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Existence et comportement asymptotique de certains problémes d’évolution avec
des termes non locaux

In this PhD thesis we study the global existence, asymptotic behavior in time of solutions to
nonlinear evolutions equations of hyperbolic type. The decreasing of classical energy plays
a crucial role in the study of global existence and in stabilization of various distributed
systems.

In chapter 1, we consider a Euler-Bernoulli beam equation with a boundary control condition
of fractional derivative type. We study stability of the system using the semigroup theory
of linear operators and a result obtained by Borichev and Tomilov.

In chapter 2 we consider a Timoshenko system in bounded domain with a delay term in
the nonlinear internal feedback and prove the global existence of its solutions in Sobolev
spaces by means of the energy method combined with the Faedo-Galerkin procedure. under
a condition between the weight of the delay term in the feedback and the weight of the
term without delay. Furthermore, we establish a decay rate estimate for the energy by

introducing suitable Lyapunov functionals.

Key words : evolutions equations, global existence, General decay, stabilization,
delay term, Euler-Bernoulli beam equation, Timoshenko system.

Existence et comportement asymptotique de certains problémes d’évolution avec
des termes non locaux

Dans cette th‘ese nous “etudions l’existence globale, comportement asymptotique en temps
de solutions & des équations d’évolutions non linéaires de type hyperbolique. La décroissance
de D’énergie classique joue un roéle crucial dans I'étude de l'existence globale et dans la
stabilisation de divers systémes distribués.

Dans le chapitre 1, nous considérons une équation de faisceau d’Euler-Bernoulli avec une
condition de controle de limite de type dérivée fractionnaire. Nous étudions la stabilité du
systéme en utilisant la théorie des semi-groupes des opérateurs linéaires et un résultat obtenu
par Borichev et Tomilov.

Dans le chapitre 2, nous considérons un systéme de Timoshenko dans un domaine limité
avec un délai dans le feedback interne non linéaire et prouvons l'existence globale de
ses solutions dans les espaces de Sobolev a l'aide de la méthode d’énergie combinée
avec la procédure de Faedo-Galerkin. dans une condition entre le poids du délai dans le

feedback et le poids du terme sans délai. De plus, nous établissons une estimation du



taux de décroissance de ’énergie en introduisant des fonctionnelles de Lyapunov appropriées.

Mots-clés : équations d’évolution, existence globale, taux de décroissance générale,
stabilisation, terme de retard, équation de faisceau d’Euler-Bernoulli, systéme de Timo-

shenko.
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Introduction

Problems of global existence and stability in time of Partial Differential Equations have
recently been the subject of much work. In this thesis we were interested in study of the
global existence and the stabilization of some evolution equations.

The purpose of stabilization is to attenuate the vibrations by feedback, thus it consists in
guaranteeing the decrease of energy of the solutions to 0 in a more or less fast way by a
mechanism of dissipation.

More precisely, the problem of stabilization consists in determining the asymptotic behaviour
of the energy by E(t), to study its limits in order to determine if this limit is zero or not, to
give an estimate of the decay rate of the energy to zero. This problem has been studied by

many authors for various systems. In our study, we obtain several type of stabilization
1) Strong stabilization: E(t) — 0, as t — oo.
2) Logarithmic stabilization: E(t) < c(log(t))™%,Vt > 0, (¢, > 0).
3) polynomial stabilization: E(t) < c¢t=%,Vt > 0, (¢, 6 > 0)
4) uniform stabilization: E(t) < ce™%, ¥t > 0, (¢, > 0). ¢ which depends on initial data

For wave equation with dissipation of the form u” — A u+ g(u’) = 0, stabilization problems
have been investigated by many authors:

When g : R — R is continuous and increasing function such that g(0) = 0, global existence
of solutions is known for all initial conditions (ug,u1) given in H}(Q) x L?(€2). This result
is, for instance, a consequence of the general theory of nonlinear semi-groups of contractions
generated by a maximal monotone operator (see Brézis [8]). Moreover, if we impose on the
control the condition VA # 0, g(A) # 0, then strong asymptotic stability of solutions occurs
in H}(Q) x L*(), i.e.,

(u,u') — (0,0) strongly in H}(Q) x L*(1),
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without speed of convergence. These results follows, for instance, from the invariance prin-
ciple of Lasalle (see for example A. Haraux [20], F. Conrad, M. Pierre [15]). If the solution
goes to 0 as time goes to co, how to get energy decay rates? Dafermos has written in 1978
"Another advantage of this approach is that it is so simplistic that it requires only quite
weak assumptions on the dissipative mechanism. The corresponding drawback is that the
deduced information is also weak, never yielding, for example, decay rates of solutions. Many
authors have worked since then on energy decay rates. First results were obtained for linear
stabilization, then for polynomial stabilization (see M. Nakao A. Haraux [20], E. Zuazua
and V. Komornik [21]) and then extended to arbitrary growing feedbacks (close to 0). In
the same time, geometrical aspects were considered. By combining the multiplier method
with the techniques of micro-local analysis, Lasiecka et al [16] have investigated different
dissipative systems of partial differential equations (with Dirichlet and Neumann bound-
ary conditions) under general geometrical conditions with nonlinear feedback without any
growth restrictions near the origin or at infinity. The computation of decay rates is reduced
to solving an appropriate explicitly given ordinary differential equation of monotone type.

More precisely, the following explicit decay estimate of the energy is obtained:

E() < h(fo 1), V>, (1)

where ty > 0 and h is the solution of the following differential equation:
R'(t) +q(h(t)) =0, Vt>0 and h(0)= E(0) (2)

and the function ¢ is determined entirely from the behavior at the origin of the nonlinear

feedback by proving that E satisfies
(1d - g/~ (B((m+ Dto)) < B(mto), vm € N,

In this thesis, the main objective is to give a global existence and stabilization results.
This work consists in three chapters, the first, for Euler-Bernoulli equations with boundary
dissipation of fractional derivative type.

the second, Well-posedness and exponential stability for a wave equation with nonlocal
time-delay condition.

the third, Global existence and energy decay of solutions to Timoshenko beam system with

a delay term.
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e The chapter 1
We investigate the existence and decay properties of solutions for the initial boundary

value problem of the Euler Bernoulli beam equation of the type
(P) Sott(x7t) + ‘meww($7t) =01in ]07 L[X]O, +OO[

where (z,t) € (0, L) x (0,400). This system is subject to the boundary conditions

©(0,t) = ¢z(0,1) =0 in (0, +00)
@mz(Lat) =0 n (0’ +OO)
(P:c:sz(La t) = 7621”]90([/7 t) in (07 +OO)

where v > 0. The notation 9;"" stands for the generalized Caputo’s fractional deriva-

tive of order v with respect to the time variable. It is defined as follows

(e 1 t —a _—n(t—s dw
8t m’LU(t) = I_‘(1_04)/0 (t— S) e n(t )5(8) dS, n Z 0.

The system is finally completed with initial conditions

o(x,0) =po(z), @e(x,0) = p1(2)
where the initial data (¢g, ¢1) belong to a suitable function space.

In this chapter, We prove the global existence to the solutions in the class H? N H&

by means of the semi group theory.

We prove also the decay estimate of the energy using the multiplier method and

Borivhev-Tomilov theorem.

e The chapter 2
In this chapter we investigate the existence and decay properties of solutions for the

initial boundary value problem of the nonlinear Timoshenko system of the type

;

prow(z,t) — K(pg + 0)z(z,t) =0 in ]0, 1[x]0, +o0],
p2tut (2, 1) — bipaa (2, 1) + K(pe + 1) (2, 1) + pa(t) e (, 1)

+po () (x, t —7) =0 in ]0, 1[x]0, +00[,
©(0,1) = ¢(1,t) = ¥(0,¢) = ¢(1,t) =0 t =0,

¥(x,0) =vo(x), Yi(x,0) =11(z) z €]0,1],

o(x,0) = wo(x), @i(x,0) = p1(z) x €]0,1],
Yi(x,t — 1) = fola, t — 1) in ]0, 1[x]0, 7[,
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where 7 > 0 is a time delay, the initial data (g, ¥1, fo) belong to a suitable function
space. We prove the global existence of the solutions in Sobolev spaces by means of
the energy method combined with the Faedo-Galerkin procedure,under a condition be-
tween the weight of the delay term in the feedback and the weight of the term without
delay.Furthermore, we establish a decay rate estimate for the energy by introducing

suitable Lyapunov functionals.



Chapter 1
Preliminaries

In this chapter, we will introduce and state without proofs some important materials needed

in the proof of our results (See [?, ?]),

1.1 Banach Spaces-Definition and properties

We first review some basic facts from calculus in the most important class of linear spaces

" Banach spaces".

Definition 1.1.1. . A Banach space is a complete normed linear space X. Its dual space X'

is the linear space of all continuous linear functional f : X — R.

Proposition 1.1.1. X’ equipped with the norm ||.||x: defined by

[fllxr = sup{|f ()] : fJull <1}, (1.1)
is also a Banach space. We shall denote the value of f € X' at u € X by either f(u) or
(fu)xr x.

Remark 1.1.1. From X'we construct the bidual or second dual X" = (X')'. Furthermore,
with each uw € X we can define p(u) € X" by p(u)(f) = f(u), f € X'. This satisfies clearly

le(@)]| < |lull. Moreover, for each u € X there is an f € X' with f(u) = ||u|| and || f]| = 1.
So it follows that ||o(x)|| = ||l

Definition 1.1.2. . Since ¢ s linear we see that

0: X — X",
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is a linear isometry of X onto a closed subspace of X", we denote this by
X — X"
Definition 1.1.3. . If ¢ is onto X" we say X is reflevive, X = X".
Theorem 1.1.1. . Let X be Banach space. Then X is reflexive, if and only if,
Bx ={z e X :|z| <1},

is compact with the weak topology o(X,X'). (See the next subsection for the definition of
o(X,X"))

Definition 1.1.4. . Let X be a Banach space, and let (uy)nen be a sequence in X. Then

Uy, converges strongly to w in X if and only if
lim ||u, —u||x =0,
and this is denoted by u, — u, or limy, oo Uy = u.

Definition 1.1.5. The Banach space E is said to be separable if there exists a countable

subset D of E which is dense in E, i.e. D = E.

Proposition 1.1.2. If E is reflezive and if F is a closed vector subspace of E, then F is

reflexive.

Corollaire 1.1.1. The following two assertions are equivalent:
(i) E is reflexive;
(i1) E' is reflexive.

1.1.1 The weak and weak star topologies
Let X be a Banach space and f € X'. Denote by

o X — R

x— pf(z),
when f cover X', we obtain a family (¢¢)exs of applications to X in R.

Definition 1.1.6. The weak topology on X, denoted by o(X, X'), is the weakest topology on

X for which every (¢y)rex is continuous.
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We will define the third topology on X', the weak star topology, denoted by o(X’, X). For
all z € X. Denote by

pf: X/ — R
fr—vu(f) = (f,2)x x,

when z cover X, we obtain a family (p,).cx of applications to X’ in R.

Definition 1.1.7. . The weak star topology on X' is the weakest topology on X' for which

every (¢u)zex’ 1 continuous.

Remark 1.1.2. Since X C X", it is clear that, the weak star topology (X', X) is weakest
then the topology o(X', X"), and this later is weakest then the strong topology.

Definition 1.1.8. A sequence (uy) in X is weakly convergent to x if and only if

T f(un) = £ (),
for every f € X', and this is denoted by u, — u
Remark 1.1.3. 1. If the weak limit exist, it is unique.

2. If up, — u € X(strongly) then u, — u(weakly).

3. If dimX < +oo, then the weak convergent implies the strong convergent.

Proposition 1.1.3. On the compactness in the three topologies in the Banach space X :

1. First, the unit ball
B'={zeX: |z <1}, (1.2)

in X is compact if and only if dim(X) < co.

2. Second, the unit ball B" in X'( The closed subspace of a product of compact spaces) is
weakly compact in X' if and only if X is reflexive.

3. Third, B’ is always weakly star compact in the weak star topology of X'.
Proposition 1.1.4. Let (f,) be a sequence in X'. We have:

1o [fo =" fino(X, X)] & [fu(x) = f(z), Vo € X].
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2. If fn — f(strongly) then f, — f,in o(X', X"),
If fo = [ ino(X', X"), then f, =* f,in o(X', X).

3. If fro —=* fin o(X', X) then || fn|| is bounded and || f|| < liminf || f,].

4. If fro =* [ ino(X', X) and z, — x(strongly) in X, then f,(x,) — f(z).

1.1.2 Weak and weak star compactness

In finite dimension, i.e, dim F < oo, we have Bolzano-Weierstrass’s theorem (which is a

strong compactness theorem).

Theorem 1.1.2. (Bolzano-Weierstrass). If dim E < oo and if {x,} C E) is bounded, then

there exist in E a subsequence {xn, } of {zn} such that {x,,} strongly converges to x.

The following two theorems are generalizations, in infinite dimension, of Bolzano- Weier-

strass’s theorem.

Theorem 1.1.3. (weak star compactness, Banach-Alaoglu-Bourbaki). Assume that E is sep-
arable and consider {f,} C E') . If {xn} is bounded, then there exist f € E' and a subse-
quence { fn, } of {fn} such that {fpn,} weakly star converges to f in E'.

Theorem 1.1.4. (weak compactness, Kakutani-Eberlein). Assume that E is reflexive and
consider {xn} C E). If {x,} is bounded, then there exist x € E and a subsequence {xy, } of

{zn} such that {x,, } weakly converges to z in E.
Weak, weak star convergence and compactness in LP(Q).

Definition 1.1.9. (weak convergence in LP(2) with 1 < p < oo ). Let 2 an open subset of
" . We say that the sequence {f,} of LP(Q2) weakly converges to f € LP(Q), if

1 1
hm/fn dl‘—/f x)dzx for all g € L%; (54-&:1)

Definition 1.1.10. (weak star convergence in L>(Y) ). We say that the sequence {fn} C
L*>(Q) weakly star converges to f € L>=(Q) , if

hm/ fu(x)g(x)dz = / f(x)g(z)dz for all g€ L'(Q)
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Theorem 1.1.5. (weak compactness in LP(Q)) with 1 < p < oco. Gwen {f,} C LP(Q) ,
if {fn} is bounded, then there exist f € LP(Q2) and a subsequence {fn,} of {fn} such that
Fu— [ in IP(Q).

Theorem 1.1.6. (weak star compactness in L ().
Given {fn,} C L*(Q), if {fn} is bounded, then there exist f € L*°(Q) and a subsequence

{fn.} of {fn} such that f, X fn L>(Q).

Generalities. In what follows, Q is a bounded open subset of RY with Lipschitz boundary
and 1 < p < .

