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Abstract

In this thesis, we have considered the existence and uniqueness of solutions for
a class of initial value problems ,boundary value problems , anti-periodic conditions
problems and problems with delay for nonlinear implicit fractional differential equations
with Caputo fractional derivative. The results will be obtained by means of fixed points
theorems and by the technique of measures of noncompactness.

We discuss and establish the existence, uniqueness, Ulam-Hyers and Ulam-Hyers-
Rassias stabilities of solutions for some classes of fractional differential equations in
Banach and Fréchet spaces.
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Introduction

Fractional Calculus has its origin in the question of the extension of meaning. A
well known example is the extension of meaning of real numbers to complex numbers,
and another is the extension of meaning of factorials of integers to factorials of complex
numbers. In generalized integration and differentiation the question of the extension of

meaning is : Can the meaning of derivatives of integral order
dny

dxn
be extended to have

meaning where n is any number (fractional, irrational or complex) ?

Fractional Differential equations are as old as the idea of the integer order ones is,
they have been in the last decades when the use of fractional Differential equations has
become more and more popular among many research areas. The theoretical and prac-
tical interest of this field is nowadays well established, and its applicability to science
and engineering can be considered as emerging new topics. They are, in fact,useful
tools for both the description of a more complex reality, and the enlargement of the
practical applicability of the common integer order. Fractional Differential equations
(fractional calculus) are specially interesting in automatic control and robotics.

Differential equations with fractional order are generalization of ordinary differen-
tial equations to non-integer order. In recent years, a great interest was devoted to study
fractional differential equations, because of their appearance in various applications in
Engineering and Physical Sciences, (see [75, 96, 105, 112, 117, 21, 22, 23]). Recently,
there are several studies devoted to extend, if possible, results for fractional differential
equations see ([6, 90, 92, 93, 94]). It is noted that the extension is not a straightforward
process, due to the difficulties in the definition and the rules of fractional derivatives.
Therefore, the theory of fractional differential equations is not established yet and there
are still many open problems in this area. Unlike, the integer derivative, there are seve-
ral definitions of the fractional derivative, which are not equivalent in general. However,
the most popular ones are the Caputo and RiemannLiouville fractional derivatives.

In 1930, Kuratowski [89] introduced the concept of measure of noncompactness.
Later, Banas̀ and Goebel [24] generalised this concept axiomatically, which is more
convenient in applications. The tool of measure of noncompactness has been used in
the theory of operator equations in Banach spaces. The fixed point theorems derived
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from them have many applications. There is considerable literature devoted to this
subject (see, for example, ([15, 16, 24, 25, 26]). The principal application of measures
of noncompactness in fixed point theory is through Darbo’s fixed point theorem [24].
This yields a tool to investigate the existence and behaviour of solutions of many classes
of integral equations such as those of Volterra, Fredholm and Uryson types .

Delay Equations have their origin in domains of applications, such as physics, en-
gineering, biology, medicine and economics. They appear in connection with the fun-
damental problem to analyze a retarded process from the real world, to develop a
corresponding mathematical model and to determine the future behavior (See [50]).

In the following we give an outline of our thesis organization, Consists of six chap-
ters. We have organized this thesis as follows :

Chapter 1.

This chapter consists some preliminaries,some basic concepts, useful theorems and
results ,notations, definitions, lemmas and fixed point theorems which are used throu-
ghout this thesis.

In Chapter 2, we discuss and establish the existence and uniqueness of solution for
a class of initial value problem for nonlinear implicit fractional differential equations.
In Section 2.1, we consider the following problem

cDαy(t) = f(t, y(t),cDαy(t)), for each t ∈ J = [0, T ], T > 0, 0 < α < 1,

y(0) = y0,

where cDα is the Caputo fractional derivative, f : J × R× R → R is a given function
and y0 ∈ R. As application we present two illustrative examples.

And in Section 2.2 we consider the following problem :

cDβy(t) = f(t, y(t),cDβy(t)), for each t ∈ J = [0, T ], T > 0, 0 < β < 1,

y(0) = y0,

where cDβ is the Caputo fractional derivative, (E, ||.||) is a real Banach space, f :
J × E × E → E is continuous function, and y0 ∈ E.
two results are discussed ; the first is based on Darbo’s fixed point theorem combined
with the technique of measures of noncompactness, and the second on Mönch’s fixed
point theorems. At last, an example is given to illustrative the application of the main
results.

In Chapter 3, we establish existence and uniqueness for the following problem
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cDαy(t) = f(t, y(t),cDαy(t)), for each t ∈ J = [0, b], 0 < α < 1,

y(0) + λ

∫ b

0

y(t)dt = y(b),

where cDα is the Caputo fractional derivative, f : J × R × R is a given function, and
λ ∈ (0,+∞).
We present two results for the above problem. The first one is based on the Banach
contraction principle, the second one on Schauder’s fixed point.

In Chapter 4, we discuss and establish the existence, and uniqueness of solution
for a class of boundary value problem.
In Section 4.1, we will give existence and uniqueness results for the followings problems
of implicit fractional differential equations :

cDαy(t) = f(t, y(t),cDαy(t)) = 0, for each, t ∈ J = [0, T ], 0 < α < 1,

ay(0) + by(T ) = c,

where cDα is the Caputo fractional derivative, f : J × R → [0,∞) is a given function
and a, b, c are real constants with a+ b 6= 0, , and

cDαy(t) = f(t, y(t),cDαy(t)), for every t ∈ J := [0, T ], T > 0, 0 < α < 1

y(0) + g(y) = y0

where g : C ([0, T ] ,R) −→ R a continuous function and y0 a real constant. This type
of non-local Cauchy problem was introduced by Byszewski [51]. The author observed
that the non-local condition is more appropriate than the local condition (initial) to
describe correctly some physics phenomenons [51], and proved the existence and the
uniqueness of weak solutions and also classical solutions for this type of problems. We
take an example of non-local conditions as follows :

g(y) =

p∑
i=1

ciy(ti)

where ci, i = 1, . . . , p are constants and 0 < t1 < . . . < tp 6 T.

In Chapter 5, This chapter consists of three sections. In section 5.1 we establish
existence and uniqueness for the following problem

cDαy(t) = f(t, yt,
cDαy(t)), t ∈ J = [0,+∞) 0 < α < 1
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y(t) = ϕ(t), t ∈ [−r, 0], r > 0

where cDα is the Caputo fractional derivative. f : J × C([−r, 0],R) × R −→ R is a
given function such that ϕ ∈ C([−r, 0],R).
For each function y defined on [−r,∞) and for any t ∈ J , we denote by yt the element
of C([−r, 0],R) by :

yt(θ) = y(t+ θ), θ ∈ [−r, 0].

yt(·) represents the history of system state from time t− r to time t.

Section 5.2 is devoted to fractional neutral functional differential equations,

cDα[y(t)− g(t, yt)] = f(t, yt,
cDαy(t)), t ∈ J = [0,+∞) 0 < α < 1

y(t) = ϕ(t), t ∈ [−r, 0], r > 0

where g : J × C([−r, 0],R) → R is a given function such that g(0, ϕ) = 0.

We shall present uniqueness results, Our approach will be based upon a recent non-
linear alternative of Leray-Schauder type in Fréchet spaces due to Frigon and Granas
[61].

Section 5.3 is devoted to discuss existence and uniqueness for the following problem

cDαy(t) = f(t, y(t),cDαy(t)), t ∈ J = [0,+∞)

y(0) = y0,

where cDα is the Caputo fractional derivative. f : J ×R×R −→ R is a given function,
y0 ∈ R.

We present results based on contractive maps in Fréchet spaces and the nonlinear
alternative of Leray-Schauder type due to Frigon and Granas. At the end we illustrate
the problem with an example.

In Chapter 6, The purpose of this chapter is to establish existence, uniqueness,
Ulam-Hyers stability, generalized Ulam-Hyers stability, and Ulam-Hyers-Rassias stabi-
lity for the following problems for implicit fractional order differential equation with
anti-periodic condition, and fractional differential equation with finite delay.

cDαy(t) = f(t, y(t),cDαy(t)), t ∈ J = [0, b] 0 < α < 1

y(0) = −y(b).

where cDα is the Caputo fractional derivative, f : J × R× R is a given function.
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cDα [y(t)− g(t, yt)] = f(t, yt,
cDαy(t)), t ∈ J = [0, T ] , T > 0 , 0 < α 6 1

y(t) = ϕ(t), t ∈ [−r, 0] , r > 0

where f : J ×C ([−r, 0] ,R)×R → R and g : J ×C ([−r, 0] ,R) are two given functions
such that g(0, ϕ) = 0 and ϕ ∈ C ([−r, 0] ,R) .

For each function yt defined on [−r, T ] and for any t ∈ J , we denote by yt the ele-
ment of C ([−r, 0] ,R) defined by :

yt(θ) = y(t+ θ), θ ∈ [−r, 0],

yt(.) represent the evolution history of system state from time t− r to time t.



Chapitre 1

Preliminaries

1.1 Notations and definitions

In this chapter definitions and some auxiliary results are given regarding the main
objects of the monograph : some notations and definitions of Fractional Calculus
Theory, some definitions and properties of noncompactness measure, some fixed point
theorems.

Let J = [a, b] be an interval of R and (E, |.|) be a real Banach space. Let C(J,E)
be the Banach space of continuous functions from J into E with the norm

‖y‖∞ = sup{|y(t)| : t ∈ J}.

A measurable function y : J −→ E is Bochner integrable if and only if |y| is Lebesgue
integrable.
Let n ∈ N and J0 = [0, n]. By C(J0,R) we denote the space of continuous functions
y : J0 −→ R with the norm

‖y‖n = {sup |y(t)| t ∈ J0}.

Let L1(J0,R) the space of Lebesgue-integrable functions y : J0 → R , equipped with
the norm

‖y‖L1 =

∫
J0

|y(t)|dt.

For each function yt defined on [−r, T ] and for any t ∈ J , we denote by yt the
element of C ([−r, 0] ,R) defined by :

yt(θ) = y(t+ θ), θ ∈ [−r, 0],

yt(.) represent the evolution history of system state from time t− r to time t.

Theorem 1.1.1 (The Dominated Convergence Theorem)([49]).
Suppose that (fn) is a sequence of integrable functions which converges almost everyw-
here to a function f and that there is a positive integrable function g satisfying

|fn| < g for all n.

11
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Then f is integrable and ∫
fndµ −→

∫
fdµ as n −→∞.

Theorem 1.1.2 (Arzela-Ascoli)([60]) Let A ∈ C(J,E), A is relatively compact (i.e.
A is compact) if :

1. A is uniformly bounded i.e, there exists M > 0 such that

‖f(t)‖ < M for every f ∈ A and t ∈ J.

2. A is equicontinuous i.e, for every ε > 0, there exists δ > 0 such that for each
t1, t2 ∈ J , |t2 − t1| 6 δ implies ‖f(t2)− f(t1)‖ 6 ε, for every f ∈ A.

3. The set {f(t) : f ∈ A, t ∈ J} is relatively compact in E.

Definition 1.1.3 An operator T : E −→ E is called compact if the image of each
bounded set B ∈ E is relatively compact i.e (T (B) is compact). T is called completely
continuous operator if it is continuous and compact.

Definition 1.1.4 ([87, 107]). The fractional (arbitrary) order integral of the function
f ∈ L1([0, T ],R+) of order α ∈ R+ is defined by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

where Γ is the gamma function.

Theorem 1.1.5 [87]. For any f ∈ C([a, b],R) the Riemann-Liouville fractional inte-
gral satisfies

IαIβf(t) = IβIαf(t) = Iα+βf(t),

for α, β > 0.

Definition 1.1.6 ([86]). For a function f given on the interval [0, T ], the Caputo
fractional-order derivative of order α of h, is defined by

(cDαf)(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds,

where n = [α] + 1 and [α] denotes the integer part of the real number α.

Lemma 1.1.7 ([97]) Let α > 0 and n = [α] + 1. Then

Iα(cDαf(t)) = f(t)−
n−1∑
k=0

f (k)(0)

k!
tk.
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Remark 1.1.8 ([97])The Caputo derivative of a constant is equal to zero.

Lemma 1.1.9 ([125]) Let α > 0. Then the differential equation

cDαf(t) = 0

has solution f(t) = c0 + c1t + c2t
2 + · · · + cn−1t

n−1, ci ∈ R, i = 0, 1, 2, . . . , n − 1,
n = [α] + 1.

Lemma 1.1.10 ([125]) Let α > 0. Then

Iα(cDαf(t)) = f(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1, n = [α] + 1.

Lemma 1.1.11 ([58]) Let α > 0, α /∈ N and m = [α]. Moreover assume that f ∈
Cm[a, b]. Then

cDα
a f ∈ C[a, b]

and
cDα

a f(a) = 0.

Proposition 1.1.12 [87] If f ∈ L1(J0,R), then ‖Iαf‖L1 6 nα

Γ(α+1)
‖f‖L1.

Generalization of Gronwall’s Lemma .

Lemma 1.1.13 ([122]) Let v : [0, T ] → [0,+∞) be a real function and w(.) is a
nonnegative, locally integrable function on [0, T ] and there are constants a > 0 and
0 < α < 1 such that

v(t) 6 w(t) + a

∫ t

0

(t− s)α−1v(s)ds,

Then, there exists a constant K = K(α) such that

v(t) 6 w(t) +Ka

∫ t

0

(t− s)α−1w(s)ds, for every t ∈ [0, T ].

1.2 Special Functions

Gamma Function (See [107]).
The gamma function Γ(z) is one of the basic functions of the fractional calculus is
defined by the integral

Γ(z) =

∫ ∞

0

e−ttz−1dt

which converges in the right half of the complex plane Re(z) > 0.
Let us recall some results on the gamma function.
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One of the basic properties of the gamma function is that it satisfies the following
functional equation :

Γ(z + 1) = zΓ(z)

which can be easily proved by integrating by parts :

Γ(z + 1) =

∫ ∞

0

e−ttzdt =
[
− e−ttz

]t=∞
t=0

+ z

∫ ∞

0

e−ttz−1dt = zΓ(z).

In particular, if z = n ∈ N, then

Γ(n+ 1) = nΓ(n) = n · (n− 1)! = n!,

with 0! = 1.
The gamma function can be represented also by the limit

Γ(z) =
n!nz

z(z + 1)(z + 2) . . . (z + n)
.

Beta Function (See [107]).
The beta function is usually defined by

β(z, w) =

∫ 1

0

tz−1(1− t)w−1dt, Re(z) > 0, Re(w) > 0.

We can express the beta function by :

β(w, z) =
Γ(z)Γ(w)

Γ(z + w)

from which it follows that
β(z, w) = β(w, z).

With the help of the beta function we can establish the following

Γ(z)Γ(1− z) = β(z, 1− z) =
π

sin(πz)
.

Taking z = 1
2

we obtain a useful particular value

Γ(
1

2
) =

√
π

Mittag-Leffler Function(See [107]).
Mittag-Leffler function plays a very important role, in the theory of fractional differen-
tial equations which is denoted by

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
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A two-parameter function of the Mittag-Leffier type is defined by

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)

It follows that

E1,1(z) =
∞∑
k=0

zk

Γ(k + 1)
=

∞∑
k=0

zk

k!
= ez,

E1,2(z) =
∞∑
k=0

zk

Γ(k + 2)
=

1

z

∞∑
k=0

zk+1

(k + 1)!
=
ez − 1

z
,

E1,3(z) =
∞∑
k=0

zk

Γ(k + 3)
=

1

z2

∞∑
k=0

zk+2

(k + 2)!
=
ez − 1− z

z2
.

1.3 Fréchet Spaces

Definition 1.3.1 ([119]) A Fréchet space is a topological vector space with the follo-
wing properties :

1. it is metrizable

2. it is complete

3. it is locally convex

Remark 1.3.2 ([124]) A locally convex space is a normed space iff there exists a boun-
ded neighborhood of zero.
A locally convex space X is metrizable iff its topology is induced by an at most countable
system {pj} of seminorms.

Examples (See [119]).
Hausdorff finite dimensional topological vector spaces, Hilbert spaces and Banach
spaces are Fréchet spaces.
Some properties in Fréchet Spaces.
Let E = (E, ‖.‖n) be a Fréchet space with a family of semi-norms {‖.‖n}n∈N, we say
that X is bounded if for every n ∈ N, there exists Mn > 0 such that

‖x‖n 6 Mn for all x ∈ X.

To E we associate a sequence of Banach spaces {(En, ‖ · ‖n)} as follows : For every
n ∈ N, we consider the equivalence relation ∼n defined by : x ∼n y if and only if
‖x − y‖n = 0 for x, y ∈ E. We denote En = (E|∼n , ‖ · ‖n) be the quotient space, the
completion of En with respect to ‖·‖n. To every X ⊂ E, we associate a sequence {Xn}
of subsets Xn ⊂ En as follows : For every x ∈ E, we denote [x]n the equivalence class
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of x of subset En and define Xn = {[x]n : x ∈ X}. We denote by Xn, intn(X
n) and

∂nX
n, respectively, the closure, the interior and the boundary of Xn with respect to

‖ · ‖n in En.
We assume that the family of semi-norms {‖.‖n}n∈N verifies :

‖x‖1 6 ‖x‖2 6 ‖x‖3 6 . . . for every x ∈ X.

The following definition is the appropriate concept of contraction in E.
For more information about this subject see [61, 62].

Definition 1.3.3 [61] A function f : X → X is said to be a contraction if for every
n ∈ N there exists kn ∈ [0, 1) such that :

‖f(x)− f(y)‖n 6 kn‖x− y‖n for all x, y ∈ X.

1.4 Measures of noncompactness

In this subsection we define the Kuratowski and Hausdorf measures of noncompact-
ness (MNCs for short) and give their basic properties.

For a given set V of functions v : J −→ E, let us denote by

V (t) = {v(t) : v ∈ V, t ∈ J}

and
V (J) = {v(t) : v ∈ V, t ∈ J}.

Definition 1.4.1 ([15]) Let (X, d) be a complete metric space and B the family of
bounded subsets of X. For every Ω ∈ B the Kuratowski measure of noncompactness
α(Ω) of the set Ω is the infimum of the numbers d > 0 such that Ω admits a finite
covering by sets of diameter smaller than d.

Remark 1.4.2 The diameter of a set B is the number sup{d(x, y) : x ∈ B, y ∈ B}
denoted by diam(B), with diam(∅) = 0.
It is clear that 0 6 α(B) 6 diam(B) < +∞ for each nonempty bounded subset B of X
and that diam(B) = 0 if and only if B is an empty set or consists of exactly one point.

Definition 1.4.3 [24] Let E be a Banach space and ΩE the bounded subsets of E. The
Kuratowski measure of noncompactness is the map α : ΩE → [0,∞] defined by

α(B) = inf{ε > 0 : B ⊆ ∪ni=1Bi and diam(Bi) ≤ ε}; here B ∈ ΩE,

where diam(Bi) = sup{||x− y|| : x, y ∈ Bi}.

In the definition of the Kuratowski measure we can consider balls instead of arbitrary
sets. In this way we get the definition of the Hausdorff measure :



CHAPITRE 1. PRELIMINARIES 17

Definition 1.4.4 [15] The Hausdorff measure of noncompactness χ(Ω) of the set Ω is
the infimum of the numbers ϕ such that Ω admits a finite covering by balls of radius
smaller than ϕ.

Properties of the Kuratowski and Hausdorf MNCs([15]).
Let A and B bounded sets.

(a) regularity : ψ(A) = 0 ⇔ A is compact , where A denotes the closure of A.
(b) nonsingularity : ψ is equal to zero on every one element-set.
(c) monotonicity : A ⊂ B ⇒ ψ(A) 6 ψ(B).
(d) semi-additivity : ψ(A

⋃
B) = max{ψ(A), ψ(B)}.

