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General Introduction

In statistics, we designate by chronological series, or time series, the modeling of a series of random
and sequentially observed events, generally on a temporal scale. Many real data flows admit such
a representation, we can think for example of the consumption of electricity, the evolution of a
stock market action, the gross domestic product, the tide cycle or the progress of a process chemical.
Although astronomers and meteorologists can claim paternity, the main advances in the formalization
of time series seem to be the task of statisticians and econometricians. Today we find the legacy
in the fields of economics and finance of course, but also in engineering, signal processing or the
natural and social sciences. It’s from the publication of the pioneering work of Box and Jenkins in
1970 that was born the theory of time series as we know it today. The latter was motivated by the
weak predictive power of the structural models of Keynesianism in force at the time and proposes a
completely innovative approach. The ARMA process, forming the heart of the work and on which
we will have the opportunity to return in detail later, relies exclusively on the past observations of
a curve to intuit a global linear behavior disturbed by a noise. random center. The main feature
of a time series is the strong dependence and considerable practical interest linking two consecutive
observations, at the origin of the dynamics of the models. The latter are therefore all the more apt to
reflect actual flows and natural events in which the chronological evolution is manifest. Among the
range of applications from the theory, it is mainly modeling and prediction that focus all attention.
While we are looking from one side to build the best model for a dataset without prejudging the events
taking place outside the study interval, we focus on the other on optimal learning of observations to
infer future behavior.

From the ARMA linear process came a series of derived models, more and more general, with as
a guideline the formalization of an extended class of real phenomena. The latter take into account
non-stationarity, heteroscedasticity, and even non-linearity. Although this Since this thesis focuses
solely on a particular subset of processes, it seemed essential to give in the first chapter the succinct,
and therefore not exhaustive, history of the time series currently in force. It will also be necessary
to explain all the concepts that we approach - in italics - in this introduction, before presenting in
a descriptive way the model of Box and Jenkins, its properties then its major evolutions. Once the
framework is well defined, we will discuss the autoregressive process, linear model on which our entire
study will be focused. The rigorous analysis of linear time series has expanded considerably at the
end of the last century. While Harvey in 1991 and Kitagawa and Gersch in 1996 apprehend the time
series by a Bayesian approach based mainly on state-space models treated with a Kalman filter, it
is on the frequentist approach that we will focus our attention. In this respect, we can cite the work
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of Jenkins and Watts in 1968, Hannan in 1970, Bloomfield in 1976, Priestley and Brillinger in 1981,
and Fuller in 1995. We will particularly emphasize the work of Brockwell and Davis during the 1990s
on which we have largely relied upon, source of our theoretical reminders.

Random shocks in the autoregressive process are usually treated as white noise, in any case
one of the usual working hypotheses guaranteeing both the consistency of the estimators and their
asymptotic normality. In the mid-twentieth century, Durbin and Watson adopted as a subject of
study the standard linear regression model, the random perturbation of which results from a first-
order autoregressive process, abandoning in fact the residual whiteness, but also the consistency of
the estimate. They suggest then a statistic still used today in the field of econometrics, at the origin
of a relatively elementary test procedure allowing quite often to reject a hypothesis of absence of
residual correlation. In 1970, Durbin, confronted with the inferential consequences of the presence
of a residual autocorrelation and placing himself in the chronological framework, proposes a subtle
revision of the procedure better known today under the name of H-test. Thus.

Our thesis is presented in four chapters. In the first chapter we recall the notations and the tools
used on the stochastic processes, and in particular, we recall the definition of the processes AR(p),
MA(q), ARMA(p,q), and the non parametric estimate of the probability density function by kernel
method especially recursive kernel estimator.

In the seconde chapter, we consider the asymptotic distributions of the error estimators in the
first order autoregressive model by using the recursive density estimator of the probability density
function for a sequence of extended negatively dependent random variables.

In the third chapter, we establish the complete convergence for a kind of hazard rate function
estimator by considerate a kind of recursive density estimator of the probability density function for
a sequence of linear negatively quadrant dependent random variables .

The last chapter is devoted to prove new exponential inequality for a new case of dependence
WOD for the distributions of sums of widely orthant deprndent (WOD, in short) random variables.
Using these inequality. The results are applied to the first-order autoregressive processes AR(1)
model. This work was published in International Journal of Mathematics and Computation.



Chapter 1

Time series

1.1 Some fundamental concepts

1.1.1 The stochastic process

Consider a probability space (Ω,F , P ), a set of indices Γ and a metric space S provided with the
Borel tribe B(S).

Definition 1.1 We call ”stochastic process” a family of random variables Xt set to (Ω,F , P ), indexed
by t ∈ T and with values in S. For any realization ω ∈ Ω the family (Xt = Xt(ω)) is a ”trajectory”
of the process.

It is in the trajectory of a process observed on a subset of Γ that we will associate the notion of
”time series”.

1.1.2 Stationarity

Stationarity reflects the ability of a process not to depend on the index temporal. The latter is
therefore fully described by its stationary law which, by definition, no longer changes over time. It
is thus understood that such a property is certainly of practical interest considerable, but also has a
strong theoretical impact since it is found as an assumption underlying many results. We generally
distinguish stationarity in the strict sense of stationarity in the weak sense. To define them, consider
a process Xt set to L2(Ω,F , P ), the set of integrable square random variables.

Definition 1.2 We say that the process Xt is ”strictly stationar” if for all k ∈ N∗ and all time shift
h ∈ Z the law of the vector (X1, . . . , X1+k) is the same as that of the vector (X1+h, . . . , Xk+h).

Strict stationarity is a very strong working hypothesis, necessarily difficult to verify in practice when
the process is not gaussian. That’s why we introduced a notion of less restrictive stationarity.
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Definition 1.3 We say that the process Xt is ”weakly stationary” if for any time offset h ∈ Z, IE(X0)
and Var(X0) are constant, and Cov(X0, Xh) depends only on h.

It is also said that the process is ”second order stationary”, in relation to stabilization of its variance.
It is this property of stationarity that we will implicitly refer to by the following. Note that strict
stationarity naturally implies weak stationarity. The example the most trivial of stationary process
is white noise.

Definition 1.4 A time series comes from the realization of a family of random variable {Xt, t ∈ I},
or the set I is a time interval that can be discrete or continuous.
for this thesis we use the whole I = {0, 1, . . . , T}, or T the total number of observations.

Example 1.1 The figure represents the global total of air passengers per month between 1949 and
1960. Note that the points are connected by lines (which are there to look pretty and do not have of
special significance). The data (Air Passengers) are available in R.

Figure 1.1: Air passengers
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The objective of the time series study is to make predictions about the evolution of the series.
Here is a non-exhaustive list of mathematical models that can be used :

• Regression. It is assumed that Xt is polynomial in t, for example Xt = α2t
2 +α1t+α0 +εt (with

εt a random noise). The coefficients are estimated by α̂2, α̂1, α̂0 (from the values X1, . . . , Xn).
So with the data of X1, . . . , Xn, we will make the prediction X̂n+1 = α̂2(n+1)2 + α̂1(n+1)+ α̂0

value of Xn+1,

• Exponential smoothing,

• ARMA models, to remove trends and seasonality from the series (periodicity). These models
are numerically heavier, but more efficient.
Challenges (in order):

• Define a model with a finite number of parameters.

• Estimate the model parameters.

• Check the quality of the fit of the model, compare different models (we will be able to cut the
data into a learning sample and a test sample).

• Make predictions.

Example 1.2 We can think for example of the number of travelers using the train, to the relative
monthly increase in the price index or to the occurrence of a natural phenomenon (such as the number
of sunspots).
This series of observations of a family of real random variables noted (Xt)t∈Θ is called serie chrono-
logical (or temporal). In the continuation of this course, we will note it

(Xt)t∈Θ or {Xt, t ∈ Θ},

where the set Θ is called the time space that can be

• Discreet (number of SNCF passengers daily, maximum temperature . . .). in that case, Θ ∈ Z.
The observation dates are most often equidistant, for example, monthly statements, quarterly. . .
These equidistant dates are then indexed by integers: t = 1, 2, . . . , T and T is the number of
observations. Therefore we have observations of the variables X1, X2, . . . , XT from the family
(Xt)t∈Θ or Θ ⊂ Z (most of the time Θ = Z). So if h is the time interval separating two
observations and t0 the moment of the first observation, we have the following schema:
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• continued(radio signal, result of an electrocardiogram . . .). The time indexe is at values in
an interval of R and one has (at least potentially) an infinity of observations from of a process
(Xt)t∈Θ or Θ is an interval of R. Such a process is said to be continuous. The methods presented
in this context are different from those for chronological time series discreet and presented in
the sequel.

1.2 Description of a time series

We consider that a time series Xt is the result of different fundamental components:

• the trend (or trend) Zt represents the long-term evolution of the studied series. It translates
the ”average” behavior of the seerie.
Examples of time series :
For example, the seerie of the figure 1 trend to increase linearly.

Figure 1.2: Monthly index of consumer prices It
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Figure 1.3: Passenger traffic of the SNCF in second class

Figure 1.4: Relative monthly increase in the price index
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Figure 1.5: Medium-term evolution of the relative monthly increase in the price index

Figure 1.6: United States population
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Figure 1.7: Number of strikes united state, 1951-1980

Figure 1.8: All star Baseball games, 1933-1980
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Figure 1.9: Monthly number of accidental deaths in the USA, 1973-1978

• The seasonal component (seasonality ) St corresponds to a phenomenon which is repeated
at regular (periodic) intervals of time. In general, it is a seasonal phenomenon from which the
term of seasonal variations.
For example, The series of the figure 1.3. presents regular cycles over time and likewise ampli-
tude.

• The residual component (or noise or residue) εt corresponds to irregular fluctuations, in
general low intensity but random in nature. We also talk about aleas.
For example, The series of the figure 1.4. rather irregular behavior: there is like a kind of low
amplitude noise that disturbs the data.

• Accidental phenomena (strikes, exceptional weather conditions, financial crash) may inter-
vene in particular.
For example, the series of the figure 1.5 has two breaks.

• Another component sometimes studied in a specific way relates to cyclical phenomenon: this
is often the case in climatology and economics (example: recession and expansion. . .). This is
a phenomenon but in contrast to seasonality over periods that are not fixed and generally long.
Without specific information, it is generally very difficult to dissociate trend and cycle.

1.3 Main goals

The study of a chronological series allows to analyze, to describe and explain a phenomenon during
time and draw conclusions for decision-making (marketing. . .).
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This study also makes it possible to control, for example for the management of stocks, the con-
trol of a chemical process. . .More generally, we can already pose some problems when studying a
chronological window.

But one of the main objectives of the study of a chronological series is the projection of predict
future values XT+h(h = 1, 2, 3, . . .) the chronological sequence from its observed values until the time
T = X1, X2, . . . , XT . The prediction of the time series at time T + h is noted X̂T (h) and in general
is different from the real value XT+h what does the seerie take at time T + h. To measure this
difference, we will define the prediction error by the difference X̂T (h)−XT+h ”on average” with the
idea that plus h is big. bigger is the mistake. Precision interval, defined by the values X̂(1)

T (h) and
X̂

(2)
T (h) is likely to contain the unknown value XT+h. The quality of the prediction can be measured

based on 80% of observations, then simulating a prediction on the 20% of observations remaining.
This technique is also useful for :

• The seeries that contain ”holes”,

• Measure the effect of an accidental phenomenon(error,. . . ).

There are many other immediate objectives for the study of time series. For example, if two series
are observed we may wonder what influence they exert on each other. Noting Xt and Yt the two
series in question. for example, if there are relations of the type

Yt = a1Xt+1 + a3Xt+3.

1.4 Schematic description of the complete study of a chrono-
logical series

One of the main objectives of the study of a chronological series is the forecast future values of this
series. For that, we need to know or at least to model the production mechanism of the chronological
series.

Note that the variables Xt are most often not independent (we can expect indeed that observations
relatively close in time are linked) nor identically distributed (in most of the cases, the phenomenon
evolves, changes over time, which means that variables that describe it are not equidistributed).
This requires statistical methods of treatment and specific modeling since especially in a standard
setting (that of the description of a sample), classical statistical methods are based on assumptions
of independence.
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Schematically, the main stages of treatment of a chronological sequence are the following:

1. Correction of data,

2. Observation of the series,

3. Modelization (with a finite number of parameters),

4. Analysis of the series from its components,

5. Diagnosis of the model, adjustment of the model,

6. prediction (forecast).

