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Notation

1. α : real number

2. X : Banach space

3. ∂Ω : boundary of Ω

4. coΩ : convex cover Ω

5. coΩ : closed convex Ω

6. P(X) : set of exponent on X

7. H : Hilbert space

8. C(J,X) : Banach space of all continuous functions from J into X

9. ‖x‖ = sup
t∈J
|x(t)| : norm of C(J,X)

10. ⇀: weak convergence

11. →: strong convergence

12. lp : classical seuence space with constant exponent p

13. 5u =

(
∂u

∂u1

,
∂u

∂u2

, ·, ∂u
∂uN

)
: gradient of function u

14. Lp(Ω) : Lebesgue space on Ω with constant exponent p

15. Ck(Ω) : space of k times continuously differentialble functions on Ω, k ≥ 0

16. L1(J,X) : the space X-valued Bochner integrable functions on J

17. Eα,α : Mittag-Leffler functions

18. Γ(·) : Gamma functions

19. B(·, ·) : Beta functions

20. f ∗ g : convolution product f of with g
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21. LDα : Riemann-Liouville derivative of order α

22. I1−α
0+ : Riemann-Liouville integral of order 1− α

23. CDα : Caputo derivative of order α

24. C1−α(J,X) : weighted space of continuous functions

25. ‖x‖α : norm of C1−α(J,X)

26. (: multivalued map

27. D(A) : domain of a mapping A

28. < ·, · >: inner product in L2
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Introduction

Many mathematicians show stong interest in fractional differential equations and in-
clusions so wonderful results have been obtained. The theory of fractional differential
equations and inclusions is new and important branch of differential equation and in-
clusion theory, which has an extensive mathematical modelling of systems and processes
in the fields of physics, chemistry, aerodynamics, electrodynamics of complex medium,
polymer rheology, electrical circuits, electro-analytical chemistry, biology.
The definitions of Riemann-Liouville fractional derivatives or integrals initial (local) con-
ditions play an important role, in some pratical problems. Heymans and Podlubny, have
demonstrated that it is possible to attribute physical meaning to initial coditions ex-
pressed in terms of Riemann-Liouville fractional derivatives or integrals on the field of the
viscoelasticity. The nonlocal conditions has recently been used by Byszewski [19], Gaston
[30], and they obtained the existence and uniqueness the solutions of nonlocal conditions
Cauchy problems. In [27], Deng used the nonlocal conditions to describe the diffusion
phenomenon of small amount of gas in a transparent tube.

The monotone iterative method based on lower and upper solutions is an effective
and flexible mechanism. It yields monotone sequences of lower and upper approximate
solutions that converge to the minimal and maximal solutions between the lower and upper
solutions. For ordinary differential equations, many papers used the monotone iterative
technique and the method of lower and upper solutions; see [[29, 53]] and monographs.

In order to make the thesis self-contrained, we devote the first chapter 1 to description
of general information on fractional calculus, semigroups, space of functions, multivalued
maps, measure of noncompactness.

In the second chapter 2, we first study monotone iterative method for weighted frac-
tional differential equations in Banach space.
The suitable solutions of fractional Cauchy problems (IVP) with Riemann-Liouville deriva-
tive:

LDα
0+x(t) = f(t, x(t)), t ∈ J ′ := (0, b], (1)

lim
t→0+

t1−αx(t) = x0. (2)

We use a method of upper and lower solutions ou inequalite differential including mono-
tone iterative technique to discuss the existence of solutions to the initial value problem
(1)-(2) nonlinear in an ordered in infinite dimensional space. We give two successively
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iterative sequences to approximate the solutions are constructed, then (1)-(2) has mini-
mal and maximal solutions. In the second part of this chapter, we discuss the existence
and uniquencess of a solution to an initial value problem (IVP) for a class of nonlinear
fractional involving Riemann-Liouville derivative of order α ∈ (0, 1) withe nonlocal initial
conditions in a Banach space:

LDα
0+x(t) = f(t, x(t)); t ∈ J ′ := (0, b], (3)

(I1−α
0+ x)(0) + g(x) = x0. (4)

Then some sufficient conditions are established for the existence and uniqueness of
solutions of (3)-(4) with nonlocal conditions. We prove our main result by introducing
a regular measure of noncompactness in the weighted space of continuous functions and
using Banach fixed point theory and Darbo fixed point theory. In the third part in chapter
we investigate the topological structure of the solution set of an initial value problems
(1)-(2) for nonlinear fractional differential equations in Banach space. In [69] Ziane stud-
ied on the solution set for weighted fractional differential equations in Banach space by
the following assumptions, but motived in the thesis we give the other assumptions so
that obtained good estimate. We prove that the solution set of the problem is nonempty,
compact and, an Rδ-set by introducing a new regular measure of noncompactness in the
weighted space of continuous functions.

The third chapter deals with fractional evolution equation with nonlocal conditions.
We are considering the nonlocal Cauchy problems for a semilinear fractional differential
equation in Banach space of the following form:{

LDαx(t) = Ax(t) + f(t, x(t)); t ∈ (0, b],
I1−α

0+ x(t) |t=0 +g(x) = x0.
(5)

We give existence two resuls of mild solutions in the problem (5).
In the second part of this chapter we investigete semilinear fractional evolution inclusion
with nonlocal conditions involving a noncompact semigroup and souce term of multivalued
type in Banach spaces:{

LDα
0+x(t) ∈ Ax(t) + F (t, x(t)); a.e. t ∈ (0, b]; 0 < α < 1,

I1−α
0+ x(t) |t=0 +g(x) = x0 ∈ X,

(6)

First, a definition of integral solutions for fractional differential inclusions (6) is given.
The existence mild solution of fractional evolution inclusion with nonlocal conditions by
means a regular mearure of noncompactness and condensing map in the weighted space
of continuous functions.
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Chapter 1

Preliminaries

In this chapter, we introduce some notations on fractional calculus, semigroup, space
of functions, measure of noncompactness, fixed point theorems, condensing maps , theory
of multivalued analysis which are used throughout this thesis.

1.1 Notations and definitions

Let J := [0, b], b > 0 and (X, ‖.‖) be a real Banach space. Denote C(J,X) the space of
X-valued continuous functions on J with the uniform norm

‖x‖∞ = sup{‖x(t)‖, t ∈ J}.

We denote by Lp(J,X) and 1 ≤ p ≤ ∞, the set of those Lebesgue measurable functions
f : J → X for which ‖f‖Lp <∞ where

‖f‖Lp =


(∫

J
‖f(t)‖pdt

) 1
p , 1 ≤ p <∞,

ess sup
t∈J
‖f(t)‖, p =∞.

In particular, L1(J,X) is the Banach space of measurable functions f : J → X with the
norm

‖f‖L1 =

∫
J

‖f(t)‖dt,

and L∞(J,X) is the Banach space of measurable functions f : J → X which are bounded,
equipped with the norm

‖f‖L∞ = inf{c > 0, ‖f(t)‖ ≤ c, a.e. t ∈ J}.

Lemma 1.1 (Hölder inequality) Assume that p, q ≥ 1 and
1

p
+

1

q
= 1. If f ∈ Lp(J,R),

g ∈ Lq(J,R), then fg ∈ L1(J,R) and

‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq .
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Lemma 1.2 (Arzela-Ascoli’s Theorem) If a family F = {f(t)} in C(J,X) is uniformaly
bounded and equicontinuous on J and, for any t∗ ∈ J , {f(t∗} is relatively compact, then
F has a uniformly convergent subsequence {fn(t)}∞n=1.

Lemma 1.3 (Lebesgue’s dominated convergence Theorem) Let X be a measurable set
and let {fn} be a sequence of measurable functions such that lim

n→∞
fn(x) = f(x) a.e. in

X, and for every n ∈ N, ‖fn‖ ≤ g(x) a.e. in X where g is integrable on X. Then

lim
n→∞

∫
X

f(x)dx =

∫
X

f(x)dx.

Theorem 1.4 [68](Bochner’s theorem) A measurable function f : (0, b)→ X is Bochner
integrable if ‖f‖ is Lebesgue integrable.

Definition 1.5 [68] Let X be a Banach space. By a cone K ⊂ X, we understand a
closed convex subset K such that λK ⊂ K for all λ ≥ 0 and K ∩ (−K) = {0}. We define
a partial ordering ≤ with repect to K by x ≤ y if and only if (x− y) ∈ K.

Definition 1.6 [24] The gamma function Γ(z) is defined by

Γ(z) =

∫ ∞
0

tz−1e−tdt, Re(z) > 0,

where tz−1 = e(z−1)log(t). This integral is convergent for all complex z ∈ C (Re(z) > 0).
For this function the reduction formula

Γ(z + 1) = zΓ(z), Re(z) > 0

holds. In particular, if z = n ∈ N, then

Γ(n+ 1) = n!, n ∈ N,

with (as usual) 0! = 1.

Lemma 1.7 [24] Let α, β ∈ R+. Then∫ 1

0

tα−1(1− t)β−1dt =
Γ(α)Γ(β)

Γ(α + β)
,

and hence ∫ x

0

tα−1(x− t)β−1dt = xα+β−1 Γ(α)Γ(β)

Γ(α + β)
.

The integral in the first equation of Lemma is known as Beta function B(α, β).

We recall Gronwall’s lemma for singular kernels.
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Lemma 1.8 [44] Let v : J → [0,∞) be a real function and ω(·) is a nonnegative, locally
integrable function on J and there are constants λ and 0 < α < 1 such that

v(t) ≤ ω(t) + λ

∫ t

0

(t− s)−αv(s)ds.

Then there exists a constant K = K(α) such that

v(t) ≤ ω(t) +Kλ

∫ t

0

(t− s)−αω(s)ds,

for every t ∈ J .

1.2 Fractional integral and derivative.

In this section, we introduce some basic definitions and properties of fractional integrals
and fractional derivatives, one can see [24, 40, 57, 68].

Definition 1.9 (Left and right Riemann-Liouville fractional integrals) Let J = [0, b],
(0 < b < ∞) be a finite interval of R the Riemann-Liouville fractional integrals Iα0 f and
Iαb of order α ∈ R+ are defined by

Iα0 f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t > 0, α > 0 (1.1)

and

Iαb f(t) =
1

Γ(α)

∫ b

t

(s− t)α−1f(s)ds, t > 0, α > 0, (1.2)

respectively, provided the right side is point-wise defined on [0, b].

Definition 1.10 (Left and right Riemann-Liouville fractional derivatives) The left and
right Riemann-Liouville derivative Dα

0 f and Dα
b of order αR+ are defined by:

Dα
0 f(t) =

dn

dtn
I

(n−α)
0

=
1

Γ(n− α)

dn

dtn

(∫ t

0

(t− s)n−α−1f(s)ds

)
, t > 0

Particular, when 0 < α < 1, then

Dα
0 f(t) =

1

Γ(1− α)

d

dt

(∫ t

0

(t− s)−αf(s)ds

)
t > 0

and

Dα
b f(t) = − 1

Γ(1− α)

d

dt

(∫ b

t

(s− t)−αf(s)ds

)
, t < b.
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Remark 1.11 If f ∈ C(J,X), it is obvious that Riemann-Liouville fractional integral of
order α > 0 exists on [0, b]. On the then hand following Kilbas et al. [40] we know that
Riemann-Liouville fractional derivative of order α ∈ [n− 1, n) exists almost every where
on [0, b] if f ∈ Cn(J,X).

Definition 1.12 (Left and right Caputo fractional derivatives) The left and right Caputo
fractional derivatives CDα

0 f(t) and CDαf(t) of order α ∈ R+ are defined by

CDα
0 f(t) = Dα

0

[
f(t)−

n−1∑
k=0

(t)k

k!
f (k)(0)

]

and

CDα
b f(t) = Dα

b

(
f(t)−

n−1∑
k=0

(b− t)k

k!
f (k)(b)

)
,

respectively, where n = [α] + 1.

In particular, where 0 < α < 1, then

CDα
0 f(t) = Dα

0 (f(t)− f(0))

and
CDα

b f(t) = Dα
b (f(t)− f(b)).

Riemann-Liouville fractional derivative and Caputo fractional derivative are counected
with each orther by the following relations.

Proposition 1.13 (i) If f(t) is a functions for which Caputo fractional derivatives
CDα

0 f(t) and CDα
b f(t) of order α ∈ R+ exist together with the Riemann-Liouville

fractional derivatives Dα
0 f(t) and Dα

b f(t), then

CDα
0 f(t) = Dα

0 f(t)−
n−1∑
k=0

f (k)(0)

Γ(k − α + 1)
(t)k

and

CDα
b f(t) = Dα

b f(t)−
n−1∑
k=0

f (k)(b)

Γ(k − α + 1)
(b− t)k−α,

In particular, where 0 < α < 1, we have

CDα
0 f(t) = Dα

0 f(t)− f(0)

Γ(1− α)
(t)−α

and
CDα

b f(t) = Dα
b f(t)− f(b)

Γ(1− α)
(b− t)−α.
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(ii) If α = n ∈ N and the usual derivative f (n)(t) of order n exists, then CDα
0 f and

CDα
b f are represented by

CDα
0 f(t) = f (n)(t)

and
CDα

0 f(t) = (−1)nf (n)f(t).

Proposition 1.14 Let α ∈ R+ and let n be given n = [α] + 1.
If f(t) ∈ Cn(J,X), then Caputo fractional derivatives CDα

0 f(t) and CDα
b f(t) exist almost

every where on [0, b], then

CDα
0 f(t) =

1

Γ(n− α)

(∫ t

0

(t− s)n−α−1f (n)(s)ds

)
and

CDα
0 f(t) =

(−1)n

Γ(n− α)

(∫ b

t

(s− t)n−α−1f (n)(s)ds

)
.

In particular, when 0 < α < 1 and f(t) ∈ C(J,X),

CDα
0 f(t) =

1

Γ(1− α)

(∫ t

0

(t− s)−αf ′(s)ds
)

and
CDα

b f(t) = − 1

Γ(1− α)

(∫ b

t

(s− t)−αf ′(s)ds
)
.

Proposition 1.15 If α > 0 and β > 0 then the equation

Iα0

(
Iβ0 f(t)

)
= Iα+β

0 f(t) (1.3)

are satisfied at almost every point t ∈ [0, b] for f(t) ∈ Lp([0, b], X) and 1 ≤ p < ∞. If
α + β > 1, then the relation in (1.3) at any point of [0, b].

Proposition 1.16 (i) If α > 0 and f(t) ∈ Lp([0, b], X) (1 ≤ p ≤ ∞), then the follow-
ing equality

Dα
0 (Iα0 f(t)) = f(t) and Dα

b (Iαb f(t)) = f(t),

hold almost every where on [0, b].

(ii) If α > β > 0 and f(t) ∈ Lp([0, b], X), (1 ≤ p ≤ ∞), then

Dβ
0 (Iα0 f(t)) = Iα−β0 f(t)

and
Dβ
b (Iα0 f(t)) = Iα−βb f(t),

hold almost every where on [0, b].
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To present the next property, we use the spaces of functions Iα0 (Lp) defined for α > 0 and
1 ≤ p ≤ ∞ by

Iα0 (Lp) = {f : f = Iα0 ϕ, ϕ ∈ Lp([0, b], X)}.

Then composition of the fractional integration operator Iα0 with the fractional differenti-
ation operator Dα

0 is given by the following result.

Proposition 1.17 Set α > 0, n = [α] + 1. Let fn−α(t) = In−α0 f(t) be the fractional
integral (1.2) of order n− α,

(i) If 1 ≤ p ≤ ∞ and f(t) ∈ Iα0 (Lp), then

Iα0 (Dα
0 f(t)) = f(t);

(ii) If f(t) ∈ L1([0, b], X) and fn−α(t) ∈ Cn([0, b], X), then the equalety

Iα0 (LDα
0 f(t)) = f(t)−

n∑
j=1

f (n−j)(0)

Γ(α− j + 1)
(t)α−j,

holds almost every where on [0, b].

Proposition 1.18 Let α > 0 and n = [α] + 1. Also let gn−α(t) = In−αb g(t) be the
fractional integral (1.2) of order n− α.

(i) If 1 ≤ p ≤ ∞ and g(t) ∈ Iαb (Lp), then

Iαb (Dα
b g(t)) = g(t);

(ii) If g ∈ L1(J,X) and gn−α(t) ∈ Cn(J,X), then the equality

Iαb (Dα
b g(t)) = g(t)−

n∑
j=1

(−1)n−jg
(n−j)
n−α (0)

Γ(α− j + 1)
(b− t)α−j,

hold almost every where on [0, b].

In particular, if 0 < α < 1, then

Iαb (Dα
0 g(t)) = g − g1−α(0)

Γ(α)
(b− t)α−1,

where g1−α(t) = I1−α
b g(t).

Proposition 1.19 Let α > 0 and let y(t) ∈ L∞(J,X) or y(t) ∈ C(J,X). Then

CDα
0 (Iα0 y(t)) = y(t) and CDα

b (Iαb y(t)) = y(t).
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Proposition 1.20 Let α > 0 and n = [α] + 1. If y ∈ Cn(J,X), then

Iα0 (Dα
0 y(t)) = y(t)−

n−1∑
0

y(k)(0)

k!
(t)k

and

Iαb
(
CDα

b y(t)
)

= y(t)−
n−1∑
k=0

(−1)kyk(b)

k!
(b− t)k.

In particular, if 0 < α ≤ 1 and y(t) ∈ C(J,X), then

Iα0
(
CDα

0 y(t)
)

= y(t)− y(0) and Iαb
(
CDα

b y(t)
)

= y(t)− y(b).

Lemma 1.21 [60]

(i) Let ξ, η ∈ R be such that η > −1.
If t > 0, then

(
Iξ0+

sη

Γ(η + 1)

)
(t) =


tξ+η

Γ(ξ + η + 1)
if ξ + η 6= −n

, (n ∈ N+).
0 if ξ + η = −n

(ii) let ξ > 0 and ϕ ∈ L((0, b), X). Define

Gξ(t) = Iξ0+ϕ for t ∈ (0, b).

