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Chapter 1

Introduction

In recent years, fractional calculus has been increasingly applied in different fields of science.
Physical phenomena related to electromagnetism, propagation of energy in dissipative systems,
thermal stresses, relaxation vibrations, viscoelasticity and thermoelasticity are successfully de-
scribed by fractional differential equations. Fractional calculus allows for the investigation of
the nonlocal response of mechanical systems, this is the main advantage when compared to the
classical calculus.

In the literature, a number of definitions of the fractional derivatives have been introduced,
namely the Hadamard, Erdelyi-Kober, Riemann-Liouville, Riesz, Weyl, Grunwald-Letnikov,
Jumarie and the Caputo representation.

In this thesis we were interested in study of the global existence and the stabilization of some
non local evolution equations. More precisely, we will study a wave equations under dynamic
boundary feedbacks of fractional derivative type.

The problem of stabilization for the initial boundary value problem

(P ′)



























utt −∆u = 0 on Ω× (0,+∞),
u = 0 on ΓD × (0,+∞),
∂u

∂ν
+ a(x)ut = 0 on ΓN × (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) on Ω,

was investigated by several authors. In Haraux [18], Bardos, G. Lebeau and J. Rauch [8],
Lebeau and Robbiano [8], Burq [11] and Xiaoyu Fu [15].

First, A. Haraux has shown that if a ∈ L∞(ΓN), a 6≡ 0, then any solution of (P ′) tends to 0
in H1(Ω) strongly as t→ +∞.

C. Bardos, G. Lebeau and J. Rauch [8] introduced a geometric control condition which is
a necessary and sufficient condition for uniform exponential decay rate of the energy.

Moreover, Lebeau and Robbiano (see [25]) have shown that, in the case where the Neumann
boundary condition is applied on the entire boundary, a weak condition on the feedback (which
does not satisfy Geometric Control Condition) leads to logarithmic decay of regular solutions.
The optimal result without geometrical hypothesis is given in [11]. We also recall the result by
Fu [15], where the author proved a result similar to the one in [25] for less regular conditions
(∂Ω ∈ C2) by adopting the global Carleman estimate.
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6 CHAPTER 1. INTRODUCTION

The purpose of stabilization is to attenuate the vibrations by feedback, it consists to guar-
antee the decay of the energy of solutions towards 0 in away, more or less fast. More precisely,
we are interested to determine the asymptotic behavior of the energy denoted by E(t) and to
give an estimate of the decay rate of the energy. There are several types of stabilization

1)Strong stabilization : E(t)→ 0 as t→∞.

2)Logarithmic stabilization : E(t) ≤ c(lnt)−δ, c, δ > 0.

3)Polynomial stabilization : E(t) ≤ ct−δ, c, δ > 0.

4)Uniform stabilization : E(t) ≤ ce−δtc, δ > 0.

The present thesis is devoted to the study of the global existence and asymptotic behaviour
in time of solutions to wave equations. This work consists of essentially of three chapters:

Chapter 3: Optimal energy decay for a transmission problem of waves
under a nonlocal boundary control

We considered the stabilization for the following wave equation with dynamic boundary control
of fractional derivative type

(P )
{

ρ1utt(x, t)− τ1uxx(x, t) = 0 in (0, l0)× (0,+∞),
ρ2vtt(x, t)− τ2vxx(x, t) = 0 in (l0, L)× (0,+∞),

We investigate the existence and decay properties of solutions for the initial boundary value
problem and prove the global existence of its solutions in Sobolev spaces by means of the
semigroup theory. To prove decay estimates, we use a technique based on a resolvent estimate
and Borichev-Tomilov Theorem.

Chapter 4: Exponential Stability of Compactly Coupled Wave Equa-
tions with Time-Varying Delay Terms in the Boundary Feedbacks

We considered the stabilization for compactly coupled wave equations with boundary time-
varying delay terms

{

utt −∆u+ l(u− v) = 0 in Ω× (0,∞)
vtt −∆v + l(v − u) = 0 in Ω× (0,∞)

where l, α1, α2, β1 and β2 are positive real numbers, the time-varying delay τ(t) satisfies some
conditions and the initial data are taken in suitable spaces.

We investigate the existence and decay properties of solutions for the initial boundary value
problem and prove the global existence of its solutions in Sobolev spaces by means of the
semigroup theory. To prove decay estimates, we introduce suitable energie and Lyapounov
functionals.
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Chapter 5: Blow-up for coupled nonlinear wave equations with frac-
tional damping and source terms

We considered the following wave equation with dynamic boundary control of fractional deriva-
tive type

{

utt + ∂1−αt u = div(ρ1(|∇u|2)∇u) + f1(u, v)
vtt + ∂1−βt v = div(ρ2(|∇v|2)∇v) + f2(u, v)

We investigate the existence and the uniqueness properties of solutions for the initial boundary
value problem and prove an estimate of time of blow up of its solutions in Sobolev spaces by
means of the concavity theorem of H. Levine.
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Chapter 2

Preliminaries

In this chapter, we will recall the essential notions, and some basic results, concerning functional
spaces, semi-groups and spectral analysis theories, These concepts and results represent an
important tool for studying the following chapters.

2.1 Some functional spaces

Definition 2.1.1 (Lp spaces) For 1 ≤ p ≤ ∞, we call Lp(Ω) the space of measurable functions
f on Ω such that

‖f‖Lp(Ω) =
(∫

Ω
|f(x)|pdx

)1/p

< +∞ for p < +∞

‖f‖L∞(Ω) = sup
Ω
|f(x)| < +∞ for p = +∞

The space Lp(Ω) equipped with the norm f −→ ‖f‖Lp is a Banach space. In particular the
space L2(Ω) is a Hilbert space equipped with the scalar product defined by

(f, g)L2(Ω) =
∫

Ω
f(x)g(x)dx.

We denote by Lp
loc(Ω) the space of functions which are L

p on any bounded sub-domain of Ω.
Now, we will introduce the Sobolev spaces:

Definition 2.1.2 The Sobolev spaceW k,p(Ω) is defined to be the subset of Lp such that function
f and its weak derivatives up to some order k have a finite Lp norm, for given p ≥ 1.

W k,p(Ω) = {f ∈ Lp(Ω);Dαf ∈ Lp(Ω). ∀α; |α| ≤ k} ,

With this definition, the Sobolev spaces admit a natural norm,

f −→ ‖f‖Wk,p(Ω) =





∑

|α|≤m
‖Dαf‖pLp(Ω)





1/p

, for p < +∞

9
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and
f −→ ‖f‖Wk,∞(Ω) =

∑

|α|≤m
‖Dαf‖L∞(Ω) , for p = +∞

Space W k,p(Ω) equipped with the norm ‖ . ‖Wk,p is a Banach space.

Definition 2.1.3 Whene p = 2, we denote by

W k,2(Ω) = Hk(Ω)

the Hk inner product is defined in terms of the L2 inner product:

(f, g)Hk(Ω) =
∑

|α|≤k
(Dαf,Dαg)L2(Ω) .

The space Hm(Ω) and W k,p(Ω) contain C∞(Ω) and Cm(Ω). The closure of D(Ω) for the Hm(Ω)
norm (respectively Wm,p(Ω) norm) is denoted by Hm

0 (Ω) (respectively W
k,p
0 (Ω)).

Theorem 2.1.1 Let k ∈ IN and 1 ≤ p <∞. We then have

W k,p
0 (IRn) = W k,p(IRn)

Moreover, the set C∞(Ω) ∩W k,p(Ω) is dense in W k,p(Ω).

Theorem 2.1.2 (Sobolev, Morrey). Let k ∈ IN and 1 ≤ p < ∞. We have the following
embeddings.

(i) Let kp < n, then

W k,p(IRn) ⊂ Lq(IRn), for all q ∈ [p, p⋆]

where p∗ is given by
1

p∗
=
1

p
− k

n
(ii) Let kp = n, then

W k,p(IRn) ⊂ Lq(IRn), for all q ∈ [p,∞]

(iii) Let kp > n, then there are j ∈ IN0 and 0 < β < 1 such that k − n
p
= j + beta or

k − n
p
∈ IN. In the latter case we set j = k − n

p
− 1 ∈ IN0 and take any 0 < β < 1, then

W k,p(IRn) ⊂ Cj+β
0 (IRn),

where
Cj+β
0 (IRn) = {u ∈ Cj(IRn) : ∂αu← 0 as |x|2 ←∞ and partialαu is

β-Holder continuous on IR
n, for all 0 ≤ |α| ≤ j}.

Corollary 2.1.1 Let k ∈ IN, j ∈ IN0, and 1 ≤ p <∞. We have the following embeddings.
(i) if 1 ≤ p <∞ and k − n

p
geqj − n

q
, then

W k,p(IRn) ⊂ W j,p(IRn)

(ii) if 1 ≤ p <∞ and k − n
p
= j, then

W k,p(IRn) ⊂ W j,p(IRn)

(iii) if 0 < β < 1 and k − n
p
= j + β, then

W k,p(IRn) ⊂ Cj+β
0 (IRn)
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2.2 Spectral theory

in this section we try to review the basic definitins and results on linear operators. Let E, (‖.‖E)
and (F, ‖.‖F ) be two Banach spaces over IC, and H will always denote a Hilbert space equipped
with the inner scalar product < ., . >H and the corresponding norm ‖.‖H .

2.2.1 Linear operators

A linear operator A : E 7→ F is a transformation which maps lineary E in F, that is

A(αu+ βv) = αA(u) + βA(v), ∀u, v ∈ E and α, β ∈ IC

in this chapter we try to review the basic definitins and results on linear operators,

Definition 2.2.1 A linear operator A : E 7→ F is said to be bounded there exists C ≥ 0 such
that

‖Au‖F < C‖u‖E ∀u ∈ E
The set of all bounded linear operators from E into F is denoted by L(E,F ). Moreover, the set
of all bounded linear operators from E into E is denoted by L(E)

Definition 2.2.2 A bounded operator A ∈ L(E,F ) is said to be compact if for each sequence
(u)

n∈IN ∈ E with ‖un‖E = 1 for each n ∈ IN, the sequence (Aun)n∈IN has a subsequence which
converges in F.

Definition 2.2.3 An unbounded linear operator T from E into F is a pair (T,D(T)), consisting
of a subspace D(A) ⊂ E (called the domain of A ) and a linear transformation

T : D(A) ⊂ E → F

In the case when E = F then we say (A,D(A)) is an unbounded linear operator on E. If
D(A) = E then A ∈ L(E,F ).

Definition 2.2.4 Let T : D(A) ⊂ E → F be a linear operator.

• The range of T is defined by

R(A) = {Tu : u ∈ D(A)} ⊂ F

• The kernel of T is defined by

ker(A) = {u ∈ D(A) : Au = 0} ⊂ E

Definition 2.2.5 Let A be a linear operator from E to F . The operator A is called closed if
for all un ∈ D(A), n ∈ IN, such that there exists u = lim xn in E and v = limAun in F , we
have u ∈ D(A) and Au = v.
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Definition 2.2.6 Let A be a linear operator from E to F . The graph of A is given by

G(A) = {(u,Au) ∈ E × F : u ∈ D(A)}

The graph norm of A is defined by ‖u‖A = ‖u‖E + ‖Au‖F .

Theorem 2.2.1 (Closed Graph Theorem). Let E and F be Banach spaces and A be a closed
operator from E to F . Then A is bounded if and only if D(A) is closed in E. In particular, a
closed operator with D(A) = E belongs to L(E,F ).

Theorem 2.2.2 Let (A,D(A))be a closed linear operator on H then the space
(D(A), ‖.‖D(A)) where ‖u‖D(A) = ‖Au‖H + ‖u‖H ∀u ∈ D(A) is Banach space.

Definition 2.2.7 Let A : D(A) ⊂ E → F be a closed linear operator.

• The resolvent set of A is defined by

ρ(A) = {λ ∈ IC : λI − A is bijective from D(A) onto F}

• The resolvent of T is defined by

R(λ,A) = {(λI − A)−1 : λ ∈ ρ(T )}

• The spectrum set of A is the complement of the resolvent set in IC , denoted by

σ(A) = IC/ρ(A)

Definition 2.2.8 Let A : D(A) ⊂ E → F be a closed linear operator. we can split the spectrum
σ(A) of A into three disjoint sets, given by

• The ponctuel spectrum of A is define by

σp(A) = {λ ∈ IC : ker(λI − A) 6= {0}}

in this case λ is called an eignvalue of A

• The continuous spectrum of A is define by

σc(A) = {λ ∈ IC : ker(λI−A) = 0,R(λI − A) = F and (λI−A)−1 is not bounded}.

• The residual spectrum of A is define by

σc(A) = {λ ∈ IC : ker(λI − A) = 0 and R(λI − A) is not dense in F}
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Definition 2.2.9 Let A : D(A) ⊂ E → F be a closed unbounded linear operator and let λ be
an eigenvalue of A. A non-zero element e ∈ E is called a generalized eigenvalue of T associated
with the eigenvalue λ, if there exists n ∈ IN

∗ such that

(λI − A)ne = 0 and (λI − A)n−1e 6= 0

. If n = 1, then is called an eigenvector.

Definition 2.2.10 Let A : D(A) ⊂ E → F be a closed unbounded linear operator. We say
that T has compact resolvent, if there exist λ0 ∈ ρ(A) such that (λ0I − A)−1 is compact.

Theorem 2.2.3 Let (A,D(A)) be a closed unbounded linear operator on H then, ρ(A) is an
open set of IC

Definition 2.2.11 Let (A,D(A)) be a densely defined linear operator on H. The adjoint A⋆

of A is the operator defined by

D(A⋆) = {f ∈ H; ∃f ⋆ ∈ H; 〈f ⋆, g〉 = 〈f, Ag〉, ∀g ∈ D(A)} (2.1)

and A⋆f = f ⋆, ∀f ∈ D(A⋆).

Theorem 2.2.4 Let A be a closed operator on H with dense domain. Then the following
assertions hold.

(i) σr(A) = σp(A
⋆)

(ii) σ(A) = σ(A⋆) and R(λ,A)⋆ = R(λ,A⋆), ∀λ ∈ ρ(A).

2.2.2 Semigroups

Now, we start to intoduce some basic concepts concerning the semigroups.

Definition 2.2.12 A family (S(t))t≥0 of bounded linear operations in X is called a semigroup
if

• S(0) = I (I is called identity operator on X).

• S(t+ s) = S(t)S(s), ∀t, s ≥ 0

Definition 2.2.13 A semigroup of bounded linear operators, (S(t))t≥0), is called

• Uniformly continuous semigroup if limt←0+ ‖S(t)− T‖L(H) = 0

• Strong continuous semigroup (in short, a C0-semigroup) if for each u ∈ H,S(t)u is con-
tinuous in t on [0,+∞[
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Definition 2.2.14 For a semigroup (S(t))t≥0, we define an linear operator A with domain
D(A) consisting of points u such that the limit

Au := lim
t→0+

S(t)u− u
t

, u ∈ D(A)

exists. Then A is called the infinitesimal generator of the semigroup in X.

Theorem 2.2.5 Let (S(t))t≥0 be a C0-semigroup. Then there exist a constant M ≥ 1 and
ω ≥ 0 such that

‖S(t)‖L(X) ≤Meωt, ∀t ≥ 0

In the above theorem, if ω = 0 then the corresponding semigroup is uniformly bounded. more-
over, if M = 1 then (S(t))t≥0 is said to be a C0-semigroup of contractions.

Definition 2.2.15 A linear operator (A,D(A)) on H, is said to be dissipative if

R < Au, u >H≥ 0, ∀u ∈ D(A)
Definition 2.2.16 A linear operator (A,D(A)) on X, is said to be m-dissipative if

• A is dissipative operator

• A is maximal i.e. ∃λ0 > 0 such that R(λ0I − A) = X

Theorem 2.2.6 (Lumer-Phillips) Let A be a linear operator with dense domain D(A) in a
Banach space X.

(i) If A is dissipative and there exists λ0 > 0 such that the range R(λ0I − A) = X, then A
generates a C0 semigroup of contractions on X.

