on I, and L1(I, E)
be the Banach space of Lebesgue integrable functions u : I → E. Define the class P1(I, E)
by

P1(I, E) = {u ∈ P (I, E) : ϕ(u) ∈ L1(I,R); for every ϕ ∈ E∗}.

The space P1(I, E) is normed by

‖u‖P1 = sup
ϕ∈E∗, ‖ϕ‖≤1

∫ T

0

|ϕ(u(x))|dλx,

where λ stands for a Lebesgue measure on I.

The following result is due to Pettis (see [[62], Theorem 3.4 and Corollary 3.41]).

Proposition 1.16 [62] If u ∈ P1(I, E) and h is a measurable and essentially bounded
real-valued function, then uh ∈ P1(I, E).

1.3 Some Properties of Set Valued Maps

We define the following subsets of P(E) :

Pcl(E) = {Y ∈ P(E) : Y is closed},

Pbd(E) = {Y ∈ P(E) : Y is bounded},

Pcp(E) = {Y ∈ P(E) : Y is compact},

Pcv(E) = {Y ∈ P(E) : Y is convex},
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Pcp,cv(E) = Pcp(E) ∩ Pcv(E).

Definition 1.17 [38, 45] A multivalued map G : E → P(E) is said to be convex (closed)
valued if G(x) is convex (closed) for all x ∈ E. A multivalued map G is bounded on bounded
sets if G(B) = ∪x∈BG(x) is bounded in E for all B ∈ Pb(E) (i.e. supx∈B{sup{|y| : y ∈
G(x)} exists).

Definition 1.18 [38, 45] A multivalued map G : E → P(E) is called upper semi-
continuous (u.s.c.) on E if G(x0) ∈ Pcl(E); for each x0 ∈ E, and for each open set N ⊂ E
with G(x0) ∈ N, there exists an open neighborhood N0 of x0 such that G(N0) ⊂ N. G is
said to be completely continuous if G(B) is relatively compact for every B ∈ Pbd(E). An
element x ∈ E is a fixed point of G if x ∈ G(x).

We denote by FixG the fixed point set of the multivalued operator G.

Lemma 1.19 [38, 45] Let G : X → P(E) be completely continuous with nonempty
compact values. Then G is u.s.c. if and only if G has a closed graph, that is,

xn → x∗, yn → y∗, yn ∈ G(xn) =⇒ y∗ ∈ G(x∗).

Definition 1.20 [38, 45] A multivalued map G : J → Pcl(E) is said to be measurable if
for every y ∈ E, the function

t→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}

is measurable.

Definition 1.21 [45, 73] A multivalued map F : I×R→ P(E) is said to be Carathéodory
if:

(1) t→ F (t, u) is measurable for each u ∈ E;

(2) u→ F (t, u) is upper semicontinuous for almost all t ∈ I.

F is said to be L1-Carathéodory if (1), (2) and the following condition holds:

(3) For each q > 0, there exists ϕq ∈ L1(I,R+) such that

‖F (t, u)‖P = sup{|v| : v ∈ F (t, u)} ≤ ϕq for all |u| ≤ q and for a.e. t ∈ I.

For each u ∈ CE(I), define the set of selections of F by

SF◦u = {v ∈ L1(I) : v(t) ∈ F (t, u(t)) a.e. t ∈ I}.

Let (E, d) be a metric space induced from the normed space (E, | · |). The function Hd :
P(E)× P(E)→ R+ ∪ {∞} given by:
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Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)}.

is known as the Hausdorff-Pompeiu metric. For more details on multivalued maps see the
books of Hu and Papageorgiou [45].

Lemma 1.22 [61] Let F be a Carathéodory multivalued map and Θ : L1(I)→ CE(I); be
a linear continuous map. Then the operator

Θ ◦ SF◦u : C(I)→ Pcv,cp(C(I)), u 7→ (Θ ◦ SF◦u)(u) = Θ(SF◦u)

is a closed graph operator in CE(I)× CE(I).

Definition 1.23 [45, 61] Let E be Banach space. A multivalued mapping T : E →
Pcl,b(E) is called k−set-Lipschitz if there exists a constant k > 0, such that µ(T (X)) ≤
kµ(X) for all X ∈ Pcl,b(E) with T (X) ∈ Pcl,b(E). If k < 1, then T is called a k−set-
contraction on E.

1.4 Measure of Noncompactness

Now let us recall some fundamental facts of the notion of measure of noncompactness.

1.4.1 Kuratowski measure of noncompactness.

Let MX be the class of all bounded subsets of a metric space X.

Definition 1.24 [27, 76] A function µ : MX → [0,∞) is said to be a measure of non-
compactness on X if the following conditions are verified for all B,B1, B2 ∈MX .

(a) Regularity, i.e., µ(B) = 0 if and only if B is precompact,

(b) invariance under closure, i.e., µ(B) = µ(B),

(c) semi-additivity, i.e., µ(B1 ∪B2) = max{µ(B1), µ(B2)}.

Definition 1.25 [27, 76] Let E be a Banach space and denote by ΩE the family of bounded
subsets of E. the map µ : ΩE → [0,∞) defined by

µ(M) = inf{ε > 0 : M ⊂ ∪mj=1Mj, diam(Mj) ≤ ε}, M ∈ ΩE,

is called the Kuratowski measure of noncompactness.

Theorem 1.26 [?, 27] Let E be a Banach space. Let C ⊂ L1(I) be a countable set with
|u(t)| ≤ h(t) for a.e. t ∈ J and every u ∈ C, where h ∈ L1(I,R+). Then φ(t) = µ(C(t)) ∈
L1(I,R+) and verifies

µ

({∫ T

0

u(s) ds : u ∈ C
})
≤ 2

∫ T

0

µ(C(s)) ds,

where µ is the Kuratowski measure of noncompactness on the set E.
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Some Properties.

(1) µ(M) = 0⇔M is compact (M is relatively compact).

(2) µ(M) = µ(M).

(3) M1 ⊂M2 ⇒ µ(M1) ≤ µ(M2).

(4) µ(M1 +M2) ≤ µ(M1) + µ(M2).

(5) µ(cM) = |c|µ(M), c ∈ R.

(6) µ(convM) = µ(M).

1.4.2 Measure of Weak noncompactness.

Definition 1.27 [37] Let E be a Banach space, ΩE the bounded subsets of E and B1 the
unit ball of E. The De Blasi measure of weak noncompactness is the map β : ΩE → [0,∞)
defined by

β(X) = inf{ε > 0 : there exists a weakly compact Ω ⊂ E such that X ⊂ εB1 + Ω}.

Some Properties.

The De Blasi measure of weak noncompactness satisfies the following properties:

(a) A ⊂ B ⇒ β(A) ≤ β(B),

(b) β(A) = 0⇔ A is weakly relatively compact,

(c) β(A ∪B) = max{β(A), β(B)},

(d) β(A
ω
) = β(A), (A

ω
denotes the weak closure of A),

(e) β(A+B) ≤ β(A) + β(B),

(f) β(λA) = |λ|β(A),

(g) β(conv(A)) = β(A),

(h) β(∪|λ|≤hλA) = hβ(A).

The next result follows directly from the Hahn-Banach theorem.

Proposition 1.28 [37] Let E be a normed space, and x0 ∈ E with x0 6= 0. Then, there
exists ϕ ∈ E∗ with ‖ϕ‖ = 1 and ϕ(x0) = ‖x0‖.
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For a given set V of functions v : I → E let us denote by

V (t) = {v(t) : v ∈ V }; t ∈ I,

and
V (I) = {v(t) : v ∈ V, t ∈ I}.

Lemma 1.29 [37] Let H ⊂ C be a bounded and equicontinuous subset. Then the function
t→ β(H(t)) is continuous on I, and

βC(H) = max
t∈I

β(H(t)),

and

β

(∫
I

u(s)ds

)
≤
∫
I

β(H(s))ds,

where H(s) = {u(s) : u ∈ H, s ∈ I}, and βC is the De Blasi measure of weak noncom-
pactness defined on the bounded sets of C.

1.5 Some Properties in Fréchet Spaces

Let X := C(R+, E) be the Fréchet space of all continuous functions v from R+ into a
Banach space (E, ‖ · ‖), equipped with the family of seminorms

‖v‖n = sup
t∈[0,n]

‖v(t)‖; n ∈ N∗,

and the distance

d(u, v) =
∞∑
n=1

2−n
‖u− v‖n

1 + ‖u− v‖n
; u, v ∈ X.

Definition 1.30 [40] A nonempty subset B ⊂ X is said to be bounded if

sup
v∈B
‖v‖n <∞; for n ∈ N∗.

We recall the following definition of the notion of a sequence of measures of noncompact-
ness in Fréchet space[40].

Definition 1.31 [40] Let MF be the family of all nonempty and bounded subsets of a
Fréchet space F. A family of functions {µn}n∈N where µn : MF → [0,∞) is said to be
a family of measures of noncompactness in the real Fréchet space F if it satisfies the
following conditions for all B,B1, B2 ∈MF :

(a) {µn}n∈N is full, that is: µn(B) = 0 for n ∈ N if and only if B is precompact,

(b) µn(B1) ≤ µn(B2) for B1 ⊂ B2 and n ∈ N,
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(c) µn(ConvB) = µn(B) for n ∈ N,

(d) If {Bi}i=1,··· is a sequence of closed sets from MF such that Bi+1 ⊂ Bi; i = 1, · · ·
and if lim

i→∞
µn(Bi) = 0, for each n ∈ N, then the intersection set B∞ := ∩∞i=1Bi is

nonempty.

Example 1.32 [26] For B ∈ MX , x ∈ B, n ∈ N and ε > 0, let us denote by ωn(x, ε)
the modulus of continuity of the function x on the interval [0, n]; that is,

ωn(x, ε) = sup{‖x(t)− x(s)‖ : t, s ∈ [0, n], |t− s| ≤ ε}.

Further, let us put

ωn(B, ε) = sup{ωn(x, ε) : x ∈ B},

ωn0 (B) = lim
ε→0+

ωn(B, ε),

and

µn(B) = ωn0 (B) + sup
t∈[0,n]

µ(B(t)),

where µ is a measure of noncompactness on the space E.
The family of mappings {µn}n∈N where µn : MX → [0,∞), satisfies the conditions

(a)-(d) from Definition 1.31.

Lemma 1.33 [40] If Y is a bounded subset of a Fréchet space F, then for each ε > 0,
there is a sequence {yk}∞k=1 ⊂ Y such that

µn(Y ) ≤ 2µn({yk}∞k=1) + ε; for n ∈ N.

Lemma 1.34 [26, 76] If {uk}∞k=0 ⊂ L1([0, n]) is uniformly integrable, then µn({uk}∞k=1)
is measurable for n ∈ N∗, and

µn

({∫ t

0

uk(s)ds

}∞
k=1

)
≤ 2

∫ t

0

µn({uk(s)}∞k=1)ds,

for each t ∈ [0, n].

Definition 1.35 [26, 76] Let Ω be a nonempty subset of a Fréchet space F, and let A :
Ω→ F be a continuous operator which transforms bounded subsets of onto bounded ones.
One says that A satisfies the Darbo condition with constants (kn)n∈N with respect to a
family of measures of noncompactness {µn}n∈N, if

µn(A(B)) ≤ knµn(B)

for each bounded set B ⊂ Ω and n ∈ N.
If kn < 1; n ∈ N then A is called a contraction with respect to {µn}n∈N.
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1.6 Some Fixed Point Theorems

Theorem 1.36 (Schauder fixed point theorem )[71, 44] Let X be a Banach space, D be
a bounded closed convex subset of X and T : D → D be a compact and continuous map.
Then T has at least one fixed point in D.

Theorem 1.37 (Mönch , [71, 57]) Let D be a bounded, closed and convex subset of a
Banach space such that 0 ∈ D, and let N be a continuous mapping of D into itself. If the
implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ V is compact, (1.1)

holds for every subset V of D, then N has a fixed point.

Theorem 1.38 [59, 57] Let Q be a nonempty, closed, convex and equicontinuous subset
of a metrizable locally convex vector space C(I, E) such that 0 ∈ Q. Suppose T : Q→ Q
is weakly-sequentially continuous. If the implication

V = conv({0} ∪ T (V ))⇒ V is relatively weakly compact, (1.2)

holds for every subset V ⊂ Q, then the operator T has a fixed point.

Theorem 1.39 [59, 57] Let X = C(I, E) be a Banach space with Q a nonempty, bounded,
closed, convex and equicontinuous subset of a metrizable locally convex vector space C
such that 0 ∈ Q. Suppose T : Q → Pcl,cv(Q) has weakly sequentially closed graph. If the
implication

V ⊂ conv({0} ∪ T (V ))⇒ V is relatively weakly compact, (1.3)

holds for every subset V ⊂ Q, then the operator T has a fixed point.

Theorem 1.40 [71] Let (X, d) be a complete metric space and T : X → X be a mapping
such that

d(T (x), T (y)) ≤ φ(d(x, y)),

where φ is a comparison function. Then T has a unique fixed point in X.