1.4.1 Correction of data

Before embarking on the study of a chronological series, it is often necessary to treat, modify the
raw data. For example,

• Evaluation of missing data, accidental data replacement, . . .,

• Breaking into sub-series,

• Standardization to reduce to fixed-length intervals. For example, for data monthly, we go back
to the standard month by calculating the daily average over the month (total observations on
the month divided by the number of days in the month),

• data transformation: for various reasons, sometimes we may have to use transformed data. For
example in economy, we use the transform family of BoxCox:

Yt =
1

λ
[(Xt)

λ − 1].

Observation of the series

A general rule in Descriptive Statistics is to start by looking at the data before making any calcu-
lations. So, once the set is corrected and pre-adjusted, we trace his graph it’s a tell the coordinate
curve (t,Xt).

Modelization

A model is a simplified image of the reality of translating the operating mechanisms of the phe-
nomenon studied and makes it easier to understand them. One model may be better than another
to describe the reality.
There are mainly two types of models:
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• The determinist models: These models belong to Descriptive Statistics, they only involve
the calculation of probabilities in an underlying way and assume that the observation from
date to date t which is a function of time and a variable εt centered as an error to the model,
representing the difference between the reality and the proposed model:

Xt = f(t, εt),

We assume furthermore that the εt are decorrelated.
The two most commonly used models of this type are:

1. Additive model: It is the ”classic model of decomposition” in the treatment of adjust-
ment models, The variable Xt is written as the sum of three terms:

Xt = Zt + St + εt,

or Zt represents the trend (determinist), St is the seasonality (also determinist) and εt the
random components i.i.d (errors in the model).

2. Multiplicative model: The variable Xt is written at the end of error almost like the
product of the trend and a seasonality component.

Xt = Zt(1 + St)(1 + εt),

the adjustment here is multiplicative and intervenes in the models ARCH.

• Stochastic models: They are of the same type as the models of determinists to this close
noise variables εt are not i.i.d but have a non-zero correlation structure.

εt = g(εt−1, εt−2, . . . , ηt)orηtis the error term.

The class of the most commonly used models of this type is model classes SARIMA and its
sub-models ARMA,ARIMA, . . ..

The particular case where the functional relation g is linear is very important and widely used, it
leads to linear regressive models, for example a model of order 2 with coefficients autoregressive
a1, a2 is given by:

εt = a1Xt−1 + a2Xt−2 + ηt,

or ηt is a white noise that is an unrelated zero average random variable.

The two types of models above induce very particular forecasting techniques. schematically, we are
interested first of all in the trend and the seasonality of the eventuality that we isolate first.

Then we try to model them, estimate them and finally we eliminate them from the series, these
two operations are called the detendancialisation and the seasonal adjustment of the series, Once
these components are removed we get the random serie εt:
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• For deterministic models, this series will be considered decorrelated and there is nothing left
to do,

• For stochastic models, we obtain a stationary series which means that the successive obser-
vations of the series are identically distributed but not necessarily independent that is for
modeling.
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Figure 1.10: Quarterly sales of sunscreens, trend, seasonal factors and irregular fluctuations

1.5 white noise

Definition 1.5 we say that the sequence of the random variables {εt} is a weak white noise if it has
the following properties :

• IE(εt) = 0, for t ∈ Z,

• IE(ε2t ) = σ2 6= 0 and constant,
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• cov(εs, εt) = 0 if t 6= s.

In other words, the random variables {εt} are of zero mean, of constant variance and uncorrelated.

We say that {εt} is a strong white noise if it is a weak white noise and that the random variables
{εt} are i.i.d.

Notation

1. If {εt} low white noise, so {εt} ∼ WN(0, σ2
ε ),

2. If {εt} loud white noise, so{εt} ∼ I.I.D(0, σ2
ε ).

stationarity

An important property of time series is stationarity. This property is necessary to apply some
theorems on causality. The following definition presents the type of stationarity most used.

Definition 1.6 A sequence {Xt, t ≥ 0} of random variables is said to be stationary of the second
order if it checks the following properties :

• IE(Xt) = µ <∞,

• IE(X2
t ) <∞, Cov(Xs, Xs+t)=Cov(Xs−1, Xs−1+t)=. . . , Cov{X0, Xt} for all s, t ∈ N.

Remark 1.1 we call Cov{Xt, Xt+h} the autocovariance (ACV) on the horizon h and we note it :

rX(h) = Cov(Xt, Xt+h).

we can take this function and divide it by variance of {Xt} to obtain a new function that we will call
autocorrelation. we note it :

ρX(h) =
rX(h)

rX(0)
,

with the following properties:

1. −1 < ρX(h) ≤ 1,

2. ρX(h) = 0 means that observations Xt and Xt+h are uncorrelated,

3. ρX(h) = ±1 means that the correlation is perfect (negative or positive).
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1.6 Operators defined on a time series

1.6.1 Delay operator :

Definition 1.7 the delay operator B is defined as follows :

B(Xt) = Xt−1.

Remark 1.2
Bn(Xt) = Xt−n, for ∀n ∈ N.

1.6.2 Difference operator order of d:

Definition 1.8 we define 4d the order difference operator d as the linear operator such that :

4d = Xt −Xt−d = (1−Bd)Xt.

We can also take the order operator one and apply it several times :

Example 1.3

42(Xt) = 4(4(Xt)),

= 4(Xt −Xt−1) = (1−B)(Xt −Xt−1),

= Xt − 2Xt−1 +Xt−2.

these operators can be used to transform a non-zero mean process into a zero-average process. It
can also be used to remove the season’s song of the series. In the next section, we use them to better
represent the models.

1.7 Types of model

One-dimensional case :

Some frequently used models are considered for a time series {Xt}. We start with two simple models:
the autoregressive model and the moving average model. We continue with the ARMA model that
combines these two models.
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1.7.1 Autoregressive process AR(p) :

the first self-reinforcing processes were introduced by George Udny yule. Yule uses the first autore-
gressive model to model the sunspot time series rather than the Schuster periodogram method. An
autoregressive process is a process where an observation is written at time t as a linear combination
of past observations plus some white noise.

Definition 1.9 The sequence {Xt, t ≥ O} is a autoregressive process of order p (p > 0) if it can be
written in the following form :

Xt =

p∑
k=1

φkXt−k + εt, or {εt} ∼ WN(0, σ2
ε ).

The φk(k = 1, . . . , p) are the parameters of the model.
In this case, we write {Xt ∼ AR(p)}, in the same way, we can rewrite a process AR(p) with a
polynomial φ(B) which will multiply Xt this time :

φ(B)Xt = εt with φ(B) = 1− φ1B − φ2B
2 . . . φpB

p.

Example 1.4 A process AR(1) take the following form :

Xt = φXt−1 + εt, {εt} ∼ WN(0, σ2
ε ).

1.7.2 Moving average process MA(q) :

It is Eugen Slutzky who in his article introduced for the first time moving average processes. The
following definition presents this process.

Definition 1.10 We say that the sequence {Xt, t ≥ 0} is a moving average process of order q if it
can be written in the following form :

Xt =

q∑
k=1

θkεt−k + εt, or {εt} ∼ WN(0, σ2
ε ),

or the θk(k = 1, 2, . . . , q) are the parameters of the model, in this case, we note {Xt} ∼MA(q).

Example 1.5 A process MA(1) takes the following form :

Xt = θεt−1 + εt, or {εt} ∼ WN(0, σ2
ε ).

We can use the delay operator B to write this program in another form, so we will have a polynomial
in B that will multiply εt :

Xt = θ(B)εt with θ(B) = 1 + θ1B + θ2B
2 + . . .+ θqB

q.
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Remark 1.3 If {Xt} ∼MA(q), so :

1. Xt is stationary,

2. ρX(h) = 0 for ∀h > q.

Definition 1.11 A process is called causal if there is a real {ak} sequence such as
∞∑
k=0

|ak| <∞ and

that :

Xt =
∞∑
k=0

akεt−k.

Sometimes, when we speak of a causal process, we say that it has a representation MA(∞).

Remark 1.4 any process MA(q) is causal.

Definition 1.12 A process is said to be invertible if there is a real sequence {bk} real such that
∞∑
k=0

|bk| <∞ and :

εt =
∞∑
k=0

bkXt−k.

Another way of saying that a process is invertible is to say that it has a representation AR(∞).

Remark 1.5 With this definition, any process AR(p) is invertible.

Theorem 1.1 An autoregressive process AR(p) is causal and stationary if and only if its polynomial
φ(Z) is such that :

φ(Z) 6= 0 with Z ∈ C such that |Z| ≤ 1.

In other words, all roots of φ(Z) are greater than 1 standard.

Example 1.6 The following process AR(2) is stationary and causal :

Xt = −1

4
Xt−1 +

1

8
Xt−2 + εt, or εt ∼ WN(0, σ2

ε ).

Indeed, we can rewrite it as :

εt = Xt(1 +
1

4
B − 1

8
B2),

so, we have that :

φ(Z) = −1

8
Z2 +

1

4
Z + 1 = Z2 − 2Z − 8 = (Z + 2)(Z − 4),

the roots are outside the unit circle, so the process is stationary and causal.
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Theorem 1.2 A moving average process MA(q) is invertible if and only if its polynomial θ(Z) is
such that :

θ(Z) 6= 0 with Z ∈ C such that |Z| ≤ 1.

We note the resemblance of this statement with the stationarity and causality theorem for autoregres-
sive processes.

1.7.3 ARMA(p, q) model

the AR and MA models may be perfect in some cases, but it may be necessary to estimate a large
number of parameters to adjust the model. these estimates will tend to be unclear. Moreover, if a
model containing p parameters is appropriate for the situation. it is not good to try to fit a model
that will contain more than p.
ARMA models consist of having an autoregressive part and a moving average part. Herman Wold
showed that the ARMA processes could be used to model any stationary series as long as the orders
p and q are well chosen. Bosc and Jinkins worked to develop a methodology for estimating the model
of a time series.
It can be easy to check the causality and invertibility of the ARMA model.

Definition 1.13 A process is said ARMA(p, q) if there are real sequences {φk} and {θk} such that
:

Xt −
p∑

k=1

φkXt−k = εt +

q∑
j=1

θjεt−j, with {εt} ∼ WN(0, σ2
ε ).

We can also use polynomials φ(B) and θ(B) to rewrite this model in the form :

φ(B)Xt = θ(B)εt,

with φ(B) = 1− φ1B − Cφ2B
2 − . . .− φpBp and θ(B) = 1 + θ1B + θ2B

2 + . . .+ θqB
q.

We notice that {Xt} ∼ ARMA(p, q).

Remark 1.6 We note some properties for ARMA(p, q) models :

1. If p = q = 0, we have Xt = εt ∼ WN(0, σ2
ε ),

2. If p = 0 and q 6= 0, we have {Xt ∼MA(q)},

3. If q = 0 and p 6= 0, we have {Xt ∼ AR(p)}.

1.8 Nonparametric estimate of the probability density

In many applications, the density f is unknown and there is a n sample, X1, X2, . . . , Xn random
variables that are independent and identically distributed, admitting f as density. The problem of
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the statistician is then to use this sample to build an estimator that is as close as possible to the
density f . Several estimators of probability density have been proposed since Rosenblatt, Cencov
and Parzen.
The vast majority of them fit into a very large class of contributors by estimators built from a nucleus
(the nouyau method and the estimation by histogram).

1.8.1 Estimation of the probability density by the kernel method

This is the most popular estimator. It is adapted to continuous random variables. Let X1, X2, . . . , Xn

a sample of independent random variables and identically distributed with F distribution function
and a density f .

The kernel density estimator, denoted f̂(x), is defined by

f̂n(x) =
1

nhn

n∑
i=1

k(
x−Xi

hn
) (1.1)

Where k is called the weight or kernel function, and hn is called the smoothing parameter or window.