(ii) If A is the infinitesimal generator of a C0-semigroup of contractions on X then R(λI−
A) = X for all λ > 0 and A is dissipative

Now we consider the abstract problem,
{

Ut = AU, t > 0
U(0) = U0,

(2.2)

where A is the infinitesimal generator of C0-semigroup S(t) over a Hilbert space H.

Theorem 2.2.7 ( Hill-Yoshida) Let (A,D(A)) be a linear operator on H. Assume that A is
the infinitesimal generator of C0-semigroup of contractions(S(t))t≥0

1. For U0 ∈ D(A), the problem (2.2) admits a unique strong solution

U(t) = S(t)U0 ∈ C0(IR+, D(A)) ∩ C1(IR+, H)

.

2. For U0 ∈ H, the problem (2.2) admits a unique weak solution

U(t) ∈ C0(IR+, H)

.
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2.2.3 Stability of semigroups

We introduce some basic results about strong, exponential and polynomial stability of a C0-
semigroup.

Definition 2.2.17 Assume that A is the operator of a strongly continuous semigroup of con-
tractions (S(t))t≥0 on X. We say that the C0-semigroup (S(t))t≥0 is

• Strongly (asymptotically) stable if

lim
t→+∞

‖S(t)u‖X = 0 ∀u ∈ X

• Exponentially (uniformly) stable if there exist two positive constants M and ǫ such that

‖S(t)u‖X ≤Me−ǫt‖u‖X ∀t > 0, ∀u ∈ X

• Polynomially stable if there exist two positive constants C and α such that

‖S(t)u‖X ≤ Ct−α‖u‖X ∀t > 0, ∀u ∈ X

Example 2.2.1 (Shift semigroup). Consider H := L2(IR+, H0) for a Hilbert space H0 and S()
defined by S(t)f(s) := f(s + t), f ∈ H, t, s ≥ 0. The semigroup (S(t))t≥0 is called the left shift
semigroup on H and is strongly stable.

Now, we give the necessary conditions of strong stability of a C0-semigroup.

Theorem 2.2.8 (Arendt and Batty) Assume that A is the generator of a strongly continuous
semigroup of contractions (S(t))t≥0 on a reflexive Banach space X. If

• A has no pure imaginary eigenvalues.

• σ(A) ∩ iIR is countable.

Then S(t) is strongly stable.

The proof based on the Lyubich and Vu construction of the isometric limit semigroup (see
[13]). An alternative proof given by Arendt and Batty (see [4]) using the Laplace transform.

In this thesis, exponential stability results are obtained using different methods : multipliers
method, frequency domain approach obtained by Huang-Pruss, Riez basis approach.
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Theorem 2.2.9 (Huang-Pruss) Assume that A is the generator of strongly continuous semi-
group of contractions (S(t))t≥0 on H. S(t) is uniformly stable if and only if

• iIR ⊂ ρ(A).

• sup
β∈IR ‖(iβI − A)−1‖L(H) < +∞

Definition 2.2.18 Assume that A is the infinitesimal generator of C0-semigroup of contrac-
tions (S(t))t≥0 on a Hilbert space H.

• The growth bound of A is define by

ω0(A) := inf{ω ∈ IR; ∃Nω ∈ IR : ‖S(t)‖ ≤ Nωe
ωt, ∀t ≥ 0}

• The spectral bound of A is define by

s(A) = sup{R(λ) : λ ∈ σ(A)}

Notice that s(A) ≤ ω0(A) for any infinitesimal generator of a strongly continuous semigroup.
In the case when the C0-semigroup is not exponentially stable we look for a polynomial one.

Theorem 2.2.10 (Batty, A.Borichev and Y.Tomilov, Z.Liu and B.Rao ) Assume that A is
the generator of a strongly continuous semigroup of contractions (S(t))t≥0 on H. If iIR ⊂ ρ(A),
then for a fixed l > 0 the following conditions are equivalent

1. lim
|λ|→+∞

sup
1

λl
‖(λI − A)−1‖L(H) < +∞

2. ‖S(t)U0‖H ≤
C

tl−1
‖U0‖D(A) ∀t > 0, U0 ∈ D(A), for some C > 0

2.3 Fractional calculus

The purpose of fractional calculation is to extend the fractional derivation or integration using
not only intrger order but also non-integer orders. In this section we are interested in two
approaches to the most practical fractional derivations. The first is the Riemman-Liouville
approach, which is based on integration In order to define the non integer derivation, the second
is Caputo’s approach. In fact, both approaches start from the Riemann-Liouville fractional
integral defined as follow,

Definition 2.3.1 The fractional integral of order α > 0, in sense Rieamann-Liouville is given
by

Iαt f(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds, t > a

In analogy of the ordinary case, we define the fractional derivative of order α > 0, in the sense
of Rieamann-Liouville as the left inverse of the Rieamann-Liouville integral of order α > 0,
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Definition 2.3.2 The fractional derivative of order α > 0, in sens of Rieamann-Liouville of a
function f defined on the interval [a, b] is given by

Dα
RL,t(t) = Dn

t I
n−α
t f(t) =

1

Γ(n− α)
dn

dtn

∫ t

a
(t− s)n−α−1f(s)ds, n = [α] + 1, t > a

In particular, if α = 0, then
D0

RL,af(t) = I0af(t) = f(t)

If α = n ∈ IN, then
D0

RL,af(t) = f (n)(t).

moreover, if 0 < α < 1, then n = 1, then

Dα
RL,af(t) =

1

Γ(1− α)
d

dt

∫ t

a
(t− s)−αf(s)ds, t > a

Now, the fractional derivatives in the sense of Caputo is defined.

Definition 2.3.3 The fractional derivative of order α > 0, in sense of Caputo is given by

Dα
C,tf(t) = In−αt Dn

t f(t)

Dα
C,af(t) = Dα

RL,a

(

f(t)−
n−1
∑

k=0

f (k)(a)

k!
(t− a)k

)

.

where

n =
{

[α] + 1 if α 6∈ IN,
α if α ∈ IN

∗,

In particular, where 0 < α < 1, the relation take the form

Dα
C,af(t) = Dα

C,a([f(t)− f(a)]) = I1−αa f ′(t) = 1

Γ(1− α)
∫ t

a
(t− a)−αf ′(s)ds.

If α ∈ IN, then Dα
Caf(t) = fn(t).

For α→ (n− 1)+ the behavior of the tow derivatives
{

Dα
RL,tf(t)→ Dn

t I
1
t = Dn−1

t f(t),

Dα
C,tf(t)→ I1tD

n
t = Dn−1

t f(t)−Dn−1
t f(0+)

1. Relation with Reimann-Liouville derivitive
Let α > 0 with (n − 1) < α < n et n ∈ IN

∗ , suppose that f is a function such that the
derivative in the sense of Caputo and Reimann-Liouville exist then::

Dα
C,tf(t) = Dα

RL,t



f(t)−
n−1
∑

j=0

tj

j!
f (j)(0+)



 (2.3)

The derivation of order α of f(x) in the sense of Caputo is equal to that of Reimann-
Liouville if:

f (j)(a) = 0 pour j = 0, 1, 2, ..., n− 1
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2. Composition with the Fractional Integration Operator
If f is a continuous function we have:

Dα
C,t(I

α
t f(t)) = f(t) (2.4)

and

Iαt (D
α
C,tf(t)) = f(t)−

n−1
∑

j=0

f (j)(a)(t− a)j
j!

(2.5)

3. Laplace Transform of Caputo’s Fractional Derivative
If f a function continues then:

L(Dα
Cf)(s) = sα(Lf(s))−

n−1
∑

k=0

sα−k−1f (k)(0+) (2.6)



Chapter 3

Optimal energy decay for a
transmission problem of waves under a
nonlocal boundary control

3.1 Introduction

In this chapter we study a transmission wave system with boundary control of nonlocal type
given by

(P )
{

ρ1utt(x, t)− τ1uxx(x, t) = 0 in (0, l0)× (0,+∞),
ρ2vtt(x, t)− τ2vxx(x, t) = 0 in (l0, L)× (0,+∞),

where ρ1, ρ2, τ1 and τ2 are positive constants that represent the densities and tensions of the
strings u and v, respectively, and the initial conditions are

u(x, 0) = u0(x), ut(x, 0) = u1(x), v(x, 0) = v0(x), vt(x, 0) = v1(x). (3.1)

The transmission condition is

u(l0, t) = v(l0, t), ρ2τ1ux(l0, t) = ρ1τ2vx(l0, t) ∀t ∈ (0,+∞), (3.2)

followed by the boundary conditions

u(0, t) = 0, τ2vx(L, t) + γρ2∂
α,η
t v(L, t) = 0 ∀t ∈ (0,+∞) (3.3)

and conditions of compatibility

u0(l0) = v0(l0), u1(l0) = v1(l0), , ρ2τ1u0x(l0) = ρ1τ2v0x(l0), (3.4)

where γ > 0, the initial data (u0, u1, v0, v1) belong to a suitable function space. The notation
∂α,ηt stands for the generalized Caputo’s fractional derivative of order α, 0 < α < 1, with respect
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to the time variable (see Choi and MacCamy [12] and E. Blanc, G. Chiavassa, and B. Lombard
[9]). It is defined as follows

∂α,ηt w(t) =
1

Γ(1− α)
∫ t

0
(t− s)−αe−η(t−s)dw

ds
(s) ds, η ≥ 0.

Very little attention has been paid to this type of feedback. Moreover, fractional derivatives
involve singular and nonintegrable kernels (tα, 0 < α < 1). This leads to substantial mathe-
matical difficulties such as numerical approximation.

In [29], B. Mbodje investigates the decay rate of the energy of the wave equation with a
boundary nonlocal control, that is,

(PBF )



















utt(x, t)− uxx(x, t) = 0 in (0, L)× (0,+∞),
u(0, t) = 0 on (0,+∞),
ux(L, t) + γ∂α,ηt ut(L, t) = 0 on (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, L).

Using energy methods, he proves strong asymptotic stability under the condition η = 0 and a
polynomial type decay rate E(t) ≤ c/t if η 6= 0.

Very recently, In [1], Benaissa and al. considered the Euler-Bernoulli beam equation with
boundary dissipation of nonlocal type defined by

(PEF )



























utt(x, t) + uxxxx(x, t) = 0 in (0, L)× (0,+∞),
u(0, t) = ux(0, t) = 0 on (0,+∞),
uxx(L, t) = 0 on (0,+∞),
uxxx(L, t)− γ∂α,ηt ut(L, t) = 0 on (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, L).

They proved, under the condition η = 0, by a spectral analysis, the non uniform stability. On
the other hand, for η > 0, they also proved that the energy of system (PEF ) decays as time
goes to infinity as t−1/(1−α).

The question we are interested in this paper is what are the stability properties of our system
((P ), (3.1)− (3.4)). Indeed, this system involves two wave equations coupled at interface with
only one nonlocal control acting on a part of the boundary of the second equation. So, From
the mathematical point of view, it is important to study the stability of an equation of 1D
waves with discontinuous coefficients in a bounded domain. Moreover, this system happens
frequently in applications where the domain is occupied by two different types of materials,
that is, while one of them is simply elastic, the other is subject to the action of an external
force. Let us mention here that the case α = 1 corresponds to a static boundary control, that
is,

τ2vx(L, t) + γρ2vt(L, t) = 0 ∀t ∈ (0,+∞).
It is well known that the energy of the solution decays exponentially under the conditions (see
[38]).

χ =
τ1
ρ1
− τ2
ρ2

> 0.
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Nowadays, fractional calculus is not only important from the theoretical point of view but also
for applications. The main reason for the diffusion of fractional calculus is that it actually pro-
vides a more accurate tool to describe several physical systems. For instance, phenomena such
as heat conduction through a semi-infinite solid, water flowing through a porous dyke or infinite
lossy transmission lines are indeed fractional. In many industrial and research fields, fractional
calculus can be conveniently used. Among these, relevant research topics are electrical cir-
cuits, chemical processes, signal processing, viscoelasticity, chaos theory, and obviously control
systems (see [5], [6], [7], [27], [36] and [40]). In our case, the fractional dissipations may
simply describe an active boundary viscoelastic damper designed for the purpose of reducing
the vibrations (see [29] [30]).

The organization of this paper is as follows. In section 2, first we show that the system
(P ) can be replaced by an augmented model by coupling the transmission wave system with a
suitable diffusion equation that can be reformulate into classical input output dynamic systems
and we deduce the well-posedness property of the problem by the semigroup approach. Second,
using a criteria of Arendt-Batty [4] we show that the augmented model is strongly stable in the
absence of compactness of the resolvent. In section 3, we show the lack of exponential stability
by spectral analysis. In section 4, we show an optimal energy decay rate depending on the
parameter α. The proof heavily relies on a precise estimate of the resolvent of the generator
associated to the semi-group and Borichev-Tomilov Theorem.

3.2 Well-Posedness and Strong Stability

This section is concerned with the reformulation of the model (P ) into an augmented system.
For that, we need the following claims.

Theorem 3.2.1 (see [29]) Let µ be the function:

µ(ξ) = |ξ|(2α−1)/2, −∞ < ξ < +∞, 0 < α < 1. (3.5)

Then the relationship between the ’input’ U and the ’output’ O of the system

∂tφ(ξ, t) + (ξ2 + η)φ(ξ, t)− U(t)µ(ξ) = 0, −∞ < ξ < +∞, η ≥ 0, t > 0, (3.6)

φ(ξ, 0) = 0, (3.7)

O(t) = (π)−1 sin(απ)
∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ (3.8)

is given by

O = I1−α,ηU (3.9)

where

[Iα,ηf ](t) =
1

Γ(α)

∫ t

0
(t− τ)α−1e−η(t−τ)f(τ) dτ.
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Lemma 3.2.1 (see [1]) If λ ∈ Dη = IC\]−∞,−η] then

F (λ) =
∫ +∞

−∞

µ2(ξ)

λ+ η + ξ2
dξ =

π

sinαπ
(λ+ η)α−1.

3.2.1 Well-Posedness

We are now in a position to reformulate system (P ). Indeed, by using Theorem 3.2.1, system
(P ) becomes

(P ′)































































ρ1utt(x, t)− τ1uxx(x, t) = 0 in (0, l0)× (0,+∞),
ρ2vtt(x, t)− τ2vxx(x, t) = 0 in (l0, L)× (0,+∞),
∂tφ(ξ, t) + (ξ2 + η)φ(ξ, t)− vt(L, t)µ(ξ) = 0 in (−∞,∞)× (0,+∞),
u(l0, t) = v(l0, t), ρ2τ1ux(l0, t) = ρ1τ2vx(l0, t) on (0,+∞),
u(0, t) = 0 on (0,+∞)

τ2vx(L, t) + ζρ2

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ = 0 on (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, l0),
v(x, 0) = v0(x), vt(x, 0) = v1(x) on (l0, L),

where ζ = (π)−1 sin(απ)γ. For a solution (u, v, φ) of (P ′), we define the energy

E(t) =
1

2

∫ l0

0

(

|ut|2 +
τ1
ρ1
|ux|2

)

dx+
1

2

∫ L

l0

(

|vt|2 +
τ2
ρ2
|vx|2

)

dx+
ζ

2

∫ +∞

−∞
|φ(ξ, t)|2 dξ. (3.10)

Lemma 3.2.2 Let (u, v, φ) be a regular solution of the problem (P ′). Then, the energy func-
tional defined by (3.10) satisfies

E ′(t) = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2 dξ ≤ 0. (3.11)

Proof
Multiplying the first equation in (P ′) by ut, integrating by parts over (0, l0), we obtain

1

2

d

dt

∫ l0

0

(

|ut|2 +
τ1
ρ1
|ux|2

)

dx− τ1
ρ1
ℜux(l0)ut(l0) = 0. (3.12)

Multiplying the second equation in (P ′) by vt, integrating by parts over (l0, L), we obtain

1

2

d

dt

∫ l0

0

(

|vt|2 +
τ2
ρ2
|vx|2

)

dx+
τ2
ρ2
ℜvx(l0)vt(l0)−

τ2
ρ2
ℜvx(L)vt(L, t) = 0. (3.13)

Adding the two equations above, we obtain

1

2

d

dt

∫ l0

0

(

|ut|2 +
τ1
ρ1
|ux|2

)

dx+
1

2

d

dt

∫ l0

0

(

|vt|2 +
τ2
ρ2
|vx|2

)

dx− τ2
ρ2
ℜvx(L)vt(L, t) = 0.
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From the boundary condition (P ′)6, we have

1
2

d

dt

[

∫ l0

0

(

|ut|2 +
τ1
ρ1
|ux|2

)

dx+
∫ l0

0

(

|vt|2 +
τ2
ρ2
|vx|2

)

dx

]

+ζvt(L, t)
∫+∞
−∞ µ(ξ)φ(ξ, t) dξ = 0.