(e) semi-homogencity : ψ(λA) = |λ|ψ(A); λ ∈ R, where λ(A) = {λx : x ∈ A}.
(f) algebraic semi-additivity : ψ(A+B) 6 ψ(A) + ψ(B), where

A+B = {x+ y : x ∈ A, y ∈ B}.

(g) invariance under translations : ψ(A+ x0) = ψ(A) for any x0 ∈ E.
(h) ψ(A) = ψ(A) = ψ(convA), where convA is the convex hull of A.
(i) ψ(A

⋂
B) = min{ψ(A), ψ(B)}.

Remark 1.4.5 The measure of noncompactness was introduced by Kuratowski in order
to generalize the Cantor intersection theorem

Theorem 1.4.6 [88] Let (X, d) be a complete metric space and {Bn} be a decreasing
sequence of nonempty, closed and bounded subsets of X and limn→∞ α(Bn) = 0. Then
the intersection B∞ of all Bn is nonempty and compact.

In [76], Horvath has proved the following generalization of the Kuratowski theorem :

Theorem 1.4.7 [88] Let (X, d) be a complete metric space and {Bi}i∈I be a family of
nonempty of closed and bounded subsets of X having the finite intersection property.
If infi∈I α(Bi) = 0 then the intersection B∞ of all Bi is nonempty and compact.

Lemma 1.4.8 ([69]) If V ⊂ C(J,E) is a bounded and equicontinuous set, then
(i) the function t→ α(V (t)) is continuous on J , and

αc(V ) = sup
06t6T

α(V (t)).

(ii) α

(∫ T

0

x(s)ds : x ∈ V
)
≤
∫ T

0

α(V (s))ds,

where V (s) = {x(s) : x ∈ V }, s ∈ J .

Theorem 1.4.9 ([88]) Let B(0, 1) be the unit ball in a Banach space X. Then

α(B(0, 1)) = χ(B(0, 1)) = 0

if X is finite dimensional, and α(B(0, 1)) = 2, χ(B(0, 1)) = 1 otherwise.
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Theorem 1.4.10 ([88]) Let S(0, 1) be the unit sphere in a Banach space X. Then
α(S(0, 1)) = χ(S(0, 1)) = 0 if X is finite dimensional, and α(S(0, 1)) = 2, χ(S(0, 1)) =
1 otherwise.

Theorem 1.4.11 ([88]) The Kuratowski and Hausdorff MNCs are related by the in-
equalities

χ(B) 6 α(B) 6 2χ(B).

In the class of all infinite dimensional Banach spaces these inequalities are the best
possible.

Example 1.4.12 Let l∞ be the space of all real bounded sequences with the supremum
norm, and let A be a bounded set in l∞. Then α(A) = 2χ(A).

For further facts concerning measures of noncompactness and their properties we
refer to [15, 24, 26, 88, 118] and the references therein.

1.5 Fixed point theorems

We present some fixed point theorems which will be used in the following chapters

Theorem 1.5.1 (Banach’s fixed point theorem [67]) Let C be a non-empty clo-
sed subset of a Banach space X, then any contraction mapping T of C into itself has
a unique fixed point.

Theorem 1.5.2 (Schauder’s fixed point theorem [67]) . Let X be a Banach space.
and C be a closed, convex and nonempty subset of X. Let N : C → C be a continuous
mapping such that N(C) is a relatively compact subset of X. Then N has at least one
fixed point in C.

Theorem 1.5.3 (Nonlinear Alternative of Leray-Schauder type [67]) Let X be
a Banach space with C ⊂ X closed and convex. Assume U is a relatively open subset
of C with 0 ∈ U and N : U → C is a compact map. Then either,

(i) N has a fixed point in U ; or
(ii) there is a point u ∈ ∂U and λ ∈ (0, 1) with u = λN(u).

Theorem 1.5.4 (Darbo’s Fixed Point Theorem [64, 67]) Let X be a Banach space
and C be a bounded, closed, convex and nonempty subset of X. Suppose a continuous
mapping N : C → C is such that for all closed subsets D of C,

α(N(D)) 6 kα(D), (1.1)

where 0 6 k < 1, and α is the Kuratowski measure of noncompactness. Then N has a
fixed point in C.
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Remark 1.5.5 Mappings satisfying the Darbo-condition (1.1) have subsequently been
called k-set contractions.

Theorem 1.5.6 (Mönch’s Fixed Point Theorem [8, 98]) Let D be a bounded, clo-
sed and convex subset of a Banach space such that 0 ∈ D, and let N be a continuous
mapping of D into itself. If the implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ α(V ) = 0

holds for every subset V of D, then N has a fixed point.
Here α is the Kuratowski measure of noncompactness.

Theorem 1.5.7 (Nonlinear alternative) [61]. Let X be a closed subset of a Fréchet
space E such that 0 ∈ X and N : X → E be a contraction map such that N(X) is
bounded. Then either

(C1) T has a unique fixed point or
(C2) There exist λ ∈ [0, 1), n ∈ N and y ∈ ∂nXn : ‖y − λT (y)‖n = 0.

For more detail see [8, 17, 65, 67, 88, 123].



Chapitre 2

Existence results for Cauchy
problems

2.1 Introduction

The purpose of this Chapter, is to establish existence and uniqueness results to the
following problems :

cDαy(t) = f(t, y(t),cDαy(t)), for each, t ∈ J = [0, T ], T > 0, 0 < α < 1, (2.1)

y(0) = y0, (2.2)

where cDα is the Caputo fractional derivative, f : J × R× R → R is a given function
and y0 ∈ R, and

cDβy(t) = f(t, y(t),cDβy(t)), for each t ∈ J := [0, T ], T > 0, 0 < β < 1, (2.3)

y(0) = y0, (2.4)

where cDβ is the Caputo fractional derivative, (E, ||.||) is a real Banach space, f :
J × E × E → E is continuous function, and y0 ∈ E.

Recently, fractional differential equations have been studied by Abbes et al [2, 3],
Baleanu et al [21, 23], Diethelm [58], Kilbas and Marzan [86], Srivastava et al [87],
Lakshmikantham et al [90], Samko et al [115]. More recently, some mathematicians
have considered boundary value problems and boundary conditions for implicit frac-
tional differential equations.

In [78], Hu and Wang investigated the existence of solution of the nonlinear frac-
tional differential equation with integral boundary condition :

Dαu(t) = f(t, u(t), Dβu(t)), t ∈ (0, 1), 1 < α 6 2, 0 < β < 1,

20
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u(0) = u0, u(1) =

∫ 1

0

g(s)u(s)ds,

where Dα is the Riemann-Liouville fractional derivative, f : [0, 1] × R × R → R, is
continuous function and g be an integrable function.

In [116], by means of Schauder fixed-point theorem, Su and Liu studied the existence
of nonlinear fractional boundary value problem involving Caputo’s derivative :

cDαu(t) = f(t, u(t),cDβu(t)), for each t ∈ (0, 1), 1 < α 6 2, 0 < β 6 1,

u(0) = u
′
(1) = 0, or u

′
(1) = u(1) = 0, or u(0) = u(1) = 0,

where f : [0, 1]× R× R → R is a continuous function.

Many techniques have been developed for studying the existence and uniqueness
of solutions of initial and boundary value problem for fractional differential equations.
Several authors tried to develop a technique that depends on the Darbo or the Mönch
fixed point theorems with the Hausdorff or Kuratowski measure of noncompactness.
The notion of the measure of noncompactness was defined in many ways. In 1930,
Kuratowski [89] defined the measure of non-compactness, α(A), of a bounded subset A
of a metric space (X, d), and in 1955, Darbo [56] introduced a new type of fixed point
theorem for noncompactness maps.

In Section 2.2, two results are discussed ; the first is based on Darbo’s fixed point
theorem combined with the technique of measures of noncompactness, the second on
Mönch’s fixed point theorem. At last, an example are included to show the applicability
of the results. The content of this chapter is taken from ([42, 95]).

2.2 Existence results for NIFDEs

2.2.1 Existence of solutions

Let us defining what we mean by a solution of problem (2.1)-(2.2).

Definition 2.2.1 A function y ∈ C1(J,R) is said to be a solution of the problem
(2.1)-(2.2) if y satisfied equation (2.1) on J and condition (2.2) .

For the existence of solutions for the problem (2.1)-(2.2), we need the following auxiliary
lemma :

Lemma 2.2.2 Let a function f(t, u, v) : J × R × R → R be continuous. Then the
problem (2.1)-(2.2) is equivalent to the problem :

y(t) = y0 + Iαϕ(t) (2.5)
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where ϕ ∈ C(J,R) satisfies the functional equation :

ϕ(t) = f(t, y0 + Iα(t), ϕ(t)).

Proof.
If cDαy(t) = ϕ(t) then Iα cDαy(t) = Iαϕ(t). So we obtain y(t) = y0 + Iαϕ(t).
We are now in a position to state and prove the existence result for the problem (2.1)-
(2.2) based on Banach’s fixed point.

Theorem 2.2.3 Assume that
(H1) The function f : J × R× R → R is continuous.
(H2) There exist constants k > 0 and 0 < l < 1 such that

|f(t, u, v)− f(t, ū, v̄)| 6 k|u− ū|+ l|v − v̄|

for any u, v, ū, v̄ ∈ R and t ∈ J .
If

kTα

(1− l)Γ(α+ 1)
< 1, (2.6)

then there exists a unique solution for the problem (2.1)-(2.2) on J .

Proof.
Transform the problem (2.1)-(2.2) into a fixed point problem. Define the operator
N : C(J,R) → C(J,R) by :

N(y)(t) = y0 + Iαϕ(t), (2.7)

where ϕ ∈ C(J,R) satisfies the functional equation

ϕ(t) = f(t, y(t), ϕ(t)).

Clearly, the fixed points of operator N are solutions of problem (2.1)-(2.2). Let u, v ∈
C(J,R), then for t ∈ J , we have

(Nu)(t)− (Nv)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1(ϕ(s)− ψ(s))ds,

where ϕ, ψ ∈ C(J,R) be such that

ϕ(s) = f(s, u(s), ϕ(s)),

ψ(s) = f(s, v(s), ψ(s)).

Then, for t ∈ J

|(Nu)(t)− (Nv)(t)| 6 1

Γ(α)

∫ t

0

(t− s)α−1|ϕ(s)− ψ(s)|ds. (2.8)
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By (H2) we have

|ϕ(s)− ψ(s)| = |f(s, u(s), ϕ(s))− f(s, v(s), ψ(s))|
6 k|u(s)− v(s)|+ l|ϕ(s)− ψ(s)|.

Thus

|ϕ(s)− ψ(s)| 6 k

1− l
|u(s)− v(s)|.

By (2.8) we have

|(Nu)(t)− (Nv)(t)| 6
k

(1− l)Γ(α)

∫ t

0

(t− s)α−1|u(s)− v(s)|ds

6
kTα

(1− l)Γ(α+ 1)
‖u− v‖∞.

Then

‖Nu−Nv‖∞ 6
kTα

(1− l)Γ(α+ 1)
‖u− v‖∞.

By (2.6), the operator N is a contraction. Hence, by Banach’s contraction principle, N
has a unique fixed point which is a unique solution of the problem (2.1)-(2.2).

The next existence result is based on Schauder’s fixed point theorem.

Theorem 2.2.4 Assume (H1),(H2) and the following hypothesis holds.
(H3) There exist p, q, r ∈ C(J,R+) with r∗ = sup

t∈J
r(t) < 1 such that

|f(t, u, w)| 6 p(t) + q(t)|u|+ r(t)|w| for t ∈ J and u,w ∈ R.

If
q∗Tα

(1− r∗)Γ(α+ 1)
< 1, (2.9)

where p∗ = sup
t∈J

p(t), and q∗ = sup
t∈J

q(t), then the problem (2.1)-(2.2) has at least one

solution.

Proof. Let the operator N defined in (2.7). We shall show that N satisfies the assump-
tions of Schauder’s fixed point theorem. The proof will be given in several steps.

Step 1 : N is continuous.
Let {un} be a sequence such that un → u in C(J,R). Then for each t ∈ J

|N(un)(t)−N(u)(t)| 6 1

Γ(α)

∫ t

0

(t− s)α−1|ϕn(s)− ϕ(s)|ds, (2.10)
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where ϕn, ϕ ∈ C(J,R) such that

ϕn(s) = f(s, un(s), ϕn(s)),

and
ϕ(s) = f(s, u(s), ϕ(s)).

By (H2) we have

|ϕn(s)− ϕ(s)| = |f(s, un(s), ϕn(s))− f(s, u(s), ϕ(s))|
6 k|un(s)− u(s)|+ l|ϕn(s)− ϕ(s)|.

Then

|ϕn(s)− ϕ(s)| 6 k

1− l
|un(s)− u(s)|.

Since un → u, then we get ϕn(s) → ϕ(s) as n → ∞ for each s ∈ J, and let η > 0 be
such that, for each s ∈ J , we have |ϕn(s)| 6 η and |ϕ(s)| 6 η, then, we have

(t− s)α−1|ϕn(s)− ϕ(s)| 6 (t− s)α−1[|ϕn(s)|+ |ϕ(s)|]
6 2η(t− s)α−1.

For each s ∈ J , the function s→ 2η(t− s)α−1 is integrable on [0, t], then the Lebesgue
Dominated Convergence Theorem and (2.10) imply that

|N(un)(t)−N(u)(t)| → 0 as n→∞,

hence
‖N(un)−N(u)‖∞ → 0 as n→∞.

Consequently, N is continuous.
Let

M |y0|+ p∗Tα

M − q∗Tα
6 R,

where M := (1− r∗)Γ(α+ 1) and define

DR = {u ∈ C(J) : ‖u‖∞ 6 R}.

It is clear that DR is a bounded, closed and convex subset of C(J,R).

Step 2 : N(DR) ⊂ DR.

Let u ∈ DR we show that Nu ∈ DR.
We have, for each t ∈ J

|Nu(t)| 6 |y0|+
1

Γ(α)

∫ t

0

(t− s)α−1|ϕ(s)|ds. (2.11)
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By (H3) we have for each s ∈ J,

|ϕ(s)| = |f(s, u(st), ϕ(s))|
6 p∗ + q∗R + r∗|ϕ(s)|.

Then

|ϕ(s)| 6 p∗ + q∗R

1− r∗
.

Thus (2.11) implies that

|Nu(t)| 6 |y0|+
p∗Tα

(1− r∗)Γ(α+ 1)
+
q∗RTα

M

6 |y0|+
p∗Tα

M
+
q∗RTα

M
6 R.

Then N(DR) ⊂ DR.

Step 3 : N(DR) is relatively compact.

Let t1, t2 ∈ J, t1 < t2, and let u ∈ DR. Then

|N(u)(t2)−N(u)(t1)| =

∣∣∣∣ 1

Γ(α)

∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]ϕ(s)ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1ϕ(s)ds

∣∣∣∣
6

M

Γ(α+ 1)
(tα2 − tα1 + 2(t2 − t1)

α).

As t1 → t2, the right-hand side of the above inequality tends to zero.
As a consequence of Steps 1 to 3 together with the Arzelá-Ascoli theorem, we

conclude that N : C(J,R) → C(J,R) is continuous and compact. As a consequence of
Schauder’s fixed point theorem ([67]), we deduce that N has a fixed point which is a
solution of the problem (2.1)− (2.2).
The next existence result is based on Nonlinear alternative of Leray-Schauder type.

Theorem 2.2.5 Assume (H1),(H2),(H3) hold. Then the problem (2.1)-(2.2) has at
least one solution.

Proof. Consider the operator N defined in (2.7). We shall show that N satisfies the
assumptions of Leray-Schauder fixed point theorem. The proof will be given in several
Steps.

Step 1 : N is continuous. See ( Theorem 2.2.4 ,Step1)

Step 2 : N maps bounded sets into bounded sets in C(J,R).
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Indeed, it is enough to show that for any ρ > 0, there exist a positive constant `
such that for each u ∈ Bρ = {u ∈ C(J,R) : ‖u‖∞ 6 ρ}, we have ‖N(u)‖∞ 6 `.

For u ∈ Bρ, we have, for each t ∈ J ,

|Nu(t)| 6 |y0|+
1

Γ(α)

∫ t

0

(t− s)α−1|ϕ(s)|ds. (2.12)

By (H3) we have for each s ∈ J,

|ϕ(s)| = |f(s, u(s), ϕ(s))|
6 p(s) + q(s)ρ+ r(s)|ϕ(s)|
6 p∗ + q∗ρ+ r∗|ϕ(s)|.

Then

|ϕ(s)| 6 p∗ + q∗ρ

1− r∗
:= M∗.

Thus (2.12) implies that

|Nu(t)| 6 |y0|+
M∗Tα

Γ(α+ 1)
.

Thus

‖Nu‖∞ 6 |y0|+
M∗Tα

Γ(α+ 1)
:= l.

Then N maps bounded sets into bounded sets in C(J,R).

Step 3 : Clearly, N maps bounded sets into equicontinuous sets of C(J,R).

We conclude that N : C(J,R) −→ C(J,R) is completely continuous.

Last step : A priori bounds.

We now show there exists an open set U ⊆ C(J,R) with u 6= λN(u), for λ ∈ (0, 1)
and u ∈ ∂U . Let u ∈ C(J,R) and u = λN(u) for some 0 < λ < 1. Thus for each t ∈ J ,
we have

u(t) = λy0 +
λ

Γ(α)

∫ t

0

(t− s)α−1ϕ(s)ds.

This implies by (H2) that for each t ∈ J we have

|u(t)| 6 |y0|+
1

Γ(α)

∫ t

0

(t− s)α−1|ϕ(s)|ds. (2.13)
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And, by (H3) we have for each s ∈ J,

|ϕ(s)| 6 p∗ + q∗|u(s)|+ r∗|ϕ(s)|.

Thus

|ϕ(s)| 6 1

1− r∗
(p∗ + q∗|u(s)|).

Hence

|u(t)| 6 |y0|+
p∗Tα

(1− r∗)Γ(α+ 1)
+

q∗

(1− r∗)Γ(α)

∫ t

0

(t− s)α−1|u(s)|ds.

Then Lemma 1.1.13 implies that for each t ∈ J

|u(t)| 6
(
|y0|+

p∗Tα

(1− r∗)Γ(α+ 1)

)(
1 +

kq∗Tα

(1− r∗)Γ(α+ 1)

)
.

Thus

‖u‖∞ 6

(
|y0|+

p∗Tα

(1− r∗)Γ(α+ 1)

)(
1 +

kq∗Tα

(1− r∗)Γ(α+ 1)

)
:= M. (2.14)

Let
U = {u ∈ C(J) : ‖u‖∞ < M + 1}.

By the choice of U , there is no u ∈ ∂U such that u = λN(u), for λ ∈ (0, 1). As a
consequence of Leray-Schauder’s theorem ([67]), we deduce that N has a fixed point u
in U which is a solution to (2.1)-(2.2).

2.2.2 Examples

Example 1. Consider the following Cauchy problem

cD
1
2y(t) =

1

2et+1(1 + |y(t)|+ |cD 1
2y(t)|)

, for each, t ∈ [0, 1], (2.15)

y(0) = 1. (2.16)

Set

f(t, u, v) =
1

2et+1(1 + |u|+ |v|)
, t ∈ [0, 1], u, v ∈ R.

Clearly, the function f is jointly continuous.
For any u, v, ū, v̄ ∈ R and t ∈ [0, 1] :

|f(t, u, v)− f(t, ū, v̄)| 6 1

2e
(|u− ū|+ |v − v̄|).
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Hence condition (H2) is satisfied with k = l = 1
2e
.

