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Existence et comportement asymptotique de certains problèmes d’évolution avec

des termes non locaux

In this PhD thesis we study the global existence, asymptotic behavior in time of solutions to

nonlinear evolutions equations of hyperbolic type. The decreasing of classical energy plays

a crucial role in the study of global existence and in stabilization of various distributed

systems.

In chapter 1, we consider a Euler-Bernoulli beam equation with a boundary control condition

of fractional derivative type. We study stability of the system using the semigroup theory

of linear operators and a result obtained by Borichev and Tomilov.

In chapter 2 we consider a Timoshenko system in bounded domain with a delay term in

the nonlinear internal feedback and prove the global existence of its solutions in Sobolev

spaces by means of the energy method combined with the Faedo-Galerkin procedure. under

a condition between the weight of the delay term in the feedback and the weight of the

term without delay. Furthermore, we establish a decay rate estimate for the energy by

introducing suitable Lyapunov functionals.

Key words : evolutions equations, global existence, General decay, stabilization,

delay term, Euler-Bernoulli beam equation, Timoshenko system.

Existence et comportement asymptotique de certains problèmes d’évolution avec

des termes non locaux

Dans cette th‘ese nous ´etudions l’existence globale, comportement asymptotique en temps

de solutions à des équations d’évolutions non linéaires de type hyperbolique. La décroissance

de l’énergie classique joue un rôle crucial dans l’étude de l’existence globale et dans la

stabilisation de divers systèmes distribués.

Dans le chapitre 1, nous considérons une équation de faisceau d’Euler-Bernoulli avec une

condition de contrôle de limite de type dérivée fractionnaire. Nous étudions la stabilité du

système en utilisant la théorie des semi-groupes des opérateurs linéaires et un résultat obtenu

par Borichev et Tomilov.

Dans le chapitre 2, nous considérons un système de Timoshenko dans un domaine limité

avec un délai dans le feedback interne non linéaire et prouvons l’existence globale de

ses solutions dans les espaces de Sobolev à l’aide de la méthode d’énergie combinée

avec la procédure de Faedo-Galerkin. dans une condition entre le poids du délai dans le

feedback et le poids du terme sans délai. De plus, nous établissons une estimation du



taux de décroissance de l’énergie en introduisant des fonctionnelles de Lyapunov appropriées.

Mots-clés : équations d’évolution, existence globale, taux de décroissance générale,

stabilisation, terme de retard, équation de faisceau d’Euler-Bernoulli, système de Timo-

shenko.
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Introduction

Problems of global existence and stability in time of Partial Differential Equations have

recently been the subject of much work. In this thesis we were interested in study of the

global existence and the stabilization of some evolution equations.

The purpose of stabilization is to attenuate the vibrations by feedback, thus it consists in

guaranteeing the decrease of energy of the solutions to 0 in a more or less fast way by a

mechanism of dissipation.

More precisely, the problem of stabilization consists in determining the asymptotic behaviour

of the energy by E(t), to study its limits in order to determine if this limit is zero or not, to

give an estimate of the decay rate of the energy to zero. This problem has been studied by

many authors for various systems. In our study, we obtain several type of stabilization

1) Strong stabilization: E(t)→ 0, as t→∞.

2) Logarithmic stabilization: E(t) ≤ c(log(t))−δ, ∀t > 0, (c, δ > 0).

3) polynomial stabilization: E(t) ≤ ct−δ,∀t > 0, (c, δ > 0)

4) uniform stabilization: E(t) ≤ ce−δt, ∀t > 0, (c, δ > 0). c which depends on initial data

For wave equation with dissipation of the form u′′−∆xu+ g(u′) = 0, stabilization problems

have been investigated by many authors:

When g : R→ R is continuous and increasing function such that g(0) = 0, global existence

of solutions is known for all initial conditions (u0, u1) given in H1
0 (Ω) × L2(Ω). This result

is, for instance, a consequence of the general theory of nonlinear semi-groups of contractions

generated by a maximal monotone operator (see Brézis [8]). Moreover, if we impose on the

control the condition ∀λ 6= 0, g(λ) 6= 0, then strong asymptotic stability of solutions occurs

in H1
0 (Ω)× L2(Ω), i.e.,

(u, u′)→ (0, 0) strongly in H1
0 (Ω)× L2(Ω),
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without speed of convergence. These results follows, for instance, from the invariance prin-

ciple of Lasalle (see for example A. Haraux [20], F. Conrad, M. Pierre [15]). If the solution

goes to 0 as time goes to ∞, how to get energy decay rates? Dafermos has written in 1978

"Another advantage of this approach is that it is so simplistic that it requires only quite

weak assumptions on the dissipative mechanism. The corresponding drawback is that the

deduced information is also weak, never yielding, for example, decay rates of solutions. Many

authors have worked since then on energy decay rates. First results were obtained for linear

stabilization, then for polynomial stabilization (see M. Nakao A. Haraux [20], E. Zuazua

and V. Komornik [21]) and then extended to arbitrary growing feedbacks (close to 0). In

the same time, geometrical aspects were considered. By combining the multiplier method

with the techniques of micro-local analysis, Lasiecka et al [16] have investigated different

dissipative systems of partial differential equations (with Dirichlet and Neumann bound-

ary conditions) under general geometrical conditions with nonlinear feedback without any

growth restrictions near the origin or at infinity. The computation of decay rates is reduced

to solving an appropriate explicitly given ordinary differential equation of monotone type.

More precisely, the following explicit decay estimate of the energy is obtained:

E(t) ≤ h(
t

t0
− 1), ∀t ≥ t0, (1)

where t0 > 0 and h is the solution of the following differential equation:

h′(t) + q(h(t)) = 0, ∀t ≥ 0 and h(0) = E(0) (2)

and the function q is determined entirely from the behavior at the origin of the nonlinear

feedback by proving that E satisfies

(Id− q)−1
(
E((m+ 1)t0)

)
≤ E(mt0), ∀m ∈ N.

In this thesis, the main objective is to give a global existence and stabilization results.

This work consists in three chapters, the first, for Euler-Bernoulli equations with boundary

dissipation of fractional derivative type.

the second, Well-posedness and exponential stability for a wave equation with nonlocal

time-delay condition.

the third, Global existence and energy decay of solutions to Timoshenko beam system with

a delay term.
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• The chapter 1

We investigate the existence and decay properties of solutions for the initial boundary

value problem of the Euler Bernoulli beam equation of the type

(P ) ϕtt(x, t) + ϕxxxx(x, t) = 0 in ]0, L[×]0,+∞[

where (x, t) ∈ (0, L)× (0,+∞). This system is subject to the boundary conditions
ϕ(0, t) = ϕx(0, t) = 0 in (0,+∞)

ϕxx(L, t) = 0 in (0,+∞)

ϕxxx(L, t) = γ∂α,ηt ϕ(L, t) in (0,+∞)

where γ > 0. The notation ∂α,ηt stands for the generalized Caputo’s fractional deriva-

tive of order α with respect to the time variable. It is defined as follows

∂α,ηt w(t) =
1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s)dw

ds
(s) ds, η ≥ 0.

The system is finally completed with initial conditions

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x)

where the initial data (ϕ0, ϕ1) belong to a suitable function space.

In this chapter, We prove the global existence to the solutions in the class H2 ∩H1
0

by means of the semi group theory.

We prove also the decay estimate of the energy using the multiplier method and

Borivhev-Tomilov theorem.

• The chapter 2

In this chapter we investigate the existence and decay properties of solutions for the

initial boundary value problem of the nonlinear Timoshenko system of the type

ρ1ϕtt(x, t)−K(ϕx + ψ)x(x, t) = 0 in ]0, 1[×]0,+∞[,

ρ2ψtt(x, t)− bψxx(x, t) +K(ϕx + ψ)(x, t) + µ1(t)ψt(x, t)

+µ2(t)ψt(x, t− τ) = 0 in ]0, 1[×]0,+∞[,

ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = 0 t ≥ 0,

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x) x ∈]0, 1[,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x) x ∈]0, 1[,

ψt(x, t− τ) = f0(x, t− τ) in ]0, 1[×]0, τ [,
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where τ > 0 is a time delay, the initial data (ψ0, ψ1, f0) belong to a suitable function

space. We prove the global existence of the solutions in Sobolev spaces by means of

the energy method combined with the Faedo-Galerkin procedure,under a condition be-

tween the weight of the delay term in the feedback and the weight of the term without

delay.Furthermore, we establish a decay rate estimate for the energy by introducing

suitable Lyapunov functionals.



Chapter 1

Preliminaries

In this chapter, we will introduce and state without proofs some important materials needed

in the proof of our results (See [?, ?]),

1.1 Banach Spaces-Definition and properties

We first review some basic facts from calculus in the most important class of linear spaces

" Banach spaces".

Definition 1.1.1. . A Banach space is a complete normed linear space X. Its dual space X ′

is the linear space of all continuous linear functional f : X → R.

Proposition 1.1.1. X ′ equipped with the norm ‖.‖X′ defined by

‖f‖X′ = sup{|f(u)| : ‖u‖ ≤ 1}, (1.1)

is also a Banach space. We shall denote the value of f ∈ X ′ at u ∈ X by either f(u) or

〈f, u〉X′,X .

Remark 1.1.1. From X ′we construct the bidual or second dual X ′′ = (X ′)′. Furthermore,

with each u ∈ X we can define ϕ(u) ∈ X ′′ by ϕ(u)(f) = f(u), f ∈ X ′. This satisfies clearly

‖ϕ(x)‖ ≤ ‖u‖. Moreover, for each u ∈ X there is an f ∈ X ′ with f(u) = ‖u‖ and ‖f‖ = 1.

So it follows that ‖ϕ(x)‖ = ‖u‖.

Definition 1.1.2. . Since ϕ is linear we see that

ϕ : X → X ′′,
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is a linear isometry of X onto a closed subspace of X ′′, we denote this by

X ↪→ X ′′.

Definition 1.1.3. . If ϕ is onto X ′′ we say X is reflexive, X ∼= X ′′.

Theorem 1.1.1. . Let X be Banach space. Then X is reflexive, if and only if,

BX = {x ∈ X : ‖x‖ ≤ 1},

is compact with the weak topology σ(X,X ′). (See the next subsection for the definition of

σ(X,X ′))

Definition 1.1.4. . Let X be a Banach space, and let (un)n∈N be a sequence in X. Then

un converges strongly to u in X if and only if

lim ‖un − u‖X = 0,

and this is denoted by un → u, or limn→∞ un = u.

Definition 1.1.5. The Banach space E is said to be separable if there exists a countable

subset D of E which is dense in E, i.e. D = E.

Proposition 1.1.2. If E is reflexive and if F is a closed vector subspace of E, then F is

reflexive.

Corollaire 1.1.1. The following two assertions are equivalent:

(i) E is reflexive;

(ii) E′ is reflexive.

1.1.1 The weak and weak star topologies

Let X be a Banach space and f ∈ X ′. Denote by

ϕf : X −→ R

x 7−→ ϕf (x),

when f cover X ′, we obtain a family (ϕf )f∈X′ of applications to X in R.

Definition 1.1.6. The weak topology on X, denoted by σ(X,X ′), is the weakest topology on

X for which every (ϕf )f∈X′ is continuous.
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We will define the third topology on X ′, the weak star topology, denoted by σ(X ′, X). For

all x ∈ X. Denote by

ϕf : X ′ −→ R

f 7−→ ϕx(f) = 〈f, x〉X′,X ,

when x cover X, we obtain a family (ϕx)x∈X′ of applications to X ′ in R.

Definition 1.1.7. . The weak star topology on X ′ is the weakest topology on X ′ for which

every (ϕx)x∈X′ is continuous.

Remark 1.1.2. Since X ⊂ X ′′, it is clear that, the weak star topology σ(X ′, X) is weakest

then the topology σ(X ′, X ′′), and this later is weakest then the strong topology.

Definition 1.1.8. A sequence (un) in X is weakly convergent to x if and only if

lim
n→∞

f(un) = f(u),

for every f ∈ X ′, and this is denoted by un ⇀ u

Remark 1.1.3. 1. If the weak limit exist, it is unique.

2. If un → u ∈ X(strongly) then un ⇀ u(weakly).

3. If dimX < +∞, then the weak convergent implies the strong convergent.

Proposition 1.1.3. On the compactness in the three topologies in the Banach space X:

1. First, the unit ball

B′ ≡ {x ∈ X : ‖x‖ ≤ 1} , (1.2)

in X is compact if and only if dim(X) <∞.

2. Second, the unit ball B′ in X ′( The closed subspace of a product of compact spaces) is

weakly compact in X ′ if and only if X is reflexive.

3. Third, B′ is always weakly star compact in the weak star topology of X ′.

Proposition 1.1.4. Let (fn) be a sequence in X ′. We have:

1. [fn ⇀
∗ f in σ(X ′, X)]⇔ [fn(x) ⇀∗ f(x), ∀x ∈ X] .
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2. If fn → f(strongly) then fn ⇀ f, in σ(X ′, X ′′),

If fn ⇀ f in σ(X ′, X ′′), then fn ⇀∗ f, in σ(X ′, X).

3. If fn ⇀∗ f in σ(X ′, X) then ‖fn‖ is bounded and ‖f‖ ≤ lim inf ‖fn‖.

4. If fn ⇀∗ f in σ(X ′, X) and xn → x(strongly) in X, then fn(xn)→ f(x).

1.1.2 Weak and weak star compactness

In finite dimension, i.e, dimE < ∞, we have Bolzano-Weierstrass’s theorem (which is a

strong compactness theorem).

Theorem 1.1.2. (Bolzano-Weierstrass). If dimE <∞ and if {xn} ⊂ E) is bounded, then

there exist in E a subsequence {xnk} of {xn} such that {xnk} strongly converges to x.

The following two theorems are generalizations, in infinite dimension, of Bolzano- Weier-

strass’s theorem.

Theorem 1.1.3. (weak star compactness, Banach-Alaoglu-Bourbaki). Assume that E is sep-

arable and consider {fn} ⊂ E′) . If {xn} is bounded, then there exist f ∈ E′ and a subse-

quence {fnk} of {fn} such that {fnk} weakly star converges to f in E′.

Theorem 1.1.4. (weak compactness, Kakutani-Eberlein). Assume that E is reflexive and

consider {xn} ⊂ E). If {xn} is bounded, then there exist x ∈ E and a subsequence {xnk} of
{xn} such that {xnk} weakly converges to x in E.

Weak, weak star convergence and compactness in Lp(Ω).

Definition 1.1.9. ( weak convergence in Lp(Ω) with 1 ≤ p <∞ ). Let Ω an open subset of

Rn .We say that the sequence {fn} of Lp(Ω) weakly converges to f ∈ Lp(Ω), if

lim
n

∫
Ω
fn(x)g(x)dx =

∫
Ω
f(x)g(x)dx for all g ∈ Lq; (

1

p
+

1

q
= 1)

Definition 1.1.10. (weak star convergence in L∞(Ω) ). We say that the sequence {fn} ⊂
L∞(Ω) weakly star converges to f ∈ L∞(Ω) , if

lim
n

∫
Ω
fn(x)g(x)dx =

∫
Ω
f(x)g(x)dx for all g ∈ L1(Ω)
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Theorem 1.1.5. (weak compactness in Lp(Ω)) with 1 < p < ∞. Given {fn} ⊂ Lp(Ω) ,

if {fn} is bounded, then there exist f ∈ Lp(Ω) and a subsequence {fnk} of {fn} such that

fn ⇀ f in Lp(Ω).

Theorem 1.1.6. (weak star compactness in L∞(Ω).

Given {fn} ⊂ L∞(Ω), if {fn} is bounded, then there exist f ∈ L∞(Ω) and a subsequence

{fnk} of {fn} such that fn
∗
⇀ f in L∞(Ω).

Generalities. In what follows, Ω is a bounded open subset of RN with Lipschitz boundary

and 1 ≤ p ≤ ∞.

Weak and weak star convergence in Sobolev spaces

For 1 ≤ p ≤ ∞, W 1;p(Ω) is a Banach space. Denote the space of all restrictions to Ω of

C1-differentiable functions from RN to R with compact support in RN by C(Ω).

Theorem 1.1.7. for every 1 ≤ p ≤ ∞ C1(Ω) ⊂ W 1;p(Ω) ⊂ Lp(Ω) , and, for 1 < p < ∞,

C1(Ω) is dense in W 1;p(Ω).

Definition 1.1.11. (weak convergence in W 1;p(Ω) with 1 ≤ p <∞).)

We say the {fn} ⊂ W 1;p(Ω) weakly converges to f ∈ W 1;p(Ω), and we write fn ⇀ f in

W 1;p(Ω) , if fn ⇀ f in Lp(Ω) and ∇fn ⇀ ∇f in Lp(Ω;RN )

Definition 1.1.12. (weak convergence in W 1;∞(Ω)

. We say the {fn} ⊂W 1;∞(Ω) weakly star converges to f ∈W 1;∞(Ω), and we write fn
∗
⇀ f

in W 1;∞(Ω) , if fn
∗
⇀ f in Lp(Ω) and ∇fn

∗
⇀ ∇f in L∞(Ω;RN )

Theorem 1.1.8. (Rellich). Let 1 ≤ p ≤ ∞ , {fn} ⊂ W 1;p(Ω) and f ∈ W 1;p(Ω); if fn ⇀ f

in W 1;p(Ω) when 1 ≤ p < ∞ (resp.fn
∗
⇀ f in W 1;∞(Ω)) when p = ∞) then fn → f in

Lp(Ω)), which means that for every 1 ≤ p ≤ ∞, the weak convergence in W 1;p(Ω) imply the

strong convergence in Lp(Ω).

Theorem 1.1.9. Let 1 < p ≤ ∞ and let {fn} ⊂ W 1;p(Ω) . If {fn} is bounded, then there

exist f ∈ W 1;p(Ω) and a subsequence {fnk} of {fn} such that fnk ⇀ f in W 1;p(Ω) when

1 < p <∞ (resp. fnk
∗
⇀ f in W 1;∞(Ω))

As a consequence of this theorem we have

Propriété 1.1.1. Let 1 < p ≤ ∞and let {fn} ⊂ W 1;p(Ω) . If {fn} is bounded, then there

exist f ∈ W 1;p(Ω) and a subsequence {fnk} of {fn} such that fnk → f in Lp(Ω) and

∇fnk ⇀ ∇f in Lp(Ω) when 1 < p <∞ (resp.∇fnk
∗
⇀ ∇f in L∞(Ω))
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Theorem 1.1.10. . IfN < p ≤ ∞ and if {fn} ⊂ W 1;p(Ω) is bounded, then there exist

f ∈W 1;p(Ω) and a subsequence {fnk} of {fn} such that {fnk} converges uniformly to f, and

∇fnk ⇀ ∇f in W 1;p(Ω) when N < p <∞ (resp. ∇fnk
∗
⇀ ∇f in W 1;∞)

1.2 Functional Spaces

1.2.1 The Lp(Ω) spaces

Definition 1.2.1. Let 1 ≤ p ≤ ∞ and let Ω be an open domain in Rn, n ∈ N. Define the

standard Lebesgue space Lp(Ω) by

Lp(Ω) =

{
f : Ω→ R is measurable and

∫
Ω
|f(x)|pdx <∞

}
. (1.3)

Notation 1.2.1. If p =∞, we have

L∞(Ω) = {f : Ω→ R is measurable and there exists a constant C such that |f(x)| ≤ C a.e ∈ Ω}.

