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Abstract 
 

Research in the field of cognitive radio (CR) has emerged to meet both the military's communication 
and the public safety sector needs. The CR often share the same requirements as civilian radio-mobile 
telecommunication operators. 

One of the main features of a CR device is to be aware of its radio environment and to detect 
available bands. The objective of the research work in this doctoral thesis is to develop a blind digital 
modulation identification algorithm that can be used for STBC-MIMO and STBC-OFDM systems. 
The modulation identification process requires four steps: 1- The extraction of higher order statistics 
(HOS) from the signal; 2- HOS processing (normalization and use of PCA to keep only a subset of HOS 
with large variance); 3- The use of Pattern Recognition tools (ANN, SVM, RF and KNN) for modulation 
classification; 4- The improvement of classification using a decision fusion center. The results obtained 
show the effectiveness of the proposed algorithm. 
 
Keywords: Multi-carrier, Cognitive radio, spectral sounding, blind waveform identification, multiple antennas, 
multiple-input multiple-output systems. 

 

Résumé 
 

Les recherches dans le domaine de la radio cognitive (CR) ont vu le jour afin de répondre aux besoins 
de communication de l'armée ainsi qu'aux besoins dans les secteurs de la sécurité publique. La CR partage 
souvent les mêmes exigences que les opérateurs de télécommunication radio-mobile civile.  

Une des principales fonctionnalités d'un dispositif de radio cognitive est de prendre conscience 
de son environnement radioélectrique et de détecter les bandes disponibles. L’objectif du travail effectué 
dans le cadre de cette thèse de doctorat est de développer un algorithme qui sera utiliser pour 
l’identification aveugle de modulations numériques pour les systèmes STBC-MIMO et STBC-OFDM. 
Le processus d’identification de modulation exige quatre étapes : 1- L’extraction des statistiques d’ordre 
supérieur (HOS) à partir du signal ; 2- Le traitement des HOS (normalisation et utilisation de la PCA 
pour ne garder qu’un sous ensemble de HOS à grande variance) ; 3- L’utilisation des outils de Pattern 
Recognition (ANN, SVM, RF et KNN) pour la classification de modulation ; 4- L’amélioration la 
classification en utilisant un centre de fusion des décisions. Les résultats obtenus montrent l’efficacité de 
l’algorithme proposé. 
 
Mots Clef : Multi-porteuses, Radio cognitive, sondage spectral, identification aveugle de la forme d'onde, antennes 
multiple, Systèmes multiple-input multiple-output. 
 

  ملخص

 
 CRلتلبية كل من الاتصالات العسكرية واحتياجات قطاع السلامة العامة. غالباً ما يتشارك  (CR) المعرفي الادراكي أو ظهرت الأبحاث في مجال الراديو

 .اللاسلكيةمشغلي الاتصالات ع نفس المتطلبات م
بحثي المتاحة. الهدف من العمل ال أو الترددات راديوية واكتشاف النطاقاتكهرو في الانتباه إلى بيئته ال CR تتمثل إحدى السمات الرئيسية لجهاز

 STBC-OFDMو STBC-MIMO أنظمةفي  رقميال عديللمعرفة الت استخدامها يمكن خوارزمية تطوير هو هذه الدكتوراه أطروحةفي 
 (تحسين  HOSمعالجة -)2 ؛ (HOS) رتبة أعلىبحصائيات الإستخراج إستخدام الإشارة المقدرة لا -)1أربع خطوات:  تعديل إلىتتطلب عملية تحديد ال

، ANN ،SVM ،RFCشكال (استخدام أدوات التعرف على الأ -)3؛ )مع تباين كبير HOS لحفاظ على مجموعة فرعية فقط منل  PCAواستخدام
 .ارزمية المقترحةر النتائج التي تم الحصول عليها فعالية الخو ظهِ ت الفرعية. تُ تصنيفاالتصنيف باستخدام مركز دمج التحسين  -)4عديل، لتصنيف الت )KNNو 
 

ظمة متعددة متعددة، أنشكل الموجة، هوائيات الأعمى ل تحديدالالمعرفي، السبر الطيفي، الادراكي أو : الموجات الحاملة المتعددة، الراديو فتاحيةمكلمات 
 .المخرجات متعددة المدخلات
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Introduction 

 

 

Research motivations 

odays, the need for more mobility and ability to share or exchange information at any 

time, using mobile devices (cell phones, personal digital assistant (PDA), laptops) has 

yield the notion of intelligent networks, or cognitive networks very widespread. This 

technological progress makes currently, telecommunications networks in the context of 

cognitive radio one of the most active domains of computer research. 

The increasing on new technologies of wireless applications has considerably limited the 

use of the available radio spectrum, which has become a precious resource. Numerous research 

on the spectrum management shows that the spectrum is rarely used in totality, and that certain 

frequency bands of the radio spectrum are unoccupied, others less occupied and little used. 

The cognitive radio (CR) is a technique to overcome this underutilization of the spectrum 

with which an unlicensed secondary user (SU) seeking to use idle parts of the spectrum when 

transmission from the licensed primary users (PU) is absent. One of the CR functions, called 

spectrum detection, allows a CR device to permanently search for free bands and to detect the 

spectrum holes (frequency band sufficiently free to be able to use them) [1]. 

Spectrum detection is an essential function for increasing the capacity of any CR system. 

To achieve these objectives, the CR must identify certain basic characteristics of the intercepted 

signal, that is: Single-carrier and multi-carriers transmission identification, identification of the 

coding type, and identification of the modulation type [2-3]. 

The digital modulation classification (DMC) process is considered an intermediate step 

between intercepting signals and informations retrieval. The application of DMC is found in 

communication systems such as spectrum monitoring, interference identification, and adaptive 

receivers in software-defined radio (SDR). A lot of research concerning modulation recognition 

methods has been proposed. They have objective to develop rapid and precise algorithms to 

produce acceptable results in real applications. 

Previous published research on the modulation identification topic was limited to single-

input single-output – single-carrier (SISO-SC) systems [4-5], and for multi-input multi-output – 

SC (MIMO-SC) systems [6-7]. Only a few studies deal with the modulation classification 

T
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problem for MIMO-Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems [8-

9]. The contribution that we brought through this thesis is to examine the impact of the joint 

estimation of channel and carrier frequency offset (CFO) on the digital modulations 

identification for MIMO-OFDM systems operating in frequency selective channel and in the 

presence of impulsive noise. 

The DMC problem for MIMO-OFDM systems is more difficult than in the case of 

MIMO-SC systems, because the OFDM technique is extremely sensitive to transmission 

degradations. For cognitive devices, it is highly desirable to develop a DMC algorithm, which is 

robust to synchronization and channel errors for MIMO-OFDM systems. In this context, we 

propose a low-complexity blind and semi-blind joint estimation method of MIMO channels 

and CFO. Furthermore, in most research, the assumption of Gaussian noise is considered. 

However, this assumption is not applicable in railway communications where noise is 

considered not Gaussian and impulsive. The existence of impulsive noise is not often taken as 

a working hypothesis. This is the reason why we are interested in studying this noise, and their 

reduction methods, and this in order to improve the performance of DMC. Contrary to 

Gaussian white noise, impulsive noise has a non-standard statistic; it is generally non-stationary, 

non-Gaussian and of very complex frequency behavior. This considerably degrades the 

transmission characteristics of MIMO-OFDM signal [10]. 

Reducing impulsive noise in the received signal is a difficult task. In this context, various 

studies and measures have been developed to model the heavy-tail impulsive noise. In [11], it 

has been proven that the symmetrical �-stable (^�^) distribution allows it possible to model 

the impulsive noise generated in railway environnements. Authors in [11] - [14] address the 

problem of modulation detection in an impulsive environment. The method introduced in this 

thesis to reduce the effect of impulsive noise is based on Myriad filtering [15]. The results 

obtained are better and reflect the robustness of the methods proposed regarding to 

synchronization and MIMO channels errors, and to impulsive noise. 

The existing DMC algorithms in literature can generally be classified into two categories: 

1) Algorithms based on the criterion of maximum likelihood: these algorithms based on likelihood 

consider the modulation classification problem as an inference task, where the classification 

decisions are taken by maximizing the likelihood function of each candidate modulation type. 

These algorithms characterized by a very high computational complexity, which increases 

significantly with MIMO antennas number [16]. 2) Algorithms based on features extraction, from the 

received signal using a higher order statistical (HOS). These specific features extracted from the 

received signal in order to discriminate the candidate modulation types using a certain classifier. 
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Functionality-based algorithms are efficient in terms of lower computational complexity in 

general and more practical for real-time applications [17]. The HOS used for the features 

extraction, are combined with pattern recognition methods to solve the modulation 

identification problem. The digital modulations types concerned by the identification in this 

thesis are [2, 4, 8]-PSK, [4, 8]-ASK and [16, 64]-QAM. The channels considered for the 

simulations are multipath Rayleigh type. 

Thesis contributions  

The spectrum detection in radio mobile environment is the main function of CR. For this, all 

the parameters that could affect the performance of the detection, such as interference, 

frequency offsets, spatial correlations, and impulsive noise must be estimated. 

The CR detection capacity is improved by identifying several characteristics contained in 

the received signal, that is: the number of transmitted antennas, the noise power, the channel 

effects, the frequency offset, the modulation and the coding type. These detected informations 

from the radio domain are introduced into the operational platform of CR. 

In this thesis, we focus on the identification of the modulations type contained in the 

received signal. The main contributions of this thesis are summarized as follows: 

1- Based on the extraction of HOS and on the pattern recognition methods, we were able 

to identify the modulation type used by MIMO system operating space-time block 

coding (STBC) with spatial correlation. 

2- To improve the quality of the identification, it is necessary to estimate the parameters 

affecting the detected signal. For this, we blindly and semi-blindly estimate the frequency 

offset and the MIMO channels. 

3- The assumption of Gaussian noise is no longer valid for developing and evaluating 

modulation identification algorithms used by CR devices in railway environnements. 

The noise generated in this environnement is of impulsive type. Impulse noise of the 

heavy-tails type, considered the most severe, will significantly degrade the performance 

of the transmission system. This noise is modeled by the symmetrical �-stable 

distribution. To reduce these effects, we will estimate the parameters characterizing this 

noise. These estimates are used to design a Myriad filter (MF). Applying the Myriad filter 

to the MIMO-OFDM system improves these performances. 

The ultimate goal is to build a practical, robust and light classifier that must be able to identify 

almost all the different modulation schemes used in different telecommunications systems and 
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for different transmission scenarios. The modulation type and order must be recognized at the 

same time and without a priori information of the received signal. Processing time must be 

reduced to ensure real-time operating conditions. 

The various studies of the DMC problem over the past decades have made a lot of 

progress, but never have an optimal classifier. Some algorithms require a priori information 

about the signal (for example, carrier frequency, signal bandwidth, baud rate, offset 

synchronization, etc.), others require a high signal to noise ratio (SNR) value. Some classifiers 

are limited to identifying a small number of modulation types; others cannot be used in real-

time applications [1]. 

Therefore, through this thesis we were able to develop an optimal blind classifier of digital 

modulations used by MIMO-OFDM system, and this in a realistic environment characterized 

by the presence of multipath, CFO, and impulsive noise. The results obtained demonstrate the 

effectiveness of the proposed algorithms. 

Thesis organization 

This thesis is divided into three chapters. In the first chapter, we have reviewed the main 

characteristics defining cognitive radio. Then, the second chapter presents the techniques for 

digital modulations classifications in STBC-MIMO systems. Finally, the methods of digital 

modulations identification in MIMO-OFDM systems are studied in chapter 3. 

The first chapter describes the concept of CR, its definition, its architecture, its cycle, and 

its possible applications. 

The second chapter discusses the digital modulation identification process for spatially 

correlated STBC-MIMO systems. In this part, we examine the particular constraints inherent in 

the particular nature of radio environment, which is spatial correlation, radio channel 

interference, etc.  The spatial correlation between the system antennas is a practical problem 

that could decrease the performance of the system. The extraction of HOS, i.e. the 

functionalities as well as their exploits by the pattern recognition algorithms allowed us to 

classify several modulations types with different orders. 

Since the modulation classification in MIMO-OFDM systems has not been discussed 

previously at least to the best of our knowledge, chapter 3 proposes the blind digital modulations 

identification in MIMO-OFDM systems, i.e., multi-carriers or wideband systems. In order to 

improve identification, joint semi-blind channels and CFO estimation, and impulsive noise 

reduction, are necessary. The results obtained reflect the robustness of the developed algorithm 

to the errors introduced by channel. 
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1.1 Introduction 

he radio spectrum is one of the most widely used natural resources around the world, and 

is regulated by government agencies. Most frequency bands are authorized for the long 

term over large geographic areas. Recent studies indicate that many portions of the licensed 

spectrum are not used for long periods of time or in certain geographic areas. A wider range of 

applications operating in unlicensed bands causes overpopulation in this band. It is increasingly 

difficult to find frequency spectra which can be made available either for new services or to 

develop an existing service [1]. 

Consequently, it has become necessary to find new methods for managing radio frequency 

resources. To this end, a new technique, called cognitive radio, has appeared. One of the main 

functions of a CR device is to become aware of its radio environment and to detect the available 

bands [18]. CR is an optimal solution for managing radio frequency resources. This will at some 

point allow unauthorized users (SU) to detect and intelligently access the unoccupied portions 

of spectrum or spectrum holes (see figure 1.1) i.e. which is not used by authorized users (PU). 

 

 

Figure 1.1- Spectrum holes concept [19]. 

 

Cognitive radio systems must also be able to recognize the different wireless networks 

deployed in their environment and their transmission characteristics and to be able to 

communicate with these networks. The identification of the some key characteristics of the 

signals present in the analyzed band can significantly enhance the performance at the receiver’s 

side. 

1.2 From information theory to cognitive radio 

In 1948, Claude Elwood Shannon [20] invented a new theory known as “information theory” which 

has radically changed the vision of modern telecommunications. In his work, Shannon provided 

T
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in particular the answer to a fundamental telecommunications problem concerning the quantity 

of information transferred without errors between two nodes, which communicate in a given 

environment at a given time. However, the rate of information transmitted without error is 

naturally limited by the bandwidth of the communication environment and the signal 

transmission power. Therefore, if one of these three basic resources reaches its limit, we cannot 

effectively transmit information [21]. 

In this context, Joseph Mitola in his research work [18] explained that the inefficient use 

of radio frequency resources (in particular bandwidth) has resulted in a huge waste of these 

resources. 

1.3 The cognitive radio definition 

The “Cognition” is a process by which we acquires knowledge; it regroup the various mental 

processes ranging from perceptual analysis of the environment to motor control via 

memorization, reasoning, emotions and language. 

Cognitive radio is used to describe a radio system with the ability to detect its radio 

frequency environment allowing it to adjust its transmission parameters in an interactive, 

dynamic and autonomous manner. 

This capacity allows each radio device to adapt to current spectral conditions and 

therefore offers users more flexible, efficient and complete access to this resource. This 

approach can significantly improve data throughput and range of links without increasing 

bandwidth or transmission power. The CR also offers a balanced solution to the problem of 

spectrum congestion by first granting priority use to the owner of the spectrum and then 

allowing others to use unused portions of the spectrum [18]. 

1.4 Cognitive cycle 

Introducing a cognitive cycle allows the CR to analyze its context and act accordingly. Many 

variants have been proposed [18, 22-24] but we can reduce all of them to the generic cycle 

presented in figure 1.2. 
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Figure 1.2- The generic cognitive cycle [25]. 

 

This cycle includes four essential capacities for any autonomous agent [26]: 

• The ability to observe: The resource has sensors to collect information on its operational 

context. 

• The ability to orient: The resource influences its environment through its actuators. The 

transmitted signal occupies spectral resources and the applied processing consume 

energy resources. The radio can reconfigure itself and thus modulate this influence 

according to the situation and the objectives of quality of service (QoS). 

• The ability to decide: The resource exploits the information collected to identify the 

most suitable configuration and learn from its experiences. 

• The ability to act: application of the new configuration on the radio. 

1.5 The cognitive radio architecture 

In the literature, there are several architectures of CR according to the studied system [1, 27-

28]. Figure 1.3 represents one of these architectures [27]. 
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Figure 1.3- Cognitive radio architecture [28]. 

 

The functional components of this architecture are: 

1. Cognitive Engine (Intelligent part of CR): The cognitive engine appears as the 

simplified open system interconnection (OSI) stack to perform the modeling, learning 

and optimization processes, which are required to reconfigurate the radio 

communication system. The cognitive engine searches for a solution to the problem in 

its conept space called the objective space. The architectural features of the reconfigurable 

equipment (i.e., available modulation and coding schemes, maximum amplifier power, 

accessible portions of the spectrum) bound this space. The information accumulated by 

the cognitive engine is derived from the radio environment and from the three main 

domains of CR architecture, namely the user domain, the radio domain and the policy domain. 

2. User Domain: The user is directly concerned by the QoS provided by the radio link. 

The QoS is a qualitative concept taking on a different quantitative sens for each 

application. Real-time applications valorize low-latency communications while the 

efficiency of the radio link is measured in terms of throughput for non-real-time 

applications. The user domain transmits information relevant to the user's application 

and must contribute to the optimization of the cognitive engine. 

3. Radio Domain: Radio domain information consists of radio frequency and 

environmental data, which could affect the system’s performances such as propagation 

or sources of interferences. The radio environment provides the communication 
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medium used by the system. Its influence on communication performances depends on 

the developed waveform and the installed receiver. The radio link will become more 

effective if the signal is modulated over a wide bandwidth unless it is perturbed by one 

or more sources of interferences. Likewise, the QoS will be greatly degraded if radio 

operates in a very selective channel without a complex receiver structure. A simpler 

receiver would however be possible in the presence of a direct path [27]. 

4. Policy Engine: This engine receives information about the rules in the policy domain. 

This information helps the CR to avoid prohibited and illegal solutions and to choose 

the best solution among those, which respect the local regulations [1, 27]. 

1.6 The cognitive radio applications 

Figure 1.4 represents a high-level classification of possible CR applications [1, 29]. 