Then (
Iη0+Gξ

)
(t) =

(
Iξ+η0+ ϕ

(
t), η > 0 almost all t ∈ [0, b].

Definition 1.22 [14] Let 0 < α < 1. A function x : J → X has a fractional integral if
the following integral

Iαx(t) =
1

Γ(α)

∫ t

0

(t− s)1−αx(s)ds, (1.4)

is defined for t ≥ 0, where Γ(·) is the gamma function.
The Riemann-Liouville derivative of x of order α is defined as

LDαx(t) =
1

Γ(1− α)

d

dt

∫ t

0

(t− s)−αx(s)ds =
d

dt
I1−αx(t), (1.5)

provided it is well defined for t ≥ 0. The previous integral is taken in Bochner sense. Let
φα(t) : R→ R defined by

φα(t) =


t1−α

Γ(α)
, if t > 0,

0, if t ≤ 0.

Then
Iαx(t) = (φα ∗ x)(t),

and
LDαx(t) =

d

dt
(φ1−α ∗ x)(t).
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1.2.1 Special functions

At the end of subsection, we present some properties of two special functions.

Definition 1.23 [7] A function of the form

Eα,α(z) =
∞∑
n=0

zn

Γ(αn+ β)
, α, β > 0, z ∈ C,

is called the Mittag-Leffler function has the following asymptotic representation as z →∞:

Eα,β(z) =


1
α
z

1−β
α ez

1
α −

N−1∑
n=1

z−n

Γ(β − αn)
+O

(
|z|−N

)
, | arg z| ≤ 1

2
πα,

−
N−1∑
n=1

z−n

Γ(β − αn)
+O

(
|z|−N

)
, | arg(−z)| ≤ (1− 1

2
α)π.

For short, set Eα(z) = Eα,1. Notice that second of the above formulae implies that in the
case z = τ < 0 and 0 < α < 1 we have

Eα(τ)→ 0 as τ → −∞.

Then Mittag-Leffler have the following properties:

Proposition 1.24 [68] For α ∈ (0, 1) and t ∈ R+

(i) Eα(t), Eα,α(t) > 0;

(ii) (Eα(t))
′
= 1

α
Eα,α(t);

(iii) lim
t→−∞

Eα(t) = lim
t→−∞

Eα,α(t) = 0;

Definition 1.25 [68] The Wright function Ψα is defined by

Ψα(θ) =
1

π

∞∑
n=1

(−θ)n

(n− 1)!
Γ(nα) sin(nπα), θ ∈ C,

with 0 < α < 1.

Remark 1.26 [68] If θ ∈ R+, then

Ψα(θ) =
1

πα

∞∑
n=1

(−θ)n−1 Γ(1 + αn)

n!
sin(nπα), α ∈ (0, 1).

Proposition 1.27 [68]

(i) Ψα(t) ≥ 0, t ∈ (0,∞);
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(ii)
∫∞

0

α

tα+1
Ψα(t−α)e−λtdt = e−λα, Re(λ) ≥ 0;

(iii)
∫∞

0
Ψα(t)tndt =

Γ(1 + r)

Γ(1 + αr)
, r ∈ (−1,∞);

(iv)
∫∞

0
Ψα(t)e−ztdt = Eα(−z), z ∈ C;

(v)
∫∞

0
αtΨα(t)e−ztdt = Eα,α(−z), z ∈ C.

Lemma 1.28 [58] For 0 < α ≤ 1, the Mittag-Leffler type function Eα,α(−λtα) satisfies

0 ≤ Eα,α(−λtα) ≤ 1

Γ(α)
, t ∈ [0,∞), λ ≥ 0.

1.3 Some properties of set-valued maps

Now, we also introduce some basic definitions on multivalued maps. For more details, see
[15, 32].

Let X, Y be two topological vector spaces. We denote by P(X) = {A ⊆ X : A 6= ∅}
the family of all nonempty subsets of X;
Pcp(X) = {A ∈ P(X) : A is compact}, Pb(X) = {A ∈ P(X) : A is bounded};
Pcl(X) = {C ∈ P(X) : A is closed}, Pcv(X) = {A ∈ P(X) : A is convex};
Pcp,cv(X) = Pcp(X)∩Pcv(X) denotes the collection of all non-empty compact and convex
subsets of X.

Definition 1.29 [15] A multivalued map (multimap) F : X → P(X) is called

(i) upper semicontinuous (u.s.c.) if F−1(V ) = {x ∈ X : F(x) ⊂ V } is an open subset
of E for each open set V ⊂ E.

(ii) closed if its graph ΓF = {(x, y) ∈ X × Y : y ∈ F(x)} is a closed subset of X × Y ,

(iii) compact if F(X) is compact in Y .

(vi) quasicompact if its restriction of every compact subset A ⊂ X is compact.

Lemma 1.30 Let X and Y be two metric spaces and F : X → Pcp(Y ) a closed quasi-
compact multimap. Then F is u.s.c.

Let (X, d) be a metric space induced from the normed space (X, ‖ · ‖). Consider
Hd : P(X)× P(X)→ R+ ∪ {∞}, given by

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
,

where d(a,B) = inf
b∈B

d(a, b), d(b, A) = inf
a∈A

d(b, a). Then (Pcl(X), Hd) is a generalized

metric space.
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Definition 1.31 [36, 15] For a given p ≥ 1, a multifunction G : J → Pcp,cv(X) is called:

(i) Lp-integrable if it admits an Lp-Bochner integrable selection, i.e., t ∈ J ; a function
g ∈ Lp(J,X) such that g(t) ∈ G(t) for a.e. t ∈ J .

(ii) Lp-integrably bounded if there exists a function ξ ∈ Lp(J,R+) such that

‖G(t)‖ ≤ ξ(t) for a.e. t ∈ J.

The set of all Lp-integrable selections of a multifunction G : J → Pcp,cv(X) is denoted by
SPG .

Definition 1.32 The integral of an Lp-integrable multifunction G : [0, b] → Pcp,cv(X) is
defined in the following way∫ τ

0

G(s)ds =

{∫ τ

0

f(s)ds : f ∈ SpG
}
,

for a.e. τ ∈ [0, b]. In the sequel, we will need the following important property on the
χ-estimation of the integral of multifunction.

Lemma 1.33 [36] Let the space X be separable and the multifunction Φ : [0, b] →
Pcp,cv(X) be integrable, integrably bounded and χ(Φ(t)) ≤ q(t) for a.a t ∈ [0, b] where
q(·) ∈ L1([0, b];R+). Then

χ

(∫ τ

0

Φ(s)ds

)
≤
∫ τ

0

q(s)ds, for all τ ∈ [0, b].

In particular, if the multifunction Φ : [0, b] → Pcp,cv(X) is measurable and integrably
bounded then the function is χ(Φ(·)) integrable and

χ

(∫ τ

0

Φ(s)ds

)
≤
∫ τ

0

χ(Φ(s))ds, for all τ ∈ [0, b].

1.4 Semigroups

1.4.1 C0-Semigroups

Let X be a Banach space an L(X) be the Banach space of linear bounded operators.

Definition 1.34 [55] A One parameter family {T (t) | t ≥ 0} ⊂ L(X) satisfying the
conditions:

(i) T (t)T (s) = T (t+ s), for t, s ≥ 0,
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(ii) T (0) = I,

(iii) the map t→ T (t)(x) is strongly continuous, for each x ∈ X, i.ė,

lim
t→0+

T (t)x = x, ∀x ∈ X.

A semigroup of bounded linear operators T (t), is uniformly continuous if

lim
t→0+
‖T (t)− I‖L(X) = 0.

Here I denotes the identity operator in X.

Definition 1.35 [55] Let {T (t)}t≥0 be a C0-semigroup defined on X. The linear operator
A is the infinitesimal generator {T (t)}t≥0 defined by

A(x) = lim
t→0+

T (h)x− x
t

, for x ∈ D(A),

where D(A) =

{
x ∈ X | lim

t→0+

T (t)(x)− x
t

exists in X

}
.

Remark 1.36 (i) If there are M ≥ 0 and ω ∈ R such that ‖T (t)‖ ≤Meωt, then

(λI − A)−1x =

∫ ∞
0

e−λtT (t)xdt, Re(λ) > ω.

(ii) A C0-semigroup {T (t)}t≥0 is called exponentially stable if there exist constants M >
0 and δ > 0 such that

‖T (t)‖ ≤Me−δt, t ≥ 0.

(iii) The growth bound ω0 of {T (t)}t≥0 is defined by

ω0 = inf{δ ∈ R : there exists Mδ > 0 such that ‖T (t)‖ ≤Mδe
δt,∀t > 0}.

Furthermore, ω0 can also be obtained by the following formula:

ω0 = lim sup
t→+∞

ln‖T (t)‖
t

.

Definition 1.37 [11] A C0-semigroup {T (t)}t≥0 is called uniformly bounded if there exists
a constant M > 0 such that

‖T (t)‖ ≤M, t ≥ 0.

Definition 1.38 [55] A C0-semigroup {T (t)}t≥0 is called compact if T (t) is compact for
t > 0.
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Proposition 1.39 [55] If {T (t)}t≥0 is compact, then {T (t)} is equicontinuous for t > 0.

Definition 1.40 A C0-semigroup {T (t)}t≥0 is called positive if T (t)x ≥ θ for all x ≥ θ
and t ≥ 0.

Example 1.41 [68] The linear operator Tα(t) is defined by

Tα(t) = α

∫ ∞
0

θMα(θ)T (tαθ)dθ,

and Mα is a probability density function which is defined by

Mα(θ) =
∞∑
n=1

(−θ)n−1

(n− 1)!Γ(1− αn)
, 0 < α < 1, θ ∈ C.

Lemma 1.42 [68] The operator Tα(t) has the following properties:

(i) For any fixed t ≥ 0, Tα(t) is linear and bounded operators, i.e., for any x ∈ X,

‖Tα(t)x‖ ≤ M

Γ(α)
‖x‖.

(ii) Tα(t)(t ≥ 0) is strongly continuous.

(iii) For every t > 0, Tα(t) is also compact operator if T (t) is compact.

1.5 Measure of noncompactness

We recall some definitions and properties of measure of noncompactness.

Definition 1.43 [5] Let X be a Banach space, P(X) denote the collection of all nonempty
subsets of X, and (A,≥) a partially ordered set A map β : P(X)→ A is called a measure
of noncompactness on X, MNC for short, if

β(coΩ) = β(Ω),

for every Ω ∈ P(X), where coΩ is the closure of convex hull of Ω.

Definition 1.44 [36] A measure of noncompactness β is called

(1) monotone if Ω0,Ω1 ∈ P(X), Ω0 ⊂ Ω1 implies β(Ω0) ≤ β(Ω1),

(2) nonsingular if β({a} ∪ Ω) = β(Ω) for every a ∈ X, Ω ∈ P(X),

(3) invariant with respect to the union with compact sets if β(K ∪ Ω) = β(Ω) for every
relatively compact set K ⊆ X and Ω ∈ P(X),
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(4) regular if the condition β(Ω) = 0 is equivalent to the relative compactness of Ω,

(5) algebraically semi additive if β(γ1 + γ2) ≤ β(γ1) + β(γ2) where γ1 + γ2 = {x+ y, x ∈
γ1, y ∈ γ2},

(6) β(λγ) ≤ |λ|β(γ) for any λ ∈ R,

(7) if {Wn}+∞
n=1 is a decreasing sequence of bounded closed nonempty subset and lim

n→+∞
β(Wn) =

0, then ∩+∞
n=1Wn is nonempty and compact.

We shall define the measure of noncompactness on Pb(X). Recall that a subset A ⊂ X
is relatively compact provided the closure A is compact.

1.5.1 Measure of noncompactness

Definition 1.45 [61] Let X be a Banach space and Pb(X) the family of all bounded
subsets of X. Then the function: α : Pb(X)→ IR+ defined by:

α(Ω) = inf{ε > 0 : Ω admits a finite cover by sets of diameter ≤ ε}

is called the Kuratowski measure of noncompactness, (the α-MNC for short).
Another function χ : Pb(X)→ IR+ defined by:

χ(Ω) = inf{ε > 0 : Ω has a finite ε− net}.

is called the Hausdorff measure of noncompactness.

Definition 1.45 is very useful since α and χ have interesting properties, some of which are
listed in the following

Proposition 1.46 [61] Let X be a Banach space and γ : Pb(X)→ IR+ be either α or χ.
Then:

(a) γ(B) = 0⇔ B is compact (B is relatively compact)

(b) γ(B) = 0 = γ(B) = 0

(c) A ⊂ B ⇒ γ(A) ≤ γ(B)

(d) γ(A+B) ≤ γ(A) + γ(B)

(e) γ(c.B) ≤ |c|γ(B)

(f) γ(coB) = γ(B).

(e) The function γ : Pb(X) → IR+ is continuous with respect to the metric Hd on
Pb(X).
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Remark 1.47 [61] For every A ∈ Pb(X), we have χ(A) ≤ α(A) ≤ 2χ(A).

Now, we present the abstract definition of MNC. For more details, we refer to [5, 10,
36, 61, 68] and some references therein.

Definition 1.48 Let (A,≥) be a partially ordered set. A function β : Pb(E) → A is
called a measure of noncompactness (MNC) in E if

β(coΩ) = β(Ω),

for every Ω ∈ Pb(X).

Definition 1.49 A measure of noncompactness β is called:

(i) monotone if Ω0,Ω1 ∈ Pb(X), Ω0 ⊂ Ω1 implies β(Ω0) ≤ β(Ω1)

(ii) nonsingular if β({a} ∪ Ω) = β(Ω) for every a ∈ X, Ω ∈ Pb(X);

(iii) regular if β(Ω) = 0 is equivalent to the relative compactness of Ω.

The following property of the Hausdorff MNC that can be easily verified. if L : X → X
is a bounded linear operator then

χ(L(Ω)) = ‖L‖χ(Ω) (1.6)

Lemma 1.50 Let {Ωn} be a sequence of X such that Ωn ⊇ Ωn+1, n ≥ 1 and β(Ωn)→ 0
as n→∞, where β is a monotone MNC in X. Then

β

(
∞⋂
n=1

Ωn

)
= 0.

In the following, several examples of useful measures of noncompactness in spaces of
continuous functions are presented.

Example 1.51 We consider general example of MNC in the space of continuous func-
tions C([0, b], X). For Ω ⊂ C([0, b], X) define

φ(Ω) = sup
t∈[0,b]

χ(Ω(t)),

where χ is Hausdorff MNC in X and Ω(t) = {y(t) : y ∈ Ω}.

Example 1.52 Consider another useful MNC in the space C([0, b], X). For a bounded
Ω ⊂ C([0, b], X), set

ν(Ω) =

(
sup
t∈[0,b]

χ(Ω(t)),modC(Ω)

)
;

here, the modulus of equicontinuity of the set of functions Ω ⊂ C([0, b], X) has the follow-
ing form:

modC(Ω) = lim
δ→0

sup
x∈Ω

max
|t1−t2|≤δ

‖x(t1)− x(t2)‖. (1.7)
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Example 1.53 We consider one more MNC in the space C([0, b], X). For a bounded
Ω ⊂ C([0, b], X), set

ν(Ω) = max
D∈∆(Ω)

(
sup
t∈[0,b]

e−Ltχ(D(t)),modC(D)

)
;

where ∆(Ω) is the collection of all denumerable subsets of Ω, L constant, and modC(D)
is given in formula 1.7.

For any W ⊂ C(J,X), we define∫ t

0

W (s)ds =

{∫ t

0

u(s)ds : u ∈ W
}
, for t ∈ [0, b],

where W (s) = {u(s) ∈ X : u ∈ W}.

Lemma 1.54 [61] If W ⊂ C(I,X) is bounded and equicontinuous, then β(W (t)) is con-
tinuous on J and

β(W ) = max
t∈J

β(H(t)) , β

(∫
I

x(t)dt, x ∈ W
)
≤
∫
I

β(W (t))dt

for t ∈ [0, b].

Lemma 1.55 [17, 36] If {un}∞n=1 ⊂ L1(J,X) satisfies ‖un(t)‖ ≤ κ(t) a.e. on J for all
n ≥ 1 with some κ ∈ L1(J,R+). then the function χ({un}∞n=1) be long to L1(J,R+) and

χ

{(∫ t

0

un(s)ds : n ≥ 1

})
≤ 2

∫ t

0

χ(un(s)ds : n ≥ 1).

1.5.2 Condensing maps

Definition 1.56 [5, 36] A multimap F : E ⊆ X → Pcp(X) is called condensing with
respect to a MNC β (or β-condensing) if for each bounded set Ω ⊆ E that is not relatively
compact, we have:

β(F (Ω)) � β(Ω).

Lemma 1.57 [36] For 1 ≤ p ≤ ∞, a sequence of function {ξn} ⊂ Lp([0, b], X) is called
Lp-semicompact if it is Lp-integrably bounded, i.e.

‖ξn(t)‖ ≤ µ(t) for a.e. t ∈ [0, b] and for all n = 1, 2, ....,

where µ ∈ Lp([0, b]), and the set {ξn} is relatively compact in X for a.e. t ∈ [0, b].

Lemma 1.58 [36] Every Lp-semicompact sequence {ξn} is weakly compact in L1([0, b], X).
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Lemma 1.59 [26] Let X be a Banach space, C ⊂ X be closed and bounded an F : C → X
a condensing map. Then I −F is proper and I −F maps closed subsets of C onto closed
sets. Recall that the map I −F is proper if is continuous and for every compact K ⊂ X,
the set (I − F )−1(K) is compact.

The application of the topological degree theory for condensing maps implies the
following fixed point principle.

Theorem 1.60 [36] Let V ⊂ X be a bounded open neighborhood of zero and Γ : V → X
a β-condensing map with respect to a monotone nonsingular MNC β in X. If Γ satisfies
the boundary condition

x 6= λΓ(x),

for all x ∈ ∂V and 0 < λ ≤ 1, then the fixed point set FixΓ = {x : x = Γ(x)} is nonempty
and compact.