Usual kernels:

Kernels K(u)
Uniform 1

2
, |u| ≤ 1

Epanechncov 3
4
(1− u2), |u| ∈ R

Triangular (1− |u|), |u| ∈ R
Normal 1√

2π
exp(−u

2

2
), u ∈ R

Properties of a kernel estimator:

1.
∫
R k(u)du = 1 and k(u) ≥ 0 (the kernel estimator is a density function).

2. f has the same properties of continuity and differentiability as k:

• If k is continuous, f will be a continuous function,
• If k is differentiable, f will be a different function,
• If k can take negative values, then f can also take negative values.

1.8.2 Asymptotic Expressions of Bias and Variance

An asymptotic approximation of the esperance of the estimator f(x) is given under following condi-
tions on f , hn and k.
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1. The seconde derivative f ′′(x) is continuous, square integral and monotone on ]−∞,−M ] and
[M,+∞[ for M > 0,

2. lim
n→+∞

hn = 0 and lim
n→+∞

nhn = 0,

3. For f̂(x) to be a density, we suppose that k(u) ≥ 0 and
∫
k(u)du = 1, The kernel function

is supposed to be symmetric around zero (
∫
k(u)du = 0) and possesses a finite second order

moment (
∫
u2k(u)du <∞).

We have established that
Biais(̂f(x)) =

hn
2
f
′′
(x)µ2 +O(h2

n),

and
Var(̂fn(x)) =

f(x)

n
R(k) +O(

1

nhn
),

where µ2 =
∫
u2k(u)du and R(g) =

∫
g2(u)du for g a function of integral square.

We must therefore try to choose an hn that makes a compromise between the bias2 and variance.
Asymptotic expressions of bias and variance allow us to find asymptotic expressions for the MSE
and le MISE.
These expressions were obtained under condition (3) on k and assuming that the density of probability
f had all the necessary (continuous) derivations.
The following asymptotic approximations can easily be obtained for the MSE and the MISE.

MSE(f̂n(x)) =
h4

4
(f
′′
(x))2µ2 +

f(x)

nhn
R(k) +O(

1

nhn
) +O(h4

n),

and
MISE(f̂n(x)) =

h4
n

4
µ2

∫
R
(f
′′
(x))2dx +

1

nhn
R(k) +O(h4 +

1

nhn
),

Under appropriate conditions of integrity of f and its derivative.
On note l’approximation asymptotique de le MSE par

AMSE(f̂n(x)) =
h4
n

4
(f
′′
(x))2µ2

2 +
f(x)

nhn
R(k),

and the asymptotic approximation of the MISE by

AMISE(f̂n(x)) =
h4
n

4
µ2

2

∫
R

(f
′′
(x))2dx +

R(k)

nhn
.

1.8.3 Optimal theoretical choice of the smoothing parameter

For the smoothing parameter, we distinguish between the constant smoothing parameter hn, (or
global), and hn(x) variable (local) smoothing parameter.
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These different choices of the smoothing parameter result in the following kernel estimators:

f̂n(x) =
1

nhn

n∑
i=1

k(
x−Xi

hn
),

and

f̂n(x) =
1

nhn(x)

n∑
i=1

k(
x−Xi

hn(x)
).

We will describe the optimal theoretical choices of the smoothing parameters hn and hn(x).
An appropriate criterion for selecting a constant smoothing parameter hn and the MISE.
The optimal smoothing parameter is the value of hn that minimizes the MISE. Note this value hMISE.
An asymptotic approximation of hMISE is given by hAMISE, the value of h which minimizes AMISEf̂n(x).
It is easy to verify that

hAMISE = { R(k)

µ2R(f ′′)
}

1
5n
−1
5 ,

and
hMISE ≈ {

R(k)

µ2R(f ′′)
}

1
5n
−1
5

, that is to say

lim
n→∞

hMISE

hAMISE
= 1.

An appropriate criterion for selecting a variable (local) smoothing parameter hn(x) is the local
performance measure MSE fn,L(x). . We introduce the following notations:

hMISE = argminhnMSE(f̂n,L(x)),

and
hAMISE = argminhnAMSE(f̂n,L(x)),

Under condition that f ′′(x) 6= 0. The hAMISE and hAMSE(x) choices are theoretical choices, that are
not usable in practice because it depends on unknown quantities f and f ′′ . By substituting hAMISE

for the expression of AMISE, we show that for the kernel estimator

n
4
5AMISEf̂hAMISE = O(1).

1.9 Recursive kernel estimator

A kernel recursive estimator of the probability density can be preferred f . A recursive kernel estimator
is given by the following recursive relationship:

f̂n(x) =
n− 1

n
f̂n−1(x) +

1

nhn
k(
x−Xi

hn
),
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where 1
n
and hn are two positive series of positive ones that tend to 0. Here are two examples for

recursive estimators.
Wolverton-Wagner estimator:

f̂n(x) =
1

n

n∑
i=1

1

hi
k(
x−Xi

hi
).

This recursive estimator was introduced by Wolverton and Wagner (1969) and studied by Yamato
(1971).
Deheuvels estimtor (1973):

f̂n(x) =
1
n∑
i=1

hi

n∑
i=1

k(
x−Xi

hi
).

1.9.1 Some convergence results for the Wolverton-Wagner estimator

Yamato (1971) demonstrated in particular that for any pair (K(y), (hn)) belonging to C2 subset of
C1 for which the sequences (hn) are decreasing, f̂n(x) converges in quadratic mean to f(x). If more
(K(y), (hn)) belonging to C′2 subset of C2 for which the suites (hn) verify

hn
n

n∑
i=1

1

hi
→ α,

with α ∈]0, 1[, so he proved that

lim
n→∞

nhnVar(f̂n(x)) = ατ 2f(x).

The following theorem gives us almost sure convergence and the asymptotic normality of f̂n(x).

Theorem 1.3 If f is out of bounded and if the window is such that hn = n−α with 0 < α < 1, we
have for all x ∈ R,

lim
n→∞

f̂n(x) = f(x), a.s

Furthermore, 1
5
< α < 1, we have

√
nhn(f̂n(x)− f(x)→ N

(
0,
τ 2f(x)

1 + α

)
.

The central limit theorem was obtained by Duflo (1997) with 1
3
< α < 1, and by Bercu and Chafai

(2007) with 1
5
< α < 1.
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1.9.2 Some convergence results for the Deheuvels estimator

Among many other results, Deheuvels has shown that f̂n(x) converges to quadratic average to f(x)
and in particular Deheuvels (1973):

Var(f̂n(x)) ∼ 1
n∑
i=1

hi

τ 2f(x).

The following theorem gives us almost sure convergence.

Theorem 1.4 If f is out of bounded and if the window is such that hn = n−α with 0 < α < 1, then
we have for all x ∈ R,

lim
n→∞

f̂n(x) = f(x), as.

Furthermore, if 1
5
< α < 1, we have that√

nhn(f̂n(x)− f(x)→ N(0, τ 2f(x)).

Using the martingales as in the previous theorem, we can obtain even a central limit theorem for
f̂(x).

Choice of the kernel and the window

These choices can only be made by the use of certain criteria. Without going into all the details,
it turns out that the choice the kernel has no major influence if it is chosen in a reasonable class.
In however, the choice of the hn window is crucial. In general, hn is obtained by cross validation
techniques.

1.10 Some notions about convergence

Definition 1.14 A sequence of random variable {Xn, n ∈ N} converges stochastically (or in proba-
bility) to the random variable X (P{limXn} = X) if for all ε > 0

P (|Xn −X| > ε)→ 0 when n→∞.

Definition 1.15 (Markov inequality) If f(x) > 0 is a non-decreasing monotonic function (x ≥ 0)
then for a > 0

P (|X| > a) ≤ IEf(|X|)
f(b)

.
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Definition 1.16 (Jensen inequality) If g is a continuous convex function on ]a, b[,−∞ ≤ a < b ≤
+∞ and a < X < b, so

g(IEX) ≤ IEg(X).

we recall that a function g is convex on ]a, b[ if

g(λx1 + (1− λ)x2) ≤ λg(x) + (1− λ)g(x2).

Definition 1.17 (Hölder inequality) For all random variables X and Y we have

IE(|XY |) ≤ (IE|X|p)
1
p (IE|Y |q)

1
q with

1

p
+

1

q
= 1, p > 1.

Corollary 1.1
(|IEX|)p ≤ IE(|X|p) for p > 1 and,

(IE|X|p)
1
p ≤ (IE|X|q)

1
q for 0 < p < q.

1.11 Some properties on probabilities

let (Ω,F , P ) be a probability space

• For any event B ∈ F , we have:

P (B) = P (A ∩B) + P (Ā ∩B),

or Ā denotes the negation of A.

• Let X and Y be two random variables and ε > 0, so:

P (X + Y > ε) ≤ P (X >
ε

2
) + P (Y >

ε

2
),

P (Z > sY ) ≤ P (Z > sε) + P (X ≤ ε),∀s ∈ R.

Definition 1.18 Let (Ω,F) is a measurable space and µ : F → R̄+ an application.

We say that µ is a positive measure on (Ω,F) if:

1. µ(∅),

2. ∀(Bn)n≥1 ∈ F a sequence of disjointed events, we have:

µ(
⋃
n≥1

Bn) =
∑
n≥1

µ(Bn).



1.11. SOME PROPERTIES ON PROBABILITIES 35

Definition 1.19 let µ and λ be two bounded measurements on (Ω,F). we say that λ is absolutely
continuous with respect to µ and we note λ� µ if:

∀C ∈ F such that µ(C) = 0⇒ λ(C) = 0.

A measure µ is said to be finite or bounded on (Ω,F) if µ(Ω) < +∞.

Theorem 1.5 (Radon-Nicodym theorem) let µ and λ be two bounded measures on (Ω,F).

If λ � µ so there exists g a non negative function, µ integrable and F measurable such that
λ = gµ.

The function g is called the density of λ with respect to µ, we denote it:

g =
dλ

dµ
,

and also
λ(L) =

∫
L

gdµ, ∀µ ∈ F .

Definition 1.20 (Almost complete convergence) We say θn converges almost completely to θ if the
series converges:

∞∑
n=0

P (|θn − θ| > ε) < +∞.

Definition 1.21 (Bienayami-Tchebychev inequality) Let X random variable of esperance IE(X) and
variance σ2.
For all α strictly positive, we have

IP(|X − IE(X)| > α) ≤ σ2

α2
.

Properties on conditional esperance

Let (Ω,F , P ) a probabilized space, B a sub-tribe of F and M and N any two real random variables.

1. If M is B measurable and integrable then

IE(M |B) = M almost surely .

2. If M is integrable and N is B measurable and bounded then

IE(MN |B) = NIE(M |B) almost surely .
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3. If B1 and B2 are two sub-tribes of F such that B1 ⊂ B2 we have then for all random variables
M integrable,

IE(IE(M |B2)|B1) = IE(M |B1).

Especially if B1 is the trivial tribe, B1 = {∅,Ω} so

IE(IE(M |B1)) = IE(M).



Chapter 2

Asymptotic distribution of the END random
error in first-order autoregressive processes
using the recursive kernel estimator

Abstract

The purpose of this paper is to consider the asymptotique distributions of the error density estimators in
first order autoregressive models (based on the true error) using a kind of recursive density estimator of the
probability density function for a sequence of extended negatively dependent random variables.

2.1 Introduction

In the parametric regression and autoregressive models, several authors have studied the properties of
estimators for distributions of the errors. The weak convergence of the empirical processus based on
residuals in parametric regression models is discussed in Koul (1970, 1977, 1992, 1996), Loynes (1980),
Portnoy (1986), and Mammen (1996), while Boldin (1982), Koul (1991), and Koul and Ossiander
(1994) discuss this for parametric autoregressive models. Then uniform consistency of error density
in these models is discussed in Koul(1992). Lee and Na (2002) extended the asympototic result
(based on the L2-norm) in Bickel and Rosenblatt (1973) to the error density estimator in the first-
order autoregressive models while Horvath and Zitikis (2003) consider asymptotics of the Lp-norms
of the estimators.

In this paper, we first obtain asymptotic distribution of the kernel error density estimators for a
sequence of extended negatively dependent random variables.