It remains to show that condition (2.6) is satisfied. Indeed, we have

kTα

(1− l)Γ(α+ 1)
=

1

(2e− 1)Γ(3
2
)
< 1.

It follows from Theorem 2.2.3 that the problem (2.15)-(2.16) has a unique solution.

Example 2. Consider the following Cauchy problem

cD
1
2y(t) =

(2 + |y(t)|+ |cD 1
2y(t)|)

2et+1(1 + |y(t)|+ |cD 1
2y(t)|)

, for each, t ∈ [0, 1], (2.17)

y(0) = 1. (2.18)

Set

f(t, u, v) =
(2 + |u|+ |v|)

2et+1(1 + |u|+ |v|)
, t ∈ [0, 1], u, v ∈ R.

Clearly, the function f is jointly continuous.
For any u, v, ū, v̄ ∈ R and t ∈ [0, 1]

|f(t, u, v)− f(t, ū, v̄)| 6 1

2e
(|u− ū|+ |v − v̄|).

Hence condition (H2) is satisfied with k = l = 1
2e
. Also, we have,

|f(t, u, v)| 6 1

2et+1
(2 + |u|+ |v|).

Thus condition (H3) is satisfied with p(t) = 1
et+1 and q(t) = r(t) = 1

2et+1 . And condition

q∗Tα

(1− r∗)Γ(α+ 1)
=

1

(2e− 1)Γ(3
2
)
< 1,

is satisfied with T = 1, α = 1
2
, and q∗ = r∗ = 1

2e
. It follows from Theorem 2.2.4 that

the problem (2.17)-(2.18) has at least one solution.

2.3 Existence results for Cauchy problems in Ba-

nach space

2.3.1 Existence of solutions

Let us defining what we mean by a solution of problem (2.3)-(2.4).
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Definition 2.3.1 A function u ∈ C1(J,E) is said to be a solution of the problem
(2.3)-(2.4) is u satisfied equation (2.3) and condition (2.4) on J .

For the existence of solutions for the problem (2.3)-(2.4), we need the following auxiliary
lemma :

Lemma 2.3.2 Let a function f(t, u, v) : J × E × E → E be continuous. Then the
problem (2.3)-(2.4) is equivalent to the problem :

y(t) = y0 + Iβϕ(t) (2.19)

where ϕ ∈ C(J,E) satisfies the functional equation :

ϕ(t) = f(t, y0 + Iβϕ(t), ϕ(t)).

Proof. (See section 2.1)

We are now in a position to state and prove the existence result for the problem
(2.3)-(2.4) based on concept of measures of noncompactness and Darbo’s fixed point
theorem.

Theorem 2.3.3 Assume that
(H4) The function f : J × E × E → E is continuous.
(H5) There exist constants k > 0 and 0 < l < 1 such that

||f(t, u, v)− f(t, ū, v̄)|| 6 k||u− ū||+ l||v − v̄||

for any u, v, ū, v̄ ∈ E and t ∈ J.
(H6) There exist p, q, r ∈ C(J,R+) with r∗ = sup

t∈J
r(t) < 1 such that

||f(t, u, w)|| 6 p(t) + q(t)|u|+ r(t)|v| for t ∈ J and u, v ∈ R.

(H7) For any bounded sets B1, B2 ⊆ E,

α
(
f(t, B1, B2)

)
6 q(t)α(B1) + r(t)α(B2) for each t ∈ J.

If
q∗T β

(1− r∗)Γ(β + 1)
< 1, (2.20)

where q∗ = sup
t∈J

q(t), then the problem (2.3)-(2.4) has at least one solution on J .
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Proof. The proof will be given in several steps.

Transform the problem (2.3)-(2.4) into a fixed point problem. Define the operator

N : C(J,E) → C(J,E) by :

N(y)(t) = y0 + Iβϕ(t) (2.21)

where ϕ ∈ C(J,E) satisfies the functional equation

ϕ(t) = f(t, y(t), ϕ(t)).

Clearly, the fixed points of operator N are solutions of problem (2.3)-(2.4).
We shall show that N satisfies the assumptions of Darbo’s fixed point Theorem.

The proof will be given in several steps.

Step 1 : N is continuous.
Let u,w ∈ C(J,E) and let {un} be a sequence such that un → u in C(J,E). Then for
each t ∈ J

||N(un)(t)−N(u)(t)|| 6 1

Γ(β)

∫ t

0

(t− s)β−1||ϕn(s)− ϕ(s)||ds, (2.22)

where ϕn, ϕ ∈ C(J,E) such that

ϕn(t) = f(t, un(t), ϕn(t)),

and
ϕ(t) = f(t, u(t), ϕ(t)).

By (H5) we have, for each t ∈ J,

||ϕn(t)− ϕ(t)|| = ||f(t, un(t), ϕn(t))− f(t, u(t), ϕ(t))||
6 k||un(t)− u(t)||+ l||ϕn(t)− ϕ(t)||.

Then

||ϕn(t)− ϕ(t)|| 6 k

1− l
||un(t)− u(t)||.

Since un → u, then we get ϕn(t) → ϕ(t) as n→∞ for each t ∈ J.
Let a positive constant η > 0 be such that, for each t ∈ J , we have ||ϕn(t)|| 6 η and
||ϕ(t)|| 6 η.
Then we have,

(t− s)β−1||ϕn(s)− ϕ(s)|| 6 (t− s)β−1[||ϕn(s)||+ ||ϕ(s)||]
6 2η(t− s)β−1.
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For each t ∈ J , the function s→ 2η(t− s)β−1 is integrable on [0, t], then by means
of the Lebesgue Dominated Convergence Theorem and (2.22) has that

||N(un)(t)−N(u)(t)|| → 0 as n→∞.

Then
‖|N(un)−N(u)‖|∞ → 0 as n→∞.

Consequently, N is continuous.

Let
M |y0|+ p∗Tα

M − q∗Tα
6 R, (2.23)

where M := (1− r∗)Γ(α+ 1), p∗ = sup
t∈J

p(t), and q∗ = sup
t∈J

q(t).

Define
DR = {u ∈ C(J) : ‖u‖∞ 6 R}.

It is clear that DR is a bounded, closed and convex subset of C(J,E).

Step 2 : N(DR) ⊂ DR.

Let u ∈ DR we show that Nu ∈ DR. We have, for each t ∈ J

||Nu(t)|| 6 ||y0||+
1

Γ(β)

∫ t

0

(t− s)β−1||ϕ(t)||ds. (2.24)

By (H6) we have for each t ∈ J,

||ϕ(t)|| 6 p∗ + q∗R

1− r∗
.

Thus, (2.23) and (2.24) implies that

||Nu(t)|| 6 ||y0||+
p∗T β

(1− r∗)Γ(β + 1)
+

q∗RT β

(1− r∗)Γ(β + 1)

6 ||y0||+
p∗T β

M
+
q∗RT β

M
6 R.

Consequently,
N(DR) ⊂ DR.
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Step 3 : N(DR) is bounded and equicontinuous.

By Step 2 we have N(DR) = {N(u) : u ∈ DR} ⊂ DR. Thus, for each y ∈ DR we
have ‖N(u)‖∞ 6 R which means that N(DR) is bounded.

Let t1, t2 ∈ J, t1 < t2, and let u ∈ DR. Then

|N(u)(t2)−N(u)(t1)| =
∣∣∣ 1

Γ(β)

∫ t1

0

[(t2 − s)β−1 − (t1 − s)β−1]ϕ(s)ds

+
1

Γ(β)

∫ t2

t1

[(t2 − s)β−1ϕ(s)ds
∣∣∣

6
M

Γ(β + 1)
(tβ2 − tβ1 + 2(t2 − t1)

β).

As t1 → t2, the right-hand side of the above inequality tends to zero. Then N(DR) is
equicontinuous.

Last step : The operator N : DR → DR is a strict set contraction.

Let V ⊂ DR and t ∈ J , then we have,

α(N(V )(t)) = α((Ny)(t), y ∈ V )

6
1

Γ(β)

{∫ t

0

(t− s)β−1α(ϕ(s))ds, y ∈ V
}
.

Then (H7) imply that, for each s ∈ J ,

α({ϕ(s), y ∈ V }) = α({f(s, y(s), ϕ(s)), y ∈ V })
6 q(t)α({y(s), y ∈ V }) + r(t)α({ϕ(s), y ∈ V })
6 q∗α({y(s), y ∈ V }) + r∗α({ϕ(s), y ∈ V }).

Thus

α ({ϕ(s), y ∈ V }) 6
q∗

1− r∗
α{y(s), y ∈ V }.

Then

α(N(V )(t)) 6
q∗

(1− r∗)Γ(β)

∫ t

0

(t− s)β−1{α(y(s))ds, }, y ∈ V

6
q∗αc(V )

(1− r∗)Γ(β)

∫ t

0

(t− s)β−1ds

6
q∗T β

(1− r∗)Γ(β + 1)
αc(V ).
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Therefore

αc(NV ) 6
q∗T β

(1− r∗)Γ(β + 1)
αc(V ).

So, by (2.20), the operator N is a set contraction. As a consequence of Theorem
1.5.4, we deduce that N has a fixed point which is solution to the problem (2.3)-(2.4).

The next existence result for the problem (2.3)-(2.4) is based on concept of mea-
sures of noncompactness and Mönch’s fixed point theorem.

Theorem 2.3.4 Assume (H4)-(H7) hold. Then the problem (2.3)-(2.4) has at least
one solution.

Proof. Consider the operator N defined in (2.21). We shall show that N satisfies
the assumptions of Mönch’s fixed point theorem. We know that N : DR → DR is
bounded and continuous, we need to prove that there the implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ α(V ) = 0

holds for every subset V of DR.
Now let V be a subset of DR such that V ⊂ conv(N(V ) ∪ {0}). V is bounded and

equicontinuous and therefore the function t → v(t) = α(V (t)) is continuous on J . By
(H7), Lemma 1.4.8 and the properties of the measure α we have for each t ∈ J

v(t) 6 α(N(V )(t) ∪ {0})
6 α(N(V )(t))

6 α{(Ny)(t), y ∈ V }

6
q∗

(1− r∗)Γ(β)

∫ t

0

(t− s)β−1{α(y(s))ds, y ∈ V }

6
q∗

(1− r∗)Γ(β)

∫ t

0

(t− s)β−1v(s)ds.

Lemma 1.1.13 implies that v(t) = 0 for each t ∈ J , and then V (t) is relatively compact
in E. In view of the Ascoli-Arzelà theorem, V is relatively compact in DR. Applying
now Theorem 1.5.6 we conclude that N has a fixed point y ∈ DR. Hence N has a fixed
point which is solution to the problem (2.3)-(2.4). This completes the proof.
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2.3.2 Example

Consider the following infinite system

cD
1
2yn(t) =

(3 + ||yn(t)||+ ||cD 1
2yn(t)||)

3et+2(1 + ||yn(t)||+ ||cD 1
2yn(t)||)

, for each, t ∈ [0, 1], (2.25)

yn(0) = 1. (2.26)

Set

E = l1 = {y = (y1, y2, ..., yn, ...),
∞∑
n=1

|yn| <∞},

and

f(t, u, v) =
(3 + ||u||+ ||v||)

3et+2(1 + ||u||+ ||v||)
, t ∈ [0, 1], u, v ∈ E.

E is a Banach space with the norm ||y|| =
∞∑
n=1

|yn|.

Clearly, the function f is jointly continuous.
For any u, v, ū, v̄ ∈ E and t ∈ [0, 1] :

||f(t, u, v)− f(t, ū, v̄)|| 6 1

3e2
(||u− ū||+ ||v − v̄||).

Hence condition (H5) is satisfied with k = l = 1
3e2
.

Other,

||f(t, u, v)|| 6 1

3et+2
(3 + ||u||+ ||v||).

Thus conditions (H6) and (H7) are satisfied with p(t) = 1
et+2 and q(t) = r(t) = 1

3et+2 .
It follows from Theorem 2.3.4 that the problem (2.25)-(2.26) has at least one solution
on J .



Chapitre 3

IFDEs with Integral Boundary
Conditions (3)

1

3.1 Introduction

In this chapter, we are concerned with the existence of solutions for the following
fractional differential equations with integral boundary conditions :

cDαy(t) = f(t, y(t),cDαy(t)), for each t ∈ J = [0, b], 0 < α < 1, (3.1)

y(0) + λ

∫ b

0

y(t)dt = y(b), (3.2)

where cDα is the Caputo fractional derivative, f : J × R × R is a given function, and
λ ∈ (0,+∞).
we present two results for the problem (3.1)-(3.2). The first one is based on the Banach
contraction principle, the second one on Schauder’s fixed point theorem. Finally, we
present two illustrative examples.

In [47] Benchohra and Mostefai studied the existence of weak solutions, for the
boundary value problem, for fractional differential equations with mixed boundary
conditions of the form

cDαx(t) = f(t, x(t)), for each t ∈ I = [0, T ], 0 < α 6 1,

x(0) + µ

∫ T

0

x(t)dt = x(T ),

1(3) [43] Benchohra and K. Maazouz, Existence and uniqueness results for implicit fractional
differential equations with integral boundary conditions. Commun. Appl. Anal. 20 (2016), 355-366.

35
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where cDα is the Caputo fractional derivative, f : I × E −→ E is a given function.
E is a Banach space , and µ ∈ R∗. To investigate the existence of solutions of the
problem above, they used Mönch’s fixed point theorem combined with the technique
of measures of weak noncompactness, which is an important method for seeking solu-
tions of differential equations. This technique was mainly initiated in the monograph
of Banas and Goebel [24] and subsequently developed and used in many papers ; see,
for example, Banas et al. [25].

In [33] Hamani et al. studied the existence and uniqueness of solutions of the boun-
dary value problem with fractional order differential inclusions and nonlinear integral
conditions of the form

cDαy(t) ∈ F (t, y), for each t ∈ I = [0, T ], 1 < α 6 2,

y(0)− y′(0) =

∫ T

0

g(s, y)ds,

y(T ) + y′(T ) =

∫ T

0

h(s, y)ds,

where cDα is the Caputo fractional derivative, F : J × R −→ P (R) is a multivalued
map, (P (R) is the family of all nonempty subsets of R), and g, h : J×R → R are given
continuous functions.

In [48] Benchohra and Ouaar studied the existence of solutions, for following boun-
dary value problem for fractional differential equations with mixed boundary condi-
tions.

cDαy(t) = f(t, y(t)), for each t ∈ J = [0, T ], α ∈ (0, 1],

y(0) + µ

∫ T

0

y(s)ds = y(T ),

where cDα is the Caputo fractional derivative, f : J×R −→ R is a given function, and
µ ∈ R∗.

3.2 Existence of solutions

Let us defining what we mean by a solution of problem (3.1)-(3.2)

Definition 3.2.1 A function y ∈ C1(J,R) is said to be a solution of (3.1)-(3.2) if y
satisfies
the equation cDαy(t) = f(t, y(t),cDαy(t)) on J , and the condition (3.2).

For the existence results for the problem (3.1)-(3.2) we need the following auxiliary
lemmas.
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Lemma 3.2.2 Let 0 < α < 1 and let h ∈ C(J,R) be a given function. Then the
boundary value problem

cDαy(t) = h(t), t ∈ J, (3.3)

y(0) + λ

∫ b

0

y(t)dt = y(b) (3.4)

has a unique solution given by

y(t) =

∫ b

0

G(t, s)h(s)ds

where G(t, s) is the Green’s function defined by

G(t, s) =


1

bΓ(α)

((b− s)α−1

λ
+
αb(t− s)α−1 − (b− s)α

α

)
if 0 6 s < t

1

bΓ(α)

((b− s)α−1

λ
− (b− s)α

α

)
if t 6 s < b.

(3.5)

Proof. By Lemma 1.1.10 we have

y(t) = Iα(cDαy(t))

= Iαh(t)− c0 for some constant c0 ∈ R.

=
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds− c0.

We have by integration using Fubini’s integral theorem∫ b

0

y(s)ds =

∫ b

0

( 1

Γ(α)

∫ t

0

(t− τ)α−1h(τ)dτ − c0

)
ds

=

∫ b

0

( 1

Γ(α)

∫ b

τ

(s− τ)α−1ds
)
h(τ)dτ − c0b

=
1

Γ(α+ 1)

∫ b

0

(b− τ)αh(τ)dτ − c0b.

Applying the boundary condition (3.2), we have y(0) = −c0

y(b) =
1

Γ(α)

∫ b

0

(b− s)α−1h(s)ds− c0

that is

c0 =
1

bΓ(α)

∫ b

0

(
(b− s)α

α
− (b− s)α−1

λ

)
(h(s)ds.
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Therefore, the unique solution of (3.3)-(3.4) is

y(t) =
1

Γ(α)

[∫ t

0

(t− s)α−1h(s)ds+
1

b

∫ b

0

((b− s)α−1

λ
− (b− s)α

α

)
h(s)ds

]

=
1

Γ(α)

[∫ t

0

(t− s)α−1 +
1

b

((b− s)α−1

λ
− (b− s)α

α

)]
h(s)ds

+
1

bΓ(α)

∫ b

t

(
(b− s)α−1

λ
− (b− s)α

α

)
h(s)ds

=

∫ b

0

G(t, s)h(s)ds.

Remark 3.2.3 The function t ∈ J 7−→
∫ b

0

G(t, s)ds is continuous on J , and hence is

bounded. Let

G∗ = sup
t∈J

{∫ b

0

|G(t, s)|ds
}
.

Lemma 3.2.4 A function y ∈ C1(J,R) is a solution of the problem (3.1)-(3.2) if and
only if y ∈ C(J,R) is a solution of the integral equation

y(t) =

∫ b

0

G(t, s)ϕ(s)ds, (3.6)

where G(t, s) is the Green’s function given by (3.5) and ϕ ∈ C(J,R) satisfies the
implicit functional equation

ϕ(s) = f(s, y(s), ϕ(s)).

Theorem 3.2.5 Assume that
(H1) f : J × R× R −→ R is continuous.
(H2) There exist constants 0 < l < 1 and k > 0 such that

|f(t, x, y)− f(t, x, y)| 6 k|x− x|+ l|y − y|

for any x, y, x, y ∈ R, and t ∈ J .
If

bkG∗

1− l
< 1,

then there exists a unique solution for the problem (3.1)-(3.2).
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Proof. We transform the problem (3.1)-(3.2) into fixed point problem. Consider the
operator
A : C(J,R) −→ C(J,R) defined by

A(y)(t) =

∫ b

0

G(t, s)ϕ(s)ds, (3.7)

where G(t, s) is the Green’s function given by (3.5) and ϕ ∈ C(J,R) satisfies the
implicit functional equation

ϕ(s) = f(s, y(s), ϕ(s)).

Clearly, from Lemmas 3.2.2 and 3.2.4 , the fixed points of A are solutions to the pro-
blem (3.1)-(3.2). We shall show that A is a contraction.
Let u, v ∈ C(J,R). Then, for each t ∈ J , we have

(Au)(t)− (Av)(t) =

∫ b

0

G(t, s)
(
ϕ(s)− ψ(s))ds,

where
ϕ(s) = f(s, u(s), ϕ(s)

)
,

ψ(s) = f(s, v(s), ψ(s)),

and
|ϕ(s)− ψ(s)| 6 k|u(s)− v(s)|+ l|ϕ(s)− ψ(s)|.

Thus,

|ϕ(s)− ψ(s)| 6 k

1− l
|u(s)− v(s)|.

Then, ∣∣∣(Au)(t)− (Av)(t)
∣∣∣ 6

∫ b

0

∣∣∣G(t, s)
(
ϕ(s)− ψ(s))

∣∣∣ds
6

k

1− l

∫ b

0

|G(t, s)||u(s)− v(s)|ds

6
bkG∗

1− l
‖u− v‖∞.

