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General Introduction

Despite our constant efforts to address the ideas that surround our vast world, there are usually
questions that intrigue the researchers. Values in the future depend are usually stochastically,
on the observations currently available. Such dependence must be taken into account when
predicting the future of its past. In general, statisticians consider time series as an achievement
of a stochastic process. There is an infinity of stochastic processes that can generate the same
observed data, as the number of observations is always infinite. Random processes have pro-
vided models for analyzing many data. They have been used in astronomy (in the periodicity of
sunspots, 1906), in meteorology (time-series regression of sea level on weather, 1968), in signal
theory (Noise in FM receivers, 1963), in biology (the autocorrelation curves of schizophrenic
brain waves and the power spectrum, 1960), in economics (time-series analysis of imports, ex-
ports and other economic variables, 1971)... and so on.
Modern techniques for the study of time series models have been started by Yule [44], and the
most popular class of these linear models consists of autoregressive moving average models,
including purely autoregressive models (AR). and purely mobile (MA) as special cases.
ARMA models are frequently used to model linear dynamic structures, to serve as vehicles for
linear prediction. A particularly useful class of models contains autoregressive integrated mov-
ing average (ARIMA) models, which include stationary ARMA processes as a subclass.
Two articles in 1927 opened a study on autoregressive processes and moving averages: the arti-
cle by Yule [44] and Slutsky [34]. Yule introduced the autoregressive models into the literature,
the processes introduced by Yule will become the AR (p) processes and those introduced by
Slutsky the MA(q) processes.
An autoregressive process is a regression model in which the series is explained by its past val-
ues rather than by other variables and as it plays an important role in predicting the problems
leading to decision making are used to model time series in many fields, in biology, climatology,
econometrics, finance, medicine, meteorology and many other fields. For example, in finance,
we are interested in modeling the exchange rate of a currency. In meteorology, scientists for
example model the temperature in the last month to predict the temperature it will do tomorrow.
The idea is to take a sample of data and build the best model that adjusts that data. This model
allows us to draw some conclusions about the series.
Autoregressive processes assume that each point can be predicted by the weighted sum of a set
of previous points, plus a random error term.
The moving average processes assume that each point is a function of the errors in the previous
points, plus its own error.
The analogy between the two processes will even be pushed further when it will be shown that
the processes AR (p) and MA (q) are respectively MA (∞) and AR (∞) processes , in certain
conditions. More generally one can prove that all AR (p) can have a representation MA(1) and
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General Introduction

in a dual way, can also express any MA(q) as a AR(∞). the autoregressive moving average
process (ARMA) is a tool for understanding and possibly predicting the future values of this
series. The model is generally noted as ARMA(p, q), where p is the order of the AR part and q
is the order of the MA part. This process is very used because of its simplicity.
The ARMA model only allows the so-called stationary series to be processed.
ARIMA models allow non-stationary series to be processed after determining the level of inte-
gration.
An ARIMA model is described as ARIMA model (p,d,q), in which :
p is the number of autoregressive terms,
d is the number of differences,
q is the number of moving averages.
The hypothesis of independent observations is often subjective, even erroneous, because it does
not reflect the exact evolution of the random phenomenon. Indeed, the dependent observations
are more adapted to reality. Dependent random variable concepts are very useful in reliability
theory and applications. There are many concepts of dependence between them:
A notion of dependence is the so-called extended negatively dependent (END) introduced by
Liu [27], the random variables are said to be END if they are at the same time upper extended
negatively dependent (UEND) and lower extended negatively dependent(LEND).
The independent random variables and the NOD random variables are END, but the END ran-
dom variables are much smaller than the independent random variables.
Another notion of dependence is this one called widely orthant dependent (WOD) was defined
by Wang, Wang and Gao [37], the random variables are said to be WOD when both are widely
upper orthant dependent (WUOD) and widely lower orthant dependent (WLOD). WOD random
variables are lower than NA random variables, NSD random variables, NOD random variables
and END random variables.

Inequalities of concentration are inequalities that limit the probability of deviation of a ran-
dom variable from its mean by a certain value. Research on this topic has recently increased
due to many applications in areas such as machine learning and random graphs.
Inequalities of concentration include inequalities in Bernstein [7], Bennett[4] and Hoeffding[23],
and others.

Our thesis is presented in five chapters. In the first chapter we recall the notations and the
tools used on the stochastic processes, and in particular, we recall the definition of the processes
AR(p), MA(q), ARMA (p,q), ARIMA(p,d,q), ARCH(q) and GARCH(p,q).

In the second chapter, we consider the concentration inequalities of sums of random vari-
ables, independent case. We study the Bernstein’s inequalities, Hoeffding’s inequalities and
Bennett’s inequalities.

In The third chapter, we establish concentration inequalities for END random variables of
partial sums. Using these inequalities, we show the complete convergence for parameter esti-
mator θn of the first-order autoregressive process in the case where the error (white noise) εt
are END. This work was the subject of an accepted publication in the International Journal of
Statistics and Economics.
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General Introduction

In the fourth chapter, we construct exponential inequalities for a new case of dependence
WOD for the random variables of partial sums. Using these inequalities, we proof the complete
convergence of the least square estimators θn of the first-order autoregressive process in the
case where the error (white noise) εt are WOD. The results of this chapter are published in the
International Journal of Statistics and Economics.

The last chapter is devoted to the study the complete convergence for the maximum of prod-
uct sums and the moment inequality of Rosenthal type for sums of products, in the case widely
orthant dependent. This work was the subject of an accepted publication in the International
Journal of Statistics and Economics.
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Chapter 1

Introduction

The main objective of this chapter is examined, all the important destinations of the analysis of
the autoregressive processes and we present to ourselves an integrated view of the explanation
of the frequently used AR, MA, ARMA, ARIMA and ARCH/GARCH models after we quote
properties and important results.

1.1 Discrete operator

We consider the set of numerical sequence and on this set, we will define the backshift operators
B, in advance F, difference r and summation S.

1. Lag operators L
the lag operator (L) or backshift operator (B) is defined by

LXt = Xt−1, ∀t

or similarly

BXt = Xt−1, ∀t

or equivalently

Xt = LXt+1, ∀t

in which L is the lag operator. Sometimes the symbol B for backshift is used instead.
notice that the lag operator may be raised to arbitrary integer powers so that
LkXt = Xt−k.

2. Advance operator F
The advance operator is defined by

FXt = Xt+1, ∀t

13



1.2. NOTIONS ON STOCHASTIC PROCESSES

3. Difference operator∇
defined by

∇Xt = Xt −Xt−1, ∀t

∇Xt = (1− L)Xt,

for the k-th difference operator

∇kXt = (1− L)kXt.

4. Summation operator S
It is defined by

SXt =
t∑
−∞

Xi,

or SXt = (1 + L+ L2 + ...)Xt.
S is of course linear and we have:

SXt =
t∑

j=k+1

Xj + SXj,

for t ≥ k + 1

S2Xt =
t∑

i=k+1

i∑
j=k+1

Xj + S2Xk + (t− k)SXk.

1.2 Notions on stochastic processes
Stochastic processes are modelling tools, and they are applied in many different scientific fields.

Definition 1. A stochastic process or random process is a sequence of random variables
(Xt)t∈T . If T = N or T = Z the process is discrete time, and if T = R∗+ or T = R the
process is a continuous time. It should be noted that the word time used here does not neces-
sarily mean physical time. If the random variables that make up the process are discrete, we’re
talking about discrete value processes, if they’re continuous we’re talking about continuous
value processes.

1.2.1 Stationarity
Definition 2. Let the process (Xt)t∈T be said strictly (or strongly) stationary if for all {t1, t2, ..., tn} ∈
T and for all k > 0 we have

Ft1,t2,...,tn(x1, x2, ..., xn) = Ft1+k,t2+k,...,tn+k(x1, x2, ..., xn). (1.1)

14



1.2. NOTIONS ON STOCHASTIC PROCESSES

Definition 3. A process (Xt)t∈T is said to be weakly stationary (stationary order 2), if

1. E[Xt] = µ <∞, ∀t

2. E[X2
t ] <∞, ∀t

3. cov(Xt, Xs) = cov(Xt+h, Xs+h), ∀t, s, h

1.2.2 Autocovariance function and autocorrelation function

Definition 4. The autocovariance function of the process is defined by

γX(h) = cov(Xt, Xt+h),∀t, h

The autocorrelation function is defined by

ρX(h) = γX(h)/γX(0).

properties:

1. γX(0) = σ2
X , γX(0) ≥ 0,

2. |γX(h)| ≤ γX(0),

3. γX(h) = γX(−h).

an autocorrelation function has all the properties of an autocovariance function, with ρX(0) =
1.

Definition 5. Let {ζt, t ≥ 0} a sequence of random variables constitute a weak white noise
(resp strong) if

1. E[ζt] = 0, ∀t ∈ N

2. E[ζ2t ] = σ2,

3. cov(ζt, ζs) = 0, ∀t 6= s (resp ζt are iid).

If {ζt, t ≥ 0} is a weak white noise, we will denote by ζt ∼ WN(0, σ2).
If {ζt, t ≥ 0} is a strong white noise, we will denote by ζt ∼ iid(0, σ2).
If {ζt, t ≥ 0} is a Gaussian white noise, we will denote by ζt ∼ N(0, σ2).

15



1.3. AR PROCESS

1.2.3 Linear processes
The linear process is a stochastic process formed by a linear combination (no necessarily finite)
of strong white noises, and when they are weak the linear process is general. For example,
autoregressive processes (AR) and moving average processes (MA) belong to the class of linear
processes.

Definition 6. A process (Xt)t∈Z is called linear, if it writes in the form

Xt =
∞∑
i=0

Φiζt−i, (1.2)

where (ζ)t∈Zis a weak white noise of mean 0 and variance σ2, and
∞∑
i=0

|Φi| <∞.

Proposition 1. Let (Xt)t∈Z a stationary process solution of the following equation

Φ(B)Xt = Yt, (B is the backshift operator)

where (Yt)t∈Z is a stationary process, Φ(B) =
∞∑
i=0

ΦiB
i, then

1. If Φ does not have a module root equal to 1, then there is an invertible representation of
the process (Xt)t∈Z.

2. If all the roots of Φ are of module superior to 1, then there is a causal representation of
the process (Xt)t∈Z.

1.3 AR process
Definition 7. An autoregressive process of order p, denoted AR (p) is defined by

Xt = c+ θ1Xt−1 + θ2Xt−2 + ...+ θpXt−p + εt, (1.3)

where θ1, . . . , θp are the parameters of the model, c is a constant and εt is the error associated
to the process which is a random variable sequence, considered like a white noise (i.e: εt v
WN(0, σ2)) if the random variables are independent or dependent (see dependency concepts
in the next chapter).
• Using the backshift operator B, we can write it:

(1− θ1B − ...− θpBp)Xt = c+ εt,

α(B)Xt = c+ εt.

16



1.3. AR PROCESS

Example 1. An AR(1) process takes this form:

Xt = c+ θ1Xt−1 + εt, or εt v WN(0, σ2).

Remark 1. The AR (1) process can be written recursively with respect to the previous conditions

Xt = c+ θXt−1 + εt = c+ θ(c+ θXt−2 + εt−1) + εt

= (1 + θ)c+ θ2Xt−2 + εt + θεt−1

.

.

.

= c
∞∑
i=0

θi +
∞∑
i=0

θiεt−i.

It should be noted that the sums go here to infinity. This is because time series are often supposed
to start from t0 = −∞ and not t0 = 0.
Some authors, however, consider that the series starts with t0 = 0 and then add the initial value
X0 in the formula.
We can see that Xt is the convoluted white noise with the kernel θk plus a constant mean. If the
white noise is Gaussian, then Xt is also a normal process.

1.3.1 Causality and Invertibility

Definition 8. It is said that the process is invertible if there is a real sequence dk as∑∞
k=0 |dk| <∞ et

εk =
∞∑
k=0

dkXt−k. (1.4)

Another way of saying that a process is invertible if it has an AR (∞) representation.

Remark 2. By this definition, any process AR(p) is invertible.

Proposition 2. The autoregressive process AR(p) is causal and stationary if only if its polyno-
mial α(z) is such that

α(z) 6= 0 avec z ∈ C tel que |z| ≤ 1. (1.5)

In other words, all the roots of α(z) are of norm greater than 1.
The proof of this proposition is in Brockwell and Davis [11].
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1.3. AR PROCESS

1.3.2 Moments of an process AR(1)

To calculate the different moments of an AR (1) process, its expectancy, its variance, its au-
tocovariance and its autocorrelation, we will assume that the white noise is independently and
identically distributed, of zero expectancy and of variance σ2 that we note (εi ∼ iid(0, σ2))
Expectation:

E[Xt] = θtX0 + c
t−1∑
i=0

θi.

Proof 1. (reasoning by recurrence)
P (0) (initialization):
E[X0] = X0 , because X0 is deterministic. The expression is:

θ0X0 + c
−1∑
i=0

θi = 1X0 + 0 = X0

P (t+ 1) (heredity):
E[Xt+1] = E[c+ θXt + εt]
Since E is a linear operator:
E[Xt+1] = c+ θE[Xt]
With the induction hypothesis:

E[Xt+1] = c+ θ(θtX0 + c
t−1∑
i=0

θi),

E[Xt+1] = c+ θt+1X0 + c
t−1∑
i=0

θi+1.