Definition 2.1 Random variables X1, X2, . . . , Xn are said to be extended negatively dependent (END)
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if there exists a constant M > 0 such that for each n ≥ 2, the following two inequalities hold:

IP{X1 ≤ x1, . . . , Xn ≤ xn} ≤M
n∏
i=1

IP{Xi ≤ xi} (2.1)

and

IP{X1 > x1, . . . , Xn > xn} ≤M
n∏
i=1

IP{Xi > xi} (2.2)

for each n ≥ 1 and all real numbers x1, x2, . . . , xn.

In the case M = 1 the notion of END random variables reduces to the well known notion of so-called
negatively dependent (ND) random variables which was introduced by Lehmann (1966) (cf. also
Joag-Dev and Proschan, 1983). Not looking that the notion of END seems to be a straightforward
generalization of the notion of negative dependence, the extended negative dependence structure is
substantially more comprehensive. As is mentioned in Liu (2009), the END structure can reflect not
only a negative dependence structure but also a positive one (inequalities from the definition of ND
random variables hold both in reverse direction), to some extend.

Throughout the paper, let ε1, . . . , εn be a strictly stationary sequence of END random variables
with the unknown marginal probability density function f(x). We consider the following recursive
kernel estimator of f(x)

fn(x) =
1

n

n∑
i=1

1

hi
k

(
x− εi
hi

)
. (2.3)

Where 0 < hn ↓ 0 are bandwidths, k(.) is the kernel density function. The recursive kernel density
estimator (2.3) was introduced by Wolverton and Wagner (1969). Note that (2.3) can be computed
recursively by

fn(x) =
n− 1

n
fn−1(x) + (nhn)−1k

(
x− εn
hn

)
. (2.4)

This propery of (2.3) is particulary useful in large sample since fn(x) can be easily updated with each
additional observation. Liang and Baek(2004) discussed the point asymptotic normality for fn(x)
under negatively associated random variables.
Since END random variables are much weaker than independent random variables, and NA random
variables, studying the large sample character of the kernel density estimate for END sequence is
of interest. In this article, we will discuss the asymptotic distribution of error using the recursive
density estimates in AR(1) models.
In the sequel, let C2 stand for set in where the second order derivative f ′′ exists and is bounded
and continuous. All limits are taken as the sample size n tends to ∞, M1,M2, . . . and k0, k1 denote
positive constants whose values may changefrom from one place to another, unless specified otherwise.

Suppose that the sequence Xi satisfies the first order autoregressive model

Xi = θXi−1 + εi, (2.5)
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where the εi’s are extended negatively dependent with mean 0, variance σ2, finite fourth moment
and unknown density f . We also assume that |θ| < 1 and the sequence Xi is stationary. Then we
have the representation

Xi =
∞∑
j=0

θjεi−j. (2.6)

Assume that we observe X0, X1, . . . , Xn. Let θ̂ be an estimator of θ with the following property:
√
n(θ̂n − θ) = O(1). (2.7)

Property (2.6) is natural since the least square estimator satisfies it.
Let

ε̂i = Xi − θ̂nXi−1, 1 ≤ i ≤ n. (2.8)

Denote the residuals. Based on these residuals, we construct a estimator of the error density f(x) as
follow:

f̂n(x) :=
1

n

n∑
i=1

Khi(x− ε̂i), (2.9)

and x ∈ R with Khi(x) = 1
hi
K( x

hi
). We shall show that f̂n(x) is asymptotically normal at fixed point.

ASSUMPTIONS

(A1)
∫ +∞
−∞ K(u)du = 1,

∫ +∞
−∞ uK(u)du = 0,

∫ +∞
−∞ u2K(u)du <∞,

(A2) K(.), K
′ ∈ L1,K

′′′ exists on the real line and K ′′(.) ∈ L1(bounded),

(A3) IEX4
i−1 <∞,

(A4) hn ↓ 0,

(A5)
∫
R |u|K(u)du <∞,

∫
R |u|K

2(u)du <∞,

(A6)
∫
R |uK

′
(u)|du <∞ and

∫
R |u||K

′
(u)|2du <∞.

2.2 Some auxiliary results

In this section, we will present some important lemmas which will be used to prove the above main
results.

Lemma 2.1 Let random variables X1, . . . , Xn be END.

(i) If f1, f2, . . . , fn are are all non decreasing (or non increasing) functions, then random variables
f1(X1), f2(X2), . . . , fn(Xn) are END.
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(ii) For each n ≥ 1, there exists a constant M > 0 such that

IE

(
n∏
i=1

X+
i

)
≤M

n∏
i=1

IEX+
i .

Lemma 2.2 Let {Xn, n ≥ 1} be a sequence of END random variables, then for each n ≥ 1 and
λ ∈ R there exists a constant M > 0 such that

IE

(
n∏
i=1

exp {−λXi}

)
≤M

n∏
i=1

IEexp {−λXi}

Lemma 2.3 Let {Xn, n ≥ 1} be a sequence of END random variables with IEXn = 0 and |Xn| ≤ dn
a.s. For each n ≥ 1, where {dn, n ≥ 1} is a sequence of positive constants. Assume that t > 0 such
that t.max1≤i≤n di ≤ 1. Then for any ε > 0, there exists a constant M > 0 such that

IP

(
|

n∑
i=1

Xi| > ε

)
≤ 2M exp

{
−tε+ t2

n∑
i=1

IEX2
i

}
.

2.3 Asymptotic Distribution of f̂n at a fixd point

In this section, we consider the asymptotic distribution of f̂n(x), we have the asymptotic normality
result follow

Theorem 2.1 Suppose that at a fixed t ∈ R, there existe a constant 0 < r <∞ such that f satisfies

|f(x)− f(x− y)| ≤ r|y|, for all y ∈ R. (2.10)

Assume that hn satisfies nhn → ∞. Then, under assumptions (A2), (A4) and(2.7) we have that in
distribution

f̂n(x)−
∫
K(u)f(x− hiu)du√
V ar(fn(x))

→ N(0, 1). (2.11)

Now, we start prove the auxiliary lemma before proving the Theorem (2.1).

Lemma 2.4 Suppose that (2.7), (2.10) and the assumptions (A2), (A4) and (A6) hold. Then we
have that

|f̂n(x)− fn(x)| = O

(
(nlogn(loglogn)l)

1
2

h2
n

)
. (2.12)
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Proof of Lemma(2.4): We have by (2.5) and (2.8)

ε̂i − εi = −(θ̂n − θ)Xi−1 (2.13)

Using (A2) and (2.13), we can obtain∣∣∣f̂n(x)− fn(x)
∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

1

hi

[
K

(
x− ε̂i
hi

)
−K

(
x− εi
hi

)]∣∣∣∣∣ ,
=

∣∣∣∣∣ 1n
n∑
i=1

[
(θ̂n − θ)Xi−1

h2
i

K
′
(
x− εi
hi

)
+

(θ̂n − θ)2X2
i−1

2h3
n

K
′′
(ζix)

]∣∣∣∣∣ ,
≤ |θ̂n − θ|

n

∣∣∣∣∣
n∑
i=1

Xi−1

h2
i

[
K
′
(
x− εi
hi

)
− IE

(
K
′
(
x− εi
hi

))
+ IE

(
K
′
(
x− εi
hi

))]∣∣∣∣∣
+

c1|θ̂n − θ|2

2n

n∑
i=1

X2
i−1

h3
i

,

≤ |θ̂n − θ|
n

∣∣∣∣∣
n∑
i=1

Xi−1

h2
i

[
K
′
(
x− εi
hi

)
− IE

(
K
′
(
x− εi
hi

))]∣∣∣∣∣
+
|θ̂n − θ|

n

∣∣∣∣∣
n∑
i=1

Xi−1

h2
i

IE
(
K
′
(
x− εi
hi

))∣∣∣∣∣+
c1|θ̂n − θ|2

2n

n∑
i=1

X2
i−1

h3
i

,

=
|θ̂n − θ|

n
|Sn1|+

|θ̂n − θ|
n
|Sn2|+

c1|θ̂n − θ|2

2n
Sn3

where c1(0 < c1 < ∞) is an upper bound for |K ′′ |, (|K ′′(u)| ≤ c1, ∀u ∈ R), and ζix is a number

between x−ε̂i
hi

and x−εi
hi

, more ever that Sn1 = 1
n

n∑
i=1

Yi where

Yi =
Xi−1

h2
i

[
K
′
(
x− εi
hi

)
− IE

(
K
′
(
x− εi
hi

))]
.

By lemma 2.1, we see that Y1, . . . , Yn still END random variables with IEYi = 0 for i = 1, . . . , n.

IEY 2
i = IE

(
Xi−1

h2
i

[
K
′
(
x− εi
hi

)
− IE

(
K
′
(
x− εi
hi

))])2

.

Since Xi and (εi+1, εi+2, . . .) are independent by (2.6), we have

IEY 2
i = IE(X2

i−1)IE
1

h4
i

[
K
′
(
x− εi
hi

)
− IE

(
K
′
(
x− εi
hi

))]2

,

= IE(X2
i−1)IE

1

h4
i

K
′
(
x− εi
hi

)2

.

Using IEX2
i = IEX2

0 <∞ and K(x) is bounded function, which implies that

IEY 2
i = IE(X2

i−1)IE
1

h4
i

K
′
(
x− εi
hi

)2

≤ C1
1

h4
i

<∞ for i = 1, . . . , n.
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By hn = n−σ ↓ 0 with 0 < σ < 1 we can obtain
n∑
i=1

V ar(Yi) ≤ C1

n∑
i=1

1

h4
i

≤ C1
n

h4
n

.

Set λ(n) =
[

nh4n
(logn(loglogn)l)

] 1
2 , and taking t = εh4n

2C1λ(n)
, them by Lemma 4.2 we get

IP
(
λ(n)

∣∣∣∣ 1nSn1

∣∣∣∣ > ε

)
= P

(
|Sn1| >

nε

λ(n)

)
,

≤ 2M1exp

{
− εnt

λ(n)
+
C1nt

2

h4
n

}
,

= 2M1exp
{
− ε

2nh4
n

2C1λ2
+

ε2nh4
n

4C1λ2(n)

}
,

= 2M1exp
{
− ε2nh4

n

4C1λ2(n)

}
,

= 2M1exp
{
−ε

2logn(loglogn)l

4C1

}
,

≤ 2M1n
−(1+k0).

Therefore,
∞∑
n=1

P

(
|Sn1| > ε

(nlogn(loglogn)l)
1
2

h2
n

)
≤ 2M1

∞∑
n=1

n−(1+k0) <∞. (2.14)

From (2.14), it follows that Sn1 = O

(
(nlogn(loglogn)l)

1
2

h2n

)
complete convergence.

Similarly, we proof Sn2 such that Sn2 =
n∑
i=1

Zi with

Zi =
Xi−1

h2
i

IEK
′
(
x− εi
hi

)
After the same calculations we get

∞∑
n=1

IP

(
|Sn2| > ε

(nlogn(loglogn)l)
1
2

h2
n

)
≤ 2M2

∞∑
n=1

n−(1+k1) <∞.