Also, we denote by

‖f‖∞ = inf{C, |f(x)| ≤ C a.e ∈ Ω}. (1.4)

Notation 1.2.2. For p ∈ R and 1 ≤ p ≤ ∞, we denote by q the conjugate of p i.e. 1
p+ 1

q = 1.

Theorem 1.2.1. Lp(Ω) is a Banach space for all 1 ≤ p ≤ ∞.

Remark 1.2.1. In particularly, when p = 2, L2(Ω) equipped with the inner product

〈f, g〉L2(Ω) =

∫
Ω
f(x)g(x)dx, (1.5)

is a Hilbert space.

Theorem 1.2.2. For 1 < p <∞, Lp(Ω) is a reflexive space.

1.2.2 Some integral inequalities

We will give here some important integral inequalities. These inequalities play an important

role in applied mathematics and also, it is very useful in our next chapters.

Theorem 1.2.3. ( Holder’s inequality). Let 1 ≤ p ≤ ∞. Assume that f ∈ Lp(Ω) and

g ∈ Lq(Ω), then fg ∈ Lp(Ω) and ∫
Ω
|fg|dx ≤ ‖f‖p‖g‖q.
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Lemma 1.2.1. ( Young’s inequality). Let f ∈ Lp(R) and g ∈ Lg(R) with 1 < p < ∞ and
1
r = 1

p + 1
q − 1 ≥ 0. Then f ∗ g ∈ Lr(R) and

‖f ∗ g‖Lr(R) ≤ ‖f‖Lp(R)‖g‖Lq(R).

Lemma 1.2.2. . Let 1 ≤ p ≤ r ≤ q, 1
r = α

p + 1−α
q , and 1 ≤ α ≤ 1. Then

‖u‖Lr ≤ ‖u‖αLp‖u‖1−αLq .

Lemma 1.2.3. If µ(Ω) <∞, 1 ≤ p ≤ q ≤ ∞, then Lq ↪→ Lp and

‖u‖Lp ≤ µ(Ω)
1
p
− 1
q ‖u‖Lq .

1.2.3 The Wm,p(Ω) spaces

Proposition 1.2.1. Let Ω be an open domain in RN . Then the distribution T ∈ D′(Ω) is

in Lp(Ω) if there exists a function f ∈ Lp(Ω) such that

〈T, ϕ〉 =

∫
Ω
f(x)ϕ(x)dx, for all ϕ ∈ D(Ω),

where 1 ≤ p ≤ ∞ and it’s well-known that f is unique.

Now, we will introduce the Sobolev spaces: The Sobolev space W k,p(Ω) is defined to be the

subset of Lp such that function f and its weak derivatives up to some order k have a finite

Lp norm, for given p ≥ 1.

W k,p(Ω) = {f ∈ Lp(Ω);Dαf ∈ Lp(Ω). ∀α; |α| ≤ k} .

With this definition, the Sobolev spaces admit a natural norm:

f −→ ‖f‖Wk,p(Ω) =

 ∑
|α|≤m

‖Dαf‖pLp(Ω)

1/p

, for p < +∞

and

f −→ ‖f‖Wk,∞(Ω) =
∑
|α|≤m

‖Dαf‖L∞(Ω) , for p = +∞

Space W k,p(Ω) equipped with the norm ‖ . ‖Wk,p is a Banach space. Moreover is a reflexive

space for 1 < p < ∞ and a separable space for 1 ≤ p < ∞. Sobolev spaces with p = 2 are
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especially important because of their connection with Fourier series and because they form

a Hilbert space. A special notation has arisen to cover this case:

W k,2(Ω) = Hk(Ω)

the Hk inner product is defined in terms of the L2 inner product:

(f, g)Hk(Ω) =
∑
|α|≤k

(Dαf,Dαg)L2(Ω).

The space Hm(Ω) and W k,p(Ω) contain C∞(Ω) and Cm(Ω). The closure of D(Ω) for the

Hm(Ω) norm (respectively Wm,p(Ω) norm) is denoted by Hm
0 (Ω) (respectively W k,p

0 (Ω)).

Now, we introduce a space of functions with values in a space X (a separable Hilbert space).

The space L2(a, b;X) is a Hilbert space for the inner product

(f, g)L2(a,b;X) =

∫ b

a
(f(t), g(t))X dt

We note that L∞(a, b;X) = (L1(a, b;X))′. Now, we define the Sobolev spaces with values

in a Hilbert space X. For k ∈ N , p ∈ [1,∞], we set:

W k,p(a, b;X) =

{
v ∈ Lp(a, b;X);

∂v

∂xi
∈ Lp(a, b;X). ∀i ≤ k

}
,

The Sobolev space W k,p(a, b;X) is a Banach space with the norm

‖f‖Wk,p(a,b;X) =

(
k∑
i=0

‖ ∂f
∂xi
‖pLp(a,b;X)

)1/p

, for p < +∞

and

‖f‖Wk,∞(a,b;X) =
k∑
i=0

‖ ∂v
∂xi
‖L∞(a,b;X) , for p = +∞

The spaces W k,2(a, b;X) form a Hilbert space and it is noted Hk(0, T ;X). The Hk(0, T ;X)

inner product is defined by:

(u, v)Hk(a,b;X) =
k∑
i=0

∫ b

a

(
∂u

∂xi
,
∂v

∂xi

)
X

dt .

Theorem 1.2.4. Let 1 ≤ p ≤ n, then

W 1,p(Rn) ⊂ Lp∗(Rn)

where p∗ is given by 1
p∗ = 1

p −
1
n . Moreover there exists a constant C = C(p, n) such that

‖u‖Lp∗ ≤ C‖∇u‖Lp(Rn), ∀u ∈W 1,p(Rn).
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Corollaire 1.2.1. Let 1 ≤ p < n, then

W 1,p(Rn) ⊂ Lq(Rn), ∀q ∈ [p, p∗]

with continuous imbedding.

For the case p = n, we have

W 1,n(Rn) ⊂ Lq(Rn), ∀q ∈ [n,+∞[

Theorem 1.2.5. Let p > n, then

W 1,p(Rn) ⊂ L∞(Rn)

with continuous imbedding.

Corollaire 1.2.2. Let Ω a bounded domain in Rn of C1 class with Γ = ∂Ω and 1 ≤ p ≤ ∞.

We have

if 1 ≤ p <∞, then W 1,p(Ω) ⊂ Lp∗(Ω) where
1

p∗
=

1

p
− 1

n
.

if p = n, then W 1,p(Ω) ⊂ Lq(Ω), ∀q ∈ [p,+∞[.

if p > n, then W 1,p(Ω) ⊂ L∞(Ω)

with continuous imbedding. Moreover, if p > n we have:

∀u ∈W 1,p(Ω), |u(x)− u(y)| ≤ C|x− y|α‖u‖W 1,p(Ω) a.e x, y ∈ Ω

with α = 1− n
p > 0 and C is a constant which depend on p, n and Ω. In particular W 1,p(Ω) ⊂

C(Ω).

Corollaire 1.2.3. Let Ω a bounded domain in Rn of C1 class with Γ = ∂Ω and 1 ≤ p ≤ ∞.

We have

if p < n, then W 1,p(Ω) ⊂ Lq(Ω)∀q ∈ [1, p∗[ where
1

p∗
=

1

p
− 1

n
.

if p = n, then W 1,p(Ω) ⊂ Lq(Ω),∀q ∈ [p,+∞[.

if p > n, then W 1,p(Ω) ⊂ C(Ω)

with compact imbedding.
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Remark 1.2.2. We remark in particular that

W 1,p(Ω) ⊂ Lq(Ω)

with compact imbedding for 1 ≤ p ≤ ∞ and for p ≤ q < p∗.

Corollaire 1.2.4.

if
1

p
− m

n
> 0, then Wm,p(Rn) ⊂ Lq(Rn) where

1

q
=

1

p
− m

n
.

if
1

p
− m

n
= 0, then Wm,p(Rn) ⊂ Lq(Rn),∀q ∈ [p,+∞[.

if
1

p
− m

n
< 0, then Wm,p(Rn) ⊂ L∞(Rn)

with continuous imbedding.

Lemma 1.2.4. (Sobolev-Poincarés inequality)

If 2 ≤ q ≤ 2n

n− 2
, n ≥ 3 and q ≥ 2, n = 1, 2,

then

‖u‖q ≤ C(q,Ω)‖∇u‖2, ∀u ∈ H1
0 (Ω).

Remark 1.2.3. For all ϕ ∈ H2(Ω), ∆ϕ ∈ L2(Ω) and for Γ sufficiently smooth, we have

‖ϕ(t)‖H2(Ω) ≤ C‖∆ϕ(t)‖L2(Ω).

Proposition 1.2.2. ( Green’s formula). For all u ∈ H2(Ω), υ ∈ H1(Ω) we have

−
∫

Ω
∆uυdx =

∫
Ω
∇u∇υdx−

∫
∂Ω

∂u

∂η
υdσ,

where ∂u
∂η is a normal derivation of u at Γ.

1.2.4 Some Algebraic inequalities

Since our study based on some known algebraic inequalities, we want to recall few of them

here.

Lemma 1.2.5. ( The Cauchy-Schwartz’s inequality) Every inner product satisfies the

Cauchy-Schwartz’s inequality

〈x1, x2〉 ≤ ‖x1‖‖x2‖. (1.6)

The equality sign holds if and only if x1 and x1 are dependent.
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Lemma 1.2.6. (Young’s inequalities). For all a, b ∈ R+, we have

ab ≤ αa2 +
1

4α
b2 (1.7)

where α is any positive constant.

Lemma 1.2.7. For a, b ≥ 0, the following inequality holds

ab ≤ ap

p
+
bq

q
(1.8)

where, 1
p + 1

q = 1.

1.3 Existence Methods

1.3.1 Faedo-Galerkin’s approximations

We consider the Cauchy problem abstract’s for a second order evolution equation in the

separable Hilbert space with the inner product 〈., .〉 and the associated norm ‖.‖ .{
u′′(t) +A(t)u(t) = f(t) t in [0, T ],

u(x, 0) = u0(x), u′(x, 0) = u1(x),
(1.9)

where u and f are unknown and given function, respectively, mapping the closed interval

[0, T ] ⊂ R into a real separable Hilbert space H. A(t) (0 ≤ t ≤ T ) are linear bounded

operators in H acting in the energy space V ⊂ H.

Assume that 〈A(t)u(t), v(t)〉 = a(t;u(t), v(t)), for all u, v ∈ V ; where a(t; ., .) is a bilinear

continuous in V. The problem (1.9) can be formulated as: Found the solution u(t) such that
u ∈ C([0, T ];V ), u′ ∈ C([0, T ];H)

〈u′′(t), v〉+ a(t;u(t), v) = 〈f, v〉 t in D′(]0, T [),

u0 ∈ V , u1 ∈ H,
(1.10)

This problem can be resolved with the approximation process of Fadeo-Galerkin.

Let Vm a sub-space of V with the finite dimension dm, and let {wjm} one basis of

Vm such that .

1. Vm ⊂ V (dimVm <∞), ∀m ∈ N
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2. Vm → V such that, there exist a dense subspace ϑ in V and for all υ ∈ ϑ we can get

sequence {um}m∈N ∈ Vm and um → u in V.

3. Vm ⊂ Vm+1 and ∪m∈NVm = V.

we define the solution um of the approximate problem
um(t) =

∑dm
j=1 gj(t)wjm,

um ∈ C([0, T ];Vm), u′m ∈ C([0, T ];Vm), um ∈ L2(0, T ;Vm)

〈u′′m(t), wjm〉+ a(t;um(t), wjm) = 〈f, wjm〉, 1 ≤ j ≤ dm
um(0) =

∑dm
j=1 ξj(t)wjm, u

′
m(0) =

∑dm
j=1 ηj(t)wjm,

(1.11)

where
dm∑
j=1

ξj(t)wjm −→ u0 in V as m −→∞

dm∑
j=1

ηj(t)wjm −→ u1 in V as m −→∞

By virtue of the theory of ordinary differential equations, the system (1.11) has unique local

solution which is extend to a maximal interval [0, tm[ by Zorn lemma since the non-linear

terms have the suitable regularity. In the next step, we obtain a priori estimates for the

solution, so that can be extended outside [0, tm[ to obtain one solution defined for all t > 0.

1.3.2 A priori estimation and convergence

Using the following estimation

‖um‖2 + ‖u′m‖2 ≤ C
{
‖um(0)‖2 + ‖u′m(0)‖2 +

∫ T

0
‖f(s)‖2ds

}
; 0 ≤ t ≤ T

and the Gronwall lemma we deduce that the solution um of the approximate problem (1.11)

converges to the solution u of the initial problem (1.9). The uniqueness proves that u is the

solution.

1.3.3 Gronwall’s lemma

Lemma 1.3.1. Let T > 0, g ∈ L1(0, T ), g ≥ 0 a.e and c1, c2 are positives constants. Let

ϕ ∈ L1(0, T ) ϕ ≥ 0 a.e such that gϕ ∈ L1(0, T ) and

ϕ(t) ≤ c1 + c2

∫ t

0
g(s)ϕ(s)ds a.e in (0, T ).
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then, we have

ϕ(t) ≤ c1exp

(
c2

∫ t

0
g(s)ds

)
a.e in (0, T ).

1.4 Aubin -Lions lemma

The Aubin Lions lemma is a result in the theory of Sobolev spaces of Banach space-valued

functions. More precisely, it is a compactness criterion that is very useful in the study of

nonlinear evolutionary partial differential equations. The result is named after the French

mathematicians Thierry Aubin and Jacques-Louis Lions. We complete the preliminaries by

the useful inequalities of Gagliardo-Nirenberg and Sobolev-Poincaré.

Lemma 1.4.1. LetX0,X and X1 be three Banach spaces with X0 ⊆ X ⊆ X1. Assume

thatX0 is compactly embedded in X and that X is continuously embedded in X1; assume

also that X0 and X1 are reflexive spaces. For 1 < p, q < +∞, let

W = {u ∈ Lp([0, T ];X0)/ u̇ ∈ Lq([0, T ];X1)}

Then the embedding of W into Lp([0, T ];X) is also compact.

Lemma 1.4.2 (Gagliardo-Nirenberg). Let 1 ≤ r < q ≤ +∞ and p ≤ q. Then, the inequality

‖u‖Wm,q ≤ C‖u‖θWm,p‖u‖1−θr for u ∈Wm,p
⋂
Lr

holds with some C > 0 and

θ =

(
k

n
+

1

r
− 1

q

)(
m

n
+

1

r
− 1

p

)−1

provided that 0 < θ ≤ 1 (we assume 0 < θ < 1 if q = +∞).

Lemma 1.4.3 (Sobolev-Poincaré inequality). Let q be a number with 2 ≤ q < +∞ (n = 1, 2)

or 2 ≤ q ≤ 2n/(n− 2) (n ≥ 3), then there is a constant c∗ = c(Ω, q) such that

‖u‖q ≤ c∗‖∇u‖2 for u ∈ H1
0 (Ω).

1.5 Semigroup and spectral analysis theories

As the analysis done in this P.H.D thesis local on the semigroup and spectral analysis

theories, we recall, in this chapter, some basic definitions and theorems which will be used

in the following chapters.
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1.5.1 Bounded and Unbounded linear operators

We start this chapter by give some well known results abound bounded and undounded

operators. We are not trying to give a complete development, but rather review the basic

definitions and theorems, mostly without proof. Let (E, ‖.‖E) and (E, ‖.‖E) be two Banach

spaces over C, and H will always denote a Hilbert space equipped with the scalar product <

., . >H and the corresponding norm ‖.‖H . A linear operator T : E −→ F is a transformation

which maps linearly E in F , that is

T (αu+ βv) = αT (u) + βT (v), ∀u, v ∈ Eandα, β ∈ C.

Definition 1.5.1. A bounded operator T : E −→ F is said to be bounded if there exists

C ≥ 0 such that

‖Tu‖F ≤ C‖u‖E ∀u ∈ E.

The set of all bounded linear operators from E into F is denoted by L(E,F ). Moreover, the

set of all bounded linear operators from E into E is denoted by L(E).

Definition 1.5.2. A bounded operator T ∈ L(E,F ) is said to be compact if for each sequence

(xn)n∈N ∈ E with ‖xn‖E = 1 for each n ∈ N, the sequence (Txn)n∈N ∈ E has a subsequence

which converges in F. The set of all compact operators from E into F is denoted by K(E,F ).

For simplicity one writes K(E,E) = K(E).

Definition 1.5.3. Let T ∈ L(E,F ), we define

• Range of T by

R(T ) = {Tu : u ∈ E} ⊂ F.

• Kernel of T by

ker(T ) = {u ∈ E : Tu = 0} ⊂ E.

Theorem 1.5.1. (Fredholm alternative) if T ∈ K(E), then

• ker(I − T ) is finite dimension, (I is the identity operator on E).

• R(I − T ) is closed.

• ker(I − T ) = 0⇔ R(I − T ) = E.

Definition 1.5.4. Let T : D(T ) ⊂ E −→ F be an unbounded linear operator.
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• The range of T is defined by

R(T ) = {Tu : u ∈ D(T )} ⊂ F.

• The Kernel of T is defined by

ker(T ) = {u ∈ D(T ) : Tu = 0} ⊂ E.

• The graph of T is defined by

G(T ) = {(u, Tu) : u ∈ D(T )} ⊂ E × F.

Definition 1.5.5. A map T is said to be closed if G(T ) is closed in E × F . The closedness

of an unbounded linear operator T can be characterize as following if un ∈ D(T ) such that

un −→ u in E and Tun −→ v in F , then u ∈ D(T ) and Tu = v.

Definition 1.5.6. Let T : D(T ) ⊂ E −→ F be a closed unbounded linear operator.

• The resolvent set of T is defined by

ρ(T ) = {λ ∈ C : λI − T isbijectivefrom D(T ) onto F}.

• The resolvent of T is defined by

R(λ, T ) = {(λI − T )−1 : λ ∈ ρ(T )}.

• The spectrum set of T is the complement of the resolvent set in C, denoted by

σ(T ) = C/ρ(T ).

Definition 1.5.7. Let T : D(T ) ⊂ E −→ F be a closed unbounded linear operator. we can

split the spectrum σ(T ) of T into three disjoint sets, given by

• The ponctuel spectrum of T is define by

σp(T ) = {λ ∈ C : ker(λI − T ) 6= 0}

in this case λ is called an eigenvalue of T .
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• The continuous spectrum of T is define by

σc(T ) = {λ ∈ C : ker(λI−T ) = 0, ¯R(λI − T ) = F and(λI−T )−1is not bounded}.