Lemma 1.61 [68] Let X and Y be metric spaces and F : X → Pcp,cv(Y ) a closed quasi-
compact multimap. Then F is u.s.c.

Lemma 1.62 [36] Let E be a closed subset of a Banach space X, β a monotone MNC in
X, Λ a metric space and G : Λ×E → Pcp(X) a closed multimap which is β-condensing in
second argument and such that the fixed point set FixG(λ, ·) = {x ∈ E : x ∈ G(λ, x)} is
non-empty for each λ ∈ Λ. Then the multimap F : Λ→ P(X), where F(λ) = FixG(λ, ·)
is u.s.c.

Lemma 1.63 [36] Let E be a closed subset of a Banach space X, β a monotone MNC
in X and F : X → Pcp(X) a closed multimap which is β-condensing on each bounded set.
If the fixed point set FixF := {x, x ∈ F(x)} is bounded then it is compact.

Theorem 1.64 [36] Let M be a convex closed bounded subset of X and F : M →
Pcp,cv(M). a β-condensing multimap, where β is a monotone nonsingular MNC in X.
Then the fixed point set FixF is a non-empty compact set.

1.5.3 Rδ-set

We recall some notions from geometric topology. Let (X, d), (Y, d
′
) two metric spaces.

Definition 1.65 A ∈ P(X) is a retract of X if there exists a continuous map r : X → A
such that

r(a) = a, for every a ∈ A.

Definition 1.66

(i) X is called an absolute retract (AR space ) if for any metric space Y and any closed
subset D ⊂ X, there exists a continuous function h : D → X which can be extended
to a continuous function h̃ : Y → X.
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(ii) X is called an absolute neighborhood retract (ANR space) if for any metric space Y ,
closed subset D ⊂ Y and continuous function h : D → X there exists a neighborhood
D ⊂ U and a continuous extension h̃ : U → X of h.
Obviously, if X is an AR space, then it is an ANR space.

Definition 1.67 [23, 6] Let A ∈ P(X). Then set A is called a contractible space provided
there exists a continuous homotopy h : A× [0, 1]→ A and x0 ∈ A such that

(i) h(x, 0) = x, for every x ∈ A;

(ii) h(x, 1) = x0, for every x ∈ A,

i.e. if identity map is homotopic to a constant map (A is homotopically equivalent to a
point).
Note that if A ∈ Pcv,cl(X), then A is contractible, but the class of contractible set is much
larger than the class convex sets.

Definition 1.68 [33] A compact metric space A is called an Rδ-set if there exists a de-
creasing sequence {An} of compact contractible sets such that

A =
⋂
n≥1

An.

Note that any Rδ-set is nonempty, compact, and connected.
Let as recall the well-know Lasota-Yorke approximation lemma.

Lemma 1.69 [23] Let X be a normed space, E a metric space and F : E → X be a
continuous map. Then, for each ε > 0, there is a locally Lipschitz map Fε : E → X such
that

‖F (x)− Fε(x)‖ < ε, for every x ∈ X

Theorem 1.70 [16] Let (E, d) be a metric space, (X, ‖·‖) a Banach space and F : E → X
a proper map. Assume further that for each ε > 0 a proper map Fε : E → X is given,
and the following two conditions are satisfied.

(i) ‖Fε(x)− F (x)‖ < ε, for every x ∈ E,

(ii) for every ε > 0 and u ∈ X in a neighborhood of the origin such that ‖u‖ ≤ ε, the
equation Fε(x) = u has exactly one solution xε.
Then the set S = F−1(0) is an Rδ-set.
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1.6 Some fixed point theorems

In this section we give some fixed point theorems that will be used in the sequel.

Consider a mapping T of a set M into M (or into some set containing M).

Definition 1.71 [59] Let T be a mapping of a metric space M into M . We say that T
is a contraction mapping if there exists a number k such that 0 ≤ k < 1 and

ρ(Tx, Ty) ≤ kρ(x, y) (∀x, y ∈M).

Theorem 1.72 [59](Banach’s fixed point Theorem) Any contraction mapping of a com-
plete nonempty metric space M into M has a unique fixed point in M .

Theorem 1.73 [59](Schauder’s fixed point Theorem) Let X be a Banach space and let
M ⊆ X be nonempty, convex, and closed, T : M → M is compact, then T has a fixed
point.

Corollary 1.74 [59] Let T be a compact continuous mapping of M into M . Then T has
a fixed point.

Theorem 1.75 [9](Krasnosel’skii). Let D be a closed convex and nonempty subset of a
Banach space X. Let F1, F2 be two operators such that

(i) F1x+ F2y ∈ D whenever x, y ∈ D;

(ii) F1 is completely continuous;

(iii) F2 is a contraction mapping.

Then there exists z ∈ D such that z = F1z + F2z.

The following theorem is due to Mönch.

Theorem 1.76 [49] Let X be a Banach space, U an open subset of X and 0 ∈ U . Suppose
that N : U → X is a continuous map which satisfies Mönch’s condition (that is, if D ⊆ U
is countable and D ⊆ co({0} ∪N(D)), then D is compact) and assume that

x 6= λN(x), for x ∈ ∂U and λ ∈ (0, 1)

holds. Then Nhas a fixed point in U .

Definition 1.77 [54] The map F : B ⊂ X → X is said to be an β-contraction if there
exists a positive constant k < 1 such that

β(F (B0) ≤ kβ(B0),

for any bounded closed subset B0 ⊆ B.

Theorem 1.78 [54](Darbo-Sadovskii’s fixed point theorem) If B is a bounded closed
convex subset of a Banach space X, the continuous map F : B → B is an β-contraction,
then the map F has at least one fixed point in B.
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Chapter 2

Weighted fractional differential
equations in Banach spaces

Ce chapitre fait l’objet d’une publications dans Palestine Journal of Mathematics et
Malaya Journal of Matematik.

26



MONOTONE ITERATIVE METHOD
FOR WEIGHTED FRACTIONAL

DIFFERENTIAL EQUATIONS IN BANACH SPACE

Mohammed Benyoub 1 and Samir Benaissa 2

Communicated by Ayman Badawi
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In this chapter, we first study existence of Cauchy problems cases to an initial value and nonlocal
initial conditions for fractional equations. By using montone iterative method and fixed point theorems
combined with Hausdorff measure of noncompactness, and condensing map, we discuss the existence and
uniqueness of solutions for fractional equations with Riemann-Liouville derivative of order α ∈ (0, 1).
Then the topological structure of solution sets is investigated.

2.1 Fractional differential equations

2.1.1 Monotone Iterative Method for weighted fractional differ-
ential equations in Banach spaces

The objective of the paper was discussed by using the lower and upper solution method, we prove
the existence of iterative solutions for a class of fractional initial value problem (IVP):

LDα
0+x(t) = f(t, x(t)), t ∈ J ′ := (0, b], (2.1)

lim
t→0+

t1−αx(t) = x0, (2.2)

where LDα
0+ is the Riemann-Liouville fractional derivative of order α ∈ (0, 1), moreover, we show the

existence of maximal and minimal solutions. Let us recall the following definitions and results that will
be used in the sequel. We consider the Banach space of continuous functions

C1−α(J,X) = {x ∈ C(J,X) : lim
t→0+

t1−αx(t) exists }.

A norm in this space is given by
‖x‖α = sup

t∈J
{t1−α‖x‖X}.

For Ω a subset of the space C1−α(J,X), define Ωα by

Ωα = {xα, x ∈ Ω},

where

xα(t) =

 t1−αx(t), if t ∈ (0, b],

lim
t→0+

t1−αx(t), if t = 0.

It is clear that xα ∈ C(J,X).

Lemma 2.1 [45] A set Ω ⊂ C1−α(J,X) is relatively compact if and only if Ωα is relatively compact in
C(J,X).

Proof. See for instance [[18], Theorem 3].

Lemma 2.2 [40] The linear initial value problem

LDα
0+x(t) + λx(t) = p(t), t ∈ (0, b],

lim
t→0+

t1−αx(t) = x0,

where λ ≥ 0 is a constant and p ∈ L1(J,X), has the following integral representation for a solution

x(t) = Γ(α)x0t
α−1Eα,α(−λtα) +

∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)p(s)ds. (2.3)

Where Eα,α(t) is a Mittag-Leffler function.

29



Lemma 2.3 [35] Suppose that X is an ordered Banach space u0, y0 ∈ X, u0 ≤ y0, D = [u0, y0],
N : D → X is an increasing completely continuous operator and

u0 ≤ Nu0, y0 ≥ Ny0.

Then the operator N has a minimal fixed u∗ and a maximal fixed y∗. If we let

un = Nun−1 , yn = Nyn−1, n = 1, 2 · · · ,

then
u0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ · · · ≤ yn ≤ · · · ≤ y2 ≤ y1 ≤ y0,

un → u∗, yn → y∗.

Definition 2.4 A function v(·) ∈ C1−α(J,X) is called as a lower solution of (2.11)-(2.12) if it satisfies

LDα
0+v(t) ≤ f(t, v(t)), t ∈ (0, b], (2.4)

lim
t→0+

t1−αv(t) ≤ x0. (2.5)

Definition 2.5 A function w(·) ∈ C1−α(J,X) is called as an upper solution of (2.1)-(2.2) if it satisfies

LDα
0+w(t) ≥ f(t, w(t)), t ∈ (0, b], (2.6)

lim
t→0+

t1−αw(t) ≥ x0. (2.7)

Before stating and proving the main results, we introduce following assumptions

(H1) The map f : [0, b]×X → X is continuous.

(H2) There exists a constant c > 0 such that

‖f(t, x)‖ ≤ c(1 + t1−α‖x‖) for all t ∈ [0, b] and x ∈ X.

(H3) there exists a constant c1 > 0, and let F (t, x) = f(t, x) + λx(t) such that for each nonempty,
bounded set Ω ⊂ C1−α(J,X)

β(F (t,Ω(t)) ≤ c1β(Ω(t)), for all t ∈ [0, b],

where β is measure of noncompactness in X.

(H4) Assume that f : [0, b]×X → X the nonlinear term satisfies the monotoneity condition

f(t, x)− f(t, v) + λ(x− v) ≥ 0, ∀t ∈ J, x̂(t) ≤ v ≤ x ≤ x̃(t),

where λ ≥ 0 is a constant and x̂, x̃ are lower and upper solutions of problem (2.1)- (2.2) respectively.

Theorem 2.6 Suppose (H1)-(H3) holds. The function x(·) ∈ C1−α(J,X) solves problem (2.1)-(2.2) if
and only if it a fixed point of the operator N defined by

N(x)(t) = Γ(α)x0t
α−1Eα,α(−λtα)

+

∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)[f(s, x(s)) + λx(s)]ds.
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Proof. It’s clear that the operator N is well defined, i.e., for every x ∈ C1−α(J,X) and t > 0, the
integral ∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)[f(s, x(s)) + λx(s)]ds,

belongs to C1−α(J,X).

Let D = [u0, y0], we define a mapping N : D → C1−α(J,X) by

N(x)(t) = Γ(α)x0t
α−1Eα,α(−λtα)

+

∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)[f(s, x(s)) + λx(s)]ds.

by lemma 2.2 x ∈ D is solution of the problem(2.1)-(2.2) if and only if

x = Nx.

We will divid the proof in the several steps.

Step 1. N is continuous.
Let {xn} be a sequence such that xn → x in D. Then

t1−α‖N(xn)(t)−N(x)(t)‖

≤ t1−α

Γ(α)

∫ t

0

(t− s)α−1‖f(s, xn(s))− f(s, x(s))‖ds

+
λt1−α

Γ(α)

∫ t

0

(t− s)α−1‖xn(s)− x(s)‖ds

≤ t1−α

Γ(α)

∫ t

0

(t− s)α−1sα−1s1−α‖f(s, xn(s))− f(s, x(s))‖ds

+
λt1−α

Γ(α)

∫ t

0

(t− s)α−1sα−1s1−α‖xn(s)− x(s)‖ds

≤ t1−α

Γ(α)

∫ t
0
(t− s)α−1sα−1ds‖f(s, xn(s))− f(s, x(s))‖α

+
λt1−α

Γ(α)

∫ t

0

(t− s)α−1sα−1ds‖xn(s)− x(s)‖α

≤ bα

Γ(α)
B(α, α)‖f(·, xn(·))− f(·, x(·))‖α +

λbα

Γ(α)
B(α, α)‖xn(·)− x(·)‖α

Using the hypothesis (H2) we have

‖N(xn)(t)−N(x)(t)‖α −→ 0 as n→ +∞.

Step 2. N maps bounded sets into bounded sets in D.
Indeed, it enough to show that there exists a positive constant l such that for each x ∈ Br = {x ∈ D :
‖x‖α ≤ r} one has ‖N(x)‖α ≤ l.
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Let x ∈ Br ⊂ D. Then for each t ∈ (0, b], by (H2) we have

t1−α‖Nx(t)‖ ≤ ‖x0‖+
t1−α

Γ(α)

∫ t

0

(t− s)α−1‖f(s, x(s))‖ds

+
λt1−α

Γ(α)

∫ t

0

(t− s)α−1‖x(s)‖ds

≤ ‖x0‖+
t1−α

Γ(α)

∫ t

0

(t− s)α−1c(1 + s1−α‖x(s)‖)ds

+
λt1−α

Γ(α)

∫ t

0

(t− s)α−1sα−1s1−α‖x(s)‖ds

≤ ‖x0‖+
ct1−α

Γ(α)

∫ t
0
(t− s)α−1(1 + r)ds

+
λt1−α

Γ(α)

∫ t

0

(t− s)α−1sα−1rds

≤ ‖x0‖+
cb1−α(1 + r)

Γ(α)

∫ t

0

(t− s)α−1ds

+
λb1−αr

Γ(α)

∫ t

0

(t− s)α−1sα−1ds,

‖N(x)‖α ≤ ‖x0‖+
cb(1 + r)

Γ(α+ 1)
+
λbαrΓ(α)

Γ(2α)
:= l.

Step 3. N maps bounded sets into equicontinuous sets.
Let t1, t2 ∈ (0, b], t1 ≤ t2, let Br be a bounded set in D as in step 2, and let x ∈ Br, we have

‖t1−α2 N(x)(t2)− t1−α1 N(x)(t1)‖

≤ Γ(α)‖x0‖ [Eα,α(−λtα2 )− Eα,α(−λtα1 )]

+
(
t1−α2 − t1−α1

) ∥∥∥∥∫ t1

0

[(t2 − s)α−1Eα,α(−λ(t2 − s)α)− (t1 − s)α−1

Eα,α(−λ(t1 − s)α)]f(s, x(s))ds‖

+t1−α2

∥∥∥∥∫ t2

t1

(t2 − s)α−1Eα,α(−λ(t2 − s)α)f(s, x(s))ds

∥∥∥∥
+
(
t1−α2 − t1−α1

) ∥∥∥∥∫ t1

0

[
(t2 − s)α−1Eα,α(−λ(t2 − s)α)− (t1 − s)α−1

Eα,α(−λ(t1 − s)α)] (λx(s))ds‖
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+t1−α2

∥∥∥∥∫ t2

t1

(t2 − s)α−1Eα,α(−λ(t2 − s)α)(λx(s))ds

∥∥∥∥
≤ I1 +

t1−α2 − t1−α1

Γ(α)

∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1](c(1 + s1−α‖x(s)‖))ds

+
t1−α2

Γ(α)

∫ t2

t1

(t2 − s)α−1(c(1 + s1−α‖x(s)‖))ds

+
t1−α2 − t1−α1

Γ(α)

∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1](λsα−1s1−α‖x(s)‖)ds

+
t1−α2

Γ(α)

∫ t2

t1

(t2 − s)α−1(λsα−1s1−α‖x(s)‖)ds

≤ I1 +
t1−α2 − t1−α1

Γ(α+ 1)
(c(1 + r)) [(t2 − t1)α + tα1 − tα2 ] +

t1−α2

Γ(α+ 1)
(c(1 + r)) [((t2 − t1)α]

+
Γ(α)(t1−α2 − t1−α1 )

Γ(2α)
(λr)) [(t2 − t1)α + tα1 − tα2 ] +

Γ(α)t1−α2

Γ(2α)
(λr)) [((t2 − t1)α]

where
I1 = Γ(α)‖x0‖[Eα,α(−λtα2 )− Eα,α(−λtα1 )].

Appling by the function Eα,α(−λtα) is uniformly continuous on [0, b], we have I1 tend to zero indepen-
dently of x ∈ Br as t2 → t1.
Thus ‖t1−α2 N(x)(t2)− t1−α1 N(x)(t1)‖ tend to zero independently of x ∈ Br as t2 → t1, which means that
the set NBr is equicontinuous.
Define Br0 = {x ∈ D : ‖x‖α ≤ r0}, where r0 > 0 is taken so that

r0 ≥
(
‖x0‖+

cb

Γ(α+ 1)

)
(1− L)−1,

such that
cb

Γ(α+ 1)
+
λbαΓ(α)

Γ(2α)
≤ L < 1.

Then Br0 is closed convex bounded and hence NBr0 ⊂ Br0 .
Now we prove that there exists a compact subset M ⊂ Br0 ⊂ such that NM ⊂ M . We first costruct a
series of sets {Mn} ⊂ Br0 by

M0 = Br0 , M1 = convNM0, Mn+1 = convNMn, n = 1, 2 · · · .

From the above proof it is easy to see Mn+1 ⊂ Mn for n = 1, 2 · · · and each M̃n is equicontinuous.
Further from Definition 1.49 and Lemma 1.54 we can derive that

β
(
M̃n+1(t)

)
= β(t1−αMn+1(t)) = β(t1−αNMn(t))

≤ β
[
Γ(α)x0Eα,α(−λtα) + t1−α

∫ t

0

(t− s)α−1(Eα,α(−λ(t− s)α)F (s,Mn(s))ds

]
≤ c1

t1−α

Γ(α)

∫ t

0

(t− s)α−1β(Mn(s))ds.