Weak and weak star convergence in Sobolev spaces

For 1 < p < oo, WHP(Q) is a Banach space. Denote the space of all restrictions to 2 of
C'-differentiable functions from R™ to R with compact support in RY by C(Q).

Theorem 1.1.7. for every 1 < p < oo C1(Q) Cc WhEP(Q) C LP(Q) , and, for 1 < p < oo,
CH(Q) is dense in WHP(Q).

Definition 1.1.11. (weak convergence in WHP(Q) with 1 < p < o0).)
We say the {f,} C WHP(Q) weakly converges to f € WYP(Q), and we write f, — f in
WEP(Q) | if fr — f in LP(Q) and V f, — Vf in LP(Q;RY)

Definition 1.1.12. (weak convergence in W1 (Q)
. We say the {f,} € W5™(Q) weakly star converges to f € WH®(Q), and we write f, - f
in WHe(Q) , if fr = f in LP(Q) and V f,, = Vf in L®°(Q;RY)

Theorem 1.1.8. (Rellich). Let 1 <p < oo, {fn} C WYP(Q) and f € WEP(Q); if fn — f
in WHP(Q) when 1 < p < oo (resp.fr, — f in WH®(Q)) when p = 00) then f, — f in
LP(Q) ), which means that for every 1 < p < oo, the weak convergence in W1P(Q) imply the

strong convergence in LP ().

Theorem 1.1.9. Let 1 < p < oo and let {f,} € WEP(Q) . If {fn} is bounded, then there
exist f € WYP(Q) and a subsequence {fn,} of {fu} such that fn, — f in WIP(Q) when
1 <p<oo (resp. fn, — f in WEX(Q))

As a consequence of this theorem we have

Propriété 1.1.1. Let 1 < p < ooand let {f,} C WEP(Q) . If {f,} is bounded, then there
evist f € WHP(Q) and a subsequence {fn,} of {fn} such that fn, — f in LP(Q) and
Vfn, = Vf in LP(Q) when 1 < p < 00 (resp.V fn, — Vf in L®(Q))
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Theorem 1.1.10. . IfN < p < oo and if {fn} C WIP(Q) is bounded, then there exist
f € WHP(Q) and a subsequence {fn, } of {fn} such that {fn,} converges uniformly to f, and
Vfne = Vf in WHP(Q) when N < p < 0o (resp. V fy, — Vf in WE®)

1.2 Functional Spaces

1.2.1 The LP(Q)) spaces

Definition 1.2.1. Let 1 < p < oo and let Q2 be an open domain in R™, n € N. Define the
standard Lebesgue space LP(Q)) by

LP(Q) = {f : = R is measurable and / |f(z)Pdx < oo} (1.3)
Q
Notation 1.2.1. If p = oo, we have
L>*(Q) = {f : Q — Ris measurable and there exists a constant C such that |f(z)| < Ca.e € Q}.

Also, we denote by
Iflloe = inf{C, |f(2)] < Cace € Q}. (1.4)

Notation 1.2.2. Forp € R and 1 < p < oo, we denote by q the conjugate of p i.e. %4—% =1.

Theorem 1.2.1. LP(Q) is a Banach space for all 1 < p < oo.

Remark 1.2.1. In particularly, when p = 2, L*(Q) equipped with the inner product
s = | f@a(ds (15)

18 a Hilbert space.

Theorem 1.2.2. For 1 <p < oo, LP(Q) is a reflexive space.

1.2.2  Some integral inequalities

We will give here some important integral inequalities. These inequalities play an important

role in applied mathematics and also, it is very useful in our next chapters.

Theorem 1.2.3. ( Holder’s inequality). Let 1 < p < oo. Assume that f € LP(Q2) and
g € L1(QY), then fg € LP(Q) and

/ Faldz < (£ lllglla
Q
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Lemma 1.2.1. ( Young’s inequality). Let f € LP(R) and g € LI(R) with 1 < p < oo and
l:%+%—120. Then f*g € L"(R) and

1f*gllr@y < 1fllee) 9]l Lor)-

Lemma 1.2.2. . Let 1 <p <r <g, %=%+%, and 1 <a <1. Then
1—
ullr < Jlul|Ze llull L

Lemma 1.2.3. If u(2) < oo, 1 <p < q < oo, then LY — LP and

11
[ullze < p()7  Jull La-

1.2.3 The W™P(Q2) spaces

Proposition 1.2.1. Let Q be an open domain in RY. Then the distribution T € D'(Q) is
in LP(Q2) if there exists a function f € LP(QQ) such that

(T.¢) = [ f@plaldo, for all p  D(E),
Q
where 1 < p < oo and it’s well-known that f is unique.

Now, we will introduce the Sobolev spaces: The Sobolev space W*P(Q) is defined to be the
subset of LP such that function f and its weak derivatives up to some order k have a finite

LP norm, for given p > 1.
WhP(Q) = {f € LX(Q): D°f € LP(Q). Vo |a| < k}.

With this definition, the Sobolev spaces admit a natural norm:

1/p
= flwesey = | 32 1D FI0q |+ forp < 400
|oo| <m
and
F=— 1 fllwrooiy = D IDfllze() » for p = +o0
o] <m
Space WP (Q) equipped with the norm || . ||y« is a Banach space. Moreover is a reflexive

space for 1 < p < oo and a separable space for 1 < p < oco. Sobolev spaces with p = 2 are
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especially important because of their connection with Fourier series and because they form

a Hilbert space. A special notation has arisen to cover this case:
Wh2(Q) = HH(©)
the H* inner product is defined in terms of the L? inner product:

(f,D ey = > (Df, D) r2(q).-
lof <k
The space H™(2) and W*P(Q) contain C*(Q) and C™(Q2). The closure of D() for the
H™(Q) norm (respectively W"™P(€2) norm) is denoted by H{*(€2) (respectively Wéﬂ’p(Q)).
Now, we introduce a space of functions with values in a space X (a separable Hilbert space).

The space L?(a,b; X) is a Hilbert space for the inner product

b
(f.9) 12(apx) = / (F(8),g(t))x dt

We note that L>(a,b; X) = (L'(a,b; X))'. Now, we define the Sobolev spaces with values
in a Hilbert space X. For k € N, p € [1,00], we set:

WhP(a,b; X) = {v € LP(a,b; X); gv

T

€ LP(a,b; X). Vi < k} ,

The Sobolev space I/Vk’p(a7 b; X) is a Banach space with the norm

k of 1/p
1 fllwhr(apx) = <Z ||8m|ip(a,b;X)> , for p < +oo
i=0 ¢

and
b ow
”fHW’C’OO(a,b;X) = Z H%HL"O(a,b;X) , for p=+4o0
i=0 !
The spaces W#2(a, b; X) form a Hilbert space and it is noted H*(0,T; X). The H*(0,T; X)

inner product is defined by:

k b
ou Ov
(s V) i (a,pix) = Z/a <8xi’ M))( dt .
i=0
Theorem 1.2.4. Let 1 < p <n, then
WhP(R™) C LP" (R™)

where p* is given by 1% =1_ % Moreover there exists a constant C' = C(p,n) such that

Tp

ull o+ < ClIVullpp@ny, Yu € WP (R™).
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Corollaire 1.2.1. Let 1 < p < n, then
WHP(R") € LY(R"), Vg€ [p,p’]
with continuous imbedding.
For the case p = n, we have
WL (R™) ¢ LYR"), Vq € [n, +oo|
Theorem 1.2.5. Let p > n, then
WHP(R™) C L®(R")
with continuous imbedding.
Corollaire 1.2.2. Let Q a bounded domain in R™ of C! class withT = 0 and 1 < p < 0.

We have

- 1 1 1
if 1<p<oo, then W'P(Q) C LF" (Q) where —==——
p p n

if p=mn, then WYP(Q) C LY(Q),Vq € [p, +00|.

if p>mn, then WHP(Q) C L®(Q)

with continuous imbedding. Moreover, if p > n we have:
vue WH(Q),  |u(e) —u(y)| < Clz —y|*||ullwiro) aez,y e

with o = 1—% > 0 and C is a constant which depend on p,n and Q. In particular W1P(Q) C
c(@).

Corollaire 1.2.3. Let Q a bounded domain in R™ of C' class with T' = 0Q and 1 < p < oo.
We have

1 1
if p<n, then WHP(Q) C LYQ)Vq € [1, p*[ where o n’
P n

D=

if p=mn, then WHP(Q) C LY(Q),VYq € [p, +o0l.
if p>mn, then WHP(Q) Cc C(Q)

with compact imbedding.
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Remark 1.2.2. We remark in particular that
WhP(Q) c LY(Q)
with compact imbedding for 1 < p < oo and for p < g < p*.

Corollaire 1.2.4.

) 11
P g p n
.1 m
if -y =0, then WM (R") € LI(R"),¥q € [p, o0,

1
if == <0, then W™P(R™) € L®(R")
p on
with continuous imbedding.

Lemma 1.2.4. (Sobolev-Poincarés inequality)

2
[ 2<q< S>3 and g=2n=12

n _
then
Jully < Clq, )| Vull2, Vue Hy(Q).

Remark 1.2.3. For all ¢ € H*(Q), Ap € L*(Q) and for T' sufficiently smooth, we have
ez < CllA®)] 20

Proposition 1.2.2. ( Green’s formula). For all u € H*(Q), v € H'(Q) we have

—/Auvdw-/Vqudw—/ %vda,
Q Q a0 On
ou

where o 1s a normal derivation of u at I

1.2.4 Some Algebraic inequalities

Since our study based on some known algebraic inequalities, we want to recall few of them

here.

Lemma 1.2.5. ( The Cauchy-Schwartz’s inequality) FEvery inner product satisfies the
Cauchy-Schwartz’s inequality
(21, 22) < [l [|[|22]] (1.6)

The equality sign holds if and only if x1 and x1 are dependent.
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Lemma 1.2.6. (Young’s inequalities). For all a,b € R*, we have

1
b<aa®+ —b? 1.7
ab < aa +4a ( )

where a is any positive constant.

Lemma 1.2.7. For a,b > 0, the following inequality holds
I X
ab< = 4+ = (1.8)
p q

1,.1_9
where,p—I—q

1.3 Existence Methods

1.3.1 Faedo-Galerkin’s approximations

We consider the Cauchy problem abstract’s for a second order evolution equation in the

separable Hilbert space with the inner product (.,.) and the associated norm ||.| .

{ u”(t) + A(t)u(t) = f(t) tin [0, 71, (1.9)

U(J:‘, 0) = UQ(ZC), u/(:n, 0) = ul(x)a
where u and f are unknown and given function, respectively, mapping the closed interval
[0,7] C R into a real separable Hilbert space H. A(t) (0 < t < T ) are linear bounded
operators in H acting in the energy space V C H.
Assume that (A(t)u(t),v(t)) = a(t;u(t),v(t)), for all u,v € V; where a(t;.,.) is a bilinear

continuous in V. The problem (1.9) can be formulated as: Found the solution wu(t) such that

uwe C([0,T);V),u € C([0,T); H)
(W"(t),v) + a(t;u(t),v) = (f,v) tin D'(]0, T), (1.10)
ug €V, u € H,

This problem can be resolved with the approximation process of Fadeo-Galerkin.

Let V;, a sub-space of V with the finite dimension d,,, and let {wj,} one basis of

Vym such that .

1. Vi cV(dimV,, < o0),Vm € N
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2. Vi — V such that, there exist a dense subspace 9 in V' and for all v € ¥ we can get

sequence {Um tmen € Vin and vy, — v in V.
3. Vm C Vm+1 and UmeNVm =V

we define the solution u,, of the approximate problem

U () = 3297 g5 (£)wjm,

Um € C([0,T]; Vin),ul,, € C([0,T]; Vi), um € LQ(O,T; Vin)
(up, (t), wim) + at; um(t), wim) = (f, Wjm), 1 < j <dp
Um (0) = 3297 & (8)Wjm, 1l (0) = 30 15 (E)wjim,

(1.11)

where
dm

Zgj(t)wjm — up in Vas m — o0

j=1

dm

an(t)wjm — up in Vasm — o0

j=1
By virtue of the theory of ordinary differential equations, the system (1.11) has unique local
solution which is extend to a maximal interval [0,t,,[ by Zorn lemma since the non-linear

terms have the suitable regularity. In the next step, we obtain a priori estimates for the

solution, so that can be extended outside [0, ¢,,,] to obtain one solution defined for all ¢ > 0.

1.3.2 A priori estimation and convergence

Using the following estimation

T
a2 + el < C{Humm)u? T )] + /0 \|f<s>|12ds} 0<t<T

and the Gronwall lemma we deduce that the solution wu,, of the approximate problem (1.11)
converges to the solution u of the initial problem (1.9). The uniqueness proves that u is the

solution.

1.3.3 Gronwall’s lemma

Lemma 1.3.1. Let T > 0, g € L'(0,T), g > 0 a.e and cy1, co are positives constants. Let
0 € LY0,T) ¢ > 0 a.e such that gp € L'(0,T) and

o(t) < e+ 02/0 g(s)p(s)ds a.e in (0,T).
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then, we have

o(t) < creap (CQ /0 t g(s)ds> a.c in (0,T).

1.4 Aubin -Lions lemma

The Aubin Lions lemma is a result in the theory of Sobolev spaces of Banach space-valued
functions. More precisely, it is a compactness criterion that is very useful in the study of
nonlinear evolutionary partial differential equations. The result is named after the French
mathematicians Thierry Aubin and Jacques-Louis Lions. We complete the preliminaries by

the useful inequalities of Gagliardo-Nirenberg and Sobolev-Poincaré.

Lemma 1.4.1. LetXy,X and Xy be three Banach spaces with Xg C X C Xj. Assume
thatXy is compactly embedded in X and that X is continuously embedded in Xi; assume

also that Xy and X1 are reflexive spaces. For 1 < p,q < +oo, let
W ={ue LP([0,T]; Xo)/ @€ LI0,T]; X1)}
Then the embedding of W into LP([0,T7]; X) is also compact.
Lemma 1.4.2 (Gagliardo-Nirenberg). Let 1 <r < ¢ < 400 and p < q. Then, the inequality
lullwma < Cllullfymslwli™®  for wew™ (L

holds with some C > 0 and

k1 1\ (m 1 1\

b=(-+=-->)(=+=--=

n r q n r p

provided that 0 < 0 <1 (we assume 0 < 0 < 1 if ¢ = +00).

Lemma 1.4.3 (Sobolev-Poincaré inequality). Let ¢ be a number with 2 < q < +oo (n =1, 2)
or2<qg<2n/(n—2)(n>3), then there is a constant c, = c(Q, q) such that

lully < el[Vulla — for e Hy(%).