(3.14)

Multiplying the third equation in (P ′) by ζφt and integrating over (−∞,+∞), to obtain:

ζ

2

d

dt
‖φ‖22 + ζ

∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2 dξ − ζℜvt(L, t)

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ = 0. (3.15)

Consequently, it is resulted from (3.10), (3.14) and (3.15) that

E ′(t) = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2 dξ.

This completes the proof of the lemma.
We now discuss the well-posedness of (P ′). For this purpose, we introduce the following

space:
H1
∗ (0, l0) = {u ∈ H1(0, l0) : u(0) = 0}.

We then reformulate (P ′) into a semigroup setting. Let ũ = ut, ṽ = vt, and set

H = {H1
∗ (0, l0)× L2(0, l0)×H1(l0, L)× L2(l0, L)× L2(−∞,+∞)\u(l0) = v(l0)}

equipped with the inner product

〈U,U1〉H =
∫ l0

0

(

ũũ1 +
τ1
ρ1
uxu1x

)

dx+
∫ L

l0

(

ṽṽ1 +
τ2
ρ2
vxv1x

)

dx+ ζ
∫ +∞

−∞
φφ1 dξ

for any U = (u, ũ, v, ṽ, φ)T and U1 = (u1, ũ1, , v1, ṽ1, φ1)
T .

Let U = (u, ũ, v, ṽ, φ)T and rewrite (P ′) as
{

U ′ = AU,
U(0) = U0 = (u0, u1, v0, v1, φ0),

(3.16)

where the operator A is defined by

A















u
ũ
v
ṽ
φ















=



















ũ
τ1
ρ1
uxx

ṽ
τ2
ρ2
vxx

−(ξ2 + η)φ+ ṽ(L)µ(ξ)



















. (3.17)

The domain of A is

D(A) =



































(u, ũ, v, ṽ, φ)T in H : u ∈ H2(0, L) ∩H1
∗ (0, l0), ũ ∈ H1

∗ (0, l0),
v ∈ H2(l0, L), ṽ ∈ H1(l0, L), u(l0) = v(l0), ρ2τ1ux(l0) = ρ1τ2vx(l0),
ũ(l0) = ṽ(l0),−(ξ2 + η)φ+ ṽ(L)µ(ξ) ∈ L2(−∞,+∞),

τ2vx(L) + ζρ2

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = 0,

|ξ|φ ∈ L2(−∞,+∞)



































. (3.18)

The well-posedness of problem (P ′) is ensured by the following theorem.
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Theorem 3.2.2 (Existence and uniqueness)

(1) If U0 ∈ D(A), then system (3.16) has a unique strong solution

U ∈ C0(IR+, D(A)) ∩ C1(IR+,H).

(2) If U0 ∈ H, then system (3.16) has a unique weak solution

U ∈ C0(IR+,H).

Proof of Theorem 3.2.2. We show that A is monotone maximal. First, it is easy to see that
we have

ℜ〈AU,U〉H = −E ′(t) = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ)|2 dξ. (3.19)

For the maximality, let F = (f1, f2, f3, f4, f5)
T ∈ H and look for U = (u, ũ, v, ṽ, φ)T ∈ D(A)

satisfying λU −AU = F for λ > 0, that is,







































λu− ũ = f1,

λũ− τ1
ρ1
uxx = f2,

λv − ṽ = f3,

λṽ − τ2
ρ2
vxx = f4,

λφ+ (ξ2 + η)φ− ṽ(L)µ(ξ) = f5.

(3.20)

Assume that with the suitable regularity we have found u and v, then

ũ = λu− f1,
ṽ = λv − f3.

(3.21)

It is clear that ũ ∈ H1
∗ (0, l0) and ṽ ∈ H1(l0, L). Furthermore, by (3.20) we can find φ as

φ =
f5(ξ) + µ(ξ)ṽ(L)

ξ2 + η + λ
. (3.22)

From (3.20) and (3.21) one can see that the functions u and v satisfy the following system

λ2u− τ1
ρ1
uxx = f2 + λf1,

λ2v − τ2
ρ2
vxx = f4 + λf3.

(3.23)

Solving system (3.23) is equivalent to finding u ∈ H2 ∩H1
∗ (0, l0) and v ∈ H2(l0, L) such that

∫ l0

0
(λ2uw − τ1

ρ1
uxxw) dx =

∫ l0

0
(f2 + λf1)w dx,

∫ L

l0
(λ2vχ− τ2

ρ2
vxxχ) dx =

∫ L

l0
(f4 + λf3)χdx,

(3.24)
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for all w ∈ H1
∗ (0, l0) and χ ∈ H1(l0, L). From (3.24) and (3.22) one can see that the functions

u and v satisfy the following system















∫ l0

0
(λ2uw +

τ1
ρ1
uxwx) dx+

∫ L

l0
(λ2vχ+

τ2
ρ2
vxχx) dx+ ζ̃λv(L)χ(L)

=
∫ l0

0
(f2 + λf1)w dx+

∫ L

l0
(f4 + λf3)χdx− ζ

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f5(ξ) dξ χ(L) + ζ̃f3(L)χ(L),

(3.25)

where ζ̃ = ζ
∫ +∞

−∞

µ2(ξ)

ξ2 + η + λ
dξ. Consequently, problem (3.25) is equivalent to the problem

a((u, v), (w, χ)) = L(w, χ), (3.26)

where the bilinear form a : [H1
∗ (0, l0)×H1(l0, L)]

2 → IR and the linear form
L : H1

∗ (0, l0)×H1(l0, L)→ IR are defined by

a((u, v), (w, χ)) =
∫ l0

0
(λ2uw +

τ1
ρ1
uxwx) dx+

∫ L

l0
(λ2vχ+

τ2
ρ2
vxχx) dx+ ζ̃λv(L)χ(L)

and

L(w, χ) =
∫ l0

0
(f2+λf1)w dx+

∫ L

l0
(f4+λf3)χdx−ζ

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f5(ξ) dξ χ(L)+ ζ̃f3(L)χ(L).

It is easy to verify that a is continuous and coercive, and L is continuous. Applying the
Lax-Milgram Theorem, we infer that for all (w, χ) ∈ H1

∗ (0, l0)×H1(l0, L) problem (3.26) has a
unique solution (u, v) ∈ H1

∗ (0, l0)×H1(l0, L). Applying the classical elliptic regularity, it follows
from (3.25) that (u, v) ∈ H2(0, l0)×H2(l0, L). Therefore, the operator λI −A is surjective for
any λ > 0. At last, the result of Theorem 3.2.2 follows from the Hille-Yosida theorem.

3.2.2 Strong stability of the system

Because of the unboundedness of the ξ-domain for the diffusive equation, the resolvent of A is
not compact, then the classical methods such as LaSalle’s invariance principle or the spectrum
decomposition theory of Benchimol are not applicable in this case. We use a general criteria of
Arendt-Batty (see [4] or [26]), following which a C0-semigroup of contractions e

tA in a Banach
space is strongly stable, if A has no pure imaginary eigenvalues and σ(A) ∩ iIR contains only
a countable number of elements. Our main result is the following theorem.

Theorem 3.2.3 The C0-semigroup etA is strongly stable in H; i.e, for all U0 ∈ H, the solution
of (3.16) satisfies

lim
t→∞
‖etAU0‖H = 0.

For the proof of Theorem 3.2.3, we need the following two lemmas.

Lemma 3.2.3 A does not have eigenvalues on iIR.
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Proof
We make a distinction between iλ = 0 and iλ 6= 0.
Step 1. Solving for AU = 0 leads to U = 0, thanks to the boundary conditions in (3.18).
Hence, iλ = 0 is not an eigenvalue of A.
Step 2. We will argue by contradiction. Let us suppose that there λ ∈ IR, λ 6= 0 and U 6= 0,
such that AU = iλU . Then, we get







































iλu− ũ = 0,

iλũ− τ1
ρ1
uxx = 0,

iλv − ṽ = 0,

iλṽ − τ2
ρ2
vxx = 0,

iλφ+ (ξ2 + η)φ− ṽ(L)µ(ξ) = 0.

(3.27)

Then, from (3.19) we have
φ ≡ 0. (3.28)

From (3.27)5, we have
ṽ(L) = 0. (3.29)

Hence, from (3.27)3 and (3.18)4 we obtain

v(L) = 0 and vx(L) = 0. (3.30)

Inserting (3.27)3 into (3.27)4, we get

−λ2v − τ2
ρ2
vxx = 0. (3.31)

The solution of the equation (3.31) is given by

v(x) = c1 cos
λ

r2
x+ c2 sin

λ

r2
x, r2 =

√

τ2
ρ2
.

From boundary conditions (3.30), we deduce that

v ≡ 0.

Now, from the boundary transmission conditions, we get

u(l0) = ux(l0) = 0.

Similarly, we deduce that
u ≡ 0.

Therefore U = 0. Consequently, A does not have purely imaginary eigenvalues.

Lemma 3.2.4
If λ 6= 0, the operator iλI −A is surjective.
If λ = 0 and η 6= 0, the operator iλI −A is surjective.
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Proof
Case 1: λ 6= 0. Let F = (f1, f2, f3, f4, f5)

T ∈ H be given, and let X = (u, ũ, v, ṽ, φ)T ∈ D(A)
be such that

(iλI −A)X = F. (3.32)

Equivalently, we have






































iλu− ũ = f1,

iλũ− τ1
ρ1
uxx = f2,

iλv − ṽ = f3,

iλṽ − τ2
ρ2
vxx = f4,

iλφ+ (ξ2 + η)φ− ṽ(L)µ(ξ) = f5.

(3.33)

We divide the proof into three steps, as follows:
Step 1. Inserting (3.33)1, (3.33)3 into (3.33)2 and (3.33)4, we get

{−λ2u− r1uxx = (f2 + iλf1),
−λ2v − r2vxx = (f4 + iλf3).

(3.34)

Solving system (3.34) is equivalent to finding (u, v) ∈ H2 ∩H1
∗ (0, l0)×H2(l0, L) such that















∫ l0

0
(−λ2uw − r1uxxw) dx =

∫ l0

0
(f2 + iλf1)w dx,

∫ L

l0
(−λ2vχ− r2vxxχ) dx =

∫ L

l0
(f4 + iλf3)χdx

(3.35)

for all (w, χ) ∈ H1
∗ (0, l0) × H1(l0, L). By using (3.33)3 and (3.33)5 the functions u and v

satisfying the following system



























∫ l0

0
(−λ2uw +

τ1
ρ1
uxwx) dx+

∫ L

l0
(−λ2vχ+ τ2

ρ2
vxχx) dx+ ζ̃iλv(L)χ(L)

=
∫ l0

0
(f2 + iλf1)w dx+

∫ L

l0
(f4 + iλf3)χdx− ζ

∫ +∞

−∞

µ(ξ)

ξ2 + η + iλ
f5(ξ) dξ χ(L)

+ζ̃f3(L)χ(L).

(3.36)

We can rewrite (3.36) as
−(LλU, V )H1

R
+ (U, V )H1

R
= l(V ), (3.37)

where
H1

R(0, L) = {(u, v) ∈ H1
∗ (0, l0)×H1(l0, L)\u(l0) = v(l0)}

with the inner product defined by

(U, V )H1
R
=
τ1
ρ1

∫ l0

0
uxwx dx+

τ2
ρ2

∫ L

l0
vxχx dx− iζ̃λv(L)χ(L).

(LλU, V )H1
R
=
∫ l0

0
λ2uw dx+

∫ L

l0
λ2vχ dx.
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Using the compactness embedding from (L2(0, l0)×L2(l0, L)) into (H1
R(0, L))

′ and fromH1
R(0, L)

into L2(0, l0)×L2(l0, L) we deduce that the operator Lλ is compact from L2(0, l0)×L2(l0, L) into
L2(0, l0)×L2(l0, L). Consequently, by Fredholm alternative, proving the existence of U solution
of (3.37) reduces to proving that 1 is not an eigenvalue of Lλ. Indeed if 1 is an eigenvalue, then
there exists U 6= 0, such that

(LλU, V )H1
R
= (U, V )H1

R
∀V ∈ H1

R. (3.38)

In particular for V = U , it follows that

λ2
[

‖u‖2L2(0,l0)
+ ‖v‖2L2(l0,L)

]

− iλζ̃|v(L)|2 = ‖ux‖2L2(0,l0)
+ ‖vx‖2L2(l0,L)

.

Hence, we have
v(L) = 0. (3.39)

From (3.38), we obtain
vx(L) = 0 (3.40)

and
{−λ2u− r1uxx = 0,
−λ2v − r2vxx = 0.

(3.41)

The general solutions for (3.41) are of the form

u(x) = c1 cos
λ√
r1
x+ c2 sin

λ√
r1
x,

v(x) = c3 cos
λ√
r2
x+ c4 sin

λ√
r2
x.

(3.42)

Taking into account the boundary conditions u(0) = 0 and v(L) = vx(L) = 0, we get

c1 = c3 = c4 = 0.

Moreover, taking into account the boundary transmission conditions u(l0) = v(l0) and r1ux(l0) =
r2vx(l0) we deduce that c2 = 0. Then U = 0.

Hence iλ−A is surjective for all λ ∈ IR
∗.

Case 2: λ = 0 and η 6= 0.
The system (3.33) is reduced to the following







































−ũ = f1,

− τ1
ρ1
uxx = f2,

−ṽ = f3,

− τ2
ρ2
vxx = f4,

(ξ2 + η)φ− ṽ(L)µ(ξ) = f5.

(3.43)

With the second and third equations of (3.43), we get










u(x) = − 1
r1

∫ x

0

∫ s

0
f2(r) dr ds+ Cx,

v(x) = − 1
r2

∫ x

l0

∫ s

l0
f4(r) dr ds+ C ′x+ C ′′.
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From (3.43)3 and (3.43)5, we have

−γηα−1f3(L) + r2vx(L) + ζ
∫ +∞

−∞

µ(ξ)f5(ξ)

ξ2 + η
dξ = 0.

We find

C ′ =
1

r2

[

∫ L

l0
f4(r) dr + γηα−1f3(L)− ζ

∫ +∞

−∞

µ(ξ)f5(ξ)

ξ2 + η
dξ

]

.

From boundary transmission conditions, we find

u(l0) = v(l0)⇒ l0C − C ′′ =
1

r1

∫ l0

0

∫ s

0
f2(r) dr ds+ C ′l0.

r1ux(l0) = r2vx(l0)⇒ Cr1 =
∫ l0

0

∫ s

0
f2(r) dr + C ′r2.

We find

C =
1

r1

[

∫ l0

0

∫ s

0
f2(r) dr + C ′r2

]

,

C ′′ = l0(C − C ′)−
1

r1

∫ l0

0

∫ s

0
f2(r) dr.

Hence A is surjective. The proof is thus complete.
Proof of Theorem 3.2.3. By Lemma 3.2.3, the operator A has no pure imaginary eigenvalues
and by Lemma 3.2.4 R(iλ−A) = H for all λ ∈ IR

∗ and R(iλ−A) = H for λ = 0 and for all
η > 0. Therefore, the closed graph theorem of Banach implies that σ(A)∩ iIR = ∅ if η > 0 and
σ(A) ∩ iIR = {0} if η = 0.

3.3 Lack of Exponential Stability

Our goal in this section is to show that system (P ) is not exponentially stable. We need the
following well known theorem.

