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Abstract
Abstract

The work presented in this thesis covers two issues, those concerned the het-

eroscedasticity test in functional nonparametric estimation. We will concentrate

in the first one, on the nonparametric functional model, which corresponds to a

nonparametric regression when the regressor is a functional variable. Once, in

the second work we focused on the parametric case with a nonlinear regression

operator, in this case the functional regression assumed to belong to a parametric

family of functions.

To construct our tests statistics we based on the empirical version of the moment

condition by evaluating the difference between the conditional variance and un-

conditional variance.

By adding some standard assumptions, our tests statistics have a asymptotic

normal distribution under the homoscedasticity’s hypothesis, we also established

that those tests can detect local alternatives distinct from the null.

It worth to noting that, as well as the kernel estimation, some tools have been

used here as the small ball probabilities P(X ∈ d(x, X )) where it appears in the

asymptotic developments where X∈ F and d is a semi-metric, in addition to the

degenerate and non-degenerate U-statistic theories.

Finally, to testing our results some simulated data examples are presented .
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Chapter 1. Introduction

1.1 Contribution of the thesis

1.1.1 The thesis plan

Our main goal is to propose a consistent nonparametric tests of heteroscedasticity

in the functional space. For this dissertation, we follow the steps below :

We decompose our work into four Chapters. Indeed, the first one is an intro-

ductory one in where we give a brief history to the functional statistics and non-

parametric approaches, in addition to the functional, nonparametric and finally

heteroscedasticity tests. We also present in the last Section the results that we

have obtained in the next to Chapters.

The second Chapter is concerning the heteroscedasticity test in the nonparamet-

ric regression. Indeed,we transform the problem of the heteroscedasticity test into

a problem of comparison between the variance and the conditional variance. We

based on the kernel estimation of the conditional variance to construct our test

statistic. We demonstrate the asymptotic distribution of the test statistic and we

quantify the robustness of the test by giving the convergence rate in probability

when the null hypothesis is disturbed and we finish by giving some simulated

data examples.

For the third Chapter, we consider the parametric case by taking into account the

setup just as the second Chapter. Actually, we extend our results to the nonlinear

regression. In both Chapters ( the second and the third ), the proofs of our results

are offered in the last of each Chapter.

We finally conclude our dissertation by summarizing the results obtained and

discuss the main directions of the prospective works.

12



1.1 Contribution of the thesis

1.1.2 What heteroscedasticity is ?

Let’s point out that, in this work, our results are given in the infinite dimensional

space, meaning that, when the data are of functional kind. Indeed, there exist a

various areas in which the functional approaches have been used, either at phys-

iological, biological, climatological. . . , to illustrate our problematic, let us take an

example in the chemometric one.

Noting that, during the chopped meat packaging, the grease level must been

putting on. To give the level of grease existed in a piece of meat, it possible to

make an accurate chemical analysis, however, this process takes a large of times,

money and deteriorates the piece studied. Consequently, required another useful

processes. From here considered to predicting grease content from spectrometric

curves.

The spectrometric data have a functional kind which can be summarizing by

curves. Such that, those data are obtained by measuring the absorbance of lights

of different wavelengths in each piece of meat. We are interested in a dataset

from the study by chemical analysis and spectrometry of 215 pieces of meat (this

dataset existed at http://lib.stat.cmu.edu/datasets/tecator). Thus, 215 spectro-

metric curves and corresponding grease levels are available (see Figure 1.1 ).

Figure 1.1: Spectrometric curves obtained from the 215 pieces of meat studied

By using neural network methods, Borggaard and Thodberg [1992] have been

13



Chapter 1. Introduction

the first ones interested to divine how much the piece of meat contain of grease

from the spectrometric curve associated with it. Actually, our work devoted to

the prediction of a real variable from a functional one. Thus, it could be used

to predict grease levels from of the spectrometric curve. Several authors make

an assumption to know how the grease content and the spectrometric curve are

connected. Thus, we can answer to this kind of question and pose our hypothesis

test, is there heteroscedasticity or not ?

Assume that we have the couple (X, Y ) in which X takes values in infinite di-

mensional space while Y a real random variables and those are connected by the

following relations :

Case 1: homoscedastic framework

Y = r(X ) + ϸ.

Case 2: heteroscedastic framework

Y = r(X ) + σ(X )ϸ.

14



1.2 Bibliographic

For the first case we make the assumption that V (ϸi) = σ2 for all i. That is, the

variance of the error term is constant. If the error terms do not have constant

variance, they are said to be heteroscedastic.

1.2 Bibliographic

1.2.1 Functional data

History

Keeping up with the age of speed the data are more being recorded continuously

during the time interval, typically, its have a massive volume consisting of billion

or trillions of records which was so difficult to process using traditional tech-

niques, consequently, there is a need to propose an alternative methods adapted

to this kind of data. From here required a new statistic branch called Functional

Statistic, which treat the observations like a functional random elements valued

in an infinite dimensional space.

It’s worth noting that, statistical inference for Functional Data Analysis [ F.D.A]

has been the focus of several investigations, the area has an older history backs

to the fiftieth, precisely in 1950. Actually, appeared in the Swedish statistician

Grenander ’s thesis entitled "stochastic processes and statistical inference", in

which, he showed the possibility of applying statistical concepts and methods of

inference to stochastic processes and obtaining practically working methods of

this kind by studying special cases of inference. In the same year, C.R. Rao,

at that time was at the start of his graduate studies, attracted to the foregoing

considered subject, thence, he decided to prepare for the necessary mathematics

to appreciate and possibly make some contributions to the area, and so on, it

already got. In 1958, Rao, taking into consideration the principal component

analysis and the factorial analysis of the data, studied some statistics methods

to compare some growth curves, similarly, Tucker[1958] established parameters

of the functional relation between two variables by using some factorial analysis

15



Chapter 1. Introduction

techniques. In the beginning of the sixties, the climatologists Obhukov, Holm-

strom and Buell [1960, and 1971 respectively] were interested in pressure fields,

thus, they proposed the first factor analysis of functional variables.

And so on, it was increasingly common to yield functional data in scientific stud-

ies as was the case, Deville[1974] in economy, Molenaar and Boomsma[1987]

then Kirkpatrick and Heckman [1989] in the field of genetics, in where, they

were interesting to observations in the form of trajectories. Borggaard and Thod-

berg [1992] provide interesting applications of the functional principal component

analysis to chemistry and many recent applications of functional data analysis

are discussed in ferraty [2011].

As we know, the Hotelling and Pabst’s publication in 1936 has been the in-

ception of nonparametric statistics, in addition, its methods enabled to be used

in a various situations and dominant in most statistical journals [ a special is-

sues of Statistical Science 2004 ], it’s wellknown in F.D.A that, this methods are

more appropriate than the parametric one due to the useless of the graphical tool

where it becomes very hard to exploring the relationship between the co-variables.

In the current years, the nonparametric modeling takes a large place in the F.D.A.

Actually, the first model that has been estimated nonparametrically was in 1998,

in which Gasser et al have proposed an estimator of the mode with verifying the

fractal condition, after few years [2000], Ferraty and Vieu have explored, by

taking the same fractal condition, the almost complete convergence of the kernel

estimation of the regression function, and then, Dabo-Niang[2002] has estab-

lished the almost sure convergence and the asymptotic normality of histogram

type estimator of the functional density, while, Rhomari and Dabo-Niang[2004]

have obtained the convergence in Lp norm, in the independent case, of the kernel

estimation of the nonparametric regression. For the mixing case, Ferraty et al

[2004] have studied the almost complete convergence, while, Masry [2005] pre-

sented the asymptotic normality.

16



1.2 Bibliographic

For the basic results on the nonparametric approaches, there exist interesting

books as : Ferraty and Vieu [2006] or Cuevas [2014] and Goia and Vieu [2016]

for recent advanced and references.

1.2.2 The functional regression

The prediction of scalar response given explanatory functional random variable

is an important subject in the modern statistics. The regression operator is the

most preferred model in this prediction problem.

Indeed, the first model has been introduced and studied in 1991 by Ramsay and

Delzell , in which, they show how the theory of L-splines can support general-

izations of linear modeling and principal components analysis to samples drawn

from random functions. After two years, Hastie and Mallows discussed the

overview of Frank and Friedman [1993] , indeed, they Compare the partial least

squares method with similar techniques such as ridge regression and principal

components regression. In 2000, by using the regularity condition, and without

asking for the regression operator form, Ferraty and Vieu introduced the first

results concerned a generalized estimator.

1.2.3 Tests : functional statistic

Testing hypothesis in the functional statistics takes an important place in the

literature, however, those tests are restricted. Indeed,to comparing two groups of

curves some tests have been proposed in 1998 by Fan and Lin. Actually, their

functional data have been decomposed to series expansions by either Wavelet or

Fourier. Viele [2001] has been offered a test that validate or not the stochastic

modulation of the probability law that existed the data. In 2004, an ANOVA-like

test has been proposed by Cuevas et al in the case of independent curves, their

assumptions was about the noise and the observation of the curves. Ferraty et

al [2007] have been introduced a test by considered some covariances hypothe-

sis, this test based on the factors analysis compared different groups of functional

data. In the same year, Chen and Zhang, take into account the model frame-

17



Chapter 1. Introduction

work just as Cuevas et al [2004] and discused in two cases an L2-norm test: the

curves are tainted with error measurement and are taken from a concentrate grid

of points. Hall and Vial [2006b] suggest a test on dimension reduction of the

studied variable. The test of James and Sood [2006] and Mas [2007a] carried

on the expectation form of the studied functional random variable. In 2010, the

t-test and a global L2-norm have been deeply discussed by Zhang et al in the

situation of two samples of curves. The inferential methods through the boot-

strap are studied in 2O12 by Crainiceanu et al for the mean profiles in addition

to the likelihood-ration statistics where have been offered by Staicu et al in 2014.

Furthermore, we find also a proposed tests to the prediction of scalar response

given explanatory functional random variable by using the regression operator.

In the literature, this kind of model is very few. Gadiaga and Ignaccolo [2005]

introduce a non-effect test of the explanatory variable based on Methods of pro-

jection.Cardot et al [2003, 2004] consider a test in the linear functional model,

Chiou and Müller [2007] propose a heuristic suitability test based on the Decom-

position into functional principal components of the explanatory variable. Shen

and Faraway [2004] have been tested in linear model the functional variable

influence when the variable response is functional and the explanatory one is a

vector. Cardot et al [2007] offer a structural tests based on permutation meth-

ods. Mas [2000] propose a nullity test of the autocorrelation operator of an ARH.

Antoniadis and Sapatinas’s test [2007], when the two variables are functional,

a model with a functional mixed effect.

1.2.4 Nonparametric tests

The first nonparametric test appeared in 1710 in the works of J. Arbuthnot who

introduced the sign test. But most nonparametric tests were developed between

1940 and 1955. We make special mention of the articles of:Andrey Nikolacvich

Kolmogorov in 1933 who invented the goodness-of-fit test for a sample, The

rank sum test was introduced by Frank Wilcoxon in 1945, in which it used

to determine whether two independent samples were selected from populations

having the same distribution. Hanry Mann and Donald Whitney published their

18



1.2 Bibliographic

proposal in 1947 [ on a test whether one of two random variables is stochastically

larger than the other ]. The test however, is older, it was introduced at least six

times in addition to Wilcoxon [1945] and Mann and Whitney [1947]. The first

who proposed the test was Gustav deuchler in 1914. The test was popularized

by Sidney Siegel [1956] in his influential textbook on nonparametric statistics.

In 1950, Mood. A.M wrote an introduction to the theory of statistics, Two years

later, Kruskal.W.H and Wallis.W.A offered a test using mostly to know if there

is variance between the means in the population. Later many other articles were

added to this list. Savage, I.R [1962] published a bibliography of about 3000

articles, written before in 1962, concerning nonparametric tests.

1.2.5 Heteroscedasticity test

It is widely known in the standard regression model that the variances are the

same for all observation, even so, it could be found in practical applications that

the errors have a different variance, in this case they are said to be heteroscedas-

tic. However, the model is not efficiency in the presence of this situation, it

necessitates the homoscedasticity of the data. Thus, it is utmost interesting to

detect the heteroscedasticity for data.