1.5 Semigroup and spectral analysis theories

As the analysis done in this P.H.D thesis local on the semigroup and spectral analysis
theories, we recall, in this chapter, some basic definitions and theorems which will be used

in the following chapters.



1.5 Semigroup and spectral analysis theories 25

1.5.1 Bounded and Unbounded linear operators

We start this chapter by give some well known results abound bounded and undounded
operators. We are not trying to give a complete development, but rather review the basic
definitions and theorems, mostly without proof. Let (E, ||.||g) and (E,||.||g) be two Banach
spaces over C, and H will always denote a Hilbert space equipped with the scalar product <
.,. >p and the corresponding norm ||.||f. A linear operator 7' : E — F' is a transformation

which maps linearly E in F', that is
T(ou+ pv) = aT'(u) + T (v), VYu,v € Fanda,p € C.

Definition 1.5.1. A bounded operator T : E — F is said to be bounded if there exists
C > 0 such that
|Tullr < Cllullg Yu € E.

The set of all bounded linear operators from E into F is denoted by L(E, F). Moreover, the
set of all bounded linear operators from E into E is denoted by L(E).

Definition 1.5.2. A bounded operator T € L(E, F) is said to be compact if for each sequence
(Zn)nen € E with ||zy||g =1 for each n € N, the sequence (T'xp)nen € E has a subsequence
which converges in F. The set of all compact operators from E into F is denoted by K(E, F).
For simplicity one writes K(E, E) = K(E).

Definition 1.5.3. Let T € L(E, F), we define

o Range of T by
R(T)={Tu: weE}CF.

o Kernel of T by
ker(I')={ue E: Tu=0}CE.

Theorem 1.5.1. (Fredholm alternative) if T € K(E), then
e ker(I —T) is finite dimension, (I is the identity operator on E ).
e R(I—T) is closed.
o ker(l—T)=0<R(I—-T)=E.

Definition 1.5.4. Let T : D(T') C E — F' be an unbounded linear operator.
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e The range of T is defined by

R(T)={Tu: weD(T)}CF

o The Kernel of T is defined by

ker(I')={ue D(T): Tu=0}CE.

o The graph of T is defined by

G(T)={(u,Tu): weD(T)} CEXF.

Definition 1.5.5. A map T is said to be closed if G(T) is closed in E x F. The closedness
of an unbounded linear operator T can be characterize as following if u, € D(T) such that

Up — u in E and Tu, — v in F, then u € D(T) and Tu = v.
Definition 1.5.6. Let T : D(T) C E — F be a closed unbounded linear operator.

o The resolvent set of T is defined by
p(T)={A e C: N —-T isbijectivefrom D(T) onto F}.
o The resolvent of T s defined by
RONT)={(M-T)"': Xep(T)}.

o The spectrum set of T is the complement of the resolvent set in C, denoted by
o(T) = C/p(T).

Definition 1.5.7. Let T : D(T) C E — F be a closed unbounded linear operator. we can
split the spectrum o(T') of T into three disjoint sets, given by

e The ponctuel spectrum of T' is define by
op(T)={ e C: ker(\[-T)#0}

in this case \ is called an eigenvalue of T
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e The continuous spectrum of T is define by

oo(T)={NeC: ker\A-T)=0,R\ —T)=F and(\[-T) 'is not bounded}.

o The residual spectrum of T is define by

or(T)={Ae€C: ker(A\] —T)=0andR(AM —T) is not dense in F}.

Definition 1.5.8. Let T : D(T) C E — F be a closed unbounded linear operator and
let X be an eigevalue of A. non-zero element e € E is called a generalized eigenvector of T

associated with the eigenvalue value X, if there exists n €* such that

M —-T)e=0 and (M —T)"'e+#0.
if n =1, then e is called an eigenvector.

Definition 1.5.9. Let T : D(T) C E — F be a closed unbounded linear operator. We say
that T has compact resolvent, if there exist \g € p(T) such that (Aol — T)™1 is compact.

Theorem 1.5.2. Let (T, D(T)) be a closed unbounded linear operator on H then the space
(D(T), Ilpery) where |lullpry = |Tullg + |lullg - Yu € D(T') is banach space .

Theorem 1.5.3. Let (T, D(T)) be a closed unbounded linear operator on H then, p(T) is

an open set of C.

1.5.2 Semigroups, Existence and uniqueness of solution

In this section, we start by introducing some basic concepts concerning the semigroups. The

vast majority of the evolution equations can be reduced to the form

U= AU, t>0,
{ ! (1.12)

U(0) = Uy

where A is the infinitesimal generator of a Cy-semigroup S(t) over a Hilbert space H. Lets
start by basic definitions and theorems. Let (X, ||.||x) be a Banach space, and H be a Hilbert

space equipped with the inner product < .,. > and the induced norm |.| .

Definition 1.5.10. A family S(t)i>0 of bounded linear operators in X is called a strong

continous semigroup (in short, a Cy-semigroup) if
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i) S(0) = 1.

ii) S(s+t)=5(s)S(t), Vt>0Vs>0.

iii) For each w € H, S(t)u is continous in t on [0, +00].
Sometimes we also denote S(t) by et

Definition 1.5.11. For a semigroup S(t)i>0, we define an linear operator A with domain

D(A) consisting of points u such that the limit

S(t)u —

Au = lim Y vu e D(A)

t—0t

exists. Then A is called the infinitesimal generator of the semigroup S(t)e>0.

Propriété 1.5.1. Let S(t);>0 be a Cy-semigroup in X. Then there exist a constant M > 1
and w > 0 such that
1S(E)|lcexy < Me®t. ¥t >0

If w = 0 then the corresponding semigroup s uniformly bounded. Moreover, if M =1 then

S(t)i=0 is said to be a Cy-semigroup of contractions.

Definition 1.5.12. An unbounded linear operator (A, D(A)) on H, is said to be dissipative
if
R < Au,u ><0,YVu € D(A).

Definition 1.5.13. An unbounded linear operator (A, D(A)) on X, is said to be m-

dissipative if
e A is a dissipative operator.
o J)\o such that R(Aol — A) =X
Theorem 1.5.4. Let A be a m-dissipative operator, then
e R(AI—-A4)=X, VA>0
* ]0,00[C p(A4).

Theorem 1.5.5. ( Hille-Yosida )An unbounded linear operator (A, D(A)) on X, is the

infinitesimal generator of a Cy-semigroup of contractions S(t)i>o if and only if
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e A is closed and D(A) = X.
e The resolvent set p(A) of A contains RY, and for all X > 0,

I = A) Mg < A7

Theorem 1.5.6. (Lumer-Phillips) Let (A, D(A)) be an unbounded linear operator on X,
with dense domain D(A) in X. A is the infinitesimal generator of a Cy-semigroup of con-

tractions if and only if it is a m-dissipative operator.

Theorem 1.5.7. Let (A, D(A)) be an unbounded linear operator on X. If A is dissipative

with R(I — A) = X, and X is reflexive then D(A) = X.

Propriété 1.5.2. Let (A, D(A)) be an unbounded linear operator on H. A is the infinitesimal

generator of a Co-semigroup of contractions if and only if A is a m-dissipative operator.

Theorem 1.5.8. Let A be a linear operator with dense domain D(A) in a Hilbert space H .
If A is dissipative and 0 € p(A) then A is the infinitesimal generator of a Cy-semigroup of

contractions on H.

Theorem 1.5.9. ( Hille-Yosida ) Let (A, D(A)) be an unbounded linear operator on H.

Assume that A is the infinitesimal generator of a Co-semigroup of contractions S(t)¢>0.

1. For Uy € D(A), the problem (1.12) admits a unique strong solution
U(t) = S(t)Uo € C([0, 00f; H) N C([0, oc[; D(A))
2. For Uy € D(A), the problem (1.12) admits a unique weak solution

U(t) € C°([0, 00[; H).

1.5.3 Stability of semigroup

In this section we start by itroducing some definion about strong, exponential and polynomial
stability of a Cg-semigroup. Then we collect some results about the stability of Cy-semigroup.
Let (X, ||.||x be a Banach space, and H be a Hilbert space equipped with the inner product

< .,.>p and the induced norm ||.||g.

Definition 1.5.14. Assume that A is the generator of a strongly continuous semigroup of

contractions S(t)i>0 on X. We say that the Cy-semigroup S(t)i>0 is
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Strongly stable if
lim [|S(t)ullx =0, VueX.

t—+o0

Uniformly stable if
lim_[S(1)20x) = 0

t—+o0

Ezxponentially stable if there exist two positive constants M and € such that

IS@ullx < Melullx, Vt>0, Vue X.

Polynomially stable if there exist two positive constants C' and o such that

IS(ullx < Ct|ullx, ¥t>0, YueX.

Propriété 1.5.3. Assume that A is the generator of a strongly continuous semigroup of

contractions S(t)i>0 on X. The following statements are equivalent
o S(t)e>0 is uniformly stable.
o S(t)t>0 is exponentially stable.

First, we look for the necessary conditions of strong stability of a Co-semigroup. The result

was obtained by Arendt and Batty.



Chapter 2

THE EULER-BERNOULLI BEAM
EQUATION WITh BOUNDARY
DISSIPATION OF FRACTIONAL
DERIVATIVE TYPE

2.1 Introduction

In this chapter we investigate the existence and decay properties of solutions for the initial

boundary value problem of the Euler Bernoulli beam equation of the type
(P) @tt(x>t) +@zmx:}c($at) =0 in]O,L[X}O,—!—OO[
where (z,t) € (0,L) x (0,400). This system is subject to the boundary conditions

0(0,1) = ¢z (0,1) =0 in (0, 400)
Puz(L,t) =0 in (0, +00) (2.1)
Pazx (L, t) =70 "o(L,t) in (0,400)

_|_
8

n (

where v > 0. The notation 9;"" stands for the generalized Caputo’s fractional derivative of

order o with respect to the time variable. It is defined as follows

dw

@ 1 ! —a ,—n(t—s
at 7’,7'l,l)(t) = 1—‘(]_—05)/(; (t - S) (& n(t )E(S) dS, n Z 0.
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The system is finally completed with initial conditions

o(r,0) = po(x), ¢i(z,0) =p1(z)

where the initial data (pg, ¢1) belong to a suitable function space.
A simple model describing the transverse vibration of a system of non-homogeneous con-

nected Euler-Bernoulli beams, which was developed in [13], is given by a system of the

form
meu(z,t) + Elogges(z,t) =0 in ]0, L[x]0, +o0[
(0,t) =0,
z(0,1) = 0, (2.2)
—Elpu(1,t) = —k2pi(1,1), k1 € R,
—ETp..(1,t) = k3pn(1,1), ks € R,
L o(@,0) =po(z), @u(z,0) =p1(z), z€(0,L)

where m denotes the mass density per unit length, Fl is the flexural rigidity coefficient, and

the following variables have engineering meanings:

p = vertical displacement, ¢y = velocity,
¢z = rotation, p,+ = angular velocity,
—FEIp,; = bending moment

—Elpgys = shear

at a point x, at time ¢.

Boundary conditions (EB)s and (EB)s signify that the beam is clamped, at the left end,
x = 0 while boundary conditions (EB)4 and (EB)s at the right end, z = 1, respectively,
signify

shear (—FElp,z,) is proportional to velocity (¢¢)

{ bending moment (—FIp,,) is negatively proportional to angular velocity (¢u¢)
Control of elastic systems is one of the main themes in control engineering. The case of the
wave equation with linear and nonlinear boundary feedback has attracted a lot of attention
in recent years. The bibliography of works in the direction is truly long (see [4], [10], [11],
[12], [20], [21], [27]) and many energy estimates have been derived for arbitrary growing

feedbacks (polynomial, exponential or logarithmic decay).
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For plates, also with linear and nonlinear boundary feedback acting through shear forces
and moments, we refer to [24],[25], for stabilization results and [23] for estimates of the
decay. The more difficult case of control by moment only has been studied in [26]. All these
papers are based on multiplied techniques.

The case of serially connected beams has also been considered, with linear feedback acting
genuinely on the force at the nodes [14]. Exponential stability is proved in the case of
nondecreasing density and nonincreasing flexural rigidity. The same result has been proved
in the more difficult case of control by moment only, for single homogeneous beam [13].

In [33] B. Mbodge studies the decay rate of the energy of the wave equation with a bound-
ary fractional derivative control as in this paper. Using energy methods, she proves strong
asymptotic stability under the condition n = 0 and a polynomial type decay rate E(t) < C/t
if n # 0.

The boundary feedback under the consideration are of fractional type and are described by
the fractional derivatives

fe' 1 t —a _—n(t—s dw
8t 777’11](t) = F(l—a)/o (t — S) (& 77(t )E(S) ds

The order of our derivatives is between 0 and 1. Very little attention has been paid to
this type of feedback. In addition to being nonlocal, fractional derivatives involve singular
and nonintegrable kernels (17%,0 < a < 1). This leads to substantial mathematical diffi-
culties since all the previous methods developed for convolution terms with regular and/or
integrable kernels are no longer valid.

It has been shown (see [34]) that, as J;, the fractional derivative 95 forces the system to
become dissipative and the solution to approach the equilibrium state. Therefore, when
applied on the boundary, we can consider them as controllers which help to reduce the
vibrations.

In recent years, the application of fractional calculus has become a new interest in research
areas such as viscoelasticity, chaos, biology, wave propagation, fluid flow, electromagnetics,
automatic control, and signal processing (see [40]). For example, in viscoelasticity, due to
the nature of the material microstructure, both elastic solid and viscous fluid like response
qualities are involved. Using Boltzmann assumptions, we end up with a stress-strain rela-
tionship defined by a time convolution. Viscoelastic response occurs in a variety of materials,
such as soils, concrete, rubber, cartilage, biological tissue, glasses, and polymers ([5], [6] and

[32]). In our case, the fractional dissipations may come from a viscoelastic surface of the
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beam or simply describe an active boundary viscoelastic damper designed for the purpose
of reducing the vibrations (see [33], [34]).

Our purpose in this chapter is to give a global solvability in Sobolev spaces and energy decay
estimates of the solutions to the problem (P) with a boundary control of fractional derivative
type. To obtain global solutions to the problem (P), we use the argument combining the
semigroup theory (see [8]) with the energy estimate method. For decay estimates, Under
the condition n = 0, using a spectral analysis, we prove non-uniform stability. On the other
hand if n # 0, we also show a polynomial type decay rate using a frequency domain approach

and a recent theorem of A. Borichev and Y. Tomilov.

2.2 Augmented model

This section is concerned with the reformulation of the model (P) into an augmented system.