 

Figure 1.4- Classification of cognitive radio applications [29]. 

 

This classification is based on the relationship between each application and the cognitive 

concept: 

1. Wireless ressources optimization: These resources include spectrum, power, 

network, hardware/software, etc. 

2. Communication quality enhancing: For example. Improving link reliability. 

3. Interoperability enabling: This is one of the most desirable features of CR. 

Interoperability allows two or more communication systems to exchange information. 

4. Service specific: It is the services and users needs in private, public and military sectors. 

In general, some targeted applications belong to different groups, for example: transmit traffic 

congestion information to the mobile in advance and maintain communication in disaster 



Chapter 1.  Introduction to Cognitive Radio 

12 

 

situation, etc., can take advantage of applications set and they can work together to improve 

wireless communications [1, 29]. 

1.7 The cognitive radio functions 

The CR includes many functions (steps) to permanently analyze the spectrum and determine 

the PU and SU. Figure 1.5 describes the different functions that must be integrated into the 

cognitive user in order to create the CR network. 

 

 

Figure 1.5- Cycle and functions of cognitive radio [30-32]. 

 

There are four main functions of CR: 

1.7.1 Spectrum sensing 

Spectrum sensing consists of determining the presence of PU (detection of unused spectrum or 

spectrum hole), and sharing the detection result with other users [32]. In particular, a CR 

transceiver periodically detects unused spectrum and determines the access method without 

interfering with the transmission of licensed data. There are two types of spectrum detection: 

- Centralized spectrum detection: A detection controller detects the target frequency band and 

shares information with other nodes in the system. 

- Distributed spectrum detection: A distributed detection consists in cooperative sensing 

detection that depends not only on the user’s strategy but also on the strategies taken 

by other users, without the detection controller. 
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1.7.2 Spectrum management 

The CR should decide on the best spectrum band to answer the QoS requirements on all 

available frequency bands. Therefore, spectrum management is necessary for CR with its two 

functions: 

- Spectrum analysis is used to characterize different spectrum bands, which allows exploiting 

user requirements in terms of the spectrum band. 

- Spectrum decision determines the data rate, transmission mode and transmission 

bandwidth. Then, the appropriate spectrum band is selected based on the spectrum 

characteristics and the user needs. 

1.7.3 Spectrum sharing 

The CR allocates the spectrum hole to SU when PU does not use it. This property is described 

as spectrum sharing. 

- Underly spectrum sharing: is the availability of access to the radio spectrum with a minimum 

transmission power so that the temperature of the interference above the preset 

thresholds is not increased [33]. 

- Overlay spectrum sharing: In this technique, unlicensed users can use a spectrum band for 

a fraction of time where licensed users underuse this band. 

1.7.4 Spectrum mobility 

This process allows the SU to change its operating frequency. CR networks try to use the 

spectrum dynamically by allowing radio terminals to operate in the best available frequency 

band, to maintain transparent communication requirements during the transition to a better 

frequency [34]. 

1.8 From software radio to cognitive radio 

In 1995, Joseph Mitola proposed a new concept called Software Radio (SR) [35]. This concept 

allows equipments to communicate with any radio communication standard, without changing 

any hardware component and only by modifying the integrated software. This technology, 

which may seem very simple at first, not only introduces many new advantages, but also raises 

many technological challenges. Mitola understood the necessity to integrate, simultaneously 

intelligence into the network and equipment in order to respond the user needs and resource 

constraints, resulting in increased spectral efficiency. That is why he proposed the idea of CR 

[18]. 
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1.9 Conclusion 

The purpose of this chapter was to introduce the concept of cognitive radio. Indeed, a detailed 

description of the CR and these characteristics in terms of its architecture, these functions and 

these applications. CR permit to the transmission system to become aware of its radio frequency 

environment, and therefore to seize opportunities by detecting spectrum holes to improve 

spectral efficiency. 

The objective of the CR is to give a communication system the ability to make these types 

of decisions independently. It is even highly desirable that our telecommunications devices can 

intelligently execute this reasoning precisely. 

This intelligence allows the equipment to choose the best conditions to meet their 

communication needs. The choice ideally implies a real-time change of the transmission 

parameters, or even a change of standard. To do this optimally, Mitola has shown that an SR. 

should achieve real-time change. He concluded that CR would be more effective if supported 

by SR technology. 

In Chapter 2, the techniques used in digital modulation classification in STBC-MIMO 

systems will be studied. 
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2.1 Introduction 

n the signal processing, the source separation is used to extract initial signals from a mixture 

of several signals detected by a receiver (SU). According to the context (the signal’s type, the 

channel’s propagation type, the receiver’s type, etc.) there exist different methods of sources 

separations. 

Therefore, waveform identification or waveform knowledge is very beneficial for CR 

devices. In this chapter, the transmission characteristics identified by the CR device including 

the identification of the number of transmit antennas and the recognition of the modulation 

used for the transmission process. The important contribution in this chapter consists in the 

development of a blind modulation identification algorithm for STBC-MIMO systems spatially 

correlated and in the presence of channel estimation errors [7, 36]. 

We will start by mathematically formulating the signal transmitted in baseband for the 

MIMO system, and the STBC-MIMO system. Next, we contribute the digital modulation 

identification algorithm in STBC-MIMO systems, and we finish by providing and explaining 

the results of the simulations. 

2.2 Basic principles of modulation 

The aim of the modulation process is to transfer a signal (whether it is analog or digital) over a 

channel to a given destination. The data are carried by a radio frequency carrier in the form of 

a sinusoid called carrier wave. A modulated carrier wave has the following form: 

 S0f7 = g0f7 ∙ cosi23jkf + Q0f7m= ℜ ng0f7 ∙ exp o2i23jkf + Q0f7mpq== ℜ rg0f7 ∙ expi2Q0f7m ∙ exp0223jkf7sℜ tu0f7 ∙ exp0223jkf7v
 (2.1) 

 

where g0f7 is the signal amplitude, Q0f7 is his phase, jk is the carrier frequency, and the function u0f7 = ℜrg0f7 ∙ expi2Q0f7ms is the baseband signal. 

Carrier-wave based modulation is the process of varying one or more properties of the 

carrier signal, with a modulating signal that typically contains information to be transmitted. In 

addition, the signal is transmitted at a given frequency, which may be different for different 

users. There are different modulation types modifying different parameters of the carrier 

including [37]: 

I
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- Amplitude Shift Keying (ASK), 

- Phase Shift Keying (PSK), 

- Quadrature Amplitude Modulation (QAM), 

We note 5 the number of bits per binary symbol. Therefore, we have � = 2* possible symbols. 

To simplify the writing of modulated signals, we model the bit stream by independent and 

identically distributed (i.i.d) random variables (r.v). In addition, we will admit that the bits are 

equiprobable, i.e., the probability of occurrence of a “0” or a “1” equals to 
+!. For the amplitude g0f7, we assume without loss of generality that the symbol’s constellation is normalized, i.e the 

average energy of the symbols is unitary (D%|S|!( = 1). 

2.2.1 ASK modulation 

The ASK modulation includes manipulating the amplitude of a carrier according of the 

baseband signal (see figure 2.1). The general expression of the modulated signal written as: 

 S0f7 = ∑ �)y;z0f − 4V7) cos023jkf7= ST0f7 cos023jkf7  (2.2) 

 

where the function y;z0f7 is the impulse response filter of the pulse shaping at the transmitter. 

The signal ST0f7 changes the amplitude of the carrier {0f7 = cos023jkf7. We will take a priori 

an alphabet �) ∈ t±4�|4 = 1, 3, … , 0� − 17v. 

 

 

Figure 2.1- �-ASK modulation constellation. 

 

2.2.2 PSK modulation 

The PSK modulation includes manipulating the phase of a carrier according of the baseband 

signal (see figure 2.2). The general expression of the digitally modulated phase signal written as: 

 S0f7 = ∑ cos023jkf + �)7 y;z0f − 4V7)= ST0f7 cos023jkf7 − SU0f7 sin023jkf7 (2.3) 
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The signal ST0f7 changes the amplitude of the carrier cos023jkf7, while the signal SU0f7 

changes the amplitude of the carrier sin023jkf7. We call the first carrier the carrier in phase, and 

the second the carrier in quadrature. We can take a priori an alphabet �) ∈ nQR +
!�)� |4 = 0, 1, … , 0� − 17q where QR is the phase offset. In the following, we consider some 

special cases of PSK: 

 Binary-PSK (BPSK) modulation: with this modulation type, each symbol could indicate two 

states (� = 2), one bit per symbol (0 or 1), and two different phases (�R = 0, �+ = 3 

with QR = 0). 

 Quadrature-PSK (QPSK) modulation: is a simple extension of the BPSK by adding two 

additional phases (�R = �� , �+ = ��� , �! = ���� , �� = ���  with QR = ��). Each symbol 

could indicate four states (� = 4), two bits per symbol (00, 01, 11 ou 10). 

 
Figure 2.2- �-PSK modulation constellation (� = 2, 4). 

2.2.3 QAM modulation 

The ASK and PSK modulations can be combined to create QAM modulation. In the same way 

as QPSK, the signal with QAM can be represented as a combination of components in phase 

and in quadrature (see figure 2.3), but the constellation points are distributed on all the area of 

the constellation diagram rather than on the circle as for �-PSK. This is achieved by amplitude 

modulation at several levels of each component. The �-QAM signal can be written as follows: 

 S0f7 = ∑ �) cos023jkf + c)7 y;z0f − 4V7)= ST0f7 cos023jkf7 − SU0f7 sin023jkf7  (2.4) 

 

As for phase modulation, ST0f7 and SU0f7 modify the amplitude of the carrier in phase and in 

quadrature, respectively. 

BPSK QPSK 
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Figure 2.3- �-QAM modulation constellation (� = 16). 

2.3 MIMO system 

The technological development of wireless communications depends on many technologies 

such as the large-scale implementation of integrated circuits, energy storage, and antennas, etc. 

The MIMO technology has been one of the major contributions in the wireless communications 

domain for several decades until today. The spatial diversity created by MIMO systems increases 

capacity, and the transmission rate. On the other hand, MIMO systems permit to combat the 

fading of multipath channel (see figure 2.4). 

 

 

Figure 2.4- Principle of improving the power level at receiver by the antennas diversity effect 

[38]. 

2.3.1 MIMO techniques 

MIMO techniques are designed to improve significantly the performance of wireless mobile 

communications. These techniques use multiple antennas on transmission and/or reception in 

order to improve the quality of the SNR and/or the communication capacity. A MIMO system 

can provide two types of gain; a gain in spatial diversity and a gain in spatial multiplexing: 

- Spatial diversity: The same signal is transmitted simultaneously on different 

transmitting antennas. Several copies of the transmitted signal pass through different 
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independent propagation paths with flat fading. At the receiver, the signals received on 

each of the receiving antennas are then re-phased and summed coherently. In a MIMO 

system with �
 transmit antennas and �� receiving antennas, the maximum diversity 

gain is 0�
 ∙ ��7, assuming that the path gains between each pair of transmit-receive 

antennas are i.i.d [38]. Smart antenna techniques [39], Alamouti coding [40] and space-

time (ST) codes [41] are well-known spatial diversity techniques. Spatial diversity 

techniques improve the reliability of communication in fading channels, eliminating the 

effects of fading thus increasing the transmission SNR. For these techniques to be 

effective, the MIMO subchannels must be decorrelated (independent).  

- Spatial multiplexing: If spatial diversity is a way of eliminating fading, spatial 

multiplexing is a way of exploiting this fading to increase the transmission rate. The 

MIMO systems can achieve orthogonal sub channels between the transmitters and 

receivers antennas through a rich scattering environment and consequently increase the 

data rate. The signals received on the receiving antennas are combined to reconstruct 

the original signal. In a MIMO system with �
 transmitting antennas and �� receiving 

antennas, for a high SNR, Foschini [42] and Telatar [43] have shown that the channel 

capacity increases linearly with 4 = min0�
, ��7, if the sub-channel gains are i.i.d. 

BLAST (Bell Labs Layered Space-Time) technique [42] is a spatial multiplexing 

technique. As for MIMO diversity, the propagation subchannels must be decorrelated. 

2.3.2 An overview of a MIMO system 

With the assumption that the MIMO paths are not correlated, the MIMO channels have a higher 

capacity compared to the SISO channels [44]. 

First, we consider a narrowband MIMO channel with �
 transmit antennas at the PU 

side, and we assume that there are �� ≥ 1 antennas at the CR mobile terminal (SU). The SU 

receiver detects multiple primary sources (PS) where the PS is the signal of a PU. 

Let VM = 1 jM�   the sampling period. The signal received at a sampling time VM at the 5�-

th antenna is written as: �*�05VM7 = S̃*�05VM7 + �*�05VM7 (2.5) 

 

where S̃*�05VM7 is the superposition of the possible simpled PS signals including the effects of 

path-loss, multi-path fading and time dispersion, and �*�05VM7  is the noise. To simplify the 

notation, let �*�057 ≜ �*�05VM7, S̃*�057 ≜ S̃*�05VM7, and �*�057 ≜ �*�05VM7 [1]. 
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In presence of �
 primary sources (1 ≤ 5
 ≤ �
), the signal received by the 5�-th antenna is 

written as: 

 �*�057 = ∑ ∑ ℎ*�,*�05, �7S*�05 − �7��+��R'�*��+ + �*�057,     5 = 1,2, …. (2.6) 

 

where S*�057 is the 5-th symbol transimitted by the 5
-th primary sources, N is the number of 

the channel coefficients, also called channel order, between PU and each antenna of SU, and ℎ*�,*�05, �7 is the 0� + 17-th coefficient of the channel impulse response between 5
-th 

transmitted antenna of a PU and the 5�-th received antenna of a SU at instant 5. The MIMO 

system is expressed in matrix form as: 

 

⎣⎢⎢
⎡ �+057�!057⋮�'�057⎦⎥⎥

⎤
���� �¡0*7

= ⎣⎢⎢
⎢⎡ H+,+057 H+,!057 ⋯ H+,'�057H!,+057 H!,!057 ⋯ H!,'�057⋮ ⋮ ⋮ ⋮H'�,+057 H'�,!057 ⋯ H'�,'�057⎦⎥⎥

⎥⎤
������������������������ �£0*7

¤057 + ⎣⎢⎢
⎡ �+057�!057⋮�'�057⎦⎥⎥

⎤
���� �¥0*7

,   5 = 1, 2, … (2.7) 

 

where ¤057 = ¦S+057, … , S+05 − N + 17, … , S'�057, … , S'�05 − N + 17§;
. The vector H*�,*�057 = ¦ℎ*�,*�05, 07, … , ℎ*�,*�05, N − 17§ represents the channel coefficients between 

the 5
-th transmitted antenna of a PU and the 5�-th received antenna of a SU at instant 5. 

Let us consider � consecutive samples and define the corresponding signal/noise vectors: 

 

⎩⎪⎨
⎪⎧¡'057 = ¦�+057, … , �+05 − � + 17, … , �'�057, … , �'�05 − � + 17§;

¤'057 = ¦¤+;057, … , ¤'�; 057§;
¥'057 = ¦�+057, … , �+05 − � + 17, … , �'�057, … , �'�05 − � + 17§; 

 

where ¤*�057 = ¦S*�057, S*�05 − 17, … , S*�05 − N − � + 17§;
. The signal model is expressed 

in matrix form as: ¡'057 = £'057¤'057 + ¥'057 (2.8) 

 

where £' is a matrix of ��� × �
0N + �7 written as : 
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£'057 = ⎣⎢⎢
⎢⎡ £+,+057 £+,!057 ⋯ £+,'�057£!,+057 £!,!057 ⋯ £!,'�057⋮ ⋮ ⋱ ⋮£'�,+057 £'�,!057 ⋯ £'�,'�057⎦⎥⎥

⎥⎤ 
 

where the matrix £*�,*� of � × 0N + �7 is defined by: 

 

£*�,*� = ⎣⎢⎢
⎢⎡H*�,*�057 ­ ⋯ ­­ H*�,*�05 − 17 ⋱ ⋮⋮ ⋱ ⋱ ­­ ⋯ ­ H*�,*�05 − � + 17⎦⎥⎥

⎥⎤ 
 

In the rest of this thesis, we assume that ¥057 is an additive white Gaussian noise (AWGN) 

vector with zero mean and variance �®!. 

The SNR is the ratio of the average received signal power from PU to the average receiver 

noise power, that is: 

SNR = ¯¦‖¡0*7�¥0*7‖°§¯%‖¥0*7‖°(  (2.9) 

 

In general, modeling a MIMO channel can be applied to evaluate correctly the 

performance of a given system and to create the exemplary channels. The precise channel model 

obtained will allow us to understand it and also to make precise hypotheses on the system 

conception. 

The purpose of the following subsection is to evaluate the performance of a MIMO 

system with correlated channels. 

2.3.3 Spatial correlation models 

Different correlative models have been proposed for MIMO such as the Kronecker model, and 

the exponential model. We focus on the first model in this thesis. 

The spatially correlated MIMO channels are modeled by the Kronecker model [45]. To 

reduce the complexity of analysis, this channel model assumes that the spatial correlations 

between the receiving antennas are independent of the correlations between the transmitting 

antennas. Under this hypothesis, we show that the Kronecker model is given by: 

 £ = ±�+ !⁄ £²±
+ !⁄  (2.10) 
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where ±
 of 0�
 × �
7 and ±� of 0�� × ��7, are the emission and reception correlation 

matrices, respectively. £² of 0�� × �
7 is a matrix containing a circularly symmetric complex 

Gaussian (CSCG) and i.i.d variables with zero mean and variance equal to unity. The equivalent 

Kronecker model describing the total correlation of the channel ±³ perhaps express by the 

Kronecker product “⊗” of the correlation matrices ±
 and ±� [46]: 

 ±³ = ±
 ⊗ ±� (2.11) 

 

The two matrices ±
 and ±� are expressed, respectively, by the transmit correlation coefficient 	
 and the receive correlation coefficient 	�: 

 

´%±
([,µ = 	
|[�µ|,    \, 2 = 1, … , �
%±�([,µ = 	�|[�µ|,    \, 2 = 1, … , �� (2.12) 

 

The correlation matrices can be presented by the exponential correlation model, which was 

introduced in [46], and developed in [47]. This model defines the elements of the correlation 

matrix ± by a single coefficient: 

%±([,µ = ¶	µ�[,          \ ≤ 2%±²(µ[∗ , \ > 2  (2.13) 

 

where |	|  < 1 and ±² = £²£²ℋ. The curves in figure 2.5 show the cumulative distribution 

function (CDF) versus the capacity of a correlated MIMO system. 