• The residual spectrum of T is define by

σr(T ) = {λ ∈ C : ker(λI − T ) = 0andR(λI − T ) is not dense in F}.

Definition 1.5.8. Let T : D(T ) ⊂ E −→ F be a closed unbounded linear operator and

let λ be an eigevalue of A. non-zero element e ∈ E is called a generalized eigenvector of T

associated with the eigenvalue value λ, if there exists n ∈∗ such that

(λI − T )ne = 0 and (λI − T )n−1e 6= 0.

if n = 1, then e is called an eigenvector.

Definition 1.5.9. Let T : D(T ) ⊂ E −→ F be a closed unbounded linear operator. We say

that T has compact resolvent, if there exist λ0 ∈ ρ(T ) such that (λ0I − T )−1 is compact.

Theorem 1.5.2. Let (T,D(T )) be a closed unbounded linear operator on H then the space

(D(T ), ‖.‖D(T )) where ‖u‖D(T ) = ‖Tu‖H + ‖u‖H ∀u ∈ D(T ) is banach space .

Theorem 1.5.3. Let (T,D(T )) be a closed unbounded linear operator on H then, ρ(T ) is

an open set of C.

1.5.2 Semigroups, Existence and uniqueness of solution

In this section, we start by introducing some basic concepts concerning the semigroups. The

vast majority of the evolution equations can be reduced to the form{
Ut = AU, t > 0,

U(0) = U0

(1.12)

where A is the infinitesimal generator of a C0-semigroup S(t) over a Hilbert space H. Lets

start by basic definitions and theorems. Let (X, ‖.‖X) be a Banach space, and H be a Hilbert

space equipped with the inner product < ., . >H and the induced norm ‖.‖H .

Definition 1.5.10. A family S(t)t≥0 of bounded linear operators in X is called a strong

continous semigroup (in short, a C0-semigroup) if
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i) S(0) = Id.

ii) S(s+ t) = S(s)S(t), ∀t ≥ 0 ∀s ≥ 0.

iii) For each u ∈ H, S(t)u is continous in t on [0,+∞[.

Sometimes we also denote S(t) by eAt.

Definition 1.5.11. For a semigroup S(t)t≥0, we define an linear operator A with domain

D(A) consisting of points u such that the limit

Au = lim
t→0+

S(t)u− u
t

∀u ∈ D(A)

exists. Then A is called the infinitesimal generator of the semigroup S(t)t≥0.

Propriété 1.5.1. Let S(t)t≥0 be a C0-semigroup in X. Then there exist a constant M ≥ 1

and ω ≥ 0 such that

‖S(t)‖L(X) ≤Meωt. ∀t ≥ 0

If ω = 0 then the corresponding semigroup is uniformly bounded. Moreover, if M = 1 then

S(t)t≥0 is said to be a C0-semigroup of contractions.

Definition 1.5.12. An unbounded linear operator (A,D(A)) on H, is said to be dissipative

if

< < Au, u >≤ 0,∀u ∈ D(A).

Definition 1.5.13. An unbounded linear operator (A,D(A)) on X, is said to be m-

dissipative if

• A is a dissipative operator.

• ∃λO such that R(λ0I −A) = X

Theorem 1.5.4. Let A be a m-dissipative operator, then

• R(λ0I −A) = X, ∀λ > 0

• ]0,∞[⊆ ρ(A).

Theorem 1.5.5. ( Hille-Yosida )An unbounded linear operator (A,D(A)) on X, is the

infinitesimal generator of a C0-semigroup of contractions S(t)t≥0 if and only if
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• A is closed and ¯D(A) = X.

• The resolvent set ρ(A) of A contains R+, and for all λ > 0,

‖(λI −A)−1‖L(X) ≤ λ−1

Theorem 1.5.6. (Lumer-Phillips) Let (A,D(A)) be an unbounded linear operator on X,

with dense domain D(A) in X. A is the infinitesimal generator of a C0-semigroup of con-

tractions if and only if it is a m-dissipative operator.

Theorem 1.5.7. Let (A,D(A)) be an unbounded linear operator on X. If A is dissipative

with R(I −A) = X, and X is reflexive then ¯D(A) = X.

Propriété 1.5.2. Let (A,D(A)) be an unbounded linear operator on H. A is the infinitesimal

generator of a C0-semigroup of contractions if and only if A is a m-dissipative operator.

Theorem 1.5.8. Let A be a linear operator with dense domain D(A) in a Hilbert space H.

If A is dissipative and 0 ∈ ρ(A) then A is the infinitesimal generator of a C0-semigroup of

contractions on H.

Theorem 1.5.9. ( Hille-Yosida ) Let (A,D(A)) be an unbounded linear operator on H.

Assume that A is the infinitesimal generator of a C0-semigroup of contractions S(t)t≥0.

1. For U0 ∈ D(A), the problem (1.12) admits a unique strong solution

U(t) = S(t)U0 ∈ C1([0,∞[;H) ∩ C([0,∞[;D(A))

2. For U0 ∈ D(A), the problem (1.12) admits a unique weak solution

U(t) ∈ C0([0,∞[;H).

1.5.3 Stability of semigroup

In this section we start by itroducing some definion about strong, exponential and polynomial

stability of a C0-semigroup. Then we collect some results about the stability of C0-semigroup.

Let (X, ‖.‖X be a Banach space, and H be a Hilbert space equipped with the inner product

< ., . >H and the induced norm ‖.‖H .

Definition 1.5.14. Assume that A is the generator of a strongly continuous semigroup of

contractions S(t)t≥0 on X. We say that the C0-semigroup S(t)t≥0 is
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• Strongly stable if

lim
t→+∞

‖S(t)u‖X = 0, ∀u ∈ X.

• Uniformly stable if

lim
t→+∞

‖S(t)‖L(X) = 0

• Exponentially stable if there exist two positive constants M and ε such that

‖S(t)u‖X ≤Me−εt‖u‖X , ∀t > 0, ∀u ∈ X.

• Polynomially stable if there exist two positive constants C and α such that

‖S(t)u‖X ≤ Ct−α‖u‖X , ∀t > 0, ∀u ∈ X.

Propriété 1.5.3. Assume that A is the generator of a strongly continuous semigroup of

contractions S(t)t≥0 on X. The following statements are equivalent

• S(t)t≥0 is uniformly stable.

• S(t)t≥0 is exponentially stable.

First, we look for the necessary conditions of strong stability of a C0-semigroup. The result

was obtained by Arendt and Batty.



Chapter 2

THE EULER-BERNOULLI BEAM

EQUATION WITh BOUNDARY

DISSIPATION OF FRACTIONAL

DERIVATIVE TYPE

2.1 Introduction

In this chapter we investigate the existence and decay properties of solutions for the initial

boundary value problem of the Euler Bernoulli beam equation of the type

(P ) ϕtt(x, t) + ϕxxxx(x, t) = 0 in ]0, L[×]0,+∞[

where (x, t) ∈ (0, L)× (0,+∞). This system is subject to the boundary conditions
ϕ(0, t) = ϕx(0, t) = 0 in (0,+∞)

ϕxx(L, t) = 0 in (0,+∞)

ϕxxx(L, t) = γ∂α,ηt ϕ(L, t) in (0,+∞)

(2.1)

where γ > 0. The notation ∂α,ηt stands for the generalized Caputo’s fractional derivative of

order α with respect to the time variable. It is defined as follows

∂α,ηt w(t) =
1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s)dw

ds
(s) ds, η ≥ 0.
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The system is finally completed with initial conditions

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x)

where the initial data (ϕ0, ϕ1) belong to a suitable function space.

A simple model describing the transverse vibration of a system of non-homogeneous con-

nected Euler-Bernoulli beams, which was developed in [13], is given by a system of the

form 

mϕtt(x, t) + EIϕxxxx(x, t) = 0 in ]0, L[×]0,+∞[

ϕ(0, t) = 0,

ϕx(0, t) = 0,

−EIϕxxx(1, t) = −k2
1ϕt(1, t), k1 ∈ R,

−EIϕxx(1, t) = k2
2ϕxt(1, t), k2 ∈ R,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), x ∈ (0, L)

(2.2)

where m denotes the mass density per unit length, El is the flexural rigidity coefficient, and

the following variables have engineering meanings:
ϕ = vertical displacement, ϕt = velocity,

ϕx = rotation, ϕxt = angular velocity,

−EIϕxx = bending moment

−EIϕxxx = shear

at a point x, at time t.

Boundary conditions (EB)2 and (EB)3 signify that the beam is clamped, at the left end,

x = 0 while boundary conditions (EB)4 and (EB)5 at the right end, x = 1, respectively,

signify{
shear (−Elϕxxx) is proportional to velocity (ϕt)

bending moment (−EIϕxx) is negatively proportional to angular velocity (ϕxt)

Control of elastic systems is one of the main themes in control engineering. The case of the

wave equation with linear and nonlinear boundary feedback has attracted a lot of attention

in recent years. The bibliography of works in the direction is truly long (see [4], [10], [11],

[12], [20], [21], [27]) and many energy estimates have been derived for arbitrary growing

feedbacks (polynomial, exponential or logarithmic decay).
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For plates, also with linear and nonlinear boundary feedback acting through shear forces

and moments, we refer to [24],[25], for stabilization results and [23] for estimates of the

decay. The more difficult case of control by moment only has been studied in [26]. All these

papers are based on multiplied techniques.

The case of serially connected beams has also been considered, with linear feedback acting

genuinely on the force at the nodes [14]. Exponential stability is proved in the case of

nondecreasing density and nonincreasing flexural rigidity. The same result has been proved

in the more difficult case of control by moment only, for single homogeneous beam [13].

In [33] B. Mbodge studies the decay rate of the energy of the wave equation with a bound-

ary fractional derivative control as in this paper. Using energy methods, she proves strong

asymptotic stability under the condition η = 0 and a polynomial type decay rate E(t) ≤ C/t
if η 6= 0.

The boundary feedback under the consideration are of fractional type and are described by

the fractional derivatives

∂α,ηt w(t) =
1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s)dw

ds
(s) ds

The order of our derivatives is between 0 and 1. Very little attention has been paid to

this type of feedback. In addition to being nonlocal, fractional derivatives involve singular

and nonintegrable kernels (t−α, 0 < α < 1). This leads to substantial mathematical diffi-

culties since all the previous methods developed for convolution terms with regular and/or

integrable kernels are no longer valid.

It has been shown (see [34]) that, as ∂t, the fractional derivative ∂αt forces the system to

become dissipative and the solution to approach the equilibrium state. Therefore, when

applied on the boundary, we can consider them as controllers which help to reduce the

vibrations.

In recent years, the application of fractional calculus has become a new interest in research

areas such as viscoelasticity, chaos, biology, wave propagation, fluid flow, electromagnetics,

automatic control, and signal processing (see [40]). For example, in viscoelasticity, due to

the nature of the material microstructure, both elastic solid and viscous fluid like response

qualities are involved. Using Boltzmann assumptions, we end up with a stress-strain rela-

tionship defined by a time convolution. Viscoelastic response occurs in a variety of materials,

such as soils, concrete, rubber, cartilage, biological tissue, glasses, and polymers ([5], [6] and

[32]). In our case, the fractional dissipations may come from a viscoelastic surface of the
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beam or simply describe an active boundary viscoelastic damper designed for the purpose

of reducing the vibrations (see [33], [34]).

Our purpose in this chapter is to give a global solvability in Sobolev spaces and energy decay

estimates of the solutions to the problem (P ) with a boundary control of fractional derivative

type. To obtain global solutions to the problem (P ), we use the argument combining the

semigroup theory (see [8]) with the energy estimate method. For decay estimates, Under

the condition η = 0, using a spectral analysis, we prove non-uniform stability. On the other

hand if η 6= 0, we also show a polynomial type decay rate using a frequency domain approach

and a recent theorem of A. Borichev and Y. Tomilov.

2.2 Augmented model

This section is concerned with the reformulation of the model (P ) into an augmented system.

For that, we need the following claims.

Theorem 2.2.1 (see [33]). Let µ be the function:

µ(ξ) = |ξ|(2α−1)/2, −∞ < ξ < +∞, 0 < α < 1. (2.3)

Then the relationship between the ’input’ U and the ’output’ O of the system

∂tφ(ξ, t) + (ξ2 + η)φ(ξ, t)− U(t)µ(ξ) = 0, −∞ < ξ < +∞, η ≥ 0, t > 0, (2.4)

φ(ξ, 0) = 0, (2.5)

O(t) = (π)−1 sin(απ)

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ (2.6)

is given by

O = I1−α,ηU = Dα,ηU (2.7)

where

[Iα,ηf ](t) =
1

Γ(α)

∫ t

0
(t− τ)α−1e−η(t−τ)f(τ) dτ.

Lemma 2.2.1. If λ ∈ D = {λ ∈ C : Reλ+ η > 0} ∪ {λ ∈ C : Imλ 6= 0} then∫ +∞

−∞

µ2(ξ)

λ+ η + ξ2
dξ =

π

sinαπ
(λ+ η)α−1.
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Proof Let us set

fλ(ξ) =
µ2(ξ)

λ+ η + ξ2
.

We have ∣∣∣∣ µ2(ξ)

λ+ η + ξ2

∣∣∣∣ ≤
{

µ2(ξ)
Reλ+η+ξ2

or
µ2(ξ)

|Imλ|+η+ξ2

Then the function fλ is integrable. Moreover∣∣∣∣ µ2(ξ)

λ+ η + ξ2

∣∣∣∣ ≤ µ2(ξ)
η0+η+ξ2

for all Reλ ≥ η0 > −η
µ2(ξ)
η̃0+ξ2

for all|Imλ| ≥ η̃0 > 0

From Theorem 1.16.1 in [47], the function

fλ : D → C is holomorphe.

For a real number λ > −η, we have∫ +∞

−∞

µ2(ξ)

λ+ η + ξ2
dξ =

∫ +∞

−∞

|ξ|2α−1

λ+ η + ξ2
dξ =

∫ +∞

0

xα−1

λ+ η + x
dx ( with ξ2 = x)

= (λ+ η)α−1

∫ +∞

1
y−1(y − 1)α−1 dy ( with y = x/(λ+ η) + 1)

= (λ+ η)α−1

∫ 1

0
z−α(1− z)α−1 dz ( with z = 1/y)

= (λ+ η)α−1B(1− α, α) = (λ+ η)α−1Γ(1− α)Γ(α) = (λ+ η)α−1 π

sinπα

Both holomorphic functions fλ and λ 7→ (λ+η)α−1 π
sinπα coincide on the half line ]−∞,−η[,

hence on D following the principe of isolated zeroes.

We are now in a position to reformulate system (P ). Indeed, by using Theorem 2.2.1, system

(P ) may be recast into the augmented model:

ϕtt + ϕxxxx = 0,

∂tφ(ξ, t) + (ξ2 + η)φ(ξ, t)− ϕt(L, t)µ(ξ) = 0,

ϕ(0, t) = ϕx(0, t) = 0,

ϕxx(L, t) = 0,

ϕxxx(L, t) = γ(π)−1 sin(απ)
∫ +∞
−∞ µ(ξ)φ(ξ, t) dξ,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x).

(2.8)

We define the energy associated to the solution of the problem (P’) by the following formula:

E(t) =
1

2
‖ϕt‖22 +

1

2
‖ϕxx‖22 +

γ

2
(π)−1 sin(απ)

∫ +∞

−∞
(φ(ξ, t))2 dξ. (2.9)
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Lemma 2.2.2. Let (ϕ, φ) be a solution of the problem (P ′). Then, the energy functional

defined by (2.9) satisfies

E′(t) = −(π)−1 sin(απ)γ

∫ +∞

−∞
(ξ2 + η)(φ(ξ, t))2 dξ ≤ 0. (2.10)

Proof

Multiplying the first equation in (P ′) by ϕt, integrating over (0, L) and using integration by

parts, we get
1

2

d

dt
‖ϕt‖22 +

∫ L

0
ϕxxxxϕtdx = 0.

Then
d

dt

(
1

2
‖ϕt‖22 +

1

2
‖ϕxx‖22

)
+ ζϕt(L, t)

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ = 0. (2.11)

Multiplying the second equation in (P ′) by γ(π)−1 sin(απ)φt and integrating over

(−∞,+∞), to obtain:

ζ

2

d

dt
‖φ‖22 + ζ

∫ +∞

−∞
(ξ2 + η)(φ(ξ, t))2 dξ − ζϕt(L, t)

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ = 0. (2.12)

From (2.9), (2.11) and (2.12) we get

E′(t) = −ζ
∫ +∞

−∞
(ξ2 + η)(φ(ξ, t))2 dξ

where ζ = (π)−1 sin(απ)γ. This completes the proof of the lemma.

2

2.3 Global existence

In this section we will give well-posedness results for problem (2.8) using semigroup theory.

Let us introduce the semigroup representation of the (2.8). Let U = (ϕ,ϕt, φ)T and rewrite

(2.8) as

{
U ′ = AU,
U(0) = (ϕ0, ϕ1, φ0),

(2.13)
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where the operator A is defined by

A


ϕ

u

φ

 =


u

−ϕxxxx
−(ξ2 + η)φ+ u(L)µ(ξ)

 (2.14)

with domain

D(A) =


ϕ, u, φ)T in H : ϕ ∈ H4(0, L) ∩H2

L(0, L), u ∈ H2
L(0, L),

−(ξ2 + η)φ+ u(L)µ(ξ) ∈ L2(−∞,+∞),

ϕxx(L) = 0, ϕxxx(L)− ζ
∫ +∞
−∞ µ(ξ)φ(ξ) dξ = 0

|ξ|φ ∈ L2(−∞,+∞)


. (2.15)

where the energy space H is defined as

H = H2
L(0, L)× L2(0, L)× L2(−∞,+∞)

where

H2
L(0, L) = {ϕ ∈ H2(0, L) : ϕ(0) = ϕx(0) = 0}

For U = (ϕ, u, φ)T , U = (ϕ, u, φ)T , we define the following inner product in H

〈U,U〉H =

∫ L

0
(uu+ ϕxxϕxx) dx+ ζ

∫ +∞

−∞
φφdξ.