By a change of variables in the sum, i→ i− 1:

E[Xt+1] = θt+1X0 + c+ c

t∑
i=1

θi

And, with c = c

0∑
i=0

θi :

E[Xt+1] = θt+1X0 + c

t∑
i=0

θi

Variance:

V ar[Xt] =
∞∑
i=0

θ2iσ2.
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Proof 2.

V ar[Xt] = E[Xt − E(Xt)]
2

= E

[
c
∞∑
i=0

θi +
∞∑
i=0

θiεt−i − c
∞∑
i=0

θi

]2
(According to the results obtained in the previous page)

= E

[
∞∑
i=0

θiεt−i

]2
= V ar

(
∞∑
i=0

θiεt−i

)
(because V ar(X) = E[X2]− E[X]2and by hypothesis E[εt] = 0)

=
∞∑
i=0

V ar(θiεt−i)

=
∞∑
i=0

θ2iV ar(εt−i)

=
∞∑
i=0

θ2iσ2

= σ2

∞∑
i=0

θ2i

= σ2 1

1− θ2
such that |θ| < 1 the geometric series is convergent.

Autocovariance:

Cov(Xt, Xt−j) = θj
t−j∑
i=0

θ2iσ2.

Proof 3.

Cov(Xt, Xt−j) = E [[Xt − E(Xt)] [Xt−j − E(Xt−j)]]

= E

[(
∞∑
i=0

θiεt−i

)[
∞∑
k=0

θkεt−k−j

]]

= E

[
∞∑
i=0

∞∑
k=0

θiθkεt−iεt−k−j

]
=

∞∑
i=0

∞∑
k=0,k+j 6=i

θiθkE [εt−iεt−k−j] +
∞∑
k=0

θ2k+jE
[
ε2t−k−j

]
=

∞∑
k=0

θ2k+jV ar (εt−k+j) (by independence hypothesis of εm, E[εt−iεt−k+j] = 0)

= θj
∞∑
i=0

θ2iσ2

= θjσ2 1

1− θ2
.
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1.3. AR PROCESS

Autocorrelation:

Corr[Xt, Xt−j] =
Cov(Xt, Xt−j)

V ar(Xt)
= θj.

Proof 4.
Corr[Xt, Xt−j] =

Cov(Xt, Xt−j)

V ar(Xt)

=

θj
∞∑
i=0

θ2iσ2

∞∑
i=0

θ2iσ2

= θj.

1.3.3 Stationarity condition for AR(1)
We know that the parameter θ determines if the process AR(1) is stationary or not, have con-
sidered the following cases:
case1: |θ| < 1, the process is stationary.
case2: |θ| = 1, the process is therefore non-stationary.
case3: |θ| > 1, the process is explosive.

If |θ| < 1, under the conditionX0 = 0 and according to the geometric series
∞∑
n=0

bqn =
b

1− q
we obtain the following results,

E[Xt] =
c

1− θ
.

V ar(Xt) =
σ2

1− θ2
.

Cov(Xt) =
θj

1− θ2
σ2

Corr(Xt) = θj.

it can be observed that the autocovariance function decreases with a rate of τ = −1/ ln(θ). We
see right here that expectancy and variance are constant and that autocovariance does not de-
pend on time: the process is therefore stationary.

If |θ| = 1, the process is written in the following form: Xt = c+Xt−1 + εt.

E(Xt) = ct+ E[X0].

V ar(Xt) = tσ2.

Cov(Xt) = (t− j)σ2.
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Example 2. {AR(1)}
The polynomial of the backshift of a process AR(1)

Xt = θXt−1 + εt,

s’écrit:

(1− θB)Xt = εt.

Its resolution (replacing the Backshift operator B by the simple value x) gives 1− θx = 0⇒ x =
1

θ
.

The condition that the solution is greater than 1 is equivalent to |1
θ
| > 1⇒ |θ| < 1

1.3.4 Moments of an AR(p) process
An AR (p) process is written: Xt = c+ θ1Xt−1 + θ2Xt−2 + . . .+ θpXt−p + εt.
We will suppose that εi ∼ iid(0, σ2).
The different moments of a stationary process are:
E[Xt] =

c

1− θ1 − θ2 − . . .− θp
.

V ar(Xt) = θ1γ1 + θ2γ2 + . . .+ θpγp + σ2.
Cov(Xt, Xt−j) = θ1γj−1 + θ2γj−2 + . . .+ θpγj−p.

The formulas of variance and covariance correspond to the so-called Yule and Walker equations.

1.3.5 Stationarity condition for AR(p)
Theorem 1. the process AR (p) is stationary if the modulus of solutions (the roots) of its char-
acteristic equation is every time strictly greater than 1 in absolute value.

The condition is often formulated differently, according to which the roots must be outside
of the complex unitary circle.

Example 3. {AR(2)}
The characteristic polynomial of the backshift of a process AR(2)

Xt = θ1Xt−1 + θ2Xt−2 + εt,

s’écrit:

(1− θ1B − θ2B2)Xt = εt.

The resolution of the characteristic equation of the second degree (1− θ1x− θ2x2) leads to the
following conditions: 

θ1 + θ2 < 1,

θ2 − θ1 < 1,

|θ2| < 1
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1.3.6 Estimation for AR(1) process

We will focus on the estimation of the autoregressive parameter of the first order with Gaussian
innovations. We consider the model

Xt = θXt−1 + εt, t = 1, 2, ...

We assume that X0 = 0 is a Gaussian variable.
Least Squares method:
To estimate the coefficient (unknown parameter) of a 1st order autoregressive process, we use
the least squares estimator. We will now minimize the quantity

Q(θ) =
n∑
t=1

ε2t = (Xt − θXt−1)
2.

We derive the function Q(θ) with respect to θ:

∂Q(θ)

∂θ
= 2

n∑
t=1

(−Xt−1)(Xt − θXt−1).

We find

2
n∑
t=1

(−Xt−1)(Xt − θXt−1) = 0,

n∑
t=1

(−XtXt−1 + θX2
t−1) = 0,

−
n∑
t=1

XtXt−1 + θ

n∑
t=1

X2
t−1 = 0,

n∑
t=1

XtXt−1 = θ
n∑
t=1

X2
t−1,

The estimator θn is given, for all n ≥ 1, by

θn =

n∑
t=1

Xt−1Xt

n∑
t=1

X2
t−1

. (1.6)
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1.3.7 Estimation for AR(p) process
Yule-Walker method:
We have the autoregressive model of order p

Xt = θ1Xt−1 + θ2Xt−2 + . . .+ θpXt−p + εt.

Multiply both sides of the equation by Xt−j (j > 0) and take the expectatione

E[XtXt−j] = θ1E[Xt−1Xt−j] + θ2E[Xt−2Xt−j] + . . .+ θpE[Xt−pXt−j] + E[εtXt−j]. (1.7)

White noise εt not correlated with Xt−j , where j is greater than zero.
For j > 0, E[εtXt−j] = 0,

For j = 0,

E[εtXt] = θ1E[Xt−1εt] + θ2E[Xt−2εt] + . . .+ θpE[Xt−pεt] + E[ε2t ] = σ2.

(1.7) ⇒ γj = θ1γj−1 + θ2γj−2 + . . .+ θpγj−p

⇒ ρj = θ1ρj−1 + θ2ρj−2 + . . .+ θpρj−p

ρ1 = θ1ρ0 + θ2ρ1 + . . .+ θpρp−1

ρ2 = θ1ρ1 + θ0ρ1 + . . .+ θpρp−2
...

ρp = θ1ρp−1 + θp−2ρ1 + . . .+ θpρ0.


Yule walker equations.

If ρj is known, the resolution of these p equations makes it possible to obtain the estimates
of θ.
Variance estimation

For j = 0,E[XtXt−j] = σ2,

γ0 = θ1γ1 + θ2γ2 + . . .+ θpγp + σ2,
⇒ σ2 = γ0 − θ1γ1 − θ2γ2 − . . .− θpγp.
which gave the estimate of θ gives the estimate of σ2

• However, in general, the ρj would be unknown and should be estimated for the sample.

•We have ρ̂i = γ̂j/γ̂0,

where

γ̂j =
1

n

n−j∑
t=1

(Xt − X̄)(Xt+j − X̄).
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ρ̂1

ρ̂2
...

ρ̂p−1

ρ̂p


=



ρ̂0 ρ̂1 · · · ρ̂p−1

ρ̂1 ρ̂0 · · · ρ̂p−2
...

...
...

...

ρ̂p−1 ρ̂p−2 · · · ρ̂0





θ̂1

θ̂2
...

θ̂p−1

θ̂p



ρ̂p = Γ̂pθ̂ ⇒ θ̂ = Γ̂−1p ρ̂p.

1.3.8 AR (p) processes: examples

Figure 1.1: Path graph, correlogram and partial correlogram of the AR (1) process: Xt =
0.1Xt−1 + εt.
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Figure 1.2: Path graph, correlogram and partial correlogram of the AR (1) process: Xt =
−0.5Xt−1 + εt.

Figure 1.3: Path graph, correlogram and partial correlogram of the AR (1) process: Xt =
−1.001Xt−1 + εt.

25



1.4. MA PROCESS

1.4 MA process

Definition 9. An average moving process of order q, denoted MA (q) is defined by

Xt = δ1εt−1 + δ2εt−2 + ...+ δqεt−q + εt, (1.8)

where θ1, . . . , θp are the parameters of the model and εt is a white noise of variance σ2.
as for autoregressive processes, this relationship is written:

(1− δ1B − ...− δpBp)εt = Xt,

Θ(B)εt = Xt.

Unlike the AR (p) the definition of MA (q) is explicit that the process Xt is stationary.

Example 4. An MA(1) process takes this form:

Xt = δ1εt−1 + εt, or εt v WN(0, σ2).

1.4.1 Causality and Invertibility

Definition 10. It is said that the process is causal if there is a real ck sequence such that∑∞
k=0 |ck| <∞ and

Xt =
∞∑
k=0

ckεt−k. (1.9)

Sometimes, when we talk about a causal process, we say that it has a representation MA(∞).

Remark 3. By this definition, any process MA (q) is causal.

Proposition 3. The moving average process MA (q) is invertible if and only if its polynomial
Θ(z) is such that

Θ(z) 6= 0 avec z ∈ C tel que |z| ≤ 1. (1.10)

The proof of this proposition is in Brockwell and Davis [11].
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1.4.2 Estimation for MA process
The method of moments is not linear or effective for MA(q) processes.
Simple example: process estimation MA(1):
γ0 = (1 + δ2)σ2, γ1 = δσ2,

⇒ ρ1 =
γ1
γ0

=
δ

1 + δ2
.

Moments method :

γ1 = γ̂1, ρ1 = ρ̂1,
δ̂

1 + δ̂2
= ρ̂1,

⇒ ρ̂1(1 + δ̂2) = δ̂.

He can have no solution (if |ρ̂1| > 1/2) or two solutions (if |ρ̂1| < 1/2) from which we can
choose which gives an invertible process.
Moreover, we can show that it is not effective (there are other simple estimators with asymptot-
ically lower variance)

1.4.3 MA (q) processes: examples

Figure 1.4: Path graph, correlogram and partial correlogram of the process MA(1): Xt =
−0.1εt−1 + εt.
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Figure 1.5: Path graph, correlogram and partial correlogram of the process MA(1): Xt =
0.5εt−1 + εt.

Figure 1.6: Path graph, correlogram and partial correlogram of the process MA(1): Xt =
−1.001εt−1 + εt.
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1.5 The ARMA model(Mixed model)
AR and MA models can be ideal in some cases, but there may be a need to estimate a large
number of parameters to adjust the model. If there are few observations, these estimates will
tend to be unclear. In addition, if a model containing p parameters is suitable for the situation,
it is not good to try to adjust a model that will contain more than p. The ARMA models (or
Box-Jenkins model), are a mix of Autoregressive and Moving average models offered by Yule
and Slutsky. They play an important role in specifying time series models for applications. As
the solutions of stochastic difference equations with constant coefficients and those processes
possess a linear structure. Herman Wold [42] showed that ARMA processes can be used to
model any stationary series as long as the orders p and q are well chosen. Box and Jenkins [12]
worked to develop a methodology for model estimation of a time series.

Definition 11. An ARMA process of order (p, q) (discrete or continuous) is defined by

Xt = θ1Xt−1 + θ2Xt−2 + ...+ θqXt−q + εt + δ1εt−1 + δ2εt−2 + ...+ δqεt−q, (1.11)

where θ1, θ2, ..., θp are the parameter of the model and the εt the error terms.

An autoregressive model AR (p) is a ARMA(p, 0).
A moving average model MA(q) is a ARMA(0, q).

1.5.1 Stationarity, Causality and Invertibility
Theorem 2. If θ and δ don’t have common factors, a (unique) stationary solution to
α(B)Xt = Θ(B)εt exists if the roots of α(z) avoid unit circle:

|z| = 1⇒ α(z) = 1− θ1z − ...− θpzp 6= 0.

ARMA(p,q) process is causal if the roots of are outside unit circle:

|z| ≤ 1⇒ α(z) = 1− θ1z − ...− θpzp 6= 0.

is invertible if the root of Θ(z) are out side unit circle:

|z| ≤ 1⇒ Θ(z) = 1 + θ1z + ...+ θqz
q 6= 0.

