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RÉSUMÈ

Dans cette thèse, nous nous proposons d’étudier quelques paramètres fonc-
tionnels premièrement, nous nous proposons d’étudier le problème de la mod-
élisation non paramétrique lorsque les variables statistiques sont des courbes.
Plus précisément, nous nous intéressons à des problèmes de prévisions à partir
d’une variable explicative à valeurs dans un espace de dimension infinie (espace
fonctionnel) et nous cherchons à développer des alternatives à la méthode de
régression. Le maximum ou encore le point à haut risque d’une fonction de
risque conditionnel est un paramètre d’un grand intérêt en statistique, notam-
ment dans l’analyse de risque séismique, car il constitue le risque maximal de
survenance d’un tremblement de terre dans un intervalle de temps donné. Au
moyen d’estimations non paramétriques basées sur les techniques de noyau de
convolution de la première dérivée de la fonction de hasard conditionnel, nous
établissons le comportement asymptotique d’un taux de hasard d’une variable
explicative fonctionnelle ainsi que la normalité asymptotique de la valeur max-
imale pour un processus indépendant.

Deuxièment lorsque les données sont générées à partir d’un modèle de ré-
gression à indice simple. Nous étudions deux paramètres fonctionnels.

Dans un premier temps nous supposons que la variable explicative est à
valeurs dans un espace de Hilbert (dimension infinie) et nous considérons l’estimation
de la distribution conditionnelle ainsi que les déivées successives de la densité
conditionnelle par la méthode de noyau. Nous traitons les propriétés asympto-
tiques de cet estimateur dans le cas indépendant. Dans notre cas où les obser-
vations sont indépendantes identiquement distribuées (i.i.d), nous obtenons la
convergence ponctuelle et uniforme presque complète avec vitesse de l’estimateur
construit. Comme application nous discutons l’impact de ce résultat en prévi-
sion non paramétrique fonctionnelle à partir de l’estimation du mode condition-
nelle et le quantile conditionnelle ainsi que le risque maximum. Notons que
toutes ces propriétés asymptotiques ont été obtenues sous des conditions stan-
dard et elles mettent en évidence le phénomène de concentration de la mesure
de probabilité de la variable fonctionnelle sur des petites boules.

Nos résultats asymptotiques exploitent bien la structure topologique de l’espace
fonctionnel de nos observations et le caractère fonctionnel de nos modèles. En
effet, toutes nos vitesses de convergence sont quantifiées en fonction de la con-
centration de la mesure de probabilité de la variable fonctionnelle, de l’entropie
de Kolmogorov et du degré de régularité des modèles.
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ABSTRACT

In this thesis, we study the problem of nonparametric modelization when the
data are curves. Indeed, we consider real random variable (named response vari-
able) Y and a functional variable (explanatory variable) X. The nonparametric
model used to study the relation between explanatory variable and reponse vari-
able. The maximum of the conditional hazard function is a parameter of great
importance in statistics, in particular in seismicity studies, because it consti-
tutes the maximum risk of occurrence of an earthquake in a given interval of
time. Using the kernel nonparametric estimates based on convolution kernel
techniques of the first derivative of the conditional hazard function, we estab-
lish the asymptotic behavior of a hazard rate in the presence of a functional
explanatory variable and asymptotic normality of the maximum value in the
case of independence data.

We propose to study some functional parameters when the data are gen-
erated from a model of regression to a single index. We study two functional
parameters.

Firstly, we suppose that the explanatory variable takes its values in Hilbert
space (infinite dimensional space) and we consider the estimate of the condi-
tional quantile by the kernel method. We establish some asymptotic properties
of this estimator in independent case.

As an application we discuss the impact of this result in functional nonpara-
metric prevision for the estimation of the risk maximum.

Note that all these asymptotic properties are obtained under standard con-
ditions and they highlight the phenomenon of concentration proprieties on small
balls probability measure of the functional variable.

Our asymptotic results exploit the topological structure of functional space
for the observations. Let us note that all the rates of convergence are based on
an hypothesis of concentration of the measure of probability of the functional
variable on the small balls and also on the Kolmogorov’s entropy which measures
the number of the balls necessary to cover some set.
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Chapter 1

Introduction.

This chapter is devoted to the presentation of asymptotic notations and results,
then at the end a short description of the thesis will be given.

1.1 French abstract

Dans cette thèse, nous nous proposons d’étudier quelques paramètres fonction-
nels premièrement nous, nous proposons d’étudier le problème de la modélisa-
tion non paramétrique lorsque les variables statistiques sont des courbes. Plus
précisément, nous nous intéressons à des problèmes de prévisions à partir d’une
variable explicative à valeurs dans un espace de dimension infinie (espace fonc-
tionnel), et nous cherchons à développer des alternatives à la méthode de ré-
gression. En effet, nous supposons qu’on dispose d’une variable aléatoire réelle
(réponse), souvent notée Y et d’une variable fonctionnelle (explicative), souvent
notée X. Le modèle non paramétrique utilisé pour étudier le lien entre X et Y
concerne la distribution conditionnelle dont la fonction de répartition (respec-
tivement la densité), notée F (respectivement f), est supposée appartenir à un
espace fonctionnel approprié.

Deuxièment lorsque les données sont générées à partir d’un modèle de ré-
gression à indice simple. Nous étudions deux paramètres fonctionnels.

Dans un premier temps nous supposons que la variable explicative est à
valeurs dans un espace de Hilbert (dimension infinie) et nous considérons l’estimation
de la distribution conditionnelle ainsi que les dérivées successives de la densité
conditionnelle par la méthode de noyau. Nous traitons les propriétés asympto-
tiques de cet estimateur dans les deux cas indépendant et dépendant. Pour le cas
où les observations sont indépendantes identiquement distribuées (i.i.d), nous
obtenons la convergence ponctuelle et uniforme presque complète avec vitesse
de l’estimateur construit. Comme application nous discutons l’impact de ce
résultat en prévision non paramétrique fonctionnelle à partir de l’estimation de
mode conditionnelle et le quantile conditionnelle.

Dans un second nous considérons que nos données ne sont pas indépendantes.

7



8 CHAPTER 1. INTRODUCTION.

La dépendance est modélisée via la corrélation des variables. Dans ce con-
texte nous établissons la convergence ponctuelle et uniforme presque complète
avec vitesse de l’estimateur construit ainsi que la normalité asymptotique de
l’estimateur à noyau de la distribution conditionnelle convenablement normal-
isée. Nous donnons de manière explicite la variance asymptotique. Notons que
toutes ces propriétés asymptotiques ont été obtenues sous des conditions stan-
dard et elles mettent en évidence le phénomène de concentration de la mesure
de probabilité de la variable fonctionnelle sur des petites boules. Comme ap-
plication nous discutons l’impact de ce résultat en prévision non paramétrique
fonctionnelle à partir de l’estimation du risque maximum.

Nos résultats asymptotiques exploitent bien la structure topologique de l’espace
fonctionnel de nos observations et le caractère fonctionnel de nos modèles. En
effet, toutes nos vitesses de convergence sont quantifiées en fonction de la con-
centration de la mesure de probabilité de la variable fonctionnelle, de l’entropie
de Kolmogorov et du degré de régularité des modèles.

1.2 Summary

In this thesis, we study the problem of nonparametric modelization when the
data are curves. Indeed, we consider real random variable (named response vari-
able) Y and a functional variable (explanatory variable) X. The nonparametric
model used to study the relation between X and Y is the conditional distribu-
tion function noted F which has a density f . Both F and f are supposed to
belong to some suitable functional spaces.

We propose to study some functional parameters when the data are gen-
erated from a model of regression to a single index. We study two functional
parameters.

Firstly, we suppose that the explanatory variable takes its values in Hilbert
space (infinite dimensional space) and we consider the estimate of the condi-
tional quantile by the kernel method. We establish some asymptotic properties
of this estimator in both dependent cases.

Secondly, we consider mixing data. In the dependent case we modelize the
later via the correlation of variables. For the case where the observations are
strong mixing, we obtain the pointwise and uniform almost complete conver-
gence with rate of the estimator and the asymptotic normality of the kernel
estimator of the conditional distribution suitably normalized. We give explic-
itly the asymptotic variance.

As an application we discuss the impact of this result in functional nonpara-
metric prevision for the estimation of the risk maximum.

Note that all these asymptotic properties are obtained under standard con-
ditions and they highlight the phenomenon of concentration proprieties on small
balls probability measure of the functional variable.

Our asymptotic results exploit the topological structure of functional space
for the observations. Let us note that all the rates of convergence are based on
an hypothesis of concentration of the measure of probability of the functional
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variable on the small balls and also on the Kolmogorov’s entropy which measures
the number of the balls necessary to cover some set.

1.2.1 Nonparametric conditional models and functional
variables

The functional statistics is a field of current research where it now occupies
an important place in statistical research. It has experienced very important
development in recent years in which mingle and complement several statisti-
cal approaches to priori remote This branch of statistics aims to study data
that, because of their structure and the fact that they are collected on very
fine grids,can be equated with curves or surfaces, eg functions of time or space.
The need to consider what type of data, now frequently encountered under the
name of functional data in the literature, is above all a practical need. This
is the statistical modeling of data that are supposed of curves observed on all
their trajectories. This is practically possible because of the precision of mod-
ern measuring devices and large storage capacity offered by current computer
systems. It is easy to obtain a discretization very fine of mathematical ob-
jects such as curves, surfaces, temperatures observed by satellite images.... This
type of variables can be found in many areas, such as meteorology, quantitative
chemistry, biometrics, econometrics or medical imaging. Among the reference
books on the subject, there may be mentioned the monographs of Ramsay and
Silverman (1997, 2002) for the applied aspects, Bosq (2000) for the theoretical
aspects, Ferraty and Vieu (2006) for nonparametric study and Ferraty and Ro-
main (2011) for recent developments. In the same context, we refer to Manteiga
and Vieu (2007) well as Ferraty (2010). The objective of this section is to make
a bibliographic study on conditional nonparametric models considered in this
thesis. The objective of this section is to make a bibliographic study on condi-
tional nonparametric models considered in this thesis, allowing to compare our
results with those that already exist. However, given the extent of the available
literature in this area, we can not make a exhaustive exposed. Thus, we will
restrict our bibliographical study to nonparametric models. we refer to Bosq
and Lecoutre (1987), Schimek (2000), Sarda and Vieu (2000) and Ferraty and
Vieu (2003, 2006) for a wide range of references.
Give an exhaustive list of situations where of such data are encountered is not en-
visaged, but specific examples of functional data will be addressed in this thesis.
However, beyond this practical aspect, it is necessary to provide a theoretical
framework for the study of these data. Although functional statistics have the
same objectives as the other branches of statistics (data analysis, inference...),
the data have this perticularty to take their values in infinite dimensional spaces,
and the usual methods of multivariate statistics are here set default.
The all earliest works in which we find this idea of functional data are finally
relatively "ancient" Rao (1958) and Tucker (1958) are considering thus the prin-
cipal components analysis and factor analysis for functional data and even are
considering explicitly the functional data as a particular data type.Thereafter,
Ramsay (1982) gives off the concept of functional data and raises the issue of
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adapting the methods of multivariate statistics in this functional frame.
From there, the work to explore the functional statistics begin to multiply,

eventually leading today to works making reference on the subject, such as for
example monographs Ramsay and Silverman (2002 et 2005), Ferraty and Vieu
(2006)...
The estimated hazard rate, because of the variety of its possible applications, is
an important issue in statistics. This subject can (and should) be approached
from several angles according to on the complexity of the problem: eventual
presence of censorship in the observed sample (common phenomenon in medical
applications, for example), or else presence of explanatory variables.
Thus, the estimation of a hazard rate with the presence of an explanatory vari-
able functional to single functional index is a current issue to which this work
proposes to provide an answer elements.

1.3 Bibliographical context

The problem of the forecast is a very frequent question in statistics. In nonpara-
metric statistics, the principal tool to answer to this question is the regression
model. This tool took a considerable rise from the number of publications which
are devoted to him, that the explanatory variables are linked, multi or infinity
dimension. However, this tool of forecast is not very adapted for some situation.
As example, let us quote the case of conditional density dissymmetrical or the
case where it comprises several peaks with one of the peaks strictly more impor-
tant than the others. In these various cases, one can hope that the conditional
mode, median or quantiles envisage better than the regression.

1.3.1 On the regression model

The first results in functional nonparametric statistics were developed by Ferraty
and Vieu (2000) and they relate to the estimation of the regression function
in an explanatory variable of fractal dimension. They established the almost
complete convergence of a kernel estimator of the nonparametric model in the
i.i.d case. By building on recent developments in the theory of probabilities
of small balls, Ferraty and Vieu (2004) have generalized these results to the
α-mixing case and they exploited the importance of nonparametric modeling of
functional data by applying their studies problems such as time series prediction
and curves discrimination. In the context of functional observations α-mixing,
Masry (2005) has proved asymptotic normality of the estimator of Ferraty et
Vieu (2004) for the regression function. The reader can find in the book of
Ferraty and Vieu (2006), a wide range of applications of the regression function
in functional statistics. Convergence in mean square was investigated by Ferraty
et al. (2007). Specifically, they have explained the exact asymptotic term of the
quadratic error. This result was used by Rachdi and Vieu (2007) for determine a
criterion for automatic to selection of the smoothing parameter based on cross-
validation. The local version of this criterion has been studied by Benhenni
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et al. (2007). We find in this article a comparative study between the local
and global approach. As works recents bibliographic in regression, we refer the
reader to Ferraty and Vieu (2011) well as Delsol (2011). Results on uniform
integrability were established by Delsol (2007,2009) and Delsol et al. (2011).
Other works were interested to estimating the regression function using different
approaches : the method of k nearest neighbors by Burba et al. (2008), robust
technical by Azzidine et al. (2008) and Crambes et al. (2008), the estimate by
the simplified method of local polynomial by Barrientos-Marin et al. (2010).

1.3.2 On data and functional variable

The statistical problems involved in the modeling and the study of functional
random variables for a long time know large advantage in statistics. The first
work is based on the discretization of these functional observations in order to be
able to adapt traditional multivariate statistical techniques. But, thanks to the
progress of the data-processing tool allowing the recovery of increasingly bulky
data, an alternative was recently elaborate consisting in treating this type of
data in its own dimension, i.e. by preserving the functional character. Indeed,
since the Sixties, the handling of the observations in the form of trajectories
was the object of several studies in various scientific disciplines such Obhukov
(1960), Holmstrom (1963) in climatic, Deville (1974) in econometric, Molenaar
and Boosma (1987) and then Kirkpatrick and Heckman (1989) in genetic.
The functional models of regression (parametric or not parametric) are topics
which were privileged these last years. Within the linear framework, the contri-
bution of Ramsay and Silverman (1997, 2002) presents an important collection
of statistical methods for the functional variables. In the same way, note that
Bosq (2000) significantly contributed to the development of statistical methods
within the framework of process of auto-regression linear functional. By using
functional principal components analysis, Cardot et al. (1999) built an estima-
tor for the model of the Hilbertien linear regression similar to Bosq estimator
(1991) in the case of Hilbertien process auto-regressive. This estimator is de-
fined using the spectral properties of the empirical version of variance-covariance
operator of the functional explanatory variable. They obtained convergence of
probability for some cases and almost complete convergence of the built estima-
tor for other cases.
Recently, Cardot et al. (2004) introduced, by a method of regularization, an
estimator for the conditionals quantiles, saw as continues linear forms in Hilbert
space. Under conditions on the eigenvalues of the covariance operator of the
explanatory variable and on the density of conditional law, they gave the speed
of norm convergence in L2 of the built estimator. We return to Cardot et
al. (2003) and to Cuevas et al. (2004) for the problem of the test in the
functional linear model. Several authors are interested also the answer variable
is qualitative, for example, Hastie et al. (1995), Hall and Heckman (2002),....
The study of the nonparametric models of regression is much more than that of
the linear case. The results were provided by Ferraty and Vieu (2000). These
result were prolonged by Ferraty and Vieu (2002)..., with the problems of the
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regression such forecast in the context of time series. By taking again the
estimator of Ferraty and Vieu (2004) and by using the property of concentra-
tion of the measurement of probability of the functional explanatory variable,
Dabo-Niang and Rhomari (2003) studied norm convergence in LP of regression
estimator. They applied their result to the discrimination and the classification
of the curves. Other authors were interested if the answer variable is functional
using linear model (Bosq and Delecroix (1985), Besse et al. (2000)). Recently,
of the first work relating to model presenting at the same time linear and non-
parametric aspects were realized by Ferraty et al. (2003), Aït-Saïd et al. (2005,
2008), Ferré and Villa Ferr(2005)...
The first work on the functional variables of distribution estimate was given
by Geffroy (1974), Gasser et al. (1998) then Hall and Heckman (2002) were
interested in the nonparametric estimate of the distribution mode a functional
variable. The estimate of the median of a random variable distribution which
takes its values in a Banach space was studied by Cadre (2001). Dabo-Niang
(2002) gives an estimator of the density in a space of infinite dimension and
established asymptotic results of this estimator, such convergence on average
quadratic, almost sure convergence and the asymptotic normality of an estima-
tor of the histogram type. We will also find in this article an application giving
the expression of convergence speed in the case of the estimate of the density
of a diffusion process relatively to Wiener measure. Ferraty and Vieu studied
the nonparametric estimator of the mode of the density of a random variable
with values in a semi-norm vector space of infinite dimension. They establish its
almost sure convergence and they also apply this result if the measurement of
probability of the variable checks a condition of concentration. Several authors
were interested in the application of statistical modeling by functional variables
on real data. As example, Ferraty and Vieu (2002, 2003) were interested in
spectrometric data and with vocal recordings, Besse et al. (2000) with weather
data, Gasser et al. (1998) considered medical data, Ferraty et al. (2005) con-
sidered environmetric and meteorology data where they have gave an example
of application to the prediction via the conditional median, together with the
determination of prediction intervals...