For that, we need the following claims.

Theorem 2.2.1 (see [33]). Let u be the function:
p() = [g|*2, —0o <€ <400, 0<a <l (2.3)

Then the relationship between the “input’ U and the ’output’ O of the system

OP(E, 1) + (€ +me(&,t) —U(t)u(€) =0, —o0 <& < 400, >0,t> 0, (2.4)
$(£,0) =0, (2.5)
+oo
O(t) = (m) tsinfam) [ p(€o(e. 1) de (2.6)
is given by
O = 1"~ = D> (2.7)

where

10 = g [ =) e (e,

Lemma 2.2.1. If A€ D={A € C: ReA+n>0}U{X € C:ImA# 0} then

oo /1’2(5) _ 4 a—1
/OO )\+77+§2d£_sina7r(/\+n) )
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Proof Let us set

We have

’ 12 (€)
A+ &2

1 (€)
FA Ty OF
g { R(i)\-‘g?']‘f'éa
[T A|4+n+£2
Then the function f) is integrable. Moreover
12(8)
A1+ &2

2
noirgi)@ for all ReA > ng > —n

> 2 N
228 for all[TmA| > 7ig > 0

From Theorem 1.16.1 in [47], the function

fr: D — C is holomorphe.

For a real number A\ > —n, we have

e (O B S B S €2 -
/ )‘""77"‘52(15_/—00 )\+?7+§2d£_/0 )\+17+:):dx(W1th£ =)

—00

+oo
= (A / YNy — 1) dy (with y = 2/(A+n) + 1)

= (A +n)! /0 271 — 2)* 1 dz (with z = 1/y)

= A+ B(l-a,a) = (A+n)* ' T(1 - a)l(a) = (A+n)*"

sin mo
Both holomorphic functions fy and A — (A+n)*"! =" coincide on the half line ] — oo, —7],

sin Ta

hence on D following the principe of isolated zeroes.
We are now in a position to reformulate system (P). Indeed, by using Theorem 2.2.1, system

(P) may be recast into the augmented model:

it + Prazz = 0,

Op(&,1) + (&2 + (&, t) — @i (L, t)p(€) =0,

©(0,1) = ¢2(0,1) = 0,

Paa(L, 1) =0,

Paza(Lyt) = (m) " sin(am) [T w(€)d(é, 1) dE,
[ #(2,0) =wo(x), @i(,0) = p1().

(2.8)

We define the energy associated to the solution of the problem (P’) by the following formula:

“+oo

B(®) = 511l + 5llel + 3 (0 sintam) [ (o(60)7de. (29)
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Lemma 2.2.2. Let (¢, ¢) be a solution of the problem (P'). Then, the energy functional
defined by (2.9) satisfies

“+oo

E(t) = —(x) L sin(am)y / (€2 + n)((€, 1)2 de < 0. (2.10)

Proof
Multiplying the first equation in (P’) by ¢, integrating over (0, L) and using integration by

parts, we get

1d, L
5%”@75“2 +/0 Soxa:acmcptdx =0.
Then
d (1 9 1 9 +oo
DL+ Sowal) + ooty [ m@otendc=0. @)

1

Multiplying the second equation in (P’) by ~(m) *sin(am)¢; and integrating over

(=00, +00), to obtain:
—+00

sotoli ¢ [ @ menrae-carn [ uesend=o (@12

From (2.9), (2.11) and (2.12) we get

+o00
B (t) = ¢ / (€ + m)(B(¢. )2 de

where ¢ = (7)1 sin(an)y. This completes the proof of the lemma.

2.3 Global existence

In this section we will give well-posedness results for problem (2.8) using semigroup theory.
Let us introduce the semigroup representation of the (2.8). Let U = (¢, ¢¢, )T and rewrite
(2.8) as

{ U' =AU, (2.13)

U(0) = (o, ¥1, %0),
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where the operator A is defined by

© U
A U = —Prrrz (214)
¢ —(& +m)e +u(L)u(§)

with domain

o,u,0)l in H:pe HY0,L) N H?(0,L),u € H%(0,L),
D(A) = —(& +me +u(L)u(§) € Li(m—oo, +00), | 2.15)
Por(L) =0, Quaz(L) — ¢ [77 1(&)p(€) dE =0

[€]¢ € L?(—00, +00)

where the energy space H is defined as
H = H?(0,L) x L*(0, L) x L*(—o0, +00)

where
H?(0,L) = {p € H*(0,L) : ¢(0) = ,(0) = 0}
For U = (p,u, )T, U = (3,7, )", we define the following inner product in H
OO = [t pue)das [ opde
0 —0o0
We show that the operator A generates a Cy- semigroup in H. In this step, we prove that
the operator A is dissipative. Let U = (¢, u, ¢)T. Using (2.13), (2.10) and the fact that

B = 51U, (2.16)

we get .
(AU, Uy = —C / (€2 + 1) (6(€))? de. (2.17)

Consequently, the operator A is dissipative. Now, we will prove that the operator \I — A is
surjective for A\ > 0. For this purpose, let (f1, f2, f3)7 € H, we seek U = (¢, u, ¢)T € D(A)

solution of the following system of equations

Ap —u = fi,
Ao+ (&2 +m)d —u(L)u(é) = f3
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Suppose that we have found ¢. Therefore, the first equation in (2.18) gives
u=A\p— fi. (2.19)
It is clear that u € H% (0, L). Furthermore, by (2.18) we can find ¢ as

f5(6) + pl€)u(l)

= 2.20
¢ E2+n+A (2:20)
By using (2.18) and (2.19) the function ¢ satisfying the following system
N + Prage = f2 + M. (2.21)
Solving system (2.21) is equivalent to finding ¢ € H* N H?(0, L) such that
L L
0 0
for all w € HZ(0,L). By using (2.22) and (2.20) the function ¢ satisfying the following
system
{ fOL )‘2‘:0'“} + PraWes) dr + 5“( Jw(L) (2.23)
Jo ot Ap)wda — ¢ [*2 A f3(€) dé w(L)
where ¢ = ¢ f+;° 52’17#)\ d¢. Using again (2.19), we deduce that
u(L) = Ap(L) — f1(L). (2.24)
Inserting (2.24) into (2.23), we get
L x L
{ Jy V2w + pratvn) do + Op(L)w(L) = [y (fo + Af1)w da (2.25)
—C T S f3(8) dE w(L) + Cf(L)w(L)
Consequently, problem (2.25) is equivalent to the problem
a(p,w) = Lw) (2.26)

where the bilinear form a : [H7(0, L) x H?(0,L)] — R and the linear form
L: H%(0,L) — R are defined by

L ~
a(ip,w) = / (Now + Pastvas) dz + Ap(Lyw(L)
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and

vy = [ (e amwde ¢ [ G d wi) + ),

It is easy to verify that a is continuous and coercive, and L is continuous. So applying the
Lax-Milgram theorem, we deduce that for all w € H?(0, L) problem (2.26) admits a unique
solution ¢ € H%(0,L). Applying the classical elliptic regularity, it follows from (2.25) that
@ € H*0,L). Therefore, the operator A\I — A is surjective for any A > 0. Consequently,

using HilleYosida theorem, we have the following results.

Theorem 2.3.1 (Existence and uniqueness).

(1) If Uy € D(A), then system (2.13) has a unique strong solution

UeC' Ry, D(A)NCHR,,H).

(1) If Uy € H, then system (2.13) has a unique weak solution

UeC'Ry,H).

2.4 Lack of exponential stability
In order to state and prove our stability results, we need some lemmas.

Theorem 2.4.1 ([41]). Let S(t) = e be a Cy-semigroup of contractions on Hilbert space.
Then S(t) is exponentially stable if and only if

p(A) D {iB: B R} =R

and
T GBI — A) ") < oo
|Bl—o0
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Theorem 2.4.2 ([9]). Let S(t) = et be a Cy-semigroup on a Hilbert space. If

. . _
iR C p(A) and sup — ||(iBI — A) Yeay <M
811 8
for some 1, then there exist ¢ such that

C
leMTp|* < §|’U0||%)(,4)-
t1

Theorem 2.4.3 ([3|). Let A be the generator of a uniformly bounded Cy. semigroup
{S(t)}+>0 on a Hilbert space H. If:

(i) A does not have eigenvalues on iR.
(it) The intersection of the spectrum o(A) with iR is at most a countable set,

then the semigroup {S(t)}i>0 is asymptotically stable, i.e, ||S(t)z]ly — 0 ast — oo for any
zeH.

Theorem 2.4.4. The semigroup generated by the operator A is not exponentially stable.

Proof: We will examine two cases.

Case 1 17 = 0: We shall show that ¢\ = 0 is not in the resolvent set of the operator A. Indeed,
noting that (zsinz,0,0)” € H, and denoting by (p,u, )’ the image of (xsinz,0,0)” by
AL we see that ¢(¢) = \§|%Lsin L. But, then ¢ € L?(—o00, +00), since a €0, 1[. And so
(.1, 6)T & D(A).

e Case 2 1 # 0: We aim to show that an infinite number of eigenvalues of A approach
the imaginary axis which prevents the Euler-Bernoulli system (P) from being exponentially
stable. Indeed we first compute the characteristic equation that gives the eigenvalues of A.
Let A be an eigenvalue of A with associated eigenvector U = (¢, u, ¢)T. Then AU = AU is

equivalent to

Ap—u =0,
A+ Qrgzr = 0, (2.27)
Ap+ (€2 + )¢ —u(L)u(§) =0

From (2.27); — (2.27)2 for such A, we find
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Using (2.27)3 and (2.27)4, we get

90(0) = O, P (O) = 072909390(11) =0
pran(L) = C 13 by déu(L) (2.29)
= aza(L) = YA+ 1) (L) =0

The caracteristics polynomiale of (2.28) is
st A2 =0.
We find the roots
ti(A) = \}5(1 +OVA, ta(N) = —ty, t3(N) = ity ta(N) = —ts.

Here and below, for simplicity we denote t;(\) by t;. The solution ¢ is given by

4
pla) =3 e (2.30)
i=1
Thus the boundary conditions may be written as the following system:

! L 1 1 c1 0

131 to ts ta o 0
MMNC(N) = _ )1
( ) ( ) t%etlL t%etlL t%etlL tietlL cs 0 ( )

h(tl)ehL h(t2)€t2L h(tl)etlL h(tl)etlL 4 0

where we have set
h(r) = rd — YA + 77)0‘_1.

Hence a non-trivial solution ¢ exists if and only if the determinant of M (\) vanishes. Set
f(X) = detM(\), thus the characteristic equation is f(\) = 0.

Our purpose in the sequel is to prove, thanks to Rouché’s Theorem, that there is a subse-
quence of eigenvalues for which their real part tends to 0.

In the sequel, since A is dissipative, we study the asymptotic behavior of the large eigenvalues
A of A in the strip —ag < R(A\) < 0, for some ag > 0 large enough and for such A, we remark

that e*’ i =1,...,4 remains bounded.

Lemma 2.4.1. There exists N € N| such that

{Ae}reze k>n C o(A) (2.32)
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where

a B

Ak = L2(1—a) + |k [20-

(2l<:+1) 2+

1 ~ .
4L2 a)+0(k3_a>,|k:|2N,a€zR,ﬁeR,ﬁ<0,

Moreover for all |k| > N, the eigenvalues Ay are simple.

Proof
FON) = —2tle —iLV2X (1 1 (HDLVEX 4 (BLVEX 4 o(—1+)LV2X 4 il V2 4 (1—i)r
(4L p(1H)LV2X _ (1-i)le e2ILVIN _ ()L ol— 1+i)L\/ﬁ)

(2.33)

Since all the eigenvalues locate on the open left-half complex plane, and since A is symmetric
with respect to the real axis, we need only to consider the case where 7/2 < 6§ < 7. Since
= /|\|(cos § +sin %), we see that

VA =0V, VP =0 VN, 1> 0.

We set
FOO =14 eUHILVIA 4 BN 4 ((CIHDLVRA 4 (1 — )y (1 4 §) L eHD LV
—(1 = i) eV — (1 4 0) L eTHIEY2A (with 7 = (A + 1)) (2.34)
= fo( ) >\3/g )a +o ()\3/]2-70!

where
fo(A) = 14 eHIIV2A, (2.35)
fi(\) = 7(1\/; ) (1 —i4(1 +i)e(1+i)Lm) . (2.36)

Note that fy and fi remain bounded in the strip —ap < R(\) <0
Step 2. We look at the roots of fy. From (2.35), fp has one familie of roots that we denote
)\0
.
fO(A) —0< e(1+i)L\/ﬁ - 1.

Hence

(1+i)LV2X =i(2k + D)w, keZ,

ie.,

2 = 4L2(2k+1) ke€Z.
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Now with the help of Rouché’s Theorem, we will show that the roots of f are close to those
of fp. Changing in (2.34) the unknown A by u = (1 +¢)Lv/2\ then (2.34) becomes

F) =@+ 1+0 () = ot +0 (3.

The roots of fy are uy = ﬁ(Qk +1)%72,k € Z, and setting u = uy + e’ t € [0,27], we can
easily check that there exists a constant C' > 0 independent of k such that |e" + 1| > Cr
for r small enough. This allows to apply Rouché’s Theorem. Consequently, there exists a
subsequence of roots of f which tends to the roots uy of fy. Equivalently, it means that
there exists N € N and a subsequence {A} x> n of roots of f()), such that A, = AQ + o(1)
which tends to the roots ﬁ(Qk + 1)%72 of fo. Finally for |k| > N, A is simple since AY is.
Step 3. From Step 2, we can write

7

_ 2_2
Using (2.37), we get
Gropvax _ g Hew ok 9.38
° s r o) (2.38)
Substituting (2.38) into (2.34), using that f(\z) = 0, we get:
. 2Ley, gra2-ay €k
f( k) (2]{3 + 1)71' ((Qk + 1)7.‘.)2(1—04)-}—11'1—04 + 0( L ) 0 ( )
and hence ) )
47Ty T .. T
ey = TSIk £ )20 <cos(1 - a)§ —isin(l — a)i) . (2.40)

From (2.40) we have in that case |k|>(I"® R\ ~ 8, with

-«

9L s
/B = —m COS(]. — 06)5

The operator A has a non exponential decaying branch of eigenvalues. Thus the proof is

complete.

Remark 2.4.1. We can also show the lack of exponential stability by proving that the second
condition in Theorem 2.4.1 does not hold. In particular, it can be shown that there is a

sequence A, € R diverging to oo, and a bounded sequence F,, € H such that
[(iXn — A) " E,|| — oo for all n large enough .

We give details of the proof in the Appendix.
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2.5 Asymptotic stability

Lemma 2.5.1. A does not have eigenvalues on iR.