Now, we recall the set-valued versions of the Darbo and Mönch fixed point theorems.

Theorem 1.41 (Darbo fixed point theorem) [39, 57] Let X be a bounded, closed and
convex subset of a Banach space E and let T : X → Pcl,b(X) be a closed and k−set-
contraction. Then T has a fixed point.
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Theorem 1.42 (Mönch fixed point theorem) [39, 40] Let E be Banach space and K ⊂ E
be a closed and convex set. Also, let U be a relatively open subset of K and N : U →
Pcv(K). Suppose that N maps compact sets into relatively compact sets, graph(N) is
closed and for some x0 ∈ U , we have

conv(x0 ∪N(M)) ⊃M ⊂ U and M = U (C ⊂M countable) imply M is compact (1.4)

and
x /∈ (1− λ)x0 + λN(x) ∀x ∈ U\U, λ ∈ (0, 1). (1.5)

Then there exists x ∈ U with x ∈ N(x).

Theorem 1.43 [39, 40] Let Ω be a nonempty, bounded, closed, and convex subset of a
Fréchet space F and let V : Ω → Ω be a continuous mapping. Suppose that V is a
contraction with respect to a family of measures of noncompactness {µn}n∈N. Then V has
at least one fixed point in the set Ω.
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Chapter 2

Existence and Ulam Stability for
Implicit Fractional q-Difference
Equations (1)

1 [10] S. Abbas, M. Benchohra, N.Laledj and Y. Zhou, Exictence and Ulam Stability for
implicit fractional q-difference equations, Adv. Differ. Equ. (2019), 480.

2.1 Introduction

In this chapter we discuss the existence, uniqueness and Ulam-Hyers-Rassias stability of
solutions for the following implicit fractional q-difference equations.

(cDα
q u)(t) = f(t, u(t), (cDα

q u)(t)), t ∈ I := [0, T ], (2.1)

with the initiale condition
u(0) = u0, (2.2)

where q ∈ (0, 1), α ∈ (0, 1], T > 0, f : I × R × R → R is a given function, and
cDα

q is the Caputo fractional q-difference derivative of order α. This chapter deals with
some existence, uniqueness and Ulam-Hyers-Rassias stability results for a class of implicit
fractional q-difference equations. Some applications are made of some fixed point theorems
in Banach spaces for the existence and uniqueness of solutions, next we prove that our
problem is generalized Ulam-Hyers-Rassias stable. Two illustrative examples are given in
the last section.

2.2 Existence Results

In this section, we are concerned with the existence and uniqueness of solutions of the
problem (2.1)-(2.2).

1(1)

19



20 CHAPTER 2. Implicit Caputo fractional q-difference equations

Definition 2.1 By a solution of the problem (2.1)-(2.2) we mean a continuous function
u ∈ C(I) with cDα

q u is continuous that satisfies the equation (2.1) on I and the initiale
condition (2.2).

From lemma 1.8, and in order to define the solution for the problem (2.1)-(2.2), we
conclude the following lemma.

Lemma 2.2 Let f : I × R × R → R such that f(·, u, v) ∈ C(I), for each u, v ∈ R.
Then the problem (2.1)-(2.2) is equivalent to the problem of obtaining the solutions of the
integral equation

g(t) = f(t, u0 + (Iαq g)(t), g(t)),

and if g(·) ∈ C(I), is the solution of this equation, then

u(t) = u0 + (Iαq g)(t).

Proof:Let u be a solution of problem (2.1)-(2.2), and let g(t) = (cDα
q u)(t),for t ∈ I we

will prove that:u(t) = u0 + (Iαq g)(t) and satisfies the equation:

g(t) = f(t, u0 + (Iαq g)(t), g(t)),

From lemma 1.8, we have:
u(t) = u0 + (Iαq g)(t)

and it is easy to see that equation (2.1)implies g(t) = f(t, u0+(Iαq g)(t), g(t)) , reciprocally,
if u satisfies the integral equation u(t) = u0 + (Iαq g)(t),and if g satisfies equation g(t) =
f(t, u0 + (Iαq g)(t), g(t)),then u is a solution of the problem (2.1)-(2.2).

The following hypotheses will be used in the sequel.

(H1) The function f satisfies the generalized Lipschitz condition:

|f(t, u1, v1)− f(t, u2, v2)| ≤ φ1(|u1 − u2|) + φ2(|v1 − v2|),

for t ∈ I and u1, u2, v1, v2 ∈ R, where φ1 and φ2 are comparison functions.

(H2) There exist functions p, d, r ∈ C(I, [0,∞)) with r(t) < 1 such that

|f(t, u, v)| ≤ p(t) + d(t)|u|+ r(t)|v|, for each t ∈ I and u, v ∈ R.

Set
p∗ = sup

t∈I
p(t), d∗ = sup

t∈I
d(t), r∗ = sup

t∈I
r(t).

First, we prove an existence and uniqueness result for the problem (2.1)-(2.2).

Theorem 2.3 Assume that the hypothesis (H1) holds. Then there exist a unique solution
of problem (2.1)-(2.2) on I.
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Proof. By using of lemma 2.2 , we transform the problem (2.1)- (2.2) into a fixed point
problem. Consider the operator N : C(I)→ C(I) defined by

(Nu)(t) = u0 + (Iαq g)(t); t ∈ I, (2.3)

where g ∈ C(I) such that

g(t) = f(t, u(t), g(t)), or g(t) = f(t, u0 + (Iαq g)(t), g(t)).

Let u, v ∈ C(I). Then, for t ∈ I, we have

|(Nu)(t)− (Nv)(t)| ≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|g(s)− h(s)|dqs, (2.4)

where g, h ∈ C(I) such that
g(t) = f(t, u(t), g(t)),

and
h(t) = f(t, v(t), h(t)).

From (H1), we obtain

|g(t)− h(t)| ≤ φ1(|u(t)− v(t|) + φ2(|g(t)− h(t|).

Thus
|g(t)− h(t)| ≤ (Id− φ2)−1φ1(|u(t)− v(t|),

where Id is the identity function.
Set

L := sup
t∈I

∫ t

0

(t− qs)(α−1)

Γq(α)
dqs =

Tα

Γq(α)
,

and φ := L(Id− φ2)−1φ1. From (2.4), we get

|(Nu)(t)− (Nv)(t)| ≤ φ(|u(t)− v(t)|)
≤ φ(d(u, v)).

Hence, we get
d(N(u), N(v)) ≤ φ(d(u, v)).

Consequently, from Theorem 1.40(Banach contraction), the operator N has a unique fixed
point, which is the unique solution of the problem (2.1)-(2.2).

Theorem 2.4 Assume that the hypothesis (H2) holds. If

r∗ + Ld∗ < 1,

then the problem (2.1)-(2.2) has at least one solution defined on I.
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Proof. Let N be the operator defined in (2.3). Set

R ≥ Lp∗

1− r∗ − Ld∗
,

and consider the closed and convex ball BR = {u ∈ C(I) : ‖u‖∞ ≤ R}.
Let u ∈ BR. Then, for each t ∈ I, we have

|(Nu)(t)| ≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|g(s)|dqs,

where g ∈ C(I) such that
g(t) = f(t, u(t), g(t)).

By using (H2), for each t ∈ I we have

|g(t)| ≤ p(t) + d(t)|u(t)|+ r(t)|g(t)|
≤ p∗ + d∗‖u‖∞ + r∗|g(t)|
≤ p∗ + d∗R + r∗|g(t)|.

Thus

|g(t)| ≤ p∗ + d∗R

1− r∗
.

Hence

‖N(u)‖∞ ≤
L(p∗ + d∗R)

1− r∗
,

which implies that
‖N(u)‖∞ ≤ R.

This proves that N maps the ball BR into BR. We shall show that the operator N : BR →
BR is continuous and compact. The proof will be given in three steps.

Step1: N is continuous.
Let {un}n∈N be a sequence such that un → u in BR. Then, for each t ∈ I, we have

|(Nun)(t)− (Nu)(t)| ≤
∫ t

0
(t−qs)(α−1)

Γq(α)
|(gn(s)− g(s))|dqs

where gn, g ∈ C(I) such that

gn(t) = f(t, un(t), gn(t)),

and
g(t) = f(t, u(t), g(t)).

Since un → u as n→∞ and f is continuous function, we get

gn(t)→ g(t) as n→∞, for each t ∈ I.
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Hence

‖N(un)−N(u)‖∞ ≤
p∗ + d∗R

1− r∗
‖gn − g‖∞ → 0 as n→∞.

Step2: N(BR) is bounded. This is clear since N(BR) ⊂ BR and BR is bounded.

Step3: N maps bounded sets into equicontinuous sets in BR.
Let t1, t2 ∈ I, such that t1 < t2 and let u ∈ BR. Then, we have

|(Nu)(t1)− (Nu)(t2)| ≤
∫ t1

0
|(t2−qs)(α−1)−(t1−qs)(α−1)|

Γq(α)
|g(s)|dqs

+
∫ t2
t1

|(t2−qs)(α−1)|
Γq(α)

|g(s)|dqs.
.

where g ∈ C(I) such that g(t) = f(t, u(t), g(t)). Hence

|(Nu)(t1)− (Nu)(t2)| ≤ p∗+d∗R
1−r∗

∫ t1
0
|(t2−qs)(α−1)−(t1−qs)(α−1)|

Γq(α)
dqs

+ p∗+d∗R
1−r∗

∫ t2
t1

|(t2−qs)(α−1)|
Γq(α)

dqs.
.

As t1 → t2 and since g is continuous, the right-hand side of the above inequality tends to
zero.
As a consequence of the above three steps with the Arzelá-Ascoli theorem, we can conclude
that N : BR → BR is continuous and compact.
From an application of Theorem 1.36(Schauder’s théorèm), we deduce that N has at least
a fixed point which is a solution of problem (2.1)-(2.2).

2.3 Ulam Stability Results

In this section, we are concerned with the generalized Ulam-Hyers-Rassias stability results
of the problem (2.1)-(2.2).

Now, we consider the Ulam stability for the problem (2.1)-(2.2). Let ε > 0 and
Φ : I → R+ be a continuous function. We consider the following inequalities

|(cDα
q u)(t)− f(t, u(t), (cDα

q u)(t))| ≤ ε; t ∈ I. (2.5)

|(cDα
q u)(t)− f(t, u(t), (cDα

q u)(t))| ≤ Φ(t); t ∈ I. (2.6)

|(cDα
q u)(t)− f(t, u(t), (cDα

q u)(t))| ≤ εΦ(t); t ∈ I. (2.7)

Definition 2.5 [69, 70] The problem (2.1)-(2.2) is Ulam-Hyers stable if there exists a
real number cf > 0 such that for each ε > and for each solution u ∈ C(I) of the inequality
(2.5) there exists a solution v ∈ C(I) of (2.1)-(2.2) with

|u(t)− v(t)| ≤ εcf ; t ∈ I.
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Definition 2.6 [69, 70] The problem (2.1)-(2.2)is generalized Ulam-Hyers stable if there
exists cf : C(R+,R+) with cf (0) = 0 such that for each ε > 0 and for each solution
u ∈ C(I) of the inequality (2.5) there exists a solution v ∈ C(I) of (2.1)-(2.2) with

|u(t)− v(t)| ≤ cf (ε); t ∈ I.

Definition 2.7 [69, 70] The problem (2.1)-(2.2) is Ulam-Hyers-Rassias stable with re-
spect to Φ if there exists a real number cf,Φ > 0 such that for each ε > 0 and for each
solution u ∈ C(I) of the inequality (2.7) there exists a solution v ∈ C(I) of (2.1)-(2.2)
with

|u(t)− v(t)| ≤ εcf,ΦΦ(t); t ∈ I.

Definition 2.8 [69, 70] The problem (2.1) is generalized Ulam-Hyers-Rassias stable with
respect to Φ if there exists a real number cf,Φ > 0 such that for each solution u ∈ C(I) of
the inequality (2.6) there exists a solution v ∈ C(I) of (2.1)-(2.2) with

|u(t)− v(t)| ≤ cf,ΦΦ(t); t ∈ I.

Remark 2.9 It is clear that

(i) Definition (2.5) ⇒ Definition (2.6),

(ii) Definition (2.7) ⇒ Definition (2.8),

(iii) Definition (2.7) for Φ(·) = 1 ⇒ Definition (2.5).

One can have similar remarks for the inequalities (2.5) and (2.7).

The following hypotheses will be used in the sequel.

(H3) There exist functions p1, p2, p3 ∈ C(I, [0,∞)) with p3(t) < 1 such that

(1+|u|+|v|)|f(t, u, v)| ≤ p1(t)Φ(t)+p2(t)Φ(t)|u|+p3(t)|v|, for each t ∈ I and u, v ∈ R,

(H4) There exists λΦ > 0 such that for each t ∈ I, we have

(Iαq Φ)(t) ≤ λΦΦ(t).

