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Introduction

The dynamics of many evolving processes are subject to abrupt changes,
such as shocks, harvesting and natural disasters. These phenomena involve
short-term perturbations from continuous and smooth dynamics, whose du-
ration is negligible in comparison with the duration of an entire evolution. In
models involving such perturbations, it is natural to assume these perturba-
tions act instantaneously or in the form of impulses. As a consequence, impul-
sive differential equations have been developed in modeling impulsive prob-
lems in physics, population dynamics, ecology, biological systems, biotech-
nology, industrial robotics, pharmcokinetics, optimal control, and electrical
engineering. Important contributions to the study of the mathematical as-
pects of such equations have been processed in [14,13,53,80].

Meanwhile, differential equations with impulses were considered for the
first time in the 1960’s by Milman and Myshkis [70,69]. After a period of
active research, mostly in Eastern Europe from 1960-1970, culminating with
the monograph by Halanay and Wexler [42].

In many fields of science we can describe various evolutionary process by
differential equations with delay and for this reason the study of this type
of equations has received great attention during the last years. It is well-
known that systems with post effect, with time lag or with delay, are of
great theoretical interest and form an important class with regard to their
applications. This class of systems can be described by functional differential
equations and inclusions, which are also called differential equations and in-
clusions with deviating argument. Among functional differential equations,
one may distinguish some special classes of equations, retarded functional
differential equations, advanced functional differential equations and neutral
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functional equations and inclusions. In particular, retarded functional dif-
ferential equations and inclusions describe those systems or processes whose
rate of change of state is determined by their past and present states. Such
equations are frequently encountered as mathematical models of many dy-
namical processes in mechanics, control theory, physics, chemistry, biology,
medicine, economics, atomic energy, information theory, etc. Especially,
since the 1960’s, many good books, which are in the Russian literature, have
been published on delay differential equations; see, for examples, the books of
Burton [23], EI’'sgol’ts [34], El'sgol’ts and Norkin [35], Gopalsmy [49], Azbelez
et al. [11], Hale [44], Hale and Lunel [45], Kolmanovskii and Myshkis [63],
Kolmanovaskii and Nosov [64], Krasovskii [65], Yoshizawa [85] and the refer-
ences listed in those books.

Impulsive differential systems and evolution differential systems are used
to describe various models of real processes and phenomena studied in physics,
chemical technology, population dynamics, biology [71|, biotechnology and
economics [40]. That is why in recent years they have been the object of in-
vestigations. We refer to the monographs of Bainov and Simeonov [14], Ben-
chohra et al. [16], Lakshmikantham et al. [67], Samoilenko and Perestyuk [81]
where numerous properties of their solutions are studied, and a detailed bib-
liography is given.

Recently, Precup [77| proved the role of matrix convergence and vector met-
ric in the study of semilinear operator systems.

In recent years, many authors studied the existence of solutions for systems
of differential equations and impulsive differential equations by using the vec-
tor version fixed point theorem; see [18,75,78,73,74] and in the references
therein.

The uniqueness of solution for Cauchy problems does not hold in general.
Kneser [62] proved in 1923 that the solution set is a continuum, i.e. closed
and connected. For differential inclusions, in 1942, Aronszajn [7| proved that
the solution set is in fact compact and acyclic, and he even specified this
continuum to be an Rs—set.

An analogous result was obtained for differential inclusions with w.s.c.
convex valued nonlinearities by several authors; we quote [4,3,2,6,54,41,46].

The topological and geometric structure of solution set for impulsive dif-
ferential inclusions on compact intervals were investigated in [30,57, 55, 56|
where contractibility, AR, acyclicity, Rs—sets properties are obtained. Also,
the topological structure of solution set for some Cauchy problems without
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impulses and posed on non-compact intervals were studied by various tech-
niques in [2,15,27,28].

This dissertation is organised as follows:

In chapter 1, we give some basic concepts about multivalued analysis,
and fixed point theory, in the last section we show some recent concept of
homologie.

In chapter 2, we give our first main existence of solutions to a Cauchy problem
for impulsive ordinary differential equations of first order on an unbounded
interval [0, +00).

g(t) = f(t y(t), a.e.t € [0,+00)/{ty,- -}
y(t;) y(t;) k(y(t;)% k= 1,2,3,--- (1>
y(O) =a, a € an

where f : [0, +00[xR™ — R™ is Caratheodory function, and I}, € C(R", R"),
y(ﬁ) = limp, 0+ y(te + h), y(ty,) = limpo- y(tx — h).

We also investigate the geometric structure of solution set (Rs, acyclic-
ity) of the problem (1), then as an application, we present an example to
illustrate our main results.

In chapter 3, we are mainly concerned with existences results and compact-
ness of solution set of the following first order neutral impulsive functional
differential inclusions in a Banach space and Frécht space.

Llyt)—g(t,u)] € F(t,y), ae teJ/{tits,...}
y(ty) —yty) = Ly(ty), k=12 (2
yt) = o(t), t € [-r0],
where 0 <7 < 00, 0=ty <t; < ... <ty <tpmy < ..., J :=][0,00),
F:Jx D — P(R") is a multifunction, g : J x D — R", lim g(t, ) =
tt

lim g(t,%) = g(ty, ), v € D = C([-r,0l,R") ¢ € D, I, € C(R",R") (k =

t—)k

1,2,...), and Ayl,—, = y(t]) — y(t;). The notations y(t)) = hlirn+ y(ty + h)
—0
and y(t,) = hlim+ y(t, — h) stand for the right and the left limits of the
—0

~—

function y at ¢t = t, respectively. For any function y defined on [—r, c0) and
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any t € J, y; refers to the element of D such that
y(0) =yt +46), 0¢cl[-r0.

We present three existences of solution for problem (2). Different kinds of
growth of the nonlinearity F' are considered in case F' is u.s.c., [l.s.c., Lips-
chitz or satisfies Nagumo-type condition.

Finally, in chapter 4, we study the existence and solutions set of systems
of impulsive differential inclusions with initial conditions.

(2(t) € Fi(t,z(t),y(t)),ae. t €[0,1]
y'(t) € Fy(t,z(t),y(t)),ae. t €l0,1]
33'(0) = X,

y(0) = o,

where 0 =t) <t <...<1,i=12F;:[0,1] x R xR — P(R) are a mul-
tifunction, Ik, I € C'(R x R,R). The notations x(¢}) = limy,_o+ z(tx + h)
and x(t, ) = limy_,o+ x(tx — h) stand for the right and the left limits of the
function y at t = t;, respectively.

In this last chapter, we prove some existence results based on a nonlinear
alternative of Leray-Schauder type theorem in generalized Banach spaces in
the convex case and a multivalued version of Perov’s fixed point theorem
4.1.3 for nonconvex case. Finally, we present some topological and geometric
structure of the problem (3).

Mots clé: contraction, fixed point, solution set, acyclic, contractible, Rs,
compactness, impulsive differential equation and inclusion, metric and Ba-
nach space, Fréchet space, generalized metric space, matrix.

Classification AMS: 34A37, 34A60, 34K30, 34K45.



Chapter 1

Preliminaries

In this chapter, we introduce notations, definitions, lemmas and fixed point
theorems which are used throughout this dissertation.

1.1 Notations

Let J := [a,b] be an interval of R. Let (E,|-|) be a real Banach space.
C([a,b], E) is the Banach space of all continuous functions from |a, b] into F
with the norm

[Ylloc = sup{[y(t)] - a <t < b}.

L'([a,b], F) denotes the Banach space of measurable functions y : [a,b] — F
is Lebesgue integrable with the norm

b
Iyl = / (o),

denote by L},.([0,00),Ry) the space of locally integrable functions

loc

L ([0,00),Ry) = {f : [0, 50) — R+,/O F(s)ds < 00,¥b € (0,00)}.

AC"([a,b], E) is the space of i-times differentiable functions y : (a,b) — E,
whose " derivative, y¥, is absolutely continuous.

Let (X, d) be a metric space, the following notations will be used throughout
this dissertation.

e P(X)={Y CX:Y #0}
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e Py(X) ={Y € P(X) : Y has the property "p"}, where p could be:
cl=closed, b=bounded, cp=compact, cv=convex, etc.

Thus
o Puy(X)={Y € P(X):Y closed},
o P(X)={Y € P(X):Y bounded},

Poo(X)={Y € P(X):Y convex},

Pep(X) ={Y € P(X) : Y compact},
@ Povep(X) = Peo(X) NP (X), ete.

1.2 Multivalued Analysis

A multivalued map (multimap) F' of a set X into a set Y is a correspondence
which associates every x € X to a non empty subset F(z) C Y, called the
value of x. We will write this correspondence as

F: X —=PY).

1.2.1 Measurable Multivalued Mappings

Throughout this section, we assume that X is a separable metric space and
(Q,U, 1) is a complete o —finite measurable space, i.e. a set 2 equipped with
o-algebra U of subsets and a countably additive measure p on U.

Definition 1.2.1. Let Q2 be a set. A set U of subsets of ) is called a o-
algebra if the following three properties are satisfied:

(i) Qel,
(ii) VAeU = A c U,
(iii) A, €U = U en An €U.

A pair (Q,U) for which U is a o-algebra in ) is called a measurable space.

Definition 1.2.2. (E, ) is a topological space, where O is the set of open
sets in E. Then o(O) is called the Borel o-algebra of the topological space.
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Definition 1.2.3. A map f from a measure space (2,U) to an other measure
space (A, B) is called measurable, if f~'(B) € U for all B € B. The set
J~Y(B) consists of all points x € Q for which f(x) € B. This pull back set
f~Y(B) is defined even if f is non-invertible.

Definition 1.2.4. A multivalued map F : Q — P(X) is said:

a) measurable if for every closed subset C' C X, we have

FO)={weQ: Flw)nC#0}elU,

b) weakly measurable if for every open subset U C X, we have

FU)={weQ:Flw)nU #0} €U,

c) F(-) is said to be K-measurable if for every compact subset K C X,

we have
FUK)={weQ: Flw)NK #0} €U,

d) graph measurable if

GraF ={(w,2) e Qx X : 2z € F(w)} € U ® B(X),

where B(X) is the o-algebra generated by the family of all open sets from
X.

Proposition 1.2.1. /9, 25] Assume that p,v: Q — P(X) are two multival-
ued mappings. Then the followings hold true

e if © is measurable then ¢ is also weakly measurable,

e if o has compact values, measurability and weak measurability of ¢ are
equivalent,

o if ¢ is weakly measurable then the graph I', of ¢ is product measurable,
e if p and 1y are measurable then so is ¢ U1,
e if ¢ and 1 are measurable then so is p N,

e if © and 1 are measurable then so is ¢ X 1.
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1.2.2 Upper Semicontinuous Mappings

Let (X, d) and (Y, p) be two metric spaces.

Definition 1.2.5. A multivalued map F : X — P(Y') is called upper semi-
continuous (u.s.c. for short) provided for every open U C'Y the set F~*(U)
is open in X.

Now, we give the locally version of u.s.c. multivalued map

Definition 1.2.6. A multivalued map F : X — P(Y) is u.s.c. at the point
x € X if F(x) is a nonempty set, and if for each open set W of Y containing
F(x), there exists an open neighborhood U of x such that F'(U) C W.

Remark 1.2.1. A multimap is called u.s.c. provided it is upper semicontin-
uous at every point r € X.

Proposition 1.2.2. A multivalued map F : X — Py(Y) is u.s.c. at point
x € X if and only if for every sequence {x,}nen converging to x and for any
open set V- CY such that F(x) C V', then there exists ng € N such that

F(x,) C V for all n > ny.

Proposition 1.2.3. A multivalued map F : X — P(Y) is u.s.c. if and only
if for every closed set A C'Y the set F;l(A) 1s closed subset of X.

Definition 1.2.7. A multivalued map F : X — P(Y') is called closed if its
graph is a closed subset in X X Y.

Lemma 1.2.1. A multivalued map F : X — P(Y) is closed if and only if
for every sequences {xp}neny C X and {yn}neny C Y, if when n — oo, x, —
Ty Yn = Ys and y, € F(x,), then y, € F(x.).

Lemma 1.2.2. If F': X — Py(Y) is u.s.c., then the graph of F Gr(F) is a
closed subset of X x Y.

Remark 1.2.2. Notice that for example the map f : R — R defined as
follows: L i g
= if x#0
f(‘”)_{ 0, if z=0,
has a closed graph but it is not u.s.c. i.e. continuous.

In general if f : X — Y is a continuous map from X into Y ,then the inverse
map Fy:Y — P(X) defined by

Frly)=fy) ={z e X : f(z) =y},
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has a closed graph but is not necessarily u.s.c.

Lemma 1.2.3. If F' : X — P(Y) has a closed graph and locally compact
(i.e., for every x € X, there exists an open set U, such that F(U,) € P, (Y)),
then F(.) is u.s.c.

Definition 1.2.8. F is completely continuous if it is u.s.c. and F(B) is
relatively compact for every B € Py(X). Also, F is compact if F(X) is
relatively compact.

Theorem 1.2.1. [29] If the multivalued map F is completely continuous
with nonempty compact values, then F' is u.s.c. if and only if F' has a closed
graph.

Definition 1.2.9. A multivalued map F : X — P(Y) is quasicompact if its
restriction to every compact subset A C X is compact.

Theorem 1.2.2. [59] Let X and Y be metric spaces and F : X — P.,(Y)
a closed quasicompact multimap. Then F is u.s.c.

Proposition 1.2.4. Assume that G,F : X — P(Y) are two u.s.c. map-
pings. Then:

e The map GUF : X — P(Y) is u.s.c.

o The map GNF : X — P(Y) is u.s.c.

Proposition 1.2.5. [50] Let X,Y and Z three metric spaces, let F': X —
P(Y) and G : X — P(Z) two u.s.c. mappings. Then the map F x G : X —
PY x Z) is u.s.c.

Proposition 1.2.6. [50] Let F : X — P.,(Y) be an u.s.c. and let A be a
compact subset of X. Then F(A) is compact.

Lemma 1.2.4. [9]: for a multifunction F': X — Pe,(Y) u.s.c. we have

Vo € X, lim sup F(x) = F(x9).

T—T0

Lemma 1.2.5. : [9] Let (K,,), C K such that K is a compact subset of X,
and X 1is a separable Banach space. Then

co( lim sup K,,) = Nnoco(Up>nKy).

n—oo

Where co is the enveloppe conveze.
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1.2.3 Lower Semicontinuous Mappings

Definition 1.2.10. Let F' : X — P(Y) a multivalued map. If for every
open U of Y the set F.'(U) is open in X then F is called lower semicontin-
uous(lLs.c.).

Now, we give the locally version of ls.c.

Definition 1.2.11. Let F : X — P(Y) a multivalued map. F is lower
semicontinuous at the point x if for every open set V- C Y such that F(x)N
V' # ) there exists neighborhood U, of x with the property F(x') NV # )
for all ' € U,.

Remark 1.2.3. A multivalued map is called lower semicontinuous provided
that it is lower semi continuous at every point x € X.

Proposition 1.2.7. A map F : X — P(Y) is l.s.c. if and only if for every
closed A CY the set F71(A) is a closed subset of X.

Proposition 1.2.8. [29] The multimap F : X — P(Y) is l.s.c. at the point
x € X if and only if for every sequence {x, }nen C X converge to x, then for
each y € F(x) there exists a sequence {yntneny C Y, yn € F(x,), such that
Y, converge to y.

Proposition 1.2.9. o If G : X — P(Y) are two l.s.c., then F UG :
X = P(Y) is l.s.c. too.

o IfF: X = PY)and G:Y — P(Z) are two l.s.c. then the composi-
tion Go F': X — P(Z) is l.s.c. too, provided for every x € X the set
G(F(z)) is closed.

We would like to stress that the intersection of two l.s.c. mappings is not
l.s.c.

Example 1.2.1. Consider two multivalued mappings F,G : [0, 7] — P(R?)
defined as follows:

F(t) = {(z,y) € R*: y > 0andz* + y* < 1}, for everyt € [0, ];

G(t) = {(z,y) €R? : v = Acost,y = Asint, A € [-1,1]}.

Then F is a constant map and hence even continuous, G is l.s.c. map but
F NG is not Ls.c. (to butter understand consider t =0 ort = 7).
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Definition 1.2.12. A subset A of L'(J, F) is decomposable if for all func-
tions u,v € A and measurable subset N C J, the function uxy+vx;_n € A,
where x stands for the characteristic function.

Definition 1.2.13. Let Y be a separable metric space and let N : Y —
P(L'([a,b], X)) be a multivalued operator. We say that N has property
(BC) if

1) N is lower semi-continuous (I.s.c.),
2) N has nonempty closed and decomposable values.

Let F': [a,b] x X — P(X) be a multivalued map with nonempty compact
values. Assign to F' the multivalued operator

F : O([a,b], X) — P(L'([a,b], X))
by letting
Fy) ={w € L'([a,b], X) : w(t) € F(t,y(t)) a.e.t€ [a,b]}.

The operator F is called the Niemytzki operator associated with F.

Definition 1.2.14. Let F' : [a,b] x X — P(X) be a multivalued function
with nonempty compact values. We say that F is of lower semi-continuous
type (Ls.c. type) if its associated Niemytzki operator F is lower semi-
continuous and has nonempty closed and decomposable values.

1.2.4 Hausdorff Continuity

In all this subsection we assume that (X, d) is a metric space
Definition 1.2.15. Consider the Hausdorft pseudo-metric distance
Hy:P(X)x P(X)— RYU{oo},
defined by
Hq.(A,B) =max{H};(A,B),H;(B,A)},
where

H3(A, B) = supd(a, B), Hj(B, A) = sup d(A,b).

a€A beB
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and
d(A,b) = ;relg d(a,b),d(a, B) = gg}fg d(a,b).

By convention, Hy((),0) = 0 and Hy(A, D) = oo for every A # (), inf ) = 0.
We can also define the Hausdorff distance in terms of neighborhoods of sets.
Let A € P(X) and ¢ > 0 we define e—neighborhood of A by

A, =0.(A) ={r e X :d(z,A) < e}
We can easily prove that
Nes00:(A) = A and O, (Nic1A;) = UierO:(A;).
Proposition 1.2.10.
Hj;(A,B)=inf{e >0: A C B.}.
Lemma 1.2.6. Let A, B € Py(X), then
H4(A, B) = sup{|d(z,A) — d(z, B)| : x € X}.