1.3.3 Concrete problem in statistics for functional vari-
ables

In this part we mention a few areas wherein appear the functional data to give
an idea of the type of problems that functional statistics solves.
• In biology, we find the first precursor work of (1958) concerning a study

of growth curves. More recently, another example is the study of variations of
the angle of the knee during walking (Ramsay and Silverman, 2002) and knee
movement during exercise under constraint (Abramovich and Angelini (2006),
and Antoniadis and Sapatinas (2003). Concerning animal biology, studies of
the oviposition of medfly were made by several authors (Chiou et al. (2003a,
2003b), Cardot (2007) and Chiou and Müller (2007)). The data consist of curves
giving the spawn for each quantity of eggs over time.
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• Chemometrics is part of the fields of study that promote the use of meth-
ods for functional statistical. Of many existing work on the subject, include
Frank and Friedman (1993) , Hastie and Mallows (1993) who have commented
on the article by Frank and Friedman (1993) providing an example of the mea-
suring curves log-intensity of a laser radius refracted depending on the angle
of refraction. In 2002, Ferraty and Vieu were interested in the study of the
percentage of fat in the piece of meat (reponse variable) given the absorption
curves of infrared wavelengths of these pieces of meat (explanatory variable).
• Of environment-related applications have been particularly studied by

Aneiros-Perez et al. (2004) who have worked on a forecasting problem of pol-
lution. These data consist of measurements of peak ozone pollution every day
(variable interest) given curves pollutants and meteorological curves before (ex-
planatory variables).
• Climatology is an area where functional data appear naturally. A study

of the phenomenon El Niño (hot current in Pacific Ocean) has been realized by
Besse et al. (2000); Ramsay and Silverman (2005), Ferraty et al. (2005) and
Hall and Vial (2006).
• In linguistics, the works have also been realized, particularly concerning

voice recognition. Mention may be made, for example Hastie et al. (1995),
Berlinet et al. (2005) or again Ferraty and Vieu (2003, 2006). This works are
strongly related to methods of classification when the explanatory variable is a
curve. Briefly, the data curves corresponding to records of phonemes spoken by
different individuals.A label is associated with each phoneme (reponse variable)
and the goal is to establish a classification of these curves using as explanatory
variable the recorded curve.
• In the field of graphology, the contribution of functional statistical tech-

niques has again found application. The works on this problem are for exam-
ple those of Hastie et al. (1995) and Ramsay (2000). The latter for example
modelize the pen position (abscissa and ordinate versus time) using differential
equations.
• The applications to economics are also relatively many. Works have been

realized especially by Kneip and Utikal (2001), and recently by Benko et al.
(2005), based in particular on an analysis of functional principal components.
There are other areas where the functional statistics was employed such as for
example processing of sound signals (Lucero, 1999) or recorded by a radar (Hall
et al (2001)), the demographic studies (Hyndman and Ullah (2007)),... and the
applications in fields as varied as criminology (how to model and compare the
evolution of the crime of an individual during time?) Paleo pathology (can you
tell an individual if suffering arthritis from the shape of his femur?) The results
study in school tests,...
Finally, one may be led to study the functional random variables even if it
has available actual initial data independent or multivariate. This is the case
when one wants to compare or study functions that can be estimated from
the data. Among Typical examples of this type of situation one can evoke
comparison of different density functions (see Kneip and Utikal (2001), Ramsay
and Silverman (2002), Delicado (2007) and Nerini Ghattas (2007)), functions
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regressions (Härdle and Marron (1990), Heckman and Zamar (2000)), the study
of the function representing the probability that an individual has to respond to
a test according on its "qualities" correctly Ramsay and Silverman (2002)),...
One can imagine that in the future the use of statistical methods functional will
be extended to other areas.

1.3.4 On the problematic of single index models

For several years, a increasing interest is worn to models which incorporating
of both the parts parametric and nonparametric. Such models type are called
semi-parametric model. This consideration is due primarily to problems due
to poor specification of some models. Tackle a problem of mis-specification
semiparametric way consists in not specify the functional form of some model
components. This approach complete those non-parametric models, which can
not be useful in small samples, or with a large number of variables. As example,
in the classical regression case, the important parameter whose one assumed
existence is the regression function of Y knowing the covariate X, denoted
r(x) = E(Y |X = x), X,Y ∈ Rd×R. For this model, the non-parametric method
considers only regularity assumptions on the function r. Obviously, this method
has some drawbacks. One can cite the problem of curse of dimensionality. This
problem appears when the number of regressors d increases, the rate of conver-
gence of the nonparametric estimator r which is supposed k times differentiable
is O(n−k/2k+d) deteriorate. The second drawback is the lack of means to quan-
tify the effect of each explanatory variable. To alleviate in these drawbacks, an
alternative approach is naturally provided by the semi-parametric model which
supposes the introduction of a parameter on the regressors, by writing than the
regression function is of the form

Eθ(Y |X) = E(Y | < X, θ >= x),

The models defined are known in the literature as the single-index models.
These models allow to obtain a compromise between parametric models, gen-
erally too restrictive and nonparametric model where the rate of convergence
of the estimators deteriorate quickly in the presence of a large number of ex-
planatory variables. In this area, different types of models have been studied
in the literature : amongst the most famous, there may be mentioned addi-
tive models, partially linear models or single index models. The idea of these
models, in the case of estimating the conditional density or regression consists
in bring to the covariates a dimension in smaller than dimension of the space
variable, thus allowing overcome the problem of curse of dimensionality. For
example, for example, in the partially linear model, we decompose the quantity
to be estimated, into a linear part and a functional part. This latter quantity
does not pose estimation problem since it’s expressed as a function of explana-
tory variables of finite dimension, thus avoiding the problems associated with
curse of dimensionality. in order to treat the problem of curse of dimensionality
in the case chronologies series, several semi-parametric approaches have been
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proposed. Without pretend to exhaustively, we quote for example: Xia and An
(2002) for the index model. A general presentation of this type of model is given
in Ichimura et al. (1993) where the convergence and asymptotic normality are
obtained. In the case of M -estimators, Delecroix et al. (1999) proves the con-
sistency and asymptotic normality of the estimate the index and they study it’s
effectiveness. The statistical literature on these methods is rich, quote Huber
(1985) and Hall (1989) present an estimation method which consists projecting
the density and the regression function on a space of dimension one, to bring
a non-parametric estimation for dimensional covariates. This amounts exactly
to estimate these functions in a single index model. Attaoui et al. (2011) have
established the pointwise and the uniform almost complete convergence (with
the rate) of the kernel estimate of this model. The interest of their study is
to show how the estimate of the conditional density can be used to obtain an
estimate of the simple functional index if the latter is unknown. More precisely,
this parameter can be estimated by pseudo-maximum likelihood method which
is based the preliminary estimate of the conditional density. recently Mahiddine
et al. (2014) have established the pointwise almost complete convergence and
the uniform almost complete convergence (with the rate) of some characteristics
of the conditional distribution and the successive derivatives of the conditional
density when the observations are linked with a single-index structure and they
are applied to the estimations of the conditional mode and conditional quantiles.
The single-index approach is widely applied in econometrics as a reasonable
compromise between nonparametric and parametric models. Such kind of mod-
elization is intensively studied in the multivariate case. Without pretend to ex-
haustivity, we quote for example Härdle et al. (1993), Hristache et al. (2001).
Based on the regression function, Delecroix et al. (2003) studied the estimation
of the single-index and established some asymptotic properties. The literature is
strictly limited in the case where the explanatory variable is functional (that is a
curve). The first asymptotic properties in the fixed functional single-model were
obtained by Ferraty et al. (2003). They established the almost complete con-
vergence, in the i.i.d. case, of the link regression function of this model. Their
results were extended to dependent case by Aït Saidi et al. (2005). Aït Saidi
et al. (2008) studied the case where the functional single-index is unknown.
They proposed an estimator of this parameter, based on the cross-validation
procedure.

1.3.5 On the conditional model

Nonparametric estimation of the conditional density has been widely studied,
when the data is real The First related result in nonparametric functional statis-
tic was obtained by Ferraty et al. (2006). They established the almost complete
consistency in the independent and identically distributed (i.i.d.) random vari-
ables of the kernel estimator of the conditional distribution and the successive
derivatives of conditional probability density.

These results have been extend to dependent data by Ferraty et al. (2005)
and Ezzahrioui and Ould Saïd (2010). we send back to Cardot et al. (2004) for
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one approach for linear the conditional quantile statistical functional. The con-
tribution of the thesis on this model is the study of some asymptotic properties
related with the nonparametric estimation of the maximum of the conditional
hazard function. The asymptotic results (with rates) are precised. The results
obtain The results are detailed in Chapter 3 of this thesis. In a functional data
setting, the conditioning variable is allowed to take its values in some abstract
semi-metric space. In this case, Ferraty et al. (2005) define non-parametric
estimators of the conditional density and the conditional distribution. They
give the rates of convergence (in an almost complete sense) to the correspond-
ing functions, in a dependence (α-mixing) context. We extend their results by
calculating the maximum of the conditional hazard function of these estimates,
and establishing their asymptotic normality, considering a particular type of
kernel for the vectorial part of the estimates. Because the hazard function es-
timator is naturally constructed using these two last estimators, the same type
of properties is easily derived for it.

1.3.6 On the conditional hazard function

The literature on estimating the conditional hazard function is relatively re-
stricted into functional statistics. The article by Ferraty et al. (2008) is precur-
sor work on the subject, the authors introduced a nonparametric estimate of the
conditional hazard function, when the covariate is functional. We prove consis-
tency properties (with rates) in various situations, including censored and/or de-
pendent variables. The α-mixing case was handled by Quintela-Del-Rio (2010).
The latter established the asymptotic normality of the estimator proposed by
Ferraty et al. (2008).

The author has illustrated these asymptotic results by an application on
seismic data. We can also look at the recent work of Laksaci et Mechab (2010)
on estimating of conditional hazard function for functional data spatially de-
pendent. In this thesis, we deal the nonparametric estimate of the high risk of
the conditional hazard function conditional. We establish the asymptotic be-
havior of a hazard rate in the presence of a random explanatory variable and
asymptotic normality of of independence data.

1.4 Local Weithing of Functional Variables

In the finite dimensional case, the local weighting techniques are very popular
in the community of nonparametricians because they are very well adapted to
nonparametric models. Clearly, local approaches need to have at hand some
topological ways for measuring proximity between functional data.
In the finite dimensional case, one of the most common approaches among these
local weighting methods is certainly the kernel one. It is impossible to give an
exhaustive bibliography about nonparametric methods for finite dimensional
variables, but the state of art in this field is well summarized in Schimek (2000)
and Akritas and Politis (2003) while a large number of references can be found in
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Sarda and Vieu (2000) concerning the kernel methods especially. We will see in
this section how kernel smoothing ideas can be adapted to infinite dimensional
variables.
The background presented above is sufficient to introduce the kernel local weight-
ing in the functional case. Let X1, X2, . . . , Xn be n f.r.v. valued in F and let
x be a fixed element of E . A naive functional extension of multivariate kernel
local weighting ideas would be to transform the n f.r.v. x1, x2, . . . , xn into the
n quantities

1

V (h)
K

(
d(x,Xi)

h

)
,

where d is a semi-metric on F , K is a real (asymmetrical) kernel. In this
expression V (h) would be the volume of

B(x, h) = {x′ ∈ E, d(x, x′) ≤ h},

which is the ball, with respect to the topology induced by d, centered at x and of
radius h. However, this naive approach requests to define V (h). In other words,
this needs to have at hand a measure on F . This is the main difference with
real and multivariate cases for which the Lebesgue measure is implicitly used
whereas in the functional space F we do not have such a universally accepted
reference measure (see Dabo-Niang and Rhomari (2003) for deeper discussion).
Therefore, in order to free oneself of a choice of particular measure, we build
the normalization by using directly the probability distribution of the f.r.v. The
functional kernel local weighted variables are defined by:

∆i =
K
(
d(x,Xi

h

)
E
(
K
(
d(x,Xi

h

)) . (1.1)

If we go back quickly to the multivariate case we have, for some constant C
depending on K and on the norm ‖.‖ used Rp,

EK(‖x−Xi‖/h) ∼ Cf(x)hp,

as long as Xi has a density f with respect to Lebesgue measure which is con-
tinuous and such that f(x) > 0 (this kind results known in the literature as the
Bochner’s type theorem in Collomb (1976) gives a large scope on such results).
So, it is clear now that (1.1) is an extension of the multivariate kernel local
weighting in the functional framework.
Note that the kernel functions K to be used here necessarily the asymmetrical
ones described in multivariate case above. For the sake of simplicity, in the
remainder of this work, we will consider only two kinds of kernel for weighting
functional variables.
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1.5 Various Approaches to the Prediction Prob-
lem

Let us start by recalling some notation. Let (Xi, Yi)i = 1, . . . n be n independent
pairs, identically distributed as (X,Y ) and valued in E × R, where (E , d) is a
semi-metric space (i.e. X is a f.r.v. and d a semi-metric). Let x (resp. y) be
a fixed element of E (resp. R), let Nx ⊂ E be a neighboorhood of x and S be
a fixed compact subset of R. Given x, let us denote by ŷ a predicted value for
the scalar response.
We propose to predict the scalar response Y from the functional predictor X
by using various methods all based on the conditional distribution of Y given
X. This leads naturally to focus on some conditional features such as condition
expectation, median, mode and quantiles. The regression (nonlinear) operator
r of Y on X is defined by

r(x) = E(Y |X = x),

and the condition cumulative distribution function (c.d.f) of Y givenX is defined
by:

∀y ∈ R, FXY (x, y) = P(Y ≤ y|X = x).

1.6 Kernel Estimators
Once the nonparametric modeling has been introduced, we have to find ways
to estimate the various mathematical objects exhibited in the previous models,
namely the (nonlinear) operator r, FXY and fXY .

• Estimating the regression. We propose for the nonlinear operator r
the following functional kernel regression estimator:

r̂(x) =

n∑
i=1

YiK
(
h−1d(x,Xi)

)
n∑
i=1

K
(
h−1d(x,Xi)

) ,

where K is an asymmetrical kernel and h (depending on n) is a strictly
positive real. It is a functional extension of the familiar Nadaraya-Watson
estimate (see Nadaraya (1964) and Watson (1964) which was previously
introduced for finite dimensional nonparametric regression (see Härdle
(1990) for extensive discussion). The main change comes from the semi-
metric d which measures the proximity between functional objects. To see
how such an estimator works, let us consider the following quantities:

wi,h =
K
(
h−1d(x,Xi)

)
n∑
i=1

K
(
h−1d(x,Xi)

) .
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Thus, it is easy to rewrite estimator r̂(x) as follows:

r̂(x) =

n∑
i=1

wi,h(x)Yi.

Which is really a weighted average because:

n∑
i=1

wi,h(x) = 1.

The behavior of the wi,h(x)’s can be deduced from the shape of the asym-
metrical kernel function K.

1.7 Topological considerations

1.7.1 Kolmogorov’s entropy
The purpose of this section is to emphasize the topological components of our
study. Indeed,as indicated in Ferraty and Vieu (2006), all the asymptotic results
in nonparametric statistics for functional variables are closely related to the
concentration properties of the probability measure of the functional variable
X. Here,moreover, we have to take into account the uniformity aspect. To this
end,let SF be a fixed subset of H of; we consider the following assumption:

∀x ∈ SF , 0 < Cφ(h) ≤ P (X ∈ B(x, h)) ≤ C ′φ(h) <∞.

We can say that the first contribution of the topological structure of the func-
tional space is viewed through the function φ controlling the concentration of
the measure of probability of the functional variable on a small ball. Moreover,
for the uniform consistency, where the main tool is to cover a subset SF with
finite number of balls, one introduces an other topological concept defined as
follows:

Definition 1.7.1 Let SF be a subset of a semi-metric space H, and let ε > 0
be given. A finite set of points x1, x2, . . . , xN in F is called an ε-net for SF if
SF ⊂

⋃N
k=1B(xk, ε).

The quantity ψSF (ε) = log (Nε(SF )), where Nε(SF ) is the minimal number
of open balls in F of radius ε which is necessary to cover SF , is called the
Kolmogorov’s ε-entropy of the set SF .

This concept was introduced by Kolmogorov in the mid-1950’s (see, Kolmogorov
and Tikhomirov, 1959) and it represents a measure of the complexity of a set,
in sense that, high entropy means that much information is needed to describe
an element with an accuracy ε. Therefore, the choice of the topological struc-
ture (with other words, the choice of the semi-metric) will play a crucial role
when one is looking at uniform (over some subset SF ) of F) asymptotic results.
More precisely, we will see thereafter that a good semi-metric can increase the
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concentration of the probability measure of the functional variable X as well as
minimize the ε-entropy of the subset SF . In an earlier contribution (see, Ferraty
et al., 2006) we highlighted the phenomenon of concentration of the probabil-
ity measure of the functional variable by computing the small ball probabilities
in various standard situations. We will devote Section 1.8.3 to discuss the be-
haviour of the Kolmogorov’s ε-entropy in these standard situations. Finally,
we invite the readers interested in these two concepts (entropy and small ball
probabilities) or/and the use of the Kolmogorov’s ε-entropy in dimensional-
ity reduction problems to refer to respectively, Kuelbs and Li (1993) or/and
Theodoros and Yannis (1997).

1.8 Description of the thesis
The first thematic of this thesis focuses on the study of quadratic error in statis-
tical nonparametric functional. Recall that one of the main reasons for the craze
of nonparametric functional statistical is the solution it offers to the problem
of the curse of dimensionality. This well-known non-parametric statistical phe-
nomenon relates to the significant deterioration of the quality of the estimate
when the dimension increase. Our study highlights the phenomenon of concen-
tration properties on small balls of the probability measure of the functional
variable.

The second problematic addressed is devoted to the study of some functional
parameters in models to revelatory index. We treat the conditional cumulative
distribution function and the successive derivatives of the conditional density
considering a type of data namely full than the i.i.d case. The explanatory
variable for functional parameter which is the conditional distribution function
is of infinite dimension.

The uniform convergence in functional nonparametric statistic engenders an
another problem of dimensionality. Indeed, in a general way the processing of
uniform convergence on a given set is related to the number of balls which cover
the whole. In finite dimension for a compact set, this number is of the order
of rd where r is the radius of the balls, d is est the dimension of the space.
From probabilistic point of view, this relationship is justified by the fact that
the probability of the set is bounded above by the number of balls multiplied
by rd which is the Lebesgue measure of a ball of radius r. So, we can say that
there is a relationship between the number of balls, the size of the space and
the probability measure used. Thus, it is natural to wonder about the uniform
convergence rate of the estimators when the dimension is infinite. Of course, this
number depends on the topological structure of the space of functional variable
considered but the most important issues are :

1. Can we find a compromise between the radius of the ball and the number
of balls to ensure uniform convergence of estimators built?