 

Figure 2.5- CDF versus the channel capacity using the Kronecker model and the exponential 

model, for different correlation coefficients. 	
 = 	� = 	. �
 = 2, �� = 2. SNR=10dB. 

BPSK modulation. 
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2.4 Space-time coding 

Hoping to reduce the exponential complexity of the decoder used in Space-Time Trellis Coding 

(STTC) [48], Alamouti [40] proposed a simple scheme of space-time diversity at the transmitter 

side, subsequently extended by Tarokh and al. [49], in order to forming a new class of space-

time codes called space-time block coding. According to Tarokh [49], STBC codes can be seen as 

an orthogonal design and a linear application, which applied to the complex vector of 

information data symbols ¤[ ≜ ¦S[¹, S[¹º+, … , S0[º+7¹�+§;
 gives in the output the matrix »k0¤[7 

of ¼ × �
 where ¼ is the length of the code STBC and ½ being the length of the data vector 

before coding. This matrix should satisfy the following orthogonality property: 

 »kℋ»k = ‖¤[‖!!Y'�×'�  (2.14) 

 

The most studied criterion [48] when designing STBC codes is diversity. This diversity can be 

characterized by the number of independent detectable paths at the receiver side for each 

transmitted symbol. In addition, it also depends on the number of antennas at the transmitter 

and receiver. The objective of using STBC is to achieve maximum diversity gain with the 

smallest number of antennas. The rate of an STBC code, ", represents the number of coded 

symbols transmitted per symbol period, and defined by " = ½ ¼� . Also, ¼ represents the 

number of symbol periods (or the time-slots) that the receiver must wait before starting to 

decode the symbols coded from the same matrix »k . In summary, STBC codes are designed to: 

• Maximize the rate of the code, 

• Minimize the number of antennas, 

• Maximize the gain of diversity. 

Table 2.1 shows three types of STBC code, which are the most, used in the literature. 

Table 2.1. Different types of STBC code with different rate. 

Alamouti (¾¿�) [40] OSTBC3 (¾À) [41, 49] OSTBC4 (¾Á) [41, 49] 

Â SR S+−S+∗ SR∗Ã 

⎣⎢
⎢⎢⎢
⎢⎢
⎡ SR S+ S!−S+ SR −S�−S!−S�SR∗−S+∗−S!∗−S�∗

S�−S!S+∗SR∗S�∗−S!∗

SRS+S!∗−S�∗SR∗S+∗ ⎦⎥
⎥⎥⎥
⎥⎥
⎤
 

⎣⎢
⎢⎢
⎢⎢⎢
⎡ SR S+ S! S�−S+ SR −S� S!−S! S� SR −S+−S� −S! S+ SRSR∗ S+∗ S!∗ S�∗−S+∗ SR∗ −S�∗ S!∗−S!∗ S�∗ SR∗ −S+∗−S�∗ −S!∗ S+∗ SR∗ ⎦⎥

⎥⎥
⎥⎥⎥
⎤
 

�
 = 2, ½ = 2, ¼ = 2 �
 = 3, ½ = 4, ¼ = 8 �
 = 4, ½ = 4, ¼ = 8 



Chapter 2.                                                    Digital Modulation Classification in STBC-MIMO Systems 

25 

 

A comparison is presented in figure 2.6, in terms of bit error rate (BER) between different STBC 

codes (Alamouti, Orthogonal-STBC3 (OSTBC3), and Orthogonal-STBC4 (OSTBC4)) and 

spatial multiplexing (SM). The Rayleigh fading channel for two types of QPSK and 16QAM 

modulation. 

 

Figure 2.6- BER versus SNR, of STBC coding in a Rayleigh fading channel for two types of 

modulation. 

 

Note that antennas gain increases SNR, while diversity gain reduces fading. 

2.4.1 A special case: Alamouti coding 

STBC coding of Alamouti type [40] is characterized by two transmitting antennas (�
 = 2) and �� ≥ 1 receiving antennas, so ½ = ¼ = 2. 

To transmit u bits, we use a modulation technique that maps the u bits according to a 

real or complex constellation (QAM ou PSK …etc.,) to generate data symbols. The Alamouti 

coder divides the data stream into several substreams. Each substream is composed of two 

consecutive symbols. Therefore, the coder processes two successive symbols of the 

constellation at the same time (¤[ ≜ %S![, S![º+(;), such that S![ and  S![º+ are sent, 

simultaneously, during a first time-slot (Ç = 1), by the two transmitting antennas 5
 = 1 and 5
 = 2, respectively. During the second time slot (Ç = 2), the encoder sends, simultaneously, 

the symbols 0−S![º+∗ 7 and S![∗  to the antennas 5
 = 1 and 5
 = 2, respectively. The data matrix 

after STBC coding corresponding to the symbols %S![, S![º+( is defined as: 

 

»¿�0¤[7 = Â S![ S![º+−S![º+∗ S![∗ Ã (2.15) 
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This code provides a total diversity equal to 2��. The decoding used is based on the maximum 

likelihood algorithm. The results obtained are much higher than that obtained using a single 

antenna [20], see figures 2.6 and 2.7. 

 

Figure 2.7- BER versus SNR, using Alamouti coding and a Single-Input Multiple-Output 

(SIMO) system in a Rayleigh fading channel with QPSK modulation. 

 

We can introduce another form of STBC(�
, ½, ¼) coding, where the ST coder generates matrix 

blocks of size ¼ × �
 using the following expression [50-51] : 

»k0¤[7 = ÂW+¤[, W!¤[ , … , WÈ¤[Ã;
 (2.16) 

 

where ¤[ = Âℜ%S[¹(, ℜ%S[¹º+(, … , ℜ¦S0[º+7¹�+§, ℑ%S[¹(, ℑ%S[¹º+(, … , ℑ¦S0[º+7¹�+§Ã;
. 

We take an example of Alamouti coding (STBC02,2,27), the two coding matrices written 

as: 

ËW+ = Ì1 0 2 00 1 0 2Í
W! = Ì0 −1 0 21 0 −2 0Í 

2.5 Digital modulation classification algorithm  

In this section, we will study the problem of blind identification or classification of several types 

of digital modulations from a mixture of received signals, for STBC-MIMO system using a 

correlated and noisy channel. 

A structure for blind-DMC (BDMC) for a transmission system using the STBC-MIMO 

technique is given in figure 2.8. 
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Figure 2.8- Structure of a blind digital modulation classification process in STBC-MIMO 

system. 

 

To identify the parameters of an unknown received signal, we propose to estimate at first the 

number of transmitting antennas. This estimate limits the number of possible codes. Then we 

estimate the noise power �Î®!. After that, the recognition of the communication coding ÏÐ is 
performed, then a channel estimation technique £Ñ  is employed. At the end, we determine the 

modulation ℳÑ  of the transmitted symbols. 

2.5.1 Basic model of modulation identification for STBC-MIMO systems 

A block diagram of a blind modulation identification in STBC-MIMO system with �
 transmit 

antennas and �� receiver antennas (�� ≥ �
) is illustrated in figure 2.9. 

 

Figure 2.9- A block diagram of the modulation identification process at the receiver [7, 36]. 

 

By applying an STBC coding to the complex vector of data ¤[ of size (½ × 1), we construct a 

matrix Ò[ of size (�
 × ¼) as follows: Ò[ = »k;0¤[7 (2.17) 
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The entries of Ò[ are linear combinations of the elements of ¤[ and their conjugates. The source 

symbols Ò[ are assumed i.i.d. 

The channel is considered quasi-static. The received signal vector at time Ç for \-th block 

is written: ¡[,Ó = £X[,Ó + ¥[,Ó (2.18) 

with: 

⎩⎪⎨
⎪⎧¡[,Ó = Â�[ÈºÓ0+7 , �[ÈºÓ0!7 , … , �[ÈºÓ0'�7 Ã; :  received signal vector ;

X[,Ó = ÂP[ÈºÓ0+7 , P[ÈºÓ0!7 , … , P[ÈºÓ0'�7 Ã; : transmitted source signal vector ;
¥[,Ó = Â�[ÈºÓ0+7 , �[ÈºÓ0!7 , … , �[ÈºÓ0'�7 Ã; : AWGN vector, where ¥0Ý7 ∼ ßi0, �®!Y'�m;

 

 

And the MIMO channel matrix £ of 0�� × �
7 is considered complex and spatially correlated: 

 

£ ≜ à ℎ0+,+7 ℎ0+,!7 … ℎ0+,'�7ℎ0!,+7 ℎ0!,!7 … ℎ0!,'�7⋮ ⋮ ⋮ ⋮ℎ0'�,+7 ℎ0'�,!7 … ℎ0'�,'�7
á 

For the \-th block, the matrix form of the received signal is written: 

 â[ = £Ò[ + ã[ (2.19) 

where: 

â[ ≜
⎣⎢
⎢⎢
⎡�[Èº+0+7 �[Èº!0+7 … �0[º+7È0+7
�[Èº+0!7 �[Èº!0!7 … �0[º+7È0!7⋮ ⋮ ⋮ ⋮�[Èº+0'�7 �[Èº!0'�7 … �0[º+7È0'�7 ⎦⎥

⎥⎥
⎤ =

⎣⎢⎢
⎢⎡ ¡[0+7

¡[0!7⋮¡[0'�7⎦⎥⎥
⎥⎤  ; 

Ò[ ≜
⎣⎢
⎢⎢
⎡P[Èº+0+7 P[Èº!0+7 … P0[º+7È0+7
P[Èº+0!7 P[Èº!0!7 … P0[º+7È0!7⋮ ⋮ ⋮ ⋮P[Èº+0'�7 P[Èº!0'�7 … P0[º+7È0'�7 ⎦⎥

⎥⎥
⎤ =

⎣⎢⎢
⎢⎡ X[0+7

X[0!7⋮X[0'�7⎦⎥⎥
⎥⎤  ;  

ã[ ≜
⎣⎢
⎢⎢
⎡�[Èº+0+7 �[Èº!0+7 … �0[º+7È0+7
�[Èº+0!7 �[Èº!0!7 … �0[º+7È0!7⋮ ⋮ ⋮ ⋮�[Èº+0'�7 �[Èº!0'�7 … �0[º+7È0'�7 ⎦⎥

⎥⎥
⎤ =

⎣⎢⎢
⎢⎡ ¥[0+7

¥[0!7⋮¥[0'�7⎦⎥⎥
⎥⎤  ; 
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2.5.2 Additive Gaussian noise model 

In probability theory and statistics, the Gaussian distribution is one of the most suitable 

probability distributions for modeling generated processes by the superposition of many 

independent effects (this is the case of thermal noise). Additive noise resulting from the 

superimposition of several i.i.d random signals different from the useful signal. We assume that 

the average noise power is the same on the different receiving antennas and that the noise is 

spatially independent. The second order statistics of a Gaussian noise are equal to D¦¥[¥[ℋ§ =�®!Y'� , where �®! is the average noise power on each receiving antenna, and ¥[ =
Â�[0+7, �[0!7, … , �[0'�7Ã;

. Then, the probability density of the noise vector ¥[ is given by the 

relation: 

j0¥[7 = +i!�äå°mæ� °⁄ exp ç− +!äå° ‖¥[‖!è (2.20) 

 

In general, a system designed according to the Gaussian hypothesis will produce serious 

performance degradations when the noise statistics are based on heavy-tails models [52]. 

2.5.3 Estimated number of transmitting antennas 

In a non-cooperative context, the number of transmitting antennas is unknown information to 

the receiver, which must blind estimated from the received samples [53]. 

Most of estimating methods for the antennas number available in the literature 

approximate the distribution of transmitted signals by the Gaussian distribution. Generally, this 

approximation motivated by two reasons [53-56]: 

- The received samples on each antenna are composed of a mixture of several i.i.d random 

variables and of Gaussian additive noise. 

- The Gaussian distribution is relatively simple to manipulate because its statistics of first 

order (mean) and second order (covariance matrix) fully describe it. 

Therefore, the method chosen in our work is a sequential test. This method based on second 

order statistics. The technique for estimating the number of transmitting antennas consists in 

maximizing the probability of obtaining the samples â relative to the antennas number é [53, 

56-57]. This probability is called the likelihood function of the parameter é and is denoted by Λ%â|é(. When the transmitted signals are Gaussian, the logarithm of the likelihood function 

expressed in the form [58]: 
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log0Λ%â|é(7 = �0�� − é7. log ëo∏ íÑîzæ�îzïðñò p òæ�óð
òæ�óð ∑ íÑîzæ�îzïðñò ô (2.21) 

 

The term in parentheses corresponds to the ratio of the geometric mean and the arithmetic 

mean of the smallest 0�� − é7 eigenvalues λö*z . In the case where the 0�� − é7 smaller 

eigenvalues are equal, we will have log0Λ%â|é(7 = 0. In practice, a possible detecting method 

of the antennas number consists to achieve a sequential hypothesis test. By initializing the value é to 0, the estimated antennas number corresponds to the first value é for which log0Λ%â|é(7 ÷ 0. The nullity test of likelihood function can be performed by a threshold 

detector. When the function log0Λ%â|é(7 is approximately zero, the distribution of the statistic −2 log0Λ%â|é(7 ≤ dø follows a ù! law of degree 0ú − é7! − 1 [59]. The detection threshold 

of the test, noted dø, is then set from a probability of false alarm (P�� = 10��) and the estimated 

antennas number, �Ñ
, corresponds to the first value of é respecting −2 log0Λ%â|é(7 ≤ dø. To 

illustrate the principle of the test, figure 2.10 presents the value of the statistic −2 log0Λ%â|é(7 

and the detection threshold for a MIMO communication (�� = 5, �
 = 2). The first index é 

for which the statistic −2 log0Λ%â|é(7 is less than the threshold, here 2, corresponds to the 

number of transmitting antennas. 

The detection method by sequential hypothesis test makes it possible to identify between 

0 and �� − 1 transmitting antennas. Its use requires fixing a detection threshold based on the 

probability of false alarm. 

 

Figure 2.10- Detection of antennas number by sequential test. Example for a MIMO system 

(�� = 5, �
 = 2), with � = 512, and SNR�� = 0dB. 



Chapter 2.                                                    Digital Modulation Classification in STBC-MIMO Systems 

31 

 

2.5.4 Equalization algorithms in MIMO 

In this section, we present the equalization algorithms that are used in our study: 

2.5.4.1 ZF algorithm 

The Zero-Forcing (ZF) technique applied to remove some ambiguity from the received 

symbols. This technique consists in applying an equalization matrix ûü$ on the received vector ¡[ [38]. This matrix ûü$ is defined by: 

 ûü$ = £# = 0£ℋ£7�+£ℋ (2.22) 

 

where £# is the pseudo-inverse of the channel matrix £. The transmitted signal is estimated by: 

 ¤Î[ = ûü$¡[ = ¤[ + 0£ℋ£7�+£ℋ¥[ (2.23) 

 

Here we assume perfect channel state information (CSI) at the receiver side (semi-blind 

classifier). The ZF equalization is usually increases the noise level. This is the reason why we 

have considered another equalizer type. 

2.5.4.2 MMSE algorithm 

The Minimum Mean Square Error (MMSE) technique searches a matrix ûþþ#�, which 

minimizes the mean square error between the transmitted signal ¤[ and an equalized version of 

the received signal ¡[ [60]: �! = D%0¤[ − ûþþ#�¡[7ℋ0¤[ − ûþþ#�¡[7( (2.24) 

 

The linear solution of MMSE is given by: 

 ¤Î[ = ûþþ#�¡[ = i�®!Y'� + £ℋ£m�+£ℋ¡[ (2.25) 

 

The MMSE equalizer can minimize the global error caused by noise and mutual interference 

between received signals [60]. 

Figure 2.11 shows the BERs of both the MMSE and ZF equalizers along with the 

Maximum Likelihood (ML) detector, and this for STBC-MIMO system using QPSK 

modulation and operating in Rayleigh fading channel. 
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Figure 2.11- BER versus SNR of the ZF and MMSE equalizers and the ML detector for 

STBC-MIMO system with a configuration (2×2) and QPSK modulation. Fading channel is 

Rayleigh type. 

 

In the three previous cases, we assume that CSI is available at the receiver. Otherwise, channel 

estimation must be performed. In this chapter, we will study the impact of channel estimation 

errors on the performance of the modulation identification process. Therefore, we model the 

estimated channel as follows: £Ñ = £ + � £² (2.26) 

 

where the elements of £² are i.i.d and CSCG variables with zero mean and variance equal to 

unity, and � ! represents the variance of channel estimation error. 

2.5.4.3 SCMA algorithm 

Other types of equalization algorithms exist in the literature; inspired by Blind Source Separation 

(BSS) algorithms [61-62]. Among these methods, we used a simplified method of the Constant 

Modulus Algorithm (CMA) called Simplified-CMA (SCMA). This algorithm is designed for blind 

separation and recovery of source symbols (without CSI). Using an equalization matrix � of 

size 0�� × �
7, where � = ¦�+, �!, … , �'�§, we have: 

 

�0\7 = �ℋ¡[ = �ℋ£¤[ + �ℋ¥[ (2.27) 

 

B
it

 E
rr

o
r 

R
a
te



Chapter 2.                                                    Digital Modulation Classification in STBC-MIMO Systems 

33 

 

The transmitted symbols ¤[ are determined using a permutation matrix � and a diagonal matrix � as follows: û = �ℋ£ = �� (2.28) 

 

Indeed, the SCMA criterion uses only one dimension, for example the real part (or the imaginary 

part) of signal. The SCMA based on the minimization of the following cost function: 

 

�	#
þ�0�7 = ∑ D Ìoℜi�*�0\7m! − "p!Í'�*��+Subject to ∶  �ℋ� = Y'�
 (2.29) 

 

where " = ¯¦ℜ0�0[77�§¯%ℜ0�0[77°( is the dispersion constant. SCMA implemented using the stochastic 

gradient (SG) algorithm. The equalization update equation is obtained by calculating the 

gradient of 	#
þ� as follows: ��*�0\7 = ��*�0\ − 17 − Q[�[¡[ (2.30) 

 

where Q[ is the SG step size, �[ = oℜi�*�0\7m! − "p ℜi�*�0\7m is the error signal, and ¡[ is 
the pre-whitened received signal [63]. 