Lemma 1.2.7. For all A, B,C in P(X)U{0}, the following properties are
satisfied

e H, 0 and Hy(A, A) = 0.

(A,B) =
e Hy(A,B) = Ha(B,A).
o Hy(A,B) < Hqy(A,C)+ Hy(C, B).

e Hy(A,B) =0 if and only if A = B.
Proposition 1.2.11. (P 4(X), Hy) is a metric space,and (Pa(X), Hq) is a
generalized metric space.

Remark 1.2.4. H, is a generalized metric(pseudo-metric space)(i.e. Hy
satisfies all the conditions distance but in general Hqy(A, B) £ oo if we take
A =R and B = {0} we have Hy(A, B) = ).

Theorem 1.2.3. Let (X,d) be a complete metric space, then (Pu(X), Hg)
1s a complete space too.
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Definition 1.2.16. Given two metric spaces X,Y, a multivalued map F' :
X — P(Y) is said to be Hy-continuous at some point xo € X if

Ve>0,30: Ve e X: dx,zg) <d= Hy(F(x), F(x)) < e.
The following facts result immediately from the above definitions.

Proposition 1.2.12. 1. Fise—0 u.s.c. at xo if and only if
Ve>0,35>0, Vo € B(zg,0): Hj(F(x),F(x)) < e.

2. Fise—46 l.cs. at xqg if and only if
Ve>0,35>0, Vo € B(xg,0): Hj(F(xg), F(x)) <e.

In other words, € — 0 u.s.c. at xo means that lim H}(F(z), F(zo)) =0,
T—T0
e —90 l.c.s. at xp means that lim H}(F(zg), F(z)) =0, and € — § continuity
T—TQ
at rop means that lim Hy(F(x), F(z0)) = 0.
T—xQ

Corollary 1.2.1. F': X — P(Y) is Hy-continuous at xy € X if and only if
Fise—06 us.c atxgand F ise— 06 l.c.s. at xy.

Definition 1.2.17. Let X,Y be metric spaces. A multivalued map F' : X —
P(Y) is said to be

e H,-Lipschitz with constant k > 0 if

Vi, 29 € X, Hy(F(x1), F(x2)) < kd(xy,23).

Proposition 1.2.13.

F Hy — Lipschitz with constant k = F Hy — continuous.

1.3 Selection Theorems

The following definitions and the result can be found in [50,41].

Theorem 1.3.1. {Michael’s selection theorem 1956(see [68])}

Let X be a metric space, E a Banach space and F: X — Py o(E) a ls.c.
map. Then there exists f: X — E, a continuous selection of F' (f C F), i.e.
f(z) € F(x) for every x € X.
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Corollary 1.3.1. Let X be a metric space, Y a separable Banach space, and
F:X = PuwY) als.c multivalued map. Then F admits a sequence of
continuous selections (fy)n>1 such that for all x € X

F(x) = {fu(z)}nz1-

Definition 1.3.1. We say that a map F: X — P(Y) is o-selectionable, if
there exists a decreasing sequence of compact valued u.s.c. maps F,: X —
P(Y) satisfying:

1. F,, has a continuous selection, for all n > 0,
2. F(z) =, Fu(x), for all z € X.

Definition 1.3.2. [9,25] Assume that F': X — P(Y') is a multi-valued map
and F,, : X — P(Y), n = 1,2,... is a sequence of multi-valued mappings
such that:

Foa(2) C Fu(2)
F(x) = Np>oF(z), for every x € X andn =0,1,2,....
We say that

F is 0 — L— selectionable, provided F,, is L— selectionable for every n (i.e
for every n there exists a Lipschitz continuous map such that f, C F,)

I is 0 — LL— selectionable, provided F,, is LL— selectionable for every n
(i.e for every n, there exists a locally Lipschitz continuous map such that

fa CFo)

F is 0 — Ca—selectionable, provided F,, is Ca— selectionable for every n (i.e
for every n, there exists a Carathéodory map such that f, C F,)

F' is 0 — m— selectionable, provided F,, is m— selectionable for every n (i.e
for every n, there exists a measurable map such that f, C F,)

F' is 0 — c— selectionable, provided F,, is c— selectionable for every n (i.e for
every n, there exists a continuous map such that f, C F},).

F' is 0 — mLL—selectionable provided F,, is mLL— selectionable for every n
(i.e. for everyn = 0,1,2,..., there exists a measurable-locally Lipchitz map

fn i la,b) x X — Y such that f, C F,).
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Recall that a single-valued map f : [a,b]x X — Y is said to be measurable-
locally-Lipschitz (mLL) if f(-,z) is measurable for every x € X and for every
x € X, there exists a neighborhood V, of x € X and an integrable function
L, : [a,b] — [0,00) such that

d(f<t7x1)7f<t7x2)) S Lz(t)d(xlny) for every te [(I,b] and T1,T2 € sz

Lemma 1.3.1. Let Y be a separable metric space and F : [a,b] — P(Y)
a measurable multi-valued map with nonempty closed values. Then F has a
measurable selection.

Lemma 1.3.2. : Let X be a Banach space. Let F:[0,b] X X — Pepeo(X)
is L*—Caratheodory multifunction with Sg, # 0, let T' a continuous linear
operator to L*(]0,b], X) in C([0,b], X), then the operator

ToSp:C(0,b],X) — PupelC([0,8], X)
T

X) )
y — ([oSp)(y) :=T(Sky)
X)

has a closed graph in C(]0,b], X) x C([0,b], X), where

Spy={v € LY([0,0], X) : v(t) € F(t,y(t)); t €[0,b]}.

Theorem 1.3.2. {Kuratowski-Ryll-Nardzewski’s selection theorem 1965}
Let Y be a separable complete space. Then every measurable p: Q@ — P(Y')
has a measurable selection.

Definition 1.3.3. A map ¢: [0,a] x R" — P,,(R") is called u-Carathéodory
(resp. [-Carathéodory; resp. Carathéodory) if it satisfies:

1. t — ¢(t,z) is measurable for every x € R",

2. ¢ — @(t,x) is u.s.c. (resp. l.s.c.; resp. continuous) for almost all
t €10,qa,

3. |yl < €(t)(1 + ||z||), for every (t,x) € [0,a] x R™, y € ¢(t,x), where
¢:[0,a] — [0,400) is an integrable function.

Theorem 1.3.3. {Theorem of Cellina}

Let ¢: [0,a] X R" = Py e (R™) be a multivalued map. If ¢(-,x) is u.s.c. for
all z € R™ and ¢(t, -) is l.s.c. for allt € [0,al], then ¢ has a Carathéodory
selection.
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Theorem 1.3.4. [21](theorem of selection"Bressan-Colombo")

Let X be a separable metric space, let E be a Banach space. Then for all
l.s.c. operator N : X — Py(L*(J, E)) with decomposable closed value has a
continuous selection.

For more details on multivalued maps and the proof of the known re-
sults cited in this section we refer interested reader to the books of Deim-
ling [29], Gorniewicz [50], Hu and Papageorgiou [47], Smirnov [82] and Tol-
stonogov [84].

1.4 Homologie

1.4.1 Some definition and property

Let C be an abelian category. For C may be the category of abelian groups
or sheaves of abelian groups on a topological space.

Definition 1.4.1. A complex C* is a family {C"},cz of objects in C, to-
gether with maps d : C™ — C™*! such that d o d = 0.

Definition 1.4.2. A morphism of complex ® : C* — D* is a family of maps
®: C" — D" for all n € Z such that ® od = d o ®.

The cohomology of a complex C* is defined as follows
H™(C*) =ker(d : C" — C™™) /image(d : C"~ " — C™).

Taking cohomology is an additive functor, i.e. ® : C* — D* induces a map
H"(®) : H*(C*) — H™(D") for all n € Z, with

1. H"(id) = id,
2. H(®o¢) = H"(®) o H (1)),
3. H*(® + 1) = HW(®) + H"(¢).

Definition 1.4.3. A morphism ® : C* — D* is called a quasi-isomorphism
if H*(®) is an isomorphism for all n € Z.

Definition 1.4.4. A complex C* is called acyclic if H"(C*) = 0 for all
n € Z, i.e. 0 — C* is a quasi-isomorphism.
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If F— C° — C' — --- is an acyclic complex then CY — C' — - - is called
a resolution of F'.

Definition 1.4.5. A morphism of complex ® : C* — D* is called null

homotopic if there are maps K : C™ — D"~! for all n € 7Z, such that
d=Kod+doK.

Two morphism ® : C* — D* and ¢ : C* — D* are called homotopic if ® —

is null homotopic.

Proposition 1.4.1. If & and ) are homotopic then
H"(®) = H"(y)Vn € Z.

Definition 1.4.6. Let U = (U;)icr be an open covering of X. We define the
Cech complex by

CP(U, F) = H(i0,~-,ip)elp+1F<Uio N---N Uip) for all P 2 0.
The differential is
CP(U,F) — CpH(U, F)

p+1

5(a)(io,~~ dpt1) Z(_1>ka(i0,--~ Jip)*

k=0

We write

ZP(U, F) = ker(§ : C*(U, F) — CP*Y(U, F)),
the elements of ZP(U, F) are called cycles.
Definition 1.4.7. The cohomology groups
H'(U,F) := H(C*(U, F))

are called the Cech cohomology. They depend on the open covering and the
sheaf F'. Since F' is a sheaf we get

H°(U,F)=HX,F)=T(X,F).

Lemma 1.4.1. Let U = (U;);er be an open covering of X with U; = X for
some j € I. Then HP(U,F) =0 for p > 0 and any sheaf F.
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1.5 Topological and Geometric Background

First, we start with some notions from geometric topology. For details, we
recommend [58,30,50]. In what follows (X, d) and (Y, d’) stand for two metric
spaces.

Definition 1.5.1. (Homotopic)
Let f,g: X — Y be two continuous functions. We say that f is homotopic
to g if there exists is a continuous function h: X x [0,1] — Y such that:

(1) h(z,0) = f(z);Vzr € X,
(2) h(xz,1) = g(x);Vr € X.

Definition 1.5.2. (Retract)
A subset A C X is called a retract of X if there exists a continuous mapping
r: X — A such that r(x) =z, Vo € A.

Definition 1.5.3. (Contractible)

A set A C X is called a contractible space provided there exists a continuous
homotopy h : A x [0,1] = A and x¢ € A such that

(a) h(x,0) = x, for every x € A,

(b) h(z,1) = xq, for every x € A,

i.e. if the identity map A — A is homotopic to a constant map (A is
homotopically equivalent to a one-point space).

Note that any closed convex subset of X is contractible.
The following notion, strictly connected with extendability, was first in-
troduced by K. Borsuk [19].

Definition 1.5.4. A space X is called an absolute retract (in short X €
AR) provided that for every space Y, every closed subset B C Y and any
continuous map f : B — X, there exists a continuous extension f: Y - X
of f overY, ie. f(z) = f(x) forevery x € B. In other words, for every
space Y and for any embedding f : X — Y, the set f(X) is a retract of Y.
If the set f(X) is a retract of U for every open neighborhood U of B in' Y
we say that X € ANR and call X to be an absolute neighborhood retract.

Definition 1.5.5. (Rs;—set)
A compact nonempty metric space X s called an Rs-set provided there ex-
ists a decreasing sequence of compact nonempty contractible metric spaces
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(Xn)nen such that

X = Flen.

For compact sets we have
Convexsets C AR C Contractible C Ry.

Definition 1.5.6. (Acyclic)

A space A is closed acyclic if

(a) Ho(4) = Q, v

(b) H,(A) =0, for every n > 0, where H, = {H, }n>0 is the Cech-homology
functor with compact carriers and coefficients in the field of rationals Q. In
other words, a space A is acyclic if the map j : {p} — X, j(p) = xo € A,
induces an isomorphism j. : H.({p}) — H.(A).

Lemma 1.5.1. [51] Let X be a compact metric space, if X is Rs—set, then
X is an acyclic space.

Theorem 1.5.1. [50] (Theorem of Lasota York)

Let E be a normal space, and X a metric space, and let

f X — E a continuous map. Then for every € > 0 there exists a locally
Lipschitz function f. : X — E such that

1f(2) = fe(2)]| < & Ve € X. (1.1)

Definition 1.5.7. A map f : X — Y is propre, if it is continuous and the
inverse image of a compact set is compact.

Theorem 1.5.2. :(Theorem of Browder and Gupta)
[20] Let (E, ||.||) a Banach spaca, and let f : X — E a propre map, and for
every € > 0 we have a propre map f. : X — E, satisfied:

(i) ||f-(x) — f(x)|| < e forallz € X.

(ii) For all uw € E such that ||u]| < e, the equation f.(x) = u has a unique
solution.
Then the set S = f~1(0) is R;.

1.6 Fixed Point Theorems

Fixed point theory plays an important role in our existence results, therefore
we state the following fixed point theorems.
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1.6.1 Single Mappings Case

Theorem 1.6.1. (Schauder fized point theorem)
Let E be a Banach space, C' C E be a nonempty compact convex subset of E
and N : C'— C be a continuous operator. Then N has at least fixed point in

C.

The compactness condition on C' is a very strong one and most of the
problems in analysis do not have compact setting.

Theorem 1.6.2. (Granas-Schauder fized point theorem)
If X € AR and N : X — X is a compact map, then N has a fized point.

Theorem 1.6.3. [58, 50/(Nonlinear alternative of Leray and Schauder)
Let X be a Banach space C' a convex subset of X, U an open subset in C',
and N : U — X is continuous and compact operator, then

(a) either Ju € OU; 3N € (0,1) such that u = AN (u),
(b) or N has a fized point in U.

Definition 1.6.1. Let (X,d) and (Y,d;) be two metric spaces. Recall that
a mapping f : X — Y is called contractive (or Banach contraction) provided
there exists o € [0, 1) such that:

Va,y € X, di(f(x), f(y) < ad(z,y).

Theorem 1.6.4. (Banach fized point theorem)
Let (X,d) be a complete metric space and let f : X — X be a contractive
mapping. Then there exists exactly one point T € X such that f(x) =7T.

Consider then the situation in which N : X — X is not necessarily a
contraction mapping, but N” is a contraction for some n.

Example 1.6.1. Let N :[0,2] — [0, 2] be defined by

[0, ifze]|0,1],
N(x)—{ 1, ifxe(1,2]

Then, N?(x) = 0 for all z € [0,2], and so, N? is a contraction on [0,2]. Note
that N is not continuous and thus not a contraction map.

In [22] Bryant extended Banach fixed point theorem as follows.
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Theorem 1.6.5. Let (X, d) be a complete metric space and let N : X — X
be a mapping such that for some positive integer n, N™ is contraction on X.
Then, N has a unique fized point.

Next extension of Banach fixed point theorem is due Caccioppoli [24]

Theorem 1.6.6. Let (X, d) be a complete metric space and let N : X — X
be a mapping such that for each n € N., there exists a constant ¢, > 0 such
that

d(N"(x), N"(y)) < cpd(z,y), forall x,y € X,

o)
where Z cn < 00. Then, N has a unique fized point.

n=1

Theorem 1.6.7. [36/(The Alternative of Frigon and Granas) Let E be a
Fréchet space with a family of semi semi—normes {||||, }nen+, N : E — E
a continuous operator, with

E=0nen-En,  En CEnpr, and ||, < |0y, neN
assume that for alln € N, 3k,, € (0,1) such that:
|Ny — Nz|| < knlly—z|,; VneN,foral z,y € E,,
O is a closed part in E. Then either,
1) there exists A € (0,1) : y = ANy, Yy € 00; or
2) there exists a unique y € O such that y = Ny.

Lemma 1.6.1. [5/(Schauder-Tikhonov fized point theorem)
Let E be a locally convex space, C' a convex closed subset of E and N : C' — C
a continuous, compact map. Then N has at least one fixed point in C.

1.6.2 Multivalued Mappings Case

The question here is to solve the following abstract inclusions:
x € F(x)

where F': X — P(X) be a given multivalued operator.
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Theorem 1.6.8. (Nonlinear Alternative of Leray-Schauder)
Let X be a Frechet space and N : X — Py (X) be a completely continuous,
u.s.c. multivalued map. Then one of the following conditions holds:

(a) N has at least one fized point in X,
(b) the set M :={x € X,z € AN(x),\ € (0,1)} is unbounded

Lemma 1.6.2. : We let X be a generalised Banach space. C' a convex subset
of X, U an open subset in C, and F : U — Pepep(X) is w.s.c, compact
multifunction, then

(a) either 3u € OU; 3N €]0, 1] such that u € AF(u),
(b) or F has a fized point in U.

Definition 1.6.2. Let E be a Fréchet space with the topology generated
by a family of semi-norms ||.||,, and corresponding distances d,,(z,y) = ||x —
Ylln(n € N). A multivalued map F : E — P(F) is called an admissible
contraction with constant {k, },ey if for each n € N, there exists k, € (0, 1)
such that

(a) Hy,(F(z), F(y)) < ky||x — yl||, for all x,y € E, where H, is the Haus-
dorff distance,

(b) for every x € E and every € > 0, there exists y € F(x) such that

lx —ylln < dn(z, F(z)) + ¢, Yn € N.
A subset A C FE is bounded if for every n € N, there exists M,, > 0 such that

|z, < M, for every x € A.

Lemma 1.6.3. Let E be a Fréchet space, U C E an open neighborhood
of the origin, and let N : U — P(E) be a bounded admissible multivalued
contraction. Then one of the following statements holds:

(a) N has a fized point,

(b) there exists A € [0,1) and x € OU such that x € AN (z).



Chapter 2

Cauchy problem for impulsive
ordinary differential equations on
unbounded domain

In this chapter, we treate the existence and the uniqueness of solutions to
a Cauchy problem for impulsive ordinary differential equations on an un-
bounded interval [0,4+00). We also investigate some topological and geo-
metric properties of the solutions set, more precisely consider the following
impulsive problem

y(t) = ft,y(t)), t€0,+00)/{t1, -}

y(th) —yty) = L(y(ty)), k=123, (2.1)

y(0) = a, a € R",
WhereO:t0<t1<...tk<tk+1,..., limkﬁootk:oo, f2[0,+OO)X

R™ — R™ is Carathéodory function, and I, € C(R", R"),y(¢}) = limy_o+ y(tx+
h),y(ty,) = limy, - y(tx — h).