To testing this phenomenon several authors have proposed either parametric

or nonparametric methods in the literature. Indeed, In 1965, S.Goldfeld and

R.Quandt have proposed a parametric and nonparametric test for detecting the

homoscedasticity of the residuals. Ramsey [1968] developed a test to detect

the existing of specification error in part of his Ph.D. thesis ( called Ramsey

Regression Equation Specification Error Test (RESET)), for the linear regression

model. Rutemiller and Bowers [1968], suggested an estimation method in a Het-

eroscedastic Regression Model for obtaining a multiple linear regression equation

which permits either the variance or the mean, of normally distributed random

variables. Glejser [1969], presented his heteroscedasticity test in which he based

on ordinary least-squares to obtain the used residuals in the regression. In 1974,

Harvey and Phillips proposed their parametric test constructed on recursive

residuals obtained by a simple calculate in the general linear model . Harvey in

19



Chapter 1. Introduction

1976 presented a paper on estimating regression models with multiplicative het-

eroscedasticity (where he suggested a likelihood ratio test for heteroscedasticity).

Bickel studied in 1978 the two tests proposed by Anscombe. Actually, he ex-

amined in the linear model , the heteroscedasticity and non-linearity asymptotic

power of the tests. Breusch and Pagan [1979] offered a test in linear regression

model by utilizing the same structure then of lagrangian multiplier test. White

[1980] presented a consistent parametric test of heteroscedasticity in linear re-

gression model. Cook and Weisberg [1983] and Tsai [1986] has obtained the

score test statistic with parametric variance function and non-constant variance,

which has been modified by Simonoff and Tsai [1994] for linear models.

Furthermore, there have been in the literature a widely papers devoted to state

heteroscedasticity in the case of the nonparametric regression. Indeed, under the

normality assumption on error term, Eubank, Thomas and Muller, Zhao [1993,

1995.resp] have presented a test of heteroscedasticity constructed by basing on

the kernel methods in nonparametric regression models. In 1998, the suggested

test of Dette and Munk was based on the best L2−approximation of the variance

function estimator which was extended to partially linear regression models in

2005 by You and Chen. In 2001, Naito offered by taking into account marked

empirical process of the squared residuals, a test in nonparametric model. Zhu,

Fujikoshi and Naito [2001] offered test in parametric and nonparametric regres-

sion models. To construct their own test they based on the integrated difference

between the conditional variance and unconditional variance weighted . Dette

[2002] has checked the heteroscedasticity in nonparametric regression by ex-

tending the idea of Zheng [1996] of goodness of fit of the mean regression. Stute

and Zhu [2005] tested the SIM structure. By using estimators of the distribution

of residuals under the null and alternative, Dette et al [2007] searched closely , in

nonparametric regression, for the issues that could be existed in testing the con-

ditional variance once it have a parametric form. Zhang and Mei [2008] obtained

a test for the constant variance of the model errors based on residual analysis.

20



1.3 Main results

1.3 Main results

In this section we state the results obtained under some standard assumptions,

the first case concerning the heteroscedasticity test when the functional regres-

sion has a nonparametric form, while, the second one it about the parametric

case with a nonlinear regression operator.

• For the first results

(H1) There exists m ≥ 2 such that IE[Ym |X = x] < δm(x) < C < ∞ with δm(.)

continuous on S.

(H2) IE[ϸ8|X = x] ≤ b(x) with b(x) is continuous on S such that IE[b2(X )] < ∞.

(H3) The kernel K is a differentiable function supported on [0,1] such that

K2(1) −
∫ 1

0
(K2(s))′τ(s)ds > 0 and K(1) −

∫ 1

0
(K(s))′τ(s)ds , 0.

(H4) The bandwidth parameter h := h(n) is strictly positive such that:

n → 0, n φ(h) → ∞, n
√
φ(h) max

(
h4�,

1
log2 n

)
→ 0 and

(logn)2

n φ(h)
< ψS

(
logn
n

)
<
n φ(h)
logn

when n tends to infinity.

We state the following results:

• Under H0

Theorem 1.1. When (H1)-(H4) and (2)-(6) hold we have

n
√
φ(h)Wn

D
−→ N(0, s2) as n → ∞

where s2 = 2
(
K2(1) −

∫ 1

0 (K2(s))′τ(s)ds
)

IE
[
f (X )V 2 [

ϸ2
2 |X

]]
.

Moreover,

Tn = n
√
φ(h)

Wn

ŝ

D
−→ N(0,1) as n → ∞
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Chapter 1. Introduction

where

ŝ2 =
1

n(n − 1)φ(h)

n∑
i=1

n∑
j,i,=1

K

(
d(Xi , Xj)

h

)
(ϸ̂j

2
− σ̂2)2(ϸ̂i

2
− σ̂2)2.

• Under H1

Theorem 1.2. When (H1)-(H4) and (2)-(6) hold we have

Tn
n
√
φ(h)

−→ IE[(V [ϸ|X ] − σ2)2f (X )]/s1, In probability

where s2
1 =

(
K2(1) −

∫ 1

0 (K2(s))′τ(s)ds
)

(
K(1) −

∫ 1

0 (K(s))′τ(s)ds
) IE[(V [ϸ2|X ] + (V [ϸ|X ] − σ2)2)f (X )].

For the robustness of the test we introduce the following sequence of local alter-

natives

H1n : V [ϸ|x] − σ2 = δng(x)

Corollary 1.1. Given (H1)-(H4) and (2)-(6), we have, underH1n with δn = n−1/2φ−1/4(h)

Tn
D
−→ N(µ,1) as n → ∞

where µ =
(
K(1) −

∫ 1

0 (K(s))′τ(s)ds
)

IE[g2(X )f (X )]/s.

• For the second results

(H1) IE[ϸ8|X = x] ≤ b(x) with b(x) is continuous on S such that IE[b2(X )] < ∞.

(H2) The parameter space Θ is a compact and convex subset of IR. f (X, θ) is a Borel

measurable function on F × IR for each θ and a twice continuously differen-

tiable real function on Θ for each X ∈ F . Moreover, E
[
supθ∈Θ f (Xi , θ)2] < ∞,

and

E

[
sup
θ∈Θ

∣∣∣∣∣∣δ2f (Xi , θ)
δθ

∣∣∣∣∣∣
]
< ∞,

E

[
sup
θ∈Θ

∣∣∣∣∣∣(yi − f (Xi , θ))2δ
2f (Xi , θ)
δθ

∣∣∣∣∣∣
]
< ∞.
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1.3 Main results

(H3) E
[
(yi − f (Xi , θ))2] takes a unique minimum at θ0 ∈ Θ.

(H4) The kernel K is a differentiable function supported on [0,1] such that

K2(1) −
∫ 1

0
(K2(s))′τ(s)ds > 0 and K(1) −

∫ 1

0
(K(s))′τ(s)ds , 0.

(H5) The bandwidth parameter h := h(n) is strictly positive such that:

h → 0, n φ(h) → ∞, n
√
φ(h) max

(
h4�,

1
log2 n

)
→ 0 and

(logn)2

n φ(h)
< ψS

(
logn
n

)
<
n φ(h)
logn

when n tends to infinity.

• Under H0

Theorem 1.3. If (H1)-(H6), (3) and (5) hold, then we get

n
√
φ(h)Wn

D
−→ N(0, s2) as n → ∞

Where s2 = 2
(
K2(1) −

∫ 1

0 (K2(s))′τ(s)ds
)

IE
[
f (X )V 2 [

ϸ2
2 |X

]]
.

Moreover,

Tn = n
√
φ(h)

Wn

ŝ

D
−→ N(0,1) as n → ∞

where

ŝ2 =
1

n(n − 1)φ(h)

n∑
i=1

n∑
j,i,=1

K
(
d(Xi , Xj)h−1

)
(ϸ̂j

2
− σ̂2)2(ϸ̂i

2
− σ̂2)2.

• Under H1

Theorem 1.4. When (H1)-(H6), (3) and (5) hold, then we get

Tn
n
√
φ(h)

−→ IE[(V [ϸ|X ] − σ2)2p(X )]/s1, In probability

where s2
1 =

(
K2(1) −

∫ 1

0 (K2(s))′τ(s)ds
)

(
K(1) −

∫ 1

0 (K(s))′τ(s)ds
) IE[(V [ϸ2|X ] + (V [ϸ|X ] − σ2)2)p(X )].

Now, we examine the robustness of the test and introduce the following sequence

of local alternatives

H1n : V [ϸ|x] − σ2 = δng(x)
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Chapter 1. Introduction

So, we obtain the following Corollary

Corollary 1.2. Given (H1)-(H4), (3) and (5) we get, underH1n with δn = n−1/2φ−1/4(h)

Tn
D
−→ N(µ,1) as n → ∞

where µ =
(
K(1) −

∫ 1

0 (K(s))′τ(s)ds
)

IE[g2(X )p(X )]/s.
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Heteroscedasticity test when the covariables are

curves

Chapter 2: Heteroscedasticity test when the
covariables are curves

The contents of the following Chapter is the one of the recent paper Henien,

Laksaci et al. [2018]1 accepted for publication. Indeed, in this Chapter we

are interested in the heteroscedasticity test in nonparametric regression on

functional variable. We firstly present our functional framework in Section 2,

thence, we construct the test statistic in section 3. The asymptotic behavior of

this test is studied in Section 4. In practice, some simulated data examples are

reported in Section 5.

1The corresponding authors:
Aicha Henien : Laboratory of Statistic and Process Stochastic, University Djillali Liabes, Sidi Bel
Abbes.
Larbi Ait-Hennani :University Lille 2, Law and Health, IUT C, Roubaix, France.
Jacques Demongeot : University Grenoble Alps, laboratory AGEIS EA 7407, France.
Ali Laksaci : Department of Mathematics, College of Science, King Khalid University, Abha, Saudi
Arabia.
Mustapha Rachdid : University Grenoble Alps, laboratory AGEIS EA 7407, France.
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2.1 Introduction

Abstract

We present in this paper a consistent nonparametric test for heteroscedastic-

ity when data are of functional kind. The latter is constructed by evaluating

the difference between the conditional and unconditional variances. We show

the asymptotic normality of the statistical test under the null hypothesis. In

addition, we prove that this test is consistent against all deviations from

homoscedasticity condition.

2.1 Introduction

The prediction of scalar response given explanatory functional random variable is

an important subject in the modern statistics. The regression operator is the most

preferred model in this prediction problem. However, this model is not efficiency

in the heteroscedasticity case, it requires the homoscedasticity of the data which

cannot be guaranteed a priory. In this paper we shall construct a test statistic to

detect the heteroscedasticity for functional data.

Checking the heteroscedasticity of the data has received lot of attention in in the

literature of multivariate statistics. Several authors have proposed parametric or

nonparametric methods to testing this phenomenon in vectorial statistics. We

return to Breusch and Pagan[1979], Koenker and Bassett[1982] or Diblasi

and Bowman[1997] (among others) for some parametric procedures and Dette

and Munk[1998] , Zheng[2009] or Lin et al.[2012] (and the references therein)

for some nonparametric approaches. However, much less attention has been paid

to Testing heteroscedasticity in functional statistics. To the best of our knowledge

this problem has not been addressed so far.

Noting that statistical inference for Functional Data Analysis (FDA) has been the

focus of several investigations ( Ramsay and Silverman[2005], Horváth and

Kokoszka[2012], Zhang[2013], Bongiorno et al.[2014] and Hsing and Eu-

bank[2015], for recent advances). In this context, it is well known that the
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Chapter 2. Heteroscedasticity test when the covariables are curves

nonparametric methods is more appropriate than the parametric approaches,

because the graphical tool for exploring the relationship between the explanatory

variables and the scalar response is not available, and hence it becomes very

hard to have some informations on the shape of the relationship between the

functional variable and the scalar response. Recently, the nonparametric mod-

eling takes a large place in the FDA literature (see Ferraty and Vieu[2006] for

basic results or Cuevas[2014] and Goia and Vieu[2016] for recent advanced and

references ). In particular, there is an extensive literature on the nonparametric

estimation of the regression function. We cite for instance Masry[2005] for the

asymptotic normality, Ferraty et al.[2007] for the L2 consistency, Ferraty, Lak-

saci et al.[2010] for the uniform almost complete convergence. More recently

Kara, Laksaci et al.[2015] have established the strong convergence (with rates),

uniformly in bandwidth parameters, of the kernel estimator of the regression op-

erator. On the other hand testing hypotheses in functional data has been widely

developed by considering various test problems in both situations parametric or

nonparametric structures (see, Cardot et al. [2003], Cuevas et al. [2004], Del-

sol [2013] , Zhang et al. [2010], Hilgert et al.[2013], Staicu et al. [2014] to

cite a few).