Definition 12. (Causality) The ARMA(p,q) process is causal if there’s a real ck sequence such
that

∑∞
k=0 |ck| <∞ and

Xt =
∞∑
k=0

ckεt−k. (1.12)

Causality means that an ARMA time series can be represented as a linear process.
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Theorem 3. Let {Xj, j ≥ 1} be an ARMA process such that the polynomials α(z) and Θ(z)
don’t have common zeroes. Then {Xj, j ≥ 1} is causal if Θ(z) 6= 0 with |z| ≤ 1. The
coefficients ck are determined by the power series expansion

c(z) =
∞∑
k=0

ckz
k =

α(z)

Θ(z)
, |z| ≤ 1. (1.13)

An idea closely related to causality is invertibility.

Definition 13. (Invertibility) The ARMA(p,q) process is invertible if there’s a real sequence dk
as
∑∞

k=0 |dk| <∞ et

εk =
∞∑
k=0

dkXt−k. (1.14)

Theorem 4. Let {Xj, j ≥ 1} be an ARMA process such that the polynomials α(z) and Θ(z)
don’t have common zeros. Then {Xj, j ≥ 1} is invertible if Θ(z) 6= 0 with |z| ≤ 1. The
coefficients dk are determined by the power series expansion

d(z) =
∞∑
k=0

dkz
k =

α(z)

Θ(z)
, |z| ≤ 1. (1.15)

Henceforth it’s far assumed that each one ARMA sequences specified in the sequel are causal
and invertible unless expressly provided otherwise.

1.5.2 Autocovariance of an ARMA(p,q)
Let the following ARMA process (p,q) be:

Xt − θ1Xt−1...− θpXt−p = εt + δ1εt + ...+ δqεt,

We obtain, by multiplying by Xt−h and taking the expectation:

γh −
p∑
j=1

θjγh−j = E[Xt−hεt]−
q∑
j=1

δjE[Xt−hεt−j],

Or E[Xt−hεt−j] = 0 if t− h < t− i for j = 1, 2, ..., q.
Thus, for h > q, we find the p-order induction equation as in the case of the AR (p):

γh −
p∑
j=1

θjγh−j = 0 h > 0
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The p equations h = q+ 1, ..., q+ p are called Yule-Walker equations. They allow calculate the
p coefficients γh as a function of p initial values γq, ..., γq−p+1. These equations do not make it
possible to determine all the values γh since must have initial conditions.
The first values of γh, h = 0, 1, ..., q are determined by:

γh −
p∑
j=1

θjγh−j = E[Xt−hεt]−
q∑
j=1

E[Xt−hεt−j].

for h = 0, 1, ..., q. The terms on the right of equality are calculated from the expression MA(∞)
of Xt.

1.5.3 Parameter Estimation
We will speak about more efficient estimators are provided by the maximum likelihood and
least squares methods for ARMA(p,q) assuming that the orders p and q are known.

Method 1( Maximum Likelihood Estimation):
The method of Maximum Likelihood Estimation applies to any ARMA(p,q) model

Xt − θ1Xt−1...− θpXt−p = εt + δ1εt + ...+ δqεt.

The innovations algorithm applied to a causal ARMA(p,q) process (Xt, t ≥ 1) gives

X̂i+1 =
i∑

j=1

δij(Xi+1−j − X̂i+1−j), 1 ≤ i < max(p, q)

X̂i+1 =

p∑
j=1

θjXi+1−j +

q∑
j=1

δij(Xi+1−j − X̂i+1−j), i ≥ max(p, q)

with prediction error
Ki+1 = σ2Ri+1.

where Rp = γp/γ0
in the closing expression, σ2 has been factored out due to reasons that becomes apparent from
the form of the likelihood function to be mentioned beneath. recall that the series (Xi+1−X̂i+1 :
i ≥ 1) consists of uncorrelated random variables if the parameters are known. Assuming
normality for the errors, we moreover achieve even independence. this could be exploited
to define the Gaussian maximum likelihood estimation(MLE) procedure. Throughout, it is
assumed that (Xt, t ≥ 1) has 0 mean (µ = 0). The parameters of interest are collected inside
the vectors β = (θ, δ, σ2)t and β′ = (θ, δ)t , where θ = (θ1, ..., θp)

t and δ = (δ1, ..., δq)
t.

suppose finally that we’ve got observed the variables X1, ..., Xn. Then, the Gaussian likelihood
function for the innovations is

L(β) =
1

(2πσ2)n/2

(
n∏
i=1

R
1/2
i

)
exp

(
− 1

2σ2

n∑
j=1

(Xi − X̂j)
2

Rj

)
.
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Taking the partial derivative of lnL(β) with respect to the variable σ2 reveals that the Maximum
Likelihood Estimation for σ2 can be calculated from

σ̂2 =
S(θ̂, δ̂)

n
, S(θ̂, δ̂) =

n∑
j=1

(Xj − X̂j)
2

Rj

.

θ̂ and δ̂ are estimators of θ et δ by method of Maximum Likelihood Estimation obtained from
minimizing the profile likelihood or reduced likelihood

l(θ, δ) = ln

(
S(θ, δ)

n

)
+

1

n

n∑
j=1

ln(Rj).

Observe that the profile likelihood l(θ, δ) can be computed using the innovations algorithm.
the velocity of these computations depends upon heavily on the quality of initial estimates.
these are frequently supplied by means of the non-optimal desirable Yule-Walker technique.
For numerical methods, such as the Newton-Raphson and scoring algorithms, see phase 3.6 in
Shumway and Stoffer (2006).

Proposition 4. Let {Xj, j ≥ 1} be a causal and invertible ARMA(p,q) process defined with an
i.i.d sequence (εt, t ≥ 1) satisfying E[εt] = 0 and E[ε2t ] = 0 Consider the Maximum Likelihood
Estimation β̂′ of β′ that is initialized with the moment estimators of Method, Then

√
n(β̂′ − β′) D→ N(0, σ2Γ−1p,q) (n→∞)

where the (p+ q)× (p+ q) dimensional matrix Γp+q depends on the model parameters.

A proof of this result is given in Section 8.10 of Brockwell and Davis [11](1991).
Method 2 (Least Squares Estimation): The method of least squares for causal and invertible
ARMA(p,q) processes, it is primarily based on minimizing the weighted sum of squares

S(θ, δ) =
n∑
j=1

(Xj − X̂j)
2

Rj

.

with respect to θ and δ , respectively. Assuming that θ̃ and δ̃ denote these Least Squares Esti-
mates, the Least Squares Estimation for σ2 is computed as

σ̃2 =
S(θ̃, δ̃)

n− p− q
.

The least squares procedure has the same asymptotics as the Maximum Likelihood Estimation.

Theorem 5. The result of previous Theorem holds also if β̂′ is replaced with β̄′.
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1.5.4 ARMA(p,q) processes: examples
Figure1.7 shows realizations of three different autoregressive moving average time series based
on independent, standard normally distributed εt. The left panel is an ARMA(2, 2) process with
parameter specifications θ1 = 0.9, θ2 = −0.8, δ1 = −0.5 and δ1 = 0.8. The center plot is
obtained from an ARMA(2, 1) process with parameters θ1 = 0.9, θ2 = −0.8, δ = 0.6, while
the right plot is from an ARMA(1, 2) with parameters θ1 = 0.6, δ1 = 0.9 and δ2 = −0.8. as we
can see these processes are still stationary.

Figure 1.7: Realizations of three autoregressive moving average processes.

1.6 The ARIMA model
ARIMA models are, in theory, the foremost general category of models for predicting a time
series which can be made to be stationary by differencing (if necessary), maybe in conjunction
with nonlinear transformations like logging or deflating (if necessary). A random variable that’s
a time series is stationary if its statistical properties are all constant over time. A stationary se-
ries has no trend, its variations around its mean have a constant amplitude, and it wiggles in a
very consistent fashion, i.e., its short random time patterns always look the same in a statistical
sense. The latter condition implies that its autocorrelations (correlations with its own previous
deviations from the mean)stay constant over time, or equivalently, that its power spectrum re-
mains constant over time. A random variable of this type will be viewed (as usual) as a mixture
of signal and noise, and therefore the signal (if one is apparent) might be a pattern of quick or
slow mean reversion, or curved oscillation, or speedy alternation in sign, and it might even have
a seasonal element.
An ARIMA model will be viewed as a filter that tries to separate the signal from the noise, and
the signal is then extrapolated into the future to obtain forecasts.
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The ARIMA forecasting equation for a stationary time series is a linear (i.e., regression-
type) equation in which the predictors consist lags of the dependent variable quantity or lags of
the forecast errors. That is:
The predicted value of X = a constant or a weighted sum of 1 or more values of X or a
weighted sum of 1 or more recent values of the errors.
If the predictors consist solely of lagged values of X , it’s a pure autoregressive (self-regressed)
model, that is simply a special case of a regression model and which could be fitted with stan-
dard regression software. as an example, a 1st order autoregressive model for X is a simple
regression model in which the independent variable is just X lagged by one period. If some of
the predictors are lags of the errors, an ARIMA model it is not a linear regression model, as a
result of there’s no way to specify (last period’s error) as an independent variable: the errors
should be computed on a period to period basis when the model is fitted to the data. From a
technical viewpoint, the problem with exploiting lagged errors as predictors is that the model’s
predictions don’t seem to be linear functions of the coefficients, while they’re linear functions
of the past data. So, coefficients in ARIMA models that include lagged errors should be esti-
mated by nonlinear optimisation methods (hill-climbing) instead of by just solving a system of
equations.
The ARIMA abbreviation stands for Autoregressive Integrated Moving Average. Lags of the
stationarized series in the forecasting equation are called autoregressive terms, lags of the fore-
cast errors are called moving average terms, and a time series which needs to be differenced to
be made stationary is said to be an integrated version of a stationary series. Random-walk and
random-trend models, autoregressive models, and exponential smoothing models are all special
cases of ARIMA models.

1.7 ARCH/GARCH Models
In order to overcome the inadequacies of the ARMA(p,q) representations for monetary and fi-
nancial problems, Engle (1982)[17] propose a new class of models autoregressive conditional
heteroskedasticity model (ARCH) able to capture the behavior of volatility over time. ARCH
model are commonly used in modeling financial time series, which have variable volatilities,
that is, restless periods followed by periods of relative calm. In these models, the conditional
variance at time t is variable. It depends, for example, on the square of previous achievements
of the process or the square of innovations.
GARCH is probably the most commonly utilized financial time series model and has inspired
dozens of more sophisticated models.
ARCH models are based totally on an endogenous parameterization of the conditional variance.
The family of ARCH models may be broken down into two subsets: linear ARCH models and
nonlinear ARCH models.
The first is based totally on a quadratic specification of the conditional variance of perturba-
tions: models ARCH(q), GARCH (p,q) and IGARCH (p,q). Nonlinear ARCH models are
characterized by asymmetrical disturbance specifications. These are the models EGARCH (p,
q), TARCH (q) and TGARCH (p, q). (Bresson and Pirotte, Time series)
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1.7.1 Linear ARCH/GARCH Models
We will present the definition of models ARCH and GARCH. First, in order to be able to process
series of non-zero average, the situation of certain yields, let us imagine that we observe a series
Yi that behaves like a yield, denoted Xi, at a constant.

Yi = c+Xi,

where E[Xi] = 0. Let us note σ2
i the variance of the conditional yield with the past.

σ2
i = V ar(Xt/X̃i−1),

where X̃i−1 designates the past i− 1, i− 2, ...

Our observations lead us precisely to assume that σ2
i is a function of X2

t−1, X
2
t−2, ....

Definition 14. The process Xi satisfies an ARCH(1) representation if

Xi = vihi, (1.16)

with

hi =
√
α0 + α1X2

i−1

where vi denotes a weak white noise such that E[vi] = 0, E[v2i ] = σ2
v .

In general, vi denotes a set of independent random variables, identically distributed,
centered, reduced. The component hi denotes a variable which, conditionally to the set of in-
formation of the past values of Xi, ie to X̃i−1 = {Xi−1, Xi−2, ..., Xi−j, ...}, is deterministic and
positive.
In this system, the Xi process is characterized by zero autocorrelations E[vtvs] = 0 and a con-
ditional variance that varies over time depending on the magnitude of past innovation.

we are able to set up interesting results by considering the autoregressive process on X2
i .

For simplicity, we are limited to the case of ARCH(1). In these conditions:
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h2i = α0 + α1X
2
i−1 ⇔ X2

i = α0 + α1X
2
i−1 + (X2

i − h2i ), (1.17)

is still

X2
i = α0 + α1X

2
i−1 + ui, (1.18)

where ui = (X2
i − h2i ) verifying E(ui/X̃i−1) = 0 is an innovation process for X2

i .

Definition 15. The process Xi satisfies an ARCH(q) representation if

Xi = vihi, (1.19)

with hi =

√√√√α0 +

q∑
k=1

αkX
2
i−k and where vi denotes a weak white noise such that E[vi] = 0,

E[v2i ] = σ2
v .