2.1 Existence and Uniqueness

Let Ji = (tg,trs1], £ € N* Jy = [0,t0], and let y, be the restriction of a
function y to Ji. In order to define solutions for problem (2.1), consider the
spaces:

25
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y:[0,400) — R™: y, € C(Jy,R"), y(t;,) and y(t})
PC =
exist and satisfy y(t;) =y(tx), k € N

and
PCy={y € PC: ||yl p¢, < oo}

endowed with the norm

1yllpe, = sup [ly(@)]l,
te[0,00)

PCy is a Banach space.

Definition 2.1.1. A function y € PCNUJ, AC(J,, R") is a solution of the
problem (2.1) if and only if

—a—l—/fsy ds—i—ZIk (tr)), t€[0,00).
O<tp<t

Our first main result is the existence and uniqueness of the problem (2.1)

in PCb

Theorem 2.1.1. [79] Suppose that there exists p € L'([0, +o0), R, ) such
that:

lf(t,y) — f(t, )| <p(t)|ly — x|, for all z,y € R", and almost all elements t € [0, c0),
and there exist a positives real numbers ¢, > 0;k € N such that:

11k(y) = Ie(@)|| < cilly — ||, for every — x,y € R,
and

+oo
ZHIk )| < oo, / IIf(s,0)||ds < oo.

+00
[chk < 1, then the problem (2.1) has a unique solution on [0, 0).
k=1
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Proof. Consider the application

N:PC, — PC,
y — Ny,

defined by

—a—l—/fsy ))ds + Z I(y(ty)), te€]0,00).

0<tp<t

Step 1 N is well defined
Let y € PC,, we have

—a+/fsy ))ds + Z Ie(y(tx)), t€[0,00),

O<trp<t

we will prove that Ny € PCy,
INyOI < all + 5 11F (s () ds + Sy <o s (w ()
< lall+ J5 1 f(s,9(5)) = f(s,0) [ ds + [, || £(5,0)| ds

+ 2020 Me(y(t) = 1) + 225 17(0)]

< all+ fy™ () ()l ds + J57 11F (s, 0] ds
+ 22y e ly ()l + 3252 Mk (0)])
< llall + f57™ 2(5) 19l pe, ds + 5 11£ (s, 0 ds

+ k5 ek [yl pe, + k21 ()] < oo,

Step 2 N is contractive
We let y1,ys in PCy:

INus(t) — Nunt) / 1£(5,31(5)) — (5, ())]] ds
+ > () = Te(y2(te) |

0<trp<t
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< / p(5) lly1(5) — va(5) | ds
+ chuyl(tk)—%(tk)”

t
1
< [ RO ) - (o) ds
o T
+oo
+ e POePON "oy (t) — wa(te)|
k=1
1/ [ <
< - (/ Tp(s)eTP(S)ds) s — yall, + 7O (Z ck> 1 — w2l
0 k=1
1 <=
< L) Iy - ], + 0 <Z ) o= el
k=1
then
1 +o00
N9y~ N, < (; + ch> I~ vell.
k=1
where .
Joll. =supe ™ fa(t)] . P = [ pls)ds
t>0 0
+o0
by assumption we have Z cx < 1, so there exists € in (0, 1) such that
k=1
+oo
€+ Z cp < 1,
k=1

1
if we take 7 = —, we obtain that N is contractive, hence by the theorem 1.6.4
the problem (2.1) has an unique solution.

m
Next, we present an existence and uniqueness result of the problem (2.1)
in the following Fréchet space PC = N,,enPC,, such that

PC,, = PC([0,,,],R")
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e (PCy,|l,,) is a Banach space endowed with the norm ||-||,, such that

yll.,, = sup [ly(®)]l,
te[0,tm]

and

P01CPCQCP03C"'
Il < A-lly < s < -+
e PC is a Fréchet space for the family of semi-norms {||-||,, }men-
Now, we consider the following hypotheses:

(A;) for all R > 0; there exists £ € L}, ([0, +00), R, ) such that

loc

lft,y) — f(t, )] < Lr(t)|ly — z||; almost all elements x,y € R"
Iyl < R, llzll <R 5 Vte[0,+00)

(Ay) there exist ¢, > 0;k € N such that
Ik (y) — Ie(2)|| < ek ||y — x|, for all z,y € R", and all t € [0, 00),

with

(Aj3) there exist p € L ([0,00),R") and ¢ € C([0, 00), (0, 0)) such that

loc

1F &y < p()¢((ly(2)]]); for all € [0,00), and all y € C([0, 00), R"),

/°° du ~

ol ()

Theorem 2.1.2. [79] Assume (Ay) — (A3) are satisfied. Then the problem
(2.1) has an unique solution on [0,400).

with
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Proof. Consider the operator N : PC' — PC' defined by

(Ny)(t) = a+ /0 Fls,y())ds + S Lly(th)); ¢ € [0, 00).

0<tp<t

We let y € PC, A € (0,1), such that y = ANy, then

y(t)zx(w / [ls.y(s)ds + 3 my(tm) e (0,4,

O<trp<t
we can prove that there exists M,, > 0 such that
1yll,, < Min.
Let
O ={yePC:|yl,, <Mp+1}

o (O is closed
e N : PC,, — PC,, is contractive Vm &€ N.
Let y1,y> € PC,,, we have

1 m
[Ny — Nya pe,, < (; + ch) ly1 — vallpe,, -
k=1
where

t
Wlpe = sup POy, P(t) = / p(s)ds,

te[07t'm]

so, N : O — PC' is contractive. Then by the alternative of Frigon and
Granas (theorem 1.6.7), either,

1. there exists A € (0,1) : y = ANy, for all y € 00; or

2. there exists unique y € O such that y = Ny.

Assume that I\ € (0,1) : y = ANy, for all y € 00,
if y € 00 = |yl|,, = M + 1, we also have

y=ANy = |yll,, < [ANyll,
= M,,+1<M,,, contradiction.

Then there exists unique y € O such that y = Ny.
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2.2  Solution sets

In this section, we present an existence result, compactness and Rs solution
sets of the problem (2.1).

The following compactness criterion on unbounded domains is a simple
extension of a compactness criterion in PCy(R,R) (see [10,26]).

Lemma 2.2.1. Let C C PC,. Then C is relatively compact if it satisfies the
following conditions:

(a) C is uniformly bounded in PCy(R,R™).

(b) The functions belonging to C are almost equicontinuous on R,, i.e.
equicontinuous on every compact interval of R*.

(c) The functions from C are equiconvergent, that is, given € > 0, there cor-
responds T'(€) > 0 such that |x(m) — x()| < € for any 7,720 > T(¢) and
x e C.

Theorem 2.2.1. [79] Let f: [0,00) xR™ — R" be a Carathéodory function.
Assume that the following conditions

(Ay4) There exist cx,dy, > 0 such that

+00 o]
ch <1 et de < 00,
k=1 k=1
with
[ 1x(2)|| < ckllz|| + di, for all x € R", k€ N.

(As) There is a continuous non decreasing function v : [0,00) — (0, 00)
and p € L*([0,00), R, ) such that

If (@t )| < p&)(||z|]), for almost all elements t € [0,00) and all x € R™,

with +o0o +o00 d
U
m(s)ds < _—,
[ < [

where

|al|| + Z dg
and ¢ = k=1

= T e
1—ch 1—ch
k=1
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Then the problem (2.1) has at least one solution. Moreover the solution
set is compact, Rs, acyclic, and the solution operator S : a — S(a) is u.s.c.

Proof.
e Existence solutions:

Consider the operator N: PCy([0,00),R™) — PCy(]0,00),R") defined
by

Ny(t) =a+ /Otf(s,y(s))ds—l— Z Ii.(y(tr)), t € [0,00).

0<tp<t

We show that N satisfies all the conditions of theorem 1.6.3 on PCj,.
Step 1 N is well defined
Let y € PCy then, we have

Nut) = a+ [ fspas+ ¥ Lo, te),  (2)

O<trp<t

then

0<tp<t

Ny < Ha|!+/0 1f (s, y(sDlids + Y iyt

IN

||a||+/0 p()e(lly(s)Dds + Y (cully(te)ll + di),

0<trp<t

SO

INyllpe, < llall + 1/J(||y||Pcb)/ p(s)ds + Y (callyllpe, + di) < oo,
0

k=1

Step 2 N is continuous

Let (yn)n a sequence in PCy([0,00), R™) such that y, — y as n — oo,
it suffices to prove that Ny, — Ny as n — oc.

For all ¢ € [0, 00), we have

Nut) = ot [ Fon(Dds + 3 Rlom(te)

0<tp<t
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then
t
N (6) = Nyl < [ 1) = Fs(s)l ds
+ > ey (te)) — Ty (te))l
k=1
we have, I}, k = 1,--- ,m are continuous functions, and f is L' —Carathéodory

function. The Lebesgue dominated convergence theorem implies that

+oo
N = Nollpe, < [ 1) = (sl ds
+ 3 He(yn(te)) — L(y(te))]l — 0 when n —» oo,

so, N is continuous.
Step 3 N is compact
Let r > 0, B, := {y € PC : ||y|lpc, < r}, for to prove that N(B,) is

relatively compact we use the lemma 2.2.1.

e N(B,) is uniformly bounded in PC}.
Let y € B,, then we have

Ny(t) = a+ [ feus)ds+ 3 R te D). @3

0<trp<t

then

0<trp<t

Ny < HaHJr/O 1f (s, y(sDlids + Y iyt

IN

Jall + / plly)ds + S (erllyt)l + de),

0<trp<t

SO

Nyl pe, < llall + () / p(s)ds + 3 (car + di).

k=1
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e N(B,) is equicontinuous in PCj.
For each 7,7 € [0,00), 71 < 72, and y € B,, we have

INu(r) = Vol < [ u)lds+ 3 i)l

71 T1<tp<T2

< o) [ ats)ds

T1

+ Z (cxr + di) — 0 when 7 — 7.

T1<lp<T2

Then, we proved the equicontinuity in the case where 7 # t; and
Tg#ti, 221,

If m =t;, let g > 0 such that {t; : 7 # i} N [t; — €0, t; + 0] = 0.
Then for all 0 < € < g, we have

INu(t) = Nyt =) < [ IfGssDllas <o) [ as)as

t;—e

The terms in the right-hand side tend to zero as € — 0.
In the same way we have also the equicontinuity if to =t (i =1,...).

e N(B,) is equiconvergent at oo
We show that for all £ > 0, there exists T, > 0 such that

INy(t) — Ny(oo)|| < e forallt > T. and all y € B,,

let y € B,, then we have

[Ny(t) — Ny(oo)|| < /Oo|lf(8,y(8))\|d8+ > Iyl

t <t <00
< o) [ pedst Y (e d)
t 1<t <00

as ch < 00, de < oo and p € L'([0,0),R,), so there exist ko

k=1 k=1
and T, > 0 such that

[e.9]

Z(Ckr—f—dk) S g,
k=ko
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and -
€
p(s) < -, Vi 2 1,
| 9= 55

INy(t) — Ny(oo)|| < &, Vit = max(ko, T¢).

Then N(B,) is equiconvergent. Hence by Lemma 2.2.1, the operator
N is compact.

then

Step 4 A priori estimates.
Let y € PCj, such that y = ANy, et 0 < A < 1, then

y(t) = A <a+/0 fs,y(s)ds + ) Ik(y(t;))>, for ¢ € [0, 00),

O<trp<t

and

Iyl < ||a||+/O p(s)e(ly(s)ds + > (eully(te)ll + di),

0<trp<t

let a(t) = sup{|ly(s)| : s € [0,t]}, we get

a(t) < flal| + / p(s)p(a()ds + 3 (cralt) + de),

then

o) < g (uan «/ p<s>w<a<s>>ds+zdk>
Thus

ly(®)]l < alt) < Bl0). 1 € [0, +00).

where

) = g (HaH+ / p<s>w<a<s>>ds+zdk>,
hence

sy 2 Bl =T POV p(003)

- 220:1 Ck
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By (As), we have for all ¢ € [0, o00)

BB s 1 o0 > ds
< d —_—.
//3(0) P(s) T 1= /0 pls)ds < //5(0) U(s)

then il
t <F_1<p—£>, for all t € [0, 0),
 du
where I'(2) = / —
50y ¥(w)
Consequently

Hy“PCb = <1_ZZO:1 r )

consider the set
U:={yecPC,: ||lyllpc, < M +1}.

So, the operator N : U — PC(} is completely continuous. From theorem
1.6.3, we deduce that N has a fixed point which is a solution of problem
(2.1).

e S(a) is compact.
Let

S(a) ={y € PCy : y solution of the problem (2.1) and y(0) = a},

as in step 3, we can prove that, there exists M > 0 such that, for all
y € S(a), we have

1yllpc, < M.

Since N is completely continuous, then N(S(a)) is relatively compact
in PCb,

let y € S(a); then y = N(y) so S(a) C N(S(a)),

let {y, : n € N} C S(a) such that (y,)nen converges to y. Then for all
n € N, we have

) =a+ [ Fea(sDds+ 3 Rim). ¢ Do),

0<tp<t
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Then
yn(t) = (Nyn)(t), T €[0,00),

by the continuity of NV, we obtain
Yn(t) = N(yn(t)) = N(y(t)), as n — oo,

then
y(t) = a+ / s uDds + 3 Ly(ty)), t € [0,00).

So, y € S(a), this implies that S(a) is closed, hence, we deduce that
S(a) is compact in PC}.

e The solution set is Rj.
It is clear that, Fix N = S(a), and by the previous step 4, there exists
M > 0 such that for every y € S(a), we have

191l pey, = M,

let f :[0,00) X R* — R™ be a map defined by

FED =0 g5y it (o) > 3,

>l

. {f@,x) if [l < M

and the function I, : R® — R" defined by

. I(x) if o < M
Ie(y(t)) = { L(M4z)y if ||z > M,

ll]

f is L'-Carathéodory, then fis also L!-Carathéodory, and there exist
h € L'([0,00),R,) such that

Hf(t,x)H < h(t); ae.te€0,00); and x € R", (2.4)

consider the following modified problem

y(t> = f(tay(t))v te [0’ OO)/{tlv T 7tm}
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y(th) —y(ty) = L(y(ty) k= 1,2,- -
y(0) = a.

We can easily prove that FizN = FizN, where N : PCy([0, 00), R") —»
PCy([0,00), R™) defined by

N(y)(t)=a+/o fls,y(s))ds+ Y T(y(t), te[0,00). (25)

0<tp<t

By inequality (2.4) and continuity of I, we have

—+o00

|¥w)|, < lall+ 10l + D (b, + )
k=1

“+o00

< all + Al + 7 (M +di) =,

k=1

then N is uniformly bounded. B
We can easily prove that the function M defined by M(y) =y — N(y)
is a propre function. Also we have N is compact, so by the theorem of
Lasota Yorke 1.5.1, we can easily prove that the conditions of Theorem
1.5.2 are satisfied, then the set M~1(0) = FizN = S(a) is Rs, and it
is also acyclic and those by the lemma (1.5.1).

e The solution operator S is u.s.c.

1. The graph of S is closed.
First we show that S has a closed graph. Let GGg be a graph of S
defined by

Gs ={(z,y) e R" x PCly € S(x)}.

Let ((x4,v,4))q be a sequence in Gg, and let (z,,y,) — (z,y) when
q — oo.
As y, € S(z,), then we have

valt) = 2, + / (5 5()ds + 3 Tulug(te), t € [0, 00),

O<tp<t
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let

Z@%=x+[:ﬂ&y@D%+-§:1AMmD,tGULm%

O<trp<t

let ¢t € [0,00), we have

lya(t) = Z@)]| < ||5L’n—96||+/0 1/ (s, 9a(s)) = f(s,y(s))ll ds
> Hklya(®) = Lly(@))]

O<tp<t

400
S|mfwm+A 1 (5. 5a(5)) — F(s, ()]l ds
S Mwa(®) — L),

by the dominated convergence theorem of Lebesgue, we have
llys(t) — Z(t)|| — 0 when ¢ — oo.

Hence, lim, 0y, =y =7 € S(x).

2. S transforms every bounded set in a relatively compact set
Let r > 0,B, :={y € PCy: |ly|| <r}.

(a) S(B,) is uniformly bounded.
Let y € S(B,), then there exists € B, such that

t
y(t) = x—l—/ f(s,y(s))ds + Z I(y(te)), t €0, 00).
0 O<tp<t
As in step 4, we can prove that there exists M > 0 such that

1yllpc, < M.

(b) S(B,) is equicontinuous.
We let 71,75 € [0,4+00),71 < T2, and y € B,, then we have

[INy(r2) = Ny(m)l| < /TQIIf(S,y(S))IIdSﬂL > Myl

71 T1<tp<T2
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< /72p<s>w<uy<s>u>ds+ S (crlly ()l + i)

1 T1<tp<T2

< (D) / " p(s)ds

T1

+ Z (ck]T/[/jL dy) — 0 when 71 — 7.

T1<tp<T2

(c) S(B,) is equiconvergent at oco.

i.e. for all € > 0, there exist T, > 0 such that ||y(t) —y(oc0)|| <

e for all t > T, and all y € S(B).
We take y € S(B) then there exists x € B, and we have

ly(t) —y(oo)]| < /toollf(s,y(S))lld8+ > Iy )l

t<tj<oco

< /fp<s>w<uy<s>n>ds+ S (elly(to)l + di)

t<tp<oo

< (D) / " p(s)ds

Z (ck]/\\j—i- dx) — 0 when t — oc.

t<tp<oo

So, the set S(B,) is compact, hence we obtain that the operator S is locally

compact, and S has a closed graph,

then S is u.s.c.

[
2.3 An Example
Consider the problem:
1 2
y,:m(1+y)3a tEJ:[0,00),t?ék;
1 2.6
Ay(k) = ly(k)l. kEN, (2:6)
y(0)=a€eR
1 2
ft,x) = —(1+1)3,

100
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1

For every x € R, we have

o)l < g5 (14 51,

and

|
, 100(1 + 2u)

Hence the condition (As) holds
Also for all u,u,v,v € R", we have

1
e(w) = k()] < grlu—al, k=1,2,--

and

Thus (A4) holds.