In this paper we propose a consistent nonparametric test for heteroscedastic-

ity, based on kernel estimate of the nonparametric regression. We establish the

asymptotic normality of the construct test statistic under the null hypothesis of

homoscedasticity and can detect local alternatives distinct from the null. Thus,

this work can be considered as generalization to infinite dimensional of the re-

sults of Zheng [2009] in the multivariate case. Moreover, this generalization is

obtained under some standard conditions in nonparametric functional statistics

allowing to avoid the problem of the curse of dimensionality in multivariate case.

It should be noted that, the intrinsic dimensionality of these data poses chal-

lenges both for theory and computation, but the infinite dimensional structure of

the data is an interesting source of information, which brings many opportunities

for all statistical analysis. Finally let us point out that as in the vectorial case the

heteroscedasticity checking is an important preliminary step before making the

regression analysis accurate and efficient for functional data. Finally let us point
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2.2 Functional data framework

out that these question of infinite.

This paper is organized as follows. We present our functional framework in the

following Section. We construct the test statistic in Section 3. The asymptotic

behavior of this test is studied in Section4. Some simulated data examples are

reported in Section 5. All proofs are put into the Appendix.

2.2 Functional data framework

Let (Xi , Yi) for i = 1, . . . , n, be a sample of independent and identically distributed

pairs as (X, Y ) which is a random vector valued in F ×R, where F is a semi-metric

space. In the following d is a semi-metric on F , x is a fixed point in F , Nx is a fixed

neighborhood of x and the closed ball centered at x and of radius α is denoted

B(x, α) = {y ∈ F such that d(y, x) ≤ α} .

Furthermore, we assume that X and Y are connected by the following relation

Y = r (X ) + ϸ, 1

where r is an operator from F to R and ϸ is a random error variable such that

IE[ϸ|X ] = 0. Thereafter, we suppose that the operator r is belong to a functional

space characterized the by following regularity condition

∀x1, x2 ∈ Nx , |r(x1) − r(x2)| ≤ Cd�(x1, x2), C > 0 � > 0. 2

It is well documented that all the asymptotic analysis in nonparametric statistics

for functional variables is closely related to the concentration properties of the

probability measure of the explanatory random variable X . The same thing of

testing hypotheses we suppose that the regressor X such that

There exists a nonnegative continuous functions φ and f such that

IP (X ∈ B(x, α)) = φ(α).f (x) + o(φ(α)). 3
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We point out that this version of the small ball probability function is standard in

this context of nonparametric functional data analysis. Precisely, this condition

has been introduced by Masry (2005) and since has widely been used thereafter.

Typically, such decomposition of the small ball probability function is verified of

several usual case. In particular the function f and φ can be expressed through

the Onsager-Machlup function (see, Ferraty, Laksaci et al. (2010) for more dis-

cussion in this question). In this contribution we suppose that the function φ

such that:

For all s ∈ [0,1], lim
α→0

φ(sα)
φ(α)

= τ(s) 4

The function express the variation of φ. The latter has been explicitly expressed

for all the usual cases by Ferraty et al. (2007). Concerning the function f , we

assume that the Kolmogorov’s ϸ-entropy 2 ψS of the support S of f such that

∞∑
n=1

exp
{

(1 − η)ψS

(
logn
n

)}
< ∞, for some η > 1. 5

The same thing here this consideration is classic in nonparametric functional

data analysis, especially, to state the uniform consistency. This assumption was

introduced by Ferraty et al. [2010] to establish the uniform almost complete

consistency of kernel estimate of the regression function. We refer to this cited

work of some examples of S and F for which ψS is explicitly given.

Finally, it worth to noting all these functions (φ, ψS, τ ) are closely linked to the

topological structure of the functional space , in sense that all these functions

increase or decrease with the choice of the semi-metric d. Thus we will see

thereafter that the choice of the semi-metric has an important influence on the

power as well as the robustness of the test.

2Let ϸ > 0 be given. A finite set of points x1, x2, . . . , xN in F is called an ϸ-net for S if S ⊂
N⋃
k=1

B(xk , ϸ). The quantity ψS(ϸ) = log(Nϸ(S)), where Nϸ(S) is the minimal number of open balls in

F of radius ϸ which is necessary to cover S, is called the Kolmogorov’s ϸ-entropy of the set S.
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2.3 Construction of the test statistic

2.3 Construction of the test statistic

Recall that our main aim is to test the heteroscedasticity of the model (1). Typi-

cally, we test

H0 : V [ϸ|X ] = σ2

versus

H1 : V [ϸ|X ] , σ2.

In order to construct test statistic, we suppose that the function f such that

f (X ) > 0 almost surly, and IE[f (X )] < ∞. 6

The latter allows to show that H0 is equivalent to write

S1 := IE[(ϸ2 − σ2)IE[(ϸ2 − σ2)|X ]f (X )] = IE[IE2[(ϸ2 − σ2)|X ]f (X )] = 0

whereas H1 is equivalent to

S1 = IE[(ϸ2−σ2)IE[(ϸ2−σ2)|X ]f (X )] = IE[IE2[(ϸ2−σ2)|X ]f (X )] = IE[(V [ϸ|X ]−σ2)2f (X )] > 0

Thus, our test’s problem is equivalent to test

S1 = 0 vs S1 > 0

Combing the ideas of Zheng [2009] to those of Ferraty and Vieu [2006] to

construct a nonparametric estimate S1. Indeed, we put ∆i = IE[(ϸ2
i − σ

2)|Xi]f (Xi)

and we consider the empirical version of S1 denoted by

Ŝ1 =
1
n

n∑
i=1

(ϸ2
i − σ

2)∆i.

According to Ezzahrioui and Ould-Saïd[2008] the function f can be estimates

by

f̂ (x) =
1

nφ(h)

n∑
i=1

K

(
d(x, Xi)
h

)
.
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It follows that the natural estimate of S1 is

Wn =
1

n(n − 1)φ(h)

n∑
i=1

n∑
j,i,=1

(ϸ̂i
2
− σ̂2)K

(
d(Xi , Xj)

h

)
(ϸ̂j

2
− σ̂2)

where ϸ̂i and σ̂2 are estimators of ϸi and σ respectively. These estimators are

defined by

ϸ̂i = Yi − r̂(Xi) and σ̂2 =
1
n

n∑
i=1

ϸ̂i
2

with

r̂(x) =

∑n
i==1 K

(
d(x, Xi)
h

)
Yi

∑n
i=1 K

(
d(x, Xi)
h

) .

Now, we establish the asymptotic distribution of this statistic. To do that, we need

the following assumptions

(H1) There exists m ≥ 2 such that IE[Ym |X = x] < δm(x) < C < ∞ with δm(.)

continuous on S.

(H2) IE[ϸ8|X = x] ≤ b(x) with b(x) is continuous on S such that IE[b2(X )] < ∞.

(H3) The kernel K is a differentiable function supported on [0,1] such that

K2(1) −
∫ 1

0
(K2(s))′τ(s)ds > 0 and K(1) −

∫ 1

0
(K(s))′τ(s)ds , 0.

(H4) The bandwidth parameter h := h(n) is strictly positive such that:

n → 0, n φ(h) → ∞, n
√
φ(h) max

(
h4�,

1
log2 n

)
→ 0 and

(logn)2

n φ(h)
< ψS

(
logn
n

)
<
n φ(h)
logn

when n tends to infinity.

All these assumptions are standard in this context, because they are the same as

those classically used in the heteroscedasticity or in the nonparametric functional

data analysis. Specifically (H1), (H3), (H4) are the same as those used by Ferraty,

laksaci et al. [2010] for the uniform consistency in functional statistics while

(H2) is the same as in Zheng [2009] for the heteroscedasticity in multivariate

case.
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2.4 The main result

We state the following results:

• Under H0

Theorem 2.5. When (H1)-(H4) and (2)-(6) hold we have

n
√
φ(h)Wn

D
−→ N(0, s2) as n → ∞

where s2 = 2
(
K2(1) −

∫ 1

0 (K2(s))′τ(s)ds
)

IE
[
f (X )V 2 [

ϸ2
2 |X

]]
.

Moreover,

Tn = n
√
φ(h)

Wn

ŝ

D
−→ N(0,1) as n → ∞

where

ŝ2 =
1

n(n − 1)φ(h)

n∑
i=1

n∑
j,i,=1

K

(
d(Xi , Xj)

h

)
(ϸ̂j

2
− σ̂2)2(ϸ̂i

2
− σ̂2)2.

• Under H1

Theorem 2.6. When (H1)-(H4) and (2)-(6) hold we have

Tn
n
√
φ(h)

−→ IE[(V [ϸ|X ] − σ2)2f (X )]/s1, In probability

where s2
1 =

(
K2(1) −

∫ 1

0 (K2(s))′τ(s)ds
)

(
K(1) −

∫ 1

0 (K(s))′τ(s)ds
) IE[(V [ϸ2|X ] + (V [ϸ|X ] − σ2)2)f (X )].

Now, we examine the robustness of the test against all possible departures from

homoscedasticity. To do that we introduce the following sequence of local alter-

natives

H1n : V [ϸ|x] − σ2 = δng(x)

where the known function g(·) is continuous on S such that IE[g2(X )] < ∞. So,

we obtain the following Corollary

Corollary 2.3. Given (H1)-(H4) and (2)-(6), we have, underH1n with δn = n−1/2φ−1/4(h)

Tn
D
−→ N(µ,1) as n → ∞
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where µ =
(
K(1) −

∫ 1

0 (K(s))′τ(s)ds
)

IE[g2(X )f (X )]/s.

Proof. The detail of the proof is given in appendix. It is based on the same

decomposition ofZheng [2009] and the following preliminary results.

Lemma 2.4.1. (see, Ferraty, laksaci et al. [2010])

Under the hypotheses (H1), (H3), (H4) (2), (3) and (5), we have

sup
x∈S
|̂f (x) − f (x)| = o(1) Almost completly 7

and

sup
x∈S
|̂r(x) − r(x)| = O(h�) + O


√
ψS

(
logn
n

)
nφ(h)

 Almost completely. 8

Lemma 2.4.2. (see, Zheng [1996] )

Let Un a second-order U -statistic3 of kernel Hn(·, ·) such that IE[H2
n (Zi , Zj)] = o(n),

then

Un − IE[Hn(Zi , Zj)] = o(1) In probability.

Lemma 2.4.3. (see, Zheng [1996] )

Assume that IE[Hn(Z1, Z2)|Z1] = 0 and IE[H2
n (Z1, Z2)] < ∞ for each n. If

IE[G2
n(Z1, Z2)] + n−1IE[H4

n (Z1, Z2)]
IE2[H2

n (Z1, Z2)]
→ 0

where Gn(Z1, Z2) = IE [Hn(Z1, Z3)Hn(Z3, Z2)|Z1, Z2], then

nUn

2IE1/2[H2
n (Z1, Z2)]

D
−→ N(0,1) as n → ∞.