2. Can we optimize the speed of convergence based on considered the topo-
logical structure?
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The study conducted in the third part of this thesis is an answer to this
question and the concept of entropy plays a key role in our approach.

1.8.1 Plan of the thesis
After devoting the first part of the presentation of the asymptotic notations and
results as well as the short description of the thesis. Then, this thesis is divided
into two parts. The first part interested only on a real response variable and
the case of i.i.d observations. In this context, we propose an estimate of the
maximum risk, through the nonparametric estimation of the conditional hazard
function. The high risk of the conditional hazard function is a parameter of
great importance in seismicity studies, because it constitutes the maximum risk
of occurrence of an earthquake in a given interval of time. It is shown that the
(empirically determined) the high risk of the kernel estimate we establish the
asymptotic behavior of a hazard rate in the presence of a random explanatory
variable and asymptotic normality of independence data. We state the almost
complete convergence (with rates of convergence) for nonparametric estimates of
the derivative of the conditional hazard and the maximum risk and we calculate
the variance of the conditional density, distribution and hazard estimates, the
asymptotic normality of the three estimators considered is developed.

In the second part, we examine the conditional distibution function and we
focus on the case of i.i.d observations. We build in this case a kernel estimator
for this functional parameter and we state a nonparametric estimation of some
characteristics of the conditional distribution where Kernel type estimators for
the conditional cumulative distribution function and the successive derivatives
of the conditional density in the single functional index model are introduced.
We establish the pointwise almost complete convergence and the uniform al-
most complete convergence (with the rate) of the kernel estimate of this model.
Asymptotic properties are stated for each of these estimates, and they are ap-
plied to the estimations of the conditional mode and conditional quantiles.

We will finish this section with some prospects research.

1.8.2 Definitions and outils
All through this party, (Xn)n∈N and (Yn)n∈N are sequences of real random
variables, while (un)n∈N is a deterministic sequence of positive real numbers.
We will use the notation (Zn)n∈N for a sequence of independent and centered
r.r.v.

Definition 1.8.1 One says that (Xn)n∈N converges almost completely (a.co.)
to some r.r.v. X, if and only if

∀ε > 0,
∑
n∈N

P (|Xn −X| > ε) <∞,

and the almost complete convergence of (Xn)n∈N to X is denoted by

lim
n→∞

Xn = X, a.co.



22 CHAPTER 1. INTRODUCTION.

Definition 1.8.2 One says that the rate of almost complete convergence of
(Xn)n∈N to X is of order un if and only if

∃ε0 > 0,
∑
n∈N

P (|Xn −X| > ε0un) <∞,

and we write
Xn −X = Oa.co.(un)

Proposition 1.8.1 Assume that lim
n→∞

un = 0, Xn = Oa.co.(un) and lim
n→∞

Yn =

l0, a.co., where l0 is a deterministic real number.

i) We have XnYn = Oa.co.(un);

ii) We have
Xn

Yn
= Oa.co.(un) as long as l0 6= 0.

Remark 1.8.1 The almost convergence of Yn to l0 implies that there exists
some δ > 0 such that ∑

n∈N
P (|Yn| > δ) <∞.

Now, one suppose Z1, . . . , Zn will be independent r.r.v. with zero mean. As can
be seen throughout this party, the statement of almost complete convergence
properties needs to find an upper bound for some probabilities involving sum of
r.r.v. such as

P

(∣∣∣ n∑
i=1

Zi

∣∣∣ > ε

)
,

where, eventually, the positive real ε decreases with n. In this context, there
exists powerful probabilistic tools, generically called Exponential Inequalities.
The literature contains various versions of exponential inequalities. These in-
equalities differ according to the various hypotheses checked by the variables
Zi’s. We focus here on the so-called Bernstein’s inequality. This choice was
made because the from of Bernstein’s inequality is the easiest for the theoreti-
cal developments on functional statistics that have been stated throughout our
thesis. Other forms of such exponential inequality can be found in Fuk-Nagaev
(1971) (see also Nagaev (1997) and (1998))

Proposition 1.8.2 Assume that

∀m ≥ 2, |EZmi | ≤ (m!/2)(ai)
2bm−2,

and let (An)2 = (a1)2 + . . .+ (an)2. Then, we have:

∀ε ≥ 0, P

(∣∣∣ n∑
i=1

Zi

∣∣∣ ≥ εAn) ≤ 2 exp

− ε2

2
(

1 + εb
An

)
 .
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Corollary 1.8.1 i) If ∀m ≥ 2,∃Cm > 0, E|Zm1 | ≤ Cma2(m−1), we have

∀ε ≥ 0, P

(∣∣∣ n∑
i=1

Zi

∣∣∣ ≥ nε) ≤ 2 exp

{
− nε2

2a2(1 + ε)

}
.

ii) Assume that the variables depend on n (that is, Zi = Zi,n). If ∀m ≥
2,∃Cm > 0, E|Zm1 | ≤ Cma

2(m−1), and if un = n−1a2
n log n verifies

lim
n→∞

un = 0, we have:

1

n

n∑
i=1

Zi = Oa.co. (
√
un) .

Remark 1.8.2 By applying Proposition 1.8.2 with An = a
√
un, b = a2 and

taking ε = ε0
√
un, we obtain for some C ′ > 0:

P

(
1

n

∣∣∣ n∑
i=1

Zi

∣∣∣ > ε0
√
un

)
≤ 2 exp

{
− ε2

0 log n

2(1 + ε0
√
un)

}
≤ 2n−C

′ε20 .

Corollary 1.8.2 i) If ∃M < ∞, |Z1| ≤ M , and denoting σ2 = EZ2
1 , we

have

∀ε ≥ 0, P

(∣∣∣ n∑
i=1

Zi

∣∣∣ ≥ nε) ≤ 2 exp

{
− nε2

2σ2(1 + εMσ2 )

}
.

ii) Assume that the variables depend on n (that is, Zi = Zi,n) and are such
that ∃M = Mn <∞, |Z1| ≤M and define σ2

n = EZ2
1 . If un = n−1σ2

n log n
verifies lim

n→∞
un = 0, and if M/σ2

n < C <∞, then we have:

1

n

n∑
i=1

Zi = Oa.co. (
√
un) .

Remark 1.8.3 By applying Proposition 1.8.2 with a2
i = σ2, An = nσ2, and by

choosing ε = ε0
√
un, we obtain for some C ′ > 0:

P

(
1

n

∣∣∣ n∑
i=1

Zi

∣∣∣ > ε0
√
un

)
≤ 2 exp

{
− ε2

0 log n

2(1 + ε0
√
vn)

}
≤ 2n−C

′ε20 .

where vn = Mun

σ2
n

.

Definition 1.8.3 i) A function K from R into R+ such that
∫
K = 1 is

called a kernel of type I if there exist two real constants 0 < C1 < C2 <∞
such that:

C11[0,1] ≤ K ≤ C21[0,1].
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ii) A function K from R into R+ such that
∫
K = 1 is called a kernel of

type II if its support is [0, 1] and if its derivative K ′ exists on [0, 1] and
satisfies for two real constants −∞ < C2 < C1 < 0:

C2 ≤ K ′ ≤ C1.

The first kernel family contains the usual discontinuous kernels such as the
asymmetrical box one while the second family contains the standard asymmet-
rical continuous ones (as the triangle, quadratic, ...). Finally, to be in harmony
with this definition and simplify our purpose, for local weighting of real random
variables we just consider the following kernel-type.

Definition 1.8.4 A function K from R into R+ such that
∫
K = 1 with com-

pact support [−1, 1] and such that ∀u ∈ (0, 1), K(u) > 0 is called a kernel of
type 0.

We can now build the bridge between local weighting and the notation of small
ball probabilities. To fix the ideas, consider the simplest kernel among those of
type I namely the asymmetrical box kernel. Let x be f.r.v. valued in F and x
be again a fixed element of F . We can write:

E
(
1[0,1]

(
d(x,X)

h

))
= E(1B(x,h)(X)) = P(X ∈ B(x, h)).

Keeping in mind the functional kernel local weighted variables (1.1), the prob-
ability of the ball B(x, h) appears clearly in the normalization. At this stage it
is worth telling why we are saying small ball probabilities. In fact, as we will
see later on, the smoothing parameter h (also called the bandwith) decreases
with the size of the sample of the functional variables (more precisely, h tends
to zero when n tends to∞). Thus, when we take n very large, h is close to zero
and then B(x, h) is considered as a small ball and P (X ∈ B(x, h)) as a small
ball probability.
From now, for all x in F and for all positive real h, we will use the notation:

φx(h) = P(X ∈ B(x, h)).

This notion of small ball probabilities will play a major role both from theoretical
and piratical points of view. Because the notion of ball is strongly linked with
the semi-metric d, the choice of this semi-metric will become an important stage.
Now, let X be a f.r.v. taking its values in the semi-metric space (F , d), let x
be a fixed element of F , let h be a real positive number and let K be a kernel
function.

Lemma 1.8.1 If K is a kernel of type I, then there exist nonnegative finite
real constant C and C ′ such that:

Cφx(h) ≤ EK
(
d(x,X

h

)
≤ C ′φx(h).
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Lemma 1.8.2 If K is a kernel of type II and if φx(.) satisfies

∃C3 > 0, ∃ε0, ∀ε < ε0,

∫ ε

0

φx(u)du > C3εφx(ε),

then there exist nonnegative finite real constant C and C ′ such that, for h small
enough:

Cφx(h) ≤ EK
(
d(x,X

h

)
≤ C ′φx(h).

1.8.3 Some examples
We will start (Example 1) by recalling how this notion behaves in unfunctional
case (that is when F = Rp). Then, Examples 2 and 3 are covering special cases of
functional process. More interestingly (from statistical point of view) is Example
4 since it allows to construct, in any case, a semi-metric with reasonably "small"
entropy.

Example 1.8.1 (Compact subset in finite dimensional space) : A standard
theorem of topology guaranties that for each compact subset SF of Rp and for
each ε > 0 there is a finite ε-net and we have for any ε > 0,

ψSF (ε) ≤ Cp log (1/ε) .

More precisely, Chate and Courbage (1997) have shown that, for any ε > 0 the
regular polyhedron in Rp with length r can be covered by

(
[2r
√
p/ε] + 1

)p balls,
where [m] is the largest integer which is less than or equal to m. Thus, the
Kolmogorov’s ε-entropy of a polyhedron Pr in Rp with length r is

∀ε > 0, ψPr
(ε) ∼ p log ([2r

√
p/ε] + 1) .

Example 1.8.2 (Closed ball in a Sobolev space): Kolmogorov and Tikhomirov
(1959) obtained many upper and lower bounds for the ε-entropy of several func-
tional subsets. A typical result is given for the class of functions f(t) on
T = [0, 2p) with periodic boundary conditions and

1

2π

∫ 2π

0

f2(t)dt+
1

2π

∫ 2π

0

f (m)2

(t)dt ≤ r.

The ε-entropy of this class, denoted Wm
2 (r), is

ψWm
2 (r)(ε) ≤ C

(r
ε

)1/m

.

Example 1.8.3 (Unit ball of the Cameron-Martin space) : Recently, Van der
Vaart and Van Zanten (2007) characterized the Cameron-Martin space associ-
ated to a Gaussian process viewed as map in C[0, 1] with the spectral measure µ
satisfying ∫

exp (δ|λ|)µ(dλ) <∞,
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by

H =

{
t :7→ Re

(∫
e−itλh(λ)dµ(λ)

)
: h ∈ L2(µ)

}
,

and they show that Kolmogorov’s ε-entropy of the unit ball BCMW of this space
with respect to the supremum norm ‖.‖∞ is

ψBCMW
‖.‖∞

∼
(

log

(
1

ε

))2

, as ε→ 0

Example 1.8.4 (Compact subset in a Hilbert space with a projection semi-
metric) : The projection-based semi-metrics are constructed in the following
way. Assume that H is a separable Hilbert space, with inner product < ., . >
and with orthonormal basis {e1, . . . , ej , . . .}, and let k be a fixed integer, k > 0.
As shown in Lemma 13.6 of Ferraty and Vieu (2006), a semi-metric dk on H
can be defined as follows

dk(x, x′) =

√√√√ k∑
j=1

< x− x′, ej >2. (1.2)

Let χ be the operator defined from H into Rk by

χ(x) = (< x, e1 >, . . . , < x, ek >),

and let deucl be the euclidian distance on Rk, and let us denote by Beucl(., .)
an open ball of Rk for the associated topology. Similarly, let us note by Bk(., .)
an open ball of H for the semi-metric dk. Because χ is a continuous map from
(H, dk) into (Rk, deucl), we have that for any compact subset S of (H, dk), χ(S)
is a compact subset of Rk. Therefore, for each ε > 0 we can cover χ(S) with
balls of centers zi ∈ Rk:

χ(S) ⊂ ∪di=1Beucl(zi, r), with drk = C for some C > 0. (1.3)

For i = 1, . . . , d, let xi be an element of H such that χ(xi) = zi. The solution
of the equation χ(x) = zi is not unique in general, but just take xi to be one of
these solutions. Because of (1.2), we have that

χ−1(Beucl(zi, r)) = Bk(xi, r). (1.4)

Finally, (1.3) and (1.4) are enough to show that the Kolmogorov’s ε-entropy of
S is

ψS(ε) ≈ Ck log

(
1

ε

)
.

1.9 Short presentation of the results
We give hereafter a short presentation of the results obtained in the thesis.
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1.9.1 Notations
Let X be a functional random variable, frv its abbreviation. Let (Xi, Yi) be a
sample of independant pairs, each having the same distribution as (X,Y ), our
aim is to build nonparametric estimates of several functions related with the
conditional probability distribution (cond-cdf) of Y given < X, θ >=< x, θ >.

∀y ∈ R, F (θ, y, x) = P(Y ≤ y| < X, θ >=< x, θ >).

be the cond-cdf of Y given < X, θ >=< x, θ >, for x ∈ H, which also shows the
relationship between X and Y but is often unknown.

We introduce a kernel type estimators for the conditional cumulative distri-
bution function F̂ (θ, ·, x) of F (θ, ·, x) and the conditional density f̂ (j)(θ, ·, x) of
f (j)(θ, ·, x) as follows:

F̂ (θ, y, x) =

n∑
i=1

K
(
h−1
K (< x−Xi, θ >)

)
H
(
h−1
H (y − Yi)

)
n∑
i=1

K
(
h−1
K (< x−Xi, θ >)

) ,

where K is a kernel, H is a cumulative distribution function

f̂ (j)(θ, y, x) =

h−1−j
H

n∑
i=1

K(h−1
K (< x−Xi, θ >))H(j+1)(h−1

H (y − Yi))

n∑
i=1

K(h−1
K (< x−Xi, θ >))

, y ∈ R

where K is a kernel, H is a cdf and hK = hK,n (resp. hH = hH,n) is a sequence
of positive real numbers and the jth. f (j) (resp. F̂ (j)) is the derivate of f (resp.
F̂ ).
In the following, for any x ∈ H and y ∈ R, let Nx be a fixed neighborhood
of x in H, SR will be a fixed compact subset of R, and we will use the nota-
tion Bθ(x, h) = {X ∈ H/0 < | < x−X, θ > | < h}. Our nonparametric models
will be quite general in the sense that we will just need the following simple
assumption for the marginal distribution of < θ,X >:

P (X ∈ Bθ(x, h)) = φθ,x(h) > 0.

The main objective is to study the pointwise almost complete convergence and
the uniform almost complete convergence (with the rate) of the kernel estimate
of this model.

The nonparametric estimate ĥXY (x, y) =
f̂XY (x, y)

1− F̂XY (x, y)
of hXY (x, y) =

fXY (x, y)

1− FXY (x, y)
when the explanatory variable X is valued in a space of eventually infinite di-
mension. We establish the asymptotic behavior of a hazard rate in the presence
of a random explanatory variable and asymptotic normality of independence
data.
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1.9.2 Results: single functional index model
Theorem 1 For any fixed y, we have

|F̂ (θ, y, x)− F (θ, y, x)| = O(hb1K ) +O(hb2H ) +O

(√
log n

nφθ,x(hK)

)
, a.co.

Theorem 2 For any fixed y, we have, as n goes to infinity

|f̂ (j)(θ, y, x)−f (j)(θ, y, x)| = O
(
hb1K

)
+O

(
hb2H

)
+O

(√
log n

nh2j+1
H φθ,x(hK)

)
, a.co.

In the following result we extended the result of the pointwise convergence
in uniform case. The study of the uniform consistency is motivated by the fact
that the latter is an indispensable tool for studying the asymptotic properties
of all estimates of the functional index θ if is unknown. Thus, by strengthening
conditions of preceding result by the following topological terms: Let SR is
subset compact of R and SH (resp. ΘH, the space of parameters) such as

SH ⊂
d
SH
n⋃
k=1

B(xk, rn) and ΘH ⊂
d

ΘH
n⋃
j=1

B(tj , rn)

with xk (resp. tj) ∈ H and rn, dSHn , dΘH
n are sequences of positive real numbers

which tend to infinity as n goes to infinity, one will have the result.

Theorem 3 For any compact SR, SH and ΘH, we have:

sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

|F̂ (θ, y, x)−F (θ, y, x)| = O(hb1K )+O(hb2H )+Oa.co.

√ log dSHn + log dΘH
n

nφ(hK)


Theorem 4 As n goes to infinity, we have

sup
θ∈ΘF

sup
x∈SF

sup
y∈SR

|f̂ (j)(θ, y, x)−f (j)(θ, y, x)| = O(hb1K )+O(hb2H )+Oa.co.

(√
log dSFn + log dΘF

n

nh2j+1
H φ(hK)

)
The demonstration of these results and the conditions will be given in detail

in Chapter 2.

1.9.3 Results: Nonparametric estimation of a high risk
Let {(Xi, Yi), i = 1, . . . , n} be a sample of n random pairs, each one distributed
as (X,Y ), where the variable X is of functional nature and X is scalar. For-
mally, we will consider that X is a random variable valued in some semi-metric
functional space F , and we will denote by d(·, ·) the associated semi-metric. The
conditional cumulative distribution of X given X = x is defined for any y ∈ R
and any x ∈ F by

F x(y) = P(Y ≤ y|X = x),
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while the conditional density, denoted by fx(y) is defined as the density of this
distribution with respect to the Lebesgue measure on R. The conditional hazard
is defined as in the non-infinite case.