Thus

‖Au− Av‖∞ 6
bkG∗

1− l
‖u− v‖∞.

Since
bkG∗

1− l
< 1, the operator A is a contraction.

Then by Banach’s fixed point theorem, the problem (3.1)-(3.2) has a unique solution
on [0, b].
Now we give an existence result based on Schauder’s fixed point theorem.
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Theorem 3.2.6 Assume (H1) and (H2) hold. If

1− l − bkG∗ > 0, (3.8)

the problem (3.1)-(3.2) has at least one solution.

Proof. Let
D = {y ∈ C(J,R) : ‖y‖∞ 6 γ}

where

γ >
bf ∗G∗

1− l − bkG∗ , (3.9)

with f ∗ = sup
t∈J

|f(t, 0, 0)| .

It is clear that D is a closed, convex subset of C(J,R). Let the operator A be defined
in (3.7). We shall show that A satisfies the assumptions of Schauder’s fixed point
Theorem. The proof will be given in several steps.
Step 1 : A is continuous.
Let {un} be a sequence such that un −→ u in C(J,R). Then for each t ∈ J , we have

ϕn(s) = f(s, un(s), ϕn(s)
)

and
ϕ(s) = f(s, u(s), ϕ(s)).

We have
|ϕn(s)− ϕ(s)| 6 k|un(s)− u(s)|+ l|ϕn(s)− ϕ(s)|.

Thus,

|ϕn(s)− ϕ(s)| 6 k

1− l
|un(s)− u(s)|.

Then, ∣∣∣(Aun)(t)− (Au)(t)
∣∣∣ 6

∫ b

0

∣∣∣G(t, s)
(
ϕn(s)− ϕ(s))

∣∣∣ds
6

k

1− l

∫ b

0

|G(t, s)||un(s)− u(s)|ds.

Since un −→ u, we get ϕn −→ ϕ, and the Lebesgue dominated convergence Theorem
implies that

‖A(un)− A(u)‖∞ −→ 0 as n −→∞.

Hence then A is continuous.
Step 2 : A(D) ⊂ D
Let y ∈ D. We will show that Ay ∈ D. For each t ∈ J , we have

|(Ay)(t)| =
∣∣∣ ∫ b

0

G(t, s)ϕ(s)ds
∣∣∣
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6
∫ b

0

|G(t, s)||ϕ(s)|ds.

By (H2) we have

|ϕ(s)| = |f(s, y(s), ϕ(s))|
6 |f(s, y(s), ϕ(s))− f(s, 0, 0)|+ |f(s, 0, 0)|
6 k|y(s)|+ l|ϕ(s)|+ |f(s, 0, 0)|

6
k|y(s)|+ |f(s, 0, 0)|

1− l

6
k‖y‖∞ + f ∗

1− l
.

Then,

|(Ay)(t)| 6
k‖y‖∞ + f ∗

1− l

∫ b

0

|G(t, s)|ds

6
k‖y‖∞ + f ∗

1− l
bG∗

6
kγ + f ∗

1− l
bG∗.

By (3.9) we have
‖Ay‖∞ 6 γ,

so A(D) ⊂ D.
Step 3 : A maps D into a equicontinuous set of C(J,R).
Let y ∈ D, t1, t2 ∈ J , t1 < t2 ; then∣∣∣(Ay)(t2)− (Ay)(t1)

∣∣∣ =
∣∣∣ ∫ b

0

G(t2, s)ϕ(s))ds−
∫ b

0

G(t1, s)ϕ(s))ds
∣∣∣

6
∫ b

0

∣∣∣G(t2, s)−G(t1, s)
∣∣∣|ϕ(s)|ds

6
k‖y‖∞ + f ∗

1− l

∫ b

0

∣∣∣G(t2, s)−G(t1, s)
∣∣∣ds.

As t1 −→ t2 the right hand side of the above inequality tends to zero. By the Arzelà-
Ascoli Theorem, A is completely continuous. Therefore, we deduce that A has a fixed
point y which is a solution of problem (3.1)-(3.2).

3.2.1 Examples

In this section we give two examples to illustrate the usefulness of our main results.
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Example 3.2.7 Consider the boundary value problem

cD
1
2y(t) =

|y(t)|+ |cD 1
2y(t)|

10(1 + |y(t)|+ |cD 1
2y(t)|)

, t ∈ J = [0, 1], (3.10)

y(0) +

∫ 1

0

y(t)dt = y(1). (3.11)

Set

f(t, x, y) =
x+ y

10(1 + x+ y)
(t, x, y) ∈ J × [0,∞)× [0,∞).

It is clear that f is continuous.
Let x, y ∈ [0,∞) and t ∈ J ; then

|f(t, x, y)− f(t, x, y)| =
1

10

∣∣∣∣∣ x+ y

1 + x+ y
− x+ y

1 + x+ y

∣∣∣∣∣
=

1

10

∣∣∣∣∣ 1

1 + x+ y
− 1

1 + x+ y

∣∣∣∣∣
6

1

10

∣∣∣x+ y − x− y
∣∣∣

6
1

10

(
|x− x|+ |y − y|

)
.

Then the condition (H2) holds with

k = l =
1

10
.

From (3.5), G is given by

G(t, s) =


(1− s)−

1
2

Γ(1
2
)

+
1
2
(t− s)−

1
2 − (1− s)

1
2

1
2
Γ(1

2
)

if 0 6 s < t

(1− s)−
1
2

Γ(1
2
)

− (1− s)
1
2

1
2
Γ(1

2
)

if t 6 s < 1.

(3.12)

From (3.12) we have∫ 1

0

G(t, s)ds =

∫ t

0

G(t, s)ds+

∫ 1

t

G(t, s)ds

= −(1− t)
1
2

Γ(3
2
)

+
1

Γ(3
2
)

+
t

1
2

Γ(3
2
)

− 1

Γ(5
2
)

+
(1− t)

1
2

Γ(3
2
)
.
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We can easily see that

G∗ <
4

Γ(3
2
)

+
1

Γ(5
2
)
<

10√
π
.

Since 0 <
bkG∗
1− l

<
10

9
√
π
< 1, Theorem 3.2.5 implies that the problem (3.10)-(3.11)

has a unique solution.

Example 3.2.8 Consider the boundary value problem

cDαy(t) =
3 + |y(t)|+ |cDαy(t)|

(20 + et)(1 + |y(t)|+ |cDαy(t)|)
t ∈ J = [0, 1], α ∈ (0, 1), (3.13)

y(0) +

∫ 1

0

y(t)dt = y(1). (3.14)

Set

f(t, x, y) =
3 + |x|+ |y|

(20 + et)(1 + |x|+ |y|)
(t, x, y) ∈ J × R× R.

It is clear that f is continuous .
Let x, y ∈ R and t ∈ J ; then

|f(t, x, y)− f(t, x, y)| =
1

(20 + et)

∣∣∣∣∣3 + |x|+ |y|
1 + |x|+ |y|

− 3 + |x|+ |y|
1 + |x|+ |y|

∣∣∣∣∣
=

2

(20 + et)

∣∣∣∣∣ 1

1 + |x|+ |y|
− 1

1 + |x|+ |y|

∣∣∣∣∣
6

2

(20 + et)

∣∣∣|x|+ |y| − |x| − |y|
∣∣∣

6
1

10

(
|x− x|+ |y − y|

)
.

Then the assumption (H2) holds with

k = l =
1

10
.

And we have

f ∗ = sup
t∈J

|f(t, 0, 0)| = 1

7
.

From (3.5), G is given by

G(t, s) =


(1− s)α−1

Γ(α)
+
α(t− s)α−1 − (1− s)α

αΓ(α)
if 0 6 s < t

(1− s)α−1

Γ(α)
− (1− s)α

αΓ(α)
if t 6 s < 1.

(3.15)
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From (3.15) we have∫ 1

0

G(t, s)ds =

∫ t

0

G(t, s)ds+

∫ 1

t

G(t, s)ds

= − (1− t)α

Γ(α+ 1)
+

1

Γ(α+ 1)
+

tα

Γ(α+ 1)

− 1

Γ(α+ 2)
+

(1− t)α

Γ(α+ 1)
.

We can easily see that

G∗ <
4

Γ(α+ 1)
+

1

Γ(α+ 2)

Condition (3.9) is satisfied for appropriate values of α ∈ (0, 1). Theorem 3.2.6 implies
that the problem (3.13)-(3.14) has a at least one solution.



Chapitre 4

NBVP for Implicit Fractional
Differential Equations

4.1 Introduction

The purpose of this Chapter, is to establish existence and uniqueness results to the
following problems for implicit fractional-order differential equations :

cDαy(t) = f(t, y(t),cDαy(t)), for each t ∈ J = [0, T ], T > 0, 0 < α < 1, (4.1)

ay(0) + by(T ) = c (4.2)

where cDα is the fractional derivative of Caputo, f : J × R × R −→ R a continuous
function, and a, b, c are real constants with a+ b 6= 0.
and

cDαy(t) = f(t, y(t),cDαy(t)), for each t ∈ J = [0, T ], T > 0, 0 < α < 1, (4.3)

y(0) + g(y) = y0, (4.4)

where cDα is the Caputo fractional derivative, f : J ×R×R → R is a given function,
g : C(J,R) → R is a continuous function and y0 ∈ R. See ([41])

In [36], Benchohra et al. studied the existence of solutions for boundary value
problems, for following implicit fractional-order differential equation :

cDαy(t) = f(t, y(t)), for each t ∈ J = [0, T ], T > 0, 0 < α 6 1,

ay(0) + by(T ) = c,

where cDα is the Caputo fractional derivative, f : J × R → R is a given function and
a, b, c are real constants with a+ b 6= 0.

45
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In [35], Benchohra and Hamani studied the existence of solutions for boundary
value problems, for fractional order differential inclusions :

cDαy(t) ∈ F (t, y(t)) = 0, for each t ∈ J = [0, T ], 0 < α 6 1,

ay(0) + by(T ) = c,

where cDα is the Caputo fractional derivative, F : J×R → P(R) is a given multivalued
function and a, b, c are real constants with a+ b 6= 0.

In [84], Karthikeyan and Trujillo studied the existence of nonlinear fractional boun-
dary value problem :

cDαy(t) = ϕ(t)f(t, y(t), (Sy)(t)), for each t ∈ J = [0, T ], 0 < α < 1,

ay(0) + by(T ) = c,

where cDα is the Caputo fractional derivative of order α, f : J × X × X → X is a
given function, X is a Banach spaces and a, b, c are real constants with a+ b 6= 0, and
S is a nonlinear integral operator given by

(Sy)(t) =

∫ t

0

k(t, s)y(s)ds.

where k ∈ C(J × J,R+).

Fractional differential equations with nonlocal conditions have been discussed in
[4, 9, 59, 70, 101, 102] and references therein. Nonlocal conditions were initiated by
Byszewski [53] when he proved the existence and uniqueness of mild and classical
solutions of nonlocal Cauchy problems. As remarked by Byszewski [51, 52], the nonlocal
condition can be more useful than the standard initial condition to describe some
physical phenomena. For example, in [57], the author used

g(y) =

p∑
i=1

ciy(τi) (4.5)

where ci, i = 1, . . . , p, are given constants and 0 < τ1 < ... < τp 6 T , to describe
the diffusion phenomenon of a small amount of gas in a transparent tube. In this case,
(4.5) allows the additional measurements at τi, i = 1, . . . , p.

4.2 Existence of solutions

Let us defining what we mean by a solution of problem (4.1)-(4.2).
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Definition 4.2.1 A function u ∈ C(J,R) is said to be a solution of the problem (4.1)-
(4.2) if u satisfies equation (4.1) on J and condition (4.2).

For the existence of solutions for the problem (4.1)-(4.2), we need the following auxiliary
lemma :

Lemma 4.2.2 ([35]) Let 0 < α < 1 and g : J → R be continuous. Then the fractional
boundary value problem

cDαy(t) = ϕ(t), for each, t ∈ J, 0 < α < 1,

ay(0) + b(T ) = c,

where a, b, c are real constants with a+ b 6= 0, has a unique solution which is given by

y(t) =
c

a+ b
+

1

Γ(α)

∫ t

0

(t− s)α−1ϕ(s)ds

− b

(a+ b)Γ(α)

∫ T

0

(T − s)α−1ϕ(s)ds.

We are now in a position to state and prove the existence result for the problem (4.1)-
(4.2) based on Banach’s fixed point.

Theorem 4.2.3 Assume that
(H1) The function f : J × R× R → R is continuous.
(H2) There exist constants k > 0 and 0 < l < 1 such that

|f(t, u, v)− f(t, ū, v̄)| 6 k|u− ū|+ l|v − v̄| for any u, v, ū, v̄ ∈ R and t ∈ J.

If
kTα

(1− l)Γ(α+ 1)

(
1 +

|b|
|a+ b|

)
< 1, (4.6)

then there exists a unique solution for the problem (4.1)-(4.2) on J .

Proof. Transform the problem (4.1)-(4.2) into a fixed point problem. Define the
operator N : C(J,R) → C(J,R) by

N(y)(t) =
c

a+ b
+

1

Γ(α)

∫ t

0

(t− s)α−1ϕ(s)ds

− b

(a+ b)Γ(α)

∫ T

0

(T − s)α−1ϕ(s)ds,

(4.7)

where ϕ ∈ C(J,R) satisfies the functional equation

ϕ(t) = f(t, y(t), ϕ(t)).
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Clearly, the fixed points of operator N are solutions of problem (4.1)-(4.2). Let u,w ∈
C(J,R). Then for t ∈ J , we have

(Nu)(t)− (Nw)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1(ϕ(s)− ψ(s))ds

− b

(a+ b)Γ(α)

∫ T

0

(T − s)α−1(ϕ(s)− ψ(s))ds,

where ϕ, ψ ∈ C(J,R) be such that

ϕ(t) = f(t, u(t), ϕ(t)),

and
ψ(t) = f(t, w(t), ψ(t)).

Then, for t ∈ J

|(Nu)(t)− (Nw)(t)| 6
1

Γ(α)

∫ t

0

(t− s)α−1|ϕ(s)− ψ(s)|ds

+
|b|

|a+ b|Γ(α)

∫ T

0

(T − s)α−1|ϕ(s)− ψ(s)|ds.
(4.8)

By (H2) we have

|ϕ(t)− ψ(t)| = |f(t, u(t), ϕ(t))− f(t, w(t), ψ(t))|
6 k|u(t)− w(t)|+ l|ϕ(t)− ψ(t)|.

Thus

|ϕ(t)− ψ(t)| 6 k

1− l
|u(t)− w(t)|.

By (4.8) we have, for t ∈ J

|(Nu)(t)− (Nw)(t)| 6
k

(1− l)Γ(α)

∫ t

0

(t− s)α−1|u(s)− w(s)|ds

+
|b|k

|a+ b|(1− l)Γ(α)

∫ T

0

(T − s)α−1|u(s)− w(s)|ds

6
kTα

(1− l)Γ(α+ 1)

(
1 +

|b|
|a+ b|

)
‖u− w‖∞.

Then,

‖Nu−Nw‖∞ ≤ KTα

(1− L)Γ(α+ 1)

(
1 +

|b|
|a+ b|

)
‖u− w‖∞.

By (4.6), the operator N is a contraction. Hence, by Banach’s Contraction Principle,
N has a unique fixed point which is a solution of the problem (4.1)-(4.2).

The next existence result is based on Schauder’s fixed point Theorem.
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Theorem 4.2.4 Assume (H1),(H2) and the following hypothesis holds.
(H3) There exist p, q, r ∈ C(J,R+) with r∗ = sup

t∈J
r(t) < 1 such that

|f(t, u, w)| 6 p(t) + q(t)|u|+ r(t)|w| for t ∈ J and u,w ∈ R.

If

q∗M

(
1 +

|b|
|a+ b|

)
< 1, (4.9)

where q∗ = sup
t∈J

q(t), and M = Tα

(1−r∗)Γ(α+1)
, then the problem (4.1)-(4.2) has at least

one solution.

Proof. Let the operator N defined in (4.7). We shall show that N satisfies the assump-
tions of Schauder’s fixed point Theorem. The proof will be given in several steps.

Step 1 : N is continuous.
Let {un} be a sequence such that un → u in C(J,R). Then for each t ∈ J

|N(un)(t)−N(u)(t)| 6
1

Γ(α)

∫ t

0

(t− s)α−1|ϕn(s)− ϕ(s)|ds

+
|b|

|a+ b|Γ(α)

∫ T

0

(T − s)α−1|ϕn(s)− ϕ(s)|ds,
(4.10)

where ϕn, ϕ ∈ C(J,R) such that

ϕn(t) = f(t, un(t), ϕn(t)),

and
ϕ(t) = f(t, u(t), ϕ(t)).

By (H2) we have

|ϕn(t)− ϕ(t)| = |f(t, un(t), ϕn(t))− f(t, u(t), ϕ(t))|
6 k|un(t)− u(t)|+ l|ϕn(t)− ϕ(t)|.

Then

|ϕn(t)− ϕ(t)| 6 k

1− l
|un(t)− u(t)|.

Since un → u, then we get ϕn(t) → ϕ(t) as n → ∞ for each t ∈ J, and let η > 0 be
such that, for each t ∈ J , |ϕn(t)| 6 η and |ϕ(t)| 6 η, then, we have

(t− s)α−1|ϕn(s)− ϕ(s)| 6 (t− s)α−1[|ϕn(s)|+ |ϕ(s)|]
6 2η(t− s)α−1.
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For each t ∈ J , the function s→ 2η(t− s)α−1 is integrable on [0, t], then the Lebesgue
Dominated Convergence Theorem and (4.10) imply that

|N(un)(t)−N(u)(t)| → 0 as n→∞,

and hence
‖N(un)−N(u)‖∞ → 0 as n→∞.

Consequently, N is continuous.

Let p∗ = sup
t∈J

p(t), and

|c|
|a+b| +

(
1 + |b|

|a+b|

)
p∗M

1−
(
1 + |b|

|a+b|

)
q∗M

6 R,

and define the set
DR = {u ∈ C(J,R) : ‖u‖∞ 6 R}.

It is clear that DR is a bounded, closed and convex subset of C(J,R).

Step 2 : N(DR) ⊂ DR.

Let u ∈ DR we show that Nu ∈ DR. We have, for each t ∈ J

|Nu(t)| 6
|c|

|a+ b|
+

1

Γ(α)

∫ t

0

(t− s)α−1|ϕ(s)|ds

+
|b|

|a+ b|Γ(α)

∫ T

0

(T − s)α−1|ϕ(s)|ds.
(4.11)

By (H3) we have for each t ∈ J,

|ϕ(t)| = |f(t, u(t), ϕ(t))|
6 p(t) + q(t)|u(t)|+ r(t)|ϕ(t)|
6 p(t) + q(t)R + r(t)|ϕ(t)|
6 p∗ + q∗R + r∗|ϕ(t)|.

Then

|ϕ(t)| 6 p∗ + q∗R

1− r∗
:= M1.

Thus (4.11) implies that

|Nu(t)| 6
|c|

|a+ b|
+

(p∗ + q∗R)Tα

(1− r∗)Γ(α+ 1)
+

|b|(p∗ + q∗R)Tα

|a+ b|(1− r∗)Γ(α+ 1)
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6
|c|

|a+ b|
+ (p∗ + q∗R)M +

|b|(p∗ + q∗R)M

|a+ b|

6
|c|

|a+ b|
+ p∗M

(
1 +

|b|
|a+ b|

)
+ q∗M

(
1 +

|b|
|a+ b|

)
R

6 R.

Then N(DR) ⊂ DR.

Step 3 : N(DR) is relatively compact.