So Sn2 = O

(
(nlogn(loglogn)l)

1
2

h2n

)
complete convergence

It remains to be seen that Sn3 converges almost complete We have

Sn3 =
n∑
i=1

X2
i−1

h3
i
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We know that {∣∣∣∣∣
n∑
i=1

1

h3
i

[
X2
i−1 − EX2

i−1 + IEX2
i−1

]∣∣∣∣∣ > nε

λ′(n)

}
⊂{∣∣∣∣∣

n∑
i=1

1

h3
i

[
X2
i−1 − IEX2

i−1

]∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

1

h3
i

EX2
i−1

∣∣∣∣∣ > nε

λ′(n)

}
By using the triangular inequality we obtains that

IP

(∣∣∣∣∣
n∑
i=1

1

h3
i

[
X2
i−1 − IEX2

i−1 + IEX2
i−1

]∣∣∣∣∣ > nε

λ′(n)

)
≤

IP

(∣∣∣∣∣
n∑
i=1

1

h3
i

[
X2
i−1 − IEX2

i−1

]∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

1

h3
i

IEX2
i−1

∣∣∣∣∣ > nε

λ′(n)

)
Then

IP

(∣∣∣∣∣
n∑
i=1

1

h3
i

[
X2
i−1 − IEX2

i−1

]∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

1

h3
i

IEX2
i−1

∣∣∣∣∣ > nε

λ′(n)

)
≤

IP

(∣∣∣∣∣
n∑
i=1

1

h3
i

[
X2
i−1 − IEX2

i−1

]∣∣∣∣∣ > nε

λ′(n)
−

∣∣∣∣∣
n∑
i=1

1

h3
i

IEX2
i−1

∣∣∣∣∣
)

Set IEX2
i−1 = a <∞ and using hn ↓ 0 we obtain that

IP

(∣∣∣∣∣
n∑
i=1

1

h3
i

[
X2
i−1 − IEX2

i−1

]∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

1

h3
i

IEX2
i−1

∣∣∣∣∣ > nε

λ′(n)

)
≤

IP

(∣∣∣∣∣
n∑
i=1

1

h3
i

[
X2
i−1 − EX2

i−1

]∣∣∣∣∣ > nε

λ′(n)
− na

h3
n

)

Setλ′(n) =
[

nh3n
(logn(loglogn)l)

] 1
2 , and taking t′ = εh3n

2C1λ(n)
, by Lemma 4.2 we get

IP

(∣∣∣∣∣
n∑
i=1

1

h3
i

[
X2
i−1 − IEX2

i−1

]∣∣∣∣∣ > nε

λ′(n)
− na

h3
n

)
≤ 2M2exp

{
−t′
(

nε

λ′(n)
− na

h3
n

)
+ t

′2nC

h3
n

}
,

≤ 2M2exp

{
− nε2h3

n

2C1λ
′2(n)

+
naε

2λ′(n)
+

nε2h3
n

4C1λ
′2(n)

}
,

≤ 2Mexp

{
−ε

2logn(loglogn)l

4C1

+
naε

2λ′(n)

}
,

≤ 2Mn−(1+k2).

Therefore
∞∑
n=1

IP

(∣∣∣∣∣
n∑
i=1

1

h3
i

[
X2
i−1 − EX2

i−1

]∣∣∣∣∣ > nε

λ′(n)
− na

h3
n

)
≤ 2M1

∞∑
n=1

n−(1+k2) <∞.
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So Sn3 = O

(
(nlogn(loglogn)l)

1
2

h3n
− na

h3n

)
complete convergence

From the above results it can be concluded that

|f̂n(x)− fn(x)| = O

(
(nlogn(loglogn)l)

1
2

h2
n

)
.

Proof of Theorem (2.1):
On a

IE(fn(x)) =

∫
R
K(u)f(x− hiu)du,

we write
f̂n(x)−

∫
R
K(u)f(x− hiu)du = [f̂n(x)− fn(x)] + [fn(x)− IE(fn(x))]. (2.15)

By (2.10),we find that

|
∫
R
K(u)f(x− hiu)du− f(x)

∫
R
K(u)du| ≤ rhn

∫
R
|u|K(u)du,

the same bound when we replaced K by K2. Morover, as combinig these bounds with assumptions
(A5), we have ∫

R
K(u)f(x− hiu)du = f(x)

∫
R
K(u)du +O(hn),

The same expression when we replaced K by K2. Therefore, we have

V ar(fn(x)) =
1

nh2
n

V ar

(
K

(
x− ε1
hi

))
, (2.16)

=
1

nhn

[∫
R
K2(x)f(x− hiu)du− hi

(∫
R
K(u)f(x− hnu)du

)2
]
,

=
1

nhn

[
f(x)

∫
R
K2(u)du +O(hn)

]
.

Therefore, we have
fn(x)− IE(fn(x))√

V ar(fn(x))
=

1√
n

n∑
i=1

K(x−εi
hi

)− IE(K(x−ε1
hi

))√
V ar(K(x−ε1

hi
))

.

We shall useLindeberg Feller’s Central Limit Theorem to prove the asymptotic normality, we must
verify the Lindeberg Feller’s condition as follows.
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Fixing any ε > 0. Using the boundness of K, we have

IE


(
K(x−εi

hi
)− IE(K(x−ε1

hi
))
)2

V ar(K(x−ε1
hi

))
I


∣∣∣∣∣∣K(x−εi

hi
)− IE(K(x−ε1

hi
))√

V ar(K(x−ε1
hi

))

∣∣∣∣∣∣ > ε
√
n


 =

O

 1

V ar(K(x−ε1
hi

))
IE

I

∣∣∣∣∣∣K(x−ε1

hi
)− IE(K(x−ε1

hi
))√

V ar(K(x−ε1
hi

))

∣∣∣∣∣∣ > ε
√
n


 =

O

IP
(∣∣∣K(x−ε1

hi
)− IE(K(x−ε1

hi
))
∣∣∣ > ε

√
nV ar(K(x−ε1

hi
))
)

V ar(K(x−ε1
hi

))

 ,

we find by Chebyshev’s inequality

IP
({∣∣∣∣K(

x− ε1
hi

)− IE(K(
x− ε1
hi

))

∣∣∣∣ > ε

√
nV ar(K(

x− ε1
hi

))

})
≤ 1

e2n
.

So, we obtain that

IE


(
K(x−εi

hi
)− IE(K(x−ε1

hi
))
)2

V ar(K(x−ε1
hi

))
I


∣∣∣∣∣∣K(x−εi

hi
)− IE(K(x−ε1

hi
))√

V ar(K(x−ε1
hi

))

∣∣∣∣∣∣ > ε
√
n


 = O

(
1

ε2nV ar(K(x−ε1
hn

))

)
,

= O

(
1

ε2nhn[f(x)
∫
RK

2(u)du +O(hn)]

)
,

→ 0,

when we use (2.16), f(x) > 0 and nhn → ∞, hn → 0. By the Lindeberg Feller’s Central Limit
Theorem (e.g, Theorem 4.12 in Kallenberg (1997)), we obtain that in distribution

fn(x)− IE(fn(x))√
V ar(fn(x))

→ N(0, 1). (2.17)

Combining this result with (2.15), in order to show (2.11) we see that it suffices to prove

|f̂n(x)− fn(x)|√
V ar(fn(x))

= O(1).

By (2.16), hn → 0 and f(x) > 0, it follows that 1/
√
V ar(fn(x)) = O(

√
nhn). So, in order to show

(2.17), it suffices to prove that √
nhn|f̂n(x)− fn(x)| = O(1),

this follows from (2.12) that

√
nhn|f̂n(x)− fn(x)| = O

(
(logn(loglogn)l)

1
2

h
5
2
n

)
.



Bibliography

[1] Fuxia Cheng. 2005. Asymptotic distributions of error density estimators in first-order autore-
gressive models, The Indian Journal of Statistics. 67: 553-567.

[2] H. Y. Liang, J. Baek. 2004. Asymptotic normality of recursive density density estimates under
some dependence assumptions, Metrika. 60: 155-166.

[3] Hoeffding, W. 1963. Probability inequalities for sums of bounded random variables, J Amer
Statist Assoc. 58: 13-30.

[4] Li, Y. F, Yang, S. C. 2005. Uniformly asymptotic normality of the smooth estimation of the
distribution function under associated samples, Acta Math Appl Sinica. 28: 639-651.

[5] Li, Y. M, Yang, S. C. 2003. Asymptotic normality of the recursive kernel estimate of a proba-
bility density function under negatively associated, Chin J Appl Probab Statist. 19: 383-393.

[6] Liang, H. Y, Jing, B. Y. 2005. Asymptotic properties for estimate of nonparametric regression
models based on negatively associated sequences, J Multivariate Anal. 95: 227-245.

[7] Loynes, R.M. 1980. The empirical d.f. of residuals from generalized regression, Ann Statist. 8:
285-298.

[8] Portnoy, S. 1986. Asymptotic behavior of the empirical distribution of M-estimated residuals
from a regression model with many parameters, Ann Statist. 14: 1152-1170.

[9] Roussas, G. G. 1994. Asymptotic normality of random fields of positively and negatively asso-
ciated processes, J Multivariate Anal. 50: 152-173.

[10] Roussas, G. G. 1995. Asymptotic normality of a smooth estimate of a random field distribution
under association, Statist Probab Lett. 24: 77-90.

[11] S. C. Yang. 2003. Consistency of nearest neighbor estimator of density function for negative
associated samples, Acta Math Appl Sinica. 26: 385-395.

[12] X. J.Wang, L. L. Zheng, C. Xu, S. H. Hu. 2015. Complete consistency for the estimator of
non parametric regression models based on extended negatively dependent errors. Statistics:
A journal of Theoretical and Applied Statistics. 49: 396-407.



BIBLIOGRAPHY 47

[13] Y. M. Li, S. C. Yang. 2005. Strong convergence rate of recursive probability density estimator
for NA sequences, Chin J Engineering Mathematics. 22: 659-665.

[14] Yang, S. C. 2005. Uniform asymptotic normality of the regression weighted estimator for pos-
itively associated samples, Chin J Appl Probab Statist. 21: 150-160.

[15] Yongfeng Wu And Mei Guan. 2012. Convergence propertes of the sums for sequences of END
random variables, Korean mathematical society. 49: 1097-1110.

[16] Yongming Li. 2017. On the rate of strong convergence for a recursive probability density esti-
mator of END samples and its applications, J Math Inequal. 11: 335-343.



Chapter 3

Complete convergence for recursive
probability density estimator of LNQD
orthant dependent variables

Abstract

Recursive estimation of the probability density function f(x) for stationary processes Xt is considered.
Quadratic-mean convergence and asymptotic normality for density estimators fn(x) are established for strong
mixing and for asymptotically uncorrelated processes Xt. Recent results for nonrecursive density estimators
are extended to the recursive case.

3.1 Introduction

Lehmann (1966) introduced a definition of negative dependence: two random variables X and Y are
said to be negatively quadrant dependent (NQD, for short) if, for all real x and y, IP(X > x, Y >
y) ≤ IP(X > x)IP(Y > y). Note that two random variables X and Y are NQD if and only if
Cov(f(X), g(Y )) ≤ 0 for all real valued nondecreasing functions f and g (such that f(X) and g(Y )
have finite variances).

A sequence {Xi, 1 ≤ Xi ≤ n} of random variables is said to be linearly negative quadrant
dependent (LNQD, for short) if, for any disjoint finite subsets A, B of {1, 2, . . . , n} and any positive
real numbers rjs,

∑
i∈A riXi and

∑
j∈B rjXj are NQD. The concept of LNQD is due to Newman [2].

It is obvious that LNQD implies NQD. A sequence {Xi, 1 ≤ Xi ≤ n} of random variables is said to
be negatively lower orthant dependent (NLOD) if

IP(X1 ≤ x1, . . . , Xn ≤ xn) ≤
n∏
i=1

IP(Xi ≤ xi) (3.1)
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and it is said to be negatively upper orthant dependent (NUOD) if

IP(X1 > x1, . . . , Xn > xn) ≤
n∏
i=1

IP(Xi > xi) (3.2)

A sequence {Xi, 1 ≤ Xi ≤ n} of random variables is said to be negatively orthant dependent (NOD)
if it is both NUOD and NLOD.

Definition 3.1 Two random variables X and Y are said to be negatively orthant quadrant dependent
(NQD) if for all real numbers x, y we have that,

IP(X ≤ x, Y ≤ y) ≤ IP(X ≤ x)IP(Y ≤ y) (3.3)

or
IP(X > x, Y > y) ≤ IP(X > x)IP(Y > y) (3.4)

The estimation of a probability density function is a fundamental problem. Throughout this paper,
letX1, . . . , Xn be a sequence of random variables with the unknown probability density function f(x),
and distribution function F (x). The hazard rate r(x) = f(x)

1−F (x)
. Parzen and Rosenblatt introducing

the classical kernel estimator of f(x)

fn(x) =
1

nhn

n∑
i=1

K(
x−Xi

hn
).