Chapter 3

Impulsive functional differential
inclusions on unbounded domain

Consider the problem

% [y(t) - 9(757?/15))] € F(tayt)v a.e.te J/{t17t27 .- '}7
y(t) = ¢ t)a te [—7“, 0]7
where 0 < r < 00, 0 =ty < t; < ... <ty < typr1 < ..., J := [0,00),

F:Jx D — P(R") is a multifunction, g : J x D — R" is a single-valued
function, lim g(taw) = lim g(tvdj) = g(tk’adj)a ¢ €D = C([—T, 0]7Rn)7

t—ot}h t—ty
peD.
The functions I, € C'(R",R") characterize the jump of the solutions at im-
pulse points ¢, (k = 1,...,m), and Ay|—, = y(t}) — y(¢;). The notations
y(t5) = lim y(tx + h), and y(¢;) = lim y(t; — h) stand for the right and
h—0+ h—0+
the left limits of the function y at t = ¢, respectively.
For any function y defined on [—r,c0) and any t € J, y; refers to the element
of D such that
y(0) =yt +06), 6¢€l[-r0

In this chapter, we present some results of existence of solutions as well as
the topological structure of solution sets for the problem (3.1).

42
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3.1 Existence results

Let
Q={y:[-r,00) > R":y € PC(R",R")N D}

Q) is a Fréchet space, with the family of semi-norms

1Ylle, = sup fly@)ll, k =1,2,---

te[—r,tx]

Then
[ llos <Ml llos <M flas <o < -l <+

(Il-llo Jken is a semi-norms sequence, and € = (), {4, such that
Qe ={y:[-r,+0) > R" y € PC,N D},
is a Banach space with the norm

[yl = sup [ly@)].

te[—r,ty]

Lemma 3.1.1. [43] A function y € Q is said to be a solution of problem
(3.1) if there exists f € L'(J,R™) such that f(t) € F(t,y;) a.e. on J, and

[ 6(t), if t €[-r,0],
$(0) + g(t, ) — 9(0,6) — > Awlglty,y,))
y(t) = 0<t, <t (32)

[ fe)ds+ Y o). if e lo.cc)

L 0 0<tp<t

where Ag(g(t,, yt;)) = g(tZ,yt;) — 9(tk, Y, )-

3.1.1 The upper semi-continuous case

In this subsection, we present a global existence result and prove the com-
pactness of solution set for the problem (3.1) by using a nonlinear alternative
for multivalued maps combined with a compactness argument. The nonlin-
earity is u.s.c. with respect to the second variable and satisfies a Nagumo
growth condition. We will consider the following assumptions.
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(H1) There exist ¢, dy > 0 such that

| Ix(2)|| < cllz| + di, for every z € R" k=1,2,...

With . .
ch < 1land de < 0.
k=1 k=1

The carathéodory multivalued map F : J x R" — P, ., (R"™) satisfies:

(H2) For every bounded set B € Q, the set {t : t — g(t,y:), y € B}
is equicontinuous and equiconvergent in €2, g is continuous and there

exists a constant ¢ € [0,1) and ¢, > 0 such that

llg(t, 2)|| < ¢1||z||p + ¢s for all z € D.

(Hs3) There exists a continuous non decreasing function ¢ : [0, 00) — (0, 00)
and p € L'(J,R") suth that

|F(t, z)|lp < pt)¢(||z||p) for ae. t € J and each x € D,

with - o g
/ m(s)ds < L
0 c (u)
where
2 20 > d
m(S) _ p(S) — andC: ||¢||D+ 2+OOZI€:1 k"'
1_€1_Zk:10k l—fl—zkzlck

Theorem 3.1.1. Assume that the conditions (Hi) — (Hs3) hold. Then the
problem (3.1) has at least one solution. Moreover, the solution set

Sr(¢) ={y € Q:y is solution of (3.1)},¢ € D,

is compact and the multivalued map Sp : ¢ — Sp(¢) is u.s.c.

In the next proof we will use the nonlinear alternative of Leray-Schauder for

multi-valued maps (see theorem1.6.8, [50]).
Proof.



3.1 Existence results 45

Step 1. Existence of solutions.
Consider the operator N : Q@ — P(€) defined for y € Q by

+f(f f(s)ds
N(y)=qheQ: h(t)=< +> gc, < Ik(y(ty)), ae. t e

o(t), t € [—r,0]

(3.3)
where f € Sp, = {v € LY(J,R") : v(t) € F(t,y), a.et € J}, the set Sp,
is nonempty if and only if the mapping ¢ — inf{||v|| : v € F(¢,y(t))} belong
to L'. Tt is further bounded if and only if the mapping t — ||F(t,y;)||»p =
sup{||v|| : v € F(t,y;)} belong to L', this particularly holds true when F
satisfies (H3). Moreover, fixed points of the operator N are mild solutions
of problem (3.1). We shall show that N satisfies the assumptions of theo-
rem1.6.8. First notice that since Sg,, is convex (because F' has convex values),
then N takes convex values.

e Claim 1. N(PC,n D) C PCy;N D. Indeed, let y € PC, N D and
h € N(y) then there exists f € Sp, such that

6(0) + g(t,y:) — 9(0,0) + [ f(s)ds

h(t) = +0<tzk<t]k(y(t,;)), ae. teJ
o(t), t € [—r,0]

by (H1) — (Hs), we get
@I < 160+ llgttm)ll + 19(0.6)]
n / 1N + 3 1w,

hence
[hllpc, < ol + bllyllpe, + L2 + [lg(0, 9)|l

o(lylre) / p(s)ds + yllec, + 3 di
0 k=1
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This shows that NV transforms bounded sets in PCy N D into bounded
sets of PC, N D.

e Claim 2. N transforms bounded sets in PC, N D into almost equicon-
tinuous sets of PCy N D. Let ¢ > 0, B, := {y € PCy : ||yllo < ¢},

B,ND be a bounded set in PC,ND, 7,7 € J,71 <7y, and y € B,ND.
For each h € N(y), we have

[h(72) = h(r)l| < ||9(71,yn)—g(Tz,yrg)||+/T2 1 (s)llds

+ D Iy(t)ll

T1<tp<T2

< o) = ol vl +00) [ plo)ds
+ Z (crq + di).

T1<tp<T2

Since Y 77 ¢ < 00, Y e d < oo and p € L'(J,R"), and (Hs), the
right-hand term tends to zero as |2 — 71| — 0, proving equicontinuity
for the case where t # t;,1 = 1,2,--- To prove equicontinuity at ¢ = ¢;
for some i € N*, we fix g9 > 0 such that {¢; : j # i}N[t;—eo, ti+eo] = 0.
Then for each 0 < € < g9, we have the estimates

() = kit =9 < lo(tosn) =t = el + [ 17 ds

2

< gt ) — 9t — e p- + (a) / C p(s)ds.

Since p € L'(J,RT), and (H), the right-hand term tends to 0 as e — 0.
The equicontinuity at ¢; (i = 1,---) is proved in the same way.

e Claim 3. Let B(0,q) be the closed ball centered at the origin with
radius ¢ > 0. We show that the set N(B(0,¢)N D) is equiconvergent at
00, i.e. for every e > 0, there exists T'(¢) > 0 such that ||h(t) —h(c0)|| <
e for every t > T and each h € N(B(0,q) N D). If h € N(y) for some
y € B(0,q) N D, then there exists f € S, such that h satisfies (3.11).

Then

1) = hel < gt 0 — g(oc. )l + [ ()

t
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+ > I Tlyt)]

t<tp<oo

< Nlgtt,ue) — 9(00, yso) | + $(0) / " p(s)ds
+ Z (crq + dg).

t<tp<oo

Since Y27, ¢k < 00, Y po,di < 00 and p € LY(J,R"), and (H,), then
there exists kg and T7(e) > 0 and T3(¢) > 0 such that

[e.9]

Z(qu +di) < %,
k=ko
and -
/t p(s)ds < ﬁ(q) vt > Ti(e)
la(t.30) = gloo.y)l| < 5, ¥t = To(e).
hence

|h(t) — h(o0)|| < e, ¥Vt > max(ko, T1(¢), T (€)).

Then N(B(0,q)N D) is equiconvergent. With Lemma 2.2.1 and Claims
1 — 3, we conclude that N is completely continuous.

e Claim 4. N is u.s.c.
To this end, it is sufficient to show that N has a closed graph. Let
hn, € N(y,) be such that h,, — h and y,, — y, as n — +oo. Then there
exists M > 0 such that ||y,| pc, < M. We shall prove that h € N(y).
h, € N(y,) means that there exists f, € Sg,, such that, for a.e. t € J,
we have

ha(t) = ¢(0) + g(t, (yn)e) — 9(0,0) + /Ot Fals)ds + > Lu(ya(te))-

0<trp<t

(H3) implies that f,,(t) € p(t)¥(M)B(0,1). Then (f,)nen is integrably
bounded in L'(J,R"). Since F has compact values, we deduce that
(fn)nen, there exists a subsequence, still denoted (f,)nen, Which con-
verges weakly to some limit f € L'(J,R™). Moreover for a.e. t € J,
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Yn(t) converges to y(t) and the functions g and I are continuous for
k=1,--- Then we have

b(E) = 0(0) + (630~ 0.0)+ [ s)ds+ 3 Do)

0<tp<t

It remains to prove that f € F(t,y(t)), a.e. t € J. By Mazur’s
lemma there exists o' > 0,4 =1,--- , k(n) such that ngi)
the sequence of convex combinations v,(.) = ng) al f;(.) converges

strongly to f in L. Hence

f@) € M 1filt) ik >n}, aete]
- mnz1 co{ fx(t), k > n}
- ﬂnz1@{Uk2n F(t,yk(t))}

However, the fact that the multivalued z — F(.,x) is u.s.c. and has
compact convex values, we obtain

af =1 and

f(t) €l (t,y(t)) = F(t,y(t)).

Therefore h € N(y), proving that N has a closed graph. Then, N is
u.s.c.

e Claim 5. A priori bounds on solutions. Let y € PC'N D be such that
y € AN(y) and A € (0,1). Then there exists f € Sg, suth that

¢(0) + g(t, ) — 9(0,¢)
—l—fg f(s)ds
yt) =Aq + D0 h(y(ty)), ae t € J (3.4)

o(t), te[-r0]

Arguing as in Claim 1, we get the estimates

ly@Ollpe, < ch(O)II+|Ig(t,yt)—g(0,¢)H+/0p(S)w(Hy(S)H)dSJr

> (ellyt)ll +di), ace.t €T,

0<tp<t
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Letting a(t) = sup{||y(s)|| : s € [-r,t]} and using the non decreasing
character of 1, we obtain that

aft) < \|¢(0)|I+||g(t,yt)—g(0,¢)!|+/0p(S)w(a(S))ds
+ Z CkOé +dk

0<trp<t

< |9l + tra(t) + Lo+ bl dllp + €2 + /0 p(s)p(als))ds

CYt) Z cr + Z dk

0<trp<t 0<trp<t
Hence
t 00
alt) < 2WM+%+/MWM®MH§ﬁk

Denoting the right-hand side by 5(t), we have

lyOI < a(t) < B(2), t € [-r,00),

as well as

20llp + 20+ pr di
1—b =30
Bt = p()p(e(t)  _ _ pp(5QE)
L=l =30 e~ 1=l =307 o
From (H3), this implies that for t € J

p0) =

and

B(t) ds 00
rwmzémw)<k% Z“%/p@m

e ol
_ PllLy
t<F1< — ),VteJ,
BlH) < 1_51_Zk10k
where I'(z f B0 . As a consequence,

<lleey <7 (— 2l Y g7
o, < Dol < 17 (T 2
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So, the set
M={yeQ:yeAN(y), e (0,1)} (3.5)

is bounded, as a consequence of the multivalued version of the nonlinear
alternative of Leray—Schauder (theorem1.6.8), N has a fixed point y in
U which is a solution of problem (3.1).

Step 2. Compactness of the solution set. For each ¢ € D, let

Sp(¢) = {y € Q : y is a solution of problem (3.1)}.

From Step 1, there exists M such that for every y € Sp(¢), lyll, < M.
Since N is completely continuous, N(Sg(¢)) is relatively compact in 2. Let
y € Sp(¢); then y € N(y) and hence Sp(¢) C N(Sp(¢)). It remains to prove
that Sr(¢) is a closed subset in Q. Let {y, : n € N} C Sp(¢) be such that
the sequence (y,)nen converges to y. For every n € N, there exists f, such
that f,(t) € F(t,y),a.e.t € J, and

yn(t)=¢(0)+g(t,yt)—g(0,¢)+/Otfn(S)dSJr D Llya(tr).  (3.6)

Arguing as in Claim 4, we can prove that there exists f such that f(t) €
F(t,y;) and

() = 6(0) + o) — 0.6+ [ Fdst Y L. (67

Therefore y € Sp(¢) which yields that Sgp(¢) is closed, and hence compact
in 2.

Step 3. Sg(.) is w.s.c. For this, we prove that the graph of Sg

Lsp i={(dy) 1y € Sr(9)}

is closed. Let (¢, yn) € I's,. be such that (¢, y,) = (¢,y) as n — oo. Since
Yn € Sp(¢n), there exists f,, € L'(J,R") such that

Yn(t) = ¢n(0)+g(t,yt)_g(0,¢)+/0t fals)ds+ > Ie(ya(ti)), t € J. (3.8)

0<tp<t
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Arguing as in Claim 4, we can prove that there exists f € Sg, such that y
satisfies (3.10). Thus, y € Sr(¢). Now, we show that Sr maps bounded sets
into relatively compact sets of €). Let B be a bounded sequence, there exists
a subsequence of ¢, C B and f,, € Sg,,, n € N such that (3.11) is satisfied.
Since ¢, is a bounded sequence, there exists a subsequence of ¢,, converging
to ¢. Asin Claims 2 and 3, we can show that v, : n € N is equicontinuous on
every compact of J and is equiconvergent at oo. As a consequence of Lemma
2.2.1 , we conclude that there exists a subsequence of ¥, converging to y in
). By an argument similar to Claim 4, we can prove that y satisfies (3.10)
for some f € Sp,. Thus y € Sp(B). This implies that Sg(.) is u.s.c., ending
the proof of theorem 3.1.1.

O
Remark 3.1.1. If we consider the function g defined by

g:JxD — R"

() = g(t,9) = (1),

The assumption (Hs) is satisfied.

3.1.2 The Lipschitz case

In this subsection, we prove the existence of solutions under Hausdorff-
Lipschitz conditions.

Now present our second existence result for problem (3.1). Here and
hereafter J;, = [0, ] /{t;,0 < j < k}.

Theorem 3.1.2. Suppose the multivalued map F : J x R* — P.,(R") is
such that t — F'(t,.) is measurable and

(Hy) for each k =1,2,--- , there exist l;, € L'([0, tx], R™) such that
Hy (F(t,x), F(t,y) < l(t)|lx —yll, forall z,y € R" and a.e. t € Jj

and B
F(t,0) C lk(t)B(0,1), for a.e. t € Jy.
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(Hs) > ooy 11k(0)|| < oo and there exist constants ¢, # 0 such that

Yoo <1and

1k (x) = L)l < cxllz = yll, for each z,y € R",

(He) There exists constant m € (0,1) such that

lg(t,y) —g(t,z)|| < mlly — z||p, for all t € Jand all x,y € D.

The problem (3.1) has at least one mild solution.
Remark 3.1.2. (a) Note that (Hs) implies (H,) with dy = ||1(0)]|.

(b) (H4) implies that the nonlinearity F has at most linear growth:
|Et z)||p < L)1+ ||z]]), lk € L'(Jp, RY),a.et € Jp,x € D,

and thus (H3) is satisfied locally. However, F is not Carathéodory and
may take nonconvex values.

Proof of theorem 3.1.2. We begin by defining a family of semi-norms
on (), thus rendering €2 a Fréchet space. Let 7 be a sufficiently large real
parameter, say

1 [o.¢]
m+—+§ o < 1.
T
k=1

For each n € N, define in €2 the family of weighted semi-norms
ylln = sup{e ™" Olly(B)[| : 0 <t < t,},

where

Thus Q = N,>18Q, where Q, = {y : [-r, +00) = R",y € PC,, N D}, where
PCy, = PC(]0,tr],R™). Then Q is a Fréchet space with the family of semi-
norms {|.|, }. In order to transform problem (3.1) into a fixed point problem,
define the operator N : Q@ — P(Q) by (3.3). Since the fixed points of the
operator N are solutions of problem (3.1), we first show that N : U — P,(Q)
is an admissible multivalued contraction, where U C (2 is some open subset
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to be defined later on.
Stepl. We proof that there exists v < 1 such that

Hy, (N(y), N@)) < 7|ly — Yl|n, for each y,7 € Q,.
Let y,y € Q, and h € N(y). Then there exists f € Sp, such that
t
h(t) = ¢(0) + g(t, y:) — 9(0,¢) +/ fs)ds+ > Li(y(ty)), a.et € J,.
0 O<tp<t

(H4) implies that

Ha, (F(t,y()), F(t,9(1))) < L@)y(t) = 5@, a.et € Jp.

Hence, there is some wy € F(t,7(t)) such that

1 (8) = woll < Ln(@®)]ly(t) = H()l, t € Jn.