Proof
We will argue by contraction. Let us suppose that there A € R, A # 0 and U # 0, such that
AU = iA\U. Then, we get

iAp —u =0,
AU+ Przze = 0, (2'41)
iAp+ (€2 + )¢ — u(L)u(§) =0,

Then, from (2.17) we have

6 =0. (2.42)
From (2.41)3, we have
u(L) = 0. (2.43)
Hence, from (2.41); we obtain
¢(L) =0 and @z (L) = 0. (2.44)
From (2.41); and (2.41)3, we have
~A%0 + Yausz = 0. (2.45)

Now, we prove that ¢,(L) = 0. We have the following Lemma.

Lemma 2.5.2 ([15]). Let ¢ € H*(0,L) a solution of equation (2.45). Assume there exists

C € [07 L[ such that SD(C)a (Px(C)’ Soxoc(g) are > 0, and SO(C) + QOx(C) > 0. Then @, Px, Pz ATE
>0 on|(, L].

Proof We integrate equation (2.45) from ¢ < x to z:

= Sorm:a:(C) + z? fgx (,O(t) dt |

Integrating once more, we get

Prz(2) = 022(C) = (& = O)paaa(C) + N2 fcx fct o(z)dzdt
= (2 = Q)waa(C) + A [ (2 = t)p(t) dt. (2.47)
Pz () = p22(C) + (T = ()pwaa(C) + A2 fg(:z —1)p(t) dt.
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Since ¢(¢) + ¢z(¢) > 0 and ¢(¢) > 0, there exists n > 0 such that ¢ > 0 on |(,n]. Let
n <1 as large as possible, and suppose 1 < 1, that is, ¢(n) = 0. By (2.47) and assumptions
in Lemma 2.5.2, ¢,, > 0 on [(,n]. Thus ¢, is nondecreasing, and therefore > 0 on [(, 7].
Then ¢ is also nondecreasing on [, n]. But this contradicts ¢(n) = 0. Thus n = 1 and ¢ is
> 0 on |¢,n]. The same is true for @, .z, Yrr and p,.

Corollaire 2.5.1. Soit ¢ € H?(0,L) a solution of equation (2.45) such that p(L) >
0,0:(L) <0,9z.(L) >0, and o(L) — ¢, (L) > 0. Then ¢ >0 on [0, L.

Proof We set 9(x) = ¢(L — x). Then v satisfies (2.47). Then applying Lemme 2.5.2.

Now, as ¢(L) = 0, assume @z(L) # 0, for instance pz(L) < 0, without restriction. By
corollary 2.5.1, ¢ > 0 on [0, L[, thus ¢(0) > 0, which is a contradiction. Therefore, p(L) =
Pa(L) = @oa(L) = paza(L) = 0.

Consider X = (¢, ¥z, P2z, Praz). Then we can rewrite (2.44) and (2.45) as the initial value

problem
d
2L X =BX
;(L)_O (2.48)
, Where
100
010
B=
0 01
-2 00 0

By the Picard Theorem for ordinary differential equations the system (2.48) has a unique
solution X = 0. Therefore ¢ = 0. It follows from (2.41), that u = 0 and ¢ = 0, i.e., U = 0.
Consequently, A does not have purely imaginary eigenvalues, so the condition (i) of Theorem
2.4.3 holds. The condition (ii) of Theorem 2.4.3 will be satisfied if we show that o(A) N {iR

is at most a countable set. We have the following lemma.

Lemma 2.5.3. We have
iR C p(A) if n#0,
iR* C p(A) if =0
where R* =R — {0}.
Proof
Let A € R. Let F' = (f1, f2, f3)7 € H be given, and let X = (¢, u,$)’ € D(A) be such that

(M — A)X = F. (2.49)
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Equivalently, we have

Z)\SO —u= f17
I+ Qpzar = fo, (2.50)
ixp+ (€2 +n)d —u(L)u(€) = f3

From (2.50); and (2.50)2, we have

220+ Yrpas = (fa+iAf1) (2.51)

Suppose that A # 0. It is enough to consider A > 0. Let A = 72. Taking into account the
domain boundary conditions ¢(0) = ¢,(0) = 0, implies that the general solution for (2.51)

is of the form
o(z) = A(cosh Tz — cosTx) + B(sinh 7z — sin7x)

T | (252
+55 o (f2(0) +im2 f1(0))(sinh 7(x — o) — sinT(z — 0)) do
. Hence
oz (T ) = 7[A(sinh 72 + sin72) + B(cosh 7z — cos 7)] (2.53)
+55 [ (fo(0) + it f1(0))(cosh T(z — 0) — cos T(z — 0)) do, '
@2z (1) = T2[A(cosh T2 + cos 7x) + B(sinh 72 + sin 7)] (2.54)
+% I3 (f2(0) + it f1(0))(sinh 7(z — o) + sinT(z — 7)) do, '
Oaze(x) = T3[A(sinh 72 — sin72) + B(cosh 7z + cos 7z)] (2.55)
+= fo (fo(o) +it?f1(0))(cosh 7(x — o) + cos T(z — 7)) do. '
Taking the remaining boundary condition ¢,;(L) = 0, we obtain
A(cosh 7L + cosTL) + B(sinh 7L + sin L) (2.56)
= —# OL(fQ(O') +i72f1(0))(sinh 7(L — o) +sin (L — o)) do-. -
From (2.50)3, we have
iIN+E+n
Then o 5) oo
Paza(L C/ M+§2 +C/ M+§2+nd£' (2.57)
Since

oo :U’z(é) _ . a—1
C/_OO mdf—ﬂzk—kﬁ)



2.5 Asymptotic stability 47

and
u(L) = idp(L) — f1(L),
using (2.57), we get

) f3(§)

761.
iT2+£2 4+ ¢

Paaa(L) —imy(ir? +1)*Hp(L) = —y(ir® + ) 7 fi(L) + ¢ /+OO
Then
A[r3(sinh 7L — sin 7L) — i72y(it? + n)* 1(cosh 7L — cos TL)]
—i—B[ 3(cosh 7L + cosTL) — it?y(it? + n)* (sinh 7L — sin 7L)]
—3 Jy (falo) + i fr(0 »(00ﬁlT(L 0) +cosT(L — o)) do (2.58)
+iry(it? + n)o ! 1 fo (fo(o) +it?f1(0))(sinh 7(L — o) —sinT(L — o)) do

—(ir? + )" 1f1 )+ ¢ I LB e,

Using (2.58) and (2.56), a linear system in A and B is obtained

B GEC
ma1 Moo B Cs

where
mq1 = (cosh7L + cosTL),
mig = (sinh 7L +sin7L),

ma1 = [T3(sinh 7L — sin7L) — it2y(it? 4+ 1)* Y(cosh 7L — cos TL)],
mas = [13(cosh 7L + cos 7L) — iT%y(it? 4 n)* (sinh 7L — sin7L)].

Ci = 7273 fo (fo(o) +it2f1(0))(sinh 7(L — o) +sin7(L — 7)) do

Co=—3 fo (fo(o) +it%f1(0))(cosh 7(L — o) + cos 7(L — o)) do
iy (it? + n)ot 1 fo (fo(o) +it2f1(0))(sinh 7(L — o) —sin7(L — 7)) do
—y(ir? + )" 1f1 )+ ¢ ftf: BEBE) g

Let the determinant of the linear system given in (2.59) be denoted by D. Then the following

is obtained:

D = miimaz — migmar
= 73(cosh 7L + cos 7L)? — 73(sinh 7L + sin 7L)(sinh 7L — sin7L)
+2i7y(it2 + n)* [cosh 7 Lsin 7L — sinh 7L cos 7 L]
=273(1 4 cosh 7L cos L) + 2iy72(i? + n)* cosh 7 Lsin 7L — sinh 7L cos TL]
= 273(1 + cosh 7L cos TL) + 2y72 (74 + 7]2)(1771 sin(l — a)0 [coshTLsin 7L — sinh 7L cos TL]
+2iyT2(74 + nz)aT_l sin(1 — «)0 [coshTLsin 7L — sinh 7L cos T L]
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where 6 €] — 7/2,7/2[ such that

The roots of
[cosh w sinw — sinh w cosw] = 0

are of the form wy = 0 + km, o < 7/4, k € N*. Hence

1+ coshwy coswy #0 Vk € N,

Then
D#0 V\eR".

Hence i\ — A is surjective for all A € R*. Now, if A = 0 and 7 # 0, the system (2.50)

reduced to the following system

u=—fi,
(2.60)

Prrzr = f2,
(& +n¢ —u(L)p(§) = fs,

Pz (T) =

‘px:r(x) = / / f2(’l“) drds+ Cx+ C'.
0o Jo
X S T C 2 , ,
0e(x) = fo(z)dzdrds+ —a*+ C'x + C".
o Jo Jo 2
X S T z C 3 C/ 2 9 o
= fo(w)dwdzdrds + —z° + —z° + C"z + C".
o Jo Jo Jo 6 2

We deduce from (2.60),
= / fa(s)ds + C.

As p(0) = p,(0) =0, we find C" = C" = 0.
From (2.60); and (2.60)3, we have
too +o0
- f 0 Zz_(fg déu(L —{—Cf H(gfé ) de

(L +cf+°°“§3f,7 de.

We find
a—1 +OO
/ Jolr)dr — " fi(L) — ¢ / 52 ) e,
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Because ¢z, (L) = 0, we find

C'=-CL— /OL/O fo(r) dr ds.

Lemma 2.5.4. Let A be defined by (2.14). Then

Hence A is surjective.

% —u
¢ —(&2+n)p — u(L)u(€)

with domain

(o, u, )T inH:pec HY0,L)N H%(O,L),u € H%(O7 L),
—(&2 +n)¢ — u(L)p() € L*(—o0, +00),

Pra(L) =0, Qraa(L) — ¢ [125 n(€)e(€) d€ =0

€]¢ € L?(—o0, +00)

D(A*) = (2.62)

Proof
Let U = (p,u,¢)T and V = (5,4, ¢)T. We have < AU,V >y=< U, A*V >4.

< AU,V >y= fo Ug Bz A — fo T d:c+<f+°° (€ 406+ u(l Ju(€)] dé
¢ ff;" ¢[(£2 +77)¢ dé + Cu(L f 2 ) de.

AS Qraa(L) = € [72° u(€)p d€ and if we set Gue(L) = 0 and Guen(L) = ¢ [72° u(€)d de, we
find

L L +00 ~
< AU,V >y= /0 UP e AT — /0 ligePae Az — ) PL(E* +n)d + p(&)a(L)] dE.

Theorem 2.5.1. 0,(A) = 0, where o,.(A) denotes the set of residual spectrum of A.

Proof
Since A € 0,(A), X € g,(A*) the proof will be accomplished if we can show that o,(A) =

op(A*). This is because obviously the eigenvalues of A are symmetric on the real axis. From
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(2.61), the eigenvalue problem A*Z = A\Z for A € C and 0 # Z = (¢, u, ¢,v) € D(A*) we

have

Ap +u =0,
Au— Prrzr = 0,
AP+ (€% +n)¢ +u(L)u(&) = 0,

From (2.63); and (2.63)2, we find
>\280 + Pzzzz = 0,

As @y (L) = ij;o w(€)p(§) d€, we deduce from (2.63)3 and (2.63); that

‘)O:Jc:m:(L) = ij—;o M(&)Cb( = _Cu f—i-oo )\i(fhm g
= A+ n)“‘lw(L)-

with the following conditions

©(0) =0, pz(0) =0, gz(L) = 0.

(2.63)

(2.64)

(2.65)

(2.66)

System (2.64)-(2.66) is the same as (2.28) and (2.33). Hence A* has the same eigenvalues

with A. The proof is complete.

eCase2 n # O:

Theorem 2.5.2. The semigroup Sa(t);>q is polynomially stable and

1
1S4 Uolln < WHUOHD(A)

Proof
We will need to study the resolvent equation (iA — A)U = F, for A € R, namely

iAo —u=f1,
Z}\u + QOJ:J;];:L‘ == f27
iAp+ (2 +n)p — u(L)u(€) = f3,

where F' = (f1, f2, f3)T. Taking inner product in # with U and using (2.17) we get

|Re{AU,U)| < [U I3[ F 12

(2.67)

(2.68)
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This implies that
+0o0
¢ / (€ + ) (D6, 1)) dE < |U |l Fla. (2.69)

and, applying (2.67)1, we obtain

Ale(L)| = [f1(L)] P < Ju(L).
We deduce that
IAPle(L)[? < el f1(L)]? + clu(L)[*.

Moreover, from (2.67)4, we have

400
raalL) = ¢ /_ H(©)6(€) de

(pars (L) < €227 m(eyoe) de|
< ([T +m) ()P de) [ (E + mlo(€) 2 d (2.70)
< Ul Pl

Then

From (2.67)3, we obtain
w(L)p(€) = (IN+E +n)d — f3(8). (2.71)
By multiplying (2.71)1 by (iA + &2 4+ 1) u(€), we get

(A + & +n) " u(L)p*(€) = (&) — (IA+ €+ n) " (&) f3(8). (2.72)

Hence, by taking absolute values of both sides of (2.72), integrating over the interval | —
00, +00[ with respect to the variable £ and applying Cauchy-Schwartz inequality, we obtain

Slu(L)| < U ( / :0(52 " n>|¢r2ol5>é +v ( / :O |f3(€)!2d§)% (2.73)

where

/ N+ €+ )~ fule) 2 de

( (€ +n) (e Wg)é

[NIES

V- (/OO (A + €+ n) 2 |u(¢ )!2d§> :



2.5 Asymptotic stability 52

Thus, by using again the inequality 2PQ < P? + Q2 P > 0,Q > 0, we get

+00 +oo
S?Ju(L)? < 20 ( NG +77)|¢>|2d£> Lo ( / \f3(£)|2d€> . (2.74)
We deduce that
(L) < AP el Fllg + el FIZ. (2.75)

Let us introduce the following notation
Io(@) = [u(@)]? + |¢sa(@)[®

L
£,(L) = /0 T, (s) ds.

Lemma 2.5.5. Let ¢ € H'(0,L). We have that

L

L
/0 @z[|u(2)]* + 3|@ga(2)]?] dfﬂ+2/0 Qoo PraPy AT < [qL,)5 — 2Luea(L)pu(L) + R (2.76)

where R satisfies
|R| < C|[U3l| Fll3-

for a positive constant C'.