Wolverton and Wagner introduced the following recursive kernel estimator of f(x):

f̂n(x) =
1

n

n∑
i=1

1

hi
K(

x−Xi

hi
), (3.5)

where 0 < hn ↓ 0 are bandwidths and K is some kernel function. Note that (3.5) can be computed
recursively by

fn(x) =
n− 1

n
fn−1(x) + (nhn)−1K(

x− hn
hn

). (3.6)

This property of (3.6) useful in large sample size since fn(x) can be easily updated with each ad-
ditional observation. Liang and Baek discussed the point asymptotic normality for fn(x) under
negatively associated random variables. Li and Yang studied the strong covergence rate of recur-
sive probability density estimator based NA random variables. Li et al discuss the asymptotic bias,
quadratic-mean convergence and establish the pointwise asymptotic normality of fn(x) for a sta-
tionary sequence of negatively associated sequences. furthermore, the estimator can be applied in
estimating the hazard rate function, which is defined as r(x) = f(x)/(1 − F (x)), where f(x) is the
unknown marginal probability density function and F (x) is the distribution function. The general
hazard rate estimator of r(x) is

r̂n(x) =
f̂n(x)

1− Fn(x)
, (3.7)
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where Fn(x) is the empirical distribution of X1, . . . , Xn.

Therefore, the properties of f̂n(x) are extensively discussed by some authors. For example, Liang
and Baek discussed the point asymptotic normality for f̂n(x) under NA random variables. Masry
obtained the quadratic mean convergence and asymptotic normality of the recursive estimator under
various assumptions on the dependence of Xi; Li et al. discuss the asymptotic bias, quadratic-mean
convergence and establish the pointwise asymtotic normality of f̂n(x) for a stationary sequence of NA
sequences.Li and Yang studied the strong convergence rate of recursive probability density estimator
f̂n(x) based on NA random variables. Li extend the results of Li and Yang from NA random variables
to END random variables.

In this paper, we will consider the complete convergence rate probability density estimator of
(3.5) under strictly stationary LNQD random variables.

3.2 Main results

In this section, we will present the complete convergence for the recursive kernel estimator f̂n(x).
We adopte the following assumptions which were also used in Li and Yang and Li.

(A1)
∫
RK(u)du = 1,

∫
R uK(u)du = 0,

∫
R u

2K(u)du <∞, K(.) ∈ L1;

(A2) The sequence of bandwiths hn satisfies the requirement 0 < hn ↓ 0 and nhn →∞ as n→∞.

Theorem 3.1 Let {Xn;n ≥ 1} be LNQD sequence. and let assumptions (A1) and (A2) hold. Suppose
tat the kernel K(.) is a bounded monotone density function and the bandwith hn = O( logn

nβ
). Then

for any x ∈ C2(f),
|f̂n(x)− f(x)| = O

(
[logn/βnhn]1/2

)
, completely. (3.8)

Theorem 3.2 Let {Xn;n ≥ 1} be LNQD sequence, and let assumptions (A1) and (A2) hold. Suppose
that the kernel K(.) is a bounded monotone density function and the bandwith hn = O( logn

nβ
) → 0.

Then for any x ∈ C2(f),
f̂n(x)− f(x)→ 0, completely. (3.9)

Theorem 3.3 Let {Xn;n ≥ 1} be LNQD sequence and [logn/nβhn]
1
2 → 0. Suppose that the as-

sumptions (A1) and (A2) hold with the kernel K(.) is a bounded monotone density function and the
bandwith satisfies that hn = O([logn/nβ]). If there exists a point x0 such that F (x0) < 1, then for
any x ≤ x0 and x ∈ C2(f),

|r̂n(x)− r(x)| = O
(
[logn/βnhn]1/2

)
, completely. (3.10)

Theorem 3.4 Let {Xn;n ≥ 1} be LNQD sequence. Suppose that the kernel K(.) is a bounded
monotone density function and [logn/βnhn]1/2 → 0. IF there exists a point x0 such that F (x0) < 1,
then for any x ≤ x0 and x ∈ C2(f),

r̂n(x)− r(x)→ 0, completely. (3.11)
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3.3 Some lemmas

In this section, we will present some important lemmas which will be used to prove the above main
results.

Lemma 3.1 Let X and Y two random variables be LNQD, then

(i) if f and g are both nondecreasing or both nonincreasing functions, then f(X) and g(Y ) are
LNQD.

(ii) if X and Y are nonnegative random variables, then IE(XY ) ≤ IEXIEY ,

(iii) especially, for any real number h, IE(eh(X+Y )) ≤ IE(ehXIE(ehY )).

Lemma 3.2 Let {Xn, n ≥ 1} be a sequence of LNQD random variables and t > 0. Then for each
n ≥ 1, we have

IE(
n∏
i=1

etXi) ≤
n∏
i=1

(IEetXi). (3.12)

Lemma 3.3 Let α > 0 constants and 0 < β ≤ α2

eα−1−α . Then for all 0 ≤ x ≤ α,

exp(x) ≤ 1 + x+
x2

β
.

Lemma 3.4 Let {Xn, n ≥ 1} be a sequence of LNQD random variables with IEXn = 0, suppose that
there exists some t > 0. Then for any ε > 0,

IP(|
n∑
i=1

Xi| > ε) ≤ exp{−tε+
t2

β

n∑
i=1

IEX2
i } (3.13)

Proof.

For each i ≥ 1 and IEXi = 0, by the fact that 1 + x ≤ ex we have

IE(etXi) ≤ 1 +
t2

β
IEX2

i ≤ exp{t
2

β
IEX2

i }

Then, by lemma (3.2)

IE(e

t

n∑
i=1

Xi

) = IE(
n∏
i=1

etXi) ≤
n∏
i=1

IE(etXi) ≤ exp{t
2

β

n∑
i=1

IEX2
i }. (3.14)
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By Markov’s inequality, Lemma (3.2) and (3.4) we see that

IP(
n∑
i=1

Xi > ε) ≤ e−tεIEexp{t
n∑
i=1

Xi} (3.15)

≤ e−tε
n∏
i=1

IEexp{tXi}

≤ exp{−tε+
t2

β

n∑
i=1

IEX2
i }.

From {−Xn, n ≥ 1} still LNQD, by rempalcing Xi by −Xi in (3.15) we obtain the desired result.
Hence the proof is complete

Lemma 3.5 Suppose that (A1) holds, then for all x ∈ C2(f),

lim
n→0

∫
R
k(u)f(x− hu)du = f(x)

Lemma 3.6 Suppose that (A1) holds, then for all x ∈ C2(f),(
1

n

n∑
i=1

h2
i

)−1

|IEf̂n(x)− f(x)| ≤ C <∞.

Lemma 3.7 Let {Xn, n ≥ 1} be a sequence of LNQD random variables with known distribution F (x)
and probability function f(x). Let f(x) be the empirical distribution function. If λn = [logn/nβ]1/2 →
0, then

sup
x
|Fn(x)− F (x)| = O(λn), completely. (3.16)

Proof. For n ≥ 1 and 1 ≤ i ≤ n− 1. Let Fni(x) = i
n
. By Lemma 2 in Yang we have

sup
−∞<x<∞

|Fn(x)− F (x)| ≤ max1≤j≤n−1|Fn(xnj − Fxnj)|+
2

n
. (3.17)

Set nλn → ∞, then for any constant C1 > 0, we have that 2
n
< C1λn

2
for all n large enough. Then

from (3.17) it follows that

IP
(

sup
−∞<x<∞

|Fn(x)− F (x)| > C1λn

)
≤ IP

(
max

1≤j≤n−1
|Fn(xnj)− F (xnj)| > C1

1

n

)
≤

n−1∑
j=1

IP(|Fn(xnj)− F (xnj)| > C1
λn
2

). (3.18)
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Now. Let ξi = I(Xi < xnj) − IEI(Xi < xnj). By Lemma (3.2) ,we have that {ξi, i ≥ 1} is still a
sequence of LNQD random variables with IEξi = 0, |ξi| ≤ 2 and Eξ2

i ≤ 1. By choosing t = C1λn
4
β in

Lemma (3.4), for all n large enough we have that

IP(|Fn(xnj)− F (xnj)| >
C1λn

2
) = IP

(
|

n∑
i=1

ξi| >
C1nλn

2

)

≤ exp{t
2

β

n∑
i=1

Eξ2
i −

C1nλnt

2
}

≤ exp{t
2

β
n− C1nλnt

2
}

≤ exp{−C
2
1nλ

2
n

16
β}

≤ exp{−C
2
1 logn

16
}

≤ n−
C2
1

16 .

Taking C1 sufficiently large such that C1 > 4
√

2. by (3.6) and (3.7) we have that
∞∑
n=1

IP
(

sup
−∞<x<∞

|Fn(x)− F (x)| > C1λn

)
≤

∞∑
n=1

n−1∑
j=1

n−
C2
1

16

≤
∞∑
n=1

n1−C
2
1

16

≤ ∞
Hence. The proof of lemma is complete.

3.4 Proof of Main Results

Proof of Theorem 3.1. Set Ai = h−1
i [K(x−Xi

hi
)− IEK(x−Xi

hi
)] for 1 ≤ i ≤ n. Since K(.) is bounded

and monotone, then the Ai, i ≥ 1 is still a sequence of LNQD random variables. Morever, it follows
from 0 < hn ↓ 0 that there exists some positive constant M1 such that max1≤i≤n |Ai| ≤ M1

hn
. By

Lemma (3.4) we have that
n∑
i=1

IEA2
i ≤

n∑
i=1

h−2
i IEK2(

x−Xi

hi
)

=
n∑
i=1

h−2
i

∫
R

K2(
x− u
hi

)f(u)du

=
n∑
i=1

h−1
i

∫
R

K2(u)f(x− hiu)du

≤ M2nh
−1
n .
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Set λn = [logn/n]1/2. Applying Lemma 3.2 with t = [N2λnhnβ/2M2], where N2 is some positive
constant which will be specified later. It is easy to check that t.M1

hn
≤ 1 for all n large enough, then

we get that

IP(|f̂n(x)− IEf̂n(x)| > N2λn) = IP(|
n∑
i=1

Ai| > nN2λn)

≤ exp{−nN2λnt+
t2

β

n∑
i=1

IEA2
i }

≤ exp{−nN2λnt+
t2nM2

βhn
}

≤ exp{−nN
2
2λ

2
nβ

2M2

+
nN2hnβ

2

2M2

+
nN2

2h
2
nM2β

2

4M2
2βhn

≤ exp{−nN
2
2λ

2
nhnβ

4M2

}

≤ exp{−N
2
2 logn

4M2

}

≤ n
− N2

2
4M2

Taking N2 large enough such that N2 > 2
√
M2, then we have that

∞∑
n=1

IP(|f̂n(x)− IEf̂n(x)| > N2λn) <∞,

that is
|f̂n(x)− IEf̂n(x)| = O([logn/(nβhn)]1/2), completely. (3.19)

On the other hand, noting that hn = O([logn/nβ]), we have by Lemma (3.6) that(
logn

nβhn

)− 1
2

|IEf̂n(x)− f(x)| ≤ C

(
logn

nβhn

)− 1
2 1

n

n∑
i=1

h2
i

≤ C

(
hnβ

nlogn

)− 1
2

n∑
i=1

h2
i

≤ C
1

nβ2

n∑
i=1

log2i

i2

≤ C,

which implies that
|IEf̂n(x)− f(x)| = O

(
[logn/nβhn])1/2

)
. (3.20)

Note that
|f̂n(x)− f(x)| ≤ |f̂n(x)− IEf̂n(x)|+ |IEf̂n(x)− f(x)|. (3.21)
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Therefore, the desired result follows immediately by 3.19 and 3.21. The proof is completed.

Proof of Theorem 3.2. By Theorem 3.1 and [logn/nβhn]1/2 → 0 we have that

f̂n(x)− IEf̂n(x)→ 0, completely. (3.22)

Therefore, we only need to show that

|IEf̂n(x)− f(x)| → 0 (3.23)

without using in Theorem 3.1 the condition hn = O([logn/nβ]), by Lemma (3.6) and Stolz’s Theorem
we have

lim
n→∞
|IEf̂n(x)− f(x)| ≤ C lim

n→∞

1

n

n∑
i=1

h2
i = C lim

n→∞
h2
n = 0.

Hence, the proof of the theorem 3.2 is completed.

Since the proof of Theorem 3.4 is similair, we only present the proof of Theorem 3.3 as follows.