Consider the multivalued map U, : J, — P(R") defined by

Un(t) = {w € F(t,5(1) : [f() = wl <L @)]ly(t) =yl a.et € T},

Then U, is a nonempty set because it contains wy and Theorem II1.4.1 in
[25] tells us that U, is measurable. Moreover, the multivalued intersection
operator V,(.) = U,(.) N F(.,7(.)) is also measurable. Therefore, by theorem
1.3.2, there exists a function ¢t — f, (¢) which is a measurable selection for
V,., that is f,(t) € F(t,5(t)) and

1F(t) = Fa@Il < L@)lly(®) =F@), a.et € J,.
Define h by

B0 = 0(0) +9(0.5) = 9(0.0)+ [ Fas+ ¥ 0(a(t), act e g,

O<tp<t

Then, for a.e. t € J,, we have

In(t) =R < [lg(t,ve) — g(t, 7))l +/0 1 (s) = f(s)llds +
Z 12 (y(tr)) — L (G (te))

O<tp<t
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t
< mlly =l + [ Ll ~ () lds +
0
S aully(te) — )|
0<tp<t
t
< mly -7l + / L(s)e™b @)y () — g(s)[1ds +
0
3 e OOy (1) —y(n)|
0<tp<t
t
< mly -7l + / L(s)e™ O dslly — gl +
0
> ae™ Oy -7,
O<trp<t
L tl L
< met Oy~ g+ [ ) dsly g+
0 T
S e Oy — 7).,
k=1
< et m+l+§é% 1y = Glln-
B T k=1

It follows that

e Oh(e) — Rt | < <m+ : +ch> Iy = 7l

k=1

By an analogous relation, obtained by interchanging the roles of y and 7, we
finally arrive at

Hq,(N(y), N(y)) < (m + % + Z%) 1y = Flln-

k=1

Moreover, since F' has compact valued, we can prove that N has compact
values too. Let # € U and ¢ > 0. If z ¢ N(z), then d,(z, N(z)) # 0. Since
N(z) is compact, then there exists y € N(z) such that d,,(z, N(z)) = ||[x—y||»
and we have

[ = ylln < dn(z, N(x)) +&.
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In the case where # € N(x), we may take y = x. Therefore N is an admissible
contractive operator.

Step2. A priori estimates. Given t € J,,, let y € AN(y) for some X € (0, 1].
Then there exists f € Sp, such that (3.4) is satisfied. Then we have

ly@I < [l + llg(t, ) ||+/ I (s)llds + D Iuly(te)

O<tp<t

16O + mllye — |l + / () (1 + ly(s)])ds +

chﬂy (te)ll + Z 17:(0)

k=1

IN

Consider the function p defined on J,, by

pu(t) = sup{fly(s)[| : 0 < s < ¢}.

By the previous inequality, we have for t € J,

) < s <<1+mu¢u+2|uk IEyR (8)(1+u(8))d8)-

Let us take the right-hand side of the above inequality as §(¢). Then we have

(L+m)l|oll + > ki ()]
L—m—70

p(t) <), t € Jn,

/ () (L + p(t)) L) (1 + B(t))
B = 1—m—ZZ:10k = 1—m—ZZ:10k

Integrating over t € J,, yields

O] 1 t
/ i < - / lo(s)ds =: M,.
poy L+s = 1=—m—3 a o

Hence 8(t) < K, := (1 + 3(0))eM and as a consequence

Iy < u(t) < B(t) < Kn, t € Jn.

p(0) =

and

st e Jy.
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Therefore
lyll. < K, n € N*.
Let
U={yeQ:|yll. < K,+1, for all n € N}.
Clearly, U is a open subset of 2 and there is no y € U such that y € AN(y)

and A € (0,1), by lemma 1.6.3 and Steps 1,2, N has at least one fixed point
y solution to problem (3.1).

3.1.3 The lower semi-continuous case

Our third existence result for problem (3.1) deals with the case where the
nonlinearity is lower semi-continuous with respect to the second argument
and does not necessarily have convex values. In the proof, we will make use of
the nonlinear alternative of Leray—Schauder type (theorem 1.6.8) combined
with a selection theorem for lower semi-continuous multivalued maps with
decomposable values. Consider a Banach space E and I = [a, b] an interval
of the real line.

Theorem 3.1.3. Suppose that:
(H1) There exist i, dj, > 0 such that
[ x(2)|| < ckllz|| + di, for everyxz € R" k=1,2,---,
with

o0 (o]
ch < 00 and de < 0.
k=1 k=1

(Ha) For every bounded set B € Q, the set {t : t — g(t,y:), y € B} is
equicontinuous and equiconvergent in €, g is continuous and there ex-
ists a constant {y € [0,1) and ly > 0 such that

lg(t, z)|| < l1||z||p + o for all x € D.

(Hs) There exists p € L;.([0,00),R™) and a continuous nondecreasing func-

tion 1 : [0,00) — [0, 00) such that
|E(t,)||lp < pt)v(||x||) for a.e. t € J and each x € D,

with
* du

o W(u)
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(H7) F :[0,00) x D — P(R™) is a nonempty compact valued multimap such
that
(a) the mapping (t,y) — F(t,y) is L ® B measurable,
(b) the mapping y — F(t,y) is lower semi-continuous for a.e. t €
[0, 00).
Then problem (3.1) has at least one solution.
For the proof, we need some auxiliary lemmas.

Lemma 3.1.2. [37]. Let F': I x E — P.,(E) be a locally integrably bounded
multivalued map satisfying (Hr). Then F is of lower semi-continuous type.

The following result is known as the Gronwall-Bihari Theorem.

Lemma 3.1.3. [17] Let u,g : I — R be positive real continuous functions.
Assume there exists ¢ > 0 and a continuous nondecreasing function h : R —
(0,4+00) such that

u(t) <c+ /tg(s)h(u(s))ds, Vt e 1.

Then
u(t) < H™' (/atg(s)ds> Vel

Here H™! refers to the inverse of the function H(u) = /

provided

; (Z) foru > c.

Proof of Theorem 3.1.3. Let F : J,, x D — P(R"™). (7/-2;) and (Hr)
imply, by Lemma 3.1.2, that F is of lower semi-continuous type. From Lemma
1.3.4, there is a continuous selection f,, : PC(J,,,R") — L'(J,,,R") such
that f,(y) € Fn(y) for every y € PC(Jn, R") where F,, is the Nemyts’kii
operator associated with F on J,,

Fm(y) ={v € L'(Jn,R") :0(t) € F(t,y),a.et € J,,}.
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Let f: PC — L} ([0,00),R") be defined by

f)(t) = fm(y)(t), aet € Jpy.

Then Q = Ny>182, is a Fréchet space with family of semi-norms {||.||;}
where

[Yllm = sup{[ly(®)] : t € Jin}-
Consider the problem

D - gtwl = 1)) actes
y(ty) —y(ty) = L(y(ty)), k=12,..., (3.9)
(1) = o(t) renol

and the operator L : 2 — ) defined by

L(y)(t) = ¢(0) + g(t,y:) — 9(0, ¢) + /O t fs)ds+ Y I(y(t), a.et € J.

0<tp<t

Clearly, the fixed points of the operator L are mild solutions of problem (3.1).

Step 1. A priori estimates. Let y be a possible solution of problem (3.1).
For t € [0,t], we have

ww=wm+mmm—mu@+lf@m&
Then

[y < [0 + Lullgell + €2 + 119 (0, D) +/O p(s)¥([ly(s)[)ds.

Consider the function p defined by

u(t)zmaX{sup ly(s)|l, sup ||ys||},

s€0,] se[—r,t]

then

< 16O+ £+ [l9(0. )| +/t Ps)

plt) e L i(p(s)ds.
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By lemma 3.1.3 and (”Fl;,), we have
t
u(t) < T ( / Mds) el
o 1 =10
14
o Tye) = [ o= O+ 100
For t € (t1,ts], we have
t
y(t) = 0(0) + 9(t.) ~ 9(0.9) + h(y(t) + [ (s)ds
0
Then
t
Ly < NleO)|| + Eullyell + €2 + [l9(0, @) || + K +/O p(s)¥([ly(s)[)ds.
0)|| + 2+ ||lg(0,0)|| + K b op(s
1— 61 0 11— gl
where
B -1 " p(s)
Ky =sup{||[1(2)| : z € B(0, My)} and My =17 Y, ds | .
o 1—6
By lemma 3.1.3, we again have
t
iy <15t ([ £0a5) e nl
o 1—10
N du
where I'y(2) = / —.
c+11_(}1 w(u)
We continue this process until we obtain, for every t € (t,,,—1, tm], the estimate
-1 ! p(s)
I <) <1, ([ E5ds) b€ (tuorital,
o 1 =6
where
* du
Ln(z) = / —,
) c+I§’f;11 ¥(u)
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Kpo1 = sup{|[Ln1(2)] : 2 € B(0, My 2)}
tm—1
Mo = T34, (/ pls) ds) .
o 1—0
Let

t
C = {ye Q: ||y<t)|| < F;,Ll (/ %CLS) , L€ (tmfl,tm],m: 1,27}
0 -t

It is clear that C is a convex closed and bounded subset in ).
Step 2. L(C) C C. Given y € C we have for t € [0, 4]

1L < H¢H+€1Hy(t)|\+€2+Hg(0,¢)ll+/op(S)w(Hy(S)H)dS

< Jol i (00 ([ 25a5) ) + e+ oo
" /Otp(s)@/J (r;l (/0 %dr)) s

= ot (o ([ 25%as) ) + e+ o0

+ (1 —el)/ot (rll (/0 1pfrzldr)),ds

Lemma 3.1.3 implies that

IL(y) ()] < T ( /0 1P£821d3), aete0,t]. (3.10)

Also for t € (ty,ts], we have

LI < HqﬁH+€1Hy(t)\|+52+Hg(0,¢)H+H11(y(t1))|\+/0p(S)w(Hy(S)H)dS
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< H¢H+€1Hy(t)\|+€2+||g(0,¢)H+K1+/0 p(s)¥(lly(s)l)ds

Arguing as above, we obtain

IL(y)(#)|| < T3t (/0 f{_‘%ds) , a.e.t € (tq,1s]. (3.11)

We continue this process until we arrive at the estimate

t
IL(y)(#)| < Tt (/ &ds) , a.e.t € (ty—1,tml, (3.12)
0 1-— 61

proving that L(C) C C; this implies that L(C) is a bounded set in the
Fréchet space €). As in claims 2 and 3, step 1 of the proof of theorem 3.1.1,
we can prove that for every m € N, the operator L : €2, — €2, is completely
continuous; hence L : Q@ — Q is continuous and L(C') is relatively compact.
By lemma 1.6.1, we conclude that L has at least one fixed point, a solution
of problem (3.9), and hence a solution of problem (3.1).



Chapter 4

Existences and solutions sets of
systems of impulsive differential
inclusions

In this chapter, we treat the existence of solutions and even a few properties
of the set of solutions and the solutions operator for a system of differential
inclusions with impulse effects. For the Cauchy problem, under various as-
sumptions on the nonlinear term, we present several existence results. We
appeal to the fixed point theorems in vector metric space. Finally, we prove
some precise geometric properties about the structure of the solution set
such as AR, Rs, contractibility and acyclicity, corresponding to Aronszajn-
Browder-Gupta type results.

consider the following problem:

( 2'(t) € Fi(t,z(t),y(t)),ae. t €]0,1]
y'(t) € Fy(t,z(t),y(t)),ae. t €l0,1]
l‘(t—]:) = x(tlz)—i_ll,k(x( k)vy(tk))a kzlv' , M (4 1)
y t(Z% = y(t,) + Lx(x(ty), y(tr)), k=1,..., '
z(0) = xq,
\ y(O) = Yo,

where 0 =ty <t; < ... < 1,i=1,2,F;:[0,1] x R x R — P(R) are a mul-
tifunction, Ik, I € C'(R x R,R). The notations x(¢}) = limy,_o+ z(tx + h)
and z(t, ) = limy,_,o+ (ty — h) stand for the right and the left limits of the
function = at t = i, respectively.

62
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4.1 Notations and Definitions

Definition 4.1.1. Let X be a nonempty set. By a vector-valued metric on
X we mean a map d : X x X — R" with the following properties:

(i) d(u,v) > 0 for all u,v € X; if d(u,v) = 0 then u = v;
(ii) d(u,v) = d(v,u) for all u,v € X;
(iii) d(u,v) < d(u,w) + d(w,v) for all u,v,w € X;

We call the pair (X, d) a generalized metric space. For r = (r1,--- ,1,) €
R?, we denote by

B(zg,r) ={z € X : d(xg,x) <1}
the open ball centered in xy with radius r and
B(zg,r) ={z € X : d(xg,x) < r}

the closed ball centered in xy with radius r.
We mention that for generalized metric space, the notation of open subset,
closed set, convergence, Cauchy sequence and completeness are similar to

those in usual metric spaces. If, z,y € R", 2z = (1, -+ ,2,),y = (Y1, , Yn),
by © <y we mean x; < y; for all i = 1,--- n. Also ||z|| = (|z1], -+, |zal)
and max(z,y) = (max(zy,y1), -+ ,max(T,,y,)). If c € R, then x < ¢ means
i <cforeachi=1,--- n.

Definition 4.1.2. A square matrix of real numbers is said to be convergent
to zero if and only if its spectral radius p(M) is strictly less than 1. In other
words, this means that all the eigenvalues of M are in the open unit disc (i.e.
|A| < 1, for every A\ € C with det(M — AI) = 0, where I denote the identity
matrix of M, (R)).

Theorem 4.1.1. Let M € M, «,(Ry). The following assertions are equiv-
alent:

(i) M is convergent towards zero;
(ii) M* — 0 as k — oo;
(i1i) The matriz (I — M) is nonsingular and

(I—M)y ' =T+M+M+- -+ M+
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(iv) The matriz (I — M) is nonsingular and (I — M)~ has nonnegative
elements.

Definition 4.1.3. We say that a non-singular matrix A = (a;j)1<ij<n €
M,«n(R) has the absolute value property if

A A< 1L

where
|Al = (Jaij|)i<ij<n € Mupxn(R).

Definition 4.1.4. Let (X,d) be a generalized metric space. An operator
N : X — X is said to be contractive if there exists a convergent to zero
matrix M such that

d(N(z),N(y)) < Md(z,y),Vz,y € X.

Theorem 4.1.2. Let (X, d) be a complete generalized metric space and N :
X — X a contractive operator with Lipschitz matriz M. Then N has a
unique fized point x, and for each xo € X we have

d(N*(z¢),2,) < M*(I — M)™'d(20,n(x0)),Vk € N.

Let (X, d) be a metric space, we will denote by Hy, the Hausdorff pseudo-
metric distance on P(X), defined as

Hy, - P(X)xP(X) = RyU{oo}, Hy, (A, B) = max{supd.(a, B),supd.(A,b)}.
acA beB
where d,(A,b) = inf,ca di(a,b) and d.(a, B) = infyep di(a,b). Then (P (X), Ha,)
is a metric space and (Py(X), Hy,) is a generalized metric space. In partic-
ular, H,, satisfies the triangle inequality.
Let (X, d) be a generalized metric space with

dl (iIZ’, y)
d(z,y) = :
dn(,y)
Notice that d is a generalized metric space on X if and only if d;, 7 =1,--- ,n

are metrics on X. Consider the generalized Hausdorff pseudo-metric distance

Hy:P(X)xP(X) =R} U{oo}
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defined by

Hdl (A7 B)
Hd(Aa B) =

Hdn (A7 B)

Definition 4.1.5. Let (X, d) be a generalized metric space. A multivalued
operator N : X — P.(X) is said to be contractive if there exists a matrix
M € M., (Ry) such that

M* — Oask — oo

and
Hy(N(u),N(v)) < Md(u,v),Vu,v € X.

Theorem 4.1.3. Let (X,d) be a generalized complete metric space, and let
N : X — Py(X) be a multivalued map. Assume that there exist A, B,C €
Msn(Ry) such that

Hy(N(x), N(y)) < Ad(z,y) + Bd(y, N(z)) + Cd(z, N(z)) (4.2)

where A+ C' converge to zero. Then there exist x € X such that x € N(x).

Definition 4.1.6. Let E be a vector space on K = R or C. By a vector-
valued norm on E we mean a map |.|| : E — R™ with the following properties:

(i) ||z|| > 0 for all x € E; if ||z|| = 0 then x = (0,--- ,0);
(ii) ||A\z|| = |A| ||x|| for all x € E and X\ € K;
(iii) flz +yll < llzll + |yl for all 2,y € E.

The pair (E, ||.||) is called a generalized normed space. If the generalized
metric generated by ||.|| (i.e. d(z,y) = ||x — y||) is complete then the space
(E,|.||) is called a generalized Banach space.

Lemma 4.1.1. : Let F : JxRxR — P.,(J,R) a multivalued map integrally
bounded, such that

(a) (t,z,y) — Fi(t,z,y) is L B measurable for i =1, 2.
(b) (z,y) — Fi(t,z,y) is l.s.c. a.e. t € J.

Then F' has a l.s.c. type.
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Definition 4.1.7. We say that a multi-valued map ¢ : [0,a] x E — P(E)
with closed values is upper-Scorza-Dragoni if, given § > 0, there exists a
closed subset As C [0,a] such that the measure u(]0,a] \ As) < ¢ and the
restriction ¢s of ¢ to As X E is u.s.c.

Theorem 4.1.4. [50] Let E, E; be two separable Banach spaces and let
F :]a,b] X E = Pepe(Er) be an upper-Scorza-Dragoni map. Then F is
o— Ca-selectionable, the maps F,, : [a,b] x E — E;, n € N are almost upper
semi-continuous and we have

ﬂm@cwm(UEﬁag.

Moreover, if F' is integrally bounded, then F is o0 — mLL-selectionable.

4.2 Existence Results

Consider the space PC([0,1],R), endowed with the norm

191l pe = sup{lly(®)l - ¢ € J}, J = [0,1].

PC' is a Banach space.

4.2.1 Convexe case

Theorem 4.2.1. Assume that there exists a continuous nondecreasing map
Y : [0, +oo[— (0, +00), and p € L' (J,Ry) such that

|5 (t, u,0)|| < p(t)(Ju| +|v|) ae teJ,ic{l1,2} and (u,v) € R?,

assume also F1, Fy : J X R x R — P,y o(R) are Carathéodory.
Then the problem (4.1) has at least one solution.

Proof. Consider the operator N : PC' x PC' — P(PC x PC) defined by

To + fot f1<8)d5

+ 2 0ct e ur(@(t), y(te)), t€J
N(z,y) = { (hi,hs) € PC x PC: ( hi(t) hao(t) ) =

Yo + fot fQ(S)dS

+20<tk<t I2,k(x(tk)ay(tk))7 teJ



4.2 Existence Results 67

where f; € Sp, = {f € L*(J,R) : f(t) € Fi(t,z(t),y(t)),a.e.t € J}. Clearly,
fixed points of the operator N are solutions of problem (4.1).

We are going to prove that N is u.s.c, compact, and N has convex compact
values. The proof is given by the following steps.