The conditional density operator fx(·) is defined by using kernel smoothing
methods

f̂x(y) =

n∑
i=1

h−1
n K

(
h−1
n d(x,Xi)

)
H
(
h−1
n (y − Yi)

)
n∑
i=1

K
(
h−1
n d(x,Xi)

) ,

whereK and H are kernel functions and hn is sequence of smoothing parameter.
The conditional distribution operator F x(·) can be estimated by

F̂ x(y) =

n∑
i=1

Wni(x)1{Yi≤y}, ∀y ∈ R

with 1{·} being the indicator function and where Wni(x) =
h−1
n K(h−1

n d(x,Xi))∑n
j=1 K(h−1

n d(x,Xj))
,

K is a kernel function and hn is a sequence of positive real numbers which goes
to zero as n goes to infinity.

For x ∈ F , we denote by hx(·) the conditional hazard function of Y1 given
X1 = x. We assume that hx(·) is unique maximum and its high risk point is
denoted by θ(x) := θ, which is defined by

hx(θ(x)) := hx(θ) = max
y∈S

hx(y). (1.5)

A kernel estimator of θ is defined as the random variable θ̂(x) := θ̂ which
maximizes a kernel estimator ĥx(·), that is,

ĥx(θ̂(x)) := ĥx(θ̂) = max
y∈S

ĥx(y) (1.6)

Note that the estimate θ̂ is note necessarily unique and our results are valid
for any choice satisfying (3.3). We point out that we can specify our choice by
taking

θ̂(x) = inf

{
t ∈ S such that ĥx(t) = max

y∈S
ĥx(y)

}
.

Theorem 5 We have
θ̂ − θ → 0 a.co. (1.7)

Theorem 6 Under assumption, we have

sup
y∈S
|θ̂ − θ| = O

(
hb1n
)

+Oa.co.

(√
log n

nh3
nφx(hn)

)
(1.8)
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Theorem 7 Under conditions, we have (θ ∈ S/fx(θ), 1− F x(θ) > 0)(
nh3

nφx(hn)
)1/2 (

ĥ
′x(θ)− h

′x(θ)
)
D→N

(
0, σ2

h′(θ)
)

where →D denotes the convergence in distribution,

ayl = Kl(1)−
∫ 1

0

(
Kl(u)

)′
ζy0 (u)du for l = 1, 2

and
σ2
h′(θ) =

ay2h
x(θ)

(ay1)
2

(1− F x(θ))

∫
(H ′(t))2dt.

Theorem 8 Under conditions, we have (θ ∈ S/fx(θ), 1− F x(θ) > 0)

(
nh3

nφx(hn)
)1/2 (

θ̂ − θ
)
D→N

(
0,

σ2
h′(θ)

(h′′x(θ))2

)

with σ2
h′(θ) = hx(θ) (1− F x(θ))

∫
(H ′(t))2dt.
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2.1 Introduction

The single-index models are becoming increasingly popular because of their
importance in several areas of science such as econometrics, biostatistics, medicine,
financial econometric and so on. The single-index model, a special case of pro-
jection pursuit regression, has proven to be a very efficient way of coping with
the high dimensional problem in nonparametric regression. Härdle et al. [17],
Hristache et al. [19]. Delecroix et al. [6] have studied the estimation of the
single-index approach of regression function and established some asymptotic
properties. The recent literature in this domain shows a great potential of these
functional statistical methods. The most popular case of functional random vari-
able corresponds to the situation when we observe random curve on different
statistical units. The first work in the fixed functional single-model was given
by Ferraty et al. [10], where authors have obtained almost complete conver-
gence (with the rate) of the regression function in the i.i.d. case. Their results
have been extended to dependent case by Aït Saidi et al. [1]. Aït Saidi et al.
[2] studied the case where the functional single-index is unknown. The authors
have proposed for this parameter an estimator, based on the the cross-validation
procedure.

In the present work we study a single- index modeling in the case of the
functional explanatory variable. More precisely, we consider the problem of
estimating some characteristics of the conditional distribution of a real variable
Y given a functional variable X when the explanation of Y given X is done
through its projection on one functional direction. The conditional distribution
plays an important role in prediction problems, such as the conditional mode the
conditional median or the conditional quantiles. Nonparametric estimation of
the conditional density has been widely studied, when the data are real. The first
related result in nonparametric functional statistic was obtained by Ferraty et al.
[13], the authors have established the almost complete convergence (with rate)
in the independent and identically distributed (i.i.d.) random variables. The
asymptotic normality of this kernel estimator has been studied in the dependent
data by Ezzahrioui and Ould Saïd [9].

The goal of this paper is to establish a nonparametric estimation of some
characteristics of the conditional distribution where Kernel type estimators for
the conditional cumulative distribution function and the successive derivatives
of the conditional density in the single functional index model are introduced.
We establish the pointwise almost complete convergence and the uniform al-
most complete convergence (with the rate) of the kernel estimate of this model.
Asymptotic properties are stated for each of these estimates, and they are ap-
plied to the estimations of the conditional mode and conditional quantiles.
Now, let us outline the paper. At first, in section 2, we present general no-
tations and some conditions necessary for our study, Then, in sections 3 we
propose the estimator of the conditional cumulative distribution function and
that of the conditional density derivatives, and we give their pointwise almost
complete convergence (with rate). Then, in section 4, we study the uniform al-
most complete convergence of the conditional cumulative distribution function
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(resp. the conditional density derivatives) estimator given in section 3. Section
5 is devoted to some applications, in this part, we first consider the problem of
the estimation of the conditional mode in functional single-index model, then
we investigate the asymptotic properties of the conditional quantile function of
a scalar response and functional covariate when the observations are in single
functional index model and data are independent and identically distributed
(i.i.d.), after that the cross-validation method is given, which is so important
in guarding against testing hypotheses suggested by the data, especially where
further samples are hazardous, costly or impossible to collect.
In the end, we finish our paper by giving technical proofs of lemmas and corol-
lary (Appendix).

2.2 General notations and conditions

All along the paper, when no confusion will be possible, we will denote by
C, C ′ or/and Cθ,x some generic constant in R∗+, and in the following, any real
function with an integer in brackets as exponent denotes its derivative with the
corresponding order.

Let X be a functional random variable, frv its abbreviation. Let (Xi, Yi) be
a sample of independant pairs, each having the same distribution as (X,Y ), our
aim is to build nonparametric estimates of several functions related with the
conditional probability distribution (cond-cdf) of Y given < X, θ >=< x, θ >.
Let

∀y ∈ R, F (θ, y, x) = P(Y ≤ y| < X, θ >=< x, θ >).

be the cond-cdf of Y given < X, θ >=< x, θ >, for x ∈ H, which also shows the
relationship between X and Y but is often unknown.
If this distribution is absolutely continuous with respect to the Lebesgues mea-
sure on R, then we will denote by f(θ, ·, x). (resp. f (j)(θ, ·, x)) the conditional
density (resp. its jth order derivative) of Y given < X, θ >=< x, θ >. In
Sections 3 and 4, we will give almost complete convergence1 results (with rates
of convergence2) for nonparametric estimates of both functions F (θ, ·, x) and
f (j)(θ, ·, x).

In the following, for any x ∈ H and y ∈ R, let Nx be a fixed neighborhood
of x in H, SR will be a fixed compact subset of R, and we will use the nota-
tion Bθ(x, h) = {X ∈ H/0 < | < x−X, θ > | < h}. Our nonparametric models
will be quite general in the sense that we will just need the following simple
assumption for the marginal distribution of < θ,X >:

(H1) P (X ∈ Bθ(x, h)) = φθ,x(h) > 0,

1Recall that a sequence (Tn)n∈N of random variables is said to converge almost completely
to some variable T , if for any ε > 0, we have

∑
n P(|Tn − T | > ε) < ∞. This mode of

convergence implies both almost sure and in probability convergence (see for instance Bosq
and Lecoutre, 1987).

2Recall that a sequence (Tn)n∈N of random variables is said to be of order of complete
convergence un, if there exists some ε > 0 for which

∑
n P(|Tn| > εun) <∞. This is denoted

by Tn = O(un), a.co. (or equivalently by Tn = Oa.co.(un)).
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together with some usual smoothness conditions on the function to be estimated.
According to the type of estimation problem to be considered, we will assume
either

(H2) ∀(y1, y2) ∈ SR × SR, ∀(x1, x2) ∈ Nx × Nx, |F (θ, y1, x1) − F (θ, y2, x2)| ≤
Cθ,x

(
‖x1 − x2‖b1 + |y1 − y2|b2

)
, b1 > 0, b2 > 0,

(H3) ∀(y1, y2) ∈ SR×SR, ∀(x1, x2) ∈ Nx×Nx, |f (j)(θ, y1, x1)−f (j)(θ, y2, x2)| =
Cθ,x

(
‖x1 − x2‖b1 + |y1 − y2|b2

)
, b1 > 0, b2 > 0.

2.3 Pointwise almost complete estimation

In this section we give the pointwise almost complete estimation (with rate)
of the conditional cumulative distribution as of the successive derivatives of the
conditional density.

2.3.1 Conditional cumulative distribution estimation
The purpose of this section is to estimate the cond-cdf F x(θ, ·, x). We intro-

duce a kernel type estimator F̂ x(θ, ·, x) of F x(θ, ·, x) as follows:

F̂ (θ, y, x) =

n∑
i=1

K
(
h−1
K (< x−Xi, θ >)

)
H
(
h−1
H (y − Yi)

)
n∑
i=1

K
(
h−1
K (< x−Xi, θ >)

) , (2.1)

whereK is a kernel, H is a cumulative distribution function (cdf) and hK = hK,n
(resp. hH = hH,n) is a sequence of positive real numbers which goes to zero as n
tends to infinity, and with the convention 0/0 = 0. Note that a similar estimate
was already introduced in the case where X is a valued in some semi-metric
space which can be of infinite dimension by Ferraty et al. [12]. In our single
functional index context, we need the following conditions for our estimate:

(H4) H is such that, for all (y1, y2) ∈ R2, |H(y1)−H(y2)| ≤ C|y1 − y2|∫
|t|b2H(1)(t)dt <∞,

(H5) K is a positive bounded function with support [−1, 1],

(H6) lim
n→∞

hK = 0 with lim
n→∞

log n

nφθ,x(hK)
= 0,

(H7) lim
n→∞

hH = 0 with lim
n→∞

nα hH =∞ for some α > 0.
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• Comments on the assumptions
Our assumptions are very standard for this kind of model. Assumptions

(H1) and (H5) are the same as those given in Ferraty et al. [10]. Assumptions
(H2) and (H3) is a regularity conditions which characterize the functional space
of our model and is needed to evaluate the bias term of our asymptotic results.
Assumptions (H4) and (H6)-(H7) are technical conditions and are also similar
to those done in Ferraty et al. [13].

Theorem 2.3.1 Under the hypotheses (H1), (H2) and (H4)-(H7), and for any
fixed y, we have

|F̂ (θ, y, x)− F (θ, y, x)| = O(hb1K ) +O(hb2H ) +O

(√
log n

nφθ,x(hK)

)
, a.co.

(2.2)

Proof. For i = 1, . . . , n, we consider the quantities Ki(θ, x) := K(h−1
K (<

x −Xi, θ >)) and, for all y ∈ R Hi(y) = H
(
h−1
H (y − Yi)

)
and let F̂N (θ, y, x)

(resp. F̂D(θ, x)) be defined as

F̂N (θ, y, x) =
1

nE(K1(θ, x))

n∑
i=1

Ki(θ, x)Hi(y) (resp. F̂D(θ, x) =
1

nE(K1(θ, x))

n∑
i=1

Ki(θ, x)).

This proof is based on the following decomposition

F̂ (θ, y, x)− F (θ, y, x) =
1

F̂D(θ, x)

{(
F̂N (θ, y, x)− EF̂N (θ, y, x)

)
−
(
F (θ, y, x)− EF̂N (θ, y, x)

)}
+
F (θ, y, x)

F̂D(θ, x)

{
1− F̂D(θ, x)

}
(2.3)

and on the following intermediate results.

Lemma 2.3.1 Under the hypotheses (H1) and (H5)-H6), we have

|F̂D(θ, x)− 1| = Oa.co.

(√
log n

nφθ,x(hK)

)
, (2.4)

Corollary 2.3.1 Under the hypotheses of Lemma 2.3.1, we have
∞∑
n=1

P
(
|F̂D(θ, x)| ≤ 1/2

)
< ∞. (2.5)

Lemma 2.3.2 Under the hypotheses (H1), (H2) and (H4)-(H.6), we have

|F (θ, y, x)− EF̂N (θ, y, x)| = O
(
hb1K

)
+O

(
hb2H

)
, (2.6)

Lemma 2.3.3 Under the hypotheses (H1), (H2) and (H4)-(H7), we have

|F̂N (θ, y, x)− EF̂N (θ, y, x)| = Oa.co.

(√
log n

nφθ,x(hK)

)
, (2.7)
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2.3.2 Estimating successive derivatives of the conditional
density

The main objectif of this part is the estimation of successive derivatives of
the conditional density of Y given < X, θ >=< x, θ >, denoted by f(θ, ·, x). It is
well known that, in nonparametric statistics, this latter provides an alternative
approach to study the links between Y and X and it can be also used, in single
index modelling, to estimate the functional index θ if it is unknown.

So, at first, we propose to define the estimator f̂ (j)(θ, y, x) of f (j)(θ, y, x) as
follows:

f̂ (j)(θ, y, x) =

h−1−j
H

n∑
i=1

K(h−1
K (< x−Xi, θ >))H(j+1)(h−1

H (y − Yi))

n∑
i=1

K(h−1
K (< x−Xi, θ >))

, y ∈ R

(2.8)
Similar estimate was already introduced in the case where X is a valued in some
semi-metric space which can be of infinite dimension; Ferraty et al. [12], then
widely studied (see for instance by Attaoui et al. [3], for several asymptotic
results and references). In addition to the conditions introduced along the pre-
vious section, we need the following ones, which are technical conditions and
are also similar to those given in Ferraty et al. [13]:

(H8)

{
∀(y1, y2) ∈ R2, |H(j+1)(y1)−H(j+1)(y2)| ≤ Cθ,x|y1 − y2|
∃ν > 0, ∀j′ ≤ j + 1, lim

y→∞
|y|1+ν

∣∣∣H(j′+1)(y)
∣∣∣ = 0.

(H9) lim
n→∞

hK = 0 with lim
n→∞

log n

nh2j+1
H φθ,x(hK)

= 0.

The next result concerns the asymptotic behaviour of the kernel functional
estimator f̂ (j)(θ, ·, x) of the jth order derivative of the conditional density func-
tion.

Theorem 2.3.2 Under Assumptions (H1), (H3)-(H5), and (H7)-(H9), and for
any fixed y, we have, as n goes to infinity

|f̂ (j)(θ, y, x)−f (j)(θ, y, x)| = O
(
hb1K

)
+O

(
hb2H

)
+O

(√
log n

nh2j+1
H φθ,x(hK)

)
a.c.o

(2.9)

Proof. This result is based on the same kind of decomposition as (3.25). Indeed,
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we can write:

f̂ (j)(θ, y, x)− f (j)(θ, y, x) =
1

F̂D(θ, x)

(
f̂

(j)
N (θ, y, x)− E(f̂

(j)
N (θ, y, x)

)
− 1

F̂D(θ, x)(
f (j)(θ, y, x)− Ef̂ (j)

N (θ, y, x)
)

(2.10)

+
f (j)(θ, y, x)

F̂D(θ, x)

(
1− F̂D(θ, x)

)
where

f̂
(j)
N (θ, y, x) =

1

nhj+1
H E(K1(θ, x))

n∑
i=1

Ki(θ, x)H
(j+1)
i (y).

Then, Theorem 2.3.2 can be deduced from both following lemmas, together with
Lemma 2.3.1 and Corollary 2.3.1.

Lemma 2.3.4 Under the hypotheses (H1), (H2), (H3), (H5) and (H6) we have

|f (j)(θ, y, x)− E(f̂
(j)
N (θ, y, x)| = O

(
hb1K

)
+O

(
hb2H

)
,

Lemma 2.3.5 Under the hypotheses (H1)-(H7), we have

|f̂ (j)
N (θ, y, x)− E(f̂

(j)
N (θ, y, x)| = Oa.co.

(√
log n

nh2j+1
H φθ,x(hK)

)
,

The proofs of the the above lemmas and corollary are given in the same manner
as it was done in [13], since they are a special case of the Lemmas 2.3.2, 2.3.3,
2.3.4 and 2.3.5. It suffices to repalce f̂ (j)(y, x) (resp. f (j)(y, x)) by f̂ (j)(θ, y, x)

(resp. f (j)(θ, y, x)), and F̂D(x), (resp. FD(x)) by F̂D(θ, x) (resp. FD(θ, x)) with
d(x1, x2) =< x1 − x2, θ >

2.4 Uniform almost complete convergence

In this section we derive the uniform version of Theorem 2.3.1 and Theo-
rem 2.3.2. The study of the uniform consistency is motivated by the fact that
the latter is an indispensable tool for studying the asymptotic properties of all
estimates of the functional index if is unknown. Noting that, in the multivari-
ate case, the uniform consistency is a standard extension of the pointwise one,
however, in our functional case, it requires some additional tools and topolog-
ical conditions (see Ferraty et al., 2009, for more discussion on the uniform
convergence in nonparametric functional statistics). Thus, in addition to the
conditions introduced previously, we need the following ones. Firstly, Consider

SH ⊂
d
SH
n⋃
k=1

B(xk, rn) and ΘH ⊂
d

ΘH
n⋃
j=1

B(tj , rn) (2.11)

with xk (resp. tj) ∈ H and rn, dSHn , dΘH
n are sequences of positive real numbers

which tend to infinity as n goes to infinity.
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2.4.1 Conditional cumulative distribution estimation

In this section we propose to study the uniform almost complete convergence
of our estimator defined above (2.1) for this, we need the following assumptions:

(A1) There exists a differentiable function φ(·) such that ∀x ∈ SH and
∀θ ∈ ΘH,

0 < Cφ(h) ≤ φθ,x(h) ≤ C ′φ(h) <∞ and ∃η0 > 0, ∀η < η0, φ
′(η) < C,

(A2) ∀(y1, y2) ∈ SR × SR,∀(x1, x2) ∈ SH × SH and ∀θ ∈ ΘH,

|F (θ, y1, x1)− F (θ, y2, x2)| ≤ C(x,θ)

(
‖x1 − x2‖b1 + |y1 − y2|b2

)
,

(A3) The kernel K satisfy (H3) and Lipschitz’s condition holds

|K(x)−K(y)| ≤ C‖x− y‖,

(A4) For rn = O
(

logn
n

)
the sequences dSHn and dΘH

n satisfy:

(log n)2

nφ(hK)
< log dSHn + log dΘH

n <
nφ(hK)

log n
,

and
∞∑
n=1

n1/2b2(dSHn dΘH
n )1−β <∞ for some β > 1.