Let t1, t2 ∈ J, t1 < t2, and let u ∈ DR. Then

|N(u)(t2)−N(u)(t1)| =

∣∣∣∣ 1

Γ(α)

∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]ϕ(s)ds

+
1

Γ(α)

∫ t2

t1

[(t2 − s)α−1ϕ(s)ds

∣∣∣∣
6

M1

Γ(α+ 1)
(tα2 − tα1 + 2(t2 − t1)

α).

As t1 → t2, the right-hand side of the above inequality tends to zero.
As a consequence of Steps 1 to 3 together with the Arzelá-Ascoli theorem, we

conclude that N : C(J,R) → C(J,R) is continuous and compact. As a consequence of
Schauder’s fixed point theorem ([67]), we deduce that N has a fixed point which is a
solution of the problem (4.1)-(4.2).

The next existence result is based on Nonlinear alternative of Leray-Schauder type.

Theorem 4.2.5 Assume (H1)-(H3) and (4.9) hold. Then the problem (4.1)-(4.2) has
at least one solution.

Proof. Consider the operator N defined in (4.7). We shall show that N satisfies the
assumptions of Leray-Schauder fixed point theorem. The proof will be given in several
steps.

Step 1 : Clearly N is continuous.

Step 2 : N maps bounded sets into bounded sets in C(J,R).

Indeed, it is enough to show that for any ρ > 0, there exist a positive constant `
such that for each u ∈ Bρ = {u ∈ C(J,R) : ‖u‖∞ 6 ρ}, we have ‖N(u)‖∞ 6 `.

For u ∈ Bρ, we have, for each t ∈ J ,

|Nu(t)| 6
|c|

|a+ b|
+

1

Γ(α)

∫ t

0

(t− s)α−1|ϕ(s)|ds

+
|b|

|a+ b|Γ(α)

∫ T

0

(T − s)α−1|ϕ(s)|ds.
(4.12)
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By (H3) we have for each t ∈ J,

|ϕ(t)| = |f(t, u(t), ϕ(t))|
6 p(t) + q(t)|u(t)|+ r(t)|ϕ(t)|
6 p(t) + q(t)ρ+ r(t)|ϕ(t)|
6 p∗ + q∗ρ+ r∗|ϕ(t)|.

Then

|ϕ(t)| 6 p∗ + q∗ρ

1− r∗
:= M∗.

Thus (4.12) implies that

|Nu(t)| 6
|c|

|a+ b|
+

M∗Tα

Γ(α+ 1)
+

|b|M∗Tα

|a+ b|Γ(α+ 1)
.

Consequently,

‖Nu‖∞ 6
|c|

|a+ b|
+

M∗Tα

Γ(α+ 1)
+

|b|M∗Tα

|a+ b|Γ(α+ 1)
:= l.

Step 3 : Clearly, N maps bounded sets into equicontinuous sets of C(J,R).

We conclude that N : C(J,R) −→ C(J,R) is completely continuous.

Last step : A priori bound.

We now show there exists an open set U ⊆ C(J,R) with u 6= λN(u), for λ ∈ (0, 1)
and u ∈ ∂U . Let u ∈ C(J,R) and u = λN(u) for some 0 < λ < 1. Thus for each t ∈ J ,
we have

u(t) = λ
c

a+ b
+

λ

Γ(α)

∫ t

0

(t− s)α−1ϕ(s)ds+
λb

(a+ b)Γ(α)

∫ T

0

(T − s)α−1|ϕ(s)|ds.

This implies by (H2) that for each t ∈ J

|u(t)| ≤ |c|
|a+ b|

+
1

Γ(α)

∫ t

0

(t− s)α−1ϕ(s)ds

+
|b|

|a+ b|Γ(α)

∫ T

0

(T − s)α−1|ϕ(s)|ds.
(4.13)

And, by (H3) we have, for each t ∈ J,

|ϕ(t)| = |f(t, u(t), ϕ(t))|
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6 p(t) + q(t)|u(t)|+ r(t)|ϕ(t)|
6 p∗ + q∗|u(t)|+ r∗|ϕ(t)|.

Thus

|ϕ(t)| 6 1

1− r∗
(p∗ + q∗|u(t)|).

Hence

|u(t)| 6
|c|

|a+ b|
+

p∗Tα

(1− r∗)Γ(α+ 1)

(
1 +

|b|
|a+ b|

)
+

q∗

(1− r∗)Γ(α)

∫ t

0

(t− s)α−1|u(s)|ds

+
|b|q∗

(1− r∗)|a+ b|Γ(α)

∫ T

0

(T − s)α−1|u(s)|ds

6
|c|

|a+ b|
+

p∗Tα

(1− r∗)Γ(α+ 1)

(
1 +

|b|
|a+ b|

)
+

q∗‖u‖∞
(1− r∗)Γ(α)

∫ t

0

(t− s)α−1ds

+
|b|q∗‖u‖∞

(1− r∗)|a+ b|Γ(α)

∫ T

0

(T − s)α−1ds

6
|c|

|a+ b|
+

p∗Tα

(1− r∗)Γ(α+ 1)

(
1 +

|b|
|a+ b|

)
+

q∗Tα

(1− r∗)Γ(α+ 1)

(
1 +

|b|
|a+ b|

)
‖u‖∞.

Then

‖u‖∞ 6 |c|
|a+b| +

p∗Tα

(1− r∗)Γ(α+ 1)

(
1 +

|b|
|a+ b|

)
+

q∗Tα

(1− r∗)Γ(α+ 1)

(
1 +

|b|
|a+ b|

)
‖u‖∞.

Thus

‖u‖∞
[
1−

(
1 +

|b|
|a+ b|

)
q∗M

]
6

|c|
|a+ b|

+

(
1 +

|b|
|a+ b|

)
p∗M.

Consequently,

‖u‖∞ 6

|c|
|a+b| +

(
1 + |b|

|a+b|

)
p∗M

1−
(
1 + |b|

|a+b|

)
q∗M

:= M. (4.14)

Let
U = {u ∈ C(J,R) : ‖u‖∞ < M + 1}.

By the choice of U , there is no u ∈ ∂U such that u = λN(u), for λ ∈ (0, 1). As a
consequence of Leray-Schauder’s theorem ([67]), we deduce that N has a fixed point u
in U which is a solution to (4.1)-(4.2).
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4.2.1 Examples

Example 1. Consider the following boundary value problem

cD
1
2y(t) =

1

10et+2(1 + |y(t)|+ |cD 1
2y(t)|)

, for each, t ∈ [0, 1], (4.15)

y(0) + y(1) = 0. (4.16)

Set

f(t, u, v) =
1

10et+2(1 + |u|+ |v|)
, t ∈ [0, 1], u, v ∈ R

Clearly, the function f is jointly continuous.
For any u, v, ū, v̄ ∈ R and t ∈ [0, 1]

|f(t, u, v)− f(t, ū, v̄)| 6 1

10e2
(|u− ū|+ |v − v̄|).

Hence condition (H2) is satisfied with k = l = 1
10e2

.
Thus condition

kTα

(1− l)Γ(α+ 1)

(
1 +

|b|
|a+ b|

)
=

3

2(10e2 − 1)Γ(3
2
)

=
3

(10e2 − 1)
√
π
< 1,

is satisfied with a = b = T = 1, c = 0, and α = 1
2
. It follows from Theorem 4.2.3 that

the problem (4.15)-(4.16) as a unique solution on J .

Example 2. Consider the following boundary value problem

cD
1
2y(t) =

(2 + |y(t)|+ |cD 1
2y(t)|)

12et+9(1 + |y(t)|+ |cD 1
2y(t)|)

, for each, t ∈ [0, 1], (4.17)

1

2
y(0) +

1

2
y(1) = 1. (4.18)

Set

f(t, u, v) =
(2 + |u|+ |v|)

12et+9(1 + |u|+ |v|)
, t ∈ [0, 1], u, v ∈ R.

Clearly, the function f is continuous.
For any u, v, ū, v̄ ∈ R and t ∈ [0, 1]

|f(t, u, v)− f(t, ū, v̄)| 6 1

12e9
(|u− ū|+ |v − v̄|).

Hence condition (H2) is satisfied with k = l = 1
12e9

. Also, we have,

|f(t, u, v)| 6 1

12et+9
(2 + |u|+ |v|).
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Thus condition (H3) is satisfied with p(t) = 1
6et+9 and q(t) = r(t) = 1

12et+9 . And
condition

q∗M

(
1 +

|b|
|a+ b|

)
=

3

2(12e9 − 1)Γ(3
2
)

=
3

(12e9 − 1)
√
π
< 1,

is satisfied with a = b = 1
2
, c = T = 1, α = 1

2
, and q∗ = r∗ = 1

12e9
.

It follows from Theorem 4.2.4 that the problem (4.17)-(4.18) has at least one solu-
tion on J .

4.3 Nonlocal problems

4.3.1 Existence of solutions

Let us defining what we mean by a solution of problem (4.3)− (4.4).

Definition 4.3.1 A function u ∈ C1(J,R) is said to be a solution of the problem
(4.3)− (4.4) is u satisfied equation (4.3) on J and condition (4.4).

For the existence of solutions for the problem (4.3) − (4.4), we need the following
auxiliary lemma :

Lemma 4.3.2 Let f : J × R × R → R be a continuous function. Then the problem
(4.3)− (4.4) is equivalent to the problem :

y(t) = y0 − ϕ(y) + Iαg(t) (4.19)

where g ∈ C(J,R) satisfies the functional equation :

g(t) = f(t, y0 − ϕ(y) + Iαg(t), g(t)).

Proof. If cDαy(t) = g(t) then Iα cDαy(t) = Iαg(t). So we obtain y(t) = y0−ϕ(y)+
Iαg(t).

We are now in a position to state and prove the existence result for the problem
(4.3)− (4.4) based on Banach’s fixed point.

Theorem 4.3.3 Assume
(H1) The function f : J × R× R → R is continuous.
(H2) There exist constants K > 0 and 0 < L < 1 such that

|f(t, u, v)− f(t, ū, v̄)| 6 K|u− ū|+ L|v − v̄|, for any u, v, ū, v̄ ∈ R, t ∈ J.
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(H3) There exists a constant 0 < γ < 1 such that

|ϕ(u)− ϕ(ū)| 6 γ|u− ū|, for any u, ū ∈ C(J,R).

If

C := γ +
KTα

(1− L)Γ(α+ 1)
< 1, (4.20)

then there exists a unique solution for the problem (4.3-(4.4) on J .

Proof. Transform the problem (4.3-(4.4) into a fixed point problem. Define the operator
N : C(J,R) → C(J,R) by :

N(y)(t) = y0 − ϕ(y) + Iαg(t), (4.21)

where g ∈ C(J,R) satisfies the functional equation

g(t) = f(t, y(t), g(t)).

Clearly, the fixed points of operator N are solutions of problem (4.3-(4.4). Let u,w ∈
C(J,R). Then for t ∈ J , we have

(Nu)(t)− (Nw)(t) = ϕ(w)− ϕ(u)

+
1

Γ(α)

∫ t

0

(t− s)α−1(g(s)− h(s))ds,

where g, h ∈ C(J,R) be such that

g(t) = f(t, u(t), g(t)),

h(t) = f(t, w(t), h(t)).

Then, for t ∈ J

|(Nu)(t)− (Nw)(t)| 6 |ϕ(u)− ϕ(w)|

+
1

Γ(α)

∫ t

0

(t− s)α−1|g(s)− h(s)|ds. (4.22)

By (H2) we have

|g(t)− h(t)| = |f(t, u(t), g(t))− f(t, w(t), h(t))|
6 K|u(t)− w(t)|+ L|g(t)− h(t)|.

Thus

|g(t)− h(t)| 6 K

1− L
|u(t)− w(t)|.
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By (4.22) and (H3) we have

|(Nu)(t)− (Nw)(t)| 6 γ|u(t)− w(t)|

+
K

(1− L)Γ(α)

∫ t

0

(t− s)α−1|u(s)− w(s)|ds

6 γ‖u− w‖∞

+ sup
06t6T

|u(t)− w(t)| K

(1− L)Γ(α)

∫ t

0

(t− s)α−1ds

6 γ‖u− w‖∞ +
KTα

(1− L)Γ(α+ 1)
‖u− w‖∞.

Then

‖Nu−Nw‖∞ 6

[
γ +

KTα

(1− L)Γ(α+ 1)

]
‖u− w‖∞.

By (4.20), the operator N is a contraction. Hence, by Banach’s contraction principle,
N has a unique fixed point which is a solution of the problem (4.3-(4.4).

4.3.2 An example

Consider the following problem with nonlocal conditions

cD
1
2y(t) =

1

2et+1(1 + |y(t)|+ |cD 1
2y(t)|)

, for each t ∈ [0, 1], (4.23)

y(0) + ϕ(y) = 1, (4.24)

where

ϕ(y) =
|y|

10 + |y|
.

Set

f(t, u, v) =
1

2et+1(1 + |u|+ |v|)
, t ∈ [0, 1], u, v ∈ R.

Clearly, the function f is continuous.
For any u, v, ū, v̄ ∈ R and t ∈ [0, 1] :

|f(t, u, v)− f(t, ū, v̄)| 6 1

2e
(|u− ū|+ |v − v̄|).

Hence condition (H2) is satisfied with K = L = 1
2e
.

Let
ϕ(u) =

u

10 + u
, u ∈ [0,∞).

Let u, v ∈ [0,∞). Then we have

|ϕ(u)− ϕ(v)| =
∣∣ u

10 + u
− v

10 + v

∣∣ =
10|u− v|

(10 + u)(10 + v)
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6
1

10
|u− v|.

Thus condition

C = γ +
KTα

(1− L)Γ(α+ 1)
< 1,

is satisfied with T = 1, γ = 1
10

and α = 1
2
. It follows from Theorem 4.3.3 that the

problem (4.23)-(4.24) has a unique solution on [0, 1].



Chapitre 5

Nonlinear Implicit FDEs in Fréchet
Spaces (5)

1

5.1 Introduction

The purpose of this Section, is to establish existence and uniqueness results to the
following implicit fractional differential equation with delay in Fréchet Spaces.

cDαy(t) = f(t, yt,
cDαy(t)), t ∈ J = [0,+∞) 0 < α < 1 (5.1)

y(t) = ϕ(t), t ∈ [−r, 0], r > 0 (5.2)

where cDα is the Caputo fractional derivative. f : J × C([−r, 0],R) × R −→ R is a
given function such that ϕ ∈ C([−r, 0],R).
For each function y defined on [−r,∞) and for any t ∈ J , we denote by yt the element
of C([−r, 0],R) by :

yt(θ) = y(t+ θ), θ ∈ [−r, 0].

yt(·) represents the history of system state from time t− r to time t.

Section 5.2 is devoted to fractional neutral functional differential equations,

cDα[y(t)− g(t, yt)] = f(t, yt,
cDαy(t)), t ∈ J = [0,+∞) 0 < α < 1 (5.3)

y(t) = ϕ(t), t ∈ [−r, 0], r > 0 (5.4)

where g : J × C([−r, 0],R) → R is a given function such that g(0, ϕ) = 0.

1(5) [44] M. Benchohra and K. Maazouz, Existence and uniqueness results for nonlinear implicit
fractional differential equations with delay in Fréchet spaces, Commun. Appl. Nonl. Anal. 23(2016),
48-59.

59
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We shall present uniqueness results for the problems (5.1)-(5.2) and (5.3)-(5.4). Our
approach will be based upon a recent nonlinear alternative of Leray-Schauder type in
Fréchet spaces due to Frigon and Granas [62].

Very recently Baghli and Benchohra considered in [20] a class of partial functional
evolution equations in Fréchet spaces.

In [28] Belarbi et al. discussed the existence of solutions for following initial value
problem with infinite delay on unbounded interval

Dαy(t) = f(t, yt) t ∈ J = [0,∞), 0 < α < 1,

y(t) = φ(t), t ∈ (−∞, 0],

where f : J × B → Rn is a given function, and φ ∈ B, B is the phase space, and yt is
the element of B defined by

yt(θ) = y(t+ θ), θ ∈ (−∞, 0].

The notion of the phase space B plays an important role in the study of both
qualitative and quantitative theory. A usual choice is a semi-normed space satisfying
suitable axioms which was introduced by Hale and Kato [71].

In [39] Benchohra et al. discussed the existence of solutions for following initial
value problem with infinite delay

Dαy(t) = f(t, yt) t ∈ J = [0, b], 0 < α < 1,

y(t) = φ(t), t ∈ (−∞, 0],

where is the Riemman-Liouville fractional derivative, f : J×B → R is a given function,
φ ∈ B, φ(0) = 0, and B is phase space.

5.2 Nonlinear Implicit FDEs with Delay in Fréchet

Spaces

5.2.1 IFDEs of fractional order

Let us start by defining what we mean by a solution of problem (5.1)-(5.2). Let the
space

Ω = {y : [−r,∞) → R; y ∈ C([−r, 0],R) and y ∈ C1(J,R)}.

Definition 5.2.1 A function y ∈ Ω is called solution of the problem (5.1)-(5.2) if it
satisfies the equation cDαy(t) = f(t, yt,

cDαy(t)), on J and the condition y(t) = ϕ(t)
on [−r, 0].
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Lemma 5.2.2 Let 0 < α < 1 and h : [0,∞) → R be a continuous function. Then the
problem {

cDαy(t) = h(t), t ∈ [0,∞)
y(t) = ϕ(t), t ∈ [−r, 0]

has a unique solution which is given by

y(t) =

 ϕ(0) +
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds, t ∈ [0,∞);

ϕ(t), t ∈ [−r, 0].

Lemma 5.2.3 Let f(t, u, v) : R+ × C([−r, 0],R) × R → R be a continuous function,
then the problem (5.1)-(5.2) is equivalent to the problem

y(t) =

{
ϕ(0) + Iαx(t), t ∈ [0,∞)
ϕ(t), t ∈ [−r, 0]

(5.5)

where x(t) ∈ C(R+,R) satisfies the functional equation

x(t) = f(t, yt, x(t)).

Proof. Let y be a solution of the problem (5.5), show that y is solution of (5.1)-(5.2).
We have

y(t) =

{
ϕ(0) + Iαx(t), t ∈ [0,∞)
ϕ(t), t ∈ [−r, 0].

for t ∈ [−r, 0], we have y(t) = ϕ(t), so the condition (5.2) is satisfied.
On the other hand, for t ∈ J , we have

cDαy(t) = x(t) = f(t, yt, x(t)).

So
cDαy(t) = f(t, yt,

cDαy(t)).

Then, y is a solution of the problem (5.1)-(5.2).

Theorem 5.2.4 Assume that
(H1) f : J × C([−r, 0],R)× R → R is a continuous function.
(H2) For each n ∈ N there exist kn, ln ∈ C(J0,R+) with l∗n = sup

t∈J0

ln(t) < 1 such that

|f(t, u, v)− f(t, u, v)| 6 kn(t)|u− u|+ ln(t)|v − v|

for any u, u ∈ C([−r, 0],R), v, v ∈ R, and t ∈ J0.
If

k∗nn
α

(1− l∗n)Γ(α+ 1)
< 1, (5.6)

where k∗n = sup
t∈J0

kn(t) , then the problem (5.1)-(5.2) has a unique solution.
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Proof. For every n ∈ N, we define in C(J,R) the seminorms by

‖y‖n := sup{|y(t)| : t ∈ J0 = [0, n]}.

Then C([−r,∞),R) is a Fréchet space with the family of semi-norms {‖.‖n}n∈N.
Transform the problem (5.1)-(5.2) into a fixed point problem. Consider the operator
T : C([−r,∞),R) → C([−r,∞),R) defined by

Ty(t) =

{
ϕ(0) + Iαx(t), t ∈ [0,∞)
ϕ(t), t ∈ [−r, 0].