Proof of Theorem 3.3. Set F̂n(x) = 1−Fn(x) and F̂ (x) = 1−F (x). It follows from (3.7) that

|r̂n(x)− r(x)| ≤ F̂ (x)|f̂n(x)− f(x)|+ |Fn(x)− F (x)|f(x)

F̂n(x)F̂ (x)
. (3.24)

From 0 ≤ F (x) ≤ F (x0) < 1 for all x ≤ x0, supx f(x) ≤ C <∞ and 3.8 one has that for x ≤ x0 and
all n large enough,

F̂n(x) ≥ F̂ (x)

2
≥ F̂ (x0)

2
> 0. (3.25)

Consequently, the desired result folows from . The proof is completed.
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Chapter 4

Complete convergence for widely orthant
dependent random variables and its
applications in autoregressive AR(1) models

Abstract

Exponential inequalities have be an important tool in probability and statistics. Version of Bernstein type
inequalities have proved for independent and for some dependence structure. We prove an new exponential
inequality for the distributions of sums of widely orthant dependent(WOD, in short)random variables. The
results are applied to first-order autoregressive processes AR(1), if it satisfies the following relation:

Xn = θXn−1 + ζn.

With (ζn) is a sequence of the widely orthant dependent (WOD, in short) random variables.

4.1 Introduction

The probability limit theorem and its applications for independent random variables have been studied by
many authors, while the assumption of independence is not reasonable in real practice. If the independent
case is classical in the literature, the treatment of dependent random variables is more recent. One of the
important dependence structure is the wide dependence structure, which was introduced by (Wang, Wang
and Gao, 2013) as follows.

Definition 4.1 For the random variables {Xn, n ≥ 1}, if there exists a finite real sequence {gU (n), n ≥ 1}
satisfying for each n

IP(X1 > x1, X2 > x2, . . . , Xn > xn) ≤ gU (n)

n∏
i=1

IP(Xi > xi)
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then we say that the {Xn, n ≥ 1} are widely upper orthant dependent (WUOD, in short); if there exists a
finite real sequence {gL(n), n ≥ 1} satisfying for each n ≥ 1 and for all xi ∈]−∞,+∞[, 1 ≤ i ≤ n,

IP(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) ≤ gL(n)
n∏
i=1

IP(Xi ≤ xi)

then we say that the {Xn, n ≥ 1} are widely lower orthant dependent (WLOD, in short); if they are both
WUOD and WLOD, then we say that the {Xn, n ≥ 1} are widely orthant dependent (WOD, in short), and
gU (n), gL(n), n ≥ 1, are called dominating coefficients.
An array {Xni, i ≥ 1, n ≥ 1} of random variables is called row-wise WOD if forevery n ≥ 1, {Xni, i ≥ 1} is
a sequence of WOD random variables.
Recall that when gL(n) = gU (n) = N for some constant N , the random variables {Xn, n ≥ 1} are called
extended negatively upper orthant dependent (ENUOD, in short) and extended negatively lower orthant
dependent (ENLOD, in short), respectively.
If they are both ENUOD and ENLOD, then we say that the random variables {Xn, n ≥ 1} are extended
negatively orthant dependent (ENOD, in short). The concept of general extended negative dependence was
proposed by (Liu 2009), (Liu 2010) and further promoted by (Chen, Chen and Ng,2010), (Chen, Yuen and
Ng, 2011), (Shen, 2011), (Shen, 2011), (Shen, 2013a), (Wang Y, 2011), (Wang Y, 2012), and so forth.
When gL(n) = gU (n) = 1 for any n ≥ 1, the random variables {Xn, n ≥ 1} are called negatively upper
orthant dependent (NUOD, in short) and negatively lower orthant.
The concept of WOD random variables was introduced by (Wang et al, 2013) and many applications have
been found subsequently. See, for example, (Wang et al., 2013) provided some examples which showed that
the class of WOD random variables contains some common negatively dependent random variables, some
positively dependent random variables and some others, in addition, they studied the uniform asymptotics
for the finite-time ruin probability of a new dependent risk model with a constant interest rate. (Wang
Y, 2011) presented some basic renewal theorems for a random walk with widely dependent increments and
gave some applications. (Wang Y, 2012) studied the asymptotics of the finite-time ruin probability for a
generalized renewal risk model with independent strong subexponential claim sizes and widely lower orthant
dependent inter-occurrence times. )Liu, Gao and Wang, 2012) gave the asymptotically equivalent formula for
the finite-time ruin probability under a dependent risk model with constant interest rate. (He and Cheng,
2013) provided the asymptotic lower bounds of precise large deviations with nonnegative and dependent
random variables. (Chen, Wang and Wang, 2013) considered uniform asymptotics for the finite-time ruin
probabilities of two kinds of nonstandard bidimensional renewal risk models with constant interest forces
and diffusion generated by Brownian motions. (Shen, 2013b) established the Bernstein type inequality for
WOD random variables and gave some applications, and so forth.

4.2 Some lemmas

To prove the main results of the paper, we need the following important lemmas. The first one is a basic
property for WOD random variables, which was obtained by(Wang et al., 2013)

Lemma 4.1

(i) Let {Xn, n ≥ 1} be WLOD (WUOD) with dominating coefficients gL(n), n ≥ 1(gU (n), n ≥ 1),
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• if {fn(.), n ≥ 1} are nondecreasing, then {fn(Xn), n ≥ 1} are still WLOD (WUOD) with domi-
nating coefficients gL(n), n ≥ 1(gU (n), n ≥ 1);

• if {fn(.), n ≥ 1} are nonincreasing, then {fn(Xn), n ≥ 1} are WUOD (WLOD) with dominating
coefficients gL(n), n ≥ 1(gU (n), n ≥ 1).

(ii) If {Xn, n ≥ 1} are nonnegative and WUOD with dominating coefficients gU (n), n ≥ 1, then for each
n ≥ 1,

IE
n∏
i=1

Xi ≤ gU (n)
n∏
i=1

IEXi.

In particular, if {Xn, n ≥ 1} are WUOD with dominating coefficients gU (n), n ≥ 1, then for each n ≥ 1
and any λ > 0,

IEexp{λ
n∑
i=1

Xi} ≤ gU (n)
n∏
i=1

IEexp{λXi}.

By Lemma 4.1, we can get the following corollary immediately.

Corollary 4.1 Let {Xn, n ≥ 1} be a sequence of WOD random variables.

(i) If {fn(.), n ≥ 1} are all nondecreasing (or all nonincreasing), then {fn(Xn), n ≥ 1} are still WOD.

(ii) For each n ≥ 1 and any s ∈ R,

IEexp{λ
n∑
i=1

Xi} ≤ g(n)

n∏
i=1

IEexp{λXi}.

Proof. For λ > 0, it is easy to see that λXi and λ
n∑

j=i+1

Xj are WOD by the definition. Which implies that

exp(λXi) and exp(λ
n∑

j=i+1

Xj) are also WOD for i = 1, 2, . . . , n− 1, by Lemma 4.1
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(i). It follows from Lemma 4.1 and Definition 4.1 that

IE(
n∏
i=1

eλXi) = IE(exp(λX1)exp(λ
n∑
j=2

Xj)),

≤ g1(n)IE[exp(λX1)]IE[exp(λ
n∑
j=2

Xj)],

= g1(n)IE[exp(λX1)]IE[exp(λX2)exp(λ

n∑
j=3

Xj)],

≤ g1(n)g2(n)IE[exp(λX1)]IE[exp(λX2)]IE[exp(λ

n∑
j=3

Xj)],

≤
n−1∏
i=1

gi(n)
n∏
i=1

(IEeλXi),

= g(n)
n∏
i=1

(IEeλXi),

where g(n) =
n−1∏
i=1

gi(n).

Lemma 4.2 (see (Boulenoir, 2018; Chebbab, 2018)) Let α > 0 constants and 0 < β ≤ α2

eα−1−α . Then for
all 0 ≤ x ≤ α,

exp(x) ≤ 1 + x+
x2

β
.

Proof. Consider the function

Ψ(x, β) = ln(1 + x+
x2

β
− x).

We need to prove that ψ(x, β) ≥ 0 for all 0 < β ≥ α2

eα−1−α and 0 ≤ x ≤ α. Take the derivative

∂ψ(x, β)

∂x
= −x(x− (2− β))

β(1 + x+ x2

β )
.

Hence, ψ is increasing in x on the interval (0, 2 − β) and decreasing on the interval (2 − β). Note that
ψ(0, β) = 0 and ψ(α, β) ≥ 0 since 0 < β ≥ α2

eα−1−α .

Lemma 4.3 Let {Xn, n ≥ 1} be a sequence of WOD random variables with EXi = 0 for each n ≥ 1, for all
0 ≤ Xi ≤ α

λ with take α and λ constants positives . Then for any ε > 0

IP(|Sn| ≥ nε) ≤ 2g(n)exp{−n
2ε2

4Bn
β}, (4.1)

where Bn =
n∑
i=1

IEX2
i
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Proof. For 0 ≤ Xi ≤ α
λ and IEXi = 0, i ≥ 1 and the fact that 1 + x ≤ ex, therefore, by Markov’s inequality

and (4.1) it follows that

IP(Sn > nε) = IP(λSn > λnε), (4.2)
= IP(eλSn > eλnε),

≤ e−λnεIE(eλSn),

≤ g(n)e−λnε
n∏
i=1

IE[exp(λXi)],

≤ g(n)e−λnε
n∏
i=1

(1 +
λ2

β
IEX2

i ),

≤ g(n)e−λnε
n∏
i=1

(e
λ2

β
IEX2

i ),

≤ g(n)exp(
λ2

β
Bn − λnε).

By minimizing ( respect to λ) the right-hande side of (4.2) we obtain

IP(Sn > nε) ≤ g(n)exp{−n
2ε2

4Bn
β}. (4.3)

We know that
IP(|Sn| ≥ nε) = IP(Sn > nε) + IP(Sn ≤ −nε)

Since {−Xn, n ≥ 1} is also WOD we obtain by (4.3) that

IP(Sn ≤ −nε) = IP(−Sn > nε) ≤ g(n)exp{−n
2ε2

4Bn
β}. (4.4)

By (4.3) and (4.4) the result (4.1) follows.

4.3 Main Results and proofs

Theorem 4.1 Let {Xn, n ≥ 1} be a sequence of WOD random variables with IEXi = 0. If there exists a
positive constants α, λ such that 0 ≤ Xi ≤ α

λ , i ≥ 1,then for any λ > 0, there exists a finite sequence g(n)
such that

IE(eλSn) ≤ g(n)exp(
λ2

2β
Bn). (4.5)

Proof. From conditions IEXi = 0 and using the Lemma (4.2), 1 + x ≤ ex, we have

IEeλXi ≤ 1 +
λ2

2
(
X2
i

β
), (4.6)

≤ 1 +
λ2

2β
IEX2

i ,

≤ exp(
λ2

2β
IEX2

i ),
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for any λ > 0. By Corrolary (4.1) and (4.6) we get

IEexp(λ

n∑
i=1

Xi) ≤ g(n)

n∏
i=1

IE(exp(λXi)) ≤ g(n)exp(
λ2

2β

n∑
i=1

IEX2
i ) = g(n)exp(

λ2

2β
Bn).

Theorem 4.2 Let {Xn, n ≥ 1} be a sequence of WOD random variables with IEXi = 0 and IEX2
i <∞ such

that 0 ≤ Xi ≤ α
λ for each 1 ≤ i ≤ n, n ≥ 1 where α and λ are positive constants and Bn =

n∑
i=1

IEX2
i , then

for any ε > 0 and n ≥ 1, there exists a finite sequence g(n) such that

IP(Sn/Bn ≥ ε) ≤ g(n)exp{−ε
2βBn

4
}. (4.7)

Proof. For λ > 0 we have 0 ≤ Xi ≤ α
λ . Then from Markov’s inequality it follows that

IP(Sn/Bn ≥ ε) = IP(eλSn ≥ eλεBn), (4.8)

≤ e−λεBnIE(
n∏
i=1

eλXi),

≤ g(n)exp{λ
2

β
Bn − λεBn}.

By taking λ = εβ
2 we obtain (4.7) from (4.8).

Theorem 4.3 Let {Xn, n ≥ 1} be a sequence of WOD random variables with IEXi = 0. If there existe a
positive constant α, λ such that 0 ≤ Xi ≤ α

λ for each n ≥ 1, then for any ε > 0, there exists a finite sequence
g(n) such that

IP(|Sn| ≥ ε) ≤ 2g(n)exp(− ε
2β

4Bn
), (4.9)

where Bn =

n∑
i=1

IEX2
i .