Definition 16. The process Xi satisfies an GARCH(p,q) representation if

Xi = vihi, (1.20)

with hi =

√√√√α0 +

q∑
k=1

αkX
2
i−k +

P∑
k=1

βkh
2
i−k and where vi denotes a weak white noise and

where α0 > 0, αk ≥ 0, k = 1, ..., q and βi ≥ 0, k = 1, ..., p.
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Example 5. Consider the case of a process GARCH(1,1):

Xi = vihi, (1.21)

hi =
√
α0 + α1X2

i−1 + β1h2i−1, (1.22)

where α0 > 0, α1 > 0 and β1 > 0.
In this model, the squares of the residues follow a ARMA(1,1) process,

X2
i = α0 + (α1 + β1)X

2
i−1 + β1ui−1 + ui,

It is stationary for 0 < α1+β1 < 1, where ui = v2i −h2i is a process of innovation for v2i . Under
the condition of second order stationarity, the unconditional variance of process vi exists and is
constant over time. knowing that V ar(vi) = E[v2i ], it’s sufficient that from the form ARMA(1, 1)

on v2i define the variance of the process V ar(vt) =
α0

1− α1 − β1
.

According to BOLLERSLEV T. (1986) [8], kurtosis (Kurtosis measures the sharp or flat
character of the cast of the series) exists if

3α2
1 + 2α1β1 < 1,

and is given by

Ku =
E[X4

i ]

E2[X2
i ]

= 3
1− (α1 + β1)

2

1− (α1 + β1)2 − 2α2
1

.

She is always more than three. Consequently, if α1 tends to zero, the energetic elasticity dis-
appears and the value of kurtosis tends to three. Finally, it can be shown that for a GARCH
process kurtosis is directly related to the conditional heteroskedasticity event.
Consider the case of kurtosis associated with unconditional law in a heteroskedasticity Gaus-
sian GARCH process such as vi ∼ N(0, 1).

In this case, the conditional moments of order 2 and 4 of the process are linked

E[X4
i /X̃t−1] = 3(E[X2

i /X̃i−1])
2.

Indeed, we recall that if a centered variable z follows a Gaussian law,
E[z4] = 3(V ar(z))2 = 3(E[z2])2.
If we apply the expectation on both sides of the previous equation, it becomes

E[X4
i ] = E(E[X4

i /X̃i−1]) = 3E
(

[E[X2
i /X̃i−1]]

2
)
,
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3E
(

[E[X2
i /X̃i−1]]

2
)
≥ 3E

(
[E[X2

i /X̃i−1]]
)2

= 3
(
E[X2

i ]
)2
.

The kurtosis can be calculated as follows:

Ku =
E[X4

i ]

E2[X2
i ]

=
3E
(

[E[X2
i /X̃i−1]]

2
)

E2[X2
i ]

= 3
E2[X2

i ]

E2[X2
i ]

+
3

E2[X2
i ]

(E[[E[X2
i /X̃i−1]]

2]− E2[X2
i ])

= 3 +
3

E2[X2
i ]

(E[[E[X2
i /X̃i−1]]

2]− E2[E[X2
i /X̃i−1]])

= 3 + 3
V ar(E[X2

i /X̃i−1])

E[X2
i ]2

> 3.

Kurtosis is therefore linked to a measure of conditional heteroscedasticity.

1.8 Simulate processes
In this section, we explain how to simulate in R processes such as white noise, autoregressive,
moving average, ARIMA and ARCH/GARCH. We will also describe the arima.sim function
and garchSim function those generates respectively ARIMA processes and ARCH/GARCH
processes.

1.8.1 Simulate an autoregressive process
To simulate simply T realizations of an autoregressive process of order p having the parameters
θ1, ..., θp and whose variance of innovations is σ2

ε , we can use the following algorithm:

1. Set p arbitrary real initial values x0, ..., xp−1.

2. Generate i.i.d. innovations (εt)t=1,...,T+T0 .

3. Calculate the values recursively Xt =

p∑
j=1

θjXt−j + εt

4. Eliminate the first T0 values thus generated.

Now, we will write the following command lines:
n = 500
x = rep(0, n)
for(iin3 : n)x[i] = 0.1 ∗ x[i− 1]− 0.7 ∗ x[i− 2] + rnorm(1)
op = par(mfrow = c(3, 1),mar = c(2, 4, 2, 2)+0.1)plot(ts(x), xlab = ””, ylab = ”AR(2)”)
acf(x,main = ””, xlab = ””)pacf(x,main = ””, xlab = ””)par(op)
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Figure 1.8: Simulation of AR(2) process.
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1.8.2 Simulate a MA process
To simulate simply the realizations of a moving average process of order q having the Param-
eters θ1, ..., θp and whose variance of innovations is σ2

ε , we can use the following algorithm:

1. Generate i.i.d. innovations (εt)t=1,...,T+T0 .

2. Calculate the values recursively

Xt =

p∑
j=1

θjεt−j + εt.

Now, will write the following command lines:
n = 500
x = rep(0, n)
epsilon = rnorm(n)
for(iin3 : n)
x[i] = 0.1 ∗ epsilon[i− 1]− 0.7 ∗ epsilon[i− 2] + rnorm(1)
op = par(mfrow = c(3, 1),mar = c(2, 4, 2, 2) + 0.1)
plot(ts(x), xlab = ””, ylab = ”MA(2)”)
acf(x,main = ””, xlab = ””)
pacf(x,main = ””, xlab = ””)
par(op)

40



1.8. SIMULATE PROCESSES

Figure 1.9: Simulation of MA(2) process.

1.8.3 Simulation of an ARIMA process

To directly simulate ARMA (or ARIMA) processes: We will now study the main parameters
to use this function arima.sim to simulate an ARMA process, we need at least three elements:
a model (a list with component ar and/or ma giving the AR and MA coefficients respectively.
Optionally a component order can be used. An empty list offers an ARIMA(0, 0, 0) model,
that is white noise), a number of achievements and a process of innovation.
For example:
n = 500
x = arima.sim(list(ar = c(0.11,−0.2, 0.2)), n)
op = par(mfrow = c(3, 1),mar = c(2, 4, 2, 2) + 0.1)
plot(ts(x), xlab = ””, ylab = ”ARIMA(3, 0, 0)”)
acf(x, xlab = ””,main = ””)pacf(x, xlab = ””,main = ””)
par(op)
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Figure 1.10: Simulation of ARIMA(3,0,0) process.

n = 500
x = arima.sim(list(ma = c(0.9,−0.4, 0.2)), n)
op = par(mfrow = c(3, 1),mar = c(2, 4, 2, 2) + 0.1)
plot(ts(x), xlab = ””, ylab = ”ARIMA(0, 0, 3)”)
acf(x, xlab = ””,main = ””)
pacf(x, xlab = ””,main = ””)
par(op)
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Figure 1.11: Simulation of ARIMA(0,0,3) process.
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n = 500
x = arima.sim(list(order = c(1, 1, 1), ar = 0.7,ma = 0.2), n)
op = par(mfrow = c(3, 1),mar = c(2, 4, 2, 2) + 0.1)
plot(ts(x), xlab = ””, ylab = ”ARIMA(1, 1, 1)”)
acf(x, xlab = ””,main = ””)pacf(x, xlab = ””,main = ””)
par(op)

Figure 1.12: Simulation of ARIMA(1,1,1) process.
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n = 500
x = arima.sim(list(order = c(1, 0, 1), ar = −0.7,ma = −0.2), n)
op = par(mfrow = c(3, 1),mar = c(2, 4, 2, 2) + 0.1)
plot(ts(x), xlab = ””, ylab = ”ARIMA(1, 0, 1)”)
acf(x, xlab = ””,main = ””)
pacf(x, xlab = ””,main = ””)
par(op)

Figure 1.13: Simulation of ARIMA(1,1,1) process.

1.8.4 Simulation of an ARCH/GARCH processes
To simulate ARCH /GARCH models we will use garchSim from fGarch. This package is part
of Rmetrics, cf. Wuertz and Rmetrics Foundation (2010), parallel to S + FinMetrics environ-
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ment of which Zivot and Wang (2006).

Example 6. We simulate a trajectory of an ARCH(1) following

Yi = 4 +Xi.

Xi = vihi,

vi ∼ iidN(0, 1).

h2i = 0.1 + 0.7X2
i−1.

The model to be simulated is defined by garchSpec
require(fGarch)
spec1 = garchSpec(model = list(mu = 4, omega = 0.1, alpha = 0.7, beta = 0))
arch.sim1 = garchSim(extended = TRUE, spec1, n = 500, n.start = 10)

Since in the definition of the model vt is a white noise Gaussian. Consider the simulated se-
ries arch.sim1[,1] (Figure 1.14) and the conditional standard deviation arch.sim1 [,2] (Figure
1.15).
plot(arch.sim1[, 1])
plot(arch.sim1[, 2])

Figure 1.14: Simulated of series from ARCH(1) model.
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Figure 1.15: Simulated of conditional sigma from ARCH(1) model.

Example 7. We simulate 500 observations according to the model

Yi = 2 +Xi.

Xi = vihi.

h2i = 0.01 + 0.7X2
i−1 + 0.5X2

i−2 + 0.3X2
i−3 + 0.1h2t−1.

Now, we will write the following command lines:

spec = garchSpec(model = list(mu = 2, omega = 0.01, alph = c(0.7, 0.5, 0.3), beta =
0.1))
y = garchSim(spec, n = 500, extended = TRUE)
y1 = y[1 : 500, 1]
y2 = y[1 : 500, 2]
plot.ts(y1)
plot.ts(y2)
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Figure 1.16: Simulated of series from GARCH(3,1) model.

Figure 1.17: Simulated of conditional sigma from GARCH(3,1) model.
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Chapter 2

Concentration Inequalities for Sums of
Random Variables, Independent case

The objective of this chapter is to gives a presentation of the famous Bernstein inequality for
the sums of independent and bounded random variables. We will then discuss the inequalities
of hoeffding and Bennett.

2.1 Bernstein’s inequality
The exponential inequality for sums of independent random variables was introduced by Sergei
Bernstein [7]. In probability theory, Bernstein’s inequality gives bounds on the probability that
the sum of random variables deviates from their mean. Extensive studies of this inequality have
been done in various fields such as model selection problem (Baraud, 2010 [2]), stochastic pro-
cesses (Gao, Guillin and Wu 2014[22]). For example, Baraud (2010)[2] proposed a Bernstein
type inequality for suprema of random processes with applications to model selection in non-
Gaussian regression.
These inequalities, which can be primarily based on bounded independent random variables, are
effective gear that can be applied in many areas such as laws of large numbers and asymptotics
of inference problems. The importance of these inequalities have been demonstrated in lots of
research of the asymptotic behavior of sums of independent bounded random variables, such
as the laws (weak and strong) of large numbers and the probability of large deviations. One
element that appears.

Theorem 6. Let X1, ..., Xn be independent bounded random variables such that E[Xj] = 0
and checking |Xj| < b with probability 1 and σ2 = 1

n

∑n
j=1 V ar(Xj), then for all d > 0

P(
1

n

n∑
j=1

Xj ≥ t) ≤ exp

(
− nt2

2σ2 + 2bt/3

)
. (2.1)
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Proof of Theorem 6.

Let Fj =
∞∑
r=2

ηr−2E[Xr
j ]

r!σ2
j

,

where σ2
j = E[X2

j ].

Let Sn =
n∑
j=1

Xj and by chernoff inequality, we have for any η positive

P(Sn ≥ d) = P(Sn ≥ d)

≤ exp(−ηd)E[exp(ηSn)]

≤ exp(−ηd)
n∏
j=1

E[exp(ηXj)],

or

E[exp(ηXj)] ≤ 1 + ηE[Xj] +
∞∑
r=2

ηrE[Xr
j ]

r!
.

Since E[Xj] = 0 we have,

E[exp(ηXj)] ≤ 1 + Fjη
2σ2

j ≤ exp(Fjη
2σ2

j ).

Since expectation of a function is just the Lebesgue integral of the function with respect to
probability measure, we have

E[Xr
j ] =

∫
P

Xr−1
j Xj ≤ (

∫
P

|Xr−1
j |2)1/2(

∫
P

|Xj|2)1/2 ≤ σj(

∫
P

|Xr−1
j |2)1/2,

applying Schwarz’s inequality recursively n times, we obtain

E[Xr
j ] ≤ σ

1+ 1
2
+ 12

2
+...+ 1n−1

2
j (

∫
P

|X(2nr−2n+1−1)
j |)

1
2n

≤ σ
2(1− 1n

2
)

j (

∫
P

|X(2nr−2n+1−1)
j |)

1
2n ,

we know that|Xj| < b. Therefore

E[Xr
j ] ≤ σ

2(1− 1n

2
)

j (b(2
nr−2n+1−1)|)

1
2n ≤ σ

2(1− 1n

2
)

j (b(r−2−
1
2n

)),

taking limit n to infinity we get

E[Xr
j ] ≤ σ2

j b
r−2.

Therefore
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Fj =
∞∑
r=2

ηr−2E[Xr
j ]

r!σ2
j

≤
∞∑
r=2

ηr−2σ2
j b
r−2

r!σ2
j

≤ 1

η2b2

∞∑
r=2

ηrbr

r!

=
1

η2b2
(eηb − 1− ηb).

Therefore

E[Xr
j ] ≤ exp

(
η2σ2

j

(eηb − 1− ηb)
η2b2

)
,

we take σ2 =
σ2
j

n

P(Sn ≥ d) ≤ exp(−ηd) exp

(
η2nσ2 (eηb − 1− ηb)

η2b2

)
,

the real η which minmising the second terme of the preceding inequality is

η =
1

b
log(

db

nσ2
+ 1).