2.5.5 Features extraction 

One of the important aspects of modulation identification is the selection of the proper features 

using a HOS from the received signal. Previous works have shown that higher order cumulants 

(HOC) and higher order moments (HOM) of the received signal are among the best candidates 

for modulation recognition in SISO and MIMO systems [7, 36, 4, 64-65]. The HOM of a signal 

“P” is defined by [66]: ���0P7 = D%P���0P∗7�( (2.31) 

 

where g is the moment order with 0 ≤ u ≤ g. The cumulans order “g” of the zero-mean signal 

“P” is defined by [7]: 

���0P7 = �Ç4 �P, … , P�� ��� , P∗, … , P∗���� � � (2.32) 

 

The relationship between moments and cumulants can be expressed as: 
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�0P+, … , P�7 = ∑ 0� − 17! 0−170��+7 ∏ D%∏ P[[∈� (�∈��  (2.33) 

 

where Φ runs through the list of all partitions of t1, … , gv,   runs through the list of all the 

blocks of the partition Φ, and � is the number of elements in the partition Φ. 

Based on equation (2.33), the moments estimation leads to estimate the cumulants. We 

can estimate the moments of a signal P with � samples, as: 

 

���0P7 = +' ∑ P*���0P*∗ 7�'*�+  (2.34) 

 

For a complex signal, the estimate of cumulants can be defined as indicated in appendix A. The 

common self-normalized HOS of order “g”, are defined by [66]: 

 

��!�� = �"#�°ò" °⁄
�!�� = �"#�°ò" °⁄  (2.35) 

 

The decision rule for digital modulation using HOS is described in table 2.2, where we assume 

that the constellations are normalized to have a unity energy (�!+ = 1). We have � ordered 

hypotheses so that �+ < �! < ⋯ < ��. In addition, and for simplicity, we consider that all the 

variances are equal (�+! = �!! = ⋯ = ��! ). In this case, the decision rule based on the choice of 

hypothesis $ verifying [4]: 

o�%óòº�%! p ≤ $ < o�%º�%ñò! p  g&'( ∶ n�R = −∞��º+ = +∞ (2.36) 

 

Table 2.2. The decision rule based on HOS of order “4” and “6”. 

 4th HOS : $ = |�!�R|   6th HOS : $ = |�!*+| 
+, = t-�./,0�./,1�./v ´$ < 0.5 ⇒ 8PSK0.5 ≤ $ < 1.5 ⇒ QPSK1.5 ≤ $ ⇒ BPSK  ´$ < 2 ⇒ 8PSK2 ≤ $ < 10 ⇒ QPSK10 ≤ $ ⇒ BPSK  

+3 = 4-�./,0�./,1�./, ÁW./,1W./,,50W6,5Á0W6 7 
⎩⎪⎪
⎨
⎪⎪⎧
$ < 0.31 ⇒ 8PSK0.31 ≤ $ < 0.65 ⇒ 64QAM0.65 ≤ $ < 0.84 ⇒ 16QAM0.84 ≤ $ < 1.12 ⇒ QPSK1.12 ≤ $ < 1.3 ⇒ 8ASK1.3 ≤ $ < 1.68 ⇒ 4ASK1.68 ≤ $ ⇒ BPSK

 

⎩⎪⎪
⎨
⎪⎪⎧
$ < 0.9 ⇒ 8PSK0.9 ≤ $ < 1.94 ⇒ 64QAM1.94 ≤ $ < 3.04 ⇒ 16QAM3.04 ≤ $ < 5.59 ⇒ QPSK5.59 ≤ $ < 7.75 ⇒ 8ASK7.75 ≤ $ < 12.16 ⇒ 4ASK12.16 ≤ $ ⇒ BPSK
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To improve the accuracy of identification model, all input and output parameters have been 

normalized to ensure that they have a zero-mean and variance equal to unity. 

2.5.6 Normalization of features 

Accelerating the learning process of the classifiers and improving the accuracy of identification 

can be achieved by normalizing the extracted features (HOS) to ensure that they are zero-mean 

and unity-variance. Then, we use principal component analysis (PCA) to choose an optimal 

subset from the uncorrelated extracted HOS. 

The PCA allows to select an optimal subset of HOS to improve the identification process 

[7]. The PCA technique is a standard technique for preprocessing and visualizing high 

dimension data. The PCA is a linear transformation, which orthogonalizes the data components 

and reduces the dimensionality (the size of variation) [67]. Therefore, the other components 

tend to be highly correlated and can be neglected with minimal loss of information. 

 

Figure 2.12- A three-dimensional dataset (gene) transformed into a two-dimensional subspace 

using the PCA algorithm [67]. 

 

After selecting the subset with greater variance, the final classification process started. 

2.5.7 Comparison of classification methods 

The pattern recognition approach is used to solve the problem of modulations identification. 

This section is consecrated to the study of different classification algorithms such as: Multilayer 

artificial neural networks (ANN), Support Vector Machines (SVM), Random Forest Classifier 

(RFC), and K-nearest neighbors (KNN). For digital modulation identification in STBC-MIMO 

system, these classifiers use three steps: 

1- The preprocessing of the signal at the input of the classifiers: Extracts and normalizes 

the optimal features for each realization of the received signal ; 

2- Training and learning phase to adjust the classifier parameters ; 
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3- Test phase which evaluates the performance of the classification with real signals in 

order to achieve a final decision about the modulation type of transmitted signal ; 

According to figure 2.9, a banc of classifiers of the same type is used to identify the �: processed 

signals  Â;[0+7, … , ;[0'<7Ã where �: = 0½ or �
 or ��7. The modulation type in the candidates 

pool Θ = tBPSK, QPSK, 8PSK, 4ASK, 8ASK, 16QAM, 64QAMv is determined by the =-

dimension HOS vector defined by ;[0*<7 = ¦�>òøò ,�>òøò , … , �>=ø= ,�>=ø=§;
 and represented 

by the label �[ for each processed signal. These vectors are then used by the classifier bank to 

give the decisions ¦ℳÑ 0+7, … , ℳÑ 0'<7§. These decisions are used by the decisions fusion block 

to generate the final decision ℳÑ . 

2.5.7.1 ANN classifier 

The multi-layer perceptron (MLP) used in the modulations identification is a linear classifier 

based on a neural network with back propagations (BP), composed of several layers: an input 

layer, an output layer, and one or more hidden layers. Each layer consists of a variable number 

of neurons, and a transfer function for each neuron. The neurons of the output layer always 

correspond to the outputs of the system. 

The inputs of MLP (;[0*<7
) propage from layer to another and combine at the output 

layers. The MLP can be expressed by the following equation: 

 �? = @? o∑ A?[ø[�+ @[i∑ A[µgµ>µ�+ mp (2.37) 

 

where �? is the output of the MLP network, @[0∙7 is the activation function of the \-th neuron, 

A[µ is the link weighting between the neuron « 2 » and the neuron « \ », and gµ ∈ ;0*<7 is the 2-

th input feature of the HOS features set [68]. A visual illustration of an MLP network is given 

in figure 2.13. 
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Figure 2.13- Multilayer back-propagation neuron network. 

 

The weights training method of A[µ adopted for this MLP is back propagations. This algorithm 

adjusts the weights through an iterative process by calculating the variation of each weight with 

respect to the error function Ε [69]. For example, the mean squared error (MSE) function give 

the equation: 

CDCAEF = CDCGE CGECÓE
CÓECAEF (2.38) 

 

where �[ is the output, and Ç[ is the inputs weighted sum of \-th neuron. The weight value 

adjusted using the gradient descent approach as follows: 

 

A[µ0f + 17 = A[µ0f7 − � CDCAEF (2.39) 

 

where � is the learning rate that dictates the convergence speed. With a high learning rate, the 

convergence is faster. However, this is done with a risk of oscillation. On the other hand, with 

a low learning rate, many additional iterations will be necessary to attain convergence. 

The use of ANN classifier goes through two phases: a learning phase, which allows 

adjusting the weights of neurons. In order to properly adjust the weights of the neurons, learning 

should relate to a large number of HOS vectors and to all associated modulation schemes, in 

order to achieve acceptable decision precision, while taking into account different parameters 

of transmission [7, 70-71]. 

The features subset ;[0*<7
 lets starter the test process in order to obtain the desired 

modulation ℳÑ 0*<7 for the 5:-th branch. The selection of ANN parameters is based on the 
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choice of structure, which offers the best precision of the probability for making a correct 

decision in the test phase. 

2.5.7.2 SVM classifier 

SVM constitute the best-known form of methods based on the use of so-called kernel function, 

which allow optimal binary separation by supervised learning data. The simplest example of a 

kernel function is the linear kernel, which defined by the equation: 

 

HiX[, Xµm = X[;Xµ (2.40) 

 

The SVM method inspired by the statistical learning theory of Vladimir N. Vapnik [72-

73]. This method based on the existence of a linear classifier in an appropriate space. If there is 

a two-class classification problem, + = tℳ047, ℳ057v, then, the solution is obtained by using 

the sign of ℎ0g7, as shown in the equation: 

 

ℳÑ = ¶ℳ047/ ℎ0g7 = ;[;J + AR ≥ 0 ℳ057/ ℎ0g7 = ;[;J + AR < 0  (2.41) 

 

where AR is a constant, ;[ is the HOS features vector at the classifier input, and J is the 

weights vector (or the normal vector of the hyperplane, see figure 2.14) to optimize. The weight 

is obtained by considering a training samples set t;[, �[v[�+'�K� , with �[ ∈ t−1, +1v a target value 

also called the binary class label corresponding to sample ;[ and �
L
 is the total number of 

realizations for the candidates pool +. For linearly separable samples, the optimal hyperplane 

can be found by solving the following optimization problem [74]: 

 

Minimize M0J,AR,N[7 = +!J;J + � ∑ N['�K�[�+  (2.42) 

Subject to  �[0H0;[,J7 + AR7 ≥ 1 − N[ 
 

where N[ ≥ 0 are the Lagrange multiplicative variables, and « � » is the margin parameter that 

determines the arrangement between maximizing the margin and minimizing the classification 

error. The cost function M is minimized compared to J, and maximized or reduced according 

to the sign of ∑ N['�K�[�+ . 
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SVMs are also called large-margin separators because their objective is to find the optimal 

classification hyperplane as a decision surface that maximizes the margin between classes in a 

large dimension space. The margin is the distance between the separation border and the closest 

samples, also called support vectors. A maximum margin allows obtain a smaller dimension, which 

ensures good performances in generalization. 

 

Figure 2.14- Optimal hyperplane of SVM binary classification. 

 

By ensuring these conditions, the learning model of SVM classifier provides accurate 

classification results and test-ready in order to validate unlabeled data samples. 

SVMs are considered easier to deploy compared to neural networks. The main advantage of 

SVM is its remarkable performances using large data. However, they are slow in convergence 

and memory intensive when it comes to process large datasets. 

 

A linear SVM classifier algorithm 

Input: �
L
 vectors of the HOS features set derived from each candidate modulation + =tℳ017, ℳ027v, an observed vector ;0*<7 with extracted feautures for the 5:-th branch. 
Step 1 : Initialization of weight J, AR 
Step 2 : Repeat 

Step 3 : Update the weights via equation (2.42) using the function M. 
Step 4 : Until the maximum number of iterations is reached. 
Step 5 : ;[;J + AR is calculated. 
Step 6 : If ;[;J + AR ≥ 0, ℳ017 is given as classification decision ℳÑ  
Step 7 : If ;[;J + AR < 0, ℳ027 is given as classification decision ℳÑ  

Output ℳÑ  
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2.5.7.3 RFC algorithm 

The classification based on random forest algorithm is a learning methodology based on a 

samples set [75]. The main steps of this algorithm are as follows: 

1. Forming the training sample subset by �
L
 HOS vectors ;[0*<7
, in order to obtain the 

desired label �[. 5O out of �
L
 samples are selected, and �+, … , �* are the samples seeds 

generated and assigned to 5 tree nodes. 

2. Random selection of features: fO out of = features are randomly selected, from the 

above samples subsets, as the training samples for RFC, and are assigned to each tree 

nodes (see figure 2.15). 

3. Estimation of errors: Every decision tree of RFC is not growing until the percentage of 

the  classification  purity  in  each  node  achieves  the  desired  growth  or  a  given  

layer. After that, one decision tree in the random forest is generated. 

4. Complete growth of the decision tree: Repeat the above steps, until achieving an optimal 

classification and the RFC with 5 trees is eventually established. 

 

 

Figure 2.15- Architecture of RFC classification model. 

 

2.5.7.4 KNN classifier 

Another supervised algorithm studied in this section. It is a KNN algorithm, which the 

performance depends on the number of neighbors “K”, the distance type used, and the data 

representation space. 

KNN is a simple learning and non-parametric method for classification. Despite the 

simplicity of this algorithm, it works very well and is constitutes an important reference method. 
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The KNN classifier requires a metric « P » and a positive integer “K” [76]. However, KNN is 

slower to classify new data, since it must launch and completely treat their process for each new 

input data. 

The learning samples set t;[, �[v[�+'�K� is displayed on an initial space of dimension « P ». 

The principle of the supervised selection algorithm is to extract a subset of “K” features among 

all features set, allowing to classifying this labeled data. The obtained KNN classifier model is 

used to calculate the distance (for example, Euclidean distance) between unlabeled input 

samples from “K” neighboring samples. KNNs are found and a voting scheme used to find the 

most common neighbor label. The class with the maximum number of neighbors is considered 

the class of the test sample (see figure 2.16). 

 

Figure 2.16- K-nearest neighbors method. 

 

With the KNN classifier, the Euclidean distance metric is a simple and easy-to-implement 

method for calculating distances in a multidimensional input space [77-78]. The Euclidean 

distance between two points in a space is the length of the line between them. In Cartesian 

coordinates, if {: and é: are two points of the Euclidean space P, the distance between {: and é: is given by: 

Q¯ = R∑ 0é: − {:7!P:�+  (2.43) 

 

The outputs of the classifiers are combined in the decision fusion center in order to improve 

the precision of the identification and the final decision. 

2.5.8 Decisions fusion center 

Since there are multiple antennas at the receiver, it is possible for them to cooperate to achieve 

higher identification reliability. The modulation scheme of each stream among �: processed 
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streams is identified independently and all the decision vectors are jointly processed to take a 

final decision. We call this cooperative identification scheme as decisions fusion. The final decision 

is taken by combining the decision vectors and applying the “�-out-of-�:” decision fusion 

rule, i.e., a certain modulation scheme is identified when it is decided on � classifier among the �: classifiers [7, 36]. 

Suppose that the decisions are independent, the total probability of the modulation 

identification scheme is given by: 

 

ℙ = ∑ o�:Ý pS*<? i1 − S*<m'<�?'<?��  (2.44) 

where o�:Ý p = '<!?!0'<�?7!, and S*<  is the detection probability for each individual classifier. Here, 

we consider that the probability of identification is identical for all the decision branches (S*< =
+'<), which all the classifiers are identical and the �: processed signals are statistically identical. 

Note that the �-out-of-�: decision fusion rule includes different logics: 

1. Logical OR: The cooperative detection performance with this fusion rule can be 

evaluated by taking � = 1 in the equation (2.44) : 

 ℙTU = 1 − i1 − S*<m'< (2.45) 

 

2. The majority: The fusion is based on a majority rule. The cooperative detection 

performance with this fusion rule can be evaluated by taking � = V'<! W in equation 

(2.44), where ⌈⋅⌉ denotes the ceiling function: 

 

ℙþ�X = ∑ o�:Ý pS*<? i1 − S*<m'<�?'<?�Væ<° W  (2.46) 

 

3. Logical AND: The decision at the fusion center is calculated by the logical “AND”. 

The cooperative detection performance with this fusion rule can be evaluated by taking � = �: in equation (2.44): ℙ�YZ = S*<'< (2.47) 

 

When the decision vectors do not fit the decisions fusion rule, the final decision is rejected. 
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2.6 Simulation results 

The objective of these simulations is to evaluate our classification method in order to identify 

the modulation schemes. The algorithm studied has been checked and validated to identify the 

different modulation schemes in the pool + = tBPSK, QPSK, 8PSK, 4ASK, 8ASK, 16QAM, 64QAMv. 
We assume that the �: branches are equiprobable. 

In these simulations, we consider the different configurations written below: 

- Antennas configuration : �
 = 2 and �� = 4 ; 
- Alamouti coding : �
 = 2, ½ = 2, ¼ = 2; 

- Number of symbols : � = 512 i.i.d symbols ; 

- All results are based on 1000 Monte Carlo trials for each modulation scheme i.e. �[
 � = 7000 Monte Carlo trials in total for + ; 

The probability of identification is given in percentage and is estimated by: 

 P[ = '['E�\� × 100 (2.48) 

where �k is giving by: �k = ∑ �ℳÑ]ℳÑ]∈^  (2.49) 

 

where �ℳÑ] is the number of decisions for which each modulation in the pool Θ is correctly 

identified. 

The probability of correct identification P��, is evaluated by the modulation classification 

process, and is given in percentage by: 

 P�� = +��_�0^7 ∑ ℙiℳÑ = ℳ)|ℳ)m) × 100 (2.50) 

 

where ℙ0∙7 is the probability of an event, the card0Θ7 is the modulation pool cardinal of Θ, 

and ℳÑ   is the estimated modulation scheme. 