Theorem 3.3.1 ([19]-[37]) Let S(t) = eAt be a C0-semigroup of contractions on Hilbert space.
Then S(t) is exponentially stable if and only if

ρ(A) ⊇ {iβ : β ∈ IR} ≡ iIR

and

lim
|β|→∞

‖(iβI −A)−1‖L(H) <∞.

Our main result is

Theorem 3.3.2 The semigroup generated by the operator A is not exponentially stable.
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Proof: We will examine two cases.
Case 1 η = 0: We shall show that iλ = 0 is not in the resolvent set of the operator A.
Indeed, noting that (−x sin x, 0,−x sin x, 0, 0)T ∈ H, and denoting by (u, ũ, v, ũ, φ)T the image

of (−x sin x, 0,−x sin x, 0, 0)T by A−1, we see that φ(ξ) = |ξ| 2α−5
2 L sinL. But φ 6∈ L2(−∞,+∞),

since α ∈]0, 1[ and so (u, ũ, v, ũ, φ)T 6∈ D(A).
• Case 2 η 6= 0: We aim to show that an infinite number of eigenvalues of A approach the
imaginary axis which prevents the wave system (P ) from being exponentially stable. Indeed
We first compute the characteristic equation that gives the eigenvalues of A. Let λ be an
eigenvalue of A with associated eigenvector U = (u, ũ, v, ṽ, φ)T . Then AU = λU is equivalent
to







































λu− ũ = 0,

λũ− τ1
ρ1
uxx = 0,

λv − ṽ = 0,

λṽ − τ2
ρ2
vxx = 0,

λφ+ (ξ2 + η)φ− ṽ(L)µ(ξ) = 0.

(3.44)

Inserting (3.44)1, (3.44)3 into (3.44)2, (3.44)4 and (3.44)5, we get























λ2u− τ1
ρ1
uxx = 0 in (0, l0),

λ2v − τ2
ρ2
vxx = 0 in (l0, L).

(λ+ ξ2 + η)φ− λv(L)µ(ξ) = 0.

(3.45)

Using equation (3.45)3, Lemma 3.2.1 and the boundary conditions we have

τ2
ρ2
vx(L) + γλ(λ+ η)α−1v(L) = 0. (3.46)

Finally, using the fact u(0) = 0, u(l0) = v(l0), τ1ρ2ux(l0) = τ2ρ1vx(l0) and (3.46) we get the
following system







































λ2u− τ1
ρ1
uxx = 0 in (0, l0),

λ2v − τ2
ρ2
vxx = 0 in (l0, L).

u(0) = 0, u(l0) = v(l0), τ1ρ2ux(l0) = τ2ρ1vx(l0),
τ2
ρ2
vx(L) + γλ(λ+ η)α−1v(L) = 0.

(3.47)

The general solutions of equations (3.47)1 and (3.47)2 are given by























u(x) =
2
∑

i=1

cie
tix,

v(x) =
4
∑

i=3

cie
tix,

(3.48)
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where t1 =
√

ρ1/τ1λ, t2 = −t1, t3 =
√

ρ2/τ2λ, t4 = −t3.
Thus the boundary conditions may be written as the following system

M(λ)C(λ) =













1 1 0 0
et1l0 e−t1l0 −et3l0 −e−t3l0

τ1
ρ1
t1e

t1l0 − τ1
ρ1
t1e

−t1l0 − τ2
ρ2
t3e

t3l0
τ2
ρ2
t3e

−t3l0

0 0 h(t3)e
t3L h(−t3)e−t3L























c1
c2
c3
c4











=











0
0
0
0











, (3.49)

where
h(r) =

τ2
ρ2
r + γλ(λ+ η)α−1.

Hence a non-trivial solution ϕ exists if and only if the determinant of M(λ) vanishes. Set
f(λ) = detM(λ), thus the characteristic equation is f(λ) = 0.

Our purpose in the sequel is to prove, thanks to Rouché’s Theorem, that there is a subse-
quence of eigenvalues for which their real part tends to 0.

In the sequel, since A is dissipative, we study the asymptotic behavior of the large eigen-
values λ of A in the strip −α0 ≤ ℜ(λ) ≤ 0, for some α0 > 0 large enough and for such λ, we
remark that eti , i = 1, 2 remains bounded.

Case 1
τ1
ρ1

=
τ2
ρ2

Lemma 3.3.1 There exists N ∈ IN such that

{λk}k∈Z∗,|k|≥N ⊂ σ(A) (3.50)

where

λk = i
1

rL

(

k +
1

2

)

π +
α̃

k1−α
+

β

|k|1−α + o
(

1

k3−α

)

, k ≥ N, α̃ ∈ iIR, β ∈ IR, β < 0, r =

√

ρ1
τ1
.

λk = λ−k if k ≤ −N.
Moreover for all |k| ≥ N , the eigenvalues λk are simple.

Proof

f(λ) = −2t21r1(et1L + e−t1L)− 2γt1λ(λ+ η)α−1(et1L − e−t1L)

= −2t21r1


(et1L + e−t1L) +
γ

√

τ1/ρ1

et1L − e−t1L
λ1−α

+ o
(

1

λ1−α

)



 .

= −2r1t21e−t1L


(e2t1L + 1) +
γ

√

τ1/ρ1

e2t1L − 1
λ1−α

+ o
(

1

λ1−α

)



 .

(3.51)

We set

f̃(λ) = (e2t1L + 1) +
γ

√

τ1/ρ1

e2t1L − 1
λ1−α

+ o
(

1

λ1−α

)

= f0(λ) +
f1(λ)
λ1−α + o

(

1
λ1−α

)

(3.52)
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where
f0(λ) = e2t1L + 1, (3.53)

f1(λ) = +
γ

√

τ1/ρ1
(et1L − 1), (3.54)

Note that f0 and f1 remain bounded in the strip −α0 ≤ R(λ) ≤ 0.
Step 2. We look at the roots of f0. From (3.53), f0 has one familie of roots that we denote λ

0
k.

f0(λ) = 0⇔ e
2

√

ρ1
τ1

λL
= −1.

Hence

2rλL = i(2k + 1)π, k ∈ Z, r =

√

ρ1
τ1

i.e.,

λ0k =
i(2k + 1)π

2rL
, k ∈ Z.

Now with the help of Rouché’s Theorem, we will show that the roots of f̃ are close to those of
f0. Changing in (3.52) the unknown λ by u = 2

√

ρ1
τ1
λL then (3.52) becomes

f̃(u) = (eu + 1) +O
(

1

u(1−α)

)

= f0(u) +O
(

1

u(1−α)

)

The roots of f0 are uk =
i(k+ 1

2)
rL

π, k ∈ Z, and setting u = uk + reit, t ∈ [0, 2π], we can easily
check that there exists a constant C > 0 independent of k such that |eu + 1| ≥ Cr for r small
enough. This allows to apply Rouché’s Theorem. Consequently, there exists a subsequence of
roots of f̃ which tends to the roots uk of f0. Equivalently, it means that there exists N ∈ IN

and a subsequence {λk}|k|≥N of roots of f(λ), such that λk = λ0k+o(1) which tends to the roots
i(k+ 1

2)
rL

π of f0. Finally for |k| ≥ N, λk is simple since λ
0
k is.

Step 3. From Step 2, we can write

λk = i
1

rL

(

k +
1

2

)

π + εk. (3.55)

Using (3.55), we get
e2rλkL = −1− 2rLεk − 2rL2ε2k + o(ε2k). (3.56)

Substituting (3.56) into (3.52), using the fact that f̃(λk) = 0, we get:

f̃(λk) = −2rLεk −
2γ

√

τ1/ρ1

1

( i(2k+1)π
2rL

)1−α
+ o(εk) = 0 (3.57)

and hence

εk = − γr1−α

Lα((k + 1
2
)iπ)1−α

+ o
(

1

k1−α

)

= − γr1−α

Lα((k + 1
2
)π)1−α

(

cos(1− α)π
2
− i sin(1− α)π

2

)

+ o
(

1

k1−α

)

for k � 0

(3.58)
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From (3.58) we have in that case |k|1−αRλk ∼ β, with

β = − γr1−α

Lαπ1−α
cos(1− α)

π

2
.

Case 2
τ1
ρ1
6= τ2
ρ2

Lemma 3.3.2 There exists N ∈ IN such that

{λk}k∈Z∗,|k|≥N ⊂ σ(A) (3.59)

where

λk = iµk +
α̃

k1−α
+

β

|k|1−α + o
(

1

k3−α

)

, k ≥ N, α̃ ∈ iIR, β ∈ IR, β < 0.

λk = λ−k if k ≤ −N.
Moreover for all |k| ≥ N , the eigenvalues λk are simple.

Proof

f(λ) = r22t
2
3(e

(−t1l+t3l−t3L) − e(−t1l−t3l+t3L) − e(t1l+t3l−t3L) + e(t1l−t3l+t3L))
−r2t3d(e(−t1l+t3l−t3L) + e(−t1l−t3l+t3L) − e(t1l+t3l−t3L) − e(t1l−t3l+t3L))
−r1t1d(e(−t1l+t3l−t3L) − e(−t1l−t3l+t3L) − e(t1l−t3l+t3L) + e(t1l+t3l−t3L))
+r1r2t1t3(e

(−t1l+t3l−t3L) + e(−t1l−t3l+t3L) + e(t1l+t3l−t3L) + e(t1l−t3l+t3L))

=
√
r2λ

2

[

√
r2(e

t1l − e−t1l)(e(L−l)t3 − e−(L−l)t3) +
√
r1(e

t1l + e−t1l)(e(L−l)t3 + e−(L−l)t3)

+γ

(et1l − e−t1l)(e(L−l)t3 + e−(L−l)t3) +

√
r1√
r1
(et1l + e−t1l)(e(L−l)t3 − e−(L−l)t3)

(λ+ η)α−1

]

=
√
r2λ

2

[

√
r2(e

t1l − e−t1l)(e(L−l)t3 − e−(L−l)t3) +
√
r1(e

t1l + e−t1l)(e(L−l)t3 + e−(L−l)t3)

+γ

(et1l − e−t1l)(e(L−l)t3 + e−(L−l)t3) +

√
r1√
r1
(et1l + e−t1l)(e(L−l)t3 − e−(L−l)t3)

λα−1

+o
(

1

λ1−α

)

]

.

(3.60)
We set

f̃(λ) =
√
r2(e

t1l − e−t1l)(e(L−l)t3 − e−(L−l)t3) +
√
r1(e

t1l + e−t1l)(e(L−l)t3 + e−(L−l)t3)

+γ

(et1l − e−t1l)(e(L−l)t3 + e−(L−l)t3) +

√
r1√
r1
(et1l + e−t1l)(e(L−l)t3 − e−(L−l)t3)

λα−1
+ o

(

1

λ1−α

)

= f0(λ) +
f1(λ)
λ1−α + o

(

1
λ1−α

)

,
(3.61)
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where

f0(λ) =
√
r2(e

t1l − e−t1l)(e(L−l)t3 − e−(L−l)t3) +
√
r1(e

t1l + e−t1l)(e(L−l)t3 + e−(L−l)t3), (3.62)

f1(λ) = γ

(

(et1l − e−t1l)(e(L−l)t3 + e−(L−l)t3) +

√
r1√
r1
(et1l + e−t1l)(e(L−l)t3 − e−(L−l)t3)

)

. (3.63)

We look at the roots of f0. From (3.62), f0 has one familie of roots that we denote λ
0
k. Indeed,

f0(λ) = 0 corresponds to the eigenvalues problem to the conservative problem associated with
(P ′):

(P0)















































ρ1utt(x, t)− τ1uxx(x, t) = 0 in (0, l0)× (0,+∞),
ρ2vtt(x, t)− τ2vxx(x, t) = 0 in (l0, L)× (0,+∞),
u(l0, t) = v(l0, t), ρ2τ1ux(l0, t) = ρ1τ2vx(l0, t) on (0,+∞),
u(0, t) = 0 on (0,+∞)
vx(L, t) = 0 on (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, l0),
v(x, 0) = v0(x), vt(x, 0) = v1(x) on (l0, L).

The abstract formulation of (P0) is:

A0











u
ũ
v
ṽ











=















ũ
τ1
ρ1
uxx

ṽ
τ2
ρ2
vxx















. (3.64)

The domain of A0 is

D(A0) =











(u, ũ, v, ṽ)T in H0 : u ∈ H2(0, L) ∩H1
∗ (0, l0), ũ ∈ H1

∗ (0, l0),
v ∈ H2(l0, L), ṽ ∈ H1(l0, L), u(l0) = v(l0), ρ2τ1ux(l0) = ρ1τ2vx(l0),
ũ(l0) = ṽ(l0), vx(L) = 0,











, (3.65)

where
H0 = {H1

∗ (0, l0)× L2(0, l0)×H1(l0, L)× L2(l0, L)\u(l0) = v(l0)}.
A0 is clearly a skew adjoint operator with a compact resolvent, then there is an orthonormal
system of eigenvectors of A0 which is complete in H0. All eigenvalues of A0 are of the form
iµk, µk ∈ IR. Now

f0(iµk) = 0 ⇔ tan
(
√

ρ1
τ1
lµk

)

tan
(
√

ρ2
τ2
(L− l)µk

)

=
ρ1
τ1
ρ2
τ2

⇔ tan
(
√

ρ1
τ1
lµk

)

=
ρ1
τ1
ρ2
τ2

cot
(
√

ρ2
τ2
(L− l)µk

)

.

By representation of graph of the functions tan and cot, we easily have µk ∼ ck for large k and
a constant c depending on parameters ρ1, τ1, ρ2, τ2, l and L. Moreover, the algebraic multiplicity
of µk is one. Then, we follow exactly as the case τ1/ρ1 = τ2/ρ2.

The operator A has a non exponential decaying branche of eigenvalues. Thus the proof is
complete.
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3.3.1 Residual spectrum of A
Lemma 3.3.3 Let A be defined by (3.17). Then

A∗















u
ũ
v
ṽ
φ















=

















−ũ
− τ1

ρ1
uxx

−ṽ
− τ2

ρ2
vxx

−(ξ2 + η)φ− ṽ(L)µ(ξ)

















(3.66)

with domain

D(A∗) =



































(u, ũ, v, ṽ, φ)T in H : u ∈ H2(0, l0) ∩H1
∗ (0, l0), ũ ∈ H1

∗ (0, l0),
v ∈ H2(l0, L), ṽ ∈ H1(l0, L), u(l0) = v(l0), ũ(l0) = ṽ(l0), ρ2τ1ux(l0) = ρ1τ2vx(l0),
−(ξ2 + η)φ+ ṽ(L)µ(ξ) ∈ L2(−∞,+∞),

τ2vx(L) + ζρ2

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ = 0,

|ξ|φ ∈ L2(−∞,+∞)



































.

(3.67)

Proof
Let U = (u, ũ, v, ũ, φ)T and V = (u1, ũ1, v1, ṽ1, φ1)

T . We have < AU, V >H=< U,A∗V >H.

< AU, V >H =
∫ l0

0
(
τ1
ρ1
ũxu1x +

τ1
ρ1
ũ1uxx) dx+

∫ L

l0
(
τ2
ρ2
ṽxv1x +

τ2
ρ2
ṽ1vxx) dx

+ζ
∫ +∞

−∞
[−(ξ2 + η)φ+ ṽ(L)µ(ξ)]φ1 dξ

= −
∫ l0

0
(
τ1
ρ1
ũu1xx +

τ1
ρ1
ũ1xux) dx−

∫ L

l0
(
τ2
ρ2
ṽv1xx +

τ2
ρ2
ṽ1xvx) dx

+ τ1
ρ1
ux(l0)ũ1(l0)− τ2

ρ2
vx(l0)ṽ1(l0) +

τ1
ρ1
ũ(l0)u1x(l0)− τ2

ρ2
ṽ(l0)v1x(l0)

+ τ2
ρ2
vx(L)ṽ1(L)− ζ

∫ +∞

−∞
φ[(ξ2 + η)φ1] dξ

+ τ2
ρ2
ṽ(L)v1x(L) + ζṽ(L)

∫ +∞

−∞
µ(ξ)φ1 dξ

As τ1
ρ1
ux(l0) =

τ2
ρ2
vx(l0), ũ(l0) = ṽ(l0),

τ2
ρ2
vx(L) = −ζ ∫+∞−∞ µ(ξ)φ dξ and if we set τ1

ρ1
u1x(l0) =

τ2
ρ2
v1x(l0) and ũ1(l0) = ṽ1(l0) and

τ2
ρ2
v1x(L) = −ζ

∫+∞
−∞ µ(ξ)φ1 dξ, we find

< AU, V >H = −
∫ l0

0
(
τ1
ρ1
ũu1xx +

τ1
ρ1
ũ1xux) dx−

∫ L

l0
(
τ2
ρ2
ṽv1xx +

τ2
ρ2
ṽ1xvx) dx

−ζ
∫ +∞

−∞
φ[(ξ2 + η)φ1 + µ(ξ)ṽ1(L)] dξ.