It is clear that fixed points of T are solutions of the problem (5.1)-(5.2).
Let y be a possible solution of the problem (5.1)-(5.2). Given n ∈ N and t 6 n, such
that

y(t) = λTy(t), t ∈ [−r, n], n ∈ N, λ ∈ (0, 1)

y(t) =

{
λ
[
ϕ(0) + Iαx(t)

]
, t ∈ [0, n],

λϕ(t), t ∈ [−r, 0].

|y(t)| = λ
∣∣∣ϕ(0) +

1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys, x(s))
∣∣∣

6 |ϕ(0)|+ 1

Γ(α)

∫ t

0

(t− s)α−1
∣∣∣f(s, ys, x(s))− f(s, 0, 0)

∣∣∣ds+ Iα|f(s, 0, 0)|

6 |ϕ(0)|+ 1

Γ(α)

∫ t

0

(t− s)α−1
(
k∗n|ys|+ l∗n|x(s)|

)
ds+ Iα|f(s, 0, 0)|.

But by (H2) we have

|x(s)| 6 k∗n|ys|+ l∗n|x(s)| 6
k∗n|ys|
1− l∗n

.

Then

|y(t)| 6 |ϕ(0)|+ 1

Γ(α)

∫ t

0

(t− s)α−1 k∗n
1− l∗n

|ys|ds+ Iα|f(s, 0, 0)|

6 |ϕ(0)|+ k∗n
1− l∗n

‖y‖n
1

Γ(α)

∫ t

0

(t− s)α−1ds+ Iα|f(s, 0, 0)|

6 |ϕ(0)|+ k∗nn
α

(1− l∗n)Γ(α+ 1)
‖y‖n +

nαf ∗n
Γ(α+ 1)

where f ∗n = sup
t∈J0

|f(t, 0, 0)|.

Then

‖y‖n 6
|ϕ(0)|+ nαf ∗n

Γ(α+ 1)

1− k∗nn
α

(1− l∗n)Γ(α+ 1)

:= Mn.
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Now, set
Ω = {y ∈ C([−r,∞) : ‖y‖n 6 Mn + 1}.

Clearly, Ω is a closed subset of C(J,R). We shall show that T is a contraction operator.
Indeed, consider y, y ∈ Ω, if t ∈ [−r, 0], then

|Ty(t)− Ty(t)| = 0.

For t ∈ J , we have

|Ty(t)− Ty(t)| = |Iαx(t)− Iαx(t)| 6 Iα|x(t)− x(t)|. (5.7)

For any t ∈ J ,

|x(t)− x(t)| 6 |f(t, yt, x(t))− f(t, yt, x(t))|
6 kn(t)|yt − yt|+ ln(t)|x(t)− x(t)|
6 k∗n|yt − yt|+ l∗n|x(t)− x(t)|.

Thus

|x(t)− x(t)| 6 k∗n
1− l∗n

|yt − yt|

then (5.7) becomes

|Ty(t)− Ty(t)| 6
k∗n

(1− l∗n)Γ(α)

∫ t

0

(t− s)|ys − ys|ds

6
k∗nn

α

(1− l∗n)Γ(α+ 1)
‖yt − yt‖n

6
k∗nn

α

(1− l∗n)Γ(α+ 1)
‖y − y‖n.

Then

‖Ty(t)− Ty(t)‖n 6
k∗nn

α

(1− l∗n)Γ(α+ 1)
‖y − y‖n.

By (6.7) the operator T is a contraction for all n ∈ N.
From the choice of Ω, there is no y ∈ ∂Ω such that y = λTy, for some λ ∈ (0, 1). Then
the second statement (C2) in Theorem 1.5.7 does not hold. The nonlinear alternative
of Frigon-Granas shows that the first statement (C1) holds. Thus we deduce that the
operator T has a unique fixed-point y ∈ Ω which is a unique solution of problem
(5.1)-(5.2). This completes the proof.

5.2.2 IFDEs of neutral type

In this section we give existence results for problem (5.3)-(5.4).
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Definition 5.2.5 A function y ∈ Ω is called solution of the problem (5.3)-(5.4) if it

satisfies the equation cDα
[
y(t) − g(t, yt)

]
= f(t, yt,

cDαy(t)) on J and the condition

y(t) = ϕ(t) on [−r, 0].

Lemma 5.2.6 Let 0 < α < 1 and h : [0,∞) → R be a continuous function. Then the
problem {

cDα[y(t)− g(t, yt)] = h(t), t ∈ [0,∞)
y(t) = ϕ(t), t ∈ [−r, 0],

has a unique solution which is given by

y(t) =

 ϕ(0) + g(t, yt) +
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds, t ∈ [0,∞);

ϕ(t), t ∈ [−r, 0].

Lemma 5.2.7 Let f(t, u, v) : R+ × C([−r, 0],R) × R → R be a continuous function,
then the problem (5.3)-(5.4) is equivalent to the problem

y(t) =

{
ϕ(0) + Iαx(t), t ∈ [0,∞)
ϕ(t), t ∈ [−r, 0].

(5.8)

where x(t) ∈ C(R+,R) satisfies the functional equation

x(t) = f(t, yt, x(t)) +c Dαg(t, yt).

Proof. Let y be a solution of the problem (5.8). We show that y is solution of (5.3)-
(5.4). We have

y(t) =

{
ϕ(0) + Iαx(t), t ∈ [0,∞)
ϕ(t), t ∈ [−r, 0].

For t ∈ [−r, 0], we have y(t) = ϕ(t), so the condition (5.4) is satisfied.
On the other hand, for t ∈ J , we have

cDαy(t) = x(t) = f(t, yt, x(t)) +c Dαg(t, yt).

So
cDα[y(t)− g(t, yt)] = f(t, yt,

cDαy(t)).

Then, y is a solution of the problem (5.3)-(5.4).
In this work, we study the existence of the unique solution defined on the semi-infinite
positive real interval [0,∞) for a neutral differential equations of fractional order by
the use the nonlinear alternative of Frigon-Granas type for contraction maps in Fréchet
space. This is the subject of the following theorem.
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Theorem 5.2.8 Assume the conditions (H1),(H2) and the following conditions :
(H3) g : J × C([−r, 0],R) is continuous.
(H4) There exists mn ∈ C(J0,R+) such that

|g(t, u)− g(t, u)| 6 mn(t)|u− u|.

If
k∗nn

α

(1− l∗n)Γ(α+ 1)
+

m∗
n

(1− l∗n)
< 1, (5.9)

where m∗
n = sup

t∈J0

mn(t), then the problem (5.3)-(5.4) has a unique solution.

Proof. For every n ∈ N, we define in C(J,R) the seminorms by

‖y‖n := sup{|y(t)| : t ∈ J0 = [0, n]}.

Then C([−r,∞),R) is a Fréchet space with the family of semi-norms {‖.‖n}n∈N.
Transform the problem (5.3)-(5.4) into a fixed point problem. Consider the operator
T : C([−r,∞),R) → C([−r,∞),R) defined by

Ty(t) =

{
ϕ(0) + Iαx(t), t ∈ [0,∞)
ϕ(t), t ∈ [−r, 0].

It is clear that fixed points of T are solutions of the problem (5.3)-(5.4).
Let y be a possible solution of the problem (5.3)-(5.4). Given n ∈ N and t 6 n, such
that

y(t) = λTy(t), t ∈ [−r, n], n ∈ N, λ ∈ (0, 1)

y(t) =

{
λ
[
ϕ(0) + Iαx(t)

]
, t ∈ [0, n],

λϕ(t), t ∈ [−r, 0].

|y(t)| = λ
[
ϕ(0) +

1

Γ(α)

∫ t

0

(t− s)α−1
(
f(s, ys, x(s)) +c Dαg(s, ys)

)
ds
]

6 |ϕ(0)|+ 1

Γ(α)

∫ t

0

(t− s)α−1|f(s, ys, x(s))|ds+ |g(t, yt)|+ |g(0, y0)|

6 |ϕ(0)|+ 1

Γ(α)

∫ t

0

(t− s)α−1
∣∣∣f(s, ys, x(s))− f(s, 0, 0)

∣∣∣ds+ Iα|f(s, 0, 0)|+ |g(t, yt)|.

But by (H4) we have

|g(t, yt)| = |g(t, yt)− g(t, 0) + g(t, 0)|
6 mn(t)|yt|+ |g(t, 0)|
6 m∗

n‖y‖n + g∗n
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where g∗n = sup
t∈J0

|g(t, 0)|.

Then

|y(t)| 6 |ϕ(0)|+ nαk∗n
(1− l∗n)Γ(α+ 1)

‖y‖n +
nαf ∗n

Γ(α+ 1)
+m∗

n‖y‖n + g∗n.

Finally

‖y‖n 6
|ϕ(0)|+ g∗n +

nαf ∗n
Γ(α+ 1)

1−m∗
n −

nαk∗n
(1− l∗n)Γ(α+ 1)

:= M ′
n.

Now, set
Ω′ = {y ∈ C([−r,∞) : ‖y‖n 6 M ′

n + 1}.
Clearly, Ω′ is a closed subset of C(J,R). We shall show that T is a contraction operator.
Indeed, consider y, y ∈ Ω′. If t ∈ [−r, 0], then

|Ty(t)− Ty(t)| = 0.

For t ∈ J , we have

|Ty(t)− Ty(t)| = |Iαx(t)− Iαx(t)| 6 Iα|x(t)− x(t)|. (5.10)

For any t ∈ J ,

|x(t)− x(t)| 6 |f(t, yt, x(t))− f(t, yt, x(t))|+c Dα|g(t, yt)− g(t, yt)|
6 kn(t)|yt − yt|+ ln(t)|x(t)− x(t)|+c Dα|g(t, yt)− g(t, yt)|
6 k∗n|yt − yt|+ l∗n|x(t)− x(t)|+c Dα|g(t, yt)− g(t, yt)|.

Thus

|x(t)− x(t)| 6 k∗n
1− l∗n

|yt − yt|+
1

1− l∗n

cDα|g(t, yt)− g(t, yt)|.

Then (5.10) becomes

|Ty(t)− Ty(t)| 6
k∗n

(1− l∗n)Γ(α)

∫ t

0

(t− s)|ys − ys|ds+
1

1− l∗n
Iα
[
cDα|g(t, yt)− g(t, yt)|

]
6

k∗nn
α

(1− l∗n)Γ(α+ 1)
‖yt − yt‖n +

1

1− l∗n

[
|g(t, yt)− g(t, yt)|+ |g(0, y0)− g(0, y0)|

]
6

k∗nn
α

(1− l∗n)Γ(α+ 1)
‖yt − yt‖n +

1

1− l∗n
|g(t, yt)− g(t, yt)|

6
k∗nn

α

(1− l∗n)Γ(α+ 1)
‖y − y‖n +

m∗
n

1− l∗n
‖yt − yt‖n

6
[ k∗nn

α

(1− l∗n)Γ(α+ 1)
+

m∗
n

1− l∗n

]
‖y − y‖n.
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Then

‖Ty(t)− Ty(t)‖n 6
[ k∗nn

α

(1− l∗n)Γ(α+ 1)
+

m∗
n

1− l∗n

]
‖y − y‖n.

By (5.9) the operator T is a contraction for all n ∈ N.
From the choice of Ω′, there is no y ∈ ∂Ω′ such that y = λTy, for some λ ∈ (0, 1). Then
the second statement (C2) in Theorem 1.5.7 does not hold. The nonlinear alternative
of Frigon-Granas shows that the first statement (C1) holds. Thus we deduce that the
operator T has a unique fixed-point y ∈ Ω′ which is a unique solution of problem
(5.3)-(5.4). This completes the proof.

5.2.3 An example

In this section we give an example to illustrate our main results. Let us consider
the fractional functional differential equation with finite delay,

cDα
[
y(t)− 1

cn(2 + t)(1 + |yt|)

]
=

1 + |yt|+ |cDαy(t)|
cn(2 + t)

, t ∈ J = [0,∞), α ∈ (0, 1)

(5.11)
y(t) = ϕ(t), t ∈ [−r, 0], r > 0 (5.12)

where ϕ ∈ C([−r, 0],R).
Set

g(t, w) =
1

cn(2 + t)(1 + |w|)
, t ∈ J, w ∈ R

and

f(t, u, v) =
1 + |u|+ |v|
cn(2 + t)

, (t, u, v) ∈ J × R× R

where

cn =
Γ(α+ 1) + 8(nα + Γ(α+ 1))

2Γ(α+ 1)
, n ∈ N.

It is clear that f is continuous . Then, let u, v, u, v ∈ R and t ∈ J

∣∣∣f(t, u, v)− f(t, u, v)
∣∣∣ =

∣∣∣∣∣1 + |u|+ |v|
cn(2 + t)

− 1 + |u|+ |v|
cn(2 + t)

∣∣∣∣∣
=

1

cn(2 + t)

∣∣∣|u|+ |v| − |u| − |v|
∣∣∣

6
1

cn(2 + t)

(∣∣∣|u| − |u|∣∣∣+ ∣∣∣|v| − |v|∣∣∣)
6

1

cn(2 + t)

(
|u− u|+ |v − v|

)
.
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Then the assumption (H2) holds with

ln(t) = kn(t) =
1

cn(2 + t)
.

Then

l∗n = k∗n =
1

2cn
.

It is clear that g is continuous . Then, let w, w ∈ R and t ∈ J∣∣∣g(t, w)− g(t, w)
∣∣∣ =

1

cn(2 + t)

∣∣∣ 1

1 + |w|
− 1

1 + |w|

∣∣∣
=

1

cn(2 + t)

∣∣∣ 1 + |w| − 1− |w|
(1 + |w|)(1− |w|)

∣∣∣
6

1

cn(2 + t)

∣∣∣|w| − |w|∣∣∣
6

1

cn(2 + t)
|w − w|.

Then the assumption (H4) holds with

mn(t) =
1

cn(2 + t)
.

Then

m∗
n =

1

2cn
.

Finally we shall check that condition (5.9) is satisfied. Indeed we have

k∗nn
α

(1− l∗n)Γ(α+ 1)
+

m∗
n

1− l∗n
=

1

4
< 1.

Then by Theorem 5.2.8 the problem (5.11)-(5.12) has a unique solution on [0,∞).

5.3 Global Existence for NIFDEs In Fréchet Spaces
(5)

2

cDαy(t) = f(t, y(t),cDαy(t)), t ∈ J = [0,+∞) (5.13)

y(0) = y0, (5.14)

2(5) [45] M. Benchohra and K. Maazouz, Global Existence for Nonlinear Implicit Fractional Diffe-
rential Equations In Fréchet Spaces, (submitted).
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where cDα is the Caputo fractional derivative. f : J ×R×R −→ R is a given function,
y0 ∈ R.

We present results for the problem (5.13)-(5.14), based on contractive maps in
Fréchet spaces and the nonlinear alternative of Leray-Schauder type due to Frigon and
Granas. At the end we illustrate the problem with an example.

5.3.1 Existence of solutions

Let us start by defining what we mean by a solution of the problem (5.13)-(5.14).

Definition 5.3.1 . A function y ∈ C1(R+,R) is said to be a solution of the problem
(5.13)-(5.14) if y satisfies the equation cDαy(t) = f(t, y(t),cDαy(t)) on J , and the
condition y(0) = y0.

For the existence of solutions for the problem (5.13)-(5.14), we need the following
auxiliary lemma.

Lemma 5.3.2 The solution of the problem (5.13)-(5.14) can be expressed by the inte-
gral equation

y(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds,

where x is the solution of the functional integral equation

x(t) = f(t, y0 +
1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds, x(t))

Proof. Let cDαy(t) = x(t)) in equation (5.13), then

x(t) = f(t, y(t), x(t))

and

y(t) = y0 + Iαx(t))

= y0 +
1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds.

Let us introduce the following assumptions :

(H1) f : J × R× R −→ R is continuous .

(H2) For each n ∈ N, there exist `n, kn ∈ C(J0,R+) such that for each t ∈ J0

|f(t, y, z)− f(t, y, z)| 6 `n(t)|y − y|+ kn(t)|z − z|, for each y, y, z, z ∈ R.

Set
`∗n = sup

t∈J0

`n(t), k∗n = sup
t∈J0

kn(t).
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Theorem 5.3.3 Assume that the assumptions (H1)− (H2) are satisfied. If

`∗nn
2α

Γ2(α+ 1)
+

k∗nn
α

Γ(α+ 1)
< 1, (5.15)

then the problem (5.13)− (5.14) has a unique solution.

Proof. For every n ∈ N, we define in C(J,R) the semi norms by

‖y‖n := sup{|y(t)| : t ∈ J0 = [0, n]}.

Then C(J,R) is a Fréchet space with the family of semi-norms {‖.‖n}n∈N.
Transform the problem (5.13)-(5.14) into a fixed point problem. Consider the operator
T : C(J,R) −→ C(J,R) define by :

(T x)(t) = y0 + Iαx(t),

where
x(t) = f(t, y0 + Iαx(t), x(t)).

Clearly, the fixed points of the operator T are solutions of the problem (5.13)-(5.14).
Let y be a possible solution of the problem (5.13) − (5.14). Given n ∈ N and t 6 n,
then with the view of (H1), (H2), for x = λT x, λ ∈ (0, 1) we have

|x(t)| = λ|y0 + Iαx(t)|
6 |y0|+ |Iαx(t)|

6 |y0|+
1

Γ(α)

∫ t

0

(t− s)α−1|x(s))|ds

= |y0|+
1

Γ(α)

∫ t

0

(t− s)α−1|f(s, y0 + Iαx(s), x(s))|ds

= |y0|+
1

Γ(α)

∫ t

0

(t− s)α−1|f(s, y0 + Iαx(s), x(s))− f(s, 0, 0) + f(s, 0, 0)|ds

6 |y0|+
∫ t

0

(t− s)α−1

Γ(α)

[
`n(s)|y0 + Iαx(s)|+ kn(s)|x(s)|

]
ds+

∫ t

0

(t− s)α−1

Γ(α)
|f(s, 0, 0)|ds

6 |y0|+ |y0|
`∗n

Γ(α)

∫ t

0

(t− s)α−1ds+
`∗n

Γ(α)

∫ t

0

(t− s)α−1Iα|x(s)|ds

+
k∗n

Γ(α)

∫ t

0

(t− s)α−1|x(s)|ds+
fn

Γ(α)

∫ t

0

(t− s)α−1ds

Therefore,

‖x‖n 6 |y0|+
|y0|`∗nnα

Γ(α+ 1)
+

`∗nn
2α

Γ2(α+ 1)
‖x‖n +

k∗nn
α

Γ(α+ 1)
‖x‖n +

fnn
α

Γ(α+ 1)
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6 |y0|+
|y0|`∗nnα

Γ(α+ 1)
+

fnn
α

Γ(α+ 1)
+

(
`∗nn

2α

Γ2(α+ 1)
+

k∗nn
α

Γ(α+ 1)

)
‖x‖n

where fn = sup
t∈J0

|f(t, 0, 0)|.

Then

‖x‖n 6
|y0|+ |y0|`∗nnα+fnnα

Γ(α+1)

1−
(

`∗nn
2α

Γ2(α+1)
+ k∗nn

α

Γ(α+1)

) := Mn.

Now, set
Ω = {x ∈ C(J,R) : ‖x‖n 6 Mn + 1 for all n ∈ N}.