Proof
To get (2.76), let us multiply the equation (2.67)2 by ¢, Integrating on (0, L) we obtain

L L L
i\ / uqp, dr + / PrzeadPy AT = / Joqip, dx
0 0 0

or

L L L
- / uq(iApy) dr + / QPrrzzPy dT = / J2qip, dx.
0 0 0

Since i\, = ugz + fi, taking the real part in the above equality results in

L L L — L
_% 0 Q%‘uﬁdx_%fo Q%‘Spa:x‘de“‘ [Sox:vw(PmQ]g"i_fO QzzPrzPy d.’L“i‘fO QQ;’SOx:Ede

= Re i f20%, dz + Re [ uqfy, de.

Performing an integration by parts we get

L

L
/0 quu(x>‘2 + 3’9011(%)‘2] dx + 2/0 QuzPraPy AT = [ngD]DL —2q(L)@ree(L)pz(L) + R

where I L
R= 2Re/ f2q9, dz + 2R6/ uqfy, d.
0 0
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It is clear that
|R| < CU 3| F'[|2- (2.77)

If we take ¢(z) = = in Lemma 2.5.5 we arrive at
E,(L) < LT (L) — 2Lppae(L)u(L) + R. (2.78)

Using the continuous embeddings from H?(0, L) into C*([0, L]) we deduce

o (L)] < Clielnzo,1) < C'lleaallzzo,r) < C U

Using inequalities (2.78) and (2.77) we conclude that there exists a positive constant C such
that .
1
/0 To(s)ds < LI (L) + C(|UlIl Fll) 21U lla¢ + CU | F 3¢ (2.79)

Since that oo oo
/ (&) de < C / (€ + ) ((€)) de < CIU el Flln.

—0o0

Substitution of inequalities (2.75) into (2.79) we get that
_ 1
U117, < CUNP2* + DU sl Fllze + C (U1 F ll32) 2 Ul + C" 1 F -

So we have
Ul < CIAP72|| Fl3.

The conclusion then follows by applying the Theorem 2.4.2.



Chapter 3

GLOBAL EXISTENCE AND
ENERGY DECAY OF SOLUTIONS
TO TIMOSHENKO BEAM
SYSTEM WITH A DELAY TERM

3.1 Introduction

In this chapter we study the boundary stabilization of the Timoshenko systen in unbounded

interval (0, +00). The system is given by the two coupled hyperbolic equations.

prow(x,t) — K(pp + ) (2, t) =0 in ]0, 1[x]0, o0,
P2t (2, ) — bibag(z,t) + K(pz + 9¥)(@, 1) + pa (1) ¢e (2, t) (3.1)
+po(t)pe(z,t —7) =0 in ]0, 1[x]0, 4+-o00].

where t denotes the time variable and x is the space variable along the beam of lenght 1 in its
equilibrium configuration the unknowns ¢ = (z,t) and 1) = ¥ (x,t) represent respectively,
the transverse displacement of the beam and the rotation angle of the filament of the beam.
In (3.7) p1 = p,p2 = I,,b = EI, where p,1,, E,I and K are, respectively, the density (the
mass per unit length), the polar moment of inertia of the cross-section, Young’s modulus of

elasticity, the moment of inertia of a cross-section and the shear modulus.
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System (3.1) is subjected to the following boundary condition:

{ w00 =0 = v =v1,n=0 t>0. (32)

where t € (0, +00) and parameters a, k are positive constants.

Also we consider the following initial conditions:

¢(z,0) = ( ), ¢ ( 0) = ¢1(z)
¥(z,0) (@), ¥i(z,0) =1 (z), z € (0,1) (3.3)
Uz, t — T) = fo(x,t T), © € (0,1), t € (0,7).

Where 7 > 0 is the time delay. The initial data (vg, 0o, ¢1,%1, fo) belongs to suitable
functional space. Delay effects arise in many applications and practical problems and it
is well-known that an arbitrarily smal delay may destabilize a system wich is uniformly
asymptotically stable in the absence of delay see R. Datko(1991).

In the absence of the delay in system (3.1), that is for 7 = 0, a large amount of literature
is available on this model, addressing problems of the existence, uniqueness and asymptotic
behaviour in time when some damping effects are considered, such as: fractional damping,
viscoelastic damping and thermal dissipation.

Namely Soufiane (1999) showed the exponential stability of the uniform Timoshenko beam
by using one distributed feedback. Shi and Feng (2001) considered the case of the uniform
Timoshenko beam under two locally distributed feedback and proved an exponential stability
result, other wise, only the asymptotic stability has been proved. Xu and Yung (2003) proved
an exponential stability of the uniform Timoshenko beam by two pointwise control.
Concerning the Timoshenko system with memory, we refer to Alves et al (2011), Amar-
khodja et al (2003), Munoz Revera and Fernandez Sare (2008) and referenes there in.

In the presence of a delay term in (3.1), a few works are available, Said- Houari and Laskri

(2010) have considered the following Timoshenko system with a delay term in the internal
feedback:

pl@tt(-fat) _K((Pm +Q/))w(xvt) =0 in (O7L) X (0,+OO),
p2)i (4, 1) = Do (2, 1) + K (po + ) (2, 1) + pathr (2, 1) (34)
+po(z,t —7) =0 in (0,L) x (0, +00).

Under the assumption @1 > po on the weights of the two feedbacks, they proved the well-
posedness of the system. They also established an exponential decay result for the case

equal-speed wave propagation.
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Subsequently, the work in Said-Houari and Laskri (2010) has been extended to the case of
time varying delay of the form vy (x,t — 7(¢)) by Kirane et al.(2011), by using the variable
norm technique of Kato and under some restriction on the parameters pi, s and on the
delay function 7(t),the hypothesis between the weight of the delay term in the feedback, an
exponential decay result of the total energy has been proved.

Ammari et al (2010) have treated the N-dimentional wave equation

up — Au(z,t) + aug(x,t —7) =0 x €e,t>0
u(x,0) =0 x €Ty, t>0, (3.5)
9 (g, t) = —ku(z, t) x €Tl,t>0, '

u(z,0) = up(z), ue(z,0) = ui (), ue(z,t) = g(x,t) x € Q,t € (—1,0).

Where Q is an open bounded domain of RN N > 2 with boundary 9Q = I'oUT;,ToNT; = 0.
Under the usual geometric condition on the domain €2, they showed an exponential stability
result, provided that the delay coefficient a is sufficiently small.
When both the damping and the delay in (3.5) are acting in the boundary that is if (3.5)3
remplaced by

%(x,t) = —ku(z,t) —aw(x, t — 7),x € I'1,t > 0, (3.6)

Nicaise and Pignotti (2006) investigated this problem and showed an exponential decay rate

of the total energy under the assumption
a<k

on the contrary if (3.6) does not hold, they found a sequence of delays for which the corre-
sponding solution of (3.5) will be unstable. The analysis in Nicaise and Pignotti (2006) is
based on a observability inequality obtained with a Carleman estimate. The result presented
here extends the one in Ammari et al(2010) to the Timoshenko system. Our purpose in this
paper is to give a global solvability in Sobolev spaces and energy decay estimates of the
solutions to the problem 3.1 for a nonlinear damping and a delay term. We should mention
here that, to the best of our knowledge, there is no result concerning Timochenko beam sys-
tem with the presence of nonlinear degenerate delay term. To obtain global solutions to the
problem 3.1, we use the argument combining the Galerkin approximation scheme (see [29])
with the energy estimate method. The technic based on the theory of nonlinear semigroups

used in [39] does not seem to be applicable in the nonlinear case. To prove decay estimates,
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we use a perturbed energy method and some properties of convex functions. These argu-
ments of convexity were introduced and developed by [16] and [27] and used by Liu and
Zuazua [30] and Alabau-Boussouira [4].

3.2 Preliminaries and main results

First assume the following hypotheses: (H1) u1 : R+ —]0, +00[ is a non-increasing function
of the class C(R+) satisfying

‘Zig;‘ <M (3.7)

(H2) pg : R+ — Ris a function of class C'!(R+) wich is not necessarily positive or monotone,

such that
lp2(t)] < Bua(t) (3.8)

|5 (8)] < M (t) (3.9)

We first state some Lemmas which will be needed later.

Lemma 3.2.1 (Sobolev-Poincaré’s inequality). Let q¢ be a number with 2 < g < 400 (n =
1,2) or2<gq<2n/(n—2) (n>3). Then there is a constant ¢, = ¢«((0,1),q) such that

1l < el Volla for ¥ € H((0,1)).

We introduce as in [39] the new variable
z(x, p,t) = Yz, t —7p),x € (0,1), p€ (0,1), t>0. (3.10)
Then, we have

72 (2, p,t) + 2p(x, p,t) = 0, in (0,1) x (0,1) x (0, +00). (3.11)
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Therefore, problem (P) is equivalent to:

p

prpw(x,t) — K(og +¥)z(x,t) =0 in ]0, 1[x]0, 00|,
Pt (,8) — by (,8) + K (90 + 0)(2,8) + 1 (Hn (2, 1)
+ug(t)z(z,1,t) =0 in 10, 1[x]0, 400,
72 (2, p,t) + 2p(x, p,t) =0 in ]0,1[x]0, 1[x]0, 4+o0],
(0, ) p(1,t) = 9(0,1) = ¢(1,1) = 0 t>0,
2(@,0,8) = Gu(a, ) on 10, 1[x[0, +ocl,
¥(x,0) =o(x), Yi(x,0)=v1(2) z €]0,1],
o(x,0) = po(z), @i(z,0) = p1(x) z €]0,1],
| 2(2,9,0) = folw, —p7) in 10, 1x]0, 1]
(3.12)
Let & be a positive constant such that
T8 <& <T1(2-0). (3.13)
We define the energy associated to the solution of the problem (3.12) by the following
formula:
E(t) = E(t,z,0.9) = 5 fy {msot + p2vf + Ko + 9> + b3} d

(3.14)
%fo (x,p,t)dpdx.

We have the following theorem.

Theorem 3.2.1. Let (po,¢1), (Yo,%1) € (H?(0,1) N HL(0,1)) x HE(0,1),fo €
HE((0,1); HY(0,1)) satisfy thecompatibility condition

fo(,0) = 1.
Assume that the hypothesis (H1) holds. Then the problem (P) admits a unique weak solution

w @ € Lloc((_Tv OO)? H2(07 1) N H&(Oa 1))7 wta vt € L;)(?c((_7-7 00)7 H&(O, 1))7

(3.15)
Yit, Pir € Lloc((—7'7 oo);LQ(O, 1))

and, for some constants wi,ws and ws, €g we obtain the following decay property:

BE(t) <wie @2 Wt >0, (3.16)
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We finish this section by giving an explicit upper bound for the derivative of the energy.

Lemma 3.2.2. Let (¢,1, z) be a solution of the problem (3.12). Then, the energy functional
defined by (3.14) satisfies

E'(t) < — <N1(t) _ %f_) _ |M22(t)|> fol ¢t2 dr — (%f_) _ |M22(t)|> 01 Z(x 1,t)dz
<0

(3.17)

Proof. Multiplying the first equation in (3.12) by ¢, the second equation by v, integrating

over (0,1) and using integration by parts, we get
1
i (fo {197 + p2v? + Klpo + ¥ + by} dx) -
—pa(t fo wt ) dx — po(t fol Uz, t)z(z, 1,t) de.

We multiply the third equation in (3.12) by £(t)z(z, p, t) and integrate the result over (0, 1) x
(0,1), to obtain:

(3.18)

7 o fo 2@, p,t)z(@, p,t) dpda + E(t) [y i zo(x, p,)2(x, p,t) dpdz =0 (3.19)

d 22(
= 2
2 dt// (z,p,t dpdw+ // (z,p,t) dpda (3.20)
Which gives

A EAGON e )dpdw) — &) Jy Jy #(@,p.t) dpda]

This yields

&0 1 2 (3.21)
+357 0 z2%(z, p,t) dpdx — Tfo V2 (z,t)dr = 0.
Consequently,
%%( fo fo (z,p,t) dpdx) = g(t) fo (z,p,t)dpdx — E(t) f 2(z,p,t)dpdx
+E0 112z t)de = 0.
(3.22)
Combination of (12) and (16) leads to
1d 2
3 (fo {msot + pou? + Koo + 02 + 002 +£(t) fy Jy 22,0, )dpd:v} dﬂ:)
:—m fo wt x,t)dr — po(t fo 1/1t:c t)z(x,1,t) dz
fO (x,p,t)dpdr — 52(5_) 22(z, p, )dpd:n—{— fo V2 (z,t)dx.

(3.23)
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Recalling the definition of E(t) in (8) we arrive at

E,(t) = _Ml(t) le th 33 t) dJI - /~L2 fol 1/%(33775 (xa 17t) du
(x,p,t)dpdr — % 22(z, p, )dpd:n—{— fo V2 (z,t)dx.

(3.24)
E(t) < (m f“)) Jy v3@
g(t) (3.25)
_.UJQ fo ¢t .’E,l,t)d f ('I Py )d .
Due to Young’s inequality, we have
! 1 2 1 2
| vl ste 100 de < St 1 + 311G 1) (3.26)

Inserting (20) in (19), we obtain

2 g_@l(t)_“ ) ) / e (52@ |u22(t)|> /Olzz(x,p,w .
(3.27)

<-m(1-52-9) [ U2 (e t) de (1) (512(;) -3 P(ept)de <0, (329

This completes the proof of lemma.

3.3 Global Existence

We are now ready to prove Theorem 3.2.1 in the next two sections. Throughout this section
we assume g, € H2 N HE(0,1),¢1,91 € H}(0,1) and fo € H}((0,1); H*(0,1)).

We employ the Galerkin method to construct a global solution. Let T" > 0 be fixed and
denote by Vi the space generated by {wy,ws, ..., wy} where the set {wg, k € N} is a basis
of H*N H{.

Now, we define for 1 < j < k the sequence ¢;(z, p) as follows:

¢j($, 0) = U}j.