Step 1: N(z,y) is convexe for all (z,y) € PC x PC.
Let (h1, h), (hs, ha) € N(z,y) so there exist fi, f3 € Sp (. e()w()), and fa, f1 €
S (.e()y()) such that for all ¢ € J we have

h(t) = o+ / fsdds + 3 Tuple(i), y(t)

O<tp<t

ha() = yo+ / Bsdds + 3 Dogle(t), y(t),

0<tp<t
and

hat) = a0t [ Als)ds+ 3 hadalt)vit)

0<trp<t

ha(t) = wo+ / s+ 3 Dol ylte).

0<tp<t

Let [ € [0, 1] for each t € J, we have

(G )re=o(i))o = ()= (Rt omen)
(Bhiarss))
o<t <t 12,6\ L\lk ), YUk

as Sp, and Sg, are convexe (because Fy, F, have a convexe value) then

Z(Z;)—l—(l—l)(Zi)eN(x,y).

Step 2: N transforms every bounded set to a bounded set in PC' x PC.

It suffices to show that there exists ¢ = ( ? ) > 0,
2

+

for all (z,y) € By = {(z,y) € PC x PC : ||(z,y)|| < ¢},
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q2

if (h,g) € N(z,y), then there exists fi € Sk (2()y0), and fo € Sk (o) w0
such that for all ¢ € J we have

B(t) = x0 + / fsds+ 3 Tslelt), ylt),

O<tr<t

and all (h,g) € N(z,y), we have ||(h,9)|| </{,q= ( N ) > 0,

and

g(t) = o + / lshs + 3 Doxla(t), y(t)

0<trp<t

h
1(hy )l pewpe = ( 7] pe > |

lgllpc

for all t € J, we have

[pO] - < onH+/0 Ifu(s)llds + D I ua(e(te), y(te)

0<trp<t

1 m
< Hx0||+/ 1Py (s, 2(s),y(s)|ds + > sup [Tkl y)|
0 1 (z,y)€By
< ol + ¥(a + @)llple + D sup (e, )| =1,
= (cw)eB,
and
t
lg@®)] < ||yo||+/ If2()llds + > I Tos(x(tr), y(te)
0 O<typ<t
b m
< ||y0||+/ [Fa(s,x(s),y(s)llds + Y sup Lokl y)|
0 1 (z,y)EBq
< lyoll + ¥ (ar + @)lpllr + Y sup | Lop(z,y)l| =2,
~ (@y)eB,
then,
1Al pc ¢
< =L
lgllpc 7
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Step 3: N transforms every bounded set to a equicontinuous set to PC' x PC'
We let 7,75 € J,m1 < 1 and B, = {(z,y) € PC x PC : ||(z,y)] < ¢},

g = ( Zl ) > 0; for all (z,y) € B, and (h,g) € N(z,y), there exist f; €
2
SE(e()w(), and fa € Spy( ()y()) such that for all £ € J we have

Wt) = o+ / fsdds+ 3 Tupal), y(t)

O<tp<t

gt) = wo+ / Bs)s+ 3 Ioslaln), y(t).

0<tp<t

Then

1h(72) = h(n)|| < /72 i) s+ > (e, y(t)

1 T1 <t <T2

T2
< vtw) [ pedst Y swp [hue)] — 0 when o

T1 T <tp<to (z,y)€Bq
and
T2
lg(r2) —g(m)|l < / Ifa()lids + > I ow(a(t), y(t)ll
1 T1 <t <T2
T2
< Y(q+ qz)/ p(s)ds + Z sup |[lax(z,y)|| — 0 when 7 — 7.
T1 TlStk<7'2 (ajvy)EBq

So by step 2 and 3, which is obtained, N is compact.

Step 4: The graph of N is closed.

Let (Zn, Yn) = (Ts, Ys)y (hnygn) € N(zp,yn), and h, — h, and g, — g.. It
suffices to show that there exists fi € Sk (e.() () ad fo € Sr(2.()0:()
such that for all t € J we have

h*(t) = ZU0+/O fl(S)dS+ Z ILk(:zc*(tk),y*(tk)),

and

g.(t) = vo + / Bs)ds+ 3 ba(wa(te), v (t).

O<tp<t
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(hn, gn) € N(Zp, yn), so there exist fin € SF1(-,xn(.),yn(.))7 and fo, € SFz(.,xn(-),yn(.))
such that for all ¢ € J we have

hn(t) = 0 + / Fon)ds + 3 Top@a(te), un(te)),

O<tr<t
and
t
gn<t) =%Yo +/ f2,n(5)d8 + Z I2,k(xn(tk>7yn(tk>>
0 0<tj<t
Since [, ,k =1,--- ,m;i = 1,2 are continuous,
H (hn(t) —z0— Y ]1,k(xn(tk)>yn(tk))> - (h*(t) —z0— Y ]1,k(x*(tl~c)ay*(tk))) — 0,
0<tp<t 0<tp<t PC
and
H (gn(t) - ) 12,k(xn(tk)ayn(tk))) - (9*@) —p— > Ia,k(x*(tk),y*(tk))> — 0,
O<tp<t O<trp<t PC

when n — oo.

Let I' a continuous linear operator, defined as

T:L'(J,R) — PC(JR)
r — I'(r),

such that .
L(r)(t) :/ r(s)ds; Vte[0,1].
0
By lemma 1.3.2, the operator I' o S has a closed graph, moreover we have
(hn(t) — Zo — Z I k(2 (te), yn(tk’))> € I'(SE (en()ym()):
0<trp<t
and

(gn(t) —p— > IQ,k(zn(tk)ayn(tk))) € I'(Sr(.an()am())-

0<tp<t
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So
(mw—xw—E:AA%@m%ﬁwg=i£ﬁ@M&
GMPm—Ejammmmmﬂzlﬁ@w

then fi1 € Sk (a()p.() a0d fo € Spy( . ()p.())-

Step 5: A priori estimation

Let (z,y) € PC(J,R)x PC(J,R) such that (z,y) € AN(x,y), and 0 < A < 1,

so there exists fi € Sk (. 2()w(), and fo € Sk 2()y0)-
For all t € [0, ], we have

z(t) = Az + )\/0 fi(s,z(s),y(s))ds,

and
Mﬂ:Am+AAJM&M$w®Wh
then
[z(@®)] < [[zol| +/0 p(s)Y(l[z ()]l + ly(s))[)ds, t € [0,t],
and

[y < lloll +/0 p(s)U(llz(s)ll + llu(s)l)ds, ¢ € [0,].
Consider the function 1, W; such that
V1 (t) = [l +/0 p(s)Y([[z(s)]| + [ly(s)[)ds, t € [0,t],

and
Wi (t) = HyolH/O p(s)v(llz(s)ll + [ly(s)[)ds, t € [0,t].

So we have

(91(0), Wi (0)) = (llzoll, llvoll);  [l(®)[] < D2(8), [ly(®)Il < Wi(E) t €0, 1],
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and
Wi(t) = th(t) = p(O)e(lz@)] + ly @), ¢ € [0,4].
As 1) is nondecreasing map, we have

Gi(t) < p) (1) Wit) < p(p(Wa(t)), t € [0,t].

What implies that for every t € [0, ]

91(t) du t1 Wi (t) du t1
— < p(s)ds; / < / p(s)ds.
/191(0) Y(u) /o wi() Y(u) 0
The map I'}(z) = /Z _du and the map I'3(z) = /Z _du are continu
0 91(0) V(1) ‘ wi0) ¥ (w)
ous and nondecreasing, then (I'y) ™' and (I'2)~! exist and are nondecreasing,

and we have

o <y ( | Uno)ds) = Mo W) < (1)) (/ " pe)ds ) = to

As for every t € [0,14], [|z(t)]| < 91(¢), and ||y(¢)|| < Wi(t), then

sup ly(6)[| < lo;  sup [lz(@)]| < M.
te[0,t1] tel0,61]

Now, for t € (t1,t5], we have

|z < Mt y(E))] + lz(t) ||

VAN

sup ||11,1(0475)|| + My := Ny,
(a,,B)EE(O,Mo)XE(O,EQ)
and
|y < IHaa(z(t), y(E))I + Ny (t)]
< sup 12,1 (e, B)|| + £o := D,
(a,ﬁ)GE(O,Mo)XE(O,Zo)
t
z(t) = A(x(t1) + La(x(t),y(t))) + A/ fi(s,2(s),y(s))ds,
t1
and

y(t) = Ay(tr) + La (), y(t))) + A/tt fa(s,2(s),y(s))ds,
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SO

lz@)] < M +/t p(s)P(llz()ll + ly(s)Dds, t € (tr,ta],

Iy < Dy +/t p(s)P(llz()I + lly(s)Dds, T e (i1, ta],

consider the map 5 and the map W, such that

l92(75)=N1+/P(SW(HI]E(S)HJrHy(S)H)ds, t € (t1,12],

t1

and
Wa(t) _D1+/t p(s)Y([lz(s)ll + [ly(s)D)ds, T € (tr, ).
Then
Da(t]) = Niy [lz(®)]] < 0a(1), t € (t,ta],
Wy(t7) = D1, [ly()l < Wh(t), t € (b, Lo,
and

ao(t) = W (@)l + ly®O1), Wat) = pOu(lle@)ll + ly®N), t € (t1,ta],

as 1 is nondecreasing, then

Ja(t) < p(t)e(Da(t)), Walt) < p(t)yp(Wa(t)),t € (t1, o).

What implies that for every t € (t1, 5], we have

Do (t) du to Wa (t) du to
— < p(s)ds, / — < / p(s)ds.
/192(7&1*) Y(u) /tl (s) Wa(t]) Y(u) t (s)

- du : du

If we consider the map '} (z) = / ——, and the map I'3(z2) = / —_,

! o) V(W) ' wath) ¥ ()
we get

to
oafe) < (0 ([ pts)as) =,
t1

and
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for all t € (t17t2]a H.I(t)“ < 192(t)a Hy(t)H < W2<t)7 then

sup |[z(t)| < My, sup [y()] <.

tE(tl,tQ] tE(tl,tQ]

We continue the process until the we reach the interval (¢,,, b], then we obtain
that there exists M,, and /¢, such that

b
sup ()] < (T)7 ([ alois) = M
tE(tm,b] tm

and

sup |y (#)[| < (I7,)~" (/t: p(S)d8> =l

tE(tm,b]

As we choose z and y arbitrarily, then for all solution of the problem (4.1),
we have

M, %
Dl < max(( 45 ) sk =0.1,000 =

Consider the set
U = {(a,y) € PC x PC: | (@, 9)l| perpe < b+ 1}.

So we have N : U x U — P.,(PC x PC) is compact and u.s.c. and by
the definition of U it doses not exist a (z,y) € OU x OU such that (z,y) €
AN (z,y), for all A € (0,1). Then by the lemma 1.6.2, the problem (4.1) has
at least one solution.

]

4.2.2 Non Convexe case
Assume the following conditions:

(C1) F; : [0,1] x R x R — P.,(R); t — Fi(t,u,v) are measurable for each
u,v € R2=1,2.

(Cy) There exist functions [; € L'(J,R"),i = 1,--- ,4 such that
Hy(Fi(t,u,0), Fi(t,6,0)) < h(8)]Ju=al|+10)[lv=2], € J;Vu,T,0,7 € R

Hd(FQ(ta u,v), F2<t7ﬂv U)) < 53(?5)||U—ﬂ||+l4(t)||v—m|,t € J;Vu,u,v,v € R,
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(C3) There exist a constants a;, b; > 0,7 = 1,2 such that

|11 5 (u,v)—1 (@7 < ar||u—a||+az||lv—70,Vu,u,v,7 € R,k :1,--- ,m,
and
|12k (u, v)— 1ok (T—7|| < by|lu—a||+bs||lv—0], Vu,u,v, v € Ry k:1,--- ,m,.

Theorem 4.2.2. Assume that (C1) — (Cs) are satisfied and the matriz

o Ml +ar 2l + a2
M =
sl 401 |llall 1 + b2

converge to zero, then the problem (4.1) has at least one solution.

Proof. Consider the operator N : PC' x PC — P(PC x PC') defined by

zo + fot fi(s)ds+

Zo<tk<t Ig((te), y(tr), teJ
N(z,y) = { (h1,ha) € PC x PC: ((ha(t) hao(t) ) =

Yo +f0t fa(s)ds+

Zo<tk<t Lp(x(te),y(te)), teJ

where f; € Sp, = {f € L*(J,R) : f(t) € Fi(t,z(t),y(t)),a.et € J}. Clearly,
fixed points of the operator N are solutions of problem (4.1).
Let

Nl(a:,y) = {h e PC: h(t) =x; + /Ot f1(5>d8 -+ Z [uk(l'(tk),y(tk)),t < J} ,

0<tp<t

where z; = xg, T2 = 4o, f; € Sr, = {f € L'(J,R) : f(t) € F;(t,z(t),y(t)),a.et €
J}. We show that NV satisfies the assumptions of Theorem 4.1.3.

Let (z,v),(7Z,y) € PC x PC and (hy,hy) € N(z,y). Then there exist

fi € Sg.,i=1,2 such that

o + fy f1(s)ds + > o<ty <t Lp(@(te), y(ty)), t € J

(hl(t)7 h2(t)) = { Yo + f()t fQ(S)dS + Zo<tk<t Ig,k(l’(tk)a y(tk))v teJ

(Cy) implies that

Ha(Fy(t, x(t),y(1)), Fi(t, z(8),5(t) < L(t) [x(t) —z(8)] + L(2) [y(t) = y(E)],
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and

Hy(Fy(t, x(t), y (1)), F2(t, 7(1), (1)) < l3(t) [(t) — (1) + La(t) [y () —7(@)]-
Hence, there are some (w,w) € Fy(t,Z(t),y(t)) x Fo(t,Z(t),7y(t)) such that

[f1(8) = w[ < L(#) |(t) —z(8)] + 12(8) [y () = H(1)],

and
|f2(t) = @] < 13(t) 2(t) = (@) + La(t) [y(1) = F()].
Consider the multi-valued maps U; : J — P(R),i = 1,2 defined by

{ w e Pt T(t), y(t)) }
Ul(t) -
/1) —wl <L) |2(t) 2] + L) y(t) —y®)],act e J

and

{ w e By(t,z(t),y(1)) }
Us(t) =
fo(t) =@ < Us(0) [2() = ()] + L(®) ly(t) —y(D)], a.et € J

Then U;(t) are a nonempty set and Theorem [77.4.1 in [25] tells us that
U, are measurable. Moreover, the multi-valued intersection operator V;(.) =
Ui(.) N Fy(.,Z(.),7y(.)) are measurable. Therefore, by Lemma 1.3.1, there
exists a function ¢ — f,(¢), which are measurable selection for V;, that is

fi(t) € Ex(t,7(t), 7(t)) and
|f1(t) = Fu(0)] < L) [x(t) = T(@)] + (1) [y(t) = 7(t)] a.et € T,
and
| fo(t) = Fo(O)] < La(8) [2(t) = Z(6)] + L(t) [y(t) — ()], a.et € J.
Define hy, hy by
hi(t) = o + /0 t Fi(s)ds + Y T(@(t), U(t), t € J,

and

) =wo+ [ Taohds+ 3 Lt 00).t €

0<trp<t
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Then we have, for t € J,

[ha(t) = ha ()] < (Illzr + a1) |2 = T e + (Iall 2 + a2) |y = Tl pe-

Thus

|h1 = P pee < (lallzr 4+ a1) |2 = T pe + (12l + a2) ly = Fll pe-

By an analogous relation, we finally arrive at the estimate

Hy(Ni(7,y), Ni(Z,9) < (lLller + a1)llr — 7| pe
+(l2llzr + a2)lly — 7l pe-

Similarly we have

Hy(No(z,y), N2(Z,7)) < (il + b1) ||z — Tl pe
+(1allzr + 02)[ly — Fll pe-

Therefore

Hy(N(z,y), N(7,5) <M (|2 =Zllpc, lly—7lrc )

for each (z,y) and (Z,7) in PC' x PC. Hence, by Theorem 4.1.3, the operator
N has at least one fixed point which is solution of (4.1).

]

Theorem 4.2.3. Assume that exist a continuous nondecreasing maps 1; :
0, +00) — (0, +00), and p; € L*(J,R,) such that

| Fi(t, u,v)|| < pi@)(|lull + ||v]]) ae teJ,ic{l,2} and (u,v) € R?
assume also F1, Fy : J X R x R — P, (R) are Carathéodory, and

(a) (t,z,y) — Fi(t,z,y) is L B measurable for i =1, 2.

(b) (z,y) — Fi(t,z,y) is l.s.c. a.e. t € J.

Then the problem (4.1) has at least one solution.

Proof. Since F; are l.s.c. type, so by theorem 1.3.4 there exists continuous
functions f; : PC' — L*(J,R), i = 1,2 such that fi(z,y) € Sp 4y, for all



4.3 Structure of solutions sets 78

(z,y) € PC(J,R) x PC(J,R).
Consider the following impulsive system

() = filt,z,y), ae.t €
y'(t) = falt,z,y),aet € J
(tb ( ) = Il,k( ( )7y( ))7 k=1,2,...,m (43)
y(t) —y(ty) = Da(z(te),y(t), k=12,....m
2(0) =20,  y(0) =wo.

It is clear if (x,y) is a solution of the problem (4.3) then (z,y) is also a
solution of the problem (4.1).
The operator N, : PC' x PC — P(PC x PC') defined by

T +f0t f1(s)ds+

ZO<tk<t Il,k(x(tk)7 y(tk))a

N.(z,y) = { (hi,hs) € PC x PC: ( hi(t), ha(t) ) =
y0+f0 f2 d8—|—

Zo<tk<t [27k< (te), y(tr)),

By the proof of theorem 4.2.1 the problem (4.1), has at least one solution.