We show that the operator A generates a C0- semigroup in H. In this step, we prove that

the operator A is dissipative. Let U = (ϕ, u, φ)T . Using (2.13), (2.10) and the fact that

E(t) =
1

2
‖U‖2H, (2.16)

we get

〈AU,U〉H = −ζ
∫ +∞

−∞
(ξ2 + η)(φ(ξ))2 dξ. (2.17)

Consequently, the operator A is dissipative. Now, we will prove that the operator λI −A is

surjective for λ > 0. For this purpose, let (f1, f2, f3)T ∈ H, we seek U = (ϕ, u, φ)T ∈ D(A)

solution of the following system of equations
λϕ− u = f1,

λu+ ϕxxxx = f2,

λφ+ (ξ2 + η)φ− u(L)µ(ξ) = f3

(2.18)



2.3 Global existence 38

Suppose that we have found ϕ. Therefore, the first equation in (2.18) gives

u = λϕ− f1. (2.19)

It is clear that u ∈ H2
L(0, L). Furthermore, by (2.18) we can find φ as

φ =
f3(ξ) + µ(ξ)u(L)

ξ2 + η + λ
. (2.20)

By using (2.18) and (2.19) the function ϕ satisfying the following system

λ2ϕ+ ϕxxxx = f2 + λf1. (2.21)

Solving system (2.21) is equivalent to finding ϕ ∈ H4 ∩H2
L(0, L) such that∫ L

0
(λ2ϕw + ϕxxxxw) dx =

∫ L

0
(f2 + λf1)w dx, (2.22)

for all w ∈ H2
L(0, L). By using (2.22) and (2.20) the function ϕ satisfying the following

system { ∫ L
0 (λ2ϕw + ϕxxwxx) dx+ ζ̃u(L)w(L)

=
∫ L

0 (f2 + λf1)w dx− ζ
∫ +∞
−∞

µ(ξ)
ξ2+η+λ

f3(ξ) dξ w(L)
(2.23)

where ζ̃ = ζ
∫ +∞
−∞

µ2(ξ)
ξ2+η+λ

dξ. Using again (2.19), we deduce that

u(L) = λϕ(L)− f1(L). (2.24)

Inserting (2.24) into (2.23), we get{ ∫ L
0 (λ2ϕw + ϕxxwxx) dx+ ζ̃λϕ(L)w(L) =

∫ L
0 (f2 + λf1)w dx

−ζ
∫ +∞
−∞

µ(ξ)
ξ2+η+λ

f3(ξ) dξ w(L) + ζ̃f1(L)w(L)
(2.25)

Consequently, problem (2.25) is equivalent to the problem

a(ϕ,w) = L(w) (2.26)

where the bilinear form a : [H2
L(0, L)×H2

L(0, L)]→ R and the linear form

L : H2
L(0, L)→ R are defined by

a(ϕ,w) =

∫ L

0
(λ2ϕw + ϕxxwxx) dx+ λζ̃ϕ(L)w(L)
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and

L(w) =

∫ L

0
(f2 + λf1)w dx− ζ

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξ w(L) + ζ̃f1(L)w(L).

It is easy to verify that a is continuous and coercive, and L is continuous. So applying the

Lax-Milgram theorem, we deduce that for all w ∈ H2
L(0, L) problem (2.26) admits a unique

solution ϕ ∈ H2
L(0, L). Applying the classical elliptic regularity, it follows from (2.25) that

ϕ ∈ H4(0, L). Therefore, the operator λI − A is surjective for any λ > 0. Consequently,

using HilleYosida theorem, we have the following results.

Theorem 2.3.1 (Existence and uniqueness).

(1) If U0 ∈ D(A), then system (2.13) has a unique strong solution

U ∈ C0(R+, D(A)) ∩ C1(R+,H).

(1) If U0 ∈ H, then system (2.13) has a unique weak solution

U ∈ C0(R+,H).

2

2.4 Lack of exponential stability

In order to state and prove our stability results, we need some lemmas.

Theorem 2.4.1 ([41]). Let S(t) = eAt be a C0-semigroup of contractions on Hilbert space.

Then S(t) is exponentially stable if and only if

ρ(A) ⊇ {iβ : β ∈ R} ≡ iR

and

lim
|β|→∞

‖(iβI −A)−1‖L(H) <∞.
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Theorem 2.4.2 ([9]). Let S(t) = eAt be a C0-semigroup on a Hilbert space. If

iR ⊂ ρ(A) and sup
|β|≥1

1

βl
‖(iβI −A)−1‖L(H) < M

for some l, then there exist c such that

‖eAtU0‖2 ≤
c

t
2
l

‖U0‖2D(A).

Theorem 2.4.3 ([3]). Let A be the generator of a uniformly bounded C0. semigroup

{S(t)}t≥0 on a Hilbert space H. If:

(i) A does not have eigenvalues on iR.

(ii) The intersection of the spectrum σ(A) with iR is at most a countable set,

then the semigroup {S(t)}t≥0 is asymptotically stable, i.e, ‖S(t)z‖H → 0 as t→∞ for any

z ∈ H.

Theorem 2.4.4. The semigroup generated by the operator A is not exponentially stable.

Proof: We will examine two cases.

Case 1 η = 0: We shall show that iλ = 0 is not in the resolvent set of the operator A. Indeed,
noting that (x sinx, 0, 0)T ∈ H, and denoting by (ϕ, u, φ)T the image of (x sinx, 0, 0)T by

A−1, we see that φ(ξ) = |ξ|
2α−5

2 L sinL. But, then φ 6∈ L2(−∞,+∞), since α ∈]0, 1[. And so

(ϕ, u, φ)T 6∈ D(A).

• Case 2 η 6= 0: We aim to show that an infinite number of eigenvalues of A approach

the imaginary axis which prevents the Euler-Bernoulli system (P ) from being exponentially

stable. Indeed we first compute the characteristic equation that gives the eigenvalues of A.
Let λ be an eigenvalue of A with associated eigenvector U = (ϕ, u, φ)T . Then AU = λU is

equivalent to 
λϕ− u = 0,

λu+ ϕxxxx = 0,

λφ+ (ξ2 + η)φ− u(L)µ(ξ) = 0

(2.27)

From (2.27)1 − (2.27)2 for such λ, we find

λ2ϕ+ ϕxxxx = 0. (2.28)
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Using (2.27)3 and (2.27)4, we get
ϕ(0) = 0, ϕx(0) = 0, ϕxx(L) = 0

ϕxxx(L)− ζ
∫ +∞
−∞

µ2(ξ)
ξ2+λ+η

dξu(L)

= ϕxxx(L)− γλ(λ+ η)α−1ϕ(L) = 0

(2.29)

The caracteristics polynomiale of (2.28) is

s4 + λ2 = 0.

We find the roots

t1(λ) =
1√
2

(1 + i)
√
λ, t2(λ) = −t1, t3(λ) = it1, t4(λ) = −t3.

Here and below, for simplicity we denote ti(λ) by ti. The solution ϕ is given by

ϕ(x) =
4∑
i=1

cie
tix. (2.30)

Thus the boundary conditions may be written as the following system:

M(λ)C(λ) =


1 1 1 1

t1 t2 t3 t4

t21e
t1L t22e

t1L t23e
t1L t24e

t1L

h(t1)et1L h(t2)et2L h(t1)et1L h(t1)et1L




c1

c2

c3

c4

 =


0

0

0

0

 . (2.31)

where we have set

h(r) = r3 − γλ(λ+ η)α−1.

Hence a non-trivial solution ϕ exists if and only if the determinant of M(λ) vanishes. Set

f(λ) = detM(λ), thus the characteristic equation is f(λ) = 0.

Our purpose in the sequel is to prove, thanks to Rouché’s Theorem, that there is a subse-

quence of eigenvalues for which their real part tends to 0.

In the sequel, sinceA is dissipative, we study the asymptotic behavior of the large eigenvalues

λ of A in the strip −α0 ≤ R(λ) ≤ 0, for some α0 > 0 large enough and for such λ, we remark

that etiL, i = 1, . . . , 4 remains bounded.

Lemma 2.4.1. There exists N ∈ N] such that

{λk}k∈Z∗,|k|≥N ⊂ σ(A) (2.32)
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where

λk =
i

4L2
(2k + 1)2π2 +

α̃

k2(1−α)
+

β

|k|2(1−α)
+ o

(
1

k3−α

)
, |k| ≥ N, α̃ ∈ iR, β ∈ R, β < 0.

Moreover for all |k| ≥ N , the eigenvalues λk are simple.

Proof

f(λ) = −2t41e
−iL
√

2λ
(

1 + e(1+i)L
√

2λ + e2iL
√

2λ + e(−1+i)L
√

2λ + 4eiL
√

2λ + (1− i) rt1
+(1 + i) rt1 e

(1+i)L
√

2λ − (1− i) rt1 e
2iL
√

2λ − (1 + i) rt1 e
(−1+i)L

√
2λ
)

(2.33)

Since all the eigenvalues locate on the open left-half complex plane, and since λ is symmetric

with respect to the real axis, we need only to consider the case where π/2 ≤ θ ≤ π. Since
√
λ =

√
|λ|(cos θ2 + sin θ

2), we see that

e−
√

2λ = O(e−µ
√
|λ|), ei

√
2λ = O(e−µ

√
|λ|), µ > 0.

We set

f̃(λ) = 1 + e(1+i)L
√

2λ + e2iL
√

2λ + e(−1+i)L
√

2λ + (1− i) rt1 + (1 + i) rt1 e
(1+i)L

√
2λ

−(1− i) rt1 e
2iL
√

2λ − (1 + i) rt1 e
(−1+i)L

√
2λ ( with r = γ(λ+ η)α−1)

= f0(λ) + f1(λ)

λ3/2−α
+ o

(
1

λ3/2−α

(2.34)

where

f0(λ) = 1 + e(1+i)L
√

2λ, (2.35)

f1(λ) =
γ(1− i)√

2

(
1− i+ (1 + i)e(1+i)L

√
2λ
)
. (2.36)

Note that f0 and f1 remain bounded in the strip −α0 ≤ R(λ) ≤ 0.

Step 2. We look at the roots of f0. From (2.35), f0 has one familie of roots that we denote

λ0
k.

f0(λ) = 0⇔ e(1+i)L
√

2λ = −1.

Hence

(1 + i)L
√

2λ = i(2k + 1)π, k ∈ Z,

i.e.,

λ0
k =

i

4L2
(2k + 1)2π2, k ∈ Z.
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Now with the help of Rouché’s Theorem, we will show that the roots of f̃ are close to those

of f0. Changing in (2.34) the unknown λ by u = (1 + i)L
√

2λ then (2.34) becomes

f̃(u) = (eu + 1) +O

(
1

u

)
= f0(u) +O

(
1

u

)
.

The roots of f0 are uk = i
4L2 (2k+ 1)2π2, k ∈ Z, and setting u = uk + reit, t ∈ [0, 2π], we can

easily check that there exists a constant C > 0 independent of k such that |eu + 1| ≥ Cr

for r small enough. This allows to apply Rouché’s Theorem. Consequently, there exists a

subsequence of roots of f̃ which tends to the roots uk of f0. Equivalently, it means that

there exists N ∈ N and a subsequence {λk}|k|≥N of roots of f(λ), such that λk = λ0
k + o(1)

which tends to the roots i
4L2 (2k + 1)2π2 of f0. Finally for |k| ≥ N,λk is simple since λ0

k is.

Step 3. From Step 2, we can write

λk =
i

4L2
(2k + 1)2π2 + εk. (2.37)

Using (2.37), we get

e(1+i)L
√

2λ = −1− 2Lεk
(2k + 1)π

+ o(
εk
k

). (2.38)

Substituting (2.38) into (2.34), using that f̃(λk) = 0, we get:

f̃(λk) = − 2Lεk
(2k + 1)π

− 42−αL2−αγ

((2k + 1)π)2(1−α)+1i1−α
+ o(

εk
k

) = 0 (2.39)

and hence

εk = − 42−αL2−αγ

2L((2k + 1)π)2(1−α)

(
cos(1− α)

π

2
− i sin(1− α)

π

2

)
. (2.40)

From (2.40) we have in that case |k|2(1−α)Rλk ∼ β, with

β = −2γL1−α

π2(1−α)
cos(1− α)

π

2

The operator A has a non exponential decaying branch of eigenvalues. Thus the proof is

complete.

Remark 2.4.1. We can also show the lack of exponential stability by proving that the second

condition in Theorem 2.4.1 does not hold. In particular, it can be shown that there is a

sequence λn ∈ R diverging to ∞, and a bounded sequence Fn ∈ H such that

‖(iλn −A)−1Fn‖ → ∞ for all n large enough .

We give details of the proof in the Appendix.

2
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2.5 Asymptotic stability

Lemma 2.5.1. A does not have eigenvalues on iR.

Proof

We will argue by contraction. Let us suppose that there λ ∈ R, λ 6= 0 and U 6= 0, such that

AU = iλU . Then, we get 
iλϕ− u = 0,

iλu+ ϕxxxx = 0,

iλφ+ (ξ2 + η)φ− u(L)µ(ξ) = 0,

(2.41)

Then, from (2.17) we have

φ ≡ 0. (2.42)

From (2.41)3, we have

u(L) = 0. (2.43)

Hence, from (2.41)1 we obtain

ϕ(L) = 0 and ϕxxx(L) = 0. (2.44)

From (2.41)1 and (2.41)2, we have

−λ2ϕ+ ϕxxxx = 0. (2.45)

Now, we prove that ϕx(L) = 0. We have the following Lemma.

Lemma 2.5.2 ([15]). Let ϕ ∈ H2(0, L) a solution of equation (2.45). Assume there exists

ζ ∈ [0, L[ such that ϕ(ζ), ϕx(ζ), ϕxx(ζ) are ≥ 0, and ϕ(ζ) + ϕx(ζ) > 0. Then ϕ,ϕx, ϕxx are

> 0 on ]ζ, L].

Proof We integrate equation (2.45) from ζ < x to x:

ϕxxx(x) = ϕxxx(ζ) +
∫ x
ζ ϕxxxx(t) dt

= ϕxxx(ζ) + λ2
∫ x
ζ ϕ(t) dt

(2.46)

Integrating once more, we get

ϕxx(x)− ϕxx(ζ) = (x− ζ)ϕxxx(ζ) + λ2
∫ x
ζ

∫ t
ζ ϕ(z) dz dt

= (x− ζ)ϕxxx(ζ) + λ2
∫ x
ζ (x− t)ϕ(t) dt.

ϕxx(x) = ϕxx(ζ) + (x− ζ)ϕxxx(ζ) + λ2
∫ x
ζ (x− t)ϕ(t) dt.

(2.47)
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Since ϕ(ζ) + ϕx(ζ) > 0 and ϕ(ζ) ≥ 0, there exists η > 0 such that ϕ > 0 on ]ζ, η]. Let

η ≤ 1 as large as possible, and suppose η < 1, that is, ϕ(η) = 0. By (2.47) and assumptions

in Lemma 2.5.2, ϕxx ≥ 0 on [ζ, η]. Thus ϕx is nondecreasing, and therefore ≥ 0 on [ζ, η].

Then ϕ is also nondecreasing on [ζ, η]. But this contradicts ϕ(η) = 0. Thus η = 1 and ϕ is

> 0 on ]ζ, η]. The same is true for ϕxxx, ϕxx and ϕx.

Corollaire 2.5.1. Soit ϕ ∈ H2(0, L) a solution of equation (2.45) such that ϕ(L) ≥
0, ϕx(L) ≤ 0, ϕxx(L) ≥ 0, and ϕ(L)− ϕx(L) > 0. Then ϕ > 0 on [0, L[.

Proof We set ψ(x) = ϕ(L− x). Then ψ satisfies (2.47). Then applying Lemme 2.5.2.

Now, as ϕ(L) = 0, assume ϕx(L) 6= 0, for instance ϕx(L) < 0, without restriction. By

corollary 2.5.1, ϕ > 0 on [0, L[, thus ϕ(0) > 0, which is a contradiction. Therefore, ϕ(L) =

ϕx(L) = ϕxx(L) = ϕxxx(L) = 0.

Consider X = (ϕ,ϕx, ϕxx, ϕxxx). Then we can rewrite (2.44) and (2.45) as the initial value

problem
d
dxX = BX
X(L) = 0,

(2.48)

, where

B =


0 1 0 0

0 0 1 0

0 0 0 1

−λ2 0 0 0


By the Picard Theorem for ordinary differential equations the system (2.48) has a unique

solution X = 0. Therefore ϕ = 0. It follows from (2.41), that u = 0 and φ = 0, i.e., U = 0.

Consequently, A does not have purely imaginary eigenvalues, so the condition (i) of Theorem

2.4.3 holds. The condition (ii) of Theorem 2.4.3 will be satisfied if we show that σ(A)∩{iR
is at most a countable set. We have the following lemma.

Lemma 2.5.3. We have
iR ⊂ ρ(A) if η 6= 0,

iR∗ ⊂ ρ(A) if η = 0

where R∗ = R− {0}.
Proof

Let λ ∈ R. Let F = (f1, f2, f3)T ∈ H be given, and let X = (ϕ, u, φ)T ∈ D(A) be such that

(iλI −A)X = F. (2.49)
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Equivalently, we have 
iλϕ− u = f1,

iλu+ ϕxxxx = f2,

iλφ+ (ξ2 + η)φ− u(L)µ(ξ) = f3

(2.50)

From (2.50)1 and (2.50)2, we have

−λ2ϕ+ ϕxxxx = (f2 + iλf1) (2.51)

Suppose that λ 6= 0. It is enough to consider λ > 0. Let λ = τ2. Taking into account the

domain boundary conditions ϕ(0) = ϕx(0) = 0, implies that the general solution for (2.51)

is of the form
ϕ(x) = A(cosh τx− cos τx) +B(sinh τx− sin τx)

+ 1
2τ3

∫ x
0 (f2(σ) + iτ2f1(σ))(sinh τ(x− σ)− sin τ(x− σ)) dσ

(2.52)

. Hence

ϕx(x) = τ [A(sinh τx+ sin τx) +B(cosh τx− cos τx)]

+ 1
2τ2

∫ x
0 (f2(σ) + iτ2f1(σ))(cosh τ(x− σ)− cos τ(x− σ)) dσ,

(2.53)

ϕxx(x) = τ2[A(cosh τx+ cos τx) +B(sinh τx+ sin τx)]

+ 1
2τ

∫ x
0 (f2(σ) + iτ2f1(σ))(sinh τ(x− σ) + sin τ(x− σ)) dσ,

(2.54)

ϕxxx(x) = τ3[A(sinh τx− sin τx) +B(cosh τx+ cos τx)]

+1
2

∫ x
0 (f2(σ) + iτ2f1(σ))(cosh τ(x− σ) + cos τ(x− σ)) dσ.

(2.55)

Taking the remaining boundary condition ϕxx(L) = 0, we obtain

A(cosh τL+ cos τL) +B(sinh τL+ sin τL)

= − 1
2τ3

∫ L
0 (f2(σ) + iτ2f1(σ))(sinh τ(L− σ) + sin τ(L− σ)) dσ.

(2.56)

From (2.50)3, we have

φ(ξ) =
u(L)µ(ξ) + f3(ξ)

iλ+ ξ2 + η
.