Therefore

P(Sn ≥ d) ≤ exp

(
nσ2

b2
(
db

nσ2
− log(

db

nσ2
+ 1)− db

nσ2
log(

db

nσ2
+ 1))

)
.

Let H(x) = (1 +X) log(1 +X)−X , we get

P(Sn ≥ d) ≤ exp

(
−nσ2

b2
H(

db

nσ2
)

)
.

This is known as the Bennett’s inequality (3.3), We can derive the Bernstien’s inequality by
further bounding the function H(x).
Let G(x) = 3

2
x2

x+3
, H(0) = G(0) = H ′(0) = G′(0) = 0.

H ′′(x) = 1
x+1

and G′′(x) = 27
(x+3)3

.

Therefore H ′′(0) ≥ G′′(0) and further if fn(x) of a function f represents the nth derivative
of the function then we have Hn(0) ≥ Gn(0) fo all (n ≥ 2). Consequently, according to the
theorem Taylor’s we have

H(x) ≥ G(x)∀x ≥ 0.

Therefore

P(Sn ≥ d) ≤ exp

(
−nσ2

b2
G(

db

nσ2
)

)
≤ exp

(
−d2

2(db+ 3nσ2)

)
,
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now let d = nt. Therefore

P(
n∑
j=1

Xj ≥ nt) ≤ exp

(
−t2n2

2(ntb+ 3nσ2)

)
≤ exp

(
− nt2

2σ2 + 2bt/3

)
.

2.2 Hoeffding’s inequality
Hoeffding’s inequality [23] is an inequality of concentration concerning the sums of indepen-
dent and bounded random variables.
The Hoeffding’s inequality offers an exponential bound on the probability of the deviation
among the average of n independent bounded random variables and its mean. The study of
this inequality has caused interesting applications in probability theory and statistics (Boucher,
2009 [10]; Yao and Jiang, 2012 [45]).
later on, in 2014, Hoeffding’s inequalities for geometrically ergodic Markov chains on general
state space have been proved by way of Miasojedow (2014)[29]. Recently, Tang (2007) proved
an extension of Hoeffding’s inequality in a category of ergodic time series. additionally, new
extensions of this inequality for panel data have been proposed by Yao and Jiang (2012)[45].

Lemma 1. (Hoeffding lemma). Let X be a bounded random variable with a ≤ X ≤ b. Then
for any real ω,

E[exp(ω(X − E[X]))] ≤ exp

(
ω2(b− a)2

8

)
. (2.2)

Proof 5. Let X ′ be an independent copy of X with the same distribution, in order that
a ≤ X ′ ≤ b and E[X ′] = E[X], however X and X ′ are independent. Then

EX [exp(ω(X − EX [X]))] = EX [exp(ω(X − EX′ [X ′]))] ≤ EX [EX′ exp(ω(X −X ′))]

(by Jensen’s inequality).
Now, we have

E[exp(ω(X − E[X]))] ≤ E[exp(ω(X −X ′))].

We note a curious fact: the difference X −X ′ is symmetric about zero, so that if K ∈ {−1, 1}
be a random sign variable, then K(X-X ′) has precisely the same distribution as X − X ′, we
have

EX,X′ [exp(ω(X −X ′))] = EX,X′,K [exp(ωK(X −X ′))]
= EX,X′ [EK [exp(ωK(X −X ′)) \X,X ′]].

Use inequality E[eωK ] ≤ exp(ω
2

2
) for all ω ∈ R on the moment producing function of the
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random sign, which offers that

EK [exp(ωK(X −X ′)) \X,X ′] ≤ exp

(
ω2(X −X ′)2

2

)
.

By assumption we have |X −X ′| ≤ (b− a), so (X −X ′)2 ≤ (b− a)2.

EX,X′ [exp(ω(X −X ′))] ≤ exp

(
ω2(b− a)2

2

)
.

Theorem 7. (Hoeffding’s inequality) Let X1, ..., Xn be independent bounded random variables
such that a ≤ Xj ≤ b for all 1 ≤ j ≤ n where −∞ < a ≤ b <∞. Then

P

(
1

n

n∑
j=1

(Xj − E[Xj]) ≥ t

)
≤ exp

(
− 2nt2

(b− a)2

)
,

and

P

(
1

n

n∑
j=1

(Xj − E[Xj]) ≤ −t

)
≤ exp

(
− 2nt2

(b− a)2

)
,

for all t ≥ 0.

Proof of Theorem 7.
Using the Hoeffding lemma, and the Chernoff inequality, we have

P

(
1
n

n∑
j=1

(Xj − E[Xj]) ≥ t

)
≤ P

(
n∑
j=1

(Xj − E[Xj]) ≥ nt

)

≤ E

[(
exp(ω

n∑
j=1

(Xj − E[Xj])

)]
e−ωnt

=

(
n∏
j=1

E
[
eω(Xj−E[Xj ])

])
e−ωnt

≤

 n∏
j=1

e

ω2(b− a)2

8

 e−ωnt.

Minimise the second term of the preceding inequality for ω ≥ 0, we have

P

(
1

n

n∑
j=1

(Xj − E[Xj]) ≥ t

)
≤ min exp(

nω2(b− a)2

8
− ωnt) = exp(− 2nt2

(b− a)2
).
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2.3 Bennett inequality
Bennett’s inequality presents an upper bound on the probability that the sum of independent
random variables deviates from its expected value.

Theorem 8. Let X1, ..., Xn be a finite sequence of independent random variables, and assume
that E[Xj] = 0 and E[X2

j ] = σ2
i , |Xj| < b almost surely. Then, for any 0 ≤ d < nt

P(
n∑
j=0

Xj ≥ d) ≤ exp

(
−nσ

2

b2
H(

db

nσ2
)

)
, (2.3)

where H(X) = (1 +X) log(1 +X)−X , nσ2 =
n∑
j=1

σ2
i .

Proof of Theorem 8.
see the proof of this theorem in the proof of theorem of inequality of Bernstein.

There are some efforts seeking to refine the Bennett’s inequality. In Fan (2015a) [19], a
missing factor of order 1/t is added to Bennett’s inequality underneath the Bernstein’s condi-
tion, in Pinelis (2014)[31], below the condition imposed to the third order moments, the author
developed a pointy improvement to Bennett’s inequality. However, they did not recall the vari-
ations a few of the variances of the random variables.
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Chapter 3

Probability Tail for Extended Negatively
Dependent Random Variables of Partial
Sums and Application to AR(1) Model
Generated By END Errors

Abstract 1. The exponential probability inequalities have been important tools in probability
and statistics. In this paper, we establish exponential inequalities for END random variables
of partial sums which enable us to build a confidence interval for the parameter of the first-
order autoregressive process. In addition, Using these inequalities, We prove that the estimator
complete converge to the unknown parameter θ.

3.1 Introduction
The autoregressive process takes an important part in predicting problems leading to decision
making. The estimation of the unknown parameter θ of the order 1 autoregressive process are
obtained by least square method.
Many research articles and text books have contributed to the expansion of linear and nonlinear
autoregressive models (Belguerna and Benaissa [3]; Dahmani and Tari [16]; Galtchouk and
Konev [21]).
In their fundamental work, (Chan and Wei [14]) they evaluated the limit in law of the least
squares estimator in this instance the errors constitute a sequence of martingale differences.
The exponential inequalities are obtained by (Bondarev [9]) that have been used to construct a
confidence interval for the unknown parameter θ0 in the equation

dx

dt
= θ0f(t, x(t)) + ζ ′(t), x(0) = ζ(0) = 0

where ζ ′ is a Gaussian noise with zero mean and known correlation function.
The study of The probability inequalities for extended negatively dependent random variables
are derived originally by (Fakoor and Azarnoosh [18], Asadian and Fakoor [1]).
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In this work we create a new exponential inequalities of Bernstein fréchet type for the pa-
rameter of the order 1 autoregressive process (AR(1)) in case of noise extended negatively
dependent.
These inequality will allow us to build a confidence interval for this parameter and to show the
complete convergence for this estimator.

3.2 Optimal Control
We will remember the definition of extended negatively dependent (END) sequences, and some
lemmas.

Definition 17. (Liu[27]). a sequence {ζn, n ≥ 1} of random variables is said END if there
exists a constant M > 0 such that

P(ζ1 > ε1, ζ2 > ε2, ..., ζn > εn) ≤M
n∏
i=1

P(ζi > εi) (3.1)

and

P(ζ1 ≤ ε1, ζ2 ≤ ε2, ..., ζn ≤ εn) ≤M
n∏
i=1

P(ζi ≤ εi) (3.2)

if for all real numbers ε1, ε2, ..., εn.

The extended negative dependence was introduced by (Liu [27]), it was found on some of the
applications of the sequence END. (Liu [28]) examined the necessary and sufficient conditions
of moderate deviations for dependent random variables with heavy tails. It can be clearly seen
that NOD random variables and independent random variables are END. Also (Joag-Dev and
Proschan [25]) have pointed out that negatively associeted (NA) random variables are nega-
tively orthoant dependent (NOD), consequently NA random variables are END. The study of a
limit patterns of END sequence is of interest.

Lemma 2. (Liu[28]). Let X1, X2, ..., Xn be the random variables END, then

(i) If h1, h2, ..., hn are all non decreasing (or non increasing) function, then random variables
h1(X1), h2(X2), ..., hn(Xn) are END.

(ii) For every n ≥ 1, there is a positive constant M , de note X+ = max{0, X} such that

E(
n∏
j=1

X+
j ) ≤M

n∏
j=1

E(X+
j ). (3.3)

Lemma 3. if {Xn, n ≥ 1} be an END sequence and t > 0 then for all n ≥ 1, there is a positive
constant M such that
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E

[
n∏
j=1

exp(tXj)

]
≤M

n∏
j=1

E [exp(tXj)] . (3.4)

Lemma 4. (Bentkus [5]). For g ≥ 0 and η̇ ≥ 1 we have

1

1 + η̇
exp(−gη̇) +

η̇

1 + η̇
exp(g) ≤ exp(

g2η̇

2
). (3.5)

Throughout the paper, let random variables X1, X2, ..., Xn defined on a fixed probability
space (Ω,F ,P). Let M and C and L be positive constants, which can be different in various
places.

3.2.1 Model and hypotheses
We propose the hypothesis that we use to be able to state exactly our result.

Let us consider the order 1 autoregressive process AR(1) defined by

Xk = θXk−1 + ζk, (3.6)

where θ is the autoregressive parameter with |θ| < 1, and where {ζk, k ≥ 0} is a sequence of
identically distributed END random variables and finite variance, with ζ0 = X0 = 0.

We can estimate the parameter θ by the method of least squares, and the estimator θn given,
for all n ≥ 1, by

θn =

n∑
k=1

Xk−1Xk

n∑
k=1

X2
k−1

, (3.7)

and

θn − θ =

n∑
k=1

Xk−1ζk

n∑
k=1

X2
k−1

. (3.8)
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We introduce now the following hypothese:

H1: We assume that the sequences (ζn)n and (Xn−1)n are bounded. Then there exist positive
constants L and C such that
|Xn−1| ≤ L, |ζn| ≤ C.

H2: Suppose that E(ζk) = 0, for each k ≥ 1.

H3: Assume that E(φ2(ζ1, ..., ζn)) ≤ B2 < +∞ and E(exp(ζ41 )) ≤ 1

3(n+1)
, n ∈ N∗.

3.3 Main Result
Theorem 9. Under hypotheses (H1), (H2) and (H3), for any ε̃ < log(3

2
) positive and for W

rather large, we have

P(
√
n|θn − θ| > W ) ≤M exp(−

√
nWε̃B1) +B2M

√
3

2
exp

(
−n

2

2
(log(

3

2
)− 1

n
ε̃)

)
, (3.9)

where

B1 =
1

2CL
arcsinh

(
C
√
nWε̃

2LDn

)
, B2 is a positive constant.

Proof of Theorem 9.

In line with the equality (3.8), we have

P(
√
n|θn − θ| > W ) = P


∣∣∣∣∣∣∣∣∣∣

1√
n

n∑
k=1

Xk−1ζk

1

n

n∑
k=1

X2
k−1

∣∣∣∣∣∣∣∣∣∣
> W


≤ P

(
| 1√
n

n∑
k=1

Xk−1ζk| >
W

n

n∑
k=1

X2
k−1

)
.

By virtue of the probability properties, we have for any ε̃ positive

P(
√
n|θn − θ| > W ) ≤ P

(
| 1√
n

n∑
k=1

Xk−1ζk| > Wε̃

)
+ P

(
1

n

n∑
k=1

X2
k−1 ≤ ε̃

)
. (3.10)

Let us now bound the first probability of the right hand-side of the inequality (3.10). Taking the
chernoff inequality, we have for any λ positive
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P

(
| 1√
n

n∑
k=1

Xk−1ζk| > Wε̃

)
≤ P

(
L√
n

n∑
k=1

|ζk| > Wε̃

)

≤ P

(
L

n∑
k=1

|ζk| >
√
nWε̃

)

≤ P

(
n∑

k=1

|ζk| >
√
n

L
Wε̃

)
≤ exp(−λ

√
nWε̃
L

)E(exp(λSn)),

where Sn =
n∑
k=1

ζ̃k, ζ̃k = |ζk| and Dn =
n∑
k=1

E(ζ2k) for each n ≥ 1.