Set Φ∗ = sup
t∈I

Φ(t) and

p∗i = sup
t∈I

pi(t), i ∈ {1, 2, 3}.

Theorem 2.10 Assume that the hypotheses (H3) and (H4) hold. If

p∗3 + Lp∗2Φ∗ < 1,

then the problem (2.1)-(2.2) has at least one solution and it is generalized Ulam-Hyers-
Rassias stable.
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Proof. Consider the operator N defined in (2.3). We can see that Hypothesis (H3)
implies (H2) with p ≡ p1Φ, d ≡ p2Φ and r ≡ p3.
Let u be a solution of the inequality (2.6), and let us assume that v is a solution of problem
(2.1)-(2.2). Thus, we have

v(t) = u0 + (Iαq h)(t),

where h ∈ C(I) such that h(t) = f(t, v(t), h(t)).
From the inequality (2.6) for each t ∈ I, we have

|u(t)− u0 − (Iαq g)(t)| ≤ (Iαq Φ)(t),

where g ∈ C(I) such that g(t) = f(t, u(t), g(t)).
From the hypotheses (H3) and (H4), for each t ∈ I, we get

|u(t)− v(t)| ≤ |u(t)− u0 − (Iαq g)(t) + (Iαq (g − h))(t)|

≤ (Iαq Φ)(t) +

∫ t

0

(t− qs)(α−1)

Γq(α)
(|(g(s)|+ |h(s))|)dqs

≤ (Iαq Φ)(t) +
p∗1 + p∗2
1− p∗3

(Iαq Φ)(t)

≤ λφΦ(t) + 2λφ
p∗1 + p∗2
1− p∗3

Φ(t)

≤
[
1 + 2

p∗1 + p∗2
1− p∗3

]
λφΦ(t)

:= cf,ΦΦ(t).

Hence, the problem (2.1)-(2.2) is generalized Ulam-Hyers-Rassias stable.

2.4 Examples

Example 1.
Consider the following problem of implicit fractional 1

4
−difference equations{

(cD
1
2
1
4

u)(t) = f(t, u(t), (cD
1
2
1
4

u)(t)); t ∈ [0, 1],

u(0) = 1,
(2.8)

where

f(t, u(t), (cD
1
2
1
4

u)(t)) =
t2

1 + |u(t)|+ |cD
1
2
1
4

u(t)|

(
e−7 +

1

et+5

)
u(t); t ∈ [0, 1].

The hypothesis (H1) is satisfied with

φ1(t) = φ2(t) = t2
(
e−7 +

1

et+5

)
t.
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Hence, Theorem 2.3 implies that our problem (2.8) has a unique solution defined on [0, 1].

Example 2.
Consider now the following problem of implicit fractional 1

4
−difference equations{

(cD
1
2
1
4

u)(t) = f(t, u(t), (cD
1
2
1
4

u)(t)); t ∈ [0, 1],

u(0) = 2,
(2.9)

where {
f(t, x, y) = t2

1+|x|+|y|

(
e−7 + 1

et+5

)
(t2 + xt2 + y); t ∈ (0, 1],

f(0, x, y) = 0.

The hypothesis (H3) is satisfied with Φ(t) = t2 and pi(t) =
(
e−7 + 1

et+5

)
t; i ∈ {1, 2, 3}.

Hence, Theorem 2.4 implies that our problem (2.9) has at least a solution defined on [0, 1].
Also, the hypothesis (H4) is satisfied. Indeed, for each t ∈ (0, 1], there exists a real number
0 < ε < 1 such that ε < t ≤ 1, and

(Iαq Φ)(t) ≤ t2

ε2(1 + q + q2)

≤ 1

ε2
Φ(t)

= λΦΦ(t).

Consequently, Theorem 2.10 implies that the problem (2.9) is generalized Ulam-Hyers-
Rassias stable.



Chapter 3

Implicit Fractional q-Difference
Equations in Banach Spaces (2)

1 [11] S. Abbas, M. Benchohra, J. Henderson and N. Laledj, Existence Theory for Implicite
Fractional q-Difference Equations in Banach Spaces. Studia Universitatis Babes-Bolyai
Mathematica. (to appear)

3.1 Introduction

In this chapter, we establish, in Section 3.2 some existence results for a class of implicit
fractional q-difference equations. The results are based on the fixed point theory in Ba-
nach spaces and the concept of measure of noncompactness to some classes of functional
Riemann-Liouville or Caputo fractional differential equations in Banach spaces. An illus-
trative example is given in the last section.

we discuss the existence of solutions for the following implicit fractional q-difference
equation:

(cDα
q u)(t) = f(t, u(t), (cDα

q u)(t)), t ∈ I := [0, T ], (3.1)

with the initiale condition

u(0) = u0, (3.2)

where q ∈ (0, 1), α ∈ (0, 1], T > 0, f : I × E × E → E is a given continuous function,
E is a real (or complex) Banach space with norm ‖ · ‖, and cDα

q is the Caputo fractional
q-difference derivative of order α.

In section 3.3 we discuss the existence of weak solutions for a class of implicit fractional
q-difference equations. The results are based on the fixed point theory and the concept
of measure of weak noncompactness. An illustrative example is given in the last this

1(2)

27
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section. we discuss the existence of weak solutions for the following fractional q-difference
equation:

(cDα
q u)(t) = f(t, u(t), (cDα

q u)(t)); t ∈ I := [0, T ], (3.3)

with the initial condition
u(0) = u0, (3.4)

where q ∈ (0, 1), α ∈ (0, 1], T > 0, f : I × E × E → E is a given continuous function,
E is a real (or complex) Banach space with norm ‖ · ‖, and cDα

q is the Caputo fractional
q-difference derivative of order α.

3.2 Existence Results for Implicit Fractional q-Difference

Equations in Banach Spaces

3.2.1 Main Results

In this section, we are concerned with the existence results of the problem(3.1)-(3.2).

Definition 3.1 By a solution of the problem (3.1)-(3.2) we mean a continuous function
u that satisfies the equation (3.1) on I and the initial condition (3.2).

From lemma 1.8, and in order to define the solution for the problem (3.1)-(3.2), we
conclude the following lemma.

Lemma 3.2 Let f : I × E × E → E such that f(·, u, v) ∈ C(I), for each u, v ∈ E.
Then the problem (3.1)-(3.2) is equivalent to the problem of obtaining the solutions of the
integral equation

g(t) = f(t, u0 + (Iαq g)(t), g(t)),

and if g(·) ∈ C(I), is the solution of this equation, then

u(t) = u0 + (Iαq g)(t).

The following hypotheses will be used in the sequel.

(H1) The function f : I × E × E → E is continuous.

(H2) There exists a continuous function p ∈ C(I,R+), such that

‖f(t, u, v)‖ ≤ p(t); for t ∈ I, and u, v ∈ E,

(H3) For each bounded and measurable set B ⊂ E and for each t ∈ I, we have

µ(f(t, B,C Dα
qB)) ≤ p(t)µ(B),

where CDα
qB = {CDα

qw : w ∈ B}, and µ is a measure of noncompactness on E.
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Set

p∗ = sup
t∈I

p(t), and L := sup
t∈I

∫ T

0

(t− qs)(α−1)

Γq(α)
dqs.

Theorem 3.3 Assume that the hypotheses (H1)− (H3) hold. If

` := Lp∗ < 1, (3.5)

then the problem (3.1)-(3.2) has at least one solution defined on I.

Proof. By using of lemma 3.2, we transform the problem (3.1)- (3.2) into a fixed point
problem. Consider the operator N : CE(I)→ CE(I) defined by

(Nu)(t) = u0 + (Iαq g)(t); t ∈ I, (3.6)

where g ∈ CE(I) such that

g(t) = f(t, u(t), g(t)), or g(t) = f(t, u0 + (Iαq g)(t), g(t)).

For any u ∈ CE(I) and each t ∈ I, we have

‖(Nu)(t)‖ ≤ ‖u0‖+

∫ t

0

(t− qs)(α−1)

Γq(α)
|g(s)|dqs

≤ ‖u0‖+

∫ t

0

(t− qs)(α−1)

Γq(α)
p(s)dqs

≤ ‖u0‖+ p∗
∫ t

0

(t− qs)(α−1)

Γq(α)
dqs

≤ ‖u0‖+ Lp∗

:= R.

Thus
‖N(u)‖∞ ≤ R. (3.7)

This proves that N transforms the ball BR := B(0, R) = {w ∈ C : ‖w‖∞ ≤ R} into itself.
We shall show that the operator N : BR → BR satisfies all the assumptions of Monch
Theorem 1.37. The proof will be given in three steps.

Step 1. N : BR → BR is continuous.
Let {un}n∈IN be a sequence such that un → u in BR. Then, for each t ∈ I, we have

‖(Nun)(t)− (Nu)(t)‖ ≤
∫ t

0
(t−qs)(α−1)

Γq(α)
‖(gn(s)− g(s))‖dqs,

where gn, g ∈ C(I) such that

gn(t) = f(t, un(t), gn(t)),
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and
g(t) = f(t, u(t), g(t)).

Since un → u as n→∞ and f is continuous, we get

gn(t)→ g(t) as n→∞, for each t ∈ I.

Hence
‖N(un)−N(u)‖∞ ≤ L‖gn − g‖∞ → 0 as n→∞.

Step 2. N(BR) is bounded and equicontinuous.
Since N(BR) ⊂ BR and BR is bounded, then N(BR) is bounded.
Next, let t1, t2 ∈ I, t1 < t2 and let u ∈ BR. Thus, we have

‖(Nu)(t2)− (Nu)(t1)‖ ≤
∥∥∥∥∫ t2

0

(t2 − qs)(α−1)

Γq(α)
g(s)dqs−

∫ t1

0

(t1 − qs)(α−1)

Γq(α)
g(s)dqs

∥∥∥∥ .
where g ∈ CE(I) such that

g(t) = f(t, u(t), g(t)).

Hence, we get

‖(Nu)(t2)− (Nu)(t1)‖ ≤
∫ t2

t1

(t2 − qs)(α−1)

Γq(α)
p(s)dqs

+

∫ t1

0

∣∣∣∣(t2 − qs)(α−1)

Γq(α)
− (t1 − qs)(α−1)

Γq(α)

∣∣∣∣ dqs
≤ p∗

∫ t2

t1

(t2 − qs)(α−1)

Γq(α)
p(s)dqs

+ p∗
∫ t1

0

∣∣∣∣(t2 − qs)(α−1)

Γq(α)
− (t1 − qs)(α−1)

Γq(α)

∣∣∣∣ dqs.
As t1 −→ t2, the right-hand side of the above inequality tends to zero.

Step 3. The implication (1.1) holds.
Now let V be a subset of BR such that V ⊂ N(V )∪{0}. V is bounded and equicontinuous
and therefore the function t → v(t) = µ(V (t)) is continuous on I. By (H3) and the
properties of the measure µ, for each t ∈ I, we have

v(t) ≤ µ((NV )(t) ∪ {0})
≤ µ((NV )(t))

≤
∫ t

0

(tq − s)(α−1)

Γq(α)
p(s)µ(V (s))dqs

≤
∫ t

0

(tq − s)(α−1)

Γq(α)
p(s)v(s)dqs

≤ Lp∗‖v‖∞.
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Thus
‖v‖∞ ≤ `‖v‖∞.

From (3.5), we get ‖v‖∞ = 0, that is, v(t) = µ(V (t)) = 0, for each t ∈ I, and then V (t)
is relatively compact in E. In view of the Ascoli-Arzelà theorem, V is relatively compact
in BR. Applying now Theorem 1.37, we conclude that N has a fixed point which is a
solution of the problem (3.1)-(3.2).

3.2.2 An Example

Let

l1 =

{
u = (u1, u2, . . . , un, . . .) :

∞∑
n=1

|un| <∞

}
be the Banach space with the norm

‖u‖l1 =
∞∑
n=1

|un|.

Consider the following problem of implicit fractional 1
4
− difference equations{

(cD
1
2
1
4

un)(t) = fn(t, u(t), (cD
1
2
1
4

u)(t)); t ∈ [0, 1],

u(0) = (0, 0, . . . , 0, . . .),
(3.8)

where fn(t, u, v) =
t
−1
4 (2−n + un(t)) sin t

64L(1 + ‖u‖l1 +
√
t)(1 + ‖u‖l1 + ‖v‖l1)

, t ∈ (0, 1],

fn(0, u, v) = 0, .

with
f = (f1, f2, . . . , fn, . . .), and u = (u1, u2, . . . , un, . . .).

For each t ∈ (0, 1], we have

‖f(t, u(t))‖l1 =
∞∑
n=1

|fn(s, un(s))|

≤ t
−1
4 | sin t|

64L(1 + ‖u‖l1 +
√
t)(1 + ‖u‖l1 + ‖v‖l1)

(1 + ‖u‖l1)

≤ t
−1
4

64L
.

Thus, the hypothesis (H2) is satisfied withp(t) =
t
−1
4 | sin t|
64L

; t ∈ (0, 1],

p(0) = 0.