Define the function Fn(t) = β(Mn(t)) for n = 1, 2 · · · we get

Fn+1(t) ≤ c1
t1−α

Γ(α)

∫ t

0

(t− s)α−1Fn(s)ds, (2.8)
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for n = 1, 2, · · · the fact Mn+1 ⊂Mn.
Taking limit as n→∞ in (2.13) we get

F (t) ≤ c1
t1−α

Γ(α)

∫ t

0

(t− s)α−1F (s)ds,

for all t ∈ J . An application of Lemma 1.8 yields F (t) = 0 for all t ∈ J .
Therefore, ∩∞n=1Mn = M is nonempty and compact in D = [u0, y0] due to Definition 1.44, and NM ⊂M
by definition of Mn.

Up to now we have verified that there exists a nonempty bounded convex and compact subset M ⊂ D
such that NM ⊂M . An employment of Schauder’s fixed point theorem shows that there exists at least
a fixed point x of N in M . Combining with the fact that lim

t→0+
Eα,α(−λtα) = Eα,α(0) = 1/Γ(α) yields

that lim
t→0+

t1−α(Nx)(t) = x0. The proof is complete.

Theorem 2.7 Assume (H1)-(H4), hold, and v, w ∈ C1−α(J,X) are lower and upper solutions of (2.1)-
(2.2) respectively such that

v(t) ≤ w(t), 0 ≤ t ≤ b.
Then, the fractional IVP (2.1)-(2.2) has a minimal solution u∗ and a maximal solution y∗ such that

u∗ = lim
n
Nnv, y∗ = lim

n
Nnw.

Proof. Suppose that functions v, w ∈ C1−α(J,X) are lower and upper solution of IVP (2.1)-(2.2).
We consider in C1−α(J,X) the order induced by the sector D = [v, w] define [v, w] = {x ∈ C1−α(J,X) :
v ≤ x ≤ w}, then there are v ≤ Nv, w ≥ Nw. In fact, by the definition of the lower solution, there exist
p(t) ≥ 0 and ε ≥ 0, we have

LDα
0+v(t) = f(t, v(t))− p(t), t ∈ (0, b],

lim
t→0+

t1−αv(t) = x0 − ε.

Using Theorem 2.6 and Lemma 3.8 , one has

v(t) = Γ(α)(x0 − ε)tα−1Eα,α(−λtα)

+

∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α) [f(s, v(s)) + λv(s)− p(s)] ds

≤ (Nv)(t).

Similarly, there is w ≥ Nw.
The operator N : D → C1−α(J,X) is increasing and completely continuous by the use of Lemma 2.10
the existence of u∗, y∗ is obtained. The proof is complete.

2.2 An example

As an application of our results we consider the following fractional equation

LDα
0+x(t) =

1

et2 + 1

{
ln(|xk|+ 1) +

1

1 + k

}
k∈N

, t ∈ J = [0, 1], (2.9)

lim
t→0+

t1−αx(t) = x0, (2.10)

c0 represents the space of all sequences converging to zero, which is a Banach space with respect to the
norm

‖x‖ = sup
k
|xk|.
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Let t ∈ J and x = {xk}k ∈ c0, we have

‖f(t, x)‖∞ =
1

et2 + 1
‖ ln(|xk|+ 1) + 1

k+1‖∞

≤ 1

et2 + 1

(
sup
k
|xk|+ 1

)

≤ 1

et2 + 1
(1 + ‖x‖∞).

Hence condition (H1)− (H2) are satisfied with c =
1

2
, for all t ∈ [0, 1].

So, that function F by defined

F (t, x(t)) =
1

et2 + 1

{
ln(|xk|+ 1) +

1

k + 1

}
k∈N

+ λx(t), for all t ∈ [0, 1].

We recall that the measure of noncompactness β in space c0 can be computed by means of the formula

β(Ω) = lim
n→+∞

sup
x∈Ω
‖(I − Pn)x‖∞.

Where Ω is a bounded subset in c0 and Pn is the projection onto the linear span of n vectors, we get

β(F (t,Ω)) ≤ c1β(Ω(t)) for all t ∈ [0, 1],

with c = (et
2

+ 1)−1. Therefore β(F (t,Ω(t)) ≤ c1β(Ω(t)), with c1 = max(c, λ) due to (H3) and definition
. Then by Theorem 2.7 the problem (2.9)-(2.10) has a minimal and maximal solutions.

2.3 Fractional differential equations nonlocal condi-

tions

Consider the following Cauchy problem for the nonlocal initial conditions fractional differential equation

LDα
0+x(t) = f(t, x(t)); t ∈ J ′ := (0, b], (2.11)

(I1−α
0+ x)(0) + g(x) = x0, (2.12)

for instance we use

g(x) =

p∑
i=1

cix(ti),

where ci(i = 1, 2 · ··, p), are given constants such that ci 6= 0 and 0 < t1 < t2 < · < tp ≤ b. To describe
the diffusion phenomenon of a small amount in a transparent tube.

2.3.1 Existence and Uniqueness solutions.

We investigate in our the Cauchy problem for the fractional differential equation(2.11)-(2.12) above with
the following assumptions.

35



(H1) f : [0, b]×X → X is continuous function.

(H2) ‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖, ∀t ∈ [0, b], x, y ∈ X.

(H3) g : C1−α([0, b], X)→ X is continuous and ‖g(x)− g(y)‖ ≤ Lg‖x− y‖α.

Theorem 2.8 Under assumptions (H1-H3), if Lg <
1

2
and L ≤ Γ(2α)

2bαΓ(α)
.

Then (2.11)-(2.12) has a unique solution.

Proof. Defined T : C1−α(J,X)→ C1−α(J,X) by:

T (x)(t) = tα−1(x0 − g(x)) +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s))ds.

Let Br = {x ∈ C1−α(J,X), ‖x‖α ≤ r}, where

r ≥ 2

[
(‖x0‖+ g∗) +

Mb

Γ(α+ 1)

]
.

Then we can show that T (Br) ⊂ Br. So that x ∈ Br and set g∗ = sup
x∈Br

‖g(x)‖, M = sup
t∈J
‖f(t, 0)‖ then

we get

t1−α‖T (x)(t)‖ ≤ ‖(x0 − g(x))‖+
t1−α

Γ(α)

∫ t

0

(t− s)α−1‖f(s, x(s))‖ds

≤ (‖x0‖+ g∗) +
b1−α

Γ(α)

[∫ t

0

(t− s)α−1 (‖f(s, x(s))− f(s, 0)‖+ ‖f(s, 0)‖) ds
]

≤ (‖x0‖+ g∗) +
Mb1−α

Γ(α)

∫ t

0

(t− s)α−1ds

+
b1−α

Γ(α)

∫ t

0

(t− s)α−1sα−1s1−α‖f(s, x(s))− f(s, 0)‖ds

≤ (‖x0‖+ g∗) +
Mb

Γ(α+ 1)
+
b1−α

Γ(α)

∫ t

0

(t− s)α−1sα−1‖f(s, x(s))− f(s, 0)‖αds

≤ (‖x0‖+ g∗) +
Mb

Γ(α+ 1)
+
LbαB(α, α)

Γ(α)
r ≤ r.
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Now take x, y ∈ C1−α(J,X), we get

t1−α‖T (x)(t)− T (y)(t)‖

≤ ‖g(x)− g(y)‖+
t1−α

Γ(α)

∫ t

0

(t− s)α−1‖f(s, x(s))− f(s, y(s))‖ds

≤ Lg‖x− y‖α +
Lb1−α

Γ(α)

∫ t

0

(t− s)α−1sα−1s1−α‖x− y‖ds

≤ Lg‖x− y‖α +
Lb1−α

Γ(α)

∫ t

0

(t− s)α−1sα−1‖x− y‖αds

≤ Lg‖x− y‖α +
LbαΓ(α)

Γ(2α)
‖x− y‖α

≤
(
Lg +

LbαΓ(α)

Γ(2α)

)
‖x− y‖α

≤ ΩL,Lg,b,α‖x− y‖α,

where ΩL,Lg,b,α :=

(
Lg +

LbαΓ(α)

Γ(2α)

)
, which depends only on the parameters involved in the problem.

And since ΩL,Lg,b,α < 1, then T is contraction mapping. Therefor, for by Banach’s contraction principle
T has a unique fixed point. It is clearly choose,

b∗ = min

(
b,

(
Γ(2α)

2LΓ(α)

) 1
α

)
.

2.3.2 Existence Results

Our next result is based on the following the now assume

(H4) there exists a constant c1 > 0 such that

‖f(t, x)‖ ≤ c1(1 + t1−α‖x(t)‖) for all t ∈ [0, b], and x ∈ X.

(H5) there exists a constant L̂ > 0 such that for each nonempty, bounded set Ω ⊂ C1−α(J,X)

χ(f(t,Ω)) ≤ L̂χ(Ω(t)), for all t ∈ J,

where χ is the Hausdorff measure of noncompactness in E.

For brevity, let

M1 =
c1b

Γ(α+ 1)
,

M2 = (‖x0‖+ g∗) +
c1b

Γ(α+ 1)
.

Define an operator T on C1−α(J,X) by

(Tx)(t) = tα−1(x0 − g(x)) +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s))ds t ∈ (0, b],
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for any x ∈ C1−α(J,X), let (Tx)(t) = (T1x)(t) + (T2x)(t), where

(T1x)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s))ds,

(T2x)(t) = tα−1(x0 − g(x)).

Assume that M1 < 1, and let

Br = {x ∈ C1−α(J,X) : ‖x‖α ≤ r}, where r ≥ M2

1−M1
.

Lemma 2.9 If the assumptions (H1),(H4) are satisfied with M1 < 1, and (H5). Then T1(Br) is relatively
compact set in C1−α(J,X).

Proof.
Using (H4) we can easily prove that T1x ∈ C1−α(J,X) for any x ∈ C1−α(J,X). Then T1 is well

defined on C1−α(J,X). We divide the proof into a sequence of steps.
Step 1. T1 is continuous.
Let {xn} be a sequence such that xn → x in C1−α(J,X). Then

t1−α‖T1(xn)(t)− T1(x)(t)‖

≤ t1−α

Γ(α)

∫ t

0

(t− s)α−1‖f(s, xn(s))− f(s, x(s))‖ds

≤ t1−α

Γ(α)

∫ t

0

(t− s)α−1sα−1s1−α‖f(s, xn(s))− f(s, x(s))‖ds

≤ t1−α

Γ(α)

∫ t

0

(t− s)α−1sα−1‖f(·, xn(·))− f(·, x(·))‖αds.

Using hypothesis (H4) we have

‖T1(xn)− T1(x)‖α ≤
bα

Γ(α)
B(α, α)‖f(·, xn(·))− f(·, x(·))‖α.

Hence
‖T1(xn)− T1(x)‖α → 0, as n→ +∞.

Step 2. T1 maps bounded sets into bounded sets in C1−α(J,E).
Indeed, it is enough to show that there exists a positive constant l such that for each x ∈ Br = {x ∈
C1−α(J,X) : ‖x‖α ≤ r} one has ‖T1(x)‖α ≤ l.

t1−α‖T1(x)(t)‖ ≤ b1−α

Γ(α)

∫ t

0

(t− s)α−1‖f(s, x(s))‖ds

≤ b1−α

Γ(α)

∫ t

0

(t− s)α−1c1(1 + s1−α‖x(s)‖)ds

≤ c1b
1−α

Γ(α)

∫ t

0

(t− s)α−1(1 + r)ds

≤ c1b

Γ(α+ 1)
(1 + r) := l.
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Step 3. T1 maps bounded sets into equicontinuous sets.

‖t1−α2 T1(x)(t2)− t1−α1 T1(x)(t1)‖

≤ (t1−α2 − t1−α1 )

Γ(α)

∥∥∥∥∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]f(s, x(s))ds

∥∥∥∥
+
t1−α2

Γ(α)

∥∥∥∥∫ t2

t1

(t2 − s)α−1f(s, x(s))ds

∥∥∥∥
≤ (t1−α2 − t1−α1 )

Γ(α)

∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]c1(1 + s1−α‖x(s)‖)ds

+
t1−α2

Γ(α)

∫ t2

t1

(t2 − s)α−1c1(1 + s1−α‖x(s)‖)ds

≤ (t1−α2 − t1−α1 )

Γ(α)
c1(1 + r)

∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]ds

+
t1−α2

Γ(α)
c1(1 + r)

∫ t2

t1

(t2 − s)α−1ds.

Thus
‖t1−α2 T1(x)(t2)− t1−α1 T1(x)(t1)‖

≤ (t1−α2 − t1−α1 )

Γ(α+ 1)
c1(1 + r)[(t2 − t1)α + (tα1 − tα2 )]

+
t1−α2

Γ(α+ 1)
c1(1 + r)(t2 − t1)α.

As t2 → t1, the right-hand side of above expression tends to zero. Then T1(Br) is equicontinuous.
Step 4. T1 is ν-condensing. We consider the measure of noncompactness defined in the following way.
For every bounded subset Ω ⊂ C1−α(J,X).

ν(Ω) = max
Ω∈∆(Ω)

(γ(Ω), mod C1−α(Ω)), (2.13)

∆(Ω) is the collection of all countable subsets of Ω and the maximum is taken in the sense of the partial
order in the cone R2

+, γ is the damped modules of fiber noncompactness

γ(Ω) = sup
t∈J

e−µtχ(Ωα(t)), µ ≥ 0, (2.14)

where Ωα(t) = {xα(t) : x(t) ∈ Ω} and mod C1−α(Ω) is the modulus of equicontinuity of the set of
functions Ω given by formula

mod C1−α(Ω) = lim
δ→0

sup
x∈Ω

max
|t1−t2|≤δ

‖xα(t1)− xα(t2)‖. (2.15)

Let

σ(µ) = sup
t∈J

∫ t

0

(t− s)α−1sα−1e−µ(t−s)ds. (2.16)
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It is clear that

sup
t∈[0,b]

∫ t

0

(t− s)α−1sα−1e−µ(t−s)ds→ 0 as µ→ +∞.

We can choose µ such that

σ =
2L̂b1−α

Γ(α)
σ(µ) < 1. (2.17)

From Lemma , the measure ν is well defined and give a monotone, nonsingular and regular measure of
noncompactness in C1−α(J,X).
Let Ω ⊂ C1−α(J,X) be a bounded subset such that

ν(T1(Ω)) ≥ ν(Ω). (2.18)

We will show that (3.28) implies that Ω is relatively compact. Let the maximum on the left-hand side of
the inequality (3.28) be a chieved for the countable set {yn}+∞n=1 with

yn(t) =
1

Γ(α)

∫ t

0

(t− s)α−1fn(s)ds, {xn}+∞n=1 ⊂ Ω, (2.19)

and fn(t) = f(t, xn(t)).
We give now an upper estimate for γ({yn}+∞n=1. By using (H5) we have

χ({(t− s)α−1fn(s)}+∞n=1) ≤ (t− s)α−1L̂χ({xn(s)}+∞n=1)

≤ L̂(t− s)α−1sα−1s1−αχ({xn(s)}+∞n=1)

= L̂(t− s)α−1sα−1χ({xnα(s)}+∞n=1)

≤ L̂(t− s)α−1sα−1eµs sup
0≤s≤t

e−µsχ({xnα(s)}+∞n=1)

= L̂(t− s)α−1sα−1eµsγ({xn}+∞n=1),

for all t ∈ [0, b], s ≤ t. Then applying Lemma 1.55, we obtain

χ({yn}+∞n=1) ≤ 2L̂b1−α

Γ(α)
sup
t∈[0,b]

∫ t

0

(t− s)α−1sα−1eµsγ({xn}+∞n=1).

Taking (2.17) and (2.19) into account, we derive

γ({yn}+∞n=1) ≤ σγ({xn}+∞n=1).

Combining the last inequality with (3.28), we have

γ({xn}+∞n=1) ≤ σγ({xn}+∞n=1).

Therefore
γ({xn}+∞n=1) = 0.

Furthermore, from step 3, we know that
mod C1−α(T1(Ω)) = 0 and (3.28) yields mod C1−α(Ω) = 0. Finally,

ν(Ω) = (0, 0),

which prove the relative compactness of set Ω.

Theorem 2.10 Assume that (H1), (H3), (H4), (H5) hold, with M1 < 1. Then (2.11)-(2.12) has least
one solution.
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Proof.
Using (H1), (H4) can be prove that Tx ∈ C1−α(J,X) for any x ∈ C1−α(J,X). Then T is well defined

on C1−α(J,X). We will show that T satisfies all conditions of Theorem 2.8, the proof will be given in
several steps.
For any x ∈ Br and t ∈ J , taking into account the imposed assumptions, we obtain

t1−α‖(Tx)(t)‖ ≤ (‖x0‖+ g∗) +
b1−α

Γ(α)

∫ t

0

(t− s)α−1‖f(s, x(s))‖ds

≤ (‖x0‖+ g∗) +
b1−α

Γ(α)

∫ t

0

(t− s)α−1c1(1 + s1−α‖x(s)‖)ds

≤ (‖x0‖+ g∗) +
c1b

1−α(1 + r)

Γ(α)

∫ t

0

(t− s)α−1ds

≤ (‖x0‖+ g∗) +
c1b(1 + r)

Γ(α+ 1)
≤ r.

Then T is maps Br into Br.
Next, we will show that T is continuous in Br.
By (H3), for Lg < 1 it is clear that T2 is a contraction mapping.
This means that T is continuous in Br.
According to Lemma 2.9, T1(Br) is relatively compact in C1−α(J,X), then χ(T1(Br)) = 0. For any
x1, x2 ∈ Br, we have

t1−α‖T2x2(t)− T2x1(t)‖ ≤ ‖g(x2)− g(x1)‖

which implies that

‖T2x2 − T2x1‖α ≤ Lg‖x2 − x1‖α.