3The general second-order U -statistic is of the form

Un =
1

n(n − 1)

n∑
i=1

n∑
j,i,=1

Hn(Zi , Zj)

where (Zi) are i.i.d. sample and Hn such that Hn(Zi , Zj) = Hn(Zj, Zi). Further, a U -statistic is said
to be degenerate if IE[Hn(Zi , Zj)|Zi] = 0 almost surly for all i , j
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2.5 On the finite sample performance of the test

The main goal of this Section is to show how we can implement easily and rapidly

our test statistic in practice. For this purpose, we consider the following regression

model

Y = r(X ) + σ(X )ε

where the explanatory curves are defined by :

Xi(t) = ai sin(4(bi − t)) + bi + ηi,t , ∀t ∈ (0,1) and i = 1,2, . . . , n

where bi (respectively, ηi,t ) is distributed as N(0,3), (respectively, N(0,0.5)), while

the n random variables ai ’s are generated according to a N(4,3) distribution. All

the curves Xi ’s are discretized on the same grid generated from 100 equispaced

measurements in (0,1) (cf. Figure 2.1).

Figure 2.1: A sample of 200 irregular curves

The operator r, is defined by:

r(Xi) =

∫ 1

0

dt

1 + X2
i (t)

for i = 1, . . . , n 9

In order to highlight the consistency of the proposed test statistic we compare

the p-values of this test with various degree of heteroscedasticity. Specifically we
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Chapter 2. Heteroscedasticity test when the covariables are curves

consider four operators σ(·)

Model 1 σ(X ) ≡ 1 Homoscedasticity case

Model 2 σ(X ) = 4 ∗ exp
(√∫ 1

0 X
2(t)dt

)
Exponential case

Model 3 σ(X ) = 2 ∗ cos
(
π

√∫ 1

0 X
2(t)dt

)
Consensus case

Model 4 σ(X ) =

(
1 +

√∫ 1

0 X
2(t)dt

)2

Polynomial case

The nonparametric structure of the test Tn is an important feature in this con-

text of functional data where it is difficult to detect the form of the relationship

between the variable of interest and the regressor. Moreover, it is well known

that the nonparametric test has more advantage than parametric one which is

not consistent against all deviation from the null hypothesis (see, Zheng [1996]

for more discussion in this subject for the multivariate case). On the other hand,

it is shown in this last work that this type of test statistic is simpler to compute

than Bierens’s test, because it contains less parameters. In the present test the

principal parameter is the bandwidth h. Now, to emphasize the importance of this

parameter in the efficiency of this test we control the sensitivity of our approach

to the smoothing parameter choice. Specifically, we compare the two selectors

methods proposed by Benhenni et al. [2010] of the regression function ( the

local selection method and the global one ).

For practical purposes, we select the local optimal bandwidth hX obtained by the

following local cross-validation criterion

hX = arg min
h∈Hn(X)

LCVX where LCVX = n−1
n∑
j=1

(Yj − r̂(Xj))WX(Xj)

with

WX(t) =


1 if d(t,X) < a(X)

0 otherwise
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and Hn(X) the set for a(X) such that the ball centered at X with radius a(X)

contains exactly k neighbors of x. Concerning the global choice we take the same

smoothing parameter for all observations that is

h = arg min
h∈Hn

GCV where GCV = n−1
n∑
j=1

(Yj − r̂(Xj)) 10

with Hn is the subset is the quantiles of order q of the vector of all distances

between the curves.

We use the following algorithm:

• Step 1: For each curve Xi we calculate the estimate ϸLoci and σ̂Loc by using

the bandwidth parameter hXi .

• Step 3: We calculate the estimate ϸGlobi and σ̂Glob by using the global band-

width parameter h of (10).

• Step 4: We calculate the test statistic for both case

T Locn =

√
n

2(n − 1)

∑n
i=1

∑n
j,i,=1 K

(
d(Xi ,Xj)
hXj

)
(ϸ̂Locj

2
− σ̂Loc

2
)(ϸ̂Loci

2
− σ̂Loc)√∑n

i=1
∑n
j,i,=1 K

2
(
d(Xi ,Xj)
hXj

)
(ϸ̂Locj

2
− σ̂Loc

2
)2(ϸ̂Loci

2
− σ̂Loc

2
)2

and

TGlobn =

√
n

2(n − 1)

∑n
i=1

∑n
j,i,=1 K

(
d(Xi ,Xj)

h

)
(ϸ̂Globj

2
− σ̂Glob

2
)(ϸ̂Globi

2
− σ̂Glob

2
)√∑n

i=1
∑n
j,i,=1 K

2
(
d(Xi ,Xj)

h

)
(ϸ̂Globj

2
− σ̂Glob

2
)2(ϸ̂Globi

2
− σ̂Glob

2
)2

• Step 5: We determine the P-values of T Locn and TGlobn

In this illustration study we have used the semi-metric based on the m first

eigenfunctions of the empirical covariance operator associated with the m = 3

greatest eigenvalues (cf. Benhenni et al. [2007] for more discussions in this

choice) and the quadratic kernel. The results of the four selected sample sizes,

n ∈ {50,100,200,500}, are gathered in the following table
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Model n Loc. Selector Glob. Selector

Model 1 50 0.09 0.07

100 0.26 0.28

200 0.30 0.28

500 0.33 0.32

Model 2 50 0.1 0.16

100 0.07 0.09

200 0.01 0.03

500 0.01 0.01

Model 3 50 0.2 0.22

100 0.12 0.18

200 0.04 0.08

500 0.02 0.06

Model 4 50 0.15 0.18

100 0.09 0.11

200 0.05 0.07

500 0.02 0.04

Table 1: The P-Values of the test.

Table 1 presents the P-values of Tn for various sample sizes n = 50,100,200,500.

We can see clearly that the performance of our test is varied with the type of

heteroscedasticity and the sample size n. However, the result of the local choice

is better than the global one. Moreover, we point out that this approach is faster

even if the sample sizes is large. It worth to noting that the result of the small

size can be improved by using the bootstrapping approach. This question is an

important prospect of this work.
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2.6 Appendix

In what follows, when no confusion is possible, we will denote by C and C′ some

strictly positive generic constants. Moreover, we put, for any x ∈ F , and for all

i = 1, . . . , n:

Kij = K(h−1d(Xi , Xj)), Ri = r(Xi), R̂i = r̂(Xi), ϸi = Yi − Ri

and

fi = f (Xi), ui = ϸ2
i − σ

2, f̂i = f̂ (Xi).

Proof of Theorem 2.5

By writing

ϸ̂i
2
− σ̂2 = ui − 2ϸi(R̂i − Ri) + (R̂i − Ri)2 + (σ2 − σ̂2)

we have

Wn =

 1
n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kijuiuj

︸                                   ︷︷                                   ︸
W1n

+4

 1
n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kijϸiϸj(R̂i − Ri)(R̂j − Rj)

︸                                                           ︷︷                                                           ︸
W2n

+

 1
n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kij(R̂i − Ri)2(R̂j − Rj)2

︸                                                         ︷︷                                                         ︸
W3n

+

 1
n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kij (̂σ2 − σ2)2

︸                                            ︷︷                                            ︸
W4n

−4

 1
n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kijuiϸj(R̂j − Rj)

︸                                               ︷︷                                               ︸
W5n

+2

 1
n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kijui(R̂j − Rj)2

︸                                              ︷︷                                              ︸
W6n

−2

 1
n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kijui (̂σ − σ2)

︸                                            ︷︷                                            ︸
W7n

−4

 1
n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kijϸi(R̂i − Ri)(R̂j − Rj)2

︸                                                          ︷︷                                                          ︸
W8n

+4

 1
n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kijϸi(R̂i − Ri)(̂σ2 − σ2)

︸                                                          ︷︷                                                          ︸
W9n

−2

 1
n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kij(R̂i − Ri)2 (̂σ2 − σ2)

︸                                                         ︷︷                                                         ︸
W10n

then Wn is decomposed into 10 terms Wkn, k = 1, . . .10

Wn = W1n + 4W2n +W3n +W4n − 4W5n + 2W6n − 2W7n − 4W8n + 4W9n − 2W10n.
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This it suffices to prove that under H0

n
√
φ(h)W1n

D
−→ N(0, s2) as n → ∞ 11

and

n
√
φ(h)W2n = o(1) In probability, n

√
φ(h)W3n = o(1) In probability,

n
√
φ(h)W4n = o(1) In probability, n

√
φ(h)W5n = o(1) In probability,

n
√
φ(h)W6n = o(1) In probability, n

√
φ(h)W7n = o(1) In probability,

n
√
φ(h)W8n = o(1) In probability, n

√
φ(h)W9n = o(1) In probability,

and n
√
φ(h)W10n = o(1) In probability.

Firstly, we show (11). To do that we rewrite W1n as U -statistic of the following

form

W1n =
1

n(n − 1)

n∑
i=1

n∑
j,i,=1

Hn(Zi , Zj)

where

Hn(Zi , Zj) =
1

φ(h)
Kijuiuj with Zi = (Xi , ϸi).

Employing properties of the conditional expectation to prove, under H0, that

IE[Hn(Z1, Z2)|Z1] =
1

φ(h)
u1K12IE [u2|X2] = 0.

So, we can apply Lemma2.4.3 on U1n as degenerate U -statistic. For this purpose,

we must evaluate the following quantities

IE
[
G2
n(Z1, Z2)

]
, IE

[
H4
n (Z1, Z2)

]
and IE

[
H2
n (Z1, Z2)

]
.
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Concerning the first quantity we use (3) and (4) together with (H3) to write that

IE
[
G2
n(Z1, Z2)

]
= IE

[
IE [Hn(Z1, Z3)Hn(Z3, Z2)|Z1, Z2]2

]
=

1
φ4(h)

IE
[
u2

1u
2
2 IE

[
IE

[
IE

[
K13K23u

2
3 |X3

]
|X1, X2

]2
]]

=
1

φ4(h)
IE

[
u2

1u
2
2 IE

[
K13K32IE

[
u2

3 |X3

]
|X1, X2

]2
]

=
1

φ4(h)

∫ ∫ [∫
K(h−1d(x1, x3))K(h−1d(x3, x2))

IE
[
u2

3 |x3

]
dPX3(x3)

]2
IE

[
u2

1 |X1

]
IE

[
u2

2 |X2

]
dPX1(x1)dPX2(x2)

=
1

φ4(h)

"
D={x1,x2, d(x1,x2)≤2h}

[∫
B(x1,h)∩B(x2,h)

K(h−1d(x1, x3))K(h−1d(x3, x2))

IE
[
u2

3 |x3

]
dPX3(x3)

]2
IE

[
u2

1 |X1

]
IE

[
u2

2 |X2

]
dPX1(x1)dPX2(x2)

≤
C

φ4(h)

"
D={x1,x2, d(x1,x2)≤2h}

[∫
B(x1,h)∩B(x2,h)

dPX3(x3)
]2

dPX1(x1)dPX2(x2)

≤
C

φ(h)
.

We conclude that

IE
[
G2
n(Z1, Z2)

]
= O

(
1

φ(h)

)
. 12

Now, for the second quantity, we write

IE
[
H4(Z1, Z2)

]
=

1
φ4(h)

IE
[
K4

12u
4
1u

4
2

]
=

1
φ4(h)

IE
[
K4

12IE
[
u4

2u
4
1 |X2, X1

]]
=

1
φ4(h)

IE
[
K4

12IE
[
u4

2 |X2

]
IE

[
u4

1 |X1

]]
≤

C

φ4(h)

∫ ∫
B(x2,h)

dPX1(x1)dPX2(x2)

≤
C

φ3(h)

∫
f (x)dPX (x).

Therefore

IE
[
H4(Z1, Z2)

]
= O

(
1

φ3(h)

)
. 13
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Next, for the last term we use the continuity of the operator IE[ϸ4|X = ·] to get

IE
[
H2(Z1, Z2)

]
=

1
φ2(h)

IE
[
K2

12u
2
1u

2
2

]
=

1
φ2(h)

IE
[
K2

12IE
[
u2

2u
2
1 |X2, X1

]]
=

1
φ2(h)

IE
[
K2

12IE
[
u2

2 |X2
]

IE
[
u2

1 |X1
]]

=
1

φ2(h)
IE

[
K2

12IE2
[
u2

2 |X2
]]

+ o

(
1

φ2(h)
IE

[
K2

12IE2
[
u2

2 |X2
]])

=
1

φ(h)

(
K2(1) −

∫ 1

0
(K2)′(s)τ(s)ds

) ∫
f (x2)IE2

[
u2

2 |x2
]
dPX2(x2) + o

(
1

φ(h)

)
=

1
φ(h)

(
K2(1) −

∫ 1

0
(K2)′(s)τ(s)ds

) ∫
f (x2)

(
V

[
ϸ2|x2

])2
dPX2(x2) + o

(
1

φ(h)

)

=
1

φ(h)

(
K2(1) −

∫ 1

0
(K2)′(s)τ(s)ds

)
IE

[
f (X )

(
V

[
ϸ2|X

])2
]

+ o

(
1

φ(h)

)
.