Theorem 3.3.3 σr(A) = ∅, where σr(A) denotes the set of residual spectrum of A.

Proof
Since λ ∈ σr(A), λ ∈ σp(A∗) the proof will be accomplished if we can show that σp(A) = σp(A∗).
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This is because obviously the eigenvalues of A are symmetric on the real axis. From (3.66), the
eigenvalue problem A∗Z = λZ for λ ∈ IC and 0 6= Z = (u, ũ, v, ṽ, φ) ∈ D(A∗) we have































λu+ ũ = 0,
λũ+ τ1

ρ1
uxx = 0,

λv + ṽ = 0,
λṽ + τ2

ρ2
vxx = 0,

λφ+ (ξ2 + η)φ+ ṽ(L)µ(ξ) = 0.

(3.68)

Inserting (3.68)1, (3.68)3 into (3.68)2, (3.68)4 and (3.68)5 , we find










λ2u− τ1
ρ1
uxx = 0,

λ2v − τ2
ρ2
vxx = 0,

λφ+ (ξ2 + η)φ− λv(L)µ(ξ) = 0.

(3.69)

Using equation (3.69)3, we easily have

γ(λ+ η)α−1λv(L) +
τ2
ρ2
ϕx(L) = 0 (3.70)

with the following conditions

u(0) = 0, u(l0) = v(l0),
τ1
ρ1
ux(l0) =

τ2
ρ2
vx(l0). (3.71)

System (3.69)-(3.71) is the same as (3.47). Hence A∗ has the same eigenvalues with A. The
proof is complete.

3.4 Polynomial Stability and Optimality(for η 6= 0)

In the previous section,we have shown that the transmission wave system is not exponentially
stable. In this section, we prove that it is polynomially stable with an optimal rate of decay
when η > 0. To achieve this, we use a recent result by Borichev and Tomilov [10]. Accordingly,
if we consider a bounded C0-semigroup S(t) = eAt on a Hilbert space. If

iIR ⊂ ρ(A) and lim|β|→∞
1

βδ
‖(iβI −A)−1‖L(H) <∞

for some δ > 0, then there exists c such that

‖eAtU0‖2 ≤
c

t
2
δ

‖U0‖2D(A).

Our main result is as follows.

Theorem 3.4.1 The semigroup SA(t)t≥0 is polynomially stable and

E(t) = ‖SA(t)U0‖2H ≤
1

t2/(1−α)
‖U0‖2D(A).

Moreover, the rate of energy decay t−2/(1−α) is optimal for any initial data in D(A).
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Proof
We will need to study the resolvent equation (iλ−A)U = F , for λ ∈ IR, namely







































iλu− ũ = f1,

iλũ− τ1
ρ1
uxx = f2,

iλv − ṽ = f3,

iλṽ − τ2
ρ2
vxx = f4,

iλφ+ (ξ2 + η)φ− ṽ(L)µ(ξ) = f5.

(3.72)

We divide the proof into three steps, as follows:

Step 1. Inserting (3.72)1, (3.72)3 into (3.72)2 and (3.72)4, we get

λ2u+ r1uxx = −(f2 + iλf1),
λ2v + r2vxx = −(f4 + iλf3),

where r1 = τ1/ρ1, r2 = τ2/ρ2. As u(0) = 0, then

u(x) = c1 sin
λ√
r1
x− 1√

r1λ

∫ x

0
(f2(σ) + iλf1(σ)) sin

λ√
r1
(x− σ) dσ,

v(x) = v(l0) cos
λ√
r2
(x− l0) + vx(l0)

√
r2
λ
sin λ√

r2
(x− l0)

− 1√
r2λ

∫ x

l0
(f4(σ) + iλf3(σ)) sin

λ√
r2
(x− σ) dσ

(3.73)

and hence

ux(x) = c1
λ√
r1
cos λ√

r1
x− 1

r1

∫ x

0
(f2(σ) + iλf1(σ)) cos

λ√
r1
(x− σ) dσ,

vx(x) = −v(l0) λ√
r2
sin λ√

r2
(x− l0) + vx(l0) cos

λ√
r2
(x− l0)

− 1

r2

∫ x

l0
(f4(σ) + iλf3(σ)) cos

λ√
r2
(x− σ) dσ.

(3.74)

Step 2. With the fifth equation of (3.72), we get

φ(ξ) =
ṽ(L)µ(ξ) + f5(ξ)

iλ+ ξ2 + η
. (3.75)

Inserting (3.75) in the boundary condition (P ′)6, we deduce that

r2vx(L) + iγλ(iλ+ η)α−1v(L)

= γ(iλ+ η)α−1f3(L)− ζ
∫ +∞

−∞

µ(ξ)f5(ξ)

iλ+ ξ2 + η
dξ.

(3.76)
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Then

v(l0)
[

−r2 λ√
r2
sin λ√

r2
(L− l0) + d cos λ√

r2
(L− l0)

]

+vx(l0)
[

r2 cos
λ√
r2
(L− l0) + d

√
r2
λ
sin λ√

r2
(L− l0)

]

= γ(iλ+ η)α−1f3(L)− ζ
∫ +∞

−∞

µ(ξ)f5(ξ)

iλ+ ξ2 + η
dξ +

∫ L

l0
(f4(σ) + iλf3(σ)) cos

λ√
r2
(L− σ) dσ

+
d√
r2λ

∫ L

l0
(f4(σ) + iλf3(σ)) sin

λ√
r2
(L− σ) dσ,

(3.77)
where d = γλ(iλ+ η)α−1. Using the transmission conditions v(l0) = u(l0) and
r2vx(l0) = r1ux(l0), we get

v(l0) = c1 sin
λ√
r1
l0 −

1√
r1λ

∫ l0

0
(f2(σ) + iλf1(σ)) sin

λ√
r1
(l0 − σ) dσ

vx(l0) =
r1
r2

(

c1
λ√
r1
cos

λ√
r1
l0 −

1

r1

∫ l0

0
(f2(σ) + iλf1(σ)) cos

λ√
r1
(l0 − σ) dσ

)

.

(3.78)

Using (3.78), we can rewrite (3.77) as an equation in the unknown c1

c1
[

sin λ√
r1
l0
(

−√r2λ sin λ√
r2
(L− l0) + d cos λ√

r2
(L− l0)

)

+cos λ√
r1
l0
(√

r1λ cos
λ√
r2
(L− l0) + d

√
r1√
r2
sin λ√

r2
(L− l0)

)]

= γ(iλ+ η)α−1f3(L)− ζ
∫ +∞

−∞

µ(ξ)f5(ξ)

iλ+ ξ2 + η
dξ

+
∫ L

l0
(f4(σ) + iλf3(σ)) cos

λ√
r2
(L− σ) dσ + d√

r2λ

∫ L

l0
(f4(σ) + iλf3(σ)) sin

λ√
r2
(L− σ) dσ

+

[

∫ l0

0
(f2(σ) + iλf1(σ)) sin

λ√
r1
(l0 − σ) dσ

] [

−
√
r2√
r1
sin λ√

r2
(L− l0) +

d√
r1λ

cos
λ√
r2
(L− l0)

]

+

[

∫ l0

0
(f2(σ) + iλf1(σ)) cos

λ√
r1
(l0 − σ) dσ

]

[

cos λ√
r2
(L− l0) + d√

r2λ
sin λ√

r2
(L− l0)

]

(3.79)
Step 3. We set

g(λ) =
[

sin λ√
r1
l0
(

−√r2λ sin λ√
r2
(L− l0) + d cos λ√

r2
(L− l0)

)

+cos λ√
r1
l0
(√

r1λ cos
λ√
r2
(L− l0) + d

√
r1√
r2
sin λ√

r2
(L− l0)

)]

=
[

λ
(√

r1 cos
λ√
r1
l0 cos

λ√
r2
(L− l0)−

√
r2 sin

λ√
r1
l0 sin

λ√
r2
(L− l0)

)

+d
(

sin λ√
r1
l0 cos

λ√
r2
(L− l0) +

√
r1√
r2
cos λ√

r1
l0 sin

λ√
r2
(L− l0)

)]

(3.80)

As f1 ∈ H1
∗ (0, l0) and f3 ∈ H1(l0, L), we have
∣

∣

∣

∣

∣

∫ L

l0
(f4(σ) + iλf3(σ)) cos

λ√
r2
(L− σ) dσ

∣

∣

∣

∣

∣

≤ c(‖f4‖L2(l0,L) + ‖f3‖H1(l0,L)).

∣

∣

∣

∣

∣

∫ L

l0
(f4(σ) + iλf3(σ)) sin

λ√
r2
(L− σ) dσ

∣

∣

∣

∣

∣

≤ c(‖f4‖L2(l0,L) + ‖f3‖H1(l0,L)).
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∣

∣

∣

∣

∣

∫ l0

0
(f2(σ) + iλf1(σ)) sin

λ√
r1
(l0 − σ) dσ

∣

∣

∣

∣

∣

≤ c(‖f2‖L2(0,l0) + ‖f1‖H1(0,l0)).

∣

∣

∣

∣

∣

∫ l0

0
(f2(σ) + iλf1(σ)) cos

λ√
r1
(l0 − σ) dσ

∣

∣

∣

∣

∣

≤ c(‖f2‖L2(0,l0) + ‖f1‖H1(0,l0)).

If r1 = r2. Then

g(λ) =
√
r1λ cos

λ√
r1
L+ d sin

λ√
r1
L.

We can easily prove that
|g(λ)| ≥ c|λ|α for λ large.

Hence
|c1| ≤ c|λ|−α for λ large.

Then, we deduce that
‖ux‖L2(0,l0) ≤ c|λ|1−α for λ large.

Moreover, as v(l0) = u(l0) and r2vx(l0) = r1ux(l0), we have

|v(l0)| ≤ c|λ|−α, |vx(l0)| ≤ c|λ|1−α for λ large.

Hence
‖vx‖L2(l0,L) ≤ c|λ|1−α for λ large.

From (3.72)1, (3.72)3 and (3.73), we have

‖ũ‖L2(0,l0), ‖ṽ‖L2(l0,L) ≤ c|λ|1−α for λ large.

From (3.75), we get

‖φ‖L2(−∞,∞) ≤ |ṽ(L)|
∥

∥

∥

∥

∥

µ(ξ)

iλ+ ξ2 + η

∥

∥

∥

∥

∥

L2(−∞,∞)

+

∥

∥

∥

∥

∥

f5(ξ)

iλ+ ξ2 + η

∥

∥

∥

∥

∥

L2(−∞,∞)

≤ c|λ|−α/2
(

‖f1‖H1(0,l0) + ‖f2‖L2(l0,L)

)

+ c
1

|λ|‖f5‖L2(−∞,∞).

Thus, we conclude that

‖(iλI −A)−1‖H ≤ c|λ|1−α as |λ| → ∞. (3.81)

If r1 6= r2. Then from (3.80), system






(√
r1 cos

λ√
r1
l0 cos

λ√
r2
(L− l0)−

√
r2 sin

λ√
r1
l0 sin

λ√
r2
(L− l0)

)

= 0
(

sin λ√
r1
l0 cos

λ√
r2
(L− l0) +

√
r1√
r2
cos λ√

r1
l0 sin

λ√
r2
(L− l0)

)

= 0

is equivalent to






















tan λ√
r1
l0 tan λ√

r2
(L− l0) =

√

r1
r2

tan λ√
r1
l0

tan λ√
r2
(L− l0)

= −
√

r1
r2
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which is impossible. Therefore, in all cases, we have

|g(λ)| ≥ c|λ|α for λ large.

Similarly to the case r1 = r2, we obtain the estimation (3.81).
Besides, we prove that the decay rate is optimal. Indeed, the decay rate is consistent with

the asymptotic expansion of eigenvalues which shows a behavior of the real part like k−(1−α).



Chapter 4

Exponential Stability of Compactly
Coupled Wave Equations with
Time-Varying Delay Terms in the
Boundary Feedbacks

4.1 Introduction

In recent years, linear system of compactly coupled wave equations under various internal and
boundary feedbacks has been studied ([23],[32],[39]).

Motivated by Nicaise and Pignotti [34], see also [33], we study in this chapter the stability
problem for compactly coupled wave equations with boundary time-varying delay terms. These
results are obtained by introducing suitable energie and Lyapounov functionals.

let Ω ⊂ IR
n be an open bounded domain of with boundary Γ of class C2 which is devided

into two parts Γ1 and Γ2 , i.e. Γ = Γ1 ∪ Γ2, with Γ̄1 ∩ Γ̄2 = ∅.






































































utt −∆u+ l(u− v) = 0 in Ω× (0,∞)
vtt −∆v + l(v − u) = 0 in Ω× (0,∞)
u(x, t) = v(x, t) = 0 on Γ1 × (0,∞)
∂u(x,t)

∂ν
= −α1ut(x, t)− α2ut(x, t− τ(t)) on Γ2 × (0,∞)

∂u(x,t)
∂ν

= −β1ut(x, t)− β2ut(x, t− τ(t)) on Γ2 × (0,∞)
u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω
v(x, 0) = v0(x), vt(x, 0) = v1(x) in Ω
ut(x, t− τ) = f0(x, t− τ(0)) on Γ2 × (0, τ(0))
vt(x, t− τ) = g0(x, t− τ(0)) on Γ2 × (0, τ(0))

(4.1)

where l, α1, α2, β1 and β2 are positive real numbers, and the time-varying delay τ(t) satisfies

τ ′(t) < 1, ∀t > 0, (4.2)

and
∃M > 0; 0 < τ0 ≤ τ(t) ≤M, ∀t > 0, (4.3)

41
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Moreover, we assume that

τ ∈ W 2,∞([0, T ]), ∀T > 0. (4.4)

We assume that there exists x0 ∈ IR
N such that denoting by m the standard multiplier

m(x) := x− x0

we have

m(x) · ν(x) ≤ 0 on Γ1 (4.5)

and, for some positive constant δ

m(x) · ν(x) ≥ δ on Γ2 (4.6)

We give an exponential stability result, under the conditions

α2 <
√
1− dα1, β2 <

√
1− dβ1 (4.7)

where d is a constant such that

τ ′(t) ≤ d < 1, ∀t > 0. (4.8)

The above problem, with both α1, α2, β1, β2 > 0 and a constant delay τ , has been stud-
ied by S. Rebiai, F. Sidiali [39], they investigate the uniform exponential stability under the
assumptions,

α1 > α2, β1 > β2,

the result is obtained by introducing a suitable energy function and by using an observability
estimate. Recently in [17] the authors introduced the same problem with distributed delay
terms in the boundary or internal feedbacks. They investigate the stability of solutions, under
some assumptions.