Hence

β(T2(Br)) ≤ Lgβ(Br).

Therefore
χ(T (Br)) ≤ χ(T1(Br)) + χ(T2(Br))

≤ Lgχ(Br).

Noting that Lg < 1, we find that the operator T is an χ-contraction in Br. Then problem (2.11)-(2.12)
has at least one solution in Br. The proof is complet.

2.3.3 An example

In section, we discuss an example to illustrate our results. Let us consider the fractional differential
equation nonlocal

LDα
0+x(t) =

1

et2 + 1

{
ln(|xk|+ 1) +

1

k2

}∞
k=1

, t ∈ J = [0, 1], (2.20)

(I1−α
0+ x)(0) + g(x) = x0, (2.21)

c0 represents the space of all sequences converging to zero, which is a Banach space with respect to the
norm

‖x‖ = sup
k
|xk|.
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Let t ∈ J and x = {xk}k ∈ c0, we have

‖f(t, x)‖∞ =
1

et2 + 1
‖ ln(|xk|+ 1) + 1

k2 ‖∞

≤ 1

et2 + 1

(
sup
k
|xk|+ 1

)

≤ 1

et2 + 1
(1 + ‖x‖∞).

Hence conditions (H1), (H4) are satisfied with p(t) =
1

et2 + 1
, for all t ∈ [0, 1].

We recall that the measure of noncompactness χ in space c0 can be computed by means of the formula

χ(Ω) = lim
n→+∞

sup
x∈Ω
‖(I − Pn)x‖∞.

Where Ω is a bounded subset in c0 and Pn is the projection onto the linear span of n vectors, we get

χ(f(t,Ω)) ≤ η(t)χ(Ω(t)) for all t ∈ [0, 1],

with η(t) = (et
2

+ 1)−1. Hence (H5) is satisfied.

Denote g(x) =
m∑
i=1

cix(ti), then for any x = {xk}k, y = {yk}k ∈ c0, one has

‖g(x)− g(y)‖∞ ≤
m∑
i=1

|ci|‖x− y‖∞.

Clearly, Lg =
m∑
i=1

|ci| and choose ci such that Lg < 1.

Assume that (H1), (H3), (H4), (H5) is satisfied and M1 < 1. Then by Theorem 2.10 the fractional
problem (2.20)-(2.21) has least one solution.

2.4 Topological structure of solutions sets

Let X be a general Banach space and let 0 < α < 1. The objective to study the structure of solution
sets of fractional diferential equations (2.1)-(2.2).

2.4.1 Rδ-set

Let
∑f
x0

[0, b] denote the set all solutions of the problem (2.1)-(2.2). We prove that the solution set of
the problem (2.1)-(2.2) is nonempty, compact and, an Rδ-set by using the techniques of the theory of
condensing maps combined with Browder-Gupta approach (see [18]), in general setting, namely when the
function right-hand side has value in infinite dimensional Banach space. We need to make the following
assumptions

(H
′

2) there exists function φ(t) ∈ L
1
q (J,R+), q ∈ (0, α) and a constant c > 0 such that

‖f(t, x(t))‖ ≤ φ(t) + ct1−α‖x(t)‖, for a.e. t ∈ J and all x ∈ C1−α(J,X).

(H
′

3) there exists a constant c1 > 0 such that for each nonempty, bounded set Ω ⊂ C1−α([0, b], X),

χ(f(t,Ω)) ≤ c1χ(Ω(t)), for all t ∈ [0, b],

where χ is the Hausdorff measure of noncompactness in X
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A ssume that

Theorem 2.11 Assume that (H1)-(H
′

3) are satisfied. Then the set
∑f
x0

[0, b] is an Rδ-set and hence is
an acyclic space.

Proof. Let N : C1−α(J,X)→ C1−α(J,X) be defined by

N(x)(t) = tα−1x0 +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s))ds t ∈ (0, b]. (2.22)

Thus FixN =
∑f
x0

[0, b]. Now, we show that
∑f
x0

[0, b] 6= ∅. We divide the proof into a sequence of steps.
Step 1. N is continuous.
Let {xn} be a sequence such that xn → x in C1−α(J,X). Then

t1−α‖N(xn)(t)−N(x(t)‖ ≤ t1−α

Γ(α)

∫ t

0

(t− s)α−1‖f(s, xn(s))− f(s, x(s))‖ds

≤ t1−α

Γ(α)

∫ t

0

(t− s)α−1sα−1s1−α‖f(s, xn(s))− f(s, x(s))‖ds

≤ t1−α

Γ(α)

∫ t

0

(t− s)α−1sα−1‖f(·, xn(·))− f(·, x(·))‖αds.

Using the hypothesis (H
′

2), we have

‖N(xn)−N(x)‖α ≤
bα

Γ(α)
B(α, α)‖f(·, xn(·))− f(·, x(·))‖α

Hence

‖N(xn)−N(x)‖α → 0 as n→ +∞.

Step 2. N maps bounded sets into bounded sets in C1−α(J,X).
Indeed, it is enough to show that there exists a positive constant l such that for each x ∈ Br = {x ∈
C1−α(J,X) : ‖x‖α ≤ r} one has ‖N(x)‖α ≤ l.
Let x ∈ Br. Then for each t ∈ (0, b], by (H

′

2) we have

t1−α‖N(x)(t)‖ ≤ ‖x0‖+
t1−α

Γ(α)

∫ t

0

(t− s)α−1‖f(s, x(s))‖ds

≤ ‖x0‖+
t1−α

Γ(α)

∫ t

0

(t− s)α−1(φ(s) + cs1−α‖x(s)‖)ds

≤ ‖x0‖+
t1−α

Γ(α)

∫ t

0

(t− s)α−1φ(s)ds+
crt1−α

Γ(α)

∫ t

0

(t− s)α−1ds

≤ ‖x0‖+
1

Γ(α)

(
1− q
α− q

b

)1−q

‖φ‖
L

1
q (J,X)

+
cbr

Γ(α+ 1)
:= l.
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Step 3. N maps bounded sets into equicontinuous sets.
Let τ1, τ2 ∈ (0, b], τ1 ≤ τ2, let Br be a bounded set in C1−α(J,X) as in step 2 an let x ∈ Br, we have

‖τ1−α
2 N(x)(τ2)− τ1−α

1 Nx(τ1)‖

≤ τ1−α
2

Γ(α)

∥∥∥∥∫ τ2

τ1

(τ2 − s)α−1f(s, x(s))ds

∥∥∥∥
+

1

Γ(α)

∥∥∥∥∫ τ1

0

[
τ1−α
2 (τ2 − s)α−1 − τ1−α

1 (τ1 − s)α−1
]
f(s, x(s))ds

∥∥∥∥
≤ b1−α

Γ(α)

∫ τ2

τ1

(τ2 − s)α−1[φ(s) + cr]ds

+
1

Γ(α)

∫ τ1

0

[
τ1−α
1 (τ1 − s)α−1 − τ1−α

2 (τ2 − s)α−1
]

(φ(s) + cr)ds

≤ I1 + I2.

Appling the absolute continuty of the Lebesgue integral, we have I1 tend to zero independently of x ∈ Br
as τ2 → τ1.
Noting that [

τ1−α
1 (τ1 − s)α−1 − τ1−α

2 (τ2 − s)α−1
]

(φ(s) + cr) < τ1−α
1 (τ1 − s)α−1(φ(s) + cr)

and

∫ τ1

0

τ1−α
1 (τ1− s)α−1(φ(s) + cr)ds exists, then by the Lebesgue dominated convergence Theorem, we

have I2 tends to zero independently of x ∈ Br as τ2 → τ1. Then N(Br) is equicontinuous.
Step 4. N is ν-condensing. We consider the measure of noncompactness defined in the following way.
For every bounded subset Ω ⊂ C1−α(J,X),

ν(Ω) = max
Ω∈∆(Ω)

(γ(Ω),modC1−α(Ω)), (2.23)

∆(Ω) is the collection of all countable subsets of Ω and the maximum is taken in the sense of the partial
order in the cone R2

+. γ is the damped modulus of fibre noncompactness

γ(Ω) = sup
t∈J

e−Ltχ(Ωα(t)) (2.24)

where Ωα(t) = {xα(t) : x ∈ Ω}. modC1−α(Ω) is the modulus of equicontinuity of the set of functions Ω
given by the formula

modC1−α(Ω) = lim
δ→0

sup
x∈Ω

max
|t1−t2|≤δ

‖xα(t1 − xα(t2)‖ (2.25)

Let

q(L) = sup
t∈J

∫ t

0

(t− s)α−1sα−1e−L(t−s)ds.

It is clear that

sup
t∈J

∫ t

0

(t− s)α−1sα−1e−L(t−s)ds→ 0 as L→ +∞.

We can choose L such that

q :=
2cb1−α

Γ(α)
q(L) < 1. (2.26)
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From Lemma (2.1), the measure ν is well defined and give a monotone, nonsingular, semi-additive and
regular measure of noncompactness in C1−α(J,X).
Let Ω ⊂ C1−α(J,X) be a bounded subset such that

ν(N(Ω)) ≥ ν(Ω). (2.27)

We will show that (2.27) implies that Ω is relatively compact. Let the maximum on the left-hand side of
the inequality (2.27) be achieved for the countable set {yn}+∞n=1 with

yn(t) = tα−1x0 + Sfn(t), {xn}+∞n=1, (2.28)

with Sfn(t) =
1

Γ(α)

∫ t

0

(t− s)α−1fn(s)ds and fn(t) = f(t, xn(t)). So that

γ({yn}+∞n=1) = γ({Sfn}+∞n=1). (2.29)

We give now an upper estimate for γ({yn}+∞n=1). By using (H
′

3) we have

χ({(t− s)α−1fn(s)}+∞n=1) ≤ (t− s)α−1c1χ({xn(s)}+∞n=1)

≤ c1(t− s)α−1sα−1s1−αχ({xn(s)}+∞n=1)

= c1(t− s)α−1sα−1χ({xnα(s)}+∞n=1)

≤ c1(t− s)α−1sα−1eLs sup
0≤s≤t

e−Lsχ({xnα}+∞n=1)

= c1(t− s)α−1sα−1eLsγ({xn}+∞n=1),

(2.30)

for all t ∈ J , s ≤ t. Then applying Lemma 1.55 we obtain

χ({Sfn(t)}+∞n=1) ≤ 2c1
Γ(α)

∫ t

0

(t− s)α−1sα−1eLsγ({xn}+∞n=1).

Hence

t1−αχ({Sfn(t)}+∞n=1) ≤ 2c1b
1−α

Γ(α)
sup
t∈J

∫ t

0

(t− s)α−1sα−1eLsγ({xn}+∞n=1).

Taking (2.26) and (2.28) into account, we derive

γ({yn}+∞n=1) ≤ qγ({xn}+∞n=1). (2.31)

Combining last inequality with (2.27), we have

γ({xn}+∞n=1) ≤ qγ({xn}+∞n=1).

Therefore
γ({xn}+∞n=1) = 0.

Hence by (2.31) we get
γ({yn} = 0.

Furthermore, from step 3, we know that modC1−α(N(Ω)) = 0 and (2.27) yields
modC1−α(Ω) = 0. Finally,

ν(Ω) = (0, 0),
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which prove the relative compactness of the set Ω.
Step 5. Apriori bounds.
Let x = λN(x) for some 0 < λ < 1. This implies by (H

′

2)

t1−α‖x(t)‖ ≤ ‖x0‖+
t1−α

Γ(α)

∫ t

0

(t− s)α−1‖f(s, x(s))‖ds

≤ ‖x0‖+
t1−α

Γ(α)

∫ t

0

(t− s)α−1φ(s)ds+
ct1−α

Γ(α)

∫ t

0

(t− s)α−1s1−α‖x(s)‖ds

≤ ‖x0‖+
1

Γ(α)

(
1− q
α− q

b

)1−q

‖φ‖
L

1
q (J,X)

+
ct1−α

Γ(α)

∫ t

0

(t− s)α−1s1−α‖x(s)‖ds.

From Lemma (1.8) there exists K(α) > 0 such that

t1−α‖x(t)‖ ≤ L+
cb1−αK(α)

Γ(α)

∫ t

0

(t− s)α−1Lds,

where

L := ‖x0‖+
1

Γ(α)

(
1− q
α− q

b

)1−q

‖φ‖
L

1
q (J,X)

.

Then

‖x‖α ≤ L+
cbLK(α)

Γ(α+ 1)
=: M,

yielding the desired a priori boundedness.
By Theorem (1.60) FixN is nonempty compact subset of C1−α(J,X).
Given εn ∈ (0, b) with εn → 0 as n→ +∞. By (H1) according to Lemma (1.69), one can take a sequence
{fn} of locally Lipschitz functions such that

‖fn(t, x)− f(t, x)‖ < εn, for all t ∈ Jand x ∈ X. (2.32)

Making use of (2.32) and (H
′

2), we can assume that

‖fn(t, x)− f(t, x)‖ ≤ 1 + φ(t) + ct1−α‖x‖, n ≥ 1.

We define the approximation operator Nn by

Nn(x)(t) = tα−1x0 +
1

Γ(α)

∫ t

0

(t− s)α−1fn(s, x(s))ds, t ∈ (0, b]. (2.33)

Since fn is locally Lipschitz, the solution (2.33) is unique (see Theorem 5.1 in [23]).
Let

G(x) = (I −N)(x)

, by lemma (1.59) we can prove that the map Nn : C1−α(J,X)→ C1−α(J,X) is condensing which allows
us to define the condensing perturbation of identity Gn(x) = (I −Nn)(x) which is a proper map. On the
other hand, du to (2.32) we obtain that {Gn} converges to G uniformly in C1−α(J,X).

‖Gn(x)(t)−G(x)(t)‖ ≤ 1

Γ(α)

∫ t

0

(t− s)α−1‖fn(s, x(s))− f(s, x(s))‖ds

≤ bα

Γ(α+ 1)
εn, for t ∈ (0, b],

and equation Gn(x) = y has a unique solution for each y ∈ C1−α(J,X) as well as equation (2.33).
Therefore, all condition of Theorem (1.70) are met, then the solution set G−1(0) is an Rδ-set and hence
an acyclic space.
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2.4.2 An Example

As an application of our results we consider the following fractional differential equation

LD0+xk(t) =
1

et2 + 1
| xk | +

2

3 + et
, (2.34)

lim
t→0+

t1−αxk(t) = x0, (2.35)

l∞ represents the space of all sequences bounded which is a Banach space with respect to the norm

‖x‖∞ = sup
k
| xk | .

Let t ∈ J and x = {xk}k ∈ l∞, and fk(t, xk) =
1

et2 + 1
| xk | +

2

3 + et
we have

‖f(t, x)‖∞ ≤
1

et2 + 1
sup
k
| xk | +

2

3 + et

≤ 1

et2 + 1
‖x‖∞ +

2

3 + et

(2.36)

Hence condition (H1)-(H
′

2) are satisfied with p(t) =
1

et2 + 1
and φ(t) =

2

3 + et
for all t ∈ [0, 1]. We recall

that Hausdorff measure of noncompactness χ in the formula

χ(Ω) = lim
n→+∞

sup
x∈Ω
‖(I − Pn)x‖∞,

where Ω is the projection onto the linear span of the first n vectors in the standard basis [5],[61]. By
(2.36) we get

χ(f(t,Ω))µ(t)χ(Ω(t)) for all t ∈ [0, 1],

with µ(t) = (et
2

+ 1)−1. Hence (H
′

3) is satisfied. Therefore, from Theorem (2.11) the solution set of
(2.34)-(2.35) is an Rδ-set.
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Chapter 3

Weighted fractional evolution
equations and inclusions in Banach
spaces

Ce chapitre fait l’objet d’une publication dans Afrika Matematika journal.
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3.1 Fractional evolution equation with nonlocal con-

ditions

In this chapter, we study the existence of Cauchy problems for fractional evolution equation and inclusion
with nonlocal conditions. The suitable mild solutions of fractional Cauchy problems with Riemann-
Liouville derivative. We give two results, the first one is based on a Krasnosel’skii fixed point Theorem,
and in the second approech we make use Mönch fixed point Theorem combined with the measure of
noncompactness and condensing map.

3.1.1 Existence the mild solutions

We are considering the nonlocal Cauchy problems for a semilinear fractional differential equation in
Banach space X of the following form:{

LDαx(t) = Ax(t) + f(t, x(t)); t ∈ (0, b],
I1−α
0+ x(t) |t=0 +g(x) = x0,

(3.1)

where LDα, 0 < α < 1, is the Riemann-Liouville fractional derivative, f : [0, b] × X → X and g :
C1−α([0, b], X)→ X are given functions satisfying some assumptions, A : D(A) ⊆ X → X is a generator
of a C0-semigroup {T (t), t ≥ 0} on a Banach space X.

Lemma 3.1 Cauchy problem (3.1) is equivalent to integral equations

x(t) =
tα−1

Γ(α)
(x0 − g(x)) +

1

Γ(α)

∫ t

0

(t− s)α−1(Ax(s) + f(s, x(s)))ds, (3.2)

for t ∈ (0, b] provided that the integral in (3.2) exists.

Proof. Suppose (3.2) is true. Then

(
I1−α
0+ x

)
(t) =

(
I1−α
0+

[
sα−1

Γ(α)
(x0 − g(x)) +

1

Γ(α)

∫ s

0

(s− τ)α−1 [Ax(τ) + f(τ, x(τ))dτ ]

])
(t)

and applying Lemma 1.21, we obtain that

(I1−α
0+ x)(t) = x0 − g(x) +

∫ t

0

[Ax(s) + f(s, x(s))] ds, almost all t ∈ [0, b].