The performance of the identification is also confirmed by the probability of false alarm P��, and is evaluated in percentage by: 

 P�� = +��_�0^7 ∑ ℙiℳÑ = ℳ)|ℳ*m,)`*) × 100 (2.51) 
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Since OSTBC decouples the space-time channel into parallel scalar channels each with SNR 

considered in our simulations is defined as [79]: 

SNR�� = 10 log+R ç+a b°'� äc°äå° ‖£‖!è (2.52) 

where �M! is the average power of the samples on each antenna, �®! is the noise power, �
  

number of transmitting antennas, 	! is a constant used to control the transmit power, and ‖£‖ 

is the channel matrix norm. We assume that the transmit power is equal to one for each antenna 

(hence 	! = �
). 

We define the minimum required SNR for close to optimal modulation identification, SNRd�e by 
fE0g7�fE0#YUh#YUijk7fE0g7 < �, where normally, � = 0.01 and P[0∞7 = 100% [7]. 

In the following, we present the simulation results of the two proposed algorithms ZF-DMC 

and SCMA-DMC. 

2.6.1 Performances of antenna correlation 

In this section, we evaluate the behavior of the radio channel in the digital modulations 

classification in the presence of spatial correlation at the transmitter and receiver side. We 

consider the case where the channel matrix is modeled by the Kronecker model as indicated in 

equation 2.10, where £²~Ïßi­'�×'� , Y'� ⊗ Y'�m, we conclude that £~Ïßi­'�×'� , ±'� ⊗±'�m [1, 7]. Here, we will consider the presence of both spatial correlation on transmission and 

on reception with |	| = |	
| = |	�|. These coefficients are parameters used to adjust the level 

of spatial correlation. 

Figure 2.17 examines the identification performance of modulations in the presence of 

spatial correlation. As noted, performance degrades as correlation increases. 

 

Figure 2.17- Probability of identification versus SNR for ZF-DMC with the Kronecker 

correlation model. 
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The SNRd�e of the modulation identification via the spatially uncorrelated MIMO channel is 

8.7dB, while the SNRd�e is 9dB and 12dB when ∣	f∣ = ∣	o∣ = 0.3 and ∣	f∣ = ∣	o∣ = 0.7. In 

addition, the SNRd�e of the modulation identification is 15dB when ∣	f∣ = ∣	o∣ = 0.9. The 

results found indicate that when ∣	∣ → 1, the performance degrades quickly. 

2.6.2 Performances of equalization and channel estimation error 

In the ZF algorithm, the modulation identification is considered semi-blind, assuming that the 

perfect CSI at the receiver. However, the ZF equalizer could be considered blind using the 

channel estimation error. On the other hand, the SCMA equalizer is used to blindly separate 

MIMO sources and the identification is considered blind. The objectives of this simulation are: 

- Compare the identification of different schemes in the blind and semi-blind case in 

order to show the influence of channel mixing on the probability of modulation 

identification. 

- Examine the impact of channel estimation error on modulation recognition rather than 

on the estimation process. An incorrect channel estimate is modeled in equation (2.26). 

 

Figure 2.18- Probability of identification versus SNR for two equalization methods with 

channel estimation errors. 

 

From figure 2.18, we noticed that the ZF-DMC algorithm offers the best performance when 

perfect CSI is assumed. However, the proposed ZF-DMC algorithm is sensitive to channel 

estimation errors. It should be noted that, the presence of an incorrect channel estimate causes 

a rapid performance degradation when the error variance � ! ≥ 0.1. Also, this erroneous 

estimation leads to an upper bound of the probability of correct recognition (< 100%) contrary 

to the perfect CSI case. This upper bound decreases as � ! increases. To solve this problem, the 
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blind SCMA-DMC algorithm was proposed. This algorithm solved the upper bound problem 

without any CSI knowledge. However, the SCMA-DMC requires a higher SNR to obtain the 

same performance as ZF-DMC when the perfect CSI is assumed [1, 7, 65]. 

2.6.3 Probability of correct identification and probability of false alarm 

The detection thresholds for each digital modulation processed is based on the probability of 

correct identification P�� and the probability of false alarm P�� (see equations 2.50 and 2.51). In 

this study, we examine P�� and P�� separately for each modulation scheme instead of calculating 

the average probability P[ for all the schemes. To answer the requirements of our detection 

system, the typical values of P�� must be between 1% and 10% for SNR�� ≥ 5dB. 

 

Figure 2.19- P�� and P�� versus SNR for each modulation scheme, ZF-DMC algorithm. 

 

According to figure 2.19, when the SNR is relatively low, the BPSK modulation has a higher P�� 
and a lower P�� compared to the other modulations. 

2.7 Conclusion 

In the second part, we are interested in the problems of recognition of the various parameters 

of the transmitted signal as a supervised classification problem. The supervised algorithms are 

applied on labeled databases. The DMC process studied here is proposed for STBC-MIMO 

systems spatially correlated and based on HOS subsystem as a features extraction and the neural 

network as a classification subsystem. 

The simulation results show that the ZF-DMC algorithm using a ZF equalizer is less 

complex compared to the SCMA-DMC algorithm. The ZF-DMC algorithm shows better results 

if there is perfect CSI. The SCMA-DMI algorithm blindly separates the symbols and provides 
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a better estimate without any CSI knowledge. The proposed algorithms are examined through 

correlated STBC-MIMO channels and their ability to identify different digital modulation 

schemes is confirmed with great precision. 

The robustness of these algorithms to synchronization errors, and to frequency offset in 

STBC-MIMO system is the subject of future work. 
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3.1 Introduction 

IMO systems represent an important role in the development of future broadband 

wireless communications, because they offer improved channel capacity compared to 

SISO systems. By using MIMO techniques, the effects of selective fading channel can 

be considerably reduced. However, Inter-Symbol Interference (ISI) generated in a frequency 

selective channel results in serious performance degradation. To overcome this disadvantage, 

the OFDM system is used, firstly for its simplicity of equalization and on the other hand to 

increase the spectral efficiency. 

In order to recover the transmitted symbols from an observed noisy mixture at the CR 

receiver side in MIMO-OFDM system, recognition of the digital modulation type is necessary. 

This improves the capacity of the CR system to allow it to select the appropriate demodulation 

process. 

Various modulation classification algorithms have been proposed for MIMO-SC systems 

[6-7]. Only a few research works deal with the modulation classification problem for MIMO-

OFDM systems. 

In [17], an algorithm based on the SVM classifier using HOCs as discriminating features 

is reported. Furthermore, the DMC algorithm based on the approximate Bayesian inference 

adopting the Dirichlet model is proposed in [9], which allow obtaining a better classification 

performance with a higher computational complexity. 

In this chapter, we treat the DMC algorithm in MIMO-OFDM systems. The deployment 

of our identification method in MIMO-OFDM systems is more difficult than the case of 

MIMO-SC systems, because the OFDM technique is extremely sensitive to transmission 

degradations (the problem of symbols synchronization) [80]. 

Also, the different transmitters do not share the same equipment, which causes frequency 

offsets between the different transmitters. Indeed, if they are not compensated, the subcarriers 

are no longer orthogonal and the performance of the receivers is degraded [81]. In order to 

increase system capacity, we use blind and semi-blind techniques to jointly estimate the CFO 

and channels. 

In addition to channel fading and the synchronization problem, the MIMO-OFDM signal 

is distorted by the presence of AWGN noise, which is the most widely employed noise model 

in the literature. Indeed, in the majority of research papers, the hypothesis of Gaussian noise is 

considered. However, this hypothesis is not applicable in railway communications which exhibit 

non-Gaussian and impulsive noise. Impulsive noise is described as one or more repetitive or no 

M
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repetitive pulses with the random duration and the occurrence. This degrade severely the 

transmission characteristics of OFDM signal [10]. In this context, various studies and 

measurements have guided to the reality that the impulsive noise is a heavy-tailed. Our objective 

is the mitigation of the impulsive noise present in the received STBC-OFDM signal, which 

consequently ameliorates the DMC process. To achieve this goal, we estimate the impulsive 

noise parameters, and then implement the Myriad filter (MF) in the STBC-OFDM receiver. 

In order to obtain the estimates of transmitted signal we decode the received filtered 

signal. After that, a HOS calculation is done to extract features followed by pattern recognition 

process (ANN, SVM, KNN or RFC). Outputs of this step are jointly processed, in a decisions 

fusion center, to decide about the used modulation. The proposed algorithm is robust and 

allows it possible to identify the different parameters of radio signal in more complicated 

scenarios with a comparatively lower computational complexity. The algorithms used address 

the DMC problem in MIMO-OFDM systems using the Alamouti matrix for ST coding and SF 

(space-frequency) coding. 

In the rest of this chapter, we discuss the OFDM modulation technique, followed by the 

basic concepts of STBC-OFDM and SFBC-OFDM systems. In each MIMO-OFDM system, 

we describe the different processes proposed for our DMC algorithm. The chapter ends with 

conclusion and perspectives on future projects. 

3.2 OFDM techniques 

OFDM modulation is an extension of the Frequency Division Multiplexing (FDM) technique. 

The basic idea of FDM is to divide the bandwidth into many narrow sub-bands and use a large 

number of parallel narrow-band subcarriers to transfer information [82]. The main advantage 

of FDM is its robustness against: 

- Frequency selective fading: Each subcarrier treaty with flat fading rather than frequency 

selective fading like a broadband carrier. 

- Narrowband interference: Narrow band interference will affect only one or two subcarriers 

of the set of subcarriers. The other subcarriers will not be affected by the interference. 

The OFDM technique is a multi-carrier modulation whose available frequency band is divided 

into several orthogonal subcarriers thus authorizing a certain overlap between the sub-bands, 

allowing to increase the spectral efficiency. Interference between the subcarriers is eliminated 

due to the orthogonality between them; this contributes helps to reducing the implementation 

complexity of the transmitter and the receiver [83-85]. The bands occupied by the subcarriers 
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are very narrow, therefore considered flat compared to the interferences introduced by the 

channel, and can be easily equalized. 

The spacing of the subcarriers is carefully selected so that each carrier is located on all the 

crossing points of other carrier spectrum and the power spectrum of each subchannel is 

relatively coherent [86]. 

To write this technique mathematically, we assume a symbol S̃?,[ sent on the Ý-th 

subcarrier at time \V. So the signal transmitted in baseband is written as [87]: 

 

S) = +√' ∑ ∑ S̃?,[y%4 − \�('µ!�%]æ['�+?�R  (3.1) 

 

where � is the number of subcarriers and the function y%4( is given by : 

 

y%4( = n1            0 ≤ 4 < �0            sinon  (3.2) 

 

In a perfect channel, the reconstruction of the transmitted symbols is assured by the condition 

of orthogonality: 

∑ y%4 − \�(y%4 − \′�('µ!�%]æ 'µ!�%q]æ) = e?,?re[,[r (3.3) 

 

The expression of equation (3.1) can be easily and effectively obtained using the inverse fast 

Fourier transform (IFFT). Thus, the IFFT algorithm is applied to each vector ¤�[ =¦S̃R,[, S̃+,[, … , S̃'�+,[§;
 which is called a symbol OFDM. 

When the signal is transmitted over a frequency-selective channel, we will observe an 

interference between the symbols of the same block (Inter-Carrier Interference (ICI)), but also 

between the symbols from two successive OFDM symbols (ISI). 

The OFDM orthogonality is lost due to the appearance of ISI. To reduce this problem, a 

first solution consists in extending the number of subcarriers �, to increase the OFDM symbol 

duration. The second solution is to insert a guard interval or cyclic prefix (CP), greater than or 

equal to the maximum channel spread (�k> ≫ N) [88]. 

The guard interval contains a copy of the last symbols of a block; we can also delete ISI 

from the same block. At the reception, the CP is first deleted, then an fast Fourier transform 

(FFT) operation is applied to the remaining symbols. 
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3.3 STBC-OFDM system model 

In general in OFDM modulation, all � subcarriers are modulated using data symbols (� = �M), 

but in certain situations (semi-blind system) some subcarriers among the � are assigned to �> 

non-zero pilots symbols. Only �  (� = �M + �>) from � subcarriers are used, the remaining 0�tMk = � − � 7 subcarriers represent the virtual subcarriers (VSC), where � = �M + �> +�tMk. The pilot symbols are known at the transmitter and receiver side and are used for the joint 

channel and CFO estimation. The pilot symbols can be distributed over several consecutive 

OFDM symbols. 

In this project, we consider a wireless OFDM system employing an STBC architecture 

with �
 and �� transmit and receiver antennas, respectively. The data and pilot symbol streams 

u  and v are collected into �� blocks r¤['#º)s)�R'#�+
 of length �M and rw['#º)s)�R'#�+

 of length �>, respectively. �� is the number of the inputs of the STBC encoder. Each block constituted 

�� data symbol vectors, ¤[,) = ¦S[,)007, S[,)017, … , S[,)0�M − 17§;
 and �� pilots symbol 

vectors, w[,) = ¦{[,)007, {[,)017, … , {[,)i�> − 1m§;
. Data and pilot symbols are randomly 

and independently drawn from well-defined modulation scheme. STBC encoder maps the 

vectors ¤[ and w[ in space and time coding matrices x = ¾¿�; 0¤[7 and - = ¾¿�; 0w[7 of size �
�M × ¼ and �
�> × ¼ respectively, to be transmitted from �
 antennas during ¼ time slots 

per block [89] : 

⎩⎪⎨
⎪⎧¾¿�; 0t¤![º)v)�R+ 7 = yz![0+7 z![º+0+7

z![0!7 z![º+0!7 { = Ì ¤![ −¤![º+∗¤![º+ ¤![∗ Í
¾¿�; 0tw![º)v)�R+ 7 = y|![0+7 |![º+0+7

|![0!7 |![º+0!7 { = Ì w![ −w![º+∗w![º+ w![∗ Í (3.4) 

 

After that, x and - are multiplexed into one matrix of size �
� × ¼. Each element of the 

multiplexed matrix, namely n��[ÈºÓ0*�7 qÓ∈tR,…,È�+v
*�∈t+,…,'�v

 of length �  can be written as : 

 

��[,Ó0*�7 = }'\~ z[,Ó0*�7 + }'\� |[,Ó0*�7
 (3.5) 
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where }'\~ , }'\�  are (� × �M) and (� × �>), permutation matrices, and are selected to be 

mutually orthogonal. They are formed from the columns of the identity matrix Y'\ as follows 

[90]: 

Ë}'\~ = Y'\t�~v = ÂZ'\0~ò7, Z'\0~°7, … , Z'\
i~æcmÃ

}'\� = Y'\r��s = �Z'\0�ò7, Z'\0�°7, … , Z'\
o�æ�p� 

 

where �� = nc+ … c'�q and �~ = r�+ … �'cs are the indexes of pilot tones and subcarriers 

carrying data symbols, respectively. �tMk virtual subcarriers are added to ��[,Ó0*�7
 to form the vector 

��[,Ó0*�7. Next, �-points of (&'ℋ), is applied to the vector ��[,Ó0*�7 and a CP is inserted by 

multiplication with an appropriate matrix �k> = ÂY'[�×'; , Y'; Ã;
. 

The \-th ST block is generated as shown on the figure 3.1. 

 

 

Figure 3.1- Discrete-time-equivalent baseband model of STBC-OFDM block transmission 

systems. 

 

The resulting signal sent through �
 antennas and received by �� antennas passes through a 

Rayleigh fading channel. ℎ0*�,*�70�7 with � ∈ %0, N − 1( denotes the N channel coefficient 

between the 5
-th transmit antenna and the 5�-th receive antenna. 

At the receiver side, the condition of orthogonality between the subcarriers will be 

restored by removing the CP. Using the appropriate matrix ±k> = Â­'×'[� , Y'Ã, to remove the 

CP from the received signal. 

We assume that the synchronization between the oscillators of the transmitter and the 

receiver is perfect (absence of CFO), the \-th received signal by the 5�-th antenna is written in 

the following form: ¡[,Ó0*�7 = +�'\ ∑ £� 0*�,*�7&'ℋ��[,Ó0*�7'�*��+ +¥[,Ó0*�7
 (3.6) 
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where ¥[,Ó0*�7 = Â�[0*�70Ç�7, … , �[0*�70Ç� + � − 17Ã;
 is an 0� ×  17 additive zero-mean white 

circularly complex Gaussian noise vector with variance �®! Y' ; i.e. ¥[,Ó0*�7~Ïßi0, �®! Y'm. £� 0*�,*�7 = ±k>£0*�,*�7�k> is a 0� × �7 circulant matrix and £0*�,*�7 is a i�ø × �øm lower 

triangular Toeplitz matrix with �ø = � + �k>. The First column £0*�,*�7 is 

¦ℎ0*�,*�7007, … , ℎ0*�,*�70N − 17, 0, … ,0§;
. 

To simplify our input–output relationship in equation (3.6), we can use the property of 

diagonal matrix G'iH� 0*�,*�7m = &'£� 0*�,*�7&'ℋ , where: 

 

⎩⎨
⎧H� 0*�,*�7 ≔ ¦ℎ�0*�,*�7007, … , ℎ�0*�,*�7023 0� − 17 �⁄ 7§;

ℎ�0*�,*�7023 5 �⁄ 7 ≔ � ℎ0*�,*�70�7'0�µ!��* '⁄ 7��+
R

 

 

The ℎ�0*�,*�7 denoting the 05� , 5
7-th channel’s frequency-response values. Equation (3.6) can 

be rewritten now as: ¡[,Ó0*�7 = +�'\ &'ℋ ∑ G' o��[,Ó0*�7p H� 0*�,*�7'�*��+ + ¥[,Ó0*�7
 (3.7) 

Where: 

�H� 0*�,*�7 = �'H0*�,*�7�' = %�R� , �+� , … , �'�+� (ℋ�*� = %1, exp02235/�7, … , exp022350N − 17/�7(; 

 

At each receiving antenna, the restored OFDM symbol is given to the FFT block to be 

demodulated. The signal at the output of the FFT is written: 

 ¡�[,Ó0*�7 = +'\ ∑ G' o��[,Ó0*�7p H� 0*�,*�7'�*��+ + ¥![,Ó0*�7
 (3.8) 

 

From equation (3.8), the transmitted signal can be easily decoded by applying a simple 

equalization to the FFT output. 