4.2 Well-Posedness of the System

We introduce the auxilliary variables

y(x, ρ, t) = ut(x, t− τ(t)ρ), z(x, ρ, t) = vt(x, t− τρ(t)), (x, ρ, t) ∈ Γ2× (0, 1)× (0,∞) (4.9)

Then

τ(t)yt(x, ρ, t)+(1−ρ′(t)ρ)yρ(x, ρ, t) = 0, τ(t)zt(x, ρ, t)+(1−ρ′(t)ρ)zρ(x, ρ, t) = 0, (x, ρ, t) ∈ Γ2×(0, 1)
(4.10)
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Thus , system (4.1) becomes

utt −∆u+ l(u− v) = 0 in Ω× (0,∞)
vtt −∆v + l(v − u) = 0 in Ω× (0,∞)
τ(t)yt(x, ρ, t) + (1− ρ′(t)ρ)yρ(x, ρ, t) = 0, in Γ2 × (0, 1)× (0,∞)
τ(t)zt(x, ρ, t) + (1− ρ′(t)ρ)zρ(x, ρ, t) = 0, in Γ2 × (0, 1)× (0,∞)
u(x, t) = v(x, t) = 0 on Γ1 × (0,∞)
∂u
∂ν
(x, t) = −α1ut(x, t)− α2y(x, 1, t) on Γ2 × (0,∞)

∂u
∂ν
(x, t) = −β1ut(x, t)− β2z(x, 1, t) on Γ2 × (0,∞)

y(x, 0, t) = ut(x, t), z(x, 0, t) = vt(x, t), in Γ2 × (0,∞)
u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω
v(x, 0) = v0(x), vt(x, 0) = v1(x) in Ω
y(x, ρ, 0) = f0(x, ,−ρτ(0)), z(x, 1, t) = g0(x, ,−ρτ(0)), in Γ2 × (0, 1)

(4.11)

Denote by H the Hilbert space

H := (H1
Γ1
(Ω))2 × (L2(Ω))2 × (L2(Γ2 × (0, 1)))2 (4.12)

we define the inner product in H

〈





















u
v
ϕ
ψ
y
z





















,





















ũ
ṽ
ϕ̃
ψ̃
ỹ
z̃





















〉

H

=
∫

Γ
[∇u(x)∇ũ(x) + ϕ(x)ϕ̃(x)]dx+

∫

Γ2

∫ 1

0
y(x, ρ)ỹ(x, ρ)dρdΓ

∫

Γ
[∇v(x)∇ṽ(x) + ψ(x)ψ̃(x)]dx+

∫

Γ2

∫ 1

0
z(x, ρ)z̃(x, ρ)dρdΓ

+l
∫

Ω
(u(x)− v(x))(ũ(x)− ṽ(x))dx (4.13)

Let U(t) = (u, v, ϕ, ψ, y, z)T , then U satisfies the problem
{

Ut = AU(t), t > 0
U(0) = U0

(4.14)

where U0 := (u0, v0, u1, v1, f0(.,−τ), g0(.,−τ), θ0, η0), and the operator A is defined by

A





















u
v
ϕ
ψ
y
z





















=























ϕ
ψ

a∆u− l(u− v)
b∆v − l(v − u)

τ ′(t)ρ−1
τ(t)

yρ
τ ′(t)ρ−1

τ(t)
zρ























The domain of A is

D(A) =











(u, v, ϕ, ψ, y, z)T ∈ H : u, v ∈ E(∆, L2(Ω)) ∩H1
Γ1
(Ω), ϕ, ψ ∈ H1

Γ1
(Ω),

y, z ∈ L2(Γ2;H1(0, 1)) : ∂u
∂ν
= −α1v − α2y(·, 1) on Γ2;ϕ = y(·, 0) on Γ2,

∂v
∂ν
= −β1v − β2z(·, 1) on Γ2; ψ = z(·, 0) on Γ2











(4.15)
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Where
E(∆, L2(Ω)) =

{

w ∈ H1(Ω) : ∆w ∈ L2(Ω)
}

Since the domain of the operator A(t) is independent of the time t, we can write,

D(A(t)) = D(A(0)), t > 0. (4.16)

Theorem 4.2.1 (see [20],[21])
Assume that
(i) Y = D(A(0)) is a dense subset of H.
(ii) (4.16) holds.
(iii) for all t ∈ [0, T ], A(t) generates a strongly continuous semigroup on H and the family

A = {A(t) : t ∈ [0, T ]} is stable with stability constants C and m independent of t
(iv) ∂tA belongs to L∞⋆ ([0, T ], B(Y,H)), the space of equivalent classes of essentially bounded,

strongly measurable functions from [0, T ] into the set B(Y,H) of bounded operators from Y into
H.

Then, problem (4.14) has a unique solution U ∈ C([0, T ], Y ) ∩C1([0, T ],H)) for any initial
datum in Y .

Lemma 4.2.1 D(A(0)) is dense in H.

Proof .
Let (û, v̂, ϕ̂, ψ̂, ŷ, ẑ) ∈ H such that,

0 =

〈





















u
v
ϕ
ψ
y
z





















,





















û
v̂
ϕ̂
ψ̂
ŷ
ẑ





















〉

H

=
∫

Γ
[∇u(x)∇û(x) + ϕ(x)ϕ̂(x)]dx+

∫

Γ2

∫ 1

0
y(x, ρ)ỹ(x, ρ)dρdΓ

∫

Γ
[∇v(x)∇ṽ(x) + ψ(x)ψ̂(x)]dx+

∫

Γ2

∫ 1

0
z(x, ρ)ẑ(x, ρ)dρdΓ

+l
∫

Ω
(u(x)− v(x))(û(x)− v̂(x))dx (4.17)

for all (u, v, ϕ, ψ, y, z)T ∈ D(A(0)).

• u = v = ϕ = ψ = y = 0 and z ∈ D(Γ2 × (0, 1)). As (0, 0, 0, 0, 0, z)T ∈ D(A(0)), from
(4.17) we get,

∫

Γ2

∫ 1

0
z(x, ρ)ẑ(x, ρ)dρdΓ = 0.

Since D(Γ2 × (0, 1)) is dense in L2(Γ2 × (0, 1)), we deduce that ẑ = 0.

Similary for

• u = v = ϕ = ψ = z = 0 and y ∈ D(Γ2 × (0, 1)). Then ŷ = 0.
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• u = v = ϕ = y = z = 0 and ψ ∈ D(Ω). Then ψ̂ = 0.

• u = v = ψ = y = z = 0 and ϕ ∈ D(Ω).Then ϕ̂ = 0.

For the case

• v = ϕ = ψ = y = z = 0 and u ∈ D(∆) := {ϕ ∈ E(∆, L2(Ω)) ∩ V : ∂ϕ
∂n

= 0 on Γ2}, we get
from (4.17),

∫

Γ
∇u(x)∇û(x)dx = 0.

Since D(∆) is dense in H1
Γ1
, then û = 0.

And similary for

• u = ϕ = ψ = y = z = 0 and v ∈ D(∆), then v̂ = 0.

Theorem 4.2.2 For every U0 ∈ H the problem (4.14) has a unique solution U ∈ C([0,∞),H)
In addition, if we assume U0 ∈ D(A(0)), then we have

U ∈ C([0,∞), D(A(0)) ∩ C1([0,∞),H)). (4.18)

Proof . We define the time dependent inner product in H

〈





















u
v
ϕ
ψ
y
z





















,





















ũ
ṽ
ϕ̃
ψ̃
ỹ
z̃





















〉

t

=
∫

Ω
[∇u(x)∇ũ(x) + ϕ(x)ϕ̃(x)]dx+ µτ(t)

∫

Γ2

∫ 1

0
y(x, ρ)ỹ(x, ρ)dρdΓ

∫

Ω
[∇v(x)∇ṽ(x) + ψ(x)ψ̃(x)]dx+ ξτ(t)

∫

Γ2

∫ 1

0
z(x, ρ)z̃(x, ρ)dρdΓ

+l
∫

Ω
(u(x)− v(x))(ũ(x)− ṽ(x))dx (4.19)

we calculate 〈A(t)U,U〉t, for a fixed t.

〈A(t)U,U〉t =
〈























ϕ
ψ

a∆u− l(u− v)
b∆v − l(v − u)

τ ′(t)ρ−1
τ(t)

yρ
τ ′(t)ρ−1

τ(t)
zρ
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u
v
ϕ
ψ
y
z





















〉

t

=
∫

Ω
∇u(x)∇u(x) + ϕ(x)∆u(x)dx+ µ

∫

Γ2

∫ 1

0
(1− τ ′(t)ρ)yρ(x, ρ)y(x, ρ)dρdΓ

+
∫

Ω
[∇v(x)∇v(x) + ψ(x)∆v(x)dx+ ξ

∫

Γ2

∫ 1

0
(1− τ ′(t)ρ)zρ(x, ρ)z(x, ρ)dρdΓ

+l
∫

Ω
(u(x)− v(x))2dx (4.20)
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using Cauchy-Schwarz’s inequality

〈A(t)U,U〉t ≤
(

−α1 +
α2

2
√
1− d

+
µ

2

)

∫

Γ1

ϕ2(x)dΓ +
∫

Γ1

y2(x, 1)dΓ

+

(

−β1 +
β2

2
√
1− d

+
ξ

2

)

∫

Γ1

ψ2(x)dΓ +
∫

Γ1

z2(x, 1)dΓ (4.21)

+κ(t) 〈U,U〉t

where,

κ(t) =
(τ ′(t)2 + 1)

2
2

2τ(t)
(4.22)

Then,

〈A(t)U,U〉t − κ(t) 〈, U, U〉t ≤ 0, (4.23)

which means that the operator Ã(t) = A(t)− κ(t)I is dissipative.
Now, we will show that λI −A(t) is surjective for fixed t > 0 and λ > 0.

(λI −A(t))
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z





















=





















ũ
ṽ
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ỹ
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(4.24)

that is verifying










































λu− ϕ = û
λv − ψv̂
λϕ− a∆u+ l(u− v) = ϕ̂
λψ − b∆v + l(v − u) = ψ̂

λy − τ ′(t)ρ−1
τ(t)

yρ = ŷ

λz − τ ′(t)ρ−1
τ(t)

zρ = ẑ

(4.25)

ϕ = λu− û
ψ = λv − v̂

(4.26)

y(x, 0) = ϕ(x), z(x, 0) = ψ(x), x ∈ Γ2. (4.27)

λy(x, ρ) + 1−τ ′(t)ρ
τ(t)

yρ(x, ρ) = ŷ

λz(x, ρ) + 1−τ ′(t)ρ
τ(t)

zρ(x, ρ) = ẑ
(4.28)

We can easiely check (see [34]), that if τ ′(t) = 0,

y(x, ρ) = ϕ(x)e−λρ(t) + τ(t)e−λρ(t)
∫ ρ
0 ŷ(x, σ)dσ,

z(x, ρ) = ψ(x)e−λρ(t) + τ(t)e−λρ(t)
∫ ρ
0 ẑ(x, σ)dσ,
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therefore,

∫

Ω(λ
2uw +∇u∇w)dx+ ∫

Ω(λ
2vχ+∇v∇χ)dx+ ∫

Γ2
(α1 + α2e

−λτ(t))λuwdΓ

+
∫

Γ2
(β1 + β2e

−λτ(t)λvχdΓ =
∫

Γ2
(ϕ̂+ λû)wdx+

∫

Γ2
(α1u− α2y0)wdΓ

+
∫

Γ2
(ψ̂ + λv̂)χdx+

∫

Γ2
(β1v − β2z0)wdΓ

(4.29)

Similary for τ ′(t) 6= 0,

∫

Ω(λ
2uw +∇u∇w)dx+ ∫

Ω(λ
2vχ+∇v∇χ)dx+ ∫

Γ2
(α1 + α2e

−λ τ(t)

τ ′(t)
ln(1−τ ′(t))

)λuwdΓ

+
∫

Γ2
(β1 + β2e

−λ τ(t)

τ ′(t)
ln(1−τ ′(t))

)λvχdΓ =
∫

Γ2
(ϕ̂+ λû)wdx+

∫

Γ2
(α1u− α2y0)wdΓ

+
∫

Γ2
(ψ̂ + λv̂)χdx+

∫

Γ2
(β1v − β2z0)wdΓ

(4.30)

It is easy to verify that left-hand side of (4.29) and (4.30) is continuous and coercive, and right
hand-side of them is continuous. By applying the Lax-Milgram Theorem, (4.29) and (4.30) has
a unique solution (u, v) ∈ H1

Γ1
(Ω)×H1

Γ1
(Ω).

We find that (u, v, ϕ, ψ, y, z)T ∈ D(A(t)). Again as κ(t) > 0, this proves that

λI − Ã(t) = (λ+ κ(t))I −A(t) is surjective (4.31)

for any λ > 0 and t > 0.
Finaly we can easiely check (see [34]) that,

‖φ‖t
‖φ‖s

≤ e
c
τ0
|t−s|

; ∀t, s ∈ [0, T ] (4.32)

where φ = (u, ϕ, v, ψ, y, z)T and c is a positive constant and,

d

dt
Ã(t) ∈ L∞⋆ ([0, T ], B(D(A)(0),H)) (4.33)

the space of equivalence classes of essentially bounded, strongly measurable functions from
[0, T ] into B(D(A)(0),H).

Then, by Proposition 1.1 from [21], (4.32), (4.23) and (4.31) we conclude that the family
Ã = {Ã(t) : t ∈ [0, T ]} is a stable family of generators inH with stability constants independent
of t. Therefore, the assumptions (i)-(iv) of Theorem 4.2.1 are verified by Lemma 4.2.1, (4.16),
(4.32), (4.23), (4.33), and (4.31). Thus, the problem

{

Ũt = ÃŨ(t), t > 0
Ũ(0) = Ũ0

(4.34)

has a unique solution Ũ ∈ C([0,∞), D(A(0)) ∩ C1([0,∞),H)) for U0 ∈ D(A(0).
Then the solution of (4.14) is given by,

U(t) = eβ(t)Ũ(t)

with β(t) =
∫ t
0 κ(s)ds
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4.3 Exponential Stability

For a solution of (4.1), we define the energy

E(t) =
1

2

∫

Ω
[u2t (x, t) + |∇u(x, t)|2 + v2t (x, t) + |∇v(x, t)|2 + l(u− v)2]dx

+
µ

2
τ(t)

∫

Γ2

∫ 1

0
u2t (x, t− τ(t)ρ)dρdΓ +

ξ

2
τ(t)

∫

Γ2

∫ 1

0
v2t (x, t− τ(t)ρ)dρdΓ (4.35)

where,

α2√
1− d

< µ < 2α1 −
α2√
1− d

, (4.36)

β2√
1− d

< ξ < 2β1 −
β2√
1− d

(4.37)

Theorem 4.3.1 Assume (4.7). There exist positive constants K1, K2 such that for any solution
of problem

E(t) ≤ K1E(0)e
−K2t. (4.38)

Proof . We proceed in several steps.
Step1
Differentiating E(t) with respect to t,

d

dt
E(t) =

∫

Ω
[uttut +∇u∇ut + vttvt +∇v∇vt + l(u− v)(ut − vt)]dx

+
µ

2
τ ′(t)

∫

Γ2

∫ 1

0
u2t (x, t− τ(t)ρ)dρdΓ +

ξ

2
τ ′(t)

∫

Γ2

∫ 1

0
v2t (x, t− τ(t)ρ)dρdΓ

+µτ(t)
∫

Γ2

∫ 1

0
ut(x, t− τ(t)ρ)utt(x, t− τ(t)ρ)(1− τ ′(t)ρ)dρdΓ

+ξτ(t)
∫

Γ2

∫ 1

0
vt(x, t− τ(t)ρ)vtt(x, t− τ(t)ρ)(1− τ ′(t)ρ)dρdΓ (4.39)

appliying Green’s formula,

d

dt
E(t) =

∫

Γ2

∂u

∂ν
utdΓ +

µ

2
τ ′(t)

∫

Γ2

∫ 1

0
u2t (x, t− τ(t)ρ)dρdΓ

+µτ(t)
∫

Γ2

∫ 1

0
ut(x, t− τ(t)ρ)utt(x, t− τ(t)ρ)(1− τ ′(t)ρ)dρdΓ

+
∫

Γ2

∂v

∂ν
vtdΓ +

ξ

2
τ ′(t)

∫

Γ2

∫ 1

0
v2t (x, t− τ(t)ρ)dρdΓ

+ξτ(t)
∫

Γ2

∫ 1

0
vt(x, t− τ(t)ρ)vtt(x, t− τ(t)ρ)(1− τ ′(t)ρ)dρdΓ (4.40)