Then, we may extend ¢;(z,0) by ¢;(x, p) over L*((0,1) x (0,1)) and denote Z the space

generated by {¢1, ¢2, ..., ok}
We construct approximate solutions (¢k, ¥k, 2k), k = 1,2,3,..., in the form

k
Zg]kwjy Vi (t) Zggkwg, 2 (t) = Z hjkdj,
j=1
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where g, gjr and hj,j = 1,2,...,k, are determined by the following ordinary differential

equations:
pl((plkl(t)ﬂ wj) + K((pkr(t)ijw) - K(wkm(t)ij) =0, 1<;< k, (3'29>
k
0k(0) = por = Y (00, wj)w; — o in H> N Hy as k — +00, (3.30)
j=1
k
0, (0) = @11 = Z(«pl,wj)wj — 1 in H} as k — +o0. (3.31)
j=1

P2(¢Z(t)a wj) + b(wkx(t)v wjx) + K((‘ka + ¢)(t)7 wj) + u1 (t) (wé, wj)

+u2(t) (2 (1), w;) =0 1< j <k, (3.32)
zk(2,0,1) = (2, )
k
Yr(0) = thor = Y _(vo, w;)w; — 1o in H> N Hj as k — +o0, (3.33)
j=1
k
Pr.(0) = Y1y = Z(i/}l,wj)wj — 41 in HY as k — +o0. (3.34)
j=1
and
(T2t + 2, 5) =0, 1< j <k, (3.35)
k
2k(p,0) = 2o, = Z(fo, ¢j)pj — fo in H}((0,1); H(0,1)) as k — +oo. (3.36)
j=1

By virtue of the theory of ordinary differential equations, the system (3.29)-(3.36) has a
unique local solution which is extended to a maximal interval [0, Tj[ (with 0 < T}, < 400)
by Zorn lemma since the nonlinear terms in (3.32) are locally Lipschitz continuous. Note
that (@g(t), ¥r(t)) is from the class C2.

In the next step we obtain a priori estimates for the solution, such that it can be extended
outside [0, Tx[ to obtain one solution defined for all ¢ > 0.

We can utilize a standard compactness argument for the limiting procedure and it suffices

to derive some a priori estimates for (¢, ¥k, 2k).

The first estimate. Since the sequences @, Y1k, Yok, Y1 and zgx converge, then standard
calculations, using (3.29)-(3.36), similar to those used to derive (3.17), yield C' independent
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of k such that
)+ fo fo a1(s) (1) )?dx ds

(3.37)
+f0 fo az(t)z2(z, 1,t)dx ds < Ey(0) < C,

where
Bi(t) = L [l + pw,;? + K| pka + Ykl + 007, Yda

(3.38)
—l—g(t fo o Zi(z, p,t)dpde.

ar(t) = (1) (1 N 2) and as(t) = (1) (; _ g) .

for some C independent of k. These estimates imply that the solution (pg, ¢k, z;) exists
globally in [0, +ool.
Estimate (3.37) yields

@k, Yr are bounded in L{2 (0, 00; HZ(0,1)) (3.39)

©}., ¥}, are bounded in L{2.(0, 00; L2(0,1)) (3.40)

p1(8)(¥1,)2(t) is bounded in L*((0,1) x (0,T)) (3.41)

p1(t)22(x, p,t) is bounded in L$2 (0, 00; L*((0,1) x (0,1))) (3.42)

p1(t)z2(x,1,t) is bounded in L'((0,1) x (0,T)) (3.43)

The second estimate. First, we estimate ¢ (0) and ¢;/(0). Testing (3.29) by g7 (), (3.32)

by g;-/k(t) and choosing t = 0 we obtain
p1ll#k(0)ll2 < K([lpokszll2 + l[Poksl2)
and
p2|[ ¥ (0)[l2 < bllvokeall2 + K ([lporzll2 + [Yokll2) + 11(0) g1 (1) ll2 + 12(0)]g2 (2o l2-
Hence from (3.30), (3.31) and (3.36):
£ (0)]l2 < C.
Since g1(¥11), g2(20x) are bounded in L?(0,1) by (H1), (3.30), (3.33), (3.34) and (3.36) yield

147 (0)]l2 < C.

Differentiating (3.29) and (3.32) with respect to ¢, we get

(1601 (1) = Kplyy () — Kty (£), w5) = 0 (3.44)
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and

(P20 (1) = Dy () + K g (8) + Kl () + pa ()" (1) + p ()91, (1)
+pa(t)z (2, 1, 8) + po(t) ze (2, 1, 1), wj) = 0.

Multiplying (3.44) by g7, (t) and (3.45) by g7 (t), summing over j from 1 to k, it follows that

(3.45)

1d
2

L4 (pall o (0)13 + bl (DIZ) + K 5 (P + )0l d 4 pua(0) i 0"3(0) do
p (8) S0 (O (8) da + ia(t) [ 0" (8)2h (@, 1, 8) da + ph(8) [0 (D)2, 1) dar = 0.

piller(t)] K/ Ohe + V1)) dz =0 (3.46)

(3.47)
Differentiating (3.35) with respect to ¢, we get
" 9,
(T2(t) + a5k ¢j) =0
Multiplying by h;.k(t), summing over j from 1 to k, it follows that
37|40 + 31Ol = (3.48)

Taking the sum of (3.46), (3.47) and (3.48), we obtain

3 (P18 + poll6E )1+ B DI + K ®) + V413 + 74 Ol 01y 2 01y
+pa (¢ fo ¢"2 dr + 3 fo 2. ( z,1,t)|?dz
= —pa(t) fy V"R (O) 2 (w, 1,8) d — ph (8) [ "W (00 k(8 da — b (E) fif "k (D)2, 1,8) da + L9y (213

Using (H1), (H2), Cauchy-Schwarz and Young’s inequalities, we obtain

L4 (el 013 + pall 6O + bl (D13 + Kok (8) + w413 + 724 D13 0.1y 0 )
+p(t fo 1/1”2 dx + 2f0 |z (x, 1 ,1)|? dx
< | OO 27 (2, 1, D)2 + [ @)L ol (]2 + b O E) ol 26, 1) 2 + Sf ()13
< 2Oy (1)[2 + Sz, 1, 6)13 + L g ()13 + [ Ol 013 + 22 o ()13
s () 12, 1, 013 + Sl 13
< O3+ 1y O ON3 + 2 (2, 1, 13 + (@) l12(x, 1, 1) |3
< I+ M (8) |4 (0) 13 + Mg (0124, 1, O3 + L2 (ar, 1, 1) I3

Integrating the last inequality over (0,t), we obtain
o1l I3 + pall SO + Bl (O3 + Kl (8 + V413 + 724 .0 a1y o)

< (prllgO) I3 + o2 IO + DA, (O)I + K1l (0) + YA ONB + 11242, 0) (011017 )
20 [L ()| ()3 ds + 201 [ ua(9)]|z (o, 103 s + S g ()3 ds
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Using the Gronwall’s lemma, we deduce that

P13 + Pl + Blvl (DI + Kl () + 0413 + 71124 2.5 20100y
< Ceclt

for all ¢ € R, therefore, we conclude that

o,y is bounded in L2, (0, 0o0; L?) (3.49)
@, 0, is bounded in L§2.(0, co; HY) (3.50)
2}, is bounded in L§2.(0, 00; L*((0,1) x (0,1))) (3.51)

The third estimate. Replacing w; by —wjz, in (3.29) and (3.32), multiplying the result
by g}k(t) and f];-k(t), summing over j from 1 to k, it follows that

1d !
335 (ke OIB) + K [ o+ 0)ophundo =0 (352)

14 (02| ¥1a (D113 + bllvokaa(D13) = K fo (Po + )y d + i1 (£) fy [ (8)]? doo

Fpa(t) 3 ¥ ke (t) 2a(, 1,8) da = 0.

Replacing ¢; by —¢jqs in (3.35), multiplying the resulting equation by h;(t), summing over
j from 1 to k, it follows that

(3.53)

1 d 1d
57 gl DI+ 5 ke )3 = 0. (3.54)

From (3.52), (3.53) and (3.54), we have

14 (mll%x( 3 + 2l ()13 + K ll9rse + )13+ Dt ()15 + 7l 2ke (2.2, 201y
H fO |1/}kx ’2d$ + f(] ‘Zkfc Z, 17t)|2 d.’L’ - _,U'Q f[)l wllfx(t)zka:(x, ].,t) d.’L’
+5 V@)

Using (H2), Cauchy-Schwartz and Young’s inequalities, we obtain

14 (mllsom( VB + 219 (DB + K| Pra + e (O + D193 + 71200 2, )2 0.1y 0,17 )
1 (8) Jy W (D do + ¢ i Lo, 1,0 do < ¢}, ()3

Integrating the last inequality over (0,¢) and using Gronwall’s Lemma, we have

Pl (D13 4 p2lle (D13 + K lltas + e (O3 + bll a3 + Tl2k (@, 2, 0220110,y <
T (o1l ha OB + P29 (0)13 + K 120 (0) + e (O3 + Bllia O)I3 + 7l1 280, 2,0) 20 101y
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for all t € R4, therefore, we conclude that

@k, Yr, are bounded in L$° (0, 00; H2 N HE(0,1)), (3.55)
2 is bounded in L2,(0, 00; Ha (0, 1; L*(0,1))). (3.56)

Applying Dunford-Petti’s theorem we conclude from (3.39), (3.40), (3.41), (3.42), (3.49),
(3.50), (3.51), (3.55) and (3.56), after replacing the sequences ¢y, ¥y and z; with a subse-

quence if needed, that

{ o — ¢ weak-star in L7 (0,00; H* N H}(0,1)) (3.57)

Y — ¢ weak-star in  L9° (0, 00; H2 N H{(0,1))

loc

Y — ¢ weak-star in  L$° (0, 00; H}(0,1))

oc

{ @), — ¢ weak-star in  L9° (0, 0o; H(0,1)) (3.58)

(3.59)
" — " weak-star in L (0, 00; L2(0,1))

loc

{ ¢, — ¢ weak-star in L% (0, 00; L%(0, 1))

2y — 2 weak-star in  L{2,(0, 00; H3((0,1); L*(0,1)),
2l — 2 weak-star in  L$° (0, 0o; L2((0,1) x (0,1))), (3.60)

for suitable functions ¢, € L>(0,T; H?> N H(0,1)),2 € L*°(0,T; L?((0,1) x (0,1))),

x € L?((0,1) x (0,T)),% € L?((0,1) x (0,T)) for all T > 0. We have to show that (i, 1, 2)
is a solution of (3.12).

From (3.39) and (3.40) we have (v,) is bounded in L*(0,T;H}(0,1)). Then (¢) is
bounded in L2(0,T; H}). Since (¢}) is bounded in L>°(0,T; L?(0,1)), then () is bounded
in L?(0,T; L?(0,1)). Consequently (¢,) is bounded in H'(Q) ,where @ = (0,1) x (0,T).

Since the embedding H'(Q) < L?(Q) is compact, using Aubin-Lions theorem [29] we can
extract a subsequence (1) of (1) such that

Y — 1) strongly in L?*(Q).

Therefore
!, — 1)’ strongly and a.e on Q. (3.61)

Similarly we obtain

z, — z strongly and a.e on Q. (3.62)
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It follows at once from (3.57), (3.59), (??), (??) and (3.60) that for each fixed w,v €

L%(0,T; H}(0,1)) and w € L*(0,T; H}((0,1) x (0,1)))

fo fo p1oh — K(0rg + V)2 )ude dt
- fo fo p1¢" — K(pg + )z )udedt

o S (20— D + K (0 + Ur) + +pn ()0 + pia(t) 2 )v da dt
s ST 2 = b + K (00 + ) + (00 + pia(t)z0 der dt

/// TZk+ wdxdpdt—>/ // T2 +—zwdxd,odt

as k — +oo. Hence

T 1
/ / (" — K(pn + ) )udedt =0
0 0

T 1
[ [ ot = e Ko 0) a0+ palt)zo ddt =0

/ / / Tu' + —z Jwdx dpdt =0, w € L*(0,T; Hi((0,1) x (0,1))).

Thus the problem (P) dmlts a global weak solution (¢, ).

Uniqueness. Let (p1,v1,21) and (p2,12,22) be two solutions of problem (3.12). Then

(w,w,i/) = (¢1,%1,21) — (2,19, z2) verifies

prwy(x,t) — K(wx + W)y (z,t) =0 in |0, 1[x]0, 400,
p20" (2,1) — bilga(2,t) + K (wy + @) + pa ()0’ (2, 1)
+ua(t)i(z, 1, ), in 10, 1[x]0, +00],
70 (,p,t) + Dy(z, p, t) = 0, in (0,1)x]0, 1[x]0, +oo]
w(0,t) = w(l,t) = @(0,t) = w(1,) = 0, t>
W(z,0,t) = ) (v, 1) — Ph(x,t) on ]0, 1[x[0, 400
w(z,0) = w'(x,0) = w(z,0) = @'(x,0) =0, in 10,1
| W(z,p,0) =0 in )0, 1[x]0,1]

(3.63)

Multiplying the first equation by w’ and the second by @’ in (3.63), integrating over (0, 1)

and using an integration by parts, we get
1 d 112 ! ~, /
s (plw'llz) + K [ (wse +w)ew dz =0
2dt 0
1 N .
3 (P21 |13 + bl|wg13) + K fy (we + @)@ da + pa (8)]|0][3

+pa(t )(w(x, 17t)>w )=0.

(3.64)

(3.65)
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Multiplying the third equation in (3.63) by w, integrating over (0,1) x (0,1), we get

5l + 57N (3.66)

Ty [ 1@ Bdo+ (1t 1,018 - 113 =0 (367

From (3.64), (3.65), (3.67) and using Cauchy-Schwarz inequality, we get

L4 (prllw' I3 + pall @1 + bl |3 + K + 01 + 7 fy 113 dp)

@[3 + 3l 1,03 = —pa(t) (w2, 1,8), @) + 52|13
< sl 13 + 2w (@, 1,02 ]2-

Using Young’s inequality, we obtain

1d

1
~ ~ M ~
5= (mll’w 13+ pall @113 + bll o3 + Kllws + @[3 +7 /0 I H%dp> < clla'|3,

where ¢ is a positive constant. Then integrating over (0,t), using Gronwall’s lemma, we

conclude that
1
~ ~ ~ =/
prlw' |13+ pal| @13 + blldel5 + K ||we + @[] + T/O [dr'|[5 dp = 0.

Hence, uniquness follows.

3.4 Asymptotic behavior

Now we construct a Lyapunov functional L equivalent to E. For this, we define several
functionals which allow us to obtain the needed estimates.

Then we have the following estimate.

Lemma 3.4.1. Let (¢,1),2) be the solution of (3.12). Then the functional Fy defined by

1
Fi(t) = —/0 (pree + payut)) da (3.68)

satisfies, along the solution, the estimate

dF(}t(t) < - fol(pl%% + (p2 - C)@bg)dx + K fol |80x + ¢‘2d$

1 o 1 (3.69)
+c [y vadx + clua(t)] [y Y2z, 1,t)dx
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Proof. By taking the time derivative of (3.68)

dFy (1)
dt

1 1
= —/0 (P19} + porbi)da —/0 (prpwe + pathurp)dx

Therefore, by using the first and the second equations in (3.12) and some integrations by

parts, we obtain from the above inequality

0 = — [ (o1} + po?)da + K [ |@o + v da (3.70)
+b [ w2de + pa(t) f) Piveda + pa(t) [} (a1, t)de.
By exploiting Young’s inequality and Poincaré’s inequality, then (3.69) holds.
O
Lemma 3.4.2. Let (¢,1,2) be the solution of (3.12). Assume that
P1 P2
— = —. 3.71
7l (3.71)
Then the functional Fy defined by
1 1
Fy(t) = P2/ Vi (e + V) dw + p2/ Yot da. (3.72)
0 0
satisfies, along the solution, the estimate
d r= 1
= esbliZh— (K = 0) [y (s + 0 dn (oo k) [y vide ooy

— s ()] [ (0 + )2 (, 1, t)da.

forany 0 <e < 1.