32 CHAPTER 3. Implicit Fractional q-Difference Equations in Banach Spaces

So; we have p∗ ≤ 1
64L

, and then

Lp∗ =
1

16
< 1.

A simple computation shows that all conditions of Theorem 3.3 are satisfied. Hence, the
problem (3.8) has at least one solution defined on [0, 1].

3.3 Weak Solutions for Implicit Fractional q-Difference

Equations

3.3.1 Existence of weak solutions

In this section, we are concerned with the existence results of the problem(3.3)-(3.4).

Definition 3.4 By a weak solution of the problem (3.3)-(3.4) we mean a measurable and
continuous function u that satisfies the equation (3.3) on I and the initial condition (3.4).

From lemma 1.8, and in order to define the solution for the problem (3.3)-(3.4), we
conclude the following lemma.

Lemma 3.5 Let f : I × E × E → E such that f(·, u, v) ∈ CE(I), for each u, v ∈ E.
Then the problem (3.3)-(3.4) is equivalent to the problem of obtaining the solutions of the
integral equation

g(t) = f(t, u0 + (Iαq g)(t), g(t)),

and if g(·) ∈ CE(I), is the solution of this equation, then

u(t) = u0 + (Iαq g)(t).

Remark 3.6 Let g ∈ P1([I, E). For every ϕ ∈ E∗, we have

ϕ(Iαq g)(t) = (Iαq ϕg)(t); for a.e. t ∈ I.

The following hypotheses will be used in the sequel.

In the sequel, we use the following hypotheses:

(H1) For a.e. t ∈ I, the function v → f(t, u, v) is weakly sequentially continuous,

(H2) For each u, v ∈ E, the function t→ f(t, u, v) is Pettis integrable a.e. on I,

(H3) There exists p ∈ C(I,R+) such that for all ϕ ∈ E∗, we have

|ϕ(f(t, u, v))| ≤ p(t); for a.e. t ∈ I, and each u, v ∈ E,
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(H4) For each bounded and measurable set B ⊂ E and for each t ∈ I, we have

β(f(t, B, (cDα
qB))) ≤ p(t)β(B),

where cDα
qB = {cDα

qw : w ∈ B}.

Set
p∗ = sup

t∈I
p(t).

Theorem 3.7 Assume that the hypotheses (H1)− (H4) hold. If

` :=
p∗T (α)

Γq(1 + α)
< 1, (3.9)

then the problem (3.3)-(3.4) has at least one weak solution defined on I.

Proof. Consider the operator N : CE(I)→ CE(I) defined by:

(Nu)(t) = u0 + (Iαq g)(t); t ∈ I, (3.10)

where g ∈ CE(I) such that

g(t) = f(t, u(t), g(t)), or g(t) = f(t, u0 + (Iαq g)(t), g(t)).

First notice that, the hypotheses imply that for each u ∈ CE(I), the function

f(t, u(t), (cDα
q u)(t)), for a.e. t ∈ I,

is Pettis integrable. Thus, the operator N is well defined. Let R > 0 be such that

R > p∗T (α)

Γq(1+α)
, and consider the set

Q =
{
u ∈ CE(I) : ‖u‖∞ ≤ R and ‖u(t2)− u(t1)‖ ≤ p∗

∫ t2

t1

(t2 − qs)(α−1)

Γq(α)
dqs

+ p∗
∫ t1

0

∣∣∣∣(t2 − qs)(α−1)

Γq(α)
− (t1 − qs)(α−1)

Γq(α)

∣∣∣∣ dqs} .
Clearly, the subset Q is closed, convex end equicontinuous. We shall show that the
operator N satisfies all the assumptions of Theorem 1.38(Monch generalised). The proof
will be given in several steps.

Step 1. N maps Q into itself.
Let u ∈ Q, t ∈ I and assume that (Nu)(t) 6= 0. Then there exists ϕ ∈ E∗ such that
‖(Nu)(t)‖ = |ϕ((Nu)(t))|. Thus

‖(Nu)(t)‖ = ϕ((Nu)(t) = u0 + (Iαq g)(t)),
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where g ∈ CE(I) such that
g(t) = f(t, u(t), g(t)).

Thus

‖(Nu)(t)‖ ≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|ϕ(g(s))|dqs

≤ p∗
∫ t

0

(t− qs)(α−1)

Γq(α)
dqs

≤ p∗T (α)

Γq(1 + α)

≤ R.

Next, let t1, t2 ∈ I such that t1 < t2 and let u ∈ Q, with

(Nu)(t2)− (Nu)(t1) 6= 0.

Then there exists ϕ ∈ E∗ such that

‖(Nu)(t2)− (Nu)(t1)‖ = |ϕ((Nu)(t2)− (Nu)(t1))|,

and ‖ϕ‖ = 1. Then

‖(Nu)(t2)− (Nu)(t1)‖ = |ϕ((Nu)(t2)− (Nu)(t1))|

≤ ϕ

(∫ t2

0

(t2 − qs)(α−1)

Γq(α)
g(s)dqs−

∫ t1

0

(t1 − qs)(α−1)

Γq(α)
g(s)dq

)
,

where g ∈ CE(I) such that
g(t) = f(t, u(t), g(t)).

Thus, we get

‖(Nu)(t2)− (Nu)(t1)‖ ≤
∫ t2

t1

(t2 − qs)(α−1)

Γq(α)
|ϕ(p(s))|dqs

+

∫ t1

0

∣∣∣∣(t2 − qs)(α−1)

Γq(α)
− (t1 − qs)(α−1)

Γq(α)

∣∣∣∣ |ϕ(g(s))|dqs

≤ p∗
∫ t2

t1

(t2 − qs)(α−1)

Γq(α)
dqs

+ p∗
∫ t1

0

∣∣∣∣(t2 − qs)(α−1)

Γq(α)
− (t1 − qs)(α−1)

Γq(α)

∣∣∣∣ dqs.
Hence N(Q) ⊂ Q.

Step 2. N is weakly-sequentially continuous.
Let (un) be a sequence in Q and let (un(t)) → u(t) in (E,ω) for each t ∈ I. Fix t ∈ I,
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since f satisfies the assumption (H1), we have f(t, un(t), (cDα
q un)(t)) converges weakly

uniformly to f(t, u(t), (cDα
q u)(t)). Hence the Lebesgue dominated convergence theorem

for Pettis integral implies (Nun)(t) converges weakly uniformly to (Nu)(t) in (E,ω), for
each t ∈ I. Thus, N(un)→ N(u). Hence, N : Q→ Q is weakly-sequentially continuous.

Step 3. The implication (1.2) holds.
Let V be a subset of Q such that V = conv(N(V ) ∪ {0}). Obviously

t ∈ I : V (t) ⊂ conv(NV )(t)) ∪ {0}).

Further, as V is bounded and equicontinuous, by Lemma 3 in [34] the function t →
v(t) = β(V (t)) is continuous on I. From (H3), (H4), Lemma 1.29 and the properties of
the measure β, for any t ∈ I, we have

v(t) ≤ β((NV )(t) ∪ {0})
≤ β((NV )(t))

≤ (Iαq g)(t),

where g ∈ CE(I) such that
g(t) = f(t, u(t), g(t)).

Then, we have

v(t) ≤
∫ t

0

(t− qs)(α−1)

Γq(α)
p(s)β(V (s))dqs

≤
∫ t

0

(t− qs)(α−1)

Γq(α)
p(s)v(s)dqs

≤ p∗T (α)

Γq(1 + α)
‖v‖∞.

Thus
‖v‖∞ ≤ `‖v‖∞.

From (3.9), we get ‖v‖∞ = 0, that is v(t) = β(V (t)) = 0, for each t ∈ I, and then by
Theorem 2 in [56], V is weakly relatively compact in CE(I). Applying now Theorem 1.38,
we conclude that N has a fixed point, which is a weak solution of the problem (3.3)-(3.4).

3.3.2 An Example

Let

l1 =

{
u = (u1, u2, . . . , un, . . .) :

∞∑
n=1

|un| <∞

}
be the Banach space with the norm

‖u‖l1 =
∞∑
n=1

|un|.
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Consider the following problem of implicit fractional 1
4
−difference equations{

(cD
1
2
1
4

un)(t) = fn(t, u(t), (cD
1
2
1
4

u)(t)); t ∈ [0, 1],

u(0) = (0, 0, . . . , 0, . . .),
(3.11)

where fn(t, u, v) =
Γ 1

4
(3

2
) t

−1
4 (2−n + un(t)) sin t

64(1 + ‖u‖l1 +
√
t)(1 + ‖u‖l1 + ‖v‖l1)

; t ∈ (0, 1],

fn(0, u, v) = 0,

with
f = (f1, f2, . . . , fn, . . .), and u = (u1, u2, . . . , un, . . .).

For each t ∈ (0, 1], we have

‖f(t, u(t))‖l1 =
∞∑
n=1

|fn(s, un(s))|

≤
Γ 1

4
(3

2
) t

−1
4 | sin t|

64(1 + ‖u‖l1 +
√
t)(1 + ‖u‖l1 + ‖v‖l1)

(1 + ‖u‖l1)

≤
Γ 1

4
(3

2
) t

−1
4 | sin t|

64
.

Thus, the hypothesis (H2) is satisfied withp(t) =
Γ 1

4
(3

2
) t

−1
4 | sin t|

64
; t ∈ (0, 1],

p(0) = 0.

Since | sin t| < t; for each t ∈ (0, 1], then t
−1
4 | sin t| < t

3
4 ≤ 1. So, we have p∗ ≤

Γ 1
4

( 3
2

)

64
, and

then ` ≤ 1
64
< 1. Hence all conditions of Theorem 3.7 are satisfied. Thus, the problem

(3.11) has at least one solution defined on [0, 1].



Chapter 4

Fractional q-Difference Equations on
the Half Line (3)

1 [12] S. Abbas, M. Benchohra, N. Laledj and Y. Zhou , Fractional q-Difference Equations
on the Half Line, Archivum Mathematicum Vol.56 N 4 (2020),207-223.

4.1 Introduction

The aim of this chapter is to study some rasults about the existence of solutions and
bounded solutions and the attractivity for a class of fractional q-difference equations.
Some applications are made of Schauder fixed point theorem in Banach spaces and Darbo
fixed point theorem in Fréchet spaces. We use some technics associated with the concept of
measure of noncompactness and the diagonalization process. Some illustrative examples
are given in the last section. in this chapter we discuss the existence and the attractivity
of solutions for the following functional fractional q-difference equation

(cDα
q u)(t) = f(t, u(t)); t ∈ R+ := [0,+∞), (4.1)

with the initiale condition
u(0) = u0, (4.2)

where q ∈ (0, 1), α ∈ (0, 1], f : R+ × R→ R is a given function, and cDα
q is the Caputo

fractional q-difference derivative of order α.

Next, by using a generalization of the classical Darbo fixed point theorem for Fréchet
spaces associated with the concept of measure of noncompactness, we discuss the existence
of solutions for the problem (4.1)-(4.2) in Fréchet spaces.

Finally, we discuss the existence of bounded solutions for the problem (4.1)-(4.2)
on R+, by applying Schauder’s fixed point theorem associated with the diagonalization
process.

1(3)

37
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This chapter initiates the study of Caputo fractional q-difference equations in Fréchet
spaces, the attractivity and the boundedness of the solutions of fractional q-difference
equations on the half line.

4.2 Existence and attractivity results

By BC we denote the Banach space of all bounded and continuous functions from R+

into R equipped with the norm

‖u‖BC := sup
t∈R+

|u(t)|.

Let ∅ 6= Ω ⊂ BC, and let G : Ω→ Ω, and consider the solutions of the equation

(Gu)(t) = u(t). (4.3)

We introduce the following concept of attractivity of solutions for equation (4.3).

Definition 4.1 Solutions of equation (4.3) are locally attractive if there exists a ball
B(u0, η) in the space BC such that, for arbitrary solutions v = v(t) and w = w(t) of
equations (4.3) belonging to B(u0, η) ∩ Ω, we have

lim
t→∞

(v(t)− w(t)) = 0. (4.4)

When the limit (4.4) is uniform with respect to B(u0, η) ∩ Ω, solutions of equation (4.3)
are said to be uniformly locally attractive (or equivalently that solutions of (4.3) are locally
asymptotically stable).

Lemma 4.2 ([36], p. 62). Let D ⊂ BC. Then D is relatively compact in BC if the
following conditions hold:
(a) D is uniformly bounded in BC,
(b) The functions belonging to D are almost equicontinuous on R+,
i.e. equicontinuous on every compact of R+,
(c) The functions from D are equiconvergent, that is, given ε > 0 there exists T (ε) > 0
such that |u(t)− limt→∞ u(t)| < ε for any t ≥ T (ε) and u ∈ D.

Definition 4.3 By a solution of the problem (4.1)-(4.2) we mean a function u ∈ BC
that satisfies the equation (4.1) on I and the initiale condition (4.2).