Then

ϕxxx(L) = ζ

∫ +∞

−∞

µ2(ξ)

iλ+ ξ2 + η
dξu(L) + ζ

∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ. (2.57)

Since

ζ

∫ +∞

−∞

µ2(ξ)

iλ+ ξ2 + η
dξ = γ(iλ+ η)α−1
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and

u(L) = iλϕ(L)− f1(L),

using (2.57), we get

ϕxxx(L)− iτ2γ(iτ2 + η)α−1ϕ(L) = −γ(iτ2 + η)α−1f1(L) + ζ

∫ +∞

−∞

µ(ξ)f3(ξ)

iτ2 + ξ2 + η
dξ.

Then

A[τ3(sinh τL− sin τL)− iτ2γ(iτ2 + η)α−1(cosh τL− cos τL)]

+B[τ3(cosh τL+ cos τL)− iτ2γ(iτ2 + η)α−1(sinh τL− sin τL)]

= −1
2

∫ L
0 (f2(σ) + iτ2f1(σ))(cosh τ(L− σ) + cos τ(L− σ)) dσ

+iγ(iτ2 + η)α−1 1
2τ

∫ L
0 (f2(σ) + iτ2f1(σ))(sinh τ(L− σ)− sin τ(L− σ)) dσ

−γ(iτ2 + η)α−1f1(L) + ζ
∫ +∞
−∞

µ(ξ)f3(ξ)
iτ2+ξ2+η

dξ.

(2.58)

Using (2.58) and (2.56), a linear system in A and B is obtained(
m11 m12

m21 m22

)(
A

B

)
=

(
C̃1

C̃2

)
(2.59)

where
m11 = (cosh τL+ cos τL),

m12 = (sinh τL+ sin τL),

m21 = [τ3(sinh τL− sin τL)− iτ2γ(iτ2 + η)α−1(cosh τL− cos τL)],

m22 = [τ3(cosh τL+ cos τL)− iτ2γ(iτ2 + η)α−1(sinh τL− sin τL)].

C̃1 = − 1
2τ3

∫ L
0 (f2(σ) + iτ2f1(σ))(sinh τ(L− σ) + sin τ(L− σ)) dσ

C̃2 = −1
2

∫ L
0 (f2(σ) + iτ2f1(σ))(cosh τ(L− σ) + cos τ(L− σ)) dσ

+iγ(iτ2 + η)α−1 1
2τ

∫ L
0 (f2(σ) + iτ2f1(σ))(sinh τ(L− σ)− sin τ(L− σ)) dσ

−γ(iτ2 + η)α−1f1(L) + ζ
∫ +∞
−∞

µ(ξ)f3(ξ)
iλ+ξ2+η

dξ

Let the determinant of the linear system given in (2.59) be denoted by D. Then the following

is obtained:

D = m11m22 −m12m21

= τ3(cosh τL+ cos τL)2 − τ3(sinh τL+ sin τL)(sinh τL− sin τL)

+2iγ(iτ2 + η)α−1[cosh τL sin τL− sinh τL cos τL]

= 2τ3(1 + cosh τL cos τL) + 2iγτ2(iτ2 + η)α−1[cosh τL sin τL− sinh τL cos τL]

= 2τ3(1 + cosh τL cos τL) + 2γτ2(τ4 + η2)
α−1
2 sin(1− α)θ [cosh τL sin τL− sinh τL cos τL]

+2iγτ2(τ4 + η2)
α−1
2 sin(1− α)θ [cosh τL sin τL− sinh τL cos τL]
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where θ ∈]− π/2, π/2[ such that

cos θ = η√
λ2+η2

sin θ = λ√
λ2+η2

.

The roots of

[cosh$ sin$ − sinh$ cos$] = 0

are of the form $k = δk + kπ, δk < π/4, k ∈ N∗. Hence

1 + cosh$k cos$k 6= 0 ∀k ∈ N∗.

Then

D 6= 0 ∀λ ∈ R∗.

Hence iλ − A is surjective for all λ ∈ R∗. Now, if λ = 0 and η 6= 0, the system (2.50) is

reduced to the following system

u = −f1,

ϕxxxx = f2,

(ξ2 + η)φ− u(L)µ(ξ) = f3,

(2.60)

We deduce from (2.60)2

ϕxxx(x) =

∫ x

0
f2(s) ds+ C.

ϕxx(x) =

∫ x

0

∫ s

0
f2(r) dr ds+ Cx+ C ′.

ϕx(x) =

∫ x

0

∫ s

0

∫ r

0
f2(z) dz dr ds+

C

2
x2 + C ′x+ C ′′.

ϕ(x) =

∫ x

0

∫ s

0

∫ r

0

∫ z

0
f2(w) dw dz dr ds+

C

6
x3 +

C ′

2
x2 + C ′′x+ C ′′′.

As ϕ(0) = ϕx(0) = 0, we find C ′′ = C ′′′ = 0.

From (2.60)1 and (2.60)3, we have

ϕxxx(L) = ζ
∫ +∞
−∞

µ2(ξ)
ξ2+η

dξu(L) + ζ
∫ +∞
−∞

µ(ξ)f3(ξ)
ξ2+η

dξ

= −γηα−1f1(L) + ζ
∫ +∞
−∞

µ(ξ)f3(ξ)
ξ2+η

dξ.

We find

C = −
∫ L

0
f2(r) dr − γηα−1f1(L)− ζ

∫ +∞

−∞

µ(ξ)f3(ξ)

ξ2 + η
dξ.
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Because ϕxx(L) = 0, we find

C ′ = −CL−
∫ L

0

∫ s

0
f2(r) dr ds.

Hence A is surjective.

Lemma 2.5.4. Let A be defined by (2.14). Then

A∗


ϕ

u

φ

 =


−u
ϕxxxx

−(ξ2 + η)φ− u(L)µ(ξ)

 (2.61)

with domain

D(A∗) =


(ϕ, u, φ)T in H : ϕ ∈ H4(0, L) ∩H2

L(0, L), u ∈ H2
L(0, L),

−(ξ2 + η)φ− u(L)µ(ξ) ∈ L2(−∞,+∞),

ϕxx(L) = 0, ϕxxx(L)− ζ
∫ +∞
−∞ µ(ξ)φ(ξ) dξ = 0

|ξ|φ ∈ L2(−∞,+∞)


. (2.62)

Proof

Let U = (ϕ, u, φ)T and V = (ϕ̃, ũ, φ̃)T . We have < AU, V >H=< U,A∗V >H.

< AU, V >H=
∫ L

0 uxxϕ̃xx dx−
∫ L

0 ũϕxxxx dx+ ζ
∫ +∞
−∞ [−(ξ2 + η)φ+ u(L)µ(ξ)]φ̃ dξ

=
∫ L

0 uϕ̃xxxx dx−
∫ L

0 ũxxϕxx dx− ϕ̃xxx(L)u(L) + ϕ̃xx(L)ux(L)− ϕxxx(L)ũ(L)

−ζ
∫ +∞
−∞ φ[(ξ2 + η)φ̃] dξ + ζu(L)

∫ +∞
−∞ µ(ξ)φ̃ dξ.

As ϕxxx(L) = ζ
∫ +∞
−∞ µ(ξ)φdξ and if we set ϕ̃xx(L) = 0 and ϕ̃xxx(L) = ζ

∫ +∞
−∞ µ(ξ)φ̃ dξ, we

find

< AU, V >H=

∫ L

0
uϕ̃xxxx dx−

∫ L

0
ũxxϕxx dx− ζ

∫ +∞

−∞
φ[(ξ2 + η)φ̃+ µ(ξ)ũ(L)] dξ.

Theorem 2.5.1. σr(A) = ∅, where σr(A) denotes the set of residual spectrum of A.

Proof

Since λ ∈ σr(A), λ ∈ σp(A∗) the proof will be accomplished if we can show that σp(A) =

σp(A∗). This is because obviously the eigenvalues of A are symmetric on the real axis. From
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(2.61), the eigenvalue problem A∗Z = λZ for λ ∈ C and 0 6= Z = (ϕ, u, φ, v) ∈ D(A∗) we

have 
λϕ+ u = 0,

λu− ϕxxxx = 0,

λφ+ (ξ2 + η)φ+ u(L)µ(ξ) = 0,

(2.63)

From (2.63)1 and (2.63)2, we find

λ2ϕ+ ϕxxxx = 0, (2.64)

As ϕxxx(L) = ζ
∫ +∞
−∞ µ(ξ)φ(ξ) dξ, we deduce from (2.63)3 and (2.63)1 that

ϕxxx(L) = ζ
∫ +∞
−∞ µ(ξ)φ(ξ) dξ = −ζu(L)

∫ +∞
−∞

µ(ξ)2

λ+ξ2+η
dξ

= γλ(λ+ η)α−1ϕ(L).
(2.65)

with the following conditions

ϕ(0) = 0, ϕx(0) = 0, ϕxx(L) = 0. (2.66)

System (2.64)-(2.66) is the same as (2.28) and (2.33). Hence A∗ has the same eigenvalues

with A. The proof is complete.

2

•Case2 η 6= 0:

Theorem 2.5.2. The semigroup SA(t)t≥0 is polynomially stable and

‖SA(t)U0‖H ≤
1

t1/2(1−α)
‖U0‖D(A).

Proof

We will need to study the resolvent equation (iλ−A)U = F , for λ ∈ R, namely
iλϕ− u = f1,

iλu+ ϕxxxx = f2,

iλφ+ (ξ2 + η)φ− u(L)µ(ξ) = f3,

(2.67)

where F = (f1, f2, f3)T . Taking inner product in H with U and using (2.17) we get

|Re〈AU,U〉| ≤ ‖U‖H‖F‖H. (2.68)
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This implies that

ζ

∫ +∞

−∞
(ξ2 + η)(φ(ξ, t))2 dξ ≤ ‖U‖H‖F‖H. (2.69)

and, applying (2.67)1, we obtain

||λ||ϕ(L)| − |f1(L)||2 ≤ |u(L)|2.

We deduce that

|λ|2|ϕ(L)|2 ≤ c|f1(L)|2 + c|u(L)|2.

Moreover, from (2.67)4, we have

ϕxxx(L) = ζ

∫ +∞

−∞
µ(ξ)φ(ξ) dξ.

Then

|ϕxxx(L)|2 ≤ ζ2
∣∣∣∫ +∞
−∞ µ(ξ)φ(ξ) dξ

∣∣∣2
≤ ζ2

(∫ +∞
−∞ (ξ2 + η)−1|µ(ξ)|2 dξ

) ∫ +∞
−∞ (ξ2 + η)|φ(ξ)|2 dξ

≤ c‖U‖H‖F‖H.

(2.70)

From (2.67)3, we obtain

u(L)µ(ξ) = (iλ+ ξ2 + η)φ− f3(ξ). (2.71)

By multiplying (2.71)1 by (iλ+ ξ2 + η)−1µ(ξ), we get

(iλ+ ξ2 + η)−1u(L)µ2(ξ) = µ(ξ)φ− (iλ+ ξ2 + η)−1µ(ξ)f3(ξ). (2.72)

Hence, by taking absolute values of both sides of (2.72), integrating over the interval ] −
∞,+∞[ with respect to the variable ξ and applying Cauchy-Schwartz inequality, we obtain

S|u(L)| ≤ U
(∫ +∞

−∞
(ξ2 + η)|φ|2 dξ

) 1
2

+ V

(∫ +∞

−∞
|f3(ξ)|2 dξ

) 1
2

(2.73)

where

S =

∫ +∞

−∞
(|λ|+ ξ2 + η)−1|µ(ξ)|2 dξ

U =

(∫ +∞

−∞
(ξ2 + η)−1|µ(ξ)|2 dξ

) 1
2

V =

(∫ +∞

−∞
(|λ|+ ξ2 + η)−2|µ(ξ)|2 dξ

) 1
2

.
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Thus, by using again the inequality 2PQ ≤ P 2 +Q2, P ≥ 0, Q ≥ 0, we get

S2|u(L)|2 ≤ 2U2

(∫ +∞

−∞
(ξ2 + η)|φ|2 dξ

)
+ 2V 2

(∫ +∞

−∞
|f3(ξ)|2 dξ

)
. (2.74)

We deduce that

|u(L)|2 ≤ c|λ|2−2α‖U‖H‖F‖H + c‖F‖2H. (2.75)

Let us introduce the following notation

Iϕ(α) = |u(α)|2 + |ϕxx(α)|2

Eϕ(L) =

∫ L

0
Iϕ(s) ds.

Lemma 2.5.5. Let q ∈ H1(0, L). We have that∫ L

0
qx[|u(x)|2 + 3|ϕxx(x)|2] dx+ 2

∫ L

0
qxxϕxxϕx dx ≤ [qIϕ]L0 − 2Lϕxxx(L)ϕx(L) +R (2.76)

where R satisfies

|R| ≤ C‖U‖H‖F‖H.

for a positive constant C.

Proof

To get (2.76), let us multiply the equation (2.67)2 by qϕx Integrating on (0, L) we obtain

iλ

∫ L

0
uqϕx dx+

∫ L

0
ϕxxxxqϕx dx =

∫ L

0
f2qϕx dx

or

−
∫ L

0
uq(iλϕx) dx+

∫ L

0
qϕxxxxϕx dx =

∫ L

0
f2qϕx dx.

Since iλϕx = ux + f1x taking the real part in the above equality results in

−1
2

∫ L
0 q d

dx |u|
2 dx− 1

2

∫ L
0 q d

dx |ϕxx|
2 dx+ [ϕxxxϕxq]

L
0 +

∫ L
0 qxxϕxxϕx dx+

∫ L
0 qx|ϕxx|2 dx

= Re
∫ L

0 f2qϕx dx+Re
∫ L

0 uqf1x dx.

Performing an integration by parts we get∫ L

0
qx[|u(x)|2 + 3|ϕxx(x)|2] dx+ 2

∫ L

0
qxxϕxxϕx dx = [qIϕ]L0 − 2q(L)ϕxxx(L)ϕx(L) +R

where

R = 2Re

∫ L

0
f2qϕx dx+ 2Re

∫ L

0
uqf1x dx.



2.5 Asymptotic stability 53

It is clear that

|R| ≤ C‖U‖H‖F‖H. (2.77)

If we take q(x) = x in Lemma 2.5.5 we arrive at

Eϕ(L) ≤ LIϕ(L)− 2Lϕxxx(L)ϕx(L) +R. (2.78)

Using the continuous embeddings from H2(0, L) into C1([0, L]) we deduce

|ϕx(L)| ≤ C‖ϕ‖H2(0,L) ≤ C ′‖ϕxx‖L2(0,L) ≤ C ′‖U‖H.

Using inequalities (2.78) and (2.77) we conclude that there exists a positive constant C such

that ∫ L

0
Iϕ(s) ds ≤ LIϕ(L) + C(‖U‖H‖F‖H)

1
2 ‖U‖H + C ′‖U‖H‖F‖H. (2.79)

Since that ∫ +∞

−∞
(φ(ξ))2 dξ ≤ C

∫ +∞

−∞
(ξ2 + η)(φ(ξ))2 dξ ≤ C‖U‖H‖F‖H.

Substitution of inequalities (2.75) into (2.79) we get that

‖U‖2H ≤ C(|λ|2−2α + 1)‖U‖H‖F‖H + C ′(‖U‖H‖F‖H)
1
2 ‖U‖H + C ′′‖F‖2H.

So we have

‖U‖H ≤ C|λ|2−2α‖F‖H.

The conclusion then follows by applying the Theorem 2.4.2.

2



Chapter 3

GLOBAL EXISTENCE AND

ENERGY DECAY OF SOLUTIONS

TO TIMOSHENKO BEAM

SYSTEM WITH A DELAY TERM

3.1 Introduction

In this chapter we study the boundary stabilization of the Timoshenko systen in unbounded

interval (0,+∞). The system is given by the two coupled hyperbolic equations.
ρ1ϕtt(x, t)−K(ϕx + ψ)x(x, t) = 0 in ]0, 1[×]0,+∞[,

ρ2ψtt(x, t)− bψxx(x, t) +K(ϕx + ψ)(x, t) + µ1(t)ψt(x, t)

+µ2(t)ψt(x, t− τ) = 0 in ]0, 1[×]0,+∞[.

(3.1)

where t denotes the time variable and x is the space variable along the beam of lenght 1 in its

equilibrium configuration the unknowns ϕ = ϕ(x, t) and ψ = ψ(x, t) represent respectively,

the transverse displacement of the beam and the rotation angle of the filament of the beam.

In (3.7) ρ1 = ρ, ρ2 = Iρ, b = EI, where ρ, Iρ, E, I and K are, respectively, the density (the

mass per unit length), the polar moment of inertia of the cross-section, Young’s modulus of

elasticity, the moment of inertia of a cross-section and the shear modulus.
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System (3.1) is subjected to the following boundary condition:{
ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = 0 t ≥ 0. (3.2)

where t ∈ (0,+∞) and parameters a, k are positive constants.

Also we consider the following initial conditions:
ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x)

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), x ∈ (0, 1)

ψt(x, t− τ) = f0(x, t− τ), x ∈ (0, 1), t ∈ (0, τ).

(3.3)

Where τ > 0 is the time delay. The initial data (ϕ0, ψ0, ϕ1, ψ1, f0) belongs to suitable

functional space. Delay effects arise in many applications and practical problems and it

is well-known that an arbitrarily smal delay may destabilize a system wich is uniformly

asymptotically stable in the absence of delay see R. Datko(1991).

In the absence of the delay in system (3.1), that is for τ = 0, a large amount of literature

is available on this model, addressing problems of the existence, uniqueness and asymptotic

behaviour in time when some damping effects are considered, such as: fractional damping,

viscoelastic damping and thermal dissipation.

Namely Soufiane (1999) showed the exponential stability of the uniform Timoshenko beam

by using one distributed feedback. Shi and Feng (2001) considered the case of the uniform

Timoshenko beam under two locally distributed feedback and proved an exponential stability

result, other wise, only the asymptotic stability has been proved. Xu and Yung (2003) proved

an exponential stability of the uniform Timoshenko beam by two pointwise control.

Concerning the Timoshenko system with memory, we refer to Alves et al (2011), Amar-

khodja et al (2003), Muñoz Revera and Fernandez Sare (2008) and referenes there in.

In the presence of a delay term in (3.1), a few works are available, Said- Houari and Laskri

(2010) have considered the following Timoshenko system with a delay term in the internal

feedback:
ρ1ϕtt(x, t)−K(ϕx + ψ)x(x, t) = 0 in (0, L)× (0,+∞),

ρ2ψtt(x, t)− bψxx(x, t) +K(ϕx + ψ)(x, t) + µ1ψt(x, t)

+µ2ψt(x, t− τ) = 0 in (0, L)× (0,+∞).

(3.4)

Under the assumption µ1 ≥ µ2 on the weights of the two feedbacks, they proved the well-

posedness of the system. They also established an exponential decay result for the case

equal-speed wave propagation.
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Subsequently, the work in Said-Houari and Laskri (2010) has been extended to the case of

time varying delay of the form ψt(x, t − τ(t)) by Kirane et al.(2011), by using the variable

norm technique of Kato and under some restriction on the parameters µ1, µ2 and on the

delay function τ(t),the hypothesis between the weight of the delay term in the feedback, an

exponential decay result of the total energy has been proved.