Proof. From conditions IEXi = 0 and 0 ≤ Xi ≤ α
λ , i ≥ 1.

By Markov’s inequality and Corrolary (4.1), Lemma (4.2) with the fact that 1 + x ≤ ex, then

IP(Sn > ε) ≤ e−λεIE(eλε), (4.10)

≤ g(n)e−λε
n∏
i=1

(e
λ2

β
IEX2

i
),

≤ g(n)exp{λ
2

β
Bn − λε}.
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Take λ = εβ
2Bn

. Hence from (4.10) it follows that

IP(Sn > ε) ≤ g(n)exp{− ε
2β

4Bn
}. (4.11)

Since {−Xn, n ≥ 1} is also sequence of WOD random variables, from (4.11) it follows that

IP(Sn ≤ −ε) = IP(−Sn ≥ ε) ≤ g(n)exp(− ε
2β

4Bn
). (4.12)

From (4.11) and (4.12) we obtain

IP(|Sn| ≥ ε) = IP(Sn ≥ ε) + IP(Sn ≤ −ε) ≤ 2g(n)exp(− ε
2β

4Bn
).

Theorem 4.4 Let {Xn, n ≥ 1} be a sequence of WOD random variables such that 0 ≤ Xi ≤ α
λ , i ≤ n, where

α and λ are positives constants. Then for any ε > 0 we have

IP(|Sn − IESn| ≥ ε) ≤ 2g(n)exp(− ε
2β

4Bn
). (4.13)

Proof. Let Bn =
n∑
i=1

IEX2
i . By Markov’s inequality and lemma (4.2) and the fact that 1 + x ≤ ex

IP(Sn − IESn ≥ ε) ≤ e−λεIE(eλ(Sn−IESn)), (4.14)

≤ e−λεIE(
n∏
i=1

eλ(Xi−IEXi)),

≤ g(n)e−λε
n∏
i=1

IE(eλ(Xi−IEXi)),

on the other hands we have

IE(eλ(Xi−IEXi)) ≤ 1 + IE(Xi − IEXi) +
λ2IE(Xi − IEXi)

2

β
,

≤ 1 +
λ2IEX2

i

β
,

≤ exp(
λ2EX2

i

β
)

We compensate for this result in the right-hand side of (4.14) we get

IP(Sn − IESn ≥ ε) ≤ g(n)e−λε
n∏
i=1

e
λ2IEX2

i
β , (4.15)

≤ g(n)exp(
λ2Bn
β
− λε).



4.3. MAIN RESULTS AND PROOFS 66

By taking λ = εβ
2Bn

. Hence from (4.15) it follows that

IP(Sn − IESn ≥ ε) ≤ f(n)exp(− ε
2β

4Bn
). (4.16)

Since {−Xn, n ≥ 1} is also a sequence of WOD random variables we also have

IP(Sn − IESn ≤ −ε) = IP(−(Sn − IESn) > ε) ≤ g(n)exp(− ε
2β

4Bn
), (4.17)

by (4.16) and (4.17) we get (4.13).

Corollary 4.2 Let {Xn, n ≥ 1} be a sequence of identically distributed WOD random variables. Assume
that there exists a postive integer n0 such that 0 ≤ Xi ≤ α

λ , for each 1 ≤ i ≤ n, n ≥ n0, where α and λ are
positives constants. Then for any ε > 0 such that ε > 0 we have

IP(|Sn − IESn| ≥ nε) ≤ 2g(n)exp(−n
2ε2

4Bn
) (4.18)

Theorem 4.5 Let {Xn, n ≥ 1} be a sequence of WOD random variables with IEXi = 0 and 0 ≤ Xi ≤ α
λ , for

each i ≥ 1, where α and β are positives constants. Then for any s > 0
∞∑
n=1

IP(|Sn| > nsε) <∞. (4.19)

Proof. Let B =
∞∑
n=1

IEX2
n <∞. For any ε > 0, from Theorem (4.3) it follows that for a finite sequence g(n)

we have
∞∑
n=1

IP(|Sn| > nsε) ≤ 2

∞∑
n=1

g(n)exp(−n
2sε2β

4Bn
), (4.20)

≤ 2C

∞∑
n=1

[exp(− ε
2β

4Bn
)]n

2s
,

≤ 2C
∞∑
n=1

[exp(−m)]n
2s
<∞,

where m is a positive number not depending on n.

Using the inequality e−x ≤ (ae
−1

x )a such that a > 0, x > 0. Then the right-hand side of (4.20) become
∞∑
n=1

IP(|Sn| > nsε) ≤ 2C

∞∑
n=1

(ae−1)a
1

man2sa
,

≤ 2C(ae−1)a

ma

∞∑
n=1

1

n2sa
,

≤ 2C(ae−1)a

ma

∞∑
n=1

1

n2
,

≤ 2C(ae−1)a

ma

π2

6
,

≤ ∞
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by suppose that a = 1
s . Hence the proof is complete.

Theorem 4.6 Let {Xn, n ≥ 1} be a sequence of identically distributed WOD random variables. Assume
that there exists a positive integer n0 such that 0 ≤ Xi ≤ α

λ , for each 1 ≤ i ≤ n, n ≥ n0 where α and β are
positives constants, Then

∞∑
n=1

IP(|Sn − IESn| ≥ nεn) <∞. (4.21)

Theorem 4.7 Let {Xn, n ≥ 1} be a sequence of WOD random variables with 0 ≤ Xi ≤ α
λ < ∞, for each

i ≥ 1, such that α and λ are positive constants. Then for any s > 0

∞∑
n=1

IP(|Sn − IESn| > nsε) <∞. (4.22)

Proof. We have from Theorem (4.4), for any ε > 0, there exists a sequence function g(n) such that
∞∑
n=1

IP(|Sn − IESn| > nsε) ≤ 2
∞∑
n=1

g(n)[exp(−(nsε)2β

4Bn
)],

≤ 2C

∞∑
n=1

[exp(− ε
2β

4Bn
)]n

2s
<∞.

After this result we get (4.22).

4.4 Application results in the first-order autoregressive AR(1)
model

4.4.1 The AR(1) model

We consider an autoregressive time series of first order AR(1) defined by

Xn = θXn−1 + ξi, i = 1, 2, . . . , (4.23)

where {ξi, i ≥ 0} is a sequence of WOD random variables with ξ0 = X0 = 0, 0 < IEξ4
k <∞, k = 1, 2, . . . and

θ is a parameter with |θ| < 1. Hence (4.23) as follows:

Xi =
∞∑
j=0

θjξi−j . (4.24)

The coefficient θ is fitted least squares, giving the estimator

θ̂n =

n∑
j=1

XjXj−1

n∑
j=1

X2
j−1

, (4.25)
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from (4.23) and (4.25) we obtain that

θ̂n − θ =

n∑
j=1

XjXj−1

n∑
j=1

X2
j−1

. (4.26)

Theorem 4.8 let the conditions of theorem (4.4) be satisfied then for any (IEX2
1 )

1
2

ρ < ξ positive, we have

IP(
√
n|θ̂n − θ| > ρ) ≤ g(n)

[
exp{−n

2(ρ2ξ2 − IEX1)

4Bn
}+ exp{−

IEX2
j−1 − nξ2

4IEX4
j−1

}

]
,

where IEX2
j <∞ and IEX4

j <∞.

Proof. From (4.26) it follows that

IP(
√
n|θ̂n − θ| > ρ) = IP



∣∣∣∣∣∣∣∣∣∣∣

1√
n

n∑
j=1

XjXj−1

1
n

n∑
j=1

X2
j−1

∣∣∣∣∣∣∣∣∣∣∣
> ρ

 .

Therefore, by virtue if the probability properties and Hölder’s inequalities, we have that for any ξ > 0

IP(
√
n|θ̂n − θ| > ρ) ≤ IP(

1

n

n∑
j=1

Xj ≥ ξ2ρ2) + IP(
1

n2

n∑
j=1

X2
j−1 ≤ ρ2),

= IP(
n∑
j=1

Xj ≥ (ρ2ξ2)n) + IP(
n∑
j=1

X2
j−1 ≤ n2ξ2),

= Jn1 + Jn2.

Now, we start by estimate Jn1 then estimate Jn2. We have that

Jn1 = IP(

n∑
j=1

Xj ≥ (ρ2ξ2)n), (4.27)

= IP(
n∑
j=1

(Xj − IEXj + IEXj) ≥ (ρ2ξ2)n),

= IP(
n∑
j=1

(Xj − IEXj) ≥ (ρ2ξ2 − IEX1)n),

≤ IP(|
n∑
j=1

(Xj − IEXj)| ≥ (ρ2ξ2 − IEX1)n).

By using the Theorem (4.4) the right hand side of (4.27) become

Jn1 = IP(
n∑
j=1

Xj ≥ (ρ2ξ2)n) ≤ g(n)exp{−n
2(ρ2ξ2 − IEX1)

4Bn
}. (4.28)
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Then we shall bound the right hande side of Jn2. By Markov’s inequality, for any λ > 0 it follows that

Jn2 = IP(
n∑
j=1

X2
j−1 ≥ n2ξ2, (4.29)

= IP(n2ξ2 −
n∑
j=1

X2
j−1 ≥ 0),

= IE(q{n2ξ2 −
n∑
j=1

X2
j−1 ≥ 0}),

≤ IE(exp{λ(n2ξ2 −
n∑
j=1

X2
j−1)}),

≤ eλn
2ξ2IE(e

−λ

n∑
j=1

X2
j−1

),

≤ eλn
2ξ2IE(

n∏
j=1

e−λX
2
j−1).

By using Corollary (4.1) and Lemma (4.2) the right hand side of the expression Jn2 become

Jn2 ≤ g(n)eλn
2ξ2

n∏
i=1

IE(e−λX
2
j−1),

≤ g(n)eλn
2ξ2

n∏
i=1

IE

(
1− λX2

j−1 +
λ2X4

j−1

β

)
,

≤ g(n)eλn
2ξ2

(
1− λIEX2

j−1 +
λ2IEX4

j−1

β

)n
,

≤ g(n)exp{λn2ξ2 − n(λIEX2
j−1 +

λ2IEX4
j−1

β
)},

≤ g(n)exp{−
IEX2

j−1 − nξ2

4IEX4
j−1

}.

By taking λ =
(IEX2

j−1−nξ2)β

2IEX4
j−1

. Then for any ρ > 0

IP(
√
n|θ̂n − θ| > ρ) ≤ g(n)

[
exp{−n

2(ρ2ξ2 − IEX1)

4Bn
}+ exp{−

IEX2
j−1 − nξ2

4IEX4
j−1

}

]

Corollary 4.3 The sequence (θ̂n)n∈N is completely converges to the parameter θ of autoregressive process
AR(1) model. Then we have

∞∑
n=1

IP(
√
n|θ̂n − θ| > ρ) <∞ (4.30)

Proof. By using Theorem (4.7) and IEX2
j <∞, IEX4

j <∞ we get the result of (4.30) immediately.
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Conclusion

In this thesis we establish asymptotic distribution of the END random error in first-order autoregressive
processes using the recursive kernel estimator and complete convergence for recursive probability density
estimator of LNQD orthant dependent variables. Then we study the complete convergence for widely orthant
dependent random variables and its applications in autoregressive AR(1) models.



Perspectives

In this section, we write some perspectives for future researches.

• Consider the asymptotique distributions of the error density estimators in p order autoregressive models
.

• We establich recursive estimation of the probability density function f(x) for stationary processes Xt

in Banach space.

• It is possible to study the complete convergence for m acceptable random variables and its applications
in autoregressive AR(p) models.
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Summary
The objective of this thesis is to study the non-parametric estimation by recursive nuclei as well
as their applications to the linear model.

Then, we study its asymptotic properties (the almost complete convergence of recursive estima-
tion).

Finally, we use the results obtained in the autoregressive processes.

Résumé
L’obejectif de cette thèse est d’étudier l’estimation non-paramétrique par noyaux récursifs ainsi
qu’à leurs applications aux modèle linéaire.

Ensuite, nous étudions ses propriétés asymptotiques (la convergence presque complète de l’estimation
récursifs).

Nous utilisons enfin les résultats obtenus aux processus autorégressifs