From the lemma 1.8, and in order to define the solution for the problem (4.1)-(4.2), we
conclude the following lemma.

Lemma 4.4 Let f : I × R → R such that f(·, u) ∈ C(I), for each u ∈ R. Then the
problem (4.1)-(4.2) is equivalent to the problem of obtaining the solutions of the integral
equation

u(t) = u0 + (Iαq f(·, u(·)))(t).



4.2. EXISTENCE AND ATTRACTIVITY RESULTS 39

The following hypotheses will be used in the sequel.

(H1) The function f : R+ × R→ R is continuous.

(H2) There exists a continuous function p : R+ → R+ such that

|f(t, u)| ≤ p(t), for t ∈ R+, and each u ∈ R,

and
lim
t→∞

(Iαq p)(t) = 0.

Set
p∗ = sup

t∈R+

(Iαq p)(t).

Now, we present a theorem concerning the existence and the attractivity of solutions
of our problem (4.1)-(4.2).

Theorem 4.5 Assume that the hypotheses (H1) and (H2) hold. Then the problem (4.1)-
(4.2) has at least one solution defined on R+. Moreover, solutions of problem (4.1)-(4.2)
are uniformly locally attractive.

Proof. Consider the operator N such that, for any u ∈ BC,

(Nu)(t) = u0 + Iαq f(·, u(·))(t). (4.5)

The operator N maps BC into BC Indeed the map N(u) is continuous on R+ for any
u ∈ BC, and for each t ∈ R+, we have

|(Nu)(t)| ≤ |u0|+
∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, u(s))|dqs

≤ |u0|+
∫ t

0

(t− qs)(α−1)

Γq(α)
p(s)dqs

≤ |u0|+ p∗

= R.

Thus
‖N(u)‖BC ≤ R. (4.6)

Hence, N(u) ∈ BC, and the operator N maps the ball

BR := B(0, R) = {w ∈ BC : ‖w‖BC ≤ R}

into itself.
From Lemma 4.4, the solutions of the problem (4.1)-(4.2) are the fixed points of the
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operator N. We shall show that the operator N : BR → BR satisfies all the assumptions
of Theorem 1.36. The proof will be given in several steps.

Step 1. N is continuous.
Let {un}n∈IN be a sequence such that un → u in BR. Then, for each t ∈ R+, we have

|(Nun)(t)− (Nu)(t)| ≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, un(s))− f(s, u(s))|dqs. (4.7)

Case 1. If t ∈ [0, T ], T > 0, then, since un → u as n → ∞ and f is continuous, by
the Lebesgue dominated convergence theorem, equation (4.7) implies

‖N(un)−N(u)‖BC → 0 as n→∞.

Case 2. If t ∈ (T,∞), T > 0, then from the hypotheses and (4.7), we get

|(Nun)(t)− (Nu)(t)| ≤ 2

∫ t

0

(t− qs)(α−1)

Γq(α)
p(s)dqs. (4.8)

Since un → u as n→∞ and (Iαq p)(t)→ 0 as t→∞, then (4.8) gives

‖N(un)−N(u)‖BC → 0 as n→∞.

Step 2. N(BR) is uniformly bounded.
This is clear since N(BR) ⊂ BR and BR is bounded.

Step 3. N(BR) is equicontinuous on every compact subset [0, T ] of R+; T > 0.
Let t1, t2 ∈ [0, T ], t1 < t2, and let u ∈ BR. Set p∗ = sup

t∈[0,T ]

p(t). Then we have

|(Nu)(t2)− (Nu)(t1)| ≤
∫ t1

0

|(t2 − qs)(α−1) − (t1 − qs)(α−1)|
Γq(α)

|f(s, u(s))|dqs

+

∫ t2

t1

|(t2 − qs)(α−1)|
Γq(α)

|f(s, u(s))|dqs

≤ p∗

∫ t1

0

|(t2 − qs)(α−1) − (t1 − qs)(α−1)|
Γq(α)

dqs

+ p∗

∫ t2

t1

|(t2 − qs)(α−1)|
Γq(α)

dqs.

As t1 −→ t2, the right-hand side of the above inequality tends to zero.
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Step 4. N(BR) is equiconvergent.
Let t ∈ R+ and u ∈ BR. Then we have

|(Nu)(t)| ≤ |u0|+
∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, u(s))|dqs

≤ |u0|+
∫ t

0

(t− qs)(α−1)

Γq(α)
p(s)dqs

≤ |u0|+ (Iαq p)(t).

Since (Iαq p)(t)→ 0, as t→ +∞, we get

|(Nu)(t)| → |u0|, as t→ +∞.

Hence,
|(Nu)(t)− (Nu)(+∞)| → 0, as t→ +∞.

As a consequence of Steps 1 to 4, together with the Lemma 4.2, we can conclude that
N : BR → BR is continuous and compact. From an application of Schauder’s theorem
(Theorem 1.36), we deduce that N has a fixed point u which is a solution of the problem
(4.1)-(4.2) on R+.

Step 5. The uniform local attractivity of solutions.
Let us assume that u0 is a solution of problem (4.1)-(4.2) with the conditions of this
theorem. Taking u ∈ B(u0, 2p

∗), we have

|(Nu)(t)− u0(t)| = |(Nu)(t)− (Nu0)(t)|

≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, u(s))− f(s, u0(s))|dqs

≤ 2

∫ t

0

(t− qs)(α−1)

Γq(α)
p(s)dqs

≤ 2p∗.

Thus, we get
‖N(u)− u0‖BC ≤ 2p∗.

Hence, we obtain that N is a continuous function such that

N(B(u0, 2p
∗)) ⊂ B(u0, 2p

∗).

Moreover, if u is a solution of problem (4.1)-(4.2), then

|u(t)− u0(t)| = |(Nu)(t)− (Nu0)(t)|
≤

∫ t
0

(t−qs)(α−1)

Γq(α)
|f(s, u(s))− f(s, u0(s))|ds

≤ 2(Iαq p)(t).

Thus
|u(t)− u0(t)| ≤ 2(Iαq p)(t)→ 0 as t→∞.

Consequently, all solutions of problem (4.1)-(4.2) are uniformly locally attractive.
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4.3 Existence Results in Fréchet Spaces

Let X := C(R+, E) be the Fréchet space of all continuous functions v from R+ into a
Banach space (E, ‖ · ‖), equipped with the family of seminorms

‖v‖n = sup
t∈[0,n]

‖v(t)‖; n ∈ N∗,

and the distance

d(u, v) =
∞∑
n=1

2−n
‖u− v‖n

1 + ‖u− v‖n
; u, v ∈ X.

In this section, we are concerned with the existence of solutions of our problem (4.1)-
(4.2).

Definition 4.6 By a solution of the problem (4.1)-(4.2) we mean a continuous function
u ∈ X that satisfies the equation (4.1) on R+ and the initiale condition (4.2).

The following hypotheses will be used in the sequel.

(H01) The function t 7→ f(t, u) is measurable on I for each u ∈ E, and the function
u 7→ f(t, u) is continuous on E for a.e. t ∈ R+,

(H02) There exists a continuous function p : R+ → R+ such that

‖f(t, u)‖ ≤ p(t)(1 + ‖u‖); for a.e. t ∈ I, and each u ∈ E,

(H03) For each bounded and measurable set B ⊂ E, and for each t ∈ R+, we have

µ(f(t, B)) ≤ p(t)µ(B),

where µ is a measure of noncompactness on the Banach space E.

For n ∈ N∗, let
p∗n = sup

t∈[0,n]

p(t),

and define on X the family of measure of noncompactness by

µn(D) = ωn0 (D) + sup
t∈[0,n]

µ(D(t)),

where D(t) = {v(t) ∈ R : v ∈ D}; t ∈ [0, n].

Theorem 4.7 Assume that the hypotheses (H01 − (H03) Hold.
If

4nαp∗n
Γq(1 + α)

< 1; (4.9)

for each n ∈ N∗, then the problem (4.1)-(4.2) has at least one solution in X.
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Proof. Consider the operator N : X → X defined by (4.5) Clearly, the fixed points of
the operator N are solution of the problem (4.1)—(4.2).

For any n ∈ N∗, we set

Rn ≥
|u0|Γq(1 + α) + p∗nn

α

Γq(1 + α)− p∗nnα
,

and we consider the ball

BRn := B(0, Rn) = {w ∈ X : ‖w‖n ≤ Rn}.

For any n ∈ N∗, and each u ∈ BRn and t ∈ [0, n] we have

‖(Nu)(t)‖ ≤ |u0|+
∫ t

0

(tq − s)(α−1)

Γq(α)
‖f(s, u(s))‖dqs

≤ ‖u0‖+

∫ t

0

(tq − s)(α−1)

Γq(α)
p(s)(1 + ‖u(s)‖)dqs

≤ ‖u0‖+ p∗n(1 +Rn)

∫ t

0

(tq − s)(α−1)

Γq(α)
dqs

≤ ‖u0‖+
nαp∗n

Γq(1 + α)
(1 +Rn)

≤ Rn.

Thus

‖N(u)‖n ≤ Rn. (4.10)

This proves that N transforms the ball BRn into itself. We shall show that the operator
N : BRn → BRn satisfies all the assumptions of Theorem 1.43. The proof will be given in
several steps.

Step 1. N : BRn → BRn is continuous.
Let {uk}k∈IN be a sequence such that uk → u in BRn . Then, for each t ∈ [0, n], we have

‖(Nuk)(t)− (Nu)(t)‖ ≤
∫ t

0

(tq − s)(α−1)

Γq(α)
‖f(s, uk(s))− f(s, u(s))‖dqs.

Since uk → u as k →∞, the Lebesgue dominated convergence theorem implies that

‖N(uk)−N(u)‖n → 0 as k →∞.

Step 2. N(BRn) is bounded.
Since N(BRn) ⊂ BRn and BRn is bounded, then N(BRn) is bounded.
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Step 3. For each bounded and equicontinuous subset D of BRn , µn(N(D)) ≤ `nµn(D).
From Lemmas 1.33 and 1.34, for any D ⊂ BRn and any ε > 0, there exists a sequence
{uk}∞k=0 ⊂ D, such that for all t ∈ [0, n], we have

µ((ND)(t)) = µ

({
u0 +

∫ t

0

(tq − s)(α−1)

Γq(α)
f(s, u(s))dqs; u ∈ D

})
≤ 2µ

({∫ t

0

(tq − s)(α−1)

Γq(α)
f(s, uk(s))dqs

}∞
k=1

)
+ ε

≤ 4

∫ t

0

(tq − s)(α−1)

Γq(α)
µ({f(s, uk(s))}∞k=0dqs+ ε

≤ 4

∫ t

0

(tq − s)(α−1)

Γq(α)
p(s)µ({uk(s)}∞k=1)dqs+ ε

≤ 4nαp∗n
Γq(1 + α)

µn(D) + ε.

Since ε > 0 is arbitrary, then

µ((ND)(t)) ≤ 4nαp∗n
Γq(1 + α)

µn(D).

Thus

µn(N(D)) ≤ 4nαp∗n
Γq(1 + α)

µn(D).

As a consequence of steps 1 to 3 together with Theorem 1.43, we can conclude that
N has at least one fixed point in BRn which is a solution of problem (4.1)-(4.2).

4.4 Existence of bounded solutions

In this section, we are concerned with the existence of bounded solutions of our problem
(cDα

q u)(t) = f(t, u(t)); t ∈ R+,

u(0) = u0 ∈ R, u is bounded on R+,

(4.11)

Definition 4.8 By a bounded solution of the problem (4.11) we mean a measurable and
bounded function u on R+ such that u(0) = u0, and u satisfies the fractional q-difference
equation (cDα

q u)(t) = f(t, u(t)) on R+.

The following hypotheses will be used in the sequel.

(H11) The function t 7→ f(t, u) is measurable on In := [0, n]; n ∈ N for each u ∈ R, and
the function u 7→ f(t, u) is continuous for a.e. t ∈ In,
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(H12) There exists a continuous function pn : In → R+ such that

|f(t, u)| ≤ pn(t), for a.e. t ∈ In, and each u ∈ R.

Set
p∗n = sup

t∈In
pn(t).

Theorem 4.9 Assume that the hypotheses (H11) and (H12) hold. Then the problem (4.11)
has at least one bounded solution defined on R+.

Proof. The proof will be given in two parts. Fix n ∈ N and consider the problem
(CDα

q u)(t) = f(t, u(t)); t ∈ In,

u(0) = u0.

(4.12)

Part 1. We begin by showing that (4.12) has a solution un ∈ C(In) with

‖un‖∞ ≤ Rn :=
nαp∗n

Γq(1 + α)
.

Consider the operator N : C(In)→ C(In) defined by (4.5) Clearly, the fixed points of
the operator N are solution of the problem (4.12).
For any u ∈ C(In), and each t ∈ In we have

|(Nu)(t)| ≤ |u0|+
∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, u(s))|dqs

≤ |u0|+
∫ t

0

(t− qs)(α−1)

Γq(α)
pn(s)dqs

≤ |u0|+ p∗n

∫ t

0

(t− qs)(α−1)

Γq(α)
dqs

≤ nαp∗n
Γq(1 + α)

.