Ammari et al (2010) have treated the N-dimentional wave equation
utt −∆u(x, t) + aut(x, t− τ) = 0 x ∈ Ω, t > 0

u(x, 0) = 0 x ∈ Γ0, t > 0,
∂u
∂ν (x, t) = −ku(x, t) x ∈ Γ1, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), ut(x, t) = g(x, t) x ∈ Ω, t ∈ (−τ, 0).

(3.5)

Where Ω is an open bounded domain of RN ,N ≥ 2 with boundary ∂Ω = Γ0∪Γ1,Γ0∩Γ1 = ∅.
Under the usual geometric condition on the domain Ω, they showed an exponential stability

result, provided that the delay coefficient a is sufficiently small.

When both the damping and the delay in (3.5) are acting in the boundary that is if (3.5)3

remplaced by
∂u

∂ν
(x, t) = −ku(x, t)− aut(x, t− τ), x ∈ Γ1, t > 0, (3.6)

Nicaise and Pignotti (2006) investigated this problem and showed an exponential decay rate

of the total energy under the assumption

a < k

on the contrary if (3.6) does not hold, they found a sequence of delays for which the corre-

sponding solution of (3.5) will be unstable. The analysis in Nicaise and Pignotti (2006) is

based on a observability inequality obtained with a Carleman estimate. The result presented

here extends the one in Ammari et al(2010) to the Timoshenko system. Our purpose in this

paper is to give a global solvability in Sobolev spaces and energy decay estimates of the

solutions to the problem 3.1 for a nonlinear damping and a delay term. We should mention

here that, to the best of our knowledge, there is no result concerning Timochenko beam sys-

tem with the presence of nonlinear degenerate delay term. To obtain global solutions to the

problem 3.1, we use the argument combining the Galerkin approximation scheme (see [29])

with the energy estimate method. The technic based on the theory of nonlinear semigroups

used in [39] does not seem to be applicable in the nonlinear case. To prove decay estimates,
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we use a perturbed energy method and some properties of convex functions. These argu-

ments of convexity were introduced and developed by [16] and [27] and used by Liu and

Zuazua [30] and Alabau-Boussouira [4].

3.2 Preliminaries and main results

First assume the following hypotheses: (H1) µ1 : R+→]0,+∞[ is a non-increasing function

of the class C1(R+) satisfying ∣∣∣∣µ′1(t)

µ1(t)

∣∣∣∣ ≤M (3.7)

(H2) µ2 : R+→ R is a function of class C1(R+) wich is not necessarily positive or monotone,

such that

|µ2(t)| ≤ βµ1(t) (3.8)

|µ′2(t)| ≤M ′µ1(t) (3.9)

We first state some Lemmas which will be needed later.

Lemma 3.2.1 (Sobolev-Poincaré’s inequality). Let q be a number with 2 ≤ q < +∞ (n =

1, 2) or 2 ≤ q ≤ 2n/(n− 2) (n ≥ 3). Then there is a constant c∗ = c∗((0, 1), q) such that

‖ψ‖q ≤ c∗‖∇ψ‖2 for ψ ∈ H1
0 ((0, 1)).

We introduce as in [39] the new variable

z(x, ρ, t) = ψt(x, t− τρ), x ∈ (0, 1), ρ ∈ (0, 1), t > 0. (3.10)

Then, we have

τz′(x, ρ, t) + zρ(x, ρ, t) = 0, in (0, 1)× (0, 1)× (0,+∞). (3.11)
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Therefore, problem (P ) is equivalent to:

ρ1ϕtt(x, t)−K(ϕx + ψ)x(x, t) = 0 in ]0, 1[×]0,+∞[,

ρ2ψtt(x, t)− bψxx(x, t) +K(ϕx + ψ)(x, t) + µ1(t)ψt(x, t)

+µ2(t)z(x, 1, t) = 0 in ]0, 1[×]0,+∞[,

τz′(x, ρ, t) + zρ(x, ρ, t) = 0 in ]0, 1[×]0, 1[×]0,+∞[,

ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = 0 t ≥ 0,

z(x, 0, t) = ψt(x, t) on ]0, 1[×[0,+∞[,

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x) x ∈]0, 1[,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x) x ∈]0, 1[,

z(x, ρ, 0) = f0(x,−ρτ) in ]0, 1[×]0, 1[

(3.12)

Let ξ1 be a positive constant such that

τβ < ξ1 < τ(2− β). (3.13)

We define the energy associated to the solution of the problem (3.12) by the following

formula:

E(t) = E(t, z, ϕ, ψ) = 1
2

∫ 1
0

{
ρ1ϕ

2
t + ρ2ψ

2
t +K|ϕx + ψ|2 + bψ2

x

}
dx

+ ξ(t)
2

∫ 1
0

∫ 1
0 z

2(x, ρ, t) dρ dx.
(3.14)

We have the following theorem.

Theorem 3.2.1. Let (ϕ0, ϕ1), (ψ0, ψ1) ∈ (H2(0, 1) ∩ H1
0 (0, 1)) × H1

0 (0, 1), f0 ∈
H1

0 ((0, 1);H1(0, 1)) satisfy thecompatibility condition

f0(., 0) = ψ1.

Assume that the hypothesis (H1) holds. Then the problem (P ) admits a unique weak solution

ψ,ϕ ∈ L∞loc((−τ,∞);H2(0, 1) ∩H1
0 (0, 1)), ψt, ϕt ∈ L∞loc((−τ,∞);H1

0 (0, 1)),

ψtt, ϕtt ∈ L∞loc((−τ,∞);L2(0, 1))
(3.15)

and, for some constants ω1, ω2 and ω3, ε0 we obtain the following decay property:

E(t) ≤ ω1e
−ω2t, ∀t > 0, (3.16)
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We finish this section by giving an explicit upper bound for the derivative of the energy.

Lemma 3.2.2. Let (ϕ,ψ, z) be a solution of the problem (3.12). Then, the energy functional

defined by (3.14) satisfies

E′(t) ≤ −
(
µ1(t)− ξ(t)

2τ −
|µ2(t)|

2

) ∫ 1
0 ψ

2
t dx−

(
ξ(t)
2τ −

|µ2(t)|
2

) ∫ 1
0 z

2(x, 1, t) dx

≤ 0
(3.17)

Proof. Multiplying the first equation in (3.12) by ϕt, the second equation by ψt, integrating

over (0, 1) and using integration by parts, we get

1
2
d
dt

(∫ 1
0

{
ρ1ϕ

2
t + ρ2ψ

2
t +K|ϕx + ψ|2 + bψ2

x

}
dx
)

=

−µ1(t)
∫ 1

0 ψ
2
t (x, ) dx− µ2(t)

∫ 1
0 ψt(x, t)z(x, 1, t) dx.

(3.18)

We multiply the third equation in (3.12) by ξ(t)z(x, ρ, t) and integrate the result over (0, 1)×
(0, 1), to obtain:

ξ(t)τ
∫ 1

0

∫ 1
0 zt(x, ρ, t)z(x, ρ, t) dρ dx+ ξ(t)

∫ 1
0

∫ 1
0 zρ(x, ρ, t)z(x, ρ, t) dρ dx = 0 (3.19)

This yields

ξ(t)τ

2

d

dt

∫ 1

0

∫ 1

0
z2(x, ρ, t) dρ dx+

ξ(t)

2

∫ 1

0

∫ 1

0

d

dρ
z2(x, ρ, t) dρ dx (3.20)

Which gives

τ
2

[
d
dt

(
ξ(t)

∫ 1
0

∫ 1
0 z

2(x, ρ, t) dρ dx
)
− ξ′(t)

∫ 1
0

∫ 1
0 z

2(x, ρ, t) dρ dx
]

+ ξ(t)
2

∫ 1
0 z

2(x, ρ, t) dρ dx− ξ(t)
2

∫ 1
0 ψ

2
t (x, t)dx = 0.

(3.21)

Consequently,

τ
2
d
dt

(
ξ(t)

∫ 1
0

∫ 1
0 z

2(x, ρ, t) dρ dx
)

= ξ′(t)
2

∫ 1
0

∫ 1
0 z

2(x, ρ, t) dρ dx− ξ(t)
2

∫ 1
0 z

2(x, ρ, t) dρ dx

+ ξ(t)
2

∫ 1
0 ψ

2
t (x, t)dx = 0.

(3.22)

Combination of (12) and (16) leads to

1
2
d
dt

(∫ 1
0

{
ρ1ϕ

2
t + ρ2ψ

2
t +K|ϕx + ψ|2 + bψ2

x + ξ(t)
∫ 1

0

∫ 1
0 z

2(x, ρ, t) dρ dx
}
dx
)

= −µ1(t)
∫ 1

0 ψ
2
t (x, t) dx− µ2(t)

∫ 1
0 ψt(x, t)z(x, 1, t) dx

+ ξ′(t)
2

∫ 1
0

∫ 1
0 z

2(x, ρ, t) dρ dx− ξ(t)
2τ

∫ 1
0 z

2(x, ρ, t) dρ dx+ ξ(t)
2τ

∫ 1
0 ψ

2
t (x, t)dx.

(3.23)
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Recalling the definition of E(t) in (8) we arrive at

E′(t) = −µ1(t)
∫ 1

0 ψ
2
t (x, t) dx− µ2(t)

∫ 1
0 ψt(x, t)z(x, 1, t) dx

+ ξ′(t)
2

∫ 1
0

∫ 1
0 z

2(x, ρ, t) dρ dx− ξ(t)
2τ

∫ 1
0 z

2(x, ρ, t) dρ dx+ ξ(t)
2τ

∫ 1
0 ψ

2
t (x, t)dx.

(3.24)
E′(t) ≤ −

(
µ1(t)− ξ(t)

2τ

) ∫ 1
0 ψ

2
t (x, t) dx

−µ2(t)
∫ 1

0 ψt(x, t)z(x, 1, t) dx−
ξ(t)
2τ

∫ 1
0 z

2(x, ρ, t) dx.
(3.25)

Due to Young’s inequality, we have∫ 1

0
ψt(x, t)z(x, 1, t) dx ≤

1

2
||ψt(x, t)||22 +

1

2
||z(x, 1, t)||22. (3.26)

Inserting (20) in (19), we obtain

E′(t) ≤ −
(
µ1(t)− ξ(t)

2τ
− |µ2(t)|

2

)∫ 1

0
ψ2
t (x, t) dx−

(
ξ(t)

2τ
− |µ2(t)|

2

)∫ 1

0
z2(x, ρ, t) dx.

(3.27)

≤ −µ1(t)

(
1− ξ1(t)

2τ
− β

2

)∫ 1

0
ψ2
t (x, t) dx−µ1(t)

(
ξ1(t)

2τ
− β

2

)∫ 1

0
z2(x, ρ, t) dx ≤ 0. (3.28)

This completes the proof of lemma.

3.3 Global Existence

We are now ready to prove Theorem 3.2.1 in the next two sections. Throughout this section

we assume ϕ0, ψ0 ∈ H2 ∩H1
0 (0, 1), ϕ1, ψ1 ∈ H1

0 (0, 1) and f0 ∈ H1
0 ((0, 1);H1(0, 1)).

We employ the Galerkin method to construct a global solution. Let T > 0 be fixed and

denote by Vk the space generated by {w1, w2, . . . , wk} where the set {wk, k ∈ N} is a basis

of H2 ∩H1
0 .

Now, we define for 1 ≤ j ≤ k the sequence φj(x, ρ) as follows:

φj(x, 0) = wj .

Then, we may extend φj(x, 0) by φj(x, ρ) over L2((0, 1) × (0, 1)) and denote Zk the space

generated by {φ1, φ2, . . . , φk}.
We construct approximate solutions (ϕk, ψk, zk), k = 1, 2, 3, . . . , in the form

ϕk(t) =

k∑
j=1

gjkwj , ψk(t) =

k∑
j=1

g̃jkwj , zk(t) =

k∑
j=1

hjkφj ,
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where gjk, g̃jk and hjk, j = 1, 2, . . . , k, are determined by the following ordinary differential

equations:

ρ1(ϕ′′k(t), wj) +K(ϕkx(t), wjx)−K(ψkx(t), wj) = 0, 1 ≤ j ≤ k, (3.29)

ϕk(0) = ϕ0k =
k∑
j=1

(ϕ0, wj)wj → ϕ0 in H2 ∩H1
0 as k → +∞, (3.30)

ϕ′k(0) = ϕ1k =
k∑
j=1

(ϕ1, wj)wj → ϕ1 in H1
0 as k → +∞. (3.31)


ρ2(ψ′′k(t), wj) + b(ψkx(t), wjx) +K((ϕkx + ψ)(t), wj) + µ1(t)(ψ′k, wj)

+µ2(t)(zk(., 1), wj) = 0 1 ≤ j ≤ k,
zk(x, 0, t) = ψ′k(x, t)

(3.32)

ψk(0) = ψ0k =
k∑
j=1

(ψ0, wj)wj → ψ0 in H2 ∩H1
0 as k → +∞, (3.33)

ψ′k(0) = ψ1k =
k∑
j=1

(ψ1, wj)wj → ψ1 in H1
0 as k → +∞. (3.34)

and

(τzkt + zkρ, φj) = 0, 1 ≤ j ≤ k, (3.35)

zk(ρ, 0) = z0k =
k∑
j=1

(f0, φj)φj → f0 in H1
0 ((0, 1);H1(0, 1)) as k → +∞. (3.36)

By virtue of the theory of ordinary differential equations, the system (3.29)-(3.36) has a

unique local solution which is extended to a maximal interval [0, Tk[ (with 0 < Tk ≤ +∞)

by Zorn lemma since the nonlinear terms in (3.32) are locally Lipschitz continuous. Note

that (ϕk(t), ψk(t)) is from the class C2.

In the next step we obtain a priori estimates for the solution, such that it can be extended

outside [0, Tk[ to obtain one solution defined for all t > 0.

We can utilize a standard compactness argument for the limiting procedure and it suffices

to derive some a priori estimates for (ϕk, ψk, zk).

The first estimate. Since the sequences ϕ0k, ϕ1k, ψ0k, ψ1k and z0k converge, then standard

calculations, using (3.29)-(3.36), similar to those used to derive (3.17), yield C independent
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of k such that
Ek(t) +

∫ t
0

∫ 1
0 a1(s)(ψ′k)

2dx ds

+
∫ t

0

∫ 1
0 a2(t)z2

k(x, 1, t)dx ds ≤ Ek(0) ≤ C,
(3.37)

where
Ek(t) = 1

2

∫ 1
0 {ρ1ϕ

′
k

2 + ρ2ψ
′
k

2 +K|ϕkx + ψk|2 + bψ2
kx}dx

+ ξ(t)
2

∫ 1
0

∫ 1
0 z

2
k(x, ρ, t) dρ dx.

(3.38)

a1(t) = µ1(t)

(
1− ξ1

2τ
− β

2

)
and a2(t) = µ1(t)

(
ξ1

2τ
− β

2

)
.

for some C independent of k. These estimates imply that the solution (ϕk, ψk, zk) exists

globally in [0,+∞[.

Estimate (3.37) yields

ϕk, ψk are bounded in L∞loc(0,∞;H1
0 (0, 1)) (3.39)

ϕ′k, ψ
′
k are bounded in L∞loc(0,∞;L2(0, 1)) (3.40)

µ1(t)(ψ′k)
2(t) is bounded in L1((0, 1)× (0, T )) (3.41)

µ1(t)z2
k(x, ρ, t) is bounded in L∞loc(0,∞;L1((0, 1)× (0, 1))) (3.42)

µ1(t)z2
k(x, 1, t) is bounded in L1((0, 1)× (0, T )) (3.43)

The second estimate. First, we estimate ϕ′′k(0) and ψ′′k(0). Testing (3.29) by g′′jk(t), (3.32)

by g̃′′jk(t) and choosing t = 0 we obtain

ρ1‖ϕ′′k(0)‖2 ≤ K(‖ϕ0kxx‖2 + ‖ψ0kx‖2)

and

ρ2‖ψ′′k(0)‖2 ≤ b‖ψ0kxx‖2 +K(‖ϕ0kx‖2 + ‖ψ0k‖2) + µ1(0)‖g1(ψ1k)‖2 + µ2(0)‖g2(z0k)‖2.

Hence from (3.30), (3.31) and (3.36):

‖ϕ′′k(0)‖2 ≤ C.

Since g1(ψ1k), g2(z0k) are bounded in L2(0, 1) by (H1), (3.30), (3.33), (3.34) and (3.36) yield

‖ψ′′k(0)‖2 ≤ C.

Differentiating (3.29) and (3.32) with respect to t, we get

(ρ1ϕ
′′′
k (t)−Kϕ′kxx(t)−Kψ′kx(t), wj) = 0 (3.44)
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and

(ρ2ψ
′′′
k (t)− bψ′kxx(t) +Kϕ′kx(t) +Kψ′k(t) + µ1(t)ψ′′k(t) + µ′1(t)ψ′k(t)

+µ2(t)z′k(x, 1, t) + µ′2(t)zk(x, 1, t), wj) = 0.
(3.45)

Multiplying (3.44) by g′′jk(t) and (3.45) by g̃′′jk(t), summing over j from 1 to k, it follows that

1

2

d

dt

(
ρ1‖ϕ′′k(t)‖22

)
−K

∫ 1

0
(ϕ′kx + ψ′k)xϕ

′′
k dx = 0 (3.46)

1
2
d
dt

(
ρ2‖ψ′′k(t)‖22 + b‖ψ′kx(t)‖22

)
+K

∫ 1
0 (ϕ′kx + ψ′k)ψ

′′
k dx+ µ1(t)

∫ 1
0 ψ
′′2
k(t) dx

+µ′1(t)
∫ 1

0 ψ
′′
k(t)ψ

′
k(t) dx+ µ2(t)

∫ 1
0 ψ
′′
k(t)z

′
k(x, 1, t) dx+ µ′2(t)

∫ 1
0 ψ
′′
k(t)zk(x, 1, t) dx = 0.

(3.47)

Differentiating (3.35) with respect to t, we get

(τz′′k(t) +
∂

∂ρ
z′k, φj) = 0.

Multiplying by h′jk(t), summing over j from 1 to k, it follows that

1

2
τ
d

dt
‖z′k(t)‖22 +

1

2

d

dρ
‖z′k(t)‖22 = 0. (3.48)

Taking the sum of (3.46), (3.47) and (3.48), we obtain

1
2
d
dt

(
ρ1‖ϕ′′k(t)‖22 + ρ2‖ψ′′k(t)‖22 + b‖ψ′kx(t)‖22 +K‖ϕ′kx(t) + ψ′k‖22 + τ‖z′k(x, ρ, t)‖2L2((0,1)×(0,1))

)
+µ1(t)

∫ 1
0 ψ
′′2
k(t) dx+ 1

2

∫ 1
0 |z

′
k(x, 1, t)|2 dx

= −µ2(t)
∫ 1

0 ψ
′′
k(t)z

′
k(x, 1, t) dx− µ′1(t)

∫ 1
0 ψ
′′
k(t)ψ

′
k(t) dx− µ′2(t)

∫ 1
0 ψ
′′
k(t)zk(x, 1, t) dx+ 1

2‖ψ
′′
k(t)‖22.