This proves that
(
I1−α
0+ x

)
(t) is absolutely continuous on [0, b], then we have

(
LDα

0+x
)

(t) =
d

dt
(I1−α

0+ x)(t) = Ax(t) + f(t, x(t)), almost all t ∈ [0, b],

and
(I1−α

0+ x)(0) + g(x) = x0,

(3.1) is true. Then
(Iα−1

0+

(
LDα

0+x
)
)(t) =

(
Iα−1
0+ (Ax(s) + f(s, x(s))

)
(t)

since

(Iα−1
0+ (LDα

0+x))(t) = x(t)− tα−1

Γ(α)
(I1−α

0+ x)(0)

= x(t)− tα−1

Γ(α)
(x0 − g(x)), for t ∈ (0, b).
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Then, we have

x(t) =
tα−1

Γ(α)
(x0 − g(x)) + (Iα−1

0+ (Ax(s) + f(s, x(s)))(t)

=
tα−1

Γ(α)
(x0 − g(x)) +

1

Γ(α)

∫ t

0

(t− s)α−1[Ax(s) + f(s, x(s))]ds

Before giving the definition of the mild solution of (3.1), we firstly prove the following lemma.

Lemma 3.2 If

x(t) =
tα−1

Γ(α)
(x0 − g(x)) +

1

Γ(α)

∫ t

0

(t− s)α−1[Ax(s) + f(s, x(s))]ds, for t > 0, (3.3)

holds, then we have

x(t) = tα−1Tα(t)(x0 − g(x)) +

∫ t

0

(t− s)α−1Tα(t− s)f(s, x(s))ds, for t > 0,

where

Tα(t) = α

∫ +∞

0

θMα(θ)T (tαθ)dθ.

Proof. Let λ > 0. Applying the Laplace transform

ν(λ) =

∫ ∞
0

e−λsx(s)ds and ω(λ) =

∫ ∞
0

e−λs(f(s, x(s))ds, for λ > 0

to (3.3), we have

ν(λ) =
1

λα
(x0 − g(x)) +

1

λα
Aν(λ) +

1

λα
ω(λ)

= (λαI −A)−1(x0 − g(x)) + (λαI −A)−1ω(λ)

=

∫ ∞
0

e−λ
αsQ(s)(x0 − g(x))ds+

∫ ∞
0

e−λ
αsQ(s)ω(λ)ds,

(3.4)

provided that the integrals in (3.4) exist, where I is the indentity operator defined on X.
Set

ψα(θ) =
α

θα+1
Mα(θ−α),

whose Laplace transform is given by∫ ∞
0

e−λθψα(θ)dθ = e−λ
α

, where α ∈ (0, 1). (3.5)

Using (3.5), we get∫ ∞
0

e−λ
αsQ(s)(x0 − g(x))ds =

∫ ∞
0

αtα−1e−(λt)αQ(tα)(x0 − g(x))dt

=

∫ ∞
0

∫ ∞
0

αψα(θ)e−(λtθ)Q(tα)tα−1(x0 − g(x))dθdt

(3.6)

Before stating and proving the main results, we introduce the following conditions.
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(H1) T (t)(t > 0) is continuous in the uniform operator topology for t > 0.

(H2) for almost all t ∈ J , the function f(t, ·) : X → X is continuous and for each z ∈ X, the function
f(·, z) : J → X is strongly measurable.

(H3) there exists a constant L > 0 such that

‖f(t, x)‖ ≤ L(1 + t1−α‖x‖)for all t ∈ J, and all x ∈ C1−α(J,X).

(H4) g : C1−α(J,X)→ X is continuous and there exists a constant Lg > 0 such that

‖g(x)− g(y)‖ ≤ Lg‖x− y‖α, for all x, y ∈ C1−α(J,X).

With

1− M

Γ(α)
Lg +

Mb

Γ(α+ 1)
L > 0.

Theorem 3.3 Assume that (H1)− (H4) hold, and

M

Γ(α)
Lg < 1.

Then the problem (3.1) has at least one mild solution.

Proof. Define an operator F on C1−α(J,X) by

(Fx)(t) = tα−1Tα(t)(x0 − g(x)) +

∫ t

0

(t− s)α−1Tα(t− s)f(s, x(s))ds, t ∈ J.

For brevity, let

M1 =
M

Γ(α)
Lg +

Mb

Γ(α+ 1)
L,

M2 =
M

Γ(α)
(‖x0‖+ ‖g(0)‖) +

Mb

Γ(α+ 1)
L.

For any x ∈ C1−α(J,X), let (Fx)(t) = (F1x)(t) + (F2x)(t),
where

(F1x)(t) =

∫ t

0

(t− s)α−1Tα(t− s)f(s, x(s))ds, t ∈ J ,

(F2x)(t) = tα−1Tα(t)(x0 − g(x)), t ∈ J. Assume that M1 < 1, and let

Br = {x ∈ C1−α(J,X) : ‖x‖α ≤ r}, where r ≥ M2

1−M1
. We divide the proof inton sequence steps.

step1. For any x ∈ Br, we prove that Fx = F1x+ F2x ∈ Br.

t1−α‖(F1x+ F2x)(t)‖

= t1−α‖tα−1Tα(t)(x0 − g(x)) +

∫ t

0

(t− s)α−1Tα(t− s)f(s, x(s))ds‖

≤ M

Γ(α)
(‖x0‖+ ‖g(x)‖) +

Mt1−α

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s))ds‖

≤ M

Γ(α)
(‖x0‖+ Lg‖x‖+ ‖g(0)‖) +

Mt1−α

Γ(α

∫ t

0

(t− s)α−1L(1 + s1−α‖x(s)‖)

≤ M

Γ(α)
(‖x0‖+ Lgr + ‖g(0)‖) +

Mb

Γ(α+ 1)
L(1 + r).

52



Hence Fx = F1x+ F2x ∈ Br.
step2. F2 is contraction on Br.
For x, y ∈ Br and for t ∈ J , we have

t1−α‖(F2x)(t)− (F2y)(t)‖ = ‖Tα(t)(g(x)− g(y))‖

‖(F2x)(t)− (F2y)(t)‖α ≤
M

Γ(α)
Lg‖x− y‖α,

which implies that F2 is a contraction.
step3. We show that F1 is continuous.

Let {xn} be sequence such that xn → x in C1−α(J,X). For each t ∈ J , we have

t1−α‖(F1xn)(t)− (F1x)(t)‖

= t1−α
∥∥∥∥∫ t

0

(t− s)α−1Tα(t− s)f(s, xn(s))ds−
∫ t

0

(t− s)α−1Tα(t− s)f(s, x(s))ds

∥∥∥∥
≤ Mt1−α

Γ(α)

∫ t

0

(t− s)α−1sα−1s1−α‖f(s, xn(s))− f(s, x(s))‖ds

≤ Mbα

Γ(α)
B(α, α)‖f(·, xn(·))− f(·, x(·))‖α.

Using the hypothesis (H1) and (H3) we have

‖F1xn − F1x‖α → 0 as n→ +∞.

Thus F1 is continuous.

step4. F1 maps bounbed sets into bounded sets in C1−α(J,X).
Indeed, it is enough to show that there exists positive constant l such that for each x ∈ Br one has
‖F1x‖ ≤ l.

t1−α‖(F1x)(t)‖ = t1−α
∥∥∥∥∫ t

0

(t− s)α−1Tα(t− s)f(s, x(s))ds

∥∥∥∥
≤ Mt1−α

Γ(α)

∫ t

0

(t− s)α−1‖f(t, x(s))‖ds

≤ MLb

Γ(α+ 1)
(1 + r) := l.

step5. F1 maps bounded sets into equicontinuous sets.
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Let x ∈ Br and t1, t2 ∈ J with 0 < t1 < t2 ≤ b, If we take t1, t2 ∈ J ′ such that 0 < t1 ≤ t2, then for
arbitrary fn we will have

‖t1−α2 F1(x)(t2))− t1−α1 F1(x)(t1))‖

=

∥∥∥∥t1−α2

∫ t2

0

(t2 − s)α−1Tα(t2 − s)f(s, x(s))ds

− t1−α1

∫ t1

0

(t1 − s)α−1Tα(t1 − s)f(s, x(s))ds

∥∥∥∥
≤
∥∥∥∥t1−α2

∫ t2

t1

(t2 − s)α−1Tα(t2 − s)f(s, x(s))ds

∥∥∥∥
+

∥∥∥∥∫ t1

0

[
t1−α1 (t1 − s)α−1 − t1−α2 (t2 − s)α−1

]
Tα(t2 − s)f(s, x(s))ds

∥∥∥∥
+

∥∥∥∥t1−α1

∫ t1

0

(t1 − s)α−1 [Tα(t2 − s)− Tα(t1 − s)] f(s, x(s))ds

∥∥∥∥
≤ Mb1−α

Γ(α)
L(1 + r)

∫ t2

t1

(t2 − s)α−1ds

+
M

Γ(α)
L(1 + r)

∫ t1

0

[
t1−α1 (t1 − s)α−1 − t1−α2 (t2 − s)α−1

]
+‖
∫ t1−ε

0

t1−α1 (t1 − s)α−1 [Tα(t2 − s)− Tα(t1 − s)] f(s, x(s))ds‖

+‖
∫ t1

t1−ε
t1−α1 (t1 − s)α−1 [Tα(t2 − s)− Tα(t1 − s)] f(s, x(s))ds‖

≤ I1 + I2 + I3 + I4

where

I1 =
Mb1−α

Γ(α)
L(1 + r)

∫ t2

t1

(t2 − s)α−1ds,

I2 =
M

Γ(α+ 1)
L(1 + r) [(t2 − t1) + (t2 − t1)α] ,

I3 = sup
s∈[0,t1−ε]

‖Tα(t2 − s)− Tα(t1 − s)‖
[
bL(1 + r)

α

]
,

I4 =
2ML(1 + r)b1−α

Γ(α)

∫ t1

t1−ε
(t1 − s)α−1ds.

Applying the absolute continuity of the Lebesgue integral we have I1, I2, I4 tend to zero independently
of x ∈ Ω as t2 → t1. The continuity of (Tα(t), t ≥ 0) in t in the uniform operator topology, it is easy to
see that I3 tends to zero independently of x ∈ Ω as t2 → t1. Since the set F1(Br) is equicontinuous. As a
consequence of the Arzela-Ascoli Theorem, we can conclude that F1 : Br → Br, is completely continuous.
An employment of Krasnoselskii’s fixed point Theorem shows that there exists at least a fixed point x of
F = F1 + F2, which is a mild solution to problem (3.26).
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The following result is based on Mönch’s fixed point Theorem combining with the measure of noncom-
pactness.

Let Lp(J,X) the space of X-valued Bochner integrable functions on J with the norm

‖f‖Lp =

(∫
J

|f |(t)|pdt
) 1
p

.

Lemma 3.4 [37] Let a sequence {ηn} ⊂ L
1
p (J,X), where p ∈ (0, α), be bounded and ηn ⇀ η in L1(J,X).

Then S(ηn) ⇀ S(η) in C(J,X).

Consider the map defined by

S : L∞(J,X)→ C1−α(J,X)

S(φ)(t) =

∫ t

0

(t− s)α−1Tα(t− s)φ(s)ds.

Lemma 3.5 The operator S have the following properties:

(i) If 1
α < p <∞, then there exists a constant C > 0 such that

‖S(ξ)(t)− S(η)(t)‖p ≤ Cp
∫ t

0

‖ξ(s)− η(s)‖pds ∀ξ, η ∈ Lp(J,X).

(ii) For each compact set K ⊂ X and sequence {ηn} ⊂ L∞(J,X) such that ηn ⊂ K for a.e t ∈ J , the
weak convergence ηn ⇀ η in L1(J,X) implies the convergence S(ηn)→ S(η) in C1−α(J,X).

Proof. (i) By using the Hölder inequality, we get:

‖S(ξ)(t)− S(η)(t)‖X

≤
∫ t

0

(t− s)α−1Tα(t− s)‖(ξ(s)− η(s))‖Xds

≤ M

Γ(α)

[∫ t

0

(t− s)
(α−1)p
p−1 ds

] p−1
p
[∫ t

0

‖ξ(s)− η(s)‖pXds
] 1
p

.

Then

‖S(ξ)(t)− S(η)(t)‖pX ≤ C
p

∫ t

0

‖ξ(s)− η(s)‖pXds,

where

C =

[
p− 1

αp− 1

] p−1
p Mbα−

1
p

Γ(α)
.

(ii) Applying Lemma 1.33 and Lemma 1.42, we obtain:

({S(ηn)(t)}) ≤
∫ t

0

(t− s)α−1χ({Tα(t− s)ηn})ds

≤ M

Γ(α)

∫ t

0

(t− s)α−1χ({ηn})ds = 0.

55



This means that sequence {S(ηn)(t)}∞n=1 ⊂ X is relatively compact for each t ∈ J .
From the other side, if we take t1, t2 ∈ J ′ such that 0 < t1 ≤ t2 then we have

‖t1−α2 S(ηn(t2))− t1−α1 S(ηn(t1))‖

=

∥∥∥∥t1−α2

∫ t2

0

(t2 − s)α−1Tα(t2 − s)ηn(s)ds− t1−α1

∫ t1

0

(t1 − s)α−1Tα(t1 − s)ηn(s)ds

∥∥∥∥
≤

∥∥∥∥t1−α2

∫ t2

t1

(t2 − s)α−1Tα(t2 − s)ηn(s)ds

∥∥∥∥
+

∥∥∥∥∫ t1

0

[
t1−α1 (t1 − s)α−1 − t1−α2 (t2 − s)α−1

]
Tα(t2 − s)ηn(s)ds

∥∥∥∥
+

∥∥∥∥t1−α1

∫ t1

0

(t1 − s)α−1 [Tα(t2 − s)− Tα(t1 − s)] ηn(s)ds

∥∥∥∥
≤ Z1 + Z2 + Z3,

where

Z1 =

∥∥∥∥t1−α2

∫ t2

t1

(t2 − s)α−1Tα(t2 − s)ηn(s)ds

∥∥∥∥ ,
Z2 =

∥∥∥∥∫ t1

0

[
t1−α1 (t1 − s)α−1 − t1−α2 (t2 − s)α−1

]
Tα(t2 − s)ηn(s)ds

∥∥∥∥ ,
Z3 =

∥∥∥∥t1−α1

∫ t1

0

(t1 − s)α−1 [Tα(t2 − s)− Tα(t1 − s)] ηn(s)ds

∥∥∥∥ .
By using Lemma 1.42 and condition (H4), for each ε1 > 0, we can choose δ1 > 0 such that |t2 − t1| < δ1
implies the following estimate:

Z1 ≤
M‖ωK‖∞b1−α(t2 − t1)

Γ(α+ 1)
< ε1.

To estimate Z2, take constant d > 0, for which we have

Z2 ≤

∥∥∥∥∥
∫ t1−d

0

[
t1−α1 (t1 − s)α−1 − t1−α2 (t2 − s)α−1

]
Tα(t2 − s)ηn(s)ds

∥∥∥∥∥
+

∥∥∥∥∫ t1

t1−d

[
t1−α1 (t1 − s)α−1 − t1−α2 (t2 − s)α−1

]
Tα(t2 − s)ηn(s)ds

∥∥∥∥
where

I1 =

∥∥∥∥∥
∫ t1−d

0

[
t1−α1 (t1 − s)α−1 − t1−α2 (t2 − s)α−1

]
Tα(t2 − s)ηn(s)ds

∥∥∥∥∥ ,
I2 =

∥∥∥∥∫ t1

t1−d

[
t1−α1 (t1 − s)α−1 − t1−α2 (t2 − s)α−1

]
Tα(t2 − s)ηn(s)ds

∥∥∥∥ .
Consider the function u : [d, b] → R, u(τ) = τα−1(τ − s)1−α, where τ = t − s the given function is
continuous on the interval [d, b], hence by the Dini theorem, it is uniformly continuous on this interval,
i.e., for each ζ > 0 there exists δ2, such that |τ2 − τ1| < δ2 < d, τ1, τ2 ∈ [d, b] implies

|u(τ2)− u(τ1)| < ζ,
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we get:

I1 ≤
M‖ωK‖∞ζ(t1 − d)

Γ(α)
< ε2.

By direct integration, for I2 we obtain:

M‖ωK‖∞t1−α2 dα(1 + 2α)

Γ(α+ 1)
< ε3.

The family of operators Tα(t), t > 0 is strongly continuous for x ∈ K, i.e., for each ζ1 > 0 there exists
δ3 > 0 such that |t2 − t1| < δ3 implies

‖Tα(t2 − s)x− Tα(t1 − s)x‖ < ζ1, {ηn(t)} ∈ K,

we get the following estimate:
Z3 ≤ ζ1b < ε4.

Therefore, for each ε > 0 we may choose δ = min{δ1, δ2, δ3} such that

‖S(ηn(t2))− S(ηn(t1))‖ ≤ Z1 + Z2 + Z3 < ε1 + ε2 + ε3 + ε4 < ε.

So, the sequence {S(ηn)} is equicontinuous. From Lemma 2.1, we conclude that the sequence {S(ηn)} ⊂
C1−α(J,X) is relatively compact. From Lemma 3.4, we know that the weak convergence ηn ⇀ η implies
S(ηn) ⇀ S(η). Since the sequence {S(ηn)} is relatively compact, so that S(ηn)→ S(η) in C1−α(J,X).

For the forthcoming analysis, we need the following hypothesis.

(G1) there exists a function ζ ∈ L∞+ (J) such that

‖f(t, x(t))‖ ≤ ζ(t)(1 + t1−α‖x‖) for all t ∈ J and all x ∈ X.

(G2) there exists a function µ ∈ L∞+ (J) such that for every nonempty, bounded set Ω ⊂ X we have

χ(f(t, x(t)) ≤ µ(t)χ(Ω),

for a.e. t ∈ J , where χ is the Hausdorff MNC in X.

(G3) there exists a constant Cg > 0 such that

χ(g(Ω)) ≤ Cgχ(Ωα), for all Ω ⊂ C1−α(J,X).

(G4) if Ω ⊂ C1−α(J,X) is a bounded set, then

modC1−αTα(·)g(Ω) = 0.