Despite their advantages, OFDM has two weaknesses that must be taken into account, that is: 

- The OFDM is sensitive to frequency offsets due to the destruction of orthogonality. 

Pollet et al. [91] have shown that multi-carrier systems are much more sensitive to 

frequency offsets than single-carrier systems. They gave a relationship that determines 

the degradation in terms of SNR [92] : 
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��� ÷ +R�°��e+R o1 − +'p! 01 + SNR�����������7�R! (3.9) 

 

where �R is the normalized frequency offset. The frequency offsets looks like noise, 

which degrades the SNR in the absence of the CFO (SNR�����������). 

- The OFDM is sensitive to the non-linearities of the amplifiers. The signal may have a 

very high peak to average power ratio (PAPR), causing saturation of the analog blocks 

[93]. 

3.3.1 DMC in STBC-OFDM systems 

In this section, we solve the DMC problem in MIMO-OFDM system. The STBC encoder of 

Alamouti type is used to code information symbols. The information symbols are chosen from 

the different modulation schemes grouped in a pool Θ = tQPSK, 16QAMv. The features 

extraction is done by HOS subsytem, and then classified by different classifiers to solve the 

modulation identification problem (see figure 3.2). 

 

 

Figure 3.2- Discrete-time-equivalent baseband model of the DMC method in STBC-OFDM 

system. 

 

Figure 3.3 shows the effect of the number of received antennas (��) on the probability of 

correct modulation identification P�� for all classifiers. We remark that all classifiers showed 

slightly more stable results. Indeed, we observe that P�� improves, in a progressive way, as the 

SNR values increase and as the number of received antennas �� increases from 2 to 4. 
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Figure 3.3- Probability of correct identification versus SNR in STBC-OFDM system for 

different antennas configurations. � = 64. 

 

For (2x4), antennas configuration, the classification accuracies of ANN, SVM and RFC 

exhibited rather similar performances, and displayed significant higher accuracies at least by 4% 

than KNN at SNR�� = −5 dB. 

However, for (2x2) antennas configuration, notably lower accuracies, at SNR�� =−5 dB, were observed using ANN, RFC and KNN by 5%, 18% and 37% respectively than 

SVM.  SVM perform better than ANN for large range of SNR. This is due to the robustness of 

the SVM training step, which yields a better accuracy compared to other classifiers training step. 

The improvement in performance achieved by increasing the number of receiving 

antennas beyond “2” antennas is due to the enhancement of the spatial diversity gain at the 

receiver, which leads to an increased the number of received samples.  

For SNR�� < 5 dB  demonstrates the need for RFC and KNN of a number of received 

antennas greater than “2” (�� > 2) to achieve the same performance as SVM and ANN for �� = 2. 

Figure 3.4 compares the probability of correct modulation identification of the considered 

classifiers for different values of OFDM symbol length �. The classification accuracies improve 

as � increases from 64 to 512. This is due to the improvement in time diversity of the received 

signal, which ameliorates the channels estimation and consequently the probability of correct 

identification. 
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Figure 3.4- Probability of correct identification versus SNR in STBC-OFDM system for 

different values of �. �
 = 2, �� = 4. 

On the other hand, increasing the number of realizations from 50 to 500 leads to a large set of 

HOS trials and the associated modulation in training phase, which improves the probability of 

correct identification for all classifiers. 

3.3.2 DMC in STBC-OFDM systems with channels and CFO estimation 

In this section, we propose a robust blind-DMC (BDMC) algorithm for the MIMO-OFDM 

system based on STBC coding in the presence of CFO and channel estimation errors. 

The Alamouti coding will be used to code information data and pilot symbols. The joint 

estimation of the CFO and the channels is based on the MUSIC (Multiple Signal Classification) 

algorithm and is also relies on a pilot symbols design model [94]. 

In the absence of CFO, the FFT of ¡[,Ó0*�7
, makes the frequency selective channel 

equivalent to a set of flat fading sub-channels. However, in presence of CFO, the orthogonality 

among subcarriers is destroyed and even the FFT operation cannot diagonalize the channel. 

This frequency deviation of the received signal is caused by the Doppler effect, which introduces 

a phase and quadrature offset between the transmitted and received symbols. This is manifested 

by a rotation in the modulation constellation as shown in figure 3.5 [95]. This offset may also 

be due to the mismatch between the generated frequencies by oscillators on transmission and 

on reception [94]. 



Chapter 3.                                                 Digital Modulation Classification in MIMO-OFDM Systems 

58 

 

 

Figure 3.5- Rotation of the modulation constellation due to the CFO [94]. 

 

We have assumed that the frequency offset is the same for all reception antennas. This is true, 

for example, in the case where the frequency offset is mainly due to the difference in generated 

frequencies by the local transmit and receive oscillators [90, 94]. The value of the frequency 

offset is less than half the subcarriers spacing (|�R| ≤ 3). 

 

 

Figure 3.6- Discrete-time baseband model of the BDMC method with joint CFO and channel 

estimation in STBC-OFDM system. 

 

In the presence of the frequency offset, equation (3.7) becomes: 

 ¡[,Ó0*�7 = +�'\ 'µ��iÈ['ðº'[�mG'0Ó70�R7&'ℋ ∑ G' o��[,Ó0*�7p H� 0*�,*�7'�*��+ + ¥[,Ó0*�7
 (3.10) 

 

where G'0Ó70�R7 is a diagonal matrix defined as G'0Ó70�R7 =
Q\gyi'µÓ'ð�� , … , 'iµiÓ'ðº'�+m��mm. 

with matrix notation equation (3.10) becomes : 

 ¡[0*�7 = +�'\ 'µ��iÈ['ðº'[�m�'0�R7i�>ℋℙ[�> + �:ℋ�[�:m�0*�7 + ¥[0*�7
 (3.11) 

 

where ¥[0*�7 = %o¥[,R0*�7p; , … , o¥[,È�+0*�7 p;(;, �0*�7 = %H0*�,+7, … , H0*�,'�7(;, 
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⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧�>ℋ = YÈ ⊗ o&'ℋ}'�p�:ℋ = YÈ ⊗ i&'ℋ}'~m�> = Y'� ⊗ �'��: = Y'� ⊗ �'<�'� = Â��ò� , ��°� , … , ��æ�� Ãℋ
�'< = Â�~ò� , �~°� , … , �~æ<� Ãℋ

, 

and 

⎩⎪
⎪⎨
⎪⎪
⎧�[ = à G'<oz[,R0+7p … G'< oz[,R0'�7p⋮ ⋱ ⋮G'<oz[,È�+0+7 p … G'< oz[,È�+0'�7 pá

ℙ[ = à G'�o|[,R0+7p … G'� o|[,R0'�7p⋮ ⋱ ⋮G'�o|[,È�+0+7 p … G'� o|[,È�+0'�7 pá
 

 

As mentioned above, OFDM is very sensitive to synchronization errors resulting in the 

appearance of interference between the subcarriers. Therefore, it is necessary to correctly 

estimate and correct these errors jointly with the channels estimation in order to allow a 

consistent equalization of the received signal. In the general case, the estimation algorithm can 

be combined with algorithms based on VSC to extend the acquisition range. 

In the following, we propose blind and semi-blind algorithms to jointly estimate the CFO 

and the channels in STBC-OFDM systems. 

3.3.2.1 Channels’ estimation method 

After compensation of the received signal with the estimated value of CFO  “��R” using a 

diagonal matrix �'ℋ0��R7 in equation (3.11), and multiplication by the FFT of the pilot symbols �>, we obtain the following equality : 

 

'�µ���iÈ['ðº'[�m�>�'ℋ0��R7¡[0*�7 = '�'\ ℙ[�>�0*�7 + �[0*�,>7
 (3.12) 

 

where �[0*�,>7 = '�µ���iÈ['ðº'[�m�>�'ℋ0��R7¥[0*�7
. 

The estimations of the channels should be the solution that set to zero the gradient with respect 

to �0*�7 of the following quadratic cost function: 
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�ℙ0*�7i�0*�7m = ∑ �'�µ���iÈ['ðº'[�m�>�'ℋ0��R7¡[0*�7 − '�'\ ℙ[�>�0*�7�!'E�+[�R   (3.13) 

 

By exploiting the STBC orthogonal signaling at a block level and the orthogonality between 

subcarriers of OFDM system, the estimations of the channels �ö0*�7 given by: 

 

�ö0*�7 = �'\!' '�µ���iÈ['ðº'[�m�>⋕ℙ[ℋ�>�'ℋ0��R7¡[0*�7
 (3.14) 

 

The MSE for MIMO channels estimator, used as performance measures, is defined by: 

 

MSE
��ee¡� = +'['�'� ∑ ∑ ∑ ¢ℎöµ0*�,*�7 − ℎ0*�,*�7¢!'�*��+'�*��+'[µ�+  (3.15) 

 

where �k is the Monte Carlo trials. 

3.3.2.2 CFO estimation methods 

The CFO estimation is calculated by considering the pilot symbols and virtual subcarriers. 

A. Pilots based CFO estimation 

Substituting the estimated channels �ö0*�7 obtained in equation (3.14) into equation (3.13), we 

derive the training based cost function for CFO estimation as: 

 

�ℙ0*�70�R7 = ∑ ¢'�µ��iÈ['ðº'[�m£�>�'ℋ0�R7¡[0*�7¢!'E�+[�R   (3.16) 

 

where £ = o¤È'� − +! ℙ[�>�>⋕ℙ[ℋp. 

For all received antennas “��” and all source blocks “�[”, the cost function given by 

equation (3.16) becomes: 

�ℙ0�R7 =  tri¥ℋ�'0�R7¦ℙ�'ℋ0�R7¥m (3.17) 

 

where ¦ℙ = �>ℋ£ℋ£�> , ¥ = ¦¥0+7, …¥0'�7§, ¥0*�7 = Â¡R0*�7 … ¡'E�+0*�7 Ã, and  ¡[0*�7 =
Â�[,R0*�7, … , �[,È'�+0*�7 Ã;

. The CFO estimate can be obtained by minimizing the cost function in the 

equation (3.17) as: 
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��R = argmin�� t�ℙ0�R7v (3.18) 

B. Blind CFO estimation 

After compensation of the received signal with the estimated CFO, and after multiplication by 

the FFT of VSCs, �� (demodulation), we obtain: 

 

'�µ��iÈ['ðº'[�m���'ℋ0�R7¡[0*�7 = �[0*�,�7
 (3.19) 

 

For all received antennas “��” and all source blocks “�[”, the estimated CFO results from the 

minimization of the following cost function: 

 

�ℤ0�R7 = tri¥ℋ�'0�R7¦ℤ�'ℋ0�R7¥m (3.20) 

 

where ¦¨ = ��ℋ�� et ��ℋ = YÈ ⊗ i&'ℋ}'© m with }'© = Y'r�©s = ÂZ'0©ò7, … , Z'i©æªc[mÃ.  
C. Semi-blind CFO estimation 

In this method, the CFO estimate is calculated by considering the pilot symbols and the VSCs. 

To refine our CFO estimation algorithms, we propose to combine the cost functions based on 

pilots and virtual subcarriers, which gives the following cost function: 

 

�0ℙ,ℤ70�R7 = tri¥ℋ�'0�R7¦0ℙ,ℤ7�'ℋ0�R7¥m (3.21) 

 

where ¦0ℙ,ℤ7 = ¦ℙ + ¦ℤ. 

The training, blind and semi-blind CFO estimates is obtained by minimization according to �R 

the cost functions �ℙ0�R7, �ℤ0�R7 and �0ℙ,ℤ70�R7 respectively. 

After compensation of the received signal by the estimated CFO, and multiplication by 

the FFT of the data symbols, �: , we obtained: 

 

'�µ��iÈ['ðº'[�m�:�'ℋ0�R7¡[0*�7 = '�'\ �[�:�0*�7 + �[0*�,:7
 (3.22) 

 

where �[0*�,:7 = '�µ���iÈ['ðº'[�m�:�'ℋ0�R7¥[0*�7
. 

The MSE for CFO estimator, used as performance measures, is defined by: 



Chapter 3.                                                 Digital Modulation Classification in MIMO-OFDM Systems 

62 

 

MSE
$T = +'['� ∑ «��R,µ − �R,µ«!'[µ�+  (3.23) 

 

In figures 3.7 and 3.8, we depicted the CFO and channels MSE of the joint semi-blind estimators 

versus SNR in MIMO system. As it can be seen from figure 3.7, changing the number of 

modulation types does not affect the MSE of the CFO in presence of Gaussian noise. From 

figure 3.8, we observe that the MSE of channels degrades when considering estimated CFO 

compared to the exact estimation of CFO. 

 

 

Figure 3.7- MSE of semi-blind CFO estimator versus SNR in STBC-OFDM system. � = 64, �
 = 2, �� = 2. 

 

Figure 3.8- MSE of semi-blind channels estimator versus SNR in STBC-OFDM system. � =64, �
 = 2, �� = 2, ℳ = QPSK. 
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To improve the reception quality of information data, channel equalization should be used. 

Indeed, in the case of Alamouti coding, we applied a frequency equalization matrix to the 

received signal from equation (3.22) in order to estimate the data vectors ¤Î![ et ¤Î![º+. The 

equalization matrix ¬­0*�7
 is defined by: 

 

¬­0*�7 = �G'i�'<H0*�,+7m G'i�'<H0*�,!7mG'ℋi�'<H0*�,!7m −G'ℋi�'<H0*�,+7m� (3.24) 

 

To prove the performance of our DMC algorithm in STBC-OFDM system in the presence of 

CFO and the channels estimation errors, we consider a MIMO system with �
 = 2, �� = 4 

using Alamouti coding. The number of estimation blocks is fixed at �[ = 10. The probability 

of correct identification P�� is used as performance measures. The sub-carriers number of 

OFDM system is fixed at � = 64, where �tMk = 15 subcarriers are considered to be VSCs, �> = 9 subcarriers are used by pilot symbols and �M = 40 subcarriers for information symbols. 

In all simulations, the channel coefficients are assumed to be independent and Gaussian 

with zero-means and unit-variances. The channels order is fixed at N = 5. La longueur du CP 

is taken equal to �k> = N + 1. 

The noise at each receiving antenna is spatially decorrelated complex white Gaussian noise 

with zero-mean and variance equal to �®!. The data symbols are chosen from the modulation 

constellations in the pool Θ = tQPSK, 16QAMv. 

In figure 3.9, we depicted the effects of estimation errors of CFO and channels on P��. 

 

Figure 3.9- Probability of correct identification versus SNR in STBC-OFDM system with 

CFO and channels estimation errors. �
 = 2, �� = 4, et � = 64. 
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As it can be seen, for SNR in the range SNR�� ∈ %−5,0(, the accuracies of the classifiers 

increase when the exact values of channels and CFO are used comparatively to the case of 

presence of estimation errors of CFO and channels. However, the classification accuracies of 

all classifiers, without and with estimated CFO and channels, exhibited rather similar results for SNR�� ≥ 0. The use of �� = 4 receiver antennas has contributed to this improvement in 

classification accuracies. 

3.3.3 DMC in STBC-OFDM systems with impulsive noise 

The performance of communication systems does not depend only on the channel 

characteristics and the used transmission techniques, but also on the nature of the additive noise 

and its statistical properties. Indeed, in the majority of researchs, the hypothesis of Gaussian 

noise is considered. However, this hypothesis is not applicable in railway communications which 

exhibit non-Gaussian and impulsive noise [52]. 

Our objective in this section is the mitigation of the impulsive noise present in the 

received STBC-OFDM signal, which consequently ameliorates the DMC process. To achieve 

this goal, we estimate the impulsive noise parameters, and then implement the Myriad filter 

(MF) in the STBC-OFDM receiver, as shown in figure 3.10. 

 

 

Figure 3.10- DMC for STBC-OFDM system in impulsive noise environment. 

 

To obtain a better clarification of the environment at the receiver side, we propose an 

identification process composed of four subsystems: (1) Subsystem for the reduction of 

impulsive noise based on the optimal Myriad filter (optimal-MF), (2) Subsystem for the features 

extraction using HOS estimates, (3) Subsystem for pattern recognition using the differents 

classifiers, (4) The decisions fusion center. 

3.3.3.1 Impulsive noise model 

Impulse noises type are generally present in the form of elementary pulses of high amplitude, 

superimposed on white Gaussian noise (see figure 3.11). 

 



Chapter 3.                                                 Digital Modulation Classification in MIMO-OFDM Systems 

65 

 

 

Figure 3.11- Example of generating impulsive noise system. 

 

The impulsive phenomenon manifested by high peaks for short periods. Several models of non-

Gaussian impulsive noise exist in the literature. Typical examples include atmospheric radio 

noise, telephone line noise, electromagnetic interference in train environments, and multi-user 

interference in mobile communication systems [96-97]. 

The main characteristics of impulsive noise are described by the �-stable distribution. 

This distribution is a class of probability distributions, which generalize the normal distribution, 

allowing heavy-tails and skewness [98-99]. 

An �-stable distribution is totally determined by four parameters [100]: 

1. Stability index 00 < � ≤ 27: This parameter controls the tails heaviness of the stable 

density and, therefore, the impulsivity of the stable process (i.e., lower �, implies heavier 

tails). The value � = 2, corresponds to normal distribution, then for � = 1, the �-stable 

process corresponds to Cauchy distribution. For these two values of �, closed form 

expressions exist for �-stable but for other values of �, this closed form expression does 

not exist. 

2. Skewness index 0−1 ≤ c ≤ 17 : This parameter controls the symmetry of stable 

distribution, and specifies whether the distribution is asymmetric to the right 0c > 07 

or left 0c < 07. If c = 0, then the distribution is symmetrical and noted by ^�^ (this 

is the case with normal distribution). 