14

It follows that

IE
[
H2(Z1, Z2)

]
= O

(
1

φ(h)

)
.

Combining this last evaluation to (7) and (8) to obtained

IE
[
G2
n(Z1, Z2)

]
+ n−1IE

[
H4(Z1, Z2)

]
IE2 [H2(Z1, Z2)]

= O(φ(h)) + O

(
1

nφ(h)

)
= o(1)

Hence, from Lemma 2.4.3 we have

nW1n

2IE1/2 [H2(Z1, Z2)]

D
−→ N(0,1) as n → ∞

which complete the proof of (11).

Secondly, we treat n
√
φ(h)W2n. To do that, we write

W2n = W2n11{∏n
i=1 f (Xi ),0}︸                ︷︷                ︸

U2n

+W2n11{∏n
i=1 f (Xi )=0} 15
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where 11A is indicator function of A. For U2n, we introduce the quantity

Q2n =

 1
n(n − 1)φ(h)

n∑
i=1

∑
j,i

1
h
Kijϸiϸj(R̂i − Ri)(R̂j − Rj)

f̂i
fi

f̂j
fj

 .
The uniform consistency of Lemma 2.4.1 allows to write that

U2n = Q2n + o (Q2n) .

So, it suffices to evaluate the leading term that is n
√
φ(h)Q2n. Indeed,

IE
[
Q2

2n

]
= IE

[
1

n6(n − 1)2φ6(h)
∑
i

∑
j,i

∑
k

∑
l

∑
i′
∑
j′,i′

∑
k′

∑
l′

1
fifjfi′fj′

KijKikKjlKi′j′Ki′k′Kj′l′(Yk − Ri)(Yl − Rj)(Yk′ − Ri′)(Yl′ − Rj′)ϸiϸjϸi′ϸj′
]
.

Observe that the terms of this summation are non null only if

{i, j} = {i′, j′}

or

{i, j, i′, j′} = {k, l, k′, l′} with i , k, j , l, i′ , k′, j′ , l′.

It is clear that the first case is the leading part of this sum. Thus,

IE
[
Q2

2n

]
=

2
n6(n − 1)2φ6(h)

n(n − 1)(n − 2)2(n − 3)2IE
[

1
f 2
1 f

2
2
K2

12K13K24K15K26

(Y3 − R1)(Y4 − R2)(Y5 − R1)(Y6 − R2)ϸ2
1ϸ

2
2

]
+ o

(
(n2φ(h))−1) .

=
2

n6(n − 1)2φ6(h)
n(n − 1)(n − 2)2(n − 3)2IE

[
1
f 2
1 f

2
2
K2

12K13K24K15K26

(R3 − R1)(R4 − R2)(R5 − R1)(R6 − R2)σ4] + o
(
(n2φ(h))−1) .

From (2), we get

IE
[
Q2

2n

]
≤

2Ch4�

n6(n − 1)2φ6(h)
n(n − 1)(n − 2)2(n − 3)2IE

[
1
f 2
1 f

2
2
K2

12K13K24K15K26

]
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Further, using the fact that K has compact support (0,1) to write that

IE
[

1
f 2
1 f

2
2
K2

12K13K24K15K26

]
=

∫ ∫ ∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

1
f 2(x1)f 2(x2)

K2(h−1d(x1, x2))

K(t3)K(t4)K(t5)K(t6)dPX1(x1)dPX2(x2)dPh
−1d(x1,X3)(t3)

dPh
−1d(x2,X4)(t4)dPh

−1d(x1,X5)(t5)dPh
−1d(x2,X6)(t6)

≤ C

∫ ∫
1

f 2(x1)f 2(x2)
K2(h−1d(x1, x2))∫ 1

0
dPh

−1d(x1,X3)(t3)
∫ 1

0
dPh

−1d(x2,X4)(t4)∫ 1

0
dPh

−1d(x1,X5)(t5)
∫ 1

0
dPh

−1d(x2,X6)(t6)dPX1(x1)dPX2(x2)

≤ Cφ5(h)
∫
f (x)dPX (x) + o(φ5(h))

Finally, we obtain

IE
[
Q2

2n

]
= O

(
h4�

n2φ(h)

)
.

Consequently, the Chebyshiev’s inequality permits to conclude that

n
√
φ(h)Q2n → 0 In probability.

Hence

n
√
φ(h)U2n → 0 In probability.

About the second term of (15), we use (6) to write, for all ε > 0

P
{
n

√
φ(h)

∣∣∣∣W2n11{∏n
i=1 f (Xi )=0}

∣∣∣∣ > ε} ≤ P  n∏
i=1

f (Xi) = 0

 ≤ nP{f (X ) = 0} = 0. 16

which finish the proof of the second limit.

Thirdly, for the term W3n we use a similar decomposition of (15) to write that

W3n = W3n11{∏n
i=1 f (Xi ),0}︸                ︷︷                ︸

U3n

+W3n11{∏n
i=1 f (Xi )=0}.

The second term is evaluated by the same fashion that in (16). While for the first
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term we have

U3n ≤ sup
x∈S
|R̂(x) − R(x)|4

1
n(n − 1)φ(h)

n∑
i=1

n∑
j=1

Kij

Recall that, the second part of Lemma 2.4.1 gives

sup
x∈S
|R̂(x) − R(x)| = O(h�) + O


√
ψ(n−1 logn)
nφ(h)

 In probability.

On the other hand by a simple manipulation we can show that

1
n(n − 1)φ(h)

n∑
i=1

n∑
j=1

Kij = O(1) In probability.

By (H4), we get

n
√
φ(h)U3n = O

(
n

√
φ(h) max

(
h4�,

1
log2 n

))
= o(1).

Thus, we conclude the required limit.

Fourthly, the termW4n is evaluated by the same arguments as those used inW3n.

Formally, it suffices to prove that

n
√
φ(h)(̂σ2 − σ2)2 = o(1) In probability.

Indeed, we have

σ̂2 − σ2 =
1
n

n∑
i=1

(ϸ2
i − σ

2) +
2
n

n∑
i=1

ϸi(R̂i − Ri) +
1
n

n∑
i=1

(R̂i − Ri)2.

It is easy to see that

V

 1
√
n

n∑
i=1

(ϸ2
i − σ

2)

 = V
[
ϸ2

]
, IE

 1
√
n

n∑
i=1

(ϸ2
i − σ

2)

 = 0

and

V

 1
√
n

n∑
i=1

ϸi

 = V [ϸ] , IE

 1
√
n

n∑
i=1

ϸi

 = 0.

51



Chapter 2. Heteroscedasticity test when the covariables are curves

Thus

1
n

n∑
i=1

(ϸ2
i − σ

2) = o

 1√
n
√
φ(h)

 In probability

and

1
n

n∑
i=1

ϸi(R̂i − Ri) = o

 1√
n
√
φ(h)

 In probability.

Similarly to U3n, we use the convergence rate of the uniform consistency of Lemma

(2.4.1) to prove that

√
n

√
φ(h) sup

x∈S
|R̂(x) − R(x)| = o(1) In probability.

It follows that √
n

√
φ(h)(̂σ2 − σ2) = o(1) In probability.

Hence

n
√
φ(h)W4n = o(1) In probability.

Finally, the proofs of the others terms W5n, . . .W10n are very similar to the treated

cases. So, their proofs are omitted. The proof of the first part is completed.

Now, we proceed to state the second part of Theorem 2.5. Once again we use the

Slutsky lemma. So, it suffices to show that

ŝ2 −→ s2 In probability.

Indeed, we define the following U -statistic

ŝ2
0 =

1
n(n − 1)φ(h)

n∑
i=1

n∑
j,i,=1

K2
iju

2
i u

2
j .

We use the uniform consistency of R̂(·) − R(·) and σ̂ − σ to deduce that

ŝ2 = ŝ2
0 + o(1) In probability.
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In addition, from (9) and (8) we obtain

IE
[
H ′2(Zi , Zj)

]
= φ2(h)IE

[
H4(Zi , Zj)

]
= O

(
1

φ(h)

)
= o(n)

and

IE
[
H ′(Zi , Zj)

]
= φ(h)IE

[
H2(Zi , Zj)

]
= s2

Therefore, Lemma2.4.2 yields the proof of the second part of this Theorem.

Proof of Theorem 2.6

The proof follows the same lines as that of the second part of Theorem 2.5. In

particular, the uniform consistency of R̂(·) − R(·) and σ̂ − σ allow to write that

Wn = W1n + o(1) In probability.

So, it suffices to state, under H1, the consistency of W1n and ŝ2
0. Once again, we

apply Lemma 2.4.3 to W1n and ŝ2
0 as U -statistics. So, it suffices to evaluate, under

H1, the following quantities

IE
[
H ′2(Zi , Zj)

]
, IE

[
H ′(Zi , Zj)

]
, IE

[
H2(Zi , Zj)

]
and IE

[
H(Zi , Zj)

]
It is shown in the proof of (11) that

IE
[
H2(Z1, Z2)

]
=

1
φ(h)

(
K2(1) −

∫ 1

0 (K2)′(s)τ(s)ds
) ∫

f (x2)IE2 [
u2

2 |x2
]
dPX2(x2) + o

(
1

φ(h)

)
=

1
φ(h)

(
K2(1) −

∫ 1

0
(K2)′(s)τ(s)ds

)
IE

[
f (X )

(
IE

[
u2

2 |X
])2

]
+ o

(
1

φ(h)

)
=

1
φ(h)

(
K2(1) −

∫ 1

0
(K2)′(s)τ(s)ds

)
IE

[
f (X )

(
V

[
ϸ2|X

]
+ (V [ϸ|X ] − σ2)2

)2
]

+ o

(
1

φ(h)

)
.

Therefore

IE
[
H2(Z1, Z2)

]
= O

(
1

φ(h)

)
= o(n)

and

IE
[
H ′(Zi , Zj)

]
=

(
K2(1) −

∫ 1

0
(K2)′(s)τ(s)ds

)
IE

[
f (X )

(
V

[
ϸ2|X

]
+ (V [ϸ|X ] − σ2)2

)2
]
+o(1).
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By the same way

n−1IE
[
H ′2(Z1, Z2)

]
=

1
nφ2(h)

IE
[
K4

12IE
[
u4

2 |X2

]
IE

[
u4

1 |X1

]]
≤

C

nφ2(h)

∫ ∫
B(x2,h)

dPX1(x1)dPX2(x2)

≤
C

nφ(h)

∫
f (x)dPX (x)→ 0.

and

IE [H(Z1, Z2)] =
1

φ(h)
IE [K12u1u2]

=
1

φ(h)
IE

[
K2

12IE [u2u1|X2, X1] |
]

=
1

φ(h)
IE

[
K2

12IE [u2|X2] IE [u1|X1]
]

=
1

φ(h)
IE

[
K2

12IE2 [u2|X2]
]

+ o

(
1

φ(h)
IE

[
K2

12IE2 [u2|X2]
])

=

(
K(1) −

∫ 1

0
(K)′(s)τ(s)ds

) ∫
f (x2)IE2 [u2|x2]dPX2(x2) + o(1)

=

(
K(1) −

∫ 1

0
(K)′(s)τ(s)ds

)
IE

[
f (X )IE2 [u|X ]

]
+ o(1)

=

(
K(1) −

∫ 1

0
(K)′(s)τ(s)ds

)
IE

[
f (X )(V [ϸ|X ] − σ2)2

]
+ o(1)

So, from Lemma 2.4.3 we get

Wn −→

(
K(1) −

∫ 1

0
(K)′(s)τ(s)ds

)
IE

[
f (X )(V [ϸ2|X ] − σ2)2

]
In probability.

and

ŝ2 −→ 2
(
K2(1) −

∫ 1

0
(K2)′(s)τ(s)ds

)
IE

[
f (X )

(
V

[
ϸ2|X

]
+ (V [ϸ|X ] − σ2)2

)2]
+o(1) In probability.