Thus, for any λ > 0, k = 1, 2, ..., n and by the same argument in proof of theorem 1 in
Pgokhorov [30] we have

E(exp(λζk)− 1) = E(exp(λζk)− λζk − 1) ≤ E(exp(λζk) + exp(−λζk)− 2) = 2E(coshλζk − 1)

= 2E(coshλζ̃k − 1) ≤ E(λζ̃k sinhλζ̃k)

= E(λ2ζ2k
sinhλζ̃k

λζ̃k
) ≤ λE(ζ2k)

C
sinhλC.

Using z ≤ exp(z − 1) for all z ∈ R, We can write by Lemma 2. that

E(
n∏
k=1

exp(λζk)) ≤M
n∏
k=1

E(exp(λζk)) ≤M
n∏
k=1

exp(E(exp(λζk)−1)) ≤M exp(λDn
sinhλC

C
),

where C is positive constant.

We obtain

E(exp(λSn)) ≤M exp(
λDn

C
sinhλC).

The inequality

P

(
| 1√
n

n∑
k=1

Xk−1ζk| > Wε̃

)
≤ M exp

(
−λ
√
nWε̃

L
+
λDn

C
sinhλC

)
≤ M exp

(
λ(
Dn

C
sinhλC −

√
nW

L
ε̃)

)
.

Choosing λ = 1
C

arcsinh
(
C
√
nWε̃

2DnL

)
and we can see that Dn

sinhλC

C
=

√
nWε̃

2L
.

Then

P

(
| 1√
n

n∑
k=1

Xk−1ζk| > Wε̃

)
≤M exp

(
− 1

2C
arcsinh

(
C
√
nWε̃

2DnL

) √
nWε̃

L

)
.
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Let us notice that for W rather large.

(
1

2CL
arcsinh

(
C
√
nWε̃

2LDn

))
is a positive, finite and non nulle.

Therefore

P

(
| 1√
n

n∑
k=1

Xk−1ζk| > Wε̃

)
≤M exp(−

√
nWε̃B1), (3.11)

where B1 =
1

2CL
arcsinh

(
C
√
nWε̃

2LDn

)
is a positive constant.

Now, we limite the second probability of the right hand-side of the expression (3.10).

Acoording to chernoff inequality , for any t > 0

P(
1

n

n∑
k=1

X2
k−1 ≤ ε̃) ≤ exp(tε̃)E

(
exp(− t

n

n∑
k=1

X2
k−1)

)
. (3.12)

Let g be a bounded and measurable function, defined on Rn and its values taken in R and let T
be a bijective application changing the vector (ζ1, ζ2, ..., ζn) on the vector (X1, X2, ..., Xn), we
have then Guikhman and Skorokhod [15].∫

Rn
g(x)µx(dx) =

∫
Rn
g(T (x))µζ(dx).

where µX measure generated by (X1, X2, ..., Xn) and µζ is a measure generated by (ζ1, ζ2, ..., ζn)
Changing variables by letting T−1Xk = ζk, we obtain∫

Rn
g(x)µx(dx) =

∫
Rn
g(x)φ(x)

∣∣∣∣DT−1(x)

Dx

∣∣∣∣µζ(dx),

where DT−1(x)
Dx

is the Jacobian of the inverse application T−1.
Using the definition of autoregressive process of first order, we have

ζ1 = X1

ζ2 = X2 − θX1

·
·
·

ζn = Xn − θXn−1.
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In accordance with the properties of the absolute continuity of the measure µζ when compared
with the measure generated by X1, ..., Xn, we have

E

(
exp(− t

n

n∑
k=1

X2
k−1)

)
= E

(
φ(ζ1, ζ2, ..., ζn) exp(− t

n

n∑
k=1

ζ2k)

)
, (3.13)

where φ as a density of ζ = (ζ1, ζ2, ..., ζn).
We apply the inequality of the Cauchy-Shwarz in the last equation and by Lemma 2., we write

E

(
exp(− t

n

n∑
k=1

X2
k−1)

)
= E (φ2(ζ1, ζ2, ..., ζn))

1/2
E

(
exp(−2t

n

n−1∑
k=1

ζ2k)

)1/2

≤ B2M
n−1∏
k=1

E

(
exp(−2t

n
ζ2k)

)1/2

= B2M
n−1∏
k=1

E

(
(1 +

2t

n
)

1

1 + 2t
n

exp(−2t

n
ζ2k)

)1/2

.

Accorging to lemma 3., we obtain

E

(
exp(− t

n

n∑
k=1

X2
k−1)

)
≤ B2M

(
n−1∏
k=1

(1 +
2t

n
)E

(
exp(

2t

n
ζ4k)−

2t
n

1 + 2t
n

exp(ζ2k)

))1/2

= B2M
(
1 + 2t

n

)n−1
2

(
n−1∏
k=1

E

(
exp(

2t

n
ζ4k)−

2t
n

1 + 2t
n

exp(ζ2k)

))1/2

.

Choosing t = n
2
,

E

(
exp(− t

n

n∑
k=1

X2
k−1)

)
≤ B2M2

n−1
2

(
n−1∏
k=1

(
E(exp(ζ4k)− 1

2
exp(ζ2k))

))1/2

.

Now, we apply Jensen’s inequality to the term on the right

E

(
exp(− t

n

n∑
k=1

X2
k−1)

)
≤ B2M2(n−1)/2

(
n−1∏
k=1

(
E(exp(ζ4k))− 1

2
exp(E(ζ2k))

))1/2

≤ B2M2(n2−1)/2(E(exp(ζ41 )))(n−1)/2

≤ B2M
(
2
3

)(n2−1)/2
= B2M

(
3
2

)1/2
exp(−n2

2
log(3

2
)).

(3.14)
Therefore
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P(
1

n

n∑
k=1

X2
k−1 ≤ ε̃) ≤ B2M

√
3

2
exp(−n

2

2
(log

(
3

2

)
− 1

n
ε̃)). (3.15)

Considering the relations (3.11) and (3.15) together and taking in to account the expression
(3.10) we obtain the result.

Corollary 1. The sequence (θn)n∈N defined in (3.7) converges completely to the parameter θ of
the autoregressive process of order 1.

Proof 6. The complete convergence follows from the inequalities (3.10).

Indeed, applying Linearity property (
+∞∑
n=1

Vn =
+∞∑
n=1

(Un + Zn) =
+∞∑
n=1

Un +
+∞∑
n=1

Zn) on the pos-

itive réel term sequences Vn and using the integral test criteria for
+∞∑
n=1

Un and the d’alembert

rule for
+∞∑
n=1

Zn, where the general term is defined by

Vn = M exp(−
√
nWε̃B1) +MB2

√
3

2
exp(
−n2

2
(log(

3

2
)− 1

n
ε̃)).

Its follows that
+∞∑
n=1

P(
√
n|θn − θ| > W ) < +∞.

which yields to the result.

Remark 4. The inequalities (3.10) give us the possibility to construct a confidence interval for
the parameter θ of the first order autoregressive process.
For large W , such as W = ε̃

√
n its follows that

lim
n→+∞

Vn = lim
n→+∞

(
M exp(−nε̃2B1) +MB2

√
3

2
exp(
−n2

2
(log(

3

2
)− 1

n
ε̃))

)
= 0,

where B1 = 1
2CL

arcsinh Cnε̃2

2LDn
> 0.

Which means, for a given level ω, we can found a natural integer nω such that

∀n ≥ nω =⇒ Vn ≤ ω.

Consequently
P(|θnω − θ| ≤ ε̃) ≥ 1− ω.

Which means that the parameter of the order 1 autoregressive process belongs to the inclusive
interval of center θnω and radius ε̃ with a probability greater or equal to 1− ω.
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3.4 Conclusion

Our paper consists in establishing new exponential inequalities of Bernstein Fréchet type for
END that allowed us to construct a confidence interval for the parameter of the order 1 autore-
gressive process. Using these inequalities, we demonstrated the estimator complete converge to
the unknown parameter θ.
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Chapter 4

The Complete Convergence for the
Parameter Estimator of the First-Order
Autoregressive Process Created by WOD
Errors

Abstract 2. The autoregressive process play an important role in predicting problems leading
to decision making. In practise, to estimate the unknown parameter ϑ of the autoregressive
model we use the least square method. We already saw that the least squares estimator ϑn
complete converge to unknown parameter ϑ of the first-order autoregressive process generated
by extended negatively dependent errors. In this paper, we examine the complete convergence
of the estimator ϑn also under widely orthant dependent errors and we construct exponential
inequalities of the coefficient of 1st order autoregressive model which enable us to build a
confidence interval.

4.1 Inroduction
Analysis regarding autoregressive model makes up one of fundamental problems carried by the
statistical analysis of time series. Generally, the study of autoregressive models can facilitate the
development of forecasting, establish controls and lead to the reduction of undesirable changes.
The expansion of linear and nonlinear autoregressive models have investigated by many au-
thors(Dahmani and Tari [16], Chebbab [13]).
(Chan and Wei [14]) evaluated the limit with law of the least squares estimator when the errors
represent a sequence of martingale difference. The exponential inequalities has been used to
construct a confidence interval for the unknown parameter ϑ0 the first interesting results, about
this subject, obtained by (Bondarev [9]) in the equation

dx

dt
= ϑ0f(t, x(t)) + ε′(t), x(0) = ε(0) = 0

where ε′ is a Gaussian noise with zero mean and known correlation function.
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In several statistical applications, the random variables are supposed to be independent. But
which are often hypothetical is very unrealistic. Thus several statisticians extended this case to
different dependence structures such as a weak dependence structure, i.e., WOD structure. The
study of the limiting behavior of widely orthant dependent (WOD) random variables is of great
importance, there are a lot of results checking the WOD random variables for example (Shen
[35]) constructed the Bernstein-type inequality for widely dependent sequence and applied to
nonparametric regression models, (Wang, Wu and Rosalsky [38]) obtained the complete conver-
gence for arrays of rowwise widely orthant dependent random variables and their applications.
In this work, we establish Bernstein-Fréchet type Inequality for the parameter of the autore-
gressive process of order 1 under widely orthant dependent errors. using these inequalities, we
construct a confidence interval for this parameter and we prove that the estimator of the least
squares complete convergence to the parameter of AR(1).

4.2 Optimal Control
The order 1 autoregressive process AR(1) defined by

Xj = ϑXj−1 + ζj, ζ0 = X0 = 0 (4.1)

where {ζj, j ≥ 0} is a sequence of identically distributed WOD random variables, with zero
mean and finite variance, where ϑ is a parameter with |θ| < 1.
By the least square method, we can get the estimator of ϑ, such that the estimator ϑn defined
for n ≥ 1 by

ϑn =

n∑
j=1

Xj−1Xj

n∑
j=1

X2
j−1

, (4.2)

and

ϑn − ϑ =

n∑
j=1

Xj−1ζj

n∑
j=1

X2
j−1

. (4.3)

We present now the definition of widely orthant dependent (WOD) sequences, and lemmas.
The notion of WOD sequence was presented by (Wang, Wang and Gao [37]) as follows.

Definition 18. The random variables ζ1, ζ2, ..., ζn are said to be
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(i) widely upper orthant dependent (WUOD), if there is a sequence of positive numbers
{gU(n), n ≥ 1}. Then for every n ≥ 1 and for any εj ∈ (−∞,∞), 1 ≤ j ≤ n

P(ζ1 > ε1, ζ2 > ε2, ..., ζn > εn) ≤ gU(n)
n∏
j=1

P (ζj > εj). (4.4)

(ii) widely lower orthant dependent (WLOD), if there is a sequence of positive numbers
{gL(n), n ≥ 1}. Then, for every n ≥ 1 and for any εj ∈ (−∞,∞), 1 ≤ j ≤ n

P(ζ1 ≤ ε1, ζ2 ≤ ε2, ..., ζn ≤ εn) ≤ gL(n)
n∏
j=1

P (ζj ≤ εj). (4.5)

(iii) widely orthant dependent (WOD) if both (4.4) and (4.5) hold,
where gU(n) and gL(n), n ≥ 1, these are called dominating coefficients and denote
g(n) = max{gU(n), gL(n)}.

Remember that when gL(n) = gU(n) = M for a constant M > 0, then the random variables
sequence {ζn, n ≥ 1} are END (see, e.g., Liu [27]).

When gL(n) = gU(n) = 1, for all n ≥ 1, then the random variables sequence {ζn, n ≥ 1}
are NOD (see, e.g., Joag-Dev and Proschan [25]; Lehmann [26]).

Lemma 5. (Wang,Wang and Gao[37])

1. Let random variables ζ1, ζ2, ..., ζn be WLOD(WUOD). If φ1, φ2, ..., φn are nondecreasing,
then φ1(ζ1), φ1(ζ1), ..., φn(ζn) are WLOD (WUOD).
If φ1, φ2, ..., φn are nonincreasing, then φ1(ζ1), φ1(ζ1), ..., φn(ζn) are WUOD (WLOD).