O
4.3 Structure of solutions sets
Consider the first-order impulsive single-value problem
2'(t) = St z)y?), aetel0,1]
y'(t) = falt, z(t),y(t)), a.et €0, 1]
o(ty) —x(ty) = L(@(te),y(te)), k —1 (4.4)
y(tr) —y(ty) = Lp(a(te),y(ts)), k m
2(0) = g, y(0) = yo,
where f1, fo € L'(J x R?,R) are a given functions, 0 =t, <t; < -+ < t,, <

tops = 1.
Then (z,y) is a solution of (4.4) if and only if (z,y) is a solution of the
impulsive integral system

x(t) = xo+ f%t fi(s,2(s),y(s))ds + Doy oo Tun(x(tr), y(te)), aet € J
y(t) = yo+ [, fa(s,2(s),y(s))ds + Y o<yt lon(x(te), y(tr)), a.et € J.
(4.5)
Denote by S(fi1.2, (%o, v0)) the set of all solutions of problem (4.4).

teJ

teJ
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Theorem 4.3.1. Suppose that there exists a function £ € L*([0,1],RT) such
that:

|fi(tsz1, 1) = filts wo, y2)| < L(t)| 21 — 22|+ [y1 —y2)[; V(z1, 1), (22, 92) €
R2,Vi =1, 2.

Then the problem (4.4) has a unique solution.

Proof. 1.The existence:
We consider the problem (4.4) on [0, ¢]

v = At 2(0),y(),y'(6) = Lt 2(0),y(0), aete Db, 4
(0) = 0,y(0) = o, '

we consider the operator N; defined by

Ny :C([0,t4];R) x C([0,t4];R) — C([0,t1];R) x C([0,¢1]; R)
(x,y) — Ni(z,y)

Mo )0 = (+ [ s, 2(9).0())ds, o + / t s (). (9)s ).

Let’s (x1,y1), (x2,y2) € C([0,%1];R) x C([0,¢1];R), and t € [0, 4]

Mo )0 - Nalaw )] = el = (5] ).

where

0 = [ 66D =~ o als) ),
and

5 = [ (loma(6)n() = Falosals) o)) s
then

laf] < /051(8)H($1($)>y1(8))—(:Bz(S)’yg(S))llds
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1 [t _
< —/ ml(s)e™ 9 ds <m1 x2>
T Jo Y1 — Y2 BC
< le'rL(t) ‘( Ty — T2 )
T =Y J|ge
TL(t) 1 1
< e = [lzr — 2ol + = llyr — w2l ),
T T
similarly
1 1
6l < e (2l = aall+ 2 s = )
T T
where .
L(t) = / ((s)ds.
0
So
% % |1 — 22|
e T DNy (21, 31)(t) — Ni(wa,52) (8)]| <
: 2 ly1 — v2|
Then
111 |1 — 22|
| Ni(z1,y1) — Ni(22,92)| o < - ,
11 ly1 — v2|
x _ —7L(t .Z’(t)
where ( y ) . = SUDyefo4,] € ® ( () )H
Let
1 1
B=-
T\11
and
1 1
A —
1 1

we have [[A] = 150 A" = Land [ B = [[(2)"A"] < |(2)"] 14" < |(2)"
For 7 € (1,4+00); Ny is contractive, then there exists unique

(2°,9%) € C([0,t1];R) x C([0,1]; R) : Ni(2°,4°) = (2°, y").
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(2%, y") is the solution of (4.6).
e We consider the problem (4.4) on (¢, 9]

ta(t),y(t), y'(t) = falt, x(t), y(t), aet €y = (1,1

(1) + fl,k(l’o( 1):9°(t)), y(t) =y (t) + Iz,k(xo((il%yo(tl))
We consider the space C, = {(z,y) € C(J1,R)xC(J1,R) /(x(t),y(t])) e>.<ist},
(Cs;1-1l,) is a Banach space.

Let

NQ : C*

(z,9)

T, y)
Na(a, ) (8) = (x%m L), (1) + / Fils, o(s), y(s))ds |

C

—
— N2<

(1) + La(a’(t), (1)) / fa(s,z(s),y(s)) s)

Let (z1,y1), (z2,y2) € Cs X Cy, and t € (ty, to]

el
N3 (21, y1) (t) = Na(za, 92) ()] = I(Oaﬁ)( )

18l
where
t
ol < / £(s) [|(z1(5), y1(s)) — (w2(s), ya(s)) || ds
t1
1 ! TL(s) €Ty — Tg
< — | Tl(s)e ds ,
T Jy Y1 — Y2 BC
TL(¢) 1 1
< e —llz1r — 2ol + =llyr — w2l ) -
T T
Similarly
1 1
I8 < &0 (2o = ool + s -l ).
T T
such that

- /t je(s)ds



4.3 Structure of solutions sets 82

SO
11 |21 — 22
—7L(t) 1
e [ No(z1,91)(t) — No(w2,y2) (1)[] < -
11 Hyl - Z/2||
Then
1 ]_ ]_ ||[L‘1 — ZEQH
HNz(ﬂﬂl,yl) - N2(532,y2)”Bc < ;
11 ly1 — v2|

Then for 7 € (1,400); Ny is contractive, so there exists unique
(z',y") € CJt1, t2[; R) « Na(ah,y') = (2, 9),
we have
(@' yh)(t) =

+ limy,_ e [ fils 2(s),y(s))ds,

No(at,y') () = (2°(t1) + Tup(2°(t1), (1))

t

y(t) + Lp(a®(h), 3 () + lim [ fo(s, 2(s), y(s))ds).

t—tf J1,
Then (z',y') is the solution of the problem (4.7). As a consequence, the
solution of the problem (4.4) is given by
(l,O’ yo)(t)a te [Oatl]
. (")), te (tr,t]
(", y")(t) = : :
(™ y™)(t), t € (tm,b].

2. The uniqueness:
Lets (z*,y*), (z**,y**) are two solutions of the problem (4.4); we are going

to show that:
(x*,y")(t) = (™, y™)(t), forall t € ]0,1],
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if t € Jo=10,t1] then (2%, y*)(t) = (™, y*)(t), for all t € [0,]
ift € J; = (t;,tiy1] then (z*,y*)(t) = (™, y*)(t), for each t € (t;,t;11].
Now it is enough to show that
(ZE*, y*)(t_k,!—) = (l’**, y**)(tz_)7 ke {17 2, 7m}

we have:

(2", y") () — (2%, y*) (&) = (L™ (8), y* (t), La(2* (83), y* (t2)))

implies that

(@ y) () = @y ) ) + (T (8), ™ (8)), T2 (8), y* (1))

= (** )Z(tz) + (@™ (), 5™ (4), Lo (2™ (8), ™ (1))
= (&7 y)(E).

]

Theorem 4.3.2. Suppose there exists a continuous nondecreasing function
¥ :[0,00) — (0,00), and p € L'(J,R,) such that

1fi(t, )| < p)d(llzll + lyll); for allt € J, and all z,y € R,

1 [e'e) du
ds < .
/o pls)ds /|<xo,yo>|| ¥(u)

Then the problem (4.4) has at least one solution.

with

Proof. For the proof we use "The non linear alternative of Leray and
Schauder".
Consider the operator

N : PC(J,R) x PC(J,R) —s PC(J,R) x PC(J,R)

defined by
N@p)t) = (zo+ / fi(s,2(s), y(s)ds + 3 Tuala(te), y(t),
yo + / fols, 1), 9(s)ds + 3 Lon(w(t), y(te)).

The fixed point of N is solution of the problem (4.4). It is enough to prove
that N is completely continuous, the proof is given by the following steps.
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Step 1 N is continuous:

Let (2, yn)n be a sequence in PC(J,R) x PC(J,R) such that (z,,y,) —
(x,y), it is enough to prove that N(z,,y,) — N(z,y). For all t € J we
have:

N(tma)(t) = (zo+ / Ao an(6) (s + 3 ualenlte) n (1)

Then
IN (20, yn) () = Nz, 9)(@®)] = [ (a, 8) |
_ ( [ex]l )
161
where
el = H/O(fl(s,wn(S)wn(S))—fl(S;fU(S),y(S)))dS
+ Y Tip(@alte), ya(te) — Tia(e(te), y(t)l
< [ M) m(5) = Alsale) ) s
+ Z L1, (2n (), Y (Tk)) — Lre(@(tr), y(t))l,
as I,k = 1,--- ,m are continuous functions, and fi, f» are L' —Caratheodory

functions, and by the dominated convergence theorem of Lebesgue we have

lev] / /108, (), yn(5)) = fi(s, 2(s), y(s))lds

+ Z |11 g (20 (tr) Y (tr)) — Tin(x(te), y(te)) || — O whenn — oo,

0<trp<m

similarly

b
18Il < /0\|f2(8,xn(8)7yn(8)) fa(s, x(s), y(s))l|ds
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+ ) a(@a(te) ya(te) — Lo (te), y(t))]| — 0whenn — oo,

0<trp<m
SO

IN (2w, ) — Nz y)| < ( 0 ) |

Then N is continuous.

Step 2 N transforms every bounded set to a bounded set in PC(J,R) x

PC(J,R):

It suffices to show that, for all ¢ = ( Zl ) > 0, there exists ¢ = ( ?1 ) > 0,
2 2

for each (z,y) in B, = {(z,y) € PC x PC : |[(z,y)|| < ¢}, we have

IN(z, y)|| < .

Let (z,y) € B,, we have

b m
IN(z, )l < (II!L‘oII+/0 1f1(s (), y(s) I ds + D (et y(t)]

b m
lwoll + / 1ol 2(s), ys) ds + 3 Mot y(8)])
— (a.5), :

B
A

ol +/0 pO¢(lelpe + Iyl pe)dt + D (b)), y(t)|

b m
< ol + [ pO0lelle + Iollpcde + 30 s [uea)l = 6

k=1 (@,y) EBf(l

similarly

b m
1811 < ol +/0 p eIzl pe + 19l pe)dt + Y sup [Tk, y) = Lo

k=1 (z:y)€By
Step 3 N transforms every bounded set to a equicontinuous set to PC'(J, R) x
PC(J,R)
We let 7,75 € J,1p < 1 and B, = {(z,y) € PC x PC : ||(z,9)| < g},

q= ( Zl ) > 0; let (x,y) € B,, then:
2
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1. If 1y #tg (or 7o # ty), VE € {1,2,--- ;m}, we have

IN(a,y)(m) = Nz, y)(m)]| < </Dp<s>w<q1+q2>ds+ S sw )]

71 T1 <t} <T2 (z,y)EFq
T2
vt wdst Y s eyl
1 T1 <t <T2 (xvy)qu

(o)
— 0 when 7 —

2. If ; =t;, we consider §; > 0 such that {tx, k # i}N[t;—01,t;+ 1] = 0,
so for 0 < h < §; we have

t;

IN(z,y)(t:) = Nz, y)(ti = h)|| - < (/

ti—h

pvtan+adds, [ vt + i)

— <8) when h — 0

3. If /, = t}, we consider d, > 0 such that {ty, k # i} N[t;— 2, t;+ 5] = 0,
so for 0 < h < 5 we have

IN(z,y)(ti + h) = N(z, y) (L) < (/tl p<5)¢(Q1+QQ)d57/tZ p(s)U(q + g2)ds)

i %

— (8) when h — 0.

So by steps 1, 2 and 3, which is obtained, and by Arzela-Ascoli’s theo-
rem, N is completely continuous.

Step 4 A priori estimation:
Let (z,y) € PC(J,R)x PC(J,R) such that (z,y) = AN(z,y),and 0 < A < 1.
Then for all ¢ € [0,¢;] we have

z(t) = Az + )\/0 fi(s, z(s),y(s))ds,

and

y(t) = A\yo + )\/Ot fa(s,x(s),y(s))ds,
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SO

m@wwus<mﬂ+£p@wwwm+M@mw
, Mﬂ+£p@MW@M+M®W%)

Consider the map ¥ = (¥, 3) such that

01 (t) = [|o +/0 p(s)e(llz(s)ll + [ly(s)lDds,

and
Ua(t) = [lwol +/0 p(s)(llz(s)[ + [ly(s)[)ds,

then we have

9(0) = (lzoll, llyolD), (=, »)(@®)] < I(),
and .

Ui(t) = p()e(llz(s)]| + ly@)]), Vi = 1,2.
As 1) is nondecreasing map, we have

Di(t) < pt)w(9:(1)), Vi = 1,2.

What implies that for every t € [0,¢1], we have

9;(t) du /t1
— < p(s)ds, Vi =1,2.
/1%(0) Y(u) 0 (s)

= du
The map I'; o(2 —/ —7
o(2) 95(0) Y(u)

;) exist and they are nondecreasing, we have

1 = 1,2 is continuous and nondecreasing, then

t1
0;(t) <T;g (/ p(s)d3> =M, p,1=1,2.
0

As for all t € [0,t1], ||(z,y)(t)]] < Y(t), then

sup ol < ().

t€[0,t1]
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Now, for t € (t1,t5], we have

=D < (), y@))I + le ()]
< ( Sl)lPE |11 (x, y)|| + Mo == Ny,
and
[yD] < NT2a(x(t), y@) + ()]
< ( Sl)lpE | I21(x, y)|| + Mapo := Na,
where v
= (3
y(t) = A(z(tr) + Lia(z(t), y(t))) + A/t fi(s,x(s), y(s))ds,
and
y(t) = A(y(t) + La(x(t), y(th))) + A/t fa(s,2(s),y(s))ds.
Then .
[z@®)] < N +/t p(s)¥(lz(s)ll + [ly(s)l)ds,
and

[y < N +/t p(s)P(llz()[ + ly(s)l)ds.

Consider the map W = (W, Ws) such that
t
Wit) = N +/ p(s)e(llz(s)ll + lly(s)l)ds
t1

Wa(t) = N2+/tp(S)iﬁ(llw(S)ll+||y(8)||)ds,
so we have
W(tf) = (Ni, Na), [[(z, ) (@) < W (D),

and
Wit) = p)e(lz(s)ll + ly(®)), Vi = 1,2,
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1 is nondecreasing, then
Wilt) < p(t)(Wi(t)), Vi =1,2.
What implies is that for every t € (1, t2], we have

Wi (t) du /tz
— < p(s)ds;i=1,2.
/I\/‘/i(t+) w(u) t1

1
_ N du
If we consider the map I'; 1(2) = /

— 1= 1,2, we get
wi(th) Y (u)

Wi <0t ([ pto)as ) = i = 1.2
Forall £ € (t1, 6], [|(2,)()]| = ( H;’Eg” ) < ( &Eg ) then

s el < (4 ).

te(ty,tsa]

we continue the process until we reach the interval (¢, 1], (z,y)|¢,.,1 is the
solution of the problem (z,y) = AN(x,y) in (¢, 1], for 0 <A< 1. We get
there exist M, ,,t = 1,2 such that

b
sup wmyMMMzn;(/’M@mQ::A@w
€ (tm,b] tm

As we choose (x,y) arbitrarily, then for all solution of the problem (4.4) we

have ( )
maxXy—0,1,. m(Mi bf
< Lol LR ) = .
ol < (o ) o (1)
Consider the set

b +1
U={(z,y) € PC x PC : ||(z,y)] pc < ( b1+1 )}
2

Sowe get N : U — PC x PC'is completely continuous, and by the definition
of U it doses not exist a (z,y) € U such that (z,y) = AN(z,y) for all
Ae (0,1).

Then by the theorem 1.6.3, N has a fixed point (z,y) € U which is solution
of the problem (4.4).

]
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Theorem 4.3.3. Suppose that we have the same conditions of the theorem
4.8.2, then the set of all solutions of the problem (4.4) is non empty, compact,
Rs, acyclic. Moreover the solution operator S is u.s.c., where

S:RxR —s P, (PC x PC)
(z0,%0) — S(o,%0)

S(zo,y0) = {(x,y) € PC x PC : (x,y) solution of the problem (4.4) with
(x(0),5(0)) = (x0,0)}-

Proof. e The solution set is compact:
Let (a,b) € R x R,

S(a,b) = {(zx,y) € PC x PC : (z,y) solution of the problem (4.4) with
(2(0),5(0)) = (a,b)}.

1. S(a,b) is a closed set
Let (x4,9,)q be a sequence in S(a,b), such that

lim (z4,v,) = (z,y).

q—r00

Let

Z(t) = a+t / (s a(s)usNds + S Ta(a(te), u(t)

0<trp<t

20 = bt [ Bl p)ds+ Y hauleln). ),

0<tp<t

let ¢t € [0, 1], we have

lzq(t) = 22| < /0Hfl(&fﬂq(S)qu(S))—fl(S,x(S)>y(8))|!dS
> g (te), ye(1) = Tpla(te), y(tn)l

0<tp<t

/0 1 = 105, 2a(5), 0a(5)) — fi (5. 2(5), (s)) | ds

IN
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D (gt ya(0) = T (t), w8

k=1

by the dominated convergence theorem of Lebesgue we have
|zq(t) — Z1(t)]] — 0 when g — oo,

similarly
llyg(t) — Za2(t)|| — 0 when ¢ — oc.

So, lim,— oo (z4,yq) = (z,y) = (Z1, Z2) € S(a,b).
2. S(a,b) is uniformly bounded:

Let (x,y) € S(a,b), then (z,y) is solution of the problem (4.4), so
3b6* > 0 such that

Gz, y)l| < 0.

3. S(a,b) is equicontinuous:
Let r1,r9 € [0,1],71 < re and (z,y) € S(a,b):

o)) = o)) < ([ WAl ds+ 3 Huele). )]

7 / 1o, 2(s), gDl ds + S Molat), y®)])

/m Ifi(s,2(s),y())llds + Y ||11,k(w(t),y(t))||S/mp(SW(Hx(S)II+||y(8)||)d8

r1 r1<tp<re 1

+ ) sup Lz

r1<tp<ro ({E,y) GEb*

< / sl tds+ S swp e y)]

1 r1<tp<ro (x,y)EEb*
— 0 when 71 — 9.

Then, S(a,b) is compact.

e The solution set S(a,b) is Rs
Let N: PC x PC — PC x PC defined by

N(z,y)(t) = (a+/O Filssw(s),y(s))ds + Y Tua(e(te) y(t))
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s b+/0tf2<8,l’( d8+ Z [2k k))) te [O,l]

0<tp<t

then, FizN = S(a,b), by the step 4 of the proof of the theorem 4.3.2, there
exists b* > 0 such that

(@, y)|| < 0% V(z,y) € S(a,b),

for i = 1,2 we defined

Rty =14 b
! { Jilt, x(t

and

. Fala@),5(0) i )0)] < b
Tialz(),y(1)) = ) () (0] > b,

as f; are L'-Carathéodory, then fl are also L!-Carathéodory, and there exists
h € L'(J,R,) such that

ﬁ(t,x,y)” < h(t);Vi=1,2, ae. teJ; and (z,y) e RxR. (4.8)

Consider the problem

l’(t) = f}(t’x(t)?y(t))? S [07 1}
y(t) = i2<t7x( )7y(t))7 S [07 1}
2(ty) —2(ty) = La(z(te),y(t;)), k=1,2,--- m (4.9)
y(tl-:) - (tl;) = [2,k(33(t )7y(tl:))7 k=1,2,---,m,
\ z(0) = a, y(0)=0.