Remark 2.4.1 Note that Assumptions (A1) and (A2) are, respectively, the
uniform version of (H1) and (H2). Assumptions (A1) and (A4) are linked with
the the topological structure of the functional variable, see Ferraty et al. [14].

Theorem 2.4.1 Under Assumptions (A1)-(A4) and (H4), as n goes to infinity,
we have

sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

|F̂ (θ, y, x)−F (θ, y, x)| = O(hb1K )+O(hb2H )+Oa.co.

√ log dSHn + log dΘH
n

nφ(hK)

 .

(2.12)

In the particular case, where the functional single-index is fixed we get the
following result.

Corollary 2.4.1 Under Assumptions (A1)-(A4) and (H4), as n goes to infin-
ity, we have

sup
x∈SH

sup
y∈SR

|F̂ (θ, y, x)− F (θ, y, x)| = O(hb1K ) +O(hb2H ) +Oa.co.

√ log dSHn
nφ(hK)

 .

(2.13)
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Clearly The proofs of these two results namely the Theorem 2.4.1 and Corollary
2.4.1 can be deduced from the following intermediate results which are only
uniform version of Lemmas 2.3.1-2.3.3 and Corollary 2.3.1.

Lemma 2.4.1 Under Assumptions (A1), (A3) and (A4), we have as n→∞

sup
θ∈ΘH

sup
x∈SH

|F̂D(θ, x)− 1| = Oa.co

√ log dSHn + log dΘH
n

nφ(hK)

 .

Corollary 2.4.2 Under the assumptions of Lemma 2.4.1, we have,

∞∑
n=1

P
(

inf
θ∈ΘH

inf
x∈SH

F̂D(θ, x) <
1

2

)
<∞.

Lemma 2.4.2 Under Assumptions (A1), (A2) and (H4), we have, as n goes
to infinity

sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

|F (θ, y, x)− E(F̂N (θ, y, x))| = O(hb1K ) +O(hb2H ). (2.14)

Lemma 2.4.3 Under the assumptions of Theorem 2.4.1, we have, as n goes to
infinity

sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

|F̂N (θ, y, x)−E
[
F̂N (θ, y, x)

]
| = Oa.co.

√ log dSHn + log dΘH
n

nφ(hK)


2.4.2 Estimating successive derivatives of the conditional

density

In this part we focus on the study of uniform almost complete convergence of
our estimator defined above (2.8). Thus, in addition to the conditions introduced
in the section 4, we need the following ones.

(A5) ∀(y1, y2) ∈ SR × SR,∀(x1, x2) ∈ SF × SF and ∀θ ∈ ΘF ,

|f (j)(θ, y1, x1)− f (j)(θ, y2, x2)| ≤ C
(
‖x1 − x2‖b1 + |y1 − y2|b2

)
,

(A6) For some γ ∈ (0, 1), lim
n→∞

nγhH =∞, and for rn = O
(

logn
n

)
the sequences

dSFn and dΘF
n satisfy:

(log n)2

nh2j+1
H φ(hK)

< log dSFn + log dΘF
n <

nh2j+1
H φ(hK)

log n
,

and
∞∑
n=1

n(3γ+1)/2(dSFn dΘF
n )1−β <∞, for some β > 1.
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Theorem 2.4.2 Under Hypotheses (A1), (A3) ,(A5)-(A6) and (H8), as n goes
to infinity, we have

sup
θ∈ΘF

sup
x∈SF

sup
y∈SR

|f̂ (j)(θ, y, x)−f (j)(θ, y, x)| = O(hb1K )+O(hb2H )+Oa.co.

(√
log dSFn + log dΘF

n

nh2j+1
H φ(hK)

)
.

(2.15)

Proof. This result is based on the same kind of decomposition (2.10), there-
fore, Theorem 2.4.2 can be deduced from both following lemmas, together with
Lemma 2.4.1 and Corollary 2.4.2.

Lemma 2.4.4 Under Assumptions (A1), (A5) and (H8), we have, as n goes
to infinity

sup
θ∈ΘF

sup
x∈SF

sup
y∈SR

|f (j)(θ, y, x)− E(f̂
(j)
N (θ, y, x))| = O(hb1K ) +O(hb2H ).

Lemma 2.4.5 Under the assumptions of Theorem 2.4.2, we have, as n goes to
infinity

sup
θ∈ΘF

sup
x∈SF

sup
y∈SR

∣∣∣f̂ (j)
N (θ, y, x)]− E

[
f̂

(j)
N (θ, y, x)

]∣∣∣ = Oa.co.

(√
log dSFn + log dΘF

n

nh2j+1
H φθ,x(hK)

)
.

2.5 Applications

2.5.1 The conditional mode in functional single-index model
In this section we will consider the problem of the estimation of the con-

ditional mode in the functional single-index model. Our main aim, here, is to
establish the a.co. convergence of the kernel estimator of the conditional mode
of Y given < X, θ >=< x, θ > denoted by Mθ(x), uniformly on fixed subset
SH of H. For this, we assume that Mθ(x) satisfies on SH the following uniform
uniqueness property (see, Ould-saïd and Cai [110], for the multivariate case).

(A6) ∀ε0 > 0, ∃η > 0, ∀ϕ : SH −→ SR,

sup
x∈SH

|Mθ(x)− ϕ(x)| ≥ ε0 =⇒ sup
x∈SH

|f(θ, ϕ(x), x)− f(θ,Mθ(x), x)| ≥ η.

We estimate the conditional mode M̂θ(x) with a random variabl Mθ such that

M̂θ(x) = arg sup
y∈SR

f̂(θ, y, x). (2.16)

Note that the estimate M̂θ is not necessarily unique, and if this is the case
all the remaining of our paper will concern any value M̂θ satisfying (2.16). The
difficulty of the problem is naturally linked with the flatness of the function
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f(θ, y, x) around the mode Mθ. This flatness can be controled by the number
of vanishing derivatives at point Mθ, and this parameter will also have a great
influence on the asymptotic rates of our estimates. More precisely, we introduce
the following additional smoothness condition.

(A7)


f (l)(θ,Mθ(x), x) = 0, if;1 ≤ l < j
and f (j)(θ, ·, x), is uniformly continuous on SR
such that, |f (j)(θ, ·, x)| > C > 0

Theorem 2.5.1 Under the assumptions of Theorem 2.4.2 hold together with
(A6)-(A7) we have

sup
x∈SH

|M̂θ(x)−Mθ(x)| = O(h
b1
j

K ) +O(h
b2
j

H ) +Oa.co.

((
log dSHn

n1−γφ(hK)

) 1
2j

)

Let us now define the application framework of our results to prediction problem
by applying the result in the above Theorem, we obtain the following result.

Corollary 2.5.1 Under the assumptions of Theorem 3.15, we have as n goes
to infinity

M̂θ(x)−Mθ(x) −→ 0 a.co.

2.5.2 Conditional quantile in functional single-index model

In this part of paper we investigate the asymptotic properties of the condi-
tional quantile function of a scalar response and functional covariate when the
observations are from a single functional index model and data are independent
and identically distributed (i.i.d.)

We will consider the problem of the estimation of the conditional quantiles.
Saying that, we are implicitely assuming the existence of a regular version for
the conditional distribution of Y given < X, θ >. Now, let tθ(α) be the α-order
quantile of the distribution of Y given < X, θ >=< x, θ >. From the cond-cdf
F (θ, ·, x), it is easy to give the general definition of the α-order quantile:

tθ(α) = inf{t ∈ R : F (θ, t, x) ≥ α}, ∀α ∈ (0, 1).

In order to simplify our framework and to focus on the main interest of our
part (the functional feature of < X, θ >), we assume that F (θ, ·, x) is strictly
increasing and continuous in a neighborhood of tθ(α). This is insuring unicity
of the conditional quantile tθ(α) which is defined by:

tθ(α) = F−1(θ, α, x). (2.17)

In what remains, we wish to stay in a free distribution framework. This will
lead to assume only smoothness restrictions for the cond-cdf F (θ, ·, x) through
nonparametric modelling (see Section 2).
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As by-product of (2.17) and (2.1), it is easy to derive an estimator t̂θ(α) of
tθ(α):

t̂θ(α) = F̂−1(θ, α, x). (2.18)

As we will see later on, such an estimator is unique as soon as H is an increasing
continuous function.
Naturally, we will estimate this quantile by mean of the conditional distribu-
tion estimator studied in previous sections. Here also, as far as we know, the
literature on (conditional and/or unconditional) quantile estimation is quite
important when the explanatory variable X is real (see for instance Samanta,
1989, for previous results and Berlinet et al., 2001, for recent advances and ref-
erences). In the functional case, the conditional quantiles for scalar response
and a scalar/multivariate covariate have received considerable interest in the
statistical literature. For completely observed data, several nonparametric ap-
proaches have been proposed, for instance, Gannoun et al., (2003) introduced a
smoothed estimator based on double kernel and local constant kernel methods
and Berlinet et al., (2001) established its asymptotic normality. Under random
censoring, Gannoun et al., (2005) introduced a local linear (LL) regression (see
Koenker and Bassett (1978) for the definition) and El Ghouch and Van Kei-
legom (2009) studied the same LL estimator. Ould-Saïd (2006) constructed a
kernel estimator of the conditional quantile under independent and identically
distributed (i.i.d.) censorship model and established its strong uniform conver-
gence rate. Liang and De Uña-Àlvarez (2011) established the strong uniform
convergence (with rate) of the conditional quantile function under α-mixing
assumption.
Recently, many authors are interested in the estimation of conditional quantiles
for a scalar response and functional covariate. Ferraty et al., (2005) introduced
a nonparametric estimator of conditional quantile defined as the inverse of the
conditional cumulative distribution function when the sample is considered as
an α-mixing sequence. They stated its rate of almost complete consistency and
used it to forecast the well-known El Niño time series and to build confidence
prediction bands. Ezzahrioui and Ould-Saïd (2008) established the asymptotic
normality of the kernel conditional quantile estimator under α-mixing assump-
tion. Recently, and within the same framework, Dabo-Niang and Laksaci (2012)
provided the consistency in Lp norm of the conditional quantile estimator for
functional dependent data.

So, in this work we propose to estimate tθ(α) by the estimate t̂θ(α) defined
as (2.18) or as

F̂ (θ, t̂θ(α), x) = α. (2.19)

To insure existence and unicity of this quantile, we will assume that

(A8) F (θ, ·, x) is strictly increasing,

Note that, because H is a cdf satisfying (H4), such a value t̂θ(α) is always
existing. It could be the case that it is not unique, but if this happens all the
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remaining of the paper will concern any among all the values t̂θ(α) satisfying
(2.19).

In order to insure unicity of t̂θ(α) we will make the following, quite unre-
strictive, assumption:

(A9) H is is strictly increasing,

As for the mode estimation problem discussed before, the difficulty occur in
estimating the conditional quantile tθ(α) is linked with the flatness of the curve
of the conditional distribution F (θ, ·, x) around tθ(α). More precisely, we will
suppose that there exists some integer j > 0 such that:

(A10)


F (l)(θ, tθ(α), x) = 0, if; 1 ≤ l < j
and F (j)(θ, ·, x), is uniformly continuous on; SR
such that, |F (j)(θ, tθ(α), x)| > C > 0

Theorem 2.5.2 If the conditions of Theorem 2.4.2 hold together with (A8)-
(A10), we have

sup
x∈SH

|t̂θ(α)− tθ(α)| = O

(
h

b1
j

K + h
b2
j

H

)
+O

((
log dSHn
n φx(hK)

) 1
2j

)
, a.co.

(2.20)

Proof. Let us write the following Taylor expansion of the function F̂ (θ, ·, x):

F̂ (θ, tθ(α), x)− F̂ (θ, t̂θ(α), x) =

j−1∑
l=1

(tθ(α)− t̂θ(α))l

l!
F̂ (l)(θ, tθ(α), x)

+
(tθ(α)− t̂θ(α))j

j!
F̂ (j)(θ, t∗, x),

where t∗ is some point between tθ(α) and t̂θ(α). It suffices now to use the first
part of condition (A10) to be able to rewrite this expression as:

F̂ (θ, tθ(α), x)− F̂ (θ, t̂θ(α), x) =

j−1∑
l=1

(tθ(α)− t̂θ(α))l

l!

(
f̂ (l−1)(θ, tθ(α), x)− f (l−1)(θ, tθ(α), x)

)
+

(tθ(α)− t̂θ(α))j

j!
f̂ (j−1)(θ, t∗, x),

As long as we could be able to check that

∃τ > 0,

n=∞∑
j=1

P
(
f (j−1)(θ, t∗, x) < τ

)
< ∞, (2.21)
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we would have

(tθ(α)− t̂θ(α))j = O
(
F̂ (θ, tθ(α), x)− F (θ, tθ(α), x)

)
(2.22)

+ O

(
j−1∑
l=1

(tθ(α)− t̂θ(α))l(f̂ (l−1)(θ, tθ(α), x)− f (l−1)(θ, tθ(α), x)

)
, a.co.

By comparing the rates of convergence given in Theorems 2.4.1 and 3.14, we
see that the leading term in right hand side of equation (2.22) is the first one.
So we have

(tθ(α)− t̂θ(α))j = Oa.co.

(
F̂ (θ, tθ(α), x)− F (θ, tθ(α), x)

)
,

Because of Theorem 3.14, this is enough to get the claimed result, and so (2.21)
is the only result that remains to check. This will be done directly by using the
uniform continuity of the function f (j−1)(θ, ·, x) given by second part of (A10)
together with the third part of (A7) and with the following lemma.

Lemma 2.5.1 If the conditions of Theorem 2.4.1 hold together with (A8) and
(A9), then we have:

t̂θ(α)− tθ(α) → 0, a.co. (2.23)

2.5.3 The cross-validation method
This part is devoted to another type of application called the cross-validation

method, mainly used in settings where the goal is prediction, and one wants
to estimate how accurately a predictive model will perform in practice. This
method is widely applied, it can be used to compare the performances of different
predictive modeling procedures. For instance, in optical character recognition;
a mechanical or electronic conversion of scanned or photographed images of
typewritten or printed text into machine-encoded/computer-readable text, this
later is widely used as a form of data entry from some sort of original paper
data source, whether passport documents, invoices, bank statement, receipts,
business card, mail, or any number of printed records. It can also be used in
variable selection; the process of selecting a subset of relevant features for use
in model construction.

After this short introduction let’s give an application of the method:

1. The regression operator r̂θ(x) depends on the functional parameter θ,
So, a crucial question arises: how to choose the functional index θ? The
answer is nontrivial and a firstway consists in extending the standard cross-
validation procedure to our functional context. For this, one considers
various quadratic distances, namely the averaged squared error

ASE(θ) = n−1
n∑
j=1

(rθ0(Xj)− r̂θ(Xj))
2
, (2.24)
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the integrated squared error

ISE(θ) = E
[
(rθ0(X0)− r̂θ(X0))

2 |Z1, . . . , Zn

]
, (2.25)

and the mean integrated squared error

MISE(θ) = E [ISE(θ)] . (2.26)

The main goal consists in finding a θ which minimizes (in some sense) over
Θn these quantities. However, because all these quadratic distances de-
pend on the unknown regression operator rθ0 , the criterion used in practice
for choosing θ is

CV (θ) = n−1
n∑
j=1

(
Yj − r̂−jθ (Xj)

)2

(2.27)

where r̂−jθ is the leave-one-out estimate of rθ(x), given by

r̂−jθ (x) =

(n− 1)−1

n∑
i=1
i 6=j

YiK
(
h−1
K (< x−Xi, θ >)

)

(n− 1)−1

n∑
i=1
i 6=j

K
(
h−1
K (< x−Xi, θ >)

) . (2.28)

So, the selection rule will be to choose θCV which minimizes the so-called
cross-validation criterion CV (θ). Clearly, for a given θ, CV (θ) is a com-
putable quantity. It measures a quadratic distance between (Y1, . . . , Yn)
and its prediction r̂−jθ (X1), . . . , r̂−jθ (Xn) when, for each i, r̂−iθ (.) is built
without the ith data (Xi, Yi). So, the method of cross-validation consists
in choosing among several candidates θ, the one who is the most adapted
to our data set (Xi, Yi) in terms of prediction. This method is inspired by
the cross-validation ideas which have been proposed in various standard
nonparametric estimation problems (see [79] for the regression problem,
[102] for the density and [131] for the hazard function).

From a practical point of view, some questions arise in order to implement
this single-functional index model. What about the identifiability of the
model given a sample of observed curves (x1, . . . , xn)? How to build the
set of functional indexes ΘF? What about the choice of the bandwidth
h?

Emphasizes the good behaviour of this simple cross-validated procedure,
even in pathological situations. To see that, one focuses on a favourable
case (i.e. θ0 ∈ ΘF ).

First of all, one builds a sample of n curves curves as follows:

xi(tj) = aicos(2πtj) + bisin(4πtj) + 2ci(tj − 0.25)(tj − 0.5),
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where 0 = t1 < t2 < . . . < tn−1 < tn = 1 are equispaced points, the
ai’s, bi’s and ci’s being independent observations uniformly distributed on
[0, 1]. Once the curves are defined, one simulates a single-functional index
model as follows:

• Choose one θ0(·).

• Choose one link function r(·).

• Compute the inner products < θ0, x1 >, . . . , < θ0, xn >.

• Generate independently ε1, . . . , εn, from a centred Gaussian of vari-
ance equal to 0.05 times the empirical variance of
r(< θ0, x1 >), . . . , r(< θ0, xn >) (i.e. signal-to-noise ratio = 0.05).

• Simulate the corresponding responses: Yi = r(< θ0, xi >) + εi.

Finally, the observations (xk, Yk)k=1,...,m are used for the learning step
and the others (i.e. (xl, Yl)l=m+1,...,n allow the computation of the mean
square error of prediction:

MSEP =
1

n−m

n∑
j=n−m

(Yj r̂ (< θCV , xj >))
2
.