Now, we have
ut(x, t− τ(t)ρ) = τ−1(t)uρ(x, t− τ(t)ρ),
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vt(x, t− τ(t)ρ) = τ−1(t)vρ(x, t− τ(t)ρ),
which lead to

utt(x, t− τ(t)ρ) = τ−2(t)uρρ(x, t− τ(t)ρ),
vtt(x, t− τ(t)ρ) = τ−2(t)vρρ(x, t− τ(t)ρ),

Therefore,

∫ 1

0
ut(x, t− τ(t)ρ)utt(x, t− τ(t)ρ)(1− τ ′(t)ρ)dρ = −1

2
τ ′(t)τ−1(t)

∫ 1

0
u2t (x, t− τ(t)ρ)dρ

−τ
−1(t)

2
u2t (x, t− τ(t))(1− τ ′(t))

+
τ−1(t)

2
u2t (x, t). (4.41)

Similary,

∫ 1

0
vt(x, t− τ(t)ρ)vtt(x, t− τ(t)ρ)(1− τ ′(t)ρ)dρ = −1

2
τ ′(t)τ−1(t)

∫ 1

0
v2t (x, t− τ(t)ρ)dρ

−τ
−1(t)

2
v2t (x, t− τ(t))(1− τ ′(t))

+
τ−1(t)

2
v2t (x, t). (4.42)

Using (4.40), (4.41), (4.42) and the boundary conditions (4.1)4,(4.1)5, we have

d

dt
E(t) = −α1

∫

Γ2

u2t (x, t)dΓ− α2
∫

Γ2

ut(x, t)ut(x, t− τ(t))dΓ

+
µ

2

∫

Γ2

u2t (x, t)dΓ−
µ

2

∫

Γ2

u2t (x, t− τ(t))(1− τ ′(t))dΓ

−β1
∫

Γ2

v2t (x, t)dΓ− β2
∫

Γ2

vt(x, t)vt(x, t− τ(t))dΓ

+
ξ

2

∫

Γ2

v2t (x, t)dΓ−
ξ

2

∫

Γ2

v2t (x, t− τ(t))(1− τ ′(t))dΓ (4.43)

applying Cauchy-Schwarz?s inequality, we obtain

d

dt
E(t) ≤ −α1

∫

Γ2

u2t (x, t)dΓ +
1√
1− d

α2
2

∫

Γ2

u2t (x, t)dΓ

+
√
1− dα2

2

∫

Γ2

u2t (x, t− τ(t))dΓ−
µ

2
(1− τ ′(t))

∫

Γ2

u2t (x, t− τ(t))dΓ

+
ξ

2

∫

Γ2

v2t (x, t)dΓ− β1
∫

Γ2

v2t (x, t)dΓ +
1√
1− d

β2
2

∫

Γ2

v2t (x, t)dΓ

+
√
1− dβ2

2

∫

Γ2

v2t (x, t− τ(t))dΓ−
ξ

2
(1− τ ′(t))

∫

Γ2

v2t (x, t− τ(t))dΓ

+
ξ

2

∫

Γ2

v2t (x, t)dΓ (4.44)
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Then, for some positive constant C,,

d

dt
E(t) ≤ −C

(∫

Γ2

[u2t (x, t) + u2t (x, t− τ(t)) + v2t (x, t) + v2t (x, t− τ(t))dΓ
)

(4.45)

Step 2.
Now, let us introduce the Lyapounov functional

L(t) = E(t) + γ
{∫

Ω
(2m · ∇u+ (n− 1)u)utdx+

∫

Ω
(2m · ∇v + (n− 1)v)vtdx+ E(t)

}

(4.46)

where γ is a positive small constant that we will choose later on and E(t) is defined by

E(t) = µ

2
τ(t)

∫

Γ2

∫ 1

0
e−2τ(t)ρu2t (x, t−τ(t)ρ)dρdΓ+

ξ

2
τ(t)

∫

Γ2

∫ 1

0
e−2τ(t)ρv2t (x, t−τ(t)ρ)dρdΓ (4.47)

Moreover, we denote by ES(t) the standard energy for the system without delay, that is

ES(t) =
1

2

∫

Ω
[u2t (x, t) + |∇u(x, t)|2 + v2t (x, t) + |∇v(x, t)|2 + l(u− v)2]dx (4.48)

First we have,

d

dt

{∫

Ω
(2m · ∇u+ (n− 1)u)utdx+

∫

Ω
(2m · ∇v + (n− 1)v)vtdx

}

= −
∫

Ω
[u2t (x, t) + |∇u(x, t)|2dx−

∫

Ω
v2t (x, t) + |∇v(x, t)|2dx

+
∫

Γ2

(m · ν)[u2t (x, t)− |∇u(x, t)|2dΓ +
∫

Γ2

(m · ν)[v2t (x, t)− |∇v(x, t)|2dΓ

+
∫

Γ2

(2m · ∇u+ (n− 1)u)∂u
∂ν
dΓ +

∫

Γ2

(2m · ∇v + (n− 1)v)∂v
∂ν
dΓ (4.49)

Young’s inequality,

d

dt

{∫

Ω
(2m · ∇u+ (n− 1)u)utdx+

∫

Ω
(2m · ∇v + (n− 1)v)vtdx

}

≤ −
∫

Ω
[u2t (x, t) + |∇u(x, t)|2dx−

∫

Ω
v2t (x, t) + |∇v(x, t)|2dx

+
∫

Γ2

(m · ν)u2t (x, t)dΓ− δ
∫

Γ2

|∇u(x, t)|2dΓ +
∫

Γ2

(m · ν)[v2t (x, t)dΓ

−δ
∫

Γ2

|∇v(x, t)|2dΓ + c

ε

∫

Γ2

(

∂u

∂ν

)2

dΓ +
c

ε

∫

Γ2

(

∂v

∂ν

)2

dΓ

+ε
∫

Ω
[u2t (x, t) + |∇u(x, t)|2dx+ ε

∫

Ω
v2t (x, t) + |∇v(x, t)|2dx (4.50)

for some positive constants ε, c. For ε small enough we deduce

d

dt

{∫

Ω
(2m · ∇u+ (n− 1)u)utdx+

∫

Ω
(2m · ∇v + (n− 1)v)vtdx

}

≤ C0ES(t)

+C
∫

Γ2







u2t (x, t) +

(

∂u

∂ν

)2

+ v2t (x, t) +

(

∂v

∂ν

)2






dΓ (4.51)
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Step 3.
Differentiating (4.47) we have

d

dt
E(t) = µτ ′(t)

∫

Γ2

∫ 1

0
e−2τ(t)ρu2t (x, t− τ(t)ρ)dρdΓ− 2µτ ′(t)τ(t)

∫

Γ2

∫ 1

0
e−2τ(t)ρρu2t (x, t− τ(t)ρ)dρdΓ

+2µτ(t)
∫

Γ2

∫ 1

0
e−2τ(t)ρut(x, t− τ(t)ρ)utt(x, t− τ(t)ρ)(1− τ ′(t)ρ)dρdΓ

+ξτ ′(t)
∫

Γ2

∫ 1

0
e−2τ(t)ρv2t (x, t− τ(t)ρ)dρdΓ− 2ξτ ′(t)τ(t)

∫

Γ2

∫ 1

0
e−2τ(t)ρρv2t (x, t− τ(t)ρ)dρdΓ

+2ξτ(t)
∫

Γ2

∫ 1

0
e−2τ(t)ρvt(x, t− τ(t)ρ)vtt(x, t− τ(t)ρ)(1− τ ′(t)ρ)dρdΓ (4.52)

Integrating by parts the third and the last terms in (4.52). We obtain
∫ 1

0
e−2τ(t)ρut(x, t− τ(t)ρ)utt(x, t− τ(t)ρ)(1− τ ′(t)ρ)dρ

= −1
2
τ ′(t)τ−1(t)

∫ 1

0
e−2τ(t)ρu2t (x, t− τ(t)ρ)dρ

−
∫ 1

0
e−2τ(t)ρu2t (x, t− τ(t)ρ)(1− τ ′(t)ρ)dρ

−τ
−1(t)

2
e−2τ(t)u2t (x, t− τ(t))(1− τ ′(t)) +

τ−1(t)

2
u2t (x, t). (4.53)

Similary,
∫ 1

0
e−2τ(t)ρvt(x, t− τ(t)ρ)vtt(x, t− τ(t)ρ)(1− τ ′(t)ρ)dρ

= −1
2
τ ′(t)τ−1(t)

∫ 1

0
e−2τ(t)ρv2t (x, t− τ(t)ρ)dρ

−
∫ 1

0
e−2τ(t)ρv2t (x, t− τ(t)ρ)(1− τ ′(t)ρ)dρ

−τ
−1(t)

2
e−2τ(t)v2t (x, t− τ(t))(1− τ ′(t)) +

τ−1(t)

2
v2t (x, t). (4.54)

and so,

d

dt
E(t) = −2µτ(t)

∫

Γ2

∫ 1

0
e−2τ(t)ρu2t (x, t− τ(t)ρ)dρdΓ

−2µe−2τ(t)ρ
∫

Γ2

u2t (x, t− τ(t)ρ)(1− ρ′(t))dΓ + µ
∫

Γ2

u2t (x, t)dΓ

−2ξτ(t)
∫

Γ2

∫ 1

0
e−2τ(t)ρv2t (x, t− τ(t)ρ)dρdΓ

−2ξe−2τ(t)ρ
∫

Γ2

v2t (x, t− τ(t)ρ)(1− ρ′(t))dΓ + ξ
∫

Γ2

v2t (x, t)dΓ (4.55)

Then,
d

dt
E(t) ≤ −2E(t) + µ

∫

Γ2

u2t (x, t)dΓ + ξ
∫

Γ2

v2t (x, t)dΓ (4.56)
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Step 4.
From (4.45), (4.51) and (4.56), we have

d

dt
L(t) ≤ −C

∫

Γ2

{

u2t (x, t) + u2t (x, t− τ(t)) + v2t (x, t) + v2t (x, t− τ(t))
}

dΓ

+γ (−C0ES(t)− 2E(t)
+C1

∫

Γ2

{

u2t (x, t) + u2t (x, t− τ(t)) + v2t (x, t) + v2t (x, t− τ(t))
}

dΓ
)

(4.57)

Therefore,
d

dt
L(t) ≤ −γC0ES(t)− 2γE(t) ≤ −CL(t). (4.58)

This implies
L(t) ≤ e−CtL(0)

and so,
E(t) ≤ K1E(0)e

−K2t,

for suitable constants K1, K2 > 0.



Chapter 5

Blow-up for coupled nonlinear wave
equations with fractional damping and
source terms

5.1 Introduction

In this chapter, We consider the following system

utt + ∂1−αt u = div(ρ1(|∇u|2)∇u) + f1(u, v) (5.1)

vtt + ∂1−βt v = div(ρ2(|∇v|2)∇v) + f2(u, v) (5.2)

with boundary conditions
u = v = 0 (5.3)

and initial data

u(x, 0) = u0, ut(x, 0) = u1, v(x, 0) = v0, v1(x, 0) = v1, (5.4)

where Ω is a bounded domain with smooth boundary ∂Ω in IR
n, n = 1, 2, 3.

Let F (u, v) = a|u + v|p+1 + 2b|uv| p+1
2 with a, b > 0, p ≥ 3 if n = 1, 2 and p = 3 if n = 3;

f1(u, v) =
∂F
∂u

and f2(u, v) =
∂F
∂v

One can easily verify that

uf1(u, v) + vf2(u, v) = (p+ 1)F (u, v) (5.5)

There exist two positive constants c0 and c1 such that

c0(|u|p+1 + |v|p+1) ≤ F (u, v) ≤ c1(|u|p+1 + |v|p+1) (5.6)

Problems of this type arise in material science and physics, which have been studied by many
authors ([14],[35],[2],[31]).

Concerning a single wave equation with ρ1, ρ2 = 1, Kirane and Tatar [22] introduce the
equation of the form

utt − ∂αt u = ∆u+ a|u|p−1u

53



54 coupled nonlinear wave equations with fractional damping and source terms

they prove that solutions growth exponentially for sufficiently large initial data. In [41], using
an argument involving Fourier transforms and the Hardy-Littlewood-Sobolev inequality, au-
thors prove a finite time blow up of solutions. Alaimia and Tatar [3] prove finite time blow up
without the dependence of the initial data on the time variable T , for this goal, they introduce
a new functional which controle some undesirable terms that appear while using the Georgiev
and Todorova [16] argument. This problem (with a = 0) has been studied by Matignon et al.
in [28]. They obtained some results on well posedness and asymptotic stability by transforming
the problem into a standard one.

Throughout this chapter, we consider the coupled system (5.1)-(5.4), where

ρi(s) = b1 + b2s
qi , qi > 0, b1 + b2 > 0 (5.7)

In the following, we establish that the solutions of this problem blow up in finite time for
sufficiently large initial data using the same techniques as in [24].

Now, we state the local existence and uniqueness of the solution of problem

Theorem 5.1.1 (see [41]). Assume (5.6) holds. Then for any initial data u0 ∈ W 1,2q1+2
0 (Ω)∩

Lp+1(Ω), v0 ∈ W 1,2q2+2
0 (Ω)∩Lp+1(Ω) and u1, v1 ∈ L2(Ω), problem (5.1)− (5.4) admits a unique

local weak solution (u, v):

u ∈ C
(

[0, T );W 1,2q1+2
0 (Ω) ∩ Lp+1(Ω)

)

∩ C1
(

[0, T );L2(Ω)
)

,

v ∈ C
(

[0, T );W 1,2q2+2
0 (Ω) ∩ Lp+1(Ω)

)

∩ C1
(

[0, T );L2(Ω)
)

,

for some T > 0.

For η > 0, we define the fractional derivative in the sense of Caputo as follows:

∂ηt ω(t) :=
1

Γ(1− η)

∫ t

0
(t− s)−ηωs(s)ds.

Let us define

E(t) =
∫

Ω

{

1

2
(u2t + v2t ) +

1

2
[P1(|∇u|2) + P2(|∇v|2)]− F (u, v)

}

dx (5.8)

where Pi(s) =
∫ s
0 ρi(ξ)dξ, s ≥ 0, i = 1, 2. It follows that

dE(t)

dt
= − 1

Γ(α)

∫

Ω
ut(t)

∫ t

0
(t− s)−αut(s)dsdx−

1

Γ(β)

∫

Ω
vt(t)

∫ t

0
(t− s)−βvt(s)dsdx. (5.9)

Integrating from 0 to t, we obtain

E(t)− E(0) = − 1
Γ(α)

∫ t
0

∫

Ω ut(s)
∫ s
0 (s− z)−αut(z)dzdxds

− 1
Γ(β)

∫ t
0

∫

Ω vt(s)
∫ s
0 (s− z)−βvt(z)dzdxds.

(5.10)
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5.2 Blow up of solutions

Theorem 5.2.1 Suppose that (u, v) is the solution of the system (5.1)-(5.4). Then, for any
T > 0, there exist T ⋆ ≤ T and sufficiently large initial data for wich (u, v) blows uo at T ⋆.