2. If random variables ζ1, ζ2, ..., ζn are nonnegative and WUOD, then for every n ≥ 1

E

[
n∏
j=1

ζj

]
≤ gU(n)

n∏
j=1

E [ζj] . (4.6)

Particularly, if random variables ζ1, ζ2, ..., ζn are WUOD, then for every n ≥ 1 and any
t > 0

E

[
exp(t

n∑
j=1

ζj)

]
≤ gU(n)

n∏
j=1

E [exp(tζj)] . (4.7)
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By the Lemma 5., we can find the following Corollary immediately.

Corollary 2. Let random variables {ζn, n ≥ 1} an WOD sequence

1. Let random variables ζ1, ζ2, ..., ζn be WOD. If φ1, φ2, ..., φn are all nondecreasing (or
nonincreasing) function, then φ1(ζ1), φ2(ζ2), ..., φn(ζn) are WOD.

2. If {ζn, n ≥ 1} are WOD random variable, then for each n ≥ 1 and any t ∈ R

E

[
exp(t

n∑
j=1

ζj)

]
≤ g(n)

n∏
j=1

E [exp(tζj)] . (4.8)

4.3 Hypotheses

Let us present now the following hypotheses:

H1: We assume that the sequences {ζn, n ≥ 0} and {Xn−1, n ≥ 1} are bounded. Then there
exist a constants R > 0 and K > 0 such that |Xn−1| ≤ R, |ζn| ≤ K.

H2: Assume that
lim

n→+∞
g(n)e−sn

r

= 0, (4.9)

where s, r are positive finite constants.

4.4 Main Result

Theorem 10. Under hypothese (H1), for any positive ε̃ < Q2 and for D rather large, we have
for any n > 0

P(
√
n|ϑn − ϑ| > D) ≤ 2g(n) exp(−

√
nDε̃Q1) + exp(−n(ε̃−Q2)

2

2Q3

), (4.10)

where Q1 =

√
nDε̃

4R2A+ 2RK
√
nDε̃

, Q2 = EX2
j−1 <∞, Q3 = EX4

j−1 <∞.

Proof of Theorem 10.

By the equality (4.3), we have
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P(
√
n|ϑn − ϑ| > D) = P


∣∣∣∣∣∣∣∣∣∣

1√
n

n∑
j=1

Xj−1ζj

1

n

n∑
j=1

X2
j−1

∣∣∣∣∣∣∣∣∣∣
> D


≤ P

(
| 1√
n

n∑
j=1

Xj−1ζj| >
D

n

n∑
j=1

X2
j−1

)
According to the probability properties, we obtain that for any ε̃ > 0

P(
√
n|ϑn − ϑ| > D) ≤ P

(
| 1√
n

n∑
j=1

Xj−1ζj| > Dε̃

)
+ P

(
1

n

n∑
j=1

X2
j−1 ≤ ε̃

)
. (4.11)

We take

I1 = P

(
| 1√

n

n∑
j=1

Xj−1ζj| > Dε̃

)
and I2 = P

(
1
n

n∑
j=1

X2
j−1 ≤ ε̃

)
.

For any 0 < z < 1
K

clearly, |zζj| ≤ 1. Hence By Taylor’s series, we have for j = 1, ..., n and
l ≥ 2,

exp(zζj) = 1 + zζj + z2ζ2j

+∞∑
l=2

1

l!
(zζj)

l−2

≤ 1 + zζj + z2ζ2j

+∞∑
l=2

1

l!

≤ 1 + zζj + z2ζ2j .

(4.12)

Therefore, by the inequality 1 + x ≤ ex for x ∈ R, we can write that

E[exp(zζj)] = 1 + z2Eζ2j ≤ exp(z2Eζ2j ). (4.13)

By Chernoff inequality, Corollary 2., (4.13), we have

P

(
1√
n

n∑
j=1

Xj−1ζj > Dε̃

)
≤ P

(
n∑

j=1

ζj >

√
nDε̃

R

)

≤ exp(
−z
√
nDε̃

R
)E

[
exp(z

n∑
j=1

ζj)

]

≤ g(n) exp(
−z
√
nDε̃

R
)

n∏
j=1

E [exp(zζj)]

≤ g(n) exp(
−z
√
nDε̃

R
+ z2A),

(4.14)

where A =
∞∑
j=1

Eζ2j <∞ .

Taking z =

√
nDε̃

2RA+K
√
nDε̃

, then
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P

(
1√
n

n∑
j=1

Xj−1ζj > Dε̃

)
≤ g(n) exp(− (

√
nDε̃)2

4R2A+ 2RK
√
nDε̃

). (4.15)

Now, we replace ζj by −ζj in (4.13), we obtain

P

(
1√
n

n∑
j=1

Xj−1ζj < −Dε̃

)
≤ P

(
− 1√

n

n∑
j=1

Xj−1ζj > Dε̃

)
≤ g(n) exp(− (

√
nDε̃)2

4R2A+ 2RK
√
nDε̃

).

(4.16)

By (4.15) and (4.16), we can get that

P

(
| 1√

n

n∑
j=1

Xj−1ζj| > Dε̃

)
= P

(
1√
n

n∑
j=1

Xj−1ζj > Dε̃

)
+ P

(
1√
n

n∑
j=1

Xj−1ζj < −Dε̃

)
≤ 2g(n) exp(−

√
nDε̃Q1),

(4.17)

where Q1 =

√
nDε̃

4R2A+ 2RK
√
nDε̃

is a positive constant does not depend on n.

Now, we limite the probability I2. Using the Markov Inequality we have for any ω > 0 and
for j = 1, ..., n

I2 = P

(
1
n

n∑
j=1

X2
j−1 ≤ ε̃

)
≤ exp(ωnε̃)E

[
exp(−ω

n∑
j=1

X2
j−1)

]

≤ exp(ωnε̃)
n∏
j=1

E
[
exp(−ωX2

j−1)
]
.

We take the inequality

exp(−x) ≤ 1− x+
1

2
x2, x ≥ 0. (4.18)

To show this let the function

f(x) = ln(1− x+
1

2
x2) + x,

we should prove that f(x) ≥ 0 for every x ≥ 0.
Take the derivative

∂f(x)

∂x
=

x2

2(1− x+ 1
2
x2)

.
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Therefore, f is strictly increasing on R+.
By (4.18) and the inequality 1 + x ≤ exp(x) for x ∈ R, we can write that

E
[
exp(−ωX2

j−1)
]
≤ 1− ωEX2

j−1 +
ω2

2
EX4

j−1

≤ exp(−ωEX2
j−1 +

ω2

2
EX4

j−1),
(4.19)

where Q2 = EX2
j−1 < +∞, Q3 = EX4

j−1 < +∞, we have

P

(
1

n

n∑
j=1

X2
j−1 ≤ ε̃

)
≤ exp(ωnε̃− nωQ2 +

nω2

2
Q3).

Taking ω =
−(ε̃−Q2)

Q3

, then

P

(
1

n

n∑
j=1

X2
j−1 ≤ ε̃

)
≤ exp(−n(ε̃−Q2)

2

2Q3

). (4.20)

The desired result (4.11) follows by (4.17) and (4.20) immediately.

Corollary 3. The sequence (ϑn)n∈N defined in (4.2) converge complete to the parameter ϑ of
the order 1 autoregressive process.

Proof 7. The complete convergence follows from (4.10). Indeed, using the convergence of serie
and the equation (4.9) on the positive réel term sequences Wn where the general term is defined
by

Wn = 2g(n) exp(−
√
nDε̃Q1) + exp(−n(ε̃−Q2)

2

2Q3

),

it follows that
+∞∑
n=1

P(
√
n|ϑn − ϑ| > D) ≤

+∞∑
n=1

2g(n) exp(−
√
nDε̃Q1) +

+∞∑
n=1

exp(−n(ε̃−Q2)
2

2Q3

)

≤ C

+∞∑
n=1

exp(−
√
nη) +

+∞∑
n=1

exp(−n(ε̃−Q2)
2

2Q3

) <∞.

which gives the result. Here constant C is positive not depending on n and η > 0.

Remark 5. the inequalities (4.10) allow us to build a confidence interval for the parameter ϑn
of the order 1 autoregressive process. For large D, such that D = ε̃

√
n and the equation (4.9),

we have

lim
n→+∞

(
2g(n) exp(−nε̃2Q1) + exp(−n(ε̃−Q2)

2

2Q3

)

)
= 0.

which means, for a given level α, we can find a naturel integer nα such that

∀n ≥ nα =⇒ Wn ≤ α.
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Consequently,
P(|ϑnα − ϑ| ≤ ε̃) ≥ 1− α.

Meaning that the that the parameter ϑ of the 1st order autoregressive process belongs to the
inclusive interval of center ϑnα and radius ε̃ with a probability greater or equal to 1− α.
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Chapter 5

Complete convergence and Maximal
inequalities for product sums of WOD
sequences

Abstract 3. in this paper, we first examine a complete convergence for product sums of widely
orthant dependent (WOD) sequence, and we study the moment inequalities of Rosenthal-type,
for the maximum of sums of products of WOD sequence of random variables. We can general-
ize the results we have obtained on some dependent random variables.

5.1 Introduction
The notion of complete convergence was presented by (Hsu and Robbins [24]) as follows. The
sequence of random variables (Vn)n≥1 converges completly to the constant ϑ. Then for all
ζ > 0,

∞∑
n=1

P(|Vn − ϑ| > ζ) <∞.

(Hsu, P. and Robbins[24]) has shown if the variance of the summands is finite, so the sequence
of arithmetic means of random variables independent identically distributed converges com-
pletely to the mathematical expectation.

Suppose (Yj)j≥1 is a WOD sequence of random variables, denote

S̃n =
∑

1≤j1<...<jm≤n

m∏
l=1

Yjl .

Many researchers have strived the product sums in the last years. In 1998, Gadidov studied
the moment inequality for product sums of sequences of independent identically distributed
random variables. (Qui and Chen [33]) obtained the complete convergence for product sums of
extended negatively dependent sequence.
In this work, we will examine the complete convergence for the maximum of product sums and
the moment inequality of rosenthal type for product sums, in the case widely orthant dependent.
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5.2. OPTIMAL CONTROL

5.2 Optimal Control
We will recall the definition of widely orthant dependent (WOD) sequences, and few lemmas.

Proposition 5. (Gadidov [20])(Rosenthal-type inequality for sums of products).
Let q ≥ 2, m be a positive integer and (Yj)j≥1 a sequences of independent identically distributed
symmetric random variables, Then

E

∣∣∣∣ max
m≤k≤n

|S̃k|
∣∣∣∣q ≤ (nq/2(E|Y |2)q/2 + nE|Y |q

)m
.

The notion of WOD sequence was given by (Wang, Wang and Gao [37]) as follows.

Definition 19. The sequence (Yn)n≥1 of random variables are said widely upper orthant de-
pendent (WUOD), if there is a sequence {gU(n), n ≥ 1} of finite real numbers where for each
n ≥ 1 and for any yj ∈ (−∞,∞), 1 ≤ j ≤ n

P(Y1 > y1, Y2 > y2, ..., Yn > yn) ≤ gU(n)
n∏
j=1

P (Yj > yj).

The sequence (Yn)n≥1 of random variables are said widely lower orthant dependent (WLOD),
if there is a sequence {gL(n), n ≥ 1} of finite real numbers where for each n ≥ 1 and for any
yj ∈ (−∞,∞), 1 ≤ j ≤ n

P(Y1 ≤ y1, Y2 ≤ y2, ..., Yn ≤ yn) ≤ gL(n)
n∏
j=1

P (Yj ≤ yj).

The sequence (Yn)n≥1 of random variables are said widely orthant dependent (WOD) if
(Yn)n≥1 are both WUOD and WLOD, with gU(n) and gL(n) for any n ≥ 1, these are known as
dominating coefficients.
We call random variables {Ynj : j = 1..., n;n ≥ 1} array of rowwise WOD, if for each n ≥ 1,
the sequence {Ynj : i = 1, ..., n} be WOD random variables.

Remember that if gL(n) = gU(n) = M for a positive constant M , then the random vari-
ables (Yn)n≥1 are END which were presented by (Liu [27]). There are plenty of research paper
and textbooks have investigated the END random variables(Qui and Chen [33]; Wu, Wang, Hu
and Volodin[43]; Chebbab [13]).

If gL(n) = gU(n) = 1, for all n ≥ 1, then the random variables (Yn)n≥1 are NOD which
were presented by (Joag-Dev and Proschan [25]; Lehmann [26]). More research on NOD
random variables, please see (Qui, Wu and Chen [32]; Wang and Hu[39]).

Lemma 6. (Wang, Xu, Hu, Volodin and Hu [40]). Let random variables Y1, Y2, ..., Yn be WOD.
If g1, g2, ..., gn are all non decreasing (or non increasing) function.
Then random variables g1(Y1), g2(Y2), ..., gn(Yn) are WOD.
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Lemma 7. (Wang, Xu, Hu, Volodin and Hu [40]). Let random variables (Yn)n≥1 be an WOD
sequence. Then as t ≥ 2 , there exist constants C1(t) > 0 and C2(t) > 0 only depends on t.
Moreover, suppose that E(Yn) = 0 for each n ≥ 1, then for all n ≥ 1 we have

E

∣∣∣∣∣
n∑
j=1

Yj

∣∣∣∣∣
t

≤ C1(t)
n∑
j=1

E|Yj|t + C2(t)g(n)

(
n∑
j=1

E|Yj|2
)t/2

.