Clearly, Ω is a closed subset of C(J,R) we shall show that T is a contraction operator.
Indeed, consider x, x ∈ Ω, for each t ∈ [0, n] and n ∈ N, from (H2) we have

|(T x)(t)− (T x)(t)| = |Iαx(t)− Iαx(t)|
= |Iα(x(t)− x(t))|
= |Iα (f(t, y0 + Iαx(t), x(t))− f(t, y0 + Iαx(t), x(t)))|

6

∣∣∣∣∫ t

0

(t− s)α−1

Γ(α)
(`n(s)|Iα(x(s)− x(s)) |+ kn(s)|x(s)− x(s))

∣∣∣∣ ds
6 `∗n

∫ t

0

(t− s)α−1

Γ(α)
Iα|x(s)− x(s)|ds+ k∗n

∫ t

0

(t− s)α−1

Γ(α)
|x(s)− x(s)|ds.

Therefore,

‖T x− T x‖n 6

(
`∗nn

2α

Γ2(α+ 1)
+

k∗nn
α

Γ(α+ 1)

)
‖x− x‖n.

By (5.15) hence the operator T is a contraction for all n ∈ N. From the choice of Ω there
is no y ∈ ∂Ω such that x = λT x, for some λ ∈ (0, 1). Then the second statement (C2)
in Theorem 1.5.7 does not holds.The nonlinear alternative of Frigon-Granas shows that
the first statement (C1) holds. Thus, we deduce that the operator T has a unique fixed-
point x in Ω which is a unique solution of the problem (5.13)-(5.14). This completes
the proof.

5.3.2 Example.

In this section we give an example to illustrate the usefulness of our main results.
Let us consider the following fractional initial value problem,

cDαy(t) =
3 + |y(t)|+ |cDαy(t)|

cn(20 + et)(1 + |y(t)|+ |cDαy(t)|)
, t ∈ J := [0,+∞), α ∈ (0, 1), (5.16)

y(0) = y0 ∈ R, (5.17)
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where

cn =
5 (n2α + Γ(α+ 1)nα)

Γ2(α+ 1)
, n ∈ N∗

We set

f(t, y, z) =
3 + |y|+ |z|

cn(20 + et)(1 + |y|+ |z|)
(t, y, z) ∈ J × R× R.

Let us show that conditions (H1)-(H2) hold.
It is clear that f is continuous .
Then let y, y, z, z ∈ R then for each n ∈ N∗ and t ∈ J0.
We have

|f(t, y, z)− f(t, y, z)| =
2

cn(20 + et)

∣∣∣∣∣ 1

1 + |y|+ |z|
− 1

1 + |y|+ |z|

∣∣∣∣∣
6

2

cn(20 + et)

∣∣∣|y|+ |z| − |y| − |z|
∣∣∣

6
2

cn(20 + et)

(
|y − y|+ |z − z|

)
Then the assumption (H2) holds with

`n(t) = kn(t) =
2

cn(20 + et)
.

Since

`∗n = k∗n = sup

{
2

cn(20 + et)
, t ∈ J0

}
6

1

10cn
.

Finally we shall check that condition (5.15) is satisfied.
Indeed,

`∗nn
2α

Γ2(α+ 1)
+

k∗nn
α

Γ(α+ 1)
=

1

50
< 1

is satisfied for α ∈ (0, 1). Then by Theorem 5.3.3 the problem (5.16)-(5.17) has a unique
solution on [0,+∞).



Chapitre 6

Ulam-Hyers and
Ulam-Hyers-Rassias stabilities (6)

1

6.1 Introduction

We adopt the definition in Rus [109] : Ulam-Hyers ,generalized Ulam-Hyers , Ulam-
Hyers-Rassias and generalized Ulam-Hyers-Rassias stabilities for the equation, for the
implicit fractional-order differential equation (6.1).

In [13], the authors studied a Caputo-type anti-periodic fractional boundary value
problem of the form :

cDαy(t) = f(t, y(t)), t ∈ [0, T ], 1 < α 6 2,

y(0) = −y(T ), cDβy(0) = −cDβ(T ), 0 < β < 1.

In [14], the authors investigates a new class of anti-periodic studied a Caputo-type
anti-periodic fractional boundary boundary value problems of higher order fractional
differential equations :

cDαy(t) = f(t, y(t)), t ∈ [0, T ], 2 < α 6 3,

y(0) = −y(T ),
cDβy(0) = −cDβ(T ), cDβ+1y(0) = −cDβ+1(T ), 0 < β < 1.

1(6) [46] M. Benchohra and K. Maazouz, Ulam-Hyers stability for implicit fractional differential
equation with anti-periodic conditions, (submitted).
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6.2 IFDE with anti-periodic condition

The purpose of this section is to establish existence, uniqueness, Ulam-Hyers sta-
bility, generalized Ulam-Hyers stability, and Ulam-Hyers-Rassias stability for the fol-
lowing problem for implicit fractional order differential equation with anti-periodic
condition.

cDαy(t) = f(t, y(t),cDαy(t)), t ∈ J = [0, b] 0 < α < 1 (6.1)

y(0) = −y(b). (6.2)

where cDα is the Caputo fractional derivative, f : J × R× R is a given function.

Definition 6.2.1 The equation (6.1) is Ulam-Hyers stable if there exists a real number
cf > 0 such that for each ε > 0 and for each solution z ∈ C1 (J,R) of the inequality

|cDαz(t)− f(t, zt,
cDαz(t))| 6 ε, t ∈ J,

there exists a solution y ∈ C1 (J,R) of equation (6.1) with

|z(t)− y(t)| 6 cfε, t ∈ J.

Definition 6.2.2 The equation (6.1) is generalized Ulam-Hyers stable if there exists
ψf ∈ C (R+,R+) , ψf (0) = 0, such that for each solution z ∈ C1 (J,R) of the inequality

|cDαz(t)− f(t, zt,
cDαz(t))| ≤ ε, t ∈ J,

there exists a solution y ∈ C1 (J,R) of the equation (6.1) with

|z(t)− y(t)| ≤ ψf (ε) , t ∈ J.

Definition 6.2.3 The equation (6.1) is Ulam-Hyers-Rassias stable with respect to φ ∈
C (J,R+) if there exists a real number cf > 0 such that for each ε > 0 and for each
solution z ∈ C1 (J,R) of the inequality

|cDαz(t)− f(t, zt,
cDαz(t))| 6 εφ (t) , t ∈ J,

there exists a solution y ∈ C1 (J,R) of equation (6.1) with

|z(t)− y(t)| 6 cfεφ (t) , t ∈ J.

Definition 6.2.4 The equation (6.1) is generalized Ulam-Hyers-Rassias stable with
respect to φ ∈ C (J,R+) if there exists a real number cf,φ > 0 such that for each
solution z ∈ C1 (J,R) of the inequality

|cDαz(t)− f(t, zt,
cDαz(t))| 6 φ (t) , t ∈ J,

there exists a solution y ∈ C1 (J,R) of equation (6.1) with

|z(t)− y(t)| 6 cf,φφ (t) , t ∈ J.
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Remark 6.2.5 A function z ∈ C1 (J,R) is a solution of the inequality

|cDαz(t)− f(t, zt,
cDαz(t))| 6 ε, t ∈ J,

if and only if there exists a function h ∈ C (J,R) (which depends on y) such that

i) |h(t)| 6 ε, ∀t ∈ J.
ii) cDαz(t) = f(t, zt,

cDαz(t)) + h(t), t ∈ J.

Remark 6.2.6 Clearly,

i) Definition (6.2.1) ⇒ Definition (6.2.2)

ii) Definition (6.2.3) ⇒ Definition (6.2.4) .

Remark 6.2.7 A solution of the implicit differential equation

|cDαz(t)− f(t, zt,
cDαz(t))| 6 ε, t ∈ J,

with fractional order is called an fractional ε−solution of the implicit fractional diffe-
rential equation (6.1).

6.2.1 Existence of solutions

Let us start by defining what we mean by a solution of problem (6.1)-(6.2).

Definition 6.2.8 a function y ∈ C(J,R) is said to be a solution of the problem (6.1)-
(6.2) if y satisfied equation cDαy(t) = f(t, y(t),cDαy(t)) on J and condition (6.2).

For the existence results for the problem (6.1)-(6.2) we need the following auxiliary
lemmas.

Lemma 6.2.9 Let h : J −→ R be a continuous function. Then the problem

cDαy(t) = h(t), t ∈ J 0 < α < 1 (6.3)

y(0) = −y(b), (6.4)

has a unique solution which is given by

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds− 1

2Γ(α)

∫ b

0

(b− s)α−1h(s)ds. (6.5)

Proof By Lemma 1.1.10 we have

y(t) = Iα(cDαy(t))

= Iαh(t)− c0 for some constant c0 ∈ R.
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=
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds− c0.

By condition (6.4)

y(0) = −c0 = −y(b) =
−1

Γ(α)

∫ b

0

(b− s)α−1h(s)ds+ c0.

Then

c0 =
1

2Γ(α)

∫ b

0

(b− s)α−1h(s)ds,

and

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds− 1

2Γ(α)

∫ b

0

(b− s)α−1h(s)ds.

Lemma 6.2.10 For f : J × R × R −→ R be a continuous function, the problem
(6.1)-(6.2) can be expressed by the integral equation

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1ϕ(s)ds− 1

2Γ(α)

∫ b

0

(b− s)α−1ϕ(s)ds, (6.6)

where ϕ ∈ C(J,R) satisfies the functional equation

ϕ(t) = f(t, y(t),cDαϕ(t)).

Proof Let y be a solution of (6.6). We shall show that y is solution of (6.1)-(6.2). We
have

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1ϕ(s)ds− 1

2Γ(α)

∫ b

0

(b− s)α−1ϕ(s)ds.

Then

cDαy(t) = cDα

[
1

Γ(α)

∫ t

0

(t− s)α−1ϕ(s)ds− 1

2Γ(α)

∫ b

0

(b− s)α−1ϕ(s)ds

]

= cDα

[
1

Γ(α)

∫ t

0

(t− s)α−1ϕ(s)ds

]
= ϕ(t)

= f((t, y(t),cDαϕ(t)).

Finally we have
cDαy(t) = f((t, y(t),cDαϕ(t)).

On the other hand by (6.6)
we have

y(0) = − 1

2Γ(α)

∫ b

0

(b− s)α−1ϕ(s)ds,
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and

y(b) =
1

2Γ(α)

∫ b

0

(b− s)α−1ϕ(s)ds.

Then
y(0) = −y(b).

Consequently y is solution of problem (6.1)-(6.2).
Conversely if cDαy(t) = ϕ(t) then Iα(cDαy(t)) = Iαϕ(t). So we obtain

y(t) = y(0) + Iαϕ(t)

= −y(b) +
1

Γ(α)

∫ t

0

(t− s)α−1ϕ(s)ds

=
1

Γ(α)

∫ t

0

(t− s)α−1ϕ(s)ds− 1

2Γ(α)

∫ b

0

(b− s)α−1ϕ(s)ds.

Theorem 6.2.11 Assume that
(H1) f : J × R× R → R is a continuous function.
(H2) there exist 0 < l < 1 and k such that

|f(t, x, y)− f(t, x, y)| 6 k|x− x|+ l|y − y|

for each t ∈ J and x, x, y, y ∈ R.
If

k <
2(1− l)Γ(α+ 1)

3bα
, (6.7)

then the problem (6.1)-(6.2) has a unique solution.

Proof Transform the problem (6.1)-(6.2) into fixed point problem. Consider the ope-
rator
A : C(J,R) −→ C(J,R) defined by

Ay(t) =
1

Γ(α)

∫ t

0

(t− s)α−1ϕ(s)ds− 1

2Γ(α)

∫ b

0

(b− s)α−1ϕ(s)ds. (6.8)

Clearly, from Lemma 6.2.10 the fixed points of A are solutions to the problem (6.1)-
(6.2). We shall show that A is a contraction.
Let u, v ∈ C(J,R). Then, for each t ∈ J we have

(Au)(t) − (Av)(t) =
1

2Γ(α)

[
2

∫ t

0

(t − s)α−1
(
ϕ(s) − ψ(s))ds −

∫ b

0

(b − s)α−1
(
ϕ(s) −

ψ(s))ds

]
,

where
ϕ(s) = f(s, u(s), ϕ(s)

)
,
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and
ψ(s) = f(s, v(s), ψ(s)).

By condition (H2) we have

|ϕ(s)− ψ(s)| 6 k|u(s)− v(s)|+ l|ϕ(s)− ψ(s)|

6
k

1− l
|u(s)− v(s)|.

Then we obtain∣∣∣(Au)(t)− (Av)(t)
∣∣∣ 6

1

2Γ(α)

[
2

∫ t

0

(t− s)α−1
∣∣∣ϕ(s)− ψ(s))

∣∣∣ds+

∫ b

0

(b− s)α−1
∣∣∣ϕ(s)− ψ(s))

∣∣∣ds]

6
k

2(1− l)Γ(α)

[
2

∫ t

0

(t− s)α−1|u(s)− v(s)|ds+

∫ b

0

(b− s)α−1|u(s)− v(s)|ds

]
6

3bαk

2(1− l)Γ(α+ 1)
‖u− v‖∞.

Finally

‖Au− Av‖∞ 6
3bαk

2(1− l)Γ(α+ 1)
‖u− v‖∞.

By (6.7), the operator A is a contraction.
Then by Banach’s fixed point theorem the problem (6.1)-(6.2) have a unique solution.

6.2.2 Ulam-Hyers stability

Theorem 6.2.12 Assume that the assumptions (H1), (H2) and condition (6.7) hold.
Then the equation (6.1) is Ulam-Hyers stable.

Proof. Let x ∈ C(J,R) be a solution of the inequation

|cDαx(t)− f(t, x(t),cDαx(t))| 6 ε, t ∈ J. (6.9)

Let us denote by y ∈ C(J,R) the unique solution of the problem

cDαy(t) = f(t, y(t),cDαy(t)), for each t ∈ J, 0 < α < 1

y(0) = −x(b).

By Lemma 6.2.10 we have

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1ϕy(s)ds−
1

2Γ(α)

∫ b

0

(b− s)α−1ϕy(s)ds,
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where ϕy ∈ C(J,R) satisfies the functional equation

ϕy(t) = f(t, y(t),cDαϕy(t)).

By formula (6.9) we obtain∣∣∣x(t) +
1

2Γ(α)

∫ b

0

(b− s)α−1ϕx(s)ds−
1

Γ(α)

∫ t

0

(t− s)α−1ϕx(s)ds
∣∣∣ 6 εbα

Γ(α+ 1)

where
ϕx(t) = f(t, x(t),cDαϕx(t)).

On the other hand, we have for each t ∈ J

|x(t)− y(t)| =
∣∣∣x(t) +

1

2Γ(α)

∫ b

0

(b− s)α−1ϕx(s)ds−
1

Γ(α)

∫ t

0

(t− s)α−1ϕy(s)ds
∣∣∣

=

∣∣∣∣∣x(t) +
1

2Γ(α)

∫ b

0

(b− s)α−1ϕx(s)ds−
1

Γ(α)

∫ t

0

(t− s)α−1ϕx(s)ds

+
1

Γ(α)

∫ t

0

(t− s)α−1(ϕx(s)− ϕy(s))ds

∣∣∣∣∣
6

∣∣∣x(t) +
1

2Γ(α)

∫ b

0

(b− s)α−1ϕx(s)ds−
1

Γ(α)

∫ t

0

(t− s)α−1ϕx(s)ds
∣∣∣

+
1

Γ(α)

∫ t

0

(t− s)α−1
∣∣∣ϕx(s)− ϕy(s)

∣∣∣ds.
By (H2) we have

|ϕx(s)− ϕy(s)| = |f(s, x(s),cDαϕx(s))− f(s, y(s),cDαϕy(s))|
6 k|x(s)− y(s)|+ l|ϕx(s)− ϕy(s)|

6
k

1− l
|x(s)− y(s)|.

Then

|x(t)− y(t)| 6 εbα

Γ(α+ 1)
+

k

(1− l)Γ(α)

∫ t

0

(t− s)α−1|x(s)− y(s)|ds.

By Lemma 1.1.13 we have

|x(t)− y(t)| 6 εbα

Γ(α+ 1)

[
1 +

γkbα

(1− l)Γ(α+ 1)

]
:= c, ε,

where γ = γ(α) is a constant. So the problem (6.1)-(6.2) is Ulam-Hyers stable.

Remark 6.2.13 By putting ψ(ε) = c, ε, ψ(0) = 0 yields that the problem (6.1)-(6.2)
is generalized Ulam-Hyers stable.
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6.2.3 Ulam-Hyers-Rassias stability

Theorem 6.2.14 Assume that (H1), (H2) and (H3) The function ψ ∈ C(J,R+) is
increasing and there exists λψ > 0 such that for each t ∈ J

1

Γ(α)

∫ t

0

(t− s)α−1ψ(s)ds 6 λψψ(t).

Then the problem (6.1)-(6.2) is Ulam-Hyers-Rassias stable with respect to ψ.

Proof. Let x ∈ C(J,R) be a solution of the inequation

|cDαx(t)− f(t, x(t),cDαx(t))| 6 εψ(t), t ∈ J, ε > 0. (6.10)

Let us denote by y ∈ C(J,R) the unique solution of the problem

cDαy(t) = f(t, y(t),cDαy(t)), for each t ∈ J, 0 < α < 1

y(0) = −x(b).

By formula (6.10) we obtain∣∣∣x(t) +
1

2Γ(α)

∫ b

0

(b− s)α−1ϕx(s)ds−
1

Γ(α)

∫ t

0

(t− s)α−1ϕx(s)ds
∣∣∣ 6 εIαψ(t)

6 ελψψ(t).

On the other hand we have for each t ∈ J

|x(t)− y(t)| =
∣∣∣x(t) +

1

2Γ(α)

∫ b

0

(b− s)α−1ϕx(s)ds−
1

Γ(α)

∫ t

0

(t− s)α−1ϕy(s)ds
∣∣∣

=

∣∣∣∣∣x(t) +
1

2Γ(α)

∫ b

0

(b− s)α−1ϕx(s)ds−
1

Γ(α)

∫ t

0

(t− s)α−1ϕx(s)ds

+
1

Γ(α)

∫ t

0

(t− s)α−1(ϕx(s)− ϕy(s))ds

∣∣∣∣∣
6

∣∣∣x(t) +
1

2Γ(α)

∫ b

0

(b− s)α−1ϕx(s)ds−
1

Γ(α)

∫ t

0

(t− s)α−1ϕx(s)ds
∣∣∣

+
1

Γ(α)

∫ t

0

(t− s)α−1
∣∣∣ϕx(s)− ϕy(s)

∣∣∣ds
6 ελψψ(t) +

k

(1− l)Γ(α)

∫ t

0

(t− s)α−1|x(s)− y(s)|ds

6 ελψψ(t) +
γ1kελψ

(1− l)Γ(α)

∫ t

0

(t− s)α−1ψ(s)ds
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6

[
λψ +

γ1kλ
2
ψ

1− l

]
εψ(t) := cεψ(t)

where γ1 = γ1(α) is a constant.
Then, for each t ∈ J

|x(t)− y(t)| 6 cεψ(t).

So the problem (6.1)-(6.2) is Ulam-Hyers-Rassias stable.

6.2.4 Example

Consider the following problem

cD
1
2y(t) =

3 + |y(t)|+ |cD 1
2y(t)|

(20 + et)(1 + |y(t)|+ |cD 1
2y(t)|)

t ∈ J = [0, 1], (6.11)

y(0) = −y(1). (6.12)

Set

f(t, x, y) =
3 + |x|+ |y|

(20 + et)(1 + |x|+ |y|)
(t, x, y) ∈ J × R× R.