3. Scale parameter 0d > 07: A measure of dispersion which determines the spread of the 

distribution around its location parameter e. For normal distribution, d is half the 

variance. 

4. Location parameter 0−∞ < e < +∞7: This parameter represents the average when 1 < � ≤ 2, and the median when 0 < � ≤ 1. 

In the majority of cases, the stable distribution ^~ is also defined by its characteristic function 

as follow: 
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Φ~0f7 = D%exp02fX7( = 4exp02ef − d|f|~%1 + 2c®0f, �7sign0f7(7, � ≠ 1exp02ef − d|f|%1 + 2c®0f, �7sign0f7(7,   � = 1 (3.23) 

 

where X~^~0c, d, e7, and: 

®0f, �7 = Ëtan 3�2 , � ≠ 123 ln|f| , � = 1  

 

When the stable distribution is symmetrical 0c = 07, the characteristic function in equation 

(3.23) reduced to : Φ~0f7 = exp02ef − d|f|~7 (3.24) 

 

The symmetrical �-stable process is noted by ^�^~0d, e7. The heavy-tails impulsive noise 

introduced in equation (3.24) has a symmetrical �-stable distribution around zero, i.e. with X~^�^~0dX, 07, where the noise components are assumed and have the same characteristic 

parameter “�” (see figure 3.12). 

 

Figure 3.12- The �-stables density function. 

 

The noise considered in this paper is defined as follow: 

 ¥[,Ó0*�7 = �[,Ó0*�7 + °[,Ó0*�7
 (3.25) 

 

where �[,Ó0*�7
 is an additive white Gaussian noise vector with zero-mean and variance equal to 

��!  Y'; i.e. �[,Ó0*�7~Ïß00, ��!  Y'7, and °[,Ó0*�7
 is an additive impulsive-noise vector. 
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Without the pilot symbols, equation (3.7) can be rewritten as: 

 ¡[,Ó0*�7 = +√' &'ℋ ∑ G'iH� 0*�,*�7mz̅[,Ó0*�7'�*��+ + ¥[,Ó0*�7
 (3.26) 

 

For all time-slots at 5�-th received antenna, equation (3.26) becomes: 

 

²[0*�7 = +�'< �'<ℋ ℍ0*�7´[ + µ[0*�7
 (3.27) 

where 

⎩⎪⎪
⎨⎪
⎪⎧²[0*�7 = %o¡[,R0*�7p; , o¡[,+0*�7pℋ , … , o¡[,È�!0*�7 p; , o¡[,È�+0*�7 pℋ(;
µ[0*�7 = %o¥[,R0*�7p; , o¥[,+0*�7pℋ , … , o¥[,È�!0*�7 p; , o¥[,È�+0*�7 pℋ(;
´[ = ¦¤['#ºR; , … , ¤0[º+7'#�+; §;
�'<ℋ = YÈ ⊗ &'<ℋ

 

 

In this project, we adopt the method used in [101-102] to model °[0*�7
(¶[~^�^~0dR~, ­: 7, and 

generate an isotropic process ^�^~ of dimension Q. The formula for the equivalent isotropic 

multidimensional process using for numerical simulations is �-stable with characteristic 

function: Φ~0·7 = exp02·;¸ − dR~|·|~7 (3.28) 

where 

⎩⎪⎨
⎪⎧X = g+ !⁄ � + ¸g ∼ ^~ !� o1, 2dR!icos03 � 4⁄ 7! ~⁄ m! ~⁄ , 0pd = dR~, with dR > 0� = %ℜ0&7, ℑ0&7(; with &~Ïß00, 27,∀· ∈ ℝ:

 

3.3.3.2 Impulsive noise mitigation (optimal-MF) 

At the receiver, the usual filtering techniques for a signal tainted by impulsive noise are no longer 

reliable. This section presented a blind method to reduce the impact of impulsive noise on the 

received signal. 

Two impulsive noise mitigation domains for OFDM systems are considered in literature 

[103-104]. In [103], the impulsive noise mitigation methods are implemented in the frequency-

domain with the consideration of the channel estimation. However, the method in [104] 

consider the mitigation in the time-domain. 
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In this work, we focus on blind filtering of impulsive noise using MF in the time-domain as 

explained in the figure 3.10 [11, 102, 105]. 

Given an observed signal ¡[0*�7
 at 5�-th received antenna, to be filtered by MF [102]. For 

a set of samples n�[0*�70Ý7q?�R
¹�+

, this filter is defined by the value � that minimizes the following 

cost function Q0∙7 : 
�̂ = arg min� ∑ Q o�[0*�70Ý7 − �p¹�+?�R  (3.29) 

 

For a MF, Q0P7 = ln0ϱ! + P!7. Reconsidering this cost function, the MF is thus defined as: 

 

�̂ = MF nϱ;  �[0*�7007, �[0*�7017, … , �[0*�70½ − 17q 

= arg min� ∏ çϱ! + o�[0*�70Ý7 − �p!è¹?�+  (3.30) 

 

where ϱ > 0 is the linearity parameter of the MF. As mentioned above, the optimal-MF returns 

the elements of the input set where � ∈ n�[0*�70Ý7q?�R
¹�+

,   that minimizes the cost function in 

equation (3.30). Then, the new expression of the cost function in equation (3.30) becomes: 

 

�̂ = optimal-MFnϱ ;  �[0*�7007, �[0*�7017, … , �[0*�70½ − 17q 

= arg min
�∈nGE0î�70?7q%ï�

¾óò ¿ çϱ! + o�[0*�70Ý7 − �p!è¹�+
?�R  

= arg min
�∈nGE0î�70?7q%ï�

¾óò ∏ çϱ! + À�[0*�70Ý7 − �À!è¹�+?�R  (3.31) 

 

The filtered signal ¡�[0*�7
 is then expressed as: 

 ¡�[0*�7 = optimal-MFnϱ;  �[0*�7007, �[0*�7017, … , �[0*�70½ − 17q (3.32) 

 

To obtain quasi-optimal filtering, it is necessary to adjust Á depending to � and d. It can use 

one of the most approximations to optimize Á [15] as: 
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ϱ = Ro ~!�~p d+ ~⁄  (3.33) 

 

A. Estimator of the location parameter e: For the estimation of e, we suggest using the median of 

the observations: eÐ = median n�[0*�7007, �[0*�7017, … , �[0*�70½ − 17q (3.34) 

 

B. Estimator of the stability parameter and the scale parameter: To estimate the two parameters � and d of  ∼ ^�^~0d, 07 process, we can use the estimators in [106]. Then these estimators of � and d are : 

��Î = Â+ o��.ÃÄ���.�Ä��.ÅÄ���.°Ä , 0pdÎ = ��.ÅÄ���.°ÄÆÇ0~� ,R7  (3.35) 

 

where Â+0. , . 7 and @�0. , . 7 are the mapping tables, and  ø is the quantile é of the process  . 

Using the estimates of � and d in equation (3.35), we calculate the linearity parameter as: 

 

ϱÎ = Ro ~�!�~�p dÎ+ ~�⁄  (3.36) 

 

Algorithm 1. Blind selective-myriad filtering of received signal ¡[ at the 5�-th antenna [102]. 
 

Input : Sampled received signal �[04VM7. The algorithm requires prior temporal 
synchronization of the receivers, as well as the estimation of V. 

1 : 5 ⟵ 0 
2 : Based on the set rℜi�[04VM7ms)�R;Oc�+

, estimate �Î and dÎ using (3.35) {by substituting 

the set rℜi�[04VM7ms)�R;Oc�+
 for the process g} 

3 : dÎR ⟵ dÎ+ ~�⁄  
4 : Estimate ϱÎ* using (3.36) 
5 : For 4 = 0 until the index of the last sample of �[04VM7 

do 
6 :      Estimate ��[04VM7 using (3.32), where ϱ = ϱ* and � = VjM  
7 :      If 04 + 17VM > 05 + 17V then {Updating ϱÎ* for each V}  
8 :          5 ⟵ 5 + 1 
9 :          Based on the set rℜi�[04VM7ms)�*;Oc0*º+7;Oc�+

, update the estimates �Î and dÎ  

         Using (3.35) {by substituting the set rℜi�[04VM7ms)�*;Oc0*º+7;Oc�+
  

         for the process g} 
10 :          dÎR ⟵ dÎ+ ~�⁄  
11 :          Updating ϱÎ* using (3.36) 
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12 :      End If 
13 : End For 

Output : Filtered signal ��[04VM7 
 

3.3.3.3 Generalized-SNR 

In order to determine the SNR, higher order moments are used to measure the signal and noise 

power (Gaussian case). However, this distortion metric is not valid in the presence of impulsive 

noise (�-stable), since these noise processes do not have finite higher-order statistics. One of 

the most commonly used signal distortion measures in the context of �-stable processes is the 

generalized-SNR (GSNR). The GSNR is the ratio between the average signal power and the 

average dispersion of �-stable noise [107-108], such that: 

 

GSNR�� = 10 log+R ¯¦‖¡0*7�¥0*7‖°§'�©  (3.37) 

 

Therefore, direct comparison between existing methods (which assume Gaussian noise) and 

methods developed under the assumption of impulsive noise is not possible. However, it is 

interesting to note that the equivalence between the SNR and the GSNR is possible in a 

particular case where � = 2 [11]. 

In the presence of impulsive noise, the DMC process is the same as that proposed in [11, 

25]. Here we assume perfect CSI at the receiver. Otherwise, the channel estimation must be 

performed. In our study, the impact of the channel estimation error on the DMC process is 

examined. Consequently, the channel considered is modeled as: 

 

ℍÑ 0*�7 = ℍ0*�7 + � ℍ 0*�7
 (3.38) 

 

where Âℍ 0*�7Ã),* are zero-mean complex circular Gaussian variables i.i.d with unit-variance, 

and  � ! is the variance of channel estimation error. 

After decoding, the estimated vector Î́[ is sent to the following subsystem to extract the 

features. 

In figure 3.13 the performance of optimal-MF is examined with Gaussian and impulsive 

noises. The performance is evaluated by the P�� versus GSNR. We observe that the P�� improves 

as the value of � increases from 1.2 to 2. P�� is the best for α = 2, which corresponds to a 
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Gaussian channel. The mitigation of impulsive noise by MF has no effect on P�� for GSNR 

inferior to 10dB. 

 

Figure 3.13- Probability of correct identification versus GSNR in STBC-OFDM system with 

presence of impulsive noises. �
 = 2, �� = 4, � = 64. 

 

ANN based classifier outperform always the one based on all classifiers. 

3.4 DMC in SFBC-OFDM systems 

In the case of frequency-selective MIMO channels, there is an additional source of diversity, 

which is frequency diversity. By combining OFDM modulation with MIMO systems, space-

frequency block codes (SFBC) have been proposed to exploit spatial and frequency diversity in 

frequency-selective MIMO channels [109-111]. The strategy of SF coding is to distribute the 

channel coefficients on different transmit antennas and on all the sub-carriers within the same 

OFDM block. The SF coding mapping is based on ST codes (see table 3.1), replacing the time 

domain with the frequency domain [112-113]. 

The digital modulation identification in MIMO-OFDM systems using SF coding has 

aroused considerable research interest. 

In this section, we have applied our modulation identification algorithm in SFBC-OFDM 

system. The identification process in SFBC-OFDM system is similar as we explained previously, 

and is composed of four subsystems: (1) The equalization/decoding subsystem (2) The features 

extraction subsystem using HOS estimates, (3) pattern recognition using two classifiers ANN 

and SVM, and (4) the decisions fusion center. 

We consider a MIMO-OFDM system with �
 transmitting antennas, �� receiving antennas, 

and �-IFFT subcarriers. At the transmitter, the data symbols are taken from a QPSK or 

P
c

i 
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16QAM constellation. For the \-th data block, we consider the data vector ¤[ =%S[007,   S[017, …,   S[0�: − 27, S[0�: − 17(; and consists of �: symbols. The SF coding is 

obtained by linearly transforming the precoded data of vector ¤[ . In the case of an Alamouti 

coding, the symbol vector ¤[ is coded by SF encoder SF of Alamouti type into two vectors z[0+7 
and z[0!7 of size �: as: 

 

´z[0+7 = %S[007 ,   − S[∗017, …,   S[0�: − 27, −S[∗0�: − 17(;
z[0!7 = %S[017, S[∗007, … , S[0�: − 17, S[∗0�: − 27(;  (3.39) 

 

The vectors elements represent the frequency domain data symbols transmitted respectively by 

the first and the second antenna. In the spatial multiplexing (SM) system, the \-th data vector X[ = %P[007,   P[017, …,   P[02�: − 27, S[02�: − 17(; of length 2�: is multiplexed into two 

vectors (�
 = 2), giving two independent vectors of the frequency domain of length �:  : 
 

´|[0+7 = %P[007,   P[027, …,   P[02�: − 27, (;
|[0!7 = %P[017, P[037, … , P[02�: − 17, (;  (40) 

 

The SFBC coder maps the data symbol vector into an SF coding matrix of size �: × �
 , 

denoted ¾#$�
. The table 3.1 presents different SF code matrices used in literatures. Each 

codeword is presented by an coding rate, denoted "#$. 

Table 3.1. Different types of SF code matrices with different coding rates “"#$”. ¾#$�
0S+, S!, S�7 [114] ¾#$�
0S+, S!, S�, S�7[49] ¾#$�
0S+, S!, S�, S�7 [114] ¾#$�
0S+, S!, S�, S�7[49] 

à S+ S! S�−S!∗ S+∗ 0S�∗ 0 −S+∗0 S�∗ −S!∗
á 

⎣⎢
⎢⎢⎢
⎢⎢
⎡ S+ S! S�−S! S+ −S�−S� S� S+−S� −S� S!S+∗ S!∗ S�∗−S!∗ S+∗ −S�∗−S�∗ S�∗ S+∗−S�∗ −S�∗ S!∗ ⎦⎥

⎥⎥⎥
⎥⎥
⎤
 à S+ S! S� S�−S�∗ −S�∗ S+∗ S!∗−S!∗ S+∗ −S�∗ S�∗S� −S� −S! S+

á 

⎣⎢
⎢⎢⎢
⎢⎢
⎡ S+ S! S� S�−S! S+ −S� S�−S� S� S+ −S!−S� −S� S! S+S+∗ S!∗ S�∗ S�∗−S!∗ S+∗ −S�∗ S�∗−S�∗ S�∗ S+∗ −S!∗−S�∗ −S�∗ S!∗ S+∗ ⎦⎥

⎥⎥⎥
⎥⎥
⎤
 

�
 = 3, ½ = 3, "#$ =  34 �
 = 3, ½ = 4, "#$ =  12 �
 = 4, ½ = 4, "#$ =  1 �
 = 4, ½ = 4, "#$ =  12 

 

The operation of SF encoder and decoder can be described in terms of the even and odd 

components of the vector ¤[ . Let ¤[L and ¤[  two vectors of length o�: 2� p simultaneously 

designating the odd and even vectors of ¤[ . Then we define [109]: 
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¶¤[L = %S[017, S[037, … , S[0�: − 37, S[0�: − 17(;¤[ = %S[007, S[027, … , S[0�: − 47, S[0�: − 27(;  (3.41) 

 

Using the equations of (3.41), we can write: 

⎩⎪⎪
⎨
⎪⎪⎧oz[0+7pL = −0¤[L7∗

oz[0+7p = ¤[ oz[0!7pL = 0¤[ 7∗
oz[0!7p = ¤[L

 (3.42) 

 

From equation (3.42), we can conclude that SFBC can be represented by a transmission matrix 

as: ¾#$�
0¤[7 = ¦z[0+7 z[0!7§ 
= Ì ¤[ ¤[L−0¤[L7∗ 0¤[ 7∗Í ⇒ ¾#$�
ℋ 0¤[7¾#$�
0¤[7 = ‖¤[‖@3Y'� (3.42) 

 

After the coding matrix generation, the �tMk virtual subcarriers are added to each vector z[0*�7
 

to form the vector ��[0*�7. Then, �-points of the IFFT matrix (&'ℋ), are applied to the vector 

��[0*�7 and the CP is inserted by multiplication with an appropriate matrix �k> = ÂY'[�×'; , Y'; Ã;
. 

We note here that the CP is strictly greater than the channel length (�k> ≫ N). The resulting 

signal sent by �
 antennas passes through a Rayleigh channel and received by �� antennas. ℎ0*�,*�70�7 with � ∈ %0, N − 1( denotes the N-th channel coefficients between the 5
-th transmit 

antenna and the 5�-th receive antenna. 

Using an appropriate matrix ±k> = Â­'×'[� , Y'Ã, to remove the CP from the received 

signal. We assume that the synchronization between the oscillators of the transmitter and 

receiver is perfect (absence of CFO), the \-th received signal by the 5�-th antenna after the 

application of FFT is written in the following form: 

 ¡�[0*�7 = +' ∑ G'iH� 0*�,*�7m'�*��+ ��[0*�7 + ¥![0*�7
 (3.43) 

 

where ¡�[0*�7 = &'¡[0*�7
, and ¥![0*�7 = &'¥[0*�7

 of size 0� ×  17 is the zero-mean AWGN vector 

and variance �É! Y'. 
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The identification system begins after the equalization/decoding operations. The DMC process 

is the same as that proposed in the STBC-OFDM system. 

Here we assume perfect CSI at the receiver. Therefore, for the SFBC-OFDM system, we 

examine the impact of the channel estimation error on the DMC process. The channel 

considered is modeled as : £Ñ 0*�7 = £0*�7 + � £ 0*�7
 (3.44) 

 

where Â£ 0*�7Ã),* are zero-mean complex circular Gaussian variables and i.i.d with unit-

variance, and � ! is the variance of channel estimation error. 

After decoding, the estimated vector ¤Î[ is sent to the following subsystem to extract the features. 

The simulation results show the performance of our proposed algorithm and the 

identification capacity for the pool Θ = tQPSK, 16QAMv, in the presence of transmission 

degradations, with relatively low SNR values. These favorable results are obtained with an 

acceptable calculation cost. 