Consequently

Tn
nφ(h)

→

(
K(1) −

∫ 1
0 (K)′(s)τ(s)ds

)
IE

[
f (X )(V [ϸ2|X ] − σ2)2

]
2
(
K2(1) −

∫ 1
0 (K2)′(s)τ(s)ds

)
IE

[
f (X )

(
V

[
ϸ2|X

]
+ (V [ϸ|X ] − σ2)2)2] In probability.
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Proof of Corollary2.3

Similarly to previous Theorem, it suffices to prove the asymptotic normality of

nφ1/2(h)Wn and the convergence in probability of ŝ2. For the first purpose we use

the same decomposition of 2.5 to write

W1n = W1n + o((nφ1/2(h))−1)

Thereafter, we introduce u′i = ui − δng(Xi), thus

W1n =
1

n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kijuiuj

=
1

n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kij(u′i + δng(Xi))(u′j + δng(Xj))

=
1

n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kiju
′
iu
′
j

+
2δn

n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kiju
′
i g(Xj)

+
δ2
n

n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kijg(Xi)g(Xj)

= U11n + 2δnU12n + δ2
nU13n.

Observe that IE[u′i |Xi] = 0, then we can treat U11n as degenerate U -statistic simi-

larly to (11). Therefore,

n
√
φ(h)U11n → N(0, s2)

and by the same argument as those used in the consistency of ŝ2 we get for

δn = n−1/2φ−1/4(h)

n
√
φ(h)δ2

nU13n = U13n →

(
K(1) −

∫ 1

0
(K)′(s)τ(s)ds

)
IE[g2(X )f (X )], In probability

and

n
√
φ(h)δnU12n =

√
n(φ(h))1/4U12n → 0, In probability.

Now, it suffices to use the the Slutsky lemma to conclude the claimed result.
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Testing heteroscedasticity in nonlinear regression
Chapter 3: Testing heteroscedasticity in nonlinear

regression

In the current Chapter, we focused on the parametric case, therefore, we consider

a nonlinear regression models where the explanatory variable valued in an infinite

dimensional space F . Thereafter, we follow the same steps just as the previous

Chapter.
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3.1 Introduction

In what comes below, we present a consistent nonparametric test for

heteroscedasticity. Thereafter, we show that our test has asymptotic

normality under the homoscedasticity hypothesis. Furthermore, we

establish the consistency of the constructed test against any form of

heteroscedasticity.

3.1 Introduction

Over several years, the multivariate data has been used for modeling. However,

keeping up with the age of speed the data are more being recorded continuously

during the time interval. Thus, the classical methods of multivariate data anal-

ysis do not seem suitable for studying this kind of data. From here required

a new statistic branch called Functional Statistic, which treat the observations

like a functional random elements valued in an infinite dimensional space. This

kind of data has received a lot of attention in the literature either at physiologic (

Brumback and Rice [1998]), biologic ( Müller and Stadtmüller [2005]), demo-

graphics (Chiou and Müller[2009] ),...

We concentrate in this Chapter on a functional regression model precisely where

the response variable Y is real valued whereas the explanatory variable X belongs

to a functional space. Moreover, we propose a consistent nonparametric test for

heteroscedasticity depending on the kernel estimations of the nonlinear regres-

sion. It’s worth noting that, this model is not efficiency in the heteroscedasticity

case, it requires the homoscedasticity of the data which cannot be guaranteed a

priori. Thus, testing this phenomenon is of utmost importance. To the best of

our knowledge, testing heteroscedasticity in functional statistics has not been

addressed so far, whereas, we more recently have been the first who established

this phenomenon in nonparametric regression (Henien, Laksaci et al[2018] ).

Similar to the last work, we based on the nonparametric approaches such that

it is more appropriate than the parametric one. In the literature, this methods

take a large place in Functional Data Analysis (FDA), thus, it has been the pre-
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ferred one of several authors for modeling (see Ferraty and Vieu [2006] for basic

results or Cuevas[2014] and Goia and Vieu[2016] for recent advanced and ref-

erences ). Moreover, in the functional statistics literature, a limited number of

tests are found, thus, a various test problems are considered either in paramet-

ric or nonparametric structures (see: Cardot et al[2003], Cuevas et al [2004],

Delsol[2013], Zhang et al[2010], Hilgert et al[2013], Staicu et al[2014] ). In

addition, there have been also a proposed tests in the case when the response vari-

able is real and the explanatory is functional one. However, this kind of model

are very few (see: Cardot et al.[2004] Gadiaga and Ignaccolo [2005], Chiou

and Müller [2007] ). In multivariate statistics, testing heteroscedasticityhas

received a lot of attention, several authors have proposed either parametric or

nonparametric methods in the literature, citing Zheng[2009], Lin et al.[2012] or

Breusch and Pagan[1979], Diblasi and Bowman [1997] and among others for

the proposed approaches.

In what follows, we extend the previous work of Zheng[2009] in multivariate

statistics to the infinite dimensional space. Indeed, we aim to present a consis-

tent nonparametric test for heteroscedasticity, based on the kernel estimation

of the nonlinear regression. Thereafter, we show that our test has asymptotic nor-

mality under the homoscedasticity hypothesis and can be also consistent against

any form of heteroscedasticity. It should be noted that, to avoid the problem

of the curse of dimensionality in multivariate case, some standard conditions in

nonparametric functional statistics are used through this paper.

We organize our work as follows. In the following Section we construct our test

statistic. The main results of this paper are given in Section 3, in which, we

study the asymptotic behavior of the considered test statistics under the null

(respectively alternative) hypothesis. All proofs are put into the Appendix.
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3.2 Construction of the test statistic

3.2 Construction of the test statistic

We consider a set of independent pairs of random variables (Xi , Yi)1≤i≤n identically

distributed as (X, Y ) which is a random vector valued in F × R, where F is a

semi-metric space. x is a fixed point in F , Nx is a fixed neighborhood of x and the

closed ball centered at x and of radius α is denoted

B(x, α) = {y ∈ F such that d(y, x) ≤ α} .

Moreover, the nonlinear regression operator r of Y on X is defined by E [Yi | Xi = X ] =

r(X ) where r(X ) assumed to belong to a parametric family of known real functions

f (X, θ) on F × Θ where Θ ⊂ R. Indeed, r characterized the by following regularity

condition

∀x1, x2 ∈ Nx , |r(x1) − r(x2)| ≤ Cd�(x1, x2), C > 0 � > 0. 1

Furthermore, we suppose that the regressor X such that, there exists a nonnega-

tive continuous functions φ and f such that

IP (X ∈ B(x, α)) = φ(α).f (x) + o(φ(α)). 2

Thence, we suppose that the function φ such that:

For all s ∈ [0,1], lim
α→0

φ(sα)
φ(α)

= τ(s) 3

Concerning the function f , we assume that the Kolmogorov’s ϸ-entropy ψS of the

support S of f such that

∞∑
n=1

exp
{

(1 − η)ψS

(
logn
n

)}
< ∞, for some η > 1. 4
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We point out that this considerations is classic in nonparametric functional data

analysis ( see, Masry[2005] Ferraty, Laksaci et al.[2010], for more discussion

in this question ).

Therefore, we present our heteroscedasticity test as flow,

H0 : V [ϸ|X ] = σ2 versus H1 : V [ϸ|X ] , σ2

Where ϸ is a random error variable such that IE[ϸ|X ] = 0. To construct test

statistic, we denote ϸi = Yi − f (Xi , θ0) and suppose that the function p such that

p(X ) > 0 almost surly, and IE[p(X )] < ∞. 5

Then, under H0 , since E
[
ϸ2 | X

]
= V [ϸ | X ] = σ2 , we can show that

W = IE[(ϸ2 − σ2)IE[(ϸ2 − σ2)|X ]p(X )] = IE[IE2[(ϸ2 − σ2)|X ]p(X )] = 0.

While H1 is equivalent to write

W = IE[(ϸ2−σ2)IE[(ϸ2−σ2)|X ]p(X )] = IE[IE2[(ϸ2−σ2)|X ]p(X )] = IE[(V [ϸ|X ]−σ2)2p(X )] > 0.

Therefore, we consider the empirical version of W denoted by

Ŵ =
1
n

n∑
i=1

(ϸ2
i − σ

2)Λi.

Where,

Λi = IE[(ϸ2
i − σ

2)|Xi]p(Xi)

Now it sufficient to estimate E(ϸ2
i | Xi) by the kernel method :

Ê(ϸ2 | Xi) =

1
n

∑n
i=1

1
φ(h)

K(d(Xi , Xj)h−1)ϸ2
j

p̂(Xi)

While, p can be estimates by ( see, Ezzahrioui and Ould-Saïd[2008] ) :
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p̂(x) =
1

nφ(h)

n∑
i=1

K
(
d(Xi , Xj)h−1

)
.

Replacing ϸi and σ2 by their estimators ϸ̂i = Yi − f (Xi , θ̂1 and σ̂2 = 1
n

∑n
i=1 ϸ̂i

2, it

follows that the natural estimate of W is

Wn =
1

n(n − 1)φ(h)

n∑
i=1

n∑
j,i,=1

K
(
d(Xi , Xj)h−1

)
(ϸ̂i

2
− σ̂2)(ϸ̂j

2
− σ̂2)

3.3 The main result

In order to establish our asymptotic results, we impose the following regularity

assumptions.

(H1) IE[ϸ8|X = x] ≤ b(x) with b(x) is continuous on S such that IE[b2(X )] < ∞.

(H2) The parameter space Θ is a compact and convex subset of IR. f (X, θ) is a

Borel measurable function on F × IR for each θ and a twice continuously dif-

ferentiable real function on Θ for each X ∈ F .Moreover, E
[
supθ∈Θ f (Xi , θ)2] <

∞, and

E

[
sup
θ∈Θ

∣∣∣∣∣∣δ2f (Xi , θ)
δθ

∣∣∣∣∣∣
]
< ∞,

E

[
sup
θ∈Θ

∣∣∣∣∣∣(yi − f (Xi , θ))2δ
2f (Xi , θ)
δθ

∣∣∣∣∣∣
]
< ∞.

(H3) E
[
(yi − f (Xi , θ))2] takes a unique minimum at θ0 ∈ Θ.

(H4) The kernel K is a differentiable function supported on [0,1] such that

K2(1) −
∫ 1

0
(K2(s))′τ(s)ds > 0 and K(1) −

∫ 1

0
(K(s))′τ(s)ds , 0.

(H5) The bandwidth parameter h := h(n) is strictly positive such that:

n → 0, n φ(h) → ∞, n
√
φ(h) max

(
h4�,

1
log2 n

)
→ 0 and

(logn)2

n φ(h)
< ψS

(
logn
n

)
<
n φ(h)
logn

when n tends to infinity.

1θ̂ is the nonlinear least square estimator of θ0 where this later can be estimated by any
√
n−consistent method.
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Assumptions 2 and 3 are standard for ensuring the consistency and asymptotic

normality of nonlinear least squares estimators. Assumption 4 and 5 are the

same as those used by Ferraty, laksaci et al.[2010] for the uniform consistency

in functional statistics. While, the assumption 1 is the same as in Zheng[2009]

for the heteroscedasticity in multivariate case.

• Under H0

Theorem 3.7. If (H1)-(H6), (3) and (5) hold, then we get

n
√
φ(h)Wn

D
−→ N(0, s2) as n → ∞

Where s2 = 2
(
K2(1) −

∫ 1

0 (K2(s))′τ(s)ds
)

IE
[
f (X )V 2 [

ϸ2
2 |X

]]
.

Moreover,

Tn = n
√
φ(h)

Wn

ŝ

D
−→ N(0,1) as n → ∞

where

ŝ2 =
1

n(n − 1)φ(h)

n∑
i=1

n∑
j,i,=1

K
(
d(Xi , Xj)h−1

)
(ϸ̂j

2
− σ̂2)2(ϸ̂i

2
− σ̂2)2.