In order to highlight the specificity of such a single-functional index model,
the obtained predictions are compared with those coming from a pure
nonparametric functional data analysis (NPFDA) method (see [13] for
details and references therein). Actually, the NPFDA regression method
uses the following kernel estimator:

∀x ∈ H, r̂(x) =

n∑
i=1

YiK
(
h−1(d(Xi, x)

)
n∑
i=1

K
(
h−1(d(Xi, x)

) (2.29)

for estimating the regression operator m in the nonparametric model Yi =
r(Xi) + εi, for all i = 1, . . . , n, where d(., .) is a fixed semi-metric.

If one looks at the NPFDA kernel estimator (2.29), it suffices to replace the
fixed semi-metric d(·, ·) with dθCV

(·, ·). What does this mean? It means
that the functional index model can be seen as one way of building an
nonparametric functional data analysis (NPFDA) kernel estimator with a
data-driven semi-metric. In particular, in pure nonparametric functional
models when one has no idea of the semi-metric, the functional index
model appears to be a method for performing an adaptative one. The
functional index model makes the NPFDA method more flexible. In this
sense, the functional index model is not a competitive statistical technique
with respect to the NPFDA method, but rather a complementary one.
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2. If we wish to predict a real characteristic denoted Y of Xn knowing the
curve Xn−1, we have to consider the observations (Xi, yi) where yi is the
characteristic we want to provide at the instant i. For example:

• If we want to predict the value of the process at time tj knowing the
curve Xn−1, we set Yi = Xi+1(tj).

• For the sup, we pose Yi = suptXi+1(t).

• If we look for the time where the process reaches maximum, we set
Yi = arg suptXi+1(t).

By using the conditional mode as a prediction tool, we can predict Y by
̂Mθ(Xn−1).

2.6 Appendix

Proof of Lemma 2.4.1 For all x ∈ SH and θ ∈ ΘH, we set

k(x) = arg min
k∈{1...rn}

‖x− xk‖ and j(θ) =) = arg min
j∈{1...ln}

‖θ − tj‖.

Let us consider the following decomposition

sup
x∈SH

sup
θ∈ΘH

∣∣∣F̂D(θ, x)− E
(
F̂D(θ, x)

)∣∣∣ ≤ sup
x∈SH

sup
θ∈ΘH

∣∣∣F̂D(θ, x)− (F̂D(θ, xk(x))
∣∣∣︸ ︷︷ ︸

Π1

+ sup
x∈SH

sup
θ∈ΘH

∣∣∣F̂D(θ, xk(x))− F̂D(tj(θ), xk(x))
∣∣∣︸ ︷︷ ︸

Π2

+ sup
x∈SH

sup
θ∈ΘH

∣∣∣F̂D(tj(θ), xk(x))− E
(
F̂D(tj(θ), xk(x))

)∣∣∣︸ ︷︷ ︸
Π3

+ sup
x∈SH

sup
θ∈ΘH

∣∣∣E(F̂D(tj(θ), xk(x))
)
− E

(
F̂D(θ, xk(x))

)∣∣∣︸ ︷︷ ︸
Π4

+ sup
x∈SH

sup
θ∈ΘH

∣∣∣E(F̂D(θ, xk(x))
)
− E

(
F̂D(θ, x)

)∣∣∣︸ ︷︷ ︸
Π5

For Π1 and Π2, we employe the Hölder continuity condition on K, Cauchy
Schwartz’s and the Bernstein’s inequalities, we get

Π1 = O

√ log dSHn + log dΘH
n

nφ(hK)

 , Π2 = O

√ log dSHn + log dΘH
n

nφ(hK)

 (2.30)
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Then, by using the fact that Π4 ≤ Π1 and Π5 ≤ Π2, we get for n tending to
infinity

Π4 = O

√ log dSHn + log dΘH
n

nφ(hK)

 , Π5 = O

√ log dSHn + log dΘH
n

nφ(hK)

 (2.31)

Now, we deal with Π3, for all η > 0, we have

P

Π3 > η

√ log dSHn + log dΘH
n

nφ(hK)

 ≤

dSHn dΘH
n max

k∈{1...dSHn }
max

j∈{1...dΘH
n }

P

∣∣∣F̂D(tj(θ), xk(x))− E
(
F̂D(tj(θ), xk(x))

)∣∣∣ > η

√ log dSHn + log dΘH
n

nφ(hK)

 .

Applying Bernstein’s exponential inequality to

1

φ(hK)

(
Ki

(
tj(θ), xk(x)

)
− E

(
Ki

(
tj(θ), xk(x)

)))
,

then under (A7), we get

Π3 = O

√ log dSHn + log dΘH
n

nφ(hK)

 .

Lastly the result will be easily deduced from the latter together with (2.30) and
(2.31). �
Proof Corollary 2.4.2 It is easy to see that,

inf
θ∈ΘH

inf
x∈SH

|F̂D(θ, x)| ≤ 1/2 =⇒ ∃x ∈ SH, ∃θ ∈ ΘH, such that

1− F̂D(θ, x) ≥ 1/2 =⇒ sup
θ∈ΘH

sup
x∈SH

|1− F̂D(θ, x)| ≥ 1/2.

We deduce from Lemma 2.4.1 the following inequality

P
(

inf
θ∈ΘH

inf
x∈SH

|F̂D(θ, x)| ≤ 1/2

)
≤ P

(
sup
θ∈ΘH

sup
x∈SH

|1− F̂D(θ, x)| ≤ 1/2

)
.

Consequently,
∞∑
n=1

P
(

inf
θ∈ΘH

inf
x∈SH

F̂D(θ, x) <
1

2

)
<∞

�
Proof of Lemma 2.4.2 One has
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EF̂N (θ, y, x)− F (θ, y, x) =
1

EK1(x, θ)
E

[
n∑
i=1

Ki(x, θ)Hi(y)

]
− F (θ, y, x)

=
1

EK1(x, θ)
E (K1(x, θ) [E (H1(y)| < X1, θ >)− F (θ, y, x)]) .(2.32)

Moreover, we have

E (H1(y)| < X1, θ >) =

∫
R
H
(
h−1
H (y − z)

)
f(θ, z,X1)dz,

now, integrating by parts and using the fact that H is a cdf, we obtain

E (H1(y)| < X1, θ >) =

∫
R
H(1)(t)F (θ, y − hHt,X1)dt.

Thus, we have

|E (H1(y)| < X1, θ >)− F (θ, y, x)| ≤
∫
R
H(1)(t) |F (θ, y − hHt,X1)− F (θ, y, x)| dt.

Finally, the use of (A2) implies that

|E (H1(y)|X1)− F x(y)| ≤ Cθ,x

∫
R
H(1)(t)

(
hb1K + |t|b2hb2H

)
dt. (2.33)

Because this inequality is uniform on (θ, y, x) ∈ ΘH × SH × SR and because of
(H4), (2.14) is a direct consequence of (2.32), (2.33) and of Corollary 2.4.2.

�
Proof of Lemma 2.4.3 We keep the notation of the Lemma 2.4.1 and we
use the compact of SR, we can write that, for some, t1, . . . , tzn ∈ SR, SR ⊂
zn⋃
m=1

(ym − ln, ym + ln) with ln = n−1/2b2 and zn ≤ Cn−1/2b2 . Taking m(y) =

arg min
{1,2,...,zn}

|y − tm|.

Thus, we have the following decomposition:∣∣∣F̂N (θ, y, x)− E
(
F̂N (θ, y, x)

)∣∣∣ =
∣∣∣F̂N (θ, y, x)− F̂N (θ, y, xk(x))

∣∣∣︸ ︷︷ ︸
Γ1

+
∣∣∣F̂N (θ, y, xk(x))− E

(
F̂N (θ, y, xk(x))

)∣∣∣︸ ︷︷ ︸
Γ2

+2
∣∣∣F̂N (tj(θ), y, xk(x))− F̂N (tj(θ), ym(y), xk(x))

∣∣∣︸ ︷︷ ︸
Γ3

+2
∣∣∣E(F̂N (tj(θ), y, xk(x))

)
− E

(
F̂N (tj(θ), ym(y), xk(x))

)∣∣∣︸ ︷︷ ︸
Γ4

+
∣∣∣E(F̂N (θ, y, xk(x))

)
− E

(
F̂N (θ, y, x)

)∣∣∣︸ ︷︷ ︸
Γ5
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↪→ Concerning Γ1 we have∣∣∣F̂N (θ, y, x)− F̂N (θ, y, xk(x))
∣∣∣ ≤ 1

n

n∑
i=1

∣∣∣∣ 1

EK1(θ, x)
Ki(θ, x)Hi(y)− 1

EK1(θ, xk(x))
Ki(θ, xk(x))Hi(y)

∣∣∣∣ .
We use the Hölder continuity condition on K, the Cauchy-Schwartz inequality,
the Bernstein’s inequality and the boundness of H (assumption (H4)). This
allows us to get:∣∣∣F̂N (θ, y, x)− F̂N (θ, y, xk(x))

∣∣∣ ≤ C

φ(hK)

1

n

n∑
i=1

∣∣Ki(θ, x)Hi(y)−Ki(θ, xk(x))Hi(y)
∣∣

≤ C

φ(hK)

1

n

n∑
i=1

|Hi(y)|
∣∣Ki(θ, x)−Ki(θ, xk(x))

∣∣
≤ C ′rn

φ(hK)

↪→ Concerning Γ2, the monotony of the functions EF̂N (θ, ·, x) and F̂N (θ, ·, x)
permits to write, ∀m ≤ zn, ∀x ∈ SH, ∀θ ∈ ΘH

EF̂N (θ, ym(y) − ln, xk(x)) ≤ sup
y∈(ym(y)−ln,ym(y)+ln)

EF̂N (θ, y, x) ≤ EF̂N (θ, ym(y) + ln, xk(x))

F̂N (θ, ym(y) − ln, xk(x)) ≤ sup
y∈(ym(y)−ln,ym(y)+ln)

F̂N (θ, y, x) ≤ F̂N (θ, ym(y) + ln, xk(x)).(2.34)

Next, we use the Hölder’s condition on F (θ, y, x) and we show that, for any
y1, y2 ∈ SR and for all x ∈ SH, θ ∈ ΘH∣∣∣EF̂N (θ, y1, x)− EF̂N (θ, y2, x)

∣∣∣ =
1

EK1(x, θ)
|E (K1(x, θ)F (θ, y1, X1))− E (K1(x, θ)F (θ, y2, X1))|

≤ C|y1 − y2|b2 . (2.35)

Now, we have, for all η > 0

P

∣∣∣F̂N (θ, y, xk(x))− EF̂N (θ, y, xk(x))
∣∣∣ > η

√
log dSHn dΘH

n

nφ(hK)


=

P

 max
j∈{1...dΘH

n }
max

k∈{1...dSHn }
max

1≤m≤zn

∣∣∣F̂N (θ, y, xk(x))− EF̂N (θ, y, xk(x))
∣∣∣ > η

√
log dSHn dΘH

n

nφ(hK)


≤

znd
SH
n dΘH

n max
j∈{1...dΘH

n }
max

k∈{1...dSHn }
max

1≤m≤zn
P

∣∣∣F̂N (θ, y, xk(x))− EF̂N (θ, y, xk(x))
∣∣∣ > η

√
log dSFn dΘF

n

nφ(hK)
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≤

2znd
SH
n dΘH

n exp
(
−Cη2 log dSHn dΘH

n

)
choising zn = O

(
l−1
n

)
= O

(
n

1
2b2

)
, we get

E

∣∣∣F̂N (θ, y, xk(x))− EF̂N (θ, y, xk(x))
∣∣∣ > η

√
log dSHn dΘH

n

nφ(hK)

 ≤ C ′zn (dSHn dΘH
n

)1−Cη2

putting Cη2 = β and using (A4), we get

Γ2 = Oa.co

√ log dSHn dΘH
n

nφ(hK)

 .

↪→ Concerning the terms Γ3 and Γ4, using Lipschitz’s condition on the kernel
H, one can write

∣∣∣F̂N (tj(θ), y, xk(x))− F̂N (tj(θ), ym(y), xk(x))
∣∣∣ ≤ C

1

nφ(hK)

n∑
i=1

Ki(tj(θ), xk(x))
∣∣Hi(y)−Hi(ym(y)

∣∣
≤ Cln

nhHφ(hK)

n∑
i=1

Ki(tj(θ), xk(x)).

Once again a standard exponential inequality for a sum of bounded variables
allows us to write

F̂N (tj(θ), y, xk(x))−F̂N (tj(θ), ym(y), xk(x)) = O

(
ln
hH

)
+Oa.co

(
ln
hH

√
log n

nφx(hK)

)
.

Now, the fact that lim
n→∞

nγhH =∞ and ln = n−1/2b2 imply that:

ln
hHφ(hK)

= o

√ log dSHn dΘH
n

nφ(hK)

 ,

then

Γ3 = Oa.co

√ log dSHn dΘH
n

nφ(hK)

 .

Hence, for n large enough, we have

Γ3 ≤ Γ4 = Oa.co

√ log dSHn dΘH
n

nφ(hK)

 .
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↪→ Concerning Γ5, we have

E
(
F̂N (θ, y, xk(x))

)
− E

(
F̂N (θ, y, x)

)
≤ sup
x∈SH

∣∣∣F̂N (θ, y, x)− F̂N (θ, y, xk(x))
∣∣∣ ,

then following similar proof used in the study of Γ1 and using the same idea as
for E

(
F̂D(θ, xk(x))

)
− E

(
F̂D(θ, x)

)
we get, for n tending to infinity,

Γ5 = Oa.co

√ log dSHn dΘH
n

nφ(hK)

 .

�

Proof of Lemma 2.4.4. Let H(j+1)
i (y) = H(j+1)

(
h−1
H (y − Yi)

)
, note that

Ef̂ (j)
N (θ, y, x)−f (j)(θ, y, x) =

1

hj+1
H EK1(x, θ)

E
(
K1(x, θ)

[
E
(
H

(j+1)
1 (y)| < X, θ >

)
− hj+1

H f (j)(θ, y, x)
])
.

(2.36)
Moreover,

E
(
H

(j+1)
1 (y)| < X, θ >

)
=

∫
R
H(j+1)

(
h−1
H (y − z)

)
f(θ, z,X)dz,

= −
j∑
l=1

hlH

[
H(j−l+1)

(
h−1
H (y − z)

)
f (l−1)(θ, z,X)

]+∞
−∞

+ hjH

∫
R
H(1)

(
h−1
H (y − z)

)
f (j)(θ, z,X)dz. (2.37)

Condition (H8) allows us to cancel the first term in the right side of (2.37) and
we can write:∣∣∣E(H(j+1)

1 (y)| < X, θ >
)
− hj+1

H f (j)(θ, y, x)
∣∣∣ ≤ hj+1

H

∫
R
H(1)(t)

∣∣∣f (j)(θ, y − hHt,X)− f (j)(θ, y, x)
∣∣∣ dt.

Finally, (A5) allows to write

∣∣∣E(H(j+1)
1 (y)| < X, θ >

)
− hj+1

H f (j)(θ, y, x)
∣∣∣ ≤ Cθ,xh

j+1
H

∫
R
H(1)(t)

(
hb1K + |t|b2hb2H

)
dt.

(2.38)
This inequality is uniform on (θ, y, x) ∈ ΘF × SF × SR, now to finish the proof
it is sufficient to use (H4).

�

Proof of Lemma 2.4.5. Let ln = n−
3
2γ−

1
2 and zn ≤ Cn−

3
2γ−

1
2 .
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Consider the following decomposition∣∣∣f̂ (j)
N (θ, y, x)− E

(
f̂

(j)
N (θ, y, x)

)∣∣∣ =
∣∣∣f̂ (j)
N (θ, y, x)− f̂ (j)

N (θ, y, xk(x))
∣∣∣︸ ︷︷ ︸

∆1

+
∣∣∣f̂ (j)
N (θ, y, xk(x))− E

(
f̂

(j)
N (θ, y, xk(x))

)∣∣∣︸ ︷︷ ︸
∆2

+2
∣∣∣f̂ (j)
N (tj(θ), y, xk(x))− f̂

(j)
N (tj(θ), ym(y), xk(x))

∣∣∣︸ ︷︷ ︸
∆3

+2
∣∣∣E(f̂ (j)

N (tj(θ), y, xk(x))
)
− E

(
f̂

(j)
N (tj(θ), ym(y), xk(x))

)∣∣∣︸ ︷︷ ︸
∆4

+
∣∣∣E(f̂ (j)

N (θ, y, xk(x))
)
− E

(
f̂

(j)
N (θ, y, x)

)∣∣∣︸ ︷︷ ︸
∆5

 Concerning ∆1, we use the Hölder continuity condition on K, the Cauchy-
Schwartz’s inequality and the Bernstein’s inequality. With theses arguments we
get

∆1 = O

(√
log dSHn + log dΘH

n

nh2j+1
H φ(hK)

)
.

Then using the fact that ∆5 ≤ ∆1, we obtain

∆5 ≤ ∆1 = O

(√
log dSHn + log dΘH

n

nh2j+1
H φ(hK)

)
. (2.39)

 For ∆2, we follow the same idea given for Γ2, we get

∆2 = O

(√
log dSHn + log dΘH

n

nh2j+1
H φ(hK)

)
 Concerning ∆3 and ∆4, Using Lipschitz’s condition on the kernel H,∣∣∣f̂ (j)

N (tj(θ), y, xk(x))− f̂
(j)
N (tj(θ), ym(y), xk(x))

∣∣∣ ≤ ln

hj+2
H φ(hk)

,

using the fact that lim
n→∞

nγhH =∞ and choosing ln = n−
3
2γ−

1
2 implies

ln

hj+2
H φ(hk)

= o

(√
log dSHn + log dΘH

n

nh2j+1
H φ(hK)

)
So, for n large enough, we have

∆3 = Oa.co

(√
log dSHn + log dΘH

n

nh2j+1
H φ(hK)

)
.
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And as ∆4 ≤ ∆3, we obtain

∆4 ≤ ∆3 = Oa.co

(√
log dSHn + log dΘH

n

nh2j+1
H φ(hK)

)
. (2.40)

Finally, the lemma can be easily deduced from (2.39) and (2.40)
�

Proof of Lemma 2.5.1. Because of (H4) and (A9) the function F̂ (θ, ·, x) is
uniformly continuous and strictly increasing. So, we have:

∀ε > 0, ∃δ(ε) > 0,∀y, |F̂ (θ, y, x)− F̂ (θ, tθ(α), x)| ≤ δ(ε)⇒ |y − tθ(α)| ≤ ε.