According to the Lemma 7. and using the same argument as the Theorem 2.3.1
in (Stout [36]), The Lemma 8. holds.

Lemma 8. Let random variables (Yn)n≥1 be an WOD sequence. Then as t ≥ 2, there exist
constants C1(t) > 0 and C2(t) > 0 only depends on t. Moreover, suppose that E(Yn) = 0 for
each n ≥ 1, then for all n ≥ 1 we have

E max
1≤k≤n

∣∣∣∣∣
k∑
j=1

Yj

∣∣∣∣∣
t

≤
(
log(4n)

log2

)t C1(t)
n∑
j=1

E|Yj|t + C2(t)g(n)

(
n∑
j=1

E|Yj|2
)t/2

 .
Lemma 9. (Wang, Yan, Cheng and Cai [41]) The sequence (Yn)n≥1 be real numbers and m, n
are positive integers such as 1 ≤ m ≤ n. Then

∑
1≤i1<i2<...<im≤n

m∏
l=1

Yil =
∑

∑m
k=1 sltl=m

A(m, sl, tl : l = 1, ...,m)
m∏
l=1

(
n∑
j=1

Y sl
j

)tl

,

where A(m, sl, tl : l = 1, ...,m) are constants , sl, tl are positive integers depends only on m.

Lemma 10. (Qui and Chen [33]) Let Z, W be random variables. there exist two constants a
and b such that
a+ b = 1. Then for any ε > 0

(|Z +W | > ε) ⊆ (|Z| > aε) ∪ (|W | > bε), (|ZW | > ε) ⊆ (|Z| > εa) ∪ (|W | > εb).

Throught the paper, the symbol ]B signifies the number of element in the set B.

5.3 Main Result
Theorem 11. Let (Yj)j≥1 is a WOD sequence of random variables. α > 1/2 and αp > 1,
m be positive integers. Moreover, additionally suppose that E(Yn) = 0 for each n ≥ 1, if
E|Y |p <∞. Then for all ζ > 0

∞∑
n=m

nαp−2P

(
max
m≤k≤n

|S̃k| > nmαζ

)
<∞. (5.1)

∞∑
n=m

nαp−2P

(
sup
k≥n

k−mα|S̃k| > ζ

)
<∞. (5.2)
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Theorem 12. Let (Yj)j≥1 is a WOD sequence of random variables. q > 0 and t ≥ 2, m, u be
positive integers, there is a constant C > 0. Suppose that E(Yn) = 0 for each n ≥ 1.
if u = 1 Then for all n ≥ m

E

(
max
m≤k≤n

|S̃k|
)q

+

≤ C

(
log(4n)

log 2

)t
nmq−t

(
C1(t)

n∑
j=1

E|Yj|t + C2(t)g(n)(
n∑
j=1

E|Yj|2)t/2
)
,

as 1 < u ≤ m

E

(
max
m≤k≤n

|S̃k|
)q

+

≤ Cnmq−ut

(
C1(t)

n∑
j

E|Yj|ut + C2(t)g(n)(
n∑
j=1

E|Yj|2u)t/2
)
,

where C1(t) and C2(t) positive constants only depends on t.

Proof of Theorem 11.
We prove (5.1). According to the Lemma 9., Lemma 10. and the Jensen inequality, in order to
show (5.1), it is enought to prove that for any ζ > 0

∞∑
n=m

nαp−2P

(
max
m≤k≤n

|
k∑
i=1

Yi| > nαζ

)
<∞, (5.3)

and
∞∑
n=m

nαp−2P

(
max
m≤k≤n

|
k∑
i=1

Y 2
i | > n2αζ

)
<∞, (5.4)

We can prove (5.3), by using the same method of proof as in Theorem 2.1 in (Qui et al.,[32]).

To prove (5.4), We take Y 2
n = Y 2

n I(Yn < 0) + Y 2
n I(Yn ≥ 0), thus, we suppose that Yn ≥ 0

for each n ≥ 1. De note
(Y 2

n )n≥1 ≺ Y 2,
E(Y 2)p/2 = E|Y |p <∞, and α > 1/2.

Hence, according to the Lemma 6. and (5.3), we obtain (5.4). So (5.1) holds.
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Now, we will prove (5.2), for all m positive integer, there existe a positive integer j0 such
that 2j0−1 ≤ m ≤ 2j0 . According to (5.1) and α > 1/p, we have

∞∑
n=2j0

nαp−2P

(
sup
k≥n

k
−m
p |S̃k| > ζ

)

=
∞∑
j=j0

2j+1−1∑
n=2j

nαp−2P

(
sup
k≥n

k
−m
p |S̃k| > ζ

)

≤ C
∞∑
j=j0

P

(
sup
k≥2j

k
−m
p |S̃k| > ζ

)
2j+1−1∑
n=2j

2j(αp−2)

= C
∞∑
j=j0

2j(αp−1)P

(
sup
v≥j

max
2v≤k≤2v+1

k
−m
p |S̃k| > ζ

)
≤ C

∞∑
j=j0

2j(αp−1)
∞∑
v=j

P

(
max

2v≤k≤2v+1
k
−m
p |S̃k| > ζ

)
≤ C

∞∑
v=j0

2v(αp−1)P

(
max

m≤k≤2v+1
|S̃k| > 2

m
p
vζ

)

≤ C
∞∑
v=j0

2v+1−1∑
n=2v

nαp−2P

(
max
m≤k≤n

|S̃k| > 2
m
p
(v+1)2

−m
p ζ

)
≤ C

∞∑
n=m

nαp−2P

(
max
m≤k≤n

|S̃k| > n
m
p ζ0

)
<∞. (where ζ0 = 2

−m
p ζ)

the proof is completed.

Proof of Theorem 12.

E

(
max
m≤k≤n

|S̃k|
)q

+

=

∫ +∞

0

P

(
max
m≤k≤n

|S̃k| > r
1
q

)
dr

=

∫ nmq

0

P

(
max
m≤k≤n

|S̃k| > r
1
q

)
dr +

∫ +∞

nmq
P

(
max
m≤k≤n

|S̃k| > r
1
q

)
dr

= nmqP

(
max
m≤k≤n

|S̃k| > nm
)

+

∫ +∞

nmq
P

(
max
m≤k≤n

|S̃k| > r
1
q

)
dr.

According to the Lemma 9. and Lemma 10., we have
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E

(
max
m≤k≤n

|S̃k|
)q

+

≤ nmq
∑

∑m
l=1 sltl=m

P

(
max
m≤k≤n

|
m∏
l=1

k∑
j=1

(Y sl
j )tl | > C−1m nm

)

+
∑

∑m
l=1 sltl=m

∫ +∞

nmq
P

(
max
m≤k≤n

|
m∏
l=1

k∑
j=1

(Y sl
j )tl | > C−1m r

1
q

)
dr

≤ nmq
∑

∑m
l=1 sltl=m

m∑
l=1

P

(
max
m≤k≤n

|
k∑
j=1

Y sl
j |tl > C

− sltl
m

m nsltl

)

+
∑

∑m
l=1 sltl=m

m∑
l=1

∫ +∞

nmq
P

(
max
m≤k≤n

|
k∑
j=1

Y sl
j |tl > C

− sltl
m

m r
sltl
mq

)
dr

= nmq
∑

∑m
l=1 sltl=m

m∑
l=1

P

(
max
m≤k≤n

|
k∑
j=1

Y sl
j | > C

− sl
m

m nsl

)

+
∑

∑m
l=1 sltl=m

m∑
l=1

∫ +∞

nmq
P

(
max
m≤k≤n

|
k∑
j=1

Y sl
j | > C

− sl
m

m r
sl
mq

)
dr,

where Cm = dA(m, sl, tl : l = 1, ...,m) constants, which only depends on m, such that

d = ]{sl, tl : l = 1, ...,m :
∑m

l=1 rlsl = m} is a constant depend only on m. Therefore, for any
integers n ≥ m positive and 1 ≤ u ≤ m,we have

E

(
max
m≤k≤n

|S̃k|
)q

+

≤ nmqP

(
max
m≤k≤n

|
k∑
j=1

Y u
j | > ξnu

)

+

∫ +∞

nmq
P

(
max
m≤k≤n

|
k∑
j=1

Y u
j | > ξr

u
mq

)
dr ∀ξ > 0.

We will consider two cases :
case 1: u = 1.

E

(
max
m≤k≤n

|S̃k|
)q

+

≤ nmqP

(
max
m≤k≤n

|
k∑
j=1

Yj| > ξn

)

+

∫ +∞

nmq
P

(
max
m≤k≤n

|
k∑
j=1

Yj| > ξr
1
mq

)
dr = I1.

We take t such that t ≥ 2, according to the markov inequality, Lemma 6., Lemma 8., and the
jensen inequality, we have

I1 ≤
(
log(4n)

log 2

)t
nmq−t

(
C1(t)

n∑
j=1

E|Yj|t + C2(t)g(n)(
n∑
j=1

E|Yj|2)t/2
)

+

(
log(4n)

log 2

)t(
C1(t)

n∑
j=1

E|Yj|t + C2(t)g(n)(
n∑
j=1

E|Yj|2)t/2
)∫ +∞

nmq
r−

t
mq dr

≤ C

(
log(4n)

log 2

)t
nmq−t

(
C1(t)

n∑
j=1

E|Yj|t + C2(t)g(n)(
n∑
j=1

E|Yj|2)t/2
)
.
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case 2: 1 < u ≤ m.

E

(
max
m≤k≤n

|S̃k|
)q

+

≤ nmqP

(
max
m≤k≤n

|
k∑
j=1

Y u
j | > ξnu

)

+

∫ +∞

nmq
P

(
max
m≤k≤n

|
k∑
j=1

Y u
j | > ξr

u
mq

)
dr = I2.

We have then (Qui and Chen [33])

I2 ≤ nmqP

(
k∑
j=1

|Yj|u > ξnu

)
+

∫ +∞

nmq
P

(
k∑
j=1

|Yj|u > ξr
u
mq

)
dr.

We take t such that t ≥ 2, using the Markov inequality, Lemma 6., Lemma 7., and the
jensen inequality, we have

I2 ≤ nmq−ut

(
C1(t)

n∑
j=1

E|Yj|ut + C2(t)g(n)(
n∑
j=1

E|Yj|2u)t/2
)

+

(
C1(t)

n∑
j=1

E|Yj|ut + C2(t)g(n)(
n∑
j=1

E|Yj|2u)t/2
)∫ +∞

nmq
r−

ut
mq dr

≤ Cnmq−ut

(
C1(t)

n∑
j=1

E|Yj|ut + C2(t)g(n)(
n∑
j=1

E|Yj|2u)t/2
)
.

Then the proof is completed.
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Conclusion and Perspectives

Conclusion

We are interested in this thesis to establish an exponential concentration inequality and the
complete convergence of partial sums of random variables with application to the AR (1) model
generated by the errors in the dependent cases (Extended negatively dependent, Widely orthant
dependent). Then we study the complete convergence and the maximum inequality for product
sums of Widely orthant dependent sequences.

Perspectives

In this section, we draw some perspectives for potential future researches.

For Chapter 3

1. See what are the conditions to get a similar result of an autoregressive process of order
p (p > 1), the same for ARH(1) and ARB(1).

2. Study the case of a process with ϕ− mixing functional variables.

For Chapter 4
1. Study the cases of ARMA and GARCH models.

For Chapter 5
1. It is possible to study the complete moment convergence for product sums of Negatively
superadditive dependence sequences, the same for widely orthant dependent.
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Summary 

In this thesis, we are primarily interested in studying the inequality of concentration 

(exponential type) of the sequence of random variables with application to the 

autoregressive model. We have identified the main objective, that the study of the complete 

convergence of the estimator of  first-order autoregressive process in the case where the 

error is dependent  (Extended negatively dependent (END), widely orthant dependent 

(WOD)). 

 Next, we examine the complete convergence and maximal inequalities for 

product sums of widely orthant dependent (WOD) sequences, directly resulting from the 

works of Dehua Qiu, Pingyan Chen. 

 

صالملخ  

 المتغيرات لتسلسل( الأسّي النوع) التركيز في المساواة عدم بدراسة أساسي بشكل مهتمون نحن ، الأطروحة هذه في

 الذاتي الانحدار عملية للمقدر الكامل التقارب دراسة هو الرئيسي هدفنا. الذاتي الانحدار نموذج على تطبيقها  مع العشوائية

.( واسع نطاق على المرتبطة سلبي، بشكل والممتدة المرتبطة) مرتبطة أخطاء وجود حالة في   

 المستمدة واسع، نطاق على مرتبطة السلاسل من المنتجات لمجموع القصوى التفاوت وأوجه الكامل التقارب ندرس ثم 

. تشن بينغيان  تشيو، هوا ده أعمال من مباشرة  

  

Résumé 

Dans cette thèse, nous intéressons principalement à l’étude de l’inégalité de concentration 

(type exponentiel) d'une suite de variables aléatoires avec application au modèle 

autorégressif. Nous fixons comme objectif principal, l’étude de la convergence complète de 

l'estimateur d’un processus autorégressif du premier ordre dans le cas où l'erreur est 

dépendante (Étendue négativement dépendant, Largement orthant dépendant).  

 Ensuite, nous examinons la convergence complète et l'inégalités maximales des sommes des 

produits de WOD, directement issu des travaux de Dehua Qiu, Pingyan Chen. 
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