• Under H1

Theorem 3.8. When (H1)-(H6), (3) and (5) hold, then we get

Tn
n
√
φ(h)

−→ IE[(V [ϸ|X ] − σ2)2p(X )]/s1, In probability

where s2
1 =

(
K2(1) −

∫ 1

0 (K2(s))′τ(s)ds
)

(
K(1) −

∫ 1

0 (K(s))′τ(s)ds
) IE[(V [ϸ2|X ] + (V [ϸ|X ] − σ2)2)p(X )].

Now, we have to show that our test robust against all possible departures from

homoscedasticity. Thence, we consider a sequence of local alternatives

H1n : V [ϸ|x] − σ2 = δng(x)

where the known function g(·) is continuous on S such that IE[g2(X )] < ∞. So,

we obtain the following Corollary
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Corollary 3.4. Given (H1)-(H4), (3) and (5) we get, underH1n with δn = n−1/2φ−1/4(h)

Tn
D
−→ N(µ,1) as n → ∞

where µ =
(
K(1) −

∫ 1

0 (K(s))′τ(s)ds
)

IE[g2(X )p(X )]/s.

3.4 Appendix

To prove our results, we based on the same decomposition of Zheng[2009] and

the following Lemmas.

Lemma 3.4.1. (see, Zheng[2009])

Let Un a second-order U -statistic of kernel Hn(·, ·) such that IE[H2
n (Zi , Zj)] = o(n),

then

Un − IE[Hn(Zi , Zj)] = o(1) In probability.

Lemma 3.4.2. (see, Zheng[2009])

Assume that IE[Hn(Z1, Z2)|Z1] = 0 and IE[H2
n (Z1, Z2)] < ∞ for each n. If

IE[G2
n(Z1, Z2)] + n−1IE[H4

n (Z1, Z2)]
IE2[H2

n (Z1, Z2)]
→ 0

where Gn(Z1, Z2) = IE [Hn(Z1, Z3)Hn(Z3, Z2)|Z1, Z2], then

nUn

2IE1/2[H2
n (Z1, Z2)]

D
−→ N(0,1) as n → ∞.

Lemma 3.4.3. (see Jennrich, 1969, White[1981,1982] ),

√
n(̂θ − θ0) = Op(1).

Over what come behind, we point out for convenience notation that, C and C’ some

strictly positive generic constants, as well, for any x ∈ F , and for all i = 1, . . . , n:

Kij = K(h−1d(Xi , Xj)), ϸi = Yi − f (Xi , θ0)

and

pi = p(Xi), ui = ϸ2
i − σ

2, p̂i = p̂(Xi).
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Chapter 3. Testing heteroscedasticity in nonlinear regression

Proof of Theorem 3.7

To make Wn ’s treatment easier, we write

ϸ̂i
2
− σ̂2 = ui − 2ϸi(f (X, θ̂) − f (X, θ0)) + (f (X, θ̂) − f (X, θ0))2 + (σ2 − σ̂2)

Therefore, Wn will be decomposed as follows

Wn =

 1
n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kijuiuj

︸                                   ︷︷                                   ︸
W1n

+ 4

 1
n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kijϸiϸj(f (Xi , θ̂) − f (Xi , θ0))(f (Xj, θ̂) − f (Xj, θ0))

︸                                                                                           ︷︷                                                                                           ︸
W2n

+

 1
n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kij(f (Xi , θ̂) − f (Xi , θ0))2(f (Xj, θ̂) − f (Xj, θ0))2

︸                                                                                         ︷︷                                                                                         ︸
W3n

+

 1
n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kij (̂σ2 − σ2)2

︸                                            ︷︷                                            ︸
W4n

− 4

 1
n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kijuiϸj(f (Xj, θ̂) − f (Xj, θ0))

︸                                                               ︷︷                                                               ︸
W5n

+ 2

 1
n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kijui(f (Xj, θ̂) − f (Xj, θ0))2

︸                                                              ︷︷                                                              ︸
W6n

− 2

 1
n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kijui (̂σ − σ2)

︸                                            ︷︷                                            ︸
W7n

− 4

 1
n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kijϸi(f (Xi , θ̂) − f (Xi , θ0))(f (Xj, θ̂) − f (Xj, θ0))2

︸                                                                                          ︷︷                                                                                          ︸
W8n

+ 4

 1
n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kijϸi(f (Xi , θ̂) − f (Xi , θ0))(̂σ2 − σ2)

︸                                                                         ︷︷                                                                         ︸
W9n

− 2

 1
n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kij(f (Xi , θ̂) − f (Xi , θ0))2(̂σ2 − σ2)

︸                                                                        ︷︷                                                                        ︸
W10n

≡ W1n + 4W2n +W3n +W4n − 4W5n + 2W6n − 2W7n − 4W8n + 4W9n − 2W10n.
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Thus, it remains to show that under the null

n
√
φ(h)W1n

D
−→ N(0, s2) as n → ∞ 6

and

n
√
φ(h)Win = op(1), i = 2, ...,10.

Foremost we prove (6). To this point, W1n can be written as U -statistic of the form

below

W1n =
1

n(n − 1)

n∑
i=1

n∑
j,i,=1

Hn(Zi , Zj)

whither

Hn(Zi , Zj) =
1

φ(h)
Kijuiuj with Zi = (Xi , ϸi).

By using the conditional expectation properties we prove that, under H1,

IE[Hn(Z1, Z2)|Z1] =
1

φ(h)
u1K12IE [u2|X2] = 0.

Consequently, U1n is a degenerate U -statistic, and so on, we can apply Lemma3.4.2

by considering the quantities

IE
[
G2
n(Z1, Z2)

]
, IE

[
H4
n (Z1, Z2)

]
and IE

[
H2
n (Z1, Z2)

]
.
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Firstly, we write under (H4), (2) and (3) that

IE
[
G2
n(Z1, Z2)

]
= IE

[
IE [Hn(Z1, Z3)Hn(Z3, Z2)|Z1, Z2]2

]
=

1
φ4(h)

IE
[
u2

1u
2
2 IE

[
IE

[
IE

[
K13K23u

2
3 |X3

]
|X1, X2

]2
]]

=
1

φ4(h)
IE

[
u2

1u
2
2 IE

[
K13K32IE

[
u2

3 |X3

]
|X1, X2

]2
]

=
1

φ4(h)

∫ ∫ [∫
K(h−1d(x1, x3))K(h−1d(x3, x2))

IE
[
u2

3 |x3

]
dPX3(x3)

]2
IE

[
u2

1 |X1

]
IE

[
u2

2 |X2

]
dPX1(x1)dPX2(x2)

=
1

φ4(h)

"
D={x1,x2, d(x1,x2)≤2h}

[∫
B(x1,h)∩B(x2,h)

K(h−1d(x1, x3))K(h−1d(x3, x1))

IE
[
u2

3 |x3

]
dPX3(x3)

]2
IE

[
u2

1 |X1

]
IE

[
u2

2 |X2

]
dPX1(x1)dPX2(x2)

≤
C

φ4(h)

"
D={x1,x2, d(x1,x2)≤2h}

[∫
B(x1,h)∩B(x2,h)

dPX3(x3)
]2

dPX1(x1)dPX2(x2)

≤
C

φ(h)
.

Therefore

IE
[
G2
n(Z1, Z2)

]
= O

(
1

φ(h)

)
. 7

Secondly, we write

IE
[
H4(Z1, Z2)

]
=

1
φ4(h)

IE
[
K4

12u
4
1u

4
2

]
=

1
φ4(h)

IE
[
K4

12IE
[
u4

2u
4
1 |X2, X1

]]
=

1
φ4(h)

IE
[
K4

12IE
[
u4

2 |X2

]
IE

[
u4

1 |X1

]]
≤

C

φ4(h)

∫ ∫
B(x2,h)

dPX1(x1)dPX2(x2)

≤
C

φ3(h)

∫
f (x)dPX (x).

Thus

IE
[
H4(Z1, Z2)

]
= O

(
1

φ3(h)

)
. 8

Now, we require the continuity of the operator IE[ϸ4|X = ·] to the remainder term,
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and so, we get

IE
[
H2(Z1, Z2)

]
=

1
φ2(h)

IE
[
K2

12u
2
1u

2
2

]
=

1
φ2(h)

IE
[
K2

12IE
[
u2

2u
2
1 |X2, X1

]]
=

1
φ2(h)

IE
[
K2

12IE
[
u2

2 |X2

]
IE

[
u2

1 |X1

]]
=

1
φ2(h)

IE
[
K2

12IE2
[
u2

2 |X2

]]
+ o

(
1

φ2(h)
IE

[
K2

12IE2
[
u2

2 |X2

]])
=

1
φ(h)

(
K2(1) −

∫ 1

0
(K2)′(s)τ(s)ds

) ∫
f (x2)IE2

[
u2

2 |x2

]
dPX2(x2) + o

(
1

φ(h)

)
=

1
φ(h)

(
K2(1) −

∫ 1

0
(K2)′(s)τ(s)ds

) ∫
f (x2)

(
V

[
ϸ2|x2

])2
dPX2(x2) + o

(
1

φ(h)

)

=
1

φ(h)

(
K2(1) −

∫ 1

0
(K2)′(s)τ(s)ds

)
IE

[
f (X )

(
V

[
ϸ2|X

])2
]

+ o

(
1

φ(h)

)
.

9

As a result

IE
[
H2(Z1, Z2)

]
= O

(
1

φ(h)

)
.

Combining this last evaluation to (7) and (8) to obtained

IE
[
G2
n(Z1, Z2)

]
+ n−1IE

[
H4(Z1, Z2)

]
IE2 [H2(Z1, Z2)]

= O(φ(h)) + O

(
1

nφ(h)

)
= o(1)

Hence, from Lemma (3.4.2) we have

nW1n

2IE1/2 [H2(Z1, Z2)]

D
−→ N(0,1) as n → ∞

which complete the proof of (6).

Now, we have to proof that n
√
φ(h)W2n = o(1). For be done, we use the Taylor

expansion to write an approximation of W2n as

W2n = (̂θ − θ0)
1

n(n − 1)

n∑
i=1

n∑
j,i

1
φ(h)

Kijϸiϸj ×
δf (Xi , ξ1)

δθ

δf (Xj, ξ2)
δθ

(θ̂ − θ0)

= (θ̂ − θ0)S1n(θ̂ − θ0)

where ξ valued in interval [θ0, θ̂] (ξ1 depending on Xi and ξ2 depending on Xj ).
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Thence, we have

E [|S1n |] ≤ E

[
1

φ(h)
Kijσ(Xi)σ(Xj)

∣∣∣∣∣δf (Xi , ξ1)
δθ

δf (Xj, ξ2)
δθ

∣∣∣∣∣]
=

∫
1

φ(h)
Kijσ(Xi)σ(Xj)

∣∣∣∣∣δf (Xi , ξ1)
δθ

δf (Xj, ξ2)
δθ

∣∣∣∣∣dPXi (xi)dPXj(xj)
=

∫
K(u)σ(Xi)σ(Xj)

∣∣∣∣∣δf (Xi , ξ1)
δθ

δf (Xj, ξ2)
δθ

∣∣∣∣∣ f (xj)dPXi (xi)

= O(1).

Whereas, σ(X ) refer to E(| ϸ | |X ). By applying the lemma3.4.3 we have

W2n = Op(1/
√
n)Op(1)Op(1/

√
n)

= Op(1/n).

Thus

n
√
φ(h)W2n = O(

√
φ(h))

P
→ 0.

Just as the same way, W3n can be also rewrite such

W3n = (̂θ − θ0)2 1
n(n − 1)

n∑
i=1

n∑
j,i

1
φ(h)

Kij

(
δf (Xi , ξ1)

δθ

δf (Xj, ξ2)
δθ

)2

(θ̂ − θ0)2

= (̂θ − θ0)2S2n(θ̂ − θ0)2.

Similar to the proof of S1n, we can show that

W3n = Op(1/n).Op(1).Op(1/n) = Op(1/n).

Finally, we have

n
√
φ(h)W3n = Op(

√
φ(h))

P
→ 0.