Proof Let

H(t) = −
∫ t

0
E(s)ds+ (dt+ l)

∫

Ω
(u20 + v20)dx (5.11)

where d and l are positive contants to be determined later. Obviously,

H ′(t) = d
∫

Ω
(u20 + v20)dx− E(t) ≥ d

∫

Ω
(u20 + v20)dx− E(0) (5.12)

It suffices to choose d such that

d
∫

Ω
(u20 + v20)dx− E(0) = H ′(0) > 0 (5.13)

Then H ′(t) > 0, and by (5.10) and (5.12), we have

H ′(t)−H ′(0) = E(t)− E(0) = − 1

Γ(α)

∫ t

0

∫

Ω
ut(s)

∫ s

0
(s− z)−αut(z)dzdxds (5.14)

− 1

Γ(β)

∫ t

0

∫

Ω
vt(s)

∫ s

0
(s− z)−βvt(z)dzdxds ≤ 0. (5.15)

Considering the functional

Ψ(t) = H1−γ +
ε

2

(∫

Ω
(u2 + v2)dx−

∫

Ω
(u20 + v20)dx

)

where ε > 0, and 0 < γ < p−1
2(p+1)

. We have

Ψ(0) = H1−γ(0) =
(

l
∫

Ω
(u20 + v20)dx

)1−γ

and
Ψ′(t) = (1− γ)H−γ(t)H ′(t) + ε

∫

Ω
(uut + vvt)dx (5.16)

A differentiation of (5.16) followed by an integration gives

Ψ′(t) = (1− γ)H−γ(t)H ′(t) + ε
∫

Ω
(u0u1 + v0v1)dx+ ε

∫ t

0

∫

Ω
(u2t + v2t )dxds

+ε
∫ t

0

∫

Ω
(uutt + vvtt)dxds. (5.17)

We multiply equation (5.1) (resp. (5.2)) by u (resp. v) and integrate over Ω× (0, t), we obtain
∫ t

0

∫

Ω
(uutt + vvtt)dxds = −

∫ t

0

∫

Ω
[ρ1(|∇u|2)|∇u|2 + ρ2(|∇v|2)|∇v|2]dxds

+(p+ 1)
∫ t

0

∫

Ω
F (u, v)dxds

− 1

Γ(α)

∫ t

0

∫

Ω
u
∫ s

0
(s− z)−αut(z)dzdxds

− 1

Γ(β)

∫ t

0

∫

Ω
v
∫ s

0
(s− z)−βvt(z)dzdxds (5.18)
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since
∫ t

0

∫

Ω
[ρ1(|∇u|2)|∇u|2 + ρ2(|∇v|2)|∇v|2]dxds = b1

∫ t

0

∫

Ω
(|∇u|2 + |∇v|2)dxds

+b2

∫ t

0

∫

Ω
(|∇u|2(q1+1) + |∇v|2(q2+1))dxds (5.19)

for q = max{q1, q2}, it follows from the definition of H(t) that,

−b2
∫ t

0

∫

Ω
(|∇u|2(q1+1) + |∇v|2(q2+1))dxds ≥ 2(q + 1)H(t)− 2(q + 1)(dt+ l)

∫

Ω
(u20 + v20)dx

+(q + 1)
∫ t

0

∫

Ω
(u2t + v2t )dxds

+(q + 1)b1

∫ t

0

∫

Ω
(|∇u|2 + |∇v|2)dxds

−2(q + 1)
∫ t

0

∫

Ω
F (u, v)dxds (5.20)

Hence, taking into account (5.17), (5.18), (5.19) and (5.20), we get

Ψ′(t) ≥ (1− γ)H−γ(t)H ′(t) + ε
∫

Ω
(u0u1 + v0v1)dx+ ε

∫ t

0

∫

Ω
(u2t + v2t )dxds

−εb1
∫ t

0

∫

Ω
(|∇u|2 + |∇v|2)dxds+ 2ε(q + 1)H(t)− 2ε(q + 1)(dt+ l)

∫

Ω
(u20 + v20)dx

+ε(q + 1)
∫ t

0

∫

Ω
(u2t + v2t )dxds+ ε(q + 1)b1

∫ t

0

∫

Ω
(|∇u|2 + |∇v|2)dxds

−2ε(q + 1)
∫ t

0

∫

Ω
F (u, v)dxds+ ε(p+ 1)

∫ t

0

∫

Ω
F (u, v)dxds

− 1

Γ(α)

∫ t

0

∫

Ω
u
∫ s

0
(s− z)−αut(z)dzdxds

− 1

Γ(β)

∫ t

0

∫

Ω
v
∫ s

0
(s− z)−βvt(z)dzdxds (5.21)

Let us define the extension operators to the whole domain as follows:

Lω(τ) =
{

ω(τ) if τ ∈ [0, t],
0 if τ ∈ IR\[0, t]

and

Lkα(τ) =
{

kα(τ) if τ > 0,
0 if τ ≤ 0

Employing the Parseval theorem, we can rewrite

1

Γ(α)

∫ t

0
u(s)

∫ s

0
(s− z)−αut(z)dzds =

∫ +∞

−∞
Lu(s)

∫ +∞

−∞
Lkα(s− z)(Lut)(z)dzds

=
∫ +∞

−∞
F (Lu)(σ)F (Lkα ⋆ Lut)(σ)dσ
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where F (f) denotes the usual Fourier transform of f .
We use the same method as in [24], we have

∫ +∞

−∞
Lu(s)

∫ +∞

−∞
Lkα(s− z)(Lut)(z)dzds ≤

δ

cos(απ/2)

∫ +∞

−∞
Lut(s)(L(kα) ⋆ Lut)(s)ds

+
1

4δ cos(απ/2)

∫ +∞

−∞
Lu(s)(L(kα) ⋆ Lut)(s)ds (5.22)

Similarly,

∫ +∞

−∞
Lv(s)

∫ +∞

−∞
Lkβ(s− z)(Lvt)(z)dzds ≤

δ

cos(βπ/2)

∫ +∞

−∞
Lvt(s)(L(kβ) ⋆ Lvt)(s)ds

+
1

4δ cos(βπ/2)

∫ +∞

−∞
Lv(s)(L(kβ) ⋆ Lvt)(s)ds (5.23)

Inserting the estimates (5.22) and (5.23) in (5.21), we find

Ψ′(t) ≥ (1− γ)H−γ(t)H ′(t) + ε
∫

Ω
(u0u1 + v0v1)dx+ 2ε(q + 1)H(t)

−2ε(q + 1)(dt+ l)
∫

Ω
(u20 + v20)dx+ ε(q + 2)

∫ t

0

∫

Ω
(u2t + v2t )dxds

+εqb1

∫ t

0

∫

Ω
(|∇u|2 + |∇v|2)dxds+ ε(p− 2q − 1)

∫ t

0

∫

Ω
F (u, v)dxds

− εδ

cos(απ/2)

∫ +∞

−∞
Lut(s)(L(kα) ⋆ Lut)(s)ds

− ε

4δ cos(απ/2)

∫ +∞

−∞
Lu(s)(L(kα) ⋆ Lut)(s)ds

− εδ

cos(βπ/2)

∫ +∞

−∞
Lvt(s)(L(kβ) ⋆ Lvt)(s)ds

− ε

4δ cos(βπ/2)

∫ +∞

−∞
Lv(s)(L(kβ) ⋆ Lvt)(s)ds (5.24)

If we set K = min{cos(απ/2), cos(βπ/2)}, from (5.14), we see that

εδ

K
[H ′(0)−H ′(t)] ≤ − εδ

cos(απ/2)

∫ +∞

−∞
Lut(s)(L(kα) ⋆ Lut)(s)ds

− εδ

cos(βπ/2)

∫ +∞

−∞
Lvt(s)(L(kβ) ⋆ Lvt)(s)ds (5.25)

From (see [24]), we have the estimates

∫ +∞

−∞
Lu(s)(L(kα) ⋆ Lut)(s)ds ≤

tβ

Γ(1 + α)

∫ t

0

∫

Ω
|u|2dxds (5.26)

Similary,
∫ +∞

−∞
Lv(s)(L(kβ) ⋆ Lvt)(s)ds ≤

tα

Γ(1 + β)

∫ t

0

∫

Ω
|v|2dxds (5.27)
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Substituting relations (5.25), (5.26) and (5.27) in (5.24), we find

Ψ′(t) ≥
[

(1− γ)H−γ(t)− εδ

K

]

H ′(t) +
εδ

K
H ′(0) + ε

∫

Ω
(u0u1 + v0v1)dx

+2ε(q + 1)H(t)− 2ε(q + 1)(dt+ l)
∫

Ω
(u20 + v20)dx

+ε(q + 2)
∫ t

0

∫

Ω
(u2t + v2t )dxds+ εqb1

∫ t

0

∫

Ω
(|∇u|2 + |∇v|2)dxds

+ε(p− 2q − 1)
∫ t

0

∫

Ω
F (u, v)dxds

− ε

4δKΓ(α + 1)
tα
∫ t

0

∫

Ω
|u|2dxds− ε

4δKΓ(β + 1)
tβ
∫ t

0

∫

Ω
|v|2dxds (5.28)

Taking δ =MKH−γ(t) for some M > 0, and since F (u, v) ≥ c0(|u|p+1 + |v|p+1), we get

Ψ′(t) ≥ [(1− γ)−Mε]H−γ(t)H ′(t) + εMH−γ(t)H ′(0) + ε
∫

Ω
(u0u1 + v0v1)dx

+2ε(q + 1)H(t)− 2ε(q + 1)(dt+ l)
∫

Ω
(u20 + v20)dx

+ε(q + 2)
∫ t

0

∫

Ω
(u2t + v2t )dxds+ εqb1

∫ t

0

∫

Ω
(|∇u|2 + |∇v|2)dxds

+ε(p− 2q − 1)c0

∫ t

0

∫

Ω
(|u|p+1 + |v|p+1)dxds

− ε

4MK2Γ(α + 1)
tαHγ(t)

∫ t

0

∫

Ω
|u|2dxds

− ε

4MK2Γ(β + 1)
tβHγ(t)

∫ t

0

∫

Ω
|v|2dxds (5.29)

Hôlder’s inequality implies

∫ t

0

∫

Ω
|u|2dxds ≤ |Ω|

p−1
p+1 t

p−1
p+1 ×

(∫ t

0

∫

Ω
|u|p+1dxds

)

2
p+1

≤ B1

(∫ t

0

∫

Ω
(|u|p+1 + |v|p+1)dxds

)

2
p+1

(5.30)

where B1 = |Ω|
p−1
p+1 t

p−1
p+1 . Similary,

∫ t

0

∫

Ω
|v|2dxds ≤ B1

(∫ t

0

∫

Ω
(|u|p+1 + |v|p+1)dxds

)

2
p+1

(5.31)

from the definition of H(t), we see that

J := Hγ(t)
(∫ t

0

∫

Ω
(|u|p+1 + |v|p+1)dxds

)

2
p+1

≤
[∫ t

0

∫

Ω
F (u, v)dxds+ (dt+ l)

∫

Ω
(u20 + v20)dx

]γ

×
(∫ t

0

∫

Ω
(|u|p+1 + |v|p+1)dxds

)

2
p+1
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since F (u, v) ≤ c1(|u|p+1 + |v|p+1), we get

J ≤
[

cγ1

(∫ t

0

∫

Ω
(|u|p+1 + |v|p+1)dxds

)γ

+ (dt+ l)γ
(∫

Ω
(u20 + v20)dx

)γ]

×
(∫ t

0

∫

Ω
(|u|p+1 + |v|p+1)dxds

)

2
p+1

or

J ≤ cγ1

(∫ t

0

∫

Ω
(|u|p+1 + |v|p+1)dxds

)γ+ 2
p+1

+(dt+ l)γ
(∫

Ω
(u20 + v20)dx

)γ (∫ t

0

∫

Ω
(|u|p+1 + |v|p+1)dxds

)

2
p+1

As γ + 2
p+1

< 1, we obtain

J ≤ cγ1

[

1 +
∫ t

0

∫

Ω
(|u|p+1 + |v|p+1)dxds

]

+2(dT + l)γ
(∫

Ω
(u20 + v20)dx

)γ [

1 +
∫ t

0

∫

Ω
(|u|p+1 + |v|p+1)dxds

]

(5.32)

Substituting (5.18), (5.29) and (5.32) in (5.29) we get

Ψ′(t) ≥ [(1− γ)−Mε]H−γ(t)H ′(t) + εMH−γ(t)H ′(0) + ε
∫

Ω
(u0u1 + v0v1)dx

+2ε(q + 1)H(t)− 2ε(q + 1)(dt+ l)
∫

Ω
(u20 + v20)dx

+ε(q + 2)
∫ t

0

∫

Ω
(u2t + v2t )dxds+ εqb1

∫ t

0

∫

Ω
(|∇u|2 + |∇v|2)dxds

+ε(p− 2q − 1)c0

∫ t

0

∫

Ω
(|u|p+1 + |v|p+1)dxds

− εA

MK2

[

1 +
∫ t

0

∫

Ω
(|u|p+1 + |v|p+1)dxds

]

with A = 1
4

[

B1Tα

Γ(α+1)
+ B1Tβ

Γ(β+1)

]

[cγ1 + (dT + l)γ(
∫

Ω(u
2
0 + v20)dx)

γ]

Choosing ε > 0 such that ε ≤ 1−γ
M
, it follows that

Ψ′(t) ≥ 2ε(q + 1)H(t) + ε(q + 2)
∫ t

0

∫

Ω
(u2t + v2t )dxds

+ε
(∫

Ω
(u0u1 + v0v1)dx− 2(q + 1)(dT + l)

∫

Ω
(u20 + v20)dx−

2A

M

)

+ε
(

(p− 2q − 1)c0 −
2A

M

) ∫ t

0

∫

Ω
(|u|p+1 + |v|p+1)dxds

We choose u0, u1, v0 and v1 such that

∫

Ω
(u0u1 + v0v1)dx− 2(q + 1)(dT + l)

∫

Ω
(u20 + v20)dx−

2A

M
≥ 0
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Next, choose B so that 0 < B ≤ (p− 2q − 1)c0 − 2A
M
. We obtain,

Ψ′(t) ≥ 2ε(q + 1)H(t) + ε(q + 2)
∫ t

0

∫

Ω
(u2t + v2t )dxds+ εB

∫ t

0

∫

Ω
(|u|p+1 + |v|p+1)dxds (5.33)

On the other hand, we have

Ψ
1

1−γ (t) ≤ 2
1

1−γ



H(t) + ǫ
1

1−γ

(∫ t

0

∫

Ω
(uut + vvt)dxds

)

1
1−γ



 (5.34)

(∫ t

0

∫

Ω
(uut + vvt)dxds

)

1
1−γ

≤
(∫ t

0

∫

Ω
uutdxds

)

1
1−γ

+
(∫ t

0

∫

Ω
vvtdxds

)

1
1−γ

Applying Cauchy-Schwarz, Hôlder and Young inequalities (see [24]), we obtain

(∫ t

0

∫

Ω
(uut + vvt)dxds

)

1
1−γ

≤ λ
[∫ t

0

∫

Ω
(u2t + v2t )dxds+ T µ

∫ t

0

∫

Ω
(|u|p+1 + |v|p+1)dxds

]

(5.35)

for some λ > 0 and µ = p−1
(p+1)(1−2γ) .

From (5.33), (5.34) and (5.35), we have

Ψ
1

1−γ (t) ≤ RΨ′(t) (5.36)

where R is a positive constant. A simple computation yields

Ψ
1

1−γ (t) ≥ 1

Ψ−
1

1−γ (0)− γt
R(1−γ)

which implies that Ψ(t) blows up at some time T ⋆ ≤ R(1−γ)
γΨ

1
1−γ (0)

.
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Abstract 

In this thesis we considered some evolution problems with the presence of  dissipation of 

fractional derivative type. In particular, we consider transmission system which consist of two 

coupled wave equations and coupled wave equations with sourse terms. Under assumptions 

on initial data and boundary conditions, we focused our study on the global existence and 

asymptotic behavior  and blow up of solutions where we obtained several results.  

Résume 

Dans cette thèse, nous avons considéré quelques problèmes d’évolution hyperbolique avec la 

présence des termes dissipatifs de type fractionnaires. En particulier on considère le système 

onde-onde qui est constitué de deux équations des ondes couplées. Sous quelques hypothèses 

sur les données initiales et aux bords,  nous avons concentré notre étude sur l'existence 

globale et le comportement asymptotique ainsi que l’explosion des solutions où nous avons 

obtenu plusieurs résultats sur les propriétés de l’énergie. 

 ملخص 

أشكال  ذات     بوجود آلیات للتبدید في ھذه الأطروحة  اقترحنا  بعض المسائل  الریاضیة لمعادلات و جمل معادلات

  تحت بعض الفرضیات على الشروط الابتدائیة و الشروط موجات الإرسال جمل رسندرس.  من زوایا مختلفة

 الحدیة، ركزنا دراستنا على وجود الحلول ودراسة السلوك المقارب للحلول الموجودة عند اللانھایة الزمنیة أین توصلنا 

 والإنفجار في وقت محدود لإیجاد عدة نتائج حول طریقة تناقص الطاقة

 

 

 

 