Figure 3.14 shows the probability of correct identification for different numbers of 

subcarriers �. The performance of the proposed algorithm improves with the increase of � but 

involves a great computation complexity. 

 

Figure 3.14- Probability of correct identification versus SNR in SFBC-OFDM system for 
different values of �. �
 = 2, �� = 4. 

 
Figure 3.15 shows the probability of correct identification versus SNR by applying two types of 

classification ANN and SVM in SFBC-OFDM system with and without the channel estimation 

error. 

P
c
i 
(%

)



Chapter 3.                                                 Digital Modulation Classification in MIMO-OFDM Systems 

75 

 

The addition of estimation errors degrades the performance of our identification process. 

However, this degradation is small compared to the results achieved without these errors (the 

variance of the channel estimation errors is � ! = 0,1). 

 

Figure 3.15- Probability of correct identification versus SNR in SFBC-OFDM system with 
and without the channel estimation error. � ! = 0,1, �
 = 2, �� = 4. 

 

In figure 3.16, the P�� and P�� for each modulation in pool Θ are evaluated by the classification 

process in SFBC-OFDM system. We use an ANN classifier to show the performance of our 

DMC process with perfect CSI at the receiver side. We can see that the probabilities for the two 

modulations are very close with a superiority of the QPSK modulation. The results indicate that 

the performance of P�� augmentent avec un SNR�� ≥ −10 et lorsque le P��  s'approche de 0.01. 

 

Figure 3.16- P�� and P�� versus SNR in SFBC-OFDM system. �
 = 2, �� = 4, � = 512, and 

ANN classifier. 

Of all the classification results compared, ANN obtained the highest overall classification 

accuracy, followed by the SVM classifier in different scenarios. Analysis of the results stability 

allowed us to conclude that all the classifiers presented small variances in terms of overall 
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precision even with the presence of the channel degradations. This proves the effectiveness of 

our classification algorithm. 

3.5 Conclusion 

In this last part, we present a brief study on digital modulations identification algorithms in 

MIMO-OFDM systems. 

We show that, by taking advantage of the redundancy in space, time and frequency, thus 

the different phases of the received signals filtering, the digital modulations identification can 

be performed by exploiting the features extraction of the filtered signals using HOS from 

different antennas and the differents classifiers. Due to this functionality, we develop differents 

tests for decision-making. The proposed processes do not require a priori recognition of the 

channel coefficients, the nature of the noise, the modulation schemes, or the frequency offset. 

The simulation results thorough allowed us to verify the effectiveness of the proposed methods. 

To solve the degradation problems of BDMC performances due to CFO and channel 

estimation errors, we have proposed joint blind and semi-blind estimation methods for CFO 

and channels. 

In this work, the effect of impulsive noise on the digital modulations identification for 

MIMO-OFDM system is considered. The MIMO-OFDM system is very sensitive to impulsive 

noise and to reduce these effects, pulsive noise, a filtering based on the optimal Myriad filter is 

proceeded and implemented to estimate the parameters of this noise type. 

To recognize the digital modulation type, the DMC algorithm uses HOS for the features 

extraction. After that, different classifiers (ANN, SVM, RFC, KNN) are applied to solve the 

pattern recognition problem. This steps-end with a decisions fusion in order to improve the 

accuracy of desired modulations identification. The simulation results showed that our BDMC 

algorithm is robust to CFO, channel estimation errors and impulsive noise, and that it works 

with a high identification probability at low SNR. The two classifiers SVM and ANN can 

achieve, for all settings, a classification rate of 97.6% for SNR greater than or equal to 0dB and 

up to 90% for GSNR greater than 5dB. 
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Conclusion 
 

his thesis presents one of the applications of cognitive radio, that is the digital 

modulations identification for STBC-MIMO and MIMO-OFDM systems operating in 

multipath environment and in presence of impulsive noise and frequency offset. So, the 

identification is affected by the harmful effects of this channel, hence the need to its estimation. 

For that, blind and semi-blind estimation algorithms of channels, CFO and impulsive noise were 

used. At the receiver side, and based on these estimates, CFO compensation, channel 

equalization (ZF or SCMA), and Myriad filtering are applied in order to reducing errors which 

degrade identification. Then, the blind modulation identification started. First, the HOS are to 

be extracted from the received signal. These features are exploited by the pattern recognition 

algorithms (ANN, SVM, KNN and RFC), to be able to achieve the final classification after the 

passage by a decisions fusion center. This center of fusion used to reinforce the identification 

capacity of all modulations types under inappropriate transmission conditions, and for medium 

and low SNR levels. 

Indeed, in the second chapter, we have done the blind digital modulation identification 

for spatially correlated STBC-MIMO systems based on the HOS and the different classifiers 

(ANN, SVM, ... etc.). Here all classifiers are subjected to the same conditions of training and 

test and are evaluated in the sense of the average probability of correct identification. Intensive 

simulations show that ANN classifier have the best average probability of correct identification 

for all simulated SNR range and MIMO system configurations. Additionally, we note that, 

globally, all classifiers have close performances; this can be explained by their good deployment 

after leading them to their best completion. 

According to the simulation results, the ZF-DMC method is a best semi-blind algorithm 

when we assume a perfect CSI, and deploy before the features extraction process. However, the 

ZF-DMC algorithm is sensitive to channel estimation errors. The presence of these errors leads 

to rapid performance degradation and leads to upper bound of the probability of identification. 

To solve this problem, the SCMA-DMC algorithm is assumed to blindly separate symbols and 

offer best performances when any prior information on the channel is required at the receiver. 

The proposed algorithms are examined through a correlated MIMO channels and they prove 

capable of identifying different digital modulation schemes with great precision. 

The use of multi-carriers systems is constantly growing either for 4G or for the future 5G, this 

is why we have opted it in the third chapter for the STBC-OFDM and SFBC-OFDM systems, 

T 
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firstly. On the other hand and to the best our knowledge, modulation identification for MIMO-

OFDM systems has not discussed in detail previously in the literature. For this, we considered 

the identification problem for MIMO-OFDM systems operating in a hostile environment, the 

same that used in chapter 2 (impulsive noise, CFO and channel errors). By following the same 

modulation identification process, that is: HOS features extraction, then applications of the 

ANN, SVM, KNN, and RFC algorithms followed by decision fusion, we were able to 

demonstrate the reliability of the proposed algorithms. Indeed, the simulation results showed 

that our BDMC algorithm is robust to CFO, to channel estimation errors and to impulsive 

noise, and that it works with a high probability of identification at low SNR. The modulation 

classification process can achieve, for all settings, a best classification rate (≥ 97% for SNR ≥ 

0dB and > 90% for GSNR > 5dB). 

Note that, the classification performance is directly related to the quality of learning phase 

of each classifier, and that better learning can be achieved by including a wider range of data in 

a predefined interval of SNRs. 
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Appendices 
 

A1. SNR in Rayleigh fading channels 

In any communication system, the SNR is a very important parameter for describing and 

measuring the reception sensitivity of an information signal. It is the ratio between the maximum 

signal power and the noise power, present at the receiver. However, the communication channel 

noise is not often the ultimate disadvantage. Considering a system subject to the influence of 

fading, modeled by a Rayleigh distribution, a more appropriate measure to describe the the 

receiver sensitivity is the SNR calculation. In a MIMO-SC system, the output of ZF equalizer 

at the receiver side is given by: ¤Î = -Ñ0£¤ + ¥7 (A.1) 

 

where -Ñ = £Ñ # = 0£ + � ¦7# and the coefficients of ¦ are zero-mean complex circular 

Gaussian variables and i.i.d with unit-variance. Suppose � ≪ 1, then the pseudo-inverse of the 

estimated channel matrix can be approximated by the linear part of the Taylor expansion as 

-Ñ = £#iY'� − � ¦£#m. Consequently, the estimated signal can be written as ¤Î = ¤ + ¥� where ¥� is given by: ¥� = £#¥ − � £#¦¤ − � £#¦£#¥ (A.2) 

 

The last two terms in equation (A.2) are additional noise introduced by the channel 

estimation error. To calculate the effective post-processing SNR for each estimated stream, we 

must calculate the covariance matrix of the effective post-processing noise, i.e. D%¥�¥�ℋ(. This 

covariance matrix is calculated as: 

 D%¥�¥�ℋ( = D%0£#¥ − � £#¦¤ − � £#¦£#¥7 × 0£#¥ − � £#¦¤ − � £#¦£#¥7ℋ( = �®!£#0£#7ℋ − � �®!D%£#0£#7ℋ¦ℋ0£#7ℋ( + � !�M!£#D%¦¦ℋ(0£#7ℋ
− � �®!D%££#¦0£#7ℋ( + � !�®!£#D%¦£#0£#7ℋ¦ℋ(0£#7ℋ = �®!0£ℋ£7�+ + � !�M!£#�
Y'�0£#7ℋ + � !�®!£#D%¦0£ℋ£7�+¦ℋ(0£#7ℋ = ¦�®! + �
� !�M! + � !�®!tr00£ℋ£7�+7§0£ℋ£7�+ (A.3) 
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where D%¤¤ℋ( = �M!Y'� , D%¥¥ℋ( = �®!Y'� , D%¦¦ℋ( = �
Y'� , £#0£#7ℋ = 0£ℋ£7�+, and D%¦0£ℋ£7�+¦ℋ( =  tr00£ℋ£7�+7Y'�. 

Based on the above equation, the post-processing SNR by symbol of the 5-th stream can 

be expressed as [1]: 

Á* = Ë�Â+º'�ä\°Ë�ºä\°�_oi£ℋ£móòpÃÂi£ℋ£móòÃî,î (A.4) 

 

where ÁR = äc°äå° is the average normalized SNR at each receiving antenna. The probability of 

%0£ℋ£7�+(*,* to be large is still small. The term � !tr00£ℋ£7�+7 in the above equation can 

be neglected. Finally, the post-processing SNR for each estimated stream is approximated by: 

 

Á* = Ë�¦+º'�ä\°Ë�§Âi£ℋ£móòÃî,î = Ë�ÌîÍ\  (A.5) 

 

where ®* is a random variable following a weighted chi-square distribution and Î = 1 +�
� !ÁR is the degradation of SNR due to imperfect CSI. For large SNR (ÁR → ∞) the ratio 

Ë�Í\ → +'�ä\°, which leads to an upper bound for correct identification contrary to the perfect CSI 

case [1, 115]. 

A2. Derivation of moments and cumulants expressions 

The cumulants ®* are defined by the cumulants generating function ℊ0f7 as: 

 

ℊX0f7 = lniD0'
X7m = ∑ ®* 
î*!g*�+ = Ñf + �! 
°!! = ⋯ (A.6) 

 

This function is therefore linked to the moment generating function and to the features function 

of variable X. The cumulants are given by the derivatives in “0” of ℊ0f7. 

As indicated in equation (A.6), the cumulants and the moments of a distribution are 

linked. With independent variables X and ¡, the generator function is more practical in the 

measurement of cumulants: 

ℊXº¡0f7 = ln oDi'
0Xº¡7mp = lniD0'
X7m + lniD0'
¡7m = ℊX0f7 + ℊ¡0f7 (A.7) 

 

Whereas with the moments generating function ÒX, we obtain: 
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ÒXº¡0f7 = Di'
0Xº¡7m = D0'
X7 ∙ D0'
¡7 = ÒX0f7 ∙ Ò¡0f7 (A.8) 

 

For a stationary random process with complex values S057, the second order moments and 

cumulants can be defined in two different ways. Likewise, fourth-order moments and cumulants 

can be written in three ways. Thus, second, fourth and sixth order cumulants can be defined as 

[4, 64, 116]: 

⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎧®!�: 4®!R = D%S!057( = Ñ!R®!+ = D%|S057|!( = Ñ!+
®��: Ë®�R = (Ç4iS057, S057, S057, S057m = Ñ�R − 3®!R!

®�+ = (Ç4iS057, S057, S057, S∗057m = Ñ�+ − 3®!R®!+®�! = (Ç4iS057, S057, S∗057, S∗057m = Ñ�! − |®!R|! − 2®!+!

®*�:
⎩⎪⎨
⎪⎧®*R = Ñ*R − 15®!RÑ�R + 30®!R�®*+ = Ñ*+ − 5®!+Ñ�R − 10®!RÑ�+ + 30®!R! ®!+®*! = Ñ*! − 6®!RÑ�! − 8®!+Ñ�+ − Ñ!!Ñ�R + 6®!R! Ñ!! + 24®!+! ®!R®*� = Ñ*� − 9Ñ�!®!+ − 3®!RÑ�� − 3Ñ!!Ñ�+ + 18®!R®!+Ñ!! + 12®!+�

 (A.9) 

The theoretical values of moments and cumulants for different orders and for all the 

modulations constellations used in our studies are given in table A1. These values are calculated 

for noise-free constellations with equiprobable symbols and unit-variances [5, 64]. These values 

clearly show how each modulation constellation is characterized by a set of these HOS, which 

means each modulation constellation comprises a distinct set of HOS values. 

 

Table A1. Some theoretical statistical values of moments and cumulants for different 

modulation schemes [4-5]. 

 BPSK QPSK 8-PSK 4-ASK 8-ASK 16-QAM 64-QAM �!R 1 0 0 1 1 0 0 ��R 1 1 0 1.64 1.77 -0.67 -0.18 ��+ 1 0 0 1.64 1.77 0 0 ��! 1 1 1 1.64 1.77 1.32 1.34 ��R -2 1 0 -1.36 -1.24 -0.68 -0.62 ��+ -2 0 0 -1.36 -1.24 0 0 ��! -2 -1 -1 -1.36 -1.24 -0.68 -0.62 �*R 1 0 0 2.92 3.62 0 0 �*+ 1 -1 0 2.92 3.62 -1.32 0.38 �*� 1 1 1 2.92 3.62 1.96 2.08 �*R 16 0 0 8.32 7.19 0 0 �*+ 16 -4 0 8.32 7.19 2.08 1.8 �*! 16 0 0 8.32 7.19 0 0 �*� 16 4 4 8.32 7.19 2.08 1.8 
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Abstract 
Research in the field of cognitive radio (CR) has emerged to meet both the military's communication 
and the public safety sector needs. The CR often share the same requirements as civilian radio-mobile 
telecommunication operators. 

One of the main features of a CR device is to be aware of its radio environment and to detect 
available bands. The objective of the research work in this doctoral thesis is to develop a blind digital 
modulation identification algorithm that can be used for STBC-MIMO and STBC-OFDM systems. 
The modulation identification process requires four steps: 1- The extraction of higher order statistics 
(HOS) from the signal; 2- HOS processing (normalization and use of PCA to keep only a subset of HOS 
with large variance); 3- The use of Pattern Recognition tools (ANN, SVM, RF and KNN) for modulation 
classification; 4- The improvement of classification using a decision fusion center. The results obtained 
show the effectiveness of the proposed algorithm. 
Keywords: Multi-carrier, Cognitive radio, spectral sounding, blind waveform identification, multiple antennas, 
multiple-input multiple-output systems. 

 

Résumé 
Les recherches dans le domaine de la radio cognitive (CR) ont vu le jour afin de répondre aux besoins 
de communication de l'armée ainsi qu'aux besoins dans les secteurs de la sécurité publique. La CR partage 
souvent les mêmes exigences que les opérateurs de télécommunication radio-mobile civile.  

Une des principales fonctionnalités d'un dispositif de radio cognitive est de prendre conscience 
de son environnement radioélectrique et de détecter les bandes disponibles. L’objectif du travail effectué 
dans le cadre de cette thèse de doctorat est de développer un algorithme qui sera utiliser pour 
l’identification aveugle de modulations numériques pour les systèmes STBC-MIMO et STBC-OFDM. 
Le processus d’identification de modulation exige quatre étapes : 1- L’extraction des statistiques d’ordre 
supérieur (HOS) à partir du signal ; 2- Le traitement des HOS (normalisation et utilisation de la PCA 
pour ne garder qu’un sous ensemble de HOS à grande variance) ; 3- L’utilisation des outils de Pattern 
Recognition (ANN, SVM, RF et KNN) pour la classification de modulation ; 4- L’amélioration la 
classification en utilisant un centre de fusion des décisions. Les résultats obtenus montrent l’efficacité de 
l’algorithme proposé. 
Mots Clef : Multi-porteuses, Radio cognitive, sondage spectral, identification aveugle de la forme d'onde, antennes 
multiple, Systèmes multiple-input multiple-output. 
 

  ملخص

 CRلتلبية كل من الاتصالات العسكرية واحتياجات قطاع السلامة العامة. غالباً ما يتشارك  (CR) المعرفي الادراكي أو ظهرت الأبحاث في مجال الراديو
 .مشغلي الاتصالات اللاسلكيةع نفس المتطلبات م

بحثي المتاحة. الهدف من العمل ال أو الترددات راديوية واكتشاف النطاقاتكهرو في الانتباه إلى بيئته ال CR تتمثل إحدى السمات الرئيسية لجهاز
 STBC-OFDMو STBC-MIMO أنظمةفي  قمير ال عديللمعرفة الت استخدامها يمكن خوارزمية تطوير هو هذه الدكتوراه أطروحةفي 

 (تحسين  HOSمعالجة -)2 ؛ (HOS) رتبة أعلىبحصائيات الإستخراج إستخدام الإشارة المقدرة لا -)1أربع خطوات:  تعديل إلىتتطلب عملية تحديد ال
، ANN ،SVM ،RFCشكال (على الأاستخدام أدوات التعرف  -)3؛ )مع تباين كبير HOS لحفاظ على مجموعة فرعية فقط منل PCA واستخدام

 .ارزمية المقترحةر النتائج التي تم الحصول عليها فعالية الخو ظهِ تصنيفات الفرعية. تُ التصنيف باستخدام مركز دمج التحسين  -)4عديل، لتصنيف الت )KNNو 
عددة شكل الموجة، هوائيات متعددة، أنظمة متالأعمى ل تحديدالالمعرفي، السبر الطيفي، الادراكي أو : الموجات الحاملة المتعددة، الراديو مفتاحيةكلمات 

 .المخرجات متعددة المدخلات