Theorem 3.6 Assume that hypotheses (G1) − (G4), (H1)-(H2) and (H4) holds, if M1 < 1. Then the
nonlocal problem (3.1) has at least one mild solution.

Proof. Consider the operator
N : C1−α(J,X)→ C1−α(J,X),

defined by

N(x)(t) = tα−1Tα(t)(x0 − g(x)) +

∫ t

0

(t− s)α−1Tα(t− s)f(s, x(s))ds. (3.7)

We break the proof into a sequence of steps.
step1. N is a continuous.
It is easily prove the continuity of N , because the same reasoning as in the previous result concerning
the continuous of F1.
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step2. N is a ν-condensing.
We consider the measure of noncompactness defined in the following way. For every bounded subset
Ω ⊂ C1−α(J,X)

ν(Ω) = max
Ω∈∆(Ω)

(γ(Ω),modC1−α(Ω)), (3.8)

∆(Ω) is the collection of all countable subsets of Ω and maximum is taken in the sense of the partial
order in the cone R2

+. γ is the damped modulus of fiber noncompactness

γ(Ω) = sup
t∈[0,b]

e−Ltχ(Ωα(t)); (3.9)

where
modC1−α(Ω) = lim

δ→0
sup
x∈Ω

max
|t1−t2|≤δ

‖xα(t1)− xα(t2)‖. (3.10)

We can choose L such that

q := sup
t∈J

(
2
b1−αM‖µ‖∞

Γ(α)

∫ t

0

(t− s)α−1e−L(t−s)ds+
M

Γ(α)
Cg

)
< 1. (3.11)

From the Arzela-Ascoli Theorem, the measure ν given a nonsingular and regular measure of noncom-
pactness in C1−α(J,X).
Let Ω ⊂ C1−α(J,X) be a bounded subset such that

ν(N(Ω)) ≥ ν(Ω). (3.12)

We will show that (3.12) implies that Ω is relatively compact.
Let the maximum on the left-hand side of the inequality (3.12) be achieved for the countable set {yn}+∞n=1

with

yn(t) = tα−1Tα(t)[x0 − g(xn)] +

∫ t

0

(t− s)α−1Tα(t− s)f(s, xn(s))ds, {xn}+∞n=1 ⊂ Ω. (3.13)

We define the operators
Υ : L1(J,X)→ C1−α(J,X),

by

Υ(fn)(t) =

∫ t

0

(t− s)α−1Tα(t− s)f(s, xn(s))ds, (3.14)

and
Υ∗(x)(t) = tα−1Tα(t)[x0 − g(x)]. (3.15)

From the constraction of Υ,Υ∗, we have

yn = Υ∗(xn) + Υ(fn), (3.16)

where
Υ∗(xn)(t) = tα−1Tα(t)[x0 − g(xn)], (3.17)

with

Υ(fn)(t) =

∫ t

0

(t− s)α−1Tα(t− s)fn(s)ds and fn(t) = f(t, xn(t)).

We give an upper estimate for γ({yn}+∞n=1). By using (G2), we have

χ({(t− s)α−1fn(s)}+∞n=1) ≤ (t− s)α−1µ(s)χ({xn(s)}+∞n=1)

≤ µ(s)(t− s)α−1sα−1s1−αχ({xn(s)}+∞n=1)

= µ(s)(t− s)α−1sα−1χ({xnα(s)}+∞n=1)

≤ µ(s)(t− s)α−1sα−1eLs sup
0≤s≤t

e−Lsχ({xnα(s)}+∞n=1)

≤ µ(s)(t− s)α−1sα−1eLsγ({xn}+∞n=1),

(3.18)
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for all t ∈ J , s ≤ t. Then appling Lemma 1.55 end (3.8) we obtain

χ({Υfn(t)}+∞n=1) ≤ 2
M‖µ‖∞

Γ(α)

(∫ t

0

(t− s)α−1sα−1eLsds

)
γ({xn}+∞n=1). (3.19)

Using (G3), we have

χ({Υ∗xn(s)}+∞n=1) = χ(tα1Tα(t)(x0 − g(xn)}+∞n=1)

≤ χ(tα−1Tα(t){g(xn)}+∞n=1)

≤ Mtα−1

Γ(α)
Cgχ({xn}+∞n=1)

≤ Mtα−1

Γ(α)
Cge

Ltγ({xn}+∞n=1).

(3.20)

Thus, we get from (3.16), (3.19) and (3.37), we obtain that

χ({yn}+∞n=1) ≤ χ({Υfn}+∞n=1) + χ({Υ∗xn}+∞n=1)

Hence

t1−αχ({yn}+∞n=1) ≤ 2
Mb1−α‖µ‖∞

Γ(α)
sup
t∈J

∫ t

0

(t− s)α−1sα−1eLsdsγ({xn}+∞n=1)

+
M

Γ(α)
Cge

Ltγ({xn}+∞n=1).

Taking by (3.16),(3.11) into account, we derive

γ({yn}+∞n=1) ≤ qγ({xn}+∞n=1). (3.21)

Combining the last inequality with (3.12), we have

γ({xn}+∞n=1) ≤ qγ({xn}+∞n=1). (3.22)

Therefore

γ({xn}+∞n=1) = 0. (3.23)

Hence by (3.21), we get

γ({yn}+∞n=1) = 0. (3.24)

By using (3.8),(3.23) and assumption (G2) we can prove that set {fn}+∞n=1 is semicompact. Now, by
appling Lemma (3.7), we can conclude that the set {Υfn}+∞n=1 is relatively compact in C1−α(J,X).
We know that modC1−α(N(Ω)) = 0 and (3.12) yields modC1−α(Ω) = 0. Finally

ν(Ω) = (0, 0),

which prove the relative compactness of the set Ω.
Let Ω ⊂ U be countable, bounded and Ω ⊆ co({0} ∪N(Ω)). Since ν is a monotone nonsingular, regular
MNC, one has

ν(Ω) ≤ ν(co({0} ∪N(Ω))) ≤ ν(N(Ω)).

Therefore ν(Ω) = (0, 0), then Ω is relatively compact set.
step5. A priori bounds.
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We will demonstrate that the solutions set is a priori bounded. Indeed, let x = λNx and λ ∈ (0, 1). For
every t ∈ J , we have

t1−α‖x(t)‖ ≤ M

Γ(α)
‖x0 − g(x)‖+

Mt1−α

Γ(α)

∫ t

0

(t− s)α−1‖f(s, x(s))‖ds

≤ M

Γ(α)
(‖x0‖+ Lg‖x‖α + ‖g(0)‖) +

Mt1−α

Γ(α)

∫ t

0

(t− s)α−1(ζ(s)(1 + s1−α‖x(s)‖))ds

≤ M

Γ(α)
(‖x0‖+ Lg‖x‖+ ‖g(0)‖) +

Mb‖ζ‖∞
Γ(α+ 1)

+
Mb1−α‖ζ‖∞

Γ(α)

∫ t

0

(t− s)α−1‖x(s)‖αds.

From Lemma 1.8, there exists K(α) > 0 such that

‖x(t)‖α ≤ L+
Mb1−α‖ζ‖∞K(α)

Γ(α)

∫ t

0

(t− s)α−1Lds,

where

L :=
M

Γ(α)
(‖x0‖+ Lg‖x‖+ ‖g(0)‖) +

Mb‖ζ‖∞
Γ(α+ 1)

.

Then

‖x‖α ≤ L+
MLb‖ζ‖∞K(α)

Γ(α+ 1)
=: M,

yielding the desired a priori boundedness. So, there exists M∗ > 0 such that ‖x‖α 6= M∗. Set U = {x ∈
Ω : ‖x‖α < M∗}.
From the choice of U there is no x ∈ ∂U such that x = λNx for some λ ∈ (0, 1).
Thus, we get a fixed point of N in U due to the Mönch’s Theorem.

3.1.2 An example

let X = L2 ([0, π],R)As an application of our results we consider the following partial differential equation
with nonlocal conditions of the form:

LDα
0+z(t, x) =

∂2

∂x2
z(t, x) + ϕ(t) sin z(t, x), x ∈ [0, π], t ∈ J := [0, 1],

z(t, 0) = z(t, π) = 0, t ∈ (0, 1],

I1−α
0+ z(t, x) +

m∑
i=1

ciz(ti, x) = z0(x), x ∈ [0, π], ti ∈ (0, 1), i = 1, · · ·,m.

(3.25)

Where x(t) = z(t, ·), that is, z(t, x) = z(t)(x). Define the operator A by Az = z
′′
, with the domain,

D(A) = {v(·) ∈ X, v, v′are absolutely continuous, v
′′ ∈ X, z(t, 0) = z(t, π) = 0}. Then A can be written

as

Az =

∞∑
n=1

(−n2) < z, en > en, z ∈ D(A),

where en(x) =
√

2
π sinnx, 0 ≤ x ≤ π, n = 1, 2, ··, is an orthonormal basis of X. It is well know that A is

the infinitesimal generator of a strongly continuous semigroup T (t) on X, give by

T (t)z =

∞∑
n=1

e−n
2t < x, en > en, z ∈ X, and ‖T (t)‖ ≤ 1 = M, t ≥ 0.

To write system (3.25) in the form we define f : J ×X −→ X, g : C1−α(J,X) −→ X defined by

f(t, x(t)) = ϕ(t) sin z(t, x),
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g(z(t, x)) =

m∑
i=1

ciz(ti, x),

note that f is Carathéodory function which yields condition (H2),

L = sup
t∈J
|ϕ(t)|, Lg =

m∑
i=1

|ci|,

and choose ci such that

1

Γ(α)
Lg < 1, 1−

(
Lg

Γ(α)
+

L

Γ(α+ 1)

)
> 0.

An easy computation allow us to verify condition (H3), and from the choose of {ci}ni=1 it follows condition
(H4). Since the condition (G1) − (G4) of the Theorem 3.3 are satisfied, the problem (3.25) has at least
one mild solution.

3.2 Fractional evolution inclusion with nonlocal con-

ditions

The aim of this work is to study the existence of mild solution for semilinear fractional order differential
inclusions with nonlocal conditions involving Riemann-Liouville derivative in Banach space.

3.2.1 Existence results

study the existence for Riemann-Liouville fractional evolution inclusions with nonlocal conditions{
LDα

0+x(t) ∈ Ax(t) + F (t, x(t)); a.e. t ∈ (0, b]; 0 < α < 1,
I1−α
0+ x(t) |t=0 +g(x) = x0 ∈ X,

(3.26)

where LDα is the Riemann-Liouville fractional derivative of order 0 < α < 1, I1−α
0+ is Riemann-Liouville

integral of order 1−α,and g : C1−α([0, b], X)→ X are given functions, A : D(A) ⊆ X → X is a generator
of a C0-semigroup {T (t), t ≥ 0} on a Banach space X. F : [0, b]×X → P(X) := 2X\{∅} is a multivalued
map satisfying some assumptions.

Let us mention that the fractional evolution inclusion of the type (3.26) was investigated by Huang
et al [31] in the case when A generates a compact semigroup. The principal goal of this paper is to extend
such results to the case when the semigroup generated by A is noncompact. Our approach is employing
the fixed point theory technique for multivalued condensing maps under compactness type conditions on
the nonlinearity term. We define in the sequel a suitable measure of noncompactness in the weighted
space of continuous functions, prove that the solution multioperator is condensing with respect to this
measure of noncompactness.

Let a multimap F : [0, b]×X → Pcp,cv(X) be such that:

(H1) A is a defined linear operator in X, generating an equicontinuous semigroup {T (t)}t≥0.

(H2) For each x ∈ X the multifunction F (·, x) : J → P,(X) is measurable.

(H3) For a.e. t ∈ J the multimap F (t, ·) : X → P,(X) is u.s.c.

(H4) For each r > 0 there exists a function ωr ∈ L∞(J,R+) such that for each x ∈ X with ‖x‖ ≤ r, we
have

‖F (t, x)‖ ≤ ωr(t)

for a.e t ∈ J .
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(H5) There exists a function µ ∈ L∞(J,R+) such that for each bounded set Ω ⊂ X we have

χ(F (t,Ω)) ≤ µ(t)χ(Ω),

for a.e. t ∈ J , where χ is the Hausdorff MNC in X.

(H6) g : C1−α(J,X)→ X is a continuous function and there exists a constant g1 > 0 such that

‖g(x)‖X ≤ g1(1 + t1−α‖x‖), for all Ω ⊂ C1−α(J,X).

(H7) there exists a constant Cg > 0 such that

χ(g(Ω)) ≤ Cgχ(Ωα), for all Ω ⊂ C1−α(J,X).

(H8) if Ω ⊂ C1−α(J,X) is a bounded set, then

modC1−αTα(·)g(Ω) = 0.

Before stating and proving the main results, we introduce the following assumptions : For x ∈
C1−α(J,X), consider the multifunction:

ΦF : J → Pcp,cv(X), ΦF (t) = F (t, x(t)).

To solve our problem we will use the superposition multioperator P∞F : C1−α(J,X) → P(L∞(J,X))
defined in the following way

P∞F (x) = S∞ΦF .

To search for mild solutions of problem (3.26), consider the map

S : L∞(J,X)→ C1−α(J,X)

S(φ)(t) =

∫ t

0

(t− s)α−1Tα(t− s)φ(s)ds

and the function gα(x)(t) = tα−1Tα(t)[x0 − g(x)] for each (t, x) ∈ J ′ × X. Consider the multioperator
G : C1−α(J,X)→ P(C1−α(J,X)), given in the following way

G(x) = gα(x) + S ◦ P∞F (x), t ∈ J ′.

Since F has convex values, so does P∞F . This implies that G has convex values as well. On the other
hand, x is a mild solution of (3.26) if it is a fixed point of the solution operator G.

Lemma 3.7 The operator S have the following properties:

(i) If p ∈ (0, α), then there exists a constant C > 0 such that

‖S(ξ)(t)− S(η)(t)‖
1
p ≤ C

1
p

∫ t

0

‖ξ(s)− η(s)‖
1
p ds ∀ξ, η ∈ L

1
p (J,X).

(ii) For each compact set K ⊂ X and sequence {ηn} ⊂ L∞(J,X) such that ηn ⊂ K for a.e t ∈ J , the
weak convergence ηn ⇀ η in L1(J,X) implies the convergence S(ηn)→ S(η) in C1−α(J,X).
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Proof. (i) By using the Hölder inequality, we get:

t1−α‖S(ξ)(t)− S(η)(t)‖

≤ t1−α
∥∥∥∥∫ t

0

(t− s)α−1Tα(t− s)sα−1s1−α(ξ(s)− η(s))ds

∥∥∥∥
≤ Mt1−α

Γ(α)

[∫ t

0

(t− s)
α−1
1−p s

α−1
1−p ds

]1−p [∫ t

0

‖ξ(s)− η(s)‖
1
p
αds

]p
.

Then

‖S(ξ)(t)− S(η)(t)‖
1
p
α ≤ C

1
p

∫ t

0

‖ξ(s)− η(s)‖
1
p
αds,

where

C =

[
B

(
α− p
1− p

;
α− p
1− p

)]1−p
Mbα(1+p)

Γ(α)
.

To prove that the multioperator G is condensing, define the vector measure of noncompactness in
the space C1−α(J,X)

ν : P(C1−α(J,X))→ R2
+.

With the values in the cone R2
+ defined by

ν(Ω) = (γ(Ω),modC1−α(Ω)),

where ∆(Ω) denotes the collection of all countable subsets of Ω. γ is the damped modulus of fiber
noncompactness

γ(Ω) = sup
t∈J

e−Ltχ(Ωα(t)), (3.27)

where Ωα(t) = {xα(t) : x ∈ Ω}. mod C1−α is the modulus of equicontinuity of the set of function Ω given
by the formula

mod C1−α(Ω) = lim
δ→0

sup
x∈Ω

max
|t1−t2|≤δ

‖xα(t1)− xα(t2)‖. (3.28)

We can choose L such that

σ = sup
t∈J

(
2
b1−αM‖µ‖∞

Γ(α)

∫ t

0

(t− s)α−1e−L(t−s)ds+
M

Γ(α)
Cg

)
< 1. (3.29)

Lemma 3.8 The operator G is ν-condensing.

Proof. Let Ω ⊂ C1−α(J,X) be a bounded subset such that

ν(G(Ω)) ≥ ν(Ω), (3.30)

where the inequality is taken in the sense of the order in R2 induced by the cone R2
+.

We will show that Ω is a relatively compact in C1−α(J,X). By definition of ν, there exists a sequence
{yn}+∞n=1 ⊂ G(Ω) such that

ν(G(Ω)) = (γ({yn}+∞n=1),modC1−α({yn}+∞n=1)). (3.31)

with
yn = gα(xn) + S(fn), {xn}+∞n=1 ⊂ Ω, (3.32)

where
gα(xn)(t) = tα−1Tα(t)[x0 − g(xn)], t ∈ J ′;

Sfn(t) =

∫ t

0

(t− s)α−1Tα(t− s)fn(s)ds and fn ∈ P∞F (xn).
(3.33)

63



We give now an upper estimate for γ{yn}+∞n=1. By using assumption (H4), we have

χ({(t− s)α−1fn(s)}+∞n=1) ≤ (t− s)α−1µ(s)sα−1s1−αχ({xn(s)}+∞n=1)

= (t− s)α−1µ(s)sα−1χ({xnα(s)}+∞n=1)

≤ µ(s)(t− s)α−1eLs sup
0≤s≤t

e−Lsχ({xnα(s)}+∞n=1)

≤ µ(s)(t− s)α−1sα−1eLsγ({xn}+∞n=1),

(3.34)

for all t ∈ J , s ≤ t. Then applying Lemma 1.55, we obtain

χ({Sfn(t)}+∞n=1) ≤ 2M‖µ‖∞
Γ(α)

(∫ t

0

(t− s)α−1sα−1eLsds

)
γ({xn}+∞n=1). (3.35)

Noting that

gα(xn)(t) = tα−1Tα(t)x0 − tα−1Tα(t)g(xn), t ∈ J ′; (3.36)

Using (H7) and estimate (3.36), we have

χ({gα(xn)(s)}+∞n=1) = χ({tα−1Tα(t)x0 − tα−1Tα(t)g(xn)}+∞n=1)

≤ χ(tα−1Tα(t){g(xn)}+∞n=1)

≤ Mtα−1

Γ(α)
Cgχ({xn}+∞n=1)

≤ Mtα−1

Γ(α)
Cge

Ltγ({xn}+∞n=1).