Using (H1), (H2), Cauchy-Schwarz and Young’s inequalities, we obtain

1
2
d
dt

(
ρ1‖ϕ′′k(t)‖22 + ρ2‖ψ′′k(t)‖22 + b‖ψ′kx(t)‖22 +K‖ϕ′kx(t) + ψ′k‖22 + τ‖z′k(x, ρ, t)‖2L2((0,1)×(0,1))

)
+µ1(t)

∫ 1
0 ψ
′′2
k(t) dx+ 1

2

∫ 1
0 |z

′
k(x, 1, t)|2 dx

≤ |µ2(t)|‖ψ′′k(t)‖2‖z′k(x, 1, t)‖2 + |µ′1(t)|‖ψ′′k(t)‖2‖ψ′k(t)‖2 + |µ′2(t)|‖ψ′′k(t)‖2‖zk(x, 1, t)‖2 + 1
2‖ψ

′′
k(t)‖22.

≤ |µ2(t)|2
2 ‖ψ′′k(t)‖22 + 1

2‖z
′
k(x, 1, t)‖22 +

|µ′1(t)|
4 ‖ψ′′k(t)‖22 + |µ′1(t)|‖ψ′k(t)‖22 +

|µ′2(t)|
2 ‖ψ′′k(t)‖22

+|µ′2(t)|‖zk(x, 1, t)‖22 + 1
2‖ψ

′′
k(t)‖22.

≤ c′‖ψ′′k(t)‖22 + |µ′1(t)|‖ψ′k(t)‖22 + 1
2‖z
′
k(x, 1, t)‖22 + |µ′2(t)|‖zk(x, 1, t)‖22.

≤ c′‖ψ′′k(t)‖22 +Mµ1(t)‖ψ′k(t)‖22 +M1µ1(t)‖zk(x, 1, t)‖22 + 1
2‖z
′
k(x, 1, t)‖22.

Integrating the last inequality over (0, t), we obtain

ρ1‖ϕ′′k(t)‖22 + ρ2‖ψ′′k(t)‖22 + b‖ψ′kx(t)‖22 +K‖ϕ′kx(t) + ψ′k‖22 + τ‖z′k(x, ρ, t)‖2L2((0,1)×(0,1))

≤
(
ρ1‖ϕ′′k(0)‖22 + ρ2‖ψ′′k(0)‖22 + b‖ψ′kx(0)‖22 +K‖ϕ′kx(0) + ψ′k(0)‖22 + τ‖z′k(x, ρ, 0)‖2L2((0,1)×(0,1))

)
+2M

∫ t
0 µ1(s)‖ψ′k(s)‖22 ds+ 2M1

∫ t
0 µ1(s)‖zk(x, 1, t)‖22 ds+

∫ t
0 ‖ψ

′′
k(s)‖22 ds
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Using the Gronwall’s lemma, we deduce that

ρ1‖ϕ′′k(t)‖22 + ρ2‖ψ′′k(t)‖22 + b‖ψ′kx(t)‖22 +K‖ϕ′kx(t) + ψ′k‖22 + τ‖z′k(x, ρ, t)‖2L2((0,1)×(0,1))

≤ Cec′t

for all t ∈ R+, therefore, we conclude that

ϕ′′k, ψ
′′
k is bounded in L∞loc(0,∞;L2) (3.49)

ϕ′k, ψ
′
k is bounded in L∞loc(0,∞;H1

0 ) (3.50)

z′k is bounded in L∞loc(0,∞;L2((0, 1)× (0, 1))) (3.51)

The third estimate. Replacing wj by −wjxx in (3.29) and (3.32), multiplying the result

by g′jk(t) and g̃′jk(t), summing over j from 1 to k, it follows that

1

2

d

dt

(
ρ1‖ϕ′kx(t)‖22+

)
+K

∫ 1

0
(ϕx + ψ)xϕ

′
kxx dx = 0. (3.52)

1
2
d
dt

(
ρ2‖ψ′kx(t)‖22 + b‖ψkxx(t)‖22

)
−K

∫ 1
0 (ϕx + ψ)ψ′kxx dx+ µ1(t)

∫ 1
0 |ψ

′
kx(t)|2 dx

+µ2(t)
∫ 1

0 ψ
′
kx(t)zkx(x, 1, t) dx = 0.

(3.53)

Replacing φj by −φjxx in (3.35), multiplying the resulting equation by hjk(t), summing over

j from 1 to k, it follows that

1

2
τ
d

dt
‖zkx(t)‖22 +

1

2

d

dρ
‖zkx(t)‖22 = 0. (3.54)

From (3.52), (3.53) and (3.54), we have

1
2
d
dt

(
ρ1‖ϕ′kx(t)‖22 + ρ2‖ψ′kx(t)‖22 +K‖ϕkxx + ψkx(t)‖22 + b‖ψkxx(t)‖22 + τ‖zkx(x, ρ, t)‖2L2(0,1)×(0,1))

)
+µ1(t)

∫ 1
0 |ψ

′
kx(t)|2 dx+ 1

2

∫ 1
0 |zkx(x, 1, t)|2 dx = −µ2(t)

∫ 1
0 ψ
′
kx(t)zkx(x, 1, t) dx

+1
2‖∇ψ

′
k(t)‖22.

Using (H2), Cauchy-Schwartz and Young’s inequalities, we obtain

1
2
d
dt

(
ρ1‖ϕ′kx(t)‖22 + ρ2‖ψ′kx(t)‖22 +K‖ϕkxx + ψkx(t)‖22 + b‖ψkx(t)‖22 + τ‖zkx(x, ρ, t)‖2L2((0,1)×(0,1))

)
+µ1(t)

∫ 1
0 |ψ

′
kx(t)|2 dx+ c

∫ 1
0 |zkx(x, 1, t)|2 dx ≤ c′‖ψ′kx(t)‖22.

Integrating the last inequality over (0, t) and using Gronwall’s Lemma, we have

ρ1‖ϕ′kx(t)‖22 + ρ2‖ψ′kx(t)‖22 +K‖ϕkxx + ψkx(t)‖22 + b‖ψkxx(t)‖22 + τ‖zkx(x, ρ, t)‖2L2((0,1)×(0,1)) ≤
ecT
(
ρ1‖ϕ′kx(0)‖22 + ρ2‖ψ′kx(0)‖22 +K‖ϕkxx(0) + ψkx(0)‖22 + b‖ψkx(0)‖22 + τ‖zkx(x, ρ, 0)‖2L2((0,1)×(0,1))

)
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for all t ∈ R+, therefore, we conclude that

ϕk, ψk are bounded in L∞loc(0,∞;H2 ∩H1
0 (0, 1)), (3.55)

zk is bounded in L∞loc(0,∞;H1
0 (0, 1;L2(0, 1))). (3.56)

Applying Dunford-Petti’s theorem we conclude from (3.39), (3.40), (3.41), (3.42), (3.49),

(3.50), (3.51), (3.55) and (3.56), after replacing the sequences ϕk, ψk and zk with a subse-

quence if needed, that{
ϕk → ϕ weak-star in L∞loc(0,∞;H2 ∩H1

0 (0, 1))

ψk → ψ weak-star in L∞loc(0,∞;H2 ∩H1
0 (0, 1))

(3.57)

{
ϕ′k → ϕ′ weak-star in L∞loc(0,∞;H1

0 (0, 1))

ψk → ψ′ weak-star in L∞loc(0,∞;H1
0 (0, 1))

(3.58)

{
ϕ′′k → ϕ′′ weak-star in L∞loc(0,∞;L2(0, 1))

ψ′′k → ψ′′ weak-star in L∞loc(0,∞;L2(0, 1))
(3.59)

zk → z weak-star in L∞loc(0,∞;H1
0 ((0, 1);L2(0, 1)),

z′k → z′ weak-star in L∞loc(0,∞;L2((0, 1)× (0, 1))), (3.60)

for suitable functions ϕ,ψ ∈ L∞(0, T ;H2 ∩H1
0 (0, 1)), z ∈ L∞(0, T ;L2((0, 1)× (0, 1))),

χ ∈ L2((0, 1)× (0, T )), ψ ∈ L2((0, 1)× (0, T )) for all T ≥ 0. We have to show that (ϕ,ψ, z)

is a solution of (3.12).

From (3.39) and (3.40) we have (ψ′k) is bounded in L∞(0, T ;H1
0 (0, 1)). Then (ψ′k) is

bounded in L2(0, T ;H1
0 ). Since (ψ′′k) is bounded in L∞(0, T ;L2(0, 1)), then (ψ′′k) is bounded

in L2(0, T ;L2(0, 1)). Consequently (ψ′k) is bounded in H1(Q) ,where Q = (0, 1)× (0, T ).

Since the embedding H1(Q) ↪→ L2(Q) is compact, using Aubin-Lions theorem [29] we can

extract a subsequence (ψν) of (ψk) such that

ψ′ν → ψ′ strongly in L2(Q).

Therefore

ψ′ν → ψ′ strongly and a.e on Q. (3.61)

Similarly we obtain

zν → z strongly and a.e on Q. (3.62)
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It follows at once from (3.57), (3.59), (??), (??) and (3.60) that for each fixed u, v ∈
L2(0, T ;H1

0 (0, 1)) and w ∈ L2(0, T ;H1
0 ((0, 1)× (0, 1)))∫ T

0

∫ 1
0 (ρ1ϕ

′′
k −K(ϕkx + ψk)x)u dx dt

→
∫ T

0

∫ 1
0 (ρ1ϕ

′′ −K(ϕx + ψ)x)u dx dt∫ T
0

∫ 1
0 (ρ2ψ

′′
k − bψkxx +K(ϕkx + ψk) + +µ1(t)ψ′k + µ2(t)zk)v dx dt

→
∫ T

0

∫ 1
0 (ρ2ψ

′′ − bψxx +K(ϕx + ψ) + µ1(t)ψ′ + µ2(t)zv dx dt∫ T

0

∫ 1

0

∫ 1

0
(τz′k +

∂

∂ρ
zk)w dxdρ dt→

∫ T

0

∫ 1

0

∫ 1

0
(τz′ +

∂

∂ρ
z)w dxdρ dt

as k → +∞. Hence ∫ T

0

∫ 1

0
(ρ1ϕ

′′ −K(ϕx + ψ)x)u dx dt = 0∫ T

0

∫ 1

0
(ρ2ψ

′′ − bψxx +K(ϕx + ψ) + µ1(t)ψ′ + µ2(t)zv dx dt = 0∫ T

0

∫ 1

0

∫ 1

0
(τu′ +

∂

∂ρ
z)w dxdρ dt = 0, w ∈ L2(0, T ;H1

0 ((0, 1)× (0, 1))).

Thus the problem (P ) admits a global weak solution (ϕ,ψ).

Uniqueness. Let (ϕ1, ψ1, z1) and (ϕ2, ψ2, z2) be two solutions of problem (3.12). Then

(w, w̃, ˜̃w) = (ϕ1, ψ1, z1)− (ϕ2, ψ2, z2) verifies

ρ1wtt(x, t)−K(wx + w̃)x(x, t) = 0 in ]0, 1[×]0,+∞[,

ρ2w̃
′′(x, t)− bw̃xx(x, t) +K(wx + w̃) + µ1(t)w̃′(x, t)

+µ2(t) ˜̃w(x, 1, t), in ]0, 1[×]0,+∞[,

τ ˜̃w
′
(x, ρ, t) + ˜̃wρ(x, ρ, t) = 0, in (0, 1)×]0, 1[×]0,+∞[

w(0, t) = w(1, t) = w̃(0, t) = w̃(1, t) = 0, t ≥ 0

˜̃w(x, 0, t) = ψ′1(x, t)− ψ′2(x, t) on ]0, 1[×[0,+∞[

w(x, 0) = w′(x, 0) = w̃(x, 0) = w̃′(x, 0) = 0, in ]0, 1[

˜̃w(x, ρ, 0) = 0 in ]0, 1[×]0, 1[

(3.63)

Multiplying the first equation by w′ and the second by w̃′ in (3.63), integrating over (0, 1)

and using an integration by parts, we get

1

2

d

dt
(ρ1‖w′‖22) +K

∫ 1

0
(wx + w̃)xw

′ dx = 0 (3.64)

1
2
d
dt(ρ2‖w̃′‖22 + b‖w̃x‖22) +K

∫ 1
0 (wx + w̃)w̃′ dx+ µ1(t)‖w̃′‖22

+µ2(t)( ˜̃w(x, 1, t), w̃′) = 0.
(3.65)
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Multiplying the third equation in (3.63) by ˜̃w, integrating over (0, 1)× (0, 1), we get

τ

2

d

dt
‖ ˜̃w‖22 +

1

2

d

dρ
‖w̃‖22 (3.66)

τ
1

2

d

dt

∫ 1

0
‖ ˜̃w
′‖22 dρ+

1

2
(‖ ˜̃w(x, 1, t)‖22 − ‖w̃′‖22) = 0. (3.67)

From (3.64), (3.65), (3.67) and using Cauchy-Schwarz inequality, we get

1
2
d
dt

(
ρ1‖w′‖22 + ρ2‖w̃′‖22 + b‖w̃x‖22 +K‖wx + w̃‖22 + τ

∫ 1
0 ‖ ˜̃w

′‖22 dρ
)

+µ1(t)‖w̃‖22 + 1
2‖ ˜̃w(x, 1, t)‖22 = −µ2(t)( ˜̃w(x, 1, t), w̃′) + 1

2‖w̃
′‖22

≤ 1
2‖w̃

′‖22 + |µ2(t)|‖ ˜̃w(x, 1, t)‖2‖w̃′‖2.

Using Young’s inequality, we obtain

1

2

d

dt

(
ρ1‖w′‖22 + ρ2‖w̃′‖22 + b‖w̃x‖22 +K‖wx + w̃‖22 + τ

∫ 1

0
‖ ˜̃w
′‖22 dρ

)
≤ c‖w̃′‖22,

where c is a positive constant. Then integrating over (0, t), using Gronwall’s lemma, we

conclude that

ρ1‖w′‖22 + ρ2‖w̃′‖22 + b‖w̃x‖22 +K‖wx + w̃‖22 + τ

∫ 1

0
‖ ˜̃w
′‖22 dρ = 0.

Hence, uniquness follows.

3.4 Asymptotic behavior

Now we construct a Lyapunov functional L equivalent to E. For this, we define several

functionals which allow us to obtain the needed estimates.

Then we have the following estimate.

Lemma 3.4.1. Let (ϕ,ψ, z) be the solution of (3.12). Then the functional F1 defined by

F1(t) = −
∫ 1

0
(ρ1ϕtϕ+ ρ2ψtψ) dx (3.68)

satisfies, along the solution, the estimate

dF1(t)
dt ≤ −

∫ 1
0 (ρ1ϕ

2
t + (ρ2 − c)ψ2

t )dx+K
∫ 1

0 |ϕx + ψ|2dx
+c
∫ 1

0 ψ
2
xdx+ c|µ2(t)|

∫ 1
0 ψz(x, 1, t)dx.

(3.69)
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Proof. By taking the time derivative of (3.68)

dF1(t)

dt
= −

∫ 1

0
(ρ1ϕ

2
t + ρ2ψ

2
t )dx−

∫ 1

0
(ρ1ϕttϕ+ ρ2ψttψ)dx.

Therefore, by using the first and the second equations in (3.12) and some integrations by

parts, we obtain from the above inequality

dF1(t)
dt = −

∫ 1
0 (ρ1ϕ

2
t + ρ2ψ

2
t )dx+K

∫ 1
0 |ϕx + ψ|2dx

+b
∫ 1

0 ψ
2
xdx+ µ1(t)

∫ 1
0 ψψtdx+ µ2(t)

∫ 1
0 ψz(x, 1, t)dx.

(3.70)

By exploiting Young’s inequality and Poincaré’s inequality, then (3.69) holds.

2

Lemma 3.4.2. Let (ϕ,ψ, z) be the solution of (3.12). Assume that

ρ1

K
=
ρ2

b
. (3.71)

Then the functional F2 defined by

F2(t) = ρ2

∫ 1

0
ψt(ϕx + ψ)dx+ ρ2

∫ 1

0
ψxϕt dx. (3.72)

satisfies, along the solution, the estimate

dF2(t)
dt = [bϕxψx]x=1

x=0 − (K − ε)
∫ 1

0 (ϕx + ψ)2dx+ (ρ2 + ε)
∫ 1

0 ψ
2
t dx

− c
ε |µ2(t)|

∫ 1
0 (ϕx + ψ)z(x, 1, t)dx.

(3.73)

for any 0 < ε < 1.

Proof. Differentiating F2(t), with respect to t, we obtain

dF2(t)
dt =

∫ 1
0 ρ2ψtt(ϕx + ψ)dx+

∫ 1
0 ρ2ψt(ϕx + ψ)tdx+ ρ2

∫ 1
0 ψxϕttdx+ ρ2

∫ 1
0 ψtxϕtdx.

=
∫ 1

0 (ϕx + ψ)[bψxx − k(ϕx + ψ)− µ1(t)ψt − µ2(t)z(x, 1, t)]dx+ ρ2

∫ 1
0 ψ

2
t dx+ ρ2

ρ1

∫ 1
0 k(ϕx + ψ)xψx dx.