For the term W4n it suffices to prove that

n
√
φ(h)(̂σ2 − σ2)2 = o(1) In probability.
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In fact, we use the following decomposition

σ̂2 − σ2 =
1
n

n∑
i=1

(ϸ2
i − σ

2) +
2
n

n∑
i=1

ϸi(f (Xi , θ̂) − f (Xi , θ0)) +
1
n

n∑
i=1

(f (Xi , θ̂) − f (Xi , θ0))2.

Thence, we can easily achieve that

V

 1
√
n

n∑
i=1

(ϸ2
i − σ

2)

 = V
[
ϸ2

]
, IE

 1
√
n

n∑
i=1

(ϸ2
i − σ

2)

 = 0

and

V

 1
√
n

n∑
i=1

ϸi

 = V [ϸ] , IE

 1
√
n

n∑
i=1

ϸi

 = 0.

Thus

1
n

n∑
i=1

(ϸ2
i − σ

2) = o

 1√
n
√
φ(h)

 In probability

and

1
n

n∑
i=1

ϸi(f (Xi , θ̂) − f (Xi , θ0)) = o

 1√
n
√
φ(h)

 In probability.

Similarly to the proof of W2n and W3n

1
n

n∑
i=1

(
f (Xi , θ̂) − f (Xi , θ0)

)2
=

1
n

n∑
i=1

(
(θ̂ − θ0)

δf (Xi , ξ1)
δθ

)2

= O(1/n).

Now, we can easily show that

√
n

√
φ(h)(̂σ2 − σ2) = o(1) In probability.

Hence, we deduce that

n
√
φ(h)W4n = o(1) In probability.

In the same way as the proofs of the treated cases, we can easily get

n
√
φ(h)Win = o(1) In probability, for i = 5, . . . ,10.
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Thus, the proof of the first part is completed.

The second part of Theorem 3.7 can be proved by using the Slutsky lemma.

Indeed, it suffices to show that

ŝ2 −→ s2 In probability.

In similar way of the proof of W1n, we get

ŝ2
0 =

1
n(n − 1)φ(h)

n∑
i=1

n∑
j,i,=1

K2
iju

2
i u

2
j .

= ŝ2
0 + o(1)

Moreover, from (9) and (8) we obtain

IE
[
H ′2(Zi , Zj)

]
= φ2(h)IE

[
H4(Zi , Zj)

]
= O

(
1

φ(h)

)
= o(n)

and

IE
[
H ′(Zi , Zj)

]
= φ(h)IE

[
H2(Zi , Zj)

]
= s2

Thus, Lemma3.4.2 yields the proof of the second part of this Theorem.

Proof of Theorem 3.8

Following the same procedures as the second part of theorem 3.7, theorem 3.8

can be proved.

Actually, we have just to evaluate, under H1, the following quantities

IE
[
H ′2(Zi , Zj)

]
, IE

[
H ′(Zi , Zj)

]
, IE

[
H2(Zi , Zj)

]
and IE

[
H(Zi , Zj)

]
It is shown in the proof of (11) that

IE
[
H2(Z1, Z2)

]
=

1
φ(h)

(
K2(1) −

∫ 1

0 (K2)′(s)τ(s)ds
) ∫

f (x2)IE2 [
u2

2 |x2
]
dPX2(x2) + o

(
1

φ(h)

)
=

1
φ(h)

(
K2(1) −

∫ 1

0
(K2)′(s)τ(s)ds

)
IE

[
f (X )

(
IE

[
u2

2 |X
])2

]
+ o

(
1

φ(h)

)
=

1
φ(h)

(
K2(1) −

∫ 1

0
(K2)′(s)τ(s)ds

)
IE

[
f (X )

(
V

[
ϸ2|X

]
+ (V [ϸ|X ] − σ2)2

)2
]

+ o

(
1

φ(h)

)
.
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Therefore

IE
[
H2(Z1, Z2)

]
= O

(
1

φ(h)

)
= o(n)

and

IE
[
H ′(Zi , Zj)

]
=

(
K2(1) −

∫ 1

0
(K2)′(s)τ(s)ds

)
IE

[
f (X )

(
V

[
ϸ2|X

]
+ (V [ϸ|X ] − σ2)2

)2
]
+o(1).

By the same way

n−1IE
[
H ′2(Z1, Z2)

]
=

1
nφ2(h)

IE
[
K4

12IE
[
u4

2 |X2

]
IE

[
u4

1 |X1

]]
≤

C

nφ2(h)

∫ ∫
B(x2,h)

dPX1(x1)dPX2(x2)

≤
C

nφ(h)

∫
f (x)dPX (x)→ 0.

and

IE [H(Z1, Z2)] =
1

φ(h)
IE [K12u1u2]

=
1

φ(h)
IE

[
K2

12IE [u2u1|X2, X1] |
]

=
1

φ(h)
IE

[
K2

12IE [u2|X2] IE [u1|X1]
]

=
1

φ(h)
IE

[
K2

12IE2 [u2|X2]
]

+ o

(
1

φ(h)
IE

[
K2

12IE2 [u2|X2]
])

=

(
K(1) −

∫ 1

0
(K)′(s)τ(s)ds

) ∫
f (x2)IE2 [u2|x2]dPX2(x2) + o(1)

=

(
K(1) −

∫ 1

0
(K)′(s)τ(s)ds

)
IE

[
f (X )IE2 [u|X ]

]
+ o(1)

=

(
K(1) −

∫ 1

0
(K)′(s)τ(s)ds

)
IE

[
f (X )(V [ϸ|X ] − σ2)2

]
+ o(1)

So, from Lemma (3.4.2) we get

Wn −→

(
K(1) −

∫ 1

0
(K)′(s)τ(s)ds

)
IE

[
f (X )(V [ϸ2|X ] − σ2)2

]
In probability.
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and

ŝ2 P
→ 2

(
K2(1) −

∫ 1

0
(K2)′(s)τ(s)ds

)
IE

[
f (X )

(
V

[
ϸ2|X

]
+ (V [ϸ|X ] − σ2)2

)2
]

+ o(1)

Consequently

Tn
nφ(h)

P
→

(
K(1) −

∫ 1

0 (K)′(s)τ(s)ds
)

IE
[
f (X )(V [ϸ2|X ] − σ2)2]

2
(
K2(1) −

∫ 1

0 (K2)′(s)τ(s)ds
)

IE
[
f (X ) (V [ϸ2|X ] + (V [ϸ|X ] − σ2)2)2

]
Proof of Corollary3.4

Like the previous proofs, by using the same decomposition of Theorem 3.7, we

can show that

Wn = W1n + o((nφ1/2(h))−1)

Thence, let we assume that u′i = ui − δng(Xi), thus, W1n can be decompose like

W1n =
1

n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kijuiuj

=
1

n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kij(u′i + δng(Xi))(u′j + δng(Xj))

=
1

n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kiju
′
iu
′
j

+
2δn

n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kiju
′
i g(Xj)

+
δ2
n

n(n − 1)φ(h)

n∑
i=1

∑
j,i

Kijg(Xi)g(Xj)

= U11n + 2δnU12n + δ2
nU13n.

We can clearly see that IE[u′i |Xi] = 0, for this reason we can treat U11n as degenerate

U -statistic similarly to (11). Therefore,

n
√
φ(h)U11n → N(0, s2).
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3.4 Appendix

And by the same argument as those used in the consistency of ŝ2 we get for

δn = n−1/2φ−1/4(h) :

n
√
φ(h)δ2

nU13n = U13n →

(
K(1) −

∫ 1

0
(K)′(s)τ(s)ds

)
IE[g2(X )f (X )], In probability

and

n
√
φ(h)δnU12n =

√
n(φ(h))1/4U12n → 0, In probability.

Finally, to conclude our proof, we just have to apply the Slutsky lemma.
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Conclusions
Chapter 4: Conclusions

In this final chapter, we resume the contributions of this dissertation and the

possible impact as we see it and we talk over the main directions of the prospective

work.
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4.1 Summary of the thesis

4.1 Summary of the thesis

The work presented in this thesis provide new theoretical results on the het-

eroscedasticity test in the context of functional statistical spaces. Indeed, where

the explanatory variable valued in an infinite dimensional space. Thus, the pro-

posed tests are innovative in this context. Whereas, they are consistent either

at nonlinear or nonparametric regression models. Actually, our tests are based

on the nonparametric estimation techniques and constructed by evaluating the

difference between the conditional variance and unconditional variance. They are

allowed to test if the variance of the error terms is constant which means the

presence of homoscedasticity. In addition, we proved that those tests are also

consistent against all deviations from the null hypothesis.

We point out that, our work can be considered as a generalization to infinite di-

mensional of some results established in multivariate case. As far as we know,

we have been the first who established this results, meaning that, testing het-

eroscedasticity in functional statistics. It should be noted that, in order to avoid

the problem of the curse of dimensionality in multivariate case, some standard

conditions in nonparametric functional statistics are used through this work.

Therefore, we have established in Chapter 1 and Chapter 2 the asymptotic behav-

ior of the constructed tests statistics under the homoscedasticity (resp. alterna-

tive) hypothesis. In addition, the corollary 5 and 6 are introduced to examine the

robustness of the tests against all possible departures from homoscedasticity.

Finally, for practical purposes, some simulated data examples are presented in

Chapter 2, to evaluate the performance of the developed test. Whereas, this

type of test statistics is simpler to calculate due to the less of parameters, the

bandwidth needs to be chosen. Moreover, it has more advantage because of

the nonparametric form which is better than the parametric one thus it is not

consistent against all deviation from the null hypothesis.
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Chapter 4. Conclusions

4.2 Direction for future work

In the desire to continue our work, we show in what be come below, the extent

of the subject studied and its implication in other statistical problems. Thus, we

present some interesting prospects and open questions of this thesis.

• We have interested in our prediction problem on scalar response given ex-

planatory functional random variable, which is the most preferred in this

context, hence, it could be fascinating to extending our results to the case

of functional response.

• On another conditional models :

To construct our hereroscedasticity tests, we based on the conditional vari-

ance. While, there are another conditional quantities like the mode, den-

sity,quantiles,... that it would be interesting to be used.

• The dependent case :

In this thesis, our results have been obtained for the independent case.

For the next work, it could be interesting to study an other cases as α-

mixing or �-mixing variables. The literature on dependent functional kernel

estimators has been fairly well developed ( see Masry [2005] or Ferraty

and Vieu [2006] ). In the other hand, this generalization can pose the

problem of bootstrapping dependent variables ( see for instance Politis and

Romano [1994] ).

• Additionally, it would be an interesting challenge to construct a specific

semi-metrics suitable to the image study. Furthermore, we can trying to use

the results to study a sequence of independent (resp; dependent) images.

• Spatial prediction :

We suppose that we want to predict a real characteristic of the Spatio-

Temporal process Zt,s∈I×S⊂R3 (where t time and s the geographical position)

in a future time t0 to a fixed zone s0. It could be interesting to construct a

test statistics to detect the heteroscedasticity for the data by using Spatio-

Temporal variables.
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4.2 Direction for future work

• Another estimation methods :

we based on the kernel estimation to construct our heteroscedasticity tests,

it seems possible to used an others estimation methods as:

-Robust estimation : This estimation method has been extensively studied

in vectorial statistics. We refer toLaksaci et al[2008] and Attouch[2009]

for the function case.

-The local linear estimation : this method has been introduced for func-

tional statistics not long ago, in 2009 by Baíllo and Grané.. We can name

for example: Demongeot et al[2011, 2013, 2014 and 2016] for the analy-

sis of the estimator in the conditional distribution framework or functional

response variable, Wang et al[2015] for the dependent data. The tools

developed in this thesis should be able to adapt to this estimation methods.

• The semi-parametric models :

In addition to the models that we focused on in our work, there have an other

interesting models, the semi-parametric models as partially linear models, to

extend our idea ( see Aneiros- Perez and Vieu[2006, 2008] or Lian[2011]

), the single-index functional models ( see Goia and Vieu[2015]) or the

projection models ( see Chen and collab)[2011]), which recently, this field

take a wide interest on functional data analysis.
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