(3.37)

Combining (3.32),(3.35) and (3.37), we get

γ
(
{yn}+∞n=1

)
≤ σγ

(
{xn}+∞n=1

)
. (3.38)

Then inequality (3.30) implies that

γ
(
{xn}+∞n=1

)
≤ σγ

(
{xn}+∞n=1

)
,

and therefore

γ
(
{xn}+∞n=1

)
= 0. (3.39)

But then (3.38) implies

γ({yn}+∞n=1) = 0. (3.40)

Putting (3.39) together with (3.34), we obtain that set {fn}+∞n=1 is semicompact.

Now, prove that

mod C1−α({Sfn}∞n=1) = 0.

To do it, let us show that the set{∫ t

0

(t− s)α−1Tα(t− s)fnds : fn ∈ P∞F (xn)

}
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is equicontinuous. If we take t1, t2 ∈ J ′ such that 0 < t1 ≤ t2, then for arbitrary fn we will have

‖t1−α2 S(fn(t2))− t1−α1 S(fn(t1))‖

=

∥∥∥∥t1−α2

∫ t2

0

(t2 − s)α−1Tα(t2 − s)fn(s)ds− t1−α1

∫ t1

0

(t1 − s)α−1Tα(t1 − s)fn(s)ds

∥∥∥∥
≤

∥∥∥∥t1−α2

∫ t2

t1

(t2 − s)α−1Tα(t2 − s)fn(s)ds

∥∥∥∥
+

∥∥∥∥∫ t1

0

[
t1−α1 (t1 − s)α−1 − t1−α2 (t2 − s)α−1

]
Tα(t2 − s)fn(s)ds

∥∥∥∥
+

∥∥∥∥t1−α1

∫ t1

0

(t1 − s)α−1 [Tα(t2 − s)− Tα(t1 − s)] fn(s)ds

∥∥∥∥
≤ M‖ωK‖b1−α

Γ(α)

∫ t2

t1

(t2 − s)α−1ds+
M‖ωK‖

Γ(α)

∫ t1

0

[
t1−α1 (t1 − s)α−1 − t1−α2 (t2 − s)α−1

]
+‖
∫ t1−ε

0

t1−α1 (t1 − s)α−1 [Tα(t2 − s)− Tα(t1 − s)] fnds‖

+‖
∫ t1

t1−ε
t1−α1 (t1 − s)α−1 [Tα(t2 − s)− Tα(t1 − s)] fnds‖

≤ I1 + I2 + I3 + I4

where

I1 =
M‖ωK‖b1−α

Γ(α)

∫ t2

t1

(t2 − s)α−1ds,

I2 =
M‖ωK‖
Γ(α+ 1)

[(t2 − t1) + (t2 − t1)α] ,

I3 = sup
s∈[0,t1−ε]

‖Tα(t2 − s)− Tα(t1 − s)‖
[
b‖ωK‖
α

]
,

I4 =
2M‖ωK‖b1−α

Γ(α)

∫ t1

t1−ε
(t1 − s)α−1ds.

Applying the absolute continuity of the Lebesgue integral we have I1, I2, I4 tend to zero independently
of x ∈ Ω as t2 → t1. By (H1), it is easy to see that I3 tends to zero independently of x ∈ Ω as t2 → t1.
Since the set {Sfn}+∞n is equicontinuous, we can conclude that the set {Sfn}+∞n=1 is relatively compact
in C1−α(J,X).

This yields
modC1−α({S(fn)}+∞n=1) = 0. (3.41)

By (H8), we have
modC1−α({gα(xn)}+αn=1) = 0. (3.42)

Taking (3.32) into account again, we obtain

modC1−α({yn}+∞n=1) = 0. (3.43)

Now it follows from (3.40)-(3.43) that

ν(Ω) = (0, 0). (3.44)

65



So, we conclude that Ω is relatively compact set yielding that the multioperator G is condensing w.r.t.
to the MNC ν.

Lemma 3.9 The multioperator G is u.s.c.

Proof. Since the family (Tα(t), t ≥ 0) is strongly continuous, it is sufficient to prove the assertion for the
multioperator S ◦ P∞F . The proof is proceeded in two steps.

Step 1. G has a closed graph with compact values.
Suppose that {υn} ⊂ G(Q). Then there exists a sequence {xn} ⊂ Q such that

υn = gα(xn) + S ◦ P∞F (xn), t ∈ J ′.

Let xn → x in X and υn ∈ G(xn), υn → υ in C1−α(J,X). We claim that υ ∈ G(x). The first
observed that

gα(xn)→ gα(x), (3.45)

in C1−α(J,X) in accordance with (H6). In addition, since for each sequence fn ∈ P∞F (xn), n ≥ 1 for
a.e. t ∈ J , according to the hypothesis (H5), the set {fn(t)}∞n=1, is relatively compact in X, hence the
sequence {fn}∞n=1 is L1-semicompact. Consequently {fn}∞n=1 is weakly compact in L1(J,X), so we can
assume that fn ⇀ f . Due to Lemma 2.1, {Sfn}∞n=1 is relatively compact. By applying Lemma 3.7 and
(3.45) we have the convergence G(xn)→ G(x).

With the same technique, we obtain that G has compact values.

Step 2. The multioperator G is u.s.c. In view of Lemma 1.30, it suffices to check that G is
quasicompact multimap.

Let Q be a compact set. We prove that G(Q) is relatively compact of C1−α. Assume that {υn} ⊂
G(Q). Then

υn = gα(xn) + S ◦ P∞F (xn), t ∈ J ′,

where {fn} ∈ P∞F , for certain sequence {xn} ⊂ Q. Hypothesis (H4) and (H5) yield the fact that {fn}
is semicompact and then weakly compact sequence in L1. Similar arguments as in the previous proof of
the closeness imply that {υn} is relatively compact in C1−α(J,X). Thus, {υn} converges in C1−α(J,X),
so the multioperator G is u.s.c.

Let us prove the global existence result for Lipschitz assumption for the function from nonlocal
condition.

Theorem 3.10 Under conditions (H1)-(H3), (H5), (H8) and the following sub-linear growth condition

(H ′4) there exists a function φ ∈ L∞+ (J) and a constant c > 0 such that

‖F (t, x)‖ ≤ φ(t)(1 + ct1−α‖x‖), for a.e. t ∈ J.

(H ′7) there exists a constant Lg > 0 such that

‖g(x)− g(y)‖X ≤ Lg‖x− y‖α.
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The set of all mild solutions to Cauchy problem (3.26), ΘF
x0

(J) is a nonempty compact subset of the space
C1−α(J,X).

Proof. In the space C1−α(J,X) with the norm ‖ · ‖α consider the ball

Br(0) = {x ∈ C1−α(J,X), ‖x‖α ≤ r},

where r > 0 is taken so that

r ≥
(

M

Γ(α)
[‖x0‖+ ‖g(0)‖] +

Mb‖φ‖∞
Γ(α+ 1)

)
(1−N)

−1

such that
M

Γ(α)
Lg +

cMb‖φ‖∞
Γ(α+ 1)

≤ N < 1

Let us prove now that the multioperator G transforms the ball Br(0) into itself.
In fact, if we take x ∈ Br(0) and y ∈ G(x), and for any f ∈ P∞F , we have:

t1−α‖y(t)‖

≤ M

Γ(α)
(‖x0‖+ ‖g(x)‖) +

Mt1−α

Γ(α)

∫ t

0

(t− s)α−1‖f(s)‖ds

≤ M

Γ(α)
(‖x0‖+ Lg‖x‖α + ‖g(0)‖)

+
Mb1−α

Γ(α)

∫ t

0

(t− s)α−1φ(s)(1 + cs1−α‖x(s)‖)ds

≤ M

Γ(α)
(‖x0‖+ Lgr + ‖g(0)‖) +

Mb‖φ‖∞
Γ(α+ 1)

+
cMb‖φ‖∞
Γ(α+ 1)

r.

Thus ‖x‖α ≤ r.
Form Lemmas 3.8 and 3.9, we know that the multioperator G is u.s.c. and ν-condensing. From

Theorem 3.19, we obtain that the set ΘF
x0

(J) is nonempty.
Now, we can show that the set ΘF

x0
(J) is a priori bounded.

In fact, from the above estimate it follows that for x ∈ ΘF
x0

(J) and f ∈ P∞F (x)

x(t) = tα−1Tα(t)[x0 − g(x)] +

∫ t

0

(t− s)α−1Tα(t− s)f(s)ds, t ∈ J ′.

Moreover, let g∗ > 0 is constant such that g∗ = sup
x∈C1−α(J,X)

‖g(x)‖, we have

t1−α‖x(t)‖ ≤ M

Γ(α)
‖(x0 − g(x))‖+

Mt1−α

Γ(α)

∫ t

0

(t− s)α−1‖f(s)‖ds

≤ M

Γ(α)
(‖x0‖+ g∗) +

Mt1−α

Γ(α)

∫ t

0

(t− s)α−1φ(s)(1 + cs1−α‖x(s)‖)ds

≤ M

Γ(α)
(‖x0‖+ g∗) +

Mb‖φ‖∞
Γ(α+ 1)

+
cMb1−α‖φ‖∞

Γ(α)

∫ t

0

(t− s)α−1‖x(s)‖αds.

Let

v(t) = t1−α‖x(t)‖, ω(t) =
M

Γ(α)
(‖x0‖+ g∗) +

Mb‖φ‖∞
Γ(α+ 1)

,
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from Lemma 1.8 , we conclude that there exists a constant K = K(α) such that

t1−α‖x(t)‖ ≤ ω(t) +
cb1−αMK

Γ(α)

∫ t

0

(t− s)α−1ω(s)ds

≤
(

1 +
cbMK

Γ(α+ 1)

)[
M

Γ(α)
(‖x0‖+ g∗) +

Mb‖φ‖∞
Γ(α+ 1)

]
:= M.

Hence
‖x‖α ≤M.

Applying Lemma 1.63, we obtain that the set ΘF
x0

(J) is compact.

3.2.2 An example

Let Ω be a nonempty bounded open set in Rn with smooth boundary ∂Ω. Denote X = Lp(Ω), with
1 ≤ p <∞ and a ∈ Rn. Consider the fractional partial (transport) differential inclusion

LDαu(t, x) ∈ a · ∇u(t, x) + F (t, u(t, x)), [0, b]× Ω,
u(t, x) = 0, [0, b]× ∂Ω
I1−α
0+ u(t, x) + g(u(t, x)) = u0(x), {0} × Ω,

(3.46)

where the partial derivatives are taken in the sense of distributions over Ω, and

F (t, u) = F1(t, u) + F2(t, u), for each (t, u) ∈ [0, b]× Ω. (3.47)

To model (3.46), we assume that :

(A1) For each u ∈ Ω, the multifunctions Fi(·, u) : [0, b]× Ω→ Pcp,cv(Rn), i = 1, 2 are measurable.

(A2) There exists k(·) ∈ L∞(J,R+) such that the multifunction F1(t, ·) is k(·)-Lipschitz w.r.t the Haus-
dorff metric for each t ∈ [0, b], i.e.

H(F1(t, u), F1(t, v)) ≤ k(t)‖u− v‖, for any u, v ∈ Ω.

(A3) The multifunction F2(t, ·) is compact.

Denote {
D(A) = {u ∈ X; a · ∇u ∈ X}
Au = a · ∇u

u(t)(x) = u(t, x),
Fi(t, u(t, x)) = Fi(t, u(t))(x), i = 1, 2.

From [62, Theorem 4.4.1], A generates a noncompact semigroup T (t) given by

T (t)u = u(x− ta), for each u ∈ X, t ∈ R.

Clearly, the semigroup T (t) is continuous in the uniform operator topology (it is isometry).

We define g : C1−α(J,X)→ X such that g(z(x, t)) =
m∑
i=1

ciz(x, ti), where

‖g(x(t))− g(y(t))‖ ≤
m∑
i=1

|ci|‖x− y‖α,
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Lg =
m∑
i=1

|ci|, and choose ci such that
M

Γ(α)
Lg +

cMb‖k‖∞
Γ(α+ 1)

≤ N < 1, and

r ≥
(

M

Γ(α)
[‖x0‖+ ‖g(0)‖] +

Mb‖φ‖∞
Γ(α+ 1)

)
(1−N)

−1

The system (3.46) can be written in the abstract form given by (3.26). All assumptions in Theorem
3.10 are satisfied (see for instance [36, Corollary 2.21]). Then, the problem (3.46) has at least one mild
solution.
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Perspective

The purpose of the first future works is to investigate the topological structure of the solution set for
fractional differential equation nonlocal conditions (2.11)-(2.12) in Banach spaces.

We study the topological stucture of the solution set for fractional nonlocal evolution inclusions
(3.26). We prove that the solution set for all problem is nonempty, compact and Rδ-set.

We study existence of fractional optimal controls governed by semilinear fractional nonlocal evolution
equations via a continuous semigroup in Banach space

LDα
0+x(t) = Ax(t) + f(t, x(t)) +B(t)u(t),

(I1−α
0+ x)(0) + g(x) = x0,

(3.48)

where LDα
0+ denotes Riemann-Liouville fractional derivative of order α ∈ (0, 1) and I1−α

0+ is Riemann-
Liouville fractional integral of order 1− α, A is the generator of a C0-semigroup {T (t)}t≥0 on a Banach
space X, f is E-value function, u takes value from another Banach space X, B is a linear operator from
X into E.

In this paper, we study semilinear functional fractional evolution equations with infinite delay in the
Banach spaces X

LDα
0+x(t) = Ax(t) + f(t, xt); t ∈ J ′ := (0, b], (3.49)

x̃0 = φ ∈ B, (3.50)

where LDα
0+ is the Riemann-Liouville fractional derivative of order α ∈ (0, 1), x̃(t) = t1−αx(t), f :

J × B −→ X is a given function satisfying some assumptions, and B the phase space that will specified
later, A : D(A) ⊂ X −→ X is the infinitesimal generator of a C0-semigroup {T (t), t ≥ 0}, and φ(0) 6= 0.
The principal goal of this paper is to extend such results to the case when the semigroup generated by A
is noncompact.

In finally, We consider the following fractional stochastic evolution inclusions with nonlocal conditions
LDα

0+x(t) ∈ Ax(t) + f(t, x(t)) + Σ(t, x(t))
dW (t)

dt
,

(I1−α
0+ x)(0) + g(x) = x0,

(3.51)

where LDα
0+ denotes Riemann-Liouville fractional derivative of order α ∈ (0, 1) and I1−α

0+ is Riemann-
Liouville fractional integral of order 1 − α, A is the generator of a C0-semigroup {T (t)}t≥0 in a Hilbert
space H, with inner product 〈·, ·〉 and state x(·) takes value in H, f : J ×H −→ H, g : H −→ H. As an
example of g, the following function can be considered:

g(x) =

p∑
i=1

Kix(ti)
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where Ki : H −→ H are given linear operators, the operators Ki can be given by

Kix(ti, y) =

∫ b

0

Ki(ξ, y)x(ti, ξ)dξ,

where Ki = (i = 1, 2, · · ·, p) are continuous kernel functions and Σ : J ×H ( H is a nonempty, bounded,
closed, and convex multivalued map {W (t)}t≥0 is a given K-valued Browinian motion or Wiener process
with a finite trace nuclear covariance operator Q ≥ 0, here K is a Hilbert space with inner product (·, ·)K
and norm | · |K .
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 : (بالعربية)الملخص 

 

  التفاضلية ,نواع المعادلات التفاضليةلحلول بعض أد و الوحدانية ة الوجولأطروحة هو دراسة مسدف من هذه الأاله

.ليوفيل بشروط محلية و غير محلية -ذات رتبة ناطقة بمفهوم ريمان حتوائيةالإالتطورية و كذلك التطورية    

النظريات النقطة الصامدة ل شاودر مونك  ,دنى وجود الحل الأقصى و الحل الأ ثباتنا أ تقنية التراجعية الرتيبة باستعمال

لحلوللإثبات الوجود ل مع نظرية التكثيف والقياس غير المتراص ل هزدورف ترنة بالقياس غير المتراص ل كراوشكيمق  

         . ليوفيل بشروط غير محلية -ذات رتبة ناطقة بمفهوم ريمان حتوائيةالإالتطورية  

  

 

Résumé (Français et/ou Anglais) : 

 

Résumé 

Cette thèse est consacrée, l’étude de l’existence et unicité pour certaine classes d’équations 

différentielles fractionnaire, évolution fractionnaire et  même tempe inclusions évolution 

fractionnaire au sens de Riemann-Liouville avec des conditions locales et non locales dans 

des espaces de Banach de dimension infinie. 

 Ces résultats ont été obtenue par l’utilisation du méthode monotone itérative pour 

l’estimée les solutions minimale et maximale est aussi du théorèmes  point fixe de Schauder 

et de Mönch  combiné avec les mesures des non compacités de Kuratowski, de Hausdorff et 

théorèmes de condensée pour résoudre de problème inclusions évolution fractionnaire.  

 

Summary 

In this thesis, we present existence and uniqueness results for certain classes of fractional 

differential equations and fractional evolution equations, moreover fractional evolution 

inclusions in the sense of Riemann-Liouville with nonlocal and local conditions on Banach 

spaces of infinite dimension. 

These results were obtained by using the fixed point theorems the Schauder’s and Mönch’s 

combined with the measure of non compactness of Kuratowski, Hausdorff and condensing 

maps theory. 
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