We can easily prove that Fia N = Fixﬁ, where N : PC x PC —» PC x PC
defined by

N )t) = (a+ / Fi(s a(s),u()ds + 3 Tuplelt), u(te)

b+ / Fols,a(s) u()ds + 3 To(a(te), u(ti)).
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By the inequalities (4.8), and the continuity of I, 4,7 = 1,2, we have

[Ny = lal + Wbl + 3 sup_ hae )l

k=1 (z.Y)EB,

c Bl Bl Y sup (Har()l) = (rre) =,

k—1 (z,y)€B,

then N is uniformly bounded.

We can easily prove that the function M defined by M(z,y) = (x,y) —
N (z,y) is a propre function, and as N is compact and by Lasota Yorke’s
theorem (theorem 1.5.1), We can prove easily that the conditions of theorem
1.5.2 are verified, then the set M~1(0) = FizN = S(a,b) is Rs-sct, and it is
also acyclic by the lemma 1.5.1.

e The solution operator is u.s.c.:
1 S has a closed graph:
The graph of S is the set

Gs = {((a,b); (z,y)) € (R x R) x (PC' x PC)|(z,y) € S(a,b)},
let ((aq, by); (74, Y4))q @ sequence in Gg, and let ((aq, by); (24, Y4))q = ((a,0); (z,y))

when ¢ — oc.
As (x4,9,) € S(ay,by), then we have

7g(t) = ag + / F1(520(5), v ds + 57 Tr(wg(5), uyti),

and
yalt) = by + / Fols, (), un()ds + 3 To(a(s), (1)),
let
2(t) = (Zu(t). Za(t) = (a+ / s, o(s)y)ds + Y Ta(a(s), u(te)

0<tp<t

b / fols.2(),y()ds + 3 Dale(s),y(te)),

0<tp<t
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let t € [0, 1], we have
(g, 90)(8) = Z@)]| - < (Haq—a\|+/0 1f1(8,24(5), yg(s)) = fa(s,2(s), y(s))|| ds
) (g (), yg (1) — Tl (t), y(2))]

> by =0 +/0 1f2(s, 24(s), Yg(s)) = fals, 2(s), y(s))| ds
> o (1), yg(1)) = Lo (t), (1)),

by the dominated convergence theorem of Lebesgue we have
| 9) () = Z(t)] — 0 when g — .

Then,
(z,y)(t) = Z(t)
what implies that (z,y) € S(a,b).

2 S transforms every bounded set to a relatively compact set
Let r = ( :1 ) > 0,B, = {(z,y) € PC x PC : ||(z,y)|| <r}.
2

(a) S(B,) is unifomly bounded: B
Let (z,y) € S(B,), then there exists (a,b) € B, such that

£(t) = a+ / s a(s),u(s)ds + 3 a(a(te), y(te)),

0<trp<t

and

y(t):b+/0 fa(s,x(s),y(s))ds + Z L (x(te), y(te)),

0<tp<t

by the same method detailed in step 4 of the proof of the theorem 4.3.2 we
find that there exists b* > 0 such that

Gz, )l < b
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(b) S(B,) is equicontinuous set: B
Let 71,75 € [0,1],71 < T2, and (z,y) € S(B,), then

1z, y)(r2) = (z,9)(n)| < (/TQ 1fu(s,2(s),y())llds + D I uw(e(te), y(te)

T1<tp<T2

/D fa(s (), y(sD s+ Y I a(e(te), y(t))

1 T1<tp<T2

< (/TQP(SW(H:C(S)H+||y(8)!|)ds+ D (b, y(te)]

71 T <t <T2

[ 0wl + l@lds + 3 Hatalte).ae)l)

1 T1<tp<T2
T2
< / ()6 +0)ds+ Y sup [Fa(m )
T1 T1<tp<T2 ($7y)€Bb*

, /”p<s>¢<b>{+bz>ds+ S swp [l 9)l)

71 T <t <To ("Z y)eBb
— 0 when 71 — 7.

Then the set S(B,) is compact, the operator S is locally compact and has a
closed graph, then S is u.s.c.

O

Theorem 4.3.4. Suppose that we have the conditions of the theorem 4.2.1,
where Fy, Fy : [0,b] X R X R = Py (R) are Carathédory, u.s.c. and mLL-
sectionnable. Then the set of all solutions of the problem (4.1) is contractible.
Proof. Let f; € Sp, be a measurable locally lipchitzienne selection of £},
1=1,2.

Let us consider the problem

x,(t> = fl(t7'r( )7y(t))7 a.e te[ 71]

y'(t) = fat,2(t),y(t)), aet €0 71]
a(ty) —a(ty) = Lg(z(te),y(te),k=1,---,m (4.10)
y(th) —ylty) = La(z(te),y(ty),k=1,---,m

z(0) = o, y(0) = yo,

by the theorem 4.3.1 the problem (4.10) has a unique solution.
Consider the homotopic function h : S(zo,y0) x [0,1] — S(z0,yo) defined
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by

x, t), if 0 <t< «,
h((x,y),a)(t) = { (w(*,yziggt;, if a<t<l1,

where (z*, y*) is the solution of problem (4.10), and S(zo, yo) is the set of all
solutions of problem (4.1). In particular

h((x,y), o) = { ( &9, i Zié

Ty,

Thus to prove that S(zg,y) is contractible it is enough to show that the
homotopic h is continuous.

Let ((Xn, Yn), an) € S(xo,yo) % [0,1] such that ((xn, yn), an) = ((z,y), ),
when n — oo. we have

fL‘n»ntv ifOStSOén,
h((%n, Yn), an)(t) = { ((x*,z*ggt%, if a, <t<1.

(a) If nh_)nolo a, = 0, then
h((x,y),0)(t) = («*,y")(t), forall ¢t € [0,1].
Thus
12((2n, yn)s an) = h((2, ), ) lloo < [[(@n;9n) = (2%, 47)0.0) = 0 when n — oo,
(b) If lim «a,, = 1, then
n—yoo
h((z,y),1)(t) = (x,y)(t), forall t e [0,1].
Thus

1P ((2n, yn), an) =h((2,y), @) lloo < (2n, yn) = (2, 9)l[0.0,] = O When n — o0,

(c) If 0 < lim a,, = @ < 1, then we distinguish following both cases
n—oo

(1) If t € [0,a], we have (x,,y,) € S(xo,yo) thus there exists (vy,,ve,) €
Sp, X Sp, such that for all t € [0, ay,]

onlt) = 20 + / vin($)ds + 37 Tp(@a(ti), ga(t)),

O<tp<t
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i) =t [ s+ 3 Bt ot

0<tp<t

by the step 5, in the proof of theorem 4.2.1 we have

by
[(Zn, yn) |l Pexpe < b = )
b

and by hypothesis, we have

| (01, v2,,) ()] < p(E)0(b] + b3) ( 1 ) for all n € N,

which implies

(V1p, v20) (1) € P()Y (0T + b5) B(0, 1),

as p(t)y(bi405)B(0, 1) is compact, thus it exist a sub-sequence (vy,, , v, )(.)
which converges towards (vq,v2)(.). We have Fi(t,.) are u.s.c. then

Ve > 0,dng > 0;Vn > ng :
V1n(t) € Fi(t, zn(t), yn(t)) C Fi(t,z(t),y(t)) +B(0,1), ae. te€]0,ql,
Vo (t) € Fot, x,(t), yn(t)) C Fa(t,z(t),y(t)) +eB(0,1), ae. te€0,a].

And by the lemma 1.2.4 And the lemma 1.2.5, and as F has compact convex
values, we obtain that

vi(t) € Fi(t,z(t),y(t)), ae. tel0,al

vo(t) € Fy(t, z(t),y(t)), ae. te]0,al
And by the dominated convergence theorem of Lebesgue, we find that

v; € Ll([O, 1],R) — V; € SFZ;Z =1,2.
Hence, for every t € [0, 1]

t
ot) =s0+ [ u()ds+ 3 Tala(b). o),
0 0<tp<t

and

y(t) :yo+/0 va(s)ds + Z L(@(tr), y(te))-

0<tp<t
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(2) If t € (ay, 1], then

h((@n; yn), an)(t) = h((2,y), @) (t) = (27, y")(1).
Thus
|h (20, Yn)s an) — h((z,y),@)|| = 0, when n — co.

Hence, h is continuous, so the set S(xg,yo) is contractible.
]

Theorem 4.3.5. Suppose we have the conditions of the theorem 4.2.1, with

Fi, Fy 0 [0, 1]XxRXR — P,y o (RXR) are Carathéodory, u.s.c and o — Ca—selectionnable.
Then the set of all solutions of the problem (4.1) is Rs—contractible and

acyclic.

Proof. Lets f; € Sp, a Carathéodory selection of F;, i = 1,2. Consider the
homotopic multifunction IT : S(zg, yo) X [0, 1] = P(S(z0,40)) defined by

~f S(wo,y0)(1), if0<t<a
T, g),2) = { S(f, ozy, (z,y)), ifa<t<l,

where
e S(xg,yo) is the set of all solutions of problem (4.1),

o S(f,a,(x,y)) is the set of all solutions of next problem

20 = fi(t,z1(t), 22(t)), a.et € [a,1]

2(t) = falt,21(t), 22(t)), a.et € [a,1]
Zl(t’:) —Zl(tlz) = ILk(Zl(tk),ZQ(tk)), k= 1, , (411)
ZQ(t;:) — Zg(tlzg = IQ,k(Zl<tk)7 Zg(tk))7 k= 1, e, M

— 2(a), ()= yla).

By the definition of II, for all (z,y) € S(zo,%), (z,y) € U((z,y),1) and
II((x,y),0) = S(f,0,(x,y)) which is Rs—set by the theorem 4.3.3.

It remains to show that ITis u.s.c. and II((x,y), o) is Rs—set for all ((x,y), o) €
S(zo,y0) % [0,1]. The proof is given by the following steps.

Step 1: II is locally compact.

(a) The multifunction S : [0,1] x R x R = P(PC([0,1],R) x PC([0,1],R))

defined by . _
S(t, (2, 9)) = S(f,1, (7, 9)),
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is w.s.c. where S(f,t,(Z,y)) is the set of all solutions of the problem

() = filt,z1(h), 22(1)), a.et €[t 1]

2(t) = falt,21(t), 22(t)), a.et € [t, 1]
21<t2) — Zl(t];) = Il,k(21<tk)7 Zg(tk)), k= , e, M (412)
2ty) —a(t) = brlalt), ), k=1 m

2(t) = T, 2(t)=79.

Assume the opposite, ie. S is not w.s.c. Then for a point (¢, (Z,7))
there exists an open neighborhood U of S(t, (7,7)) in PC(]0,1],R) x

PC([0,1],R), such that for any open neighborhood V' of (¢, (z,y)) in
[0, 1] xRxR, there exists (t;, (21, 71)) € V such that S(t, (£1,51)) ¢ U.

1/n
L%%{&@wDEMHxRwaMH%WME@@D< 1m>},

1/n
where d is the generalized metric of the space [0,1] x (R x R). Then

for each n € N we take (¢, (zn,yn)) € V,, and (2, yn) € S(tn, (Tn, yn))
such that (z,,y,) ¢ U. We define the functions

by

Ffi@@(x,y)(t} = (5—1—/? fi(s, (z(s),y(s)))ds + Z Lig(x(ty), y(te)),

t<tp<t

%émmmmwm+zemmawmqm,

t<tj<t

and
(x,y) € PC([0,1],R) x PC([0,1],R).

Then for (z,y) € C([0,1],R) x C([0,1],R),t,t € [0,1], and (Z,7) €
R x R, we have

Frapn(@y)(t) = (@,9) — Foap(@,y)@t) + Foap(zy)(0),

consequently

Grap(@y)(t) = —(2,9) + Fo,ap (@, y) () + Goap(,y)(?),
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then we obtain

S(.(7.9) = G5 (0), forall (£(7.9) € [0.1] xR x E,

as Fy z 7 1s compact (See proof of theorem 4.3.3), then Gy ;5 is propre,
and as (T,,y,) € g(tn, (Tn,Yn)), then

2alt) = 2a(tn) + / Fi(5.20(8) yn(8))ds + 3 Lua(@alte), ya(t),

and
yn(t)zyn(tn)Jr/t o, 2n(8), yn(9))ds + D To(@n(te), ya(te)),

which gives

0= th,(xn,yn)<$nv yﬂ)(t) = _(xm yn)(tn)+F0,(xn,yn)($n7 yn)(tn)—i_GO,(wn;yn)(xn? yn)<t>7

and

Gi @ (@n, Yn) () = —(T,9) + Fo,G5) (Tn: Yn) () + Go,@3) (@0, Yn) (1),
then

1G5 @n yn) () = G ) (@ns ¥n) O] = |G (0, y0) (D)
= =@ 9) + (@0, ya) (t)

+ FO,(%,@ (mn, yn)(t) - FO,(rn,yn)(xna yn)(tn>H

(5
(i)

a = —T+xz,(ty) + §+/0 fi(s, (), yn(s))ds + Z I g (20 (te), Yn (tr))

O<tp<t

- (xn(tn)+/Onf1(3axn(5)ayn(3))d3+ Z Il,k(ajn(tk)7yn(tk))>a

0<tr<tn
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lafl < /||f181’n (), ya()lids + > [us(@n(te), ynlte))]

tn <tk <t

< / () +b)ds + S ITenlti) yn(ti)]l,

tn<tp<t

similarly

B = —GHult)+ |G+ / Fo(5, 20(5), gD+ 3 Top(an(ti), va(te)

0<ty <t

_ ( / fo(8, 0(8), yn(8))ds + Z L (2 (tr), yn(tk>)>

0<trp<tn

7
18Il < / p(s)(0] +b3)ds + Y [ Low(@alty) ya(ti)]

fn tn<tp<t
lim ($n,yn) (Z,y) and hm t, = t implies that hm Gt @) (Tns Yn) = 0.

Then the set A = {Gz (:Un, Yn)} is compact thus G~(~ ~)(A) is also
compact. It is clear that {(zn,yn)} C A. As hm (a:n,yn) = (7,7),

then (%,7) € S(t,(Z,7)) C U, thus we find a Contradlctlon with the
hypothesis (z,,y,) ¢ U for every n.

IT is locally compact.
™
T2

B xI={((z,y),a) € S(zo,y0) x [0,1] : [[(z,y)|| < r},

and let {u,} € II(B x I), then it exist ((z,,Yn), an) € B x I such that

(t) = (Tns Yn), if 0 <t <a,,
Un(l) = U (1), if a, <t <1, v, €S(f,an, (Tn,Yn))-

For r = > 0, consider the set

As S(xo,90) is compact then there exists a subsequence of (z,, ),
which converges towards ((x,y), ). S is u.s.c. implies that for alle > 0



4.3 Structure of solutions sets 102

there exists no(e) such that v,(t) € S(t, (z,y)) = S(f, o, (z,y)), for all
n > ng(e), and by the compactness of S(f,«, (z,y)), it is concluded
that there exists a subsequence of {v,} which converges towards v €
S(f,a, (z,y)). Hence II is locally compact.

Step 2: II has closed graph.
Let ((zn,yn), an) = (4, 9s), @), by, € (2, 0,) and h, — h, when n —
+o00. We are going to prove that h, € II((z.,y.), @).
hyp € II((2p, Yn), o), then it exists z, € S(f, an, (Tn,yn)) such that for all
teJ : _—
Tny )y 10 <t < ap,
(1) = { zn (), if a, <t <1,

and it is enough to prove that it exists z. € S(f, «, (x4, y«)) such that for all
teJ ( )
_ Ty, Ys), 1f0<t<a,
ha(t) = { 2 (1), fa<t<l.

it is clear that (au, (zn,yn)) — (@, (24, y«)) when n — oo and it can easily
be proved that there exists a subsequence of {z,} which converges towards
Zy. So we can handle the cases @« = 0 and a = 1 as we did in the proof of
the theorem 4.3.4, and we obtain finally that 2z, € S(f, a, (2., yx)).

Step 3: II((x,y), ) is Rs-set for all ((z,y), ) € S(zo,v0) % [0, 1].

As F is 0 — Ca—selectionnable, Then there is a decreasing sequence of
multi-functions Fy : [0,1] x R x R — Py 0(R x R), & € N which admits
Carathéodory selections and

Fri1(t,u) C Fi(t,u) forall ¢t €0,1],u € R x R,
and
F(t,u) =Nyl oFi(t,u), u € R x R.
then
H((ZE, y)) Oé) = ﬂZOZOS<Fk7 (ZE, y))
By the theorem 4.3.3, the sets II((z,y), «), and S(Fy, (z,y)) are compact.
Furthermore by the theorem 4.3.4 the set S(F}, (x,y)) is contractible. Then
II((x,y), ) is Rs—set.
[

Lemma 4.3.1. Suppose that the multifunction F; : [0, )] xRXR — P, o0(R), i =
1,2, are Carathéodory and u.s.c. to the type of Scorza-Dragoni, then the set
of all solutions of the problem (4.1) is Rs—contractible.
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Proof. By the theorem 4.1.4 we have that F; is c—Ca-selectionnable, then
we have the same conditions of the last theorem.

]



Conclusion and Perspective

In this dissertation, we have presented some results to the theory of
existence of solutions of some classes of impulsive differential equations and
impulsive differential inclusions and system of impulsive differential inclu-
sions, we have proved also some property topological geometrical of solutions
set as: compactness, Rs, contractible, acyclic.

It would be interesting, for a future research, to look for system of impul-
sive differential equations with delay, system of impulsive differential equa-
tions non instantaneous, and system of impulsive differential equations de-
pends on the state.
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