This leads directly to

∀ε > 0, ∃δ(ε) > 0, P
(
|t̂θ(α)− tθ(α)| > ε

)
≤ P

(
|F̂ (θ, t̂θ(α), x)− F̂ (θ, tθ(α), x)| ≥ δ(ε)

)
= P

(
|F (θ, tθ(α), x)− F̂ (θ, tθ(α), x)| ≥ δ(ε)

)
.

Finally, It suffices to use the result of Theorem 2.4.1 to get the claimed result.
�
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3.1 Introduction

The statistical analysis of functional data studies the experiments whose results
are generally the curves. Under this supposition, the statistical analysis focuses
on a framework of infinite dimension for the data under study. This field of
modern statistics has received much attention in the last 20 years, and it has
been popularized in the book of Ramsay and Silverman (2005). This type of
data appears in many fields of applied statistics: environmetrics (Damon and
Guillas, (2002)), chemometrics (Benhenni et al., (2007)), meteorological sciences
(Besse et al., (2000)), etc.

The study of the hazard function has been subject to several investigations
and many authors considered this function in their investigations. Among oth-
ers, we refer to Watson and Leadbetter (1964) who were the first to study the
nonparametric estimation of the hazard function and proposed a kernel esti-
mate; in the sequel, many authors have been interested in the study of such
a function. For instance, Collomb et al. (1987) studied the dependent case,
Liu and Van Ryzin (1985) were interested in the histogram estimator of the
hazard function for censored data, and Youndje et al. (1996) proposed a so-
lution to the bandwith selection problem for the kernel hazard estimate and
gave properties of the selected bandwith. In the sequel, Quintela (2007) used
the plug-in bandwith selection method in the case of a weak dependence on the
sample data and a result of asymptotic optimality for the plug-in bandwith is
presented. Simulations are done as well to compare this method to the "leave
more than one out" cross-validation criterion and either to show that smaller
errors and much less sample variability can be reached. Besides, we notice that
most of the precursor literature on nonparametric smoothing of hazard function
was based on the assumption of independence on the sample variables, which is
far from being realistic. This is for instance the case of micro earthquake studies
(Rice and Rosenblatt (1976); Estévez et al., 2002). Alternatively, many authors
investigated the case of dependent hazard estimation, for instance Sarda and
Vieu (1989), Vieu (1991), and Estévez and Quintela (1999), to name a few.

Recently, Quintela (2010) studied the recursive kernel hazard estimation of
strong mixing data, by use of the density and the distribution, and established
the strong consistency of the proposed estimator and a rate of convergence
identical to the one obtained in the independence case.

3.1.1 Hazard and conditional hazard

The estimation of the hazard function is a problem of considerable interest, es-
pecially to inventory theorists, medical researchers, logistics planners, reliability
engineers and seismologists. The non-parametric estimation of the hazard func-
tion has been extensively discussed in the literature. Beginning with Watson
and Leadbetter (1964), there are many papers on these topics: Ahmad (1976),
Singpurwalla and Wong (1983), etc. We can cite Quintela (2007) for a survey.

The literature on the estimation of the hazard function is very abundant,
when observations are vectorial. Cite, for instance, Watson and Leadbetter
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(1964), Roussas (1989), Lecoutre and Ould-Saïd (1993), Estèvez et al. (2002)
and Quintela-del-Rio (2006) for recent references. In all these works the authors
consider independent observations or dependent data from time series. The first
results on the nonparametric estimation of this model, in functional statistics
were obtained by Ferraty et al. (2008). They studied the almost complete
convergence of a kernel estimator for hazard function of a real random variable
dependent on a functional predictor and Laksaci and Mechab (2010) in the case
of spatial variables. Asymptotic normality of the latter estimator was obtained,
in the case of α- mixing, by Quintela-del-Rio (2008). We refer to Ferraty et al.
(2010) and Bouchentouf et al. (2014) for uniform almost complete convergence
of the functional component of this nonparametric model. When hazard rate
estimation is performed with multiple variables, the result is an estimate of the
conditional hazard rate for the first variable, given the levels of the remaining
variables. Many references, practical examples and simulations in the case of
non-parametric estimation using local linear approximations can be found in
Spierdijk (2008).

Our paper presents some asymptotic properties related with the nonpara-
metric estimation of the maximum of the conditional hazard function. In a
functional data setting, the conditioning variable is allowed to take its values in
some abstract semi-metric space. In this case, Ferraty et al. (2008) define non-
parametric estimators of the conditional hazard function. They give the rates
of convergence (in an almost complete sense) to the corresponding functions, in
a dependence (α-mixing) context. We extend their results by calculating the
maximum of the conditional hazard function of these estimates, and establish-
ing their asymptotic normality, considering a particular type of kernel for the
functional part of the estimates. Because the hazard function estimator is natu-
rally constructed using these two last estimators, the same type of properties is
easily derived for it. Our results are valid in a real (one- and multi-dimensional)
context.

If X is a random variable associated to a lifetime (ie, a random variable with
values in R+, the hazard rate of X (sometimes called hazard function, failure
or survival rate ) is defined at point x as the instantaneous probability that life
ends at time x. Specifically, we have:

h(x) = lim
dx→0

P (X ≤ x+ dx|X ≥ x)

dx
, (x > 0).

When X has a density f with respect to the measure of Lebesgue, it is easy
to see that the hazard rate can be written as follows:

h(x) =
f(x)

S(x)
=

f(x)

1− F (x)
, for all x such that F (x) < 1,

where F denotes the distribution function of X and S = 1 − F the survival
function of X.

In many practical situations, we may have an explanatory variable X = x
and the main issue is to estimate the conditional random rate defined as
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hx(y) = lim
dy→0

P (X ≤ y + dy|Y > y, X = x)

dy
, for y > 0,

which can be written naturally as follows:

hx(y) =
fx(y)

Sx(y)
=

fx(y)

1− F x(y)
, once F x(y) < 1. (3.1)

Study of functions h(·) and hz(·) is of obvious interest in many fields of
science ( biology, medicine, reliability , seismology, econometrics, ... ) and
many authors are interested in construction of nonparametric estimators of h.

In this paper we propose an estimate of the maximum risk, through the
nonparametric estimation of the conditional hazard function.

The layout of the paper is as follows. Section 3.2 describes the non-parametric
functional setting: the structure of the functional data and the mixing condi-
tions, the conditional density, distribution and hazard operators, and the corre-
sponding non-parametric kernel estimators. Section 3.3 states the almost com-
plete convergence1 (with rates of convergence2) for nonparametric estimates of
the derivative of the conditional hazard and the maximum risk. In Section 3.4,
we calculate the variance of the conditional density, distribution and hazard
estimates, the asymptotic normality of the three estimators considered is de-
veloped in this Section. Finally, Section 3.5 includes some proofs of technical
Lemmas.

3.2 Nonparametric estimation with functional data
Let {(Xi, Yi), i = 1, . . . , n} be a sample of n random pairs, each one distributed
as (X,Y ), where the variable X is of functional nature and Y is scalar. For-
mally, we will consider that X is a random variable valued in some semi-metric
functional space F , and we will denote by d(·, ·) the associated semi-metric. The
conditional cumulative distribution of X given X = x is defined for any y ∈ R
and any x ∈ F by

F x(y) = P(Y ≤ y|X = x),

while the conditional density, denoted by fx(y) is defined as the density of this
distribution with respect to the Lebesgue measure on R. The conditional hazard
is defined as in the non-infinite case (3.1).

In a general functional setting, f , F and h are not standard mathemati-
cal objects. Because they are defined on infinite dimensional spaces, the term
operators may be a more adjusted in terminology.

1Recall that a sequence (Tn)n∈N of random variables is said to converge almost completely
to some variable T , if for any ε > 0, we have

∑
n P(|Tn − T | > ε) < ∞. This mode of

convergence implies both almost sure and in probability convergence (see for instance Bosq
and Lecoutre, (1987)).

2Recall that a sequence (Tn)n∈N of random variables is said to be of order of complete
convergence un, if there exists some ε > 0 for which

∑
n P(|Tn| > εun) <∞. This is denoted

by Tn = O(un), a.co. (or equivalently by Tn = Oa.co.(un)).
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3.2.1 The functional kernel estimates
Following in Ferraty et al. (2008), the conditional density operator fx(·) is
defined by using kernel smoothing methods

f̂x(y) =

n∑
i=1

h−1
n K

(
h−1
n d(x,Xi)

)
H
(
h−1
n (y − Yi)

)
n∑
i=1

K
(
h−1
n d(x,Xi)

) ,

whereK and H are kernel functions and hn is sequence of smoothing parameter.
The conditional distribution operator F x(·) can be estimated by

F̂ x(y) =

n∑
i=1

Wni(x)1{Yi≤y}, ∀y ∈ R

with 1{·} being the indicator function and where Wni(x) =
h−1
n K(h−1

n d(x,Xi))∑n
j=1 K(h−1

n d(x,Xj))
,

K is a kernel function and hn is a sequence of positive real numbers which goes
to zero as n goes to infinity.

Consequently, the conditional hazard operator is defined in a natural way
by

ĥx(y) =
f̂x(y)

1− F̂ x(y)
.

For x ∈ F , we denote by hx(·) the conditional hazard function of Y1 given
X1 = x. We assume that hx(·) is unique maximum and its high risk point is
denoted by θ(x) := θ, which is defined by

hx(θ(x)) := hx(θ) = max
y∈S

hx(y). (3.2)

A kernel estimator of θ is defined as the random variable θ̂(x) := θ̂ which
maximizes a kernel estimator ĥx(·), that is,

ĥx(θ̂(x)) := ĥx(θ̂) = max
y∈S

ĥx(y) (3.3)

where hx and ĥx are defined above.
Note that the estimate θ̂ is note necessarily unique and our results are valid

for any choice satisfying (3.3). We point out that we can specify our choice by
taking

θ̂(x) = inf

{
t ∈ S such that ĥx(t) = max

y∈S
ĥx(y)

}
.

As in any non-parametric functional data problem, the behavior of the es-
timates is controlled by the concentration properties of the functional variable
X = x.

φx(hn) = P(X ∈ B(x, hn)),
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where B(x, hn) being the ball of center x and radius hn, namely B(x, hn) =
P (f ∈ F , d(x, f) < hn) (for more details, see Ferraty and Vieu (2006), Chapter
6 ).

In the following, x will be a fixed point in F , Nx will denote a fixed neighbor-
hood of x, S will be a fixed compact subset of R+. We will led to the hypothesis
below concerning the function of concentration φx

(H1) ∀hn > 0, 0 < P (X ∈ B(x, hn)) = φx(hn) and lim
hn→0

φx(hn) = 0

Note that (H1) can be interpreted as a concentration hypothesis acting on
the distribution of the f.r.v. of X = x.

Our nonparametric models will be quite general in the sense that we will just
need the following simple assumption for the marginal distribution of X, and let
us introduce the technical hypothesis necessary for the results to be presented.
The non-parametric model is defined by assuming that

(H2)
{
∀(y1, y2) ∈ S2,∀(x1, x2) ∈ N 2

x , for some b1 > 0, b2 > 0
|F x1(y1)− F x2(y2)| ≤ Cx(d(x1, x2)b1 + |y1 − y2|b2),

(H3)
{
∀(y1, y2) ∈ S2,∀(x1, x2) ∈ N 2

x , for some j = 0, 1, ν > 0, β > 0
|fx1 (j)(y1)− fx2 (j)(y2)| ≤ Cx(d(x1, x2)ν + |y1 − y2|β),

(H4) ∃γ <∞, f ′x(y) ≤ γ, ∀(x, y) ∈ F × S,

(H5) ∃τ > 0, F x(y) ≤ 1− τ, ∀(x, y) ∈ F × S.

(H6) H is differentiable such that

(H6a) ∀(t1, t2) ∈ R2; |H(j)(t1)−H(j)(t2)| ≤ C|t1 − t2|, for j = 0, 1
and H(j)are bounded for j = 0, 1

(H6b)
∫
R
t2H2(t)dt <∞,

(H6c)
∫
R
|t|β(H ′(t))2dt <∞

(H7) The kernel K is positive bounded function supported on [0, 1] and it is
of class C1 on (0, 1) such that ∃C1, C2, −∞ < C1 < K ′(t) < C2 for
0 < t < 1.

(H8) There exists a function ζx0 (·) such that for all t ∈ [0, 1] lim
hn→0

φx(thn)

φx(hn)
=

ζx0 (t).

(H9) The bandwidth hn, small ball probability φx(hn) satisfying
(H9a) lim

n→∞
hn = 0

(H9b) lim
n→∞

log n

nhnφx(hn)
= 0

(H9c) lim
n→∞

log n

nh2j+1
n φx(hn)

= 0, j = 0, 1;
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Remark 3.2.1 Assumption (H1) plays an important role in our methodology.
It is known as (for small hn) the "concentration hypothesis acting on the dis-
tribution of X" in infinite-dimensional spaces. This assumption is not at all
restrictive and overcomes the problem of the non-existence of the probability den-
sity function. In many examples, around zero the small ball probabilityφx(hn)
can be written approximately as the product of two independent functions ψ(z)
and ϕ(hn) as φx(hn) = ψ(x)ϕ(hn) + o(ϕ(hn)). This idea was adopted by Masry
(2005) who reformulated the Gasser et al. (1998) one. The increasing propriety
of φx(·) implies that ζxhn

(·) is bounded and then integrable (all the more so ζx0 (·)
is integrable).

Without the differentiability of φx(·), this assumption has been used by many
authors where ψ(·) is interpreted as a probability density, while ϕ(·) may be
interpreted as a volume parameter. In the case of finite-dimensional spaces,
that is S = Rd, it can be seen that φx(hn) = C(d)hdnψ(x) + o(hdn), where C(d)
is the volume of the unit ball in Rd. Furthermore, in infinite dimensions, there
exist many examples fulfilling the decomposition mentioned above. We quote the
following (which can be found in Ferraty et al. (2007)):

1. φx(hn) ≈ ψ(hn)hγn for some γ > 0.

2. φx(hn) ≈ ψ(hn)hγn exp {C/hpn} for some γ > 0 and p > 0.

3. φx(hn) ≈ ψ(hn)/| lnhn|.

The function ζxhn
(·) which intervenes in Assumption (H9) is increasing for

all fixed hn. Its pointwise limit ζx0 (·) also plays a determinant role. It intervenes
in all asymptotic properties, in particular in the asymptotic variance term. With
simple algebra, it is possible to specify this function (with ζ0(u) := ζx0 (u) in the
above examples by:

1. ζ0(u) = uγ ,

2. ζ0(u) = δ1(u) where δ1(·) is Dirac function,

3. ζ0(u) = 1]0,1](u).

Remark 3.2.2 Assumptions (H2) and (H3) are the only conditions involving
the conditional probability and the conditional probability density of Y given
X = x. It means that F (·|·) and f(·|·) and its derivatives satisfy the Hölder
condition with respect to each variable. Therefore, the concentration condition
(H1) plays an important role. Here we point out that our assumptions are very
usual in the estimation problem for functional regressors (see, e.g., Ferraty et
al. (2008)).

Remark 3.2.3 Assumptions (H6), (H7) and (H9) are classical in functional
estimation for finite or infinite dimension spaces.
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3.3 Nonparametric estimate of the maximum of
the conditional hazard function

Let us assume that there exists a compact S with a unique maximum θ of hx
on S. We will suppose that hx is sufficiently smooth ( at least of class C2) and
verifies that h′x(θ) = 0 and h

′′ x(θ) < 0.
We can write an estimator of the first derivative of the conditional hazard

function through the first derivative of the estimator (3.1). Our maximum
estimate is defined by assuming that there is some unique θ̂ on S such that
0 = ĥ′(θ̂) < |ĥ′

x
(y)| for all y ∈ S and y 6= θ̂

Furthermore, we assume that θ ∈ S◦, where S◦ denotes the interior of S, and
that θ satisfies the uniqueness condition, that is; for any ε > 0 and µ(x), there
exists ξ > 0 such that |θ(x)− µ(x)| ≥ ε implies that |hx(θ(x))− hx(µ(x))| ≥ ξ.

We can write an estimator of the first derivative of the hazard function
through the first derivative of the estimator. Our maximum estimate is defined
by assuming that there is some unique θ̂ on S◦.

It is therefore natural to try to construct an estimator of the derivative
of the function hx on the basis of these ideas. To estimate the conditional
distribution function and the conditional density function in the presence of
functional conditional random variable X = x.

The kernel estimator of the derivative of the function conditional random
functional hz can therefore be constructed as follows:

ĥ′
x
(y) =

f̂ ′
x
(y)

1− F̂ x(y)
+ (ĥx(y))2, (3.4)

the estimator of the derivative of the conditional density is given in the following
formula:

f̂ ′
x
(y) =

n∑
i=1

K(h−1
n d(x,Xi))H

′(h−1
n (y − Yi))

h2
n

n∑
i=1

K(h−1
n d(x,Xi))

. (3.5)

Later, we need assumptions on the parameters of the estimator, ie onK,H,H ′
and hn are little restrictive. Indeed, on one hand, they are not specific to the
problem estimate of hx (but inherent problems of F x, fx and f ′x estimation),
and secondly they consist with the assumptions usually made under functional
variables.

Remark 3.3.1 Generally, the hazard function has a global maximum in the
time intervals with values closest to zero, corresponding to the earthquakes with
bigger intensity (Vere-Jones, 1970).

Also, the hazard function can have several local maxima, indicating the times
with the highest risk in a certain period (see the examples in Estévez et al.,
(2002)).
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The hypothesis of uniqueness is only established for the sake of clarity. Fol-
lowing our proofs, if several local estimated maxima exist, the asymptotic results
remain valid for each of them.

We state the almost complete convergence (withe rates of convergence) of
the maximum estimate by the following results:

Theorem 3.3.1 Under assumption (H1)-(H7) we have

θ̂ − θ → 0 a.co. (3.6)

Remark 3.3.2 The hypothesis of uniqueness is only established for the sake
of clarity. Following our proofs, if several local estimated maxima exist, the
asymptotic results remain valid for each of them.

Proof. Because h′x(·) is continuous, we have, for all ε > 0. ∃ η(ε) > 0 such
that

|t− θ| > ε⇒ |h′x(t)− h′x(θ)| > η(ε).