Proof. Differentiating F»(t), with respect to ¢, we obtain

dF2 fo P2t (0o + ) dx + fo P20t (pr + V)edz + po fo Yrpidr + pa fo Yizprda.
= fg 0z + ) [bwm — k(pz + 1) — p1(t)y — pa(t)z(z, 17t)]d$ + p2 fo wt dr + % fo (02 + )e¥e d.

Then, by using Egs.(3.12) and (3.71) we find

dF;( = :vwac]x 0 Kfo Pz +¢)2d$+p2 fo "(btzdx

(3.74)
7:“1 fo Yo + ¢)¢td$ - :U’Q fo Yo + ¢ (l’, 17 t)
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Lemma 3.4.3. Let m € C1([0,1]) be a function satisfying m(0) = —m(1) = 2. Then there
exists ¢ > 0 such that, for any 0 < € < 1, the functional F5 defined by

b o[t e [t
Fi(t) = 4/ p2 ()it da + / p1m(T)rpy d
€ Jo k Jo
satisfies, along the solution, the estimate

Fi(t) s B (u(1,1))? + (12(0,8)2) — ((9a(1,8))? + (92(0,))?)
F(E o) [T+ pu)2da + cepy [ Rde+ S [} y2da (3.75)
+< [y wz dz + clpa(t)] [y 12(2, 1, 1)1 dz

Proof. Using Egs. (3.12) and integrating by parts, obtain

Fi(t) = £ [ (1 (1,1))? + wm (0,6)%) = fy (@) dar - kfo )alipr + ) da
— Jo m@)m (e, do — 5 m ) (x, Lt)wx dz — [ &2m )wt) ]
%[—k((w(l,t)) + (2(0,1))?) fo Lo ()3 d + [ k(@) aspy d — [ () (91)? d

Then by the Young and Poincaré inequalities and the fact that

02 <200 + )2 + 207
we obtain

Fj(t) < £ [b((¢2(1,1))? + (¢2(0,1))?)
+§f Q,Z)mdl‘—F&be (Y + ©z)? dx+5f0 g3 (1y) dm+5f0 g3(z m,l,t))d:n+cf01¢?daz}
E((0z(1,1))2 + (p2(0,1))?) +cf01/)zdx+cf0 (Y + ©z)? dx+cf01<pt2dx}

This gives (3.75).

£
k

|—|

Lemma 3.4.4. Assume that (H1) hold. Then, for sufficiently small €, the functional F
defined by

F(t) = 2ceF1(t) + Fa(t) + F3(1)
satisfies, along the solution, the estimate
Fl(t) < -k 01(¢ + @) tdr — T fol 02 dx + cfol V2 dx + cfol Y2 dx + cfol z(z,1,t)% dx,
(3.76)

where T = cepy.
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Proof. Using Lemmas 3.4.1, 3.4.2, 3.4.3 and the fact that

[boatali=p < elez(1) + @2 (0)] + @[wi(l) +93(0)] (3.77)
for any 0 < e < 1, we obtain (3.76).
O
Next, we introduce the following functional
1
I(t) = / (P2 + proppw)dr, (3.78)
0
where w is the solution of
—Wyg = Yg, w(0) =w(1) =0. (3.79)

Then we have the following estimate.

Lemma 3.4.5. Let (¢,v,z) be the solution of (3.12), then for any &6 > 0, we have the

following estimate

I —p 1 ¢ (1
(éz(t) = beo by (x, t)dx + 5 fO V2 (z,t)dx
+0 [ @3z, t)dx + clua(t)] [y 2(x, 1,t)%da.

(3.80)

Proof. Using Egs. (3.12), we have

O — _p [ p2de + po [} Yde — K [} YPda

+K fo widz + p1 fo Yywydr — iy fo Vg1 (Ye)dx — iz fol Ygo(z(x,1,t))dz.
(3.81)

It is clear that, from (3.79), we have

/ 2d:c</¢dx</¢dx
/01 d:):</0 wtxd:):</ Yidx (3.82)

By using Young’s inequality and Poincaré’s inequality we obtain (3.80).

Now, let us introduce the following functional

1 1
= / / e 222 (x, p,t) dp de. (3.83)
0o Jo

Then the following result holds.
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Lemma 3.4.6. Let (¢,1,z) be the solution of (3.12). Then it holds

d ! I
(1) < Ig(t)—;/o z(:c,l,t)2daz+27_/0 Y2 (x,t) dz. (3.84)

Proof. Differentiating (3.83) with respect to ¢t and using the third equation in (3.12), we

have
& < fol fol e 222 (1, p,t) dp d$> = —% f01 fol e 2Pzz,(z, p,t) dp dax

== fO f QTpZ HJ ) P )dp dx — % f[)l fOl %672Tp22(1‘7p,t) dp dx.

The above formula implies that there exists a positive constant ¢ such that (75) holds. O

Proof of theorem2.1. To finalize the proof of Theorem 2.1, we define the lyapunov func-

tional £ as follows For Ny, No > 0, let
L(t) = N1E(t) + NoI(t) + F(t) + I3(t), (3.85)

whereN; and Ny are positive real numbers which will be chosen later. By combining (3.17),
(3.76), (3.80), (3.84), we obtain

dr(t) < — (Nrai(t) — No(t)§ —c— ) jol W2 da

— (N1ag — Nac|ua(t)| — ¢ — c|ua(t) fo (z,1,1) d:n—( 2%—0—1-%) folw,b%dx
—(N25+T—5)f0 2 dx

—E [+ pa)? du

At this point, we have to choose our constants very carefully. First, let us choose N» suffi-

b b

Next, we choose § sufficiently small such that

(3.86)

ciently large so that

(N2(5+T—(5)>0.

Then, we pick the constant N; > 0 sufficiently large such that

and

(N1az — Naclpuz(t)] — ¢ — clus (1))
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Thus, (3.86) becomes

dL()< dlfo wmdw_dlfo ‘Ptdx f (¢+90w) dx

(3.87)
+cf0 z(x,1,t)%(< —dE(t +cf x,1,t)dx.
which implies by (3.14), that there exists also n > 0
SL® < (). (359
dt ! '

At this stage, we are in position to compare £(t) with E(t). We have the following Lemma.

Lemma 3.4.7. For Ni large enough, there exist two positive constants 51 and B2 depending
on N1, No and €, such that

ME®) < L(T) < fE(t)  VE=0. (3.89)

Proof. We consider the functional
H(t) = Nol(t) + F(t) + I3(t)

and show that
H(t)| < CE®{), C>0.

from (3.68),(3.78),(3.72) and (3.83), we obtain
[H(t)] < N2 ‘fo P21 + prow) (w0, t) dff»“ + ‘_fo pLoee + paith) d:r:‘ +

‘P2 o (e +0)dz + pa [ Yy dm‘ L S pem(@) e da + & [ prm(@)prpa do
’fo f 2722 (z, p, )dpda:).

(3.90)
By using (3.82),(3.79), the trivial relation

1 1 1
| Pnin <z [t oPender2 [ @
0 0 0
Young’s and Poincaré’s inequalities, we get

[H(t)| < a1 fgl 02 (z, t)dz + ag fol V2 (2, t)d
+as fo1 sox + )2 (x, t)d + ag fy V2 (2, t)da (3.91)
-I-fo (x, p,t)dx dp
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where the positive constants aq, ag, as, oy are determined as follows:

N-
o] = 722p1 + P2 + Lle,
N- b
ap = 32 4 po + 22,
2€
a3 = pl —l— %2 + prl,

a4:p2+%p2+p1+%b+2ﬁ%

According to (3.91) , we have

[H(1)| < CE(t)

for

Therefore, we obtain
IL(t) — Ny E()] < CE®).

So, we can choose N large enough so that 8; = Ny —C > 0, 82 = Ny + C > 0. Then (3.89)
holds true.

O
Combining and (79) and (80), we conclude
d
LM <AL vEzo. (3.92)
A simple integration of (83) leads to
d
L0 < L0)e ™  vt>o0. (3.93)

Again, the use of (80) (84) yields the desired result (9). This completes the proof of Theorem
2.1.

Remark 3.4.1. According to the result of the paper [20], where a simple wave equation
has been treated, it might be possible to prove the result of Therem 2.1 by using a suitable

observability estimateof the forme

E(0) < Cy /OT /01 (uf(x,t) + ul(z,t — ﬂ) da dt. (3.94)

Where Cy is positive constant. Once (85) holds, then we can obtain easily

E(T) < CE(0), (3.95)
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With ¢ < 1. Since our system (1) is invariant by translation and the energy is non-increasing,

then applying this argument on [(m — 1)T,mT], form = 1,2, ... we arrive at
E(mT)<(E(m-1)T)<..<{™E0),m=1,2,.. (3.96)
This last inequality implies
E(mT) < e T E(0),m=1,2,... (3.97)

with w = %ln%.SO for arbitrary positive t, there exists m such that (m —1)T <t < mT and

since E(t) is non-increasing function, we conclude

E(t) < E((m—1)T) < e ™= UTE(0) < Ze ' E(0) (3.98)

Yl

see [20].
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We will show the lack of exponential stabilty by frequency domain method.

We show the existence of a sequence (\,) C R with lim, . |\, = co and (U,) C
D(A) to F,, C H such that (¢\,] —A)U, = F, is bounded in H and lim,, o [|U,[|3 =
oc. Let F' = F, = (fi1, f2,0)" with U, = (o, up, )"

Now, introducing following notations

I = Jif e (ifraa(0) + fo(o)) do
12 = [1 € (i fraa(0) + fo(0)) do
fOL sin7(L — 0)(—ifizz(0) + fo(0)) do
I4 — fo cos T(L — 0)(—i fizz(0) + fo(0)) do
Note that
=1, = O(r 2 (| el + || 1)),
Iy = Iy = O(|| frzall + L/21)-
From (2.54) and (2.59), we have

cosh 7z + cos ) + B(sinh 7o 4 sin 72)]

Paz () = TA(
2L f )+ it2f1(0))(sinh 7(z — o) + sinT(z — 7)) do,

(3.99)

where

mzzél - m12éz)
mllé2 - m2101> .



Appendix 76

Using the fact that

fOL fi(o)(sinh7(x — o) +
fo fizz(0)(sinh 7(x — o) — sinT(z — 0)) do
fOL fi(o) cosh T(x — o)+
fo fizz(0)(coshT(x — ) — cosT(x — o)) do
fOL fi(o) sth( —0)— smT(a: —0))do
= fi(L) + = fo fize(o)(sinh7(z — o) +sin7(x — o)) do,

1/ 1, 11
Cl = g (—ZG I1 + ZIQ — 5[3)

sint(z — o)) do

cosT(xr — o)) do

we deduce that

Cy=—terlpy — 1y — 1p, — jyUrtm® T p g (™ i g
—iy (172+77)a 1] +£foooo Zli(2€+éz+n de.
The second derivative of the solutlon is of the form:
©0pe(x) = T*[A(cosh 7z + cos Tx) + B(sinh 72 + sin 7)]
+ €L+ O3 (|| fraell + 1 f21))
— C1e™ + Che™™ + Cycos Tx + Cysinta + O 2 (| freal| + | f21))
where
Ci=1((A+B)m*+ 1)
Cy = 1(A - B)r?
Cy = At?
C, = Br?

Considering only the dominant terms of 7, the following is obtained:

CiD = Y(IysinTL 4 I — I(sin 7L + cos TL) + Iy(sin L — cos L)) 72 + O(1273 || F)
CyD = (i sinTL + I — Iy + I)T%e™ + O (72> ™ || F||)

CsD = i(]l(sinTL —cosTL) + I, — I3 + Iy) %™ + O (7% ™ || F||)

C,D = i(—]l(sinTL +cosTL) — I + Iy — I)T%e™ + O(r*Le™ || F||).

it follows that
Iorell = £1/LCsDI2 +CaDI2) + O(Fe | FI,) + O(r | Flls)
= 2L — Lt + O(r ke | FI3,) + O | Fllw)
7_267'L _1 _
2t 1L — L+ O [FI3) + O | Fll)
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For every 7 large enough, a function F' = (f1,0,0) can be chosen with f; € HZ such
that

VIL = L2+ O HIFIB) > K| Fl (3.100)

where constant K does not depend on 7.

For this purpose, let f; be defined with

1 . T z T 1 . T
fi(x) = ——sin (T(L —x) — Z) — - cos (TL — Z> + —sin <7’L - Z> :
Then
) T
fizz(x) = sin (T(L —x) — Z) ,
L _

1fiaalls = 5 + O (3.101)
Hence 7

IFl5 =5 + 0. (3.102)

which implies that for all 7 large enough, || F'||3 is bounded by some constant inde-
pendent of 7. There holds:

I — I3 = ifOL(sin 7(L —0) —cosT(L — 7)) fize(0) do
=iV2 fOL sin(r(L — o) — 7/4)* do
= iV2| frza3-
Therefore (3.100) follows easily from (3.101) and (3.102) for 7 large enough. Moreover

7_2 eTL

Sl + O | Fll).

HSOMHZ >

for all 7 large enough. Now, Choose 7 = 7, = F(n + %) Hence, a suffciently large n
can always be found so that
D < 87_204 TL

where constant S > 0 does not depend on 7. For such 7, there holds:

|asllz = o7 DN Flla + O | Fl3).

157

This implies that there exists some constant M > 0 independent of 7 such that

|72 = A) e 2 H7@22)
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Summary

In this PhD thesis we study stability and asymptotic behavior in time of
solutions to nonlinear evolutions equations of hyperbolic type. We prove
the global existence and we establish a decay rate estimate for the
energy by means of the semi group

theory of linear operators and the energy method combined with the
Faedo-Galerkin procedure.

Resumé
Dans cette thése nous étudions la stabilité et comportement
asymptotique en temps de solutions des équations d’évolutions non
linéaires de type hyperbolique.
Nous montrons I'existence globale et nous établissons une estimation du
taux de décroissance de I'énergie a l'aide de la théorie des semi-groupes
des opérateurs linéaires et la méthode d’énergie combinée avec la
procédure de Faedo-Galerkin.
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