Thus
‖N(u)‖∞ ≤ Rn. (4.13)

This proves that N transforms the ball BRn := B(0, Rn) = {w ∈ C(In) : ‖w‖∞ ≤ Rn}
into itself. We shall show that the operator N : BRn → BRn satisfies all the assumptions
of Theorem 1.36. The proof will be given in several steps.

Step 1. N : BRn → BRn is continuous.
Let {un}n∈IN be a sequence such that un → u in BRn . Then, for each t ∈ In, we have

|(Nun)(t)− (Nu)(t)|
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≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, un(s))− f(s, u(s))|dqs. (4.14)

Since un → u as n→∞ and (H11), the by the Lebesgue dominated convergence theorem,
equation (4.14) implies

‖N(un)−N(u)‖∞ → 0 as n→∞.

Step 2. N(BRn) is uniformly bounded.
This is clear since N(BRn) ⊂ BRn and BRn is bounded.

Step 3. N(BRn) is equicontinuous.
Let t1, t2 ∈ In, t1 < t2 and let u ∈ BRn . Thus we have

|(Nu)(t2)− (Nu)(t1)|

≤
∫ t1

0

|(t2 − qs)(α−1) − (t1 − qs)(α−1)|
Γq(α)

|f(s, u(s))|dqs

+

∫ t2

t1

|(t2 − qs)(α−1)|
Γq(α)

|f(s, u(s))|dqs

≤ p∗n

∫ t1

0

|(t2 − qs)(α−1) − (t1 − qs)(α−1)|
Γq(α)

dqs

+ p∗n

∫ t2

t1

|(t2 − qs)(α−1)|
Γq(α)

dqs.

As t1 −→ t2, the right-hand side of the above inequality tends to zero.

As a consequence of steps 1 to 3 together with the Arzelá-Ascoli theorem, we can
conclude that N is continuous and compact. From an application of Schauder’s theorem
(Theorem 1.36), we deduce that N has a fixed point u which is a solution of the problem
(4.12).

Part 2. The diagonalization process.
Now, we use the following diagonalization process. For k ∈ N let{

wk(t) = unk(t); t ∈ [0, nk],

wk(t) = unk(nk); t ∈ [nk,∞).

Here {nk}k∈N∗ is a sequence of numbers satisfying

0 < n1 < n2 < . . . nk < . . . ↑ ∞.

Let S = {wk}∞k=1 Notice that

|wnk(t)| ≤ Rn : for t ∈ [0, n1], k ∈ N
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Also, if k ∈ N and t ∈ [0, n1], we have

wnk(t) = u0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
f(s, wnk(s))dqs.

Thus, for k ∈ N and t, x ∈ [0, n1], we have

|wnk(t)− wnk(x)| ≤
∫ n1

0

|(t− qs)(α−1) − (x− qs)(α−1)|
Γq(α)

|f(s, wnk(s))|dqs.

Hence

|wnk(t)− wnk(x)| ≤ p∗1

∫ n1

0

|(t− qs)(α−1) − (x− qs)(α−1)|
Γq(α)

dqs.

The Arzelà-Ascoli Theorem guarantees that there is a subsequence N∗1 of N and a function
z1 ∈ C([0, n1],R) with unk → z1 as k →∞ in C([0, n1],R) through N∗1. Let N1 = N∗1−{1}.
Notice that

|wnk(t)| ≤ Rn : for t ∈ [0, n2], k ∈ N

Also, if k ∈ N and t, x ∈ [0, n2], we have

|wnk(t)− wnk(x)| ≤ p∗2

∫ n2

0

|(t− qs)(α−1) − (x− qs)(α−1)|
Γq(α)

dqs.

The Arzelà-Ascoli Theorem guarantees that there is a subsequence N∗2 of N1 and a function
z2 ∈ C([0, n2],R) with unk → z2 as k →∞ in C([0, n2],R) through N∗2. Note that z1 = z2

on [0, n1] since N∗2 ⊂ N1. Let N2 = N∗2−{2}. Proceed inductively to obtain for m = 3, 4, . . .
a subsequence N∗m of Nm−1 and a function zm ∈ C([0, nm],R) with unk → zm as k → ∞
in C([0, nm],R) through N∗m. Let Nm = N∗m − {m}.

Define a function y as follows. Fix t ∈ (0,∞) and let m ∈ N with t ≤ nm. Then define
u(t) = zm(t). Thus u ∈ C((0,∞,R)), u(0) = u0 and |u(t)| ≤ Rn : for t ∈ [0,∞).
Again fix t ∈ (0,∞) and let m ∈ N with t ≤ nm. Then for n ∈ Nm we have

unk(t) = u0 +

∫ nm

0

(t− qs)(α−1)

Γq(α)
f(s, wnk(s))dqs.

Let nk →∞ through Nm to obtain

zm(t) = u0 +

∫ nm

0

(t− qs)(α−1)

Γq(α)
f(s, zm(s))dqs.

We can use this method for each x ∈ [0, nm] and for each m ∈ N. Thus

(CDα
q u)(t) = f(t, u(t)); for t ∈ [0, nm]

for each m ∈ N and the constructed function u is a solution of problem (4.11).
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4.5 Some Examples

Example 1. Consider the following problem of fractional 1
4
−difference equations{

(cD
1
2
1
4

u)(t) = f(t, u(t)); t ∈ R+,

u(0) = 1,
(4.15)

where f(t, u) =
t
−1
4 sin t

(1 +
√
t)(1 + |u|)

; t ∈ (0,∞), u ∈ R,

f(0, u) = 0; u ∈ R.
Clearly, the function f is continuous.
The hypothesis (H2) is satisfied with p(t) =

t
−1
4 | sin t|
1 +
√
t

; t ∈ (0,∞),

p(0) = 0.

All conditions of Theorem 4.5 are satisfied. Hence, the problem (4.15) has at least one
solution defined on R+, and solutions of this problem are uniformly locally attractive.

Example 2. Let

l1 =

{
u = (u1, u2, . . . , uk, . . .) :

∞∑
k=1

|un| <∞

}

be the Banach space with the norm

‖u‖l1 =
∞∑
k=1

|uk|,

and F := C(R+, l
1) be the Fréchet space of all continuous functions v from R+ into l1,

equipped with the family of seminorms

‖v‖n = sup
t∈[0,n]

‖v(t)‖l1 ; n ∈ N∗.

Consider the following problem of fractional 1
4
−difference equations{

(cD
1
2
1
4

uk)(t) = fk(t, u(t)); t ∈ R+,

uk(0) = 0; t ∈ R+, k ∈ N,
(4.16)
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where

fk(t, u) =
cn(2−k + uk)t

5
4 sin t

128(1 +
√
t)

; u ∈ l1,

for each t ∈ [0, n]; n ∈ N∗, with

cn = 16n−
7
4 Γ 1

4

(
3

2

)
; n ∈ N∗,

f = (f1, f2, . . . , fk, . . .), and u = (u1, u2, . . . , uk, . . .).

Since

‖f(t, u)‖l1 =
∞∑
k=1

|fk(s, u)| ≤ t
5
4 cn

128
(1 + ‖u‖l1); t ∈ [0, n], n ∈ N∗,

then the hypothesis (H02) is satisfied with

p(t) =
t
5
4 cn
64

; t ∈ [0, n], n ∈ N∗.

So; for any n ∈ N∗, we have

p∗n =
n

5
4 cn

128
.

The condition (4.9) is satisfied. Indeed;

4n
1
2p∗n

Γq(1 + α)
= 16n−

7
4 Γ 1

4

(
3

2

)
n

5
4

128

4n
1
2

Γ 1
4

(
3
2

) =
1

2
< 1.

Therefore all conditions of Theorem 4.7 are satisfied. Hence, the problem (4.16) has at
least one solution defined on R+.

Example 3. Consider the following problem of fractional 1
4
−difference equations{

(CD
1
2
1
4

u)(t) = f(t, u(t)); t ∈ R+,

u(0) = 2, u is bounded on R+,
(4.17)

where

f(t, u) =
et+1

1 + |u|
(1 + u); t ∈ R+.

The hypothesis (H12) is satisfied with pn(t) = et+1. So, p∗n = en+1. Simple computations
show that all conditions of Theorem 4.9 are satisfied. It follows that the problem (4.17)
has at least one bounded solution defined on R+.
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Chapter 5

Fractional q-Difference Inclusions in
Banach Spaces

5.1 Introduction

The aim of this chapter is to study a class of Caputo fractional q-difference inclusions in
Banach spaces. We obtain some existence results by using the set-valued analysis, the
measure of noncompactness, and the fixed point theory (Darbo and Mönch’s fixed point
theorems). Finally we give an illustrative example in the last section. We initiate the
study of fractional q-difference inclusions on infinite dimensional Banach spaces. In this
chapter we consider the Caputo fractional q-difference inclusion

(cDα
q u)(t) ∈ F (t, u(t)), t ∈ I := [0, T ], (5.1)

with the initial condition
u(0) = u0 ∈ E, (5.2)

where (E, ‖ · ‖) is a separable Banach space, q ∈ (0, 1), α ∈ (0, 1], T > 0, F : I × E →
P(E) is a multivalued map, P(E) = {Y ⊂ E : Y 6= ∅}, and cDα

q is the Caputo fractional
q-difference derivative of order α.

5.2 Existence Results

First, we state the definition of a solution of the problem (5.1)-(5.2).

Definition 5.1 By a solution of the problem (5.1)-(5.2) we mean a function u ∈ CE(I)
that satisfies the initial condition (5.2) and the equation (CDα

q u)(t) = v(t) on I, where
v ∈ SF◦u.

In the sequel, we need the following hypotheses.
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(H1) The multivalued map F : I × E → Pcp,cv(E) is Carathéodory,

(H2) There exists a function p ∈ L∞(I,R+) such that

‖F (t, u)‖P = sup{‖v‖C : v(t) ∈ F (t, u)} ≤ p(t);

for a.e. t ∈ I, and each u ∈ E,

(H3) For each bounded set B ⊂ CE(I) and for each t ∈ I, we have

µ(F (t, B(t)) ≤ p(t)µ(B(t)),

where B(t) = {u(t) : u ∈ B},

(H4) The function φ ≡ 0 is the unique solution in CE(I) of the inequality

Φ(t) ≤ 2p∗(Iαq Φ)(t),

where p is the function defined in (H3), and

p∗ = esssupt∈Ip(t).

Remark 5.2 In (H3), µ is the Kuratowski measure of noncompactness on the space E.

Theorem 5.3 If the hypotheses (H1)− (H3) and the condition

L :=
p∗T (α)

Γq(1 + α)
< 1

hold, then the problem (5.1)-(5.2) has at least one solution defined on I.

Proof. Consider the multivalued operator N : CE(I)→ P(CE(I)) defined by:

N(u) =
{
h ∈ CE(I) : h(t) = µ0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
v(s)dqs; v ∈ SF◦u

}
. (5.3)

From Lemma 1.8, the fixed points of N are solutions of the problem (5.1)-(5.2). Set

R := ‖u0‖+
p∗T (α)

Γq(1 + α)
,

and let BR := {u ∈ CE(I) : ‖u‖∞ ≤ R} be the bounded, closed and convex ball of
CE(I). We shall show in three steps that the multivalued operator N : BR → Pcl,b(CE(I))
satisfies all assumptions of Theorem 1.41.
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Step 1. N(BR) ∈ P(BR).
Let u ∈ BR, and h ∈ N(u). Then for each t ∈ I we have

h(t) = u0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
v(s)dqs,

for some v ∈ SF◦u. On the other hand,

‖h(t)‖ ≤ ‖u0‖+

∫ t

0

(t− qs)(α−1)

Γq(α)
‖v(s)‖dqs

≤ ‖u0‖+

∫ t

0

(t− qs)(α−1)

Γq(α)
p(s)dqs

≤ ‖u0‖+ esssupt∈Ip(t)

∫ T

0

(t− qs)(α−1)

Γq(α)
dqs

= ‖u0‖+
p∗T (α)

Γq(1 + α)
.

Hence ‖h‖∞ ≤ R, and so N(BR) ∈ P(BR).

Step 2. N(u) ∈ Pcl(BR) for each u ∈ BR.
Let {un}n≥0 ∈ N(u) such that un −→ ũ in CE(I). Then, ũ ∈ BR and there exists
fn(·) ∈ SF◦u be such that, for each t ∈ I, we have

un(t) = u0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
fn(s)dqs.

Hrom (H1), and since F has compact values, then we may pass to a subsequence if
necessary to get that fn(·) converges to f in L1(I), and then f ∈ SF◦u. Thus, for each
t ∈ I, we get

un(t) −→ ũ(t) = u0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
f(s)dqs.

Hence ũ ∈ N(u).