Then, by using Eqs.(3.12) and (3.71) we find

dF2(t)
dt = [bϕxψx]x=1

x=0 −K
∫ 1

0 (ϕx + ψ)2dx+ ρ2

∫ 1
0 ψ

2
t dx

−µ1(t)
∫ 1

0 (ϕx + ψ)ψtdx− µ2(t)
∫ 1

0 (ϕx + ψ)z(x, 1, t)dx.
(3.74)

2
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Lemma 3.4.3. Let m ∈ C1([0, 1]) be a function satisfying m(0) = −m(1) = 2. Then there

exists c > 0 such that, for any 0 < ε < 1, the functional F3 defined by

F3(t) =
b

4ε

∫ 1

0
ρ2m(x)ψtψx dx+

ε

k

∫ 1

0
ρ1m(x)ϕtϕx dx

satisfies, along the solution, the estimate

F ′3(t) ≤ − b2

4ε((ψx(1, t))2 + (ψx(0, t))2)− ε((ϕx(1, t))2 + (ϕx(0, t))2)

+(k4 + c
kε)
∫ 1

0 (ψ + ϕx)2 dx+ cερ1

∫ 1
0 ϕ

2
t dx+ c

ε2

∫ 1
0 ψ

2
x dx

+ c
ε

∫ 1
0 ψ

2
t dx+ c|µ2(t)|

∫ 1
0 ‖z(x, 1, t)‖

2 dx

(3.75)

Proof. Using Eqs. (3.12) and integrating by parts, obtain

F ′3(t) = b
4ε

[
−b((ψx(1, t))2 + (ψx(0, t))2)−

∫ 1
0
b
2m
′(x)ψ2

x dx− k
∫ 1

0 m(x)ψx(ϕx + ψ) dx

−
∫ 1

0 m(x)µ1(t)ψtψx dx−
∫ 1

0 m(x)µ2(t)z(x, 1, t)ψx dx−
∫ 1

0
ρ2
2 m

′(x)(ψt)
2 dx

]
ε
k

[
−k((ϕx(1, t))2 + (ϕx(0, t))2)−

∫ 1
0
k
2m
′(x)ϕ2

x dx+
∫ 1

0 km(x)ψxϕx dx−
∫ 1

0
ρ1
2 m

′(x)(ϕt)
2 dx

]
Then by the Young and Poincaré inequalities and the fact that

ϕ2
x ≤ 2(ψ + ϕx)2 + 2ψ2

we obtain

F ′3(t) ≤ b
4ε

[
−b((ψx(1, t))2 + (ψx(0, t))2)

+ c
ε

∫ 1
0 ψ

2
x dx+ εkb

∫ 1
0 (ψ + ϕx)2 dx+ ε

∫ 1
0 g

2
1(ψt) dx+ ε

∫ 1
0 g

2
2(z(x, 1, t)) dx+ c

∫ 1
0 ψ

2
t dx

]
ε
k

[
−k((ϕx(1, t))2 + (ϕx(0, t))2) + c

∫ 1
0 ψ

2
x dx+ c

∫ 1
0 (ψ + ϕx)2 dx+ c

∫ 1
0 ϕ

2
t dx

]
This gives (3.75).

2

Lemma 3.4.4. Assume that (H1) hold. Then, for sufficiently small ε, the functional F

defined by

F (t) = 2cεF1(t) + F2(t) + F3(t)

satisfies, along the solution, the estimate

F ′(t) ≤ −k
2

∫ 1
0 (ψ + ϕx)2 dx− τ

∫ 1
0 ϕ

2
t dx+ c

∫ 1
0 ψ

2
t dx+ c

∫ 1
0 ψ

2
x dx+ c

∫ 1
0 z(x, 1, t)

2 dx,

(3.76)

where τ = cερ1.
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Proof. Using Lemmas 3.4.1, 3.4.2, 3.4.3 and the fact that

[bϕxψx]x=1
x=0 ≤ ε[ϕ2

x(1) + ϕ2
x(0)] +

b2

4ε
[ψ2
x(1) + ψ2

x(0)] (3.77)

for any 0 < ε < 1, we obtain (3.76).

2

Next, we introduce the following functional

I(t) =

∫ 1

0
(ρ2ψtψ + ρ1ϕtω)dx, (3.78)

where w is the solution of

−ωxx = ψx, ω(0) = ω(1) = 0. (3.79)

Then we have the following estimate.

Lemma 3.4.5. Let (ϕ,ψ, z) be the solution of (3.12), then for any δ > 0, we have the

following estimate
dI(t)(t)
dt ≤ −b2

∫ 1
0 ψ

2
x(x, t)dx+ c

δ

∫ 1
0 ψ

2
t (x, t)dx

+δ
∫ 1

0 ϕ
2
t (x, t)dx+ c|µ2(t)|

∫ 1
0 z(x, 1, t)

2dx.
(3.80)

Proof. Using Eqs. (3.12), we have
dI(t)
dt = −b

∫ 1
0 ψ

2
xdx+ ρ2

∫ 1
0 ψ

2
t dx−K

∫ 1
0 ψ

2dx

+K
∫ 1

0 ω
2
xdx+ ρ1

∫ 1
0 ψtωtdx− µ1

∫ 1
0 ψg1(ψt)dx− µ2

∫ 1
0 ψg2(z(x, 1, t))dx.

(3.81)

It is clear that, from (3.79), we have∫ 1

0
ω2
xdx ≤

∫ 1

0
ψ2dx ≤

∫ 1

0
ψ2
xdx∫ 1

0
ω2
t dx ≤

∫ 1

0
ω2
txdx ≤

∫ 1

0
ψ2
t dx (3.82)

By using Young’s inequality and Poincaré’s inequality we obtain (3.80).

2

Now, let us introduce the following functional

I3(t) =

∫ 1

0

∫ 1

0
e−2τρz2(x, ρ, t) dρ dx. (3.83)

Then the following result holds.
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Lemma 3.4.6. Let (ϕ,ψ, z) be the solution of (3.12). Then it holds

d

dt
I3(t) ≤ −I3(t)− c

2τ

∫ 1

0
z(x, 1, t)2dx+

1

2τ

∫ 1

0
ψ2
t (x, t) dx. (3.84)

Proof. Differentiating (3.83) with respect to t and using the third equation in (3.12), we

have
d
dt

(∫ 1
0

∫ 1
0 e
−2τρz2(x, ρ, t) dρ dx

)
= − 1

τ

∫ 1
0

∫ 1
0 e
−2τρzzρ(x, ρ, t) dρ dx

= −
∫ 1

0

∫ 1
0 e
−2τρz2(x, ρ, t) dρ dx− 1

2τ

∫ 1
0

∫ 1
0

∂
∂ρe
−2τρz2(x, ρ, t) dρ dx.

The above formula implies that there exists a positive constant c such that (75) holds. 2

Proof of theorem2.1. To finalize the proof of Theorem 2.1, we define the lyapunov func-

tional L as follows For N1, N2 > 0, let

L(t) = N1E(t) +N2I(t) + F (t) + I3(t), (3.85)

whereN1 andN2 are positive real numbers which will be chosen later. By combining (3.17),

(3.76), (3.80), (3.84), we obtain

d
dtL(t) ≤ −

(
N1a1(t)−N2(t) cδ − c−

c
δ

) ∫ 1
0 ψ

2
t dx

− (N1a2 −N2c|µ2(t)| − c− c|µ2(t)|)
∫ 1

0 z
2(x, 1, t) dx−

(
N2

b
2 − c+ b

2

) ∫ 1
0 ψ

2
x dx

− (N2δ + τ − δ)
∫ 1

0 ϕ
2
t dx

−k
2

∫ 1
0 (ψ + ϕx)2 dx

(3.86)

At this point, we have to choose our constants very carefully. First, let us choose N2 suffi-

ciently large so that (
N2

b

2
− c+

b

2

)
> 0.

Next, we choose δ sufficiently small such that

(N2δ + τ − δ) > 0.

Then, we pick the constant N1 > 0 sufficiently large such that(
N1a1(t)−N2(t)

c

δ
− c− c

δ

)
and

(N1a2 −N2c|µ2(t)| − c− c|µ2(t)|) .
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Thus, (3.86) becomes

d
dtL(t) ≤ −d1

∫ 1
0 ψ

2
x dx− d2

∫ 1
0 ϕ

2
t dx− k

2

∫ 1
0 (ψ + ϕx)2 dx

+c
∫ 1

0 z(x, 1, t)
2(≤ −dE(t) + c

∫ 1
0 z

2(x, 1, t) dx.
(3.87)

which implies by (3.14), that there exists also η > 0

d

dt
L(t) ≤ −ηE(t). (3.88)

At this stage, we are in position to compare L(t) with E(t). We have the following Lemma.

Lemma 3.4.7. For N1 large enough, there exist two positive constants β1 and β2 depending

on N1, N2 and ε, such that

β1E(t) ≤ L(t) ≤ β2E(t) ∀t ≥ 0. (3.89)

Proof. We consider the functional

H(t) = N2I(t) + F (t) + I3(t)

and show that

|H(t)| ≤ ĈE(t), C > 0.

from (3.68),(3.78),(3.72) and (3.83), we obtain

|H(t)| ≤ N2

∣∣∣∫ 1
0 ρ2ψtψ + ρ1ϕtω)(x, t)dx

∣∣∣+
∣∣∣− ∫ 1

0 (ρ1ϕtϕ+ ρ2ψtψ)dx
∣∣∣+∣∣∣ρ2

∫ 1
0 ψt(ϕx + ψ)dx+ ρ2

∫ 1
0 ψxϕt dx

∣∣∣+
∣∣∣ b4ε ∫ 1

0 ρ2m(x)ψtψx dx+ ε
k

∫ 1
0 ρ1m(x)ϕtϕx dx

∣∣∣
+
∣∣∣∫ 1

0

∫ 1
0 e
−2τρz2(x, ρ, t) dρ dx

∣∣∣ .
(3.90)

By using (3.82),(3.79), the trivial relation∫ 1

0
ϕ2(x, t)dx ≤ 2

∫ 1

0
(ϕx + ψ)2(x, t)dx+ 2

∫ 1

0
ψ2
x(x, t)dx,

Young’s and Poincaré’s inequalities, we get

|H(t)| ≤ α1

∫ 1
0 ϕ

2
t (x, t)dx+ α2

∫ 1
0 ψ

2
t (x, t)dx

+α3

∫ 1
0 (ϕx + ψ)2(x, t)dx+ α4

∫ 1
0 ψ

2
x(x, t)dx

+
∫ 1

0

∫ 1
0 z

2(x, ρ, t)dx dρ

(3.91)
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where the positive constants α1, α2, α3, α4 are determined as follows:
α1 = N2ρ1

2 + ρ2 + ερ1
K ,

α2 = N2ρ2
2 + ρ2 + ρ2b

2ε ,

α3 = ρ1 + ρ2
2 + 2ερ1

K ,

α4 = ρ2 + N2
2 ρ2 + ρ1 + ρ2b

2ε + 2ερ1
K

According to (3.91) , we have

|H(t)| ≤ ĈE(t)

for

Ĉ = 2 max

{
α1

ρ1
,
α2

ρ2
,
α3

k
,
α4

b
,

1

2ξ

}
.

Therefore, we obtain

|L(t)−N1E(t)| ≤ ĈE(t).

So, we can choose N1 large enough so that β1 = N1 − Ĉ > 0, β2 = N1 + Ĉ > 0. Then (3.89)

holds true.

2

Combining and (79) and (80), we conclude

d

dt
L(t) ≤ −λL(t) ∀t ≥ 0. (3.92)

A simple integration of (83) leads to

d

dt
L(t) ≤ L(0)e−λt ∀t ≥ 0. (3.93)

Again, the use of (80) (84) yields the desired result (9). This completes the proof of Theorem

2.1.

Remark 3.4.1. According to the result of the paper [20], where a simple wave equation

has been treated, it might be possible to prove the result of Therem 2.1 by using a suitable

observability estimateof the forme

E(0) ≤ C0

∫ T

0

∫ 1

0

(
u2
t (x, t) + u2

t (x, t− τ)

)
dx dt. (3.94)

Where C0 is positive constant. Once (85) holds, then we can obtain easily

E(T ) ≤ ζE(0), (3.95)
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With ζ < 1. Since our system (1) is invariant by translation and the energy is non-increasing,

then applying this argument on [(m− 1)T,mT ], form = 1, 2, ... we arrive at

E(mT ) ≤ ζE((m− 1)T ) ≤ ... ≤ ζmE(0),m = 1, 2, ... (3.96)

This last inequality implies

E(mT ) ≤ e−wmTE(0),m = 1, 2, ... (3.97)

with w = 1
T ln

1
ζ .So for arbitrary positive t, there exists m such that (m− 1)T < t ≤ mT and

since E(t) is non-increasing function, we conclude

E(t) ≤ E((m− 1)T ) ≤ e−w(m−1)TE(0) ≤ 1

ζ
e−wtE(0) (3.98)

see [20].



Appendix

We will show the lack of exponential stabilty by frequency domain method.
We show the existence of a sequence (λµ) ⊂ R with limµ→∞ |λµ| = ∞ and (Uµ) ⊂
D(A) to Fµ ⊂ H such that (iλµI−A)Uµ = Fµ is bounded in H and limµ→∞ ‖Uµ‖H =

∞. Let F = Fµ = (f1, f2, 0)T with Uµ = (ϕµ, uµ, φµ)T .
Now, introducing following notations

I1 =
∫ L

0
e−τσ(if1xx(σ) + f2(σ)) dσ,

I2 = e−τL
∫ L

0
eτσ(if1xx(σ) + f2(σ)) dσ,

I3 =
∫ L

0
sin τ(L− σ)(−if1xx(σ) + f2(σ)) dσ,

I4 =
∫ L

0
cos τ(L− σ)(−if1xx(σ) + f2(σ)) dσ.

Note that
I1 = I2 = O(τ−

1
2 (‖f1xx‖+ ‖f2‖)),

I3 = I4 = O(‖f1xx‖+ ‖f2‖).

From (2.54) and (2.59), we have

ϕxx(x) = τ 2[A(cosh τx+ cos τx) +B(sinh τx+ sin τx)]

+ 1
2τ

∫ x
0

(f2(σ) + iτ 2f1(σ))(sinh τ(x− σ) + sin τ(x− σ)) dσ,
(3.99)

where
A = 1

D

(
m22C̃1 −m12C̃2

)
B = 1

D

(
m11C̃2 −m21C̃1

)
.
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Using the fact that∫ L
0
f1(σ)(sinh τ(x− σ) + sin τ(x− σ)) dσ

= 1
τ2

∫ L
0
f1xx(σ)(sinh τ(x− σ)− sin τ(x− σ)) dσ∫ L

0
f1(σ)(cosh τ(x− σ) + cos τ(x− σ)) dσ

= 1
τ2

∫ L
0
f1xx(σ)(cosh τ(x− σ)− cos τ(x− σ)) dσ∫ L

0
f1(σ)(sinh τ(x− σ)− sin τ(x− σ)) dσ

= − 1
τ2
f1(L) + 1

τ2

∫ L
0
f1xx(σ)(sinh τ(x− σ) + sin τ(x− σ)) dσ,

we deduce that
C̃1 =

1

τ 3

(
−1

4
eτLI1 +

1

4
I2 −

1

2
I3

)
C̃2 = −1

4
eτLI1 − 1

4
I2 − 1

2
I4 − iγ (iτ2+η)α−1

2τ
I3 + iγ (iτ2+η)α−1

4τ
eτLI1

−iγ (iτ2+η)α−1

4τ
I2 + ξ

∫∞
−∞

µ(ξ)f3(ξ)
iτ2+ξ2+η

dξ.

The second derivative of the solution is of the form:

ϕxx(x) = τ 2[A(cosh τx+ cos τx) +B(sinh τx+ sin τx)]

+ 1
4τ
eτxI1 +O(τ−

1
2 (‖f1xx‖+ ‖f2‖))

= C1e
τx + C2e

−τx + C3 cos τx+ C4 sin τx+O(τ−
1
2 (‖f1xx‖+ ‖f2‖))

where
C1 = 1

2

(
(A+B)τ 2 + 1

2τ
I1

)
C2 = 1

2
(A−B)τ 2

C3 = Aτ 2

C4 = Bτ 2

Considering only the dominant terms of τ , the following is obtained:

C1D = 1
4
(I1 sin τL+ I2 − I3(sin τL+ cos τL) + I4(sin τL− cos τL))τ 2 +O(τ 2α− 3

2‖F‖)
C2D = 1

4
(I1 sin τL+ I2 − I3 + I4)τ 2eτL +O(τ 2α−1eτL‖F‖)

C3D = 1
4
(I1(sin τL− cos τL) + I2 − I3 + I4)τ 2eτL +O(τ 2α−1eτL‖F‖)

C4D = 1
4
(−I1(sin τL+ cos τL)− I2 + I3 − I4)τ 2eτL +O(τ 2α−1eτL‖F‖).

it follows that

‖ϕxx‖ = 1
D

√
L
2
(|C3D|2 + |C4D|2) +O(τ 3e2τL‖F‖2

H) +O(τ−1‖F‖H)

= τ2

4D

√
L|I4 − I3|2e2τL +O(τ−

1
2 e2τL‖F‖2

H) +O(τ−1‖F‖H)

= τ2eτL

4D

√
L|I4 − I3|2 +O(τ−

1
2‖F‖2

H) +O(τ−1‖F‖H)



Appendix 77

For every τ large enough, a function F = (f1, 0, 0) can be chosen with f1 ∈ H2
0 such

that √
L|I4 − I3|2 +O(τ−

1
2‖F‖2

H) ≥ K‖F‖H, (3.100)

where constant K does not depend on τ .
For this purpose, let f1 be defined with

f1(x) = − 1

τ 2
sin
(
τ(L− x)− π

4

)
− x

τ
cos
(
τL− π

4

)
+

1

τ 2
sin
(
τL− π

4

)
.

Then
f1xx(x) = sin

(
τ(L− x)− π

4

)
,

‖f1xx‖2
2 =

L

2
+O(τ−1). (3.101)

Hence
‖F‖2

H =
L

2
+O(τ−1). (3.102)

which implies that for all τ large enough, ‖F‖H is bounded by some constant inde-
pendent of τ . There holds:

I4 − I3 = i
∫ L

0
(sin τ(L− σ)− cos τ(L− σ))f1xx(σ) dσ

= i
√

2
∫ L

0
sin(τ(L− σ)− π/4)2 dσ

= i
√

2‖f1xx‖2
2.

Therefore (3.100) follows easily from (3.101) and (3.102) for τ large enough. Moreover

‖ϕxx‖2 ≥
τ 2eτL

4D
‖F‖H +O(τ−1‖F‖H).

for all τ large enough. Now, Choose τ = τn = π
L

(n + 1
2
). Hence, a suffciently large n

can always be found so that
D ≤ Sτ 2αeτL,

where constant S > 0 does not depend on τ . For such τ , there holds:

‖ϕxx‖2 ≥
1

4S
τ (2−2α)‖F‖H +O(τ−1‖F‖H).

This implies that there exists some constant M̃ > 0 independent of τ such that

‖(iτ 2 −A)−1‖H ≥ M̃τ (2−2α).
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Summary 
In this PhD thesis we study stability and asymptotic behavior in time of 
solutions to nonlinear evolutions equations of hyperbolic type. We prove 
the global existence and we establish a decay rate estimate for the 
energy by means of the semi group 
theory of linear operators and the energy method combined with the 
Faedo-Galerkin procedure. 
 
Resumé 

Dans cette thèse nous étudions la stabilité et comportement 
asymptotique en temps de solutions des équations d’évolutions non 
linéaires de type hyperbolique. 
Nous montrons l’existence globale et nous établissons une estimation du 
taux de décroissance de l’énergie à l’aide de la théorie des semi-groupes 
des opérateurs linéaires et la méthode d’énergie combinée avec la 
procédure de Faedo-Galerkin. 

 ملخص

في هذه الأطروحة ندرس الوجود الشامل والسلوك التقاربي 

لحلول معادلات التطورات غير الخطية للنوع الزائدي 

 بالنسبة  لزمن

وطريقةالطاقة جنبًا  باستخدام نظرية أشباه الموصلات الخطية

Faedo-Galerkin   إجراء مع إلى جنب 

 

    

 

 

 

 

 

 