It is clearly that f is continuous.
Then, let x, x, y, y ∈ R and t ∈ J

|f(t, x, y)− f(t, x, y)| =
2

(20 + et)

∣∣∣∣∣ 1

1 + |x|+ |y|
− 1

1 + |x|+ |y|

∣∣∣∣∣
6

2

(20 + et)

∣∣∣|x|+ |y| − |x| − |y|
∣∣∣

6
1

10

(
|x− x|+ |y − y|

)
Then the assumption (H2) holds with

k = l =
1

10

Thus condition

3bαk

2(1− l)Γ(α+ 1)
=

3
10

2(1− 1
10

)Γ(3
2
)

=
1

6Γ(3
2
)

=
1

3
√
π
< 1

is satisfied. It follows from Theorem 6.2.11 that the problem (6.11)-(6.12) has a unique
solution on J . And it follows from Theorem 6.2.12 that the problem (6.11)-(6.12) is
Ulam-Hyers stable.
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6.3 NIDFE with finite delay

The purpose of this section, is to establish four types of Ulam-Hyers, generalized
Ulam-Hyers, Ulam-Hyers-Rassias and generalized Ulam-Hyers-Rassias stabilities for
the equation, for the following problem of implicit fractional-order differential equation :

cDα [y(t)− g(t, yt)] = f(t, yt,
cDαy(t)), t ∈ J = [0, T ] , T > 0 , 0 < α < 1 (6.13)

y(t) = ϕ(t), t ∈ [−r, 0] , r > 0 (6.14)

where f : J ×C ([−r, 0] ,R)×R → R and g : J ×C ([−r, 0] ,R) are two given functions
such that g(0, ϕ) = 0 and ϕ ∈ C ([−r, 0] ,R) .
For each function y defined on [−r, T ] and for any t ∈ J , we denote by yt the element
of C ([−r, 0] ,R) defined by :

yt(θ) = y(t+ θ), θ ∈ [−r, 0],

yt(.) represent the evolution history of system state from time t− r to time t.
The present results initiate the Ulam stability of such class of problems See ([30]).

6.3.1 Existence of solutions

Set
Ω = {y : [−r, T ] → R : y ∈ C([−r, 0],R) and y ∈ C1(J,R)}.

Definition 6.3.1 A function y ∈ Ω is called solution of the problem (6.13)-(6.14) if it
satisfies the equation (6.13) on J and the condition (6.14) on [−r, 0] .

Lemma 6.3.2 Let 0 < α < 1 and h : [0, T ] → R be a continuous function. Then the
linear problem

cDα [y(t)− g(t, yt)] = h(t), t ∈ J
y(t) = ϕ(t), t ∈ [−r, 0]

has a unique solution which is given by

y(t) =

 ϕ(0) + g(t, yt) +
1

Γ (α)

∫ t

0

(t− s)α−1 h(s)ds, t ∈ J

ϕ(t), t ∈ [−r, 0] .

Lemma 6.3.3 Let f(t, u, v) : J × C ([−r, 0] ,R) × R → R be a continuous function,
then the problem (6.13)-(6.14) is equivalent to the problem

y(t) =

{
ϕ(0) + IαKy(t), t ∈ J
ϕ(t), t ∈ [−r, 0]

(6.15)

where Ky ∈ C (J,R) satisfies the functional equation

Ky(t) = f(t, yt, Ky(t)) +c Dαg(t, yt).
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Proof. Let y solution of the problem (6.15), show that y is solution of (6.13)-(6.14) .
We have

y(t) =

{
ϕ(0) + IαKy(t), t ∈ J
ϕ(t), t ∈ [−r, 0]

for t ∈ [−r, 0], we have y(t) = ϕ(t), so the condition (6.14) is satisfied.
On the other hand, for t ∈ J , we have

cDαy(t) = Ky(t) = f(t, yt, Ky(t)) +c Dαg(t, yt).

So
cDα [y(t)− g(t, yt)] = f(t, yt,

cDαy(t)).

Then, y is well solution of the problem (6.13)-(6.14) .

Theorem 6.3.4 Assume that the assumptions

(H1) f : J × C ([−r, 0] ,R)× R → R is a continuous function.

(H2) there exist K > 0 and 0 < K < 1 such that :

|f(t, u, v)− f(t, ū, v̄)| 6 K ‖u− ū‖C +K|v − v̄|

for any u, ū ∈ C ([−r, 0] ,R) , v, v̄ ∈ R and t ∈ J.
(H3) there exists L > 0 such that :

|g(t, u)− g(t, v)| 6 L ‖u− v‖C

for any u, v ∈ C ([−r, 0] ,R) and t ∈ J , hold
If

KTα(
1−K

)
Γ (α+ 1)

+
L(

1−K
) < 1, (6.16)

then, the problem (6.13)-(6.14) has a unique solution.

Proof. Let the operator N : C ([−r, T ] ,R) → C ([−r, T ] ,R) defined by

Ny(t) =

{
ϕ(0) + IαKy(t), t ∈ J
ϕ (t) , t ∈ [−r, 0] .

(6.17)

By Lemma 6.3.3, it is clear that the fixed points of N are solutions of the problem
(6.13)-(6.14) .
Let y, ỹ ∈ C ([−r, T ] ,R). If t ∈ [−r, 0] , then

|Ny(t)−Nỹ(t)| = 0,

For t ∈ J, we have

|Ny(t)−Nỹ(t)| = |IαKy(t)− IαKỹ(t)| ≤ Iα |Ky(t)−Kỹ(t)| . (6.18)
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For any t ∈ J

|Ky(t)−Kỹ(t)| 6 |f(t, yt, Ky(t))− f(t, ỹt, Kỹ(t))|
+cDα |g(t, yt)− g(t, ỹt)|

6 K ‖yt − ỹt‖C +K |Ky(t)−Kỹ(t)|
+cDα |g(t, yt)− g(t, ỹt)| .

Thus

|Ky(t)−Kỹ(t)| 6
K

1−K
‖yt − ỹt‖C +

(
1

1−K

)
cDα |g(t, yt)− g(t, ỹt)| . (6.19)

By replacing (6.19) in the inequality (6.18) , we find

|Ny(t)−Nỹ(t)| 6
K(

1−K
)
Γ (α)

∫ t

0

(t− s)α−1 ‖ys − ỹs‖C ds

+
1

1−K
Iα cDα |g(t, yt)− g(t, ỹt)|

6
KTα(

1−K
)
Γ (α+ 1)

‖y − ỹ‖∞

+
1

1−K
(|g(t, yt)− g(t, ỹt)|+ |g (0, y0)− g (0, ỹ0)|)

6
KTα(

1−K
)
Γ (α+ 1)

‖y − ỹ‖∞ +
L

1−K
‖yt − ỹt‖C

6

[
KTα(

1−K
)
Γ (α+ 1)

+
L

1−K

]
‖y − ỹ‖∞ ,

then

‖Ny −Nỹ‖∞ 6

[
KTα(

1−K
)
Γ (α+ 1)

+
L(

1−K
)] ‖y − ỹ‖∞ .

From (6.16), it follows that N admits a unique fixed point which is solution of the
problem (6.13)-(6.14).

6.3.2 Ulam-Hyers Stability Results

Theorem 6.3.5 Assume that (H1)-(H3), (6.16) are satisfied. If

K + L < 1, (6.20)

then the problem (6.13)-(6.14) is Ulam-Hyers stable.
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Proof. Let ε > 0 and z ∈ Ω be a function satisfying the inequality

|cDαz(t)− f(t, zt,
cDαz(t))−c Dαg(t, zt)| 6 ε for each t ∈ J,

which is equivalent to
|cDαz(t)−Kz(t)| 6 ε (6.21)

and let y ∈ C ([−r, T ] ,R) be the unique solution of the problem{
cDα [y(t)− g(t, yt)] = f(t, yt,

cDαy(t)), t ∈ J
z(t) = y(t) = ϕ(t), t ∈ [−r, 0] .

By integration of the inequality (6.21) , we obtain

|z(t)− IαKz(t)| 6
εTα

Γ (α+ 1)
.

We consider the function γ1 defined by

γ1(t) = sup {|z(s)− y(s)| : −r 6 s 6 t} , 0 ≤ t 6 T,

then, there exists t∗ ∈ [−r, T ] such that γ1(t) = |z(t∗)− y(t∗)| .
If t∗ ∈ [−r, 0], then γ1(t) = 0.
If t∗ ∈ [0, T ], then

γ1(t) 6 |z(t)− IαKz(t)|+ Iα |Kz(t)−Ky(t)|

6
εTα

Γ (α+ 1)
+ Iα |Kz(t)−Ky(t)| . (6.22)

On the other hand, we have

|Kz(t)−Ky(t)| 6 |f(t, zt, Kz(t))− f(t, yt, Ky(t)|
+cDα |g(t, zt)− g(t, yt)|

6 Kγ1(t) +K |Kz(t)−Ky(t)|
+cDα |g(t, zt)− g(t, yt)| ,

then

|Kz(t)−Ky(t)| 6
K

1−K
γ1(t) +

1

1−K
cDα |g(t, zt)− g(t, yt)| . (6.23)

By replacing (6.23) in the inequality (6.22), we get

γ1(t) ≤ εTα

Γ (α+ 1)
+

K(
1−K

)
Γ (α)

∫ t

0

(t− s)α−1 γ1(s)ds

+
1

1−K
|g(t, zt)− g(t, yt)|
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≤ εTα

Γ (α+ 1)
+

K(
1−K

)
Γ (α)

∫ t

0

(t− s)α−1 γ1(s)ds

+
L

1−K
γ1(t),

then

γ1(t) 6
εTα

(
1−K

)[
1−

(
K + L

)]
Γ (α+ 1)

+
K[

1−
(
K + L

)]
Γ (α)

∫ t

0

(t− s)α−1 γ1(s)ds,

and by the Gronwall’s Lemma, we get

γ1(t) 6
εTα

(
1−K

)[
1−

(
K + L

)]
Γ (α+ 1)

[
1 +

KTασ1[
1−

(
K1 + L

)]
Γ (α+ 1)

]
:= cε,

where σ1 = σ1 (α) a constant, which completes the proof of the theorem. Moreover, if
we set ψ (ε) = cψ;ψ (0) = 0, then the problem (6.13)-(6.14) is generalized Ulam-Hyers
stable.

Theorem 6.3.6 Assume that (H1)-(H3), (6.16), (6.20) and

(H4) there exists an increasing function φ ∈ C (J,R+) and there exists λφ > 0 such that
for any t ∈ J :

Iαφ (t) ≤ λφφ (t)

are satisfied. Then, the problem (6.13)-(6.14) is Ulam-Hyers-Rassias stable.

Proof. Let z ∈ Ω be solution of the following inequality

|cDαz(t)− f(t, zt,
cDαz(t))−c Dαg(t, zt)| 6 εφ (t) , t ∈ J, ε > 0.

The above inequality is equivalent to

|cDαz(t)−Kz(t)| ≤ εφ (t) (6.24)

and let y ∈ C ([−r, T ] ,R) be the unique solution of Cauchy problem{
cDα [y(t)− g(t, yt)] = f(t, yt,

cDαy(t)), t ∈ J
z(t) = y(t) = ϕ(t), t ∈ [−r, 0] .

By integration of (6.24), we obtain for any t ∈ J

|z(t)− IαKz(t)| ≤ εIαφ (t) 6 ελφφ (t) .

Using the function γ1 which is defined in the proof of Theorem 6.3.5, we get :
if t∗ ∈ [−r, 0] then γ1 (t) = 0.
If t∗ ∈ [0, T ] , then we have

γ1 (t) 6 |z(t)− IαKz(t)|+ Iα |Kz(t)−Ky(t)|
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6 ελφφ (t) + Iα |Kz(t)−Ky(t)| (6.25)

from which it follows that

|Kz(t)−Ky(t)| 6
K

1−K
γ1 (t) +

1

1−K
cDα |g(t, zt)− g(t, yt)| . (6.26)

By replacing (6.26) in the inequality (6.25), we obtain

γ1 (t) 6 ελφφ (t) +
K(

1−K
)
Γ (α)

∫ t

0

(t− s)α−1 γ1 (s) ds

+
1

1−K
|g(t, zt)− g(t, yt)|

6 ελφφ (t) +
K(

1−K
)
Γ (α)

∫ t

0

(t− s)α−1 γ1 (s) ds+
L

1−K
γ1 (t) ,

then

γ1 (t) 6

(
1−K

)
ελφφ (t)

1−
(
K + L

) +
K[

1−
(
K + L

)]
Γ (α)

∫ t

0

(t− s)α−1 γ1 (s) ds,

by the Gronwall’s Lemma, we get

γ1(t) 6

(
1−K

)
ελφφ (t)

1−
(
K + L

) [
1 +

KTασ2[
1−

(
K + L

)]
Γ (α+ 1)

]

6

[ (
1−K

)
λφ

1−
(
K + L

) (1 +
KTασ2[

1−
(
K + L

)]
Γ (α+ 1)

)]
εφ (t) = cεφ (t) ,

where σ2 = σ2 (α) a constant. Then the problem (6.13)-(6.14) is Ulam-Hyers-Rassias
stable.

6.3.3 Examples

Example 1. Consider the problem of neutral fractional differential equation

cD
1
2

[
y(t)− te−t‖yt‖C

(9 + et) (1 + ‖yt‖C)

]
=

2 + ‖yt‖C + |cD 1
2y(t)|

12et+9(1 + ‖yt‖C + |cD 1
2y(t)|)

, t ∈ [0, 1] (6.27)

y(t) = ϕ(t); t ∈ [−r, 0] , r > 0 (6.28)

where ϕ ∈ C ([−r, 0] ,R) .
Set

g(t, w) =
te−tw

(9 + et) (1 + w)
, (t, w) ∈ [0, 1]× [0,+∞)
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and

f(t, u, v) =
2 + u+ v

12et+9(1 + u+ v)
, (t, u, v) ∈ [0, 1]× [0,+∞)× [0,+∞) .

Notice that g(0, w) = 0, for any w ∈ [0,+∞).
Clearly, the function f is continuous. Hence, (H1) is satisfied.
We have,

|f(t, u, v)− f(t, ū, v̄)| 6 1

12e9
(‖u− ū‖C + |v − v̄|)

|g(t, u)− g(t, ū)| ≤ 1

10
‖u− ū‖C

for any u, ū ∈ C([−r, 0] ,R), v, v̄ ∈ R and t ∈ [0, 1] .

Hence, conditions (H2) and (H3) are satisfied with K = K =
1

12e9
and L =

1

10
.

Also, condition

KTα

(1 +K)Γ(α+ 1)
+

L

(1−K)
=

20 + 12e9
√
π

10
√
π(12e9 − 1)

< 1,

is satisfied with T = 1, α =
1

2
.

By Lemma 6.3.4, the problem (6.27)-(6.28) admits a unique solution.
Since

K + L =
10 + 12e9

120e9
< 1,

then, by Theorem 6.3.5, the problem (6.27)-(6.28) is Ulam-Hyers stable.
Example 2. Consider the problem of neutral fractional differential equation :

cD
1
2

[
y(t)− t

5et+2 (1 + ‖yt‖C)

]
=

e−t

7 + et

[
‖yt‖C

1 + ‖yt‖C
− |cD 1

2y(t)|
1 + |cD 1

2y(t)|

]
, t ∈ [0, 1]

(6.29)
y(t) = ϕ(t), t ∈ [−r, 0] , r > 0, (6.30)

where ϕ ∈ C ([−r, 0] ,R) .
Set

g(t, w) =
t

5et+2 (1 + w)
, (t, w) ∈ [0, 1]× [0,+∞) ,

and

f(t, u, v) =
e−t

(7 + et)

(
u

1 + u
− v

1 + v

)
, (t, u, v) ∈ [0, 1]× [0,+∞)× [0,+∞) .

Notice that g(0, w) = 0, for any w ∈ [0,+∞).
Clearly, the function f is continuous. Hence, (H1) is satisfied.

|f(t, u, v)− f(t, ū, v̄)| 6 1

8
‖u− ū‖C +

1

8
|v − v̄|
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|g(t, u)− g(t, ū)| 6 1

5e2
‖u− ū‖C

for any u, ū ∈ C([−r, 0] ,R), v, v̄ ∈ R and t ∈ [0, 1] .

Hence, conditions (H2) and (H3) are satisfied with K = K =
1

8
and L =

1

5e2
.

We have
KTα

(1 +K)Γ(α+ 1)
+

L

(1−K)
=

10e2 + 8
√
π

35e2
√
π

< 1.

By Lemma 6.3.4, the problem (6.29)-(6.30) admits a unique solution.
Since

K + L =
5e2 + 8

40e2
< 1,

then, by Theorem 6.3.5, the problem (6.29)-(6.30) is Ulam-Hyers stable.
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Conclusion and Perspectives

In this thesis, we have considered the following nonlinear implicit fractional diffe-
rential equation

cDαy(t) = f(t, y(t),cDαy(t))

where cDα is the Caputo fractional derivative, and 0 < α < 1.
to subject of boundary value problem , local and, non-local conditions.

We discussed and established the existence, uniqueness and the stability of the so-
lutions for implicit fractional differential equation with anti-periodic conditions , then
with finite delay.

It would be interesting, for a future research, to look for problems with infinite
delay , asymptotic stability, and using Hadamard derivative.
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Equations, Springer-Verlag, New York, 2012.

[3] S. Abbas, M. Benchohra and A N. Vityuk, On fractional order derivatives and
Darboux problem for implicit differential equations. Frac. Calc. Appl. Anal. 15,
(2012), 168-182.

[4] S.A. Abd-Salam, A.M.A. El-Sayed, On the stability of a fractional-order diffe-
rential equation with nonlocal initial condition, Electron. J. Qual. Theory Differ.
Equat. 29 (2008), 1-8.

[5] R.P. Agarwal and B. Ahmad, Existence theory for anti-periodic boundary value
problems of fractional differential equations and inclusions, Comput. Math. Appl.
62 (2011), 1200-1214.

[6] R.P. Agarwal, M. Benchohra, S. Hamani, A survey on existing results for boundary
value problems of nonlinear fractional differential equations and inclusions. Acta
Appl. Math, (109), 973-1033, 2010.

[7] R.P Agarwal, M. Benchohra and S. Hamani, Boundary value problems for frac-
tional differential equations, Adv. Stud. Contemp. Math. 16 (2) (2008), 181-196.

[8] R. P. Agarwal, M. Meehan and D. O’Regan, Fixed Point Theory and Applications,
Cambridge University Press, Cambridge, 2001.

[9] B. Ahmad, J.R. Graef, Coupled systems of nonlinear fractional differential equa-
tions with nonlocal boundary conditions. Panamer. Math. J. 19 (2009), 29–39.

[10] B. Ahmad and J.J. Nieto, Existence of solutions for nonlocal boundary value
problems of higher-order nonlinear fractional differential equations. Abstrac. Appl.
Anal. Volume 2009 (2009), Article ID 494720, 9 pages.

[11] B. Ahmad and J.J. Nieto, Existence of solutions for impulsive anti-periodic boun-
dary value problems of fractional order, Taiwaness J. Math., 15 (3) (2011), 981-
993.

91



BIBLIOGRAPHIE 92

[12] B. Ahmad and J.J. Nieto, Anti-periodic fractional boundary value problems with
nonlinear term depending on lower order derivative, Fract. Calc. Appl. Anal., 15
(2012), 451-462.

[13] B. Ahmad and J.J. Nieto, Anti-periodic fractional boundary value problems, Com-
put. Math. Appl, 62 (3) (2011), 1150-1156.

[14] B. Ahmad, J.J. Nieto, A. Alsaedi and N. Mohamad, On a New Class of Anti-
periodic Fractional Boundary Value Problems, Abst. Appl. Anal, (2013), 7 p.

[15] K. K. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina and B. N. Sa-
dovskii, Measures of noncompactness and condensing operators, Birkhäuser Verlag,
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[63] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately
additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.

[64] K. Goebel, Concise Course on Fixed Point Theorems, Yokohama Publishers, Ja-
pan, 2002.
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