Therefore,

P{|θ̂ − θ| ≥ ε} ≤ P{|h′x(θ̂)− h′x(θ)| ≥ η(ε)}.

We also have

|h′x(θ̂)− h′x(θ)| ≤ |h′x(θ̂)− ĥ′x(θ̂)|+ |ĥ′x(θ̂)− h′x(θ)| ≤ sup
y∈S
|ĥ′x(y)− h′x(y)|,

(3.7)
because ĥ′x(θ̂) = h′x(θ) = 0.

Then, uniform convergence of h′x will imply the uniform convergence of θ̂.
That is why, we have the following lemma.

Lemma 3.3.1 Under assumptions of Theorem 3.3.1, we have

sup
y∈S
|ĥ′x(y)− h′x(y)| → 0 a.co. (3.8)

The proof of this lemma will be given in Appendix.

Theorem 3.3.2 Under assumption (H1)-(H7), (H9a) and (H9c) we have

sup
y∈S
|θ̂ − θ| = O

(
hb1n
)

+Oa.co.

(√
log n

nh3
nφx(hn)

)
(3.9)

Proof. By using Taylor expansion of the function h′x at the point θ̂, we
obtain

h′x(θ̂) = h′x(θ) + (θ̂ − θ)h′′x(θ∗n), (3.10)

with θ∗n a point between θ and θ̂.
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Now, because h′x(θ) = ĥ′x(θ̂)

|θ̂ − θ| ≤ 1

h′′x(θ∗n)
sup
y∈S
|ĥ′x(y)− h′x(y)| (3.11)

The proof of Theorem will be completed showing the following lemma.

Lemma 3.3.2 Under the assumptions of Theorem 3.3.2, we have

sup
y∈S
|ĥ′x(y)− h′x(y)| = O

(
hb1n
)

+Oa.co.

(√
log n

nh3
nφx(hn)

)
(3.12)

The proof of lemma will be given in the Appendix.

3.4 Asymptotic normality

To obtain the asymptotic normality of the conditional estimates, we have to
add the following assumptions:

(H6d)
∫
R

(H ′(t))2dt <∞,

(H10) 0 = ĥ′
x
(θ̂) < |ĥ′

x
(y)|,∀y ∈ S, y 6= θ̂

The following result gives the asymptotic normality of the maximum of the
conditional hazard function. Let

A = {(x, y) : (x, y) ∈ F × R, ay2F
x(y) (1− F x(y)) 6= 0}

Theorem 3.4.1 Under conditions (H1)-(H10) we have (θ ∈ S/fx(θ), 1−F x(θ) >
0) (

nh3
nφx(hn)

)1/2 (
ĥ
′x(θ)− h

′x(θ)
)
D→N

(
0, σ2

h′(θ)
)

where →D denotes the convergence in distribution,

ayl = Kl(1)−
∫ 1

0

(
Kl(u)

)′
ζy0 (u)du for l = 1, 2

and

σ2
h′(θ) =

ay2h
x(θ)

(ay1)
2

(1− F x(θ))

∫
(H ′(t))2dt.

Proof. Using again (3.17), and the fact that

(1− F x(y))

(1− F̂ x(y)) (1− F x(y))
−→ 1

1− F x(y)
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and
f̂ ′x(y)(

1− F̂ x(y)
)

(1− F x(y))
−→ f ′x(y)

(1− F x(y))
2 .

The asymptotic normality of
(
nh3

nφz(hn)
)1/2 (

ĥ′
x
(θ)− h′x(θ)

)
can be de-

duced from both following lemmas,

Lemma 3.4.1 Under Assumptions (H1)-(H2) and (H6)-(H8), we have

(nφx(hn))
1/2
(
F̂ x(y)− F x(y)

)
D→N

(
0, σ2

Fx(y)
)

(3.13)

where

σ2
Fx(y) =

ay2F
x(y) (1− F x(y))

(ay1)
2 .

Lemma 3.4.2 Under Assumptions (H1)-(H3) and (H5)-(H9), we have

(nhnφx(hn))
1/2
(
ĥx(y)− hx(y)

)
D→N

(
0, σ2

hx(y)
)

(3.14)

where

σ2
hx(y) =

ay2h
x(y)

(ay1)
2

(1− F x(y))

∫
R
H2(t)dt.

Lemma 3.4.3 Under Assumptions of Theorem 3.4.1, we have(
nh3

nφx(hn)
)1/2 (

f̂ ′
x
(y)− f ′x(y)

)
D→N

(
0, σ2

f ′x(y)
)

(3.15)

where

σ2
f ′x(y) =

ay2f
x(y)

(ay1)
2

∫
R

(H ′(t))2dt.

Lemma 3.4.4 Under the hypotheses of Theorem 3.4.1, we have

V ar
[
f̂ ′
x

N (y)
]

=
σ2
f ′x(y)

nh3
nφx(hn)

+ o

(
1

nh3
nφx(hn)

)
,

V ar
[
F̂ xN (y)

]
= o

(
1

nhnφx(hn)

)
;

and

V ar
[
F̂ xD

]
= o

(
1

nhnφx(hn)

)
.
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Lemma 3.4.5 Under the hypotheses of Theorem 3.4.1, we have

Cov(f̂ ′
x

N (y), F̂ xD) = o

(
1

nh3
nφx(hn)

)
,

Cov(f̂ ′
x

N (y), F̂ xN (y)) = o

(
1

nh3
nφx(hn)

)
and

Cov(F̂ xD, F̂
x
N (y)) = o

(
1

nhnφz(hn)

)
.

Remark 3.4.1
It is clear that, the results of lemmas, Lemma 3.4.4 and Lemma 3.4.5 allows

to write

V ar
[
F̂ xD − F̂ xN (y)

]
= o

(
1

nhnφx(hn)

)
.

The proofs of lemmas, Lemma 3.4.1 can be seen in Belkhir et al. (2015),
Lemma 3.4.4 and Lemma 3.4.5 see Rabhi et al. (2015).

Finally, by this last result and (3.10), the following theorem follows:

Theorem 3.4.2 Under conditions (H1)-(H11) we have (θ ∈ S/fx(θ), 1−F x(θ) >
0) (

nh3
nφx(hn)

)1/2 (
θ̂ − θ

)
D→N

(
0,

σ2
h′(θ)

(h′′x(θ))2

)
with σ2

h′(θ) = hx(θ) (1− F x(θ))

∫
(H ′(t))2dt.

3.5 Proofs of technical lemmas

Proof of lemma 3.3.1 and lemma 3.3.2. Let

ĥ′x(y) =
f̂ ′x(y)

1− F̂ x(y)
+ (ĥx(y))2, (3.16)

with

ĥ′x(y)−h′x(y) =

{(
ĥx(y)

)2

− (hx(y))
2

}
+

{
f̂ ′x(y)

1− F̂ x(y)
− f ′x(y)

1− F x(y)

}
(3.17)

for the first term of (3.17) we can write∣∣∣ (ĥx(y)
)2

− (hx(y))
2
∣∣∣ ≤ ∣∣∣ĥx(y)− hx(y)

∣∣∣.∣∣∣ĥx(y) + hx(y)
∣∣∣ (3.18)
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because the estimator ĥx(·) converge a.co. to hx(·) we have

sup
y∈S

∣∣∣ (ĥx(y)
)2

− (hx(y))
2
∣∣∣ ≤ 2

∣∣∣hx(θ)
∣∣∣ sup
y∈S

∣∣∣ĥx(y)− hx(y)
∣∣∣ (3.19)

for the second term of (3.17) we have

f̂ ′x(y)

1− F̂ x(y)
− f ′x(y)

1− F x(y)
=

1

(1− F̂ x(y))(1− F x(y))

{
f̂ ′x(y)− f ′x(y)

}
+

1

(1− F̂ x(y))(1− F x(y))

{
f ′x(y)

(
F̂ x(y)− F x(y)

)}
− 1

(1− F̂ x(y))(1− F x(y))

{
F x(y)

(
f̂ ′x(y)− f ′x(y)

)}
.

Valid for all y ∈ S. Which for a constant C <∞, this leads

sup
y∈S

∣∣∣ f̂ ′x(y)

1− F̂ x(y)
− f ′x(y)

1− F x(y)

∣∣∣ ≤

C

{
sup
y∈S

∣∣∣f̂ ′x(y)− f ′x(y)
∣∣∣+ sup

y∈S

∣∣∣F̂ x(y)− F x(y)
∣∣∣}

inf
y∈S

∣∣∣1− F̂ x(y)
∣∣∣ . (3.20)

Therefore, the conclusion of the lemma follows from the following results:

sup
y∈S
|F̂ x(y)− F x(y)| = O

(
hb1n
)

+Oa.co.

(√
log n

nφx(hn)

)
. (3.21)

sup
y∈S
|f̂ ′x(y)− f ′x(y)| = O

(
hb1n
)

+Oa.co.

(√
log n

nh3
nφx(hn)

)
. (3.22)

sup
y∈S
|ĥx(y)− hx(y)| = O

(
hb1n
)

+Oa.co.

(√
log n

nhnφx(hn)

)
. (3.23)

∃δ > 0 such that
∞∑
1

P
{

inf
y∈S
|1− F̂ x(y)| < δ

}
<∞. (3.24)

The proofs of (3.21) and (3.22) appear in Ferraty et al. (2006), and (3.23)
is proven in Ferraty et al. (2008).

• Concerning (3.24) by equation (3.21), we have the almost complete con-
vergence of F̂ x(y) to F x(y). Moreover,

∀ε > 0

∞∑
n=1

P
{
|F̂ x(y)− F x(y)| > ε

}
<∞.
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On the other hand, by hypothesis we have F x < 1, i.e.

1− F̂ x ≥ F x − F̂ x,

thus,

inf
y∈S
|1−F̂ x(y)| ≤ (1−sup

y∈S
F x(y))/2⇒ sup

y∈S
|F̂ x(y)−F x(y)| ≥ (1−sup

y∈S
F x(y))/2.

In terms of probability is obtained

P
{

inf
y∈S
|1− F̂ x(y)| < (1− sup

y∈S
F x(y))/2

}
≤

P
{

sup
y∈S
|F̂ x(y)− F x(y)| ≥ (1− sup

y∈S
F x(y))/2

}
<∞.

Finally, it suffices to take δ = (1 − sup
y∈S

F x(y))/2 and apply the results

(3.21) to finish the proof of the lemma.

Proof of lemma 3.4.2. We can write for all y ∈ S

ĥx(y)− hx(y) =
f̂x(y)

1− F̂ x(y)
− fx(y)

1− F x(y)

=
1

D̂x(y)

{(
f̂x(y)− fx(y)

)
+ fx(y)

(
F̂ x(y)− F x(y)

)
−F x(y)

(
f̂x(y)− fx(y)

)}
,

=
1

D̂x(y)

{
(1− F x(y))

(
f̂x(y)− fx(y)

)
−fx(y)

(
F̂ x(y)− F x(y)

)}
(3.25)

with D̂x(y) = (1− F x(y))
(

1− F̂ x(y)
)
.

As a direct consequence of the Lemma 3.4.1, the result (3.26) (see Ezzahri-
oui and Ould-Saïd (2008)) and the expression (3.25), permit us to obtain the
asymptotic normality for the conditional hazard estimator.

(nhnφx(hn))
1/2
(
f̂x(y)− fx(y)

)
D→N

(
0, σ2

fx(y)
)

(3.26)

where
σ2
fx(y) =

ay2f
x(y)

(ay1)
2

∫
R

(H(t))2dt
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Proof of lemma 3.4.3. For i = 1, . . . , n, we consider the quantities
Ki = K

(
h−1
n d(x,Xi)

)
, H ′i(y) = H ′

(
h−1
n (y − Yi)

)
and let f̂ ′

x

N (y) (resp. F̂ xD) be
defined as

f̂ ′
x

N (y) =
h−2
n

nEK1

n∑
i=1

KiH
′
i(y) (resp. F̂ xD =

1

nEK1

n∑
i=1

Ki).

This proof is based on the following decomposition

f̂ ′
x
(y)− f ′x(y) =

1

F̂ xD

{(
f̂ ′
x

N (y)− Ef̂ ′
x

N (y)
)
−
(
f ′x(y)− Ef̂ ′

x

N (y)
)}

+
f ′x(y)

F̂ xD

{
EF̂ xD − F̂ xD

}
(3.27)

and on the following intermediate results.√
nh3

nφx(hn)
(
f̂ ′
x

N (y)− Ef̂ ′
x

N (y)
)
D→N

(
0, σ2

f ′x(y)
)

(3.28)

where σ2
f ′x(y) is defined as in Lemma 3.4.3.

lim
n→∞

√
nh3

nφx(hn)
(
Ef̂ ′

x

N (y)− f ′x(y)
)

= 0 (3.29)

√
nh3

nφx(hn)
(
F̂ xD(y)− 1

)
P→ 0, as n→∞. (3.30)

• Concerning (3.28).

By the definition of f̂ ′
x

N (y), it follows that

Ωn =
√
nh3

nφx(hn)
(
f̂ ′
x

N (y)− Ef̂ ′
x

N (y)
)

=

n∑
i=1

√
φx(hn)√
nhnEK1

(KiH
′
i − EKiH

′
i)

=

n∑
i=1

∆i,

which leads

V ar(Ωn) = nh3
nφx(hn)V ar

(
f̂ ′
x

N (y)− E
[
f̂ ′
x

N (y)
])
. (3.31)

Now, we need to evaluate the variance of f̂ ′
x

N (y). For this we have for all
1 ≤ i ≤ n, ∆i(x, y) = Ki(x)H ′i(y), so we have

V ar(f̂ ′
x

N (y)) =
1

(nh2
nE[K1(x)])

2

n∑
i=1

n∑
j=1

Cov (∆i(x, y),∆j(x, y))

=
1

n (h2
nE[K1(x)])

2V ar (∆1(x, y)) .
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Therefore

V ar (∆1(x, y)) ≤ E
(
H ′

2
1(y)K2

1 (x)
)
≤ E

(
K2

1 (x)E
[
H ′

2
1(y)|X1 = x

])
.

Now, by a change of variable in the following integral and by applying
(H4) and (H7), one gets

E
(
H ′

2
1(y)|X1 = x

)
=

∫
R
H ′

2
(
y − u
hn

)
fx(u)du

≤ hn

∫
R
H ′

2
(t) (fx(y − hnt, x)− fx(y)) dt

+hnf
x(y)

∫
R
H ′

2
(t)dt

≤ h1+b2
n

∫
R
|t|b2H ′2(t)dt+ hnf

x(y)

∫
R
H ′

2
(t)dt

= hn

(
o(1) + fx(y)

∫
R
H ′

2
(t)dt

)
. (3.32)

By means of (3.32) and the fact that, as n→∞, E
(
K2

1 (x)
)
−→ ay2φx(hn),

one gets

V ar (∆1(x, y)) = ay2φx(hn)hn

(
o(1) + fx(y)

∫
R
H ′

2
(t)dt

)
.

So, using (H8), we get

1

n (h2
nE[K1(x)])

2V ar (∆1(x, y)) =
ay2φx(hn)

n (ay1h
2
nφx(hn))

2hn

(
o(1) + fx(y)

∫
R
H ′2(t)dt

)
= o

(
1

nh3
nφx(hn)

)
+

ay2f
x(y)

(ay1)2nh3
nφx(hn)

∫
R
H ′

2
(t)dt.

Thus as n→∞ we obtain

1

n (h2
nE[K1(x)])

2V ar (∆1(x, y)) −→ ay2f
x(y)

(ay1)2nh3
nφx(hn)

∫
R
H ′

2
(t)dt. (3.33)

Indeed
n∑
i=1

E∆2
i =

φx(hn)

hnE2K1
EK2

1 (H ′1)2 − φx(hn)

hnE2K1
(EK1H

′
1)

2
= Π1n −Π2n.

(3.34)

As for Π1n, by the property of conditional expectation, we get

Π1n =
φx(hn)

E2K1
E
{
K2

1

∫
H ′

2
(t) (f ′x(y − thn)− f ′x(y) + f ′x(y)) dt

}
.
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Meanwhile, by (H1), (H3), (H7) and (H8), it follows that:

φx(hn)EK2
1

E2K1
−→
n→∞

ay2
(ay1)2

,

which leads
Π1n −→

n→∞

ay2f
x(y)

(ay1)2

∫
(H ′(t))2dt, (3.35)

Regarding Π2n, by (H1), (H3) and (H6), we obtain

Π2n −→
n→∞

0. (3.36)

This result, combined with (3.34) and (3.35), allows us to get

lim
n→∞

n∑
i=1

E∆2
i = σ2

f ′x(y) (3.37)

Therefore, combining (3.33) and (3.36)-(3.37), (3.28) is valid.

• Concerning (3.29).

The proof is completed along the same steps as that of Π1n. We omit it
here.

• Concerning (3.30). The idea is similar to that given by Belkhir et al.
(2015).

By definition of F̂ xD, we have√
nh3

nφx(hn)(F̂ xD − 1) = Ωn − EΩn,

where Ωn =

√
nh3

nφx(hn)
∑n

i=1 Ki

nEK1
. In order to prove (3.30), similar to

Belkhir et al. (2015), we only need to proov V ar Ωn → 0, as n→∞. In
fact, since

V ar Ωn =
nh3

nφx(hn)

nE2K1
(nV arK1)

≤ nh3
nφx(hn)

E2K1
EK2

1

= Ψ1,

then, using the boundedness of function K allows us to get that:

Ψ1 ≤ Ch3
nφx(hn)→ 0, as n→∞.

It is clear that, the results of (3.21), (3.22), (3.24) and Lemma 3.4.4 per-
mits us

E
(
F̂ xD − F̂ xN (y)− 1 + F x(y)

)
−→ 0,
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and
V ar

(
F̂ xD − F̂ xN (y)− 1 + F x(y)

)
−→ 0;

then
F̂ xD − F̂ xN (y)− 1 + F x(y)

P−→ 0.

Moreover, the asymptotic variance of F̂ xD − F̂ xN (y) given in Remark 3.4.1
allows to obtain

nhnφx(hn)

σ2
Fx(y)

V ar
(
F̂ xD − F̂ xN (y)− 1 + E

(
F̂ xN (y)

))
−→ 0.

By combining result with the fact that

E
(
F̂ xD − F̂ xN (y)− 1 + E

(
F̂ xN (y)

))
= 0,

we obtain the claimed result.

Therefore, the proof of this Lemma is completed.
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