Step 3. N satisfies the Darbo condition.
Let U ⊂ BR, then for each t ∈ I, we have

µ((NU)(t)) = µ({(Nu)(t) : u ∈ U}).

Let h ∈ N(u). Then, there exists f ∈ SF◦u such that for each t ∈ I, we have

h(t) = u0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
f(s)dqs.
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From Theorem 1.26 and since U ⊂ BR ⊂ C(I), then

µ((NU)(t)) ≤ 2

∫ t

0

µ

({
(t− qs)(α−1)

Γq(α)
f(s) : u ∈ U

})
dqs.

Now, since f ∈ SF◦u and u(s) ∈ U(s), we have

µ({(t− qs)(α−1)f(s)}) = (t− qs)(α−1)p(s)µ(U(s)).

Then

µ((NU)(t)) ≤ 2

∫ t

0

µ

({
(t− qs)(α−1)

Γq(α)
f(s)

})
dqs.

Thus

µ((NU)(t)) ≤ 2p∗
∫ t

0

(t− qs)(α−1)

Γq(α)
µ(U(s))dqs.

Hence

µ((NU)(t)) ≤ 2p∗T (α)

Γq(1 + α)
µ(U).

Therefore,

µ(N(U)) ≤ Lµ(U),

which implies the N is a L−set-contraction.
As a consequence of Theorem 1.41, we deduce that N has a fixed point that is a solution
of the problem (5.1)-(5.2).

Now, we prove an other existence result by applying Theorem 1.42.

Theorem 5.4 If the hypotheses (H1)− (H4) hold, then there exists at least one solution
of problem (5.1)-(5.2).

Proof. Consider the multivalued operator N : CE(I) → P(CE(I)) defined in (5.3). We
shall show in five steps that the multivalued operator N satisfies all assumptions of The-
orem 1.42.

Step 1. N(u) is convex for each u ∈ CE(I).
Let h1, h2 ∈ N(u), then there exist v1, v2 ∈ SF◦u such that

hi(t) = µ0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
vi(s)dqs; t ∈ I, i = 1, 2.

Let 0 ≤ λ ≤ 1. Then, for each t ∈ I, we have

(λh1 + (1− λ)h2)(t) = µ0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
(λv1(s) + (1− λ)v2(s))dqs.
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Since SF◦u is convex (because F has convex values), we have λh1 + (1− λ)h2 ∈ N(u).

Step 2. For each compact M ⊂ CE(I), N(M) is relatively compact.
Let (hn) by any sequence in N(M), where M ⊂ CE(I) is compact. We show that (hn)
has a convergent subsequence from Arzéla-Ascoli compactness criterion in C(IE). Since
hn ∈ N(M) there are un ∈M and vn ∈ SF◦un such that

hn(t) = µ0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
vn(s)dqs.

Using Theorem 1.26 and the properties of the measure µ, we have

µ({hn(t)}) ≤ 2

∫ t

0

µ

({
(t− qs)(α−1)

Γq(α)
vn(s)

})
dqs. (5.4)

On the other hand, since M is compact, the set {vn(s) : n ≥ 1} is compact. Consequently,
µ({vn(s) : n ≥ 1}) = 0 for a.e. s ∈ I. Furthermore

µ({(t− qs)(α−1)vn(s)}) = (t− qs)(α−1)µ({vn(s) : n ≥ 1}) = 0.

for a.e. t, s ∈ I. Now (5.4) implies that {hn(t) : n ≥ 1} is relatively compact for each
t ∈ I. In addition, for each t1, t2 ∈ I; with t1 < t2, we have

‖hn(t2)− hn(t1)‖

≤
∥∥∥∥∫ t2

0

(t2 − qs)(α−1)

Γq(α)
p(s)dqs−

∫ t1

0

(t1 − qs)(α−1)

Γq(α)
p(s)dqs

∥∥∥∥
≤
∫ t2

t1

(t2 − qs)(α−1)

Γq(α)
p(s)dqs

+

∫ t1

0

|(t2 − qs)(α−1) − (t1 − qs)(α−1)|
Γq(α)

p(s)dqs

≤ p∗Tα

Γq(1 + α)
(t2 − t1)α

+ p∗
∫ t1

0

|(t2 − qs)(α−1) − (t1 − qs)(α−1)|
Γq(α)

dqs

→ 0 as t1 −→ t2.

(5.5)

This shows that {hn : n ≥ 1} is equicontinuous. Consequently, {hn : n ≥ 1} is relatively
compact in CE(I).

Step 3. The graph of N is closed.
Let (un, hn) ∈ graph(N), n ≥ 1, with (‖un−u‖, ‖hn−h‖)→ (0.0), as n→∞. We have to
show that (u, h) ∈ graph(N). (un, hn) ∈ graph(N) means that hn ∈ N(un), which implies
that there exists vn ∈ SF◦un , such that for each t ∈ I,

hn(t) = u0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
vn(s)dqs.
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Consider the continuous linear operator Θ : L∞(I)→ CE(I),

Θ(v)(t) 7→ h(t) = u0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
v(s)dqs.

Clearly, ‖hn(t) − h(t)‖ → 0 as as n → ∞. From Lemma 1.22 it follows that Θ ◦ SF is a
closed graph operator. Moreover, hn(t) ∈ Θ(SF◦un). Since un → u, Lemma 1.22 implies

h(t) = u0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
v(s)dqs.

for some v ∈ SF◦u.

Step 4. M is relatively compact in CE(I).
Let M ⊂ U ; with M ⊂ conv({0}∪N(M)), and let M = C; for some countable set C ⊂M.
the set N(M) is equicontinuous from (5.5). Therefore,

M ⊂ conv({0} ∪N(M)) =⇒M is equicontinuous.

By applying the Arzéla-Ascoli theorem; the set M(t) is relatively compact for each t ∈ I.
Since C ⊂M ⊂ conv({0}∪N(M)), then there exists a countable set H = {hn : n ≥ 1} ⊂
N(M) such that C ⊂ conv({0} ∪H). Thus, there exist un ∈M and vn ∈ SF◦un such that

hn(t) = u0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
vn(s)dqs.

From Theorem 1.26, we get

M ⊂ C ⊂ conv({0} ∪H)) =⇒ µ(M(t)) ≤ µ(C(t)) ≤ µ(H(t)) = µ({hn(t) : n ≥ 1}).

Using now the inequality (5.4) in step 2, we obtain

µ(M(t)) ≤ 2

∫ t

0

µ

({
(t− qs)(α−1)

Γq(α)
vn(s)

})
dqs.

Since vn ∈ SF◦un and un(s) ∈M(s), we have

µ(M(t)) ≤ 2

∫ t

0

µ

({
(t− qs)(α−1)

Γq(α)
vn(s) : n ≥ 1

})
dqs.

Also, since vn ∈ SF◦un and un(s) ∈M(s), then from (H3) we get

µ({(t− qs)(α−1)vn(s); n ≥ 1}) = (t− qs)(α−1)p(s)µ(M(s)).

Hence

µ(M(t)) ≤ 2p∗
∫ t

0

(t− qs)(α−1)

Γq(α)
µ(M(s))dqs.
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Consequently, from (H4), the function Φ given by Φ(t) = µ(M(t)) satisfies Φ ≡ 0; that is,
µ(M(t)) = 0 for all t ∈ I. Finally, the Arzéla-Ascoli theorem implies that M is relatively
compact in CE(I).

Step 5. The priori estimate.
Let u ∈ C(IE) such that u ∈ λN(u) for some 0 < λ < 1. Then

u(t) = λu0 + λ

∫ t

0

(t− qs)(α−1)

Γq(α)
v(s)dqs,

for each t ∈ I, where v ∈ SF◦u. On the other hand,

‖u(t)‖ ≤ ‖u0‖+

∫ t

0

(t− qs)(α−1)

Γq(α)
‖v(s)‖dqs

≤ ‖u0‖+

∫ t

0

(t− qs)(α−1)

Γq(α)
p(s)dqs

≤ ‖u0‖+
p∗T (α)

Γq(1 + α)
.

Then

‖u‖ ≤ ‖u0‖+
p∗T (α)

Γq(1 + α)
:= d.

Set
U = {u ∈ Cγ : ‖u‖ < 1 + d}.

Hence, the condition (1.5) is satisfied. Finally, Theorem 1.42 implies that N has at least
one fixed point u ∈ CE(I) which is a solution of problem (5.1)-(5.2).

5.3 An Example

Let

E = l1 =

{
u = (u1, u2, . . . , un, . . .),

∞∑
n=1

|un| <∞

}
be the Banach space with the norm

‖u‖E =
∞∑
n=1

|un|.

Consider now the following problem of fractional 1
4
− difference inclusion{

(cD
1
2
1
4

un)(t) ∈ Fn(t, u(t)); t ∈ [0, e],

u(0) = (1, 0, . . . , 0, . . .),
(5.6)
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where

Fn(t, u(t)) =
t2e−4−t

1 + ‖u(t)‖E
[un(t)− 1, un(t)]; t ∈ [0, e],

with u = (u1, u2, . . . , un, . . .). Set α = 1
2
, and F = (F1, F2, . . . , Fn, . . .).

For each u ∈ E and t ∈ [0, e], we have

‖F (t, u)‖P ≤ p(t),

with p(t) = t2e−t−4. Hence, the hypothesis (H2) is satisfied with p∗ = e−2. A simple
computation shows that conditions of Theorem 5.4 are satisfied. Hence, the problem
(5.6) has at least one solution defined on [0, e].



Chapter 6

Weak Solutions for Caputo Pettis
Fractional q-Difference Inclusions

6.1 Introduction

This chapter deals with some existence of weak solutions for a class of Caputo fractional
q-difference inclusions and a coupled system of Caputo fractional q-difference inclusions
by using the set-valued analysis, and Mönch’s fixed point theorem associated with the
technique of measure of weak noncompactness. Two illustrative examples are given in the
end. In Section 6.2 we discuss the existence of weak solutions for the following fractional
q-difference inclusion

(cDα
q u)(t) ∈ F (t, u(t)), t ∈ I := [0, T ], (6.1)

with the initial condition

u(0) = u0 ∈ E, (6.2)

where E is a real (or complex) Banach space with norm ‖ · ‖ and dual E∗, such that E
is the dual of a weakly compactly generated Banach space X, q ∈ (0, 1), α ∈ (0, 1], T >
0, F : I × E → P(E) is a multivalued map, P(E) is the family of all nonempty subsets
of E, cDα

q is the Caputo fractional q-difference derivative of order α.

Next in Section 6.3 we consider the following coupled system of fractional q-difference
inclusions {

(cDα
q u)(t) ∈ F (t, v(t))

(cDα
q v)(t) ∈ G(t, u(t))

; t ∈ I, (6.3)

with the initial conditions

(u(0), v(0)) = (u0, v0) ∈ E × E, (6.4)

where F,G : I × E → P(E) are multivalued maps.
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6.2 Caputo-Pettis Fractional q-Difference Inclusions

Let us start by defining what we mean by a weak solution of the problem (6.1)-(6.2).

Definition 6.1 By a weak solution of the problem (6.1)-(6.2) we mean a function u ∈
CE(I) that satisfies

u(t) = u0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
v(s)dqs,

where v ∈ SF◦u.

Corollary 6.2 Let F : I×E → P(E) be such that SF◦u ⊂ CE(I) for any u ∈ CE(I). Then
problem (6.1)-(6.2) is equivalent to the problem of the solutions of the integral equation

u(t) = u0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
v(s)dqs,

where v ∈ SF◦u.

We introduce the following hypotheses:

(H1) F : I × E → Pcp,cl,cv(E) has weakly sequentially closed graph;

(H2) For each u ∈ CE(I), there exists a function v ∈ SF◦u wich is measurable a.e. on I
and Pettis integrable on I;

(H3) There exists a function p ∈ L∞(I,R+) such that for all ϕ ∈ E∗, we have

‖F (t, u)‖P = sup
v∈SF◦u

|ϕ(v)| ≤ p(t); for a.e. t ∈ I, and each u ∈ E;

(H4) For each bounded and measurable set B ⊂ E and for each t ∈ I, we have

β(F (t, B)) ≤ p(t)β(B).

Set

p∗ = ess sup
t∈I

p(t),

Theorem 6.3 Assume that the hypotheses (H1)− (H4) hold. If

L :=
p∗Tα

Γq(1 + α)
< 1, (6.5)

then the problem (6.1)-(6.2) has a weak solution defined on I.
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Proof. Consider the multi-valued map N : CE(I)→ Pcl(CE(I)) defined by:

(Nu)(t) =

{
h ∈ CE(I) : h(t) = u0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
v(s)dqs; v ∈ SF◦u

}
. (6.6)

Our hypotheses imply that for each u ∈ CE(I), there exists a Pettis integrable function
v ∈ SF◦u, and for each s ∈ [0, t], the function

t 7→ (t− qs)α−1v(s), for a.e. t ∈ I,

is Pettis integrable. Thus, N is well defined. Let R > 0 be such that

R >
p∗Tα

Γq(1 + α)
,

and consider the set

Q =
{
u ∈ CE(I) : ‖u‖∞ ≤ R and ‖u(t2)− u(t1)‖

≤ p∗Tα

Γq(1 + α)
(t2 − t1)α +

p∗

Γq(α)

∫ t1

0

|(t2 − qs)α−1 − (t1 − qs)α−1|dqs
}
.

The set Q is closed, convex and equicontinuous. We shall show in several steps that N
satisfies the assumptions of Theorem 1.39.

Step 1. N(u) is convex for each u ∈ Q.
For that, let h1, h2 ∈ N(u). Then there exist v1, v2 ∈ SF◦u such that, for each t ∈ I, and
for any i = 1, 2, we have

hi(t) = u0 +

∫ t

0

(t− s)α−1 vi(s)

Γq(α)
ds.

Let 0 ≤ λ ≤ 1. Then, for each t ∈ I, we have

[λh1 + (1− λ)h2](t) = u0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
(λv1(s) + (1− λ)v2(s))dqs.

Since F has convex values, SF◦u is convex. Hence, it follows that

λh1 + (1− λ)h2 ∈ N(u).

Step 2. N maps Q into itself.
Let h ∈ N(Q), then there exists u ∈ Q such that h ∈ N(u), and there exists a Pettis
integrable function v ∈ SF◦u. Assume that h(t) 6= 0. Then there exists ϕ ∈ E∗ with
‖ϕ‖ = 1 such that ‖h(t)‖ = |ϕ(h(t))|. Thus

‖h(t)‖ = ϕ

(
u0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
v(s)dqs

)
.
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Hence

‖h(t)‖ ≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|ϕ(v(s))|dqs

≤ p∗

Γq(α)

∫ t

0

(t− qs)α−1dqs

≤ p∗Tα

Γq(1 + α)

≤ R.

Next, let t1, t2 ∈ I such that t1 < t2 and let h ∈ N(u), with

h(t2)− h(t1) 6= 0.

Then there exists ϕ ∈ E∗ such that

‖h(t2)− h(t1)‖ = |ϕ(h(t2)− h(t1))|,

and ‖ϕ‖ = 1. Then, we have

‖h(t2)− h(t1)‖ = |ϕ(h(t2)− h(t1))|

≤ ϕ

(∫ t2

0

(t2 − qs)α−1 v(s)

Γq(α)
dqs−

∫ t1

0

(t1 − qs)α−1 v(s)

Γq(α)
dqs

)
.

Thus, we get

‖h(t2)− h(t1)‖ ≤
∫ t2

t1

(t2 − qs)α−1 |ϕ(v(s))|
Γq(α)

dqs

+

∫ t1

0

|(t2 − qs)α−1 − (t1 − qs)α−1| |ϕ(v(s))|
Γq(α)

dqs

≤
∫ t2

t1

(t2 − qs)α−1 p(s)

Γq(α)
dqs

+

∫ t1

0

|(t2 − qs)α−1 − (t1 − qs)α−1| p(s)
Γq(α)

dqs.

Hence, we obtain

‖h(t2)− h(t1)‖ ≤ p∗Tα

Γq(1 + α)
(t2 − t1)α +

p∗

Γq(α)

∫ t1

0

|(t2 − qs)α−1 − (t1 − qs)α−1|dqs.

This implies that h ∈ Q. Hence N(Q) ⊂ Q.
Step 3. N has weakly-sequentially closed graph.

Let (un, wn) be a sequence in Q×Q, with un(t)→ u(t) in (E,ω) for each t ∈ I, wn(t)→
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w(t) in (E,ω) for each (t ∈ I, and wn ∈ N(un) for n ∈ {1, 2, . . .}.
We show that w ∈ Ω(u). Since wn ∈ Ω(un), there exists vn ∈ SF◦un such that

wn(t) = u0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
vn(s)dqs.

We show that there exists v ∈ SF◦u such that, for each t ∈ I,

w(t) = u0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
v(s)dqs.

From the fact that F (·, ·) has compact values, there exists a Pettis integrable subsequence
vnm ; such that

vnm(t) ∈ F (t, un(t)) a.e. t ∈ I,
and

vnm(·)→ v(·) in (E,ω) as m→∞.
As F (t, ·) has weakly sequentially closed graph, v(t) ∈ F (t, u(t)). Then by the Lebesgue
Dominated Convergence Theorem for the Pettis integral, we obtain

ϕ(wn(t))→ ϕ

(
u0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
vn(s)dqs

)
,

i.e. wn(t)→ (Nu)(t) in (E,ω). Since this holds, for each t ∈ I, we get w ∈ N(u).
Step 4. The condition (1.3) of Theorem 1.39 holds.

Let V ⊂ Q, such that V = conv(Ω(V ) ∪ {0}).
For eacht ∈ I, V (t) ⊂ conv(Ω(V (t)) ∪ {0}). Since V is bounded and equicontinuous, the
function t→ v(t) = β(V (t)) is continuous on I. By (H4) and the properties of β, for any
t ∈ I we have

v(t) ≤ β((NV )(t) ∪ {0})
≤ β((NV )(t))

≤ β{(Nu)(t) : u ∈ V }

≤ β

{∫ t

0

(t− qs)α−1 v(s)

Γq(α)
dqs : v(t) ∈ SF◦u, u ∈ V

}
≤ β

{∫ t

0

(t− qs)α−1F (s, V (s))

Γq(α)
dqs
}

≤
∫ t

0

(t− qs)α−1β(V (s))

Γq(α)
dqs

≤
∫ t

0

(t− qs)α−1p(s)v(s)

Γq(α)
dqs

≤ p∗Tα

Γq(1 + α)
‖v‖∞

= L‖v‖∞.
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In particular,
‖u‖∞ ≤ L‖v‖∞.

By (6.5) it follows that ‖v‖∞ = 0, that is, v(t) = β(V (t)) = 0 for each t ∈ I, and then V
is weakly relatively compact in CE(I). Applying now Theorem 1.39, we conclude that N
has a fixed point which is a weak solution of the problem (6.1)-(6.2).

6.3 Coupled Systems of Caputo-Pettis Fractional q-

Difference Inclusions

C := CE(I)× CE(I) is a Banach space with the norm:

‖(u, v)‖C = ‖u‖∞ + ‖v‖∞.

Definition 6.4 By a weak solution of the problem (6.3)-(6.4) we mean a coupled mea-
surable functions (u, v) ∈ C that satisfies

u(t) = u0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
w(s)dqs,

v(t) = v0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
z(s)dqs,

where w ∈ SF◦v, and z ∈ SF◦u.

Consider the following:

(H01) F,G : I × E → Pcp,cl,cv(E) have weakly sequentially closed graph,

(H02) For all continuous functions u, v : I → E, there exist measurable functions w ∈
SF◦v, z ∈ SF◦u, a.e. on I and w, z are Pettis integrable on I,

(H03) There exist p, d ∈ L∞(I,R+) such that for all ϕ ∈ E∗, we have

‖F (t, v)‖P ≤ p(t), for a.e. t ∈ I, and each v ∈ E,

‖G(t, u)‖P ≤ d(t), for a.e. t ∈ I, and each u ∈ E.

(H04) For each bounded and measurable set B ⊂ E and for each t ∈ I, we have

β(F (t, B) ≤ p(t)β(B), and β(G(t, B) ≤ d(t)β(B).

Set
p∗ = ess sup

t∈I
p(t), d∗ = ess sup

t∈I
d(t).
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Theorem 6.5 Assume that the hypotheses (H01)− (H04) hold. If

p∗Tα

Γq(1 + α)
< 1, and

d∗Tα

Γq(1 + α)
< 1, (6.7)

then the problem (6.3)-(6.4) has at least one weak solution defined on I.

Proof. Consider the multi-valued map N : C → Pcl(C) defined by:

(N(u, v))(t) = ((N1u)(t), (N2v)(t)),

where N1, N2 : C(I)→ Pcl() with

(N1u)(t) =

{
h ∈ CE(I) : h(t) = u0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
w(s)dqs; w ∈ SF◦v

}
, (6.8)

and

(N2v)(t) =

{
h ∈ C(I) : h(t) = v0 +

∫ t

0

(t− qs)(α−1)

Γq(α)
z(s)dqs; z ∈ SF◦u

}
. (6.9)

For each (u, v) ∈ C, there exist Pettis integrable functions w ∈ SF◦v, z ∈ SF◦u, and for
each s ∈ [0, t], the functions

t 7→ (t− qs)α−1w(s), and t 7→ (t− qs)α−1z(s); for a.e. t ∈ I,

are Pettis integrable. Thus, the multi-function N is well defined. Let R > 0 be such that

R > max

{
p∗Tα

Γq(1 + α)
,

d∗Tα

Γq(1 + α)

}
and consider the set

Λ =
{

(u, v) ∈ C : ‖(u, v)‖C ≤ R and ‖u(t2)− u(t1)‖ ≤ p∗Tα

Γq(1 + α)
(t2 − t1)α

+
p∗

Γq(α)

∫ t1

0

|(t2 − qs)α−1 − (t1 − qs)α−1|dqs, and ‖v(t2)− v(t1)‖

≤ d∗Tα

Γq(1 + α)
(t2 − t1)α +

d∗

Γq(α)

∫ t1

0

|(t2 − qs)α−1 − (t1 − qs)α−1|dqs
}
.

The subset Λ of C is closed, convex end equicontinuous. As in the proof of Theorem 6.3, we
can show that N(u, v) is convex for each (u, v) ∈ Λ, N(Λ) ⊂ Λ, N has weakly-sequentially
closed graph, and the Theorem 1.39 condition (1.3) holds. Hence, the operator N satisfies
all the assumptions of Theorem 1.39. Therefore; we conclude that N has a fixed point
which is a weak solution of the problem (6.3)-(6.4).
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6.4 Examples

Let

E = l1 =

{
u = (u1, u2, . . . , un, . . .) :

∞∑
n=1

|un| <∞

}
be the Banach space with the norm

‖u‖E =
∞∑
n=1

|un|.

Example 1. Consider the following problem of fractional 1
4
−difference inclusion{

(CD
1
2
1
4

un)(t) ∈ Fn(t, u(t)); t ∈ [0, 1],

u(0) = (1, 0, . . . , 0, . . .),
(6.10)

where

Fn(t, u(t)) =
ct2e−4−t

1 + ‖u(t)‖E
[un(t)− 1, un(t)]; t ∈ [0, 1],

with

u = (u1, u2, . . . , un, . . .), and c :=
e4

4
Γ 1

4

(
1

2

)
.

and F is closed and convex valued. Set

F = (F1, F2, . . . , Fn, . . .).

For each u ∈ E and t ∈ [0, 1], we have

‖F (t, u(t))‖P ≤ ct2
1

et+4
.

Hence, the hypothesis (H3) is satisfied with p∗ = ce−4. We shall show that condition (6.5)
holds with T = 1. Indeed,

L =
ce−4

Γ 1
4
(1

2
)

=
1

4
< 1.

Simple computations show that all conditions of Theorem 6.3 are satisfied. Hence, the
problem (6.10) has at least one weak solution defined on [0, 1].

Example 2. We consider now the following coupled system of fractional 1
4
−difference

inclusions 
(CD

1
2
1
4

un)(t) ∈ Fn(t, v(t))

(CD
1
2
1
4

vn)(t) ∈ Gn(t, u(t))

u(0) = (1, 0, . . . , 0, . . .), v(0) = (0, 1, 0, . . . , 0, . . .)

; t ∈ [0, 1], (6.11)
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where

Fn(t, v(t)) =
ct2e−4−t

1 + ‖u(t)‖E
[vn(t)− 1, vn(t)],

Gn(t, u(t)) =
ct2e−4−t

1 + ‖u(t)‖E
[un(t), 1 + un(t)]; t ∈ [0, 1],

with

u = (u1, u2, . . . , un, . . .), v = (v1, v2, . . . , vn, . . .), and c :=
e4

4
Γ 1

4

(
1

2

)
.

Set
F = (F1, F2, . . . , Fn, . . .), G = (G1, G2, . . . , Gn, . . .).

Simple computations show that all conditions of Theorem 6.5 are satisfied. Hence, the
problem (6.11) has at least one weak solution (u, v) defined on [0, 1].
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Conclusion and Perspective

In this thesis, we have presented some results to the theory of existence unique-
ness and Ulam-Hyers-Rassias stability results for a class of implicit fractional q-difference
equations, and we have discused some results about the existence of weak solutions . Also
we have presented in this thesis some existence results for a class of Caputo fractional q-
difference inclusions in Banach spaces and the existence of weak solutions for the semilar
class. This results are obtained by using the fixed point theory and the notion of measure
of noncompactness. Such notion requires the use of the set-valued analysis conditions on
the right-hand side, and the concept of Pettis integration and an appropriate fixed point
theorem.

We plan to study in the future research, problems for nonlinear implicit fractional
q-difference equations and inclusions with finite and infinite delay in Banach spaces.
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